repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
kislayabhi/pgmpy
pgmpy/inference/ExactInference.py
1
16262
#!/usr/bin/env python3 import numpy as np from pgmpy.inference import Inference from pgmpy.factors.Factor import factor_product class VariableElimination(Inference): def _variable_elimination(self, variables, operation, evidence=None, elimination_order=None): """ Implementation of a generalized variable elimination. Parameters ---------- variables: list, array-like variables that are not to be eliminated. operation: str ('marginalize' | 'maximize') The operation to do for eliminating the variable. evidence: dict a dict key, value pair as {var: state_of_var_observed} None if no evidence elimination_order: list, array-like list of variables representing the order in which they are to be eliminated. If None order is computed automatically. """ # Dealing with the case when variables is not provided. if not variables: all_factors = [] for factor_li in self.factors.values(): all_factors.extend(factor_li) return set(all_factors) eliminated_variables = set() working_factors = {node: {factor for factor in self.factors[node]} for node in self.factors} # Dealing with evidence. Reducing factors over it before VE is run. if evidence: for evidence_var in evidence: for factor in working_factors[evidence_var]: factor_reduced = factor.reduce('{evidence_var}_{state}'.format(evidence_var=evidence_var, state=evidence[evidence_var]), inplace=False) for var in factor_reduced.scope(): working_factors[var].remove(factor) working_factors[var].add(factor_reduced) del working_factors[evidence_var] # TODO: Modify it to find the optimal elimination order if not elimination_order: elimination_order = list(set(self.variables) - set(variables) - set(evidence.keys() if evidence else [])) elif any(var in elimination_order for var in set(variables).union(set(evidence.keys() if evidence else []))): raise ValueError("Elimination order contains variables which are in" " variables or evidence args") for var in elimination_order: # Removing all the factors containing the variables which are # eliminated (as all the factors should be considered only once) factors = [factor for factor in working_factors[var] if not set(factor.variables).intersection(eliminated_variables)] phi = factor_product(*factors) phi = getattr(phi, operation)(var, inplace=False) del working_factors[var] for variable in phi.variables: working_factors[variable].add(phi) eliminated_variables.add(var) final_distribution = set() for node in working_factors: factors = working_factors[node] for factor in factors: if not set(factor.variables).intersection(eliminated_variables): final_distribution.add(factor) query_var_factor = {} for query_var in variables: phi = factor_product(*final_distribution) phi.marginalize(list(set(variables) - set([query_var]))) query_var_factor[query_var] = phi.normalize(inplace=False) return query_var_factor def query(self, variables, evidence=None, elimination_order=None): """ Parameters ---------- variables: list list of variables for which you want to compute the probability evidence: dict a dict key, value pair as {var: state_of_var_observed} None if no evidence elimination_order: list order of variable eliminations (if nothing is provided) order is computed automatically Examples -------- >>> from pgmpy.inference import VariableElimination >>> from pgmpy.models import BayesianModel >>> import numpy as np >>> import pandas as pd >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)), ... columns=['A', 'B', 'C', 'D', 'E']) >>> model = BayesianModel([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')]) >>> model.fit(values) >>> inference = VariableElimination(model) >>> phi_query = inference.query(['A', 'B']) """ return self._variable_elimination(variables, 'marginalize', evidence=evidence, elimination_order=elimination_order) def max_marginal(self, variables=None, evidence=None, elimination_order=None): """ Computes the max-marginal over the variables given the evidence. Parameters ---------- variables: list list of variables over which we want to compute the max-marginal. evidence: dict a dict key, value pair as {var: state_of_var_observed} None if no evidence elimination_order: list order of variable eliminations (if nothing is provided) order is computed automatically Examples -------- >>> from pgmpy.inference import VariableElimination >>> from pgmpy.models import BayesianModel >>> import numpy as np >>> import pandas as pd >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)), ... columns=['A', 'B', 'C', 'D', 'E']) >>> model = BayesianModel([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')]) >>> model.fit(values) >>> inference = VariableElimination(model) >>> phi_query = inference.max_marginal(['A', 'B']) """ if not variables: variables = [] final_distribution = self._variable_elimination(variables, 'maximize', evidence=evidence, elimination_order=elimination_order) # To handle the case when no argument is passed then # _variable_elimination returns a dict. if isinstance(final_distribution, dict): final_distribution = final_distribution.values() return np.max(factor_product(*final_distribution).values) def map_query(self, variables=None, evidence=None, elimination_order=None): """ Computes the MAP Query over the variables given the evidence. Parameters ---------- variables: list list of variables over which we want to compute the max-marginal. evidence: dict a dict key, value pair as {var: state_of_var_observed} None if no evidence elimination_order: list order of variable eliminations (if nothing is provided) order is computed automatically Examples -------- >>> from pgmpy.inference import VariableElimination >>> from pgmpy.models import BayesianModel >>> import numpy as np >>> import pandas as pd >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)), ... columns=['A', 'B', 'C', 'D', 'E']) >>> model = BayesianModel([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')]) >>> model.fit(values) >>> inference = VariableElimination(model) >>> phi_query = inference.map_query(['A', 'B']) """ if not variables: variables = [] final_distribution = self._variable_elimination(variables, 'maximize', evidence=evidence, elimination_order=elimination_order) # To handle the case when no argument is passed then # _variable_elimination returns a dict. if isinstance(final_distribution, dict): final_distribution = final_distribution.values() distribution = factor_product(*final_distribution) argmax = np.argmax(distribution.values) assignment = distribution.assignment(argmax)[0] map_query_results = {} for var_assignment in assignment: var, value = var_assignment.split('_') map_query_results[var] = int(value) return map_query_results def induced_graph(self, elimination_order): """ Returns the induced graph formed by running Variable Elimination on the network. Parameters ---------- elimination_order: list, array like List of variables in the order in which they are to be eliminated. Examples -------- >>> import numpy as np >>> import pandas as pd >>> from pgmpy.models import BayesianModel >>> from pgmpy.inference import VariableElimination >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)), ... columns=['A', 'B', 'C', 'D', 'E']) >>> model = BayesianModel([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')]) >>> model.fit(values) >>> inference = VariableElimination(model) >>> inference.induced_graph(['C', 'D', 'A', 'B', 'E']) <networkx.classes.graph.Graph at 0x7f34ac8c5160> """ class BeliefPropagation(Inference): """ Class for performing inference using Belief Propagation method. Creates a Junction Tree or Clique Tree (JunctionTree class) for the input probabilistic graphical model and performs calibration of the junction tree so formed using belief propagation. Parameters ---------- model: BayesianModel, MarkovModel, FactorGraph, JunctionTree model for which inference is to performed """ def __init__(self, model): from pgmpy.models import JunctionTree super(BeliefPropagation, self).__init__(model) if not isinstance(model, JunctionTree): self.junction_tree = model.to_junction_tree() else: self.junction_tree = model self.clique_beliefs = {} self.sepset_beliefs = {} def get_cliques(self): """ Returns cliques used for belief propagation. """ return self.junction_tree.nodes() def get_clique_beliefs(self): """ Returns clique beliefs. Should be called after the clique tree (or junction tree) is calibrated. """ return self.clique_beliefs def get_sepset_beliefs(self): """ Returns sepset beliefs. Should be called after clique tree (or junction tree) is calibrated. """ return self.sepset_beliefs def calibrate(self): """ Calibration using belief propagation in junction tree or clique tree. Uses Lauritzen-Spiegelhalter algorithm or belief-update message passing. Examples -------- >>> from pgmpy.models import BayesianModel >>> from pgmpy.factors import TabularCPD >>> from pgmpy.inference import BeliefPropagation >>> G = BayesianModel([('diff', 'grade'), ('intel', 'grade'), ... ('intel', 'SAT'), ('grade', 'letter')]) >>> diff_cpd = TabularCPD('diff', 2, [[0.2], [0.8]]) >>> intel_cpd = TabularCPD('intel', 3, [[0.5], [0.3], [0.2]]) >>> grade_cpd = TabularCPD('grade', 3, ... [[0.1, 0.1, 0.1, 0.1, 0.1, 0.1], ... [0.1, 0.1, 0.1, 0.1, 0.1, 0.1], ... [0.8, 0.8, 0.8, 0.8, 0.8, 0.8]], ... evidence=['diff', 'intel'], ... evidence_card=[2, 3]) >>> sat_cpd = TabularCPD('SAT', 2, ... [[0.1, 0.2, 0.7], ... [0.9, 0.8, 0.3]], ... evidence=['intel'], evidence_card=[3]) >>> letter_cpd = TabularCPD('letter', 2, ... [[0.1, 0.4, 0.8], ... [0.9, 0.6, 0.2]], ... evidence=['grade'], evidence_card=[3]) >>> G.add_cpds(diff_cpd, intel_cpd, grade_cpd, sat_cpd, letter_cpd) >>> bp = BeliefPropagation(G) >>> bp.calibrate() Reference --------- Algorithm 10.3 Calibration using belief propagation in clique tree Probabilistic Graphical Models: Principles and Techniques Daphne Koller and Nir Friedman. """ import networkx as nx # Initialize clique beliefs as well as sepset beliefs self.clique_beliefs = {clique: self.junction_tree.get_factors(clique) for clique in self.junction_tree.nodes()} self.sepset_beliefs = {frozenset(x[0]).intersection(frozenset(x[1])): None for x in self.junction_tree.edges()} def _update_beliefs(sending_clique, recieving_clique): """ This is belief-update method. Takes belief of one clique and uses it to update the belief of the neighboring ones. """ sepset = frozenset(sending_clique).intersection(frozenset(recieving_clique)) print(sending_clique, sepset, recieving_clique) # \sigma_{i \rightarrow j} = \sum_{C_i - S_{i, j}} \beta_i # marginalize the clique over the sepset sigma = self.clique_beliefs[sending_clique].marginalize( list(frozenset(sending_clique) - sepset), inplace=False) print(sigma) # \beta_j = \beta_j * \frac{\sigma_{i \rightarrow j}}{\mu_{i, j}} self.clique_beliefs[recieving_clique] *= (sigma / self.sepset_beliefs[sepset] if self.sepset_beliefs[sepset] else sigma) print(self.clique_beliefs[recieving_clique]) # \mu_{i, j} = \sigma_{i \rightarrow j} self.sepset_beliefs[sepset] = sigma print(self.sepset_beliefs[sepset]) def _converged(): """ Checks whether the calibration has converged or not. At convergence the sepset belief would be precisely the sepset marginal. Formally, at convergence this condition would be satisified \sum_{C_i - S_{i, j}} \beta_i = \sum_{C_j - S_{i, j}} \beta_j = \mu_{i, j} """ for edge in self.junction_tree.edges(): sepset = frozenset(edge[0]).intersection(frozenset(edge[1])) marginal_1 = self.clique_beliefs[edge[0]].marginalize(list(frozenset(edge[0]) - sepset), inplace=False) marginal_2 = self.clique_beliefs[edge[1]].marginalize(list(frozenset(edge[1]) - sepset), inplace=False) if not np.allclose(marginal_1.values, marginal_2.values, rtol=1e-4): return False return True for clique in self.junction_tree.nodes(): if not _converged(): neighbors = self.junction_tree.neighbors(clique) # update root's belief using nieighbor clique's beliefs # upward pass for neighbor_clique in neighbors: _update_beliefs(neighbor_clique, clique) bfs_edges = nx.algorithms.breadth_first_search.bfs_edges(self.junction_tree, clique) # update the beliefs of all the nodes starting from the root to leaves using root's belief # downward pass for edge in bfs_edges: _update_beliefs(edge[0], edge[1]) else: break
mit
gwaygenomics/nf1_inactivation
scripts/describe_data.py
1
4903
''' Gregory Way 2016 NF1 Inactivation Classifier for Glioblastoma scripts/describe_data.py Get sample size and number of NF1 mutations Usage: Run on the command line 'python describe_data.py' There are also optional flags --type Ignore different types of mutations (defaults to 'Silent') --tissue Tissue to consider (defaults to 'GBM') --gene The gene to query (defaults to 'NF1') --out-file Output file to write mutation counts --mut-file Mutation description table loc (tables/nf1_mutations.tsv) Output: Three distinct files including: 1) A tissue sample dictionary for RNAseq measured samples 2) A table tracking the number of mutations per tissue of specific genes 3) A table of the specific mutations for each of the NF1 mutated samples ''' import pandas as pd import pickle import argparse #################################### # Load Command Arguments #################################### parser = argparse.ArgumentParser() parser.add_argument("-m", "--type", dest="mut_types", help="different types of mutations to write", default='Silent') parser.add_argument("-t", "--tissue", dest="tissue", help="tissues to query", default='GBM') parser.add_argument("-g", "--gene", dest="gene", help="genes to query", default='NF1') parser.add_argument("-f", "--out-file", dest="out_fh", help="filename of where to save output", default='tables/sample_mut_table.tsv') parser.add_argument("-o", "--mut-file", dest="mut_fh", help="filename of where to save mutation table output", default='tables/nf1_mutations.tsv') args = parser.parse_args() #################################### # Load Constants #################################### MUT_TYPES = args.mut_types.split(',') TISSUE = args.tissue GENE = args.gene OUT_FH = args.out_fh MUT_FH = args.mut_fh #################################### # Load data #################################### mutation = pd.read_csv('data/PANCAN_mutation', delimiter='\t') clinical = pd.read_csv('data/PANCAN_clinicalMatrix', delimiter='\t') rnaseq = pd.read_csv('data/HiSeqV2', delimiter='\t', index_col=0) tissue_dict = pd.read_csv('tables/tcga_dictionary.tsv', delimiter='\t') #################################### # Determine Tissue Specific Samples #################################### tissues = clinical._primary_disease.dropna().unique().tolist() tissues.remove('FFPE pilot phase II') # Get full tissue name tissue_name = tissue_dict[tissue_dict['acronym'] == TISSUE]['tissue'].values[0] # Initialize a tissue sample dictionary be used to store sample IDs tissue_dict_samples = {} # Subset clinical information to tissue clin_sub = clinical.loc[clinical['_primary_disease'] == tissue_name, :] samp_size = clin_sub.shape[0] # What are the sample ids sample_ids = clin_sub['sampleID'].tolist() # RNAseq samples rnaseq_samp = set(sample_ids) & set(rnaseq.columns) # populate the tissue sample dictionary tissue_dict_samples[TISSUE] = sample_ids # Subset the mutation file to only these samples mut_samples = mutation.loc[mutation['#sample'].isin(sample_ids), :] # Subset the RNAseq file to only those with NF1 mutations rnaseq_pos = set(mut_samples['#sample']) & set(rnaseq.columns) # Get types of mutations nf1_mutations = mut_samples.loc[mut_samples['gene'] == GENE, :] # Filter mutations for mut_type in MUT_TYPES: nf1_mutations = nf1_mutations.loc[mutation['effect'] != mut_type, :] # Samples with non-silent mutations nf1_mut_samples = set(nf1_mutations['#sample'].tolist()) # Number of samples with NF1 mutations and RNAseq measurements nf1_rnaseq = nf1_mut_samples.intersection(rnaseq_samp) # Compile info for input tissue tissue_info = [ TISSUE, tissue_name, samp_size, len(set(mut_samples['#sample'].tolist())), len(rnaseq_samp), len(rnaseq_pos), len(nf1_mut_samples), len(nf1_rnaseq), ] # Subset the mutations we have RNAseq info for rnaseq_nf1 = nf1_mutations[nf1_mutations['#sample'].isin(nf1_rnaseq)] #################################### # Save output files to disk #################################### with open('output/tissue_sample_dictionary.p', 'wb') as pickle_fh: pickle.dump(tissue_dict_samples, pickle_fh) tissue_info = pd.DataFrame(tissue_info).T tissue_info.columns = ['acronym', 'disease', 'total samples', 'samples with mutations', 'samples with RNAseq', 'samples with mutations and RNAseq', 'total NF1 mutations', 'NF1 mutations with RNAseq'] tissue_info.to_csv(OUT_FH, sep='\t', index=False) use_cols = ['#sample', 'chr', 'start', 'end', 'reference', 'alt', 'gene', 'effect', 'Amino_Acid_Change'] rnaseq_nf1_subset = rnaseq_nf1[use_cols] rnaseq_nf1_subset.to_csv(MUT_FH, sep='\t', index=False)
bsd-3-clause
badbytes/pymeg
meg/spectral.py
1
106416
""" Numerical python functions written for compatability with matlab(TM) commands with the same names. Matlab(TM) compatible functions ------------------------------- :func:`cohere` Coherence (normalized cross spectral density) :func:`csd` Cross spectral density uing Welch's average periodogram :func:`detrend` Remove the mean or best fit line from an array :func:`find` Return the indices where some condition is true; numpy.nonzero is similar but more general. :func:`griddata` interpolate irregularly distributed data to a regular grid. :func:`prctile` find the percentiles of a sequence :func:`prepca` Principal Component Analysis :func:`psd` Power spectral density uing Welch's average periodogram :func:`rk4` A 4th order runge kutta integrator for 1D or ND systems :func:`specgram` Spectrogram (power spectral density over segments of time) Miscellaneous functions ------------------------- Functions that don't exist in matlab(TM), but are useful anyway: :meth:`cohere_pairs` Coherence over all pairs. This is not a matlab function, but we compute coherence a lot in my lab, and we compute it for a lot of pairs. This function is optimized to do this efficiently by caching the direct FFTs. :meth:`rk4` A 4th order Runge-Kutta ODE integrator in case you ever find yourself stranded without scipy (and the far superior scipy.integrate tools) :meth:`contiguous_regions` return the indices of the regions spanned by some logical mask :meth:`cross_from_below` return the indices where a 1D array crosses a threshold from below :meth:`cross_from_above` return the indices where a 1D array crosses a threshold from above record array helper functions ------------------------------- A collection of helper methods for numpyrecord arrays .. _htmlonly: See :ref:`misc-examples-index` :meth:`rec2txt` pretty print a record array :meth:`rec2csv` store record array in CSV file :meth:`csv2rec` import record array from CSV file with type inspection :meth:`rec_append_fields` adds field(s)/array(s) to record array :meth:`rec_drop_fields` drop fields from record array :meth:`rec_join` join two record arrays on sequence of fields :meth:`rec_groupby` summarize data by groups (similar to SQL GROUP BY) :meth:`rec_summarize` helper code to filter rec array fields into new fields For the rec viewer functions(e rec2csv), there are a bunch of Format objects you can pass into the functions that will do things like color negative values red, set percent formatting and scaling, etc. Example usage:: r = csv2rec('somefile.csv', checkrows=0) formatd = dict( weight = FormatFloat(2), change = FormatPercent(2), cost = FormatThousands(2), ) rec2excel(r, 'test.xls', formatd=formatd) rec2csv(r, 'test.csv', formatd=formatd) scroll = rec2gtk(r, formatd=formatd) win = gtk.Window() win.set_size_request(600,800) win.add(scroll) win.show_all() gtk.main() Deprecated functions --------------------- The following are deprecated; please import directly from numpy (with care--function signatures may differ): :meth:`conv` convolution (numpy.convolve) :meth:`corrcoef` The matrix of correlation coefficients :meth:`hist` Histogram (numpy.histogram) :meth:`linspace` Linear spaced array from min to max :meth:`load` load ASCII file - use numpy.loadtxt :meth:`meshgrid` Make a 2D grid from 2 1 arrays (numpy.meshgrid) :meth:`polyfit` least squares best polynomial fit of x to y (numpy.polyfit) :meth:`polyval` evaluate a vector for a vector of polynomial coeffs (numpy.polyval) :meth:`save` save ASCII file - use numpy.savetxt :meth:`trapz` trapeziodal integration (trapz(x,y) -> numpy.trapz(y,x)) :meth:`vander` the Vandermonde matrix (numpy.vander) """ from __future__ import division import csv, warnings, copy, os import numpy as np from numpy import angle, imag, real ma = np.ma from matplotlib import verbose import matplotlib.nxutils as nxutils import matplotlib.cbook as cbook # set is a new builtin function in 2.4; delete the following when # support for 2.3 is dropped. try: set except NameError: from sets import Set as set def linspace(*args, **kw): warnings.warn("use numpy.linspace", DeprecationWarning) return np.linspace(*args, **kw) def meshgrid(x,y): warnings.warn("use numpy.meshgrid", DeprecationWarning) return np.meshgrid(x,y) def mean(x, dim=None): warnings.warn("Use numpy.mean(x) or x.mean()", DeprecationWarning) if len(x)==0: return None return np.mean(x, axis=dim) def logspace(xmin,xmax,N): return np.exp(np.linspace(np.log(xmin), np.log(xmax), N)) def _norm(x): "return sqrt(x dot x)" return np.sqrt(np.dot(x,x)) def window_hanning(x): "return x times the hanning window of len(x)" return np.hanning(len(x))*x def window_none(x): "No window function; simply return x" return x #from numpy import convolve as conv def conv(x, y, mode=2): 'convolve x with y' warnings.warn("Use numpy.convolve(x, y, mode='full')", DeprecationWarning) return np.convolve(x,y,mode) def detrend(x, key=None): if key is None or key=='constant': return detrend_mean(x) elif key=='linear': return detrend_linear(x) def demean(x, axis=0): "Return x minus its mean along the specified axis" x = np.asarray(x) if axis: ind = [slice(None)] * axis ind.append(np.newaxis) return x - x.mean(axis)[ind] return x - x.mean(axis) def detrend_mean(x): "Return x minus the mean(x)" return x - x.mean() def detrend_none(x): "Return x: no detrending" return x def detrend_linear(y): "Return y minus best fit line; 'linear' detrending " # This is faster than an algorithm based on linalg.lstsq. x = np.arange(len(y), dtype=np.float_) C = np.cov(x, y, bias=1) b = C[0,1]/C[0,0] a = y.mean() - b*x.mean() return y - (b*x + a) #This is a helper function that implements the commonality between the #psd, csd, and spectrogram. It is *NOT* meant to be used outside of mlab def _spectral_helper(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): #The checks for if y is x are so that we can use the same function to #implement the core of psd(), csd(), and spectrogram() without doing #extra calculations. We return the unaveraged Pxy, freqs, and t. same_data = y is x #Make sure we're dealing with a numpy array. If y and x were the same #object to start with, keep them that way x = np.asarray(x) if not same_data: y = np.asarray(y) # zero pad x and y up to NFFT if they are shorter than NFFT if len(x)<NFFT: n = len(x) x = np.resize(x, (NFFT,)) x[n:] = 0 if not same_data and len(y)<NFFT: n = len(y) y = np.resize(y, (NFFT,)) y[n:] = 0 if pad_to is None: pad_to = NFFT if scale_by_freq is None: warnings.warn("psd, csd, and specgram have changed to scale their " "densities by the sampling frequency for better MatLab " "compatibility. You can pass scale_by_freq=False to disable " "this behavior. Also, one-sided densities are scaled by a " "factor of 2.") scale_by_freq = True # For real x, ignore the negative frequencies unless told otherwise if (sides == 'default' and np.iscomplexobj(x)) or sides == 'twosided': numFreqs = pad_to scaling_factor = 1. elif sides in ('default', 'onesided'): numFreqs = pad_to//2 + 1 scaling_factor = 2. else: raise ValueError("sides must be one of: 'default', 'onesided', or " "'twosided'") # Matlab divides by the sampling frequency so that density function # has units of dB/Hz and can be integrated by the plotted frequency # values. Perform the same scaling here. if scale_by_freq: scaling_factor /= Fs if cbook.iterable(window): assert(len(window) == NFFT) windowVals = window else: windowVals = window(np.ones((NFFT,), x.dtype)) step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) Pxy = np.zeros((numFreqs,n), np.complex_) Pfft = np.zeros((numFreqs,n), np.complex_) # do the ffts of the slices for i in range(n): thisX = x[ind[i]:ind[i]+NFFT] thisX = windowVals * detrend(thisX) fx = np.fft.fft(thisX, n=pad_to) if same_data: fy = fx else: thisY = y[ind[i]:ind[i]+NFFT] thisY = windowVals * detrend(thisY) fy = np.fft.fft(thisY, n=pad_to) Pxy[:,i] = np.conjugate(fx[:numFreqs]) * fy[:numFreqs] Pfft[:,i] = fx[:numFreqs] #Pfft_real[:,i] = real(fx[:numFreqs]) #Pfft_imag[:,i] = imag(fx[:numFreqs]) #* fx[:numFreqs]#* imag(fy[:numFreqs]) #return Pxy, Pfft #### # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2. Also include # scaling factors for one-sided densities and dividing by the sampling # frequency, if desired. Pxy *= scaling_factor / (np.abs(windowVals)**2).sum() #Pfft *= scaling_factor / (np.abs(windowVals)**2).sum() t = 1./Fs * (ind + NFFT / 2.) freqs = float(Fs) / pad_to * np.arange(numFreqs) return Pxy, freqs, t, Pfft #Split out these keyword docs so that they can be used elsewhere kwdocd = dict() kwdocd['PSD'] =""" Keyword arguments: *NFFT*: integer The number of data points used in each block for the FFT. Must be even; a power 2 is most efficient. The default value is 256. *Fs*: scalar The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, freqs, in cycles per time unit. The default value is 2. *detrend*: callable The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in matlab, where the *detrend* parameter is a vector, in matplotlib is it a function. The :mod:`~matplotlib.pylab` module defines :func:`~matplotlib.pylab.detrend_none`, :func:`~matplotlib.pylab.detrend_mean`, and :func:`~matplotlib.pylab.detrend_linear`, but you can use a custom function as well. *window*: callable or ndarray A function or a vector of length *NFFT*. To create window vectors see :func:`window_hanning`, :func:`window_none`, :func:`numpy.blackman`, :func:`numpy.hamming`, :func:`numpy.bartlett`, :func:`scipy.signal`, :func:`scipy.signal.get_window`, etc. The default is :func:`window_hanning`. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. *noverlap*: integer The number of points of overlap between blocks. The default value is 0 (no overlap). *pad_to*: integer The number of points to which the data segment is padded when performing the FFT. This can be different from *NFFT*, which specifies the number of data points used. While not increasing the actual resolution of the psd (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to *NFFT* *sides*: [ 'default' | 'onesided' | 'twosided' ] Specifies which sides of the PSD to return. Default gives the default behavior, which returns one-sided for real data and both for complex data. 'onesided' forces the return of a one-sided PSD, while 'twosided' forces two-sided. *scale_by_freq*: boolean Specifies whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MatLab compatibility. """ def psd(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The power spectral density by Welch's average periodogram method. The vector *x* is divided into *NFFT* length blocks. Each block is detrended by the function *detrend* and windowed by the function *window*. *noverlap* gives the length of the overlap between blocks. The absolute(fft(block))**2 of each segment are averaged to compute *Pxx*, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT*, it will be zero padded to *NFFT*. *x* Array or sequence containing the data %(PSD)s Returns the tuple (*Pxx*, *freqs*). Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ Pxx,freqs, Pfft = csd(x, x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) return Pxx.real,freqs, Pfft, Pxx.imag psd.__doc__ = psd.__doc__ % kwdocd def csd(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The cross power spectral density by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length blocks. Each block is detrended by the function *detrend* and windowed by the function *window*. *noverlap* gives the length of the overlap between blocks. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute *Pxy*, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero padded to *NFFT*. *x*, *y* Array or sequence containing the data %(PSD)s Returns the tuple (*Pxy*, *freqs*). Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ Pxy, freqs, t, Pfft = _spectral_helper(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) if len(Pxy.shape) == 2 and Pxy.shape[1]>1: Pxy = Pxy.mean(axis=1) Pfft = Pfft.mean(axis=1) return Pxy, freqs, Pfft csd.__doc__ = csd.__doc__ % kwdocd def specgram(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=128, pad_to=None, sides='default', scale_by_freq=None): """ Compute a spectrogram of data in *x*. Data are split into *NFFT* length segements and the PSD of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. If *x* is real (i.e. non-complex) only the spectrum of the positive frequencie is returned. If *x* is complex then the complete spectrum is returned. %(PSD)s Returns a tuple (*Pxx*, *freqs*, *t*): - *Pxx*: 2-D array, columns are the periodograms of successive segments - *freqs*: 1-D array of frequencies corresponding to the rows in Pxx - *t*: 1-D array of times corresponding to midpoints of segments. .. seealso:: :func:`psd` :func:`psd` differs in the default overlap; in returning the mean of the segment periodograms; and in not returning times. """ assert(NFFT > noverlap) Pxx, freqs, t, Pfft= _spectral_helper(x, x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxx = Pxx.real #Needed since helper implements generically if (np.iscomplexobj(x) and sides == 'default') or sides == 'twosided': # center the frequency range at zero freqs = np.concatenate((freqs[NFFT/2:]-Fs,freqs[:NFFT/2])) Pxx = np.concatenate((Pxx[NFFT/2:,:],Pxx[:NFFT/2,:]),0) return Pxx, freqs, t, Pfft specgram.__doc__ = specgram.__doc__ % kwdocd _coh_error = """Coherence is calculated by averaging over *NFFT* length segments. Your signal is too short for your choice of *NFFT*. """ def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}} *x*, *y* Array or sequence containing the data %(PSD)s The return value is the tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. For cohere, scaling the individual densities by the sampling frequency has no effect, since the factors cancel out. .. seealso:: :func:`psd` and :func:`csd` For information about the methods used to compute :math:`P_{xy}`, :math:`P_{xx}` and :math:`P_{yy}`. """ if len(x)<2*NFFT: raise ValueError(_coh_error) Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Cxy = np.divide(np.absolute(Pxy)**2, Pxx*Pyy) Cxy.shape = (len(f),) return Cxy, f cohere.__doc__ = cohere.__doc__ % kwdocd def corrcoef(*args): """ corrcoef(*X*) where *X* is a matrix returns a matrix of correlation coefficients for the columns of *X* corrcoef(*x*, *y*) where *x* and *y* are vectors returns the matrix of correlation coefficients for *x* and *y*. Numpy arrays can be real or complex. The correlation matrix is defined from the covariance matrix *C* as .. math:: r_{ij} = \\frac{C_{ij}}{\\sqrt{C_{ii}C_{jj}}} """ warnings.warn("Use numpy.corrcoef", DeprecationWarning) kw = dict(rowvar=False) return np.corrcoef(*args, **kw) def polyfit(*args, **kwargs): u""" polyfit(*x*, *y*, *N*) Do a best fit polynomial of order *N* of *y* to *x*. Return value is a vector of polynomial coefficients [pk ... p1 p0]. Eg, for *N* = 2:: p2*x0^2 + p1*x0 + p0 = y1 p2*x1^2 + p1*x1 + p0 = y1 p2*x2^2 + p1*x2 + p0 = y2 ..... p2*xk^2 + p1*xk + p0 = yk Method: if *X* is a the Vandermonde Matrix computed from *x* (see `vandermonds <http://mathworld.wolfram.com/VandermondeMatrix.html>`_), then the polynomial least squares solution is given by the '*p*' in X*p = y where *X* is a (len(*x*) \N{MULTIPLICATION SIGN} *N* + 1) matrix, *p* is a *N*+1 length vector, and *y* is a (len(*x*) \N{MULTIPLICATION SIGN} 1) vector. This equation can be solved as .. math:: p = (X_t X)^-1 X_t y where :math:`X_t` is the transpose of *X* and -1 denotes the inverse. Numerically, however, this is not a good method, so we use :func:`numpy.linalg.lstsq`. For more info, see `least squares fitting <http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html>`_, but note that the *k*'s and *n*'s in the superscripts and subscripts on that page. The linear algebra is correct, however. .. seealso:: :func:`polyval` polyval function """ warnings.warn("use numpy.poyfit", DeprecationWarning) return np.polyfit(*args, **kwargs) def polyval(*args, **kwargs): """ *y* = polyval(*p*, *x*) *p* is a vector of polynomial coeffients and *y* is the polynomial evaluated at *x*. Example code to remove a polynomial (quadratic) trend from y:: p = polyfit(x, y, 2) trend = polyval(p, x) resid = y - trend .. seealso:: :func:`polyfit` polyfit function """ warnings.warn("use numpy.polyval", DeprecationWarning) return np.polyval(*args, **kwargs) def vander(*args, **kwargs): """ *X* = vander(*x*, *N* = *None*) The Vandermonde matrix of vector *x*. The *i*-th column of *X* is the the *i*-th power of *x*. *N* is the maximum power to compute; if *N* is *None* it defaults to len(*x*). """ warnings.warn("Use numpy.vander()", DeprecationWarning) return np.vander(*args, **kwargs) def donothing_callback(*args): pass def cohere_pairs( X, ij, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, preferSpeedOverMemory=True, progressCallback=donothing_callback, returnPxx=False): u""" Cxy, Phase, freqs = cohere_pairs(X, ij, ...) Compute the coherence for all pairs in *ij*. *X* is a (*numSamples*, *numCols*) numpy array. *ij* is a list of tuples (*i*, *j*). Each tuple is a pair of indexes into the columns of *X* for which you want to compute coherence. For example, if *X* has 64 columns, and you want to compute all nonredundant pairs, define *ij* as:: ij = [] for i in range(64): for j in range(i+1,64): ij.append( (i, j) ) The other function arguments, except for *preferSpeedOverMemory* (see below), are explained in the help string of :func:`psd`. Return value is a tuple (*Cxy*, *Phase*, *freqs*). - *Cxy*: a dictionary of (*i*, *j*) tuples -> coherence vector for that pair. I.e., ``Cxy[(i,j)] = cohere(X[:,i], X[:,j])``. Number of dictionary keys is ``len(ij)``. - *Phase*: a dictionary of phases of the cross spectral density at each frequency for each pair. The keys are ``(i,j)``. - *freqs*: a vector of frequencies, equal in length to either the coherence or phase vectors for any (*i*, *j*) key.. Eg, to make a coherence Bode plot:: subplot(211) plot( freqs, Cxy[(12,19)]) subplot(212) plot( freqs, Phase[(12,19)]) For a large number of pairs, :func:`cohere_pairs` can be much more efficient than just calling :func:`cohere` for each pair, because it caches most of the intensive computations. If *N* is the number of pairs, this function is O(N) for most of the heavy lifting, whereas calling cohere for each pair is O(N\N{SUPERSCRIPT TWO}). However, because of the caching, it is also more memory intensive, making 2 additional complex arrays with approximately the same number of elements as *X*. The parameter *preferSpeedOverMemory*, if *False*, limits the caching by only making one, rather than two, complex cache arrays. This is useful if memory becomes critical. Even when *preferSpeedOverMemory* is *False*, :func:`cohere_pairs` will still give significant performace gains over calling :func:`cohere` for each pair, and will use subtantially less memory than if *preferSpeedOverMemory* is *True*. In my tests with a (43000, 64) array over all non-redundant pairs, *preferSpeedOverMemory* = *True* delivered a 33% performace boost on a 1.7GHZ Athlon with 512MB RAM compared with *preferSpeedOverMemory* = *False*. But both solutions were more than 10x faster than naievly crunching all possible pairs through cohere. .. seealso:: :file:`test/cohere_pairs_test.py` in the src tree For an example script that shows that this :func:`cohere_pairs` and :func:`cohere` give the same results for a given pair. """ numRows, numCols = X.shape # zero pad if X is too short if numRows < NFFT: tmp = X X = np.zeros( (NFFT, numCols), X.dtype) X[:numRows,:] = tmp del tmp numRows, numCols = X.shape # get all the columns of X that we are interested in by checking # the ij tuples seen = {} for i,j in ij: seen[i]=1; seen[j] = 1 allColumns = seen.keys() Ncols = len(allColumns) del seen # for real X, ignore the negative frequencies if np.iscomplexobj(X): numFreqs = NFFT else: numFreqs = NFFT//2+1 # cache the FFT of every windowed, detrended NFFT length segement # of every channel. If preferSpeedOverMemory, cache the conjugate # as well if cbook.iterable(window): assert(len(window) == NFFT) windowVals = window else: windowVals = window(np.ones((NFFT,), typecode(X))) ind = range(0, numRows-NFFT+1, NFFT-noverlap) numSlices = len(ind) FFTSlices = {} FFTConjSlices = {} Pxx = {} slices = range(numSlices) normVal = norm(windowVals)**2 for iCol in allColumns: progressCallback(i/Ncols, 'Cacheing FFTs') Slices = np.zeros( (numSlices,numFreqs), dtype=np.complex_) for iSlice in slices: thisSlice = X[ind[iSlice]:ind[iSlice]+NFFT, iCol] thisSlice = windowVals*detrend(thisSlice) Slices[iSlice,:] = fft(thisSlice)[:numFreqs] FFTSlices[iCol] = Slices if preferSpeedOverMemory: FFTConjSlices[iCol] = conjugate(Slices) Pxx[iCol] = np.divide(np.mean(absolute(Slices)**2), normVal) del Slices, ind, windowVals # compute the coherences and phases for all pairs using the # cached FFTs Cxy = {} Phase = {} count = 0 N = len(ij) for i,j in ij: count +=1 if count%10==0: progressCallback(count/N, 'Computing coherences') if preferSpeedOverMemory: Pxy = FFTSlices[i] * FFTConjSlices[j] else: Pxy = FFTSlices[i] * np.conjugate(FFTSlices[j]) if numSlices>1: Pxy = np.mean(Pxy) Pxy = np.divide(Pxy, normVal) Cxy[(i,j)] = np.divide(np.absolute(Pxy)**2, Pxx[i]*Pxx[j]) Phase[(i,j)] = np.arctan2(Pxy.imag, Pxy.real) freqs = Fs/NFFT*np.arange(numFreqs) if returnPxx: return Cxy, Phase, freqs, Pxx else: return Cxy, Phase, freqs def entropy(y, bins): r""" Return the entropy of the data in *y*. .. math:: \sum p_i \log_2(p_i) where :math:`p_i` is the probability of observing *y* in the :math:`i^{th}` bin of *bins*. *bins* can be a number of bins or a range of bins; see :func:`numpy.histogram`. Compare *S* with analytic calculation for a Gaussian:: x = mu + sigma * randn(200000) Sanalytic = 0.5 * ( 1.0 + log(2*pi*sigma**2.0) ) """ n,bins = np.histogram(y, bins) n = n.astype(np.float_) n = np.take(n, np.nonzero(n)[0]) # get the positive p = np.divide(n, len(y)) delta = bins[1]-bins[0] S = -1.0*np.sum(p*log(p)) + log(delta) #S = -1.0*np.sum(p*log(p)) return S def hist(y, bins=10, normed=0): """ Return the histogram of *y* with *bins* equally sized bins. If bins is an array, use those bins. Return value is (*n*, *x*) where *n* is the count for each bin in *x*. If *normed* is *False*, return the counts in the first element of the returned tuple. If *normed* is *True*, return the probability density :math:`\\frac{n}{(len(y)\mathrm{dbin}}`. If *y* has rank > 1, it will be raveled. If *y* is masked, only the unmasked values will be used. Credits: the Numeric 22 documentation """ warnings.warn("Use numpy.histogram()", DeprecationWarning) return np.histogram(y, bins=bins, range=None, normed=normed) def normpdf(x, *args): "Return the normal pdf evaluated at *x*; args provides *mu*, *sigma*" mu, sigma = args return 1./(np.sqrt(2*np.pi)*sigma)*np.exp(-0.5 * (1./sigma*(x - mu))**2) def levypdf(x, gamma, alpha): "Returm the levy pdf evaluated at *x* for params *gamma*, *alpha*" N = len(x) if N%2 != 0: raise ValueError, 'x must be an event length array; try\n' + \ 'x = np.linspace(minx, maxx, N), where N is even' dx = x[1]-x[0] f = 1/(N*dx)*np.arange(-N/2, N/2, np.float_) ind = np.concatenate([np.arange(N/2, N, int), np.arange(0, N/2, int)]) df = f[1]-f[0] cfl = exp(-gamma*np.absolute(2*pi*f)**alpha) px = np.fft.fft(np.take(cfl,ind)*df).astype(np.float_) return np.take(px, ind) def find(condition): "Return the indices where ravel(condition) is true" res, = np.nonzero(np.ravel(condition)) return res def trapz(x, y): """ Trapezoidal integral of *y*(*x*). """ warnings.warn("Use numpy.trapz(y,x) instead of trapz(x,y)", DeprecationWarning) return np.trapz(y, x) #if len(x)!=len(y): # raise ValueError, 'x and y must have the same length' #if len(x)<2: # raise ValueError, 'x and y must have > 1 element' #return np.sum(0.5*np.diff(x)*(y[1:]+y[:-1])) def longest_contiguous_ones(x): """ Return the indices of the longest stretch of contiguous ones in *x*, assuming *x* is a vector of zeros and ones. If there are two equally long stretches, pick the first. """ x = np.ravel(x) if len(x)==0: return np.array([]) ind = (x==0).nonzero()[0] if len(ind)==0: return np.arange(len(x)) if len(ind)==len(x): return np.array([]) y = np.zeros( (len(x)+2,), x.dtype) y[1:-1] = x dif = np.diff(y) up = (dif == 1).nonzero()[0]; dn = (dif == -1).nonzero()[0]; i = (dn-up == max(dn - up)).nonzero()[0][0] ind = np.arange(up[i], dn[i]) return ind def longest_ones(x): """alias for longest_contiguous_ones""" return longest_contiguous_ones(x) def prepca(P, frac=0): """ Compute the principal components of *P*. *P* is a (*numVars*, *numObs*) array. *frac* is the minimum fraction of variance that a component must contain to be included. Return value is a tuple of the form (*Pcomponents*, *Trans*, *fracVar*) where: - *Pcomponents* : a (numVars, numObs) array - *Trans* : the weights matrix, ie, *Pcomponents* = *Trans* * *P* - *fracVar* : the fraction of the variance accounted for by each component returned A similar function of the same name was in the Matlab (TM) R13 Neural Network Toolbox but is not found in later versions; its successor seems to be called "processpcs". """ U,s,v = np.linalg.svd(P) varEach = s**2/P.shape[1] totVar = varEach.sum() fracVar = varEach/totVar ind = slice((fracVar>=frac).sum()) # select the components that are greater Trans = U[:,ind].transpose() # The transformed data Pcomponents = np.dot(Trans,P) return Pcomponents, Trans, fracVar[ind] def prctile(x, p = (0.0, 25.0, 50.0, 75.0, 100.0)): """ Return the percentiles of *x*. *p* can either be a sequence of percentile values or a scalar. If *p* is a sequence, the ith element of the return sequence is the *p*(i)-th percentile of *x*. If *p* is a scalar, the largest value of *x* less than or equal to the *p* percentage point in the sequence is returned. """ x = np.array(x).ravel() # we need a copy x.sort() Nx = len(x) if not cbook.iterable(p): return x[int(p*Nx/100.0)] p = np.asarray(p)* Nx/100.0 ind = p.astype(int) ind = np.where(ind>=Nx, Nx-1, ind) return x.take(ind) def prctile_rank(x, p): """ Return the rank for each element in *x*, return the rank 0..len(*p*). Eg if *p* = (25, 50, 75), the return value will be a len(*x*) array with values in [0,1,2,3] where 0 indicates the value is less than the 25th percentile, 1 indicates the value is >= the 25th and < 50th percentile, ... and 3 indicates the value is above the 75th percentile cutoff. *p* is either an array of percentiles in [0..100] or a scalar which indicates how many quantiles of data you want ranked. """ if not cbook.iterable(p): p = np.arange(100.0/p, 100.0, 100.0/p) else: p = np.asarray(p) if p.max()<=1 or p.min()<0 or p.max()>100: raise ValueError('percentiles should be in range 0..100, not 0..1') ptiles = prctile(x, p) return np.searchsorted(ptiles, x) def center_matrix(M, dim=0): """ Return the matrix *M* with each row having zero mean and unit std. If *dim* = 1 operate on columns instead of rows. (*dim* is opposite to the numpy axis kwarg.) """ M = np.asarray(M, np.float_) if dim: M = (M - M.mean(axis=0)) / M.std(axis=0) else: M = (M - M.mean(axis=1)[:,np.newaxis]) M = M / M.std(axis=1)[:,np.newaxis] return M def rk4(derivs, y0, t): """ Integrate 1D or ND system of ODEs using 4-th order Runge-Kutta. This is a toy implementation which may be useful if you find yourself stranded on a system w/o scipy. Otherwise use :func:`scipy.integrate`. *y0* initial state vector *t* sample times *derivs* returns the derivative of the system and has the signature ``dy = derivs(yi, ti)`` Example 1 :: ## 2D system def derivs6(x,t): d1 = x[0] + 2*x[1] d2 = -3*x[0] + 4*x[1] return (d1, d2) dt = 0.0005 t = arange(0.0, 2.0, dt) y0 = (1,2) yout = rk4(derivs6, y0, t) Example 2:: ## 1D system alpha = 2 def derivs(x,t): return -alpha*x + exp(-t) y0 = 1 yout = rk4(derivs, y0, t) If you have access to scipy, you should probably be using the scipy.integrate tools rather than this function. """ try: Ny = len(y0) except TypeError: yout = np.zeros( (len(t),), np.float_) else: yout = np.zeros( (len(t), Ny), np.float_) yout[0] = y0 i = 0 for i in np.arange(len(t)-1): thist = t[i] dt = t[i+1] - thist dt2 = dt/2.0 y0 = yout[i] k1 = np.asarray(derivs(y0, thist)) k2 = np.asarray(derivs(y0 + dt2*k1, thist+dt2)) k3 = np.asarray(derivs(y0 + dt2*k2, thist+dt2)) k4 = np.asarray(derivs(y0 + dt*k3, thist+dt)) yout[i+1] = y0 + dt/6.0*(k1 + 2*k2 + 2*k3 + k4) return yout def bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sigmaxy=0.0): """ Bivariate Gaussian distribution for equal shape *X*, *Y*. See `bivariate normal <http://mathworld.wolfram.com/BivariateNormalDistribution.html>`_ at mathworld. """ Xmu = X-mux Ymu = Y-muy rho = sigmaxy/(sigmax*sigmay) z = Xmu**2/sigmax**2 + Ymu**2/sigmay**2 - 2*rho*Xmu*Ymu/(sigmax*sigmay) denom = 2*np.pi*sigmax*sigmay*np.sqrt(1-rho**2) return np.exp( -z/(2*(1-rho**2))) / denom def get_xyz_where(Z, Cond): """ *Z* and *Cond* are *M* x *N* matrices. *Z* are data and *Cond* is a boolean matrix where some condition is satisfied. Return value is (*x*, *y*, *z*) where *x* and *y* are the indices into *Z* and *z* are the values of *Z* at those indices. *x*, *y*, and *z* are 1D arrays. """ X,Y = np.indices(Z.shape) return X[Cond], Y[Cond], Z[Cond] def get_sparse_matrix(M,N,frac=0.1): """ Return a *M* x *N* sparse matrix with *frac* elements randomly filled. """ data = np.zeros((M,N))*0. for i in range(int(M*N*frac)): x = np.random.randint(0,M-1) y = np.random.randint(0,N-1) data[x,y] = np.random.rand() return data def dist(x,y): """ Return the distance between two points. """ d = x-y return np.sqrt(np.dot(d,d)) def dist_point_to_segment(p, s0, s1): """ Get the distance of a point to a segment. *p*, *s0*, *s1* are *xy* sequences This algorithm from http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm#Distance%20to%20Ray%20or%20Segment """ p = np.asarray(p, np.float_) s0 = np.asarray(s0, np.float_) s1 = np.asarray(s1, np.float_) v = s1 - s0 w = p - s0 c1 = np.dot(w,v); if ( c1 <= 0 ): return dist(p, s0); c2 = np.dot(v,v) if ( c2 <= c1 ): return dist(p, s1); b = c1 / c2 pb = s0 + b * v; return dist(p, pb) def segments_intersect(s1, s2): """ Return *True* if *s1* and *s2* intersect. *s1* and *s2* are defined as:: s1: (x1, y1), (x2, y2) s2: (x3, y3), (x4, y4) """ (x1, y1), (x2, y2) = s1 (x3, y3), (x4, y4) = s2 den = ((y4-y3) * (x2-x1)) - ((x4-x3)*(y2-y1)) n1 = ((x4-x3) * (y1-y3)) - ((y4-y3)*(x1-x3)) n2 = ((x2-x1) * (y1-y3)) - ((y2-y1)*(x1-x3)) if den == 0: # lines parallel return False u1 = n1/den u2 = n2/den return 0.0 <= u1 <= 1.0 and 0.0 <= u2 <= 1.0 def fftsurr(x, detrend=detrend_none, window=window_none): """ Compute an FFT phase randomized surrogate of *x*. """ if cbook.iterable(window): x=window*detrend(x) else: x = window(detrend(x)) z = np.fft.fft(x) a = 2.*np.pi*1j phase = a * np.random.rand(len(x)) z = z*np.exp(phase) return np.fft.ifft(z).real def liaupunov(x, fprime): """ *x* is a very long trajectory from a map, and *fprime* returns the derivative of *x*. Returns : .. math:: \lambda = \\frac{1}{n}\\sum \\ln|f^'(x_i)| .. seealso:: Lyapunov Exponent Sec 10.5 Strogatz (1994) "Nonlinear Dynamics and Chaos". `Wikipedia article on Lyapunov Exponent <http://en.wikipedia.org/wiki/Lyapunov_exponent>`_. .. note:: What the function here calculates may not be what you really want; *caveat emptor*. It also seems that this function's name is badly misspelled. """ return np.mean(np.log(np.absolute(fprime(x)))) class FIFOBuffer: """ A FIFO queue to hold incoming *x*, *y* data in a rotating buffer using numpy arrays under the hood. It is assumed that you will call asarrays much less frequently than you add data to the queue -- otherwise another data structure will be faster. This can be used to support plots where data is added from a real time feed and the plot object wants to grab data from the buffer and plot it to screen less freqeuently than the incoming. If you set the *dataLim* attr to :class:`~matplotlib.transforms.BBox` (eg :attr:`matplotlib.Axes.dataLim`), the *dataLim* will be updated as new data come in. TODO: add a grow method that will extend nmax .. note:: mlab seems like the wrong place for this class. """ def __init__(self, nmax): """ Buffer up to *nmax* points. """ self._xa = np.zeros((nmax,), np.float_) self._ya = np.zeros((nmax,), np.float_) self._xs = np.zeros((nmax,), np.float_) self._ys = np.zeros((nmax,), np.float_) self._ind = 0 self._nmax = nmax self.dataLim = None self.callbackd = {} def register(self, func, N): """ Call *func* every time *N* events are passed; *func* signature is ``func(fifo)``. """ self.callbackd.setdefault(N, []).append(func) def add(self, x, y): """ Add scalar *x* and *y* to the queue. """ if self.dataLim is not None: xys = ((x,y),) self.dataLim.update(xys, -1) #-1 means use the default ignore setting ind = self._ind % self._nmax #print 'adding to fifo:', ind, x, y self._xs[ind] = x self._ys[ind] = y for N,funcs in self.callbackd.items(): if (self._ind%N)==0: for func in funcs: func(self) self._ind += 1 def last(self): """ Get the last *x*, *y* or *None*. *None* if no data set. """ if self._ind==0: return None, None ind = (self._ind-1) % self._nmax return self._xs[ind], self._ys[ind] def asarrays(self): """ Return *x* and *y* as arrays; their length will be the len of data added or *nmax*. """ if self._ind<self._nmax: return self._xs[:self._ind], self._ys[:self._ind] ind = self._ind % self._nmax self._xa[:self._nmax-ind] = self._xs[ind:] self._xa[self._nmax-ind:] = self._xs[:ind] self._ya[:self._nmax-ind] = self._ys[ind:] self._ya[self._nmax-ind:] = self._ys[:ind] return self._xa, self._ya def update_datalim_to_current(self): """ Update the *datalim* in the current data in the fifo. """ if self.dataLim is None: raise ValueError('You must first set the dataLim attr') x, y = self.asarrays() self.dataLim.update_numerix(x, y, True) def movavg(x,n): """ Compute the len(*n*) moving average of *x*. """ w = np.empty((n,), dtype=np.float_) w[:] = 1.0/n return np.convolve(x, w, mode='valid') def save(fname, X, fmt='%.18e',delimiter=' '): """ Save the data in *X* to file *fname* using *fmt* string to convert the data to strings. *fname* can be a filename or a file handle. If the filename ends in '.gz', the file is automatically saved in compressed gzip format. The :func:`load` function understands gzipped files transparently. Example usage:: save('test.out', X) # X is an array save('test1.out', (x,y,z)) # x,y,z equal sized 1D arrays save('test2.out', x) # x is 1D save('test3.out', x, fmt='%1.4e') # use exponential notation *delimiter* is used to separate the fields, eg. *delimiter* ',' for comma-separated values. """ if cbook.is_string_like(fname): if fname.endswith('.gz'): import gzip fh = gzip.open(fname,'wb') else: fh = file(fname,'w') elif hasattr(fname, 'seek'): fh = fname else: raise ValueError('fname must be a string or file handle') X = np.asarray(X) origShape = None if X.ndim == 1: origShape = X.shape X.shape = len(X), 1 for row in X: fh.write(delimiter.join([fmt%val for val in row]) + '\n') if origShape is not None: X.shape = origShape def load(fname,comments='#',delimiter=None, converters=None,skiprows=0, usecols=None, unpack=False, dtype=np.float_): """ Load ASCII data from *fname* into an array and return the array. The data must be regular, same number of values in every row *fname* can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz'. matfile data is not supported; for that, use :mod:`scipy.io.mio` module. Example usage:: X = load('test.dat') # data in two columns t = X[:,0] y = X[:,1] Alternatively, you can do the same with "unpack"; see below:: X = load('test.dat') # a matrix of data x = load('test.dat') # a single column of data - *comments*: the character used to indicate the start of a comment in the file - *delimiter* is a string-like character used to seperate values in the file. If *delimiter* is unspecified or *None*, any whitespace string is a separator. - *converters*, if not *None*, is a dictionary mapping column number to a function that will convert that column to a float (or the optional *dtype* if specified). Eg, if column 0 is a date string:: converters = {0:datestr2num} - *skiprows* is the number of rows from the top to skip. - *usecols*, if not *None*, is a sequence of integer column indexes to extract where 0 is the first column, eg ``usecols=[1,4,5]`` to extract just the 2nd, 5th and 6th columns - *unpack*, if *True*, will transpose the matrix allowing you to unpack into named arguments on the left hand side:: t,y = load('test.dat', unpack=True) # for two column data x,y,z = load('somefile.dat', usecols=[3,5,7], unpack=True) - *dtype*: the array will have this dtype. default: ``numpy.float_`` .. seealso:: See :file:`examples/pylab_examples/load_converter.py` in the source tree Exercises many of these options. """ if converters is None: converters = {} fh = cbook.to_filehandle(fname) X = [] if delimiter==' ': # space splitting is a special case since x.split() is what # you want, not x.split(' ') def splitfunc(x): return x.split() else: def splitfunc(x): return x.split(delimiter) converterseq = None for i,line in enumerate(fh): if i<skiprows: continue line = line.split(comments, 1)[0].strip() if not len(line): continue if converterseq is None: converterseq = [converters.get(j,float) for j,val in enumerate(splitfunc(line))] if usecols is not None: vals = splitfunc(line) row = [converterseq[j](vals[j]) for j in usecols] else: row = [converterseq[j](val) for j,val in enumerate(splitfunc(line))] thisLen = len(row) X.append(row) X = np.array(X, dtype) r,c = X.shape if r==1 or c==1: X.shape = max(r,c), if unpack: return X.transpose() else: return X def slopes(x,y): """ SLOPES calculate the slope y'(x) Given data vectors X and Y SLOPES calculates Y'(X), i.e the slope of a curve Y(X). The slope is estimated using the slope obtained from that of a parabola through any three consecutive points. This method should be superior to that described in the appendix of A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July 1980) in at least one aspect: Circles for interpolation demand a known aspect ratio between x- and y-values. For many functions, however, the abscissa are given in different dimensions, so an aspect ratio is completely arbitrary. The parabola method gives very similar results to the circle method for most regular cases but behaves much better in special cases Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de (inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March 2006 halldor at vedur.is) """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) yp=np.zeros(y.shape, np.float_) dx=x[1:] - x[:-1] dy=y[1:] - y[:-1] dydx = dy/dx yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1])/(dx[1:] + dx[:-1]) yp[0] = 2.0 * dy[0]/dx[0] - yp[1] yp[-1] = 2.0 * dy[-1]/dx[-1] - yp[-2] return yp def stineman_interp(xi,x,y,yp=None): """ STINEMAN_INTERP Well behaved data interpolation. Given data vectors X and Y, the slope vector YP and a new abscissa vector XI the function stineman_interp(xi,x,y,yp) uses Stineman interpolation to calculate a vector YI corresponding to XI. Here's an example that generates a coarse sine curve, then interpolates over a finer abscissa: x = linspace(0,2*pi,20); y = sin(x); yp = cos(x) xi = linspace(0,2*pi,40); yi = stineman_interp(xi,x,y,yp); plot(x,y,'o',xi,yi) The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980 issue of Creative Computing with a note from the editor stating that while they were not an academic journal but once in a while something serious and original comes in adding that this was "apparently a real solution" to a well known problem. For yp=None, the routine automatically determines the slopes using the "slopes" routine. X is assumed to be sorted in increasing order For values xi[j] < x[0] or xi[j] > x[-1], the routine tries a extrapolation. The relevance of the data obtained from this, of course, questionable... original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor at vedur.is completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) assert x.shape == y.shape N=len(y) if yp is None: yp = slopes(x,y) else: yp=np.asarray(yp, np.float_) xi=np.asarray(xi, np.float_) yi=np.zeros(xi.shape, np.float_) # calculate linear slopes dx = x[1:] - x[:-1] dy = y[1:] - y[:-1] s = dy/dx #note length of s is N-1 so last element is #N-2 # find the segment each xi is in # this line actually is the key to the efficiency of this implementation idx = np.searchsorted(x[1:-1], xi) # now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1] # except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1] # the y-values that would come out from a linear interpolation: sidx = s.take(idx) xidx = x.take(idx) yidx = y.take(idx) xidxp1 = x.take(idx+1) yo = yidx + sidx * (xi - xidx) # the difference that comes when using the slopes given in yp dy1 = (yp.take(idx)- sidx) * (xi - xidx) # using the yp slope of the left point dy2 = (yp.take(idx+1)-sidx) * (xi - xidxp1) # using the yp slope of the right point dy1dy2 = dy1*dy2 # The following is optimized for Python. The solution actually # does more calculations than necessary but exploiting the power # of numpy, this is far more efficient than coding a loop by hand # in Python yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32)+1, ((2*xi-xidx-xidxp1)/((dy1-dy2)*(xidxp1-xidx)), 0.0, 1/(dy1+dy2),)) return yi def inside_poly(points, verts): """ points is a sequence of x,y points verts is a sequence of x,y vertices of a poygon return value is a sequence of indices into points for the points that are inside the polygon """ res, = np.nonzero(nxutils.points_inside_poly(points, verts)) return res def poly_below(ymin, xs, ys): """ given a arrays *xs* and *ys*, return the vertices of a polygon that has a scalar lower bound *ymin* and an upper bound at the *ys*. intended for use with Axes.fill, eg:: xv, yv = poly_below(0, x, y) ax.fill(xv, yv) """ return poly_between(xs, ys, xmin) def poly_between(x, ylower, yupper): """ given a sequence of x, ylower and yupper, return the polygon that fills the regions between them. ylower or yupper can be scalar or iterable. If they are iterable, they must be equal in length to x return value is x, y arrays for use with Axes.fill """ Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*np.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*np.ones(Nx) x = np.concatenate( (x, x[::-1]) ) y = np.concatenate( (yupper, ylower[::-1]) ) return x,y ### the following code was written and submitted by Fernando Perez ### from the ipython numutils package under a BSD license # begin fperez functions """ A set of convenient utilities for numerical work. Most of this module requires numpy or is meant to be used with it. Copyright (c) 2001-2004, Fernando Perez. <[email protected]> All rights reserved. This license was generated from the BSD license template as found in: http://www.opensource.org/licenses/bsd-license.php Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the IPython project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import operator import math #***************************************************************************** # Globals #**************************************************************************** # function definitions exp_safe_MIN = math.log(2.2250738585072014e-308) exp_safe_MAX = 1.7976931348623157e+308 def exp_safe(x): """ Compute exponentials which safely underflow to zero. Slow, but convenient to use. Note that numpy provides proper floating point exception handling with access to the underlying hardware. """ if type(x) is np.ndarray: return exp(np.clip(x,exp_safe_MIN,exp_safe_MAX)) else: return math.exp(x) def amap(fn,*args): """ amap(function, sequence[, sequence, ...]) -> array. Works like :func:`map`, but it returns an array. This is just a convenient shorthand for ``numpy.array(map(...))``. """ return np.array(map(fn,*args)) #from numpy import zeros_like def zeros_like(a): """ Return an array of zeros of the shape and typecode of *a*. """ warnings.warn("Use numpy.zeros_like(a)", DeprecationWarning) return np.zeros_like(a) #from numpy import sum as sum_flat def sum_flat(a): """ Return the sum of all the elements of *a*, flattened out. It uses ``a.flat``, and if *a* is not contiguous, a call to ``ravel(a)`` is made. """ warnings.warn("Use numpy.sum(a) or a.sum()", DeprecationWarning) return np.sum(a) #from numpy import mean as mean_flat def mean_flat(a): """ Return the mean of all the elements of *a*, flattened out. """ warnings.warn("Use numpy.mean(a) or a.mean()", DeprecationWarning) return np.mean(a) def rms_flat(a): """ Return the root mean square of all the elements of *a*, flattened out. """ return np.sqrt(np.mean(np.absolute(a)**2)) def l1norm(a): """ Return the *l1* norm of *a*, flattened out. Implemented as a separate function (not a call to :func:`norm` for speed). """ return np.sum(np.absolute(a)) def l2norm(a): """ Return the *l2* norm of *a*, flattened out. Implemented as a separate function (not a call to :func:`norm` for speed). """ return np.sqrt(np.sum(np.absolute(a)**2)) def norm_flat(a,p=2): """ norm(a,p=2) -> l-p norm of a.flat Return the l-p norm of *a*, considered as a flat array. This is NOT a true matrix norm, since arrays of arbitrary rank are always flattened. *p* can be a number or the string 'Infinity' to get the L-infinity norm. """ # This function was being masked by a more general norm later in # the file. We may want to simply delete it. if p=='Infinity': return np.amax(np.absolute(a)) else: return (np.sum(np.absolute(a)**p))**(1.0/p) def frange(xini,xfin=None,delta=None,**kw): """ frange([start,] stop[, step, keywords]) -> array of floats Return a numpy ndarray containing a progression of floats. Similar to :func:`numpy.arange`, but defaults to a closed interval. ``frange(x0, x1)`` returns ``[x0, x0+1, x0+2, ..., x1]``; *start* defaults to 0, and the endpoint *is included*. This behavior is different from that of :func:`range` and :func:`numpy.arange`. This is deliberate, since :func:`frange` will probably be more useful for generating lists of points for function evaluation, and endpoints are often desired in this use. The usual behavior of :func:`range` can be obtained by setting the keyword *closed* = 0, in this case, :func:`frange` basically becomes :func:numpy.arange`. When *step* is given, it specifies the increment (or decrement). All arguments can be floating point numbers. ``frange(x0,x1,d)`` returns ``[x0,x0+d,x0+2d,...,xfin]`` where *xfin* <= *x1*. :func:`frange` can also be called with the keyword *npts*. This sets the number of points the list should contain (and overrides the value *step* might have been given). :func:`numpy.arange` doesn't offer this option. Examples:: >>> frange(3) array([ 0., 1., 2., 3.]) >>> frange(3,closed=0) array([ 0., 1., 2.]) >>> frange(1,6,2) array([1, 3, 5]) or 1,3,5,7, depending on floating point vagueries >>> frange(1,6.5,npts=5) array([ 1. , 2.375, 3.75 , 5.125, 6.5 ]) """ #defaults kw.setdefault('closed',1) endpoint = kw['closed'] != 0 # funny logic to allow the *first* argument to be optional (like range()) # This was modified with a simpler version from a similar frange() found # at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66472 if xfin == None: xfin = xini + 0.0 xini = 0.0 if delta == None: delta = 1.0 # compute # of points, spacing and return final list try: npts=kw['npts'] delta=(xfin-xini)/float(npts-endpoint) except KeyError: npts = int(round((xfin-xini)/delta)) + endpoint #npts = int(floor((xfin-xini)/delta)*(1.0+1e-10)) + endpoint # round finds the nearest, so the endpoint can be up to # delta/2 larger than xfin. return np.arange(npts)*delta+xini # end frange() #import numpy.diag as diagonal_matrix def diagonal_matrix(diag): """ Return square diagonal matrix whose non-zero elements are given by the input array. """ warnings.warn("Use numpy.diag(d)", DeprecationWarning) return np.diag(diag) def identity(n, rank=2, dtype='l', typecode=None): """ Returns the identity matrix of shape (*n*, *n*, ..., *n*) (rank *r*). For ranks higher than 2, this object is simply a multi-index Kronecker delta:: / 1 if i0=i1=...=iR, id[i0,i1,...,iR] = -| \ 0 otherwise. Optionally a *dtype* (or typecode) may be given (it defaults to 'l'). Since rank defaults to 2, this function behaves in the default case (when only *n* is given) like ``numpy.identity(n)`` -- but surprisingly, it is much faster. """ if typecode is not None: warnings.warn("Use dtype kwarg instead of typecode", DeprecationWarning) dtype = typecode iden = np.zeros((n,)*rank, dtype) for i in range(n): idx = (i,)*rank iden[idx] = 1 return iden def base_repr (number, base = 2, padding = 0): """ Return the representation of a *number* in any given *base*. """ chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' if number < base: \ return (padding - 1) * chars [0] + chars [int (number)] max_exponent = int (math.log (number)/math.log (base)) max_power = long (base) ** max_exponent lead_digit = int (number/max_power) return chars [lead_digit] + \ base_repr (number - max_power * lead_digit, base, \ max (padding - 1, max_exponent)) def binary_repr(number, max_length = 1025): """ Return the binary representation of the input *number* as a string. This is more efficient than using :func:`base_repr` with base 2. Increase the value of max_length for very large numbers. Note that on 32-bit machines, 2**1023 is the largest integer power of 2 which can be converted to a Python float. """ #assert number < 2L << max_length shifts = map (operator.rshift, max_length * [number], \ range (max_length - 1, -1, -1)) digits = map (operator.mod, shifts, max_length * [2]) if not digits.count (1): return 0 digits = digits [digits.index (1):] return ''.join (map (repr, digits)).replace('L','') def log2(x,ln2 = math.log(2.0)): """ Return the log(*x*) in base 2. This is a _slow_ function but which is guaranteed to return the correct integer value if the input is an integer exact power of 2. """ try: bin_n = binary_repr(x)[1:] except (AssertionError,TypeError): return math.log(x)/ln2 else: if '1' in bin_n: return math.log(x)/ln2 else: return len(bin_n) def ispower2(n): """ Returns the log base 2 of *n* if *n* is a power of 2, zero otherwise. Note the potential ambiguity if *n* == 1: 2**0 == 1, interpret accordingly. """ bin_n = binary_repr(n)[1:] if '1' in bin_n: return 0 else: return len(bin_n) def isvector(X): """ Like the Matlab (TM) function with the same name, returns *True* if the supplied numpy array or matrix *X* looks like a vector, meaning it has a one non-singleton axis (i.e., it can have multiple axes, but all must have length 1, except for one of them). If you just want to see if the array has 1 axis, use X.ndim == 1. """ return np.prod(X.shape)==np.max(X.shape) #from numpy import fromfunction as fromfunction_kw def fromfunction_kw(function, dimensions, **kwargs): """ Drop-in replacement for :func:`numpy.fromfunction`. Allows passing keyword arguments to the desired function. Call it as (keywords are optional):: fromfunction_kw(MyFunction, dimensions, keywords) The function ``MyFunction`` is responsible for handling the dictionary of keywords it will receive. """ warnings.warn("Use numpy.fromfunction()", DeprecationWarning) return np.fromfunction(function, dimensions, **kwargs) ### end fperez numutils code def rem(x,y): """ Deprecated - see :func:`numpy.remainder` """ raise NotImplementedError('Deprecated - see numpy.remainder') def norm(x,y=2): """ Deprecated - see :func:`numpy.linalg.norm` """ raise NotImplementedError('Deprecated - see numpy.linalg.norm') def orth(A): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - needs clean room implementation') def rank(x): """ Deprecated - see :func:`numpy.rank` """ raise NotImplementedError('Deprecated - see numpy.rank') def sqrtm(x): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - see scipy.linalg.sqrtm') def mfuncC(f, x): """ Deprecated """ raise NotImplementedError('Deprecated - needs clean room implementation') def approx_real(x): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - needs clean room implementation') #helpers for loading, saving, manipulating and viewing numpy record arrays def safe_isnan(x): ':func:`numpy.isnan` for arbitrary types' if cbook.is_string_like(x): return False try: b = np.isnan(x) except NotImplementedError: return False except TypeError: return False else: return b def safe_isinf(x): ':func:`numpy.isinf` for arbitrary types' if cbook.is_string_like(x): return False try: b = np.isinf(x) except NotImplementedError: return False except TypeError: return False else: return b def rec_view(rec): """ Return a view of an ndarray as a recarray .. seealso:: http://projects.scipy.org/pipermail/numpy-discussion/2008-August/036429.html Motivation for this function """ return rec.view(np.recarray) #return rec.view(dtype=(np.record, rec.dtype), type=np.recarray) def rec_append_field(rec, name, arr, dtype=None): """ Return a new record array with field name populated with data from array *arr*. This function is Deprecated. Please use :func:`rec_append_fields`. """ warnings.warn("use rec_append_fields", DeprecationWarning) return rec_append_fields(rec, name, arr, dtype) def rec_append_fields(rec, names, arrs, dtypes=None): """ Return a new record array with field names populated with data from arrays in *arrs*. If appending a single field, then *names*, *arrs* and *dtypes* do not have to be lists. They can just be the values themselves. """ if (not cbook.is_string_like(names) and cbook.iterable(names) \ and len(names) and cbook.is_string_like(names[0])): if len(names) != len(arrs): raise ValueError, "number of arrays do not match number of names" else: # we have only 1 name and 1 array names = [names] arrs = [arrs] arrs = map(np.asarray, arrs) if dtypes is None: dtypes = [a.dtype for a in arrs] elif not cbook.iterable(dtypes): dtypes = [dtypes] if len(arrs) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(arrs) else: raise ValueError, "dtypes must be None, a single dtype or a list" newdtype = np.dtype(rec.dtype.descr + zip(names, dtypes)) newrec = np.empty(rec.shape, dtype=newdtype) for field in rec.dtype.fields: newrec[field] = rec[field] for name, arr in zip(names, arrs): newrec[name] = arr return rec_view(newrec) def rec_drop_fields(rec, names): """ Return a new numpy record array with fields in *names* dropped. """ names = set(names) Nr = len(rec) newdtype = np.dtype([(name, rec.dtype[name]) for name in rec.dtype.names if name not in names]) newrec = np.empty(Nr, dtype=newdtype) for field in newdtype.names: newrec[field] = rec[field] return rec_view(newrec) def rec_groupby(r, groupby, stats): """ *r* is a numpy record array *groupby* is a sequence of record array attribute names that together form the grouping key. eg ('date', 'productcode') *stats* is a sequence of (*attr*, *func*, *outname*) tuples which will call ``x = func(attr)`` and assign *x* to the record array output with attribute *outname*. For example:: stats = ( ('sales', len, 'numsales'), ('sales', np.mean, 'avgsale') ) Return record array has *dtype* names for each attribute name in the the *groupby* argument, with the associated group values, and for each outname name in the *stats* argument, with the associated stat summary output. """ # build a dictionary from groupby keys-> list of indices into r with # those keys rowd = dict() for i, row in enumerate(r): key = tuple([row[attr] for attr in groupby]) rowd.setdefault(key, []).append(i) # sort the output by groupby keys keys = rowd.keys() keys.sort() rows = [] for key in keys: row = list(key) # get the indices for this groupby key ind = rowd[key] thisr = r[ind] # call each stat function for this groupby slice row.extend([func(thisr[attr]) for attr, func, outname in stats]) rows.append(row) # build the output record array with groupby and outname attributes attrs, funcs, outnames = zip(*stats) names = list(groupby) names.extend(outnames) return np.rec.fromrecords(rows, names=names) def rec_summarize(r, summaryfuncs): """ *r* is a numpy record array *summaryfuncs* is a list of (*attr*, *func*, *outname*) tuples which will apply *func* to the the array *r*[attr] and assign the output to a new attribute name *outname*. The returned record array is identical to *r*, with extra arrays for each element in *summaryfuncs*. """ names = list(r.dtype.names) arrays = [r[name] for name in names] for attr, func, outname in summaryfuncs: names.append(outname) arrays.append(np.asarray(func(r[attr]))) return np.rec.fromarrays(arrays, names=names) def rec_join(key, r1, r2, jointype='inner', defaults=None, r1postfix='1', r2postfix='2'): """ Join record arrays *r1* and *r2* on *key*; *key* is a tuple of field names -- if *key* is a string it is assumed to be a single attribute name. If *r1* and *r2* have equal values on all the keys in the *key* tuple, then their fields will be merged into a new record array containing the intersection of the fields of *r1* and *r2*. *r1* (also *r2*) must not have any duplicate keys. The *jointype* keyword can be 'inner', 'outer', 'leftouter'. To do a rightouter join just reverse *r1* and *r2*. The *defaults* keyword is a dictionary filled with ``{column_name:default_value}`` pairs. The keywords *r1postfix* and *r2postfix* are postfixed to column names (other than keys) that are both in *r1* and *r2*. """ if cbook.is_string_like(key): key = (key, ) for name in key: if name not in r1.dtype.names: raise ValueError('r1 does not have key field %s'%name) if name not in r2.dtype.names: raise ValueError('r2 does not have key field %s'%name) def makekey(row): return tuple([row[name] for name in key]) r1d = dict([(makekey(row),i) for i,row in enumerate(r1)]) r2d = dict([(makekey(row),i) for i,row in enumerate(r2)]) r1keys = set(r1d.keys()) r2keys = set(r2d.keys()) common_keys = r1keys & r2keys r1ind = np.array([r1d[k] for k in common_keys]) r2ind = np.array([r2d[k] for k in common_keys]) common_len = len(common_keys) left_len = right_len = 0 if jointype == "outer" or jointype == "leftouter": left_keys = r1keys.difference(r2keys) left_ind = np.array([r1d[k] for k in left_keys]) left_len = len(left_ind) if jointype == "outer": right_keys = r2keys.difference(r1keys) right_ind = np.array([r2d[k] for k in right_keys]) right_len = len(right_ind) def key_desc(name): 'if name is a string key, use the larger size of r1 or r2 before merging' dt1 = r1.dtype[name] if dt1.type != np.string_: return (name, dt1.descr[0][1]) dt2 = r1.dtype[name] assert dt2==dt1 if dt1.num>dt2.num: return (name, dt1.descr[0][1]) else: return (name, dt2.descr[0][1]) keydesc = [key_desc(name) for name in key] def mapped_r1field(name): """ The column name in *newrec* that corresponds to the column in *r1*. """ if name in key or name not in r2.dtype.names: return name else: return name + r1postfix def mapped_r2field(name): """ The column name in *newrec* that corresponds to the column in *r2*. """ if name in key or name not in r1.dtype.names: return name else: return name + r2postfix r1desc = [(mapped_r1field(desc[0]), desc[1]) for desc in r1.dtype.descr if desc[0] not in key] r2desc = [(mapped_r2field(desc[0]), desc[1]) for desc in r2.dtype.descr if desc[0] not in key] newdtype = np.dtype(keydesc + r1desc + r2desc) newrec = np.empty(common_len + left_len + right_len, dtype=newdtype) if jointype != 'inner' and defaults is not None: # fill in the defaults enmasse newrec_fields = newrec.dtype.fields.keys() for k, v in defaults.items(): if k in newrec_fields: newrec[k] = v for field in r1.dtype.names: newfield = mapped_r1field(field) if common_len: newrec[newfield][:common_len] = r1[field][r1ind] if (jointype == "outer" or jointype == "leftouter") and left_len: newrec[newfield][common_len:(common_len+left_len)] = r1[field][left_ind] for field in r2.dtype.names: newfield = mapped_r2field(field) if field not in key and common_len: newrec[newfield][:common_len] = r2[field][r2ind] if jointype == "outer" and right_len: newrec[newfield][-right_len:] = r2[field][right_ind] newrec.sort(order=key) return rec_view(newrec) def csv2rec(fname, comments='#', skiprows=0, checkrows=0, delimiter=',', converterd=None, names=None, missing='', missingd=None, use_mrecords=True): """ Load data from comma/space/tab delimited file in *fname* into a numpy record array and return the record array. If *names* is *None*, a header row is required to automatically assign the recarray names. The headers will be lower cased, spaces will be converted to underscores, and illegal attribute name characters removed. If *names* is not *None*, it is a sequence of names to use for the column names. In this case, it is assumed there is no header row. - *fname*: can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz' - *comments*: the character used to indicate the start of a comment in the file - *skiprows*: is the number of rows from the top to skip - *checkrows*: is the number of rows to check to validate the column data type. When set to zero all rows are validated. - *converted*: if not *None*, is a dictionary mapping column number or munged column name to a converter function. - *names*: if not None, is a list of header names. In this case, no header will be read from the file - *missingd* is a dictionary mapping munged column names to field values which signify that the field does not contain actual data and should be masked, e.g. '0000-00-00' or 'unused' - *missing*: a string whose value signals a missing field regardless of the column it appears in - *use_mrecords*: if True, return an mrecords.fromrecords record array if any of the data are missing If no rows are found, *None* is returned -- see :file:`examples/loadrec.py` """ if converterd is None: converterd = dict() if missingd is None: missingd = {} import dateutil.parser import datetime parsedate = dateutil.parser.parse fh = cbook.to_filehandle(fname) class FH: """ For space-delimited files, we want different behavior than comma or tab. Generally, we want multiple spaces to be treated as a single separator, whereas with comma and tab we want multiple commas to return multiple (empty) fields. The join/strip trick below effects this. """ def __init__(self, fh): self.fh = fh def close(self): self.fh.close() def seek(self, arg): self.fh.seek(arg) def fix(self, s): return ' '.join(s.split()) def next(self): return self.fix(self.fh.next()) def __iter__(self): for line in self.fh: yield self.fix(line) if delimiter==' ': fh = FH(fh) reader = csv.reader(fh, delimiter=delimiter) def process_skiprows(reader): if skiprows: for i, row in enumerate(reader): if i>=(skiprows-1): break return fh, reader process_skiprows(reader) def ismissing(name, val): "Should the value val in column name be masked?" if val == missing or val == missingd.get(name) or val == '': return True else: return False def with_default_value(func, default): def newfunc(name, val): if ismissing(name, val): return default else: return func(val) return newfunc def mybool(x): if x=='True': return True elif x=='False': return False else: raise ValueError('invalid bool') dateparser = dateutil.parser.parse mydateparser = with_default_value(dateparser, datetime.date(1,1,1)) myfloat = with_default_value(float, np.nan) myint = with_default_value(int, -1) mystr = with_default_value(str, '') mybool = with_default_value(mybool, None) def mydate(x): # try and return a date object d = dateparser(x) if d.hour>0 or d.minute>0 or d.second>0: raise ValueError('not a date') return d.date() mydate = with_default_value(mydate, datetime.date(1,1,1)) def get_func(name, item, func): # promote functions in this order funcmap = {mybool:myint,myint:myfloat, myfloat:mydate, mydate:mydateparser, mydateparser:mystr} try: func(name, item) except: if func==mystr: raise ValueError('Could not find a working conversion function') else: return get_func(name, item, funcmap[func]) # recurse else: return func # map column names that clash with builtins -- TODO - extend this list itemd = { 'return' : 'return_', 'file' : 'file_', 'print' : 'print_', } def get_converters(reader): converters = None for i, row in enumerate(reader): if i==0: converters = [mybool]*len(row) if checkrows and i>checkrows: break #print i, len(names), len(row) #print 'converters', zip(converters, row) for j, (name, item) in enumerate(zip(names, row)): func = converterd.get(j) if func is None: func = converterd.get(name) if func is None: #if not item.strip(): continue func = converters[j] if len(item.strip()): func = get_func(name, item, func) else: # how should we handle custom converters and defaults? func = with_default_value(func, None) converters[j] = func return converters # Get header and remove invalid characters needheader = names is None if needheader: for row in reader: #print 'csv2rec', row if len(row) and row[0].startswith(comments): continue headers = row break # remove these chars delete = set("""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""") delete.add('"') names = [] seen = dict() for i, item in enumerate(headers): item = item.strip().lower().replace(' ', '_') item = ''.join([c for c in item if c not in delete]) if not len(item): item = 'column%d'%i item = itemd.get(item, item) cnt = seen.get(item, 0) if cnt>0: names.append(item + '_%d'%cnt) else: names.append(item) seen[item] = cnt+1 else: if cbook.is_string_like(names): names = [n.strip() for n in names.split(',')] # get the converter functions by inspecting checkrows converters = get_converters(reader) if converters is None: raise ValueError('Could not find any valid data in CSV file') # reset the reader and start over fh.seek(0) reader = csv.reader(fh, delimiter=delimiter) process_skiprows(reader) if needheader: skipheader = reader.next() # iterate over the remaining rows and convert the data to date # objects, ints, or floats as approriate rows = [] rowmasks = [] for i, row in enumerate(reader): if not len(row): continue if row[0].startswith(comments): continue rows.append([func(name, val) for func, name, val in zip(converters, names, row)]) rowmasks.append([ismissing(name, val) for name, val in zip(names, row)]) fh.close() if not len(rows): return None if use_mrecords and np.any(rowmasks): try: from numpy.ma import mrecords except ImportError: raise RuntimeError('numpy 1.05 or later is required for masked array support') else: r = mrecords.fromrecords(rows, names=names, mask=rowmasks) else: r = np.rec.fromrecords(rows, names=names) return r # a series of classes for describing the format intentions of various rec views class FormatObj: def tostr(self, x): return self.toval(x) def toval(self, x): return str(x) def fromstr(self, s): return s class FormatString(FormatObj): def tostr(self, x): val = repr(x) return val[1:-1] #class FormatString(FormatObj): # def tostr(self, x): # return '"%r"'%self.toval(x) class FormatFormatStr(FormatObj): def __init__(self, fmt): self.fmt = fmt def tostr(self, x): if x is None: return 'None' return self.fmt%self.toval(x) class FormatFloat(FormatFormatStr): def __init__(self, precision=4, scale=1.): FormatFormatStr.__init__(self, '%%1.%df'%precision) self.precision = precision self.scale = scale def toval(self, x): if x is not None: x = x * self.scale return x def fromstr(self, s): return float(s)/self.scale class FormatInt(FormatObj): def tostr(self, x): return '%d'%int(x) def toval(self, x): return int(x) def fromstr(self, s): return int(s) class FormatBool(FormatObj): def toval(self, x): return str(x) def fromstr(self, s): return bool(s) class FormatPercent(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=100.) class FormatThousands(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-3) class FormatMillions(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-6) class FormatDate(FormatObj): def __init__(self, fmt): self.fmt = fmt def toval(self, x): if x is None: return 'None' return x.strftime(self.fmt) def fromstr(self, x): import dateutil.parser return dateutil.parser.parse(x).date() class FormatDatetime(FormatDate): def __init__(self, fmt='%Y-%m-%d %H:%M:%S'): FormatDate.__init__(self, fmt) def fromstr(self, x): import dateutil.parser return dateutil.parser.parse(x) defaultformatd = { np.bool_ : FormatBool(), np.int16 : FormatInt(), np.int32 : FormatInt(), np.int64 : FormatInt(), np.float32 : FormatFloat(), np.float64 : FormatFloat(), np.object_ : FormatObj(), np.string_ : FormatString(), } def get_formatd(r, formatd=None): 'build a formatd guaranteed to have a key for every dtype name' if formatd is None: formatd = dict() for i, name in enumerate(r.dtype.names): dt = r.dtype[name] format = formatd.get(name) if format is None: format = defaultformatd.get(dt.type, FormatObj()) formatd[name] = format return formatd def csvformat_factory(format): format = copy.deepcopy(format) if isinstance(format, FormatFloat): format.scale = 1. # override scaling for storage format.fmt = '%r' return format def rec2txt(r, header=None, padding=3, precision=3): """ Returns a textual representation of a record array. *r*: numpy recarray *header*: list of column headers *padding*: space between each column *precision*: number of decimal places to use for floats. Set to an integer to apply to all floats. Set to a list of integers to apply precision individually. Precision for non-floats is simply ignored. Example:: precision=[0,2,3] Output:: ID Price Return ABC 12.54 0.234 XYZ 6.32 -0.076 """ if cbook.is_numlike(precision): precision = [precision]*len(r.dtype) def get_type(item,atype=int): tdict = {None:int, int:float, float:str} try: atype(str(item)) except: return get_type(item,tdict[atype]) return atype def get_justify(colname, column, precision): ntype = type(column[0]) if ntype==np.str or ntype==np.str_ or ntype==np.string0 or ntype==np.string_: length = max(len(colname),column.itemsize) return 0, length+padding, "%s" # left justify if ntype==np.int or ntype==np.int16 or ntype==np.int32 or ntype==np.int64 or ntype==np.int8 or ntype==np.int_: length = max(len(colname),np.max(map(len,map(str,column)))) return 1, length+padding, "%d" # right justify # JDH: my powerbook does not have np.float96 using np 1.3.0 """ In [2]: np.__version__ Out[2]: '1.3.0.dev5948' In [3]: !uname -a Darwin Macintosh-5.local 9.4.0 Darwin Kernel Version 9.4.0: Mon Jun 9 19:30:53 PDT 2008; root:xnu-1228.5.20~1/RELEASE_I386 i386 i386 In [4]: np.float96 --------------------------------------------------------------------------- AttributeError Traceback (most recent call la """ if ntype==np.float or ntype==np.float32 or ntype==np.float64 or (hasattr(np, 'float96') and (ntype==np.float96)) or ntype==np.float_: fmt = "%." + str(precision) + "f" length = max(len(colname),np.max(map(len,map(lambda x:fmt%x,column)))) return 1, length+padding, fmt # right justify return 0, max(len(colname),np.max(map(len,map(str,column))))+padding, "%s" if header is None: header = r.dtype.names justify_pad_prec = [get_justify(header[i],r.__getitem__(colname),precision[i]) for i, colname in enumerate(r.dtype.names)] justify_pad_prec_spacer = [] for i in range(len(justify_pad_prec)): just,pad,prec = justify_pad_prec[i] if i == 0: justify_pad_prec_spacer.append((just,pad,prec,0)) else: pjust,ppad,pprec = justify_pad_prec[i-1] if pjust == 0 and just == 1: justify_pad_prec_spacer.append((just,pad-padding,prec,0)) elif pjust == 1 and just == 0: justify_pad_prec_spacer.append((just,pad,prec,padding)) else: justify_pad_prec_spacer.append((just,pad,prec,0)) def format(item, just_pad_prec_spacer): just, pad, prec, spacer = just_pad_prec_spacer if just == 0: return spacer*' ' + str(item).ljust(pad) else: if get_type(item) == float: item = (prec%float(item)) elif get_type(item) == int: item = (prec%int(item)) return item.rjust(pad) textl = [] textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(header)])) for i, row in enumerate(r): textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(row)])) if i==0: textl[0] = textl[0].rstrip() text = os.linesep.join(textl) return text def rec2csv(r, fname, delimiter=',', formatd=None, missing='', missingd=None): """ Save the data from numpy recarray *r* into a comma-/space-/tab-delimited file. The record array dtype names will be used for column headers. *fname*: can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz' .. seealso:: :func:`csv2rec` For information about *missing* and *missingd*, which can be used to fill in masked values into your CSV file. """ if missingd is None: missingd = dict() def with_mask(func): def newfunc(val, mask, mval): if mask: return mval else: return func(val) return newfunc formatd = get_formatd(r, formatd) funcs = [] for i, name in enumerate(r.dtype.names): funcs.append(with_mask(csvformat_factory(formatd[name]).tostr)) fh, opened = cbook.to_filehandle(fname, 'w', return_opened=True) writer = csv.writer(fh, delimiter=delimiter) header = r.dtype.names writer.writerow(header) # Our list of specials for missing values mvals = [] for name in header: mvals.append(missingd.get(name, missing)) ismasked = False if len(r): row = r[0] ismasked = hasattr(row, '_fieldmask') for row in r: if ismasked: row, rowmask = row.item(), row._fieldmask.item() else: rowmask = [False] * len(row) writer.writerow([func(val, mask, mval) for func, val, mask, mval in zip(funcs, row, rowmask, mvals)]) if opened: fh.close() def griddata(x,y,z,xi,yi): """ ``zi = griddata(x,y,z,xi,yi)`` fits a surface of the form *z* = *f*(*x*, *y*) to the data in the (usually) nonuniformly spaced vectors (*x*, *y*, *z*). :func:`griddata` interpolates this surface at the points specified by (*xi*, *yi*) to produce *zi*. *xi* and *yi* must describe a regular grid, can be either 1D or 2D, but must be monotonically increasing. A masked array is returned if any grid points are outside convex hull defined by input data (no extrapolation is done). Uses natural neighbor interpolation based on Delaunay triangulation. By default, this algorithm is provided by the :mod:`matplotlib.delaunay` package, written by Robert Kern. The triangulation algorithm in this package is known to fail on some nearly pathological cases. For this reason, a separate toolkit (:mod:`mpl_tookits.natgrid`) has been created that provides a more robust algorithm fof triangulation and interpolation. This toolkit is based on the NCAR natgrid library, which contains code that is not redistributable under a BSD-compatible license. When installed, this function will use the :mod:`mpl_toolkits.natgrid` algorithm, otherwise it will use the built-in :mod:`matplotlib.delaunay` package. The natgrid matplotlib toolkit can be downloaded from http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792 """ try: from mpl_toolkits.natgrid import _natgrid, __version__ _use_natgrid = True except ImportError: import matplotlib.delaunay as delaunay from matplotlib.delaunay import __version__ _use_natgrid = False if not griddata._reported: if _use_natgrid: verbose.report('using natgrid version %s' % __version__) else: verbose.report('using delaunay version %s' % __version__) griddata._reported = True if xi.ndim != yi.ndim: raise TypeError("inputs xi and yi must have same number of dimensions (1 or 2)") if xi.ndim != 1 and xi.ndim != 2: raise TypeError("inputs xi and yi must be 1D or 2D.") if not len(x)==len(y)==len(z): raise TypeError("inputs x,y,z must all be 1D arrays of the same length") # remove masked points. if hasattr(z,'mask'): x = x.compress(z.mask == False) y = y.compress(z.mask == False) z = z.compressed() if _use_natgrid: # use natgrid toolkit if available. if xi.ndim == 2: xi = xi[0,:] yi = yi[:,0] # override default natgrid internal parameters. _natgrid.seti('ext',0) _natgrid.setr('nul',np.nan) # cast input arrays to doubles (this makes a copy) x = x.astype(np.float) y = y.astype(np.float) z = z.astype(np.float) xo = xi.astype(np.float) yo = yi.astype(np.float) if min(xo[1:]-xo[0:-1]) < 0 or min(yo[1:]-yo[0:-1]) < 0: raise ValueError, 'output grid defined by xi,yi must be monotone increasing' # allocate array for output (buffer will be overwritten by nagridd) zo = np.empty((yo.shape[0],xo.shape[0]), np.float) _natgrid.natgridd(x,y,z,xo,yo,zo) else: # use Robert Kern's delaunay package from scikits (default) if xi.ndim != yi.ndim: raise TypeError("inputs xi and yi must have same number of dimensions (1 or 2)") if xi.ndim != 1 and xi.ndim != 2: raise TypeError("inputs xi and yi must be 1D or 2D.") if xi.ndim == 1: xi,yi = np.meshgrid(xi,yi) # triangulate data tri = delaunay.Triangulation(x,y) # interpolate data interp = tri.nn_interpolator(z) zo = interp(xi,yi) # mask points on grid outside convex hull of input data. if np.any(np.isnan(zo)): zo = np.ma.masked_where(np.isnan(zo),zo) return zo griddata._reported = False ################################################## # Linear interpolation algorithms ################################################## def less_simple_linear_interpolation( x, y, xi, extrap=False ): """ This function provides simple (but somewhat less so than :func:`cbook.simple_linear_interpolation`) linear interpolation. :func:`simple_linear_interpolation` will give a list of point between a start and an end, while this does true linear interpolation at an arbitrary set of points. This is very inefficient linear interpolation meant to be used only for a small number of points in relatively non-intensive use cases. For real linear interpolation, use scipy. """ if cbook.is_scalar(xi): xi = [xi] x = np.asarray(x) y = np.asarray(y) xi = np.asarray(xi) s = list(y.shape) s[0] = len(xi) yi = np.tile( np.nan, s ) for ii,xx in enumerate(xi): bb = x == xx if np.any(bb): jj, = np.nonzero(bb) yi[ii] = y[jj[0]] elif xx<x[0]: if extrap: yi[ii] = y[0] elif xx>x[-1]: if extrap: yi[ii] = y[-1] else: jj, = np.nonzero(x<xx) jj = max(jj) yi[ii] = y[jj] + (xx-x[jj])/(x[jj+1]-x[jj]) * (y[jj+1]-y[jj]) return yi def slopes(x,y): """ :func:`slopes` calculates the slope *y*'(*x*) The slope is estimated using the slope obtained from that of a parabola through any three consecutive points. This method should be superior to that described in the appendix of A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July 1980) in at least one aspect: Circles for interpolation demand a known aspect ratio between *x*- and *y*-values. For many functions, however, the abscissa are given in different dimensions, so an aspect ratio is completely arbitrary. The parabola method gives very similar results to the circle method for most regular cases but behaves much better in special cases. Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de (inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March 2006 halldor at vedur.is) """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) yp=np.zeros(y.shape, np.float_) dx=x[1:] - x[:-1] dy=y[1:] - y[:-1] dydx = dy/dx yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1])/(dx[1:] + dx[:-1]) yp[0] = 2.0 * dy[0]/dx[0] - yp[1] yp[-1] = 2.0 * dy[-1]/dx[-1] - yp[-2] return yp def stineman_interp(xi,x,y,yp=None): """ Given data vectors *x* and *y*, the slope vector *yp* and a new abscissa vector *xi*, the function :func:`stineman_interp` uses Stineman interpolation to calculate a vector *yi* corresponding to *xi*. Here's an example that generates a coarse sine curve, then interpolates over a finer abscissa:: x = linspace(0,2*pi,20); y = sin(x); yp = cos(x) xi = linspace(0,2*pi,40); yi = stineman_interp(xi,x,y,yp); plot(x,y,'o',xi,yi) The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980 issue of Creative Computing with a note from the editor stating that while they were: not an academic journal but once in a while something serious and original comes in adding that this was "apparently a real solution" to a well known problem. For *yp* = *None*, the routine automatically determines the slopes using the :func:`slopes` routine. *x* is assumed to be sorted in increasing order. For values ``xi[j] < x[0]`` or ``xi[j] > x[-1]``, the routine tries an extrapolation. The relevance of the data obtained from this, of course, is questionable... Original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor at vedur.is Completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) assert x.shape == y.shape N=len(y) if yp is None: yp = slopes(x,y) else: yp=np.asarray(yp, np.float_) xi=np.asarray(xi, np.float_) yi=np.zeros(xi.shape, np.float_) # calculate linear slopes dx = x[1:] - x[:-1] dy = y[1:] - y[:-1] s = dy/dx #note length of s is N-1 so last element is #N-2 # find the segment each xi is in # this line actually is the key to the efficiency of this implementation idx = np.searchsorted(x[1:-1], xi) # now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1] # except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1] # the y-values that would come out from a linear interpolation: sidx = s.take(idx) xidx = x.take(idx) yidx = y.take(idx) xidxp1 = x.take(idx+1) yo = yidx + sidx * (xi - xidx) # the difference that comes when using the slopes given in yp dy1 = (yp.take(idx)- sidx) * (xi - xidx) # using the yp slope of the left point dy2 = (yp.take(idx+1)-sidx) * (xi - xidxp1) # using the yp slope of the right point dy1dy2 = dy1*dy2 # The following is optimized for Python. The solution actually # does more calculations than necessary but exploiting the power # of numpy, this is far more efficient than coding a loop by hand # in Python yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32)+1, ((2*xi-xidx-xidxp1)/((dy1-dy2)*(xidxp1-xidx)), 0.0, 1/(dy1+dy2),)) return yi ################################################## # Code related to things in and around polygons ################################################## def inside_poly(points, verts): """ *points* is a sequence of *x*, *y* points. *verts* is a sequence of *x*, *y* vertices of a polygon. Return value is a sequence of indices into points for the points that are inside the polygon. """ res, = np.nonzero(nxutils.points_inside_poly(points, verts)) return res def poly_below(xmin, xs, ys): """ Given a sequence of *xs* and *ys*, return the vertices of a polygon that has a horizontal base at *xmin* and an upper bound at the *ys*. *xmin* is a scalar. Intended for use with :meth:`matplotlib.axes.Axes.fill`, eg:: xv, yv = poly_below(0, x, y) ax.fill(xv, yv) """ if ma.isMaskedArray(xs) or ma.isMaskedArray(ys): nx = ma else: nx = np xs = nx.asarray(xs) ys = nx.asarray(ys) Nx = len(xs) Ny = len(ys) assert(Nx==Ny) x = xmin*nx.ones(2*Nx) y = nx.ones(2*Nx) x[:Nx] = xs y[:Nx] = ys y[Nx:] = ys[::-1] return x, y def poly_between(x, ylower, yupper): """ Given a sequence of *x*, *ylower* and *yupper*, return the polygon that fills the regions between them. *ylower* or *yupper* can be scalar or iterable. If they are iterable, they must be equal in length to *x*. Return value is *x*, *y* arrays for use with :meth:`matplotlib.axes.Axes.fill`. """ if ma.isMaskedArray(ylower) or ma.isMaskedArray(yupper) or ma.isMaskedArray(x): nx = ma else: nx = np Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*nx.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*nx.ones(Nx) x = nx.concatenate( (x, x[::-1]) ) y = nx.concatenate( (yupper, ylower[::-1]) ) return x,y def is_closed_polygon(X): """ Tests whether first and last object in a sequence are the same. These are presumably coordinates on a polygonal curve, in which case this function tests if that curve is closed. """ return np.all(X[0] == X[-1]) def contiguous_regions(mask): """ return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions TODO: this is a pure python implementation which probably has a much faster numpy impl """ in_region = None boundaries = [] for i, val in enumerate(mask): if in_region is None and val: in_region = i elif in_region is not None and not val: boundaries.append((in_region, i)) in_region = None if in_region is not None: boundaries.append((in_region, i+1)) return boundaries def cross_from_below(x, threshold): """ return the indices into *x* where *x* crosses some threshold from below, eg the i's where:: x[i-1]<threshold and x[i]>=threshold Example code:: import matplotlib.pyplot as plt t = np.arange(0.0, 2.0, 0.1) s = np.sin(2*np.pi*t) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(t, s, '-o') ax.axhline(0.5) ax.axhline(-0.5) ind = cross_from_below(s, 0.5) ax.vlines(t[ind], -1, 1) ind = cross_from_above(s, -0.5) ax.vlines(t[ind], -1, 1) plt.show() .. seealso:: :func:`cross_from_above` and :func:`contiguous_regions` """ x = np.asarray(x) threshold = threshold ind = np.nonzero( (x[:-1]<threshold) & (x[1:]>=threshold))[0] if len(ind): return ind+1 else: return ind def cross_from_above(x, threshold): """ return the indices into *x* where *x* crosses some threshold from below, eg the i's where:: x[i-1]>threshold and x[i]<=threshold .. seealso:: :func:`cross_from_below` and :func:`contiguous_regions` """ x = np.asarray(x) ind = np.nonzero( (x[:-1]>=threshold) & (x[1:]<threshold))[0] if len(ind): return ind+1 else: return ind ################################################## # Vector and path length geometry calculations ################################################## def vector_lengths( X, P=2., axis=None ): """ Finds the length of a set of vectors in *n* dimensions. This is like the :func:`numpy.norm` function for vectors, but has the ability to work over a particular axis of the supplied array or matrix. Computes ``(sum((x_i)^P))^(1/P)`` for each ``{x_i}`` being the elements of *X* along the given axis. If *axis* is *None*, compute over all elements of *X*. """ X = np.asarray(X) return (np.sum(X**(P),axis=axis))**(1./P) def distances_along_curve( X ): """ Computes the distance between a set of successive points in *N* dimensions. Where *X* is an *M* x *N* array or matrix. The distances between successive rows is computed. Distance is the standard Euclidean distance. """ X = np.diff( X, axis=0 ) return vector_lengths(X,axis=1) def path_length(X): """ Computes the distance travelled along a polygonal curve in *N* dimensions. Where *X* is an *M* x *N* array or matrix. Returns an array of length *M* consisting of the distance along the curve at each point (i.e., the rows of *X*). """ X = distances_along_curve(X) return np.concatenate( (np.zeros(1), np.cumsum(X)) ) def quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y): """ Converts a quadratic Bezier curve to a cubic approximation. The inputs are the *x* and *y* coordinates of the three control points of a quadratic curve, and the output is a tuple of *x* and *y* coordinates of the four control points of the cubic curve. """ # c0x, c0y = q0x, q0y c1x, c1y = q0x + 2./3. * (q1x - q0x), q0y + 2./3. * (q1y - q0y) c2x, c2y = c1x + 1./3. * (q2x - q0x), c1y + 1./3. * (q2y - q0y) # c3x, c3y = q2x, q2y return q0x, q0y, c1x, c1y, c2x, c2y, q2x, q2y
gpl-3.0
nrz/ylikuutio
external/bullet3/examples/pybullet/gym/pybullet_examples/testrender_np.py
4
2607
#make sure to compile pybullet with PYBULLET_USE_NUMPY enabled #otherwise use testrender.py (slower but compatible without numpy) #you can also use GUI mode, for faster OpenGL rendering (instead of TinyRender CPU) import numpy as np import matplotlib.pyplot as plt import pybullet import time import pybullet_data plt.ion() img = np.random.rand(200, 320) #img = [tandard_normal((50,100)) image = plt.imshow(img, interpolation='none', animated=True, label="blah") ax = plt.gca() #pybullet.connect(pybullet.GUI) pybullet.connect(pybullet.DIRECT) pybullet.setAdditionalSearchPath(pybullet_data.getDataPath()) pybullet.loadURDF("plane.urdf", [0, 0, -1]) pybullet.loadURDF("r2d2.urdf") camTargetPos = [0, 0, 0] cameraUp = [0, 0, 1] cameraPos = [1, 1, 1] pybullet.setGravity(0, 0, -10) pitch = -10.0 roll = 0 upAxisIndex = 2 camDistance = 4 pixelWidth = 320 pixelHeight = 200 nearPlane = 0.01 farPlane = 100 fov = 60 main_start = time.time() while (1): for yaw in range(0, 360, 10): pybullet.stepSimulation() start = time.time() viewMatrix = pybullet.computeViewMatrixFromYawPitchRoll(camTargetPos, camDistance, yaw, pitch, roll, upAxisIndex) aspect = pixelWidth / pixelHeight projectionMatrix = pybullet.computeProjectionMatrixFOV(fov, aspect, nearPlane, farPlane) img_arr = pybullet.getCameraImage(pixelWidth, pixelHeight, viewMatrix, projectionMatrix, shadow=1, lightDirection=[1, 1, 1], renderer=pybullet.ER_BULLET_HARDWARE_OPENGL) stop = time.time() print("renderImage %f" % (stop - start)) w = img_arr[0] #width of the image, in pixels h = img_arr[1] #height of the image, in pixels rgb = img_arr[2] #color data RGB dep = img_arr[3] #depth data print('width = %d height = %d' % (w, h)) #note that sending the data to matplotlib is really slow #reshape is needed np_img_arr = np.reshape(rgb, (h, w, 4)) np_img_arr = np_img_arr * (1. / 255.) #show #plt.imshow(np_img_arr,interpolation='none',extent=(0,1600,0,1200)) #image = plt.imshow(np_img_arr,interpolation='none',animated=True,label="blah") image.set_data(np_img_arr) ax.plot([0]) #plt.draw() #plt.show() plt.pause(0.01) #image.draw() main_stop = time.time() print("Total time %f" % (main_stop - main_start)) pybullet.resetSimulation()
agpl-3.0
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/text_labels_and_annotations/fonts_demo_kw.py
1
2151
""" ============= Fonts Demo Kw ============= Same as fonts_demo using kwargs. If you prefer a more pythonic, OO style of coding, see examples/fonts_demo.py. """ from matplotlib.font_manager import FontProperties import matplotlib.pyplot as plt import numpy as np plt.subplot(111, facecolor='w') alignment = {'horizontalalignment': 'center', 'verticalalignment': 'baseline'} # Show family options families = ['serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'] t = plt.text(-0.8, 0.9, 'family', size='large', **alignment) yp = [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2] for k, family in enumerate(families): t = plt.text(-0.8, yp[k], family, family=family, **alignment) # Show style options styles = ['normal', 'italic', 'oblique'] t = plt.text(-0.4, 0.9, 'style', **alignment) for k, style in enumerate(styles): t = plt.text(-0.4, yp[k], style, family='sans-serif', style=style, **alignment) # Show variant options variants = ['normal', 'small-caps'] t = plt.text(0.0, 0.9, 'variant', **alignment) for k, variant in enumerate(variants): t = plt.text(0.0, yp[k], variant, family='serif', variant=variant, **alignment) # Show weight options weights = ['light', 'normal', 'medium', 'semibold', 'bold', 'heavy', 'black'] t = plt.text(0.4, 0.9, 'weight', **alignment) for k, weight in enumerate(weights): t = plt.text(0.4, yp[k], weight, weight=weight, **alignment) # Show size options sizes = ['xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'] t = plt.text(0.8, 0.9, 'size', **alignment) for k, size in enumerate(sizes): t = plt.text(0.8, yp[k], size, size=size, **alignment) x = -0.4 # Show bold italic t = plt.text(x, 0.1, 'bold italic', style='italic', weight='bold', size='x-small', **alignment) t = plt.text(x, 0.2, 'bold italic', style='italic', weight='bold', size='medium', **alignment) t = plt.text(x, 0.3, 'bold italic', style='italic', weight='bold', size='x-large', **alignment) plt.axis([-1, 1, 0, 1]) plt.show()
mit
jbalm/ActuarialCashFlowModel
core_math/test_function_optim.py
1
2814
# Python Programs from . import functions_credit from . import function_optim ## Python packages import numpy as np import unittest import pickle from scipy.optimize import minimize import numpy.linalg as la import xlwings as xw import matplotlib.pyplot as plt def test_function_spread(): mu=5 alpha=0.1 sigma=0.75 recovery_rate=0.35 with open('data\pickle\historical_transition_matrix.pkl', 'rb') as input: historical_transition_matrix = pickle.load(input) historical_generator_matrix = functions_credit.generator_matrix(historical_transition_matrix) w, v = la.eig(historical_generator_matrix) eigenval_hist_gen = w.real eigenvect_hist_gen = (v.T).real for l in range(len(eigenvect_hist_gen)): eigenvect_hist_gen[l] = eigenvect_hist_gen[l]/la.norm(eigenvect_hist_gen[l]) eigenvect_hist_gen = eigenvect_hist_gen.T with open('data\pickle\spread.pkl', 'rb') as input: spread_list = pickle.load(input) col_index = pickle.load(input) row_index = pickle.load(input) AAA_AA=True def f_penal(v): return function_optim.function_optim(v[0], v[1], v[2], v[3], recovery_rate, eigenvect_hist_gen, eigenval_hist_gen, row_index, col_index, spread_list, AAA_AA ) + 1000 *(v[1] - 0.1)**2 + 1000 * (v[2] - 5 )**2 + 100* (v[3] -0.75)**2 bdss = [(0.001,None), (0.01, 5), (1,20), (0.01,1)] res_penal = minimize(f_penal, x0=[3, 0.1, 5, 0.75], bounds = bdss) pi_0 = res_penal.x[0] alpha =res_penal.x[1] mu = res_penal.x[2] sigma = res_penal.x[3] spread = function_optim.function_spread(pi_0, alpha,mu, sigma, recovery_rate, eigenvect_hist_gen, eigenval_hist_gen) fig = plt.figure() fig.set_size_inches(6,5) plt.plot(range(20), np.asarray(spread)[:,0], label = 'spreads AAA') plt.plot(range(20), np.asarray(spread)[:,1], label = 'spreads AA') plt.plot(range(20), np.asarray(spread)[:,2], label = 'spreads A') plt.plot(range(20), np.asarray(spread)[:,3], label = 'spreads BBB') plt.plot(range(20), np.asarray(spread)[:,4], label = 'spreads BB') plt.plot(range(20), np.asarray(spread)[:,5], label = 'spreads B') plt.plot(range(20), np.asarray(spread)[:,6], label = 'spreads CCC') plt.xlabel('Time (in years)', fontsize=18) plt.ylabel('spreads', fontsize=16) plt.legend() xw.sheets['Testing'].range('E4').clear_contents() xw.sheets['Testing'].pictures.add(fig, name='Spread Calibré', left = xw.sheets['Testing'].range('E4').left, top = xw.sheets['Testing'].range('E4').top, update=True) def Test_FunctionsOptim(): test_function_spread() if __name__ == '__main__': unittest.main()
gpl-3.0
maxlikely/scikit-learn
sklearn/datasets/species_distributions.py
4
7844
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References: * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes: * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: Simplified BSD from io import BytesIO from os import makedirs from os.path import join from os.path import exists try: # Python 2 from urllib2 import urlopen except ImportError: # Python 3 from urllib.request import urlopen import numpy as np from sklearn.datasets.base import get_data_home, Bunch from sklearn.externals import joblib DIRECTORY_URL = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" SAMPLES_URL = join(DIRECTORY_URL, "samples.zip") COVERAGES_URL = join(DIRECTORY_URL, "coverages.zip") DATA_ARCHIVE_NAME = "species_coverage.pkz" def _load_coverage(F, header_length=6, dtype=np.int16): """ load a coverage file. This will return a numpy array of the given dtype """ try: header = [F.readline() for i in range(header_length)] except: F = open(F) header = [F.readline() for i in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = header['NODATA_value'] if nodata != -9999: M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Paramters --------- F : string or file object file object or name of file Returns ------- rec : np.ndarray record array representing the data """ try: names = F.readline().strip().split(',') except: F = open(F) names = F.readline().strip().split(',') rec = np.loadtxt(F, skiprows=1, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def fetch_species_distributions(data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Notes ------ This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. The data is returned as a Bunch object with the following attributes: coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1623,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (619,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset with scikit-learn """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 if not exists(join(data_home, DATA_ARCHIVE_NAME)): print('Downloading species data from %s to %s' % (SAMPLES_URL, data_home)) X = np.load(BytesIO(urlopen(SAMPLES_URL).read())) for f in X.files: fhandle = BytesIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) print('Downloading coverage data from %s to %s' % (COVERAGES_URL, data_home)) X = np.load(BytesIO(urlopen(COVERAGES_URL).read())) coverages = [] for f in X.files: fhandle = BytesIO(X[f]) print(' - converting', f) coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, join(data_home, DATA_ARCHIVE_NAME), compress=9) else: bunch = joblib.load(join(data_home, DATA_ARCHIVE_NAME)) return bunch
bsd-3-clause
DailyActie/Surrogate-Model
01-codes/scikit-learn-master/examples/ensemble/plot_forest_importances.py
1
1793
""" ========================================= Feature importances with forests of trees ========================================= This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(X.shape[1]): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(X.shape[1]), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(X.shape[1]), indices) plt.xlim([-1, X.shape[1]]) plt.show()
mit
xapple/seqenv
seqenv/outputs.py
1
9924
# Built-in modules # import warnings, marshal, re # Internal modules # import seqenv from seqenv.common.cache import property_cached from seqenv.common.autopaths import DirectoryPath # Third party modules # import pandas # We don't want the annoying h5py warning # with warnings.catch_warnings(): warnings.simplefilter("ignore") import biom ################################################################################ class OutputGenerator(object): """Once the Analysis is done running and all the data is in memory in the form of python objects, this object will take care of generating all the output files the user could possibly want. You pass it the Analysis object obviously.""" sep = '\t' float_format = '%.5g' def __init__(self, analysis): self.analysis = analysis self.a = analysis # --------------------------- In this section --------------------------- # # make_all # df_seqs_concepts # abundance_mat_mult # df_sample_concepts # df_sample_names def make_all(self): """Let's generate all the files""" # General matrices # self.tsv_seq_to_concepts() self.tsv_seq_to_names() self.list_sequence_concept() # Only in the with 'samples' case # if self.a.abundances: self.tsv_samples_to_names() if self.a.abundances: self.biom_output() # Graphical outputs # self.per_seq_dot_files() if self.a.abundances: self.per_sample_dot_files() @property_cached def df_seqs_concepts(self): """A normalized dataframe with sequences as columns and concepts (envo terms) as rows.""" # Get the data # df = pandas.DataFrame(self.a.seq_to_counts) df = df.fillna(0) # Rename to original names # df = df.rename(columns=self.a.renamed_to_orig) # Rename envo integers to envo strings # envo_int_to_id = lambda e: "ENVO:%08d" % e df = df.rename(index=envo_int_to_id) # Return return df def abundance_mat_mult(self, human_names=False): """We operate a matrix multiplication with the abundances file provided, to link samples to either concept human readable names or the envo term IDs.""" # Get results # df1 = self.df_seqs_concepts # Rename # if human_names: df1 = df1.rename(index=self.a.concept_to_name) # Remove those that were discarded # df2 = self.a.df_abundances df2 = df2.loc[df1.columns] # Odd bug detection # if any(s[:1].isdigit() for s in df2.columns): msg = "None of the sample names in file '%s' can start with a number" raise Exception(msg % self.a.abundances.filename) # Multiply them (dot product) # assert all(df1.columns == df2.index) df = df1.dot(df2) # Return return df @property_cached def df_sample_concepts(self): """A dataframe where we operate a matrix multiplication with the abundances file provided, to link samples to concept envo terms.""" return self.abundance_mat_mult(False) @property_cached def df_sample_names(self): """A dataframe where we operate a matrix multiplication with the abundances file provided, to link samples to concept human readable names.""" return self.abundance_mat_mult(True) # --------------------------- In this section --------------------------- # # tsv_seq_to_concepts # tsv_seq_to_names # tsv_samples_to_names # list_sequence_concept # biom_output def tsv_seq_to_concepts(self, name="seq_to_concepts.tsv"): """A TSV matrix file containing the df_seqs_concepts matrix""" with open(self.a.out_dir + name, 'w') as handle: content = self.df_seqs_concepts.to_csv(None, sep=self.sep, float_format=self.float_format) handle.writelines(content) def tsv_seq_to_names(self, name='seq_to_names.tsv'): """A TSV matrix file where we translate the concept to human readable names""" with open(self.a.out_dir + name, 'w') as handle: df = self.df_seqs_concepts.rename(index=self.a.concept_to_name) content = df.to_csv(None, sep=self.sep, float_format=self.float_format) handle.writelines(content) def tsv_samples_to_names(self, name='samples_to_names.tsv'): """A TSV matrix file with matrix `df_sample_names`.""" with open(self.a.out_dir + name, 'w') as handle: content = self.df_sample_names.to_csv(None, sep=self.sep, float_format=self.float_format) handle.writelines(content) def list_sequence_concept(self, name='list_concepts_found.tsv'): """A flat TSV file listing every concept found for every sequence. It has one concept per line and looks something like this: - OTU1, ENVO:00001, ocean, 4, GIs : [56, 123, 345] - OTU1, ENVO:00002, soil, 7, GIs : [22, 44] """ # Useful later # gi_to_key = lambda gi: self.a.db.get("gi","id",gi)[1] key_to_envos = lambda key: marshal.loads(self.a.db.get("isolation","id",key)[2]) gi_to_envos = lambda gi: key_to_envos(gi_to_key(gi)) # Loop # with open(self.a.out_dir + name, 'w') as handle: for seq, gis in self.a.seq_to_gis.items(): gis = [gi for gi in gis if gi in self.a.db] isokeys = set(gi_to_key(gi) for gi in gis) envos = [e for key in isokeys for e in key_to_envos(key)] for envo in envos: seq_name = self.a.renamed_to_orig[seq] envo_id = "ENVO:%08d" % envo concept_name = self.a.integer_to_name.get(envo, envo_id) concept_gis = [gi for gi in gis if envo in gi_to_envos(gi)] count_gis = len(concept_gis) line = (seq_name, envo_id, concept_name, str(count_gis), str(concept_gis)) handle.write('\t'.join(line) + '\n') def biom_output(self, name='samples.biom'): """The same matrix as the user gave in the abundance file, but with source information attached for every sequence. See http://biom-format.org""" data = self.a.df_abundances with open(self.a.out_dir + name, 'w') as handle: # Basic # sample_ids = data.columns sample_md = None observation_ids = data.index # Observation metadata # observation_md = [] for seq in data.index: seq_name = self.a.orig_names_to_renamed[seq] counts = self.a.seq_to_counts.get(seq_name) if not counts: observation_md.append({}) else: observation_md.append({'source': counts}) # Output # t = biom.table.Table(data.transpose().as_matrix(), sample_ids, observation_ids, sample_md, observation_md) handle.write(t.to_json('seqenv version %s') % seqenv.__version__) # --------------------------- In this section --------------------------- # # per_seq_dot_files # per_sample_dot_files def per_seq_dot_files(self): """Generations of files that can be viewed in `graphviz`. There is one dotfile per every input sequence. We also automiatcally make a corresponding PDF file.""" # The output directory # directory = DirectoryPath(self.a.out_dir+'per_seq_ontology/') directory.create_if_not_exists() # Main loop # for seq in self.a.seq_to_counts: dot_path = directory + seq + '.dot' pdf_path = directory + seq + '.pdf' counts = self.a.seq_to_counts[seq] counts = {"ENVO:%08d"%k:v for k,v in counts.items()} total = sum(counts.values()) counts = {k:v/total for k,v in counts.items()} envos = counts.keys() graph = self.a.ontology.get_subgraph(envos) graph = self.a.ontology.add_weights(graph, counts) graph = self.a.ontology.add_style(graph) self.a.ontology.write_to_dot(graph, dot_path) self.a.ontology.add_legend(dot_path) self.a.ontology.draw_to_pdf(dot_path, pdf_path) def per_sample_dot_files(self): """Generations of files that can be viewed in `graphviz`. There is one dotfile per every sample inputted. We also automatically make a corresponding PDF file.""" # The output directory # directory = DirectoryPath(self.a.out_dir+'per_sample_ontology/') directory.create_if_not_exists() # Main loop # for i, sample in self.df_sample_concepts.iteritems(): # File path # sanitized_name = "".join([c for c in sample.name if re.match(r'\w', c)]) dot_path = directory + sanitized_name +'.dot' pdf_path = directory + sanitized_name +'.pdf' # Counts # counts = sample / sample.sum() counts = dict(counts) envos = counts.keys() # Skip sample if it has no counts # if sample.sum() == 0: continue # Make graph # graph = self.a.ontology.get_subgraph(envos) graph = self.a.ontology.add_weights(graph, counts) graph = self.a.ontology.add_style(graph) # Write output # self.a.ontology.write_to_dot(graph, dot_path) self.a.ontology.add_legend(dot_path) self.a.ontology.draw_to_pdf(dot_path, pdf_path) # --------------------------- In this section --------------------------- # # output_3 def output_3(self): """Possible output #3: the number of terms per OTU OTU1: 0 OTU2: 2 OTU3: 1""" pass
mit
OSUrobotics/privacy-interfaces
filtering/privacy/scripts/boundingBox.py
1
2868
#!/usr/bin/env python import rospy from sensor_msgs.msg import PointCloud2, Image from cv_bridge import CvBridge import cv, cv2 import numpy import matplotlib import copy # import code # FOR TESTING class Bound(): def __init__(self, topic): self.bridge = CvBridge() rospy.Subscriber(topic, Image, self.image_callback) self.pub = rospy.Publisher(topic + '_filtered', Image) def image_callback(self, image_in): # Import and convert image_cv = self.bridge.imgmsg_to_cv(image_in, 'bgr8') image_cv2 = numpy.array(image_cv, dtype=numpy.uint8) image_hsv = cv2.cvtColor(image_cv2, cv2.COLOR_BGR2HSV) image_hsv = cv2.blur(image_hsv, (5, 5)) # Make binary image of pinkness lowerb = numpy.array((50, 100,100)) upperb = numpy.array((80,255, 255)) # lowerb = numpy.array((130, 50, 0)) # upperb = numpy.array((175, 255, 255)) # is_pink = cv2.inRange(image_hsv, numpy.array((130, 50, 0)), numpy.array((175, 255, 255))) # Make binary image of pinkness # is_pink = cv2.inRange(image_hsv, numpy.array((50, 92, 50)), numpy.array((132, 231, 187))) is_green = cv2.inRange(image_hsv, lowerb, upperb) green = copy.deepcopy(image_cv2) for dim in range(3): green[:, :, dim] *= is_green / 255 green_avg = numpy.sum(numpy.sum(green, 0), 0) / numpy.sum(numpy.sum(is_green / 255, 0), 0) green_avg = tuple([int(green_avg[0]), int(green_avg[1]), int(green_avg[2])]) # print green_avg #code.interact(local=locals()) # Manipulate binary image contours, hierarchy = cv2.findContours(is_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) #code.interact(local=locals()) #print contours print contours max_area = 0 for index, contour in enumerate(contours): area = cv2.contourArea(contour) if area > max_area: max_area = area best_index = index try: best_contour = contours[best_index] # rospy.loginfo('Best contour was contour #{0} with area of {1}'.format(best_index, max_area)) cv2.fillConvexPoly(image_cv2, best_contour, -1) # cv2.drawContours(image_cv2, contours, best_index, green_avg, thickness=-1) # fill in the largest pink blob except(UnboundLocalError): pass #cv2.drawContours(image_cv2, contours, best_index, (0,0,0)) # draw black line around largest pink blob # Apply binary image to full image # image_hsv[:,:] = green_avg for dim in range(3): image_hsv[:,:,dim] *= is_green / 255 # Convert back to ROS Image msg # image_hsv_float = (pink.astype(float) + 1) / 256 # image_rgb = ((matplotlib.colors.hsv_to_rgb(image_hsv_float) * 256) - 1).astype('uint8') # image_cv2 = cv2.cvtColor(image_hsv, cv2.COLOR_HSV2BGR) image_cv = cv.fromarray(image_cv2) image_out = self.bridge.cv_to_imgmsg(image_cv, 'bgr8') self.pub.publish(image_out) if __name__ == '__main__': rospy.init_node('boundingBox') boundingBox = Bound('/camera/rgb/image_color') rospy.spin()
mit
ch3ll0v3k/scikit-learn
benchmarks/bench_tree.py
297
3617
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import pylab as pl import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) pl.figure('scikit-learn tree benchmark results') pl.subplot(211) pl.title('Learning with varying number of samples') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) pl.subplot(212) pl.title('Learning in high dimensional spaces') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of dimensions') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
Edu-Glez/Bank_sentiment_analysis
env/lib/python3.6/site-packages/pandas/computation/engines.py
8
3821
"""Engine classes for :func:`~pandas.eval` """ # flake8: noqa import abc from pandas import compat from pandas.compat import DeepChainMap, map import pandas.core.common as com import pandas.formats.printing as printing from pandas.computation.align import _align, _reconstruct_object from pandas.computation.ops import (UndefinedVariableError, _mathops, _reductions) _ne_builtins = frozenset(_mathops + _reductions) class NumExprClobberingError(NameError): pass def _check_ne_builtin_clash(expr): """Attempt to prevent foot-shooting in a helpful way. Parameters ---------- terms : Term Terms can contain """ names = expr.names overlap = names & _ne_builtins if overlap: s = ', '.join(map(repr, overlap)) raise NumExprClobberingError('Variables in expression "%s" ' 'overlap with builtins: (%s)' % (expr, s)) class AbstractEngine(object): """Object serving as a base class for all engines.""" __metaclass__ = abc.ABCMeta has_neg_frac = False def __init__(self, expr): self.expr = expr self.aligned_axes = None self.result_type = None def convert(self): """Convert an expression for evaluation. Defaults to return the expression as a string. """ return printing.pprint_thing(self.expr) def evaluate(self): """Run the engine on the expression This method performs alignment which is necessary no matter what engine is being used, thus its implementation is in the base class. Returns ------- obj : object The result of the passed expression. """ if not self._is_aligned: self.result_type, self.aligned_axes = _align(self.expr.terms) # make sure no names in resolvers and locals/globals clash res = self._evaluate() return _reconstruct_object(self.result_type, res, self.aligned_axes, self.expr.terms.return_type) @property def _is_aligned(self): return self.aligned_axes is not None and self.result_type is not None @abc.abstractmethod def _evaluate(self): """Return an evaluated expression. Parameters ---------- env : Scope The local and global environment in which to evaluate an expression. Notes ----- Must be implemented by subclasses. """ pass class NumExprEngine(AbstractEngine): """NumExpr engine class""" has_neg_frac = True def __init__(self, expr): super(NumExprEngine, self).__init__(expr) def convert(self): return str(super(NumExprEngine, self).convert()) def _evaluate(self): import numexpr as ne # convert the expression to a valid numexpr expression s = self.convert() try: env = self.expr.env scope = env.full_scope truediv = scope['truediv'] _check_ne_builtin_clash(self.expr) return ne.evaluate(s, local_dict=scope, truediv=truediv) except KeyError as e: # python 3 compat kludge try: msg = e.message except AttributeError: msg = compat.text_type(e) raise UndefinedVariableError(msg) class PythonEngine(AbstractEngine): """Evaluate an expression in Python space. Mostly for testing purposes. """ has_neg_frac = False def __init__(self, expr): super(PythonEngine, self).__init__(expr) def evaluate(self): return self.expr() def _evaluate(self): pass _engines = {'numexpr': NumExprEngine, 'python': PythonEngine}
apache-2.0
anirudhjayaraman/scikit-learn
sklearn/neighbors/unsupervised.py
117
4755
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p: integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Affects only :meth:`k_neighbors` and :meth:`kneighbors_graph` methods. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> nbrs = neigh.radius_neighbors([[0, 0, 1.3]], 0.4, return_distance=False) >>> np.asarray(nbrs[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs)
bsd-3-clause
NixaSoftware/CVis
venv/lib/python2.7/site-packages/pandas/tests/frame/test_to_csv.py
1
44694
# -*- coding: utf-8 -*- from __future__ import print_function import csv import pytest from numpy import nan import numpy as np from pandas.compat import (lmap, range, lrange, StringIO, u) from pandas.core.common import _all_none from pandas.errors import ParserError from pandas import (DataFrame, Index, Series, MultiIndex, Timestamp, date_range, read_csv, compat, to_datetime) import pandas as pd from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, ensure_clean, makeCustomDataframe as mkdf) import pandas.util.testing as tm from pandas.tests.frame.common import TestData MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameToCSV(TestData): def read_csv(self, path, **kwargs): params = dict(index_col=0, parse_dates=True) params.update(**kwargs) return pd.read_csv(path, **params) def test_from_csv_deprecation(self): # see gh-17812 with ensure_clean('__tmp_from_csv_deprecation__') as path: self.tsframe.to_csv(path) with tm.assert_produces_warning(FutureWarning): depr_recons = DataFrame.from_csv(path) assert_frame_equal(self.tsframe, depr_recons) def test_to_csv_from_csv1(self): with ensure_clean('__tmp_to_csv_from_csv1__') as path: self.frame['A'][:5] = nan self.frame.to_csv(path) self.frame.to_csv(path, columns=['A', 'B']) self.frame.to_csv(path, header=False) self.frame.to_csv(path, index=False) # test roundtrip self.tsframe.to_csv(path) recons = self.read_csv(path) assert_frame_equal(self.tsframe, recons) self.tsframe.to_csv(path, index_label='index') recons = self.read_csv(path, index_col=None) assert(len(recons.columns) == len(self.tsframe.columns) + 1) # no index self.tsframe.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) assert_almost_equal(self.tsframe.values, recons.values) # corner case dm = DataFrame({'s1': Series(lrange(3), lrange(3)), 's2': Series(lrange(2), lrange(2))}) dm.to_csv(path) recons = self.read_csv(path) assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self): with ensure_clean('__tmp_to_csv_from_csv2__') as path: # duplicate index df = DataFrame(np.random.randn(3, 3), index=['a', 'a', 'b'], columns=['x', 'y', 'z']) df.to_csv(path) result = self.read_csv(path) assert_frame_equal(result, df) midx = MultiIndex.from_tuples( [('A', 1, 2), ('A', 1, 2), ('B', 1, 2)]) df = DataFrame(np.random.randn(3, 3), index=midx, columns=['x', 'y', 'z']) df.to_csv(path) result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False) assert_frame_equal(result, df, check_names=False) # column aliases col_aliases = Index(['AA', 'X', 'Y', 'Z']) self.frame2.to_csv(path, header=col_aliases) rs = self.read_csv(path) xp = self.frame2.copy() xp.columns = col_aliases assert_frame_equal(xp, rs) pytest.raises(ValueError, self.frame2.to_csv, path, header=['AA', 'X']) def test_to_csv_from_csv3(self): with ensure_clean('__tmp_to_csv_from_csv3__') as path: df1 = DataFrame(np.random.randn(3, 1)) df2 = DataFrame(np.random.randn(3, 1)) df1.to_csv(path) df2.to_csv(path, mode='a', header=False) xp = pd.concat([df1, df2]) rs = pd.read_csv(path, index_col=0) rs.columns = lmap(int, rs.columns) xp.columns = lmap(int, xp.columns) assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with ensure_clean('__tmp_to_csv_from_csv4__') as path: # GH 10833 (TimedeltaIndex formatting) dt = pd.Timedelta(seconds=1) df = pd.DataFrame({'dt_data': [i * dt for i in range(3)]}, index=pd.Index([i * dt for i in range(3)], name='dt_index')) df.to_csv(path) result = pd.read_csv(path, index_col='dt_index') result.index = pd.to_timedelta(result.index) # TODO: remove renaming when GH 10875 is solved result.index = result.index.rename('dt_index') result['dt_data'] = pd.to_timedelta(result['dt_data']) assert_frame_equal(df, result, check_index_type=True) def test_to_csv_from_csv5(self): # tz, 8260 with ensure_clean('__tmp_to_csv_from_csv5__') as path: self.tzframe.to_csv(path) result = pd.read_csv(path, index_col=0, parse_dates=['A']) converter = lambda c: to_datetime(result[c]).dt.tz_localize( 'UTC').dt.tz_convert(self.tzframe[c].dt.tz) result['B'] = converter('B') result['C'] = converter('C') assert_frame_equal(result, self.tzframe) def test_to_csv_cols_reordering(self): # GH3454 import pandas as pd chunksize = 5 N = int(chunksize * 2.5) df = mkdf(N, 3) cs = df.columns cols = [cs[2], cs[0]] with ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = pd.read_csv(path, index_col=0) assert_frame_equal(df[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): import pandas as pd def _check_df(df, cols=None): with ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = pd.read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if df.columns.is_unique: rs_c.columns = cols else: indexer, missing = df.columns.get_indexer_non_unique( cols) rs_c.columns = df.columns.take(indexer) for c in cols: obj_df = df[c] obj_rs = rs_c[c] if isinstance(obj_df, Series): assert_series_equal(obj_df, obj_rs) else: assert_frame_equal( obj_df, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = df.columns assert_frame_equal(df, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols df = mkdf(N, 3) df.columns = ['a', 'a', 'b'] _check_df(df, None) # dupe cols with selection cols = ['b', 'a'] _check_df(df, cols) @pytest.mark.slow def test_to_csv_dtnat(self): # GH3437 from pandas import NaT def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range('2000', freq='5min', periods=n)) if nnat: for i in np.random.randint(0, len(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with ensure_clean('1.csv') as pth: df = DataFrame(dict(a=s1, b=s2)) df.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth)._convert(datetime=True, coerce=True) assert_frame_equal(df, recons, check_names=False, check_less_precise=True) @pytest.mark.slow def test_to_csv_moar(self): def _do_test(df, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False): kwargs = dict(parse_dates=False) if cnlvl: if rnlvl is not None: kwargs['index_col'] = lrange(rnlvl) kwargs['header'] = lrange(cnlvl) with ensure_clean('__tmp_to_csv_moar__') as path: df.to_csv(path, encoding='utf8', chunksize=chunksize) recons = self.read_csv(path, **kwargs) else: kwargs['header'] = 0 with ensure_clean('__tmp_to_csv_moar__') as path: df.to_csv(path, encoding='utf8', chunksize=chunksize) recons = self.read_csv(path, **kwargs) def _to_uni(x): if not isinstance(x, compat.text_type): return x.decode('utf8') return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = df.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[ :, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1:] type_map = dict(i='i', f='f', s='O', u='O', dt='O', p='O') if r_dtype: if r_dtype == 'u': # unicode r_dtype = 'O' recons.index = np.array(lmap(_to_uni, recons.index), dtype=r_dtype) df.index = np.array(lmap(_to_uni, df.index), dtype=r_dtype) elif r_dtype == 'dt': # unicode r_dtype = 'O' recons.index = np.array(lmap(Timestamp, recons.index), dtype=r_dtype) df.index = np.array( lmap(Timestamp, df.index), dtype=r_dtype) elif r_dtype == 'p': r_dtype = 'O' recons.index = np.array( list(map(Timestamp, to_datetime(recons.index))), dtype=r_dtype) df.index = np.array( list(map(Timestamp, df.index.to_timestamp())), dtype=r_dtype) else: r_dtype = type_map.get(r_dtype) recons.index = np.array(recons.index, dtype=r_dtype) df.index = np.array(df.index, dtype=r_dtype) if c_dtype: if c_dtype == 'u': c_dtype = 'O' recons.columns = np.array(lmap(_to_uni, recons.columns), dtype=c_dtype) df.columns = np.array( lmap(_to_uni, df.columns), dtype=c_dtype) elif c_dtype == 'dt': c_dtype = 'O' recons.columns = np.array(lmap(Timestamp, recons.columns), dtype=c_dtype) df.columns = np.array( lmap(Timestamp, df.columns), dtype=c_dtype) elif c_dtype == 'p': c_dtype = 'O' recons.columns = np.array( lmap(Timestamp, to_datetime(recons.columns)), dtype=c_dtype) df.columns = np.array( lmap(Timestamp, df.columns.to_timestamp()), dtype=c_dtype) else: c_dtype = type_map.get(c_dtype) recons.columns = np.array(recons.columns, dtype=c_dtype) df.columns = np.array(df.columns, dtype=c_dtype) assert_frame_equal(df, recons, check_names=False, check_less_precise=True) N = 100 chunksize = 1000 for ncols in [4]: base = int((chunksize // ncols or 1) or 1) for nrows in [2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1]: _do_test(mkdf(nrows, ncols, r_idx_type='dt', c_idx_type='s'), 'dt', 's') for ncols in [4]: base = int((chunksize // ncols or 1) or 1) for nrows in [2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1]: _do_test(mkdf(nrows, ncols, r_idx_type='dt', c_idx_type='s'), 'dt', 's') pass for r_idx_type, c_idx_type in [('i', 'i'), ('s', 's'), ('u', 'dt'), ('p', 'p')]: for ncols in [1, 2, 3, 4]: base = int((chunksize // ncols or 1) or 1) for nrows in [2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1]: _do_test(mkdf(nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type), r_idx_type, c_idx_type) for ncols in [1, 2, 3, 4]: base = int((chunksize // ncols or 1) or 1) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1]: _do_test(mkdf(nrows, ncols)) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2]: df = mkdf(nrows, 3) cols = list(df.columns) cols[:2] = ["dupe", "dupe"] cols[-2:] = ["dupe", "dupe"] ix = list(df.index) ix[:2] = ["rdupe", "rdupe"] ix[-2:] = ["rdupe", "rdupe"] df.index = ix df.columns = cols _do_test(df, dupe_col=True) _do_test(DataFrame(index=lrange(10))) _do_test(mkdf(chunksize // 2 + 1, 2, r_idx_nlevels=2), rnlvl=2) for ncols in [2, 3, 4]: base = int(chunksize // ncols) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1]: _do_test(mkdf(nrows, ncols, r_idx_nlevels=2), rnlvl=2) _do_test(mkdf(nrows, ncols, c_idx_nlevels=2), cnlvl=2) _do_test(mkdf(nrows, ncols, r_idx_nlevels=2, c_idx_nlevels=2), rnlvl=2, cnlvl=2) def test_to_csv_from_csv_w_some_infs(self): # test roundtrip with inf, -inf, nan, as full columns and mix self.frame['G'] = np.nan f = lambda x: [np.inf, np.nan][np.random.rand() < .5] self.frame['H'] = self.frame.index.map(f) with ensure_clean() as path: self.frame.to_csv(path) recons = self.read_csv(path) # TODO to_csv drops column name assert_frame_equal(self.frame, recons, check_names=False) assert_frame_equal(np.isinf(self.frame), np.isinf(recons), check_names=False) def test_to_csv_from_csv_w_all_infs(self): # test roundtrip with inf, -inf, nan, as full columns and mix self.frame['E'] = np.inf self.frame['F'] = -np.inf with ensure_clean() as path: self.frame.to_csv(path) recons = self.read_csv(path) # TODO to_csv drops column name assert_frame_equal(self.frame, recons, check_names=False) assert_frame_equal(np.isinf(self.frame), np.isinf(recons), check_names=False) def test_to_csv_no_index(self): # GH 3624, after appending columns, to_csv fails with ensure_clean('__tmp_to_csv_no_index__') as path: df = DataFrame({'c1': [1, 2, 3], 'c2': [4, 5, 6]}) df.to_csv(path, index=False) result = read_csv(path) assert_frame_equal(df, result) df['c3'] = Series([7, 8, 9], dtype='int64') df.to_csv(path, index=False) result = read_csv(path) assert_frame_equal(df, result) def test_to_csv_with_mix_columns(self): # gh-11637: incorrect output when a mix of integer and string column # names passed as columns parameter in to_csv df = DataFrame({0: ['a', 'b', 'c'], 1: ['aa', 'bb', 'cc']}) df['test'] = 'txt' assert df.to_csv() == df.to_csv(columns=[0, 1, 'test']) def test_to_csv_headers(self): # GH6186, the presence or absence of `index` incorrectly # causes to_csv to have different header semantics. from_df = DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) to_df = DataFrame([[1, 2], [3, 4]], columns=['X', 'Y']) with ensure_clean('__tmp_to_csv_headers__') as path: from_df.to_csv(path, header=['X', 'Y']) recons = self.read_csv(path) assert_frame_equal(to_df, recons) from_df.to_csv(path, index=False, header=['X', 'Y']) recons = self.read_csv(path) recons.reset_index(inplace=True) assert_frame_equal(to_df, recons) def test_to_csv_multiindex(self): frame = self.frame old_index = frame.index arrays = np.arange(len(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=['first', 'second']) frame.index = new_index with ensure_clean('__tmp_to_csv_multiindex__') as path: frame.to_csv(path, header=False) frame.to_csv(path, columns=['A', 'B']) # round trip frame.to_csv(path) df = self.read_csv(path, index_col=[0, 1], parse_dates=False) # TODO to_csv drops column name assert_frame_equal(frame, df, check_names=False) assert frame.index.names == df.index.names # needed if setUp becomes a class method self.frame.index = old_index # try multiindex with dates tsframe = self.tsframe old_index = tsframe.index new_index = [old_index, np.arange(len(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.to_csv(path, index_label=['time', 'foo']) recons = self.read_csv(path, index_col=[0, 1]) # TODO to_csv drops column name assert_frame_equal(tsframe, recons, check_names=False) # do not load index tsframe.to_csv(path) recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(tsframe.columns) + 2 # no index tsframe.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) assert_almost_equal(recons.values, self.tsframe.values) # needed if setUp becomes class method self.tsframe.index = old_index with ensure_clean('__tmp_to_csv_multiindex__') as path: # GH3571, GH1651, GH3141 def _make_frame(names=None): if names is True: names = ['first', 'second'] return DataFrame(np.random.randint(0, 10, size=(3, 3)), columns=MultiIndex.from_tuples( [('bah', 'foo'), ('bah', 'bar'), ('ban', 'baz')], names=names), dtype='int64') # column & index are multi-index df = mkdf(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1]) assert_frame_equal(df, result) # column is mi df = mkdf(5, 3, r_idx_nlevels=1, c_idx_nlevels=4) df.to_csv(path) result = read_csv( path, header=[0, 1, 2, 3], index_col=0) assert_frame_equal(df, result) # dup column names? df = mkdf(5, 3, r_idx_nlevels=3, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1, 2]) assert_frame_equal(df, result) # writing with no index df = _make_frame() df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) assert_frame_equal(df, result) # we lose the names here df = _make_frame(True) df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) assert _all_none(*result.columns.names) result.columns.names = df.columns.names assert_frame_equal(df, result) # tupleize_cols=True and index=False df = _make_frame(True) with tm.assert_produces_warning(FutureWarning): df.to_csv(path, tupleize_cols=True, index=False) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = read_csv(path, header=0, tupleize_cols=True, index_col=None) result.columns = df.columns assert_frame_equal(df, result) # whatsnew example df = _make_frame() df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) assert_frame_equal(df, result) df = _make_frame(True) df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) assert_frame_equal(df, result) # column & index are multi-index (compatibility) df = mkdf(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) with tm.assert_produces_warning(FutureWarning): df.to_csv(path, tupleize_cols=True) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = read_csv(path, header=0, index_col=[0, 1], tupleize_cols=True) result.columns = df.columns assert_frame_equal(df, result) # invalid options df = _make_frame(True) df.to_csv(path) for i in [6, 7]: msg = 'len of {i}, but only 5 lines in file'.format(i=i) with tm.assert_raises_regex(ParserError, msg): read_csv(path, header=lrange(i), index_col=0) # write with cols with tm.assert_raises_regex(TypeError, 'cannot specify cols ' 'with a MultiIndex'): df.to_csv(path, columns=['foo', 'bar']) with ensure_clean('__tmp_to_csv_multiindex__') as path: # empty tsframe[:0].to_csv(path) recons = self.read_csv(path) exp = tsframe[:0] exp.index = [] tm.assert_index_equal(recons.columns, exp.columns) assert len(recons) == 0 def test_to_csv_float32_nanrep(self): df = DataFrame(np.random.randn(1, 4).astype(np.float32)) df[1] = np.nan with ensure_clean('__tmp_to_csv_float32_nanrep__.csv') as path: df.to_csv(path, na_rep=999) with open(path) as f: lines = f.readlines() assert lines[1].split(',')[2] == '999' def test_to_csv_withcommas(self): # Commas inside fields should be correctly escaped when saving as CSV. df = DataFrame({'A': [1, 2, 3], 'B': ['5,6', '7,8', '9,0']}) with ensure_clean('__tmp_to_csv_withcommas__.csv') as path: df.to_csv(path) df2 = self.read_csv(path) assert_frame_equal(df2, df) def test_to_csv_mixed(self): def create_cols(name): return ["%s%03d" % (name, i) for i in range(5)] df_float = DataFrame(np.random.randn( 100, 5), dtype='float64', columns=create_cols('float')) df_int = DataFrame(np.random.randn(100, 5), dtype='int64', columns=create_cols('int')) df_bool = DataFrame(True, index=df_float.index, columns=create_cols('bool')) df_object = DataFrame('foo', index=df_float.index, columns=create_cols('object')) df_dt = DataFrame(Timestamp('20010101'), index=df_float.index, columns=create_cols('date')) # add in some nans df_float.loc[30:50, 1:3] = np.nan # ## this is a bug in read_csv right now #### # df_dt.loc[30:50,1:3] = np.nan df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1) # dtype dtypes = dict() for n, dtype in [('float', np.float64), ('int', np.int64), ('bool', np.bool), ('object', np.object)]: for c in create_cols(n): dtypes[c] = dtype with ensure_clean() as filename: df.to_csv(filename) rs = read_csv(filename, index_col=0, dtype=dtypes, parse_dates=create_cols('date')) assert_frame_equal(rs, df) def test_to_csv_dups_cols(self): df = DataFrame(np.random.randn(1000, 30), columns=lrange( 15) + lrange(15), dtype='float64') with ensure_clean() as filename: df.to_csv(filename) # single dtype, fine result = read_csv(filename, index_col=0) result.columns = df.columns assert_frame_equal(result, df) df_float = DataFrame(np.random.randn(1000, 3), dtype='float64') df_int = DataFrame(np.random.randn(1000, 3), dtype='int64') df_bool = DataFrame(True, index=df_float.index, columns=lrange(3)) df_object = DataFrame('foo', index=df_float.index, columns=lrange(3)) df_dt = DataFrame(Timestamp('20010101'), index=df_float.index, columns=lrange(3)) df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1, ignore_index=True) cols = [] for i in range(5): cols.extend([0, 1, 2]) df.columns = cols with ensure_clean() as filename: df.to_csv(filename) result = read_csv(filename, index_col=0) # date cols for i in ['0.4', '1.4', '2.4']: result[i] = to_datetime(result[i]) result.columns = df.columns assert_frame_equal(result, df) # GH3457 from pandas.util.testing import makeCustomDataframe as mkdf N = 10 df = mkdf(N, 3) df.columns = ['a', 'a', 'b'] with ensure_clean() as filename: df.to_csv(filename) # read_csv will rename the dups columns result = read_csv(filename, index_col=0) result = result.rename(columns={'a.1': 'a'}) assert_frame_equal(result, df) def test_to_csv_chunking(self): aa = DataFrame({'A': lrange(100000)}) aa['B'] = aa.A + 1.0 aa['C'] = aa.A + 2.0 aa['D'] = aa.A + 3.0 for chunksize in [10000, 50000, 100000]: with ensure_clean() as filename: aa.to_csv(filename, chunksize=chunksize) rs = read_csv(filename, index_col=0) assert_frame_equal(rs, aa) @pytest.mark.slow def test_to_csv_wide_frame_formatting(self): # Issue #8621 df = DataFrame(np.random.randn(1, 100010), columns=None, index=None) with ensure_clean() as filename: df.to_csv(filename, header=False, index=False) rs = read_csv(filename, header=None) assert_frame_equal(rs, df) def test_to_csv_bug(self): f1 = StringIO('a,1.0\nb,2.0') df = self.read_csv(f1, header=None) newdf = DataFrame({'t': df[df.columns[0]]}) with ensure_clean() as path: newdf.to_csv(path) recons = read_csv(path, index_col=0) # don't check_names as t != 1 assert_frame_equal(recons, newdf, check_names=False) def test_to_csv_unicode(self): df = DataFrame({u('c/\u03c3'): [1, 2, 3]}) with ensure_clean() as path: df.to_csv(path, encoding='UTF-8') df2 = read_csv(path, index_col=0, encoding='UTF-8') assert_frame_equal(df, df2) df.to_csv(path, encoding='UTF-8', index=False) df2 = read_csv(path, index_col=None, encoding='UTF-8') assert_frame_equal(df, df2) def test_to_csv_unicode_index_col(self): buf = StringIO('') df = DataFrame( [[u("\u05d0"), "d2", "d3", "d4"], ["a1", "a2", "a3", "a4"]], columns=[u("\u05d0"), u("\u05d1"), u("\u05d2"), u("\u05d3")], index=[u("\u05d0"), u("\u05d1")]) df.to_csv(buf, encoding='UTF-8') buf.seek(0) df2 = read_csv(buf, index_col=0, encoding='UTF-8') assert_frame_equal(df, df2) def test_to_csv_stringio(self): buf = StringIO() self.frame.to_csv(buf) buf.seek(0) recons = read_csv(buf, index_col=0) # TODO to_csv drops column name assert_frame_equal(recons, self.frame, check_names=False) def test_to_csv_float_format(self): df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean() as filename: df.to_csv(filename, float_format='%.2f') rs = read_csv(filename, index_col=0) xp = DataFrame([[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]], index=['A', 'B'], columns=['X', 'Y', 'Z']) assert_frame_equal(rs, xp) def test_to_csv_unicodewriter_quoting(self): df = DataFrame({'A': [1, 2, 3], 'B': ['foo', 'bar', 'baz']}) buf = StringIO() df.to_csv(buf, index=False, quoting=csv.QUOTE_NONNUMERIC, encoding='utf-8') result = buf.getvalue() expected = ('"A","B"\n' '1,"foo"\n' '2,"bar"\n' '3,"baz"\n') assert result == expected def test_to_csv_quote_none(self): # GH4328 df = DataFrame({'A': ['hello', '{"hello"}']}) for encoding in (None, 'utf-8'): buf = StringIO() df.to_csv(buf, quoting=csv.QUOTE_NONE, encoding=encoding, index=False) result = buf.getvalue() expected = 'A\nhello\n{"hello"}\n' assert result == expected def test_to_csv_index_no_leading_comma(self): df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=['one', 'two', 'three']) buf = StringIO() df.to_csv(buf, index_label=False) expected = ('A,B\n' 'one,1,4\n' 'two,2,5\n' 'three,3,6\n') assert buf.getvalue() == expected def test_to_csv_line_terminators(self): df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=['one', 'two', 'three']) buf = StringIO() df.to_csv(buf, line_terminator='\r\n') expected = (',A,B\r\n' 'one,1,4\r\n' 'two,2,5\r\n' 'three,3,6\r\n') assert buf.getvalue() == expected buf = StringIO() df.to_csv(buf) # The default line terminator remains \n expected = (',A,B\n' 'one,1,4\n' 'two,2,5\n' 'three,3,6\n') assert buf.getvalue() == expected def test_to_csv_from_csv_categorical(self): # CSV with categoricals should result in the same output as when one # would add a "normal" Series/DataFrame. s = Series(pd.Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'])) s2 = Series(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) res = StringIO() s.to_csv(res) exp = StringIO() s2.to_csv(exp) assert res.getvalue() == exp.getvalue() df = DataFrame({"s": s}) df2 = DataFrame({"s": s2}) res = StringIO() df.to_csv(res) exp = StringIO() df2.to_csv(exp) assert res.getvalue() == exp.getvalue() def test_to_csv_path_is_none(self): # GH 8215 # Make sure we return string for consistency with # Series.to_csv() csv_str = self.frame.to_csv(path_or_buf=None) assert isinstance(csv_str, str) recons = pd.read_csv(StringIO(csv_str), index_col=0) assert_frame_equal(self.frame, recons) def test_to_csv_compression_gzip(self): # GH7615 # use the compression kw in to_csv df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean() as filename: df.to_csv(filename, compression="gzip") # test the round trip - to_csv -> read_csv rs = read_csv(filename, compression="gzip", index_col=0) assert_frame_equal(df, rs) # explicitly make sure file is gziped import gzip f = gzip.open(filename, 'rb') text = f.read().decode('utf8') f.close() for col in df.columns: assert col in text def test_to_csv_compression_bz2(self): # GH7615 # use the compression kw in to_csv df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean() as filename: df.to_csv(filename, compression="bz2") # test the round trip - to_csv -> read_csv rs = read_csv(filename, compression="bz2", index_col=0) assert_frame_equal(df, rs) # explicitly make sure file is bz2ed import bz2 f = bz2.BZ2File(filename, 'rb') text = f.read().decode('utf8') f.close() for col in df.columns: assert col in text def test_to_csv_compression_xz(self): # GH11852 # use the compression kw in to_csv tm._skip_if_no_lzma() df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean() as filename: df.to_csv(filename, compression="xz") # test the round trip - to_csv -> read_csv rs = read_csv(filename, compression="xz", index_col=0) assert_frame_equal(df, rs) # explicitly make sure file is xzipped lzma = compat.import_lzma() f = lzma.open(filename, 'rb') assert_frame_equal(df, read_csv(f, index_col=0)) f.close() def test_to_csv_compression_value_error(self): # GH7615 # use the compression kw in to_csv df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean() as filename: # zip compression is not supported and should raise ValueError import zipfile pytest.raises(zipfile.BadZipfile, df.to_csv, filename, compression="zip") def test_to_csv_date_format(self): with ensure_clean('__tmp_to_csv_date_format__') as path: dt_index = self.tsframe.index datetime_frame = DataFrame( {'A': dt_index, 'B': dt_index.shift(1)}, index=dt_index) datetime_frame.to_csv(path, date_format='%Y%m%d') # Check that the data was put in the specified format test = read_csv(path, index_col=0) datetime_frame_int = datetime_frame.applymap( lambda x: int(x.strftime('%Y%m%d'))) datetime_frame_int.index = datetime_frame_int.index.map( lambda x: int(x.strftime('%Y%m%d'))) assert_frame_equal(test, datetime_frame_int) datetime_frame.to_csv(path, date_format='%Y-%m-%d') # Check that the data was put in the specified format test = read_csv(path, index_col=0) datetime_frame_str = datetime_frame.applymap( lambda x: x.strftime('%Y-%m-%d')) datetime_frame_str.index = datetime_frame_str.index.map( lambda x: x.strftime('%Y-%m-%d')) assert_frame_equal(test, datetime_frame_str) # Check that columns get converted datetime_frame_columns = datetime_frame.T datetime_frame_columns.to_csv(path, date_format='%Y%m%d') test = read_csv(path, index_col=0) datetime_frame_columns = datetime_frame_columns.applymap( lambda x: int(x.strftime('%Y%m%d'))) # Columns don't get converted to ints by read_csv datetime_frame_columns.columns = ( datetime_frame_columns.columns .map(lambda x: x.strftime('%Y%m%d'))) assert_frame_equal(test, datetime_frame_columns) # test NaTs nat_index = to_datetime( ['NaT'] * 10 + ['2000-01-01', '1/1/2000', '1-1-2000']) nat_frame = DataFrame({'A': nat_index}, index=nat_index) nat_frame.to_csv(path, date_format='%Y-%m-%d') test = read_csv(path, parse_dates=[0, 1], index_col=0) assert_frame_equal(test, nat_frame) def test_to_csv_with_dst_transitions(self): with ensure_clean('csv_date_format_with_dst') as path: # make sure we are not failing on transitions times = pd.date_range("2013-10-26 23:00", "2013-10-27 01:00", tz="Europe/London", freq="H", ambiguous='infer') for i in [times, times + pd.Timedelta('10s')]: time_range = np.array(range(len(i)), dtype='int64') df = DataFrame({'A': time_range}, index=i) df.to_csv(path, index=True) # we have to reconvert the index as we # don't parse the tz's result = read_csv(path, index_col=0) result.index = to_datetime(result.index).tz_localize( 'UTC').tz_convert('Europe/London') assert_frame_equal(result, df) # GH11619 idx = pd.date_range('2015-01-01', '2015-12-31', freq='H', tz='Europe/Paris') df = DataFrame({'values': 1, 'idx': idx}, index=idx) with ensure_clean('csv_date_format_with_dst') as path: df.to_csv(path, index=True) result = read_csv(path, index_col=0) result.index = to_datetime(result.index).tz_localize( 'UTC').tz_convert('Europe/Paris') result['idx'] = to_datetime(result['idx']).astype( 'datetime64[ns, Europe/Paris]') assert_frame_equal(result, df) # assert working df.astype(str) with ensure_clean('csv_date_format_with_dst') as path: df.to_pickle(path) result = pd.read_pickle(path) assert_frame_equal(result, df) def test_to_csv_quoting(self): df = DataFrame({ 'c_string': ['a', 'b,c'], 'c_int': [42, np.nan], 'c_float': [1.0, 3.2], 'c_bool': [True, False], }) expected = """\ ,c_bool,c_float,c_int,c_string 0,True,1.0,42.0,a 1,False,3.2,,"b,c" """ result = df.to_csv() assert result == expected result = df.to_csv(quoting=None) assert result == expected result = df.to_csv(quoting=csv.QUOTE_MINIMAL) assert result == expected expected = """\ "","c_bool","c_float","c_int","c_string" "0","True","1.0","42.0","a" "1","False","3.2","","b,c" """ result = df.to_csv(quoting=csv.QUOTE_ALL) assert result == expected # see gh-12922, gh-13259: make sure changes to # the formatters do not break this behaviour expected = """\ "","c_bool","c_float","c_int","c_string" 0,True,1.0,42.0,"a" 1,False,3.2,"","b,c" """ result = df.to_csv(quoting=csv.QUOTE_NONNUMERIC) assert result == expected msg = "need to escape, but no escapechar set" tm.assert_raises_regex(csv.Error, msg, df.to_csv, quoting=csv.QUOTE_NONE) tm.assert_raises_regex(csv.Error, msg, df.to_csv, quoting=csv.QUOTE_NONE, escapechar=None) expected = """\ ,c_bool,c_float,c_int,c_string 0,True,1.0,42.0,a 1,False,3.2,,b!,c """ result = df.to_csv(quoting=csv.QUOTE_NONE, escapechar='!') assert result == expected expected = """\ ,c_bool,c_ffloat,c_int,c_string 0,True,1.0,42.0,a 1,False,3.2,,bf,c """ result = df.to_csv(quoting=csv.QUOTE_NONE, escapechar='f') assert result == expected # see gh-3503: quoting Windows line terminators # presents with encoding? text = 'a,b,c\n1,"test \r\n",3\n' df = pd.read_csv(StringIO(text)) buf = StringIO() df.to_csv(buf, encoding='utf-8', index=False) assert buf.getvalue() == text # xref gh-7791: make sure the quoting parameter is passed through # with multi-indexes df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [5, 6]}) df = df.set_index(['a', 'b']) expected = '"a","b","c"\n"1","3","5"\n"2","4","6"\n' assert df.to_csv(quoting=csv.QUOTE_ALL) == expected def test_period_index_date_overflow(self): # see gh-15982 dates = ["1990-01-01", "2000-01-01", "3005-01-01"] index = pd.PeriodIndex(dates, freq="D") df = pd.DataFrame([4, 5, 6], index=index) result = df.to_csv() expected = ',0\n1990-01-01,4\n2000-01-01,5\n3005-01-01,6\n' assert result == expected date_format = "%m-%d-%Y" result = df.to_csv(date_format=date_format) expected = ',0\n01-01-1990,4\n01-01-2000,5\n01-01-3005,6\n' assert result == expected # Overflow with pd.NaT dates = ["1990-01-01", pd.NaT, "3005-01-01"] index = pd.PeriodIndex(dates, freq="D") df = pd.DataFrame([4, 5, 6], index=index) result = df.to_csv() expected = ',0\n1990-01-01,4\n,5\n3005-01-01,6\n' assert result == expected
apache-2.0
AnasGhrab/scikit-learn
examples/manifold/plot_mds.py
261
2616
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <[email protected]> # Licence: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) plt.scatter(X_true[:, 0], X_true[:, 1], c='r', s=20) plt.scatter(pos[:, 0], pos[:, 1], s=20, c='g') plt.scatter(npos[:, 0], npos[:, 1], s=20, c='b') plt.legend(('True position', 'MDS', 'NMDS'), loc='best') similarities = similarities.max() / similarities * 100 similarities[np.isinf(similarities)] = 0 # Plot the edges start_idx, end_idx = np.where(pos) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(0.5 * np.ones(len(segments))) ax.add_collection(lc) plt.show()
bsd-3-clause
mcallaghan/tmv
BasicBrowser/twitter/management/commands/scrape_searches.py
1
4634
from django.core.management.base import BaseCommand, CommandError from twitter.models import * import pandas as pd import csv import twint import json import os import sys from datetime import datetime, timedelta import django from django.utils import timezone import time from pathlib import Path class Command(BaseCommand): help = 'redoes searches' def add_arguments(self, parser): parser.add_argument('weeks', type=int) def handle(self, *args, **options): def parse_tjson(tsearch,fname): with open(fname) as f: for l in f: tweet = json.loads(l) try: user, created = User.objects.get_or_create( id=tweet['user_id'] ) except: print(tweet) sys.exit() if created: try: user.screen_name=tweet['username'] user.save() except: print(tweet) break status, created = Status.objects.get_or_create( id=tweet['id'] ) status.fetched = timezone.now() status.save() status.searches.add(tsearch) if created: t = datetime.strptime( "{} {}".format(tweet['date'],tweet['time']), "%Y-%m-%d %H:%M:%S" ) t = django.utils.timezone.make_aware(t) status.author=user status.created_at=t status.favorites_count = tweet['likes_count'] status.retweets_count = tweet['retweets_count'] status.place = tweet['location'] status.text = tweet['tweet'] try: status.save() except: status.text = None status.save() prog, created = SearchProgress.objects.get_or_create(server="apsis") if prog.search_date is None: now = datetime.now() #- timedelta(days=77) else: now = prog.search_date for i in range(options['weeks']): try: td = (now - datetime.now()).days except: td = (now - django.utils.timezone.make_aware(datetime.now())).days if abs(td/7) > options['weeks']: now = datetime.now() then = now - timedelta(days=8) print(now.strftime("%Y-%m-%d")) print(then.strftime("%Y-%m-%d")) try: prog.search_date = django.utils.timezone.make_aware(now) except: prog.search_date = now prog.save() for ts in TwitterSearch.objects.all().order_by('id'): print(ts.string) if ts.search_since and prog.search_date < ts.search_since: print("skipping, as we are searching since later than this") time.sleep(0.1) continue try: os.remove("tweets/tweets.json") except: pass folder = f"tweets/tweets_{ts.string}_{now.strftime('%Y-%m-%d')}" fname = f"{folder}/tweets.json" c = twint.Config() c.Search = ts.string c.Since = then.strftime("%Y-%m-%d") c.Until = now.strftime("%Y-%m-%d") c.Store_json = True c.Output = folder twint.run.Search(c) path = Path(fname) if path.exists(): parse_tjson(ts,fname) try: os.remove(fname) os.rmdir(folder) except: pass try: then = django.utils.timezone.make_aware(now) except: then = then ts.scrape_fetched=now if ts.since is None or ts.since > then: ts.since = then if ts.until is None or ts.until < now: ts.until = now ts.save() now = now - timedelta(days=7)
gpl-3.0
manahl/arctic
arctic/serialization/incremental.py
1
10075
import abc import hashlib import logging from threading import RLock import numpy as np import pandas as pd from bson import Binary from arctic._config import ARCTIC_AUTO_EXPAND_CHUNK_SIZE from arctic.serialization.numpy_records import PandasSerializer from .._compression import compress from .._config import MAX_DOCUMENT_SIZE from .._util import NP_OBJECT_DTYPE from ..exceptions import ArcticSerializationException ABC = abc.ABCMeta('ABC', (object,), {}) log = logging.getLogger(__name__) def incremental_checksum(item, curr_sha=None, is_bytes=False): curr_sha = hashlib.sha1() if curr_sha is None else curr_sha curr_sha.update(item if is_bytes else item.tostring()) return curr_sha class LazyIncrementalSerializer(ABC): def __init__(self, serializer, input_data, chunk_size): if chunk_size < 1: raise ArcticSerializationException("LazyIncrementalSerializer can't be initialized " "with chunk_size < 1 ({})".format(chunk_size)) if not serializer: raise ArcticSerializationException("LazyIncrementalSerializer can't be initialized " "with a None serializer object") self.input_data = input_data self.chunk_size = chunk_size self._serializer = serializer self._initialized = False self._checksum = None @abc.abstractmethod def __len__(self): pass @abc.abstractproperty def generator(self): pass @abc.abstractproperty def generator_bytes(self): pass @abc.abstractproperty def serialize(self): pass class IncrementalPandasToRecArraySerializer(LazyIncrementalSerializer): def __init__(self, serializer, input_data, chunk_size, string_max_len=None): super(IncrementalPandasToRecArraySerializer, self).__init__(serializer, input_data, chunk_size) if not isinstance(serializer, PandasSerializer): raise ArcticSerializationException("IncrementalPandasToRecArraySerializer requires a serializer of " "type PandasSerializer.") if not isinstance(input_data, (pd.DataFrame, pd.Series)): raise ArcticSerializationException("IncrementalPandasToRecArraySerializer requires a pandas DataFrame or " "Series as data source input.") if string_max_len and string_max_len < 1: raise ArcticSerializationException("IncrementalPandasToRecArraySerializer can't be initialized " "with string_max_len < 1 ({})".format(string_max_len)) self.string_max_len = string_max_len # The state which needs to be lazily initialized self._dtype = None self._shape = None self._rows_per_chunk = 0 self._total_chunks = 0 self._has_string_object = False self._lock = RLock() def _dtype_convert_to_max_len_string(self, input_ndtype, fname): if input_ndtype.type not in (np.string_, np.unicode_): return input_ndtype, False type_sym = 'S' if input_ndtype.type == np.string_ else 'U' max_str_len = len(max(self.input_data[fname].astype(type_sym), key=len)) str_field_dtype = np.dtype('{}{:d}'.format(type_sym, max_str_len)) if max_str_len > 0 else input_ndtype return str_field_dtype, True def _get_dtype(self): # Serializer is being called only if can_convert_to_records_without_objects() has passed, # which means that the resulting recarray does not contain objects but only numpy types, string, or unicode # Serialize the first row to obtain info about row size in bytes (cache first few rows only) # Also raise an Exception early, if data are not serializable first_chunk, serialized_dtypes = self._serializer.serialize( self.input_data[0:10] if len(self) > 0 else self.input_data, string_max_len=self.string_max_len) # This is the common case, where first row's dtype represents well the whole dataframe's dtype if serialized_dtypes is None or \ len(self.input_data) == 0 or \ NP_OBJECT_DTYPE not in self.input_data.dtypes.values: return first_chunk, serialized_dtypes, False # Reaching here means we have at least one column of type object # To correctly serialize incrementally, we need to know the final dtype (type and fixed length), # using length-conversion information from all values of the object columns dtype_arr = [] has_string_object = False for field_name in serialized_dtypes.names: # include all column names, along with the expanded multi-index field_dtype = serialized_dtypes[field_name] if field_name not in self.input_data or self.input_data.dtypes[field_name] is NP_OBJECT_DTYPE: # Note: .hasobject breaks for timezone-aware datetime64 pandas columns, so compare with dtype('O') # if column is an expanded multi index or doesn't contain objects, the serialized 1st row dtype is safe field_dtype, with_str_object = self._dtype_convert_to_max_len_string(field_dtype, field_name) has_string_object |= with_str_object dtype_arr.append((field_name, field_dtype)) return first_chunk, np.dtype(dtype_arr), has_string_object def _lazy_init(self): if self._initialized: return with self._lock: if self._initialized: # intentional double check here return # Get the dtype of the serialized array (takes into account object types, converted to fixed length strings) first_chunk, dtype, has_string_object = self._get_dtype() # Compute the number of rows which can fit in a chunk rows_per_chunk = 0 if len(self) > 0 and self.chunk_size > 1: rows_per_chunk = IncrementalPandasToRecArraySerializer._calculate_rows_per_chunk(self.chunk_size, first_chunk) # Initialize object's state self._dtype = dtype shp = list(first_chunk.shape) shp[0] = len(self) self._shape = tuple(shp) self._has_string_object = has_string_object self._rows_per_chunk = rows_per_chunk self._total_chunks = int(np.ceil(float(len(self)) / self._rows_per_chunk)) if rows_per_chunk > 0 else 0 self._initialized = True @staticmethod def _calculate_rows_per_chunk(max_chunk_size, chunk): sze = int(chunk.dtype.itemsize * np.prod(chunk.shape[1:])) sze = sze if sze < max_chunk_size else max_chunk_size rows_per_chunk = int(max_chunk_size / sze) if rows_per_chunk < 1 and ARCTIC_AUTO_EXPAND_CHUNK_SIZE: # If a row size is larger than chunk_size, use the maximum document size logging.warning('Chunk size of {} is too small to fit a row ({}). ' 'Using maximum document size.'.format(max_chunk_size, MAX_DOCUMENT_SIZE)) # For huge rows, fall-back to using a very large document size, less than max-allowed by MongoDB rows_per_chunk = int(MAX_DOCUMENT_SIZE / sze) if rows_per_chunk < 1: raise ArcticSerializationException("Serialization failed to split data into max sized chunks.") return rows_per_chunk def __len__(self): return len(self.input_data) @property def shape(self): self._lazy_init() return self._shape @property def dtype(self): self._lazy_init() return self._dtype @property def rows_per_chunk(self): self._lazy_init() return self._rows_per_chunk def checksum(self, from_idx, to_idx): if self._checksum is None: self._lazy_init() total_sha = None for chunk_bytes, dtype in self.generator_bytes(from_idx=from_idx, to_idx=to_idx): # TODO: what about compress_array here in batches? compressed_chunk = compress(chunk_bytes) total_sha = incremental_checksum(compressed_chunk, curr_sha=total_sha, is_bytes=True) self._checksum = Binary(total_sha.digest()) return self._checksum def generator(self, from_idx=None, to_idx=None): return self._generator(from_idx=from_idx, to_idx=to_idx) def generator_bytes(self, from_idx=None, to_idx=None): return self._generator(from_idx=from_idx, to_idx=to_idx, get_bytes=True) def _generator(self, from_idx, to_idx, get_bytes=False): # Note that the range is: [from_idx, to_idx) self._lazy_init() my_length = len(self) # Take into account default arguments and negative indexing (from end offset) from_idx = 0 if from_idx is None else from_idx if from_idx < 0: from_idx = my_length + from_idx to_idx = my_length if to_idx is None else min(to_idx, my_length) if to_idx < 0: to_idx = my_length + to_idx # No data, finish iteration if my_length == 0 or from_idx >= my_length or from_idx >= to_idx: return # Perform serialization for each chunk while from_idx < to_idx: curr_stop = min(from_idx + self._rows_per_chunk, to_idx) chunk, _ = self._serializer.serialize( self.input_data[from_idx: curr_stop], string_max_len=self.string_max_len, forced_dtype=self.dtype if self._has_string_object else None) # Let the gc collect the intermediate serialized chunk as early as possible chunk = chunk.tostring() if chunk is not None and get_bytes else chunk yield chunk, self.dtype, from_idx, curr_stop from_idx = curr_stop def serialize(self): return self._serializer.serialize(self.input_data, self.string_max_len)
lgpl-2.1
kdebrab/pandas
pandas/_version.py
5
16218
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.15 (https://github.com/warner/python-versioneer) import errno import os import re import subprocess import sys from pandas.compat import PY3 def get_keywords(): # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" keywords = {"refnames": git_refnames, "full": git_full} return keywords class VersioneerConfig(object): pass def get_config(): # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "v" cfg.parentdir_prefix = "pandas-" cfg.versionfile_source = "pandas/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): pass LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator def decorate(f): if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False): assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run {dispcmd}".format(dispcmd=dispcmd)) print(e) return None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None stdout = p.communicate()[0].strip() if PY3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run {dispcmd} (error)".format(dispcmd=dispcmd)) return None return stdout def versions_from_parentdir(parentdir_prefix, root, verbose): # Source tarballs conventionally unpack into a directory that includes # both the project name and a version string. dirname = os.path.basename(root) if not dirname.startswith(parentdir_prefix): if verbose: print("guessing rootdir is '{root}', but '{dirname}' " "doesn't start with prefix '{parentdir_prefix}'".format( root=root, dirname=dirname, parentdir_prefix=parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None} @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): if not keywords: raise NotThisMethod("no keywords at all, weird") refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = {r.strip() for r in refnames.strip("()").split(",")} # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = {r[len(TAG):] for r in refs if r.startswith(TAG)} if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = {r for r in refs if re.search(r'\d', r)} if verbose: print("discarding '{}', no digits".format(",".join(refs - tags))) if verbose: print("likely tags: {}".format(",".join(sorted(tags)))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking {r}".format(r=r)) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags"} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): # this runs 'git' from the root of the source tree. This only gets called # if the git-archive 'subst' keywords were *not* expanded, and # _version.py hasn't already been rewritten with a short version string, # meaning we're inside a checked out source tree. if not os.path.exists(os.path.join(root, ".git")): if verbose: print("no .git in {root}".format(root=root)) raise NotThisMethod("no .git directory") GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] # if there is a tag, this yields TAG-NUM-gHEX[-dirty] # if there are no tags, this yields HEX[-dirty] (no NUM) describe_out = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long"], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: " "'{describe_out}'".format( describe_out=describe_out)) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '{full_tag}' doesn't start with prefix " \ "'{tag_prefix}'" print(fmt.format(full_tag=full_tag, tag_prefix=tag_prefix)) pieces["error"] = ("tag '{full_tag}' doesn't start with " "prefix '{tag_prefix}'".format( full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits return pieces def plus_or_dot(pieces): if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): # now build up version string, with post-release "local version # identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you # get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty # exceptions: # 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "{:d}.g{}".format(pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.{:d}.g{}".format(pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): # TAG[.post.devDISTANCE] . No -dirty # exceptions: # 1: no tags. 0.post.devDISTANCE if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): # TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that # .dev0 sorts backwards (a dirty tree will appear "older" than the # corresponding clean one), but you shouldn't be releasing software with # -dirty anyways. # exceptions: # 1: no tags. 0.postDISTANCE[.dev0] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post{:d}".format(pieces["distance"]) if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g{}".format(pieces["short"]) else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g{}".format(pieces["short"]) return rendered def render_pep440_old(pieces): # TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. # exceptions: # 1: no tags. 0.postDISTANCE[.dev0] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): # TAG[-DISTANCE-gHEX][-dirty], like 'git describe --tags --dirty # --always' # exceptions: # 1: no tags. HEX[-dirty] (note: no 'g' prefix) if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-{:d}-g{}".format(pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): # TAG-DISTANCE-gHEX[-dirty], like 'git describe --tags --dirty # --always -long'. The distance/hash is unconditional. # exceptions: # 1: no tags. HEX[-dirty] (note: no 'g' prefix) if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-{:d}-g{}".format(pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"]} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '{style}'".format(style=style)) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None} def get_versions(): # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree"} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version"}
bsd-3-clause
kagayakidan/scikit-learn
sklearn/utils/tests/test_estimator_checks.py
202
3757
import scipy.sparse as sp import numpy as np import sys from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.testing import assert_raises_regex, assert_true from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.estimator_checks import check_estimators_unfitted from sklearn.linear_model import LogisticRegression from sklearn.utils.validation import check_X_y, check_array class CorrectNotFittedError(ValueError): """Exception class to raise if estimator is used before fitting. Like NotFittedError, it inherits from ValueError, but not from AttributeError. Used for testing only. """ class BaseBadClassifier(BaseEstimator, ClassifierMixin): def fit(self, X, y): return self def predict(self, X): return np.ones(X.shape[0]) class NoCheckinPredict(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) return self class NoSparseClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']) if sp.issparse(X): raise ValueError("Nonsensical Error") return self def predict(self, X): X = check_array(X) return np.ones(X.shape[0]) class CorrectNotFittedErrorClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) self.coef_ = np.ones(X.shape[1]) return self def predict(self, X): if not hasattr(self, 'coef_'): raise CorrectNotFittedError("estimator is not fitted yet") X = check_array(X) return np.ones(X.shape[0]) def test_check_estimator(): # tests that the estimator actually fails on "bad" estimators. # not a complete test of all checks, which are very extensive. # check that we have a set_params and can clone msg = "it does not implement a 'get_params' methods" assert_raises_regex(TypeError, msg, check_estimator, object) # check that we have a fit method msg = "object has no attribute 'fit'" assert_raises_regex(AttributeError, msg, check_estimator, BaseEstimator) # check that fit does input validation msg = "TypeError not raised by fit" assert_raises_regex(AssertionError, msg, check_estimator, BaseBadClassifier) # check that predict does input validation (doesn't accept dicts in input) msg = "Estimator doesn't check for NaN and inf in predict" assert_raises_regex(AssertionError, msg, check_estimator, NoCheckinPredict) # check for sparse matrix input handling msg = "Estimator type doesn't seem to fail gracefully on sparse data" # the check for sparse input handling prints to the stdout, # instead of raising an error, so as not to remove the original traceback. # that means we need to jump through some hoops to catch it. old_stdout = sys.stdout string_buffer = StringIO() sys.stdout = string_buffer try: check_estimator(NoSparseClassifier) except: pass finally: sys.stdout = old_stdout assert_true(msg in string_buffer.getvalue()) # doesn't error on actual estimator check_estimator(LogisticRegression) def test_check_estimators_unfitted(): # check that a ValueError/AttributeError is raised when calling predict # on an unfitted estimator msg = "AttributeError or ValueError not raised by predict" assert_raises_regex(AssertionError, msg, check_estimators_unfitted, "estimator", NoSparseClassifier) # check that CorrectNotFittedError inherit from either ValueError # or AttributeError check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier)
bsd-3-clause
btabibian/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
157
2409
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
nhejazi/scikit-learn
examples/model_selection/plot_nested_cross_validation_iris.py
46
4415
""" ========================================= Nested versus non-nested cross-validation ========================================= This example compares non-nested and nested cross-validation strategies on a classifier of the iris data set. Nested cross-validation (CV) is often used to train a model in which hyperparameters also need to be optimized. Nested CV estimates the generalization error of the underlying model and its (hyper)parameter search. Choosing the parameters that maximize non-nested CV biases the model to the dataset, yielding an overly-optimistic score. Model selection without nested CV uses the same data to tune model parameters and evaluate model performance. Information may thus "leak" into the model and overfit the data. The magnitude of this effect is primarily dependent on the size of the dataset and the stability of the model. See Cawley and Talbot [1]_ for an analysis of these issues. To avoid this problem, nested CV effectively uses a series of train/validation/test set splits. In the inner loop (here executed by :class:`GridSearchCV <sklearn.model_selection.GridSearchCV>`), the score is approximately maximized by fitting a model to each training set, and then directly maximized in selecting (hyper)parameters over the validation set. In the outer loop (here in :func:`cross_val_score <sklearn.model_selection.cross_val_score>`), generalization error is estimated by averaging test set scores over several dataset splits. The example below uses a support vector classifier with a non-linear kernel to build a model with optimized hyperparameters by grid search. We compare the performance of non-nested and nested CV strategies by taking the difference between their scores. .. topic:: See Also: - :ref:`cross_validation` - :ref:`grid_search` .. topic:: References: .. [1] `Cawley, G.C.; Talbot, N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res 2010,11, 2079-2107. <http://jmlr.csail.mit.edu/papers/volume11/cawley10a/cawley10a.pdf>`_ """ from sklearn.datasets import load_iris from matplotlib import pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV, cross_val_score, KFold import numpy as np print(__doc__) # Number of random trials NUM_TRIALS = 30 # Load the dataset iris = load_iris() X_iris = iris.data y_iris = iris.target # Set up possible values of parameters to optimize over p_grid = {"C": [1, 10, 100], "gamma": [.01, .1]} # We will use a Support Vector Classifier with "rbf" kernel svm = SVC(kernel="rbf") # Arrays to store scores non_nested_scores = np.zeros(NUM_TRIALS) nested_scores = np.zeros(NUM_TRIALS) # Loop for each trial for i in range(NUM_TRIALS): # Choose cross-validation techniques for the inner and outer loops, # independently of the dataset. # E.g "LabelKFold", "LeaveOneOut", "LeaveOneLabelOut", etc. inner_cv = KFold(n_splits=4, shuffle=True, random_state=i) outer_cv = KFold(n_splits=4, shuffle=True, random_state=i) # Non_nested parameter search and scoring clf = GridSearchCV(estimator=svm, param_grid=p_grid, cv=inner_cv) clf.fit(X_iris, y_iris) non_nested_scores[i] = clf.best_score_ # Nested CV with parameter optimization nested_score = cross_val_score(clf, X=X_iris, y=y_iris, cv=outer_cv) nested_scores[i] = nested_score.mean() score_difference = non_nested_scores - nested_scores print("Average difference of {0:6f} with std. dev. of {1:6f}." .format(score_difference.mean(), score_difference.std())) # Plot scores on each trial for nested and non-nested CV plt.figure() plt.subplot(211) non_nested_scores_line, = plt.plot(non_nested_scores, color='r') nested_line, = plt.plot(nested_scores, color='b') plt.ylabel("score", fontsize="14") plt.legend([non_nested_scores_line, nested_line], ["Non-Nested CV", "Nested CV"], bbox_to_anchor=(0, .4, .5, 0)) plt.title("Non-Nested and Nested Cross Validation on Iris Dataset", x=.5, y=1.1, fontsize="15") # Plot bar chart of the difference. plt.subplot(212) difference_plot = plt.bar(range(NUM_TRIALS), score_difference) plt.xlabel("Individual Trial #") plt.legend([difference_plot], ["Non-Nested CV - Nested CV Score"], bbox_to_anchor=(0, 1, .8, 0)) plt.ylabel("score difference", fontsize="14") plt.show()
bsd-3-clause
jswoboda/RadarDataSim
beamtools/pickBeams.py
2
17711
#!/usr/bin/env python """ This GUI is based off of a GUI originally developed by Steven Chen at SRI. The code was cleaned up so that the GUI is now encompassed in a class structure. Also the ability to switch between PFISR and RISR-N has been added along with a finish button. The code also outputs a picture of the selected beam pattern. @author: John Swoboda Updated by Greg Starr so it can be used as part of a larger GUI """ import Tkinter import tkFileDialog import os, inspect import numpy as np import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt import tables from beamfuncs import BeamSelector import pdb from isrutilities.sensorConstants import get_files def rect(r, w, deg=1): # radian if deg=0; degree if deg=1 from math import cos, sin, pi if deg: w = pi * w / 180.0 return r * cos(w), r * sin(w) def polar(x, y, deg=1): # radian if deg=0; degree if deg=1 from math import hypot, atan2, pi if deg: return hypot(x, y), 180.0 * atan2(y, x) / pi else: return hypot(x, y), atan2(y, x) class Gui(): def __init__(self,parent,subgui=True): # get the current path curpath = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) constpath = os.path.join(os.path.split(curpath)[0],'SimISR','const') # set the root self.parent = parent self.subgui = subgui # set up frames for list self.frame1 = Tkinter.Frame(self.parent) self.frame1.grid(row=0,column=0) self.frame2 = Tkinter.Frame(self.parent) self.frame2.grid(row=0,column=1) self.output = [] self.beamhandle = None if subgui: self.sizecanv = [500,500] self.beamcodeent= Tkinter.Entry(self.frame1) self.beamcodeent.grid(row=1,column=1) self.beamcodeentlabel = Tkinter.Label(self.frame1,text="Enter Beamcodes") self.beamcodeentlabel.grid(row=1,column=0,sticky='e') self.beambuttex = Tkinter.Button(self.frame1, text="Read", command=self.readbcobar) self.beambuttex.grid(row=1,column=2,sticky='w') self.beambutt = Tkinter.Button(self.frame1, text="Import", command=self.beambuttonClick) self.beambutt.grid(row=2,column=2,sticky='w') canvrow = 3 else: self.sizecanv = [1000,1000] self.leb = Tkinter.Label(self.frame1, text="Beam Selector",font=("Helvetica", 16)) self.leb.grid(row=0, sticky=Tkinter.W+Tkinter.E+Tkinter.N+Tkinter.S,columnspan=2) self.butt = Tkinter.Button(self.frame1, text="Finished", command=self.buttonClick) self.butt.grid(row=1,column=1,sticky='w') self.beamcodeent= Tkinter.Entry(self.frame1) self.beamcodeent.grid(row=2,column=1,sticky='w') self.beamcodeentlabel = Tkinter.Label(self.frame1,text="Enter Beamcodes") self.beamcodeentlabel.grid(row=2,column = 0,sticky='e') self.beambuttex = Tkinter.Button(self.frame1, text="Read", command=self.readbcobar) self.beambuttex.grid(row=2,column=2,sticky='w') self.beambutt = Tkinter.Button(self.frame1, text="Import", command=self.beambuttonClick) self.beambutt.grid(row=3,column=2,sticky='w') canvrow = 4 self.off_x = self.sizecanv[0]/2 self.off_y = self.sizecanv[1]/2 self.div = 75.0*self.sizecanv[0]/1000.0 self.lat = [80,70,60,50,40,30] self.angles = np.arange(0,180,30) self.var = Tkinter.StringVar() self.var.set("PFISR") self.choices = {"PFISR":get_files('PFISR_PARAMS.h5'), "RISR-N":get_files('RISR_PARAMS.h5'), "Sondrestrom":get_files('Sondrestrom_PARAMS.h5'), "Millstone":get_files('Millstone_PARAMS.h5')}#, "RISR-S":'file3'} self.option = Tkinter.OptionMenu(self.frame1, self.var, *self.choices) self.option.grid(row=1,column=0,sticky='w') hfile=tables.open_file(self.choices[self.var.get()]) self.lines = hfile.root.Params.Kmat.read() hfile.close() self.readfile = Tkinter.StringVar() # set up the canvas self.canv = Tkinter.Canvas(self.frame1 , width=self.sizecanv[0], height=self.sizecanv[1],background='white') self.canv.grid(row=canvrow,column=0,columnspan=2) self.Drawlines() self.Drawbeams() self.canv.bind('<ButtonPress-1>', self.onCanvasClick) self.canv.bind('<ButtonPress-2>', self.onCanvasRightClick) self.var.trace('w', self.Changefile) self.canv.update() # beam list self.bidlabel = Tkinter.Label(self.frame2,text="Beam ID") self.bidlabel.grid(row=0,column=0) self.azlabel = Tkinter.Label(self.frame2,text="Azimuth") self.azlabel.grid(row=0,column=1) self.ellabel = Tkinter.Label(self.frame2,text="Elevation") self.ellabel.grid(row=0,column=2) self.scroll = Tkinter.Scrollbar(self.frame2) self.scroll.grid(row=1,column=3) self.beamtext = Tkinter.Text(self.frame2,yscrollcommand=self.scroll.set) self.beamtext.config(width=50,state=Tkinter.DISABLED) self.beamtext.grid(row = 1,column = 0,columnspan=3) self.beamlines = [] self.scroll.config(command=self.beamtext.yview) # bounding box self.boxbutton= Tkinter.Button(self.frame2, text="Angle Box", command=self.boxbuttonClick) self.boxbutton.grid(row=2,column=0,sticky='w') self.azminmaxlabel = Tkinter.Label(self.frame2,text="Az min and max") self.azminmaxlabel.grid(row=3,column=0,sticky='e') self.azmin= Tkinter.Entry(self.frame2) self.azmin.grid(row=3,column=1,sticky='w') self.azmax= Tkinter.Entry(self.frame2) self.azmax.grid(row=3,column=2,sticky='w') self.elminmaxlabel = Tkinter.Label(self.frame2,text="El min and max") self.elminmaxlabel.grid(row=4,column=0,sticky='e') self.elmin= Tkinter.Entry(self.frame2) self.elmin.grid(row=4,column=1,sticky='w') self.elmax= Tkinter.Entry(self.frame2) self.elmax.grid(row=4,column=2,sticky='w') # Az choice self.azbutton=Tkinter.Button(self.frame2, text="Az Choice", command=self.azbuttonClick) self.azbutton.grid(row=5,column=0,sticky='w') self.azchoice= Tkinter.Entry(self.frame2) self.azchoice.grid(row=5,column=1,sticky='w') # Az choice self.elbutton=Tkinter.Button(self.frame2, text="El Choice", command=self.elbuttonClick) self.elbutton.grid(row=6,column=0,sticky='w') self.elchoice= Tkinter.Entry(self.frame2) self.elchoice.grid(row=6,column=1,sticky='w') self.azsortbutton=Tkinter.Button(self.frame2, text="Az sort", command=self.azsortbuttonClick) self.azsortbutton.grid(row=7,column=0,sticky='w') self.elsortbutton=Tkinter.Button(self.frame2, text="El Sort", command=self.elsortbuttonClick) self.elsortbutton.grid(row=7,column=1,sticky='w') def Changefile(self,*args): """ This function will change the files to a different radar system.""" filename= self.choices[self.var.get()] self.beamtext.config(state=Tkinter.NORMAL) self.beamtext.delete(1.0,'end') self.beamtext.config(state=Tkinter.DISABLED) self.readfile.set(filename) hfile=tables.open_file(filename) self.lines = hfile.root.Params.Kmat.read() hfile.close() self.output=[] self.canv.delete(Tkinter.ALL) self.Drawlines() self.Drawbeams() def Drawbeams(self): "This function will draw all of the beams on the canvas." div =self.div #if self.beamhandle is not None: off_x = self.off_x off_y = self.off_y self.beamhandles = [] self.ovalx = np.zeros(self.lines.shape[0]) self.ovaly = np.zeros(self.lines.shape[0]) for ibeam,beams in enumerate(self.lines): c_coords = rect(90-beams[2],beams[1]-90) #print c_coords points = [c_coords[0]*div/10+off_x -5, c_coords[1]*div/10+off_y-5, c_coords[0]*div/10+off_x +5, c_coords[1]*div/10+off_y+5] self.ovalx[ibeam] = c_coords[0]*div/10+off_x self.ovaly[ibeam] = c_coords[1]*div/10+off_y self.beamhandles.append(self.canv.create_oval(points, fill='blue',tags='beams')) def addbeamlist(self,beamlist): """ """ div =self.div off_x = self.off_x off_y = self.off_y for ibeam in beamlist: c_coords = rect(90-ibeam[1],ibeam[0]-90) x = c_coords[0]*div/10+off_x y = c_coords[1]*div/10+off_y dist = (self.ovalx-x)**2+(self.ovaly-y)**2 linesit = np.argmin(dist) closest = self.lines[linesit] if closest[0] not in self.output: self.__addbeam__(closest,linesit) def addbeamlistbco(self,bcolist): """ Adds a set of beams based off of the beam numbers""" allbco = self.lines[:,0] allbco = np.array([int(i) for i in allbco]) for ibco in bcolist: ibco = int(ibco) linesit =np.flatnonzero(allbco==ibco) if len(linesit)==0: continue linesit = linesit[0] closest= self.lines[linesit] if closest[0] not in self.output: self.__addbeam__(closest,linesit) def Drawlines(self): """This function will draw all of the lines on the canvas for the """ off_x = self.off_x off_y = self.off_y div = self.div lat = self.lat Nlat = len(lat) angles = self.angles # Create circles textangles = {iang:(str(np.mod(270+iang,360)),str(np.mod(90+iang,360))) for iang in angles} for i in range(1,7): points = [-div*i+off_x, -div*i+off_y, div*i+off_x, div*i+off_y] self.canv.create_oval(points,dash=(5,5)) self.canv.create_text(points[0]+(div*i)/(div/15.0),points[1]+(div*i)/(div/15.0),text=str(lat[i-1])) for iang in angles: iangr = iang*np.pi/180 cosan = np.cos(iangr) sinan = np.sin(iangr) points = [-div*Nlat*cosan+off_x, -div*Nlat*sinan+off_y, div*Nlat*cosan+off_x, div*Nlat*sinan+off_y] self.canv.create_line(points,dash=(5,5)) self.canv.create_text(points[0],points[1], text=textangles[iang][0]) self.canv.create_text(points[2],points[3], text=textangles[iang][1]) def onCanvasClick(self,event): """This function will find the nearest beam """ p_coords = polar(event.x-self.off_x ,event.y-self.off_y) x = self.canv.canvasx(event.x) y = self.canv.canvasy(event.y) dist = (self.ovalx-x)**2+(self.ovaly-y)**2 linesit = np.argmin(dist) closest = self.lines[linesit] if closest[0] not in self.output: self.__addbeam__(closest,linesit) else: print("Repeated beam") def onCanvasRightClick(self,event): """This will undo the choice of the nearest highlighted beam.""" x = self.canv.canvasx(event.x) y = self.canv.canvasy(event.y) dist = (self.ovalx-x)**2+(self.ovaly-y)**2 linesit = np.argmin(dist) closest = self.lines[linesit] if (closest[0] in self.output) and (dist[linesit]<self.div/5.0): self.__removebeam__(closest,linesit) def boxbuttonClick(self): """This the call back for the bounding box button where all of the beams at a certian elevation are selected.""" inputvec = [] inputvec.append(self.azmin.get().strip()) inputvec.append(self.azmax.get().strip()) inputvec.append(self.elmin.get().strip()) inputvec.append(self.elmax.get().strip()) maxmin = [0.,359.99,0.,90.] inputnums = [] for i,iin in enumerate(inputvec): try: inputnums.append(float(iin)) except: inputnums.append(maxmin[i]) alldata = self.lines azkeep = np.logical_and(alldata[:,1]>inputnums[0],alldata[:,1]<inputnums[1]) elkeep = np.logical_and(alldata[:,2]>inputnums[2],alldata[:,2]<inputnums[3]) allkeep = np.logical_and(azkeep,elkeep) bcolist = alldata[allkeep,0] if (len(bcolist)!=0) and (len(bcolist)!=len(alldata)): self.addbeamlistbco(bcolist) def azbuttonClick(self): """This the call back for the azimuth button where all of the beams at a certian elevation are selected.""" azval = self.azchoice.get().strip() try: aznum = float(azval) azkeep =np.in1d(self.lines[:,1],aznum) bcoout = self.lines[azkeep,0] self.addbeamlistbco(bcoout) except: print('Bad value for azimuth angle given') def elbuttonClick(self): """This the call back for the elevation button where all of the beams at a certian elevation are selected.""" elval = self.elchoice.get().strip() try: elnum = float(elval) elkeep =np.in1d(self.lines[:,2],elnum) bcoout = self.lines[elkeep,0] self.addbeamlistbco(bcoout) except: print('Bad value for elevation angle given') def __removebeam__(self,closest,linesit): """This removes a beam from the data""" self.canv.itemconfig(self.beamhandles[linesit], fill='blue') self.output.remove(closest[0]) beamstr = "{:>9} {:>9} {:>9}\n".format(closest[0],closest[1],closest[2]) self.beamlines.remove(beamstr) self.beamtext.config(state=Tkinter.NORMAL) self.beamtext.delete(1.0,'end') for ibeam in self.beamlines: self.beamtext.insert(Tkinter.INSERT,ibeam) self.beamtext.config(state=Tkinter.DISABLED) self.canv.update() def azsortbuttonClick(self): outlist = self.output bmlist = self.lines bcolist = bmlist[:,0] azlist = bmlist[:,1] azvals = [azlist[bcolist==i][0] for i in outlist ] order = np.argsort(azvals) self.updatelists(order) def elsortbuttonClick(self): outlist = self.output bmlist = self.lines bcolist = bmlist[:,0] ellist = bmlist[:,2] elvals = [ellist[bcolist==i][0] for i in outlist ] order = np.argsort(elvals) self.updatelists(order) def __addbeam__(self,closest,linesit): """This will add a beam""" textheader = 'Closest beam is # %s, Az: %s, El: %s' %(int(closest[0]),closest[1],closest[2]) self.canv.itemconfig(self.canv.find_withtag('header'),text=textheader) self.canv.itemconfig(self.beamhandles[linesit], fill='orange') self.output.append(closest[0]) self.canv.update() beamstr = "{:>9} {:>9} {:>9}\n".format(closest[0],closest[1],closest[2]) self.beamtext.config(state=Tkinter.NORMAL) self.beamtext.insert(Tkinter.INSERT,beamstr) self.beamtext.config(state=Tkinter.DISABLED) self.beamlines.append(beamstr) bcolist = self.beamcodeent.get().split() bcolist = [int(i.strip(',')) for i in bcolist] cbco = int(closest[0]) if cbco not in bcolist: bcolist.append(cbco) bcoliststr = [str(ib) for ib in bcolist] bcostr = ' '.join(bcoliststr) self.beamcodeent.delete(0,'end') self.beamcodeent.insert(0,bcostr) def removebeamlistbco(self,bcolist): """ Removes a set of beams based off of the beam numbers""" allbco = self.lines[:,0] allbco = np.array([int(i) for i in allbco]) for ibco in bcolist: ibco = int(ibco) linesit =np.flatnonzero(allbco==ibco) if len(linesit)==0: continue linesit = linesit[0] closest= self.lines[linesit] if closest[0] in self.output: self.__removebeam__(closest,linesit) def updatelists(self,order): neworder =[self.output[i] for i in order] self.removebeamlistbco(neworder) self.addbeamlistbco(neworder) def buttonClick(self,fn=None): """This will output the beam list, create an image of the beams and close the program. """ if fn is None: fn = tkFileDialog.asksaveasfilename(title="save Beam Codes and Image",filetypes=[('TXT','.txt')]) fnbase = ''.join(os.path.splitext(fn)[:-1]) allbeam = BeamSelector(self.lines) fig = allbeam.plotbeams(self.output,True,fnbase+'.png',"Chosenbeams") plt.close(fig) f = open(fnbase+'.txt', 'w') for beam in self.output: f.write("%s\n" % (int(beam))) if not self.subgui: #sys.exit() self.parent.destroy() def beambuttonClick(self): fn = tkFileDialog.askopenfilename(title="Load Beam Codes",filetypes=[('TXT','.txt')]) bcolist = np.loadtxt(fn) self.addbeamlistbco(bcolist) def readbcobar(self): bcolist = self.beamcodeent.get().split() bcolist = [int(i.strip(',')) for i in bcolist] self.addbeamlistbco(bcolist) def run_beam_gui(): """Used to run the GUI as a function""" root = Tkinter.Tk() gui = Gui(root,False) root.mainloop() if __name__ == "__main__": root = Tkinter.Tk() gui = Gui(root,False) root.mainloop()
mit
kernc/scikit-learn
examples/linear_model/plot_sgd_weighted_samples.py
344
1458
""" ===================== SGD: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] y = [1] * 10 + [-1] * 10 sample_weight = 100 * np.abs(np.random.randn(20)) # and assign a bigger weight to the last 10 samples sample_weight[:10] *= 10 # plot the weighted data points xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9, cmap=plt.cm.bone) ## fit the unweighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) no_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['solid']) ## fit the weighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y, sample_weight=sample_weight) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) samples_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['dashed']) plt.legend([no_weights.collections[0], samples_weights.collections[0]], ["no weights", "with weights"], loc="lower left") plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
jeffkinnison/awe-wq
lib/python2.7/site-packages/awe/voronoi.py
2
3930
#!/usr/bin/env python # ----------------------------------------------------------------------------- # Voronoi diagram from a list of points # Copyright (C) 2011 Nicolas P. Rougier # # Distributed under the terms of the BSD License. # ----------------------------------------------------------------------------- import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection def circumcircle(P1, P2, P3): ''' Return center of the circle containing P1, P2 and P3 If P1, P2 and P3 are colinear, return None Adapted from: http://local.wasp.uwa.edu.au/~pbourke/geometry/circlefrom3/Circle.cpp ''' delta_a = P2 - P1 delta_b = P3 - P2 if np.abs(delta_a[0]) <= 0.000000001 and np.abs(delta_b[1]) <= 0.000000001: center_x = 0.5*(P2[0] + P3[0]) center_y = 0.5*(P1[1] + P2[1]) else: aSlope = delta_a[1]/delta_a[0] bSlope = delta_b[1]/delta_b[0] if np.abs(aSlope-bSlope) <= 0.000000001: return None center_x= (aSlope*bSlope*(P1[1] - P3[1]) + bSlope*(P1[0] + P2 [0]) \ - aSlope*(P2[0]+P3[0]))/(2.*(bSlope-aSlope)) center_y = -(center_x - (P1[0]+P2[0])/2.)/aSlope + (P1[1]+P2[1])/2. return center_x, center_y def voronoi(X,Y): ''' Return line segments describing the voronoi diagram of X and Y ''' P = np.zeros((X.size+4,2)) P[:X.size,0], P[:Y.size,1] = X, Y # We add four points at (pseudo) "infinity" m = max(np.abs(X).max(), np.abs(Y).max())*1e5 P[X.size:,0] = -m, -m, +m, +m P[Y.size:,1] = -m, +m, -m, +m D = matplotlib.tri.Triangulation(P[:,0],P[:,1]) T = D.triangles #axes = plt.subplot(1,1,1) #plt.scatter(X,Y, s=5) #patches = [] #for i,triang in enumerate(T): # polygon = Polygon(np.array([P[triang[0]],P[triang[1]],P[triang[2]]])) # patches.append(polygon) #colors = 100*np.random.rand(len(patches)) #p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4) #p.set_array(np.array(colors)) #axes.add_collection(p) #plt.colorbar(p) ##lines = matplotlib.collections.LineCollection(segments, color='0.75') ##axes.add_collection(lines) #plt.axis([0,1,0,1]) #plt.show() #plt.savefig('test0.png') n = T.shape[0] C = np.zeros((n,2)) for i in range(n): C[i] = circumcircle(P[T[i,0]],P[T[i,1]],P[T[i,2]]) X,Y = C[:,0], C[:,1] #segments = [] #for i in range(n): # for k in D.neighbors[i]: # if k != -1: # segments.append([(X[i],Y[i]), (X[k],Y[k])]) cells = [[] for i in range(np.max(T)+1)] for i,triang in enumerate(T): cells[triang[0]].append([X[i],Y[i]]) cells[triang[1]].append([X[i],Y[i]]) cells[triang[2]].append([X[i],Y[i]]) for i,cell in enumerate(cells): angle = [] for coord in cell: angle.append(np.arctan2((coord[1]-P[i,1]),(coord[0]-P[i,0]))) id = np.argsort(-np.array(angle)) cells[i] = np.array([cell[j] for j in id]) return cells # ----------------------------------------------------------------------------- if __name__ == '__main__': P = np.random.random((2,256)) X,Y = P[0],P[1] fig = plt.figure(figsize=(10,10)) axes = plt.subplot(1,1,1) plt.scatter(X,Y, s=5) #segments = voronoi(X,Y) cells = voronoi(X,Y) patches = [] for cell in cells: polygon = Polygon(cell,True) patches.append(polygon) #plt.scatter(cell[:,0],cell[:,1]) colors = 100*np.random.rand(len(patches)) print colors p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4) p.set_array(np.array(colors)) axes.add_collection(p) plt.colorbar(p) #lines = matplotlib.collections.LineCollection(segments, color='0.75') #axes.add_collection(lines) plt.axis([0,1,0,1]) plt.show() plt.savefig('test.png')
gpl-2.0
annayqho/TheCannon
code/lamost/xcalib_5labels/make_lamost_catalog/debris_exploration.py
1
1553
import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm import pyfits a = pyfits.open("table_for_paper_full.fits") b = a[1].data feh = b['cannon_m_h'] am = b['cannon_alpha_m'] rv_all = b['rv'] rverr = b['rv_err'] rv = rv_all / rverr good = rverr < 50 feh = feh[good] am = am[good] rv = rv[good] lowlim = -200 highlim = 180 lowlim = -15 highlim = 13 plt.scatter(feh, am, c=rv, s=5, lw=0, vmin=-15, vmax=5, cmap="viridis") plt.xlim(-2.5, 0.8) plt.xlabel("[Fe/H]") plt.ylabel("[alpha/M]") plt.colorbar(label="RV/RV_err") plt.ylim(-0.15, 0.55) plt.show() fig, axarr=plt.subplots(1,3, sharex=True, sharey=True) ax = axarr[0] choose1 = np.logical_and(rv < highlim, rv > lowlim) ax.scatter(feh[choose1], am[choose1], c='k', alpha=1, s=5, lw=0, label="%s < RV (km/s) < %s" %(str(lowlim), str(highlim))) ax.set_ylabel("alpha enhancement, a/M (dex)") ax.legend() ax = axarr[1] choose = rv < lowlim ax.scatter(feh[choose1], am[choose1], c='k', alpha=1, s=5, lw=0, label="%s < RV (km/s) < %s" %(str(lowlim), str(highlim))) ax.scatter(feh[choose], am[choose], c='r', alpha=1, s=5, lw=0, label="RV (km/s) < %s" %str(lowlim)) ax.set_xlabel("metallicity, Fe/H (dex") ax.legend() ax = axarr[2] choose = rv > highlim ax.scatter(feh[choose1], am[choose1], c='k', alpha=1, s=5, lw=0, label="%s < RV (km/s) < %s" %(str(lowlim), str(highlim))) ax.scatter(feh[choose], am[choose], c='r', alpha=1, s=5, lw = 0, label="RV (km/s) > %s" %str(highlim)) ax.legend() plt.xlim(-2.5, 0.8) plt.ylim(-0.15, 0.55) plt.show()
mit
Lynn-015/NJU_DMRG
giggleliu/mps/mpslib.py
1
4951
#!/usr/bin/python ''' Matrix Product State. ''' from numpy import * from matplotlib.pyplot import * from matplotlib import patches from matplotlib.collections import LineCollection from scipy.linalg import svd,qr,rq,norm,block_diag from mps import MPS,VidalMPS,KMPS,BMPS from scipy import sparse as sps import pdb,time def state2VMPS(state,sitedim,tol=1e-8): ''' Parse a normal state into a Vidal Matrix produdct state. Parameters -------------- state: The target state, 1D array. sitedim: The dimension of a single site, integer. tol: The tolerence of singular value, float. *return*: A <VidalMPS> instance. Note --------------- `svd` method is used in decomposition. ''' nsite=int(round(log(len(state))/log(sitedim))) GL,LL=[],[] ri=1 for i in xrange(nsite): state=state.reshape([sitedim*ri,-1]) U,S,V=svd(state,full_matrices=False) #remove zeros from v kpmask=abs(S)>tol ri=kpmask.sum() S=S[kpmask] LL.append(S) state=S[:,newaxis]*V[kpmask] U=U[:,kpmask] U=U.reshape([-1,sitedim,ri]) ai=swapaxes(U,0,1) if i==0: gi=ai else: gi=ai/LL[-2][:,newaxis] GL.append(gi) S=LL[-1][0] return VidalMPS(GL,LL[:-1],S) def state2MPS(state,sitedim,l,method='qr',tol=1e-8): ''' Parse a normal state into a Matrix produdct state. state: The target state, 1D array. sitedim: The dimension of a single site, integer. l: The division point of left and right canonical scanning, integer between 0 and number of site. method: The method to extract A,B matrices. * 'qr' -> get A,B matrices by the method of QR decomposition, faster, rank revealing in a non-straight-forward way. * 'svd' -> get A,B matrices by the method of SVD decomposition, slow, rank revealing. tol: The tolerence of singular value, float. *return*: A <MPS> instance. ''' nsite=int(round(log(len(state))/log(sitedim))) AL,BL=[],[] ri=1 assert(method=='svd' or method=='qr') assert(l>=0 and l<=nsite) for i in xrange(l): state=state.reshape([sitedim*ri,-1]) if method=='svd': U,S,V=svd(state,full_matrices=False) #remove zeros from v kpmask=abs(S)>tol ri=kpmask.sum() state=S[kpmask,newaxis]*V[kpmask] U=U[:,kpmask] else: U,state=qr(state,mode='economic') kpmask=sum(abs(state),axis=1)>tol ri=kpmask.sum() state=state[kpmask] U=U[:,kpmask] ai=swapaxes(U.reshape([-1,sitedim,ri]),0,1) AL.append(ai) ri=1 for i in xrange(nsite-l): state=state.reshape([-1,sitedim*ri]) if method=='svd': U,S,V=svd(state,full_matrices=False) #remove zeros from v kpmask=abs(S)>tol ri=kpmask.sum() state=S[kpmask]*U[:,kpmask] V=V[kpmask,:] else: state,V=rq(state,mode='economic') kpmask=sum(abs(state),axis=0)>tol ri=kpmask.sum() state=state[:,kpmask] V=V[kpmask] bi=swapaxes(V.reshape([ri,sitedim,-1]),0,1) BL.append(bi) BL=BL[::-1] S=state.diagonal() return KMPS(AL,BL,S=S) def mps_add(*args): ''' Add <KMPS>. Parameters ----------- args: <MPS> instances to be added. ''' if len(args)<=1: raise ValueError('At least 2 args is required.') AL=[] BL=[] hndim=args[0].hndim na=len(args[0].AL) nb=len(args[0].BL) nsite=na+nb for i in xrange(na): if i==0: ai=[concatenate([mps.AL[i][j] for mps in args],axis=1) for j in xrange(hndim)] elif i==nsite-1: ai=[concatenate([mps.AL[i][j] for mps in args],axis=0) for j in xrange(hndim)] else: ai=[block_diag(*[mps.AL[i][j] for mps in args]) for j in xrange(hndim)] AL.append(ai) for i in xrange(nb): if i+na==0: bi=[concatenate([mps.BL[i][j] for mps in args],axis=1) for j in xrange(hndim)] elif i+na==nsite-1: bi=[concatenate([mps.BL[i][j] for mps in args],axis=0) for j in xrange(hndim)] else: bi=[block_diag(*[mps.BL[i][j] for mps in args]) for j in xrange(hndim)] BL.append(bi) S=concatenate([mps.S for mps in args]) return args[0].__class__(AL=AL,BL=BL,S=S) def mps_unique(mps): ''' View <MPS> as unique. ''' mps.token=id(l) def mps_viewsame(*mpses): ''' View a set of <MPS> instances as same. ''' mps0=mpses[0] for mps in mpses[1:]: mps.token=mps0.token def compress(self,mps): ''' Compress a MPS to compact form. ''' raise Exception('Not Implemented')
mit
cin/spark
python/pyspark/serializers.py
1
22617
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ PySpark supports custom serializers for transferring data; this can improve performance. By default, PySpark uses L{PickleSerializer} to serialize objects using Python's C{cPickle} serializer, which can serialize nearly any Python object. Other serializers, like L{MarshalSerializer}, support fewer datatypes but can be faster. The serializer is chosen when creating L{SparkContext}: >>> from pyspark.context import SparkContext >>> from pyspark.serializers import MarshalSerializer >>> sc = SparkContext('local', 'test', serializer=MarshalSerializer()) >>> sc.parallelize(list(range(1000))).map(lambda x: 2 * x).take(10) [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] >>> sc.stop() PySpark serialize objects in batches; By default, the batch size is chosen based on the size of objects, also configurable by SparkContext's C{batchSize} parameter: >>> sc = SparkContext('local', 'test', batchSize=2) >>> rdd = sc.parallelize(range(16), 4).map(lambda x: x) Behind the scenes, this creates a JavaRDD with four partitions, each of which contains two batches of two objects: >>> rdd.glom().collect() [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]] >>> int(rdd._jrdd.count()) 8 >>> sc.stop() """ import sys from itertools import chain, product import marshal import struct import types import collections import zlib import itertools if sys.version < '3': import cPickle as pickle protocol = 2 from itertools import izip as zip, imap as map else: import pickle protocol = 3 xrange = range from pyspark import cloudpickle __all__ = ["PickleSerializer", "MarshalSerializer", "UTF8Deserializer"] class SpecialLengths(object): END_OF_DATA_SECTION = -1 PYTHON_EXCEPTION_THROWN = -2 TIMING_DATA = -3 END_OF_STREAM = -4 NULL = -5 START_ARROW_STREAM = -6 class PythonEvalType(object): NON_UDF = 0 SQL_BATCHED_UDF = 1 SQL_PANDAS_UDF = 2 SQL_PANDAS_GROUPED_UDF = 3 class Serializer(object): def dump_stream(self, iterator, stream): """ Serialize an iterator of objects to the output stream. """ raise NotImplementedError def load_stream(self, stream): """ Return an iterator of deserialized objects from the input stream. """ raise NotImplementedError def _load_stream_without_unbatching(self, stream): """ Return an iterator of deserialized batches (iterable) of objects from the input stream. if the serializer does not operate on batches the default implementation returns an iterator of single element lists. """ return map(lambda x: [x], self.load_stream(stream)) # Note: our notion of "equality" is that output generated by # equal serializers can be deserialized using the same serializer. # This default implementation handles the simple cases; # subclasses should override __eq__ as appropriate. def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "%s()" % self.__class__.__name__ def __hash__(self): return hash(str(self)) class FramedSerializer(Serializer): """ Serializer that writes objects as a stream of (length, data) pairs, where C{length} is a 32-bit integer and data is C{length} bytes. """ def __init__(self): # On Python 2.6, we can't write bytearrays to streams, so we need to convert them # to strings first. Check if the version number is that old. self._only_write_strings = sys.version_info[0:2] <= (2, 6) def dump_stream(self, iterator, stream): for obj in iterator: self._write_with_length(obj, stream) def load_stream(self, stream): while True: try: yield self._read_with_length(stream) except EOFError: return def _write_with_length(self, obj, stream): serialized = self.dumps(obj) if serialized is None: raise ValueError("serialized value should not be None") if len(serialized) > (1 << 31): raise ValueError("can not serialize object larger than 2G") write_int(len(serialized), stream) if self._only_write_strings: stream.write(str(serialized)) else: stream.write(serialized) def _read_with_length(self, stream): length = read_int(stream) if length == SpecialLengths.END_OF_DATA_SECTION: raise EOFError elif length == SpecialLengths.NULL: return None obj = stream.read(length) if len(obj) < length: raise EOFError return self.loads(obj) def dumps(self, obj): """ Serialize an object into a byte array. When batching is used, this will be called with an array of objects. """ raise NotImplementedError def loads(self, obj): """ Deserialize an object from a byte array. """ raise NotImplementedError class ArrowSerializer(FramedSerializer): """ Serializes bytes as Arrow data with the Arrow file format. """ def dumps(self, batch): import pyarrow as pa import io sink = io.BytesIO() writer = pa.RecordBatchFileWriter(sink, batch.schema) writer.write_batch(batch) writer.close() return sink.getvalue() def loads(self, obj): import pyarrow as pa reader = pa.RecordBatchFileReader(pa.BufferReader(obj)) return reader.read_all() def __repr__(self): return "ArrowSerializer" def _create_batch(series): """ Create an Arrow record batch from the given pandas.Series or list of Series, with optional type. :param series: A single pandas.Series, list of Series, or list of (series, arrow_type) :return: Arrow RecordBatch """ from pyspark.sql.types import _check_series_convert_timestamps_internal import pyarrow as pa # Make input conform to [(series1, type1), (series2, type2), ...] if not isinstance(series, (list, tuple)) or \ (len(series) == 2 and isinstance(series[1], pa.DataType)): series = [series] series = ((s, None) if not isinstance(s, (list, tuple)) else s for s in series) # If a nullable integer series has been promoted to floating point with NaNs, need to cast # NOTE: this is not necessary with Arrow >= 0.7 def cast_series(s, t): if type(t) == pa.TimestampType: # NOTE: convert to 'us' with astype here, unit ignored in `from_pandas` see ARROW-1680 return _check_series_convert_timestamps_internal(s.fillna(0))\ .values.astype('datetime64[us]', copy=False) # NOTE: can not compare None with pyarrow.DataType(), fixed with Arrow >= 0.7.1 elif t is not None and t == pa.date32(): # TODO: this converts the series to Python objects, possibly avoid with Arrow >= 0.8 return s.dt.date elif t is None or s.dtype == t.to_pandas_dtype(): return s else: return s.fillna(0).astype(t.to_pandas_dtype(), copy=False) # Some object types don't support masks in Arrow, see ARROW-1721 def create_array(s, t): casted = cast_series(s, t) mask = None if casted.dtype == 'object' else s.isnull() return pa.Array.from_pandas(casted, mask=mask, type=t) arrs = [create_array(s, t) for s, t in series] return pa.RecordBatch.from_arrays(arrs, ["_%d" % i for i in xrange(len(arrs))]) class ArrowStreamPandasSerializer(Serializer): """ Serializes Pandas.Series as Arrow data with Arrow streaming format. """ def dump_stream(self, iterator, stream): """ Make ArrowRecordBatches from Pandas Series and serialize. Input is a single series or a list of series accompanied by an optional pyarrow type to coerce the data to. """ import pyarrow as pa writer = None try: for series in iterator: batch = _create_batch(series) if writer is None: write_int(SpecialLengths.START_ARROW_STREAM, stream) writer = pa.RecordBatchStreamWriter(stream, batch.schema) writer.write_batch(batch) finally: if writer is not None: writer.close() def load_stream(self, stream): """ Deserialize ArrowRecordBatches to an Arrow table and return as a list of pandas.Series. """ from pyspark.sql.types import _check_dataframe_localize_timestamps import pyarrow as pa reader = pa.open_stream(stream) for batch in reader: # NOTE: changed from pa.Columns.to_pandas, timezone issue in conversion fixed in 0.7.1 pdf = _check_dataframe_localize_timestamps(batch.to_pandas()) yield [c for _, c in pdf.iteritems()] def __repr__(self): return "ArrowStreamPandasSerializer" class BatchedSerializer(Serializer): """ Serializes a stream of objects in batches by calling its wrapped Serializer with streams of objects. """ UNLIMITED_BATCH_SIZE = -1 UNKNOWN_BATCH_SIZE = 0 def __init__(self, serializer, batchSize=UNLIMITED_BATCH_SIZE): self.serializer = serializer self.batchSize = batchSize def _batched(self, iterator): if self.batchSize == self.UNLIMITED_BATCH_SIZE: yield list(iterator) elif hasattr(iterator, "__len__") and hasattr(iterator, "__getslice__"): n = len(iterator) for i in xrange(0, n, self.batchSize): yield iterator[i: i + self.batchSize] else: items = [] count = 0 for item in iterator: items.append(item) count += 1 if count == self.batchSize: yield items items = [] count = 0 if items: yield items def dump_stream(self, iterator, stream): self.serializer.dump_stream(self._batched(iterator), stream) def load_stream(self, stream): return chain.from_iterable(self._load_stream_without_unbatching(stream)) def _load_stream_without_unbatching(self, stream): return self.serializer.load_stream(stream) def __repr__(self): return "BatchedSerializer(%s, %d)" % (str(self.serializer), self.batchSize) class FlattenedValuesSerializer(BatchedSerializer): """ Serializes a stream of list of pairs, split the list of values which contain more than a certain number of objects to make them have similar sizes. """ def __init__(self, serializer, batchSize=10): BatchedSerializer.__init__(self, serializer, batchSize) def _batched(self, iterator): n = self.batchSize for key, values in iterator: for i in range(0, len(values), n): yield key, values[i:i + n] def load_stream(self, stream): return self.serializer.load_stream(stream) def __repr__(self): return "FlattenedValuesSerializer(%s, %d)" % (self.serializer, self.batchSize) class AutoBatchedSerializer(BatchedSerializer): """ Choose the size of batch automatically based on the size of object """ def __init__(self, serializer, bestSize=1 << 16): BatchedSerializer.__init__(self, serializer, self.UNKNOWN_BATCH_SIZE) self.bestSize = bestSize def dump_stream(self, iterator, stream): batch, best = 1, self.bestSize iterator = iter(iterator) while True: vs = list(itertools.islice(iterator, batch)) if not vs: break bytes = self.serializer.dumps(vs) write_int(len(bytes), stream) stream.write(bytes) size = len(bytes) if size < best: batch *= 2 elif size > best * 10 and batch > 1: batch //= 2 def __repr__(self): return "AutoBatchedSerializer(%s)" % self.serializer class CartesianDeserializer(Serializer): """ Deserializes the JavaRDD cartesian() of two PythonRDDs. Due to pyspark batching we cannot simply use the result of the Java RDD cartesian, we additionally need to do the cartesian within each pair of batches. """ def __init__(self, key_ser, val_ser): self.key_ser = key_ser self.val_ser = val_ser def _load_stream_without_unbatching(self, stream): key_batch_stream = self.key_ser._load_stream_without_unbatching(stream) val_batch_stream = self.val_ser._load_stream_without_unbatching(stream) for (key_batch, val_batch) in zip(key_batch_stream, val_batch_stream): # for correctness with repeated cartesian/zip this must be returned as one batch yield product(key_batch, val_batch) def load_stream(self, stream): return chain.from_iterable(self._load_stream_without_unbatching(stream)) def __repr__(self): return "CartesianDeserializer(%s, %s)" % \ (str(self.key_ser), str(self.val_ser)) class PairDeserializer(Serializer): """ Deserializes the JavaRDD zip() of two PythonRDDs. Due to pyspark batching we cannot simply use the result of the Java RDD zip, we additionally need to do the zip within each pair of batches. """ def __init__(self, key_ser, val_ser): self.key_ser = key_ser self.val_ser = val_ser def _load_stream_without_unbatching(self, stream): key_batch_stream = self.key_ser._load_stream_without_unbatching(stream) val_batch_stream = self.val_ser._load_stream_without_unbatching(stream) for (key_batch, val_batch) in zip(key_batch_stream, val_batch_stream): # For double-zipped RDDs, the batches can be iterators from other PairDeserializer, # instead of lists. We need to convert them to lists if needed. key_batch = key_batch if hasattr(key_batch, '__len__') else list(key_batch) val_batch = val_batch if hasattr(val_batch, '__len__') else list(val_batch) if len(key_batch) != len(val_batch): raise ValueError("Can not deserialize PairRDD with different number of items" " in batches: (%d, %d)" % (len(key_batch), len(val_batch))) # for correctness with repeated cartesian/zip this must be returned as one batch yield zip(key_batch, val_batch) def load_stream(self, stream): return chain.from_iterable(self._load_stream_without_unbatching(stream)) def __repr__(self): return "PairDeserializer(%s, %s)" % (str(self.key_ser), str(self.val_ser)) class NoOpSerializer(FramedSerializer): def loads(self, obj): return obj def dumps(self, obj): return obj # Hook namedtuple, make it picklable __cls = {} def _restore(name, fields, value): """ Restore an object of namedtuple""" k = (name, fields) cls = __cls.get(k) if cls is None: cls = collections.namedtuple(name, fields) __cls[k] = cls return cls(*value) def _hack_namedtuple(cls): """ Make class generated by namedtuple picklable """ name = cls.__name__ fields = cls._fields def __reduce__(self): return (_restore, (name, fields, tuple(self))) cls.__reduce__ = __reduce__ cls._is_namedtuple_ = True return cls def _hijack_namedtuple(): """ Hack namedtuple() to make it picklable """ # hijack only one time if hasattr(collections.namedtuple, "__hijack"): return global _old_namedtuple # or it will put in closure global _old_namedtuple_kwdefaults # or it will put in closure too def _copy_func(f): return types.FunctionType(f.__code__, f.__globals__, f.__name__, f.__defaults__, f.__closure__) def _kwdefaults(f): # __kwdefaults__ contains the default values of keyword-only arguments which are # introduced from Python 3. The possible cases for __kwdefaults__ in namedtuple # are as below: # # - Does not exist in Python 2. # - Returns None in <= Python 3.5.x. # - Returns a dictionary containing the default values to the keys from Python 3.6.x # (See https://bugs.python.org/issue25628). kargs = getattr(f, "__kwdefaults__", None) if kargs is None: return {} else: return kargs _old_namedtuple = _copy_func(collections.namedtuple) _old_namedtuple_kwdefaults = _kwdefaults(collections.namedtuple) def namedtuple(*args, **kwargs): for k, v in _old_namedtuple_kwdefaults.items(): kwargs[k] = kwargs.get(k, v) cls = _old_namedtuple(*args, **kwargs) return _hack_namedtuple(cls) # replace namedtuple with new one collections.namedtuple.__globals__["_old_namedtuple_kwdefaults"] = _old_namedtuple_kwdefaults collections.namedtuple.__globals__["_old_namedtuple"] = _old_namedtuple collections.namedtuple.__globals__["_hack_namedtuple"] = _hack_namedtuple collections.namedtuple.__code__ = namedtuple.__code__ collections.namedtuple.__hijack = 1 # hack the cls already generated by namedtuple # those created in other module can be pickled as normal, # so only hack those in __main__ module for n, o in sys.modules["__main__"].__dict__.items(): if (type(o) is type and o.__base__ is tuple and hasattr(o, "_fields") and "__reduce__" not in o.__dict__): _hack_namedtuple(o) # hack inplace _hijack_namedtuple() class PickleSerializer(FramedSerializer): """ Serializes objects using Python's pickle serializer: http://docs.python.org/2/library/pickle.html This serializer supports nearly any Python object, but may not be as fast as more specialized serializers. """ def dumps(self, obj): return pickle.dumps(obj, protocol) if sys.version >= '3': def loads(self, obj, encoding="bytes"): return pickle.loads(obj, encoding=encoding) else: def loads(self, obj, encoding=None): return pickle.loads(obj) class CloudPickleSerializer(PickleSerializer): def dumps(self, obj): return cloudpickle.dumps(obj, 2) class MarshalSerializer(FramedSerializer): """ Serializes objects using Python's Marshal serializer: http://docs.python.org/2/library/marshal.html This serializer is faster than PickleSerializer but supports fewer datatypes. """ def dumps(self, obj): return marshal.dumps(obj) def loads(self, obj): return marshal.loads(obj) class AutoSerializer(FramedSerializer): """ Choose marshal or pickle as serialization protocol automatically """ def __init__(self): FramedSerializer.__init__(self) self._type = None def dumps(self, obj): if self._type is not None: return b'P' + pickle.dumps(obj, -1) try: return b'M' + marshal.dumps(obj) except Exception: self._type = b'P' return b'P' + pickle.dumps(obj, -1) def loads(self, obj): _type = obj[0] if _type == b'M': return marshal.loads(obj[1:]) elif _type == b'P': return pickle.loads(obj[1:]) else: raise ValueError("invalid sevialization type: %s" % _type) class CompressedSerializer(FramedSerializer): """ Compress the serialized data """ def __init__(self, serializer): FramedSerializer.__init__(self) assert isinstance(serializer, FramedSerializer), "serializer must be a FramedSerializer" self.serializer = serializer def dumps(self, obj): return zlib.compress(self.serializer.dumps(obj), 1) def loads(self, obj): return self.serializer.loads(zlib.decompress(obj)) def __repr__(self): return "CompressedSerializer(%s)" % self.serializer class UTF8Deserializer(Serializer): """ Deserializes streams written by String.getBytes. """ def __init__(self, use_unicode=True): self.use_unicode = use_unicode def loads(self, stream): length = read_int(stream) if length == SpecialLengths.END_OF_DATA_SECTION: raise EOFError elif length == SpecialLengths.NULL: return None s = stream.read(length) return s.decode("utf-8") if self.use_unicode else s def load_stream(self, stream): try: while True: yield self.loads(stream) except struct.error: return except EOFError: return def __repr__(self): return "UTF8Deserializer(%s)" % self.use_unicode def read_long(stream): length = stream.read(8) if not length: raise EOFError return struct.unpack("!q", length)[0] def write_long(value, stream): stream.write(struct.pack("!q", value)) def pack_long(value): return struct.pack("!q", value) def read_int(stream): length = stream.read(4) if not length: raise EOFError return struct.unpack("!i", length)[0] def write_int(value, stream): stream.write(struct.pack("!i", value)) def write_with_length(obj, stream): write_int(len(obj), stream) stream.write(obj) if __name__ == '__main__': import doctest (failure_count, test_count) = doctest.testmod() if failure_count: exit(-1)
apache-2.0
sandeepkbhat/pylearn2
pylearn2/expr/tests/test_probabilistic_max_pooling.py
44
24662
from __future__ import print_function import numpy as np import warnings from theano.compat.six.moves import xrange from theano import config from theano import function import theano.tensor as T from theano.sandbox.rng_mrg import MRG_RandomStreams from pylearn2.expr.probabilistic_max_pooling import max_pool_python from pylearn2.expr.probabilistic_max_pooling import max_pool_channels_python from pylearn2.expr.probabilistic_max_pooling import max_pool from pylearn2.expr.probabilistic_max_pooling import max_pool_channels from pylearn2.expr.probabilistic_max_pooling import max_pool_b01c from pylearn2.expr.probabilistic_max_pooling import max_pool_c01b from pylearn2.expr.probabilistic_max_pooling import max_pool_unstable from pylearn2.expr.probabilistic_max_pooling import max_pool_softmax_op from pylearn2.expr.probabilistic_max_pooling import \ max_pool_softmax_with_bias_op from pylearn2.testing import no_debug_mode def check_correctness_channelwise(f): """ Tests that the theano expression emitted by f computes the same values as the ground truth python function Note: to keep the python version as dead simple as possible (i.e., to make sure there are not bugs in the ground truth) it uses the numerically unstable verison of softmax. So this test does not work with too big of numbers. """ rng = np.random.RandomState([2012, 7, 19]) batch_size = 5 pool_size = 4 n = 3 * pool_size zv = rng.randn(batch_size, n).astype(config.floatX) * 1. - 1.5 top_down_v = rng.randn(batch_size, n / pool_size).astype(config.floatX) p_np, h_np = max_pool_channels_python(zv, pool_size, top_down_v) z_th = T.matrix() z_th.name = 'z_th' top_down_th = T.matrix() top_down_th.name = 'top_down_th' p_th, h_th = f(z_th, pool_size, top_down_th) func = function([z_th, top_down_th], [p_th, h_th]) pv, hv = func(zv, top_down_v) assert p_np.shape == pv.shape assert h_np.shape == hv.shape if not np.allclose(h_np, hv): print((h_np.min(), h_np.max())) print((hv.min(), hv.max())) assert False if not np.allclose(p_np, pv): diff = abs(p_np - pv) print('max diff ', diff.max()) print('min diff ', diff.min()) print('ave diff ', diff.mean()) assert False def check_correctness_sigmoid_channelwise(f): """ Tests that f is equivalent to the sigmoid function when the pool size is 1 """ rng = np.random.RandomState([2012, 7, 19]) batch_size = 5 pool_size = 1 n = 3 * pool_size zv = rng.randn(batch_size, n).astype(config.floatX) * 1. - 1.5 top_down_v = rng.randn(batch_size, n / pool_size).astype(config.floatX) z_th = T.matrix() z_th.name = 'z_th' top_down_th = T.matrix() top_down_th.name = 'top_down_th' p_th, h_th = f(z_th, pool_size, top_down_th) h_s = T.nnet.sigmoid(z_th + top_down_th) func = function([z_th, top_down_th], [p_th, h_th, h_s]) pv, hv, h_s = func(zv, top_down_v) p_s = h_s assert p_s.shape == pv.shape assert h_s.shape == hv.shape if not np.allclose(h_s, hv): print((h_s.min(), h_s.max())) print((hv.min(), hv.max())) assert False if not np.allclose(p_s, pv): diff = abs(p_s - pv) print('max diff ', diff.max()) print('min diff ', diff.min()) print('ave diff ', diff.mean()) assert False def check_correctness(f): rng = np.random.RandomState([2012, 7, 19]) batch_size = 5 rows = 32 cols = 30 channels = 3 pool_rows = 2 pool_cols = 3 zv = rng.randn(batch_size, rows, cols, channels).astype(config.floatX) * 2. - 3. p_np, h_np = max_pool_python(zv, (pool_rows, pool_cols)) z_th = T.TensorType(broadcastable=(False, False, False, False), dtype=config.floatX)() z_th.name = 'z_th' p_th, h_th = f(z_th, (pool_rows, pool_cols)) func = function([z_th], [p_th, h_th]) pv, hv = func(zv) assert p_np.shape == pv.shape assert h_np.shape == hv.shape if not np.allclose(h_np, hv): print((h_np.min(), h_np.max())) print((hv.min(), hv.max())) assert False assert np.allclose(p_np, pv) def check_correctness_bc01(f): """ Tests that the theano expression emitted by f computes the same values as the ground truth python function Note: to keep the python version as dead simple as possible (i.e., to make sure there are not bugs in the ground truth) it uses the numerically unstable verison of softmax. So this test does not work with too big of numbers. """ rng = np.random.RandomState([2012, 7, 19]) batch_size = 5 rows = 32 cols = 30 channels = 3 pool_rows = 2 pool_cols = 3 zv = rng.randn(batch_size, rows, cols, channels).astype(config.floatX) * 1. - 1.5 top_down_v = rng.randn(batch_size, rows / pool_rows, cols / pool_cols, channels).astype(config.floatX) p_np, h_np = max_pool_python(zv, (pool_rows, pool_cols), top_down_v) z_th = T.TensorType(broadcastable=(False, False, False, False), dtype = config.floatX)() z_th.name = 'z_th' zr = z_th.dimshuffle(0, 3, 1, 2) top_down_th = T.TensorType(broadcastable=(False, False, False, False), dtype = config.floatX)() top_down_th.name = 'top_down_th' top_down_r = top_down_th.dimshuffle(0, 3, 1, 2) p_th, h_th = f(zr, (pool_rows, pool_cols), top_down_r) func = function([z_th, top_down_th], [p_th.dimshuffle(0, 2, 3, 1), h_th.dimshuffle(0, 2, 3, 1)]) pv, hv = func(zv, top_down_v) assert p_np.shape == pv.shape assert h_np.shape == hv.shape if not np.allclose(h_np, hv): print((h_np.min(), h_np.max())) print((hv.min(), hv.max())) assert False if not np.allclose(p_np, pv): diff = abs(p_np - pv) print('max diff ', diff.max()) print('min diff ', diff.min()) print('ave diff ', diff.mean()) assert False def check_correctness_c01b(f): """ Tests that the theano expression emitted by f computes the same values as the ground truth python function Note: to keep the python version as dead simple as possible (i.e., to make sure there are not bugs in the ground truth) it uses the numerically unstable version of softmax. So this test does not work with too big of numbers. """ rng = np.random.RandomState([2013, 5, 6]) batch_size = 5 rows = 32 cols = 30 channels = 3 pool_rows = 2 pool_cols = 3 # Do the python ground truth in b01c format zv = rng.randn(batch_size, rows, cols, channels).astype(config.floatX) * 1. - 1.5 top_down_v = rng.randn(batch_size, rows / pool_rows, cols / pool_cols, channels).astype(config.floatX) p_np, h_np = max_pool_python(zv, (pool_rows, pool_cols), top_down_v) # Dimshuffle the inputs into c01b for the theano implementation z_th = T.TensorType(broadcastable=(False, False, False, False), dtype = config.floatX)() z_th.tag.test_value = zv z_th.name = 'z_th' zr = z_th.dimshuffle(3, 1, 2, 0) top_down_th = T.TensorType(broadcastable=(False, False, False, False), dtype = config.floatX)() top_down_th.name = 'top_down_th' top_down_th.tag.test_value = top_down_v top_down_r = top_down_th.dimshuffle(3, 1, 2, 0) p_th, h_th = f(zr, (pool_rows, pool_cols), top_down_r) func = function([z_th, top_down_th], [p_th.dimshuffle(3, 1, 2, 0), h_th.dimshuffle(3, 1, 2, 0)]) pv, hv = func(zv, top_down_v) if not p_np.shape == pv.shape: raise AssertionError(str((p_np.shape, pv.shape))) assert h_np.shape == hv.shape if not np.allclose(h_np, hv): print((h_np.min(), h_np.max())) print((hv.min(), hv.max())) assert False if not np.allclose(p_np, pv): diff = abs(p_np - pv) print('max diff ', diff.max()) print('min diff ', diff.min()) print('ave diff ', diff.mean()) assert False warnings.warn("TODO: make sampling tests run on c01b format of pooling.") @no_debug_mode def check_sample_correctishness_b01c(f): batch_size = 5 rows = 32 cols = 30 channels = 3 pool_rows = 2 pool_cols = 3 rng = np.random.RandomState([2012, 9, 26]) zv = rng.randn(batch_size, rows, cols, channels).astype(config.floatX) * 2. - 3. top_down_v = rng.randn(batch_size, rows / pool_rows, cols / pool_cols, channels).astype(config.floatX) z_th = T.TensorType(broadcastable=(False, False, False, False), dtype = config.floatX)() z_th.name = 'z_th' top_down_th = T.TensorType(broadcastable=(False, False, False, False), dtype = config.floatX)() top_down_th.name = 'top_down_th' theano_rng = MRG_RandomStreams(rng.randint(2147462579)) p_th, h_th, p_sth, h_sth = f(z_th, (pool_rows, pool_cols), top_down_th, theano_rng) prob_func = function([z_th, top_down_th], [p_th, h_th]) pv, hv = prob_func(zv, top_down_v) sample_func = function([z_th, top_down_th], [p_sth, h_sth]) acc_p = 0. * pv acc_h = 0. * hv # make sure the test gets good coverage, ie, that it includes many # different activation probs for both detector and pooling layer buckets = 10 bucket_width = 1. / float(buckets) for i in xrange(buckets): lower_lim = i * bucket_width upper_lim = (i+1) * bucket_width assert np.any((pv >= lower_lim) * (pv < upper_lim)) assert np.any((hv >= lower_lim) * (hv < upper_lim)) assert upper_lim == 1. for i in xrange(10000): ps, hs = sample_func(zv, top_down_v) assert ps.shape == pv.shape assert hs.shape == hv.shape acc_p += ps acc_h += hs est_p = acc_p / float(i+1) est_h = acc_h / float(i+1) pd = np.abs(est_p-pv) hd = np.abs(est_h-hv) """ # plot maps of the estimation error, this is to see if it has # some spatial pattern this is useful for detecting bugs like # not handling the border correctly, etc. from pylearn2.gui.patch_viewer import PatchViewer pv = PatchViewer((pd.shape[0],pd.shape[3]),(pd.shape[1],pd.shape[2]), is_color = False) for i in xrange(pd.shape[0]): for j in xrange(pd.shape[3]): pv.add_patch((pd[i,:,:,j] / pd.max() )* 2.0 - 1.0, rescale = False) pv.show() pv = PatchViewer((hd.shape[0],hd.shape[3]),(hd.shape[1],hd.shape[2]), is_color = False) for i in xrange(hd.shape[0]): for j in xrange(hd.shape[3]): pv.add_patch( (hd[i,:,:,j] / hd.max() )* 2.0 - 1.0, rescale = False) pv.show() """ """ plot expectation to estimate versus error in estimation expect bigger errors for values closer to 0.5 from matplotlib import pyplot as plt #nelem = reduce( lambda x, y : x*y, pd.shape) #plt.scatter( pv.reshape(nelem), pd.reshape(nelem)) #plt.show() nelem = reduce( lambda x, y : x*y, hd.shape) plt.scatter( hv.reshape(nelem), hd.reshape(nelem)) plt.show() """ # don't really know how tight this should be # but you can try to pose an equivalent problem # and implement it in another way # using a numpy implementation in softmax_acc.py # I got a max error of .17 assert max(pd.max(), hd.max()) < .17 # Do exhaustive checks on just the last sample assert np.all((ps == 0) + (ps == 1)) assert np.all((hs == 0) + (hs == 1)) for k in xrange(batch_size): for i in xrange(ps.shape[1]): for j in xrange(ps.shape[2]): for l in xrange(channels): p = ps[k, i, j, l] h = hs[k, i*pool_rows:(i+1)*pool_rows, j*pool_cols:(j+1)*pool_cols, l] assert h.shape == (pool_rows, pool_cols) assert p == h.max() """ If you made it to here, it's correctish (cant tell if samples are perfectly "correct") """ @no_debug_mode def check_sample_correctishness_c01b(f): batch_size = 5 rows = 32 cols = 30 channels = 3 pool_rows = 2 pool_cols = 3 rng = np.random.RandomState([2012, 9, 26]) zv = rng.randn(channels, rows, cols, batch_size).astype(config.floatX) * 2. - 3. top_down_v = rng.randn(channels, rows / pool_rows, cols / pool_cols, batch_size).astype(config.floatX) z_th = T.TensorType(broadcastable=(False, False, False, False), dtype = config.floatX)() z_th.name = 'z_th' z_th.tag.test_value = zv top_down_th = T.TensorType(broadcastable=(False, False, False, False), dtype = config.floatX)() top_down_th.name = 'top_down_th' top_down_th.tag.test_value = top_down_v theano_rng = MRG_RandomStreams(rng.randint(2147462579)) p_th, h_th, p_sth, h_sth = f(z_th, (pool_rows, pool_cols), top_down_th, theano_rng) prob_func = function([z_th, top_down_th], [p_th, h_th]) pv, hv = prob_func(zv, top_down_v) sample_func = function([z_th, top_down_th], [p_sth, h_sth]) acc_p = 0. * pv acc_h = 0. * hv # make sure the test gets good coverage, ie, that it includes # many different activation probs for both detector and pooling layer buckets = 10 bucket_width = 1. / float(buckets) for i in xrange(buckets): lower_lim = i * bucket_width upper_lim = (i+1) * bucket_width assert np.any((pv >= lower_lim) * (pv < upper_lim)) assert np.any((hv >= lower_lim) * (hv < upper_lim)) assert upper_lim == 1. for i in xrange(10000): ps, hs = sample_func(zv, top_down_v) assert ps.shape == pv.shape assert hs.shape == hv.shape acc_p += ps acc_h += hs est_p = acc_p / float(i+1) est_h = acc_h / float(i+1) pd = np.abs(est_p-pv) hd = np.abs(est_h-hv) # don't really know how tight this should be # but you can try to pose an equivalent problem # and implement it in another way # using a numpy implementation in softmax_acc.py # I got a max error of .17 assert max(pd.max(), hd.max()) < .17 # Do exhaustive checks on just the last sample assert np.all((ps == 0) + (ps == 1)) assert np.all((hs == 0) + (hs == 1)) for k in xrange(batch_size): for i in xrange(ps.shape[1]): for j in xrange(ps.shape[2]): for l in xrange(channels): p = ps[l, i, j, k] h = hs[l, i*pool_rows:(i+1)*pool_rows, j*pool_cols:(j+1)*pool_cols, k] assert h.shape == (pool_rows, pool_cols) assert p == h.max() """ If you made it to here, it's correctish (cant tell if samples are perfectly "correct") """ @no_debug_mode def check_sample_correctishness_bc01(f): """ Tests that the sample mean converges to the conditional expectation given by the function Tests that p really is the max of the samples Tests that at most one h in a group is on """ batch_size = 5 rows = 32 cols = 30 channels = 3 pool_rows = 2 pool_cols = 3 rng = np.random.RandomState([2012, 9, 26]) zv = rng.randn(batch_size, channels, rows, cols).astype(config.floatX) * 2. - 3. top_down_v = rng.randn(batch_size, channels, rows / pool_rows, cols / pool_cols).astype(config.floatX) z_th = T.TensorType(broadcastable=(False, False, False, False), dtype = config.floatX)() z_th.tag.test_value = zv z_th.name = 'z_th' top_down_th = T.TensorType(broadcastable=(False, False, False, False), dtype = config.floatX)() top_down_th.tag.test_value = top_down_v top_down_th.name = 'top_down_th' theano_rng = MRG_RandomStreams(rng.randint(2147462579)) p_th, h_th, p_sth, h_sth = f(z_th, (pool_rows, pool_cols), top_down_th, theano_rng) prob_func = function([z_th, top_down_th], [p_th, h_th]) pv, hv = prob_func(zv, top_down_v) sample_func = function([z_th, top_down_th], [p_sth, h_sth]) acc_p = 0. * pv acc_h = 0. * hv # make sure the test gets good coverage, ie, that it includes many # different activation probs for both detector and pooling layer buckets = 10 bucket_width = 1. / float(buckets) for i in xrange(buckets): lower_lim = i * bucket_width upper_lim = (i+1) * bucket_width assert np.any((pv >= lower_lim) * (pv < upper_lim)) assert np.any((hv >= lower_lim) * (hv < upper_lim)) assert upper_lim == 1. for i in xrange(10000): ps, hs = sample_func(zv, top_down_v) assert ps.shape == pv.shape assert hs.shape == hv.shape acc_p += ps acc_h += hs est_p = acc_p / float(i+1) est_h = acc_h / float(i+1) pd = np.abs(est_p-pv) hd = np.abs(est_h-hv) """ # plot maps of the estimation error, this is to see if it has some # spatial pattern this is useful for detecting bugs like not handling # the border correctly, etc. from pylearn2.gui.patch_viewer import PatchViewer pv = PatchViewer((pd.shape[0],pd.shape[3]),(pd.shape[1],pd.shape[2]), is_color = False) for i in xrange(pd.shape[0]): for j in xrange(pd.shape[3]): pv.add_patch( (pd[i,:,:,j] / pd.max() )* 2.0 - 1.0, rescale = False) pv.show() pv = PatchViewer((hd.shape[0],hd.shape[3]), (hd.shape[1],hd.shape[2]), is_color = False) for i in xrange(hd.shape[0]): for j in xrange(hd.shape[3]): pv.add_patch( (hd[i,:,:,j] / hd.max() )* 2.0 - 1.0, rescale = False) pv.show() """ """ plot expectation to estimate versus error in estimation expect bigger errors for values closer to 0.5 from matplotlib import pyplot as plt #nelem = reduce( lambda x, y : x*y, pd.shape) #plt.scatter( pv.reshape(nelem), pd.reshape(nelem)) #plt.show() nelem = reduce( lambda x, y : x*y, hd.shape) plt.scatter( hv.reshape(nelem), hd.reshape(nelem)) plt.show() """ # don't really know how tight this should be # but you can try to pose an equivalent problem # and implement it in another way # using a numpy implementation in softmax_acc.py # I got a max error of .17 assert max(pd.max(), hd.max()) < .17 # Do exhaustive checks on just the last sample assert np.all((ps == 0) + (ps == 1)) assert np.all((hs == 0) + (hs == 1)) for k in xrange(batch_size): for i in xrange(ps.shape[2]): for j in xrange(ps.shape[3]): for l in xrange(channels): p = ps[k, l, i, j] h = hs[k, l, i*pool_rows:(i+1)*pool_rows, j*pool_cols:(j+1)*pool_cols] assert h.shape == (pool_rows, pool_cols) assert p == h.max() assert h.sum() <= 1 """ If you made it to here, it's correctish (cant tell if samples are perfectly "correct") """ @no_debug_mode def check_sample_correctishness_channelwise(f): """ Tests that the sample mean converges to the conditional expectation given by the function Tests that p really is the max of the samples tests that at most one h in a group is on """ batch_size = 27 pool_size = 4 n = pool_size * 21 rng = np.random.RandomState([2012, 9, 26]) zv = rng.randn(batch_size, n).astype(config.floatX) * 3.5 - 5. top_down_v = rng.randn(batch_size, n / pool_size).astype(config.floatX) z_th = T.matrix() z_th.tag.test_value = zv z_th.name = 'z_th' top_down_th = T.matrix() top_down_th.tag.test_value = top_down_v top_down_th.name = 'top_down_th' theano_rng = MRG_RandomStreams(rng.randint(2147462579)) p_th, h_th, p_sth, h_sth = f(z_th, pool_size, top_down_th, theano_rng) prob_func = function([z_th, top_down_th], [p_th, h_th]) pv, hv = prob_func(zv, top_down_v) sample_func = function([z_th, top_down_th], [p_sth, h_sth]) acc_p = 0. * pv acc_h = 0. * hv # make sure the test gets good coverage, ie, that it includes # many different activation probs for both detector and pooling layer buckets = 10 bucket_width = 1. / float(buckets) print(pv.min(), pv.max()) print(hv.min(), hv.max()) for i in xrange(buckets): lower_lim = i * bucket_width upper_lim = (i+1) * bucket_width print(lower_lim, upper_lim) assert np.any((pv >= lower_lim) * (pv < upper_lim)) assert np.any((hv >= lower_lim) * (hv < upper_lim)) assert upper_lim == 1. for i in xrange(10000): ps, hs = sample_func(zv, top_down_v) assert ps.shape == pv.shape assert hs.shape == hv.shape acc_p += ps acc_h += hs est_p = acc_p / float(i+1) est_h = acc_h / float(i+1) pd = np.abs(est_p-pv) hd = np.abs(est_h-hv) """ # plot maps of the estimation error, this is to see if it has some # spatial pattern this is useful for detecting bugs like not handling # the border correctly, etc. # from pylearn2.gui.patch_viewer import PatchViewer pv = PatchViewer((pd.shape[0],pd.shape[3]),(pd.shape[1],pd.shape[2]), is_color = False) for i in xrange(pd.shape[0]): for j in xrange(pd.shape[3]): pv.add_patch( (pd[i,:,:,j] / pd.max() )* 2.0 - 1.0, rescale = False) pv.show() pv = PatchViewer((hd.shape[0],hd.shape[3]),(hd.shape[1],hd.shape[2]), is_color = False) for i in xrange(hd.shape[0]): for j in xrange(hd.shape[3]): pv.add_patch( (hd[i,:,:,j] / hd.max() )* 2.0 - 1.0, rescale = False) pv.show() """ """ plot expectation to estimate versus error in estimation expect bigger errors for values closer to 0.5 from matplotlib import pyplot as plt #nelem = reduce( lambda x, y : x*y, pd.shape) #plt.scatter( pv.reshape(nelem), pd.reshape(nelem)) #plt.show() nelem = reduce( lambda x, y : x*y, hd.shape) plt.scatter( hv.reshape(nelem), hd.reshape(nelem)) plt.show() """ # don't really know how tight this should be # but you can try to pose an equivalent problem # and implement it in another way # using a numpy implementation in softmax_acc.py # I got a max error of .17 assert max(pd.max(), hd.max()) < .17 # Do exhaustive checks on just the last sample assert np.all((ps == 0) + (ps == 1)) assert np.all((hs == 0) + (hs == 1)) for k in xrange(batch_size): for i in xrange(ps.shape[1]): p = ps[k, i] h = hs[k, i*pool_size:(i+1)*pool_size] assert h.shape == (pool_size,) assert p == h.max() assert h.sum() <= 1 """ If you made it to here, it's correctish (cant tell if samples are perfectly "correct") """ def test_max_pool_channels(): check_correctness_channelwise(max_pool_channels) def test_max_pool_channels_sigmoid(): check_correctness_sigmoid_channelwise(max_pool_channels) def test_max_pool_channels_samples(): check_sample_correctishness_channelwise(max_pool_channels) def test_max_pool(): check_correctness_bc01(max_pool) def test_max_pool_c01b(): check_correctness_c01b(max_pool_c01b) def test_max_pool_samples(): check_sample_correctishness_bc01(max_pool) def test_max_pool_b01c_samples(): check_sample_correctishness_b01c(max_pool_b01c) def test_max_pool_c01b_samples(): check_sample_correctishness_c01b(max_pool_c01b) def test_max_pool_b01c(): check_correctness(max_pool_b01c) def test_max_pool_unstable(): check_correctness(max_pool_unstable) def test_max_pool_softmax_op(): check_correctness(max_pool_softmax_op) def test_max_pool_softmax_with_bias_op(): check_correctness(max_pool_softmax_with_bias_op)
bsd-3-clause
IntelLabs/hpat
examples/series/series_take.py
1
1703
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import pandas as pd from numba import njit @njit def series_take(): series = pd.Series([5, 4, 3, 2, 1]) return series.take([4, 1]) # Expect series of 4, 1 print(series_take())
bsd-2-clause
juharris/tensorflow
tensorflow/examples/learn/text_classification_character_cnn.py
6
4216
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This is an example of using convolutional networks over characters for DBpedia dataset to predict class from description of an entity. This model is similar to one described in this paper: "Character-level Convolutional Networks for Text Classification" http://arxiv.org/abs/1509.01626 and is somewhat alternative to the Lua code from here: https://github.com/zhangxiangxiao/Crepe """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import numpy as np import pandas from sklearn import metrics import tensorflow as tf from tensorflow.contrib import learn FLAGS = None MAX_DOCUMENT_LENGTH = 100 N_FILTERS = 10 FILTER_SHAPE1 = [20, 256] FILTER_SHAPE2 = [20, N_FILTERS] POOLING_WINDOW = 4 POOLING_STRIDE = 2 def char_cnn_model(x, y): """Character level convolutional neural network model to predict classes.""" y = tf.one_hot(y, 15, 1, 0) byte_list = tf.reshape(learn.ops.one_hot_matrix(x, 256), [-1, MAX_DOCUMENT_LENGTH, 256, 1]) with tf.variable_scope('CNN_Layer1'): # Apply Convolution filtering on input sequence. conv1 = tf.contrib.layers.convolution2d(byte_list, N_FILTERS, FILTER_SHAPE1, padding='VALID') # Add a RELU for non linearity. conv1 = tf.nn.relu(conv1) # Max pooling across output of Convolution+Relu. pool1 = tf.nn.max_pool(conv1, ksize=[1, POOLING_WINDOW, 1, 1], strides=[1, POOLING_STRIDE, 1, 1], padding='SAME') # Transpose matrix so that n_filters from convolution becomes width. pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # Second level of convolution filtering. conv2 = tf.contrib.layers.convolution2d(pool1, N_FILTERS, FILTER_SHAPE2, padding='VALID') # Max across each filter to get useful features for classification. pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # Apply regular WX + B and classification. prediction, loss = learn.models.logistic_regression(pool2, y) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return {'class': tf.argmax(prediction, 1), 'prob': prediction}, loss, train_op def main(unused_argv): # Prepare training and testing data dbpedia = learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data, size='large') x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary char_processor = learn.preprocessing.ByteProcessor(MAX_DOCUMENT_LENGTH) x_train = np.array(list(char_processor.fit_transform(x_train))) x_test = np.array(list(char_processor.transform(x_test))) # Build model classifier = learn.Estimator(model_fn=char_cnn_model) # Train and predict classifier.fit(x_train, y_train, steps=100) y_predicted = [ p['class'] for p in classifier.predict(x_test, as_iterable=True)] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true' ) FLAGS = parser.parse_args() tf.app.run()
apache-2.0
jaidevd/scikit-learn
sklearn/feature_selection/tests/test_mutual_info.py
30
6881
from __future__ import division import numpy as np from numpy.testing import run_module_suite from scipy.sparse import csr_matrix from sklearn.utils.testing import (assert_array_equal, assert_almost_equal, assert_false, assert_raises, assert_equal, assert_allclose, assert_greater) from sklearn.feature_selection.mutual_info_ import ( mutual_info_regression, mutual_info_classif, _compute_mi) def test_compute_mi_dd(): # In discrete case computations are straightforward and can be done # by hand on given vectors. x = np.array([0, 1, 1, 0, 0]) y = np.array([1, 0, 0, 0, 1]) H_x = H_y = -(3/5) * np.log(3/5) - (2/5) * np.log(2/5) H_xy = -1/5 * np.log(1/5) - 2/5 * np.log(2/5) - 2/5 * np.log(2/5) I_xy = H_x + H_y - H_xy assert_almost_equal(_compute_mi(x, y, True, True), I_xy) def test_compute_mi_cc(): # For two continuous variables a good approach is to test on bivariate # normal distribution, where mutual information is known. # Mean of the distribution, irrelevant for mutual information. mean = np.zeros(2) # Setup covariance matrix with correlation coeff. equal 0.5. sigma_1 = 1 sigma_2 = 10 corr = 0.5 cov = np.array([ [sigma_1**2, corr * sigma_1 * sigma_2], [corr * sigma_1 * sigma_2, sigma_2**2] ]) # True theoretical mutual information. I_theory = (np.log(sigma_1) + np.log(sigma_2) - 0.5 * np.log(np.linalg.det(cov))) np.random.seed(0) Z = np.random.multivariate_normal(mean, cov, size=1000) x, y = Z[:, 0], Z[:, 1] # Theory and computed values won't be very close, assert that the # first figures after decimal point match. for n_neighbors in [3, 5, 7]: I_computed = _compute_mi(x, y, False, False, n_neighbors) assert_almost_equal(I_computed, I_theory, 1) def test_compute_mi_cd(): # To test define a joint distribution as follows: # p(x, y) = p(x) p(y | x) # X ~ Bernoulli(p) # (Y | x = 0) ~ Uniform(-1, 1) # (Y | x = 1) ~ Uniform(0, 2) # Use the following formula for mutual information: # I(X; Y) = H(Y) - H(Y | X) # Two entropies can be computed by hand: # H(Y) = -(1-p)/2 * ln((1-p)/2) - p/2*log(p/2) - 1/2*log(1/2) # H(Y | X) = ln(2) # Now we need to implement sampling from out distribution, which is # done easily using conditional distribution logic. n_samples = 1000 np.random.seed(0) for p in [0.3, 0.5, 0.7]: x = np.random.uniform(size=n_samples) > p y = np.empty(n_samples) mask = x == 0 y[mask] = np.random.uniform(-1, 1, size=np.sum(mask)) y[~mask] = np.random.uniform(0, 2, size=np.sum(~mask)) I_theory = -0.5 * ((1 - p) * np.log(0.5 * (1 - p)) + p * np.log(0.5 * p) + np.log(0.5)) - np.log(2) # Assert the same tolerance. for n_neighbors in [3, 5, 7]: I_computed = _compute_mi(x, y, True, False, n_neighbors) assert_almost_equal(I_computed, I_theory, 1) def test_compute_mi_cd_unique_label(): # Test that adding unique label doesn't change MI. n_samples = 100 x = np.random.uniform(size=n_samples) > 0.5 y = np.empty(n_samples) mask = x == 0 y[mask] = np.random.uniform(-1, 1, size=np.sum(mask)) y[~mask] = np.random.uniform(0, 2, size=np.sum(~mask)) mi_1 = _compute_mi(x, y, True, False) x = np.hstack((x, 2)) y = np.hstack((y, 10)) mi_2 = _compute_mi(x, y, True, False) assert_equal(mi_1, mi_2) # We are going test that feature ordering by MI matches our expectations. def test_mutual_info_classif_discrete(): X = np.array([[0, 0, 0], [1, 1, 0], [2, 0, 1], [2, 0, 1], [2, 0, 1]]) y = np.array([0, 1, 2, 2, 1]) # Here X[:, 0] is the most informative feature, and X[:, 1] is weakly # informative. mi = mutual_info_classif(X, y, discrete_features=True) assert_array_equal(np.argsort(-mi), np.array([0, 2, 1])) def test_mutual_info_regression(): # We generate sample from multivariate normal distribution, using # transformation from initially uncorrelated variables. The zero # variables after transformation is selected as the target vector, # it has the strongest correlation with the variable 2, and # the weakest correlation with the variable 1. T = np.array([ [1, 0.5, 2, 1], [0, 1, 0.1, 0.0], [0, 0.1, 1, 0.1], [0, 0.1, 0.1, 1] ]) cov = T.dot(T.T) mean = np.zeros(4) np.random.seed(0) Z = np.random.multivariate_normal(mean, cov, size=1000) X = Z[:, 1:] y = Z[:, 0] mi = mutual_info_regression(X, y, random_state=0) assert_array_equal(np.argsort(-mi), np.array([1, 2, 0])) def test_mutual_info_classif_mixed(): # Here the target is discrete and there are two continuous and one # discrete feature. The idea of this test is clear from the code. np.random.seed(0) X = np.random.rand(1000, 3) X[:, 1] += X[:, 0] y = ((0.5 * X[:, 0] + X[:, 2]) > 0.5).astype(int) X[:, 2] = X[:, 2] > 0.5 mi = mutual_info_classif(X, y, discrete_features=[2], n_neighbors=3, random_state=0) assert_array_equal(np.argsort(-mi), [2, 0, 1]) for n_neighbors in [5, 7, 9]: mi_nn = mutual_info_classif(X, y, discrete_features=[2], n_neighbors=n_neighbors, random_state=0) # Check that the continuous values have an higher MI with greater # n_neighbors assert_greater(mi_nn[0], mi[0]) assert_greater(mi_nn[1], mi[1]) # The n_neighbors should not have any effect on the discrete value # The MI should be the same assert_equal(mi_nn[2], mi[2]) def test_mutual_info_options(): X = np.array([[0, 0, 0], [1, 1, 0], [2, 0, 1], [2, 0, 1], [2, 0, 1]], dtype=float) y = np.array([0, 1, 2, 2, 1], dtype=float) X_csr = csr_matrix(X) for mutual_info in (mutual_info_regression, mutual_info_classif): assert_raises(ValueError, mutual_info_regression, X_csr, y, discrete_features=False) mi_1 = mutual_info(X, y, discrete_features='auto', random_state=0) mi_2 = mutual_info(X, y, discrete_features=False, random_state=0) mi_3 = mutual_info(X_csr, y, discrete_features='auto', random_state=0) mi_4 = mutual_info(X_csr, y, discrete_features=True, random_state=0) assert_array_equal(mi_1, mi_2) assert_array_equal(mi_3, mi_4) assert_false(np.allclose(mi_1, mi_3)) if __name__ == '__main__': run_module_suite()
bsd-3-clause
algorithmic-music-exploration/amen
tests/test_feature.py
1
5779
#!/usr/bin/env python # -*- coding: utf-8 -*- import librosa import numpy as np import pandas as pd import pytest from pandas.util.testing import assert_frame_equal from amen.audio import Audio from amen.feature import Feature from amen.feature import FeatureCollection from amen.timing import TimeSlice from amen.utils import example_audio_file from amen.exceptions import FeatureError EXAMPLE_FILE = example_audio_file() audio = Audio(EXAMPLE_FILE) test_times = np.linspace(0, 10, num=1000) test_index = pd.to_timedelta(test_times, unit='s') test_dataframe = pd.DataFrame(data=audio.analysis_samples[:1000], index=test_index) test_feature = Feature(test_dataframe) def test_data_validation(): with pytest.raises(AssertionError): f = Feature([1, 2, 3]) def test_data(): assert_frame_equal(test_feature.data, test_dataframe) def test_default_aggregate(): assert test_feature.aggregate == np.mean def test_default_base(): assert test_feature.base == None def test_default_name(): assert test_feature.name == test_dataframe.keys()[0] def test_aggregate(): test_feature = Feature(test_dataframe, aggregate=np.median) assert test_feature.aggregate == np.median def test_base(): base_feature = Feature(test_dataframe) test_feature = Feature(test_dataframe, base=base_feature) assert test_feature.base == base_feature def test_base_validation(): with pytest.raises(AssertionError): f = Feature(test_dataframe, np.mean, [1, 2, 3]) # Test list wrappers def test_iter(): looped_data = [] for d in test_feature: looped_data.append(d) assert looped_data == test_feature.data[test_feature.name].tolist() def test_getitem(): assert test_feature[0] == test_feature.data[test_feature.name][0] # Test __repr__ def test_repr(): repr_string = '<Feature, {0}>'.format((test_feature.name)) assert test_feature.__repr__() == repr_string # Test at() time_slices = [TimeSlice(0, 0.5, audio), TimeSlice(1, 0.5, audio)] feature_at = test_feature.at(time_slices) test_slice = time_slices[0] slice_index = (test_slice.time <= test_feature.data.index) & ( test_feature.data.index < test_slice.time + test_slice.duration ) target_data = test_feature.aggregate(test_feature.data[slice_index], axis=0) def test_default_aggregate(): assert feature_at.aggregate == test_feature.aggregate def test_default_base(): assert feature_at.base == test_feature def test_default_data(): assert feature_at.data.loc[test_slice.time].all() == target_data.all() def test_default_length(): assert len(feature_at.data) == len(time_slices) def test_base_with_second_resample(): feature_again = feature_at.at(time_slices[0]) assert feature_at.base == test_feature def test_base_with_second_resample(): feature_again = feature_at.at(time_slices[0]) assert feature_again.data.loc[test_slice.time].all() == target_data.all() def test_with_single_slice(): feature_at = test_feature.at(time_slices[0]) assert len(feature_at.data) == 1 # Test with_time def test_with_time_raises(): def test(): with pytest.raises(FeatureError): for beat, feature in test_feature.with_time(): pass def test_with_time_beats(): beats = [] for beat, feature in feature_at.with_time(): beats.append(beat) assert beats == time_slices def test_with_time_features(): looped_features = [] for feature in feature_at: looped_features.append(feature) features = [] for beat, feature in feature_at.with_time(): features.append(feature) assert features == looped_features # Test FeatureCollection feature_collection = FeatureCollection() feature_collection['test'] = test_feature feature_collection['another_test'] = test_feature def test_iter(): looped_data = [] for data in feature_collection: looped_data.append(data) test_data = [] length = len(test_feature) for i in range(length): res = {} for key, feature in feature_collection.items(): res[key] = feature.data[feature.name][i] test_data.append(res) assert res == looped_data[i] def test_len(): key = list(feature_collection.keys())[0] length = len(feature_collection[key]) assert len(feature_collection) == length def test_at(): feature_collection_at = feature_collection.at(time_slices) assert ( feature_collection_at['test'].data.loc[test_slice.time].all() == target_data.all() ) def test_get(): # Casting to list for Python 3 new_feature_collection = feature_collection.get('another_test') assert list(new_feature_collection.keys()) == ['another_test'] def test_get_with_list(): # Casting to list for Python 3 new_feature_collection = feature_collection.get(['another_test']) assert list(new_feature_collection.keys()) == ['another_test'] # Test with_time def test_feature_collection_with_time_raises(): def test(): with pytest.raises(FeatureError): for beat, feature in feature_collection.with_time(): pass def test_feature_collection_with_time_beats(): feature_collection_at = feature_collection.at(time_slices) beats = [] for beat, feature in feature_collection_at.with_time(): beats.append(beat) assert beats == time_slices def test_feature_collection_with_time_features(): feature_collection_at = feature_collection.at(time_slices) looped_features = [] for feature in feature_collection_at: looped_features.append(feature) features = [] for beat, feature in feature_collection_at.with_time(): features.append(feature) assert features == looped_features
bsd-2-clause
jperla/happynews
model/ppc.py
1
11242
#!/usr/bin/env python """ Functions useful in doing Posterior Predictive Checks of models. See Gelman et al. 1996. Uses graphlib and topiclib. Copyright (C) 2011 Joseph Perla GNU Affero General Public License. See <http://www.gnu.org/licenses/>. """ import math from itertools import izip import numpy as np import jsondata import graphlib import topiclib class PosteriorPredictiveChecks(object): def __init__(self): pass def simulate(self, posterior, observed): """Accepts the posterior model parameters. Also accepts the observed value, but only to figure out the auxiliary variables (like number of words to generate in this document). Returns a new simulated observation from the posterior e.g. using MCMC. """ raise NotImplementedError def observed_norm(self, observed): """Accepts the observed data. Returns a real number. e.g. in Linear regression, return the observed y """ raise NotImplementedError def posterior_norm(self, posterior): """Accepts the observed data. Returns a real number. e.g. in Linear regression, return the Ax+b predicted value without noise """ raise NotImplementedError def discrepancy(self, posterior, observed): """Accepts the posterior model parameters, and observed values. These may be real observed values, or simulated. Returns a real number. e.g. in Linear regression, would be standardized residual """ raise NotImplementedError def iterpost(self, global_params, local_params, observed_values): for (local, observed) in izip(local_params, observed_values): posterior = {} posterior.update(global_params) posterior.update(local) yield posterior, local, observed def scatterplot(self, global_params, local_params, observed_values): """Accepts global parameters dictionary. Also accepts a list of dictionaries of local parameters. Finally a list of observed values which should be same size as local parameters. Generates a list of 2-tuples (D(y, theta), D(yrep, theta)). Can be used to generate p-value graph to check model fit. """ output = [] for posterior, local, observed in self.iterpost(global_params, local_params, observed_values): Dy = self.discrepancy(posterior, observed) Dyrep = self.discrepancy(posterior, self.simulate(posterior, observed)) output.append((Dy, Dyrep)) return list(sorted(output)) def min_discrepancy_histogram(self, global_params, local_params, observed_values): # NOTE: I misunderstood this graph, This is wrong. # Computing this is much harder, and requires fitting the simulation. """Accepts global parameters dictionary. Also accepts a list of dictionaries of local parameters. Finally a list of observed values which should be same size as local parameters. Generates a histogram of discrepancies for Dmin See Gelman et al. 1996 Returns 2-tuple of (float, [floats]). Representing the minimum discrepancy of observation to its posterior, and a list of the simulated discrepancies from that same minimum posterior. """ # first find Dmin minimum_discrepancy = float('inf') minimum = (None, None) for posterior, local, observed in self.iterpost(global_params, local_params, observed_values): d = self.discrepancy(posterior, observed) if d < minimum_discrepancy: minimum_discrepancy = d minimum = (local, observed) # now simulate 1000 tosses simulations = 1000 min_posterior = {} min_posterior.update(global_params) min_posterior.update(minimum[0]) simulated = [self.simulate(min_posterior, minimum[1]) for i in xrange(simulations)] # now return all discrepancies return (minimum_discrepancy, [self.discrepancy(min_posterior, s) for s in simulated]) def simulated_lines(self, global_params, local_params, observed_values, num_points, num_lines): """Accepts global parameters dictionary. Also accepts a list of dictionaries of local parameters. Finally a list of observed values which should be same size as local parameters. See Gelman et al. 1996 Generates a series of plots which can be graphed to see over which types of data the model may go wrong. """ def generate_linegraph(global_params, local_params, observed_values): line = [(self.posterior_norm(p), self.observed_norm(o)) for p,l,o in self.iterpost(global_params, local_params, observed_values)] return list(sorted(line)) # shrink number of points p = zip(local_params, observed_values) np.random.shuffle(p) p = p[:num_points] local_params,observed_values = [a[0] for a in p], [a[1] for a in p] real_line = generate_linegraph(global_params, local_params, observed_values) simulated = [[self.simulate(p, o) for p,l,o in self.iterpost(global_params, local_params, observed_values)] for i in xrange(num_lines)] simulated_lines = [generate_linegraph(global_params, local_params, s) for s in simulated] return (real_line, simulated_lines) class TLCPPC(PosteriorPredictiveChecks): def simulate(self, posterior, observed): """Accepts posterior, which is dictionary of phi, beta, eta, sigma squared. Observed is a sparse vector of word, list of (word int,count) 2-tuples. Returns observation in same sparse vector type. """ # number of words to generate No = sum(o[1] for o in observed) beta = posterior['beta'] phi = posterior['phi'] N,K = phi.shape assert No == N assert K == beta.shape[0] K,W = beta.shape topics = np.sum(np.array([np.random.multinomial(1, phi[n]) for n in xrange(N)]), axis=0) assert len(topics) == K words = np.sum(np.array([np.random.multinomial(count, beta[k]) for k,count in enumerate(topics)]), axis=0) assert len(words) == W return [(w,c) for w,c in enumerate(words)] def posterior_norm(self, posterior): """Accepts posterior, which is dictionary of phi, beta, eta, sigma squared. Returns real number. """ eta = posterior['eta'] phi = posterior['phi'] # partial slda, so only use first few topics N,K = phi.shape Ks = len(eta) partial_phi = phi[:,:Ks] EZ = np.sum(partial_phi, axis=0) / N assert len(EZ) == len(eta) return np.dot(eta, EZ) def observed_norm(self, observed): """How to generate a statistic based on text is probably different for each application. """ raise NotImplementedError def discrepancy(self, posterior, observed): """Accepts posterior, which is dictionary of phi, beta, eta, sigma squared. Observed is a sparse vector of word, list of (word int,count) 2-tuples. Returns a real number. Just uses observed and posterior norm divided by sigma squared. """ #TODO: jperla: maybe can generalize, sigma is a def standardizer() ? s = np.sqrt(posterior['sigma_squared']) return abs(self.posterior_norm(posterior) - self.observed_norm(observed)) / s vocab = dict((w,i) for i,w in enumerate(jsondata.read('../data/nytimes_med_common_vocab.json'))) pos = jsondata.read('../data/liu_pos_words.json') neg = jsondata.read('../data/liu_neg_words.json') posi = set([vocab[w] for w in pos if w in vocab]) negi = set([vocab[w] for w in neg if w in vocab]) class YelpSentimentPartialSLDAPPC(TLCPPC): def simulate(self, posterior, observed): """Accepts posterior vars which include phi and eta. As well as observed value which is just a real number. Returns a new observation. Observation is from a normal from expected mean, like regression. """ s = np.sqrt(posterior['sigma_squared']) mean = self.posterior_norm(posterior) return np.random.normal(mean, s) def observed_norm(self, observed): """Accepts a real value between -2 and 2. Returns real number between -2 and 2. Itself. This is just like regression. """ return observed class YelpSentimentTLCPPC(TLCPPC): def posterior_norm(self, posterior): """Posterior contains phiC, whose *last* topics contain the sentiment topics.""" p = posterior.copy() phi = p['phi'] eta = p['eta'] Ks = len(eta) p['phi'] = phi[:,-Ks:] return TLCPPC.posterior_norm(self, p) def observed_norm(self, observed): """Accepts a sparse vector of word, list of (word int,count) 2-tuples. Returns real number between -2 and 2. """ numpos = 0 numneg = 0 for n,word,count in topiclib.iterwords(observed): if word in posi: numpos += 1 if word in negi: numneg += 1 ratio = 1.0 normratio = 0.0 if numpos == 0 and numneg == 0: return 0.0 elif numneg == 0: return 2.0 elif numpos == 0: return -2.0 else: if numpos >= numneg: ratio = float(numpos) / numneg normratio = (ratio - 1) else: ratio = -1.0 * float(numneg) / numpos normratio = (ratio + 1) o = graphlib.logistic_sigmoid(normratio) return (4 * o) - 2 # norm to -2 to 2 import matplotlib.pyplot as plot def save_figures(name, scatterplot, lines): #TODO: jperla: this needs to be better; cant hardcode everything first = lambda x: list(a[0] for a in x) second = lambda x: list(a[1] for a in x) # make graphs plot.figure(1) plot.grid(True) plot.scatter(first(scatterplot), second(scatterplot), 20, 'k', '.') plot.axis([0, 3.5, 0, 3.5]) plot.plot([0, 3.5], [0, 3.5], ':') plot.xlabel(r'D(y,$\theta$)') plot.ylabel(r'D($y^{rep}$,$\theta$)') plot.title('Posterior Predictive Check Scatterplot') plot.savefig(name + '-ppc-scatterplot.png') #plot.legend(('sample1','sample2')) plot.figure(2) plot.axis([-2, 2, -2, 2]) for p in lines[1]: plot.plot(first(p), second(p), 'b-.') plot.plot(first(lines[0]), second(lines[0]), 'k-') plot.xlabel(r'$\eta^T E[\bar z]$') #plot.xlabel(r'Positive vs Negative words') plot.ylabel(r'Observed Rating') plot.title('Posterior Predictive Check Simulated Draws') plot.savefig(name + '-ppc-lines.png')
agpl-3.0
daemonmaker/pylearn2
pylearn2/scripts/plot_monitor.py
37
10204
#!/usr/bin/env python """ usage: plot_monitor.py model_1.pkl model_2.pkl ... model_n.pkl Loads any number of .pkl files produced by train.py. Extracts all of their monitoring channels and prompts the user to select a subset of them to be plotted. """ from __future__ import print_function __authors__ = "Ian Goodfellow, Harm Aarts" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" import gc import numpy as np import sys from theano.compat.six.moves import input, xrange from pylearn2.utils import serial from theano.printing import _TagGenerator from pylearn2.utils.string_utils import number_aware_alphabetical_key from pylearn2.utils import contains_nan, contains_inf import argparse channels = {} def unique_substring(s, other, min_size=1): """ .. todo:: WRITEME """ size = min(len(s), min_size) while size <= len(s): for pos in xrange(0,len(s)-size+1): rval = s[pos:pos+size] fail = False for o in other: if o.find(rval) != -1: fail = True break if not fail: return rval size += 1 # no unique substring return s def unique_substrings(l, min_size=1): """ .. todo:: WRITEME """ return [unique_substring(s, [x for x in l if x is not s], min_size) for s in l] def main(): """ .. todo:: WRITEME """ parser = argparse.ArgumentParser() parser.add_argument("--out") parser.add_argument("model_paths", nargs='+') parser.add_argument("--yrange", help='The y-range to be used for plotting, e.g. 0:1') options = parser.parse_args() model_paths = options.model_paths if options.out is not None: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt print('generating names...') model_names = [model_path.replace('.pkl', '!') for model_path in model_paths] model_names = unique_substrings(model_names, min_size=10) model_names = [model_name.replace('!','') for model_name in model_names] print('...done') for i, arg in enumerate(model_paths): try: model = serial.load(arg) except Exception: if arg.endswith('.yaml'): print(sys.stderr, arg + " is a yaml config file," + "you need to load a trained model.", file=sys.stderr) quit(-1) raise this_model_channels = model.monitor.channels if len(sys.argv) > 2: postfix = ":" + model_names[i] else: postfix = "" for channel in this_model_channels: channels[channel+postfix] = this_model_channels[channel] del model gc.collect() while True: # Make a list of short codes for each channel so user can specify them # easily tag_generator = _TagGenerator() codebook = {} sorted_codes = [] for channel_name in sorted(channels, key = number_aware_alphabetical_key): code = tag_generator.get_tag() codebook[code] = channel_name codebook['<'+channel_name+'>'] = channel_name sorted_codes.append(code) x_axis = 'example' print('set x_axis to example') if len(channels.values()) == 0: print("there are no channels to plot") break # If there is more than one channel in the monitor ask which ones to # plot prompt = len(channels.values()) > 1 if prompt: # Display the codebook for code in sorted_codes: print(code + '. ' + codebook[code]) print() print("Put e, b, s or h in the list somewhere to plot " + "epochs, batches, seconds, or hours, respectively.") response = input('Enter a list of channels to plot ' + \ '(example: A, C,F-G, h, <test_err>) or q to quit' + \ ' or o for options: ') if response == 'o': print('1: smooth all channels') print('any other response: do nothing, go back to plotting') response = input('Enter your choice: ') if response == '1': for channel in channels.values(): k = 5 new_val_record = [] for i in xrange(len(channel.val_record)): new_val = 0. count = 0. for j in xrange(max(0, i-k), i+1): new_val += channel.val_record[j] count += 1. new_val_record.append(new_val / count) channel.val_record = new_val_record continue if response == 'q': break #Remove spaces response = response.replace(' ','') #Split into list codes = response.split(',') final_codes = set([]) for code in codes: if code == 'e': x_axis = 'epoch' continue elif code == 'b': x_axis = 'batche' elif code == 's': x_axis = 'second' elif code == 'h': x_axis = 'hour' elif code.startswith('<'): assert code.endswith('>') final_codes.add(code) elif code.find('-') != -1: #The current list element is a range of codes rng = code.split('-') if len(rng) != 2: print("Input not understood: "+code) quit(-1) found = False for i in xrange(len(sorted_codes)): if sorted_codes[i] == rng[0]: found = True break if not found: print("Invalid code: "+rng[0]) quit(-1) found = False for j in xrange(i,len(sorted_codes)): if sorted_codes[j] == rng[1]: found = True break if not found: print("Invalid code: "+rng[1]) quit(-1) final_codes = final_codes.union(set(sorted_codes[i:j+1])) else: #The current list element is just a single code final_codes = final_codes.union(set([code])) # end for code in codes else: final_codes ,= set(codebook.keys()) colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k'] styles = list(colors) styles += [color+'--' for color in colors] styles += [color+':' for color in colors] fig = plt.figure() ax = plt.subplot(1,1,1) # plot the requested channels for idx, code in enumerate(sorted(final_codes)): channel_name= codebook[code] channel = channels[channel_name] y = np.asarray(channel.val_record) if contains_nan(y): print(channel_name + ' contains NaNs') if contains_inf(y): print(channel_name + 'contains infinite values') if x_axis == 'example': x = np.asarray(channel.example_record) elif x_axis == 'batche': x = np.asarray(channel.batch_record) elif x_axis == 'epoch': try: x = np.asarray(channel.epoch_record) except AttributeError: # older saved monitors won't have epoch_record x = np.arange(len(channel.batch_record)) elif x_axis == 'second': x = np.asarray(channel.time_record) elif x_axis == 'hour': x = np.asarray(channel.time_record) / 3600. else: assert False ax.plot( x, y, styles[idx % len(styles)], marker = '.', # add point margers to lines label = channel_name) plt.xlabel('# '+x_axis+'s') ax.ticklabel_format( scilimits = (-3,3), axis = 'both') handles, labels = ax.get_legend_handles_labels() lgd = ax.legend(handles, labels, loc = 'upper left', bbox_to_anchor = (1.05, 1.02)) # Get the axis positions and the height and width of the legend plt.draw() ax_pos = ax.get_position() pad_width = ax_pos.x0 * fig.get_size_inches()[0] pad_height = ax_pos.y0 * fig.get_size_inches()[1] dpi = fig.get_dpi() lgd_width = ax.get_legend().get_frame().get_width() / dpi lgd_height = ax.get_legend().get_frame().get_height() / dpi # Adjust the bounding box to encompass both legend and axis. Axis should be 3x3 inches. # I had trouble getting everything to align vertically. ax_width = 3 ax_height = 3 total_width = 2*pad_width + ax_width + lgd_width total_height = 2*pad_height + np.maximum(ax_height, lgd_height) fig.set_size_inches(total_width, total_height) ax.set_position([pad_width/total_width, 1-6*pad_height/total_height, ax_width/total_width, ax_height/total_height]) if(options.yrange is not None): ymin, ymax = map(float, options.yrange.split(':')) plt.ylim(ymin, ymax) if options.out is None: plt.show() else: plt.savefig(options.out) if not prompt: break if __name__ == "__main__": main()
bsd-3-clause
tedunderwood/fiction
code/logisticpredict.py
1
36904
# logisticpredict.py # # Based on logisticleave1out.py which was based on # parallel_crossvalidate.py from the paceofchange repo. # # Reads all volumes meeting a given set of criteria, # and uses a leave-one-out strategy to distinguish # reviewed volumes (class 1) from random # (class 0). In cases where an author occurs more # than once in the dataset, it leaves out all # volumes by that author whenever making a prediction # about one of them. # # This version differs from parallel_crossvalidate # in using a different metadata structure, and # especially a multi-tag folksonomic system for # identifying the positive and negative classes. # In other words, volumes aren't explicitly divided # into positive and negative classes in the metadata; # they can carry any number of tags; you decide, when # you run the model, which tags you want to group as # positive and negative classes. The code will ensure # that no volumes with a positive tag are present in # the negative class, and also ensure that the two # groups have roughly similar distributions across # the timeline. # # The main class here is create_model(). # It accepts three parameters, each of which is a tuple # that gets unpacked. # # There are unfortunately a lot of details in those tuples, # because I've written this script to be very flexible and # permit a lot of different kinds of modeling. # # paths unpacks into # sourcefolder, extension, metadatapath, outputpath, vocabpath # where # sourcefolder is the directory with data files # extension is the extension those files end with # metadatapath is the path to a metadata csv # outputpath is the path to a csv of results to be written # and vocabpath is the path to a file of words to be used # as features for all models # # exclusions unpacks into # excludeif, excludeifnot, excludebelow, excludeabove, sizecap # where # all the "excludes" are dictionaries pairing a key (the name of a metadata # column) with a value that should be excluded -- if it's present, # absent, lower than this, or higher than this. # sizecap limits the number of vols in the positive class; randomly # sampled if greater. # # classifyconditions unpacks into: # positive_tags, negative_tags, datetype, numfeatures, regularization, testconditions # where # positive_tags is a list of tags to be included in the positive class # negative_tags is a list of tags to be selected for the negative class # (unless volume also has a positive_tag, and note that the negative class # is always selected to match the chronological distribution of the positive # as closely as possible) # datetype is the date column to be used for chronological distribution # numfeatures can be used to limit the features in this model to top N; # it is in practice not functional right now because I'm using all # features in the vocab file -- originally selected by doc frequency in # the whole corpus # regularization is a constant to be handed to scikit-learn (I'm using one # established in previous experiments on a different corpus) # and testconditions ... is complex. # # The variable testconditions will be a set of tags. It may contain tags for classes # that are to be treated as a test set. Positive volumes will be assigned to # this set if they have no positive tags that are *not* in testconditions. # A corresponding group of negative volumes will at the same time # be assigned. It can also contain two integers to be interpreted as dates, a # pastthreshold and futurethreshold. Dates outside these thresholds will not # be used for training. If date thresholds are provided they must be provided # as a pair to clarify which one is the pastthreshold and which the future. # If you're only wanting to exclude volumes in the future, provide a past # threshold like "1." # All of these conditions exclude volumes from the training set, and place them # in a set that is used only for testing. But also note that these # exclusions are always IN ADDITION TO leave-one-out crossvalidation by author. # In other words, if an author w/ multiple volumes has only some of them excluded # from training by testconditions, it is *still* the case that the author will never # be in a training set when her own volumes are being predicted. import numpy as np import pandas as pd import csv, os, random, sys, datetime from collections import Counter from multiprocessing import Pool from sklearn.linear_model import LogisticRegression # from scipy.stats import norm import matplotlib.pyplot as plt import modelingprocess import metafilter import metautils usedate = False # Leave this flag false unless you plan major # surgery to reactivate the currently-deprecated # option to use "date" as a predictive feature. # There are three different date types we can use. # Choose which here. # FUNCTIONS GET DEFINED BELOW. def get_features(wordcounts, wordlist): numwords = len(wordlist) wordvec = np.zeros(numwords) for idx, word in enumerate(wordlist): if word in wordcounts: wordvec[idx] = wordcounts[word] return wordvec # In an earlier version of this script, we sometimes used # "publication date" as a feature, to see what would happen. # In the current version, we don't. Some of the functions # and features remain, but they are deprecated. E.g.: def get_features_with_date(wordcounts, wordlist, date, totalcount): numwords = len(wordlist) wordvec = np.zeros(numwords + 1) for idx, word in enumerate(wordlist): if word in wordcounts: wordvec[idx] = wordcounts[word] wordvec = wordvec / (totalcount + 0.0001) wordvec[numwords] = date return wordvec def sliceframe(dataframe, yvals, excludedrows, testrow): numrows = len(dataframe) newyvals = list(yvals) for i in excludedrows: del newyvals[i] # NB: This only works if we assume that excluded rows # has already been sorted in descending order !!!!!!! trainingset = dataframe.drop(dataframe.index[excludedrows]) newyvals = np.array(newyvals) testset = dataframe.iloc[testrow] return trainingset, newyvals, testset def normalizearray(featurearray, usedate): '''Normalizes an array by centering on means and scaling by standard deviations. Also returns the means and standard deviations for features, so that they can be pickled. ''' numinstances, numfeatures = featurearray.shape means = list() stdevs = list() lastcolumn = numfeatures - 1 for featureidx in range(numfeatures): thiscolumn = featurearray.iloc[ : , featureidx] thismean = np.mean(thiscolumn) thisstdev = np.std(thiscolumn) if (not usedate) or featureidx != lastcolumn: # If we're using date we don't normalize the last column. means.append(thismean) stdevs.append(thisstdev) featurearray.iloc[ : , featureidx] = (thiscolumn - thismean) / thisstdev else: print('FLAG') means.append(thismean) thisstdev = 0.1 stdevs.append(thisstdev) featurearray.iloc[ : , featureidx] = (thiscolumn - thismean) / thisstdev # We set a small stdev for date. return featurearray, means, stdevs def binormal_select(vocablist, positivecounts, negativecounts, totalpos, totalneg, k): ''' A feature-selection option, not currently in use. ''' all_scores = np.zeros(len(vocablist)) for idx, word in enumerate(vocablist): # For each word we create a vector the length of vols in each class # that contains real counts, plus zeroes for all those vols not # represented. positives = np.zeros(totalpos, dtype = 'int64') if word in positivecounts: positives[0: len(positivecounts[word])] = positivecounts[word] negatives = np.zeros(totalneg, dtype = 'int64') if word in negativecounts: negatives[0: len(negativecounts[word])] = negativecounts[word] featuremean = np.mean(np.append(positives, negatives)) tp = sum(positives > featuremean) fp = sum(positives <= featuremean) tn = sum(negatives > featuremean) fn = sum(negatives <= featuremean) tpr = tp/(tp+fn) # true positive ratio fpr = fp/(fp+tn) # false positive ratio bns_score = abs(norm.ppf(tpr) - norm.ppf(fpr)) # See Forman if np.isinf(bns_score) or np.isnan(bns_score): bns_score = 0 all_scores[idx] = bns_score zipped = [x for x in zip(all_scores, vocablist)] zipped.sort(reverse = True) with open('bnsscores.tsv', mode='w', encoding = 'utf-8') as f: for score, word in zipped: f.write(word + '\t' + str(score) + '\n') return [x[1] for x in zipped[0:k]] def confirm_testconditions(testconditions, positive_tags): for elem in testconditions: if elem in positive_tags or elem.isdigit(): # that's fine continue elif elem == '': # also okay continue elif elem == 'donotmatch': print("You have instructed me that positive volumes matching only a") print("positive tag in the test-but-not-train group should not be matched") print("with negative volumes.") elif elem.startswith('limit=='): limit = elem.replace('limit==', '') print() print("You have instructed me to allow only "+ limit) print("volumes in the do-not-train set.") print() else: print('Illegal element in testconditions.') sys.exit(0) def get_thresholds(testconditions): ''' The testconditions are a set of elements that may include dates (setting an upper and lower limit for training, outside of which volumes are only to be in the test set), or may include genre tags. This function only identifies the dates, if present. If not present, it returns 0 and 3000. Do not use this code for predicting volumes dated after 3000 AD. At that point, the whole thing is deprecated. ''' thresholds = [] for elem in testconditions: if elem.isdigit(): thresholds.append(int(elem)) thresholds.sort() if len(thresholds) == 2: pastthreshold = thresholds[0] futurethreshold = thresholds[1] else: pastthreshold = 0 futurethreshold = 3000 # we are unlikely to have any volumes before or after # those dates return pastthreshold, futurethreshold def get_volume_lists(volumeIDs, volumepaths, IDsToUse): ''' This function creates an ordered list of volume IDs included in this modeling process, and an ordered list of volume-path tuples. It also identifies positive volumes that are not to be included in a training set, because they belong to a category that is being tested. ''' volspresent = [] orderedIDs = [] for volid, volpath in zip(volumeIDs, volumepaths): if volid not in IDsToUse: continue else: volspresent.append((volid, volpath)) orderedIDs.append(volid) return volspresent, orderedIDs def first_and_last(idset, metadict, datetype): min = 3000 max = 0 for anid in idset: date = metadict[anid][datetype] if date < min: min = date if date > max: max = date return min, max def describe_donttrainset(donttrainset, classdictionary, metadict, datetype): positivedonts = [] negativedonts = [] for anid in donttrainset: posneg = classdictionary[anid] if posneg == 0: negativedonts.append(anid) elif posneg == 1: positivedonts.append(anid) else: print('Anomaly in classdictionary.') min, max = first_and_last(positivedonts, metadict, datetype) if min > 0: print("The set of volumes not to be trained on includes " + str(len(positivedonts))) print("positive volumes, ranging from " + str(min) + " to " + str(max) + ".") print() min, max = first_and_last(negativedonts, metadict, datetype) if min > 0: print("And also includes " + str(len(negativedonts))) print("negative volumes, ranging from " + str(min) + " to " + str(max) + ".") print() def record_trainflags(metadict, donttrainset): ''' This function records, for each volume, whether it is or is not to be used in training. Important to run it after add_matching_negs so that we know which volumes in the negative set were or weren't used in training. ''' for docid, metadata in metadict.items(): if docid in donttrainset: metadata['trainflag'] = 0 else: metadata['trainflag'] = 1 def make_vocablist(sourcedir, n, vocabpath): ''' Makes a list of the top n words in sourcedir, and writes it to vocabpath. ''' sourcefiles = [x for x in os.listdir(sourcedir) if not x.startswith('.')] wordcounts = Counter() for afile in sourcefiles: path = sourcedir + afile with open(path, encoding = 'utf-8') as f: for line in f: fields = line.strip().split('\t') if len(fields) > 2 or len(fields) < 2: continue word = fields[0] if len(word) > 0 and word[0].isalpha(): count = int(fields[1]) wordcounts[word] += 1 with open(vocabpath, mode = 'w', encoding = 'utf-8') as f: writer = csv.writer(f) writer.writerow(['word', 'docfreq']) for word, count in wordcounts.most_common(n): writer.writerow([word, count]) vocabulary = [x[0] for x in wordcounts.most_common(n)] return vocabulary def get_vocablist(vocabpath, sourcedir, wordcounts, useall, n): ''' Gets the vocablist stored in vocabpath or, alternately, if that list doesn't yet exist, it creates a vocablist and puts it there. ''' vocablist = [] ctr = 0 if not os.path.isfile(vocabpath): vocablist = make_vocablist(sourcedir, n, vocabpath) else: with open(vocabpath, encoding = 'utf-8') as f: reader = csv.DictReader(f) for row in reader: ctr += 1 if ctr > n: break # this allows us to limit how deep we go word = row['word'].strip() if wordcounts[word] > 2 or useall: vocablist.append(word) if len(vocablist) > n: vocablist = vocablist[0: n] return vocablist def get_docfrequency(volspresent, donttrainset): ''' This function counts words in volumes. These wordcounts don't necessarily define a feature set for modeling: at present, the limits of that set are defined primarily by a fixed list shared across all models (top10k). ''' wordcounts = Counter() for volid, volpath in volspresent: if volid in donttrainset: continue else: with open(volpath, encoding = 'utf-8') as f: for line in f: fields = line.strip().split('\t') if len(fields) > 2 or len(fields) < 2: # this is a malformed line; there are a few of them, # but not enough to be important -- ignore continue word = fields[0] if len(word) > 0 and word[0].isalpha(): wordcounts[word] += 1 # We're getting docfrequency (the number of documents that # contain this word), not absolute number of word occurrences. # So just add 1 no matter how many times the word occurs. return wordcounts def create_model(paths, exclusions, classifyconditions): ''' This is the main function in the module. It can be called externally; it's also called if the module is run directly. ''' sourcefolder, extension, metadatapath, outputpath, vocabpath = paths excludeif, excludeifnot, excludebelow, excludeabove, sizecap = exclusions positive_tags, negative_tags, datetype, numfeatures, regularization, testconditions = classifyconditions verbose = False holdout_authors = True # If you want reliable results, always run this with holdout_authors # set to True. The only reason to set it to False is to confirm that # this flag is actually making a difference. If you do that, it # disables the code that keeps other works by the author being predicted # out of the training set. # The following function confirms that the testconditions are legal. confirm_testconditions(testconditions, positive_tags) if not sourcefolder.endswith('/'): sourcefolder = sourcefolder + '/' # This just makes things easier. # Get a list of files. allthefiles = os.listdir(sourcefolder) # random.shuffle(allthefiles) volumeIDs = list() volumepaths = list() for filename in allthefiles: if filename.endswith(extension): volID = filename.replace(extension, "") # The volume ID is basically the filename minus its extension. # Extensions are likely to be long enough that there is little # danger of accidental occurrence inside a filename. E.g. # '.fic.tsv' path = sourcefolder + filename volumeIDs.append(volID) volumepaths.append(path) metadict = metafilter.get_metadata(metadatapath, volumeIDs, excludeif, excludeifnot, excludebelow, excludeabove) # Now that we have a list of volumes with metadata, we can select the groups of IDs # that we actually intend to contrast. IDsToUse, classdictionary, donttrainset = metafilter.label_classes(metadict, "tagset", positive_tags, negative_tags, sizecap, datetype, excludeif, testconditions) print() min, max = first_and_last(IDsToUse, metadict, datetype) if min > 0: print("The whole corpus involved here includes " + str(len(IDsToUse))) print("volumes, ranging in date from " + str(min) + " to " + str(max) + ".") print() # We now create an ordered list of id-path tuples for later use, and identify a set of # positive ids that should never be used in training. volspresent, orderedIDs = get_volume_lists(volumeIDs, volumepaths, IDsToUse) # Extend the set of ids not to be used in training by identifying negative volumes that match # the distribution of positive volumes. describe_donttrainset(donttrainset, classdictionary, metadict, datetype) # Create a flag for each volume that indicates whether it was used in training record_trainflags(metadict, donttrainset) # Get a count of docfrequency for all words in the corpus. This is probably not needed and # might be deprecated later. wordcounts = get_docfrequency(volspresent, donttrainset) # The feature list we use is defined by the top 10,000 words (by document # frequency) in the whole corpus, and it will be the same for all models. vocablist = get_vocablist(vocabpath, sourcefolder, wordcounts, useall = True, n = numfeatures) # This function either gets the vocabulary list already stored in vocabpath, or # creates a list of the top 10k words in all files, and stores it there. # N is a parameter that could be altered right here. # Useall is a parameter that you basically don't need to worry about unless # you're changing / testing code. If you set it to false, the vocablist will # exclude words that occur very rarely. This shouldn't be necessary; the # crossvalidation routine is designed not to include features that occur # zero times in the training set. But if you get div-by-zero errors in the # training process, you could fiddle with this parameter as part of a # troubleshooting process. numfeatures = len(vocablist) # For each volume, we're going to create a list of volumes that should be # excluded from the training set when it is to be predicted. More precisely, # we're going to create a list of their *indexes*, so that we can easily # remove rows from the training matrix. # This list will include for ALL volumes, the indexes of vols in the donttrainset. donttrainon = [orderedIDs.index(x) for x in donttrainset] authormatches = [list(donttrainon) for x in range(len(orderedIDs))] # Now we proceed to enlarge that list by identifying, for each volume, # a set of indexes that have the same author. Obvs, there will always be at least one. # We exclude a vol from it's own training set. if holdout_authors: for idx1, anid in enumerate(orderedIDs): thisauthor = metadict[anid]['author'] for idx2, anotherid in enumerate(orderedIDs): otherauthor = metadict[anotherid]['author'] if thisauthor == otherauthor and not idx2 in authormatches[idx1]: authormatches[idx1].append(idx2) else: # This code only runs if we're testing the effect of # holdout_authors by disabling it. for idx1, anid in enumerate(orderedIDs): if idx1 not in authormatches[idx1]: authormatches[idx1].append(idx1) # The purpose of everything that follows is to # balance negative and positive instances in each # training set. trainingpositives = set() trainingnegatives = set() for anid, thisclass in classdictionary.items(): if anid in donttrainset: continue if thisclass == 1: trainingpositives.add(orderedIDs.index(anid)) else: trainingnegatives.add(orderedIDs.index(anid)) print('Training positives: ' + str(len(trainingpositives))) print('Training negatives: ' + str(len(trainingnegatives))) # The code below was intended to balance the size of positive and # negative in spite of same-author exclusions. But it could # have grossly unintended effects when there were many donttrainon # exclusions. # for alist in authormatches: # numpositive = 0 # numnegative = 0 # for anidx in alist: # anid = orderedIDs[anidx] # thisclass = classdictionary[anid] # if thisclass == 1: # numpositive += 1 # else: # numnegative += 1 # if numpositive > numnegative: # difference = numpositive - numnegative # remaining = trainingnegatives - set(alist) # alist.extend(random.sample(remaining, difference)) # elif numpositive < numnegative: # difference = numnegative - numpositive # remaining = trainingpositives - set(alist) # alist.extend(random.sample(remaining, difference)) # else: # difference = 0 # Let's record, for each volume, the size of its training set. trainingsizes = [] numvolumes = len(orderedIDs) for idx, anid in enumerate(orderedIDs): excluded = len(authormatches[idx]) metadict[anid]['trainsize'] = numvolumes - excluded trainingsizes.append(metadict[anid]['trainsize']) averagetrainingsize = sum(trainingsizes) / len(trainingsizes) for alist in authormatches: alist.sort(reverse = True) # I am reversing the order of indexes so that I can delete them from # back to front, without changing indexes yet to be deleted. # This will become important in the modelingprocess module. volsizes = dict() voldata = list() classvector = list() for volid, volpath in volspresent: with open(volpath, encoding = 'utf-8') as f: voldict = dict() totalcount = 0 for line in f: fields = line.strip().split('\t') if len(fields) > 2 or len(fields) < 2: continue word = fields[0] count = int(fields[1]) voldict[word] = count totalcount += count date = metautils.infer_date(metadict[volid], datetype) date = date - 1700 if date < 0: date = 0 if usedate: features = get_features_with_date(voldict, vocablist, date, totalcount) voldata.append(features) else: features = get_features(voldict, vocablist) if totalcount == 0: totalcount = .00001 voldata.append(features / totalcount) volsizes[volid] = totalcount classflag = classdictionary[volid] classvector.append(classflag) data = pd.DataFrame(voldata) sextuplets = list() for i, volid in enumerate(orderedIDs): listtoexclude = authormatches[i] asixtuple = data, classvector, listtoexclude, i, usedate, regularization sextuplets.append(asixtuple) # Now do leave-one-out predictions. print('Beginning multiprocessing.') pool = Pool(processes = 11) res = pool.map_async(modelingprocess.model_one_volume, sextuplets) # After all files are processed, write metadata, errorlog, and counts of phrases. res.wait() resultlist = res.get() assert len(resultlist) == len(orderedIDs) logisticpredictions = dict() for i, volid in enumerate(orderedIDs): logisticpredictions[volid] = resultlist[i] pool.close() pool.join() print('Multiprocessing concluded.') truepositives = 0 truenegatives = 0 falsepositives = 0 falsenegatives = 0 allvolumes = list() with open(outputpath, mode = 'w', encoding = 'utf-8') as f: writer = csv.writer(f) header = ['volid', 'dateused', 'pubdate', 'birthdate', 'firstpub', 'gender', 'nation', 'allwords', 'logistic', 'realclass', 'trainflag', 'trainsize', 'author', 'title', 'genretags'] writer.writerow(header) for volid in IDsToUse: metadata = metadict[volid] dateused = metadata[datetype] pubdate = metadata['pubdate'] birthdate = metadata['birthdate'] firstpub = metadata['firstpub'] gender = metadata['gender'] nation = metadata['nation'] author = metadata['author'] title = metadata['title'] allwords = volsizes[volid] logistic = logisticpredictions[volid] realclass = classdictionary[volid] trainflag = metadata['trainflag'] trainsize = metadata['trainsize'] genretags = ' | '.join(metadata['tagset']) outrow = [volid, dateused, pubdate, birthdate, firstpub, gender, nation, allwords, logistic, realclass, trainflag, trainsize, author, title, genretags] writer.writerow(outrow) allvolumes.append(outrow) if logistic == 0.5: print("equals!") predictedpositive = random.sample([True, False], 1)[0] elif logistic > 0.5: predictedpositive = True elif logistic < 0.5: predictedpositive = False else: print('Oh, joy. A fundamental floating point error.') predictedpositive = random.sample([True, False], 1)[0] if predictedpositive and classdictionary[volid] > 0.5: truepositives += 1 elif not predictedpositive and classdictionary[volid] < 0.5: truenegatives += 1 elif not predictedpositive and classdictionary[volid] > 0.5: falsenegatives += 1 elif predictedpositive and classdictionary[volid] < 0.5: falsepositives += 1 else: print("Wait a second, boss.") donttrainon.sort(reverse = True) trainingset, yvals, testset = sliceframe(data, classvector, donttrainon, 0) trainingset, testset = modelingprocess.remove_zerocols(trainingset, testset) newmodel = LogisticRegression(C = regularization) trainingset, means, stdevs = normalizearray(trainingset, usedate) newmodel.fit(trainingset, yvals) coefficients = newmodel.coef_[0] * 100 coefficientuples = list(zip(coefficients, (coefficients / np.array(stdevs)), vocablist + ['pub.date'])) coefficientuples.sort() if verbose: for coefficient, normalizedcoef, word in coefficientuples: print(word + " : " + str(coefficient)) print() totalevaluated = truepositives + truenegatives + falsepositives + falsenegatives if totalevaluated != len(IDsToUse): print("Total evaluated = " + str(totalevaluated)) print("But we've got " + str(len(IDsToUse))) accuracy = (truepositives + truenegatives) / totalevaluated print('True positives ' + str(truepositives)) print('True negatives ' + str(truenegatives)) print('False positives ' + str(falsepositives)) print('False negatives ' + str(falsenegatives)) print() print('The average size of the training set was ' + str(averagetrainingsize)) print() precision = truepositives / (truepositives + falsepositives) recall = truepositives / (truepositives + falsenegatives) F1 = 2 * (precision * recall) / (precision + recall) print("F1 : " + str(F1)) coefficientpath = outputpath.replace('.csv', '.coefs.csv') with open(coefficientpath, mode = 'w', encoding = 'utf-8') as f: writer = csv.writer(f) for triple in coefficientuples: coef, normalizedcoef, word = triple writer.writerow([word, coef, normalizedcoef]) return accuracy, allvolumes, coefficientuples def diachronic_tilt(allvolumes, modeltype, datelimits): ''' Takes a set of predictions produced by a model that knows nothing about date, and divides it along a line with a diachronic tilt. We need to do this in a way that doesn't violate crossvalidation. I.e., we shouldn't "know" anything that the model didn't know. We tried a couple of different ways to do this, but the simplest and actually most reliable is to divide the whole dataset along a linear central trend line for the data! ''' listofrows = list() classvector = list() # DEPRECATED # if modeltype == 'logistic' and len(datelimits) == 2: # # In this case we construct a subset of data to model on. # tomodeldata = list() # tomodelclasses = list() # pastthreshold, futurethreshold = datelimits for volume in allvolumes: date = volume[1] logistic = volume[8] realclass = volume[9] listofrows.append([logistic, date]) classvector.append(realclass) # DEPRECATED # if modeltype == 'logistic' and len(datelimits) == 2: # if date >= pastthreshold and date <= futurethreshold: # tomodeldata.append([logistic, date]) # tomodelclasses.append(realclass) y, x = [a for a in zip(*listofrows)] plt.axis([min(x) - 2, max(x) + 2, min(y) - 0.02, max(y) + 0.02]) reviewedx = list() reviewedy = list() randomx = list() randomy = list() for idx, reviewcode in enumerate(classvector): if reviewcode == 1: reviewedx.append(x[idx]) reviewedy.append(y[idx]) else: randomx.append(x[idx]) randomy.append(y[idx]) plt.plot(reviewedx, reviewedy, 'ro') plt.plot(randomx, randomy, 'k+') if modeltype == 'logistic': # all this is DEPRECATED print("Hey, you're attempting to use the logistic-tilt option") print("that we deactivated. Go in and uncomment the code.") # if len(datelimits) == 2: # data = pd.DataFrame(tomodeldata) # responsevariable = tomodelclasses # else: # data = pd.DataFrame(listofrows) # responsevariable = classvector # newmodel = LogisticRegression(C = 100000) # newmodel.fit(data, responsevariable) # coefficients = newmodel.coef_[0] # intercept = newmodel.intercept_[0] / (-coefficients[0]) # slope = coefficients[1] / (-coefficients[0]) # p = np.poly1d([slope, intercept]) elif modeltype == 'linear': # what we actually do z = np.polyfit(x, y, 1) p = np.poly1d(z) slope = z[0] intercept = z[1] plt.plot(x,p(x),"b-") plt.show() x = np.array(x, dtype='float64') y = np.array(y, dtype='float64') classvector = np.array(classvector) dividingline = intercept + (x * slope) predicted_as_reviewed = (y > dividingline) really_reviewed = (classvector == 1) accuracy = sum(predicted_as_reviewed == really_reviewed) / len(classvector) return accuracy if __name__ == '__main__': # If this class is called directly, it creates a single model using the default # settings set below. ## PATHS. # sourcefolder = '/Users/tunder/Dropbox/GenreProject/python/reception/fiction/texts/' # extension = '.fic.tsv' # metadatapath = '/Users/tunder/Dropbox/GenreProject/python/reception/fiction/masterficmeta.csv' # outputpath = '/Users/tunder/Dropbox/GenreProject/python/reception/fiction/predictions.csv' sourcefolder = '../newdata/' extension = '.fic.tsv' metadatapath = '../meta/finalmeta.csv' vocabpath = '../lexicon/new10k.csv' modelname = input('Name of model? ') outputpath = '../results/' + modelname + str(datetime.date.today()) + '.csv' # We can simply exclude volumes from consideration on the basis on any # metadata category we want, using the dictionaries defined below. ## EXCLUSIONS. excludeif = dict() excludeifnot = dict() excludeabove = dict() excludebelow = dict() daterange = input('Range of dates to use in the model? ') if ',' in daterange: dates = [int(x.strip()) for x in daterange.split(',')] dates.sort() if len(dates) == 2: assert dates[0] < dates[1] excludebelow['firstpub'] = dates[0] excludeabove['firstpub'] = dates[1] # allstewgenres = {'cozy', 'hardboiled', 'det100', 'chimyst', 'locdetective', 'lockandkey', 'crime', 'locdetmyst', 'blcrime', 'anatscifi', 'locscifi', 'chiscifi', 'femscifi', 'stangothic', 'pbgothic', 'lochorror', 'chihorror', 'locghost'} # excludeif['negatives'] = allstewgenres sizecap = 160 # CLASSIFY CONDITIONS # We ask the user for a list of categories to be included in the positive # set, as well as a list for the negative set. Default for the negative set # is to include all the "random"ly selected categories. Note that random volumes # can also be tagged with various specific genre tags; they are included in the # negative set only if they lack tags from the positive set. tagphrase = input("Comma-separated list of tags to include in the positive class: ") positive_tags = [x.strip() for x in tagphrase.split(',')] tagphrase = input("Comma-separated list of tags to include in the negative class: ") # An easy default option. if tagphrase == 'r': negative_tags = ['random', 'grandom', 'chirandom'] else: negative_tags = [x.strip() for x in tagphrase.split(',')] # We also ask the user to specify categories of texts to be used only for testing. # These exclusions from training are in addition to ordinary crossvalidation. print() print("You can also specify positive tags to be excluded from training, and/or a pair") print("of integer dates outside of which vols should be excluded from training.") print("If you add 'donotmatch' to the list of tags, these volumes will not be") print("matched with corresponding negative volumes.") print() testphrase = input("Comma-separated list of such tags: ") testconditions = set([x.strip() for x in testphrase.split(',') if len(x) > 0]) datetype = "firstpub" numfeatures = 10000 regularization = .000075 paths = (sourcefolder, extension, metadatapath, outputpath, vocabpath) exclusions = (excludeif, excludeifnot, excludebelow, excludeabove, sizecap) classifyconditions = (positive_tags, negative_tags, datetype, numfeatures, regularization, testconditions) rawaccuracy, allvolumes, coefficientuples = create_model(paths, exclusions, classifyconditions) print('If we divide the dataset with a horizontal line at 0.5, accuracy is: ', str(rawaccuracy)) tiltaccuracy = diachronic_tilt(allvolumes, 'linear', []) print("Divided with a line fit to the data trend, it's ", str(tiltaccuracy))
mit
shervinea/enzynet
enzynet/real_time.py
1
2275
'Plot in real-time' # Authors: Afshine Amidi <[email protected]> # Shervine Amidi <[email protected]> # MIT License import time, random import math from collections import deque from matplotlib import pyplot as plt start = time.time() # Adapted from https://gist.github.com/Uberi/283a13b8a71a46fb4dc8 class RealTimePlot(object): def __init__(self, max_entries=200, x_label=r'Epochs', y_label=r'Accuracy'): # TeX friendly plt.rc('text', usetex=True) plt.rc('font', family='serif') # Store self.fig, self.axes = plt.subplots() self.max_entries = max_entries # x-axis self.axis_x = deque(maxlen=max_entries) # Training accuracy self.axis_y_tr = deque(maxlen=max_entries) self.lineplot_tr, = self.axes.plot([], [], "ro-") # Validation accuracy self.axis_y_val = deque(maxlen=max_entries) self.lineplot_val, = self.axes.plot([], [], "bo-") # Autoscale self.axes.set_autoscaley_on(True) # Set label names self.axes.set_xlabel(x_label) self.axes.set_ylabel(y_label) def add(self, x, y_tr, y_val=None): # Add new point self.axis_x.append(x) self.axis_y_tr.append(y_tr) self.lineplot_tr.set_data(self.axis_x, self.axis_y_tr) if y_val != None: # Validation accuracy is specified self.axis_y_val.append(y_val) self.lineplot_val.set_data(self.axis_x, self.axis_y_val) # Change axis limits self.axes.set_xlim(self.axis_x[0], self.axis_x[-1] + 1e-15) self.axes.relim(); self.axes.autoscale_view() # Rescale the y-axis def animate(self, figure, callback, interval=50): import matplotlib.animation as animation def wrapper(frame_index): self.add(*callback(frame_index)) self.axes.relim(); self.axes.autoscale_view() # Rescale the y-axis return self.lineplot animation.FuncAnimation(figure, wrapper, interval=interval) if __name__ == "__main__": # Initialization display = RealTimePlot(max_entries=100) i = 0 # Update in real-time while True: display.add(time.time() - start, i, i/2) plt.pause(5) i = i+1
mit
anurag313/scikit-learn
examples/model_selection/plot_learning_curve.py
250
4171
""" ======================== Plotting Learning Curves ======================== On the left side the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the training score and the cross-validation score are both not very good at the end. However, the shape of the curve can be found in more complex datasets very often: the training score is very high at the beginning and decreases and the cross-validation score is very low at the beginning and increases. On the right side we see the learning curve of an SVM with RBF kernel. We can see clearly that the training score is still around the maximum and the validation score could be increased with more training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.datasets import load_digits from sklearn.learning_curve import learning_curve def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and traning learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects n_jobs : integer, optional Number of jobs to run in parallel (default 1). """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt digits = load_digits() X, y = digits.data, digits.target title = "Learning Curves (Naive Bayes)" # Cross validation with 100 iterations to get smoother mean test and train # score curves, each time with 20% data randomly selected as a validation set. cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=100, test_size=0.2, random_state=0) estimator = GaussianNB() plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4) title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)" # SVC is more expensive so we do a lower number of CV iterations: cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=10, test_size=0.2, random_state=0) estimator = SVC(gamma=0.001) plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4) plt.show()
bsd-3-clause
ycaihua/scikit-learn
sklearn/metrics/setup.py
299
1024
import os import os.path import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("metrics", parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension("pairwise_fast", sources=["pairwise_fast.c"], include_dirs=[os.path.join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
herilalaina/scikit-learn
examples/calibration/plot_calibration_curve.py
113
5904
""" ============================== Probability Calibration curves ============================== When performing classification one often wants to predict not only the class label, but also the associated probability. This probability gives some kind of confidence on the prediction. This example demonstrates how to display how well calibrated the predicted probabilities are and how to calibrate an uncalibrated classifier. The experiment is performed on an artificial dataset for binary classification with 100.000 samples (1.000 of them are used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant. The first figure shows the estimated probabilities obtained with logistic regression, Gaussian naive Bayes, and Gaussian naive Bayes with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with Brier score, reported in the legend (the smaller the better). One can observe here that logistic regression is well calibrated while raw Gaussian naive Bayes performs very badly. This is because of the redundant features which violate the assumption of feature-independence and result in an overly confident classifier, which is indicated by the typical transposed-sigmoid curve. Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly as the non-parametric isotonic regression. This can be attributed to the fact that we have plenty of calibration data such that the greater flexibility of the non-parametric model can be exploited. The second figure shows the calibration curve of a linear support-vector classifier (LinearSVC). LinearSVC shows the opposite behavior as Gaussian naive Bayes: the calibration curve has a sigmoid curve, which is typical for an under-confident classifier. In the case of LinearSVC, this is caused by the margin property of the hinge loss, which lets the model focus on hard samples that are close to the decision boundary (the support vectors). Both kinds of calibration can fix this issue and yield nearly identical results. This shows that sigmoid calibration can deal with situations where the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC) but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes). """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression from sklearn.metrics import (brier_score_loss, precision_score, recall_score, f1_score) from sklearn.calibration import CalibratedClassifierCV, calibration_curve from sklearn.model_selection import train_test_split # Create dataset of classification task with many redundant and few # informative features X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=10, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99, random_state=42) def plot_calibration_curve(est, name, fig_index): """Plot calibration curve for est w/o and with calibration. """ # Calibrated with isotonic calibration isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic') # Calibrated with sigmoid calibration sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid') # Logistic regression with no calibration as baseline lr = LogisticRegression(C=1., solver='lbfgs') fig = plt.figure(fig_index, figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (est, name), (isotonic, name + ' + Isotonic'), (sigmoid, name + ' + Sigmoid')]: clf.fit(X_train, y_train) y_pred = clf.predict(X_test) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max()) print("%s:" % name) print("\tBrier: %1.3f" % (clf_score)) print("\tPrecision: %1.3f" % precision_score(y_test, y_pred)) print("\tRecall: %1.3f" % recall_score(y_test, y_pred)) print("\tF1: %1.3f\n" % f1_score(y_test, y_pred)) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s (%1.3f)" % (name, clf_score)) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() # Plot calibration curve for Gaussian Naive Bayes plot_calibration_curve(GaussianNB(), "Naive Bayes", 1) # Plot calibration curve for Linear SVC plot_calibration_curve(LinearSVC(), "SVC", 2) plt.show()
bsd-3-clause
marcsans/cnn-physics-perception
phy/lib/python2.7/site-packages/sklearn/utils/tests/test_class_weight.py
50
13151
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) # Raise error when y has items not in classes classes = np.arange(2) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) assert_raises(ValueError, compute_class_weight, {0: 1., 1: 2.}, classes, y) def test_compute_class_weight_dict(): classes = np.arange(3) class_weights = {0: 1.0, 1: 2.0, 2: 3.0} y = np.asarray([0, 0, 1, 2]) cw = compute_class_weight(class_weights, classes, y) # When the user specifies class weights, compute_class_weights should just # return them. assert_array_almost_equal(np.asarray([1.0, 2.0, 3.0]), cw) # When a class weight is specified that isn't in classes, a ValueError # should get raised msg = 'Class label 4 not present.' class_weights = {0: 1.0, 1: 2.0, 2: 3.0, 4: 1.5} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) msg = 'Class label -1 not present.' class_weights = {-1: 5.0, 0: 1.0, 1: 2.0, 2: 3.0} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # duplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
mit
oneandoneis2/GNU-parallel
src/optional/python/tests/test_loader.py
4
1533
import pandas as pd import unittest from gnuparallel import load result_dir = '../../testresults' class TestLoader(unittest.TestCase): def test_basics(self): df = load(result_dir) self.assertEqual(set(df.columns), set(['a', 'b', 'resfile', '_stream'])) self.assertEqual(df.shape[0], 4) def test_filters(self): df = load(result_dir, a=2) self.assertEqual(df.shape[0], 2) self.assertEqual(df.a.sum(), 4) df = load(result_dir, a=[2]) self.assertEqual(df.shape[0], 2) self.assertEqual(df.a.sum(), 4) df = load(result_dir, a=[1,2]) self.assertEqual(df.shape[0], 4) self.assertEqual(df.a.sum(), 6) df = load(result_dir, a=1000) self.assertTrue(df.empty) def test_infer_types(self): df = load(result_dir) self.assertEqual(df.a.dtype, pd.np.int64) df = load(result_dir, _infer_types=False) self.assertEqual(df.a.dtype, pd.np.object_) def test_format(self): df = load(result_dir, b=0.3) self.assertTrue(df.empty) df = load(result_dir, b=0.3, _format={'b': '%.2f'}) self.assertEqual(df.shape[0], 2) def test_stream(self): df = load(result_dir, _stream='stderr') self.assertTrue((df._stream == 'stderr').all()) def test_process(self): df = load(result_dir, a=1, _process=lambda x: pd.np.loadtxt(x).sum()) self.assertAlmostEqual(df.sum()['res'], 2.7) if __name__ == '__main__': unittest.main()
gpl-3.0
kuntzer/SALSA-public
18_plot_transit_proba.py
1
8321
''' 18-plot-transit-proba.py ========================= AIM: Plots transit probabilities according to 17-treat-ephemerids.py. A probability of 100% corresponds to being able to observe the target for its whole period. INPUT: files: - <orbit_id>_misc/ephemerids_obs<transit_duration>h_<max_interruptions>inter_V<mag_max><_SAA?>.npz variables: see section PARAMETERS (below) OUTPUT: in <orbit_id>_figures/ with the following format: proba_<orbit_id>_<exoplanet_period>obs_<max_interruptions>inter_V%3.1f.png/.eps/.pdf CMD: python 18-plot-transit-proba.py ISSUES: <none known> REQUIRES: - Latex - standard python libraries, specific libraries in resources/ (+ SciPy) - Structure of the root folder: * <orbit_id>_flux/ --> flux files * <orbit_id>_figures/maps/ --> figures * <orbit_id>_misc/ --> storages of data REMARKS: Not with real catalogue. ''' ########################################################################### ### INCLUDES import numpy as np import pylab as plt import matplotlib.cm as cm from resources.routines import * from resources.TimeStepping import * import parameters as param import resources.constants as const import resources.figures as figures from resources.targets import * from matplotlib.ticker import MaxNLocator, MultipleLocator, FormatStrFormatter from mpl_toolkits.basemap import Basemap ########################################################################### ### PARAMETERS # orbit_iditude of the orbit in km orbit_id = 702 apogee = 700 perigee = 700 # First minute in data set ! minute_ini = 0 # Last minute to look for minute_end = 1440*365/12 # File name for the list of orbit file orbits_file = 'orbits.dat' typep = 'Neptunes' if typep == 'Super-Earths': # Orbit period [d] exoplanet_period = 50 # Minimum observable time for plots [h] transit_duration = 6 elif typep == 'Neptunes': # Orbit period [d] exoplanet_period = 13 # Minimum observable time for plots [h] transit_duration = 3 # Maximum visible magnitude mag_max = 10. # Plot a few stars as well ? stars= False targets_exo=False # Maximum interruption time tolerated [min] max_interruptions = 20 # Take SAA into account? SAA = True # File name for the input file (in a compressed binary Python format) if SAA: note = '_SAA' else: note = '' # File name for the input file (in a compressed binary Python format) input_fname = 'ephemerids_obs%dh_%dinter_V%3.1f%s.npz' % (transit_duration,max_interruptions,mag_max,note) # Print much information ? verbose = False # Nice plots? fancy=True # Save plots? save = True # Show figures ? show = True ##################################################################################################################### # for every region in the sky/worthy target: # >> Find when you can look with transit_duration [h] with maximal max_interruptions [min] # >>>> return start and end time of observations with duration of interruptions [min] # >> can we observe a transit ? # >>>> Vary the start of transit time by transit_duration [h] until exoplanet_period [h] ##################################################################################################################### # CONSTANTS AND PHYSICAL PARAMETERS period = altitude2period(apogee, perigee) number_of_transit = exoplanet_period * 24. / transit_duration ########################################################################### ### INITIALISATION ## Prepare grid n_alpha = param.resx n_delta = param.resy ra_i = 0 ra_f = 2.*np.pi dec_i = -np.pi/2. dec_f = np.pi/2. ra_step = (ra_f-ra_i)/n_alpha dec_step = (dec_f-dec_i)/n_delta iterable = (ra_i + ra_step/2+ i*ra_step for i in range(n_alpha)) ras = np.fromiter(iterable, np.float) iterable = (dec_i + dec_step/2+ i*dec_step for i in range(n_delta)) decs = np.fromiter(iterable, np.float) ra_grid, dec_grid = np.meshgrid(ras, decs) data_grid = np.zeros(np.shape(ra_grid)) if stars: ra_stars=[101.2833, 95.9875, 213.9167, 219.9, 279.2333, 78.6333, 114.8250, 88.7917] dec_stars=[-16.7161, -52.6956, 19.1822, -60.8339, 38.7836, -8.2014, 5.2250, 7.4069] y_offset=[0.5e6,0.5e6,-0.8e6,0.5e6,0.5e6,0.5e6,-0.8e6,0.5e6] labels = ['Sirius','Canopus','Arcturus',r'$\alpha\mathrm{Centauri}$','Vega','Rigel','Procyon','Betelgeuse'] if targets_exo: ra_tar, dec_tar, magn = np.loadtxt('resources/defined-exo.csv', delimiter=';', unpack=True) # Formatted folders definitions folder_flux, folder_figures, folder_misc = init_folders(orbit_id) # loading data print 'loading %s' % input_fname sys.stdout.write("Loading worthy targets...\t") sys.stdout.flush() data = np.load(folder_misc+input_fname) worthy_targets = data['worthy_targets'] start_obs=data['start_obs'] stop_obs=data['stop_obs'] interruptions_obs=data['interruptions_obs'] print 'Done, %d targets loaded' % len(worthy_targets) ########################################################################### # cycling through the targets: density = np.zeros(len(worthy_targets)) for index_target, target in enumerate(worthy_targets): tar_start = start_obs[index_target,:] tar_stop = stop_obs[index_target,:] # print target.Coordinates()[0]*180./np.pi, target.Coordinates()[1]*180./np.pi if verbose: print index_target, target.Coordinates()[0]*180./np.pi, target.Coordinates()[1]*180./np.pi for i, f in zip(tar_start, tar_stop): if i >= 0 and f > 0: if verbose: print i/60/24, f/60/24, (f-i)/60 density[index_target]+=np.floor((f-i)/60 / transit_duration) if verbose: print '-'*30 density[index_target]=float(density[index_target]) / number_of_transit * 100. # Associate the density to a grid point id_ra = np.where(np.abs(ras-target.Coordinates()[0]) < 0.05)[0] id_dec= np.where(np.abs(decs-target.Coordinates()[1]) < 0.05)[0] # Transform density in prob of transit: data_grid[id_dec, id_ra] = density[index_target] if verbose: print 'obs start | obs end | hours of obs' #plt.figure() #for index_target, target in enumerate(worthy_targets): # c = density[index_target] # plt.scatter(target.Coordinates()[0]*180./np.pi,target.Coordinates()[1]*180./np.pi,c=c, cmap=cm.jet, vmin=np.amin(density), vmax=np.amax(density), edgecolor='none', s=50) #plt.xlim([0,360]) #plt.ylim([-90,90]) #plt.grid() #cb=plt.colorbar() #cb.set_label('Probabilty of transit of min. %d hours' % transit_duration) ########################################################################### ### Plotting # transform 0 into no plotting in the data matrix if fancy: figures.set_fancy() fig = plt.figure() m = Basemap(projection='moll',lon_0=180,resolution='c') extent = (-np.pi,np.pi,-np.pi/2.,np.pi/2.) ra_grid *= const.RAD #ra_grid -= 180. #ra_grid = ra_grid - 180 #= (ra_grid-np.pi) #*180. / np.pi dec_grid *= const.RAD m.contour( ra_grid,dec_grid,data_grid,10,colors='k',latlon=True) CS = m.contourf( ra_grid ,dec_grid,data_grid,100,cmap=plt.cm.gist_stern,latlon=True,vmin=0) #m.fillcontinents(color='coral',lake_color='aqua') # draw parallels and meridians. m.drawparallels(np.arange(-60.,90.,30.),labels=[1,0,0,0]) m.drawmeridians(np.arange(0.,360.,30.)) ra__ = np.arange(0., 360., 30.) #print ra__ x, y = m(ra__,ra__*0) for x,y,ra in zip(x,y,ra__): plt.text(x, y, figures.format_degree(ra), color='black', ha='center', weight='black', size='small') ##93c6ed t = np.linspace(0., np.amax(density),5) labels = ['%3.1f\%%' % a for a in t] cbar = plt.colorbar(CS, orientation='horizontal',shrink=.8, ticks=t) cbar.ax.set_xticklabels(labels) l,b,w,h = plt.gca().get_position().bounds ll,bb,ww,hh = cbar.ax.get_position().bounds cbar.ax.set_position([ll, bb+0.1, ww, hh]) cbar.set_label('Probabilty of seeing a transit of %d hours for V=%3.1f' % (transit_duration,mag_max)) if stars: x,y = m(ra_stars, dec_stars) m.plot(x,y, 'w*', markersize=10) for label, xpt, ypt, y_offset in zip(labels, x, y,y_offset): plt.text(xpt, ypt+y_offset, label, color='white', size='x-small', ha='center', weight='black') # #93a4ed if targets_exo: x,y = m(ra_tar*180./np.pi, dec_tar*180./np.pi) x,y = m(ra_tar, dec_tar) m.scatter(x,y, c='white', edgecolor='k', marker='+', s=20,zorder=10, lw=0.5) # Save plot if save: fname = 'proba_%d_%dobs_%dinter_V%3.1f' % (orbit_id, transit_duration, max_interruptions, mag_max) figures.savefig(folder_figures+fname, fig, fancy) print 'saved as %s' % folder_figures+fname if show: plt.show()
bsd-3-clause
RobertABT/heightmap
build/scipy/scipy/interpolate/ndgriddata.py
5
7154
""" Convenience interface to N-D interpolation .. versionadded:: 0.9 """ from __future__ import division, print_function, absolute_import import numpy as np from .interpnd import LinearNDInterpolator, NDInterpolatorBase, \ CloughTocher2DInterpolator, _ndim_coords_from_arrays from scipy.spatial import cKDTree __all__ = ['griddata', 'NearestNDInterpolator', 'LinearNDInterpolator', 'CloughTocher2DInterpolator'] #------------------------------------------------------------------------------ # Nearest-neighbour interpolation #------------------------------------------------------------------------------ class NearestNDInterpolator(NDInterpolatorBase): """ NearestNDInterpolator(points, values) Nearest-neighbour interpolation in N dimensions. .. versionadded:: 0.9 Methods ------- __call__ Parameters ---------- points : (Npoints, Ndims) ndarray of floats Data point coordinates. values : (Npoints,) ndarray of float or complex Data values. rescale : boolean, optional Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude. .. versionadded:: 0.14.0 Notes ----- Uses ``scipy.spatial.cKDTree`` """ def __init__(self, x, y, rescale=False): NDInterpolatorBase.__init__(self, x, y, rescale=rescale, need_contiguous=False, need_values=False) self.tree = cKDTree(self.points) self.values = y def __call__(self, *args): """ Evaluate interpolator at given points. Parameters ---------- xi : ndarray of float, shape (..., ndim) Points where to interpolate data at. """ xi = _ndim_coords_from_arrays(args, ndim=self.points.shape[1]) xi = self._check_call_shape(xi) xi = self._scale_x(xi) dist, i = self.tree.query(xi) return self.values[i] #------------------------------------------------------------------------------ # Convenience interface function #------------------------------------------------------------------------------ def griddata(points, values, xi, method='linear', fill_value=np.nan, rescale=False): """ Interpolate unstructured D-dimensional data. .. versionadded:: 0.9 Parameters ---------- points : ndarray of floats, shape (n, D) Data point coordinates. Can either be an array of shape (n, D), or a tuple of `ndim` arrays. values : ndarray of float or complex, shape (n,) Data values. xi : ndarray of float, shape (M, D) Points at which to interpolate data. method : {'linear', 'nearest', 'cubic'}, optional Method of interpolation. One of ``nearest`` return the value at the data point closest to the point of interpolation. See `NearestNDInterpolator` for more details. ``linear`` tesselate the input point set to n-dimensional simplices, and interpolate linearly on each simplex. See `LinearNDInterpolator` for more details. ``cubic`` (1-D) return the value determined from a cubic spline. ``cubic`` (2-D) return the value determined from a piecewise cubic, continuously differentiable (C1), and approximately curvature-minimizing polynomial surface. See `CloughTocher2DInterpolator` for more details. fill_value : float, optional Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is ``nan``. This option has no effect for the 'nearest' method. rescale : boolean, optional Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude. .. versionadded:: 0.14.0 Examples -------- Suppose we want to interpolate the 2-D function >>> def func(x, y): >>> return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2 on a grid in [0, 1]x[0, 1] >>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j] but we only know its values at 1000 data points: >>> points = np.random.rand(1000, 2) >>> values = func(points[:,0], points[:,1]) This can be done with `griddata` -- below we try out all of the interpolation methods: >>> from scipy.interpolate import griddata >>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest') >>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear') >>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic') One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the piecewise cubic interpolant gives the best results: >>> import matplotlib.pyplot as plt >>> plt.subplot(221) >>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower') >>> plt.plot(points[:,0], points[:,1], 'k.', ms=1) >>> plt.title('Original') >>> plt.subplot(222) >>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower') >>> plt.title('Nearest') >>> plt.subplot(223) >>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower') >>> plt.title('Linear') >>> plt.subplot(224) >>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower') >>> plt.title('Cubic') >>> plt.gcf().set_size_inches(6, 6) >>> plt.show() """ points = _ndim_coords_from_arrays(points) if points.ndim < 2: ndim = points.ndim else: ndim = points.shape[-1] if ndim == 1 and method in ('nearest', 'linear', 'cubic'): from .interpolate import interp1d points = points.ravel() if isinstance(xi, tuple): if len(xi) != 1: raise ValueError("invalid number of dimensions in xi") xi, = xi # Sort points/values together, necessary as input for interp1d idx = np.argsort(points) points = points[idx] values = values[idx] ip = interp1d(points, values, kind=method, axis=0, bounds_error=False, fill_value=fill_value) return ip(xi) elif method == 'nearest': ip = NearestNDInterpolator(points, values, rescale=rescale) return ip(xi) elif method == 'linear': ip = LinearNDInterpolator(points, values, fill_value=fill_value, rescale=rescale) return ip(xi) elif method == 'cubic' and ndim == 2: ip = CloughTocher2DInterpolator(points, values, fill_value=fill_value, rescale=rescale) return ip(xi) else: raise ValueError("Unknown interpolation method %r for " "%d dimensional data" % (method, ndim))
mit
biofilos/cluster_genomics
manual.py
1
22645
from glob import glob import pandas as pd from Bio import SeqIO # from concurrent import futures import os import json # import sys import numpy as np # import matplotlib # matplotlib.use("Agg") import matplotlib.pyplot as plt import networkx as nx import requests from networkx.drawing.nx_agraph import graphviz_layout # matplotlib.use("Agg") import re class Ensembl: """ This class contains server information and methods to fetch data from Ensembl """ def __init__(self): """ Set server details """ self.server = "http://rest.ensemblgenomes.org" self.ref_server = "http://rest.ensembl.org" def search(self, prefix, query, server, content="application/json"): """ Perform generic search on Ensembl :param content: type of response :param prefix: extension to be used. It depends on the kind of data that needs to be fetched :param query: depending on the service, it can be a taxId, gene name, etc :return: dictionary """ # If query is a dictionary, it will use POST (for sequences) if type(query) == dict: header = {"Content-Type": "application/json", "Accept": "application/json"} query_str = json.dumps(query) response = requests.post(server + prefix, headers=header, data=query_str) if not response.ok: print("Trying reference server") response = requests.post(self.ref_server + prefix, headers=header, data=query_str) else: extension = prefix + query header = {"Content-type": content} response = requests.get(server + extension, headers=header) # try the reference server if the default one doesn't work if not response.ok: response = requests.get(self.ref_server + extension, headers=header) # Fail gracefully if not response.ok: print("{} failed".format(query)) # response.raise_for_status() return None else: if content == "application/json": return response.json() else: return response.text def get_ref_sp(self): """ Get species in ensembl reference (ensembl.org), so that the correct server is used :return: list of species """ prefix = "/info/species?" response = self.search(prefix, "", self.ref_server) sp_list = [x['name'] for x in response['species']] return sp_list def genomes_info(self): """ Get basic information about all the genomes available in Ensembl :return: data frame """ genomes = [] genomes_list = self.search("/info/genomes", "", self.server) for genome in genomes_list: taxid = clean_name(genome['taxonomy_id']) name = clean_name(genome['name']) species = clean_name(genome['species']) assembly_level = clean_name(genome['assembly_level']) assembly_id = clean_name(genome['assembly_id']) assembly_name = clean_name(genome['assembly_name']) # Save information to CSV genomes.append([taxid, name, species, assembly_level, assembly_id, assembly_name]) genomes_df = pd.DataFrame(genomes, columns=["taxonomy_id", "name", "species", "assembly_level", "assembly_id", "assembly"]) genomes_df.loc[:, "taxonomy_id"] = genomes_df.loc[:, "taxonomy_id"].astype(int) genomes_df.set_index("taxonomy_id", inplace=True) return genomes_df def get_taxonomy(self, taxid): """ Get taxonomic lineage :param taxid: taxonomic id (or species name) :return: dash-separated lineage (str) """ prefix = "/taxonomy/classification/" tax_id_str = str(taxid) lineage = [] lineage_list = self.search(prefix, tax_id_str, self.server) if lineage_list: for node in lineage_list: lineage.append(node['name']) # It was decided to organize it as one string, in case it needs to be # saved in a file return "-".join(lineage) else: return None def get_chrom_info(self, species, min_length): """ Get list of top-level (the best assembled level: chromosome, scaffold, etc) genomic features that are greater than a specified size :param species: species name (lower_case :param min_length: int :return: tuple: first element: dictionary of genomic features and their length. second element: total genome length covered by the selected genomic features """ # Initialize variables c_value = 0 karyotype = {} # Set assembly information service prefix = "/info/assembly/" # Format species name for query sp_query = "{}?".format(species) karyotype_raw = self.search(prefix, sp_query, self.server) # Extract information for top-level genomic regions above the minimum size for chrom in karyotype_raw['top_level_region']: chrom_length = chrom['length'] if chrom_length >= min_length: # Only include chromosome if it has not been already included if chrom['name'] not in karyotype: karyotype[chrom['name']] = chrom_length # increment genomic coverage by the length of the fetched genomic feature c_value += chrom_length else: # If a chromosome name is repeated, it is an unplaced scaffold and will be ignored del karyotype[chrom['name']] return karyotype, c_value def get_region_genes(self, species, chromosome, start, end): """ Get annotation for protein coding genes overlapping genomic coordinates :param species: ensembl species name :param chromosome: chromosome name :param start: genomic coordinates start :param end: genomic coordinates end :return: dataframe with annotations """ prefix = "/overlap/region/" query = "{}/{}:{}-{}?feature=gene;biotype=protein_coding".format(species, chromosome, start, end) genes_dict = self.search(prefix=prefix, query=query, server=self.server) genes_list = [] columns = ['species', 'chromosome', 'acc', 'start', 'end', 'strand', 'symbol'] # Parse response if there is more than one gene in the region if genes_dict and len(genes_dict) != 0: for gene in genes_dict: if gene['feature_type'] == "gene": g_id = gene['id'] g_start = gene['start'] g_end = gene['end'] g_strand = int(gene['strand']) try: g_symbol = gene['external_name'] except KeyError: g_symbol = g_id # g_description = gene['description'] genes_list.append([species, chromosome, g_id, g_start, g_end, g_strand, g_symbol]) genes_df = pd.DataFrame(genes_list, columns=columns) # genes_df.set_index('acc', inplace=True) genes_df.loc[:, 'length'] = genes_df['end'] - genes_df['start'] for col in ['start', 'end', 'strand']: genes_df.loc[:, col] = genes_df[col].astype(int) genes_df.loc[:, 'chromosome'] = genes_df['chromosome'].astype(str) else: genes_df = pd.DataFrame([], columns=columns) return genes_df.set_index("acc") def get_seq(self, genes, seq_type, file_out, server): """ Get protein sequence as string :param server: ensembl server to use (str) :param file_out: output file (fasta) :param seq_type: protein (protein, cdna) :param genes: pd.DataFrame containing genes annotation :return: protein sequence (str) """ assert seq_type in ['protein', 'cdna'], "{} is not a valid type, should be 'protein' or 'cdna'".format(seq_type) prefix = "/sequence/id?type={}".format(seq_type) # max number of genes to download at the same time max_seqs = 50 # Open ouput file handle # Collect accessions of sequences already present in the fasta file dones = set([x.split("|")[2] for x in open(file_out) if x.startswith(">")]) file_o = open(file_out, "a") genes = genes.loc[~(genes.index.isin(dones))] # gene accession numbers gene_list = [x for x in genes.index.values] downloaded = 0 for genes_chunk in [gene_list[i:i + max_seqs] for i in range(0, len(gene_list), max_seqs)]: downloaded += max_seqs # Only work on genes that are not in the fasta file perc_done = round(((len(dones) + downloaded) / (len(gene_list) + len(dones))) * 100, 3) species_set = "\n".join(set(genes.loc[genes_chunk, 'species'])) print("{}\nDownloading {} genes ({}%)".format(species_set, len(genes_chunk), perc_done)) # print(genes_chunk) query = {"ids": genes_chunk} response = self.search(prefix, query, server) response_list = response for acc, seq in zip(genes_chunk, response_list): gene_record = genes.loc[acc] chromosome = gene_record['chromosome'] symbol = gene_record['symbol'] species = gene_record['species'] start = gene_record['start'] end = gene_record['end'] strand = gene_record['strand'] name = ">{}|{}|{}|{}|{}|{}|{}\n".format(species, chromosome, acc, symbol, start, end, strand) file_o.write(name) seq_str = seq['seq'] + "\n" file_o.write(seq_str) file_o.flush() file_o.close() # Formatting functions def clean_name(str_in, replace_fields=[","]): """ Removes undesired fields :param replace_fields: list of fields to be replaced with underscores :param str_in: :return: """ str_in = str(str_in) for field in replace_fields: str_in = str_in.replace(field, '_') return str_in def tax_graph(t_lineage): """ Generates a graph from a list of lineages :param t_lineage: list of lineages. Each lineage is a '-' separated string of OTUs :return: networkX graph """ lin_g = nx.Graph() for lin in t_lineage: lin_list = lin.split('-') lin_g.add_edges_from([(lin_list[i], lin_list[i + 1]) for i in range(0, len(lin_list) - 1)]) return lin_g def md2list(md): """ Transform a markdown list to a python list, ignoring headers :param md: markdown file containing a list (marked with *) :return: list """ result_list = [] for line in open(md): if not line.startswith("#"): item = line.strip("* ").strip("\n") result_list.append(item) return result_list def draw_graph(lin_G): """ Draws networkX graph with labels :param lin_G: Graph :return: None """ # Drawing the phylogram layout = graphviz_layout(lin_G) nx.draw(lin_G, pos=layout) nx.draw_networkx_labels(lin_G, pos=layout) plt.show() def chop_chromosome(chrom_length, chunk_size): """ Given a chromosome length, return a list of tuples of a fixed size (or to the end) :param chrom_length: chromosome length :param chunk_size: size of chunk :return: list """ region_chunks = [] for region in range(0, chrom_length, int(chunk_size)): if region + chunk_size > chrom_length: region_chunks.append((int(region), int(chrom_length))) else: region_chunks.append((int(region), int(region + chunk_size))) return region_chunks # Remove overlapping genes def sp_loop(in_table, columns): """ Filters a table by a number of columns :param in_table: Input table :param columns: Column names to perform the filter :return: list of tables for each combination of column names """ # Initialize the list of tables list_results = [] for col_set in np.unique(in_table.set_index(columns).index): filtered_table = in_table cols_to_filter = {col_name: col_value for col_name, col_value in zip(columns, col_set)} for var in cols_to_filter.keys(): filtered_table = filtered_table.loc[filtered_table[var] == cols_to_filter[var]] list_results.append(filtered_table) return list_results def remove_overlaps(chrom_only): """ Removes overlapping genes according to these rules: If the second gene (sorted by start coordinate) starts before the gene before ends AND both genes are in the same strand :param chrom_only: dataframe for each chromosome on a species :return: Dataframe """ # Remove duplicated accession numbers chrom_only.reset_index(inplace=True) chrom_only.drop_duplicates('acc', inplace=True) chrom_only.set_index('acc', inplace=True) chrom_only.sort_values("start", inplace=True) first_to_one_to_last = chrom_only.index.values[:-1] second_to_last = chrom_only.index.values[1:] overlapping = chrom_only.loc[second_to_last, 'start'].values < chrom_only.loc[first_to_one_to_last, 'end'].values overlapping_all = np.concatenate(([False], overlapping)) same_strand = chrom_only.loc[second_to_last, 'strand'].values == chrom_only.loc[first_to_one_to_last, 'strand'].values same_strand_all = np.concatenate(([False], same_strand)) for_removal = same_strand_all & overlapping_all for_removal_indices = chrom_only.loc[for_removal].index non_overlapping_table = chrom_only.drop(for_removal_indices) return non_overlapping_table def remove_overlaps_sp(sp_table, sp): """ Loads a csv named sp.csv in the current directory. Adds a length column Removes genes with duplicated start coordinates. :param sp: :return: """ # sp_table_list = [] # Load species table sp_table = sp_table.loc[sp_table.species == sp] # Set indices so that a data frame per chromosome with ordered genes by position and length can be easily selected sp_table.sort_values(['start', 'length'], inplace=True) # Remove entries that have the same start position and leave the longest one sp_table.drop_duplicates('start', inplace=True) # Remove overlapping genes # Get list of tables per chromosome chrom_tables = sp_loop(sp_table, ['species', 'chromosome']) # Get list of tables (one per chromosome) without overlapping genes non_overlapping = [] for chrom_table in chrom_tables: before = chrom_table.shape[0] no_overlaps = remove_overlaps(chrom_table) after = no_overlaps.shape[0] while before != after: before = no_overlaps.shape[0] no_overlaps = remove_overlaps(no_overlaps) after = no_overlaps.shape[0] non_overlapping.append(no_overlaps) parsed_sp_table = pd.concat(non_overlapping) return parsed_sp_table # Clean lineage data class Lineage: def __init__(self, lineage_df, genome, name): self.lineage = lineage_df self.graph = tax_graph(self.lineage['lineage'].values) self.genome = genome self.name = name self.df = self.genome.loc[self.genome['genus'].isin(self.lineage['genus'])] # self.included_md = None # self.remove_list = None def clean(self, included_md, remove_list): genera_list = md2list(included_md) selected_genera = self.df.loc[self.df['genus'].isin(genera_list)] selected_genera.drop(remove_list, errors="ignore", inplace=True) selected_genera.loc[:, "big_group"] = self.name return selected_genera def clean_graph(self, genes): clean_lineage = self.lineage.loc[self.lineage['genus'].isin(genes['genus']), 'lineage'] return tax_graph(clean_lineage) e = Ensembl() # genome_df = pd.read_csv("genomes.csv") # genera_df = pd.read_csv("genera.csv") seq_dict = {} fasta_dict = {} chrom_info = {} sp_cval = [] for fasta in glob("*.fa"): # Download chromosome information sp = fasta.split(".")[0] karyotype, c_val = e.get_chrom_info(sp, 10000) sp_cval.append([sp, c_val]) chrom_info[sp] = karyotype species = fasta.split(".")[0] print(species) # Parse fasta header annotation for seq in SeqIO.parse(fasta, "fasta"): line = seq.description if "gene_biotype:protein_coding" in line: data = line.split(" ") coords = data[2].split(":") chrom = coords[2] start, end, strand = coords[3], coords[4], coords[5] acc = data[3].split(":")[1] if "gene_symbol" in line: if "description" in line: regex = r"gene_symbol:(.*)description" else: regex = r"gene_symbol:(.*)" # symbol = data[7].split(":")[1] symbol_raw = re.search(regex, line) symbol = symbol_raw.groups()[0].strip(" ").replace(" ", "_") else: symbol = acc if acc not in seq_dict: seq_dict[acc] = {"species": species, "chromosome": chrom.replace(" ", "_").replace("|", "_"), "acc": acc, "coords": [int(start), int(end)], "strand": strand, "symbol": symbol.replace(" ", "_").replace("|", "_")} else: seq_dict[acc]["coords"] += [int(start), int(end)] if acc in fasta_dict: if len(fasta_dict[acc]) < len(seq.seq): fasta_dict[acc] = str(seq.seq) else: fasta_dict[acc] = str(seq.seq) # Convert chromosome data to dataframe chrom_lengths = [] for species in chrom_info: for chrom in chrom_info[species]: chrom_lengths.append([species, chrom, chrom_info[species][chrom]]) chromosomes = pd.DataFrame(chrom_lengths, columns=["species","chromosome","length"]) chromosomes.to_csv("chromosomes.csv") for rec in seq_dict: seq_dict[rec]["start"] = min(seq_dict[rec]["coords"]) seq_dict[rec]["end"] = max(seq_dict[rec]["coords"]) del seq_dict[rec]["coords"] genes = pd.DataFrame(seq_dict).T if not os.path.exists("genes_raw.fa"): with open("genes_raw.fa", "w") as fileO: for acc in fasta_dict: record = genes.loc[acc] name = ">{}|{}|{}|{}|{}|{}|{}\n{}\n".format(record["species"], record["chromosome"], acc, record["symbol"], record["start"], record["end"], record["strand"], fasta_dict[acc]) fileO.write(name) genes.loc[:, "length"] = genes["end"] - genes["start"] genes.reset_index(drop=True, inplace=True) genes = genes[['species', 'chromosome', 'acc', 'symbol', 'start', 'end', 'strand', 'length']] genes.set_index("acc", inplace=True) genes.to_csv("genes_raw.csv") genes_file = "genes_raw.csv" if os.path.exists('genes_parsed.csv'): all_sp_table_clean = pd.read_csv('genes_parsed.csv') all_sp_table_clean.set_index("acc", inplace=True) else: # Don't remove overlaps all_sp_table_clean = genes.loc[:, ['species', 'chromosome', 'symbol', 'start', 'end', 'strand', 'length']] all_sp_table_clean.to_csv("genes_parsed.csv") # Remove overlapping genes # CPUS = 8 # genes_raw = pd.read_csv(genes_file) # genes_raw.loc[:, "chromosome"] = genes_raw["chromosome"].astype(str) # genes_raw.loc[:, "start"] = genes_raw["start"].astype(str) # genes_raw.loc[:, "end"] = genes_raw["end"].astype(str) # genes_raw.loc[:, "strand"] = genes_raw["strand"].astype(str) # genes_raw.loc[:, "end"] = genes_raw["end"].astype(str) # # genes_raw.set_index("acc", inplace=True) # # print("Removing overlapping genes") # with futures.ProcessPoolExecutor(CPUS) as pool: # sp_tables = [] # for sp in set(genes_raw.species.values): # one_result = pool.submit(remove_overlaps_sp, genes_raw, sp) # sp_tables.append(one_result.result()) # all_sp_table = pd.concat(sp_tables) # all_sp_table_clean = all_sp_table.loc[:, ['species', 'chromosome', 'symbol', # 'start', 'end', 'strand', 'length']] # # all_sp_table_clean.set_index('acc') # all_sp_table_clean.to_csv('genes_parsed.csv') # del genes_raw # Keep genes on chromosomes that are more than 10kb long and have more than 10 genes genomes = pd.read_csv("chromosomes.csv") genomes = genomes.loc[genomes["length"] >= 1e4] genomes.set_index(["species", "chromosome"], inplace=True) over_10kb = set(genomes.index) genes_chrom = all_sp_table_clean.groupby(["species", "chromosome"]).count() gene_counts = genes_chrom.loc[genes_chrom["symbol"] >= 10, "symbol"] over_10_genes = set(gene_counts.index) # Retain chromosomes that meet both conditions over10_10kb = list(over_10kb.intersection(over_10_genes)) all_sp_table_clean.reset_index(inplace=True) all_sp_table_clean.set_index(["species", "chromosome"], inplace=True) genomes = genomes.loc[over10_10kb] all_sp_table_clean = all_sp_table_clean.loc[over10_10kb] genomes.reset_index(inplace=True) genomes.set_index("species", inplace=True) all_sp_table_clean.reset_index(inplace=True) all_sp_table_clean.set_index("acc", inplace=True) # del all_sp_table_clean["Unnamed: 0"] genomes.to_csv("chromosomes.csv") all_sp_table_clean.to_csv("genes_parsed.csv") # Filter out genes that were removed from chromosomes less than 10kb long or # with less than 10 genes fasta_out = open("seqs_hmmer.fa", "a") for gene in SeqIO.parse("genes_raw.fa","fasta"): gene_id = gene.description.split("|")[2] if gene_id in all_sp_table_clean.index: SeqIO.write(gene, fasta_out, "fasta") print("DONE")
gpl-3.0
dcelisgarza/phd_excercises
comp_techniques/problem_class1.py
1
2837
# -*- coding: utf-8 -*- """ Created on Tue Oct 25 12:19:01 2016 @author: dcg513 """ #Import useful routines from modules from scipy.integrate import odeint from numpy import linspace, exp, sin, cos, array import matplotlib.pyplot as plt plt.close("all") plt.rc("text", usetex = True) plt.rc("font", family = "serif", size = 16) #Here we define our function which returns df/dt = -a*f #Note we can pass in a, but it defaults to 10 def dfdt(curF, curT, params): #We don’t do anything with curT return -params[0]*sin(curF) - params[1]*cos(curT) #Now define the times at which we want to know the result time=linspace(0,10,400) #Set the initial condition f0=10. params = array([30.,50.]) result = odeint(dfdt,f0,time,args=(params,)) plt.figure(1) plt.plot(time, result, label = r"$\frac{\mathrm{d}f}{\mathrm{d}t} = -" + str(params[0]) + " \sin(f) -" +str(params[1]) + " \cos(t)$") plt.xlabel("Time"); plt.ylabel(r"$f$") plt.legend(loc=0) ; plt.show() def spring(f, x, params): # params = [k, m] # Assign x. x = f[0] # Assign v. v = f[1] # Construct derivatives. dxdt = v d2xdt2 = -params[0]/params[1] * x # Return derivatives. return [dxdt, d2xdt2] params = array([0.5,0.01]) f = array([0.4,0.]) time = linspace(0,10,1000) result = odeint(spring,f,time,args=(params,)) plt.figure(2) plt.plot(time, result[:,0], label = r"$x(t)$.", linestyle = "-") plt.plot(time, result[:,1], label = r"$v(t)$.", linestyle = "--") plt.legend(loc=0) plt.xlabel(r"Time, s"); plt.ylabel(r"Value") plt.figure(3) plt.plot(time, params[1]*result[:,1]**2/2, label = r"$K(t)$", linestyle = "--") plt.plot(time, params[0]*result[:,0]**2/2, label = r"$V(t)$", linestyle = "-.") plt.plot(time, params[0]*result[:,0]**2/2 + params[1]*result[:,1]**2/2, label = r"$E(t)$", linestyle = "-") plt.legend(loc=0) plt.xlabel(r"Time, s"); plt.ylabel(r"Energy") def dampspring(f, x, params): # params = [k, m] # Assign x. x = f[0] # Assign v. v = f[1] # Construct derivatives. dxdt = v d2xdt2 = -params[0]/params[1] * x - params[2]/params[1]*v # Return derivatives. return [dxdt, d2xdt2] params = array([0.5,0.01,0.005]) f = array([0.4,0.]) time = linspace(0,10,1000) result = odeint(dampspring,f,time,args=(params,)) plt.figure(4) plt.plot(time, result[:,0], label = r"$x(t)$.", linestyle = "-") plt.plot(time, result[:,1], label = r"$v(t)$.", linestyle = "--") plt.legend(loc=0) plt.xlabel(r"Time, s"); plt.ylabel(r"Value") plt.figure(5) plt.plot(time, params[1]*result[:,1]**2/2, label = r"$K(t)$", linestyle = "--") plt.plot(time, params[0]*result[:,0]**2/2, label = r"$V(t)$", linestyle = "-.") plt.plot(time, params[0]*result[:,0]**2/2 + params[1]*result[:,1]**2/2, label = r"$E(t)$", linestyle = "-") plt.legend(loc=0) plt.xlabel(r"Time, s"); plt.ylabel(r"Energy")
gpl-3.0
zfrenchee/pandas
pandas/tests/test_multilevel.py
1
106146
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101,W0141 from warnings import catch_warnings import datetime import itertools import pytest import pytz from numpy.random import randn import numpy as np from pandas.core.index import Index, MultiIndex from pandas import Panel, DataFrame, Series, notna, isna, Timestamp from pandas.core.dtypes.common import is_float_dtype, is_integer_dtype import pandas.core.common as com import pandas.util.testing as tm from pandas.compat import (range, lrange, StringIO, lzip, u, product as cart_product, zip) import pandas as pd import pandas._libs.index as _index class Base(object): def setup_method(self, method): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.frame = DataFrame(np.random.randn(10, 3), index=index, columns=Index(['A', 'B', 'C'], name='exp')) self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) # create test series object arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) s[3] = np.NaN self.series = s tm.N = 100 self.tdf = tm.makeTimeDataFrame() self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work self.ymd.index.set_levels([lev.astype('i8') for lev in self.ymd.index.levels], inplace=True) self.ymd.index.set_names(['year', 'month', 'day'], inplace=True) class TestMultiLevel(Base): def test_append(self): a, b = self.frame[:5], self.frame[5:] result = a.append(b) tm.assert_frame_equal(result, self.frame) result = a['A'].append(b['A']) tm.assert_series_equal(result, self.frame['A']) def test_append_index(self): idx1 = Index([1.1, 1.2, 1.3]) idx2 = pd.date_range('2011-01-01', freq='D', periods=3, tz='Asia/Tokyo') idx3 = Index(['A', 'B', 'C']) midx_lv2 = MultiIndex.from_arrays([idx1, idx2]) midx_lv3 = MultiIndex.from_arrays([idx1, idx2, idx3]) result = idx1.append(midx_lv2) # see gh-7112 tz = pytz.timezone('Asia/Tokyo') expected_tuples = [(1.1, tz.localize(datetime.datetime(2011, 1, 1))), (1.2, tz.localize(datetime.datetime(2011, 1, 2))), (1.3, tz.localize(datetime.datetime(2011, 1, 3)))] expected = Index([1.1, 1.2, 1.3] + expected_tuples) tm.assert_index_equal(result, expected) result = midx_lv2.append(idx1) expected = Index(expected_tuples + [1.1, 1.2, 1.3]) tm.assert_index_equal(result, expected) result = midx_lv2.append(midx_lv2) expected = MultiIndex.from_arrays([idx1.append(idx1), idx2.append(idx2)]) tm.assert_index_equal(result, expected) result = midx_lv2.append(midx_lv3) tm.assert_index_equal(result, expected) result = midx_lv3.append(midx_lv2) expected = Index._simple_new( np.array([(1.1, tz.localize(datetime.datetime(2011, 1, 1)), 'A'), (1.2, tz.localize(datetime.datetime(2011, 1, 2)), 'B'), (1.3, tz.localize(datetime.datetime(2011, 1, 3)), 'C')] + expected_tuples), None) tm.assert_index_equal(result, expected) def test_dataframe_constructor(self): multi = DataFrame(np.random.randn(4, 4), index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) assert isinstance(multi.index, MultiIndex) assert not isinstance(multi.columns, MultiIndex) multi = DataFrame(np.random.randn(4, 4), columns=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) assert isinstance(multi.columns, MultiIndex) def test_series_constructor(self): multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']), np.array( ['x', 'y', 'x', 'y'])]) assert isinstance(multi.index, MultiIndex) multi = Series(1., index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) assert isinstance(multi.index, MultiIndex) multi = Series(lrange(4), index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) assert isinstance(multi.index, MultiIndex) def test_reindex_level(self): # axis=0 month_sums = self.ymd.sum(level='month') result = month_sums.reindex(self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum) tm.assert_frame_equal(result, expected) # Series result = month_sums['A'].reindex(self.ymd.index, level=1) expected = self.ymd['A'].groupby(level='month').transform(np.sum) tm.assert_series_equal(result, expected, check_names=False) # axis=1 month_sums = self.ymd.T.sum(axis=1, level='month') result = month_sums.reindex(columns=self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum).T tm.assert_frame_equal(result, expected) def test_binops_level(self): def _check_op(opname): op = getattr(DataFrame, opname) month_sums = self.ymd.sum(level='month') result = op(self.ymd, month_sums, level='month') broadcasted = self.ymd.groupby(level='month').transform(np.sum) expected = op(self.ymd, broadcasted) tm.assert_frame_equal(result, expected) # Series op = getattr(Series, opname) result = op(self.ymd['A'], month_sums['A'], level='month') broadcasted = self.ymd['A'].groupby(level='month').transform( np.sum) expected = op(self.ymd['A'], broadcasted) expected.name = 'A' tm.assert_series_equal(result, expected) _check_op('sub') _check_op('add') _check_op('mul') _check_op('div') def test_pickle(self): def _test_roundtrip(frame): unpickled = tm.round_trip_pickle(frame) tm.assert_frame_equal(frame, unpickled) _test_roundtrip(self.frame) _test_roundtrip(self.frame.T) _test_roundtrip(self.ymd) _test_roundtrip(self.ymd.T) def test_reindex(self): expected = self.frame.iloc[[0, 3]] reindexed = self.frame.loc[[('foo', 'one'), ('bar', 'one')]] tm.assert_frame_equal(reindexed, expected) with catch_warnings(record=True): reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]] tm.assert_frame_equal(reindexed, expected) def test_reindex_preserve_levels(self): new_index = self.ymd.index[::10] chunk = self.ymd.reindex(new_index) assert chunk.index is new_index chunk = self.ymd.loc[new_index] assert chunk.index is new_index with catch_warnings(record=True): chunk = self.ymd.ix[new_index] assert chunk.index is new_index ymdT = self.ymd.T chunk = ymdT.reindex(columns=new_index) assert chunk.columns is new_index chunk = ymdT.loc[:, new_index] assert chunk.columns is new_index def test_repr_to_string(self): repr(self.frame) repr(self.ymd) repr(self.frame.T) repr(self.ymd.T) buf = StringIO() self.frame.to_string(buf=buf) self.ymd.to_string(buf=buf) self.frame.T.to_string(buf=buf) self.ymd.T.to_string(buf=buf) def test_repr_name_coincide(self): index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')], names=['a', 'b', 'c']) df = DataFrame({'value': [0, 1]}, index=index) lines = repr(df).split('\n') assert lines[2].startswith('a 0 foo') def test_getitem_simple(self): df = self.frame.T col = df['foo', 'one'] tm.assert_almost_equal(col.values, df.values[:, 0]) with pytest.raises(KeyError): df[('foo', 'four')] with pytest.raises(KeyError): df['foobar'] def test_series_getitem(self): s = self.ymd['A'] result = s[2000, 3] # TODO(wesm): unused? # result2 = s.loc[2000, 3] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) tm.assert_series_equal(result, expected) result = s[2000, 3, 10] expected = s[49] assert result == expected # fancy expected = s.reindex(s.index[49:51]) result = s.loc[[(2000, 3, 10), (2000, 3, 13)]] tm.assert_series_equal(result, expected) with catch_warnings(record=True): result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] tm.assert_series_equal(result, expected) # key error pytest.raises(KeyError, s.__getitem__, (2000, 3, 4)) def test_series_getitem_corner(self): s = self.ymd['A'] # don't segfault, GH #495 # out of bounds access pytest.raises(IndexError, s.__getitem__, len(self.ymd)) # generator result = s[(x > 0 for x in s)] expected = s[s > 0] tm.assert_series_equal(result, expected) def test_series_setitem(self): s = self.ymd['A'] s[2000, 3] = np.nan assert isna(s.values[42:65]).all() assert notna(s.values[:42]).all() assert notna(s.values[65:]).all() s[2000, 3, 10] = np.nan assert isna(s[49]) def test_series_slice_partial(self): pass def test_frame_getitem_setitem_boolean(self): df = self.frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) tm.assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 tm.assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 tm.assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) tm.assert_almost_equal(df.values, values) with tm.assert_raises_regex(TypeError, 'boolean values only'): df[df * 0] = 2 def test_frame_getitem_setitem_slice(self): # getitem result = self.frame.iloc[:4] expected = self.frame[:4] tm.assert_frame_equal(result, expected) # setitem cp = self.frame.copy() cp.iloc[:4] = 0 assert (cp.values[:4] == 0).all() assert (cp.values[4:] != 0).all() def test_frame_getitem_setitem_multislice(self): levels = [['t1', 't2'], ['a', 'b', 'c']] labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) result = df.loc[:, 'value'] tm.assert_series_equal(df['value'], result) with catch_warnings(record=True): result = df.ix[:, 'value'] tm.assert_series_equal(df['value'], result) result = df.loc[df.index[1:3], 'value'] tm.assert_series_equal(df['value'][1:3], result) result = df.loc[:, :] tm.assert_frame_equal(df, result) result = df df.loc[:, 'value'] = 10 result['value'] = 10 tm.assert_frame_equal(df, result) df.loc[:, :] = 10 tm.assert_frame_equal(df, result) def test_frame_getitem_multicolumn_empty_level(self): f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], ['level3 item1', 'level3 item2']] result = f['level1 item1'] expected = DataFrame([['1'], ['2'], ['3']], index=f.index, columns=['level3 item1']) tm.assert_frame_equal(result, expected) def test_frame_setitem_multi_column(self): df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], [0, 1, 0, 1]]) cp = df.copy() cp['a'] = cp['b'] tm.assert_frame_equal(cp['a'], cp['b']) # set with ndarray cp = df.copy() cp['a'] = cp['b'].values tm.assert_frame_equal(cp['a'], cp['b']) # --------------------------------------- # #1803 columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) df = DataFrame(index=[1, 3, 5], columns=columns) # Works, but adds a column instead of updating the two existing ones df['A'] = 0.0 # Doesn't work assert (df['A'].values == 0).all() # it broadcasts df['B', '1'] = [1, 2, 3] df['A'] = df['B', '1'] sliced_a1 = df['A', '1'] sliced_a2 = df['A', '2'] sliced_b1 = df['B', '1'] tm.assert_series_equal(sliced_a1, sliced_b1, check_names=False) tm.assert_series_equal(sliced_a2, sliced_b1, check_names=False) assert sliced_a1.name == ('A', '1') assert sliced_a2.name == ('A', '2') assert sliced_b1.name == ('B', '1') def test_getitem_tuple_plus_slice(self): # GH #671 df = DataFrame({'a': lrange(10), 'b': lrange(10), 'c': np.random.randn(10), 'd': np.random.randn(10)}) idf = df.set_index(['a', 'b']) result = idf.loc[(0, 0), :] expected = idf.loc[0, 0] expected2 = idf.xs((0, 0)) with catch_warnings(record=True): expected3 = idf.ix[0, 0] tm.assert_series_equal(result, expected) tm.assert_series_equal(result, expected2) tm.assert_series_equal(result, expected3) def test_getitem_setitem_tuple_plus_columns(self): # GH #1013 df = self.ymd[:5] result = df.loc[(2000, 1, 6), ['A', 'B', 'C']] expected = df.loc[2000, 1, 6][['A', 'B', 'C']] tm.assert_series_equal(result, expected) def test_xs(self): xs = self.frame.xs(('bar', 'two')) xs2 = self.frame.loc[('bar', 'two')] tm.assert_series_equal(xs, xs2) tm.assert_almost_equal(xs.values, self.frame.values[4]) # GH 6574 # missing values in returned index should be preserrved acc = [ ('a', 'abcde', 1), ('b', 'bbcde', 2), ('y', 'yzcde', 25), ('z', 'xbcde', 24), ('z', None, 26), ('z', 'zbcde', 25), ('z', 'ybcde', 26), ] df = DataFrame(acc, columns=['a1', 'a2', 'cnt']).set_index(['a1', 'a2']) expected = DataFrame({'cnt': [24, 26, 25, 26]}, index=Index( ['xbcde', np.nan, 'zbcde', 'ybcde'], name='a2')) result = df.xs('z', level='a1') tm.assert_frame_equal(result, expected) def test_xs_partial(self): result = self.frame.xs('foo') result2 = self.frame.loc['foo'] expected = self.frame.T['foo'].T tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result, result2) result = self.ymd.xs((2000, 4)) expected = self.ymd.loc[2000, 4] tm.assert_frame_equal(result, expected) # ex from #1796 index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], labels=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(8, 4), index=index, columns=list('abcd')) result = df.xs(['foo', 'one']) expected = df.loc['foo', 'one'] tm.assert_frame_equal(result, expected) def test_xs_level(self): result = self.frame.xs('two', level='second') expected = self.frame[self.frame.index.get_level_values(1) == 'two'] expected.index = expected.index.droplevel(1) tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ( 'p', 'q', 'r')]) df = DataFrame(np.random.randn(3, 5), index=index) result = df.xs('c', level=2) expected = df[1:2] expected.index = expected.index.droplevel(2) tm.assert_frame_equal(result, expected) # this is a copy in 0.14 result = self.frame.xs('two', level='second') # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 pytest.raises(com.SettingWithCopyError, f, result) def test_xs_level_multiple(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep=r'\s+', engine='python') result = df.xs(('a', 4), level=['one', 'four']) expected = df.xs('a').xs(4, level='four') tm.assert_frame_equal(result, expected) # this is a copy in 0.14 result = df.xs(('a', 4), level=['one', 'four']) # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 pytest.raises(com.SettingWithCopyError, f, result) # GH2107 dates = lrange(20111201, 20111205) ids = 'abcde' idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) idx.names = ['date', 'secid'] df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) rs = df.xs(20111201, level='date') xp = df.loc[20111201, :] tm.assert_frame_equal(rs, xp) def test_xs_level0(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep=r'\s+', engine='python') result = df.xs('a', level=0) expected = df.xs('a') assert len(result) == 2 tm.assert_frame_equal(result, expected) def test_xs_level_series(self): s = self.frame['A'] result = s[:, 'two'] expected = self.frame.xs('two', level=1)['A'] tm.assert_series_equal(result, expected) s = self.ymd['A'] result = s[2000, 5] expected = self.ymd.loc[2000, 5]['A'] tm.assert_series_equal(result, expected) # not implementing this for now pytest.raises(TypeError, s.__getitem__, (2000, slice(3, 4))) # result = s[2000, 3:4] # lv =s.index.get_level_values(1) # expected = s[(lv == 3) | (lv == 4)] # expected.index = expected.index.droplevel(0) # tm.assert_series_equal(result, expected) # can do this though def test_get_loc_single_level(self): s = Series(np.random.randn(len(self.single_level)), index=self.single_level) for k in self.single_level.values: s[k] def test_getitem_toplevel(self): df = self.frame.T result = df['foo'] expected = df.reindex(columns=df.columns[:3]) expected.columns = expected.columns.droplevel(0) tm.assert_frame_equal(result, expected) result = df['bar'] result2 = df.loc[:, 'bar'] expected = df.reindex(columns=df.columns[3:5]) expected.columns = expected.columns.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result, result2) def test_getitem_setitem_slice_integers(self): index = MultiIndex(levels=[[0, 1, 2], [0, 2]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) frame = DataFrame(np.random.randn(len(index), 4), index=index, columns=['a', 'b', 'c', 'd']) res = frame.loc[1:2] exp = frame.reindex(frame.index[2:]) tm.assert_frame_equal(res, exp) frame.loc[1:2] = 7 assert (frame.loc[1:2] == 7).values.all() series = Series(np.random.randn(len(index)), index=index) res = series.loc[1:2] exp = series.reindex(series.index[2:]) tm.assert_series_equal(res, exp) series.loc[1:2] = 7 assert (series.loc[1:2] == 7).values.all() def test_getitem_int(self): levels = [[0, 1], [0, 1, 2]] labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] index = MultiIndex(levels=levels, labels=labels) frame = DataFrame(np.random.randn(6, 2), index=index) result = frame.loc[1] expected = frame[-3:] expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) # raises exception pytest.raises(KeyError, frame.loc.__getitem__, 3) # however this will work result = self.frame.iloc[2] expected = self.frame.xs(self.frame.index[2]) tm.assert_series_equal(result, expected) def test_getitem_partial(self): ymd = self.ymd.T result = ymd[2000, 2] expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) expected.columns = expected.columns.droplevel(0).droplevel(0) tm.assert_frame_equal(result, expected) def test_setitem_change_dtype(self): dft = self.frame.T s = dft['foo', 'two'] dft['foo', 'two'] = s > s.median() tm.assert_series_equal(dft['foo', 'two'], s > s.median()) # assert isinstance(dft._data.blocks[1].items, MultiIndex) reindexed = dft.reindex(columns=[('foo', 'two')]) tm.assert_series_equal(reindexed['foo', 'two'], s > s.median()) def test_frame_setitem_ix(self): self.frame.loc[('bar', 'two'), 'B'] = 5 assert self.frame.loc[('bar', 'two'), 'B'] == 5 # with integer labels df = self.frame.copy() df.columns = lrange(3) df.loc[('bar', 'two'), 1] = 7 assert df.loc[('bar', 'two'), 1] == 7 with catch_warnings(record=True): df = self.frame.copy() df.columns = lrange(3) df.ix[('bar', 'two'), 1] = 7 assert df.loc[('bar', 'two'), 1] == 7 def test_fancy_slice_partial(self): result = self.frame.loc['bar':'baz'] expected = self.frame[3:7] tm.assert_frame_equal(result, expected) result = self.ymd.loc[(2000, 2):(2000, 4)] lev = self.ymd.index.labels[1] expected = self.ymd[(lev >= 1) & (lev <= 3)] tm.assert_frame_equal(result, expected) def test_getitem_partial_column_select(self): idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) df = DataFrame(np.random.rand(3, 2), index=idx) result = df.loc[('a', 'y'), :] expected = df.loc[('a', 'y')] tm.assert_frame_equal(result, expected) result = df.loc[('a', 'y'), [1, 0]] expected = df.loc[('a', 'y')][[1, 0]] tm.assert_frame_equal(result, expected) with catch_warnings(record=True): result = df.ix[('a', 'y'), [1, 0]] tm.assert_frame_equal(result, expected) pytest.raises(KeyError, df.loc.__getitem__, (('a', 'foo'), slice(None, None))) def test_delevel_infer_dtype(self): tuples = [tuple for tuple in cart_product( ['foo', 'bar'], [10, 20], [1.0, 1.1])] index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2']) df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'], index=index) deleveled = df.reset_index() assert is_integer_dtype(deleveled['prm1']) assert is_float_dtype(deleveled['prm2']) def test_reset_index_with_drop(self): deleveled = self.ymd.reset_index(drop=True) assert len(deleveled.columns) == len(self.ymd.columns) deleveled = self.series.reset_index() assert isinstance(deleveled, DataFrame) assert len(deleveled.columns) == len(self.series.index.levels) + 1 deleveled = self.series.reset_index(drop=True) assert isinstance(deleveled, Series) def test_count_level(self): def _check_counts(frame, axis=0): index = frame._get_axis(axis) for i in range(index.nlevels): result = frame.count(axis=axis, level=i) expected = frame.groupby(axis=axis, level=i).count() expected = expected.reindex_like(result).astype('i8') tm.assert_frame_equal(result, expected) self.frame.iloc[1, [1, 2]] = np.nan self.frame.iloc[7, [0, 1]] = np.nan self.ymd.iloc[1, [1, 2]] = np.nan self.ymd.iloc[7, [0, 1]] = np.nan _check_counts(self.frame) _check_counts(self.ymd) _check_counts(self.frame.T, axis=1) _check_counts(self.ymd.T, axis=1) # can't call with level on regular DataFrame df = tm.makeTimeDataFrame() tm.assert_raises_regex( TypeError, 'hierarchical', df.count, level=0) self.frame['D'] = 'foo' result = self.frame.count(level=0, numeric_only=True) tm.assert_index_equal(result.columns, Index(list('ABC'), name='exp')) def test_count_level_series(self): index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two', 'three', 'four']], labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]]) s = Series(np.random.randn(len(index)), index=index) result = s.count(level=0) expected = s.groupby(level=0).count() tm.assert_series_equal( result.astype('f8'), expected.reindex(result.index).fillna(0)) result = s.count(level=1) expected = s.groupby(level=1).count() tm.assert_series_equal( result.astype('f8'), expected.reindex(result.index).fillna(0)) def test_count_level_corner(self): s = self.frame['A'][:0] result = s.count(level=0) expected = Series(0, index=s.index.levels[0], name='A') tm.assert_series_equal(result, expected) df = self.frame[:0] result = df.count(level=0) expected = DataFrame({}, index=s.index.levels[0], columns=df.columns).fillna(0).astype(np.int64) tm.assert_frame_equal(result, expected) def test_get_level_number_out_of_bounds(self): with tm.assert_raises_regex(IndexError, "Too many levels"): self.frame.index._get_level_number(2) with tm.assert_raises_regex(IndexError, "not a valid level number"): self.frame.index._get_level_number(-3) def test_unstack(self): # just check that it works for now unstacked = self.ymd.unstack() unstacked.unstack() # test that ints work self.ymd.astype(int).unstack() # test that int32 work self.ymd.astype(np.int32).unstack() def test_unstack_multiple_no_empty_columns(self): index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), ( 1, 'baz', 1), (1, 'qux', 1)]) s = Series(np.random.randn(4), index=index) unstacked = s.unstack([1, 2]) expected = unstacked.dropna(axis=1, how='all') tm.assert_frame_equal(unstacked, expected) def test_stack(self): # regular roundtrip unstacked = self.ymd.unstack() restacked = unstacked.stack() tm.assert_frame_equal(restacked, self.ymd) unlexsorted = self.ymd.sort_index(level=2) unstacked = unlexsorted.unstack(2) restacked = unstacked.stack() tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd) unlexsorted = unlexsorted[::-1] unstacked = unlexsorted.unstack(1) restacked = unstacked.stack().swaplevel(1, 2) tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd) unlexsorted = unlexsorted.swaplevel(0, 1) unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1) restacked = unstacked.stack(0).swaplevel(1, 2) tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd) # columns unsorted unstacked = self.ymd.unstack() unstacked = unstacked.sort_index(axis=1, ascending=False) restacked = unstacked.stack() tm.assert_frame_equal(restacked, self.ymd) # more than 2 levels in the columns unstacked = self.ymd.unstack(1).unstack(1) result = unstacked.stack(1) expected = self.ymd.unstack() tm.assert_frame_equal(result, expected) result = unstacked.stack(2) expected = self.ymd.unstack(1) tm.assert_frame_equal(result, expected) result = unstacked.stack(0) expected = self.ymd.stack().unstack(1).unstack(1) tm.assert_frame_equal(result, expected) # not all levels present in each echelon unstacked = self.ymd.unstack(2).loc[:, ::3] stacked = unstacked.stack().stack() ymd_stacked = self.ymd.stack() tm.assert_series_equal(stacked, ymd_stacked.reindex(stacked.index)) # stack with negative number result = self.ymd.unstack(0).stack(-2) expected = self.ymd.unstack(0).stack(0) # GH10417 def check(left, right): tm.assert_series_equal(left, right) assert not left.index.is_unique li, ri = left.index, right.index tm.assert_index_equal(li, ri) df = DataFrame(np.arange(12).reshape(4, 3), index=list('abab'), columns=['1st', '2nd', '3rd']) mi = MultiIndex(levels=[['a', 'b'], ['1st', '2nd', '3rd']], labels=[np.tile( np.arange(2).repeat(3), 2), np.tile( np.arange(3), 4)]) left, right = df.stack(), Series(np.arange(12), index=mi) check(left, right) df.columns = ['1st', '2nd', '1st'] mi = MultiIndex(levels=[['a', 'b'], ['1st', '2nd']], labels=[np.tile( np.arange(2).repeat(3), 2), np.tile( [0, 1, 0], 4)]) left, right = df.stack(), Series(np.arange(12), index=mi) check(left, right) tpls = ('a', 2), ('b', 1), ('a', 1), ('b', 2) df.index = MultiIndex.from_tuples(tpls) mi = MultiIndex(levels=[['a', 'b'], [1, 2], ['1st', '2nd']], labels=[np.tile( np.arange(2).repeat(3), 2), np.repeat( [1, 0, 1], [3, 6, 3]), np.tile( [0, 1, 0], 4)]) left, right = df.stack(), Series(np.arange(12), index=mi) check(left, right) def test_unstack_odd_failure(self): data = """day,time,smoker,sum,len Fri,Dinner,No,8.25,3. Fri,Dinner,Yes,27.03,9 Fri,Lunch,No,3.0,1 Fri,Lunch,Yes,13.68,6 Sat,Dinner,No,139.63,45 Sat,Dinner,Yes,120.77,42 Sun,Dinner,No,180.57,57 Sun,Dinner,Yes,66.82,19 Thur,Dinner,No,3.0,1 Thur,Lunch,No,117.32,44 Thur,Lunch,Yes,51.51,17""" df = pd.read_csv(StringIO(data)).set_index(['day', 'time', 'smoker']) # it works, #2100 result = df.unstack(2) recons = result.stack() tm.assert_frame_equal(recons, df) def test_stack_mixed_dtype(self): df = self.frame.T df['foo', 'four'] = 'foo' df = df.sort_index(level=1, axis=1) stacked = df.stack() result = df['foo'].stack().sort_index() tm.assert_series_equal(stacked['foo'], result, check_names=False) assert result.name is None assert stacked['bar'].dtype == np.float_ def test_unstack_bug(self): df = DataFrame({'state': ['naive', 'naive', 'naive', 'activ', 'activ', 'activ'], 'exp': ['a', 'b', 'b', 'b', 'a', 'a'], 'barcode': [1, 2, 3, 4, 1, 3], 'v': ['hi', 'hi', 'bye', 'bye', 'bye', 'peace'], 'extra': np.arange(6.)}) result = df.groupby(['state', 'exp', 'barcode', 'v']).apply(len) unstacked = result.unstack() restacked = unstacked.stack() tm.assert_series_equal( restacked, result.reindex(restacked.index).astype(float)) def test_stack_unstack_preserve_names(self): unstacked = self.frame.unstack() assert unstacked.index.name == 'first' assert unstacked.columns.names == ['exp', 'second'] restacked = unstacked.stack() assert restacked.index.names == self.frame.index.names def test_unstack_level_name(self): result = self.frame.unstack('second') expected = self.frame.unstack(level=1) tm.assert_frame_equal(result, expected) def test_stack_level_name(self): unstacked = self.frame.unstack('second') result = unstacked.stack('exp') expected = self.frame.unstack().stack(0) tm.assert_frame_equal(result, expected) result = self.frame.stack('exp') expected = self.frame.stack() tm.assert_series_equal(result, expected) def test_stack_unstack_multiple(self): unstacked = self.ymd.unstack(['year', 'month']) expected = self.ymd.unstack('year').unstack('month') tm.assert_frame_equal(unstacked, expected) assert unstacked.columns.names == expected.columns.names # series s = self.ymd['A'] s_unstacked = s.unstack(['year', 'month']) tm.assert_frame_equal(s_unstacked, expected['A']) restacked = unstacked.stack(['year', 'month']) restacked = restacked.swaplevel(0, 1).swaplevel(1, 2) restacked = restacked.sort_index(level=0) tm.assert_frame_equal(restacked, self.ymd) assert restacked.index.names == self.ymd.index.names # GH #451 unstacked = self.ymd.unstack([1, 2]) expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how='all') tm.assert_frame_equal(unstacked, expected) unstacked = self.ymd.unstack([2, 1]) expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how='all') tm.assert_frame_equal(unstacked, expected.loc[:, unstacked.columns]) def test_stack_names_and_numbers(self): unstacked = self.ymd.unstack(['year', 'month']) # Can't use mixture of names and numbers to stack with tm.assert_raises_regex(ValueError, "level should contain"): unstacked.stack([0, 'month']) def test_stack_multiple_out_of_bounds(self): # nlevels == 3 unstacked = self.ymd.unstack(['year', 'month']) with tm.assert_raises_regex(IndexError, "Too many levels"): unstacked.stack([2, 3]) with tm.assert_raises_regex(IndexError, "not a valid level number"): unstacked.stack([-4, -3]) def test_unstack_period_series(self): # GH 4342 idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period') idx2 = Index(['A', 'B'] * 3, name='str') value = [1, 2, 3, 4, 5, 6] idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex( ['2013-01', '2013-02', '2013-03'], freq='M', name='period') expected = DataFrame({'A': [1, 3, 5], 'B': [2, 4, 6]}, index=e_idx, columns=['A', 'B']) expected.columns.name = 'str' tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) tm.assert_frame_equal(result3, expected.T) idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07'], freq='M', name='period2') idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex( ['2013-01', '2013-02', '2013-03'], freq='M', name='period1') e_cols = pd.PeriodIndex(['2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M', name='period2') expected = DataFrame([[np.nan, np.nan, np.nan, np.nan, 2, 1], [np.nan, np.nan, 4, 3, np.nan, np.nan], [6, 5, np.nan, np.nan, np.nan, np.nan]], index=e_idx, columns=e_cols) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) tm.assert_frame_equal(result3, expected.T) def test_unstack_period_frame(self): # GH 4342 idx1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-02', '2014-02', '2014-01', '2014-01'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-12', '2014-02', '2013-10', '2013-10', '2014-02'], freq='M', name='period2') value = {'A': [1, 2, 3, 4, 5, 6], 'B': [6, 5, 4, 3, 2, 1]} idx = MultiIndex.from_arrays([idx1, idx2]) df = DataFrame(value, index=idx) result1 = df.unstack() result2 = df.unstack(level=1) result3 = df.unstack(level=0) e_1 = pd.PeriodIndex(['2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02', '2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = MultiIndex.from_arrays(['A A A B B B'.split(), e_2]) expected = DataFrame([[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) e_1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex( ['2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = MultiIndex.from_arrays(['A A B B'.split(), e_1]) expected = DataFrame([[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols) tm.assert_frame_equal(result3, expected) def test_stack_multiple_bug(self): """ bug when some uniques are not present in the data #3170""" id_col = ([1] * 3) + ([2] * 3) name = (['a'] * 3) + (['b'] * 3) date = pd.to_datetime(['2013-01-03', '2013-01-04', '2013-01-05'] * 2) var1 = np.random.randint(0, 100, 6) df = DataFrame(dict(ID=id_col, NAME=name, DATE=date, VAR1=var1)) multi = df.set_index(['DATE', 'ID']) multi.columns.name = 'Params' unst = multi.unstack('ID') down = unst.resample('W-THU').mean() rs = down.stack('ID') xp = unst.loc[:, ['VAR1']].resample('W-THU').mean().stack('ID') xp.columns.name = 'Params' tm.assert_frame_equal(rs, xp) def test_stack_dropna(self): # GH #3997 df = DataFrame({'A': ['a1', 'a2'], 'B': ['b1', 'b2'], 'C': [1, 1]}) df = df.set_index(['A', 'B']) stacked = df.unstack().stack(dropna=False) assert len(stacked) > len(stacked.dropna()) stacked = df.unstack().stack(dropna=True) tm.assert_frame_equal(stacked, stacked.dropna()) def test_unstack_multiple_hierarchical(self): df = DataFrame(index=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1 ]], columns=[[0, 0, 1, 1], [0, 1, 0, 1]]) df.index.names = ['a', 'b', 'c'] df.columns.names = ['d', 'e'] # it works! df.unstack(['b', 'c']) def test_groupby_transform(self): s = self.frame['A'] grouper = s.index.get_level_values(0) grouped = s.groupby(grouper) applied = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) result = applied.reindex(expected.index) tm.assert_series_equal(result, expected, check_names=False) def test_unstack_sparse_keyspace(self): # memory problems with naive impl #2278 # Generate Long File & Test Pivot NUM_ROWS = 1000 df = DataFrame({'A': np.random.randint(100, size=NUM_ROWS), 'B': np.random.randint(300, size=NUM_ROWS), 'C': np.random.randint(-7, 7, size=NUM_ROWS), 'D': np.random.randint(-19, 19, size=NUM_ROWS), 'E': np.random.randint(3000, size=NUM_ROWS), 'F': np.random.randn(NUM_ROWS)}) idf = df.set_index(['A', 'B', 'C', 'D', 'E']) # it works! is sufficient idf.unstack('E') def test_unstack_unobserved_keys(self): # related to #2278 refactoring levels = [[0, 1], [0, 1, 2, 3]] labels = [[0, 0, 1, 1], [0, 2, 0, 2]] index = MultiIndex(levels, labels) df = DataFrame(np.random.randn(4, 2), index=index) result = df.unstack() assert len(result.columns) == 4 recons = result.stack() tm.assert_frame_equal(recons, df) def test_stack_order_with_unsorted_levels(self): # GH 16323 def manual_compare_stacked(df, df_stacked, lev0, lev1): assert all(df.loc[row, col] == df_stacked.loc[(row, col[lev0]), col[lev1]] for row in df.index for col in df.columns) # deep check for 1-row case for width in [2, 3]: levels_poss = itertools.product( itertools.permutations([0, 1, 2], width), repeat=2) for levels in levels_poss: columns = MultiIndex(levels=levels, labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) df = DataFrame(columns=columns, data=[range(4)]) for stack_lev in range(2): df_stacked = df.stack(stack_lev) manual_compare_stacked(df, df_stacked, stack_lev, 1 - stack_lev) # check multi-row case mi = MultiIndex(levels=[["A", "C", "B"], ["B", "A", "C"]], labels=[np.repeat(range(3), 3), np.tile(range(3), 3)]) df = DataFrame(columns=mi, index=range(5), data=np.arange(5 * len(mi)).reshape(5, -1)) manual_compare_stacked(df, df.stack(0), 0, 1) def test_groupby_corner(self): midx = MultiIndex(levels=[['foo'], ['bar'], ['baz']], labels=[[0], [0], [0]], names=['one', 'two', 'three']) df = DataFrame([np.random.rand(4)], columns=['a', 'b', 'c', 'd'], index=midx) # should work df.groupby(level='three') def test_groupby_level_no_obs(self): # #1697 midx = MultiIndex.from_tuples([('f1', 's1'), ('f1', 's2'), ( 'f2', 's1'), ('f2', 's2'), ('f3', 's1'), ('f3', 's2')]) df = DataFrame( [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx) df1 = df.loc(axis=1)[df.columns.map( lambda u: u[0] in ['f2', 'f3'])] grouped = df1.groupby(axis=1, level=0) result = grouped.sum() assert (result.columns == ['f2', 'f3']).all() def test_join(self): a = self.frame.loc[self.frame.index[:5], ['A']] b = self.frame.loc[self.frame.index[2:], ['B', 'C']] joined = a.join(b, how='outer').reindex(self.frame.index) expected = self.frame.copy() expected.values[np.isnan(joined.values)] = np.nan assert not np.isnan(joined.values).all() # TODO what should join do with names ? tm.assert_frame_equal(joined, expected, check_names=False) def test_swaplevel(self): swapped = self.frame['A'].swaplevel() swapped2 = self.frame['A'].swaplevel(0) swapped3 = self.frame['A'].swaplevel(0, 1) swapped4 = self.frame['A'].swaplevel('first', 'second') assert not swapped.index.equals(self.frame.index) tm.assert_series_equal(swapped, swapped2) tm.assert_series_equal(swapped, swapped3) tm.assert_series_equal(swapped, swapped4) back = swapped.swaplevel() back2 = swapped.swaplevel(0) back3 = swapped.swaplevel(0, 1) back4 = swapped.swaplevel('second', 'first') assert back.index.equals(self.frame.index) tm.assert_series_equal(back, back2) tm.assert_series_equal(back, back3) tm.assert_series_equal(back, back4) ft = self.frame.T swapped = ft.swaplevel('first', 'second', axis=1) exp = self.frame.swaplevel('first', 'second').T tm.assert_frame_equal(swapped, exp) def test_swaplevel_panel(self): with catch_warnings(record=True): panel = Panel({'ItemA': self.frame, 'ItemB': self.frame * 2}) expected = panel.copy() expected.major_axis = expected.major_axis.swaplevel(0, 1) for result in (panel.swaplevel(axis='major'), panel.swaplevel(0, axis='major'), panel.swaplevel(0, 1, axis='major')): tm.assert_panel_equal(result, expected) def test_reorder_levels(self): result = self.ymd.reorder_levels(['month', 'day', 'year']) expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2) tm.assert_frame_equal(result, expected) result = self.ymd['A'].reorder_levels(['month', 'day', 'year']) expected = self.ymd['A'].swaplevel(0, 1).swaplevel(1, 2) tm.assert_series_equal(result, expected) result = self.ymd.T.reorder_levels(['month', 'day', 'year'], axis=1) expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1) tm.assert_frame_equal(result, expected) with tm.assert_raises_regex(TypeError, 'hierarchical axis'): self.ymd.reorder_levels([1, 2], axis=1) with tm.assert_raises_regex(IndexError, 'Too many levels'): self.ymd.index.reorder_levels([1, 2, 3]) def test_insert_index(self): df = self.ymd[:5].T df[2000, 1, 10] = df[2000, 1, 7] assert isinstance(df.columns, MultiIndex) assert (df[2000, 1, 10] == df[2000, 1, 7]).all() def test_alignment(self): x = Series(data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ( "A", 2), ("B", 3)])) y = Series(data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ( "Z", 2), ("B", 3)])) res = x - y exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) tm.assert_series_equal(res, exp) # hit non-monotonic code path res = x[::-1] - y[::-1] exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) tm.assert_series_equal(res, exp) def test_frame_getitem_view(self): df = self.frame.T.copy() # this works because we are modifying the underlying array # really a no-no df['foo'].values[:] = 0 assert (df['foo'].values == 0).all() # but not if it's mixed-type df['foo', 'four'] = 'foo' df = df.sort_index(level=0, axis=1) # this will work, but will raise/warn as its chained assignment def f(): df['foo']['one'] = 2 return df pytest.raises(com.SettingWithCopyError, f) try: df = f() except: pass assert (df['foo', 'one'] == 0).all() def test_count(self): frame = self.frame.copy() frame.index.names = ['a', 'b'] result = frame.count(level='b') expect = self.frame.count(level=1) tm.assert_frame_equal(result, expect, check_names=False) result = frame.count(level='a') expect = self.frame.count(level=0) tm.assert_frame_equal(result, expect, check_names=False) series = self.series.copy() series.index.names = ['a', 'b'] result = series.count(level='b') expect = self.series.count(level=1) tm.assert_series_equal(result, expect, check_names=False) assert result.index.name == 'b' result = series.count(level='a') expect = self.series.count(level=0) tm.assert_series_equal(result, expect, check_names=False) assert result.index.name == 'a' pytest.raises(KeyError, series.count, 'x') pytest.raises(KeyError, frame.count, level='x') AGG_FUNCTIONS = ['sum', 'prod', 'min', 'max', 'median', 'mean', 'skew', 'mad', 'std', 'var', 'sem'] @pytest.mark.parametrize('sort', [True, False]) def test_series_group_min_max(self, sort): # GH 17537 for op, level, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), [False, True]): grouped = self.series.groupby(level=level, sort=sort) aggf = lambda x: getattr(x, op)(skipna=skipna) # skipna=True leftside = grouped.agg(aggf) rightside = getattr(self.series, op)(level=level, skipna=skipna) if sort: rightside = rightside.sort_index(level=level) tm.assert_series_equal(leftside, rightside) @pytest.mark.parametrize('sort', [True, False]) def test_frame_group_ops(self, sort): # GH 17537 self.frame.iloc[1, [1, 2]] = np.nan self.frame.iloc[7, [0, 1]] = np.nan for op, level, axis, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), lrange(2), [False, True]): if axis == 0: frame = self.frame else: frame = self.frame.T grouped = frame.groupby(level=level, axis=axis, sort=sort) pieces = [] def aggf(x): pieces.append(x) return getattr(x, op)(skipna=skipna, axis=axis) leftside = grouped.agg(aggf) rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna) if sort: rightside = rightside.sort_index(level=level, axis=axis) frame = frame.sort_index(level=level, axis=axis) # for good measure, groupby detail level_index = frame._get_axis(axis).levels[level] tm.assert_index_equal(leftside._get_axis(axis), level_index) tm.assert_index_equal(rightside._get_axis(axis), level_index) tm.assert_frame_equal(leftside, rightside) def test_stat_op_corner(self): obj = Series([10.0], index=MultiIndex.from_tuples([(2, 3)])) result = obj.sum(level=0) expected = Series([10.0], index=[2]) tm.assert_series_equal(result, expected) def test_frame_any_all_group(self): df = DataFrame( {'data': [False, False, True, False, True, False, True]}, index=[ ['one', 'one', 'two', 'one', 'two', 'two', 'two'], [0, 1, 0, 2, 1, 2, 3]]) result = df.any(level=0) ex = DataFrame({'data': [False, True]}, index=['one', 'two']) tm.assert_frame_equal(result, ex) result = df.all(level=0) ex = DataFrame({'data': [False, False]}, index=['one', 'two']) tm.assert_frame_equal(result, ex) def test_std_var_pass_ddof(self): index = MultiIndex.from_arrays([np.arange(5).repeat(10), np.tile( np.arange(10), 5)]) df = DataFrame(np.random.randn(len(index), 5), index=index) for meth in ['var', 'std']: ddof = 4 alt = lambda x: getattr(x, meth)(ddof=ddof) result = getattr(df[0], meth)(level=0, ddof=ddof) expected = df[0].groupby(level=0).agg(alt) tm.assert_series_equal(result, expected) result = getattr(df, meth)(level=0, ddof=ddof) expected = df.groupby(level=0).agg(alt) tm.assert_frame_equal(result, expected) def test_frame_series_agg_multiple_levels(self): result = self.ymd.sum(level=['year', 'month']) expected = self.ymd.groupby(level=['year', 'month']).sum() tm.assert_frame_equal(result, expected) result = self.ymd['A'].sum(level=['year', 'month']) expected = self.ymd['A'].groupby(level=['year', 'month']).sum() tm.assert_series_equal(result, expected) def test_groupby_multilevel(self): result = self.ymd.groupby(level=[0, 1]).mean() k1 = self.ymd.index.get_level_values(0) k2 = self.ymd.index.get_level_values(1) expected = self.ymd.groupby([k1, k2]).mean() # TODO groupby with level_values drops names tm.assert_frame_equal(result, expected, check_names=False) assert result.index.names == self.ymd.index.names[:2] result2 = self.ymd.groupby(level=self.ymd.index.names[:2]).mean() tm.assert_frame_equal(result, result2) def test_groupby_multilevel_with_transform(self): pass def test_multilevel_consolidate(self): index = MultiIndex.from_tuples([('foo', 'one'), ('foo', 'two'), ( 'bar', 'one'), ('bar', 'two')]) df = DataFrame(np.random.randn(4, 4), index=index, columns=index) df['Totals', ''] = df.sum(1) df = df._consolidate() def test_ix_preserve_names(self): result = self.ymd.loc[2000] result2 = self.ymd['A'].loc[2000] assert result.index.names == self.ymd.index.names[1:] assert result2.index.names == self.ymd.index.names[1:] result = self.ymd.loc[2000, 2] result2 = self.ymd['A'].loc[2000, 2] assert result.index.name == self.ymd.index.names[2] assert result2.index.name == self.ymd.index.names[2] def test_partial_set(self): # GH #397 df = self.ymd.copy() exp = self.ymd.copy() df.loc[2000, 4] = 0 exp.loc[2000, 4].values[:] = 0 tm.assert_frame_equal(df, exp) df['A'].loc[2000, 4] = 1 exp['A'].loc[2000, 4].values[:] = 1 tm.assert_frame_equal(df, exp) df.loc[2000] = 5 exp.loc[2000].values[:] = 5 tm.assert_frame_equal(df, exp) # this works...for now df['A'].iloc[14] = 5 assert df['A'][14] == 5 def test_unstack_preserve_types(self): # GH #403 self.ymd['E'] = 'foo' self.ymd['F'] = 2 unstacked = self.ymd.unstack('month') assert unstacked['A', 1].dtype == np.float64 assert unstacked['E', 1].dtype == np.object_ assert unstacked['F', 1].dtype == np.float64 def test_unstack_group_index_overflow(self): labels = np.tile(np.arange(500), 2) level = np.arange(500) index = MultiIndex(levels=[level] * 8 + [[0, 1]], labels=[labels] * 8 + [np.arange(2).repeat(500)]) s = Series(np.arange(1000), index=index) result = s.unstack() assert result.shape == (500, 2) # test roundtrip stacked = result.stack() tm.assert_series_equal(s, stacked.reindex(s.index)) # put it at beginning index = MultiIndex(levels=[[0, 1]] + [level] * 8, labels=[np.arange(2).repeat(500)] + [labels] * 8) s = Series(np.arange(1000), index=index) result = s.unstack(0) assert result.shape == (500, 2) # put it in middle index = MultiIndex(levels=[level] * 4 + [[0, 1]] + [level] * 4, labels=([labels] * 4 + [np.arange(2).repeat(500)] + [labels] * 4)) s = Series(np.arange(1000), index=index) result = s.unstack(4) assert result.shape == (500, 2) def test_getitem_lowerdim_corner(self): pytest.raises(KeyError, self.frame.loc.__getitem__, (('bar', 'three'), 'B')) # in theory should be inserting in a sorted space???? self.frame.loc[('bar', 'three'), 'B'] = 0 assert self.frame.sort_index().loc[('bar', 'three'), 'B'] == 0 # --------------------------------------------------------------------- # AMBIGUOUS CASES! def test_partial_ix_missing(self): pytest.skip("skipping for now") result = self.ymd.loc[2000, 0] expected = self.ymd.loc[2000]['A'] tm.assert_series_equal(result, expected) # need to put in some work here # self.ymd.loc[2000, 0] = 0 # assert (self.ymd.loc[2000]['A'] == 0).all() # Pretty sure the second (and maybe even the first) is already wrong. pytest.raises(Exception, self.ymd.loc.__getitem__, (2000, 6)) pytest.raises(Exception, self.ymd.loc.__getitem__, (2000, 6), 0) # --------------------------------------------------------------------- def test_to_html(self): self.ymd.columns.name = 'foo' self.ymd.to_html() self.ymd.T.to_html() def test_level_with_tuples(self): index = MultiIndex(levels=[[('foo', 'bar', 0), ('foo', 'baz', 0), ( 'foo', 'qux', 0)], [0, 1]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[('foo', 'bar', 0)] result2 = series.loc[('foo', 'bar', 0)] expected = series[:2] expected.index = expected.index.droplevel(0) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) pytest.raises(KeyError, series.__getitem__, (('foo', 'bar', 0), 2)) result = frame.loc[('foo', 'bar', 0)] result2 = frame.xs(('foo', 'bar', 0)) expected = frame[:2] expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) index = MultiIndex(levels=[[('foo', 'bar'), ('foo', 'baz'), ( 'foo', 'qux')], [0, 1]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[('foo', 'bar')] result2 = series.loc[('foo', 'bar')] expected = series[:2] expected.index = expected.index.droplevel(0) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = frame.loc[('foo', 'bar')] result2 = frame.xs(('foo', 'bar')) expected = frame[:2] expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_int_series_slicing(self): s = self.ymd['A'] result = s[5:] expected = s.reindex(s.index[5:]) tm.assert_series_equal(result, expected) exp = self.ymd['A'].copy() s[5:] = 0 exp.values[5:] = 0 tm.assert_numpy_array_equal(s.values, exp.values) result = self.ymd[5:] expected = self.ymd.reindex(s.index[5:]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('unicode_strings', [True, False]) def test_mixed_depth_get(self, unicode_strings): # If unicode_strings is True, the column labels in dataframe # construction will use unicode strings in Python 2 (pull request # #17099). arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] if unicode_strings: arrays = [[u(s) for s in arr] for arr in arrays] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(np.random.randn(4, 6), columns=index) result = df['a'] expected = df['a', '', ''].rename('a') tm.assert_series_equal(result, expected) result = df['routine1', 'result1'] expected = df['routine1', 'result1', ''] expected = expected.rename(('routine1', 'result1')) tm.assert_series_equal(result, expected) def test_mixed_depth_insert(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df.copy() expected = df.copy() result['b'] = [1, 2, 3, 4] expected['b', '', ''] = [1, 2, 3, 4] tm.assert_frame_equal(result, expected) def test_mixed_depth_drop(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df.drop('a', axis=1) expected = df.drop([('a', '', '')], axis=1) tm.assert_frame_equal(expected, result) result = df.drop(['top'], axis=1) expected = df.drop([('top', 'OD', 'wx')], axis=1) expected = expected.drop([('top', 'OD', 'wy')], axis=1) tm.assert_frame_equal(expected, result) result = df.drop(('top', 'OD', 'wx'), axis=1) expected = df.drop([('top', 'OD', 'wx')], axis=1) tm.assert_frame_equal(expected, result) expected = df.drop([('top', 'OD', 'wy')], axis=1) expected = df.drop('top', axis=1) result = df.drop('result1', level=1, axis=1) expected = df.drop([('routine1', 'result1', ''), ('routine2', 'result1', '')], axis=1) tm.assert_frame_equal(expected, result) def test_drop_nonunique(self): df = DataFrame([["x-a", "x", "a", 1.5], ["x-a", "x", "a", 1.2], ["z-c", "z", "c", 3.1], ["x-a", "x", "a", 4.1], ["x-b", "x", "b", 5.1], ["x-b", "x", "b", 4.1], ["x-b", "x", "b", 2.2], ["y-a", "y", "a", 1.2], ["z-b", "z", "b", 2.1]], columns=["var1", "var2", "var3", "var4"]) grp_size = df.groupby("var1").size() drop_idx = grp_size.loc[grp_size == 1] idf = df.set_index(["var1", "var2", "var3"]) # it works! #2101 result = idf.drop(drop_idx.index, level=0).reset_index() expected = df[-df.var1.isin(drop_idx.index)] result.index = expected.index tm.assert_frame_equal(result, expected) def test_mixed_depth_pop(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) df1 = df.copy() df2 = df.copy() result = df1.pop('a') expected = df2.pop(('a', '', '')) tm.assert_series_equal(expected, result, check_names=False) tm.assert_frame_equal(df1, df2) assert result.name == 'a' expected = df1['top'] df1 = df1.drop(['top'], axis=1) result = df2.pop('top') tm.assert_frame_equal(expected, result) tm.assert_frame_equal(df1, df2) def test_reindex_level_partial_selection(self): result = self.frame.reindex(['foo', 'qux'], level=0) expected = self.frame.iloc[[0, 1, 2, 7, 8, 9]] tm.assert_frame_equal(result, expected) result = self.frame.T.reindex(['foo', 'qux'], axis=1, level=0) tm.assert_frame_equal(result, expected.T) result = self.frame.loc[['foo', 'qux']] tm.assert_frame_equal(result, expected) result = self.frame['A'].loc[['foo', 'qux']] tm.assert_series_equal(result, expected['A']) result = self.frame.T.loc[:, ['foo', 'qux']] tm.assert_frame_equal(result, expected.T) def test_setitem_multiple_partial(self): expected = self.frame.copy() result = self.frame.copy() result.loc[['foo', 'bar']] = 0 expected.loc['foo'] = 0 expected.loc['bar'] = 0 tm.assert_frame_equal(result, expected) expected = self.frame.copy() result = self.frame.copy() result.loc['foo':'bar'] = 0 expected.loc['foo'] = 0 expected.loc['bar'] = 0 tm.assert_frame_equal(result, expected) expected = self.frame['A'].copy() result = self.frame['A'].copy() result.loc[['foo', 'bar']] = 0 expected.loc['foo'] = 0 expected.loc['bar'] = 0 tm.assert_series_equal(result, expected) expected = self.frame['A'].copy() result = self.frame['A'].copy() result.loc['foo':'bar'] = 0 expected.loc['foo'] = 0 expected.loc['bar'] = 0 tm.assert_series_equal(result, expected) def test_drop_level(self): result = self.frame.drop(['bar', 'qux'], level='first') expected = self.frame.iloc[[0, 1, 2, 5, 6]] tm.assert_frame_equal(result, expected) result = self.frame.drop(['two'], level='second') expected = self.frame.iloc[[0, 2, 3, 6, 7, 9]] tm.assert_frame_equal(result, expected) result = self.frame.T.drop(['bar', 'qux'], axis=1, level='first') expected = self.frame.iloc[[0, 1, 2, 5, 6]].T tm.assert_frame_equal(result, expected) result = self.frame.T.drop(['two'], axis=1, level='second') expected = self.frame.iloc[[0, 2, 3, 6, 7, 9]].T tm.assert_frame_equal(result, expected) def test_drop_level_nonunique_datetime(self): # GH 12701 idx = Index([2, 3, 4, 4, 5], name='id') idxdt = pd.to_datetime(['201603231400', '201603231500', '201603231600', '201603231600', '201603231700']) df = DataFrame(np.arange(10).reshape(5, 2), columns=list('ab'), index=idx) df['tstamp'] = idxdt df = df.set_index('tstamp', append=True) ts = Timestamp('201603231600') assert not df.index.is_unique result = df.drop(ts, level='tstamp') expected = df.loc[idx != 4] tm.assert_frame_equal(result, expected) def test_drop_preserve_names(self): index = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3]], names=['one', 'two']) df = DataFrame(np.random.randn(6, 3), index=index) result = df.drop([(0, 2)]) assert result.index.names == ('one', 'two') def test_unicode_repr_issues(self): levels = [Index([u('a/\u03c3'), u('b/\u03c3'), u('c/\u03c3')]), Index([0, 1])] labels = [np.arange(3).repeat(2), np.tile(np.arange(2), 3)] index = MultiIndex(levels=levels, labels=labels) repr(index.levels) # NumPy bug # repr(index.get_level_values(1)) def test_unicode_repr_level_names(self): index = MultiIndex.from_tuples([(0, 0), (1, 1)], names=[u('\u0394'), 'i1']) s = Series(lrange(2), index=index) df = DataFrame(np.random.randn(2, 4), index=index) repr(s) repr(df) def test_dataframe_insert_column_all_na(self): # GH #1534 mix = MultiIndex.from_tuples([('1a', '2a'), ('1a', '2b'), ('1a', '2c') ]) df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mix) s = Series({(1, 1): 1, (1, 2): 2}) df['new'] = s assert df['new'].isna().all() def test_join_segfault(self): # 1532 df1 = DataFrame({'a': [1, 1], 'b': [1, 2], 'x': [1, 2]}) df2 = DataFrame({'a': [2, 2], 'b': [1, 2], 'y': [1, 2]}) df1 = df1.set_index(['a', 'b']) df2 = df2.set_index(['a', 'b']) # it works! for how in ['left', 'right', 'outer']: df1.join(df2, how=how) def test_set_column_scalar_with_ix(self): subset = self.frame.index[[1, 4, 5]] self.frame.loc[subset] = 99 assert (self.frame.loc[subset].values == 99).all() col = self.frame['B'] col[subset] = 97 assert (self.frame.loc[subset, 'B'] == 97).all() def test_frame_dict_constructor_empty_series(self): s1 = Series([ 1, 2, 3, 4 ], index=MultiIndex.from_tuples([(1, 2), (1, 3), (2, 2), (2, 4)])) s2 = Series([ 1, 2, 3, 4 ], index=MultiIndex.from_tuples([(1, 2), (1, 3), (3, 2), (3, 4)])) s3 = Series() # it works! DataFrame({'foo': s1, 'bar': s2, 'baz': s3}) DataFrame.from_dict({'foo': s1, 'baz': s3, 'bar': s2}) def test_indexing_ambiguity_bug_1678(self): columns = MultiIndex.from_tuples([('Ohio', 'Green'), ('Ohio', 'Red'), ( 'Colorado', 'Green')]) index = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2) ]) frame = DataFrame(np.arange(12).reshape((4, 3)), index=index, columns=columns) result = frame.iloc[:, 1] exp = frame.loc[:, ('Ohio', 'Red')] assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_nonunique_assignment_1750(self): df = DataFrame([[1, 1, "x", "X"], [1, 1, "y", "Y"], [1, 2, "z", "Z"]], columns=list("ABCD")) df = df.set_index(['A', 'B']) ix = MultiIndex.from_tuples([(1, 1)]) df.loc[ix, "C"] = '_' assert (df.xs((1, 1))['C'] == '_').all() def test_indexing_over_hashtable_size_cutoff(self): n = 10000 old_cutoff = _index._SIZE_CUTOFF _index._SIZE_CUTOFF = 20000 s = Series(np.arange(n), MultiIndex.from_arrays((["a"] * n, np.arange(n)))) # hai it works! assert s[("a", 5)] == 5 assert s[("a", 6)] == 6 assert s[("a", 7)] == 7 _index._SIZE_CUTOFF = old_cutoff def test_multiindex_na_repr(self): # only an issue with long columns from numpy import nan df3 = DataFrame({ 'A' * 30: {('A', 'A0006000', 'nuit'): 'A0006000'}, 'B' * 30: {('A', 'A0006000', 'nuit'): nan}, 'C' * 30: {('A', 'A0006000', 'nuit'): nan}, 'D' * 30: {('A', 'A0006000', 'nuit'): nan}, 'E' * 30: {('A', 'A0006000', 'nuit'): 'A'}, 'F' * 30: {('A', 'A0006000', 'nuit'): nan}, }) idf = df3.set_index(['A' * 30, 'C' * 30]) repr(idf) def test_assign_index_sequences(self): # #2200 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index(["a", "b"]) l = list(df.index) l[0] = ("faz", "boo") df.index = l repr(df) # this travels an improper code path l[0] = ["faz", "boo"] df.index = l repr(df) def test_tuples_have_na(self): index = MultiIndex(levels=[[1, 0], [0, 1, 2, 3]], labels=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]]) assert isna(index[4][0]) assert isna(index.values[4][0]) def test_duplicate_groupby_issues(self): idx_tp = [('600809', '20061231'), ('600809', '20070331'), ('600809', '20070630'), ('600809', '20070331')] dt = ['demo', 'demo', 'demo', 'demo'] idx = MultiIndex.from_tuples(idx_tp, names=['STK_ID', 'RPT_Date']) s = Series(dt, index=idx) result = s.groupby(s.index).first() assert len(result) == 3 def test_duplicate_mi(self): # GH 4516 df = DataFrame([['foo', 'bar', 1.0, 1], ['foo', 'bar', 2.0, 2], ['bah', 'bam', 3.0, 3], ['bah', 'bam', 4.0, 4], ['foo', 'bar', 5.0, 5], ['bah', 'bam', 6.0, 6]], columns=list('ABCD')) df = df.set_index(['A', 'B']) df = df.sort_index(level=0) expected = DataFrame([['foo', 'bar', 1.0, 1], ['foo', 'bar', 2.0, 2], ['foo', 'bar', 5.0, 5]], columns=list('ABCD')).set_index(['A', 'B']) result = df.loc[('foo', 'bar')] tm.assert_frame_equal(result, expected) def test_duplicated_drop_duplicates(self): # GH 4060 idx = MultiIndex.from_arrays(([1, 2, 3, 1, 2, 3], [1, 1, 1, 1, 2, 2])) expected = np.array( [False, False, False, True, False, False], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool expected = MultiIndex.from_arrays(([1, 2, 3, 2, 3], [1, 1, 1, 2, 2])) tm.assert_index_equal(idx.drop_duplicates(), expected) expected = np.array([True, False, False, False, False, False]) duplicated = idx.duplicated(keep='last') tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool expected = MultiIndex.from_arrays(([2, 3, 1, 2, 3], [1, 1, 1, 2, 2])) tm.assert_index_equal(idx.drop_duplicates(keep='last'), expected) expected = np.array([True, False, False, True, False, False]) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool expected = MultiIndex.from_arrays(([2, 3, 2, 3], [1, 1, 2, 2])) tm.assert_index_equal(idx.drop_duplicates(keep=False), expected) def test_multiindex_set_index(self): # segfault in #3308 d = {'t1': [2, 2.5, 3], 't2': [4, 5, 6]} df = DataFrame(d) tuples = [(0, 1), (0, 2), (1, 2)] df['tuples'] = tuples index = MultiIndex.from_tuples(df['tuples']) # it works! df.set_index(index) def test_datetimeindex(self): idx1 = pd.DatetimeIndex( ['2013-04-01 9:00', '2013-04-02 9:00', '2013-04-03 9:00' ] * 2, tz='Asia/Tokyo') idx2 = pd.date_range('2010/01/01', periods=6, freq='M', tz='US/Eastern') idx = MultiIndex.from_arrays([idx1, idx2]) expected1 = pd.DatetimeIndex(['2013-04-01 9:00', '2013-04-02 9:00', '2013-04-03 9:00'], tz='Asia/Tokyo') tm.assert_index_equal(idx.levels[0], expected1) tm.assert_index_equal(idx.levels[1], idx2) # from datetime combos # GH 7888 date1 = datetime.date.today() date2 = datetime.datetime.today() date3 = Timestamp.today() for d1, d2 in itertools.product( [date1, date2, date3], [date1, date2, date3]): index = MultiIndex.from_product([[d1], [d2]]) assert isinstance(index.levels[0], pd.DatetimeIndex) assert isinstance(index.levels[1], pd.DatetimeIndex) def test_constructor_with_tz(self): index = pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific') columns = pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'], name='dt2', tz='Asia/Tokyo') result = MultiIndex.from_arrays([index, columns]) tm.assert_index_equal(result.levels[0], index) tm.assert_index_equal(result.levels[1], columns) result = MultiIndex.from_arrays([Series(index), Series(columns)]) tm.assert_index_equal(result.levels[0], index) tm.assert_index_equal(result.levels[1], columns) def test_set_index_datetime(self): # GH 3950 df = DataFrame( {'label': ['a', 'a', 'a', 'b', 'b', 'b'], 'datetime': ['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], 'value': range(6)}) df.index = pd.to_datetime(df.pop('datetime'), utc=True) df.index = df.index.tz_convert('US/Pacific') expected = pd.DatetimeIndex(['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], name='datetime') expected = expected.tz_localize('UTC').tz_convert('US/Pacific') df = df.set_index('label', append=True) tm.assert_index_equal(df.index.levels[0], expected) tm.assert_index_equal(df.index.levels[1], Index(['a', 'b'], name='label')) df = df.swaplevel(0, 1) tm.assert_index_equal(df.index.levels[0], Index(['a', 'b'], name='label')) tm.assert_index_equal(df.index.levels[1], expected) df = DataFrame(np.random.random(6)) idx1 = pd.DatetimeIndex(['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], tz='US/Eastern') idx2 = pd.DatetimeIndex(['2012-04-01 09:00', '2012-04-01 09:00', '2012-04-01 09:00', '2012-04-02 09:00', '2012-04-02 09:00', '2012-04-02 09:00'], tz='US/Eastern') idx3 = pd.date_range('2011-01-01 09:00', periods=6, tz='Asia/Tokyo') df = df.set_index(idx1) df = df.set_index(idx2, append=True) df = df.set_index(idx3, append=True) expected1 = pd.DatetimeIndex(['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], tz='US/Eastern') expected2 = pd.DatetimeIndex(['2012-04-01 09:00', '2012-04-02 09:00'], tz='US/Eastern') tm.assert_index_equal(df.index.levels[0], expected1) tm.assert_index_equal(df.index.levels[1], expected2) tm.assert_index_equal(df.index.levels[2], idx3) # GH 7092 tm.assert_index_equal(df.index.get_level_values(0), idx1) tm.assert_index_equal(df.index.get_level_values(1), idx2) tm.assert_index_equal(df.index.get_level_values(2), idx3) def test_reset_index_datetime(self): # GH 3950 for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern']: idx1 = pd.date_range('1/1/2011', periods=5, freq='D', tz=tz, name='idx1') idx2 = Index(range(5), name='idx2', dtype='int64') idx = MultiIndex.from_arrays([idx1, idx2]) df = DataFrame( {'a': np.arange(5, dtype='int64'), 'b': ['A', 'B', 'C', 'D', 'E']}, index=idx) expected = DataFrame({'idx1': [datetime.datetime(2011, 1, 1), datetime.datetime(2011, 1, 2), datetime.datetime(2011, 1, 3), datetime.datetime(2011, 1, 4), datetime.datetime(2011, 1, 5)], 'idx2': np.arange(5, dtype='int64'), 'a': np.arange(5, dtype='int64'), 'b': ['A', 'B', 'C', 'D', 'E']}, columns=['idx1', 'idx2', 'a', 'b']) expected['idx1'] = expected['idx1'].apply( lambda d: Timestamp(d, tz=tz)) tm.assert_frame_equal(df.reset_index(), expected) idx3 = pd.date_range('1/1/2012', periods=5, freq='MS', tz='Europe/Paris', name='idx3') idx = MultiIndex.from_arrays([idx1, idx2, idx3]) df = DataFrame( {'a': np.arange(5, dtype='int64'), 'b': ['A', 'B', 'C', 'D', 'E']}, index=idx) expected = DataFrame({'idx1': [datetime.datetime(2011, 1, 1), datetime.datetime(2011, 1, 2), datetime.datetime(2011, 1, 3), datetime.datetime(2011, 1, 4), datetime.datetime(2011, 1, 5)], 'idx2': np.arange(5, dtype='int64'), 'idx3': [datetime.datetime(2012, 1, 1), datetime.datetime(2012, 2, 1), datetime.datetime(2012, 3, 1), datetime.datetime(2012, 4, 1), datetime.datetime(2012, 5, 1)], 'a': np.arange(5, dtype='int64'), 'b': ['A', 'B', 'C', 'D', 'E']}, columns=['idx1', 'idx2', 'idx3', 'a', 'b']) expected['idx1'] = expected['idx1'].apply( lambda d: Timestamp(d, tz=tz)) expected['idx3'] = expected['idx3'].apply( lambda d: Timestamp(d, tz='Europe/Paris')) tm.assert_frame_equal(df.reset_index(), expected) # GH 7793 idx = MultiIndex.from_product([['a', 'b'], pd.date_range( '20130101', periods=3, tz=tz)]) df = DataFrame( np.arange(6, dtype='int64').reshape( 6, 1), columns=['a'], index=idx) expected = DataFrame({'level_0': 'a a a b b b'.split(), 'level_1': [ datetime.datetime(2013, 1, 1), datetime.datetime(2013, 1, 2), datetime.datetime(2013, 1, 3)] * 2, 'a': np.arange(6, dtype='int64')}, columns=['level_0', 'level_1', 'a']) expected['level_1'] = expected['level_1'].apply( lambda d: Timestamp(d, freq='D', tz=tz)) tm.assert_frame_equal(df.reset_index(), expected) def test_reset_index_period(self): # GH 7746 idx = MultiIndex.from_product( [pd.period_range('20130101', periods=3, freq='M'), list('abc')], names=['month', 'feature']) df = DataFrame(np.arange(9, dtype='int64').reshape(-1, 1), index=idx, columns=['a']) expected = DataFrame({ 'month': ([pd.Period('2013-01', freq='M')] * 3 + [pd.Period('2013-02', freq='M')] * 3 + [pd.Period('2013-03', freq='M')] * 3), 'feature': ['a', 'b', 'c'] * 3, 'a': np.arange(9, dtype='int64') }, columns=['month', 'feature', 'a']) tm.assert_frame_equal(df.reset_index(), expected) def test_reset_index_multiindex_columns(self): levels = [['A', ''], ['B', 'b']] df = DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels)) result = df[['B']].rename_axis('A').reset_index() tm.assert_frame_equal(result, df) # gh-16120: already existing column with tm.assert_raises_regex(ValueError, (r"cannot insert \('A', ''\), " "already exists")): df.rename_axis('A').reset_index() # gh-16164: multiindex (tuple) full key result = df.set_index([('A', '')]).reset_index() tm.assert_frame_equal(result, df) # with additional (unnamed) index level idx_col = DataFrame([[0], [1]], columns=MultiIndex.from_tuples([('level_0', '')])) expected = pd.concat([idx_col, df[[('B', 'b'), ('A', '')]]], axis=1) result = df.set_index([('B', 'b')], append=True).reset_index() tm.assert_frame_equal(result, expected) # with index name which is a too long tuple... with tm.assert_raises_regex(ValueError, ("Item must have length equal to number " "of levels.")): df.rename_axis([('C', 'c', 'i')]).reset_index() # or too short... levels = [['A', 'a', ''], ['B', 'b', 'i']] df2 = DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels)) idx_col = DataFrame([[0], [1]], columns=MultiIndex.from_tuples([('C', 'c', 'ii')])) expected = pd.concat([idx_col, df2], axis=1) result = df2.rename_axis([('C', 'c')]).reset_index(col_fill='ii') tm.assert_frame_equal(result, expected) # ... which is incompatible with col_fill=None with tm.assert_raises_regex(ValueError, ("col_fill=None is incompatible with " r"incomplete column name \('C', 'c'\)")): df2.rename_axis([('C', 'c')]).reset_index(col_fill=None) # with col_level != 0 result = df2.rename_axis([('c', 'ii')]).reset_index(col_level=1, col_fill='C') tm.assert_frame_equal(result, expected) def test_set_index_period(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = pd.period_range('2011-01-01', periods=3, freq='M') idx1 = idx1.append(idx1) idx2 = pd.period_range('2013-01-01 09:00', periods=2, freq='H') idx2 = idx2.append(idx2).append(idx2) idx3 = pd.period_range('2005', periods=6, freq='A') df = df.set_index(idx1) df = df.set_index(idx2, append=True) df = df.set_index(idx3, append=True) expected1 = pd.period_range('2011-01-01', periods=3, freq='M') expected2 = pd.period_range('2013-01-01 09:00', periods=2, freq='H') tm.assert_index_equal(df.index.levels[0], expected1) tm.assert_index_equal(df.index.levels[1], expected2) tm.assert_index_equal(df.index.levels[2], idx3) tm.assert_index_equal(df.index.get_level_values(0), idx1) tm.assert_index_equal(df.index.get_level_values(1), idx2) tm.assert_index_equal(df.index.get_level_values(2), idx3) def test_repeat(self): # GH 9361 # fixed by # GH 7891 m_idx = MultiIndex.from_tuples([(1, 2), (3, 4), (5, 6), (7, 8)]) data = ['a', 'b', 'c', 'd'] m_df = Series(data, index=m_idx) assert m_df.repeat(3).shape == (3 * len(data), ) def test_iloc_mi(self): # GH 13797 # Test if iloc can handle integer locations in MultiIndexed DataFrame data = [['str00', 'str01'], ['str10', 'str11'], ['str20', 'srt21'], ['str30', 'str31'], ['str40', 'str41']] mi = MultiIndex.from_tuples( [('CC', 'A'), ('CC', 'B'), ('CC', 'B'), ('BB', 'a'), ('BB', 'b')]) expected = DataFrame(data) df_mi = DataFrame(data, index=mi) result = DataFrame([[df_mi.iloc[r, c] for c in range(2)] for r in range(5)]) tm.assert_frame_equal(result, expected) class TestSorted(Base): """ everything you wanted to test about sorting """ def test_sort_index_preserve_levels(self): result = self.frame.sort_index() assert result.index.names == self.frame.index.names def test_sorting_repr_8017(self): np.random.seed(0) data = np.random.randn(3, 4) for gen, extra in [([1., 3., 2., 5.], 4.), ([1, 3, 2, 5], 4), ([Timestamp('20130101'), Timestamp('20130103'), Timestamp('20130102'), Timestamp('20130105')], Timestamp('20130104')), (['1one', '3one', '2one', '5one'], '4one')]: columns = MultiIndex.from_tuples([('red', i) for i in gen]) df = DataFrame(data, index=list('def'), columns=columns) df2 = pd.concat([df, DataFrame('world', index=list('def'), columns=MultiIndex.from_tuples( [('red', extra)]))], axis=1) # check that the repr is good # make sure that we have a correct sparsified repr # e.g. only 1 header of read assert str(df2).splitlines()[0].split() == ['red'] # GH 8017 # sorting fails after columns added # construct single-dtype then sort result = df.copy().sort_index(axis=1) expected = df.iloc[:, [0, 2, 1, 3]] tm.assert_frame_equal(result, expected) result = df2.sort_index(axis=1) expected = df2.iloc[:, [0, 2, 1, 4, 3]] tm.assert_frame_equal(result, expected) # setitem then sort result = df.copy() result[('red', extra)] = 'world' result = result.sort_index(axis=1) tm.assert_frame_equal(result, expected) def test_sort_index_level(self): df = self.frame.copy() df.index = np.arange(len(df)) # axis=1 # series a_sorted = self.frame['A'].sort_index(level=0) # preserve names assert a_sorted.index.names == self.frame.index.names # inplace rs = self.frame.copy() rs.sort_index(level=0, inplace=True) tm.assert_frame_equal(rs, self.frame.sort_index(level=0)) def test_sort_index_level_large_cardinality(self): # #2684 (int64) index = MultiIndex.from_arrays([np.arange(4000)] * 3) df = DataFrame(np.random.randn(4000), index=index, dtype=np.int64) # it works! result = df.sort_index(level=0) assert result.index.lexsort_depth == 3 # #2684 (int32) index = MultiIndex.from_arrays([np.arange(4000)] * 3) df = DataFrame(np.random.randn(4000), index=index, dtype=np.int32) # it works! result = df.sort_index(level=0) assert (result.dtypes.values == df.dtypes.values).all() assert result.index.lexsort_depth == 3 def test_sort_index_level_by_name(self): self.frame.index.names = ['first', 'second'] result = self.frame.sort_index(level='second') expected = self.frame.sort_index(level=1) tm.assert_frame_equal(result, expected) def test_sort_index_level_mixed(self): sorted_before = self.frame.sort_index(level=1) df = self.frame.copy() df['foo'] = 'bar' sorted_after = df.sort_index(level=1) tm.assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1)) dft = self.frame.T sorted_before = dft.sort_index(level=1, axis=1) dft['foo', 'three'] = 'bar' sorted_after = dft.sort_index(level=1, axis=1) tm.assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1), sorted_after.drop([('foo', 'three')], axis=1)) def test_is_lexsorted(self): levels = [[0, 1], [0, 1, 2]] index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) assert index.is_lexsorted() index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]]) assert not index.is_lexsorted() index = MultiIndex(levels=levels, labels=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]]) assert not index.is_lexsorted() assert index.lexsort_depth == 0 def test_getitem_multilevel_index_tuple_not_sorted(self): index_columns = list("abc") df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.loc[query_index, "data"] xp_idx = MultiIndex.from_tuples([(0, 1, 0)], names=['a', 'b', 'c']) xp = Series(['x'], index=xp_idx, name='data') tm.assert_series_equal(rs, xp) def test_getitem_slice_not_sorted(self): df = self.frame.sort_index(level=1).T # buglet with int typechecking result = df.iloc[:, :np.int32(3)] expected = df.reindex(columns=df.columns[:3]) tm.assert_frame_equal(result, expected) def test_frame_getitem_not_sorted2(self): # 13431 df = DataFrame({'col1': ['b', 'd', 'b', 'a'], 'col2': [3, 1, 1, 2], 'data': ['one', 'two', 'three', 'four']}) df2 = df.set_index(['col1', 'col2']) df2_original = df2.copy() df2.index.set_levels(['b', 'd', 'a'], level='col1', inplace=True) df2.index.set_labels([0, 1, 0, 2], level='col1', inplace=True) assert not df2.index.is_lexsorted() assert not df2.index.is_monotonic assert df2_original.index.equals(df2.index) expected = df2.sort_index() assert expected.index.is_lexsorted() assert expected.index.is_monotonic result = df2.sort_index(level=0) assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) def test_frame_getitem_not_sorted(self): df = self.frame.T df['foo', 'four'] = 'foo' arrays = [np.array(x) for x in zip(*df.columns.values)] result = df['foo'] result2 = df.loc[:, 'foo'] expected = df.reindex(columns=df.columns[arrays[0] == 'foo']) expected.columns = expected.columns.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) df = df.T result = df.xs('foo') result2 = df.loc['foo'] expected = df.reindex(df.index[arrays[0] == 'foo']) expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_series_getitem_not_sorted(self): arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) arrays = [np.array(x) for x in zip(*index.values)] result = s['qux'] result2 = s.loc['qux'] expected = s[arrays[0] == 'qux'] expected.index = expected.index.droplevel(0) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) def test_sort_index_and_reconstruction(self): # 15622 # lexsortedness should be identical # across MultiIndex consruction methods df = DataFrame([[1, 1], [2, 2]], index=list('ab')) expected = DataFrame([[1, 1], [2, 2], [1, 1], [2, 2]], index=MultiIndex.from_tuples([(0.5, 'a'), (0.5, 'b'), (0.8, 'a'), (0.8, 'b')])) assert expected.index.is_lexsorted() result = DataFrame( [[1, 1], [2, 2], [1, 1], [2, 2]], index=MultiIndex.from_product([[0.5, 0.8], list('ab')])) result = result.sort_index() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) result = DataFrame( [[1, 1], [2, 2], [1, 1], [2, 2]], index=MultiIndex(levels=[[0.5, 0.8], ['a', 'b']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]])) result = result.sort_index() assert result.index.is_lexsorted() tm.assert_frame_equal(result, expected) concatted = pd.concat([df, df], keys=[0.8, 0.5]) result = concatted.sort_index() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) # 14015 df = DataFrame([[1, 2], [6, 7]], columns=MultiIndex.from_tuples( [(0, '20160811 12:00:00'), (0, '20160809 12:00:00')], names=['l1', 'Date'])) df.columns.set_levels(pd.to_datetime(df.columns.levels[1]), level=1, inplace=True) assert not df.columns.is_lexsorted() assert not df.columns.is_monotonic result = df.sort_index(axis=1) assert result.columns.is_lexsorted() assert result.columns.is_monotonic result = df.sort_index(axis=1, level=1) assert result.columns.is_lexsorted() assert result.columns.is_monotonic def test_sort_index_and_reconstruction_doc_example(self): # doc example df = DataFrame({'value': [1, 2, 3, 4]}, index=MultiIndex( levels=[['a', 'b'], ['bb', 'aa']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]])) assert df.index.is_lexsorted() assert not df.index.is_monotonic # sort it expected = DataFrame({'value': [2, 1, 4, 3]}, index=MultiIndex( levels=[['a', 'b'], ['aa', 'bb']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]])) result = df.sort_index() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) # reconstruct result = df.sort_index().copy() result.index = result.index._sort_levels_monotonic() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) def test_sort_index_reorder_on_ops(self): # 15687 df = DataFrame( np.random.randn(8, 2), index=MultiIndex.from_product( [['a', 'b'], ['big', 'small'], ['red', 'blu']], names=['letter', 'size', 'color']), columns=['near', 'far']) df = df.sort_index() def my_func(group): group.index = ['newz', 'newa'] return group result = df.groupby(level=['letter', 'size']).apply( my_func).sort_index() expected = MultiIndex.from_product( [['a', 'b'], ['big', 'small'], ['newa', 'newz']], names=['letter', 'size', None]) tm.assert_index_equal(result.index, expected) def test_sort_non_lexsorted(self): # degenerate case where we sort but don't # have a satisfying result :< # GH 15797 idx = MultiIndex([['A', 'B', 'C'], ['c', 'b', 'a']], [[0, 1, 2, 0, 1, 2], [0, 2, 1, 1, 0, 2]]) df = DataFrame({'col': range(len(idx))}, index=idx, dtype='int64') assert df.index.is_lexsorted() is False assert df.index.is_monotonic is False sorted = df.sort_index() assert sorted.index.is_lexsorted() is True assert sorted.index.is_monotonic is True expected = DataFrame( {'col': [1, 4, 5, 2]}, index=MultiIndex.from_tuples([('B', 'a'), ('B', 'c'), ('C', 'a'), ('C', 'b')]), dtype='int64') result = sorted.loc[pd.IndexSlice['B':'C', 'a':'c'], :] tm.assert_frame_equal(result, expected) def test_sort_index_nan(self): # GH 14784 # incorrect sorting w.r.t. nans tuples = [[12, 13], [np.nan, np.nan], [np.nan, 3], [1, 2]] mi = MultiIndex.from_tuples(tuples) df = DataFrame(np.arange(16).reshape(4, 4), index=mi, columns=list('ABCD')) s = Series(np.arange(4), index=mi) df2 = DataFrame({ 'date': pd.to_datetime([ '20121002', '20121007', '20130130', '20130202', '20130305', '20121002', '20121207', '20130130', '20130202', '20130305', '20130202', '20130305' ]), 'user_id': [1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 5, 5], 'whole_cost': [1790, np.nan, 280, 259, np.nan, 623, 90, 312, np.nan, 301, 359, 801], 'cost': [12, 15, 10, 24, 39, 1, 0, np.nan, 45, 34, 1, 12] }).set_index(['date', 'user_id']) # sorting frame, default nan position is last result = df.sort_index() expected = df.iloc[[3, 0, 2, 1], :] tm.assert_frame_equal(result, expected) # sorting frame, nan position last result = df.sort_index(na_position='last') expected = df.iloc[[3, 0, 2, 1], :] tm.assert_frame_equal(result, expected) # sorting frame, nan position first result = df.sort_index(na_position='first') expected = df.iloc[[1, 2, 3, 0], :] tm.assert_frame_equal(result, expected) # sorting frame with removed rows result = df2.dropna().sort_index() expected = df2.sort_index().dropna() tm.assert_frame_equal(result, expected) # sorting series, default nan position is last result = s.sort_index() expected = s.iloc[[3, 0, 2, 1]] tm.assert_series_equal(result, expected) # sorting series, nan position last result = s.sort_index(na_position='last') expected = s.iloc[[3, 0, 2, 1]] tm.assert_series_equal(result, expected) # sorting series, nan position first result = s.sort_index(na_position='first') expected = s.iloc[[1, 2, 3, 0]] tm.assert_series_equal(result, expected) def test_sort_ascending_list(self): # GH: 16934 # Set up a Series with a three level MultiIndex arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'], [4, 3, 2, 1, 4, 3, 2, 1]] tuples = lzip(*arrays) mi = MultiIndex.from_tuples(tuples, names=['first', 'second', 'third']) s = Series(range(8), index=mi) # Sort with boolean ascending result = s.sort_index(level=['third', 'first'], ascending=False) expected = s.iloc[[4, 0, 5, 1, 6, 2, 7, 3]] tm.assert_series_equal(result, expected) # Sort with list of boolean ascending result = s.sort_index(level=['third', 'first'], ascending=[False, True]) expected = s.iloc[[0, 4, 1, 5, 2, 6, 3, 7]] tm.assert_series_equal(result, expected)
bsd-3-clause
abhishekgahlot/scikit-learn
examples/svm/plot_svm_margin.py
318
2328
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM Margins Example ========================================================= The plots below illustrate the effect the parameter `C` has on the separation line. A large value of `C` basically tells our model that we do not have that much faith in our data's distribution, and will only consider points close to line of separation. A small value of `C` includes more/all the observations, allowing the margins to be calculated using all the data in the area. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # figure number fignum = 1 # fit the model for name, penalty in (('unreg', 1), ('reg', 0.05)): clf = svm.SVC(kernel='linear', C=penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy + a * margin yy_up = yy - a * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -4.8 x_max = 4.2 y_min = -6 y_max = 6 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
probml/pyprobml
scripts/hbayes_bernoulli_bap_pymc3.py
1
2026
# From chapter 2 of # https://github.com/aloctavodia/BAP import matplotlib.pyplot as plt import scipy.stats as stats import numpy as np import pandas as pd import seaborn as sns import pymc3 as pm import arviz as az np.random.seed(123) # Example from BAP N_samples = np.array([30, 30, 30]) G_samples = np.array([18, 18, 18]) # [3, 3, 3] [18, 3, 3] group_idx = np.repeat(np.arange(len(N_samples)), N_samples) data = [] for i in range(0, len(N_samples)): data.extend(np.repeat([1, 0], [G_samples[i], N_samples[i]-G_samples[i]])) with pm.Model() as model_h: μ = pm.Beta('μ', 1., 1.) κ = pm.HalfNormal('κ', 10) θ = pm.Beta('θ', alpha=μ*κ, beta=(1.0-μ)*κ, shape=len(N_samples)) y = pm.Bernoulli('y', p=θ[group_idx], observed=data) trace_h = pm.sample(1000) az.plot_trace(trace_h) #plt.savefig('B11197_02_20.png', dpi=300) az.summary(trace_h) J = len(N_samples) post_mean = np.zeros(J) samples = trace_h['θ'] post_mean = np.mean(samples, axis=0) post_hyper_mean = trace_h['μ'].mean() mle = G_samples / N_samples pooled_mle = np.sum(G_samples) / np.sum(N_samples) axes = az.plot_forest( trace_h, var_names='θ', combined=False, colors='cycle') y_lims = axes[0].get_ylim() axes[0].vlines(post_hyper_mean, *y_lims) axes = az.plot_forest( trace_h, var_names='θ', combined=True, colors='cycle', kind='ridgeplot') # Show posterior over hparans fig, ax= plt.subplots(1,1) x = np.linspace(0, 1, 100) for i in np.random.randint(0, len(trace_h), size=100): u = trace_h['μ'][i] k = trace_h['κ'][i] pdf = stats.beta(u*k, (1.0-u)*k).pdf(x) ax.plot(x, pdf, 'C1', alpha=0.2) u_mean = trace_h['μ'].mean() k_mean = trace_h['κ'].mean() dist = stats.beta(u_mean*k_mean, (1.0-u_mean)*k_mean) pdf = dist.pdf(x) mode = x[np.argmax(pdf)] mean = dist.moment(1) ax.plot(x, pdf, lw=3, label=f'mode = {mode:.2f}\nmean = {mean:.2f}') ax.set_yticks([]) ax.legend() ax.set_xlabel('$θ_{prior}$') plt.tight_layout() #plt.savefig('B11197_02_21.png', dpi=300)
mit
emmanuelle/scikits.image
doc/examples/plot_canny.py
2
1625
""" =================== Canny edge detector =================== The Canny filter is a multi-stage edge detector. It uses a filter based on the derivative of a Gaussian in order to compute the intensity of the gradients.The Gaussian reduces the effect of noise present in the image. Then, potential edges are thinned down to 1-pixel curves by removing non-maximum pixels of the gradient magnitude. Finally, edge pixels are kept or removed using hysteresis thresholding on the gradient magnitude. The Canny has three adjustable parameters: the width of the Gaussian (the noisier the image, the greater the width), and the low and high threshold for the hysteresis thresholding. """ import numpy as np import matplotlib.pyplot as plt from scipy import ndimage from skimage import filter # Generate noisy image of a square im = np.zeros((128, 128)) im[32:-32, 32:-32] = 1 im = ndimage.rotate(im, 15, mode='constant') im = ndimage.gaussian_filter(im, 4) im += 0.2 * np.random.random(im.shape) # Compute the Canny filter for two values of sigma edges1 = filter.canny(im) edges2 = filter.canny(im, sigma=3) # display results plt.figure(figsize=(8, 3)) plt.subplot(131) plt.imshow(im, cmap=plt.cm.jet) plt.axis('off') plt.title('noisy image', fontsize=20) plt.subplot(132) plt.imshow(edges1, cmap=plt.cm.gray) plt.axis('off') plt.title('Canny filter, $\sigma=1$', fontsize=20) plt.subplot(133) plt.imshow(edges2, cmap=plt.cm.gray) plt.axis('off') plt.title('Canny filter, $\sigma=3$', fontsize=20) plt.subplots_adjust(wspace=0.02, hspace=0.02, top=0.9, bottom=0.02, left=0.02, right=0.98) plt.show()
bsd-3-clause
smenon8/AnimalWildlifeEstimator
script/ImageShareabilityRegressors.py
1
4993
# python-3 # Author Name : Sreejith Menon ([email protected]) import ClassiferHelperAPI as CH import numpy as np import pandas as pd import plotly.plotly as py from collections import Counter import csv import plotly.graph_objs as go import RegressionCapsuleClass as RgrCls def plot(rgrObj,arr,arr_min,title,flNm,range,errorBar = True): trace1 = go.Scatter( x = list(rgrObj.preds), y = list(rgrObj.test_y), error_y = dict( type='data', symmetric = False, array = arr, arrayminus = arr_min, visible=errorBar ), mode = 'markers' ) layout= go.Layout( title= title, xaxis= dict( title= 'Predicted Share Rate', ticklen= 5, zeroline= False, gridwidth= 2, range=[-5,110] ), yaxis=dict( title= 'Actual Share rate', ticklen= 5, gridwidth= 2, #range=range ) ) data = [trace1] fig = dict(data=data,layout=layout) a = py.iplot(fig,filename=flNm) return a def runRgr(methodName,attribType): if attribType == "beauty": inpData = pd.DataFrame.from_csv("../data/BeautyFtrVector_GZC.csv") inpData.reindex(np.random.permutation(inpData.index)) y = inpData['Proportion'] inpData.drop(['Proportion'],1,inplace=True) train_x, test_x, train_y, test_y = CH.train_test_split(inpData, y, test_size = 0.4) rgr = CH.getLearningAlgo(methodName,{'fit_intercept':True}) rgrObj = RgrCls.RegressionCapsule(rgr,methodName,0.8,train_x,train_y,test_x,test_y) else: train_data_fl = "../FinalResults/ImgShrRnkListWithTags.csv" infoGainFl = "../data/infoGainsExpt2.csv" allAttribs = CH.genAllAttribs(train_data_fl,attribType,infoGainFl) rgrObj = CH.buildRegrMod(train_data_fl,allAttribs,0.6,methodName,kwargs={'fit_intercept':True}) rgrObj.runRgr(computeMetrics=True,removeOutliers=True) x = [i for i in range(len(rgrObj.preds))] errors = [list(rgrObj.test_y)[i] - list(rgrObj.preds)[i] for i in range(len(rgrObj.preds))] arr = [-1 * errors[i] if errors[i] < 0 else 0 for i in range(len(errors)) ] arr_min = [errors[i] if errors[i] > 0 else 0 for i in range(len(errors)) ] return rgrObj,arr,arr_min def plotWithErrBars(attribTypes, rgrAlgoTypes): embedCodes = [] for attrib in attribTypes: code = [] for alg in rgrAlgoTypes: rgrObj, arr,arr_min = runRgr(alg,attrib) title = "%s regression results using %s attributes" %(alg,attrib) flNm = "%s_regession_%s_attributes_%s" %(alg,attrib,str(True)) a = plot(rgrObj,arr,arr_min,title,flNm,[-100,200],errorBar = True) code.append(a.embed_code) embedCodes.append(code) for code in embedCodes: print(code) print() def plotWithoutErrBars(attribTypes, rgrAlgoTypes): embedCodes = [] for attrib in attribTypes: code = [] for alg in rgrAlgoTypes: rgrObj, _, _ = runRgr(alg,attrib) print("Absolute error for %s using %s : %f" %(alg,attrib,rgrObj.abserr)) print("Mean Squared error for %s using %s : %f" %(alg,attrib,rgrObj.sqerr)) title = "%s regression results using %s attributes" %(alg,attrib) flNm = "%s_regession_%s_attributes_%s" %(alg,attrib,str(False)) a = plot(rgrObj,[],[],title,flNm,[-10,110],errorBar = False) code.append(a.embed_code) embedCodes.append(code) for code in embedCodes: print(code) print() def plotResiduals(attribTypes, rgrAlgoTypes): embedCodes = [] for attrib in attribTypes: code = [] for alg in rgrAlgoTypes: rgrObj, _, _ = runRgr(alg,attrib) x_data = rgrObj.preds y_data = rgrObj.residues title = "%s regression residues using %s attributes" %(alg,attrib) flNm = "%s_regession_%s_attributes_%s" %(alg,attrib,"residues") # Create a trace trace = go.Scatter( x = x_data, y = y_data, mode = 'markers' ) layout= go.Layout( title= title, xaxis= dict( title= 'Predicted Share Rate', ticklen= 5 ), yaxis=dict( title= 'Residues', ticklen= 5 ) ) data = [trace] # Plot and embed in ipython notebook! fig = dict(data=data,layout=layout) a = py.iplot(fig,filename=flNm) code.append(a.embed_code) embedCodes.append(code) for code in embedCodes: print(code) print() def __main__(): # attribTypes = ['sparse', 'non_sparse', 'non_zero', 'abv_mean'] attribTypes = ['beauty'] rgrAlgoTypes = ['linear', 'ridge', 'lasso', 'elastic_net', 'svr', 'linear_svr', 'dtree_regressor'] # plotWithErrBars(attribTypes, rgrAlgoTypes) # print("\n\n\n\n\n") # plotWithoutErrBars(attribTypes, rgrAlgoTypes) plotResiduals(attribTypes, rgrAlgoTypes) if __name__ == "__main__": __main__()
bsd-3-clause
josenavas/QiiTa
qiita_pet/handlers/study_handlers/prep_template.py
1
3836
# ----------------------------------------------------------------------------- # Copyright (c) 2014--, The Qiita Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from __future__ import division from os.path import join from tornado.web import authenticated from tornado.escape import url_escape import pandas as pd from qiita_pet.handlers.util import to_int from qiita_pet.handlers.base_handlers import BaseHandler from qiita_db.util import (get_files_from_uploads_folders, get_mountpoint, supported_filepath_types) from qiita_pet.handlers.api_proxy import ( prep_template_ajax_get_req, new_prep_template_get_req, prep_template_summary_get_req) class NewPrepTemplateAjax(BaseHandler): @authenticated def get(self): study_id = to_int(self.get_argument('study_id')) result = new_prep_template_get_req(study_id) self.render('study_ajax/add_prep_template.html', prep_files=result['prep_files'], data_types=result['data_types'], ontology=result['ontology'], study_id=study_id) class PrepTemplateSummaryAJAX(BaseHandler): @authenticated def get(self): prep_id = to_int(self.get_argument('prep_id')) res = prep_template_summary_get_req(prep_id, self.current_user.id) self.render('study_ajax/prep_summary_table.html', pid=prep_id, stats=res['summary'], editable=res['editable'], num_samples=res['num_samples']) class PrepTemplateAJAX(BaseHandler): @authenticated def get(self): """Send formatted summary page of prep template""" prep_id = to_int(self.get_argument('prep_id')) row_id = self.get_argument('row_id', '0') res = prep_template_ajax_get_req(self.current_user.id, prep_id) res['prep_id'] = prep_id res['row_id'] = row_id # Escape the message just in case javascript breaking characters in it res['alert_message'] = url_escape(res['alert_message']) self.render('study_ajax/prep_summary.html', **res) class PrepFilesHandler(BaseHandler): @authenticated def get(self): study_id = self.get_argument('study_id') prep_file = self.get_argument('prep_file') prep_type = self.get_argument('type') # TODO: Get file types for the artifact type # FILE TYPE IN POSTION 0 MUST BE DEFAULT FOR SELECTED file_types = supported_filepath_types(prep_type) selected = [] not_selected = [] _, base = get_mountpoint("uploads")[0] uploaded = get_files_from_uploads_folders(study_id) prep = pd.read_table(join(base, study_id, prep_file), sep='\t') if 'run_prefix' in prep.columns: # Use run_prefix column of prep template to auto-select # per-prefix uploaded files if available. per_prefix = True prep_prefixes = set(prep['run_prefix']) for _, filename in uploaded: for prefix in prep_prefixes: if filename.startswith(prefix): selected.append(filename) else: not_selected.append(filename) else: per_prefix = False not_selected = [f for _, f in uploaded] # Write out if this prep template supports per-prefix files, and the # as well as pre-selected and remaining files self.write({ 'per_prefix': per_prefix, 'file_types': file_types, 'selected': selected, 'remaining': not_selected})
bsd-3-clause
hsinhuang/codebase
ntumltwo-001/hw3.py
1
2956
import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import BaggingClassifier from decision_tree import DecisionTree from bagging import Bagging def load(filename): dataset = np.loadtxt(filename) return dataset[:, :-1], dataset[:, -1] def load_train(): return load('hw3_train.dat') def load_test(): return load('hw3_test.dat') def q13(): tree = DecisionTree() tree.fit(*load_train()) print tree.__prepr__() print tree.node_count def _q13(): X, y = load_train() tree = DecisionTreeClassifier(criterion='gini') tree.fit(X, y) print tree.tree_.node_count def q14(): tree = DecisionTree() tree.fit(*load_train()) print tree.ein def _q14(): X, y = load_train() tree = DecisionTreeClassifier(criterion='gini') tree.fit(X, y) print 1 - tree.score(X, y) def q15(): tree = DecisionTree() tree.fit(*load_train()) print tree.error(*load_test()) def _q15(): X, y = load_train() tree = DecisionTreeClassifier(criterion='gini') tree.fit(X, y) print 1 - tree.score(*load_test()) def q16_bag(param): def get_decision_tree(): return DecisionTree() X, y = param bagging = Bagging(get_decision_tree, T=300) bagging.fit(X, y) return bagging def q16_print_ein(param): bagging = q16_bag(param) eins = [1 - m.score(*param) for m in bagging.models] ein_g = sum(eins) * 1.0 / len(eins) ein_G = 1 - bagging.score(*param) eout_G = 1 - bagging.score(*load_test()) print '-' * 6 print 'q16:', ein_g print 'q17:', ein_G print 'q18:', eout_G return (ein_g, ein_G, eout_G) def q16(): X, y = load_train() import multiprocessing as par pool = par.Pool(processes=par.cpu_count()) R = 100 res = pool.map(q16_print_ein, [(X, y)] * R) print '-' * 6 print '- q16:', sum([e[0] for e in res]) * 1.0 / len(res) print '- q17:', sum([e[1] for e in res]) * 1.0 / len(res) print '- q18:', sum([e[2] for e in res]) * 1.0 / len(res) def q19_bag(param): def get_decision_tree(): return DecisionTree(depth=1) X, y = param bagging = Bagging(get_decision_tree, T=300) bagging.fit(X, y) return bagging def q19_print_ein(param): bagging = q19_bag(param) ein_G = 1 - bagging.score(*param) eout_G = 1 - bagging.score(*load_test()) print '-' * 6 print 'q19:', ein_G print 'q20:', eout_G return (ein_G, eout_G) def q19(): X, y = load_train() import multiprocessing as par pool = par.Pool(processes=par.cpu_count()) R = 100 res = pool.map(q19_print_ein, [(X, y)] * R) print '-' * 6 print '- q19:', sum([e[0] for e in res]) * 1.0 / len(res) print '- q20:', sum([e[1] for e in res]) * 1.0 / len(res) def run(func): print '=' * 3 + func.__name__ + '=' * 3 func() if __name__ == '__main__': qs = [q16, q19] for q in qs: run(q)
gpl-2.0
JohanComparat/pySU
galaxy/bin_stack/plot_results_spectraStacks.py
1
23266
#! /usr/bin/env python """ This script produces the stacks for emission line luminosity limited samples. """ import sys import matplotlib #matplotlib.use('pdf') import matplotlib.pyplot as p import numpy as n import os from os.path import join import astropy.io.fits as fits G05 = n.loadtxt( join(os.environ['SPECTRASTACKS_DIR'], "biblioPoints", "gallazzi-2005.data"), unpack= True) G06 = n.loadtxt( join(os.environ['SPECTRASTACKS_DIR'], "biblioPoints", "gallazzi-2006.data"), unpack= True) path_to_summary_table = join(os.environ['SPECTRASTACKS_DIR'], "results", "table_fullSpecFit_v0.VA.fits") data =fits.open(path_to_summary_table)[1].data path_to_summary_table = join(os.environ['SPECTRASTACKS_DIR'], "results", "table_lineSpecFit_v0.VA.fits") datL =fits.open(path_to_summary_table)[1].data #first check that lline fits are compatible with the luminosity bin fl = data['L_mean']/(4*n.pi*data['dL']**2.) O2 = (data['lineWavelength']== 3728.) O3 = (data['lineWavelength']== 5007.) Hb = (data['lineWavelength']== 4862.) & (data['H1_4862_flux']>0) chi2 = (data['H1_4862_flux'][Hb] - fl[Hb])/data['H1_4862_fluxErr'][Hb] ebv_snr_limit = 5. chi2_per_dof = 15 detect_O3_5007 = (datL['O3_5007_flux']>ebv_snr_limit*datL['O3_5007_fluxErr']) & (datL['O3_5007_flux']>0) & (datL['O3_5007_fluxErr']>0) &(datL['O3_5007_chi2']<chi2_per_dof*datL['O3_5007_ndof']) detect_H1_4862 = (datL['H1_4862_flux']>ebv_snr_limit*datL['H1_4862_fluxErr']) & (datL['H1_4862_flux']>0) & (datL['H1_4862_fluxErr']>0) &(datL['H1_4862_chi2']<chi2_per_dof*datL['H1_4862_ndof']) detect_H1_4341 = (datL['H1_4341_flux']>ebv_snr_limit*datL['H1_4341_fluxErr'])& (datL['H1_4341_flux']>0)&(datL['H1_4341_fluxErr']>0)&(datL['H1_4341_chi2']<chi2_per_dof*datL['H1_4341_ndof']) detect_H1_4102 = (datL['H1_4102_flux']>ebv_snr_limit*datL['H1_4102_fluxErr'])& (datL['H1_4102_flux']>0)&(datL['H1_4102_fluxErr']>0)&(datL['H1_4102_chi2']<chi2_per_dof*datL['H1_4102_ndof']) detect_all_H1 = detect_H1_4862 & detect_H1_4341 & detect_H1_4102 def_EBV_4862_4341 = (datL['EBV_4862_4341']!=-9999.99) & (datL['EBV_4862_4341_err']!=-9999.99) def_EBV_4862_4102 = (datL['EBV_4862_4102']!=-9999.99) & (datL['EBV_4862_4102_err']!=-9999.99) def_EBV_4102_4341 = (datL['EBV_4102_4341']!=-9999.99) & (datL['EBV_4102_4341_err']!=-9999.99) p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.8]) p.errorbar(x=datL['age_lightW_mean'], xerr=[datL['age_lightW_err_minus'], datL['age_lightW_err_plus']], y=datL['metallicity_lightW_mean'], yerr=[datL['metallicity_lightW_mean_err_minus'], datL['metallicity_lightW_mean_err_plus']],fmt='o',elinewidth=1, mfc='none', label='ELG lightW') y = G06[1] x = 10**G06[4] xerr = [10**(G06[4])-10**(G06[5]), 10**(G06[6])-10**(G06[4])] yerr = [G06[1]-G06[2], G06[3]-G06[1]] p.errorbar(x, y, xerr=xerr, yerr=yerr, fmt='o',elinewidth=1, mfc='none', label='SDSS G06') gl=p.legend(loc=0) gl.set_frame_on(False) p.xscale('log') p.xlabel(r'$age/[yr]$') p.ylabel(r'stellar $\log(Z/[Z_\odot])$') p.xlim((10**6, 10**11)) p.ylim((-2.5, 0.5)) p.grid() p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "age-metal-lightW.png")) p.clf() p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.8]) p.errorbar(x=datL['age_massW_mean'], xerr=[datL['age_massW_err_minus'], datL['age_massW_err_plus']], y=datL['metallicity_massW_mean'], yerr=[datL['metallicity_massW_mean_err_minus'], datL['metallicity_massW_mean_err_plus']],fmt='o',elinewidth=1, mfc='none', label='ELG massW') y = G06[1] x = 10**G06[4] xerr = [10**(G06[4])-10**(G06[5]), 10**(G06[6])-10**(G06[4])] yerr = [G06[1]-G06[2], G06[3]-G06[1]] p.errorbar(x, y, xerr=xerr, yerr=yerr, fmt='o',elinewidth=1, mfc='none', label='SDSS G06') gl=p.legend(loc=0) gl.set_frame_on(False) p.xscale('log') p.xlabel(r'$age/[yr]$') p.ylabel(r'stellar $\log(Z/[Z_\odot])$') p.grid() p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "age-metal-massW.png")) p.clf() p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.8]) ok = def_EBV_4862_4341 & detect_H1_4862 & detect_H1_4341 print len(datL['spm_EBV'][ok]) p.errorbar(datL['spm_EBV'][ok], datL['EBV_4862_4341'][ok], yerr=datL['EBV_4862_4341_err'][ok],fmt='o',elinewidth=1, mfc='none')#,label='4862-4341') #ok = def_EBV_4862_4102 & detect_H1_4862 & detect_H1_4102 #print len(datL['spm_EBV'][ok]) #p.errorbar(datL['spm_EBV'][ok], datL['EBV_4862_4102'][ok], yerr=datL['EBV_4862_4102_err'][ok],fmt='o',elinewidth=1, mfc='none',label='4862-4102') ok = def_EBV_4102_4341 & detect_H1_4341 & detect_H1_4102 print len(datL['spm_EBV'][ok]) p.errorbar(datL['spm_EBV'][ok], datL['EBV_4102_4341'][ok], yerr=datL['EBV_4102_4341_err'][ok],fmt='o',elinewidth=1, mfc='none')#,label='4341-4102') p.plot([-0.1,1.5],[-0.1,1.5],'k--') #p.legend(loc=0) p.xlabel('E(B-V) SPM') p.ylabel(r'E(B-V) Balmer decrement') p.xlim((-0.1,1.5)) p.ylim((-0.1,1.5)) p.grid() p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "ebv-comparison-1.png")) p.clf() p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.8]) ok = def_EBV_4862_4102 & def_EBV_4862_4341 & detect_all_H1 print len(datL['spm_EBV'][ok]) p.errorbar(datL['EBV_4862_4102'][ok], datL['EBV_4862_4341'][ok], xerr=datL['EBV_4862_4102_err'][ok], yerr=datL['EBV_4862_4341_err'][ok],fmt='o',elinewidth=1, mfc='none',label='x:4862-4102, y:4862-4341') ok = def_EBV_4862_4102 & def_EBV_4102_4341 & detect_all_H1 print len(datL['spm_EBV'][ok]) p.errorbar(datL['EBV_4862_4102'][ok], datL['EBV_4102_4341'][ok], xerr=datL['EBV_4862_4102_err'][ok], yerr=datL['EBV_4102_4341_err'][ok],fmt='o',elinewidth=1, mfc='none',label='x:4862-4102, y:4341-4102') ok = def_EBV_4862_4341 & def_EBV_4102_4341 & detect_all_H1 print len(datL['spm_EBV'][ok]) p.errorbar(datL['EBV_4862_4341'][ok], datL['EBV_4102_4341'][ok], xerr=datL['EBV_4862_4341_err'][ok], yerr=datL['EBV_4102_4341_err'][ok],fmt='o',elinewidth=1, mfc='none',label='x:4862-4341, y:4341-4102') p.plot([-0.1,1.5],[-0.1,1.5],'k--') gl=p.legend(loc=0) gl.set_frame_on(False) p.xlabel(r'E(B-V) Balmer decrement x')#GP $H\beta -H\gamma$') p.ylabel(r'E(B-V) Balmer decrement y')#GP $H\beta -H\delta$') p.xlim((-0.1,1.2)) p.ylim((-0.1,1.2)) p.grid() p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "ebv-comparison-2.png")) p.clf() p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.8]) ok = detect_O3_5007 & detect_H1_4862 x = datL['metallicity_lightW_mean'][ok] y = n.log10(datL['O3_5007_flux'][ok]/datL['H1_4862_flux'][ok]) p.plot(x, y,'b+') p.ylabel(r'log([OIII]/Hbeta')#GP $H\beta -H\gamma$') p.xlabel(r'log(Z/Z0)')#GP $H\beta -H\delta$') p.grid() p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "metal-lineRatio.png")) p.clf() sys.exit() Nst = (data['N_in_stack']==200)#&(data['Survey']==2) EBvok = (Nst)&(data['H1_4862_flux']>data['H1_4862_fluxErr']) & (data['H1_4862_flux']>0) & (data['H1_4862_fluxErr']>0) & (data['H1_4341_flux']>data['H1_4341_fluxErr'])& (data['H1_4341_flux']>0)&(data['H1_4341_fluxErr']>0)& (data['EBV_4862_4341']!=-9999.99) & (data['EBV_4862_4341_err']!=-9999.99) O2 = (data['lineWavelength']== 3728.) & (EBvok) O3 = (data['lineWavelength']== 5007.)& (EBvok) Hb = (data['lineWavelength']== 4862.) & (EBvok) data['Redshift'][O2] p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.8]) for zz in set(data['Redshift'][O2]): ok = (O2)&(data['Redshift']==zz) p.errorbar(data['L_mean'][ok], data['EBV_4862_4341'][ok], xerr=[data['L_mean'][ok]-data['L_min'][ok],-data['L_mean'][ok]+data['L_max'][ok]],yerr=data['EBV_4862_4341_err'][ok],fmt='o',elinewidth=1, mfc='none',label=str(n.round(zz,3))) p.legend(loc=0) p.xlabel('[OII] line Luminosity') p.ylabel(r'E(B-V) GP $H\beta -H\delta$') p.xscale('log') p.grid() p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "ebv-line-o2.png")) p.clf() Nst = (datL['N_in_stack']==200)#&(datL['Survey']==2) EBvok = (Nst)&(datL['H1_4862_flux']>datL['H1_4862_fluxErr']) & (datL['H1_4862_flux']>0) & (datL['H1_4862_fluxErr']>0) & (datL['H1_4341_flux']>datL['H1_4341_fluxErr'])& (datL['H1_4341_flux']>0)&(datL['H1_4341_fluxErr']>0)& (datL['EBV_4862_4341']!=-9999.99) & (datL['EBV_4862_4341_err']!=-9999.99) O2 = (datL['lineWavelength']== 3728.) & (EBvok) O3 = (datL['lineWavelength']== 5007.)& (EBvok) Hb = (datL['lineWavelength']== 4862.) & (EBvok) datL['Redshift'][O2] p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.8]) for zz in set(datL['Redshift'][O2]): ok = (O2)&(datL['Redshift']==zz) p.errorbar(datL['L_mean'][ok], datL['EBV_4862_4341'][ok], xerr=[datL['L_mean'][ok]-datL['L_min'][ok],-datL['L_mean'][ok]+datL['L_max'][ok]],yerr=datL['EBV_4862_4341_err'][ok],fmt='o',elinewidth=1, mfc='none',label=str(n.round(zz,3))) p.legend(loc=0) p.xlabel('[OII] line Luminosity') p.ylabel(r'E(B-V) GP $H\beta -H\delta$') p.xscale('log') p.grid() p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "ebv-line-o2-gp.png")) p.clf() p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.8]) ok = (data['logOH_tremonti04']!=-9999.99) & (data['logOH_tremonti04_err']!=-9999.99) p.errorbar(x=data['spm_light_metallicity'][ok], xerr=[data['spm_light_metallicity_err_plus'][ok], data['spm_light_metallicity_err_minus'][ok]], y=data['logOH_tremonti04'][ok], yerr=data['logOH_tremonti04_err'][ok],fmt='o',elinewidth=2, mfc='none',label='full') ok = (datL['logOH_tremonti04']!=-9999.99) & (datL['logOH_tremonti04_err']!=-9999.99) p.errorbar(x=datL['spm_light_metallicity'][ok], xerr=[datL['spm_light_metallicity_err_plus'][ok], datL['spm_light_metallicity_err_minus'][ok]], y=datL['logOH_tremonti04'][ok], yerr=datL['logOH_tremonti04_err'][ok],fmt='o',elinewidth=2, mfc='none',label='GP') #p.plot([-1,2],[-1,2],'k--') #p.legend(loc=0) p.xlabel('log(Z/Zsun) SPM') p.ylabel(r'12+log(O/H) (line ratios Tremonti 04 estimator)') #p.xlim((-1,2)) #p.ylim((-1,2)) p.grid() p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "metal-comparison-1.png")) p.clf() # SFR comparison o2_sfr_conv = 10**(0.27) * 10**(-41) hb_sfr_conv = 10**(0.58) * 10**(-41) sfrO2 = data['L_mean']*o2_sfr_conv sfrO2_up = data['L_max']*o2_sfr_conv sfrO2_low = data['L_min']*o2_sfr_conv sfrHb = data['L_mean']*hb_sfr_conv sfrHb_up = data['L_max']*hb_sfr_conv sfrHb_low = data['L_min']*hb_sfr_conv Nst = (data['N_in_stack']==400) hb = (data['lineWavelength']==4862.0) & (Nst) o2 = (data['lineWavelength']==3728.0) & (Nst) o3 = (data['lineWavelength']==5007.0) & (Nst) p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) ttt = p.scatter(data['spm_stellar_mass'][hb], data['spm_light_metallicity'][hb], marker='s', s=30, c=data['Redshift'][hb],label='Hb') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o2], data['spm_light_metallicity'][o2], marker ='o', s=30, c=data['Redshift'][o2],label='O2') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o3], data['spm_light_metallicity'][o3], marker ='^', s=30, c=data['Redshift'][o3],label='O3') ttt.set_edgecolor('face') cb = p.colorbar(shrink=0.8) cb.set_label('redshift') p.ylabel(r'$log([Z/H])$') p.xlabel('$\log(M_*)$') #p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "mass-metallicity-redshift-all-hb-o2-o3-400.png")) p.clf() Nst = (data['N_in_stack']==100) hb = (data['lineWavelength']==4862.0) & (Nst) o2 = (data['lineWavelength']==3728.0) & (Nst) o3 = (data['lineWavelength']==5007.0) & (Nst) p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) ttt = p.scatter(data['spm_stellar_mass'][hb], data['spm_light_metallicity'][hb], marker='s', s=30, c=data['Redshift'][hb],label='Hb') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o2], data['spm_light_metallicity'][o2], marker ='o', s=30, c=data['Redshift'][o2],label='O2') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o3], data['spm_light_metallicity'][o3], marker ='^', s=30, c=data['Redshift'][o3],label='O3') ttt.set_edgecolor('face') cb = p.colorbar(shrink=0.8) cb.set_label('redshift') p.ylabel(r'$log([Z/H])$') p.xlabel('$\log(M_*)$') #p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "mass-metallicity-redshift-all-hb-o2-o3-100.png")) p.clf() Nst = (data['N_in_stack']==200) hb = (data['lineWavelength']==4862.0) & (Nst) o2 = (data['lineWavelength']==3728.0) & (Nst) o3 = (data['lineWavelength']==5007.0) & (Nst) p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) ttt = p.scatter(data['spm_stellar_mass'][hb], data['spm_light_metallicity'][hb], marker='s', s=30, c=data['Redshift'][hb],label='Hb') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o2], data['spm_light_metallicity'][o2], marker ='o', s=30, c=data['Redshift'][o2],label='O2') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o3], data['spm_light_metallicity'][o3], marker ='^', s=30, c=data['Redshift'][o3],label='O3') ttt.set_edgecolor('face') cb = p.colorbar(shrink=0.8) cb.set_label('redshift') p.ylabel(r'$log([Z/H])$') p.xlabel('$\log(M_*)$') #p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "mass-metallicity-redshift-all-hb-o2-o3-200.png")) p.clf() Nst = (data['N_in_stack']==200) hb = (data['lineWavelength']==4862.0) & (Nst) o2 = (data['lineWavelength']==3728.0) & (Nst) o3 = (data['lineWavelength']==5007.0) & (Nst) p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) ttt = p.scatter(data['spm_stellar_mass'][hb], data['spm_light_metallicity'][hb], marker='s', s=30, c=n.log10(sfrHb[hb]),label='Hb') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o2], data['spm_light_metallicity'][o2], marker ='o', s=30, c=n.log10(sfrO2[o2]),label='O2') ttt.set_edgecolor('face') cb = p.colorbar(shrink=0.8) cb.set_label('log(SFR)') p.ylabel(r'$log([Z/H])$') p.xlabel('$\log(M_*)$') #p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "mass-metallicity-sfr-all-hb-o2-200.png")) p.clf() Nst = (data['N_in_stack']==400) hb = (data['lineWavelength']==4862.0) & (Nst) o2 = (data['lineWavelength']==3728.0) & (Nst) o3 = (data['lineWavelength']==5007.0) & (Nst) p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) ttt = p.scatter(data['spm_stellar_mass'][hb], data['spm_light_metallicity'][hb], marker='s', s=30, c=n.log10(sfrHb[hb]),label='Hb') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o2], data['spm_light_metallicity'][o2], marker ='o', s=30, c=n.log10(sfrO2[o2]),label='O2') ttt.set_edgecolor('face') cb = p.colorbar(shrink=0.8) cb.set_label('log(SFR)') p.ylabel(r'$log([Z/H])$') p.xlabel('$\log(M_*)$') #p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "mass-metallicity-sfr-all-hb-o2-400.png")) p.clf() Nst = (data['N_in_stack']==100) hb = (data['lineWavelength']==4862.0) & (Nst) o2 = (data['lineWavelength']==3728.0) & (Nst) o3 = (data['lineWavelength']==5007.0) & (Nst) p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) ttt = p.scatter(data['spm_stellar_mass'][hb], data['spm_light_metallicity'][hb], marker='s', s=30, c=n.log10(sfrHb[hb]),label='Hb') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o2], data['spm_light_metallicity'][o2], marker ='o', s=30, c=n.log10(sfrO2[o2]),label='O2') ttt.set_edgecolor('face') cb = p.colorbar(shrink=0.8) cb.set_label('log(SFR)') p.ylabel(r'$log([Z/H])$') p.xlabel('$\log(M_*)$') #p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "mass-metallicity-sfr-all-hb-o2-100.png")) p.clf() Nst = (data['N_in_stack']==100)&(data['Redshift']>=0.7)&(data['Redshift']<=0.85) hb = (data['lineWavelength']==4862.0) & (Nst) o2 = (data['lineWavelength']==3728.0) & (Nst) o3 = (data['lineWavelength']==5007.0) & (Nst) p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) ttt = p.scatter(data['spm_stellar_mass'][hb], data['spm_light_metallicity'][hb], marker='s', s=30, c=n.log10(sfrHb[hb]),label='Hb') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o2], data['spm_light_metallicity'][o2], marker ='o', s=30, c=n.log10(sfrO2[o2]),label='O2') ttt.set_edgecolor('face') cb = p.colorbar(shrink=0.8) cb.set_label('log(SFR)') p.ylabel(r'$log([Z/H])$') p.xlabel('$\log(M_*)$') p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "mass-metallicity-sfr-07z085-hb-o2-100.png")) p.clf() Nst = (data['N_in_stack']==200)&(data['Redshift']>=0.7)&(data['Redshift']<=0.85) hb = (data['lineWavelength']==4862.0) & (Nst) o2 = (data['lineWavelength']==3728.0) & (Nst) o3 = (data['lineWavelength']==5007.0) & (Nst) p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) ttt = p.scatter(data['spm_stellar_mass'][hb], data['spm_light_metallicity'][hb], marker='s', s=30, c=n.log10(sfrHb[hb]),label='Hb') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o2], data['spm_light_metallicity'][o2], marker ='o', s=30, c=n.log10(sfrO2[o2]),label='O2') ttt.set_edgecolor('face') cb = p.colorbar(shrink=0.8) cb.set_label('log(SFR)') p.ylabel(r'$log([Z/H])$') p.xlabel('$\log(M_*)$') p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "mass-metallicity-sfr-07z085-hb-o2-200.png")) p.clf() Nst = (data['N_in_stack']==400)&(data['Redshift']>=0.7)&(data['Redshift']<=0.85) hb = (data['lineWavelength']==4862.0) & (Nst) o2 = (data['lineWavelength']==3728.0) & (Nst) o3 = (data['lineWavelength']==5007.0) & (Nst) p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) ttt = p.scatter(data['spm_stellar_mass'][hb], data['spm_light_metallicity'][hb], marker='s', s=30, c=n.log10(sfrHb[hb]),label='Hb') ttt.set_edgecolor('face') ttt = p.scatter(data['spm_stellar_mass'][o2], data['spm_light_metallicity'][o2], marker ='o', s=30, c=n.log10(sfrO2[o2]),label='O2') ttt.set_edgecolor('face') cb = p.colorbar(shrink=0.8) cb.set_label('log(SFR)') p.ylabel(r'$log([Z/H])$') p.xlabel('$\log(M_*)$') p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "mass-metallicity-sfr-07z085-hb-o2-400.png")) p.clf() # mass metallicity relation # Mannucci et al. 2010 : y_rel = lambda x_rel : 8.90 + 0.39*x_rel - 0.20*x_rel*x_rel - 0.077*x_rel*x_rel*x_rel + 0.064*x_rel*x_rel*x_rel*x_rel x_rel = n.arange(8.5,11.5,0.05) - 10 y_pr = y_rel(x_rel) Nst = (data['logOH_tremonti04']!=-9999.99) # (data['Redshift']>=0.7)&(data['Redshift']<=0.85) &(data['N_in_stack']==400)& hb = (data['lineWavelength']==4862.0) & (Nst) o2 = (data['lineWavelength']==3728.0) & (Nst) o3 = (data['lineWavelength']==5007.0) & (Nst) x_obs_1 = data['spm_stellar_mass'] - 0.32 * n.log10(sfrHb) - 10 x_obs_2 = data['spm_stellar_mass'] - 0.32 * n.log10(sfrO2) - 10 y_obs_1 = 9.185-0.313* data['logOH_tremonti04'] - 0.264 * data['logOH_tremonti04']**2 - 0.321 * data['logOH_tremonti04']**3 p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) p.plot(x_obs_1[hb], data['logOH_tremonti04'][hb], 'bo',label='Hb') p.plot(x_obs_2[o2], data['logOH_tremonti04'][o2], 'r*',label='O2') p.plot(x_rel, y_pr, label='Manucci 2010') p.ylabel(r'$12+log(OH)$') p.xlabel('$\log(M_*)-0.32 log(SFR) - 10$') p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.ylim((8.2,9.5)) p.grid() p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "manucci-2010-relation-all-hb-o2.png")) p.clf() Nst = (datL['logOH_tremonti04']!=-9999.99) # (datL['Redshift']>=0.7)&(datL['Redshift']<=0.85) &(datL['N_in_stack']==400)& hb = (datL['lineWavelength']==4862.0) & (Nst) o2 = (datL['lineWavelength']==3728.0) & (Nst) o3 = (datL['lineWavelength']==5007.0) & (Nst) x_obs_1 = datL['spm_stellar_mass'] - 0.32 * n.log10(sfrHb) - 10 x_obs_2 = datL['spm_stellar_mass'] - 0.32 * n.log10(sfrO2) - 10 y_obs_1 = 9.185-0.313* datL['logOH_tremonti04'] - 0.264 * datL['logOH_tremonti04']**2 - 0.321 * datL['logOH_tremonti04']**3 p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) p.plot(x_obs_1[hb], datL['logOH_tremonti04'][hb], 'bo',label='Hb') p.plot(x_obs_2[o2], datL['logOH_tremonti04'][o2], 'r*',label='O2') p.plot(x_rel, y_pr, label='Manucci 2010') p.ylabel(r'$12+log(OH)$') p.xlabel('$\log(M_*)-0.32 log(SFR) - 10$') p.title(r'$0.7<z<0.85$ ELG') p.ylim((8.2,9.5)) p.legend(loc=0) p.grid() p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "manucci-2010-GP-relation-all-hb-o2.png")) p.clf() sys.exit() print L_MEAN p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.8]) p.errorbar(x=gp_SFR_O2_3728[ok], xerr = gp_SFR_O2_3728_err[ok], y=gp_SFR_H1_4862[ok], yerr=gp_SFR_H1_4862_err[ok],fmt='o',elinewidth=2, mfc='none') p.plot([-1,2],[-1,2],'k--') p.legend(loc=0) p.xlabel('SFR GP [OII]') p.ylabel(r'SFR GP H$\beta$') #p.xlim((-1,2)) #p.ylim((-1,2)) p.grid() p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "sfr-comparison-2.png")) p.clf() # mass metallicity relation # Mannucci et al. 2010 : y_rel = lambda x_rel : 8.90 + 0.39*x_rel - 0.20*x_rel*x_rel - 0.077*x_rel*x_rel*x_rel + 0.064*x_rel*x_rel*x_rel*x_rel x_obs_1 = spm_stellar_mass - 0.32 * n.log10(gp_SFR_O2_3728) - 10 x_obs_2 = spm_stellar_mass - 0.32 * n.log10(gp_SFR_H1_4862) - 10 y_obs_1 = 9.185-0.313*spm_light_metallicity - 0.264 *spm_light_metallicity**2 - 0.321 *spm_light_metallicity**3 x_rel = n.arange(8.5,11.5,0.05) - 10 y_pr = y_rel(x_rel) #base = (gp_SFR_O2_3728>0)& (gp_SFR_O2_3728_err>0)&(spm_stellar_mass >0) p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) p.plot(G05[0],G05[1], 'k',label ="G05") p.plot(G05[0],G05[2], 'k--') p.plot(G05[0],G05[3], 'k--') #p.plot(x_obs_1, y_obs_1, ) ok = (lineWavelength==4862.) ttt = p.scatter(spm_stellar_mass[ok], spm_light_metallicity[ok], marker='s', s=30, c=n.log10(L_MEAN[ok]*10**(0.58) * 10**(-41) ),label='Hb') ttt.set_edgecolor('face') #ok = (base) &(lineWavelength==5007.) #ttt = p.scatter(spm_stellar_mass[ok], spm_light_metallicity[ok], marker ='o', s=30, c=n.log10(gp_SFR_H1_4862[ok]),label='O3') #ttt.set_edgecolor('face') ok = (lineWavelength==3728.) ttt = p.scatter(spm_stellar_mass[ok], spm_light_metallicity[ok], marker = '*', s=30, c=n.log10(L_MEAN[ok]*10**(0.27) * 10**(-41) ),label='O2') ttt.set_edgecolor('face') cb = p.colorbar(shrink=0.8) cb.set_label('log(SFR)') p.ylabel(r'$log([Z/H])$') p.xlabel('$\log(M_*)$') #p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "sfr-mass-z-allredshift.png")) p.clf() p.figure(0,(6,6)) p.axes([0.17,0.17,0.8,0.75]) #p.plot(x_obs_1, y_obs_1, ) ok = (lineWavelength==4862.) ttt = p.scatter(spm_stellar_mass[ok], spm_light_metallicity[ok], marker='s', s=30, c=Redshift[ok],label='Hb') ttt.set_edgecolor('face') ok = (lineWavelength==5007.) ttt = p.scatter(spm_stellar_mass[ok], spm_light_metallicity[ok], marker ='o', s=30, c=Redshift[ok],label='O3') ttt.set_edgecolor('face') ok = (lineWavelength==3728.) ttt = p.scatter(spm_stellar_mass[ok], spm_light_metallicity[ok], marker = '*', s=30, c=Redshift[ok],label='O2') ttt.set_edgecolor('face') cb = p.colorbar(shrink=0.8) cb.set_label('redshift') p.ylabel(r'$log([Z/H])$') p.xlabel('$\log(M_*)$') #p.title(r'$0.7<z<0.85$ ELG') p.legend(loc=0) p.savefig( join(os.environ['SPECTRASTACKS_DIR'], "plots", "sfr-mass-redshift-allredshift.png")) p.clf()
cc0-1.0
constantinpape/mc_luigi
mc_luigi/customTargets.py
1
17830
from __future__ import division, print_function from luigi.target import FileSystemTarget from luigi.file import LocalFileSystem import os import numpy as np import pickle import vigra import h5py import z5py from .pipelineParameter import PipelineParameter # import the proper nifty version try: import nifty import nifty.graph.rag as nrag except ImportError: try: import nifty_with_cplex as nifty import nifty_with_cplex.graph.rag as nrag except ImportError: import nifty_with_gurobi as nifty import nifty_with_gurobi.graph.rag as nrag # FIXME this should work ... #if nifty.Configuration.WITH_HDF5: # import nifty.hdf5 as nh5 # #if nifty.Configuration.WITH_Z5: # import nifty.z5 as nz5 import nifty.z5 as nz5 class BaseTarget(FileSystemTarget): """ Custom target base class """ fs = LocalFileSystem() def __init__(self, path): super(BaseTarget, self).__init__(path) def makedirs(self): """ Create all parent folders if they do not exist. """ normpath = os.path.normpath(self.path) parentfolder = os.path.dirname(normpath) if parentfolder: try: os.makedirs(parentfolder) except OSError: pass class VolumeTarget(BaseTarget): """ Volume target, can hold n5 or hdf5 backend. """ n5_ending = '.n5' h5_ending = '.h5' def __init__(self, path): # FIXME this does nor work as default argument use_n5 = PipelineParameter().useN5Backend super(BaseTarget, self).__init__(path) self.makedirs() self._impl = N5Target(self.path) if use_n5 else HDF5Target(self.path) @staticmethod def file_ending(): return VolumeTarget.n5_ending if PipelineParameter().useN5Backend else VolumeTarget.h5_ending def __contains__(self, key): return key in self._impl def open(self, key='data', dtype=None, shape=None, chunks=None, **compression_opts): return self._impl.open(key=key, dtype=dtype, shape=shape, chunks=chunks, **compression_opts) def write(self, start, data, key='data'): self._impl.write(start, data, key) def read(self, start, stop, key='data'): return self._impl.read(start, stop, key) def get(self, key='data'): return self._impl.get(key) def shape(self, key='data'): return self._impl.shape(key) def chunks(self, key='data'): return self._impl.chunks(key) def dtype(self, key='data'): return self._impl.dtype(key) def close(self): self._impl.close() def keys_on_filesystem(self): return self._impl.keys_on_filesystem() def keys(self): return self._impl.keys() # TODO interface for the offsets once implemented in z5 # TODO enable zarr format ?! class N5Target(object): """ Target for data in n5 format """ def __init__(self, path): self.path = path self.datasets = {} self.n5_file = None def _open_file(self): self.n5_file = z5py.File(self.path, use_zarr_format=False) def __contains__(self, key): if self.n5_file is None: self._open_file() return key in self.n5_file def keys_on_filesystem(self): # open the n5 file if it wasn't opened yet if self.n5_file is None: self._open_file() return self.n5_file.keys() # TODO change compression to blosc as soon as n5 supports it ! # TODO offset handling, need to implement loading with offsets and offsets in z5 def open(self, key='data', dtype=None, shape=None, chunks=None, compression='gzip', **compression_opts): # open the n5 file if it wasn't opened yet if self.n5_file is None: self._open_file() # if we have already opened the dataset, we don't need to do anything if key in self.datasets: return self # otherwise we need to check, if this dataset exists on file and either open or create it if key in self.n5_file: self.datasets[key] = self.n5_file[key] else: # if we need to create the dataset, we need to make sure that # dtype, shape and chunks are actually specified assert dtype is not None, "Can't open a new dataset if dtype is not specified" assert shape is not None, "Can't open a new dataset if shape is not specified" assert chunks is not None, "Can't open a new dataset if chunks are not specified" self.datasets[key] = self.n5_file.create_dataset(key, dtype=dtype, shape=shape, chunks=chunks, compressor=compression, **compression_opts) # TODO implement offsets in n5 # check if any offsets were added to the array # if self.has_offsets(key): # ds = self.datasets[key] # offset_front = ds.attrs.get('offset_front') # offset_back = ds.attrs.get('offset_back') # self.set_offsets(offset_front, offset_back, 'data', serialize_offsets=False) return self def write(self, start, data, key='data'): assert self.n5_file is not None, "Need to open the n5 file first" assert key in self.datasets, "Can't write to a dataset that has not been opened" self.datasets[key].write_subarray(start, data) def read(self, start, stop, key='data'): assert self.n5_file is not None, "Need to open the n5 file first" assert key in self.datasets, "Can't read from a dataset that has not been opened" return self.datasets[key].read_subarray(start, stop) # get the dataset implementation to pass to c++ code def get(self, key='data'): assert self.n5_file is not None, "Need to open the n5 file first" assert key in self.datasets, "Can't get ds impl for a dataset that has not been opened" dtype = self.datasets[key].dtype return nz5.datasetWrapper(dtype, os.path.join(self.path, key)) def shape(self, key='data'): assert self.n5_file is not None, "Need to open the n5 file first" assert key in self.datasets, "Can't get shape for a dataset that has not been opened" return self.datasets[key].shape def chunks(self, key='data'): assert self.n5_file is not None, "Need to open the n5 file first" assert key in self.datasets, "Can't get chunks for a dataset that has not been opened" return self.datasets[key].chunks def dtype(self, key='data'): assert self.n5_file is not None, "Need to open the n5 file first" assert key in self.datasets, "Can't get chunks for a dataset that has not been opened" return self.datasets[key].dtype def keys(self): assert self.n5_file is not None, "Need to open the n5 file first" return self.datasets.keys() # dummy implementation to be consisteny with HDF5Target def close(self): pass # add offsets to the nh5 array def set_offsets(self, offset_front, offset_back, key='data', serialize_offsets=True): assert False, "Offsets not implemented in z5py yet" assert key in self.datasets, "Can't set offsets for a dataset that has not been opened" # TODO implement in z5 self.datasets[key].set_offset_front(offset_front) self.datasets[key].set_offset_back(offset_back) # serialize the offsets if serialize_offsets: self.serialize_offsets(offset_front, offset_back, key) def serialize_offsets(self, offset_front, offset_back, key='data'): assert False, "Offsets not implemented in z5py yet" assert key in self.datasets, "Can't serialize offsets for a dataset that has not been opened" self.datasets[key].attrs['offset_front'] = offset_front self.datasets[key].attrs['offset_back'] = offset_back @staticmethod def has_offsets(path, key='data'): assert False, "Offsets not implemented in z5py yet" f = z5py.File(path) ds = f[key] if 'offset_front' in ds.attrs: assert 'offset_back' in ds.attrs return True else: return False class HDF5Target(object): """ Target for h5 data larger than RAM """ def __init__(self, path): self.path = path self.datasets = {} self.h5_file = None def _open_file(self): self.h5_file = nh5.openFile(self.path) if os.path.exists(self.path) else \ nh5.createFile(self.path) def __contains__(self, key): with h5py.File(self.path) as f: return key in f def keys_on_filesystem(self): with h5py.File(self.path) as f: return f.keys() def open(self, key='data', dtype=None, shape=None, chunks=None, compression='gzip', **compression_opts): # open the h5 file if it is not exisiting already if self.h5_file is None: self._open_file() # if we have already opened the dataset, we don't need to do anything if key in self.datasets: return self # otherwise we need to check, if this dataset exists on file and either open or create it with h5py.File(self.path) as fh5: has_key = key in fh5 if has_key: if dtype is None: with h5py.File(self.path) as f: dtype = f[key].dtype self.datasets[key] = nh5.hdf5Array(dtype, self.h5_file, key) else: # if we need to create the dataset, we need to make sure that # dtype, shape and chunks are actually specified assert dtype is not None, "Can't open a new dataset if dtype is not specified" assert shape is not None, "Can't open a new dataset if shape is not specified" assert chunks is not None, "Can't open a new dataset if chunks are not specified" clevel = compression_opts.get('level', 4) compression_ = -1 if compression != 'gzip' else clevel self.datasets[key] = nh5.hdf5Array(dtype, self.h5_file, key, shape, chunks, compression=compression_) # TODO re-enable support for ofsets once we have this in z5 # check if any offsets were added to the array # if self.has_offsets(key): # ds = self.datasets[key] # offset_front = ds.attrs.get('offset_front') # offset_back = ds.attrs.get('offset_back') # self.set_offsets(offset_front, offset_back, 'data', serialize_offsets=False) return self def close(self): assert self.h5_file is not None, "Need to open the h5 file first" nh5.closeFile(self.h5_file) def write(self, start, data, key='data'): assert self.h5_file is not None, "Need to open the h5 file first" assert key in self.datasets, "Can't write to a dataset that has not been opened" self.datasets[key].writeSubarray(list(start), data) def read(self, start, stop, key='data'): assert self.h5_file is not None, "Need to open the h5 file first" assert key in self.datasets, "Can't read from a dataset that has not been opened" return self.datasets[key].readSubarray(list(start), list(stop)) def get(self, key='data'): assert self.h5_file is not None, "Need to open the h5 file first" assert key in self.datasets, "Can't get ds impl for a dataset that has not been opened" return self.datasets[key] def shape(self, key='data'): assert self.h5_file is not None, "Need to open the h5 file first" assert key in self.datasets, "Can't get shape for a dataset that has not been opened" return self.datasets[key].shape def chunks(self, key='data'): assert self.h5_file is not None, "Need to open the h5 file first" assert key in self.datasets, "Can't get chunks for a dataset that has not been opened" return self.datasets[key].chunkShape def dtype(self, key='data'): assert self.h5_file is not None, "Need to open the h5 file first" with h5py.File(self.path) as f: return f[key].dtype def keys(self): assert self.h5_file is not None, "Need to open the h5 file first" return self.datasets.keys() # add offsets to the nh5 array def set_offsets(self, offset_front, offset_back, key='data', serialize_offsets=True): assert self.h5_file is not None, "Need to open the n5 file first" assert key in self.datasets, "Can't set offsets for a dataset that has not been opened" self.datasets[key].setOffsetFront(offset_front) self.datasets[key].setOffsetBack(offset_back) # serialize the offsets if serialize_offsets: self.serialize_offsets(offset_front, offset_back, key) def serialize_offsets(self, offset_front, offset_back, key='data'): assert self.h5_file is not None, "Need to open the n5 file first" assert key in self.datasets, "Can't serialize offsets for a dataset that has not been opened" self.datasets[key].attrs.create('offset_front', offset_front) self.datasets[key].attrs.create('offset_back', offset_back) @staticmethod def has_offsets(path, key='data'): with h5py.File(path) as f: ds = f[key] if 'offset_front' in ds.attrs: assert 'offset_back' in ds.attrs return True else: return False class HDF5DataTarget(BaseTarget): """ Target for h5 data in RAM """ def __init__(self, path): super(HDF5DataTarget, self).__init__(path) def open(self, shape, dtype, compression=None, chunks=None, key='data'): with h5py.File(self.path) as f: f.create_dataset(key, shape=shape, compression=compression, chunks=chunks, dtype=dtype) def write(self, data, key="data", compression=None): self.makedirs() if compression is not None: vigra.writeHDF5(data, self.path, key, compression=compression) else: vigra.writeHDF5(data, self.path, key) def writeVlen(self, data, key='data'): self.makedirs() with h5py.File(self.path) as f: dt = h5py.special_dtype(vlen=np.dtype(data[0].dtype)) f.create_dataset(key, data=data, dtype=dt) def read(self, key="data"): return vigra.readHDF5(self.path, key) def shape(self, key="data"): with h5py.File(self.path) as f: shape = f[key].shape return shape def writeSubarray(self, start, data, key="data"): bb = tuple(slice(sta, sta + sha) for sta, sha in zip(start, data.shape)) with h5py.File(self.path) as f: f[key][bb] = data class PickleTarget(BaseTarget): """ Target for pickle data """ def __init__(self, path): super(PickleTarget, self).__init__(path) def open(self, mode='r'): raise AttributeError("Not implemented") def write(self, data): self.makedirs() with open(self.path, 'w') as f: pickle.dump(data, f) def read(self): with open(self.path, 'r') as f: return pickle.load(f) # Folder target that does basically nothing # wee need this for the sklearn random forest, # that is pickled to different files in a common folder class FolderTarget(BaseTarget): """ Target for multiple files in folder """ def __init__(self, path): super(FolderTarget, self).__init__(path) self.path = path def open(self, mode='r'): raise AttributeError("Not implemented") def write(self, data): raise AttributeError("Not implemented") def read(self): raise AttributeError("Not implemented") # serializing the nifty rag class StackedRagTarget(BaseTarget): """ Target for nifty stacked rag """ def __init__(self, path): super(StackedRagTarget, self).__init__(path) def open(self, mode='r'): raise AttributeError("Not implemented") def write(self, rag, labelsPath, labelsKey="data"): self.makedirs() nrag.writeStackedRagToHdf5(rag, self.path) vigra.writeHDF5(labelsPath, self.path, "labelsPath") vigra.writeHDF5(labelsKey, self.path, "labelsKey") # read and deserialize the rag def read(self): labelsPath = vigra.readHDF5(self.path, "labelsPath") labelsKey = vigra.readHDF5(self.path, "labelsKey") with h5py.File(self.path) as f: dtype = f.attrs['dtype'] if PipelineParameter().useN5Backend: labels = nz5.datasetWrapper(dtype, os.path.join(labelsPath, labelsKey)) else: h5_file = nh5.openFile(labelsPath) labels = nh5.Hdf5Array(dtype, h5_file, labelsKey) nNodes = vigra.readHDF5(self.path, "numberOfNodes") return nrag.readStackedRagFromHdf5(labels, nNodes, self.path) # only read sub-parts def readKey(self, key): with h5py.File(self.path, 'r') as f: if key not in f.keys(): print("The key", key, "is not in", f.keys()) raise KeyError("Key not found!") return vigra.readHDF5(self.path, key)
mit
cloud-fan/spark
python/pyspark/sql/dataframe.py
4
100392
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import random import warnings from functools import reduce from html import escape as html_escape from pyspark import copy_func, since, _NoValue from pyspark.rdd import RDD, _load_from_socket, _local_iterator_from_socket from pyspark.serializers import BatchedSerializer, PickleSerializer, \ UTF8Deserializer from pyspark.storagelevel import StorageLevel from pyspark.traceback_utils import SCCallSiteSync from pyspark.sql.types import _parse_datatype_json_string from pyspark.sql.column import Column, _to_seq, _to_list, _to_java_column from pyspark.sql.readwriter import DataFrameWriter, DataFrameWriterV2 from pyspark.sql.streaming import DataStreamWriter from pyspark.sql.types import StructType, StructField, StringType, IntegerType from pyspark.sql.pandas.conversion import PandasConversionMixin from pyspark.sql.pandas.map_ops import PandasMapOpsMixin __all__ = ["DataFrame", "DataFrameNaFunctions", "DataFrameStatFunctions"] class DataFrame(PandasMapOpsMixin, PandasConversionMixin): """A distributed collection of data grouped into named columns. A :class:`DataFrame` is equivalent to a relational table in Spark SQL, and can be created using various functions in :class:`SparkSession`:: people = spark.read.parquet("...") Once created, it can be manipulated using the various domain-specific-language (DSL) functions defined in: :class:`DataFrame`, :class:`Column`. To select a column from the :class:`DataFrame`, use the apply method:: ageCol = people.age A more concrete example:: # To create DataFrame using SparkSession people = spark.read.parquet("...") department = spark.read.parquet("...") people.filter(people.age > 30).join(department, people.deptId == department.id) \\ .groupBy(department.name, "gender").agg({"salary": "avg", "age": "max"}) .. versionadded:: 1.3.0 """ def __init__(self, jdf, sql_ctx): self._jdf = jdf self.sql_ctx = sql_ctx self._sc = sql_ctx and sql_ctx._sc self.is_cached = False self._schema = None # initialized lazily self._lazy_rdd = None # Check whether _repr_html is supported or not, we use it to avoid calling _jdf twice # by __repr__ and _repr_html_ while eager evaluation opened. self._support_repr_html = False @property @since(1.3) def rdd(self): """Returns the content as an :class:`pyspark.RDD` of :class:`Row`. """ if self._lazy_rdd is None: jrdd = self._jdf.javaToPython() self._lazy_rdd = RDD(jrdd, self.sql_ctx._sc, BatchedSerializer(PickleSerializer())) return self._lazy_rdd @property @since("1.3.1") def na(self): """Returns a :class:`DataFrameNaFunctions` for handling missing values. """ return DataFrameNaFunctions(self) @property @since(1.4) def stat(self): """Returns a :class:`DataFrameStatFunctions` for statistic functions. """ return DataFrameStatFunctions(self) def toJSON(self, use_unicode=True): """Converts a :class:`DataFrame` into a :class:`RDD` of string. Each row is turned into a JSON document as one element in the returned RDD. .. versionadded:: 1.3.0 Examples -------- >>> df.toJSON().first() '{"age":2,"name":"Alice"}' """ rdd = self._jdf.toJSON() return RDD(rdd.toJavaRDD(), self._sc, UTF8Deserializer(use_unicode)) def registerTempTable(self, name): """Registers this DataFrame as a temporary table using the given name. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. .. versionadded:: 1.3.0 .. deprecated:: 2.0.0 Use :meth:`DataFrame.createOrReplaceTempView` instead. Examples -------- >>> df.registerTempTable("people") >>> df2 = spark.sql("select * from people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") """ warnings.warn( "Deprecated in 2.0, use createOrReplaceTempView instead.", FutureWarning ) self._jdf.createOrReplaceTempView(name) def createTempView(self, name): """Creates a local temporary view with this :class:`DataFrame`. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. .. versionadded:: 2.0.0 Examples -------- >>> df.createTempView("people") >>> df2 = spark.sql("select * from people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> df.createTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: u"Temporary table 'people' already exists;" >>> spark.catalog.dropTempView("people") """ self._jdf.createTempView(name) def createOrReplaceTempView(self, name): """Creates or replaces a local temporary view with this :class:`DataFrame`. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. .. versionadded:: 2.0.0 Examples -------- >>> df.createOrReplaceTempView("people") >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceTempView("people") >>> df3 = spark.sql("select * from people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") """ self._jdf.createOrReplaceTempView(name) def createGlobalTempView(self, name): """Creates a global temporary view with this :class:`DataFrame`. The lifetime of this temporary view is tied to this Spark application. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. .. versionadded:: 2.1.0 Examples -------- >>> df.createGlobalTempView("people") >>> df2 = spark.sql("select * from global_temp.people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> df.createGlobalTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: u"Temporary table 'people' already exists;" >>> spark.catalog.dropGlobalTempView("people") """ self._jdf.createGlobalTempView(name) def createOrReplaceGlobalTempView(self, name): """Creates or replaces a global temporary view using the given name. The lifetime of this temporary view is tied to this Spark application. .. versionadded:: 2.2.0 Examples -------- >>> df.createOrReplaceGlobalTempView("people") >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceGlobalTempView("people") >>> df3 = spark.sql("select * from global_temp.people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropGlobalTempView("people") """ self._jdf.createOrReplaceGlobalTempView(name) @property def write(self): """ Interface for saving the content of the non-streaming :class:`DataFrame` out into external storage. .. versionadded:: 1.4.0 Returns ------- :class:`DataFrameWriter` """ return DataFrameWriter(self) @property def writeStream(self): """ Interface for saving the content of the streaming :class:`DataFrame` out into external storage. .. versionadded:: 2.0.0 Notes ----- This API is evolving. Returns ------- :class:`DataStreamWriter` """ return DataStreamWriter(self) @property def schema(self): """Returns the schema of this :class:`DataFrame` as a :class:`pyspark.sql.types.StructType`. .. versionadded:: 1.3.0 Examples -------- >>> df.schema StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true))) """ if self._schema is None: try: self._schema = _parse_datatype_json_string(self._jdf.schema().json()) except Exception as e: raise ValueError( "Unable to parse datatype from schema. %s" % e) from e return self._schema def printSchema(self): """Prints out the schema in the tree format. .. versionadded:: 1.3.0 Examples -------- >>> df.printSchema() root |-- age: integer (nullable = true) |-- name: string (nullable = true) <BLANKLINE> """ print(self._jdf.schema().treeString()) def explain(self, extended=None, mode=None): """Prints the (logical and physical) plans to the console for debugging purpose. .. versionadded:: 1.3.0 parameters ---------- extended : bool, optional default ``False``. If ``False``, prints only the physical plan. When this is a string without specifying the ``mode``, it works as the mode is specified. mode : str, optional specifies the expected output format of plans. * ``simple``: Print only a physical plan. * ``extended``: Print both logical and physical plans. * ``codegen``: Print a physical plan and generated codes if they are available. * ``cost``: Print a logical plan and statistics if they are available. * ``formatted``: Split explain output into two sections: a physical plan outline \ and node details. .. versionchanged:: 3.0.0 Added optional argument `mode` to specify the expected output format of plans. Examples -------- >>> df.explain() == Physical Plan == *(1) Scan ExistingRDD[age#0,name#1] >>> df.explain(True) == Parsed Logical Plan == ... == Analyzed Logical Plan == ... == Optimized Logical Plan == ... == Physical Plan == ... >>> df.explain(mode="formatted") == Physical Plan == * Scan ExistingRDD (1) (1) Scan ExistingRDD [codegen id : 1] Output [2]: [age#0, name#1] ... >>> df.explain("cost") == Optimized Logical Plan == ...Statistics... ... """ if extended is not None and mode is not None: raise ValueError("extended and mode should not be set together.") # For the no argument case: df.explain() is_no_argument = extended is None and mode is None # For the cases below: # explain(True) # explain(extended=False) is_extended_case = isinstance(extended, bool) and mode is None # For the case when extended is mode: # df.explain("formatted") is_extended_as_mode = isinstance(extended, str) and mode is None # For the mode specified: # df.explain(mode="formatted") is_mode_case = extended is None and isinstance(mode, str) if not (is_no_argument or is_extended_case or is_extended_as_mode or is_mode_case): argtypes = [ str(type(arg)) for arg in [extended, mode] if arg is not None] raise TypeError( "extended (optional) and mode (optional) should be a string " "and bool; however, got [%s]." % ", ".join(argtypes)) # Sets an explain mode depending on a given argument if is_no_argument: explain_mode = "simple" elif is_extended_case: explain_mode = "extended" if extended else "simple" elif is_mode_case: explain_mode = mode elif is_extended_as_mode: explain_mode = extended print(self._sc._jvm.PythonSQLUtils.explainString(self._jdf.queryExecution(), explain_mode)) def exceptAll(self, other): """Return a new :class:`DataFrame` containing rows in this :class:`DataFrame` but not in another :class:`DataFrame` while preserving duplicates. This is equivalent to `EXCEPT ALL` in SQL. As standard in SQL, this function resolves columns by position (not by name). .. versionadded:: 2.4.0 Examples -------- >>> df1 = spark.createDataFrame( ... [("a", 1), ("a", 1), ("a", 1), ("a", 2), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.exceptAll(df2).show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | a| 2| | c| 4| +---+---+ """ return DataFrame(self._jdf.exceptAll(other._jdf), self.sql_ctx) @since(1.3) def isLocal(self): """Returns ``True`` if the :func:`collect` and :func:`take` methods can be run locally (without any Spark executors). """ return self._jdf.isLocal() @property def isStreaming(self): """Returns ``True`` if this :class:`Dataset` contains one or more sources that continuously return data as it arrives. A :class:`Dataset` that reads data from a streaming source must be executed as a :class:`StreamingQuery` using the :func:`start` method in :class:`DataStreamWriter`. Methods that return a single answer, (e.g., :func:`count` or :func:`collect`) will throw an :class:`AnalysisException` when there is a streaming source present. .. versionadded:: 2.0.0 Notes ----- This API is evolving. """ return self._jdf.isStreaming() def show(self, n=20, truncate=True, vertical=False): """Prints the first ``n`` rows to the console. .. versionadded:: 1.3.0 Parameters ---------- n : int, optional Number of rows to show. truncate : bool or int, optional If set to ``True``, truncate strings longer than 20 chars by default. If set to a number greater than one, truncates long strings to length ``truncate`` and align cells right. vertical : bool, optional If set to ``True``, print output rows vertically (one line per column value). Examples -------- >>> df DataFrame[age: int, name: string] >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ >>> df.show(truncate=3) +---+----+ |age|name| +---+----+ | 2| Ali| | 5| Bob| +---+----+ >>> df.show(vertical=True) -RECORD 0----- age | 2 name | Alice -RECORD 1----- age | 5 name | Bob """ if not isinstance(n, int) or isinstance(n, bool): raise TypeError("Parameter 'n' (number of rows) must be an int") if not isinstance(vertical, bool): raise TypeError("Parameter 'vertical' must be a bool") if isinstance(truncate, bool) and truncate: print(self._jdf.showString(n, 20, vertical)) else: try: int_truncate = int(truncate) except ValueError: raise TypeError( "Parameter 'truncate={}' should be either bool or int.".format(truncate)) print(self._jdf.showString(n, int_truncate, vertical)) def __repr__(self): if not self._support_repr_html and self.sql_ctx._conf.isReplEagerEvalEnabled(): vertical = False return self._jdf.showString( self.sql_ctx._conf.replEagerEvalMaxNumRows(), self.sql_ctx._conf.replEagerEvalTruncate(), vertical) else: return "DataFrame[%s]" % (", ".join("%s: %s" % c for c in self.dtypes)) def _repr_html_(self): """Returns a :class:`DataFrame` with html code when you enabled eager evaluation by 'spark.sql.repl.eagerEval.enabled', this only called by REPL you are using support eager evaluation with HTML. """ if not self._support_repr_html: self._support_repr_html = True if self.sql_ctx._conf.isReplEagerEvalEnabled(): max_num_rows = max(self.sql_ctx._conf.replEagerEvalMaxNumRows(), 0) sock_info = self._jdf.getRowsToPython( max_num_rows, self.sql_ctx._conf.replEagerEvalTruncate()) rows = list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) head = rows[0] row_data = rows[1:] has_more_data = len(row_data) > max_num_rows row_data = row_data[:max_num_rows] html = "<table border='1'>\n" # generate table head html += "<tr><th>%s</th></tr>\n" % "</th><th>".join(map(lambda x: html_escape(x), head)) # generate table rows for row in row_data: html += "<tr><td>%s</td></tr>\n" % "</td><td>".join( map(lambda x: html_escape(x), row)) html += "</table>\n" if has_more_data: html += "only showing top %d %s\n" % ( max_num_rows, "row" if max_num_rows == 1 else "rows") return html else: return None def checkpoint(self, eager=True): """Returns a checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this :class:`DataFrame`, which is especially useful in iterative algorithms where the plan may grow exponentially. It will be saved to files inside the checkpoint directory set with :meth:`SparkContext.setCheckpointDir`. .. versionadded:: 2.1.0 Parameters ---------- eager : bool, optional Whether to checkpoint this :class:`DataFrame` immediately Notes ----- This API is experimental. """ jdf = self._jdf.checkpoint(eager) return DataFrame(jdf, self.sql_ctx) def localCheckpoint(self, eager=True): """Returns a locally checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this :class:`DataFrame`, which is especially useful in iterative algorithms where the plan may grow exponentially. Local checkpoints are stored in the executors using the caching subsystem and therefore they are not reliable. .. versionadded:: 2.3.0 Parameters ---------- eager : bool, optional Whether to checkpoint this :class:`DataFrame` immediately Notes ----- This API is experimental. """ jdf = self._jdf.localCheckpoint(eager) return DataFrame(jdf, self.sql_ctx) def withWatermark(self, eventTime, delayThreshold): """Defines an event time watermark for this :class:`DataFrame`. A watermark tracks a point in time before which we assume no more late data is going to arrive. Spark will use this watermark for several purposes: - To know when a given time window aggregation can be finalized and thus can be emitted when using output modes that do not allow updates. - To minimize the amount of state that we need to keep for on-going aggregations. The current watermark is computed by looking at the `MAX(eventTime)` seen across all of the partitions in the query minus a user specified `delayThreshold`. Due to the cost of coordinating this value across partitions, the actual watermark used is only guaranteed to be at least `delayThreshold` behind the actual event time. In some cases we may still process records that arrive more than `delayThreshold` late. .. versionadded:: 2.1.0 Parameters ---------- eventTime : str the name of the column that contains the event time of the row. delayThreshold : str the minimum delay to wait to data to arrive late, relative to the latest record that has been processed in the form of an interval (e.g. "1 minute" or "5 hours"). Notes ----- This API is evolving. >>> from pyspark.sql.functions import timestamp_seconds >>> sdf.select( ... 'name', ... timestamp_seconds(sdf.time).alias('time')).withWatermark('time', '10 minutes') DataFrame[name: string, time: timestamp] """ if not eventTime or type(eventTime) is not str: raise TypeError("eventTime should be provided as a string") if not delayThreshold or type(delayThreshold) is not str: raise TypeError("delayThreshold should be provided as a string interval") jdf = self._jdf.withWatermark(eventTime, delayThreshold) return DataFrame(jdf, self.sql_ctx) def hint(self, name, *parameters): """Specifies some hint on the current :class:`DataFrame`. .. versionadded:: 2.2.0 Parameters ---------- name : str A name of the hint. parameters : str, list, float or int Optional parameters. Returns ------- :class:`DataFrame` Examples -------- >>> df.join(df2.hint("broadcast"), "name").show() +----+---+------+ |name|age|height| +----+---+------+ | Bob| 5| 85| +----+---+------+ """ if len(parameters) == 1 and isinstance(parameters[0], list): parameters = parameters[0] if not isinstance(name, str): raise TypeError("name should be provided as str, got {0}".format(type(name))) allowed_types = (str, list, float, int) for p in parameters: if not isinstance(p, allowed_types): raise TypeError( "all parameters should be in {0}, got {1} of type {2}".format( allowed_types, p, type(p))) jdf = self._jdf.hint(name, self._jseq(parameters)) return DataFrame(jdf, self.sql_ctx) def count(self): """Returns the number of rows in this :class:`DataFrame`. .. versionadded:: 1.3.0 Examples -------- >>> df.count() 2 """ return int(self._jdf.count()) def collect(self): """Returns all the records as a list of :class:`Row`. .. versionadded:: 1.3.0 Examples -------- >>> df.collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.collectToPython() return list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) def toLocalIterator(self, prefetchPartitions=False): """ Returns an iterator that contains all of the rows in this :class:`DataFrame`. The iterator will consume as much memory as the largest partition in this :class:`DataFrame`. With prefetch it may consume up to the memory of the 2 largest partitions. .. versionadded:: 2.0.0 Parameters ---------- prefetchPartitions : bool, optional If Spark should pre-fetch the next partition before it is needed. Examples -------- >>> list(df.toLocalIterator()) [Row(age=2, name='Alice'), Row(age=5, name='Bob')] """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.toPythonIterator(prefetchPartitions) return _local_iterator_from_socket(sock_info, BatchedSerializer(PickleSerializer())) def limit(self, num): """Limits the result count to the number specified. .. versionadded:: 1.3.0 Examples -------- >>> df.limit(1).collect() [Row(age=2, name='Alice')] >>> df.limit(0).collect() [] """ jdf = self._jdf.limit(num) return DataFrame(jdf, self.sql_ctx) def take(self, num): """Returns the first ``num`` rows as a :class:`list` of :class:`Row`. .. versionadded:: 1.3.0 Examples -------- >>> df.take(2) [Row(age=2, name='Alice'), Row(age=5, name='Bob')] """ return self.limit(num).collect() def tail(self, num): """ Returns the last ``num`` rows as a :class:`list` of :class:`Row`. Running tail requires moving data into the application's driver process, and doing so with a very large ``num`` can crash the driver process with OutOfMemoryError. .. versionadded:: 3.0.0 Examples -------- >>> df.tail(1) [Row(age=5, name='Bob')] """ with SCCallSiteSync(self._sc): sock_info = self._jdf.tailToPython(num) return list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) def foreach(self, f): """Applies the ``f`` function to all :class:`Row` of this :class:`DataFrame`. This is a shorthand for ``df.rdd.foreach()``. .. versionadded:: 1.3.0 Examples -------- >>> def f(person): ... print(person.name) >>> df.foreach(f) """ self.rdd.foreach(f) def foreachPartition(self, f): """Applies the ``f`` function to each partition of this :class:`DataFrame`. This a shorthand for ``df.rdd.foreachPartition()``. .. versionadded:: 1.3.0 Examples -------- >>> def f(people): ... for person in people: ... print(person.name) >>> df.foreachPartition(f) """ self.rdd.foreachPartition(f) def cache(self): """Persists the :class:`DataFrame` with the default storage level (`MEMORY_AND_DISK`). .. versionadded:: 1.3.0 Notes ----- The default storage level has changed to `MEMORY_AND_DISK` to match Scala in 2.0. """ self.is_cached = True self._jdf.cache() return self def persist(self, storageLevel=StorageLevel.MEMORY_AND_DISK_DESER): """Sets the storage level to persist the contents of the :class:`DataFrame` across operations after the first time it is computed. This can only be used to assign a new storage level if the :class:`DataFrame` does not have a storage level set yet. If no storage level is specified defaults to (`MEMORY_AND_DISK_DESER`) .. versionadded:: 1.3.0 Notes ----- The default storage level has changed to `MEMORY_AND_DISK_DESER` to match Scala in 3.0. """ self.is_cached = True javaStorageLevel = self._sc._getJavaStorageLevel(storageLevel) self._jdf.persist(javaStorageLevel) return self @property def storageLevel(self): """Get the :class:`DataFrame`'s current storage level. .. versionadded:: 2.1.0 Examples -------- >>> df.storageLevel StorageLevel(False, False, False, False, 1) >>> df.cache().storageLevel StorageLevel(True, True, False, True, 1) >>> df2.persist(StorageLevel.DISK_ONLY_2).storageLevel StorageLevel(True, False, False, False, 2) """ java_storage_level = self._jdf.storageLevel() storage_level = StorageLevel(java_storage_level.useDisk(), java_storage_level.useMemory(), java_storage_level.useOffHeap(), java_storage_level.deserialized(), java_storage_level.replication()) return storage_level def unpersist(self, blocking=False): """Marks the :class:`DataFrame` as non-persistent, and remove all blocks for it from memory and disk. .. versionadded:: 1.3.0 Notes ----- `blocking` default has changed to ``False`` to match Scala in 2.0. """ self.is_cached = False self._jdf.unpersist(blocking) return self def coalesce(self, numPartitions): """ Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. Similar to coalesce defined on an :class:`RDD`, this operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. If a larger number of partitions is requested, it will stay at the current number of partitions. However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, this may result in your computation taking place on fewer nodes than you like (e.g. one node in the case of numPartitions = 1). To avoid this, you can call repartition(). This will add a shuffle step, but means the current upstream partitions will be executed in parallel (per whatever the current partitioning is). .. versionadded:: 1.4.0 Parameters ---------- numPartitions : int specify the target number of partitions Examples -------- >>> df.coalesce(1).rdd.getNumPartitions() 1 """ return DataFrame(self._jdf.coalesce(numPartitions), self.sql_ctx) def repartition(self, numPartitions, *cols): """ Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The resulting :class:`DataFrame` is hash partitioned. .. versionadded:: 1.3.0 Parameters ---------- numPartitions : int can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. cols : str or :class:`Column` partitioning columns. .. versionchanged:: 1.6 Added optional arguments to specify the partitioning columns. Also made numPartitions optional if partitioning columns are specified. Examples -------- >>> df.repartition(10).rdd.getNumPartitions() 10 >>> data = df.union(df).repartition("age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ >>> data = data.repartition(7, "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| | 2|Alice| | 5| Bob| +---+-----+ >>> data.rdd.getNumPartitions() 7 >>> data = data.repartition("name", "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ """ if isinstance(numPartitions, int): if len(cols) == 0: return DataFrame(self._jdf.repartition(numPartitions), self.sql_ctx) else: return DataFrame( self._jdf.repartition(numPartitions, self._jcols(*cols)), self.sql_ctx) elif isinstance(numPartitions, (str, Column)): cols = (numPartitions, ) + cols return DataFrame(self._jdf.repartition(self._jcols(*cols)), self.sql_ctx) else: raise TypeError("numPartitions should be an int or Column") def repartitionByRange(self, numPartitions, *cols): """ Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The resulting :class:`DataFrame` is range partitioned. At least one partition-by expression must be specified. When no explicit sort order is specified, "ascending nulls first" is assumed. .. versionadded:: 2.4.0 Parameters ---------- numPartitions : int can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. cols : str or :class:`Column` partitioning columns. Notes ----- Due to performance reasons this method uses sampling to estimate the ranges. Hence, the output may not be consistent, since sampling can return different values. The sample size can be controlled by the config `spark.sql.execution.rangeExchange.sampleSizePerPartition`. Examples -------- >>> df.repartitionByRange(2, "age").rdd.getNumPartitions() 2 >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ >>> df.repartitionByRange(1, "age").rdd.getNumPartitions() 1 >>> data = df.repartitionByRange("age") >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ """ if isinstance(numPartitions, int): if len(cols) == 0: return ValueError("At least one partition-by expression must be specified.") else: return DataFrame( self._jdf.repartitionByRange(numPartitions, self._jcols(*cols)), self.sql_ctx) elif isinstance(numPartitions, (str, Column)): cols = (numPartitions,) + cols return DataFrame(self._jdf.repartitionByRange(self._jcols(*cols)), self.sql_ctx) else: raise TypeError("numPartitions should be an int, string or Column") def distinct(self): """Returns a new :class:`DataFrame` containing the distinct rows in this :class:`DataFrame`. .. versionadded:: 1.3.0 Examples -------- >>> df.distinct().count() 2 """ return DataFrame(self._jdf.distinct(), self.sql_ctx) def sample(self, withReplacement=None, fraction=None, seed=None): """Returns a sampled subset of this :class:`DataFrame`. .. versionadded:: 1.3.0 Parameters ---------- withReplacement : bool, optional Sample with replacement or not (default ``False``). fraction : float, optional Fraction of rows to generate, range [0.0, 1.0]. seed : int, optional Seed for sampling (default a random seed). Notes ----- This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. `fraction` is required and, `withReplacement` and `seed` are optional. Examples -------- >>> df = spark.range(10) >>> df.sample(0.5, 3).count() 7 >>> df.sample(fraction=0.5, seed=3).count() 7 >>> df.sample(withReplacement=True, fraction=0.5, seed=3).count() 1 >>> df.sample(1.0).count() 10 >>> df.sample(fraction=1.0).count() 10 >>> df.sample(False, fraction=1.0).count() 10 """ # For the cases below: # sample(True, 0.5 [, seed]) # sample(True, fraction=0.5 [, seed]) # sample(withReplacement=False, fraction=0.5 [, seed]) is_withReplacement_set = \ type(withReplacement) == bool and isinstance(fraction, float) # For the case below: # sample(faction=0.5 [, seed]) is_withReplacement_omitted_kwargs = \ withReplacement is None and isinstance(fraction, float) # For the case below: # sample(0.5 [, seed]) is_withReplacement_omitted_args = isinstance(withReplacement, float) if not (is_withReplacement_set or is_withReplacement_omitted_kwargs or is_withReplacement_omitted_args): argtypes = [ str(type(arg)) for arg in [withReplacement, fraction, seed] if arg is not None] raise TypeError( "withReplacement (optional), fraction (required) and seed (optional)" " should be a bool, float and number; however, " "got [%s]." % ", ".join(argtypes)) if is_withReplacement_omitted_args: if fraction is not None: seed = fraction fraction = withReplacement withReplacement = None seed = int(seed) if seed is not None else None args = [arg for arg in [withReplacement, fraction, seed] if arg is not None] jdf = self._jdf.sample(*args) return DataFrame(jdf, self.sql_ctx) def sampleBy(self, col, fractions, seed=None): """ Returns a stratified sample without replacement based on the fraction given on each stratum. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`Column` or str column that defines strata .. versionchanged:: 3.0 Added sampling by a column of :class:`Column` fractions : dict sampling fraction for each stratum. If a stratum is not specified, we treat its fraction as zero. seed : int, optional random seed Returns ------- a new :class:`DataFrame` that represents the stratified sample Examples -------- >>> from pyspark.sql.functions import col >>> dataset = sqlContext.range(0, 100).select((col("id") % 3).alias("key")) >>> sampled = dataset.sampleBy("key", fractions={0: 0.1, 1: 0.2}, seed=0) >>> sampled.groupBy("key").count().orderBy("key").show() +---+-----+ |key|count| +---+-----+ | 0| 3| | 1| 6| +---+-----+ >>> dataset.sampleBy(col("key"), fractions={2: 1.0}, seed=0).count() 33 """ if isinstance(col, str): col = Column(col) elif not isinstance(col, Column): raise TypeError("col must be a string or a column, but got %r" % type(col)) if not isinstance(fractions, dict): raise TypeError("fractions must be a dict but got %r" % type(fractions)) for k, v in fractions.items(): if not isinstance(k, (float, int, str)): raise TypeError("key must be float, int, or string, but got %r" % type(k)) fractions[k] = float(v) col = col._jc seed = seed if seed is not None else random.randint(0, sys.maxsize) return DataFrame(self._jdf.stat().sampleBy(col, self._jmap(fractions), seed), self.sql_ctx) def randomSplit(self, weights, seed=None): """Randomly splits this :class:`DataFrame` with the provided weights. .. versionadded:: 1.4.0 Parameters ---------- weights : list list of doubles as weights with which to split the :class:`DataFrame`. Weights will be normalized if they don't sum up to 1.0. seed : int, optional The seed for sampling. Examples -------- >>> splits = df4.randomSplit([1.0, 2.0], 24) >>> splits[0].count() 2 >>> splits[1].count() 2 """ for w in weights: if w < 0.0: raise ValueError("Weights must be positive. Found weight value: %s" % w) seed = seed if seed is not None else random.randint(0, sys.maxsize) rdd_array = self._jdf.randomSplit(_to_list(self.sql_ctx._sc, weights), int(seed)) return [DataFrame(rdd, self.sql_ctx) for rdd in rdd_array] @property def dtypes(self): """Returns all column names and their data types as a list. .. versionadded:: 1.3.0 Examples -------- >>> df.dtypes [('age', 'int'), ('name', 'string')] """ return [(str(f.name), f.dataType.simpleString()) for f in self.schema.fields] @property def columns(self): """Returns all column names as a list. .. versionadded:: 1.3.0 Examples -------- >>> df.columns ['age', 'name'] """ return [f.name for f in self.schema.fields] def colRegex(self, colName): """ Selects column based on the column name specified as a regex and returns it as :class:`Column`. .. versionadded:: 2.3.0 Parameters ---------- colName : str string, column name specified as a regex. Examples -------- >>> df = spark.createDataFrame([("a", 1), ("b", 2), ("c", 3)], ["Col1", "Col2"]) >>> df.select(df.colRegex("`(Col1)?+.+`")).show() +----+ |Col2| +----+ | 1| | 2| | 3| +----+ """ if not isinstance(colName, str): raise TypeError("colName should be provided as string") jc = self._jdf.colRegex(colName) return Column(jc) def alias(self, alias): """Returns a new :class:`DataFrame` with an alias set. .. versionadded:: 1.3.0 Parameters ---------- alias : str an alias name to be set for the :class:`DataFrame`. Examples -------- >>> from pyspark.sql.functions import * >>> df_as1 = df.alias("df_as1") >>> df_as2 = df.alias("df_as2") >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') >>> joined_df.select("df_as1.name", "df_as2.name", "df_as2.age") \ .sort(desc("df_as1.name")).collect() [Row(name='Bob', name='Bob', age=5), Row(name='Alice', name='Alice', age=2)] """ assert isinstance(alias, str), "alias should be a string" return DataFrame(getattr(self._jdf, "as")(alias), self.sql_ctx) def crossJoin(self, other): """Returns the cartesian product with another :class:`DataFrame`. .. versionadded:: 2.1.0 Parameters ---------- other : :class:`DataFrame` Right side of the cartesian product. Examples -------- >>> df.select("age", "name").collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] >>> df2.select("name", "height").collect() [Row(name='Tom', height=80), Row(name='Bob', height=85)] >>> df.crossJoin(df2.select("height")).select("age", "name", "height").collect() [Row(age=2, name='Alice', height=80), Row(age=2, name='Alice', height=85), Row(age=5, name='Bob', height=80), Row(age=5, name='Bob', height=85)] """ jdf = self._jdf.crossJoin(other._jdf) return DataFrame(jdf, self.sql_ctx) def join(self, other, on=None, how=None): """Joins with another :class:`DataFrame`, using the given join expression. .. versionadded:: 1.3.0 Parameters ---------- other : :class:`DataFrame` Right side of the join on : str, list or :class:`Column`, optional a string for the join column name, a list of column names, a join expression (Column), or a list of Columns. If `on` is a string or a list of strings indicating the name of the join column(s), the column(s) must exist on both sides, and this performs an equi-join. how : str, optional default ``inner``. Must be one of: ``inner``, ``cross``, ``outer``, ``full``, ``fullouter``, ``full_outer``, ``left``, ``leftouter``, ``left_outer``, ``right``, ``rightouter``, ``right_outer``, ``semi``, ``leftsemi``, ``left_semi``, ``anti``, ``leftanti`` and ``left_anti``. Examples -------- The following performs a full outer join between ``df1`` and ``df2``. >>> from pyspark.sql.functions import desc >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height) \ .sort(desc("name")).collect() [Row(name='Bob', height=85), Row(name='Alice', height=None), Row(name=None, height=80)] >>> df.join(df2, 'name', 'outer').select('name', 'height').sort(desc("name")).collect() [Row(name='Tom', height=80), Row(name='Bob', height=85), Row(name='Alice', height=None)] >>> cond = [df.name == df3.name, df.age == df3.age] >>> df.join(df3, cond, 'outer').select(df.name, df3.age).collect() [Row(name='Alice', age=2), Row(name='Bob', age=5)] >>> df.join(df2, 'name').select(df.name, df2.height).collect() [Row(name='Bob', height=85)] >>> df.join(df4, ['name', 'age']).select(df.name, df.age).collect() [Row(name='Bob', age=5)] """ if on is not None and not isinstance(on, list): on = [on] if on is not None: if isinstance(on[0], str): on = self._jseq(on) else: assert isinstance(on[0], Column), "on should be Column or list of Column" on = reduce(lambda x, y: x.__and__(y), on) on = on._jc if on is None and how is None: jdf = self._jdf.join(other._jdf) else: if how is None: how = "inner" if on is None: on = self._jseq([]) assert isinstance(how, str), "how should be a string" jdf = self._jdf.join(other._jdf, on, how) return DataFrame(jdf, self.sql_ctx) def sortWithinPartitions(self, *cols, **kwargs): """Returns a new :class:`DataFrame` with each partition sorted by the specified column(s). .. versionadded:: 1.6.0 Parameters ---------- cols : str, list or :class:`Column`, optional list of :class:`Column` or column names to sort by. Other Parameters ---------------- ascending : bool or list, optional boolean or list of boolean (default ``True``). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. Examples -------- >>> df.sortWithinPartitions("age", ascending=False).show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ """ jdf = self._jdf.sortWithinPartitions(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx) def sort(self, *cols, **kwargs): """Returns a new :class:`DataFrame` sorted by the specified column(s). .. versionadded:: 1.3.0 Parameters ---------- cols : str, list, or :class:`Column`, optional list of :class:`Column` or column names to sort by. Other Parameters ---------------- ascending : bool or list, optional boolean or list of boolean (default ``True``). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. Examples -------- >>> df.sort(df.age.desc()).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.sort("age", ascending=False).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.orderBy(df.age.desc()).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> from pyspark.sql.functions import * >>> df.sort(asc("age")).collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] >>> df.orderBy(desc("age"), "name").collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.orderBy(["age", "name"], ascending=[0, 1]).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] """ jdf = self._jdf.sort(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx) orderBy = sort def _jseq(self, cols, converter=None): """Return a JVM Seq of Columns from a list of Column or names""" return _to_seq(self.sql_ctx._sc, cols, converter) def _jmap(self, jm): """Return a JVM Scala Map from a dict""" return _to_scala_map(self.sql_ctx._sc, jm) def _jcols(self, *cols): """Return a JVM Seq of Columns from a list of Column or column names If `cols` has only one list in it, cols[0] will be used as the list. """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] return self._jseq(cols, _to_java_column) def _sort_cols(self, cols, kwargs): """ Return a JVM Seq of Columns that describes the sort order """ if not cols: raise ValueError("should sort by at least one column") if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jcols = [_to_java_column(c) for c in cols] ascending = kwargs.get('ascending', True) if isinstance(ascending, (bool, int)): if not ascending: jcols = [jc.desc() for jc in jcols] elif isinstance(ascending, list): jcols = [jc if asc else jc.desc() for asc, jc in zip(ascending, jcols)] else: raise TypeError("ascending can only be boolean or list, but got %s" % type(ascending)) return self._jseq(jcols) def describe(self, *cols): """Computes basic statistics for numeric and string columns. .. versionadded:: 1.3.1 This include count, mean, stddev, min, and max. If no columns are given, this function computes statistics for all numerical or string columns. Notes ----- This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting :class:`DataFrame`. Use summary for expanded statistics and control over which statistics to compute. Examples -------- >>> df.describe(['age']).show() +-------+------------------+ |summary| age| +-------+------------------+ | count| 2| | mean| 3.5| | stddev|2.1213203435596424| | min| 2| | max| 5| +-------+------------------+ >>> df.describe().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | max| 5| Bob| +-------+------------------+-----+ See Also -------- DataFrame.summary """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jdf = self._jdf.describe(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) def summary(self, *statistics): """Computes specified statistics for numeric and string columns. Available statistics are: - count - mean - stddev - min - max - arbitrary approximate percentiles specified as a percentage (e.g., 75%) If no statistics are given, this function computes count, mean, stddev, min, approximate quartiles (percentiles at 25%, 50%, and 75%), and max. .. versionadded:: 2.3.0 Notes ----- This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting :class:`DataFrame`. Examples -------- >>> df.summary().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | 25%| 2| null| | 50%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+------------------+-----+ >>> df.summary("count", "min", "25%", "75%", "max").show() +-------+---+-----+ |summary|age| name| +-------+---+-----+ | count| 2| 2| | min| 2|Alice| | 25%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+---+-----+ To do a summary for specific columns first select them: >>> df.select("age", "name").summary("count").show() +-------+---+----+ |summary|age|name| +-------+---+----+ | count| 2| 2| +-------+---+----+ See Also -------- DataFrame.display """ if len(statistics) == 1 and isinstance(statistics[0], list): statistics = statistics[0] jdf = self._jdf.summary(self._jseq(statistics)) return DataFrame(jdf, self.sql_ctx) def head(self, n=None): """Returns the first ``n`` rows. .. versionadded:: 1.3.0 Notes ----- This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- n : int, optional default 1. Number of rows to return. Returns ------- If n is greater than 1, return a list of :class:`Row`. If n is 1, return a single Row. Examples -------- >>> df.head() Row(age=2, name='Alice') >>> df.head(1) [Row(age=2, name='Alice')] """ if n is None: rs = self.head(1) return rs[0] if rs else None return self.take(n) def first(self): """Returns the first row as a :class:`Row`. .. versionadded:: 1.3.0 Examples -------- >>> df.first() Row(age=2, name='Alice') """ return self.head() def __getitem__(self, item): """Returns the column as a :class:`Column`. .. versionadded:: 1.3.0 Examples -------- >>> df.select(df['age']).collect() [Row(age=2), Row(age=5)] >>> df[ ["name", "age"]].collect() [Row(name='Alice', age=2), Row(name='Bob', age=5)] >>> df[ df.age > 3 ].collect() [Row(age=5, name='Bob')] >>> df[df[0] > 3].collect() [Row(age=5, name='Bob')] """ if isinstance(item, str): jc = self._jdf.apply(item) return Column(jc) elif isinstance(item, Column): return self.filter(item) elif isinstance(item, (list, tuple)): return self.select(*item) elif isinstance(item, int): jc = self._jdf.apply(self.columns[item]) return Column(jc) else: raise TypeError("unexpected item type: %s" % type(item)) def __getattr__(self, name): """Returns the :class:`Column` denoted by ``name``. .. versionadded:: 1.3.0 Examples -------- >>> df.select(df.age).collect() [Row(age=2), Row(age=5)] """ if name not in self.columns: raise AttributeError( "'%s' object has no attribute '%s'" % (self.__class__.__name__, name)) jc = self._jdf.apply(name) return Column(jc) def select(self, *cols): """Projects a set of expressions and returns a new :class:`DataFrame`. .. versionadded:: 1.3.0 Parameters ---------- cols : str, :class:`Column`, or list column names (string) or expressions (:class:`Column`). If one of the column names is '*', that column is expanded to include all columns in the current :class:`DataFrame`. Examples -------- >>> df.select('*').collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] >>> df.select('name', 'age').collect() [Row(name='Alice', age=2), Row(name='Bob', age=5)] >>> df.select(df.name, (df.age + 10).alias('age')).collect() [Row(name='Alice', age=12), Row(name='Bob', age=15)] """ jdf = self._jdf.select(self._jcols(*cols)) return DataFrame(jdf, self.sql_ctx) def selectExpr(self, *expr): """Projects a set of SQL expressions and returns a new :class:`DataFrame`. This is a variant of :func:`select` that accepts SQL expressions. .. versionadded:: 1.3.0 Examples -------- >>> df.selectExpr("age * 2", "abs(age)").collect() [Row((age * 2)=4, abs(age)=2), Row((age * 2)=10, abs(age)=5)] """ if len(expr) == 1 and isinstance(expr[0], list): expr = expr[0] jdf = self._jdf.selectExpr(self._jseq(expr)) return DataFrame(jdf, self.sql_ctx) def filter(self, condition): """Filters rows using the given condition. :func:`where` is an alias for :func:`filter`. .. versionadded:: 1.3.0 Parameters ---------- condition : :class:`Column` or str a :class:`Column` of :class:`types.BooleanType` or a string of SQL expression. Examples -------- >>> df.filter(df.age > 3).collect() [Row(age=5, name='Bob')] >>> df.where(df.age == 2).collect() [Row(age=2, name='Alice')] >>> df.filter("age > 3").collect() [Row(age=5, name='Bob')] >>> df.where("age = 2").collect() [Row(age=2, name='Alice')] """ if isinstance(condition, str): jdf = self._jdf.filter(condition) elif isinstance(condition, Column): jdf = self._jdf.filter(condition._jc) else: raise TypeError("condition should be string or Column") return DataFrame(jdf, self.sql_ctx) def groupBy(self, *cols): """Groups the :class:`DataFrame` using the specified columns, so we can run aggregation on them. See :class:`GroupedData` for all the available aggregate functions. :func:`groupby` is an alias for :func:`groupBy`. .. versionadded:: 1.3.0 Parameters ---------- cols : list, str or :class:`Column` columns to group by. Each element should be a column name (string) or an expression (:class:`Column`). Examples -------- >>> df.groupBy().avg().collect() [Row(avg(age)=3.5)] >>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect()) [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)] >>> sorted(df.groupBy(df.name).avg().collect()) [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)] >>> sorted(df.groupBy(['name', df.age]).count().collect()) [Row(name='Alice', age=2, count=1), Row(name='Bob', age=5, count=1)] """ jgd = self._jdf.groupBy(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self) def rollup(self, *cols): """ Create a multi-dimensional rollup for the current :class:`DataFrame` using the specified columns, so we can run aggregation on them. .. versionadded:: 1.4.0 Examples -------- >>> df.rollup("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | null|null| 2| |Alice|null| 1| |Alice| 2| 1| | Bob|null| 1| | Bob| 5| 1| +-----+----+-----+ """ jgd = self._jdf.rollup(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self) def cube(self, *cols): """ Create a multi-dimensional cube for the current :class:`DataFrame` using the specified columns, so we can run aggregations on them. .. versionadded:: 1.4.0 Examples -------- >>> df.cube("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | null|null| 2| | null| 2| 1| | null| 5| 1| |Alice|null| 1| |Alice| 2| 1| | Bob|null| 1| | Bob| 5| 1| +-----+----+-----+ """ jgd = self._jdf.cube(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self) def agg(self, *exprs): """ Aggregate on the entire :class:`DataFrame` without groups (shorthand for ``df.groupBy().agg()``). .. versionadded:: 1.3.0 Examples -------- >>> df.agg({"age": "max"}).collect() [Row(max(age)=5)] >>> from pyspark.sql import functions as F >>> df.agg(F.min(df.age)).collect() [Row(min(age)=2)] """ return self.groupBy().agg(*exprs) @since(2.0) def union(self, other): """ Return a new :class:`DataFrame` containing union of rows in this and another :class:`DataFrame`. This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. Also as standard in SQL, this function resolves columns by position (not by name). """ return DataFrame(self._jdf.union(other._jdf), self.sql_ctx) @since(1.3) def unionAll(self, other): """ Return a new :class:`DataFrame` containing union of rows in this and another :class:`DataFrame`. This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. Also as standard in SQL, this function resolves columns by position (not by name). """ return self.union(other) def unionByName(self, other, allowMissingColumns=False): """ Returns a new :class:`DataFrame` containing union of rows in this and another :class:`DataFrame`. This is different from both `UNION ALL` and `UNION DISTINCT` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. .. versionadded:: 2.3.0 Examples -------- The difference between this function and :func:`union` is that this function resolves columns by name (not by position): >>> df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"]) >>> df2 = spark.createDataFrame([[4, 5, 6]], ["col1", "col2", "col0"]) >>> df1.unionByName(df2).show() +----+----+----+ |col0|col1|col2| +----+----+----+ | 1| 2| 3| | 6| 4| 5| +----+----+----+ When the parameter `allowMissingColumns` is ``True``, the set of column names in this and other :class:`DataFrame` can differ; missing columns will be filled with null. Further, the missing columns of this :class:`DataFrame` will be added at the end in the schema of the union result: >>> df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"]) >>> df2 = spark.createDataFrame([[4, 5, 6]], ["col1", "col2", "col3"]) >>> df1.unionByName(df2, allowMissingColumns=True).show() +----+----+----+----+ |col0|col1|col2|col3| +----+----+----+----+ | 1| 2| 3|null| |null| 4| 5| 6| +----+----+----+----+ .. versionchanged:: 3.1.0 Added optional argument `allowMissingColumns` to specify whether to allow missing columns. """ return DataFrame(self._jdf.unionByName(other._jdf, allowMissingColumns), self.sql_ctx) @since(1.3) def intersect(self, other): """ Return a new :class:`DataFrame` containing rows only in both this :class:`DataFrame` and another :class:`DataFrame`. This is equivalent to `INTERSECT` in SQL. """ return DataFrame(self._jdf.intersect(other._jdf), self.sql_ctx) def intersectAll(self, other): """ Return a new :class:`DataFrame` containing rows in both this :class:`DataFrame` and another :class:`DataFrame` while preserving duplicates. This is equivalent to `INTERSECT ALL` in SQL. As standard in SQL, this function resolves columns by position (not by name). .. versionadded:: 2.4.0 Examples -------- >>> df1 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.intersectAll(df2).sort("C1", "C2").show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | b| 3| +---+---+ """ return DataFrame(self._jdf.intersectAll(other._jdf), self.sql_ctx) @since(1.3) def subtract(self, other): """ Return a new :class:`DataFrame` containing rows in this :class:`DataFrame` but not in another :class:`DataFrame`. This is equivalent to `EXCEPT DISTINCT` in SQL. """ return DataFrame(getattr(self._jdf, "except")(other._jdf), self.sql_ctx) def dropDuplicates(self, subset=None): """Return a new :class:`DataFrame` with duplicate rows removed, optionally only considering certain columns. For a static batch :class:`DataFrame`, it just drops duplicate rows. For a streaming :class:`DataFrame`, it will keep all data across triggers as intermediate state to drop duplicates rows. You can use :func:`withWatermark` to limit how late the duplicate data can be and system will accordingly limit the state. In addition, too late data older than watermark will be dropped to avoid any possibility of duplicates. :func:`drop_duplicates` is an alias for :func:`dropDuplicates`. .. versionadded:: 1.4.0 Examples -------- >>> from pyspark.sql import Row >>> df = sc.parallelize([ \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=10, height=80)]).toDF() >>> df.dropDuplicates().show() +-----+---+------+ | name|age|height| +-----+---+------+ |Alice| 5| 80| |Alice| 10| 80| +-----+---+------+ >>> df.dropDuplicates(['name', 'height']).show() +-----+---+------+ | name|age|height| +-----+---+------+ |Alice| 5| 80| +-----+---+------+ """ if subset is None: jdf = self._jdf.dropDuplicates() else: jdf = self._jdf.dropDuplicates(self._jseq(subset)) return DataFrame(jdf, self.sql_ctx) def dropna(self, how='any', thresh=None, subset=None): """Returns a new :class:`DataFrame` omitting rows with null values. :func:`DataFrame.dropna` and :func:`DataFrameNaFunctions.drop` are aliases of each other. .. versionadded:: 1.3.1 Parameters ---------- how : str, optional 'any' or 'all'. If 'any', drop a row if it contains any nulls. If 'all', drop a row only if all its values are null. thresh: int, optional default None If specified, drop rows that have less than `thresh` non-null values. This overwrites the `how` parameter. subset : str, tuple or list, optional optional list of column names to consider. Examples -------- >>> df4.na.drop().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| +---+------+-----+ """ if how is not None and how not in ['any', 'all']: raise ValueError("how ('" + how + "') should be 'any' or 'all'") if subset is None: subset = self.columns elif isinstance(subset, str): subset = [subset] elif not isinstance(subset, (list, tuple)): raise TypeError("subset should be a list or tuple of column names") if thresh is None: thresh = len(subset) if how == 'any' else 1 return DataFrame(self._jdf.na().drop(thresh, self._jseq(subset)), self.sql_ctx) def fillna(self, value, subset=None): """Replace null values, alias for ``na.fill()``. :func:`DataFrame.fillna` and :func:`DataFrameNaFunctions.fill` are aliases of each other. .. versionadded:: 1.3.1 Parameters ---------- value : int, float, string, bool or dict Value to replace null values with. If the value is a dict, then `subset` is ignored and `value` must be a mapping from column name (string) to replacement value. The replacement value must be an int, float, boolean, or string. subset : str, tuple or list, optional optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. Examples -------- >>> df4.na.fill(50).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| | 5| 50| Bob| | 50| 50| Tom| | 50| 50| null| +---+------+-----+ >>> df5.na.fill(False).show() +----+-------+-----+ | age| name| spy| +----+-------+-----+ | 10| Alice|false| | 5| Bob|false| |null|Mallory| true| +----+-------+-----+ >>> df4.na.fill({'age': 50, 'name': 'unknown'}).show() +---+------+-------+ |age|height| name| +---+------+-------+ | 10| 80| Alice| | 5| null| Bob| | 50| null| Tom| | 50| null|unknown| +---+------+-------+ """ if not isinstance(value, (float, int, str, bool, dict)): raise TypeError("value should be a float, int, string, bool or dict") # Note that bool validates isinstance(int), but we don't want to # convert bools to floats if not isinstance(value, bool) and isinstance(value, int): value = float(value) if isinstance(value, dict): return DataFrame(self._jdf.na().fill(value), self.sql_ctx) elif subset is None: return DataFrame(self._jdf.na().fill(value), self.sql_ctx) else: if isinstance(subset, str): subset = [subset] elif not isinstance(subset, (list, tuple)): raise TypeError("subset should be a list or tuple of column names") return DataFrame(self._jdf.na().fill(value, self._jseq(subset)), self.sql_ctx) def replace(self, to_replace, value=_NoValue, subset=None): """Returns a new :class:`DataFrame` replacing a value with another value. :func:`DataFrame.replace` and :func:`DataFrameNaFunctions.replace` are aliases of each other. Values to_replace and value must have the same type and can only be numerics, booleans, or strings. Value can have None. When replacing, the new value will be cast to the type of the existing column. For numeric replacements all values to be replaced should have unique floating point representation. In case of conflicts (for example with `{42: -1, 42.0: 1}`) and arbitrary replacement will be used. .. versionadded:: 1.4.0 Parameters ---------- to_replace : bool, int, float, string, list or dict Value to be replaced. If the value is a dict, then `value` is ignored or can be omitted, and `to_replace` must be a mapping between a value and a replacement. value : bool, int, float, string or None, optional The replacement value must be a bool, int, float, string or None. If `value` is a list, `value` should be of the same length and type as `to_replace`. If `value` is a scalar and `to_replace` is a sequence, then `value` is used as a replacement for each item in `to_replace`. subset : list, optional optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. Examples -------- >>> df4.na.replace(10, 20).show() +----+------+-----+ | age|height| name| +----+------+-----+ | 20| 80|Alice| | 5| null| Bob| |null| null| Tom| |null| null| null| +----+------+-----+ >>> df4.na.replace('Alice', None).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace({'Alice': None}).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace(['Alice', 'Bob'], ['A', 'B'], 'name').show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80| A| | 5| null| B| |null| null| Tom| |null| null|null| +----+------+----+ """ if value is _NoValue: if isinstance(to_replace, dict): value = None else: raise TypeError("value argument is required when to_replace is not a dictionary.") # Helper functions def all_of(types): """Given a type or tuple of types and a sequence of xs check if each x is instance of type(s) >>> all_of(bool)([True, False]) True >>> all_of(str)(["a", 1]) False """ def all_of_(xs): return all(isinstance(x, types) for x in xs) return all_of_ all_of_bool = all_of(bool) all_of_str = all_of(str) all_of_numeric = all_of((float, int)) # Validate input types valid_types = (bool, float, int, str, list, tuple) if not isinstance(to_replace, valid_types + (dict, )): raise TypeError( "to_replace should be a bool, float, int, string, list, tuple, or dict. " "Got {0}".format(type(to_replace))) if not isinstance(value, valid_types) and value is not None \ and not isinstance(to_replace, dict): raise TypeError("If to_replace is not a dict, value should be " "a bool, float, int, string, list, tuple or None. " "Got {0}".format(type(value))) if isinstance(to_replace, (list, tuple)) and isinstance(value, (list, tuple)): if len(to_replace) != len(value): raise ValueError("to_replace and value lists should be of the same length. " "Got {0} and {1}".format(len(to_replace), len(value))) if not (subset is None or isinstance(subset, (list, tuple, str))): raise TypeError("subset should be a list or tuple of column names, " "column name or None. Got {0}".format(type(subset))) # Reshape input arguments if necessary if isinstance(to_replace, (float, int, str)): to_replace = [to_replace] if isinstance(to_replace, dict): rep_dict = to_replace if value is not None: warnings.warn("to_replace is a dict and value is not None. value will be ignored.") else: if isinstance(value, (float, int, str)) or value is None: value = [value for _ in range(len(to_replace))] rep_dict = dict(zip(to_replace, value)) if isinstance(subset, str): subset = [subset] # Verify we were not passed in mixed type generics. if not any(all_of_type(rep_dict.keys()) and all_of_type(x for x in rep_dict.values() if x is not None) for all_of_type in [all_of_bool, all_of_str, all_of_numeric]): raise ValueError("Mixed type replacements are not supported") if subset is None: return DataFrame(self._jdf.na().replace('*', rep_dict), self.sql_ctx) else: return DataFrame( self._jdf.na().replace(self._jseq(subset), self._jmap(rep_dict)), self.sql_ctx) def approxQuantile(self, col, probabilities, relativeError): """ Calculates the approximate quantiles of numerical columns of a :class:`DataFrame`. The result of this algorithm has the following deterministic bound: If the :class:`DataFrame` has N elements and if we request the quantile at probability `p` up to error `err`, then the algorithm will return a sample `x` from the :class:`DataFrame` so that the *exact* rank of `x` is close to (p * N). More precisely, floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in [[https://doi.org/10.1145/375663.375670 Space-efficient Online Computation of Quantile Summaries]] by Greenwald and Khanna. Note that null values will be ignored in numerical columns before calculation. For columns only containing null values, an empty list is returned. .. versionadded:: 2.0.0 Parameters ---------- col: str, tuple or list Can be a single column name, or a list of names for multiple columns. .. versionchanged:: 2.2 Added support for multiple columns. probabilities : list or tuple a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum. relativeError : float The relative target precision to achieve (>= 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but give the same result as 1. Returns ------- list the approximate quantiles at the given probabilities. If the input `col` is a string, the output is a list of floats. If the input `col` is a list or tuple of strings, the output is also a list, but each element in it is a list of floats, i.e., the output is a list of list of floats. """ if not isinstance(col, (str, list, tuple)): raise TypeError("col should be a string, list or tuple, but got %r" % type(col)) isStr = isinstance(col, str) if isinstance(col, tuple): col = list(col) elif isStr: col = [col] for c in col: if not isinstance(c, str): raise TypeError("columns should be strings, but got %r" % type(c)) col = _to_list(self._sc, col) if not isinstance(probabilities, (list, tuple)): raise TypeError("probabilities should be a list or tuple") if isinstance(probabilities, tuple): probabilities = list(probabilities) for p in probabilities: if not isinstance(p, (float, int)) or p < 0 or p > 1: raise ValueError("probabilities should be numerical (float, int) in [0,1].") probabilities = _to_list(self._sc, probabilities) if not isinstance(relativeError, (float, int)): raise TypeError("relativeError should be numerical (float, int)") if relativeError < 0: raise ValueError("relativeError should be >= 0.") relativeError = float(relativeError) jaq = self._jdf.stat().approxQuantile(col, probabilities, relativeError) jaq_list = [list(j) for j in jaq] return jaq_list[0] if isStr else jaq_list def corr(self, col1, col2, method=None): """ Calculates the correlation of two columns of a :class:`DataFrame` as a double value. Currently only supports the Pearson Correlation Coefficient. :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. .. versionadded:: 1.4.0 Parameters ---------- col1 : str The name of the first column col2 : str The name of the second column method : str, optional The correlation method. Currently only supports "pearson" """ if not isinstance(col1, str): raise TypeError("col1 should be a string.") if not isinstance(col2, str): raise TypeError("col2 should be a string.") if not method: method = "pearson" if not method == "pearson": raise ValueError("Currently only the calculation of the Pearson Correlation " + "coefficient is supported.") return self._jdf.stat().corr(col1, col2, method) def cov(self, col1, col2): """ Calculate the sample covariance for the given columns, specified by their names, as a double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. .. versionadded:: 1.4.0 Parameters ---------- col1 : str The name of the first column col2 : str The name of the second column """ if not isinstance(col1, str): raise TypeError("col1 should be a string.") if not isinstance(col2, str): raise TypeError("col2 should be a string.") return self._jdf.stat().cov(col1, col2) def crosstab(self, col1, col2): """ Computes a pair-wise frequency table of the given columns. Also known as a contingency table. The number of distinct values for each column should be less than 1e4. At most 1e6 non-zero pair frequencies will be returned. The first column of each row will be the distinct values of `col1` and the column names will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. Pairs that have no occurrences will have zero as their counts. :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. .. versionadded:: 1.4.0 Parameters ---------- col1 : str The name of the first column. Distinct items will make the first item of each row. col2 : str The name of the second column. Distinct items will make the column names of the :class:`DataFrame`. """ if not isinstance(col1, str): raise TypeError("col1 should be a string.") if not isinstance(col2, str): raise TypeError("col2 should be a string.") return DataFrame(self._jdf.stat().crosstab(col1, col2), self.sql_ctx) def freqItems(self, cols, support=None): """ Finding frequent items for columns, possibly with false positives. Using the frequent element count algorithm described in "https://doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou". :func:`DataFrame.freqItems` and :func:`DataFrameStatFunctions.freqItems` are aliases. .. versionadded:: 1.4.0 Parameters ---------- cols : list or tuple Names of the columns to calculate frequent items for as a list or tuple of strings. support : float, optional The frequency with which to consider an item 'frequent'. Default is 1%. The support must be greater than 1e-4. Notes ----- This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting :class:`DataFrame`. """ if isinstance(cols, tuple): cols = list(cols) if not isinstance(cols, list): raise TypeError("cols must be a list or tuple of column names as strings.") if not support: support = 0.01 return DataFrame(self._jdf.stat().freqItems(_to_seq(self._sc, cols), support), self.sql_ctx) def withColumn(self, colName, col): """ Returns a new :class:`DataFrame` by adding a column or replacing the existing column that has the same name. The column expression must be an expression over this :class:`DataFrame`; attempting to add a column from some other :class:`DataFrame` will raise an error. .. versionadded:: 1.3.0 Parameters ---------- colName : str string, name of the new column. col : :class:`Column` a :class:`Column` expression for the new column. Notes ----- This method introduces a projection internally. Therefore, calling it multiple times, for instance, via loops in order to add multiple columns can generate big plans which can cause performance issues and even `StackOverflowException`. To avoid this, use :func:`select` with the multiple columns at once. Examples -------- >>> df.withColumn('age2', df.age + 2).collect() [Row(age=2, name='Alice', age2=4), Row(age=5, name='Bob', age2=7)] """ if not isinstance(col, Column): raise TypeError("col should be Column") return DataFrame(self._jdf.withColumn(colName, col._jc), self.sql_ctx) def withColumnRenamed(self, existing, new): """Returns a new :class:`DataFrame` by renaming an existing column. This is a no-op if schema doesn't contain the given column name. .. versionadded:: 1.3.0 Parameters ---------- existing : str string, name of the existing column to rename. new : str string, new name of the column. Examples -------- >>> df.withColumnRenamed('age', 'age2').collect() [Row(age2=2, name='Alice'), Row(age2=5, name='Bob')] """ return DataFrame(self._jdf.withColumnRenamed(existing, new), self.sql_ctx) def drop(self, *cols): """Returns a new :class:`DataFrame` that drops the specified column. This is a no-op if schema doesn't contain the given column name(s). .. versionadded:: 1.4.0 Parameters ---------- cols: str or :class:`Column` a name of the column, or the :class:`Column` to drop Examples -------- >>> df.drop('age').collect() [Row(name='Alice'), Row(name='Bob')] >>> df.drop(df.age).collect() [Row(name='Alice'), Row(name='Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df.name).collect() [Row(age=5, height=85, name='Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df2.name).collect() [Row(age=5, name='Bob', height=85)] >>> df.join(df2, 'name', 'inner').drop('age', 'height').collect() [Row(name='Bob')] """ if len(cols) == 1: col = cols[0] if isinstance(col, str): jdf = self._jdf.drop(col) elif isinstance(col, Column): jdf = self._jdf.drop(col._jc) else: raise TypeError("col should be a string or a Column") else: for col in cols: if not isinstance(col, str): raise TypeError("each col in the param list should be a string") jdf = self._jdf.drop(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) def toDF(self, *cols): """Returns a new :class:`DataFrame` that with new specified column names Parameters ---------- cols : str new column names Examples -------- >>> df.toDF('f1', 'f2').collect() [Row(f1=2, f2='Alice'), Row(f1=5, f2='Bob')] """ jdf = self._jdf.toDF(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) def transform(self, func): """Returns a new :class:`DataFrame`. Concise syntax for chaining custom transformations. .. versionadded:: 3.0.0 Parameters ---------- func : function a function that takes and returns a :class:`DataFrame`. Examples -------- >>> from pyspark.sql.functions import col >>> df = spark.createDataFrame([(1, 1.0), (2, 2.0)], ["int", "float"]) >>> def cast_all_to_int(input_df): ... return input_df.select([col(col_name).cast("int") for col_name in input_df.columns]) >>> def sort_columns_asc(input_df): ... return input_df.select(*sorted(input_df.columns)) >>> df.transform(cast_all_to_int).transform(sort_columns_asc).show() +-----+---+ |float|int| +-----+---+ | 1| 1| | 2| 2| +-----+---+ """ result = func(self) assert isinstance(result, DataFrame), "Func returned an instance of type [%s], " \ "should have been DataFrame." % type(result) return result def sameSemantics(self, other): """ Returns `True` when the logical query plans inside both :class:`DataFrame`\\s are equal and therefore return same results. .. versionadded:: 3.1.0 Notes ----- The equality comparison here is simplified by tolerating the cosmetic differences such as attribute names. This API can compare both :class:`DataFrame`\\s very fast but can still return `False` on the :class:`DataFrame` that return the same results, for instance, from different plans. Such false negative semantic can be useful when caching as an example. This API is a developer API. Examples -------- >>> df1 = spark.range(10) >>> df2 = spark.range(10) >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col1", df2.id * 2)) True >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col1", df2.id + 2)) False >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col0", df2.id * 2)) True """ if not isinstance(other, DataFrame): raise TypeError("other parameter should be of DataFrame; however, got %s" % type(other)) return self._jdf.sameSemantics(other._jdf) def semanticHash(self): """ Returns a hash code of the logical query plan against this :class:`DataFrame`. .. versionadded:: 3.1.0 Notes ----- Unlike the standard hash code, the hash is calculated against the query plan simplified by tolerating the cosmetic differences such as attribute names. This API is a developer API. Examples -------- >>> spark.range(10).selectExpr("id as col0").semanticHash() # doctest: +SKIP 1855039936 >>> spark.range(10).selectExpr("id as col1").semanticHash() # doctest: +SKIP 1855039936 """ return self._jdf.semanticHash() def inputFiles(self): """ Returns a best-effort snapshot of the files that compose this :class:`DataFrame`. This method simply asks each constituent BaseRelation for its respective files and takes the union of all results. Depending on the source relations, this may not find all input files. Duplicates are removed. .. versionadded:: 3.1.0 Examples -------- >>> df = spark.read.load("examples/src/main/resources/people.json", format="json") >>> len(df.inputFiles()) 1 """ return list(self._jdf.inputFiles()) where = copy_func( filter, sinceversion=1.3, doc=":func:`where` is an alias for :func:`filter`.") # Two aliases below were added for pandas compatibility many years ago. # There are too many differences compared to pandas and we cannot just # make it "compatible" by adding aliases. Therefore, we stop adding such # aliases as of Spark 3.0. Two methods below remain just # for legacy users currently. groupby = copy_func( groupBy, sinceversion=1.4, doc=":func:`groupby` is an alias for :func:`groupBy`.") drop_duplicates = copy_func( dropDuplicates, sinceversion=1.4, doc=":func:`drop_duplicates` is an alias for :func:`dropDuplicates`.") def writeTo(self, table): """ Create a write configuration builder for v2 sources. This builder is used to configure and execute write operations. For example, to append or create or replace existing tables. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").append() # doctest: +SKIP >>> df.writeTo( # doctest: +SKIP ... "catalog.db.table" ... ).partitionedBy("col").createOrReplace() """ return DataFrameWriterV2(self, table) def _to_scala_map(sc, jm): """ Convert a dict into a JVM Map. """ return sc._jvm.PythonUtils.toScalaMap(jm) class DataFrameNaFunctions(object): """Functionality for working with missing data in :class:`DataFrame`. .. versionadded:: 1.4 """ def __init__(self, df): self.df = df def drop(self, how='any', thresh=None, subset=None): return self.df.dropna(how=how, thresh=thresh, subset=subset) drop.__doc__ = DataFrame.dropna.__doc__ def fill(self, value, subset=None): return self.df.fillna(value=value, subset=subset) fill.__doc__ = DataFrame.fillna.__doc__ def replace(self, to_replace, value=_NoValue, subset=None): return self.df.replace(to_replace, value, subset) replace.__doc__ = DataFrame.replace.__doc__ class DataFrameStatFunctions(object): """Functionality for statistic functions with :class:`DataFrame`. .. versionadded:: 1.4 """ def __init__(self, df): self.df = df def approxQuantile(self, col, probabilities, relativeError): return self.df.approxQuantile(col, probabilities, relativeError) approxQuantile.__doc__ = DataFrame.approxQuantile.__doc__ def corr(self, col1, col2, method=None): return self.df.corr(col1, col2, method) corr.__doc__ = DataFrame.corr.__doc__ def cov(self, col1, col2): return self.df.cov(col1, col2) cov.__doc__ = DataFrame.cov.__doc__ def crosstab(self, col1, col2): return self.df.crosstab(col1, col2) crosstab.__doc__ = DataFrame.crosstab.__doc__ def freqItems(self, cols, support=None): return self.df.freqItems(cols, support) freqItems.__doc__ = DataFrame.freqItems.__doc__ def sampleBy(self, col, fractions, seed=None): return self.df.sampleBy(col, fractions, seed) sampleBy.__doc__ = DataFrame.sampleBy.__doc__ def _test(): import doctest from pyspark.context import SparkContext from pyspark.sql import Row, SQLContext, SparkSession import pyspark.sql.dataframe globs = pyspark.sql.dataframe.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) globs['spark'] = SparkSession(sc) globs['df'] = sc.parallelize([(2, 'Alice'), (5, 'Bob')])\ .toDF(StructType([StructField('age', IntegerType()), StructField('name', StringType())])) globs['df2'] = sc.parallelize([Row(height=80, name='Tom'), Row(height=85, name='Bob')]).toDF() globs['df3'] = sc.parallelize([Row(age=2, name='Alice'), Row(age=5, name='Bob')]).toDF() globs['df4'] = sc.parallelize([Row(age=10, height=80, name='Alice'), Row(age=5, height=None, name='Bob'), Row(age=None, height=None, name='Tom'), Row(age=None, height=None, name=None)]).toDF() globs['df5'] = sc.parallelize([Row(age=10, name='Alice', spy=False), Row(age=5, name='Bob', spy=None), Row(age=None, name='Mallory', spy=True)]).toDF() globs['sdf'] = sc.parallelize([Row(name='Tom', time=1479441846), Row(name='Bob', time=1479442946)]).toDF() (failure_count, test_count) = doctest.testmod( pyspark.sql.dataframe, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
balister/GNU-Radio
gr-filter/examples/resampler.py
58
4454
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import filter from gnuradio import blocks import sys try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: import scipy except ImportError: sys.stderr.write("Error: Program requires scipy (see: www.scipy.org).\n") sys.exit(1) try: import pylab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class mytb(gr.top_block): def __init__(self, fs_in, fs_out, fc, N=10000): gr.top_block.__init__(self) rerate = float(fs_out) / float(fs_in) print "Resampling from %f to %f by %f " %(fs_in, fs_out, rerate) # Creating our own taps taps = filter.firdes.low_pass_2(32, 32, 0.25, 0.1, 80) self.src = analog.sig_source_c(fs_in, analog.GR_SIN_WAVE, fc, 1) #self.src = analog.noise_source_c(analog.GR_GAUSSIAN, 1) self.head = blocks.head(gr.sizeof_gr_complex, N) # A resampler with our taps self.resamp_0 = filter.pfb.arb_resampler_ccf(rerate, taps, flt_size=32) # A resampler that just needs a resampling rate. # Filter is created for us and designed to cover # entire bandwidth of the input signal. # An optional atten=XX rate can be used here to # specify the out-of-band rejection (default=80). self.resamp_1 = filter.pfb.arb_resampler_ccf(rerate) self.snk_in = blocks.vector_sink_c() self.snk_0 = blocks.vector_sink_c() self.snk_1 = blocks.vector_sink_c() self.connect(self.src, self.head, self.snk_in) self.connect(self.head, self.resamp_0, self.snk_0) self.connect(self.head, self.resamp_1, self.snk_1) def main(): fs_in = 8000 fs_out = 20000 fc = 1000 N = 10000 tb = mytb(fs_in, fs_out, fc, N) tb.run() # Plot PSD of signals nfftsize = 2048 fig1 = pylab.figure(1, figsize=(10,10), facecolor="w") sp1 = fig1.add_subplot(2,1,1) sp1.psd(tb.snk_in.data(), NFFT=nfftsize, noverlap=nfftsize/4, Fs = fs_in) sp1.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0))) sp1.set_xlim([-fs_in/2, fs_in/2]) sp2 = fig1.add_subplot(2,1,2) sp2.psd(tb.snk_0.data(), NFFT=nfftsize, noverlap=nfftsize/4, Fs = fs_out, label="With our filter") sp2.psd(tb.snk_1.data(), NFFT=nfftsize, noverlap=nfftsize/4, Fs = fs_out, label="With auto-generated filter") sp2.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0))) sp2.set_xlim([-fs_out/2, fs_out/2]) sp2.legend() # Plot signals in time Ts_in = 1.0/fs_in Ts_out = 1.0/fs_out t_in = scipy.arange(0, len(tb.snk_in.data())*Ts_in, Ts_in) t_out = scipy.arange(0, len(tb.snk_0.data())*Ts_out, Ts_out) fig2 = pylab.figure(2, figsize=(10,10), facecolor="w") sp21 = fig2.add_subplot(2,1,1) sp21.plot(t_in, tb.snk_in.data()) sp21.set_title(("Input Signal at f_s=%.2f kHz" % (fs_in/1000.0))) sp21.set_xlim([t_in[100], t_in[200]]) sp22 = fig2.add_subplot(2,1,2) sp22.plot(t_out, tb.snk_0.data(), label="With our filter") sp22.plot(t_out, tb.snk_1.data(), label="With auto-generated filter") sp22.set_title(("Output Signals at f_s=%.2f kHz" % (fs_out/1000.0))) r = float(fs_out)/float(fs_in) sp22.set_xlim([t_out[r * 100], t_out[r * 200]]) sp22.legend() pylab.show() if __name__ == "__main__": main()
gpl-3.0
seckcoder/lang-learn
python/sklearn/sklearn/datasets/species_distributions.py
7
7758
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References: * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes: * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: Simplified BSD from cStringIO import StringIO from os import makedirs from os.path import join from os.path import exists import urllib2 import numpy as np from sklearn.datasets.base import get_data_home, Bunch from sklearn.externals import joblib DIRECTORY_URL = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" SAMPLES_URL = join(DIRECTORY_URL, "samples.zip") COVERAGES_URL = join(DIRECTORY_URL, "coverages.zip") DATA_ARCHIVE_NAME = "species_coverage.pkz" def _load_coverage(F, header_length=6, dtype=np.int16): """ load a coverage file. This will return a numpy array of the given dtype """ try: header = [F.readline() for i in range(header_length)] except: F = open(F) header = [F.readline() for i in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = header['NODATA_value'] if nodata != -9999: M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Paramters --------- F : string or file object file object or name of file Returns ------- rec : np.ndarray record array representing the data """ try: names = F.readline().strip().split(',') except: F = open(F) names = F.readline().strip().split(',') rec = np.loadtxt(F, skiprows=1, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def fetch_species_distributions(data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Notes ------ This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. The data is returned as a Bunch object with the following attributes: coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1623,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (619,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset with scikit-learn """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 if not exists(join(data_home, DATA_ARCHIVE_NAME)): print 'Downloading species data from %s to %s' % (SAMPLES_URL, data_home) X = np.load(StringIO(urllib2.urlopen(SAMPLES_URL).read())) for f in X.files: fhandle = StringIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) print 'Downloading coverage data from %s to %s' % (COVERAGES_URL, data_home) X = np.load(StringIO(urllib2.urlopen(COVERAGES_URL).read())) coverages = [] for f in X.files: fhandle = StringIO(X[f]) print ' - converting', f coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, join(data_home, DATA_ARCHIVE_NAME), compress=9) else: bunch = joblib.load(join(data_home, DATA_ARCHIVE_NAME)) return bunch
unlicense
witgo/spark
python/pyspark/sql/tests/test_pandas_udf_typehints.py
22
9603
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import inspect from typing import Union, Iterator, Tuple from pyspark.sql.functions import mean, lit from pyspark.testing.sqlutils import ReusedSQLTestCase, \ have_pandas, have_pyarrow, pandas_requirement_message, \ pyarrow_requirement_message from pyspark.sql.pandas.typehints import infer_eval_type from pyspark.sql.pandas.functions import pandas_udf, PandasUDFType from pyspark.sql import Row if have_pandas: import pandas as pd import numpy as np from pandas.testing import assert_frame_equal @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) # type: ignore[arg-type] class PandasUDFTypeHintsTests(ReusedSQLTestCase): def test_type_annotation_scalar(self): def func(col: pd.Series) -> pd.Series: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.SCALAR) def func(col: pd.DataFrame, col1: pd.Series) -> pd.DataFrame: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.SCALAR) def func(col: pd.DataFrame, *args: pd.Series) -> pd.Series: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.SCALAR) def func(col: pd.Series, *args: pd.Series, **kwargs: pd.DataFrame) -> pd.Series: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.SCALAR) def func(col: pd.Series, *, col2: pd.DataFrame) -> pd.DataFrame: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.SCALAR) def func(col: Union[pd.Series, pd.DataFrame], *, col2: pd.DataFrame) -> pd.Series: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.SCALAR) def test_type_annotation_scalar_iter(self): def func(iter: Iterator[pd.Series]) -> Iterator[pd.Series]: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.SCALAR_ITER) def func(iter: Iterator[Tuple[pd.DataFrame, pd.Series]]) -> Iterator[pd.DataFrame]: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.SCALAR_ITER) def func(iter: Iterator[Tuple[pd.DataFrame, ...]]) -> Iterator[pd.Series]: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.SCALAR_ITER) def func( iter: Iterator[Tuple[Union[pd.DataFrame, pd.Series], ...]] ) -> Iterator[pd.Series]: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.SCALAR_ITER) def test_type_annotation_group_agg(self): def func(col: pd.Series) -> str: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.GROUPED_AGG) def func(col: pd.DataFrame, col1: pd.Series) -> int: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.GROUPED_AGG) def func(col: pd.DataFrame, *args: pd.Series) -> Row: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.GROUPED_AGG) def func(col: pd.Series, *args: pd.Series, **kwargs: pd.DataFrame) -> str: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.GROUPED_AGG) def func(col: pd.Series, *, col2: pd.DataFrame) -> float: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.GROUPED_AGG) def func(col: Union[pd.Series, pd.DataFrame], *, col2: pd.DataFrame) -> float: pass self.assertEqual( infer_eval_type(inspect.signature(func)), PandasUDFType.GROUPED_AGG) def test_type_annotation_negative(self): def func(col: str) -> pd.Series: pass self.assertRaisesRegex( NotImplementedError, "Unsupported signature.*str", infer_eval_type, inspect.signature(func)) def func(col: pd.DataFrame, col1: int) -> pd.DataFrame: pass self.assertRaisesRegex( NotImplementedError, "Unsupported signature.*int", infer_eval_type, inspect.signature(func)) def func(col: Union[pd.DataFrame, str], col1: int) -> pd.DataFrame: pass self.assertRaisesRegex( NotImplementedError, "Unsupported signature.*str", infer_eval_type, inspect.signature(func)) def func(col: pd.Series) -> Tuple[pd.DataFrame]: pass self.assertRaisesRegex( NotImplementedError, "Unsupported signature.*Tuple", infer_eval_type, inspect.signature(func)) def func(col, *args: pd.Series) -> pd.Series: pass self.assertRaisesRegex( ValueError, "should be specified.*Series", infer_eval_type, inspect.signature(func)) def func(col: pd.Series, *args: pd.Series, **kwargs: pd.DataFrame): pass self.assertRaisesRegex( ValueError, "should be specified.*Series", infer_eval_type, inspect.signature(func)) def func(col: pd.Series, *, col2) -> pd.DataFrame: pass self.assertRaisesRegex( ValueError, "should be specified.*Series", infer_eval_type, inspect.signature(func)) def test_scalar_udf_type_hint(self): df = self.spark.range(10).selectExpr("id", "id as v") def plus_one(v: Union[pd.Series, pd.DataFrame]) -> pd.Series: return v + 1 plus_one = pandas_udf("long")(plus_one) actual = df.select(plus_one(df.v).alias("plus_one")) expected = df.selectExpr("(v + 1) as plus_one") assert_frame_equal(expected.toPandas(), actual.toPandas()) def test_scalar_iter_udf_type_hint(self): df = self.spark.range(10).selectExpr("id", "id as v") def plus_one(itr: Iterator[pd.Series]) -> Iterator[pd.Series]: for s in itr: yield s + 1 plus_one = pandas_udf("long")(plus_one) actual = df.select(plus_one(df.v).alias("plus_one")) expected = df.selectExpr("(v + 1) as plus_one") assert_frame_equal(expected.toPandas(), actual.toPandas()) def test_group_agg_udf_type_hint(self): df = self.spark.range(10).selectExpr("id", "id as v") def weighted_mean(v: pd.Series, w: pd.Series) -> float: return np.average(v, weights=w) weighted_mean = pandas_udf("double")(weighted_mean) actual = df.groupby('id').agg(weighted_mean(df.v, lit(1.0))).sort('id') expected = df.groupby('id').agg(mean(df.v).alias('weighted_mean(v, 1.0)')).sort('id') assert_frame_equal(expected.toPandas(), actual.toPandas()) def test_ignore_type_hint_in_group_apply_in_pandas(self): df = self.spark.range(10) def pandas_plus_one(v: pd.DataFrame) -> pd.DataFrame: return v + 1 actual = df.groupby('id').applyInPandas(pandas_plus_one, schema=df.schema).sort('id') expected = df.selectExpr("id + 1 as id") assert_frame_equal(expected.toPandas(), actual.toPandas()) def test_ignore_type_hint_in_cogroup_apply_in_pandas(self): df = self.spark.range(10) def pandas_plus_one(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame: return left + 1 actual = df.groupby('id').cogroup( self.spark.range(10).groupby("id") ).applyInPandas(pandas_plus_one, schema=df.schema).sort('id') expected = df.selectExpr("id + 1 as id") assert_frame_equal(expected.toPandas(), actual.toPandas()) def test_ignore_type_hint_in_map_in_pandas(self): df = self.spark.range(10) def pandas_plus_one(iter: Iterator[pd.DataFrame]) -> Iterator[pd.DataFrame]: return map(lambda v: v + 1, iter) actual = df.mapInPandas(pandas_plus_one, schema=df.schema) expected = df.selectExpr("id + 1 as id") assert_frame_equal(expected.toPandas(), actual.toPandas()) if __name__ == "__main__": from pyspark.sql.tests.test_pandas_udf_typehints import * # noqa: #401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
joshloyal/scikit-learn
sklearn/linear_model/coordinate_descent.py
3
81536
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Gael Varoquaux <[email protected]> # # License: BSD 3 clause import sys import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import _preprocess_data from ..utils import check_array, check_X_y from ..utils.validation import check_random_state from ..model_selection import check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted from ..utils.validation import column_or_1d from ..exceptions import ConvergenceWarning from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The elastic net mixing parameter, with ``0 < l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. (currently not supported) ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio <1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean, default True Whether to fit an intercept or not normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ if l1_ratio == 0: raise ValueError("Automatic alpha grid generation is not supported for" " l1_ratio=0. Please supply a grid by providing " "your estimator with the appropriate `alphas=` " "argument.") n_samples = len(y) sparse_center = False if Xy is None: X_sparse = sparse.isspmatrix(X) sparse_center = X_sparse and (fit_intercept or normalize) X = check_array(X, 'csc', copy=(copy_X and fit_intercept and not X_sparse)) if not X_sparse: # X can be touched inplace thanks to the above line X, y, _, _, _ = _preprocess_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) if sparse_center: # Workaround to find alpha_max for sparse matrices. # since we should not destroy the sparsity of such matrices. _, _, X_offset, _, X_scale = _preprocess_data(X, y, fit_intercept, normalize, return_mean=True) mean_dot = X_offset * np.sum(y) if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if sparse_center: if fit_intercept: Xy -= mean_dot[:, np.newaxis] if normalize: Xy /= X_scale[:, np.newaxis] alpha_max = (np.sqrt(np.sum(Xy ** 2, axis=1)).max() / (n_samples * l1_ratio)) if alpha_max <= np.finfo(float).resolution: alphas = np.empty(n_alphas) alphas.fill(np.finfo(float).resolution) return alphas return np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute Lasso path with coordinate descent The Lasso optimization function varies for mono and multi-outputs. For mono-output tasks it is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <lasso>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,), or (n_samples, n_outputs) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. positive : bool, default False If set to True, forces coefficients to be positive. return_n_iter : bool whether to return the number of iterations or not. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5]) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, copy_X=copy_X, coef_init=coef_init, verbose=verbose, positive=positive, return_n_iter=return_n_iter, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, check_input=True, **params): """Compute elastic net path with coordinate descent The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Target values l1_ratio : float, optional float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. return_n_iter : bool whether to return the number of iterations or not. positive : bool, default False If set to True, forces coefficients to be positive. check_input : bool, default True Skip input validation checks, including the Gram matrix when provided assuming there are handled by the caller when check_input=False. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. See also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV """ # We expect X and y to be already Fortran ordered when bypassing # checks if check_input: X = check_array(X, 'csc', dtype=[np.float64, np.float32], order='F', copy=copy_X) y = check_array(y, 'csc', dtype=X.dtype.type, order='F', copy=False, ensure_2d=False) if Xy is not None: # Xy should be a 1d contiguous array or a 2D C ordered array Xy = check_array(Xy, dtype=X.dtype.type, order='C', copy=False, ensure_2d=False) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_offset' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_offset'] / params['X_scale'] X_sparse_scaling = np.asarray(X_sparse_scaling, dtype=X.dtype) else: X_sparse_scaling = np.zeros(n_features, dtype=X.dtype) # X should be normalized and fit already if function is called # from ElasticNet.fit if check_input: X, y, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False) if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=X.dtype) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=X.dtype) if coef_init is None: coef_ = np.asfortranarray(np.zeros(coefs.shape[:-1], dtype=X.dtype)) else: coef_ = np.asfortranarray(coef_init, dtype=X.dtype) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): # We expect precompute to be already Fortran ordered when bypassing # checks if check_input: precompute = check_array(precompute, dtype=X.dtype.type, order='C') model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like. Got %r" % precompute) coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations.' + ' Fitting data with very small alpha' + ' may cause precision problems.', ConvergenceWarning) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear regression with combined L1 and L2 priors as regularizer. Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- alpha : float, optional Constant that multiplies the penalty terms. Defaults to 1.0. See the notes for the exact mathematical meaning of this parameter.``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised. Given this, you should use the :class:`LinearRegression` object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept : bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : True | False | array-like Whether to use a precomputed Gram matrix to speed up calculations. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter : int, optional The maximum number of iterations copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- SGDRegressor: implements elastic net regression with incremental training. SGDClassifier: implements logistic regression with elastic net penalty (``SGDClassifier(loss="log", penalty="elasticnet")``). """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): self.alpha = alpha self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y, check_input=True): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape (n_samples,) or (n_samples, n_targets) Target check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) if isinstance(self.precompute, six.string_types): raise ValueError('precompute should be one of True, False or' ' array-like. Got %r' % self.precompute) # We expect X and y to be float64 or float32 Fortran ordered arrays # when bypassing checks if check_input: X, y = check_X_y(X, y, accept_sparse='csc', order='F', dtype=[np.float64, np.float32], copy=self.copy_X and self.fit_intercept, multi_output=True, y_numeric=True) y = check_array(y, order='F', copy=False, dtype=X.dtype.type, ensure_2d=False) X, y, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=False) if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if self.selection not in ['cyclic', 'random']: raise ValueError("selection should be either random or cyclic.") if not self.warm_start or not hasattr(self, "coef_"): coef_ = np.zeros((n_targets, n_features), dtype=X.dtype, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=X.dtype) self.n_iter_ = [] for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap, this_iter = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_offset=X_offset, X_scale=X_scale, return_n_iter=True, coef_init=coef_[k], max_iter=self.max_iter, random_state=self.random_state, selection=self.selection, check_input=False) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.n_iter_.append(this_iter[0]) if n_targets == 1: self.n_iter_ = self.n_iter_[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_offset, y_offset, X_scale) # workaround since _set_intercept will cast self.coef_ into X.dtype self.coef_ = np.asarray(self.coef_, dtype=X.dtype) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted ``coef_`` """ return sparse.csr_matrix(self.coef_) def _decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ check_is_fitted(self, 'n_iter_') if sparse.isspmatrix(X): return safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ else: return super(ElasticNet, self)._decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Read more in the :ref:`User Guide <lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised. Given this, you should use the :class:`LinearRegression` object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | array-like, default=False Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : int | array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, alphas=None, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function alphas : array-like, optional Array of float that is used for cross-validation. If not provided, computed using 'path' l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype : a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] if y.ndim == 1: precompute = path_params['precompute'] else: # No Gram variant of multi-task exists right now. # Fall back to default enet_multitask precompute = False X_train, y_train, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) path_params = path_params.copy() path_params['Xy'] = Xy path_params['X_offset'] = X_offset path_params['X_scale'] = X_scale path_params['precompute'] = precompute path_params['copy_X'] = False path_params['alphas'] = alphas if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = check_array(X_train, 'csc', dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y_train, **path_params) del X_train, y_train if y.ndim == 1: # Doing this so that it becomes coherent with multioutput. coefs = coefs[np.newaxis, :, :] y_offset = np.atleast_1d(y_offset) y_test = y_test[:, np.newaxis] if normalize: nonzeros = np.flatnonzero(X_scale) coefs[:, nonzeros] /= X_scale[nonzeros][:, np.newaxis] intercepts = y_offset[:, np.newaxis] - np.dot(X_offset, coefs) if sparse.issparse(X_test): n_order, n_features, n_alphas = coefs.shape # Work around for sparse matrices since coefs is a 3-D numpy array. coefs_feature_major = np.rollaxis(coefs, 1) feature_2d = np.reshape(coefs_feature_major, (n_features, -1)) X_test_coefs = safe_sparse_dot(X_test, feature_2d) X_test_coefs = X_test_coefs.reshape(X_test.shape[0], n_order, -1) else: X_test_coefs = safe_sparse_dot(X_test, coefs) residues = X_test_coefs - y_test[:, :, np.newaxis] residues += intercepts this_mses = ((residues ** 2).mean(axis=0)).mean(axis=0) return this_mses class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ y = check_array(y, copy=False, dtype=[np.float64, np.float32], ensure_2d=False) if y.shape[0] == 0: raise ValueError("y has 0 samples: %r" % y) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if isinstance(self, ElasticNetCV) or isinstance(self, LassoCV): if model_str == 'ElasticNet': model = ElasticNet() else: model = Lasso() if y.ndim > 1 and y.shape[1] > 1: raise ValueError("For multi-task outputs, use " "MultiTask%sCV" % (model_str)) y = column_or_1d(y, warn=True) else: if sparse.isspmatrix(X): raise TypeError("X should be dense but a sparse matrix was" "passed") elif y.ndim == 1: raise ValueError("For mono-task outputs, use " "%sCV" % (model_str)) if model_str == 'ElasticNet': model = MultiTaskElasticNet() else: model = MultiTaskLasso() if self.selection not in ["random", "cyclic"]: raise ValueError("selection should be either random or cyclic.") # This makes sure that there is no duplication in memory. # Dealing right with copy_X is important in the following: # Multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = check_array(X, 'csc', copy=False) if sparse.isspmatrix(X): if (hasattr(reference_to_old_X, "data") and not np.may_share_memory(reference_to_old_X.data, X.data)): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = check_array(X, 'csc', dtype=[np.float64, np.float32], order='F', copy=copy_X) copy_X = False if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas n_l1_ratio = len(l1_ratios) if alphas is None: alphas = [] for l1_ratio in l1_ratios: alphas.append(_alpha_grid( X, y, l1_ratio=l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X)) else: # Making sure alphas is properly ordered. alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) # We want n_alphas to be the number of alphas used for each l1_ratio. n_alphas = len(alphas[0]) path_params.update({'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv.split(X)) best_mse = np.inf # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds jobs = (delayed(_path_residuals)(X, y, train, test, self.path, path_params, alphas=this_alphas, l1_ratio=this_l1_ratio, X_order='F', dtype=X.dtype.type) for this_l1_ratio, this_alphas in zip(l1_ratios, alphas) for train, test in folds) mse_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")(jobs) mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1)) mean_mse = np.mean(mse_paths, axis=1) self.mse_path_ = np.squeeze(np.rollaxis(mse_paths, 2, 1)) for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse): i_best_alpha = np.argmin(mse_alphas) this_best_mse = mse_alphas[i_best_alpha] if this_best_mse < best_mse: best_alpha = l1_alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha if self.alphas is None: self.alphas_ = np.asarray(alphas) if n_l1_ratio == 1: self.alphas_ = self.alphas_[0] # Remove duplicate alphas in case alphas is provided. else: self.alphas_ = np.asarray(alphas[0]) # Refit the model with the parameters selected common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.precompute = False model.fit(X, y) if not hasattr(self, 'l1_ratio'): del self.l1_ratio_ self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ self.n_iter_ = model.n_iter_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional If positive, restrict regression coefficients to be positive selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean, default True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) intercept_ : float | array, shape (n_targets,) independent term in decision function. mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting dual_gap_ : ndarray, shape () The dual gap at the end of the optimization for the optimal alpha (``alpha_``). n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/plot_lasso_model_selection.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, positive=positive, random_state=random_state, selection=selection) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- l1_ratio : float or array of floats, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path, used for each l1_ratio. alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation l1_ratio_ : float The compromise between l1 and l2 penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), intercept_ : float | array, shape (n_targets, n_features) Independent term in the decision function. mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/plot_lasso_model_selection.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_elastic_net>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit MultiTaskElasticNet model with coordinate descent Parameters ----------- X : ndarray, shape (n_samples, n_features) Data y : ndarray, shape (n_samples, n_tasks) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ X = check_array(X, dtype=[np.float64, np.float32], order='F', copy=self.copy_X and self.fit_intercept) y = check_array(y, dtype=X.dtype.type, ensure_2d=False) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if y.ndim == 1: raise ValueError("For mono-task outputs, use %s" % model_str) n_samples, n_features = X.shape _, n_tasks = y.shape if n_samples != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (n_samples, y.shape[0])) X, y, X_offset, y_offset, X_scale = _preprocess_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=X.dtype.type, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory if self.selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (self.selection == 'random') self.coef_, self.dual_gap_, self.eps_, self.n_iter_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol, check_random_state(self.random_state), random) self._set_intercept(X_offset, y_offset, X_scale) if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations', ConvergenceWarning) # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4 random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_tasks, n_features) parameter vector (W in the cost function formula) intercept_ : array, shape (n_tasks,) independent term in decision function. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0 self.random_state = random_state self.selection = selection class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 ElasticNet with built-in cross-validation. The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path l1_ratio : float or array of floats The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) or \ (n_l1_ratio, n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio l1_ratio_ : float best l1_ratio obtained by cross-validation. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNetCV() >>> clf.fit([[0,0], [1, 1], [2, 2]], ... [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, random_state=None, selection='cyclic', tol=0.0001, verbose=0) >>> print(clf.coef_) [[ 0.52875032 0.46958558] [ 0.52875032 0.46958558]] >>> print(clf.intercept_) [ 0.00166409 0.00166409] See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskLassoCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.selection = selection class MultiTaskLassoCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 Lasso with built-in cross-validation. The optimization objective for MultiTaskLasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. This parameter is ignored when ``fit_intercept`` is set to ``False``. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use :class:`preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskElasticNetCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic'): super(MultiTaskLassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, random_state=random_state, selection=selection)
bsd-3-clause
beiko-lab/gengis
bin/Lib/site-packages/numpy/core/function_base.py
1
5639
__all__ = ['logspace', 'linspace'] import numeric as _nx from numeric import array def linspace(start, stop, num=50, endpoint=True, retstep=False): """ Return evenly spaced numbers over a specified interval. Returns `num` evenly spaced samples, calculated over the interval [`start`, `stop` ]. The endpoint of the interval can optionally be excluded. Parameters ---------- start : scalar The starting value of the sequence. stop : scalar The end value of the sequence, unless `endpoint` is set to False. In that case, the sequence consists of all but the last of ``num + 1`` evenly spaced samples, so that `stop` is excluded. Note that the step size changes when `endpoint` is False. num : int, optional Number of samples to generate. Default is 50. endpoint : bool, optional If True, `stop` is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (`samples`, `step`), where `step` is the spacing between samples. Returns ------- samples : ndarray There are `num` equally spaced samples in the closed interval ``[start, stop]`` or the half-open interval ``[start, stop)`` (depending on whether `endpoint` is True or False). step : float (only if `retstep` is True) Size of spacing between samples. See Also -------- arange : Similar to `linspace`, but uses a step size (instead of the number of samples). logspace : Samples uniformly distributed in log space. Examples -------- >>> np.linspace(2.0, 3.0, num=5) array([ 2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([ 2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ num = int(num) if num <= 0: return array([], float) if endpoint: if num == 1: return array([float(start)]) step = (stop-start)/float((num-1)) y = _nx.arange(0, num) * step + start y[-1] = stop else: step = (stop-start)/float(num) y = _nx.arange(0, num) * step + start if retstep: return y, step else: return y def logspace(start,stop,num=50,endpoint=True,base=10.0): """ Return numbers spaced evenly on a log scale. In linear space, the sequence starts at ``base ** start`` (`base` to the power of `start`) and ends with ``base ** stop`` (see `endpoint` below). Parameters ---------- start : float ``base ** start`` is the starting value of the sequence. stop : float ``base ** stop`` is the final value of the sequence, unless `endpoint` is False. In that case, ``num + 1`` values are spaced over the interval in log-space, of which all but the last (a sequence of length ``num``) are returned. num : integer, optional Number of samples to generate. Default is 50. endpoint : boolean, optional If true, `stop` is the last sample. Otherwise, it is not included. Default is True. base : float, optional The base of the log space. The step size between the elements in ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Default is 10.0. Returns ------- samples : ndarray `num` samples, equally spaced on a log scale. See Also -------- arange : Similar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included. linspace : Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space. Notes ----- Logspace is equivalent to the code >>> y = np.linspace(start, stop, num=num, endpoint=endpoint) ... # doctest: +SKIP >>> power(base, y) ... # doctest: +SKIP Examples -------- >>> np.logspace(2.0, 3.0, num=4) array([ 100. , 215.443469 , 464.15888336, 1000. ]) >>> np.logspace(2.0, 3.0, num=4, endpoint=False) array([ 100. , 177.827941 , 316.22776602, 562.34132519]) >>> np.logspace(2.0, 3.0, num=4, base=2.0) array([ 4. , 5.0396842 , 6.34960421, 8. ]) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 10 >>> x1 = np.logspace(0.1, 1, N, endpoint=True) >>> x2 = np.logspace(0.1, 1, N, endpoint=False) >>> y = np.zeros(N) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ y = linspace(start,stop,num=num,endpoint=endpoint) return _nx.power(base,y)
gpl-3.0
yl565/statsmodels
statsmodels/imputation/tests/test_mice.py
4
10458
import numpy as np import pandas as pd from statsmodels.imputation import mice import statsmodels.api as sm from numpy.testing import assert_equal, assert_allclose, dec try: import matplotlib.pyplot as plt #makes plt available for test functions have_matplotlib = True except: have_matplotlib = False pdf_output = False if pdf_output: from matplotlib.backends.backend_pdf import PdfPages pdf = PdfPages("test_mice.pdf") else: pdf = None def close_or_save(pdf, fig): if not have_matplotlib: return if pdf_output: pdf.savefig(fig) plt.close(fig) def teardown_module(): if not have_matplotlib: return plt.close('all') if pdf_output: pdf.close() def gendat(): """ Create a data set with missing values. """ np.random.seed(34243) n = 200 p = 5 exog = np.random.normal(size=(n, p)) exog[:, 0] = exog[:, 1] - exog[:, 2] + 2*exog[:, 4] exog[:, 0] += np.random.normal(size=n) exog[:, 2] = 1*(exog[:, 2] > 0) endog = exog.sum(1) + np.random.normal(size=n) df = pd.DataFrame(exog) df.columns = ["x%d" % k for k in range(1, p+1)] df["y"] = endog df.x1[0:60] = np.nan df.x2[0:40] = np.nan df.x3[10:30:2] = np.nan df.x4[20:50:3] = np.nan df.x5[40:45] = np.nan df.y[30:100:2] = np.nan return df class TestMICEData(object): def test_default(self): """ Test with all defaults. """ df = gendat() orig = df.copy() mx = pd.notnull(df) imp_data = mice.MICEData(df) nrow, ncol = df.shape assert_allclose(imp_data.ix_miss['x1'], np.arange(60)) assert_allclose(imp_data.ix_obs['x1'], np.arange(60, 200)) assert_allclose(imp_data.ix_miss['x2'], np.arange(40)) assert_allclose(imp_data.ix_miss['x3'], np.arange(10, 30, 2)) assert_allclose(imp_data.ix_obs['x3'], np.concatenate((np.arange(10), np.arange(11, 30, 2), np.arange(30, 200)))) for k in range(3): imp_data.update_all() assert_equal(imp_data.data.shape[0], nrow) assert_equal(imp_data.data.shape[1], ncol) assert_allclose(orig[mx], imp_data.data[mx]) fml = 'x1 ~ x2 + x3 + x4 + x5 + y' assert_equal(imp_data.conditional_formula['x1'], fml) assert_equal(imp_data._cycle_order, ['x5', 'x3', 'x4', 'y', 'x2', 'x1']) # Should make a copy assert(not (df is imp_data.data)) (endog_obs, exog_obs, exog_miss, predict_obs_kwds, predict_miss_kwds) = imp_data.get_split_data('x3') assert_equal(len(endog_obs), 190) assert_equal(exog_obs.shape, [190, 6]) assert_equal(exog_miss.shape, [10, 6]) def test_next_sample(self): df = gendat() imp_data = mice.MICEData(df) all_x = [] for j in range(2): x = imp_data.next_sample() assert(isinstance(x, pd.DataFrame)) assert_equal(df.shape, x.shape) all_x.append(x) # The returned dataframes are all the same object assert(all_x[0] is all_x[1]) def test_pertmeth(self): """ Test with specified perturbation method. """ df = gendat() orig = df.copy() mx = pd.notnull(df) nrow, ncol = df.shape for pert_meth in "gaussian", "boot": imp_data = mice.MICEData(df, perturbation_method=pert_meth) for k in range(2): imp_data.update_all() assert_equal(imp_data.data.shape[0], nrow) assert_equal(imp_data.data.shape[1], ncol) assert_allclose(orig[mx], imp_data.data[mx]) assert_equal(imp_data._cycle_order, ['x5', 'x3', 'x4', 'y', 'x2', 'x1']) def test_phreg(self): np.random.seed(8742) n = 300 x1 = np.random.normal(size=n) x2 = np.random.normal(size=n) event_time = np.random.exponential(size=n) * np.exp(x1) obs_time = np.random.exponential(size=n) time = np.where(event_time < obs_time, event_time, obs_time) status = np.where(time == event_time, 1, 0) df = pd.DataFrame({"time": time, "status": status, "x1": x1, "x2": x2}) df.loc[10:40, 'time'] = np.nan df.loc[10:40, 'status'] = np.nan df.loc[30:50, 'x1'] = np.nan df.loc[40:60, 'x2'] = np.nan from statsmodels.duration.hazard_regression import PHReg idata = mice.MICEData(df) idata.set_imputer("time", "0 + x1 + x2", model_class=PHReg, init_kwds={"status": mice.PatsyFormula("status")}, predict_kwds={"pred_type": "hr"}) x = idata.next_sample() assert(isinstance(x, pd.DataFrame)) def test_set_imputer(self): """ Test with specified perturbation method. """ from statsmodels.regression.linear_model import RegressionResultsWrapper from statsmodels.genmod.generalized_linear_model import GLMResultsWrapper df = gendat() orig = df.copy() mx = pd.notnull(df) nrow, ncol = df.shape imp_data = mice.MICEData(df) imp_data.set_imputer('x1', 'x3 + x4 + x3*x4') imp_data.set_imputer('x2', 'x4 + I(x5**2)') imp_data.set_imputer('x3', model_class=sm.GLM, init_kwds={"family": sm.families.Binomial()}) imp_data.update_all() assert_equal(imp_data.data.shape[0], nrow) assert_equal(imp_data.data.shape[1], ncol) assert_allclose(orig[mx], imp_data.data[mx]) for j in range(1, 6): if j == 3: assert_equal(isinstance(imp_data.models['x3'], sm.GLM), True) assert_equal(isinstance(imp_data.models['x3'].family, sm.families.Binomial), True) assert_equal(isinstance(imp_data.results['x3'], GLMResultsWrapper), True) else: assert_equal(isinstance(imp_data.models['x%d' % j], sm.OLS), True) assert_equal(isinstance(imp_data.results['x%d' % j], RegressionResultsWrapper), True) fml = 'x1 ~ x3 + x4 + x3*x4' assert_equal(imp_data.conditional_formula['x1'], fml) fml = 'x4 ~ x1 + x2 + x3 + x5 + y' assert_equal(imp_data.conditional_formula['x4'], fml) assert_equal(imp_data._cycle_order, ['x5', 'x3', 'x4', 'y', 'x2', 'x1']) @dec.skipif(not have_matplotlib) def test_plot_missing_pattern(self): df = gendat() imp_data = mice.MICEData(df) for row_order in "pattern", "raw": for hide_complete_rows in False, True: for color_row_patterns in False, True: plt.clf() fig = imp_data.plot_missing_pattern(row_order=row_order, hide_complete_rows=hide_complete_rows, color_row_patterns=color_row_patterns) close_or_save(pdf, fig) @dec.skipif(not have_matplotlib) def test_plot_bivariate(self): df = gendat() imp_data = mice.MICEData(df) imp_data.update_all() plt.clf() for plot_points in False, True: fig = imp_data.plot_bivariate('x2', 'x4', plot_points=plot_points) fig.get_axes()[0].set_title('plot_bivariate') close_or_save(pdf, fig) @dec.skipif(not have_matplotlib) def test_fit_obs(self): df = gendat() imp_data = mice.MICEData(df) imp_data.update_all() plt.clf() for plot_points in False, True: fig = imp_data.plot_fit_obs('x4', plot_points=plot_points) fig.get_axes()[0].set_title('plot_fit_scatterplot') close_or_save(pdf, fig) @dec.skipif(not have_matplotlib) def test_plot_imputed_hist(self): df = gendat() imp_data = mice.MICEData(df) imp_data.update_all() plt.clf() for plot_points in False, True: fig = imp_data.plot_imputed_hist('x4') fig.get_axes()[0].set_title('plot_imputed_hist') close_or_save(pdf, fig) class TestMICE(object): def test_MICE(self): df = gendat() imp_data = mice.MICEData(df) mi = mice.MICE("y ~ x1 + x2 + x1:x2", sm.OLS, imp_data) result = mi.fit(1, 3) assert(issubclass(result.__class__, mice.MICEResults)) # Smoke test for results smr = result.summary() def test_MICE1(self): df = gendat() imp_data = mice.MICEData(df) mi = mice.MICE("y ~ x1 + x2 + x1:x2", sm.OLS, imp_data) from statsmodels.regression.linear_model import RegressionResultsWrapper for j in range(3): x = mi.next_sample() assert(issubclass(x.__class__, RegressionResultsWrapper)) def test_MICE2(self): from statsmodels.genmod.generalized_linear_model import GLMResultsWrapper df = gendat() imp_data = mice.MICEData(df) mi = mice.MICE("x3 ~ x1 + x2", sm.GLM, imp_data, init_kwds={"family": sm.families.Binomial()}) for j in range(3): x = mi.next_sample() assert(isinstance(x, GLMResultsWrapper)) assert(isinstance(x.family, sm.families.Binomial)) def test_combine(self): np.random.seed(3897) x1 = np.random.normal(size=300) x2 = np.random.normal(size=300) y = x1 + x2 + np.random.normal(size=300) x1[0:100] = np.nan x2[250:] = np.nan df = pd.DataFrame({"x1": x1, "x2": x2, "y": y}) idata = mice.MICEData(df) mi = mice.MICE("y ~ x1 + x2", sm.OLS, idata, n_skip=20) result = mi.fit(10, 20) fmi = np.asarray([ 0.1920533 , 0.1587287 , 0.33174032]) assert_allclose(result.frac_miss_info, fmi, atol=1e-5) params = np.asarray([-0.05397474, 0.97273307, 1.01652293]) assert_allclose(result.params, params, atol=1e-5) tvalues = np.asarray([ -0.84781698, 15.10491582, 13.59998039]) assert_allclose(result.tvalues, tvalues, atol=1e-5) if __name__=="__main__": import nose nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'], exit=False)
bsd-3-clause
dmccloskey/matplotlib_utilities
matplotlib_utilities/matplot_heatmap.py
1
11427
#HEATMAP """ This code was adapted from the following recipe: * http://altanalyze.blogspot.se/2012/06/hierarchical-clustering-heatmaps-in.html * http://code.activestate.com/recipes/578175/ Which was in turn inspired by many other posts: * http://stackoverflow.com/questions/7664826 * http://stackoverflow.com/questions/2982929 * http://stackoverflow.com/questions/2455761 Running this with cosine or other distance metrics can often produce negative Z scores during clustering, so adjustments to the clustering may be required. Information about distance measures can be found here: * http://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html * http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html The documentation about the custom color gradients can be found here: * http://matplotlib.sourceforge.net/examples/pylab_examples/custom_cmap.html """ # Built-in modules # import random # Third party modules # import numpy, scipy, matplotlib, pandas from matplotlib import pyplot import scipy.cluster.hierarchy as sch import scipy.spatial.distance as dist #import names ############################################################################### # Create Custom Color Gradients # red_black_sky = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.9), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0))} red_black_blue = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0))} red_black_green = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0))} yellow_black_blue = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.8), (0.5, 0.1, 0.0), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0))} make_cmap = lambda x: matplotlib.colors.LinearSegmentedColormap('my_colormap', x, 256) color_gradients = {'red_black_sky' : make_cmap(red_black_sky), 'red_black_blue' : make_cmap(red_black_blue), 'red_black_green' : make_cmap(red_black_green), 'yellow_black_blue' : make_cmap(yellow_black_blue), 'red_white_blue' : pyplot.cm.bwr, 'seismic' : pyplot.cm.seismic, 'green_white_purple' : pyplot.cm.PiYG_r, 'coolwarm' : pyplot.cm.coolwarm,} ############################################################################### class HiearchicalHeatmap(object): """A common use case for biologists analyzing their gene expression data is to cluster and visualize patterns of expression in the form of a heatmap and associated dendrogram.""" row_method = 'single' # Can be: linkage, single, complete, average, weighted, centroid, median, ward column_method = 'single' # Can be: linkage, single, complete, average, weighted, centroid, median, ward row_metric = 'braycurtis' # Can be: see scipy documentation column_metric = 'braycurtis' # Can be: see scipy documentation gradient_span = 'only_max' # Can be: min_to_max, min_to_max_centered, only_max, only_min color_gradient = 'yellow_black_blue' # Can be: see color_gradients dictionary fig_weight = 12 fig_height = 8.5 def plot(self): # Names # row_header = self.frame.index column_header = self.frame.columns # What color to use # cmap = color_gradients[self.color_gradient] # Scale the max and min colors # value_min = self.frame.min().min() value_max = self.frame.max().max() if self.gradient_span == 'min_to_max_centered': value_max = max([value_max, abs(value_min)]) value_min = value_max * -1 if self.gradient_span == 'only_max': value_min = 0 if self.gradient_span == 'only_min': value_max = 0 norm = matplotlib.colors.Normalize(value_min, value_max) # Scale the figure window size # fig = pyplot.figure(figsize=(self.fig_weight, self.fig_height)) # Calculate positions for all elements # # ax1, placement of dendrogram 1, on the left of the heatmap ### The second value controls the position of the matrix relative to the bottom of the view [ax1_x, ax1_y, ax1_w, ax1_h] = [0.05, 0.22, 0.2, 0.6] width_between_ax1_axr = 0.004 ### distance between the top color bar axis and the matrix height_between_ax1_axc = 0.004 ### Sufficient size to show color_bar_w = 0.015 # axr, placement of row side colorbar # ### second to last controls the width of the side color bar - 0.015 when showing [axr_x, axr_y, axr_w, axr_h] = [0.31, 0.1, color_bar_w, 0.6] axr_x = ax1_x + ax1_w + width_between_ax1_axr axr_y = ax1_y; axr_h = ax1_h width_between_axr_axm = 0.004 # axc, placement of column side colorbar # ### last one controls the hight of the top color bar - 0.015 when showing [axc_x, axc_y, axc_w, axc_h] = [0.4, 0.63, 0.5, color_bar_w] axc_x = axr_x + axr_w + width_between_axr_axm axc_y = ax1_y + ax1_h + height_between_ax1_axc height_between_axc_ax2 = 0.004 # axm, placement of heatmap for the data matrix # [axm_x, axm_y, axm_w, axm_h] = [0.4, 0.9, 2.5, 0.5] axm_x = axr_x + axr_w + width_between_axr_axm axm_y = ax1_y; axm_h = ax1_h axm_w = axc_w # ax2, placement of dendrogram 2, on the top of the heatmap # ### last one controls hight of the dendrogram [ax2_x, ax2_y, ax2_w, ax2_h] = [0.3, 0.72, 0.6, 0.15] ax2_x = axr_x + axr_w + width_between_axr_axm ax2_y = ax1_y + ax1_h + height_between_ax1_axc + axc_h + height_between_axc_ax2 ax2_w = axc_w # axcb - placement of the color legend # [axcb_x, axcb_y, axcb_w, axcb_h] = [0.07, 0.88, 0.18, 0.09] # Compute and plot top dendrogram # if self.column_method: d2 = dist.pdist(self.frame.transpose()) D2 = dist.squareform(d2) ax2 = fig.add_axes([ax2_x, ax2_y, ax2_w, ax2_h], frame_on=True) Y2 = sch.linkage(D2, method=self.column_method, metric=self.column_metric) Z2 = sch.dendrogram(Y2) ind2 = sch.fcluster(Y2, 0.7*max(Y2[:,2]), 'distance') ax2.set_xticks([]) ax2.set_yticks([]) ### apply the clustering for the array-dendrograms to the actual matrix data idx2 = Z2['leaves'] self.frame = self.frame.iloc[:,idx2] ### reorder the flat cluster to match the order of the leaves the dendrogram ind2 = ind2[idx2] else: idx2 = list(range(self.frame.shape[1])) # Compute and plot left dendrogram # if self.row_method: d1 = dist.pdist(self.frame) D1 = dist.squareform(d1) ax1 = fig.add_axes([ax1_x, ax1_y, ax1_w, ax1_h], frame_on=True) Y1 = sch.linkage(D1, method=self.row_method, metric=self.row_metric) Z1 = sch.dendrogram(Y1, orientation='right') ind1 = sch.fcluster(Y1, 0.7*max(Y1[:,2]), 'distance') ax1.set_xticks([]) ax1.set_yticks([]) ### apply the clustering for the array-dendrograms to the actual matrix data idx1 = Z1['leaves'] self.frame = self.frame.iloc[idx1,:] ### reorder the flat cluster to match the order of the leaves the dendrogram ind1 = ind1[idx1] else: idx1 = list(range(self.frame.shape[0])) # Plot distance matrix # axm = fig.add_axes([axm_x, axm_y, axm_w, axm_h]) axm.matshow(self.frame, aspect='auto', origin='lower', cmap=cmap, norm=norm) axm.set_xticks([]) axm.set_yticks([]) # Add text # new_row_header = [] new_column_header = [] for i in range(self.frame.shape[0]): axm.text(self.frame.shape[1]-0.5, i, ' ' + row_header[idx1[i]], verticalalignment="center") new_row_header.append(row_header[idx1[i]] if self.row_method else row_header[i]) for i in range(self.frame.shape[1]): axm.text(i, -0.9, ' '+column_header[idx2[i]], rotation=90, verticalalignment="top", horizontalalignment="center") new_column_header.append(column_header[idx2[i]] if self.column_method else column_header[i]) # Plot column side colorbar # if self.column_method: axc = fig.add_axes([axc_x, axc_y, axc_w, axc_h]) cmap_c = matplotlib.colors.ListedColormap(['r', 'g', 'b', 'y', 'w', 'k', 'm']) dc = numpy.array(ind2, dtype=int) dc.shape = (1,len(ind2)) axc.matshow(dc, aspect='auto', origin='lower', cmap=cmap_c) axc.set_xticks([]) axc.set_yticks([]) # Plot column side colorbar # if self.row_method: axr = fig.add_axes([axr_x, axr_y, axr_w, axr_h]) dr = numpy.array(ind1, dtype=int) dr.shape = (len(ind1),1) cmap_r = matplotlib.colors.ListedColormap(['r', 'g', 'b', 'y', 'w', 'k', 'm']) axr.matshow(dr, aspect='auto', origin='lower', cmap=cmap_r) axr.set_xticks([]) axr.set_yticks([]) # Plot color legend # ### axes for colorbar axcb = fig.add_axes([axcb_x, axcb_y, axcb_w, axcb_h], frame_on=False) cb = matplotlib.colorbar.ColorbarBase(axcb, cmap=cmap, norm=norm, orientation='horizontal') axcb.set_title("colorkey") max_cb_ticks = 5 axcb.xaxis.set_major_locator(pyplot.MaxNLocator(max_cb_ticks)) # Render the graphic # if len(row_header)>50 or len(column_header)>50: pyplot.rcParams['font.size'] = 5 else: pyplot.rcParams['font.size'] = 8 # Return figure # return fig, axm, axcb, cb ############################################################################### class TestHeatmap(HiearchicalHeatmap): short_name = 'test_heatmap' def data(self, size=20): """Create some fake data in a dataframe""" numpy.random.seed(0) random.seed(0) x = scipy.rand(size) M = scipy.zeros([size,size]) for i in range(size): for j in range(size): M[i,j] = abs(x[i] - x[j]) df = pandas.DataFrame(M, index=[names.get_last_name() for _ in range(size)], columns=[names.get_first_name() for _ in range(size)]) df['Mary']['Day'] = 1.5 df['Issac']['Day'] = 1.0 return df def plot(self): self.frame = self.data() self.path = '/tmp/' + self. short_name + '.pdf' fig, axm, axcb, cb = HiearchicalHeatmap.plot(self) cb.set_label("Random value") pyplot.savefig(self.path) ############################################################################### def test(): graph = TestHeatmap() graph.plot() return graph
mit
aymeric-spiga/planetoplot
examples/ppclass_additional/myhisto.py
1
2450
#! /usr/bin/env python from ppclass import pp from netCDF4 import Dataset from numpy import * import numpy as np import matplotlib.pyplot as mpl ## Author: Tanguy Bertrand ## Exemple d'histogramme # # INPUT : # # file # nb_dataset: number of dataset that is number of superposed histograms # Time range # altitude range # longitude range # latitude range # step: gap on xaxis between two ticks. Ex: step = 1 leads to one bar for each unit of the selected variable # variable : u, v, w, icetot, tsurf ... ############################ filename="diagfi1.nc" nb_dataset=3 tint=[["0.25,1.5"],["0.25,5.5"],["0.25,10.5"]] #Time must be as written in the input file zint=[["0.1,10"],["0.1,10"],["0.1,10"]] #alt in km xarea="-180,180" yarea="-90,90" step=5 var="u" #variable ############################ x=np.zeros(nb_dataset,dtype='object') #object of all datasets bornemax=0. # initialisation boundary values bornemin=0. for i in range(nb_dataset): myvar = pp(file=filename,var=var,t=tint[i],z=zint[i],x=xarea,y=yarea,compute="nothing").getf() # get data to be changed according to selected variable data=np.ravel(myvar) x[i]=np.array(data) #upper lower bounds: maxval=np.amax(myvar) romax=round(maxval,0) if abs(romax/maxval) < 1: romax=romax+1 minval=np.amin(myvar) romin=round(minval,0) if abs(romin/minval) < 1: romin=romin-1 bornemax=np.amax([romax,bornemax]) bornemin=np.amin([romin,bornemin]) # print 'minval,maxval=',minval,romax print 'romin,romax=',romin,romax print 'bornemin,bornemax=',bornemin,bornemax # bins definition: bins=np.arange(bornemin,bornemax+1,step) vect=[x[0],x[1],x[2]] #vecteur of datasets to be changed according to the number of desired datasets ## PLOT # legend: zelab=['time: '+str(tint[0])+' - alt: '+str(zint[0])+' km','time: '+str(tint[1])+' - alt: '+str(zint[1])+' km','time: '+str(tint[2])+' - alt: '+str(zint[2])+' km'] # Histogram : normed, probability mpl.hist(vect,bins,normed=1,histtype='bar',align='mid',rwidth=0.8,label=zelab) mpl.legend(prop={'size':20}) mpl.title('U wind distribution',fontsize=20) mpl.xlabel('Horizontal Wind (m.s-1)',fontsize=20) mpl.ylabel('Probability',fontsize=20) mpl.xticks(bins,fontsize=16) mpl.yticks(fontsize=16) mpl.grid(True) mpl.show() mpl.figure(5)
gpl-2.0
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Stress_Based_Contact_Verification/HardContact_NonLinHardShear/Area/A_1e-4/Normal_Stress_Plot.py
72
2800
#!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; import matplotlib; import math; from matplotlib.ticker import MaxNLocator plt.rcParams.update({'font.size': 28}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=24 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=24 ############################################################### ## Analytical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Analytical_Solution_Normal_Stress.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.figure(figsize=(12,10)) plt.plot(normal_strain*100,normal_stress/1000,'-r',label='Analytical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Interface Type #") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") plt.hold(True) ############################################################### ## Numerical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Monotonic_Contact_Behaviour_Adding_Normal_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.plot(normal_strain*100,normal_stress/1000,'-k',label='Numerical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Normal Strain [%]") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") ############################################################# # # # axes = plt.gca() # # # axes.set_xlim([-7,7]) # # # axes.set_ylim([-1,1]) # outfigname = "Interface_Test_Normal_Stress.pdf"; # plt.axis([0, 5.5, 90, 101]) # legend = plt.legend() # legend.get_frame().set_linewidth(0.0) # legend.get_frame().set_facecolor('none') plt.legend() plt.savefig('Normal_Stress.pdf', bbox_inches='tight') # plt.show()
cc0-1.0
hydroshare/hydroshare2
ga_resources/views/ows.py
2
9987
import json from django.http import HttpResponse from django.shortcuts import get_object_or_404 from ga_ows.views import wms, wfs from ga_resources import models, dispatch from ga_resources.drivers import shapefile, render, CacheManager from ga_resources.models import RenderedLayer from ga_resources.utils import authorize from matplotlib.finance import md5 from osgeo import osr, ogr class WMSAdapter(wms.WMSAdapterBase): def layerlist(self): return [l.slug for l in models.RenderedLayer.objects.all()] def get_2d_dataset(self, layers, srs, bbox, width, height, styles, bgcolor, transparent, time, elevation, v, filter, **kwargs): """use the driver to render a tile""" return render(kwargs['format'], width, height, bbox, srs, styles, layers, **kwargs) def get_feature_info(self, wherex, wherey, layers, callback, format, feature_count, srs, filter, fuzziness=0, **kwargs): # fuzziness of 30 meters by default """use the driver to get feature info""" if srs.lower().startswith('epsg'): s = osr.SpatialReference() s.ImportFromEPSG(int(srs[5:])) srs = s.ExportToProj4() feature_info = { layer: models.RenderedLayer.objects.get(slug=layer).data_resource.driver_instance.get_data_for_point( wherex, wherey, srs, fuzziness=fuzziness, **kwargs ) for layer in layers} return feature_info def nativesrs(self, layer): """Use the resource record to get native SRS""" resource = models.RenderedLayer.objects.get(slug=layer).data_resource return resource.native_srs def nativebbox(self, layer=None): """Use the resource record to get the native bounding box""" if layer: resource = models.RenderedLayer.objects.get(slug=layer).data_resource return resource.native_bounding_box.extent else: return (-180, -90, 180, 90) def styles(self): """Use the resource record to get the available styles""" return list(models.Style.objects.all()) def get_layer_descriptions(self): """ This should return a list of dictionaries. Each dictionary should follow this format:: { ""name"" : layer_"name", "title" : human_readable_title, "srs" : spatial_reference_id, "queryable" : whether or not GetFeatureInfo is supported for this layer, "minx" : native_west_boundary, "miny" : native_south_boundary, "maxx" : native_east_boundary, "maxy" : native_north_boundary, "ll_minx" : west_boundary_epsg4326, "ll_miny" : south_boundary_epsg4326, "ll_maxx" : east_boundary_epsg4326, "ll_maxy" : north_boundary_epsg4326, "styles" : [list_of_style_descriptions] Each style description in list_of_style_descriptions should follow this format:: { ""name"" : style_"name", "title" : style_title, "legend_width" : style_legend_width, "legend_height" : style_legend_height, "legend_url" : style_legend_url } """ layers = models.RenderedLayer.objects.all() ret = [] for layer in layers: desc = {} ret.append(desc) desc["name"] = layer.slug desc['title'] = layer.title desc['srs'] = layer.data_resource.native_srs desc['queryable'] = True desc['minx'], desc['miny'], desc['maxx'], desc[ 'maxy'] = layer.data_resource.native_bounding_box.extent # FIXME this is not native desc['ll_minx'], desc['ll_miny'], desc['ll_maxx'], desc[ 'll_maxy'] = layer.data_resource.bounding_box.extent desc['styles'] = [] desc['styles'].append({ "name": layer.default_style.slug, 'title': layer.default_style.title, 'legend_width': layer.default_style.legend_width, 'legend_height': layer.default_style.legend_height, 'legend_url': layer.default_style.legend.url if layer.default_style.legend else "" }) for style in layer.styles.all(): desc['styles'].append({ "name": style.slug, 'title': style.title, 'legend_width': style.legend_width, 'legend_height': style.legend_height, 'legend_url': style.legend.url if style.legend else "" }) return ret def get_service_boundaries(self): """Just go ahead and return the world coordinates""" return { "minx": -180.0, "miny": -90.0, "maxx": 180.0, "maxy": 90.0 } class WMS(wms.WMS): adapter = WMSAdapter([]) class WFSAdapter(wfs.WFSAdapter): def get_feature_descriptions(self, request, *types): namespace = request.build_absolute_uri().split('?')[ 0] + "/schema" # todo: include https://bitbucket.org/eegg/django-model-schemas/wiki/Home for type_name in types: res = get_object_or_404(models.DataResource, slug=type_name) yield wfs.FeatureDescription( ns=namespace, ns_name='ga_resources', name=res.slug, abstract=res.description, title=res.title, keywords=res.keywords, srs=res.native_srs, bbox=res.bounding_box, schema=namespace + '/' + res.slug ) def list_stored_queries(self, request): """list all the queries associated with drivers""" sq = super(WFSAdapter, self).list_stored_queries(request) return sq def get_features(self, request, parms): if parms.cleaned_data['stored_query_id']: squid = "SQ_" + parms.cleaned_data['stored_query_id'] slug = parms.cleaned_data['type_names'] if isinstance(parms.cleaned_data['type_names'], basestring) else \ parms.cleaned_data['type_names'][0] try: return models.DataResource.driver_instance.query_operation(squid)(request, **parms.cleaned_data) except: raise wfs.OperationNotSupported.at('GetFeatures', 'stored_query_id={squid}'.format(squid=squid)) else: return self.AdHocQuery(request, **parms.cleaned_data) def AdHocQuery(self, req, type_names=None, filter=None, filter_language=None, bbox=None, sort_by=None, count=None, start_index=None, srs_name=None, srs_format=None, max_features=None, **kwargs ): model = get_object_or_404(models.DataResource, slug=type_names[0]) driver = model.driver_instance extra = {} if filter: extra['filter'] = json.loads(filter) if bbox: extra['bbox'] = bbox if srs_name: srs = osr.SpatialReference() if srs_name.lower().startswith('epsg'): srs.ImportFromEPSG(int(srs_name[5:])) else: srs.ImportFromProj4(srs_name) extra['srs'] = srs else: srs = model.srs if start_index: extra['start'] = start_index count = count or max_features if count: extra['count'] = count if "boundary" in kwargs: extra['boundary'] = kwargs['boundary'] extra['boundary_type'] = kwargs['boundary_type'] df = driver.as_dataframe(**extra) if sort_by: extra['sort_by'] = sort_by if filter_language and filter_language != 'json': raise wfs.OperationNotSupported('filter language must be JSON for now') filename = md5() filename.update("{name}.{bbox}.{srs_name}x{filter}".format( name=type_names[0], bbox=','.join(str(b) for b in bbox), srs_name=srs_name, filter=filter )) filename = filename.hexdigest() shapefile.ShapefileDriver.from_dataframe(df, filename, srs) ds = ogr.Open(filename) return ds def supports_feature_versioning(self): return False class WFS(wfs.WFS): adapter = WFSAdapter() def tms(request, layer, z, x, y, **kwargs): z = int(z) x = int(x) y = int(y) table = None if '#' in layer: layer_slug, table = layer.split('#') else: layer_slug = layer layer_instance = RenderedLayer.objects.get(slug=layer_slug) user = authorize(request, page=layer, view=True) dispatch.api_accessed.send(RenderedLayer, instance=layer_instance, user=user) style = request.GET.get('styles', layer_instance.default_style.slug) tms = CacheManager.get().get_tile_cache([layer], [style]) return HttpResponse(tms.fetch_tile(z, x, y), mimetype='image/png') def seed_layer(request, layer): mnz = int(request.GET['minz']) mxz = int(request.GET['maxz']) # anything greater would cause a DOS attack. We should do it manually mnx = int(request.GET['minx']) mxx = int(request.GET['maxx']) mny = int(request.GET['miny']) mxy = int(request.GET['maxy']) layer = RenderedLayer.objects.get(slug=layer) style = request.GET.get('style', layer.default_style) user = authorize(request, page=layer, edit=True) dispatch.api_accessed.send(RenderedLayer, instance=layer, user=user) CacheManager.get().get_tile_cache(layers=[layer], styles=[style]).seed_tiles(mnz, mxz, mnx, mny, mxx, mxy) return HttpResponse()
bsd-3-clause
jjberry/Autotrace
matlab-version/LinguaView.py
3
5404
#!/usr/bin/env python import sys import os import neutralContour as nc import LabelWindow as lw import AnalysisWindow as aw import pygtk pygtk.require("2.0") import gtk import gtk.glade import gobject from matplotlib.figure import Figure from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas class LinguaViewer: """This is the class for the main window of LinguaViewer""" def __init__(self, datafiles=[]): #self.static_dir = '/Users/jeff/autotracer/trunk/LinguaViewer/' self.gladefile = "LinguaViewer.glade" self.wTree = gtk.glade.XML(self.gladefile, "mainwindow") self.win = self.wTree.get_widget("mainwindow") self.win.set_title("LinguaView") self.mainVBox = self.wTree.get_widget("vbox2") dic = { "on_mainwindow_destroy": gtk.main_quit, "on_quit_activate" : gtk.main_quit, "on_open_activate" : self.onOpen, "on_tbOpen_clicked" : self.onOpen, "on_tbView_clicked": self.onView, "on_tbLabel1_clicked": self.onLabel, "on_tbRemove_clicked" : self.onRemove, "on_tbAnalyze_clicked" : self.onAnalyze, "on_showlinguagram_toggled": self.showlinguagram, "on_showneutral_toggled": self.showneutral, "on_showwave_toggled": self.showwave, "on_showspec_toggled": self.showspec} self.wTree.signal_autoconnect(dic) self.SHOW_LING = False self.SHOW_NEUT = False self.SHOW_WAVE = False self.SHOW_SPEC = False self.linguaToggle = self.wTree.get_widget("showlinguagram") self.neutralToggle = self.wTree.get_widget("showneutral") self.neutralToggle.set_active(True) self.waveToggle = self.wTree.get_widget("showwave") self.waveToggle.set_active(True) self.specToggle = self.wTree.get_widget("showspec") self.specToggle.set_active(True) self.TreeView = self.wTree.get_widget("treeview1") column = gtk.TreeViewColumn("Data Files", gtk.CellRendererText(), text=0) column.set_resizable(True) column.set_sort_column_id(0) self.TreeView.append_column(column) self.DataList = gtk.ListStore(str) self.TreeView.set_model(self.DataList) self.datafiles = datafiles if len(self.datafiles) > 0: for i in self.datafiles: self.DataList.append([i]) self.labelInd = 0 def onOpen(self, event): fc = gtk.FileChooserDialog(title='Open Data Files', parent=None, action=gtk.FILE_CHOOSER_ACTION_OPEN, buttons=(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL, gtk.STOCK_OPEN, gtk.RESPONSE_OK)) g_directory = fc.get_current_folder() if fc.get_current_folder() else os.path.expanduser("~") fc.set_current_folder(g_directory) fc.set_default_response(gtk.RESPONSE_OK) fc.set_select_multiple(True) ffilter = gtk.FileFilter() ffilter.set_name('.csv Files') ffilter.add_pattern('*.csv') fc.add_filter(ffilter) response = fc.run() if response == gtk.RESPONSE_OK: self.datafiles = fc.get_filenames() g_directory = fc.get_current_folder() for i in self.datafiles: self.DataList.append([i]) fc.destroy() def onRemove(self, event): selection = self.TreeView.get_selection() model, select_iter = selection.get_selected() if (select_iter): self.DataList.remove(select_iter) def onView(self, event): selection = self.TreeView.get_selection() model, select_iter = selection.get_selected() if (select_iter): fname = self.DataList.get_value(select_iter, 0) n = fname.split('/') neutralfname = '/'.join(n[:-1]) + '/neutral.csv' nc.NeutralTongue(fname, neutralfname, self.SHOW_LING, self.SHOW_NEUT, self.SHOW_WAVE, self.SHOW_SPEC) def onLabel(self, event): selection = self.TreeView.get_selection() model, select_iter = selection.get_selected() if (select_iter): fname = self.DataList.get_value(select_iter, 0) n = fname.split('/') neutralfname = '/'.join(n[:-1]) + '/neutral.csv' lw.LabelWindow([fname], self.SHOW_LING, self.SHOW_NEUT, self.SHOW_WAVE, self.SHOW_SPEC) def onAnalyze(self, event): aw.AnalysisWindow(self.datafiles) def showlinguagram(self, event): if self.SHOW_LING == False: self.SHOW_LING = True else: self.SHOW_LING = False def showneutral(self, event): if self.SHOW_NEUT == False: self.SHOW_NEUT = True else: self.SHOW_NEUT = False def showwave(self, event): if self.SHOW_WAVE == False: self.SHOW_WAVE = True else: self.SHOW_WAVE = False def showspec(self, event): if self.SHOW_SPEC == False: self.SHOW_SPEC = True else: self.SHOW_SPEC = False if __name__ == "__main__": LinguaViewer() gtk.main()
mit
Opendigitalradio/ODR-StaticPrecorrection
analyze_aligned_rx_tx.py
1
3969
""" Generate analytic plots from aligned TX/RX recordings. """ import argparse import numpy as np import matplotlib.pyplot as plt import src.dab_util as du import scipy.stats as st from sklearn.neighbors import KernelDensity import os SCATTER_SIZE = 0.0001 def kde2D(x, y, bandwidth, xbins=256j, ybins=256j, **kwargs): xx, yy = np.mgrid[x.min():x.max():xbins, y.min():y.max():ybins] xy_sample = np.vstack([yy.ravel(), xx.ravel()]).T xy_train = np.vstack([y, x]).T kde_skl = KernelDensity(bandwidth=bandwidth, **kwargs) kde_skl.fit(xy_train) z = np.exp(kde_skl.score_samples(xy_sample)) return xx, yy, np.reshape(z, xx.shape) def plot_density(x, y, scatter=False, path=None): x = np.abs(x) y = np.abs(y) x = x - np.min(x) x = x / np.max(x) y = y - np.min(y) y = y / np.max(y) max_val = max(np.max(x), np.max(y)) min_val = max(np.min(x), np.min(y)) xx, yy, zz = kde2D(x, y, (max_val - min_val) * 0.01) plt.pcolormesh(xx, yy, zz) plt.xlabel("Normalized Absolute TX Amplitude") plt.ylabel("Normalized Absolute RX Amplitude") plt.savefig(path) def scatter(x_pos, y_pos, x_neg, y_neg, path=None): x_pos, y_pos, x_neg, y_neg = np.abs(x_pos), np.abs(y_pos), np.abs(x_neg), np.abs(y_neg) plt.scatter(x_pos, y_pos, s=SCATTER_SIZE, facecolor='blue', label="Positive TX/RX") plt.scatter(x_neg, y_neg, s=SCATTER_SIZE, facecolor='red', label="Negative TX/RX") plt.xlabel("Absolute TX Amplitude") plt.ylabel("Absolute RX Amplitude") plt.legend() plt.savefig(path) plt.clf() def scatter_phase(x_pos, y_pos, x_neg, y_neg, path=None): x_pos_abs = np.abs(x_pos) x_neg_abs = np.abs(x_neg) phase_diff_pos = np.angle(x_pos, deg=True) - np.angle(y_pos, deg=True) phase_diff_neg = np.angle(x_neg, deg=True) - np.angle(y_neg, deg=True) phase_diff_pos = np.mod(phase_diff_pos, 180) phase_diff_neg = np.mod(phase_diff_neg, 180) plt.scatter(x_pos_abs, phase_diff_pos, s=SCATTER_SIZE, facecolor='blue', label="Positive TX/RX") plt.scatter(x_neg_abs, phase_diff_neg, s=SCATTER_SIZE, facecolor='red', label="Negative TX/TX") plt.ylabel("Phase difference") plt.xlabel("Absolute Amplitude") plt.legend() plt.savefig(path) plt.clf() def plot_time(rx_rec, tx_rec, path=None, samples=256): plt.plot(np.angle(rx_rec[:256]), c='blue', label="RX") plt.plot(np.angle(tx_rec[:256]), c='red', label="TX") plt.ylabel("Phase") plt.xlabel("Sample") plt.savefig(path) plt.clf() def main(): if not os.path.isdir(FLAGS.out_dir): os.makedirs(FLAGS.out_dir) rx_rec = du.fromfile(filename=FLAGS.rx_path) tx_rec = du.fromfile(filename=FLAGS.tx_path) sel_pos = (rx_rec > 0) & (tx_rec > 0) rx_rec_pos = rx_rec[sel_pos] tx_rec_pos = tx_rec[sel_pos] sel_pos = (rx_rec < 0) & (tx_rec < 0) rx_rec_neg = rx_rec[sel_pos] tx_rec_neg = tx_rec[sel_pos] scatter(tx_rec_pos, rx_rec_pos, tx_rec_neg, rx_rec_neg, path=FLAGS.out_dir + '/am_am_scatter.pdf') scatter_phase(tx_rec_pos, rx_rec_pos, tx_rec_neg, rx_rec_neg, path=FLAGS.out_dir + '/am_pm_pos_scatter.pdf') plot_time(rx_rec, tx_rec, path=FLAGS.out_dir + '/phase_over_time.pdf') plot_density(tx_rec_pos, rx_rec_pos, path=FLAGS.out_dir + '/am_am_pos.pdf') plot_density(tx_rec_neg, rx_rec_neg, path=FLAGS.out_dir + '/am_am_neg.pdf') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--rx_path', type=str, default='/tmp/record/2_rx_record.iq', help="Path to complex64 rx recording" ) parser.add_argument( '--tx_path', type=str, default='/tmp/record/2_tx_record.iq', help="Path to complex64 tx recording" ) parser.add_argument( '--out_dir', type=str, default='/tmp/analyze_aligned_rx_tx', help="Output path" ) FLAGS, unparsed = parser.parse_known_args() main()
mit
ch3ll0v3k/scikit-learn
examples/manifold/plot_lle_digits.py
181
8510
""" ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= An illustration of various embeddings on the digits dataset. The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-separable. t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting. It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization. """ # Authors: Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, lda, random_projection) digits = datasets.load_digits(n_class=6) X = digits.data y = digits.target n_samples, n_features = X.shape n_neighbors = 30 #---------------------------------------------------------------------- # Scale and visualize the embedding vectors def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(digits.data.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) #---------------------------------------------------------------------- # Plot images of the digits n_img_per_row = 20 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) plt.imshow(img, cmap=plt.cm.binary) plt.xticks([]) plt.yticks([]) plt.title('A selection from the 64-dimensional digits dataset') #---------------------------------------------------------------------- # Random 2D projection using a random unitary matrix print("Computing random projection") rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X) plot_embedding(X_projected, "Random Projection of the digits") #---------------------------------------------------------------------- # Projection on to the first 2 principal components print("Computing PCA projection") t0 = time() X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X) plot_embedding(X_pca, "Principal Components projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Projection on to the first 2 linear discriminant components print("Computing LDA projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible t0 = time() X_lda = lda.LDA(n_components=2).fit_transform(X2, y) plot_embedding(X_lda, "Linear Discriminant projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Isomap projection of the digits dataset print("Computing Isomap embedding") t0 = time() X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X) print("Done.") plot_embedding(X_iso, "Isomap projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Locally linear embedding of the digits dataset print("Computing LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='standard') t0 = time() X_lle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_lle, "Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Modified Locally linear embedding of the digits dataset print("Computing modified LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='modified') t0 = time() X_mlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_mlle, "Modified Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # HLLE embedding of the digits dataset print("Computing Hessian LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='hessian') t0 = time() X_hlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_hlle, "Hessian Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # LTSA embedding of the digits dataset print("Computing LTSA embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='ltsa') t0 = time() X_ltsa = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_ltsa, "Local Tangent Space Alignment of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # MDS embedding of the digits dataset print("Computing MDS embedding") clf = manifold.MDS(n_components=2, n_init=1, max_iter=100) t0 = time() X_mds = clf.fit_transform(X) print("Done. Stress: %f" % clf.stress_) plot_embedding(X_mds, "MDS embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Random Trees embedding of the digits dataset print("Computing Totally Random Trees embedding") hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) t0 = time() X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) plot_embedding(X_reduced, "Random forest embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Spectral embedding of the digits dataset print("Computing Spectral embedding") embedder = manifold.SpectralEmbedding(n_components=2, random_state=0, eigen_solver="arpack") t0 = time() X_se = embedder.fit_transform(X) plot_embedding(X_se, "Spectral embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # t-SNE embedding of the digits dataset print("Computing t-SNE embedding") tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) t0 = time() X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne, "t-SNE embedding of the digits (time %.2fs)" % (time() - t0)) plt.show()
bsd-3-clause
nuclear-wizard/moose
modules/combined/test/tests/inelastic_strain/elas_plas/plot_cycled_stress.py
21
1045
#!/opt/moose/miniconda/bin/python #* This file is part of the MOOSE framework #* https://www.mooseframework.org #* #* All rights reserved, see COPYRIGHT for full restrictions #* https://github.com/idaholab/moose/blob/master/COPYRIGHT #* #* Licensed under LGPL 2.1, please see LICENSE for details #* https://www.gnu.org/licenses/lgpl-2.1.html import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mtick import pylab data = np.genfromtxt('./elas_plas_nl1_cycle_out.csv', delimiter=',', names=True) fig = plt.figure() ax1 = fig.add_subplot(111) mpl.rcParams.update({'font.size': 10}) ax1.set_xlabel("Time") ax1.set_ylabel("Stress (MPa)") ax1.plot(data['time'], data['stress_yy'], label='Stress YY', color='k') ax1.plot(data['time'], data['vonmises'], label='Vonmises', color='b') ax1.plot(data['time'], data['pressure'], label='Pressure', color='r') ax1.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.2e')) leg = ax1.legend(loc='best') plt.savefig('plot_cycled_stress.pdf') plt.show(fig)
lgpl-2.1
eteq/bokeh
bokeh/charts/builder/timeseries_builder.py
17
6098
"""This is the Bokeh charts interface. It gives you a high level API to build complex plot is a simple way. This is the TimeSeries class which lets you build your TimeSeries charts just passing the arguments to the Chart class and calling the proper functions. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from six import string_types try: import pandas as pd except ImportError: pd = None from ..utils import chunk, cycle_colors from .._builder import Builder, create_and_build from ...models import ColumnDataSource, DataRange1d, GlyphRenderer, Range1d from ...models.glyphs import Line from ...properties import Any #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- def TimeSeries(values, index=None, xscale='datetime', **kws): """ Create a timeseries chart using :class:`TimeSeriesBuilder <bokeh.charts.builder.timeseries_builder.TimeSeriesBuilder>` to render the lines from values and index. Args: values (iterable): iterable 2d representing the data series values matrix. index (str|1d iterable, optional): can be used to specify a common custom index for all data series as an **1d iterable** of any sort that will be used as series common index or a **string** that corresponds to the key of the mapping to be used as index (and not as data series) if area.values is a mapping (like a dict, an OrderedDict or a pandas DataFrame) In addition the the parameters specific to this chart, :ref:`userguide_charts_generic_arguments` are also accepted as keyword parameters. Returns: a new :class:`Chart <bokeh.charts.Chart>` Examples: .. bokeh-plot:: :source-position: above from collections import OrderedDict import datetime from bokeh.charts import TimeSeries, output_file, show # (dict, OrderedDict, lists, arrays and DataFrames are valid inputs) now = datetime.datetime.now() delta = datetime.timedelta(minutes=1) dts = [now + delta*i for i in range(5)] xyvalues = OrderedDict({'Date': dts}) y_python = xyvalues['python'] = [2, 3, 7, 5, 26] y_pypy = xyvalues['pypy'] = [12, 33, 47, 15, 126] y_jython = xyvalues['jython'] = [22, 43, 10, 25, 26] ts = TimeSeries(xyvalues, index='Date', title="TimeSeries", legend="top_left", ylabel='Languages') output_file('timeseries.html') show(ts) """ return create_and_build( TimeSeriesBuilder, values, index=index, xscale=xscale, **kws ) class TimeSeriesBuilder(Builder): """This is the TimeSeries class and it is in charge of plotting TimeSeries charts in an easy and intuitive way. Essentially, we provide a way to ingest the data, make the proper calculations and push the references into a source object. We additionally make calculations for the ranges. And finally add the needed lines taking the references from the source. """ index = Any(help=""" An index to be used for all data series as follows: - A 1d iterable of any sort that will be used as series common index - As a string that corresponds to the key of the mapping to be used as index (and not as data series) if area.values is a mapping (like a dict, an OrderedDict or a pandas DataFrame) """) def _process_data(self): """Take the x/y data from the timeseries values. It calculates the chart properties accordingly. Then build a dict containing references to all the points to be used by the line glyph inside the ``_yield_renderers`` method. """ self._data = dict() # list to save all the attributes we are going to create self._attr = [] # necessary to make all formats and encoder happy with array, blaze, ... xs = list([x for x in self._values_index]) for col, values in self._values.items(): if isinstance(self.index, string_types) \ and col == self.index: continue # save every the groups available in the incomming input self._groups.append(col) self.set_and_get("x_", col, xs) self.set_and_get("y_", col, values) def _set_sources(self): """Push the TimeSeries data into the ColumnDataSource and calculate the proper ranges. """ self._source = ColumnDataSource(self._data) self.x_range = DataRange1d() y_names = self._attr[1::2] endy = max(max(self._data[i]) for i in y_names) starty = min(min(self._data[i]) for i in y_names) self.y_range = Range1d( start=starty - 0.1 * (endy - starty), end=endy + 0.1 * (endy - starty) ) def _yield_renderers(self): """Use the line glyphs to connect the xy points in the time series. Takes reference points from the data loaded at the ColumnDataSource. """ self._duplet = list(chunk(self._attr, 2)) colors = cycle_colors(self._duplet, self.palette) for i, (x, y) in enumerate(self._duplet, start=1): glyph = Line(x=x, y=y, line_color=colors[i - 1]) renderer = GlyphRenderer(data_source=self._source, glyph=glyph) self._legends.append((self._groups[i-1], [renderer])) yield renderer
bsd-3-clause
bthirion/scikit-learn
sklearn/neighbors/unsupervised.py
29
4756
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`kneighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth:`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p : integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Affects only :meth:`kneighbors` and :meth:`kneighbors_graph` methods. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> nbrs = neigh.radius_neighbors([[0, 0, 1.3]], 0.4, return_distance=False) >>> np.asarray(nbrs[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs)
bsd-3-clause
maheshakya/scikit-learn
examples/svm/plot_custom_kernel.py
115
1546
""" ====================== SVM with custom kernel ====================== Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target def my_kernel(x, y): """ We create a custom kernel: (2 0) k(x, y) = x ( ) y.T (0 1) """ M = np.array([[2, 0], [0, 1.0]]) return np.dot(np.dot(x, M), y.T) h = .02 # step size in the mesh # we create an instance of SVM and fit out data. clf = svm.SVC(kernel=my_kernel) clf.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.title('3-Class classification using Support Vector Machine with custom' ' kernel') plt.axis('tight') plt.show()
bsd-3-clause
numenta/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/projections/geo.py
69
19738
import math import numpy as np import numpy.ma as ma import matplotlib rcParams = matplotlib.rcParams from matplotlib.artist import kwdocd from matplotlib.axes import Axes from matplotlib import cbook from matplotlib.patches import Circle from matplotlib.path import Path from matplotlib.ticker import Formatter, Locator, NullLocator, FixedLocator, NullFormatter from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, \ BboxTransformTo, IdentityTransform, Transform, TransformWrapper class GeoAxes(Axes): """ An abstract base class for geographic projections """ class ThetaFormatter(Formatter): """ Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a degree symbol. """ def __init__(self, round_to=1.0): self._round_to = round_to def __call__(self, x, pos=None): degrees = (x / np.pi) * 180.0 degrees = round(degrees / self._round_to) * self._round_to if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: return r"$%0.0f^\circ$" % degrees else: return u"%0.0f\u00b0" % degrees RESOLUTION = 75 def cla(self): Axes.cla(self) self.set_longitude_grid(30) self.set_latitude_grid(15) self.set_longitude_grid_ends(75) self.xaxis.set_minor_locator(NullLocator()) self.yaxis.set_minor_locator(NullLocator()) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') self.grid(rcParams['axes.grid']) Axes.set_xlim(self, -np.pi, np.pi) Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0) def _set_lim_and_transforms(self): # A (possibly non-linear) projection on the (already scaled) data self.transProjection = self._get_core_transform(self.RESOLUTION) self.transAffine = self._get_affine_transform() self.transAxes = BboxTransformTo(self.bbox) # The complete data transformation stack -- from data all the # way to display coordinates self.transData = \ self.transProjection + \ self.transAffine + \ self.transAxes # This is the transform for longitude ticks. self._xaxis_pretransform = \ Affine2D() \ .scale(1.0, self._longitude_cap * 2.0) \ .translate(0.0, -self._longitude_cap) self._xaxis_transform = \ self._xaxis_pretransform + \ self.transData self._xaxis_text1_transform = \ Affine2D().scale(1.0, 0.0) + \ self.transData + \ Affine2D().translate(0.0, 4.0) self._xaxis_text2_transform = \ Affine2D().scale(1.0, 0.0) + \ self.transData + \ Affine2D().translate(0.0, -4.0) # This is the transform for latitude ticks. yaxis_stretch = Affine2D().scale(np.pi * 2.0, 1.0).translate(-np.pi, 0.0) yaxis_space = Affine2D().scale(1.0, 1.1) self._yaxis_transform = \ yaxis_stretch + \ self.transData yaxis_text_base = \ yaxis_stretch + \ self.transProjection + \ (yaxis_space + \ self.transAffine + \ self.transAxes) self._yaxis_text1_transform = \ yaxis_text_base + \ Affine2D().translate(-8.0, 0.0) self._yaxis_text2_transform = \ yaxis_text_base + \ Affine2D().translate(8.0, 0.0) def _get_affine_transform(self): transform = self._get_core_transform(1) xscale, _ = transform.transform_point((np.pi, 0)) _, yscale = transform.transform_point((0, np.pi / 2.0)) return Affine2D() \ .scale(0.5 / xscale, 0.5 / yscale) \ .translate(0.5, 0.5) def get_xaxis_transform(self): return self._xaxis_transform def get_xaxis_text1_transform(self, pad): return self._xaxis_text1_transform, 'bottom', 'center' def get_xaxis_text2_transform(self, pad): return self._xaxis_text2_transform, 'top', 'center' def get_yaxis_transform(self): return self._yaxis_transform def get_yaxis_text1_transform(self, pad): return self._yaxis_text1_transform, 'center', 'right' def get_yaxis_text2_transform(self, pad): return self._yaxis_text2_transform, 'center', 'left' def _gen_axes_patch(self): return Circle((0.5, 0.5), 0.5) def set_yscale(self, *args, **kwargs): if args[0] != 'linear': raise NotImplementedError set_xscale = set_yscale def set_xlim(self, *args, **kwargs): Axes.set_xlim(self, -np.pi, np.pi) Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0) set_ylim = set_xlim def format_coord(self, long, lat): 'return a format string formatting the coordinate' long = long * (180.0 / np.pi) lat = lat * (180.0 / np.pi) if lat >= 0.0: ns = 'N' else: ns = 'S' if long >= 0.0: ew = 'E' else: ew = 'W' return u'%f\u00b0%s, %f\u00b0%s' % (abs(lat), ns, abs(long), ew) def set_longitude_grid(self, degrees): """ Set the number of degrees between each longitude grid. """ number = (360.0 / degrees) + 1 self.xaxis.set_major_locator( FixedLocator( np.linspace(-np.pi, np.pi, number, True)[1:-1])) self._logitude_degrees = degrees self.xaxis.set_major_formatter(self.ThetaFormatter(degrees)) def set_latitude_grid(self, degrees): """ Set the number of degrees between each longitude grid. """ number = (180.0 / degrees) + 1 self.yaxis.set_major_locator( FixedLocator( np.linspace(-np.pi / 2.0, np.pi / 2.0, number, True)[1:-1])) self._latitude_degrees = degrees self.yaxis.set_major_formatter(self.ThetaFormatter(degrees)) def set_longitude_grid_ends(self, degrees): """ Set the latitude(s) at which to stop drawing the longitude grids. """ self._longitude_cap = degrees * (np.pi / 180.0) self._xaxis_pretransform \ .clear() \ .scale(1.0, self._longitude_cap * 2.0) \ .translate(0.0, -self._longitude_cap) def get_data_ratio(self): ''' Return the aspect ratio of the data itself. ''' return 1.0 ### Interactive panning def can_zoom(self): """ Return True if this axes support the zoom box """ return False def start_pan(self, x, y, button): pass def end_pan(self): pass def drag_pan(self, button, key, x, y): pass class AitoffAxes(GeoAxes): name = 'aitoff' class AitoffTransform(Transform): """ The base Aitoff transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Aitoff transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Aitoff space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): longitude = ll[:, 0:1] latitude = ll[:, 1:2] # Pre-compute some values half_long = longitude / 2.0 cos_latitude = np.cos(latitude) alpha = np.arccos(cos_latitude * np.cos(half_long)) # Mask this array, or we'll get divide-by-zero errors alpha = ma.masked_where(alpha == 0.0, alpha) # We want unnormalized sinc. numpy.sinc gives us normalized sinc_alpha = ma.sin(alpha) / alpha x = (cos_latitude * np.sin(half_long)) / sinc_alpha y = (np.sin(latitude) / sinc_alpha) x.set_fill_value(0.0) y.set_fill_value(0.0) return np.concatenate((x.filled(), y.filled()), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return AitoffAxes.InvertedAitoffTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedAitoffTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, xy): # MGDTODO: Math is hard ;( return xy transform.__doc__ = Transform.transform.__doc__ def inverted(self): return AitoffAxes.AitoffTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.AitoffTransform(resolution) class HammerAxes(GeoAxes): name = 'hammer' class HammerTransform(Transform): """ The base Hammer transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Hammer transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Hammer space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): longitude = ll[:, 0:1] latitude = ll[:, 1:2] # Pre-compute some values half_long = longitude / 2.0 cos_latitude = np.cos(latitude) sqrt2 = np.sqrt(2.0) alpha = 1.0 + cos_latitude * np.cos(half_long) x = (2.0 * sqrt2) * (cos_latitude * np.sin(half_long)) / alpha y = (sqrt2 * np.sin(latitude)) / alpha return np.concatenate((x, y), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return HammerAxes.InvertedHammerTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedHammerTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, xy): x = xy[:, 0:1] y = xy[:, 1:2] quarter_x = 0.25 * x half_y = 0.5 * y z = np.sqrt(1.0 - quarter_x*quarter_x - half_y*half_y) longitude = 2 * np.arctan((z*x) / (2.0 * (2.0*z*z - 1.0))) latitude = np.arcsin(y*z) return np.concatenate((longitude, latitude), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return HammerAxes.HammerTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.HammerTransform(resolution) class MollweideAxes(GeoAxes): name = 'mollweide' class MollweideTransform(Transform): """ The base Mollweide transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Mollweide transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Mollweide space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): longitude = ll[:, 0:1] latitude = ll[:, 1:2] aux = 2.0 * np.arcsin((2.0 * latitude) / np.pi) x = (2.0 * np.sqrt(2.0) * longitude * np.cos(aux)) / np.pi y = (np.sqrt(2.0) * np.sin(aux)) return np.concatenate((x, y), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return MollweideAxes.InvertedMollweideTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedMollweideTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, xy): # MGDTODO: Math is hard ;( return xy transform.__doc__ = Transform.transform.__doc__ def inverted(self): return MollweideAxes.MollweideTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.MollweideTransform(resolution) class LambertAxes(GeoAxes): name = 'lambert' class LambertTransform(Transform): """ The base Lambert transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, center_longitude, center_latitude, resolution): """ Create a new Lambert transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Lambert space. """ Transform.__init__(self) self._resolution = resolution self._center_longitude = center_longitude self._center_latitude = center_latitude def transform(self, ll): longitude = ll[:, 0:1] latitude = ll[:, 1:2] clong = self._center_longitude clat = self._center_latitude cos_lat = np.cos(latitude) sin_lat = np.sin(latitude) diff_long = longitude - clong cos_diff_long = np.cos(diff_long) inner_k = (1.0 + np.sin(clat)*sin_lat + np.cos(clat)*cos_lat*cos_diff_long) # Prevent divide-by-zero problems inner_k = np.where(inner_k == 0.0, 1e-15, inner_k) k = np.sqrt(2.0 / inner_k) x = k*cos_lat*np.sin(diff_long) y = k*(np.cos(clat)*sin_lat - np.sin(clat)*cos_lat*cos_diff_long) return np.concatenate((x, y), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return LambertAxes.InvertedLambertTransform( self._center_longitude, self._center_latitude, self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedLambertTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, center_longitude, center_latitude, resolution): Transform.__init__(self) self._resolution = resolution self._center_longitude = center_longitude self._center_latitude = center_latitude def transform(self, xy): x = xy[:, 0:1] y = xy[:, 1:2] clong = self._center_longitude clat = self._center_latitude p = np.sqrt(x*x + y*y) p = np.where(p == 0.0, 1e-9, p) c = 2.0 * np.arcsin(0.5 * p) sin_c = np.sin(c) cos_c = np.cos(c) lat = np.arcsin(cos_c*np.sin(clat) + ((y*sin_c*np.cos(clat)) / p)) long = clong + np.arctan( (x*sin_c) / (p*np.cos(clat)*cos_c - y*np.sin(clat)*sin_c)) return np.concatenate((long, lat), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return LambertAxes.LambertTransform( self._center_longitude, self._center_latitude, self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 self._center_longitude = kwargs.pop("center_longitude", 0.0) self._center_latitude = kwargs.pop("center_latitude", 0.0) GeoAxes.__init__(self, *args, **kwargs) self.set_aspect('equal', adjustable='box', anchor='C') self.cla() def cla(self): GeoAxes.cla(self) self.yaxis.set_major_formatter(NullFormatter()) def _get_core_transform(self, resolution): return self.LambertTransform( self._center_longitude, self._center_latitude, resolution) def _get_affine_transform(self): return Affine2D() \ .scale(0.25) \ .translate(0.5, 0.5)
agpl-3.0
BhallaLab/moose-full
moose-examples/paper-2015/Fig4_ReacDiff/rxdSpineSize.py
6
11226
################################################################## ## This program is part of 'MOOSE', the ## Messaging Object Oriented Simulation Environment. ## Copyright (C) 2015 Upinder S. Bhalla. and NCBS ## It is made available under the terms of the ## GNU Lesser General Public License version 2.1 ## See the file COPYING.LIB for the full notice. ## ## rxdSpineSize.py: Builds a cell with spines and a propagating reaction ## wave. Products diffuse into the spine and cause it to get bigger. ################################################################## import math import pylab import numpy import matplotlib.pyplot as plt import moose import sys sys.path.append( '../util' ) import rdesigneur as rd from PyQt4 import QtGui import moogli import moogli.extensions.moose import matplotlib PI = 3.141592653 ScalingForTesting = 10 RM = 1.0 / ScalingForTesting RA = 1.0 * ScalingForTesting CM = 0.01 * ScalingForTesting runtime = 100.0 frameruntime = 1.0 diffConst = 5e-12 dendLen = 100e-6 diffLen = 1.0e-6 dendDia = 2e-6 somaDia = 5e-6 concInit = 0.001 # 1 millimolar spineSpacing = 10e-6 spineSpacingDistrib = 1e-6 spineSize = 1.0 spineSizeDistrib = 0.5 spineAngle= numpy.pi / 2.0 spineAngleDistrib = 0.0 def makeCellProto( name ): elec = moose.Neuron( '/library/' + name ) ecompt = [] soma = rd.buildCompt( elec, 'soma', somaDia, somaDia, -somaDia, RM, RA, CM ) dend = rd.buildCompt( elec, 'dend', dendLen, dendDia, 0, RM, RA, CM ) moose.connect( soma, 'axial', dend, 'raxial' ) elec.buildSegmentTree() def makeChemProto( name ): chem = moose.Neutral( '/library/' + name ) comptVol = diffLen * dendDia * dendDia * PI / 4.0 for i in ( ['dend', comptVol], ['spine', 1e-19], ['psd', 1e-20] ): print 'making ', i compt = moose.CubeMesh( chem.path + '/' + i[0] ) compt.volume = i[1] #x = moose.Pool( compt.path + '/x' ) #y = moose.BufPool( compt.path + '/y' ) z = moose.Pool( compt.path + '/z' ) #x.concInit = 0.0 #x.diffConst = diffConst #y.concInit = concInit z.concInit = 0.0 z.diffConst = diffConst nInit = comptVol * 6e23 * concInit nstr = str( 1/nInit) x = moose.Pool( chem.path + '/dend/x' ) x.diffConst = diffConst func = moose.Function( x.path + '/func' ) func.expr = "-x0 * (0.3 - " + nstr + " * x0) * ( 1 - " + nstr + " * x0)" print func.expr func.x.num = 1 moose.connect( x, 'nOut', func.x[0], 'input' ) moose.connect( func, 'valueOut', x, 'increment' ) z = moose.element( '/library/' + name + '/dend/z' ) reac = moose.Reac( '/library/' + name + '/dend/reac' ) reac.Kf = 1 reac.Kb = 10 moose.connect( reac, 'sub', x, 'reac' ) moose.connect( reac, 'prd', z, 'reac' ) def makeSpineProto2( name ): spine = moose.Neutral( '/library/' + name ) shaft = rd.buildCompt( spine, 'shaft', 0.5e-6, 0.4e-6, 0, RM, RA, CM ) head = rd.buildCompt( spine, 'head', 0.5e-6, 0.5e-6, 0.5e-6, RM, RA, CM ) moose.connect( shaft, 'axial', head, 'raxial' ) def makeModel(): moose.Neutral( '/library' ) makeCellProto( 'cellProto' ) makeChemProto( 'cProto' ) makeSpineProto2( 'spine' ) rdes = rd.rdesigneur( useGssa = False, \ combineSegments = False, \ stealCellFromLibrary = True, \ meshLambda = 1e-6, \ cellProto = [['cellProto', 'elec' ]] ,\ spineProto = [['spineProto', 'spine' ]] ,\ chemProto = [['cProto', 'chem' ]] ,\ spineDistrib = [ \ ['spine', '#', \ 'spacing', str( spineSpacing ), \ 'spacingDistrib', str( spineSpacingDistrib ), \ 'angle', str( spineAngle ), \ 'angleDistrib', str( spineAngleDistrib ), \ 'size', str( spineSize ), \ 'sizeDistrib', str( spineSizeDistrib ) ] \ ], \ chemDistrib = [ \ [ "chem", "dend", "install", "1" ] \ ], adaptorList = [ \ [ 'psd/z', 'n', 'spine', 'psdArea', 10.0e-15, 300e-15 ], \ ] \ ) rdes.buildModel( '/model' ) x = moose.vec( '/model/chem/dend/x' ) x.concInit = 0.0 for i in range( 0,20 ): x[i].concInit = concInit def makePlot( name, srcVec, field ): tab = moose.Table2('/graphs/' + name + 'Tab', len( srcVec ) ).vec for i in zip(srcVec, tab): moose.connect(i[1], 'requestOut', i[0], field) return tab def displayPlots(): for x in moose.wildcardFind( '/graphs/#[0]' ): tab = moose.vec( x ) for i in range( len( tab ) ): pylab.plot( tab[i].vector, label=x.name[:-3] + " " + str( i ) ) pylab.legend() pylab.figure() def main(): """ This illustrates the use of rdesigneur to build a simple dendrite with spines, and then to resize them using spine fields. These are the fields that would be changed dynamically in a simulation with reactions that affect spine geometry. In this simulation there is a propagating reaction wave using a highly abstracted equation, whose product diffuses into the spines and makes them bigger. """ makeModel() elec = moose.element( '/model/elec' ) elec.setSpineAndPsdMesh( moose.element('/model/chem/spine'), moose.element('/model/chem/psd') ) eHead = moose.wildcardFind( '/model/elec/#head#' ) oldDia = [ i.diameter for i in eHead ] graphs = moose.Neutral( '/graphs' ) #makePlot( 'psd_x', moose.vec( '/model/chem/psd/x' ), 'getN' ) #makePlot( 'head_x', moose.vec( '/model/chem/spine/x' ), 'getN' ) makePlot( 'dend_x', moose.vec( '/model/chem/dend/x' ), 'getN' ) makePlot( 'dend_z', moose.vec( '/model/chem/dend/z' ), 'getN' ) makePlot( 'head_z', moose.vec( '/model/chem/spine/z' ), 'getN' ) makePlot( 'psd_z', moose.vec( '/model/chem/psd/z' ), 'getN' ) makePlot( 'headDia', eHead, 'getDiameter' ) ''' debug = moose.PyRun( '/pyrun' ) debug.tick = 10 debug.runString = """print "RUNNING: ", moose.element( '/model/chem/psd/z' ).n, moose.element( '/model/elec/head0' ).diameter""" ''' moose.reinit() moose.start( runtime ) displayPlots() pylab.plot( oldDia, label = 'old Diameter' ) pylab.plot( [ i.diameter for i in eHead ], label = 'new Diameter' ) pylab.legend() pylab.show() app = QtGui.QApplication(sys.argv) #widget = mv.MoogliViewer( '/model' ) morphology = moogli.read_morphology_from_moose( name="", path = '/model/elec' ) widget = moogli.MorphologyViewerWidget( morphology ) widget.show() return app.exec_() quit() # Run the 'main' if this script is executed standalone. def showVisualization(): makeModel() elec = moose.element( '/model/elec' ) elec.setSpineAndPsdMesh( moose.element('/model/chem/spine'), moose.element('/model/chem/psd') ) eHead = moose.wildcardFind( '/model/elec/#head#' ) oldDia = [ i.diameter for i in eHead ] graphs = moose.Neutral( '/graphs' ) #makePlot( 'psd_x', moose.vec( '/model/chem/psd/x' ), 'getN' ) #makePlot( 'head_x', moose.vec( '/model/chem/spine/x' ), 'getN' ) makePlot( 'dend_x', moose.vec( '/model/chem/dend/x' ), 'getN' ) dendZ = makePlot( 'dend_z', moose.vec( '/model/chem/dend/z' ), 'getN' ) makePlot( 'head_z', moose.vec( '/model/chem/spine/z' ), 'getN' ) psdZ = makePlot( 'psd_z', moose.vec( '/model/chem/psd/z' ), 'getN' ) diaTab = makePlot( 'headDia', eHead, 'getDiameter' ) # print diaTab[0].vector[-1] # return dendrite = moose.element("/model/elec/dend") dendrites = [dendrite.path + "/" + str(i) for i in range(len(dendZ))] # print dendrites moose.reinit() spineHeads = moose.wildcardFind( '/model/elec/#head#') # print moose.wildcardFind( '/model/elec/##') # print "dendZ", readValues(dendZ) # print dendrite app = QtGui.QApplication(sys.argv) viewer = create_viewer("/model/elec", dendrite, dendZ, diaTab, psdZ) viewer.showMaximized() viewer.start() return app.exec_() def create_viewer(path, moose_dendrite, dendZ, diaTab, psdZ): network = moogli.extensions.moose.read(path=path, vertices=15) dendrite = network.groups["dendrite"].shapes[moose_dendrite.path] chem_compt_group = dendrite.subdivide(len(dendZ)) normalizer = moogli.utilities.normalizer(0.0, 300.0, clipleft=True, clipright=True) colormap = moogli.colors.MatplotlibColorMap(matplotlib.cm.rainbow) mapper = moogli.utilities.mapper(colormap, normalizer) def readValues(tables): values = [] for i in range(len(tables)): values.append(tables[i].vector[-1]) return values def prelude(view): view.home() view.pitch(math.pi / 3.0) view.zoom(0.3) network.groups["soma"].set("color", moogli.colors.RED) network.groups["spine"].groups["shaft"].set("color", moogli.colors.RED) def interlude(view): moose.start(frameruntime) network.groups["spine"].groups["head"].set("radius", readValues(diaTab), lambda x: x * 0.5e6) network.groups["spine"].groups["head"].set("color", readValues(psdZ), mapper) chem_compt_group.set("color", readValues(dendZ), mapper) if moose.element("/clock").currentTime >= runtime: view.stop() viewer = moogli.Viewer("Viewer") viewer.attach_shapes(network.shapes.values()) viewer.detach_shape(dendrite) viewer.attach_shapes(chem_compt_group.shapes.values()) view = moogli.View("main-view", prelude=prelude, interlude=interlude) cb = moogli.widgets.ColorBar(id="cb", title="Molecule #", text_color=moogli.colors.BLACK, position=moogli.geometry.Vec3f(0.975, 0.5, 0.0), size=moogli.geometry.Vec3f(0.30, 0.05, 0.0), text_font="/usr/share/fonts/truetype/ubuntu-font-family/Ubuntu-R.ttf", orientation=math.pi / 2.0, text_character_size=20, label_formatting_precision=0, colormap=moogli.colors.MatplotlibColorMap(matplotlib.cm.rainbow), color_resolution=100, scalar_range=moogli.geometry.Vec2f(0.0, 300.0)) view.attach_color_bar(cb) viewer.attach_view(view) return viewer if __name__ == '__main__': showVisualization()
gpl-2.0
ebachelet/pyLIMA
setup.py
1
1036
from setuptools import setup, find_packages, Extension setup( name="pyLIMA", version="0.8.3", description="Microlsening analysis package.", keywords='Microlsening analysis package.', author="Etienne Bachelet", author_email="[email protected]", license='GPL-3.0', url="http://github.com/ebachelet/pyLIMA", download_url = 'https://github.com/ebachelet/pyLIMA/archive/0.1.tar.gz', packages=find_packages('.'), include_package_data=True, install_requires=['scipy','numpy','matplotlib','astropy','emcee','numba','bokeh','PyAstronomy','VBBinaryLensing','Cython'], python_requires='>=3.6,<4', test_suite="nose.collector", classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)', 'Programming Language :: Python :: 3', ], package_data={ '': ['Claret2011.fits','Yoo_B0B1.dat'], }, )
gpl-3.0
sgenoud/scikit-learn
sklearn/linear_model/__init__.py
2
1329
""" The :mod:`sklearn.linear_model` module implements genelarized linear models. It includes Ridge regression, Bayesian Regression, Lasso and Elastic Net estimators computed with Least Angle Regression and coordinate descent. It also implements Stochastic Gradient Descent related algorithms. """ # See http://scikit-learn.sourceforge.net/modules/sgd.html and # http://scikit-learn.sourceforge.net/modules/linear_model.html for # complete documentation. from .base import LinearRegression from .bayes import BayesianRidge, ARDRegression from .least_angle import Lars, LassoLars, lars_path, LARS, LassoLARS, \ LarsCV, LassoLarsCV, LassoLarsIC from .coordinate_descent import Lasso, ElasticNet, LassoCV, ElasticNetCV, \ lasso_path, enet_path from .sgd_fast import Hinge, Log, ModifiedHuber, SquaredLoss, Huber from .stochastic_gradient import SGDClassifier, SGDRegressor from .ridge import Ridge, RidgeCV, RidgeClassifier, RidgeClassifierCV, \ ridge_regression from .logistic import LogisticRegression from .omp import orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit from .perceptron import Perceptron from .randomized_l1 import RandomizedLasso, RandomizedLogisticRegression, \ lasso_stability_path from . import sparse
bsd-3-clause
dmsurti/mayavi
mayavi/tools/figure.py
1
11152
""" Functions related to creating the engine or the figures. """ # Author: Gael Varoquaux <[email protected]> # Copyright (c) 2007, Enthought, Inc. # License: BSD Style. # Standard library imports. import gc import warnings import copy import numpy as np # Enthought imports from pyface.timer.api import do_later # imports from tvtk.api import tvtk from mayavi.core.scene import Scene from mayavi.core.registry import registry from .camera import view from .engine_manager import get_engine, options, set_engine ###################################################################### # A list to store the allocated scene numbers __scene_number_list = set((0,)) def figure(figure=None, bgcolor=None, fgcolor=None, engine=None, size=(400, 350)): """ Creates a new scene or retrieves an existing scene. If the mayavi engine is not running this also starts it. **Keyword arguments** :figure: The name of the figure, or handle to it. :bgcolor: The color of the background (None is default). :fgcolor: The color of the foreground, that is the color of all text annotation labels (axes, orientation axes, scalar bar labels). It should be sufficiently far from `bgcolor` to see the annotation texts. (None is default). :engine: The mayavi engine that controls the figure. :size: The size of the scene created, in pixels. May not apply for certain scene viewer. """ if isinstance(figure, Scene): if figure.scene is None: engine = registry.find_scene_engine(figure) else: engine = registry.find_scene_engine(figure.scene) set_engine(engine) engine.current_scene = figure else: if engine is None: engine = get_engine() if figure is None: name = max(__scene_number_list) + 1 __scene_number_list.update((name,)) name = 'Mayavi Scene %d' % name engine.new_scene(name=name, size=size) engine.current_scene.name = name else: if type(figure) in (int, np.int, np.int0, np.int8, np.int16, np.int32, np.int64): name = int(figure) __scene_number_list.update((name,)) name = 'Mayavi Scene %d' % name else: name = str(figure) # Go looking in the engine see if the scene is not already # running for scene in engine.scenes: if scene.name == name: engine.current_scene = scene return scene else: engine.new_scene(name=name, size=size) engine.current_scene.name = name figure = engine.current_scene scene = figure.scene if scene is not None: if hasattr(scene, 'isometric_view'): scene.isometric_view() else: # Not every viewer might implement this method view(40, 50) scene = figure.scene if scene is not None: if bgcolor is None: bgcolor = options.background_color scene.background = bgcolor if fgcolor is None: fgcolor = options.foreground_color scene.foreground = fgcolor return figure def gcf(engine=None): """Return a handle to the current figure. You can supply the engine from which you want to retrieve the current figure, if you have several mayavi engines. """ if engine is None: engine = get_engine() scene = engine.current_scene if scene is None: return figure(engine=engine) return scene def clf(figure=None): """Clear the current figure. You can also supply the figure that you want to clear. """ try: if figure is None: scene = gcf() else: scene = figure disable_render = scene.scene.disable_render scene.scene.disable_render = True scene.children[:] = [] scene._mouse_pick_dispatcher.clear_callbacks() scene.scene.disable_render = disable_render except AttributeError: pass gc.collect() def close(scene=None, all=False): """ Close a figure window close() by itself closes the current figure. close(num) closes figure number num. close(name) closes figure named name. close(figure), where figure is a scene instance, closes that figure. close(all=True) closes all figures controlled by mlab """ if all is True: engine = get_engine() # We need the copy, as the list gets pruned as we close scenes for scene in copy.copy(engine.scenes): engine.close_scene(scene) return if not isinstance(scene, Scene): engine = get_engine() if scene is None: scene = engine.current_scene else: if type(scene) in (int, np.int, np.int0, np.int8, np.int16, np.int32, np.int64): scene = int(scene) name = 'Mayavi Scene %d' % scene else: name = str(scene) # Go looking in the engine see if the scene is not already # running for scene in engine.scenes: if scene.name == name: break else: warnings.warn('Scene %s not managed by mlab' % name) return else: if scene.scene is None: engine = registry.find_scene_engine(scene) else: engine = registry.find_scene_engine(scene.scene) engine.close_scene(scene) def draw(figure=None): """ Forces a redraw of the current figure. """ if figure is None: figure = gcf() figure.render() def savefig(filename, size=None, figure=None, magnification='auto', **kwargs): """ Save the current scene. The output format are deduced by the extension to filename. Possibilities are png, jpg, bmp, tiff, ps, eps, pdf, rib (renderman), oogl (geomview), iv (OpenInventor), vrml, obj (wavefront) **Parameters** :size: the size of the image created (unless magnification is set, in which case it is the size of the window used for rendering). :figure: the figure instance to save to a file. :magnification: the magnification is the scaling between the pixels on the screen, and the pixels in the file saved. If you do not specify it, it will be calculated so that the file is saved with the specified size. If you specify a magnification, Mayavi will use the given size as a screen size, and the file size will be 'magnification * size'. **Notes** If the size specified is larger than the window size, and no magnification parameter is passed, the magnification of the scene is changed so that the image created has the requested size. Please note that if you are trying to save images with sizes larger than the window size, there will be additional computation cost. Any extra keyword arguments are passed along to the respective image format's save method. """ if figure is None: figure = gcf() current_mag = figure.scene.magnification try: if size is not None: current_x, current_y = tuple(figure.scene.get_size()) target_x, target_y = size if magnification is 'auto': magnification = max(target_x // current_x, target_y // current_y) + 1 target_x = int(target_x / magnification) target_y = int(target_y / magnification) size = target_x, target_y elif magnification is 'auto': magnification = 1 figure.scene.magnification = int(magnification) figure.scene.save(filename, size=size, **kwargs) finally: figure.scene.magnification = int(current_mag) def sync_camera(reference_figure, target_figure): """ Synchronise the camera of the target_figure on the camera of the reference_figure. """ reference_figure.scene._renderer.sync_trait('active_camera', target_figure.scene._renderer) target_figure.scene._renderer.active_camera.on_trait_change( lambda: do_later(target_figure.scene.render)) def screenshot(figure=None, mode='rgb', antialiased=False): """ Return the current figure pixmap as an array. **Parameters** :figure: a figure instance or None, optional If specified, the figure instance to capture the view of. :mode: {'rgb', 'rgba'} The color mode of the array captured. :antialiased: {True, False} Use anti-aliasing for rendering the screenshot. Uses the number of aa frames set by figure.scene.anti_aliasing_frames **Notes** On most systems, this works similarly to taking a screenshot of the rendering window. Thus if it is hidden by another window, you will capture the other window. This limitation is due to the heavy use of the hardware graphics system. **Examples** This function can be useful for integrating 3D plotting with Mayavi in a 2D plot created by matplotlib. >>> from mayavi import mlab >>> mlab.test_plot3d() >>> arr = mlab.screenshot() >>> import pylab as pl >>> pl.imshow(arr) >>> pl.axis('off') >>> pl.show() """ if figure is None: figure = gcf() x, y = tuple(figure.scene.get_size()) # Try to lift the window figure.scene._lift() if mode == 'rgb': out = tvtk.UnsignedCharArray() shape = (y, x, 3) pixel_getter = figure.scene.render_window.get_pixel_data pg_args = (0, 0, x - 1, y - 1, 1, out) elif mode == 'rgba': out = tvtk.FloatArray() shape = (y, x, 4) pixel_getter = figure.scene.render_window.get_rgba_pixel_data pg_args = (0, 0, x - 1, y - 1, 1, out) else: raise ValueError('mode type not understood') if antialiased: # save the current aa value to restore it later old_aa = figure.scene.render_window.aa_frames figure.scene.render_window.aa_frames = figure.scene.anti_aliasing_frames figure.scene.render() pixel_getter(*pg_args) figure.scene.render_window.aa_frames = old_aa figure.scene.render() else: pixel_getter(*pg_args) # Return the array in a way that pylab.imshow plots it right: out = out.to_array() out.shape = shape out = np.flipud(out) return out
bsd-3-clause
snnn/tensorflow
tensorflow/python/estimator/inputs/queues/feeding_queue_runner_test.py
116
5164
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests `FeedingQueueRunner` using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.client import session from tensorflow.python.estimator.inputs.queues import feeding_functions as ff from tensorflow.python.framework import ops from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def get_rows(array, row_indices): rows = [array[i] for i in row_indices] return np.vstack(rows) class FeedingQueueRunnerTestCase(test.TestCase): """Tests for `FeedingQueueRunner`.""" def testArrayFeeding(self): with ops.Graph().as_default(): array = np.arange(32).reshape([16, 2]) q = ff._enqueue_data(array, capacity=100) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_dq = get_rows(array, indices) dq = sess.run(dq_op) np.testing.assert_array_equal(indices, dq[0]) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testArrayFeedingMultiThread(self): with ops.Graph().as_default(): array = np.arange(256).reshape([128, 2]) q = ff._enqueue_data(array, capacity=128, num_threads=8, shuffle=True) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_dq = get_rows(array, indices) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testPandasFeeding(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(32) array2 = np.arange(32, 64) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(64, 96)) q = ff._enqueue_data(df, capacity=100) batch_size = 5 dq_op = q.dequeue_many(5) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array1.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_df_indices = df.index[indices] expected_rows = df.iloc[indices] dq = sess.run(dq_op) np.testing.assert_array_equal(expected_df_indices, dq[0]) for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) def testPandasFeedingMultiThread(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(128, 256) array2 = 2 * array1 df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(128)) q = ff._enqueue_data(df, capacity=128, num_threads=8, shuffle=True) batch_size = 5 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_rows = df.iloc[indices] for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) if __name__ == "__main__": test.main()
apache-2.0
DiamondLightSource/auto_tomo_calibration-experimental
measure_resolution/lmfit-py/examples/fit_with_inequality.py
4
1227
from numpy import linspace, random import matplotlib.pyplot as plt from lmfit import Parameters, Parameter, Minimizer, report_fit from lmfit.lineshapes import gaussian, lorentzian def residual(pars, x, data): model = gaussian(x, pars['amp_g'].value, pars['cen_g'].value, pars['wid_g'].value) model += lorentzian(x, pars['amp_l'].value, pars['cen_l'].value, pars['wid_l'].value) return (model - data) n = 601 random.seed(0) x = linspace(0, 20.0, n) data = (gaussian(x, 21, 6.1, 1.2) + lorentzian(x, 10, 9.6, 1.3) + random.normal(scale=0.1, size=n)) pfit = Parameters() pfit.add(name='amp_g', value=10) pfit.add(name='amp_l', value=10) pfit.add(name='cen_g', value=5) pfit.add(name='peak_split', value=2.5, min=0, max=5, vary=True) pfit.add(name='cen_l', expr='peak_split+cen_g') pfit.add(name='wid_g', value=1) pfit.add(name='wid_l', expr='wid_g') mini = Minimizer(residual, pfit, fcn_args=(x, data)) out = mini.leastsq() report_fit(out.params) best_fit = data + out.residual plt.plot(x, data, 'bo') plt.plot(x, best_fit, 'r--') plt.show()
apache-2.0
pyinduct/pyinduct
pyinduct/tests/test_eigenfunctions.py
3
22740
import unittest import numpy as np import pyinduct as pi import pyinduct.parabolic as parabolic from pyinduct.tests import show_plots import matplotlib.pyplot as plt class TestAddMulFunction(unittest.TestCase): def test_it(self): a_mat = np.diag(np.ones(3)) b = np.array( [pi.AddMulFunction(lambda z: z), pi.AddMulFunction(lambda z: 2 * z), pi.AddMulFunction(lambda z: 3 * z)]) x = np.dot(b, a_mat) self.assertAlmostEqual([4, 40, 300], [x[0](4), x[1](20), x[2](100)]) class TestSecondOrderEigenfunction(unittest.TestCase): def test_error_raiser(self): param = [1, 1, 1, 1, 1] l = 1 z = pi.Domain((0, l), 2) n = 10 eig_val, eig_funcs = pi.SecondOrderDirichletEigenfunction.cure_interval( z, param=param, scale=np.ones(n)) eig_freq = pi.SecondOrderDirichletEigenfunction.eigval_tf_eigfreq( param, eig_val=eig_val) _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( z, param=param, n=n) _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( z, param=param, n=n, scale=np.ones(n)) _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( z, param=param, eig_val=eig_val, scale=np.ones(n)) _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( z, param=param, eig_freq=eig_freq, scale=np.ones(n)) with self.assertRaises(ValueError): _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( z, param=param, n=n, scale=np.ones(n + 1)) with self.assertRaises(ValueError): _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( z, param=param, eig_val=eig_val, scale=np.ones(n + 1)) with self.assertRaises(ValueError): _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( z, param=param, n=n, eig_freq=eig_freq) with self.assertRaises(ValueError): _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( z, param=param, eig_val=eig_val, eig_freq=eig_freq) with self.assertRaises(ValueError): _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( z, param=param, n=n, eig_val=eig_val, eig_freq=eig_freq) with self.assertRaises(ValueError): _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( pi.Domain((1, 2), 2), param=param, n=n) with self.assertRaises(ValueError): _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( pi.Domain((0, -2), 2), param=param, n=n) with self.assertRaises(ValueError): _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( pi.Domain((0, 0), 2), param=param, n=n) with self.assertRaises(ValueError): _, _ = pi.SecondOrderDirichletEigenfunction.cure_interval( (0, 1), param=param, n=n) class FiniteTransformTest(unittest.TestCase): def test_trivial(self): l = 5 k = 5 k1, k2, b = parabolic.control.split_domain(k, 0, l, mode='coprime')[0:3] a_mat = parabolic.general.get_in_domain_transformation_matrix( k1, k2, mode="2n") self.assertAlmostEqual(b, 0) self.assertTrue(all(np.isclose(a_mat, np.linalg.inv(a_mat)).all(1))) k1, k2, b = parabolic.control.split_domain(k, l, l, mode='coprime')[0:3] b_mat = parabolic.general.get_in_domain_transformation_matrix( k1, k2, mode="2n") self.assertAlmostEqual(b, l) self.assertTrue( all(np.isclose(b_mat, np.diag(np.ones(b_mat.shape[0]))).all(1))) def test_paper_example(self): l = 5 k = 5 b_desired = 2 k1, k2, b = parabolic.control.split_domain(k, b_desired, l, mode='coprime')[0:3] m_mat = np.linalg.inv( parabolic.general.get_in_domain_transformation_matrix(k1, k2, mode="2n")) shifted_func = pi.FiniteTransformFunction( np.cos, m_mat, l, nested_lambda=False) shifted_func_nl = pi.FiniteTransformFunction( np.cos, m_mat, l, nested_lambda=True) z = np.linspace(0, l, 1000) np.testing.assert_array_almost_equal( shifted_func(z), shifted_func_nl(z)) if show_plots: plt.figure() plt.plot(z, shifted_func(z)) plt.plot(z, np.cos(z)) plt.show() def test_const(self): n = 5 k = 5 b_desired = 2 l = 5 z = pi.Domain((0, l), 2) params = [2, 1.5, -3, 1, .5] k1, k2, b = parabolic.control.split_domain(k, b_desired, l, mode='coprime')[0:3] M = np.linalg.inv( parabolic.general.get_in_domain_transformation_matrix(k1, k2, mode="2n")) eig_val, eig_base = pi.SecondOrderRobinEigenfunction.cure_interval( z, param=params, n=n) shifted_eig_base = pi.Base(np.array( [pi.FiniteTransformFunction( func, M, l, nested_lambda=False) for func in eig_base])) shifted_eig_base_nl = pi.Base(np.array( [pi.FiniteTransformFunction( func, M, l, nested_lambda=True) for func in eig_base])) zz = np.linspace(0, l, 1000) for f1, f2 in zip(shifted_eig_base, shifted_eig_base_nl): np.testing.assert_array_almost_equal(f1(zz), f2(zz)) if show_plots: pi.visualize_functions(eig_base.fractions, 1000) pi.visualize_functions(shifted_eig_base.fractions, 1000) def calc_dirichlet_eigenvalues(params): """ Estimate the eigenvalues of a 2nd order dirichlet problem . by approximating it using polynomial shapefunctions. """ spat_dom, lag_base = pi.cure_interval(pi.LagrangeNthOrder, interval=params.domain, order=3, node_count=31) pi.register_base("fem_base", lag_base) old_params = [params.a2, params.a1, params.a0, -params.alpha0, params.beta0] weak_form = pi.parabolic.get_parabolic_dirichlet_weak_form("fem_base", "fem_base", None, old_params, params.domain) can_form = pi.parse_weak_formulation(weak_form, finalize=True) ss_form = pi.create_state_space(can_form) sys_mat = ss_form.A[1] eig_vals, eig_vecs = np.linalg.eig(sys_mat) real_idx = np.where(np.imag(eig_vals) == 0) abs_idx = np.argsort(np.abs(eig_vals[real_idx])) filtered_vals = eig_vals[real_idx][abs_idx] print(filtered_vals) return filtered_vals class TestSecondOrderEigenVector(unittest.TestCase): def setUp(self): self.domain = pi.Domain(bounds=(0, 1), num=100) self.cnt = 10 self.params_dirichlet = pi.SecondOrderOperator(a2=1, a1=0, a0=1, alpha1=0, alpha0=1, beta1=0, beta0=1, domain=(0, 1)) if 1: self.eig_dirichlet = None self.p_dirichlet = [(1j*n * np.pi, -1j * n * np.pi) for n in range(1, self.cnt + 1)] else: # TODO make computation by approximation work to check to other two self.eig_dirichlet = \ calc_dirichlet_eigenvalues(self.params_dirichlet)[:self.cnt] self.p_dirichlet = \ pi.SecondOrderEigenVector.convert_to_characteristic_root( self.params_dirichlet, self.eig_dirichlet ) self.params_neumann = pi.SecondOrderOperator(a2=1, a1=0, a0=1, alpha1=1, alpha0=0, beta1=1, beta0=0) self.eig_neumann = None self.p_neumann = None # self.p_neumann = np.array([0, np.pi, 2 * np.pi, 3 * np.pi], # dtype=complex) self.params_robin = pi.Parameters(a2=1, a1=0, a0=1, alpha1=1, alpha0=2, beta1=1, beta0=-2) self.eig_robin = None self.p_robin = None # self.p_robin = np.array([(2.39935728j, -2.39935728j,), # (5.59677209j, -5.59677209j), # (8.98681892j, -8.98681892j)]) def test_dirichlet(self): print("dirichlet case") self._test_helper(self.params_dirichlet, self.eig_dirichlet, self.p_dirichlet) def test_neumann(self): print("neumann case") self._test_helper(self.params_neumann, self.eig_neumann, self.p_neumann) def test_robin(self): print("robin case") self._test_helper(self.params_robin, self.eig_robin, self.p_robin) def _test_helper(self, params, l_ref, p_ref): eig_base = pi.SecondOrderEigenVector.cure_interval(self.domain, params=params, count=self.cnt, derivative_order=2, debug=False) char_roots = eig_base.get_attribute("char_pair") eig_values = pi.SecondOrderEigenVector.convert_to_eigenvalue(params, char_roots) # if show_plots: # pi.visualize_functions(eig_base.fractions) # test eigenvalues self.assertEqual(len(eig_values), self.cnt) if l_ref is not None: np.testing.assert_array_equal(eig_values, l_ref, verbose=True) if p_ref is not None: print(char_roots) print(p_ref) np.testing.assert_array_almost_equal(char_roots, p_ref, decimal=5, verbose=True) # test eigenvectors for fraction, lam in zip(eig_base.fractions, eig_values): # test whether the operator is satisfied left = (params.a2 * fraction.derive(2)(self.domain.points) + params.a1 * fraction.derive(1)(self.domain.points) + params.a0 * fraction(self.domain.points)) right = lam * fraction(self.domain.points) np.testing.assert_array_almost_equal(left, right, verbose=True) # test whether the bcs are fulfilled bc1 = (params.alpha0 * fraction(self.domain.bounds[0]) + params.alpha1 * fraction.derive(1)(self.domain.bounds[0])) bc2 = (params.beta0 * fraction(self.domain.bounds[1]) + params.beta1 * fraction.derive(1)(self.domain.bounds[1])) np.testing.assert_array_almost_equal(bc1, 0, decimal=5) np.testing.assert_array_almost_equal(bc2, 0, decimal=5) # check if they are orthonormal product_mat = pi.calculate_scalar_product_matrix(eig_base, eig_base) np.testing.assert_array_almost_equal(product_mat, np.eye(self.cnt)) return eig_base class TestEigenvalues(unittest.TestCase): def test_dirichlet(self): desired_eig_freq = [(i + 1) * np.pi for i in range(4)] eig_freq, _ = pi.SecondOrderDirichletEigenfunction.eigfreq_eigval_hint( [1, 2, 3, None, None], 1, 4) self.assertTrue(all(np.isclose(eig_freq, desired_eig_freq))) def test_robin(self): param_desired_ef_pairs = [ ([.5, 0, 6, -1, -1], [1.543405j, 2.331122, 5.950173, 9.208434]), ([1, 0, 1, -2, -2], [2.39935728j, 0, 5.59677209, 8.98681892]), ([1, 0, 1, 0, 0], [0j, 3.14159265, 6.28318531, 9.42477796]), ([1, 2, 1, 3, 4], [2.06301691, 4.46395118, 7.18653501, 10.09113552]), ([1, -6, 0, -5, -5], [8.000003j, 1.84683426j, 4.86945051, 8.43284888])] for param, desired_eig_freq in param_desired_ef_pairs: eig_freq, _ = pi.SecondOrderRobinEigenfunction.eigfreq_eigval_hint( param, 1, 4, show_plot=False) np.testing.assert_array_almost_equal(eig_freq, desired_eig_freq) class TestSecondOrderEigenvalueProblemFunctions(unittest.TestCase): def setUp(self): self.param = [2, 1.5, -3, -5, -.5] self.z = pi.Domain((0, 1), num=100) self.n = 10 def evp_eq(self, a2, a1, a0, boundary_check): for eig_v, eig_f in zip(self.eig_val, self.eig_funcs): np.testing.assert_array_almost_equal( (a2 * eig_f.derive(2)(self.z) + a1 * eig_f.derive(1)(self.z) + a0 * eig_f(self.z)) / eig_v, eig_v.real * eig_f(self.z) / eig_v, decimal=4) boundary_check(eig_v, eig_f, self.z[-1]) @unittest.skip("not implemented") def test_dirichlet_robin_constant_coefficient(self): def boundary_check(eig_v, eig_f, l): np.testing.assert_array_almost_equal(eig_f(0) / eig_v, 0) np.testing.assert_array_almost_equal(eig_f.derive(1)(l) / eig_v, -beta * eig_f(l) / eig_v) a2, a1, a0, _, beta = self.param param = [a2, a1, a0, None, beta] eig_freq, self.eig_val \ = pi.SecondOrderDiriRobEigenfunction.eigfreq_eigval_hint( self.z, param=param, n=self.n, show_plot=True) _, self.eig_funcs = pi.SecondOrderDiriRobEigenfunction.cure_interval( self.z, param=param, eig_freq=eig_freq) [plt.plot(self.z, func(self.z)) for func in self.eig_funcs] plt.show() self.evp_eq(a2, a1, a0, boundary_check) self.spatially_varying_coefficient(boundary_check) @unittest.skip("not implemented") def test_robin_dirichlet_constant_coefficient(self): def boundary_check(eig_v, eig_f, l): np.testing.assert_array_almost_equal(eig_f.derive(1)(0) / eig_v, alpha * eig_f(0) / eig_v) np.testing.assert_array_almost_equal(eig_f(l) / eig_v, 0) a2, a1, a0, alpha, _ = self.param param = [a2, a1, a0, alpha, None] eig_freq, self.eig_val \ = pi.SecondOrderRobDiriEigenfunction.eigfreq_eigval_hint( self.z, param=param, n=self.n, show_plot=True) _, self.eig_funcs = pi.SecondOrderRobDiriEigenfunction.cure_interval( self.z, param=param, eig_freq=eig_freq) [plt.plot(self.z, func(self.z)) for func in self.eig_funcs] plt.show() self.evp_eq(a2, a1, a0, boundary_check) self.spatially_varying_coefficient(boundary_check) def test_dirichlet_constant_coefficient(self): def boundary_check(eig_v, eig_f, l): np.testing.assert_array_almost_equal(eig_f(0) / eig_v, 0) np.testing.assert_array_almost_equal(eig_f(l) / eig_v, 0) a2, a1, a0, _, _ = self.param param = [a2, a1, a0, None, None] eig_freq, self.eig_val \ = pi.SecondOrderDirichletEigenfunction.eigfreq_eigval_hint( param, self.z[-1], self.n) _, self.eig_funcs = pi.SecondOrderDirichletEigenfunction.cure_interval( self.z, param=param, eig_freq=eig_freq) self.evp_eq(a2, a1, a0, boundary_check) self.spatially_varying_coefficient(boundary_check) def test_robin_constant_coefficient(self): def boundary_check(eig_v, eig_f, l): np.testing.assert_array_almost_equal(eig_f.derive(1)(0) / eig_v, alpha * eig_f(0) / eig_v) np.testing.assert_array_almost_equal(eig_f.derive(1)(l) / eig_v, - beta * eig_f(l) / eig_v) a2, a1, a0, alpha, beta = self.param eig_freq, self.eig_val \ = pi.SecondOrderRobinEigenfunction.eigfreq_eigval_hint( self.param, self.z[-1], self.n, show_plot=show_plots) _, self.eig_funcs = pi.SecondOrderRobinEigenfunction.cure_interval( self.z, param=self.param, eig_freq=eig_freq) self.evp_eq(a2, a1, a0, boundary_check) self.spatially_varying_coefficient(boundary_check) if show_plots: plt.show() def spatially_varying_coefficient(self, boundary_check): a2, a1, a0, _, _ = self.param a2_z = pi.ConstantFunction(a2) a1_z = pi.ConstantFunction(a1) a0_z = pi.ConstantFunction(a0) transformed_eig_funcs = [pi.TransformedSecondOrderEigenfunction( self.eig_val[i], [self.eig_funcs[i](0), self.eig_funcs[i].derive(1)(0), 0, 0], [a2_z, a1_z, a0_z], self.z) for i in range(len(self.eig_funcs))] # TODO: provide second derivative of transformed eigenfunctions for i in range(len(self.eig_funcs)): eig_f = transformed_eig_funcs[i] eig_v = self.eig_val[i] # interval np.testing.assert_array_almost_equal( a2_z(self.z) * self.eig_funcs[i].derive(2)(self.z) + a1_z(self.z) * eig_f.derive(1)(self.z) + a0_z(self.z) * eig_f(self.z), eig_v.real * eig_f(self.z), decimal=2) boundary_check(eig_v, eig_f, self.z[-1]) class IntermediateTransformationTest(unittest.TestCase): def test_it(self): # system/simulation parameters self.l = 1 self.spatial_domain = (0, self.l) self.spatial_disc = 30 self.n = 10 # original system parameters a2 = 1.5 a1 = 2.5 a0 = 28 alpha = -2 beta = -3 self.param = [a2, a1, a0, alpha, beta] adjoint_param = pi.SecondOrderEigenfunction.get_adjoint_problem(self.param) # target system parameters (controller parameters) a1_t = -5 a0_t = -25 alpha_t = 3 beta_t = 2 # a1_t = a1; a0_t = a0; alpha_t = alpha; beta_t = beta self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t] # original intermediate ("_i") and target intermediate ("_ti") system parameters _, _, a0_i, self.alpha_i, self.beta_i = \ parabolic.general.eliminate_advection_term(self.param, self.l) self.param_i = a2, 0, a0_i, self.alpha_i, self.beta_i _, _, a0_ti, self.alpha_ti, self.beta_ti = \ parabolic.general.eliminate_advection_term(self.param_t, self.l) self.param_ti = a2, 0, a0_ti, self.alpha_ti, self.beta_ti # create (not normalized) eigenfunctions self.eig_freq, self.eig_val = \ pi.SecondOrderRobinEigenfunction.eigfreq_eigval_hint(self.param, self.l, self.n) init_eig_base = pi.Base([pi.SecondOrderRobinEigenfunction(om, self.param, self.spatial_domain[-1]) for om in self.eig_freq]) init_adjoint_eig_funcs = pi.Base([pi.SecondOrderRobinEigenfunction(om, adjoint_param, self.spatial_domain[-1]) for om in self.eig_freq]) # normalize eigenfunctions and adjoint eigenfunctions self.eig_base, self.adjoint_eig_funcs = pi.normalize_base(init_eig_base, init_adjoint_eig_funcs) # eigenvalues and -frequencies test eig_freq_i, eig_val_i = pi.SecondOrderRobinEigenfunction.eigfreq_eigval_hint(self.param_i, self.l, self.n) self.assertTrue(all(np.isclose(self.eig_val, eig_val_i))) calc_eig_freq = np.sqrt((a0_i - eig_val_i) / a2) self.assertTrue(all(np.isclose(calc_eig_freq, eig_freq_i))) # intermediate (_i) eigenfunction test eig_funcs_i = np.array([pi.SecondOrderRobinEigenfunction(eig_freq_i[i], self.param_i, self.spatial_domain[-1], self.eig_base.fractions[i](0)) for i in range(self.n)]) self.assertTrue(all(np.isclose([func(0) for func in eig_funcs_i], [func(0) for func in self.eig_base.fractions]))) test_vec = np.linspace(0, self.l, 100) for i in range(self.n): self.assertTrue(all(np.isclose(self.eig_base.fractions[i](test_vec), eig_funcs_i[i](test_vec) * np.exp(-a1 / 2 / a2 * test_vec))))
bsd-3-clause
Ziqi-Li/bknqgis
pandas/pandas/tests/io/msgpack/test_format.py
25
2882
# coding: utf-8 from pandas.io.msgpack import unpackb def check(src, should, use_list=0): assert unpackb(src, use_list=use_list) == should def testSimpleValue(): check(b"\x93\xc0\xc2\xc3", (None, False, True, )) def testFixnum(): check(b"\x92\x93\x00\x40\x7f\x93\xe0\xf0\xff", ((0, 64, 127, ), (-32, -16, -1, ), )) def testFixArray(): check(b"\x92\x90\x91\x91\xc0", ((), ((None, ), ), ), ) def testFixRaw(): check(b"\x94\xa0\xa1a\xa2bc\xa3def", (b"", b"a", b"bc", b"def", ), ) def testFixMap(): check(b"\x82\xc2\x81\xc0\xc0\xc3\x81\xc0\x80", {False: {None: None}, True: {None: {}}}, ) def testUnsignedInt(): check(b"\x99\xcc\x00\xcc\x80\xcc\xff\xcd\x00\x00\xcd\x80\x00" b"\xcd\xff\xff\xce\x00\x00\x00\x00\xce\x80\x00\x00\x00" b"\xce\xff\xff\xff\xff", (0, 128, 255, 0, 32768, 65535, 0, 2147483648, 4294967295, ), ) def testSignedInt(): check(b"\x99\xd0\x00\xd0\x80\xd0\xff\xd1\x00\x00\xd1\x80\x00" b"\xd1\xff\xff\xd2\x00\x00\x00\x00\xd2\x80\x00\x00\x00" b"\xd2\xff\xff\xff\xff", (0, -128, -1, 0, -32768, -1, 0, -2147483648, -1, )) def testRaw(): check(b"\x96\xda\x00\x00\xda\x00\x01a\xda\x00\x02ab\xdb\x00\x00" b"\x00\x00\xdb\x00\x00\x00\x01a\xdb\x00\x00\x00\x02ab", (b"", b"a", b"ab", b"", b"a", b"ab")) def testArray(): check(b"\x96\xdc\x00\x00\xdc\x00\x01\xc0\xdc\x00\x02\xc2\xc3\xdd\x00" b"\x00\x00\x00\xdd\x00\x00\x00\x01\xc0\xdd\x00\x00\x00\x02" b"\xc2\xc3", ((), (None, ), (False, True), (), (None, ), (False, True))) def testMap(): check(b"\x96" b"\xde\x00\x00" b"\xde\x00\x01\xc0\xc2" b"\xde\x00\x02\xc0\xc2\xc3\xc2" b"\xdf\x00\x00\x00\x00" b"\xdf\x00\x00\x00\x01\xc0\xc2" b"\xdf\x00\x00\x00\x02\xc0\xc2\xc3\xc2", ({}, {None: False}, {True: False, None: False}, {}, {None: False}, {True: False, None: False}))
gpl-2.0
Intel-tensorflow/tensorflow
tensorflow/python/keras/distribute/dataset_creator_model_fit_ps_only_test.py
6
5290
# Lint as: python3 # Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `DatasetCreator` with `Model.fit` across usages and strategies.""" from tensorflow.python.compat import v2_compat from tensorflow.python.data.ops import dataset_ops from tensorflow.python.distribute import combinations as ds_combinations from tensorflow.python.distribute import multi_process_runner from tensorflow.python.distribute.coordinator import cluster_coordinator as coordinator_lib from tensorflow.python.framework import test_combinations as combinations from tensorflow.python.keras import callbacks as callbacks_lib from tensorflow.python.keras.distribute import dataset_creator_model_fit_test_base as test_base from tensorflow.python.keras.distribute import strategy_combinations from tensorflow.python.platform import gfile @ds_combinations.generate( combinations.combine( strategy=strategy_combinations.parameter_server_strategies_multi_worker, mode="eager")) class DatasetCreatorModelFitParameterServerStrategyOnlyTest( test_base.DatasetCreatorModelFitTestBase): def testModelFitWithRunEagerly(self, strategy): with self.assertRaisesRegex( ValueError, "When using `Model` with `ParameterServerStrategy`, " "`run_eagerly` is not supported."): self._model_fit(strategy, run_eagerly=True) def testModelFitWithDatasetInstance(self, strategy): with self.assertRaisesRegex( NotImplementedError, "Only `tf.keras.utils.experimental.DatasetCreator`, `tf.Tensor`, " "numpy arrays and pandas dataframes are supported types at this " "time."): self._model_fit( strategy, x=dataset_ops.DatasetV2.from_tensor_slices([1, 1])) def testModelPredict(self, strategy): model, _ = self._model_compile(strategy) test_data = dataset_ops.DatasetV2.from_tensor_slices( [1., 2., 3., 1., 5., 1.]).repeat().batch(2) model.predict(x=test_data, steps=3) def testClusterCoordinatorSingleInstance(self, strategy): model = self._model_fit(strategy) strategy = model.distribute_strategy self.assertIs(strategy._cluster_coordinator, coordinator_lib.ClusterCoordinator(strategy)) def testModelFitErrorOnBatchLevelCallbacks(self, strategy): class BatchLevelCallback(callbacks_lib.Callback): def on_train_batch_end(self, batch, logs=None): pass with self.assertRaisesRegex(ValueError, "Batch-level `Callback`s are not supported"): callbacks = [BatchLevelCallback()] self._model_fit(strategy, callbacks=callbacks) def testModelFitCallbackSupportsTFLogs(self, strategy): class MyCallback(callbacks_lib.Callback): def __init__(self): super(MyCallback, self).__init__() # Fetches the RemoteValues if necessary. self._supports_tf_logs = True def on_train_batch_end(self, batch, logs=None): assert isinstance(logs, coordinator_lib.RemoteValue) my_callback = MyCallback() callbacks = [my_callback] self._model_fit(strategy, callbacks=callbacks) def testModelFitVerbosity(self, strategy): class MyCallback(callbacks_lib.Callback): pass my_callback = MyCallback() callbacks = [my_callback] self._model_fit(strategy, callbacks=callbacks) # PSStrategy should default to epoch-level logging. self.assertEqual(my_callback.params["verbose"], 2) def testModelFitTensorBoardEpochLevel(self, strategy): log_dir = self.get_temp_dir() callbacks = [callbacks_lib.TensorBoard(log_dir)] self._model_fit(strategy, callbacks=callbacks) self.assertTrue(gfile.Exists(log_dir)) files = gfile.ListDirectory(log_dir) self.assertGreaterEqual(len(files), 1) def testModelEvaluateWithDatasetInstance(self, strategy): with self.assertRaisesRegex( NotImplementedError, "Only `tf.keras.utils.experimental.DatasetCreator`, `tf.Tensor`, " "numpy arrays and pandas dataframes are supported types at this " "time."): self._model_evaluate( strategy, x=dataset_ops.DatasetV2.from_tensor_slices([1, 1])) def testModelEvaluateErrorOnBatchLevelCallbacks(self, strategy): class BatchLevelCallback(callbacks_lib.Callback): def on_train_batch_end(self, batch, logs=None): pass with self.assertRaisesRegex(ValueError, "Batch-level `Callback`s are not supported"): callbacks = [BatchLevelCallback()] self._model_evaluate(strategy, callbacks=callbacks) if __name__ == "__main__": v2_compat.enable_v2_behavior() multi_process_runner.test_main()
apache-2.0
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/lib/matplotlib/delaunay/triangulate.py
2
9909
from __future__ import print_function import warnings # 2.3 compatibility try: set except NameError: import sets set = sets.Set from itertools import izip import numpy as np from matplotlib._delaunay import delaunay from interpolate import LinearInterpolator, NNInterpolator __all__ = ['Triangulation', 'DuplicatePointWarning'] class DuplicatePointWarning(RuntimeWarning): """Duplicate points were passed in to the triangulation routine. """ class Triangulation(object): """A Delaunay triangulation of points in a plane. Triangulation(x, y) x, y -- the coordinates of the points as 1-D arrays of floats Let us make the following definitions: npoints = number of points input nedges = number of edges in the triangulation ntriangles = number of triangles in the triangulation point_id = an integer identifying a particular point (specifically, an index into x and y), range(0, npoints) edge_id = an integer identifying a particular edge, range(0, nedges) triangle_id = an integer identifying a particular triangle range(0, ntriangles) Attributes: (all should be treated as read-only to maintain consistency) x, y -- the coordinates of the points as 1-D arrays of floats. circumcenters -- (ntriangles, 2) array of floats giving the (x,y) coordinates of the circumcenters of each triangle (indexed by a triangle_id). edge_db -- (nedges, 2) array of point_id's giving the points forming each edge in no particular order; indexed by an edge_id. triangle_nodes -- (ntriangles, 3) array of point_id's giving the points forming each triangle in counter-clockwise order; indexed by a triangle_id. triangle_neighbors -- (ntriangles, 3) array of triangle_id's giving the neighboring triangle; indexed by a triangle_id. The value can also be -1 meaning that that edge is on the convex hull of the points and there is no neighbor on that edge. The values are ordered such that triangle_neighbors[tri, i] corresponds with the edge *opposite* triangle_nodes[tri, i]. As such, these neighbors are also in counter-clockwise order. hull -- list of point_id's giving the nodes which form the convex hull of the point set. This list is sorted in counter-clockwise order. Duplicate points. If there are no duplicate points, Triangulation stores the specified x and y arrays and there is no difference between the client's and Triangulation's understanding of point indices used in edge_db, triangle_nodes and hull. If there are duplicate points, they are removed from the stored self.x and self.y as the underlying delaunay code cannot deal with duplicates. len(self.x) is therefore equal to len(x) minus the number of duplicate points. Triangulation's edge_db, triangle_nodes and hull refer to point indices in self.x and self.y, for internal consistency within Triangulation and the corresponding Interpolator classes. Client code must take care to deal with this in one of two ways: 1. Ignore the x,y it specified in Triangulation's constructor and use triangulation.x and triangulation.y instead, as these are consistent with edge_db, triangle_nodes and hull. 2. If using the x,y the client specified then edge_db, triangle_nodes and hull should be passed through the function to_client_point_indices() first. """ def __init__(self, x, y): self.x = np.asarray(x, dtype=np.float64) self.y = np.asarray(y, dtype=np.float64) if self.x.shape != self.y.shape or len(self.x.shape) != 1: raise ValueError("x,y must be equal-length 1-D arrays") self.old_shape = self.x.shape duplicates = self._get_duplicate_point_indices() if len(duplicates) > 0: warnings.warn( "Input data contains duplicate x,y points; some values are ignored.", DuplicatePointWarning, ) # self.j_unique is the array of non-duplicate indices, in # increasing order. self.j_unique = np.delete(np.arange(len(self.x)), duplicates) self.x = self.x[self.j_unique] self.y = self.y[self.j_unique] else: self.j_unique = None # If there are duplicate points, need a map of point indices used # by delaunay to those used by client. If there are no duplicate # points then the map is not needed. Either way, the map is # conveniently the same as j_unique, so share it. self._client_point_index_map = self.j_unique self.circumcenters, self.edge_db, self.triangle_nodes, \ self.triangle_neighbors = delaunay(self.x, self.y) self.hull = self._compute_convex_hull() def _get_duplicate_point_indices(self): """Return array of indices of x,y points that are duplicates of previous points. Indices are in no particular order. """ # Indices of sorted x,y points. j_sorted = np.lexsort(keys=(self.x, self.y)) mask_duplicates = np.hstack([ False, (np.diff(self.x[j_sorted]) == 0) & (np.diff(self.y[j_sorted]) == 0), ]) # Array of duplicate point indices, in no particular order. return j_sorted[mask_duplicates] def _compute_convex_hull(self): """Extract the convex hull from the triangulation information. The output will be a list of point_id's in counter-clockwise order forming the convex hull of the data set. """ border = (self.triangle_neighbors == -1) edges = {} edges.update(dict(izip(self.triangle_nodes[border[:,0]][:,1], self.triangle_nodes[border[:,0]][:,2]))) edges.update(dict(izip(self.triangle_nodes[border[:,1]][:,2], self.triangle_nodes[border[:,1]][:,0]))) edges.update(dict(izip(self.triangle_nodes[border[:,2]][:,0], self.triangle_nodes[border[:,2]][:,1]))) # Take an arbitrary starting point and its subsequent node hull = list(edges.popitem()) while edges: hull.append(edges.pop(hull[-1])) # hull[-1] == hull[0], so remove hull[-1] hull.pop() return hull def to_client_point_indices(self, array): """Converts any array of point indices used within this class to refer to point indices within the (x,y) arrays specified in the constructor before duplicates were removed. """ if self._client_point_index_map is not None: return self._client_point_index_map[array] else: return array def linear_interpolator(self, z, default_value=np.nan): """Get an object which can interpolate within the convex hull by assigning a plane to each triangle. z -- an array of floats giving the known function values at each point in the triangulation. """ z = np.asarray(z, dtype=np.float64) if z.shape != self.old_shape: raise ValueError("z must be the same shape as x and y") if self.j_unique is not None: z = z[self.j_unique] return LinearInterpolator(self, z, default_value) def nn_interpolator(self, z, default_value=np.nan): """Get an object which can interpolate within the convex hull by the natural neighbors method. z -- an array of floats giving the known function values at each point in the triangulation. """ z = np.asarray(z, dtype=np.float64) if z.shape != self.old_shape: raise ValueError("z must be the same shape as x and y") if self.j_unique is not None: z = z[self.j_unique] return NNInterpolator(self, z, default_value) def prep_extrapolator(self, z, bbox=None): if bbox is None: bbox = (self.x[0], self.x[0], self.y[0], self.y[0]) minx, maxx, miny, maxy = np.asarray(bbox, np.float64) minx = min(minx, np.minimum.reduce(self.x)) miny = min(miny, np.minimum.reduce(self.y)) maxx = max(maxx, np.maximum.reduce(self.x)) maxy = max(maxy, np.maximum.reduce(self.y)) M = max((maxx-minx)/2, (maxy-miny)/2) midx = (minx + maxx)/2.0 midy = (miny + maxy)/2.0 xp, yp= np.array([[midx+3*M, midx, midx-3*M], [midy, midy+3*M, midy-3*M]]) x1 = np.hstack((self.x, xp)) y1 = np.hstack((self.y, yp)) newtri = self.__class__(x1, y1) # do a least-squares fit to a plane to make pseudo-data xy1 = np.ones((len(self.x), 3), np.float64) xy1[:,0] = self.x xy1[:,1] = self.y from numpy.dual import lstsq c, res, rank, s = lstsq(xy1, z) zp = np.hstack((z, xp*c[0] + yp*c[1] + c[2])) return newtri, zp def nn_extrapolator(self, z, bbox=None, default_value=np.nan): newtri, zp = self.prep_extrapolator(z, bbox) return newtri.nn_interpolator(zp, default_value) def linear_extrapolator(self, z, bbox=None, default_value=np.nan): newtri, zp = self.prep_extrapolator(z, bbox) return newtri.linear_interpolator(zp, default_value) def node_graph(self): """Return a graph of node_id's pointing to node_id's. The arcs of the graph correspond to the edges in the triangulation. {node_id: set([node_id, ...]), ...} """ g = {} for i, j in self.edge_db: s = g.setdefault(i, set()) s.add(j) s = g.setdefault(j, set()) s.add(i) return g
mit
vybstat/scikit-learn
doc/sphinxext/gen_rst.py
106
40198
""" Example generation for the scikit learn Generate the rst files for the examples by iterating over the python example files. Files that generate images should start with 'plot' """ from __future__ import division, print_function from time import time import ast import os import re import shutil import traceback import glob import sys import gzip import posixpath import subprocess import warnings from sklearn.externals import six # Try Python 2 first, otherwise load from Python 3 try: from StringIO import StringIO import cPickle as pickle import urllib2 as urllib from urllib2 import HTTPError, URLError except ImportError: from io import StringIO import pickle import urllib.request import urllib.error import urllib.parse from urllib.error import HTTPError, URLError try: # Python 2 built-in execfile except NameError: def execfile(filename, global_vars=None, local_vars=None): with open(filename, encoding='utf-8') as f: code = compile(f.read(), filename, 'exec') exec(code, global_vars, local_vars) try: basestring except NameError: basestring = str import token import tokenize import numpy as np try: # make sure that the Agg backend is set before importing any # matplotlib import matplotlib matplotlib.use('Agg') except ImportError: # this script can be imported by nosetest to find tests to run: we should not # impose the matplotlib requirement in that case. pass from sklearn.externals import joblib ############################################################################### # A tee object to redict streams to multiple outputs class Tee(object): def __init__(self, file1, file2): self.file1 = file1 self.file2 = file2 def write(self, data): self.file1.write(data) self.file2.write(data) def flush(self): self.file1.flush() self.file2.flush() ############################################################################### # Documentation link resolver objects def _get_data(url): """Helper function to get data over http or from a local file""" if url.startswith('http://'): # Try Python 2, use Python 3 on exception try: resp = urllib.urlopen(url) encoding = resp.headers.dict.get('content-encoding', 'plain') except AttributeError: resp = urllib.request.urlopen(url) encoding = resp.headers.get('content-encoding', 'plain') data = resp.read() if encoding == 'plain': pass elif encoding == 'gzip': data = StringIO(data) data = gzip.GzipFile(fileobj=data).read() else: raise RuntimeError('unknown encoding') else: with open(url, 'r') as fid: data = fid.read() fid.close() return data mem = joblib.Memory(cachedir='_build') get_data = mem.cache(_get_data) def parse_sphinx_searchindex(searchindex): """Parse a Sphinx search index Parameters ---------- searchindex : str The Sphinx search index (contents of searchindex.js) Returns ------- filenames : list of str The file names parsed from the search index. objects : dict The objects parsed from the search index. """ def _select_block(str_in, start_tag, end_tag): """Select first block delimited by start_tag and end_tag""" start_pos = str_in.find(start_tag) if start_pos < 0: raise ValueError('start_tag not found') depth = 0 for pos in range(start_pos, len(str_in)): if str_in[pos] == start_tag: depth += 1 elif str_in[pos] == end_tag: depth -= 1 if depth == 0: break sel = str_in[start_pos + 1:pos] return sel def _parse_dict_recursive(dict_str): """Parse a dictionary from the search index""" dict_out = dict() pos_last = 0 pos = dict_str.find(':') while pos >= 0: key = dict_str[pos_last:pos] if dict_str[pos + 1] == '[': # value is a list pos_tmp = dict_str.find(']', pos + 1) if pos_tmp < 0: raise RuntimeError('error when parsing dict') value = dict_str[pos + 2: pos_tmp].split(',') # try to convert elements to int for i in range(len(value)): try: value[i] = int(value[i]) except ValueError: pass elif dict_str[pos + 1] == '{': # value is another dictionary subdict_str = _select_block(dict_str[pos:], '{', '}') value = _parse_dict_recursive(subdict_str) pos_tmp = pos + len(subdict_str) else: raise ValueError('error when parsing dict: unknown elem') key = key.strip('"') if len(key) > 0: dict_out[key] = value pos_last = dict_str.find(',', pos_tmp) if pos_last < 0: break pos_last += 1 pos = dict_str.find(':', pos_last) return dict_out # Make sure searchindex uses UTF-8 encoding if hasattr(searchindex, 'decode'): searchindex = searchindex.decode('UTF-8') # parse objects query = 'objects:' pos = searchindex.find(query) if pos < 0: raise ValueError('"objects:" not found in search index') sel = _select_block(searchindex[pos:], '{', '}') objects = _parse_dict_recursive(sel) # parse filenames query = 'filenames:' pos = searchindex.find(query) if pos < 0: raise ValueError('"filenames:" not found in search index') filenames = searchindex[pos + len(query) + 1:] filenames = filenames[:filenames.find(']')] filenames = [f.strip('"') for f in filenames.split(',')] return filenames, objects class SphinxDocLinkResolver(object): """ Resolve documentation links using searchindex.js generated by Sphinx Parameters ---------- doc_url : str The base URL of the project website. searchindex : str Filename of searchindex, relative to doc_url. extra_modules_test : list of str List of extra module names to test. relative : bool Return relative links (only useful for links to documentation of this package). """ def __init__(self, doc_url, searchindex='searchindex.js', extra_modules_test=None, relative=False): self.doc_url = doc_url self.relative = relative self._link_cache = {} self.extra_modules_test = extra_modules_test self._page_cache = {} if doc_url.startswith('http://'): if relative: raise ValueError('Relative links are only supported for local ' 'URLs (doc_url cannot start with "http://)"') searchindex_url = doc_url + '/' + searchindex else: searchindex_url = os.path.join(doc_url, searchindex) # detect if we are using relative links on a Windows system if os.name.lower() == 'nt' and not doc_url.startswith('http://'): if not relative: raise ValueError('You have to use relative=True for the local' ' package on a Windows system.') self._is_windows = True else: self._is_windows = False # download and initialize the search index sindex = get_data(searchindex_url) filenames, objects = parse_sphinx_searchindex(sindex) self._searchindex = dict(filenames=filenames, objects=objects) def _get_link(self, cobj): """Get a valid link, False if not found""" fname_idx = None full_name = cobj['module_short'] + '.' + cobj['name'] if full_name in self._searchindex['objects']: value = self._searchindex['objects'][full_name] if isinstance(value, dict): value = value[next(iter(value.keys()))] fname_idx = value[0] elif cobj['module_short'] in self._searchindex['objects']: value = self._searchindex['objects'][cobj['module_short']] if cobj['name'] in value.keys(): fname_idx = value[cobj['name']][0] if fname_idx is not None: fname = self._searchindex['filenames'][fname_idx] + '.html' if self._is_windows: fname = fname.replace('/', '\\') link = os.path.join(self.doc_url, fname) else: link = posixpath.join(self.doc_url, fname) if hasattr(link, 'decode'): link = link.decode('utf-8', 'replace') if link in self._page_cache: html = self._page_cache[link] else: html = get_data(link) self._page_cache[link] = html # test if cobj appears in page comb_names = [cobj['module_short'] + '.' + cobj['name']] if self.extra_modules_test is not None: for mod in self.extra_modules_test: comb_names.append(mod + '.' + cobj['name']) url = False if hasattr(html, 'decode'): # Decode bytes under Python 3 html = html.decode('utf-8', 'replace') for comb_name in comb_names: if hasattr(comb_name, 'decode'): # Decode bytes under Python 3 comb_name = comb_name.decode('utf-8', 'replace') if comb_name in html: url = link + u'#' + comb_name link = url else: link = False return link def resolve(self, cobj, this_url): """Resolve the link to the documentation, returns None if not found Parameters ---------- cobj : dict Dict with information about the "code object" for which we are resolving a link. cobi['name'] : function or class name (str) cobj['module_short'] : shortened module name (str) cobj['module'] : module name (str) this_url: str URL of the current page. Needed to construct relative URLs (only used if relative=True in constructor). Returns ------- link : str | None The link (URL) to the documentation. """ full_name = cobj['module_short'] + '.' + cobj['name'] link = self._link_cache.get(full_name, None) if link is None: # we don't have it cached link = self._get_link(cobj) # cache it for the future self._link_cache[full_name] = link if link is False or link is None: # failed to resolve return None if self.relative: link = os.path.relpath(link, start=this_url) if self._is_windows: # replace '\' with '/' so it on the web link = link.replace('\\', '/') # for some reason, the relative link goes one directory too high up link = link[3:] return link ############################################################################### rst_template = """ .. _example_%(short_fname)s: %(docstring)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- """ plot_rst_template = """ .. _example_%(short_fname)s: %(docstring)s %(image_list)s %(stdout)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- **Total running time of the example:** %(time_elapsed) .2f seconds (%(time_m) .0f minutes %(time_s) .2f seconds) """ # The following strings are used when we have several pictures: we use # an html div tag that our CSS uses to turn the lists into horizontal # lists. HLIST_HEADER = """ .. rst-class:: horizontal """ HLIST_IMAGE_TEMPLATE = """ * .. image:: images/%s :scale: 47 """ SINGLE_IMAGE = """ .. image:: images/%s :align: center """ # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'plot_classifier_comparison_001.png': (1, 600), 'plot_outlier_detection_001.png': (3, 372), 'plot_gp_regression_001.png': (2, 250), 'plot_adaboost_twoclass_001.png': (1, 372), 'plot_compare_methods_001.png': (1, 349)} def extract_docstring(filename, ignore_heading=False): """ Extract a module-level docstring, if any """ if six.PY2: lines = open(filename).readlines() else: lines = open(filename, encoding='utf-8').readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, extract # the first one: paragraphs = '\n'.join( line.rstrip() for line in docstring.split('\n')).split('\n\n') if paragraphs: if ignore_heading: if len(paragraphs) > 1: first_par = re.sub('\n', ' ', paragraphs[1]) first_par = ((first_par[:95] + '...') if len(first_par) > 95 else first_par) else: raise ValueError("Docstring not found by gallery.\n" "Please check the layout of your" " example file:\n {}\n and make sure" " it's correct".format(filename)) else: first_par = paragraphs[0] break return docstring, first_par, erow + 1 + start_row def generate_example_rst(app): """ Generate the list of examples, as well as the contents of examples. """ root_dir = os.path.join(app.builder.srcdir, 'auto_examples') example_dir = os.path.abspath(os.path.join(app.builder.srcdir, '..', 'examples')) generated_dir = os.path.abspath(os.path.join(app.builder.srcdir, 'modules', 'generated')) try: plot_gallery = eval(app.builder.config.plot_gallery) except TypeError: plot_gallery = bool(app.builder.config.plot_gallery) if not os.path.exists(example_dir): os.makedirs(example_dir) if not os.path.exists(root_dir): os.makedirs(root_dir) if not os.path.exists(generated_dir): os.makedirs(generated_dir) # we create an index.rst with all examples fhindex = open(os.path.join(root_dir, 'index.rst'), 'w') # Note: The sidebar button has been removed from the examples page for now # due to how it messes up the layout. Will be fixed at a later point fhindex.write("""\ .. raw:: html <style type="text/css"> div#sidebarbutton { /* hide the sidebar collapser, while ensuring vertical arrangement */ display: none; } </style> .. _examples-index: Examples ======== """) # Here we don't use an os.walk, but we recurse only twice: flat is # better than nested. seen_backrefs = set() generate_dir_rst('.', fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) for directory in sorted(os.listdir(example_dir)): if os.path.isdir(os.path.join(example_dir, directory)): generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) fhindex.flush() def extract_line_count(filename, target_dir): # Extract the line count of a file example_file = os.path.join(target_dir, filename) if six.PY2: lines = open(example_file).readlines() else: lines = open(example_file, encoding='utf-8').readlines() start_row = 0 if lines and lines[0].startswith('#!'): lines.pop(0) start_row = 1 line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) check_docstring = True erow_docstring = 0 for tok_type, _, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif (tok_type == 'STRING') and check_docstring: erow_docstring = erow check_docstring = False return erow_docstring+1+start_row, erow+1+start_row def line_count_sort(file_list, target_dir): # Sort the list of examples by line-count new_list = [x for x in file_list if x.endswith('.py')] unsorted = np.zeros(shape=(len(new_list), 2)) unsorted = unsorted.astype(np.object) for count, exmpl in enumerate(new_list): docstr_lines, total_lines = extract_line_count(exmpl, target_dir) unsorted[count][1] = total_lines - docstr_lines unsorted[count][0] = exmpl index = np.lexsort((unsorted[:, 0].astype(np.str), unsorted[:, 1].astype(np.float))) if not len(unsorted): return [] return np.array(unsorted[index][:, 0]).tolist() def _thumbnail_div(subdir, full_dir, fname, snippet, is_backref=False): """Generates RST to place a thumbnail in a gallery""" thumb = os.path.join(full_dir, 'images', 'thumb', fname[:-3] + '.png') link_name = os.path.join(full_dir, fname).replace(os.path.sep, '_') ref_name = os.path.join(subdir, fname).replace(os.path.sep, '_') if ref_name.startswith('._'): ref_name = ref_name[2:] out = [] out.append(""" .. raw:: html <div class="thumbnailContainer" tooltip="{}"> """.format(snippet)) out.append('.. only:: html\n\n') out.append(' .. figure:: %s\n' % thumb) if link_name.startswith('._'): link_name = link_name[2:] if full_dir != '.': out.append(' :target: ./%s/%s.html\n\n' % (full_dir, fname[:-3])) else: out.append(' :target: ./%s.html\n\n' % link_name[:-3]) out.append(""" :ref:`example_%s` .. raw:: html </div> """ % (ref_name)) if is_backref: out.append('.. only:: not html\n\n * :ref:`example_%s`' % ref_name) return ''.join(out) def generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs): """ Generate the rst file for an example directory. """ if not directory == '.': target_dir = os.path.join(root_dir, directory) src_dir = os.path.join(example_dir, directory) else: target_dir = root_dir src_dir = example_dir if not os.path.exists(os.path.join(src_dir, 'README.txt')): raise ValueError('Example directory %s does not have a README.txt' % src_dir) fhindex.write(""" %s """ % open(os.path.join(src_dir, 'README.txt')).read()) if not os.path.exists(target_dir): os.makedirs(target_dir) sorted_listdir = line_count_sort(os.listdir(src_dir), src_dir) if not os.path.exists(os.path.join(directory, 'images', 'thumb')): os.makedirs(os.path.join(directory, 'images', 'thumb')) for fname in sorted_listdir: if fname.endswith('py'): backrefs = generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery) new_fname = os.path.join(src_dir, fname) _, snippet, _ = extract_docstring(new_fname, True) fhindex.write(_thumbnail_div(directory, directory, fname, snippet)) fhindex.write(""" .. toctree:: :hidden: %s/%s """ % (directory, fname[:-3])) for backref in backrefs: include_path = os.path.join(root_dir, '../modules/generated/%s.examples' % backref) seen = backref in seen_backrefs with open(include_path, 'a' if seen else 'w') as ex_file: if not seen: # heading print(file=ex_file) print('Examples using ``%s``' % backref, file=ex_file) print('-----------------%s--' % ('-' * len(backref)), file=ex_file) print(file=ex_file) rel_dir = os.path.join('../../auto_examples', directory) ex_file.write(_thumbnail_div(directory, rel_dir, fname, snippet, is_backref=True)) seen_backrefs.add(backref) fhindex.write(""" .. raw:: html <div class="clearer"></div> """) # clear at the end of the section # modules for which we embed links into example code DOCMODULES = ['sklearn', 'matplotlib', 'numpy', 'scipy'] def make_thumbnail(in_fname, out_fname, width, height): """Make a thumbnail with the same aspect ratio centered in an image with a given width and height """ # local import to avoid testing dependency on PIL: try: from PIL import Image except ImportError: import Image img = Image.open(in_fname) width_in, height_in = img.size scale_w = width / float(width_in) scale_h = height / float(height_in) if height_in * scale_w <= height: scale = scale_w else: scale = scale_h width_sc = int(round(scale * width_in)) height_sc = int(round(scale * height_in)) # resize the image img.thumbnail((width_sc, height_sc), Image.ANTIALIAS) # insert centered thumb = Image.new('RGB', (width, height), (255, 255, 255)) pos_insert = ((width - width_sc) // 2, (height - height_sc) // 2) thumb.paste(img, pos_insert) thumb.save(out_fname) # Use optipng to perform lossless compression on the resized image if # software is installed if os.environ.get('SKLEARN_DOC_OPTIPNG', False): try: subprocess.call(["optipng", "-quiet", "-o", "9", out_fname]) except Exception: warnings.warn('Install optipng to reduce the size of the generated images') def get_short_module_name(module_name, obj_name): """ Get the shortest possible module name """ parts = module_name.split('.') short_name = module_name for i in range(len(parts) - 1, 0, -1): short_name = '.'.join(parts[:i]) try: exec('from %s import %s' % (short_name, obj_name)) except ImportError: # get the last working module name short_name = '.'.join(parts[:(i + 1)]) break return short_name class NameFinder(ast.NodeVisitor): """Finds the longest form of variable names and their imports in code Only retains names from imported modules. """ def __init__(self): super(NameFinder, self).__init__() self.imported_names = {} self.accessed_names = set() def visit_Import(self, node, prefix=''): for alias in node.names: local_name = alias.asname or alias.name self.imported_names[local_name] = prefix + alias.name def visit_ImportFrom(self, node): self.visit_Import(node, node.module + '.') def visit_Name(self, node): self.accessed_names.add(node.id) def visit_Attribute(self, node): attrs = [] while isinstance(node, ast.Attribute): attrs.append(node.attr) node = node.value if isinstance(node, ast.Name): # This is a.b, not e.g. a().b attrs.append(node.id) self.accessed_names.add('.'.join(reversed(attrs))) else: # need to get a in a().b self.visit(node) def get_mapping(self): for name in self.accessed_names: local_name = name.split('.', 1)[0] remainder = name[len(local_name):] if local_name in self.imported_names: # Join import path to relative path full_name = self.imported_names[local_name] + remainder yield name, full_name def identify_names(code): """Builds a codeobj summary by identifying and resovles used names >>> code = ''' ... from a.b import c ... import d as e ... print(c) ... e.HelloWorld().f.g ... ''' >>> for name, o in sorted(identify_names(code).items()): ... print(name, o['name'], o['module'], o['module_short']) c c a.b a.b e.HelloWorld HelloWorld d d """ finder = NameFinder() finder.visit(ast.parse(code)) example_code_obj = {} for name, full_name in finder.get_mapping(): # name is as written in file (e.g. np.asarray) # full_name includes resolved import path (e.g. numpy.asarray) module, attribute = full_name.rsplit('.', 1) # get shortened module name module_short = get_short_module_name(module, attribute) cobj = {'name': attribute, 'module': module, 'module_short': module_short} example_code_obj[name] = cobj return example_code_obj def generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery): """ Generate the rst file for a given example. Returns the set of sklearn functions/classes imported in the example. """ base_image_name = os.path.splitext(fname)[0] image_fname = '%s_%%03d.png' % base_image_name this_template = rst_template last_dir = os.path.split(src_dir)[-1] # to avoid leading . in file names, and wrong names in links if last_dir == '.' or last_dir == 'examples': last_dir = '' else: last_dir += '_' short_fname = last_dir + fname src_file = os.path.join(src_dir, fname) example_file = os.path.join(target_dir, fname) shutil.copyfile(src_file, example_file) # The following is a list containing all the figure names figure_list = [] image_dir = os.path.join(target_dir, 'images') thumb_dir = os.path.join(image_dir, 'thumb') if not os.path.exists(image_dir): os.makedirs(image_dir) if not os.path.exists(thumb_dir): os.makedirs(thumb_dir) image_path = os.path.join(image_dir, image_fname) stdout_path = os.path.join(image_dir, 'stdout_%s.txt' % base_image_name) time_path = os.path.join(image_dir, 'time_%s.txt' % base_image_name) thumb_file = os.path.join(thumb_dir, base_image_name + '.png') time_elapsed = 0 if plot_gallery and fname.startswith('plot'): # generate the plot as png image if file name # starts with plot and if it is more recent than an # existing image. first_image_file = image_path % 1 if os.path.exists(stdout_path): stdout = open(stdout_path).read() else: stdout = '' if os.path.exists(time_path): time_elapsed = float(open(time_path).read()) if not os.path.exists(first_image_file) or \ os.stat(first_image_file).st_mtime <= os.stat(src_file).st_mtime: # We need to execute the code print('plotting %s' % fname) t0 = time() import matplotlib.pyplot as plt plt.close('all') cwd = os.getcwd() try: # First CD in the original example dir, so that any file # created by the example get created in this directory orig_stdout = sys.stdout os.chdir(os.path.dirname(src_file)) my_buffer = StringIO() my_stdout = Tee(sys.stdout, my_buffer) sys.stdout = my_stdout my_globals = {'pl': plt} execfile(os.path.basename(src_file), my_globals) time_elapsed = time() - t0 sys.stdout = orig_stdout my_stdout = my_buffer.getvalue() if '__doc__' in my_globals: # The __doc__ is often printed in the example, we # don't with to echo it my_stdout = my_stdout.replace( my_globals['__doc__'], '') my_stdout = my_stdout.strip().expandtabs() if my_stdout: stdout = '**Script output**::\n\n %s\n\n' % ( '\n '.join(my_stdout.split('\n'))) open(stdout_path, 'w').write(stdout) open(time_path, 'w').write('%f' % time_elapsed) os.chdir(cwd) # In order to save every figure we have two solutions : # * iterate from 1 to infinity and call plt.fignum_exists(n) # (this requires the figures to be numbered # incrementally: 1, 2, 3 and not 1, 2, 5) # * iterate over [fig_mngr.num for fig_mngr in # matplotlib._pylab_helpers.Gcf.get_all_fig_managers()] fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers() for fig_mngr in fig_managers: # Set the fig_num figure as the current figure as we can't # save a figure that's not the current figure. fig = plt.figure(fig_mngr.num) kwargs = {} to_rgba = matplotlib.colors.colorConverter.to_rgba for attr in ['facecolor', 'edgecolor']: fig_attr = getattr(fig, 'get_' + attr)() default_attr = matplotlib.rcParams['figure.' + attr] if to_rgba(fig_attr) != to_rgba(default_attr): kwargs[attr] = fig_attr fig.savefig(image_path % fig_mngr.num, **kwargs) figure_list.append(image_fname % fig_mngr.num) except: print(80 * '_') print('%s is not compiling:' % fname) traceback.print_exc() print(80 * '_') finally: os.chdir(cwd) sys.stdout = orig_stdout print(" - time elapsed : %.2g sec" % time_elapsed) else: figure_list = [f[len(image_dir):] for f in glob.glob(image_path.replace("%03d", '[0-9][0-9][0-9]'))] figure_list.sort() # generate thumb file this_template = plot_rst_template car_thumb_path = os.path.join(os.path.split(root_dir)[0], '_build/html/stable/_images/') # Note: normaly, make_thumbnail is used to write to the path contained in `thumb_file` # which is within `auto_examples/../images/thumbs` depending on the example. # Because the carousel has different dimensions than those of the examples gallery, # I did not simply reuse them all as some contained whitespace due to their default gallery # thumbnail size. Below, for a few cases, seperate thumbnails are created (the originals can't # just be overwritten with the carousel dimensions as it messes up the examples gallery layout). # The special carousel thumbnails are written directly to _build/html/stable/_images/, # as for some reason unknown to me, Sphinx refuses to copy my 'extra' thumbnails from the # auto examples gallery to the _build folder. This works fine as is, but it would be cleaner to # have it happen with the rest. Ideally the should be written to 'thumb_file' as well, and then # copied to the _images folder during the `Copying Downloadable Files` step like the rest. if not os.path.exists(car_thumb_path): os.makedirs(car_thumb_path) if os.path.exists(first_image_file): # We generate extra special thumbnails for the carousel carousel_tfile = os.path.join(car_thumb_path, base_image_name + '_carousel.png') first_img = image_fname % 1 if first_img in carousel_thumbs: make_thumbnail((image_path % carousel_thumbs[first_img][0]), carousel_tfile, carousel_thumbs[first_img][1], 190) make_thumbnail(first_image_file, thumb_file, 400, 280) if not os.path.exists(thumb_file): # create something to replace the thumbnail make_thumbnail('images/no_image.png', thumb_file, 200, 140) docstring, short_desc, end_row = extract_docstring(example_file) # Depending on whether we have one or more figures, we're using a # horizontal list or a single rst call to 'image'. if len(figure_list) == 1: figure_name = figure_list[0] image_list = SINGLE_IMAGE % figure_name.lstrip('/') else: image_list = HLIST_HEADER for figure_name in figure_list: image_list += HLIST_IMAGE_TEMPLATE % figure_name.lstrip('/') time_m, time_s = divmod(time_elapsed, 60) f = open(os.path.join(target_dir, base_image_name + '.rst'), 'w') f.write(this_template % locals()) f.flush() # save variables so we can later add links to the documentation if six.PY2: example_code_obj = identify_names(open(example_file).read()) else: example_code_obj = \ identify_names(open(example_file, encoding='utf-8').read()) if example_code_obj: codeobj_fname = example_file[:-3] + '_codeobj.pickle' with open(codeobj_fname, 'wb') as fid: pickle.dump(example_code_obj, fid, pickle.HIGHEST_PROTOCOL) backrefs = set('{module_short}.{name}'.format(**entry) for entry in example_code_obj.values() if entry['module'].startswith('sklearn')) return backrefs def embed_code_links(app, exception): """Embed hyperlinks to documentation into example code""" if exception is not None: return print('Embedding documentation hyperlinks in examples..') if app.builder.name == 'latex': # Don't embed hyperlinks when a latex builder is used. return # Add resolvers for the packages for which we want to show links doc_resolvers = {} doc_resolvers['sklearn'] = SphinxDocLinkResolver(app.builder.outdir, relative=True) resolver_urls = { 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.6.0', 'scipy': 'http://docs.scipy.org/doc/scipy-0.11.0/reference', } for this_module, url in resolver_urls.items(): try: doc_resolvers[this_module] = SphinxDocLinkResolver(url) except HTTPError as e: print("The following HTTP Error has occurred:\n") print(e.code) except URLError as e: print("\n...\n" "Warning: Embedding the documentation hyperlinks requires " "internet access.\nPlease check your network connection.\n" "Unable to continue embedding `{0}` links due to a URL " "Error:\n".format(this_module)) print(e.args) example_dir = os.path.join(app.builder.srcdir, 'auto_examples') html_example_dir = os.path.abspath(os.path.join(app.builder.outdir, 'auto_examples')) # patterns for replacement link_pattern = '<a href="%s">%s</a>' orig_pattern = '<span class="n">%s</span>' period = '<span class="o">.</span>' for dirpath, _, filenames in os.walk(html_example_dir): for fname in filenames: print('\tprocessing: %s' % fname) full_fname = os.path.join(html_example_dir, dirpath, fname) subpath = dirpath[len(html_example_dir) + 1:] pickle_fname = os.path.join(example_dir, subpath, fname[:-5] + '_codeobj.pickle') if os.path.exists(pickle_fname): # we have a pickle file with the objects to embed links for with open(pickle_fname, 'rb') as fid: example_code_obj = pickle.load(fid) fid.close() str_repl = {} # generate replacement strings with the links for name, cobj in example_code_obj.items(): this_module = cobj['module'].split('.')[0] if this_module not in doc_resolvers: continue try: link = doc_resolvers[this_module].resolve(cobj, full_fname) except (HTTPError, URLError) as e: print("The following error has occurred:\n") print(repr(e)) continue if link is not None: parts = name.split('.') name_html = period.join(orig_pattern % part for part in parts) str_repl[name_html] = link_pattern % (link, name_html) # do the replacement in the html file # ensure greediness names = sorted(str_repl, key=len, reverse=True) expr = re.compile(r'(?<!\.)\b' + # don't follow . or word '|'.join(re.escape(name) for name in names)) def substitute_link(match): return str_repl[match.group()] if len(str_repl) > 0: with open(full_fname, 'rb') as fid: lines_in = fid.readlines() with open(full_fname, 'wb') as fid: for line in lines_in: line = line.decode('utf-8') line = expr.sub(substitute_link, line) fid.write(line.encode('utf-8')) print('[done]') def setup(app): app.connect('builder-inited', generate_example_rst) app.add_config_value('plot_gallery', True, 'html') # embed links after build is finished app.connect('build-finished', embed_code_links) # Sphinx hack: sphinx copies generated images to the build directory # each time the docs are made. If the desired image name already # exists, it appends a digit to prevent overwrites. The problem is, # the directory is never cleared. This means that each time you build # the docs, the number of images in the directory grows. # # This question has been asked on the sphinx development list, but there # was no response: http://osdir.com/ml/sphinx-dev/2011-02/msg00123.html # # The following is a hack that prevents this behavior by clearing the # image build directory each time the docs are built. If sphinx # changes their layout between versions, this will not work (though # it should probably not cause a crash). Tested successfully # on Sphinx 1.0.7 build_image_dir = '_build/html/_images' if os.path.exists(build_image_dir): filelist = os.listdir(build_image_dir) for filename in filelist: if filename.endswith('png'): os.remove(os.path.join(build_image_dir, filename)) def setup_module(): # HACK: Stop nosetests running setup() above pass
bsd-3-clause
MicrosoftGenomics/LEAP
leap/probit.py
1
12641
import numpy as np import scipy.stats as stats import scipy.linalg as la import time import sklearn.linear_model import sys import argparse import scipy.optimize as opt import scipy.linalg.blas as blas import leapUtils import leapMain np.set_printoptions(precision=6, linewidth=200) def evalProbitReg(beta, X, cases, controls, thresholds, invRegParam, normPDF, h2): XBeta = np.ravel(X.dot(beta)) - thresholds phiXBeta = normPDF.pdf(XBeta) PhiXBeta = normPDF.cdf(XBeta) logLik = np.sum(np.log(PhiXBeta[cases])) + np.sum(np.log(1-PhiXBeta[controls])) w = np.zeros(X.shape[0]) w[cases] = -phiXBeta[cases] / PhiXBeta[cases] w[controls] = phiXBeta[controls] / (1-PhiXBeta[controls]) grad = X.T.dot(w) #regularize logLik -= 0.5*invRegParam * beta.dot(beta) #regularization grad += invRegParam * beta return (-logLik, grad) def probitRegHessian(beta, X, cases, controls, thresholds, invRegParam, normPDF, h2): XBeta = np.ravel(X.dot(beta)) - thresholds phiXBeta = normPDF.pdf(XBeta) PhiXBeta = normPDF.cdf(XBeta) XbetaScaled = XBeta #/(1-h2) R = np.zeros(X.shape[0]) R[cases] = (XbetaScaled[cases]*PhiXBeta[cases] + phiXBeta[cases]) / PhiXBeta[cases]**2 R[controls] = (-XbetaScaled[controls]*(1-PhiXBeta[controls]) + phiXBeta[controls]) / (1 - PhiXBeta[controls])**2 R *= phiXBeta H = (X.T * R).dot(X) H += invRegParam return H def probitRegression(X, y, thresholds, numSNPs, numFixedFeatures, h2, useHess, maxFixedIters, epsilon, nofail): regParam = h2 / float(numSNPs) Linreg = sklearn.linear_model.Ridge(alpha=1.0/(2*regParam), fit_intercept=False, normalize=False, solver='lsqr') Linreg.fit(X, y) initBeta = Linreg.coef_ np.random.seed(1234) normPDF = stats.norm(0, np.sqrt(1-h2)) invRegParam = 1.0/regParam controls = (y==0) cases = (y==1) funcToSolve = evalProbitReg hess =(probitRegHessian if useHess else None) jac= True method = 'Newton-CG' args = (X, cases, controls, thresholds, invRegParam, normPDF, h2) print 'Beginning Probit regression...' t0 = time.time() optObj = opt.minimize(funcToSolve, x0=initBeta, args=args, jac=jac, method=method, hess=hess) print 'Done in', '%0.2f'%(time.time()-t0), 'seconds' if (not optObj.success): print 'Optimization status:', optObj.status print optObj.message if (nofail == 0): raise Exception('Probit regression failed with message: ' + optObj.message) beta = optObj.x #Fit fixed effects if (numFixedFeatures > 0): thresholdsEM = np.zeros(X.shape[0]) + thresholds for i in xrange(maxFixedIters): print 'Beginning fixed effects iteration', i+1 t0 = time.time() prevBeta = beta.copy() #Learn fixed effects thresholdsTemp = thresholdsEM - X[:, numFixedFeatures:].dot(beta[numFixedFeatures:]) args = (X[:, :numFixedFeatures], cases, controls, thresholdsTemp, 0, normPDF, h2) optObj = opt.minimize(funcToSolve, x0=beta[:numFixedFeatures], args=args, jac=True, method=method, hess=hess) if (not optObj.success): print optObj.message; #raise Exception('Learning failed with message: ' + optObj.message) beta[:numFixedFeatures] = optObj.x #Learn random effects thresholdsTemp = thresholdsEM - X[:, :numFixedFeatures].dot(beta[:numFixedFeatures]) args = (X[:, numFixedFeatures:], cases, controls, thresholdsTemp, invRegParam, normPDF, h2) optObj = opt.minimize(funcToSolve, x0=beta[numFixedFeatures:], args=args, jac=True, method=method, hess=hess) if (not optObj.success): print optObj.message; #raise Exception('Learning failed with message: ' + optObj.message) beta[numFixedFeatures:] = optObj.x diff = np.sqrt(np.mean(beta[:numFixedFeatures]**2 - prevBeta[:numFixedFeatures]**2)) print 'Done in', '%0.2f'%(time.time()-t0), 'seconds' print 'Diff:', '%0.4e'%diff if (diff < epsilon): break return beta def probit(bed, pheno, h2, prev, eigen, outFile, keepArr, covar, thresholds, nofail, numSkipTopPCs, mineig, hess, recenter, maxFixedIters, epsilon, treatFixedAsRandom=False): bed, pheno = leapUtils._fixupBedAndPheno(bed, pheno) #Extract phenotype if isinstance(pheno, dict): phe = pheno['vals'] else: phe = pheno if (len(phe.shape)==2): if (phe.shape[1]==1): phe=phe[:,0] else: raise Exception('More than one phenotype found') if (keepArr is None): keepArr = np.ones(phe.shape[0], dtype=np.bool) S = eigen['arr_1'] * bed.sid.shape[0] U = eigen['arr_0'] S = np.sqrt(S) goodS = (S>mineig) if (numSkipTopPCs > 0): goodS[-numSkipTopPCs:] = False if (np.sum(~goodS) > 0): print 'Removing', np.sum(~goodS), 'PCs with low variance' G = U[:, goodS]*S[goodS] #Set binary vector pheUnique = np.unique(phe) if (pheUnique.shape[0] != 2): raise Exception('phenotype file has more than two values') pheMean = phe.mean() cases = (phe>pheMean) phe[~cases] = 0 phe[cases] = 1 #run probit regression t = stats.norm(0,1).isf(prev) if (thresholds is not None): t = thresholds #Recenter G to only consider the unrelated individuals if recenter: G -= np.mean(G[keepArr, :], axis=0) else: G -= np.mean(G, axis=0) numFixedFeatures = 0 if (covar is not None): covar -= covar.mean() covar /= covar.std() covar *= np.mean(np.std(G, axis=0)) G = np.concatenate((covar, G), axis=1) if (not treatFixedAsRandom): numFixedFeatures += covar.shape[1] #Run Probit regression probitThresh = (t if thresholds is None else t[keepArr]) beta = probitRegression(G[keepArr, :], phe[keepArr], probitThresh, bed.sid.shape[0], numFixedFeatures, h2, hess, maxFixedIters, epsilon, nofail) #Predict liabilities for all individuals meanLiab = G.dot(beta) liab = meanLiab.copy() indsToFlip = ((liab <= t) & (phe>0.5)) | ((liab > t) & (phe<0.5)) liab[indsToFlip] = stats.norm(0,1).isf(prev) if (outFile is not None): #save liabilities f = open(outFile+'.liabs', 'w') for ind_i,[fid,iid] in enumerate(bed.iid): f.write(' '.join([fid, iid, '%0.3f'%liab[ind_i]]) + '\n') f.close() #save liabilities after regressing out the fixed effects if (numFixedFeatures > 0): liab_nofixed = liab - G[:, :numFixedFeatures].dot(beta[:numFixedFeatures]) f = open(outFile+'.liab_nofixed', 'w') for ind_i,[fid,iid] in enumerate(bed.iid): f.write(' '.join([fid, iid, '%0.3f'%liab_nofixed[ind_i]]) + '\n') f.close() liab_nofixed2 = meanLiab - G[:, :numFixedFeatures].dot(beta[:numFixedFeatures]) indsToFlip = ((liab_nofixed2 <= t) & (phe>0.5)) | ((liab_nofixed2 > t) & (phe<0.5)) liab_nofixed2[indsToFlip] = stats.norm(0,1).isf(prev) f = open(outFile+'.liab_nofixed2', 'w') for ind_i,[fid,iid] in enumerate(bed.iid): f.write(' '.join([fid, iid, '%0.3f'%liab_nofixed2[ind_i]]) + '\n') f.close() #Return phenotype struct with liabilities liabsStruct = { 'header':[None], 'vals':liab, 'iid':bed.iid } return liabsStruct if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--bfilesim', metavar='bfilesim', default=None, help='Binary plink file') parser.add_argument('--pheno', metavar='pheno', default=None, help='Phenotype file in Plink format') parser.add_argument('--h2', metavar='h2', type=float, default=None, help='Liability heritability') parser.add_argument('--eigen', metavar='eigen', default=None, help='eigen file') parser.add_argument('--prev', metavar='prev', type=float, default=None, help='Trait prevalence') parser.add_argument('--extractSim', metavar='extractSim', default=None, help='SNPs subset to use') parser.add_argument('--out', metavar='out', default=None, help='output file') parser.add_argument('--covar', metavar='covar', default=None, help='covariates file in FastLMM format') parser.add_argument('--thresholds', metavar='thresholds', default=None, help="liability thresholds file") parser.add_argument('--nofail', metavar='nofail', type=int, default=0, help="Do not raise exception if Probit fitting failed") parser.add_argument('--treatFixedAsRandom', metavar='treatFixedAsRandom', type=int, default=0, help="Whether to treat fixed effects as random effects") parser.add_argument('--relCutoff', metavar='relCutoff', type=float, default=0.05, help='Relatedness cutoff') parser.add_argument('--numSkipTopPCs', metavar='numSkipTopPCs', type=int, default=0, help='Number of PCs to skip') parser.add_argument('--numFixedPCs', metavar='numFixedPCs', type=int, default=0, help='Number of PCs to use as fixed effects') parser.add_argument('--hess', metavar='hess', type=int, default=1, help='Whether to compute Hessian analytically (1) or not (0)') parser.add_argument('--bfile', metavar='bfile', default=None, help='Binary plink file with SNPs that can be used as fixed effects') parser.add_argument('--resfile', metavar='resfile', default=None, help='A linear regression results file in FastLMM format, used to choose SNPs that will be used as fixed effects') parser.add_argument('--pthresh', metavar='pthresh', type=float, default=5e-8, help='p-value cutoff below which SNPs will be used as fixed effects') parser.add_argument('--mineig', metavar='mineig', type=float, default=1e-3, help='eigenvectors with singular value below this value will not be used') parser.add_argument('--extract', metavar='extract', default=None, help='subset of SNPs to be considered as fixed effects') parser.add_argument('--related', metavar='related', default=None, help='File with info about related individuals to remove') parser.add_argument('--mindist', metavar='mindist', type=int, default=0, help='Minimum distance between fixed effects SNPs') parser.add_argument('--recenter', metavar='recenter', type=int, default=1, help='Whether to recenter features matrix so that only individuals participating in the model fitting stage will have zero mean for every feature (1 or 0)') parser.add_argument('--maxFixedIters', metavar='maxFixedIters', type=int, default=100, help='Max number of iterations for fitting of fixed effects') parser.add_argument('--epsilon', metavar='epsilon', type=float, default=1e-3, help='Convergence cutoff for fitting of fixed effects') parser.add_argument('--missingPhenotype', metavar='missingPhenotype', default='-9', help='identifier for missing values (default: -9)') args = parser.parse_args() if (args.extract is not None and args.bfile is None): raise Exception('--extract cannot be used without --bfile') if (args.bfile is not None and args.resfile is None): raise Exception('--bfile cannot be used without --resfile') if (args.bfilesim is None): raise Exception('bfilesim must be supplied') if (args.pheno is None): raise Exception('phenotype file must be supplied') if (args.out is None): raise Exception('output file name must be supplied') if (args.prev is None): raise Exception('prevlence must be supplied') if (args.h2 is None): raise Exception('heritability must be supplied') #Read bfilesim and pheno file for heritability computation bed, phe = leapUtils.loadData(args.bfilesim, args.extractSim, args.pheno, args.missingPhenotype, loadSNPs=(args.eigen is None), standardize=True) #Read/create eigendecomposition if (args.eigen is not None): eigen = np.load(args.eigen) else: import eigenDecompose eigen = eigenDecompose.eigenDecompose(bed) #Compute relatedness if (args.relCutoff <= 0): keepArr = np.ones(bed.iid.shape[0], dtype=bool) else: if (args.related is None): bed2 = bed if (args.extractSim is not None or args.eigen is not None): bed2, _ = leapUtils.loadData(args.bfilesim, None, args.pheno, args.missingPhenotype, loadSNPs=True) keepArr = leapUtils.findRelated(bed2, args.relCutoff) else: keepArr = leapUtils.loadRelatedFile(bed, args.related) #Add significant SNPs as fixed effects covar = None if (args.resfile is not None): bed_fixed, _ = leapUtils.loadData(args.bfile, args.extract, args.pheno, args.missingPhenotype, loadSNPs=True) covar = leapUtils.getSNPCovarsMatrix(bed_fixed, args.resfile, args.pthresh, args.mindist) print 'using', covar.shape[1], 'SNPs as covariates' #Read covar file if (args.covar is not None): covarsMat = leapUtils.loadCovars(bed, args.covar) print 'Read', covarsMat.shape[1], 'covariates from file' if (covar is None): covar = covarsMat else: covar = np.concatenate((covar, covarsMat), axis=1) if (args.thresholds is not None): thresholds = np.loadtxt(args.thresholds, usecols=[0]) else: thresholds = None leapMain.probit(bed, phe, args.h2, args.prev, eigen, args.out, keepArr, covar, thresholds, args.nofail==1, args.numSkipTopPCs, args.mineig, args.hess==1, args.recenter==1, args.maxFixedIters, args.epsilon, treatFixedAsRandom=args.treatFixedAsRandom>=1)
apache-2.0
vzg100/Post-Translational-Modification-Prediction
w2vImp.py
1
6828
from random import randint import numpy as np import pandas as pd import random from gensim.models import word2vec from sklearn.cluster import KMeans from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import roc_auc_score from sklearn.svm import SVC from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from collections import Counter, defaultdict from sklearn.pipeline import Pipeline from sklearn.ensemble import ExtraTreesClassifier from sklearn.metrics import precision_score from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score def windower(sequence, position, wing_size): # window size = wing_size*2 +1 position = int(position) wing_size = int(wing_size) if (position - wing_size) < 0: return sequence[:wing_size + position] if (position + wing_size) > len(sequence): return sequence[position - wing_size:] else: return sequence[position - wing_size:position + wing_size] class DataCleaner: def __init__(self, output, data="phosphosites.csv", delimit=",", amino_acid="K", sites="code", modification="phosphorylation", window_size=7, pos="position", training_ratio=.7, header_line=0, seq="sequence", neg_per_seq=2, lines_to_read=10000): data = pd.read_csv(data, header=header_line, delimiter=delimit, quoting=3, dtype=object) self.data = data.reindex(np.random.permutation(data.index)) self.amino_acid = amino_acid self.training_ratio = training_ratio # Float value representing % of data used for training self.proteins = {} self.neg_count = 0 self.neg_per_seq = neg_per_seq self.window = int(window_size) self.features= [] self.labels = [] self.output = open(output, "a") sequences = self.data["sequence"] positive_sites = self.data["position"] size = len(self.data["sequence"]) for i in range(0,size): #print(sequences[i][int(positive_sites[i])-1]) try: self.features.append(windower(sequences[i], positive_sites[i], self.window)) self.labels.append(1) except: print(i) counter = len(self.features) for i in range(int(counter*neg_per_seq)): if len(self.features) >= counter*neg_per_seq: break selector = randint(0, size) options = [] try: for j in range(len(sequences[selector])): if sequences[selector][j] == self.amino_acid: options.append(j) except: pass if len(options) > 0: try: random.shuffle(options) for j in options: t = windower(sequences[selector],j,self.window) if t not in self.features: self.features.append(t) self.labels.append(0) except: pass temp = list(zip(self.features, self.labels)) random.shuffle(temp) self.features, self.labels = zip(*temp) print(len(self.features), len(self.labels)) for i in range(len(self.features)): t = str(self.features[i])+","+str(self.labels[i])+"\n" self.output.write(t) class Classy: def __init__(self, data="clean_serine.csv", delimit=",", amino_acid="Y", training_ratio=.7, header_line=0): self.data = open(data, "r") self.amino_acid = amino_acid self.training_ratio = training_ratio # Float value representing % of data used for training self.features= [] self.labels = [] i = 0 for line in self.data: try: x, y = line.split(",") y = int(y.strip("\n")) t = [] for j in x: t.append(j) self.features.append(t) self.labels.append(y) except: print("Bad data at line"+str(i)) i = i + 1 temp = list(zip(self.features, self.labels)) random.shuffle(temp) self.features, self.labels = zip(*temp) self.num_features = 300 # Word vector dimensionality self.min_word_count = 1 # Minimum word count self.num_workers = 4 # Number of threads to run in parallel self.context = 5 # Context window size self.downsampling = 5e-1 # Downsample setting for frequent words self.model = word2vec.Word2Vec(self.features ,workers=self.num_workers, size=self.num_features, min_count=self.min_word_count,window=self.context, sample=self.downsampling) def kluster(self): word_vectors = self.model.wv.syn0 num_clusters = 15 # og is 4 print(num_clusters) kmeans_clustering = KMeans(n_clusters=num_clusters) idx = kmeans_clustering.fit_predict(word_vectors) word_centroid_map = dict(zip(self.model.wv.index2word, idx)) for cluster in range(0, 10): print("Cluster" +str(cluster)) words = [] val = list(word_centroid_map.values()) key = list(word_centroid_map.keys()) for i in range(len(val)): if val[i] == cluster: words.append(key[i]) print(words) train_centroids = np.zeros((len(self.features), num_clusters),dtype="float32") counter = 0 for sequence in self.features: train_centroids[counter] = bag_of_centroids(sequence, word_centroid_map) counter += 1 X_train, X_test, y_train, y_test = train_test_split(train_centroids, self.labels, test_size = 0.33, random_state = 42) forest = RandomForestClassifier(n_estimators=100) forest.fit(X_train, y_train) result = forest.predict(X_test) print(precision_score(y_test, result)) print(recall_score(y_test, result)) print(accuracy_score(y_test, result)) print(roc_auc_score(y_test, result)) def bag_of_centroids(wordlist, word_centroid_map): num_centroids = max(word_centroid_map.values()) + 1 bag_of_centroids = np.zeros(num_centroids, dtype="float32") for word in wordlist: if word in word_centroid_map: index = word_centroid_map[word] bag_of_centroids[index] += 1 return bag_of_centroids y= DataCleaner(amino_acid="H", data="Data/Training/raw/Phosphorylation_H.txt", output="Data/Training/Phosphorylation_H.txt")
mit
PytLab/catplot
tests/ep_canvas_test.py
1
5077
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Test case for Energy Profle Canvas. """ import unittest import matplotlib.pyplot as plt from catplot.ep_components.ep_canvas import EPCanvas from catplot.ep_components.ep_lines import ElementaryLine from catplot.ep_components.ep_chain import EPChain class EPCanvasTest(unittest.TestCase): def setUp(self): self.maxDiff = True def test_construction_and_query(self): """ Test we can construct ElementaryLine object correctly. """ canvas = EPCanvas(margin_ratio=0.2) self.assertEqual(canvas.margin_ratio, 0.2) self.assertIsNone(canvas.figsize) self.assertIsNone(canvas.dpi) self.assertIsNone(canvas.facecolor) self.assertIsNone(canvas.edgecolor) self.assertListEqual(canvas.lines, []) self.assertListEqual(canvas.shadow_lines, []) self.assertTrue(canvas.figure) self.assertTrue(canvas.axes) # Check invalid reaction equation. self.assertRaises(ValueError, EPCanvas, margin_ratio=-0.1) plt.close(canvas.figure) def test_draw(self): """ Make sure the lines can be added without exceptions. """ canvas = EPCanvas() line = ElementaryLine([0.0, 1.3, 0.8]) canvas.add_lines([line]) canvas.draw() plt.close(canvas.figure) def test_add_species_annotations(self): """ Make sure the species annotations can be added without exceptions. """ canvas = EPCanvas() line = ElementaryLine([0.0, 1.3, 0.8], rxn_equation="CO_b + O_b <-> CO-O_2b -> CO2_g + 2*_b") canvas.add_lines([line]) canvas.add_species_annotations(line) plt.close(canvas.figure) def test_add_horizontal_auxiliary_line(self): """ Make sure the horizontal line can be added without exceptions. """ canvas = EPCanvas() line = ElementaryLine([0.0, 1.3, 0.8]) canvas.add_lines([line]) canvas.add_horizontal_auxiliary_line(line) plt.close(canvas.figure) def test_add_vertical_auxiliary_line(self): """ Make sure the vertical line can be added without exceptions. """ canvas = EPCanvas() line = ElementaryLine([0.0, 1.3, 0.8]) canvas.add_lines([line]) canvas.add_vertical_auxiliary_lines(line) plt.close(canvas.figure) def test_add_energy_annotations(self): """ Make sure the energy annotations can be added correctly. """ canvas = EPCanvas() line = ElementaryLine([0.0, 1.3, 0.8]) canvas.add_lines([line]) canvas.add_energy_annotations(line) plt.close(canvas.figure) def test_add_chain(self): """ Test energy profile chain can be added correctly to canvas. """ canvas = EPCanvas() self.assertFalse(canvas.lines) self.assertFalse(canvas.chains) l1 = ElementaryLine([0.0, 1.2, 0.6]) l2 = ElementaryLine([0.0, 1.0, 0.8]) chain = EPChain([l1, l2]) canvas.add_chain(chain) self.assertEqual(len(canvas.lines), 2) for l in canvas.lines: self.assertTrue(isinstance(l, ElementaryLine)) self.assertEqual(len(canvas.chains), 1) self.assertTrue(isinstance(canvas.chains[0], EPChain)) # Exception is expected if add the chain again. self.assertRaises(ValueError, canvas.add_chain, chain) plt.close(canvas.figure) def test_contains(self): canvas = EPCanvas() l1 = ElementaryLine([0.0, 1.2, 0.6]) l2 = ElementaryLine([0.0, 1.0, 0.8]) chain = EPChain([l1]) canvas.add_chain(chain) self.assertTrue(l1 in canvas) self.assertTrue(chain in canvas) self.assertFalse(l2 in canvas) plt.close(canvas.figure) def test_add_line(self): """ Test the line can be add to canvas correctly. """ canvas = EPCanvas() l1 = ElementaryLine([0.0, 1.2, 0.6]) canvas.add_line(l1) # Add repeat line, exception raises. self.assertRaises(ValueError, canvas.add_line, l1) plt.close(canvas.figure) def test_add_lines(self): canvas = EPCanvas() l1 = ElementaryLine([0.0, 1.2, 0.6]) l2 = ElementaryLine([0.0, 1.0, 0.8]) canvas.add_lines([l1, l2]) canvas.lines = [] self.assertRaises(ValueError, canvas.add_lines, [l1, l1]) plt.close(canvas.figure) def test_add_all_horizontal_auxiliary_lines(self): """ Make sure we can add all horizontal auxiliary lines to canvas. """ canvas = EPCanvas() l1 = ElementaryLine([0.0, 1.2, 0.6]) l2 = ElementaryLine([0.0, 1.0, 0.8]) canvas.add_lines([l1, l2]) canvas.add_all_horizontal_auxiliary_lines() plt.close(canvas.figure) if "__main__" == __name__: suite = unittest.TestLoader().loadTestsFromTestCase(EPCanvasTest) unittest.TextTestRunner(verbosity=2).run(suite)
mit
ssaeger/scikit-learn
examples/manifold/plot_swissroll.py
330
1446
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 print(__doc__) import matplotlib.pyplot as plt # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D #---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) #---------------------------------------------------------------------- # Plot result fig = plt.figure() try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(211, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) except: ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral) plt.axis('tight') plt.xticks([]), plt.yticks([]) plt.title('Projected data') plt.show()
bsd-3-clause
maartenbreddels/vaex
tests/graphql_test.py
1
4881
from common import * if vaex.utils.devmode: pytest.skip('runs too slow when developing', allow_module_level=True) @pytest.fixture(scope='module') def schema(ds_trimmed_cache): ds_trimmed_cache = ds_trimmed_cache.drop('123456') return ds_trimmed_cache.graphql.schema() @pytest.fixture() def df(df_trimmed): return df_trimmed.drop('123456') def test_aggregates(df, schema): result = schema.execute(""" { df { count min { x y } mean { x y } max { x y } } } """) assert not result.errors assert result.data['df']['count'] == len(df) assert result.data['df']['min']['x'] == df.x.min() assert result.data['df']['min']['y'] == df.y.min() assert result.data['df']['max']['x'] == df.x.max() assert result.data['df']['max']['y'] == df.y.max() assert result.data['df']['mean']['x'] == df.x.mean() assert result.data['df']['mean']['y'] == df.y.mean() def test_groupby(df, schema): result = schema.execute(""" { df { groupby { x { min { x } } } } } """) assert not result.errors dfg = df.groupby('x', agg={'xmin': vaex.agg.min('x')}) assert result.data['df']['groupby']['x']['min']['x'] == dfg['xmin'].tolist() def test_row_pagination(df, schema): def values(row, name): return [k[name] for k in row] result = schema.execute(""" { df { row { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == df.x.tolist() result = schema.execute(""" { df { row(offset: 2) { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == df[2:].x.tolist() result = schema.execute(""" { df { row(limit: 2) { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == df[:2].x.tolist() result = schema.execute(""" { df { row(offset: 3, limit: 2) { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == df[3:5].x.tolist() def test_where(df, schema): def values(row, name): return [k[name] for k in row] result = schema.execute(""" { df(where: {x: {_eq: 4}}) { row { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == df[df.x==4].x.tolist() result = schema.execute(""" { df(where: {x: {_neq: 4}}) { row { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == df[df.x!=4].x.tolist() result = schema.execute(""" { df(where: {x: {_gt: 4}}) { row { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == df[df.x>4].x.tolist() result = schema.execute(""" { df(where: {x: {_gte: 4}}) { row { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == df[df.x>=4].x.tolist() result = schema.execute(""" { df(where: {x: {_lt: 4}}) { row { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == df[df.x<4].x.tolist() result = schema.execute(""" { df(where: {x: {_lte: 4}}) { row { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == df[df.x<=4].x.tolist() result = schema.execute(""" { df(where: {_not: {x: {_lte: 4}}}) { row { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == df[~(df.x<=4)].x.tolist() result = schema.execute(""" { df(where: {_or: [{x: {_eq: 4}}, {x: {_eq: 6}} ]}) { row { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == [4, 6] result = schema.execute(""" { df(where: {_and: [{x: {_gte: 4}}, {x: {_lte: 6}} ]}) { row { x } } } """) assert not result.errors assert values(result.data['df']['row'], 'x') == [4, 5, 6] def test_pandas(df, schema): df_pandas = df.to_pandas_df() def values(row, name): return [k[name] for k in row] result = df_pandas.graphql.execute(""" { df(where: {x: {_eq: 4}}) { row { x } } } """)
mit
bnaul/scikit-learn
sklearn/utils/_estimator_html_repr.py
4
9120
from contextlib import closing from contextlib import suppress from io import StringIO import uuid import html from sklearn import config_context class _VisualBlock: """HTML Representation of Estimator Parameters ---------- kind : {'serial', 'parallel', 'single'} kind of HTML block estimators : list of estimators or `_VisualBlock`s or a single estimator If kind != 'single', then `estimators` is a list of estimators. If kind == 'single', then `estimators` is a single estimator. names : list of str If kind != 'single', then `names` corresponds to estimators. If kind == 'single', then `names` is a single string corresponding to the single estimator. name_details : list of str, str, or None, default=None If kind != 'single', then `name_details` corresponds to `names`. If kind == 'single', then `name_details` is a single string corresponding to the single estimator. dash_wrapped : bool, default=True If true, wrapped HTML element will be wrapped with a dashed border. Only active when kind != 'single'. """ def __init__(self, kind, estimators, *, names=None, name_details=None, dash_wrapped=True): self.kind = kind self.estimators = estimators self.dash_wrapped = dash_wrapped if self.kind in ('parallel', 'serial'): if names is None: names = (None, ) * len(estimators) if name_details is None: name_details = (None, ) * len(estimators) self.names = names self.name_details = name_details def _sk_visual_block_(self): return self def _write_label_html(out, name, name_details, outer_class="sk-label-container", inner_class="sk-label", checked=False): """Write labeled html with or without a dropdown with named details""" out.write(f'<div class="{outer_class}">' f'<div class="{inner_class} sk-toggleable">') name = html.escape(name) if name_details is not None: checked_str = 'checked' if checked else '' est_id = uuid.uuid4() out.write(f'<input class="sk-toggleable__control sk-hidden--visually" ' f'id="{est_id}" type="checkbox" {checked_str}>' f'<label class="sk-toggleable__label" for="{est_id}">' f'{name}</label>' f'<div class="sk-toggleable__content"><pre>{name_details}' f'</pre></div>') else: out.write(f'<label>{name}</label>') out.write('</div></div>') # outer_class inner_class def _get_visual_block(estimator): """Generate information about how to display an estimator. """ with suppress(AttributeError): return estimator._sk_visual_block_() if isinstance(estimator, str): return _VisualBlock('single', estimator, names=estimator, name_details=estimator) elif estimator is None: return _VisualBlock('single', estimator, names='None', name_details='None') # check if estimator looks like a meta estimator wraps estimators if hasattr(estimator, 'get_params'): estimators = [] for key, value in estimator.get_params().items(): # Only look at the estimators in the first layer if '__' not in key and hasattr(value, 'get_params'): estimators.append(value) if len(estimators): return _VisualBlock('parallel', estimators, names=None) return _VisualBlock('single', estimator, names=estimator.__class__.__name__, name_details=str(estimator)) def _write_estimator_html(out, estimator, estimator_label, estimator_label_details, first_call=False): """Write estimator to html in serial, parallel, or by itself (single). """ if first_call: est_block = _get_visual_block(estimator) else: with config_context(print_changed_only=True): est_block = _get_visual_block(estimator) if est_block.kind in ('serial', 'parallel'): dashed_wrapped = first_call or est_block.dash_wrapped dash_cls = " sk-dashed-wrapped" if dashed_wrapped else "" out.write(f'<div class="sk-item{dash_cls}">') if estimator_label: _write_label_html(out, estimator_label, estimator_label_details) kind = est_block.kind out.write(f'<div class="sk-{kind}">') est_infos = zip(est_block.estimators, est_block.names, est_block.name_details) for est, name, name_details in est_infos: if kind == 'serial': _write_estimator_html(out, est, name, name_details) else: # parallel out.write('<div class="sk-parallel-item">') # wrap element in a serial visualblock serial_block = _VisualBlock('serial', [est], dash_wrapped=False) _write_estimator_html(out, serial_block, name, name_details) out.write('</div>') # sk-parallel-item out.write('</div></div>') elif est_block.kind == 'single': _write_label_html(out, est_block.names, est_block.name_details, outer_class="sk-item", inner_class="sk-estimator", checked=first_call) _STYLE = """ div.sk-top-container { color: black; background-color: white; } div.sk-toggleable { background-color: white; } label.sk-toggleable__label { cursor: pointer; display: block; width: 100%; margin-bottom: 0; padding: 0.2em 0.3em; box-sizing: border-box; text-align: center; } div.sk-toggleable__content { max-height: 0; max-width: 0; overflow: hidden; text-align: left; background-color: #f0f8ff; } div.sk-toggleable__content pre { margin: 0.2em; color: black; border-radius: 0.25em; background-color: #f0f8ff; } input.sk-toggleable__control:checked~div.sk-toggleable__content { max-height: 200px; max-width: 100%; overflow: auto; } div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: #d4ebff; } div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: #d4ebff; } input.sk-hidden--visually { border: 0; clip: rect(1px 1px 1px 1px); clip: rect(1px, 1px, 1px, 1px); height: 1px; margin: -1px; overflow: hidden; padding: 0; position: absolute; width: 1px; } div.sk-estimator { font-family: monospace; background-color: #f0f8ff; margin: 0.25em 0.25em; border: 1px dotted black; border-radius: 0.25em; box-sizing: border-box; } div.sk-estimator:hover { background-color: #d4ebff; } div.sk-parallel-item::after { content: ""; width: 100%; border-bottom: 1px solid gray; flex-grow: 1; } div.sk-label:hover label.sk-toggleable__label { background-color: #d4ebff; } div.sk-serial::before { content: ""; position: absolute; border-left: 1px solid gray; box-sizing: border-box; top: 2em; bottom: 0; left: 50%; } div.sk-serial { display: flex; flex-direction: column; align-items: center; background-color: white; } div.sk-item { z-index: 1; } div.sk-parallel { display: flex; align-items: stretch; justify-content: center; background-color: white; } div.sk-parallel-item { display: flex; flex-direction: column; position: relative; background-color: white; } div.sk-parallel-item:first-child::after { align-self: flex-end; width: 50%; } div.sk-parallel-item:last-child::after { align-self: flex-start; width: 50%; } div.sk-parallel-item:only-child::after { width: 0; } div.sk-dashed-wrapped { border: 1px dashed gray; margin: 0.2em; box-sizing: border-box; padding-bottom: 0.1em; background-color: white; position: relative; } div.sk-label label { font-family: monospace; font-weight: bold; background-color: white; display: inline-block; line-height: 1.2em; } div.sk-label-container { position: relative; z-index: 2; text-align: center; } div.sk-container { display: inline-block; position: relative; } """.replace(' ', '').replace('\n', '') # noqa def estimator_html_repr(estimator): """Build a HTML representation of an estimator. Read more in the :ref:`User Guide <visualizing_composite_estimators>`. Parameters ---------- estimator : estimator object The estimator to visualize. Returns ------- html: str HTML representation of estimator. """ with closing(StringIO()) as out: out.write(f'<style>{_STYLE}</style>' f'<div class="sk-top-container"><div class="sk-container">') _write_estimator_html(out, estimator, estimator.__class__.__name__, str(estimator), first_call=True) out.write('</div></div>') html_output = out.getvalue() return html_output
bsd-3-clause
michalsenkyr/spark
python/pyspark/sql/session.py
2
36039
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import sys import warnings from functools import reduce from threading import RLock if sys.version >= '3': basestring = unicode = str xrange = range else: from itertools import izip as zip, imap as map from pyspark import since from pyspark.rdd import RDD, ignore_unicode_prefix from pyspark.sql.conf import RuntimeConfig from pyspark.sql.dataframe import DataFrame from pyspark.sql.readwriter import DataFrameReader from pyspark.sql.streaming import DataStreamReader from pyspark.sql.types import Row, DataType, StringType, StructType, TimestampType, \ _make_type_verifier, _infer_schema, _has_nulltype, _merge_type, _create_converter, \ _parse_datatype_string from pyspark.sql.utils import install_exception_handler __all__ = ["SparkSession"] def _monkey_patch_RDD(sparkSession): def toDF(self, schema=None, sampleRatio=None): """ Converts current :class:`RDD` into a :class:`DataFrame` This is a shorthand for ``spark.createDataFrame(rdd, schema, sampleRatio)`` :param schema: a :class:`pyspark.sql.types.StructType` or list of names of columns :param samplingRatio: the sample ratio of rows used for inferring :return: a DataFrame >>> rdd.toDF().collect() [Row(name=u'Alice', age=1)] """ return sparkSession.createDataFrame(self, schema, sampleRatio) RDD.toDF = toDF class SparkSession(object): """The entry point to programming Spark with the Dataset and DataFrame API. A SparkSession can be used create :class:`DataFrame`, register :class:`DataFrame` as tables, execute SQL over tables, cache tables, and read parquet files. To create a SparkSession, use the following builder pattern: >>> spark = SparkSession.builder \\ ... .master("local") \\ ... .appName("Word Count") \\ ... .config("spark.some.config.option", "some-value") \\ ... .getOrCreate() .. autoattribute:: builder :annotation: """ class Builder(object): """Builder for :class:`SparkSession`. """ _lock = RLock() _options = {} _sc = None @since(2.0) def config(self, key=None, value=None, conf=None): """Sets a config option. Options set using this method are automatically propagated to both :class:`SparkConf` and :class:`SparkSession`'s own configuration. For an existing SparkConf, use `conf` parameter. >>> from pyspark.conf import SparkConf >>> SparkSession.builder.config(conf=SparkConf()) <pyspark.sql.session... For a (key, value) pair, you can omit parameter names. >>> SparkSession.builder.config("spark.some.config.option", "some-value") <pyspark.sql.session... :param key: a key name string for configuration property :param value: a value for configuration property :param conf: an instance of :class:`SparkConf` """ with self._lock: if conf is None: self._options[key] = str(value) else: for (k, v) in conf.getAll(): self._options[k] = v return self @since(2.0) def master(self, master): """Sets the Spark master URL to connect to, such as "local" to run locally, "local[4]" to run locally with 4 cores, or "spark://master:7077" to run on a Spark standalone cluster. :param master: a url for spark master """ return self.config("spark.master", master) @since(2.0) def appName(self, name): """Sets a name for the application, which will be shown in the Spark web UI. If no application name is set, a randomly generated name will be used. :param name: an application name """ return self.config("spark.app.name", name) @since(2.0) def enableHiveSupport(self): """Enables Hive support, including connectivity to a persistent Hive metastore, support for Hive serdes, and Hive user-defined functions. """ return self.config("spark.sql.catalogImplementation", "hive") def _sparkContext(self, sc): with self._lock: self._sc = sc return self @since(2.0) def getOrCreate(self): """Gets an existing :class:`SparkSession` or, if there is no existing one, creates a new one based on the options set in this builder. This method first checks whether there is a valid global default SparkSession, and if yes, return that one. If no valid global default SparkSession exists, the method creates a new SparkSession and assigns the newly created SparkSession as the global default. >>> s1 = SparkSession.builder.config("k1", "v1").getOrCreate() >>> s1.conf.get("k1") == "v1" True In case an existing SparkSession is returned, the config options specified in this builder will be applied to the existing SparkSession. >>> s2 = SparkSession.builder.config("k2", "v2").getOrCreate() >>> s1.conf.get("k1") == s2.conf.get("k1") True >>> s1.conf.get("k2") == s2.conf.get("k2") True """ with self._lock: from pyspark.context import SparkContext from pyspark.conf import SparkConf session = SparkSession._instantiatedSession if session is None or session._sc._jsc is None: if self._sc is not None: sc = self._sc else: sparkConf = SparkConf() for key, value in self._options.items(): sparkConf.set(key, value) # This SparkContext may be an existing one. sc = SparkContext.getOrCreate(sparkConf) # Do not update `SparkConf` for existing `SparkContext`, as it's shared # by all sessions. session = SparkSession(sc) for key, value in self._options.items(): session._jsparkSession.sessionState().conf().setConfString(key, value) return session builder = Builder() """A class attribute having a :class:`Builder` to construct :class:`SparkSession` instances""" _instantiatedSession = None @ignore_unicode_prefix def __init__(self, sparkContext, jsparkSession=None): """Creates a new SparkSession. >>> from datetime import datetime >>> spark = SparkSession(sc) >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), ... time=datetime(2014, 8, 1, 14, 1, 5))]) >>> df = allTypes.toDF() >>> df.createOrReplaceTempView("allTypes") >>> spark.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' ... 'from allTypes where b and i > 0').collect() [Row((i + CAST(1 AS BIGINT))=2, (d + CAST(1 AS DOUBLE))=2.0, (NOT b)=False, list[1]=2, \ dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() [(1, u'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] """ from pyspark.sql.context import SQLContext self._sc = sparkContext self._jsc = self._sc._jsc self._jvm = self._sc._jvm if jsparkSession is None: if self._jvm.SparkSession.getDefaultSession().isDefined() \ and not self._jvm.SparkSession.getDefaultSession().get() \ .sparkContext().isStopped(): jsparkSession = self._jvm.SparkSession.getDefaultSession().get() else: jsparkSession = self._jvm.SparkSession(self._jsc.sc()) self._jsparkSession = jsparkSession self._jwrapped = self._jsparkSession.sqlContext() self._wrapped = SQLContext(self._sc, self, self._jwrapped) _monkey_patch_RDD(self) install_exception_handler() # If we had an instantiated SparkSession attached with a SparkContext # which is stopped now, we need to renew the instantiated SparkSession. # Otherwise, we will use invalid SparkSession when we call Builder.getOrCreate. if SparkSession._instantiatedSession is None \ or SparkSession._instantiatedSession._sc._jsc is None: SparkSession._instantiatedSession = self self._jvm.SparkSession.setDefaultSession(self._jsparkSession) def _repr_html_(self): return """ <div> <p><b>SparkSession - {catalogImplementation}</b></p> {sc_HTML} </div> """.format( catalogImplementation=self.conf.get("spark.sql.catalogImplementation"), sc_HTML=self.sparkContext._repr_html_() ) @since(2.0) def newSession(self): """ Returns a new SparkSession as new session, that has separate SQLConf, registered temporary views and UDFs, but shared SparkContext and table cache. """ return self.__class__(self._sc, self._jsparkSession.newSession()) @property @since(2.0) def sparkContext(self): """Returns the underlying :class:`SparkContext`.""" return self._sc @property @since(2.0) def version(self): """The version of Spark on which this application is running.""" return self._jsparkSession.version() @property @since(2.0) def conf(self): """Runtime configuration interface for Spark. This is the interface through which the user can get and set all Spark and Hadoop configurations that are relevant to Spark SQL. When getting the value of a config, this defaults to the value set in the underlying :class:`SparkContext`, if any. """ if not hasattr(self, "_conf"): self._conf = RuntimeConfig(self._jsparkSession.conf()) return self._conf @property @since(2.0) def catalog(self): """Interface through which the user may create, drop, alter or query underlying databases, tables, functions etc. :return: :class:`Catalog` """ from pyspark.sql.catalog import Catalog if not hasattr(self, "_catalog"): self._catalog = Catalog(self) return self._catalog @property @since(2.0) def udf(self): """Returns a :class:`UDFRegistration` for UDF registration. :return: :class:`UDFRegistration` """ from pyspark.sql.udf import UDFRegistration return UDFRegistration(self) @since(2.0) def range(self, start, end=None, step=1, numPartitions=None): """ Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. :param start: the start value :param end: the end value (exclusive) :param step: the incremental step (default: 1) :param numPartitions: the number of partitions of the DataFrame :return: :class:`DataFrame` >>> spark.range(1, 7, 2).collect() [Row(id=1), Row(id=3), Row(id=5)] If only one argument is specified, it will be used as the end value. >>> spark.range(3).collect() [Row(id=0), Row(id=1), Row(id=2)] """ if numPartitions is None: numPartitions = self._sc.defaultParallelism if end is None: jdf = self._jsparkSession.range(0, int(start), int(step), int(numPartitions)) else: jdf = self._jsparkSession.range(int(start), int(end), int(step), int(numPartitions)) return DataFrame(jdf, self._wrapped) def _inferSchemaFromList(self, data, names=None): """ Infer schema from list of Row or tuple. :param data: list of Row or tuple :param names: list of column names :return: :class:`pyspark.sql.types.StructType` """ if not data: raise ValueError("can not infer schema from empty dataset") first = data[0] if type(first) is dict: warnings.warn("inferring schema from dict is deprecated," "please use pyspark.sql.Row instead") schema = reduce(_merge_type, (_infer_schema(row, names) for row in data)) if _has_nulltype(schema): raise ValueError("Some of types cannot be determined after inferring") return schema def _inferSchema(self, rdd, samplingRatio=None, names=None): """ Infer schema from an RDD of Row or tuple. :param rdd: an RDD of Row or tuple :param samplingRatio: sampling ratio, or no sampling (default) :return: :class:`pyspark.sql.types.StructType` """ first = rdd.first() if not first: raise ValueError("The first row in RDD is empty, " "can not infer schema") if type(first) is dict: warnings.warn("Using RDD of dict to inferSchema is deprecated. " "Use pyspark.sql.Row instead") if samplingRatio is None: schema = _infer_schema(first, names=names) if _has_nulltype(schema): for row in rdd.take(100)[1:]: schema = _merge_type(schema, _infer_schema(row, names=names)) if not _has_nulltype(schema): break else: raise ValueError("Some of types cannot be determined by the " "first 100 rows, please try again with sampling") else: if samplingRatio < 0.99: rdd = rdd.sample(False, float(samplingRatio)) schema = rdd.map(lambda row: _infer_schema(row, names)).reduce(_merge_type) return schema def _createFromRDD(self, rdd, schema, samplingRatio): """ Create an RDD for DataFrame from an existing RDD, returns the RDD and schema. """ if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchema(rdd, samplingRatio, names=schema) converter = _create_converter(struct) rdd = rdd.map(converter) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data rdd = rdd.map(schema.toInternal) return rdd, schema def _createFromLocal(self, data, schema): """ Create an RDD for DataFrame from a list or pandas.DataFrame, returns the RDD and schema. """ # make sure data could consumed multiple times if not isinstance(data, list): data = list(data) if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchemaFromList(data, names=schema) converter = _create_converter(struct) data = map(converter, data) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data data = [schema.toInternal(row) for row in data] return self._sc.parallelize(data), schema def _get_numpy_record_dtype(self, rec): """ Used when converting a pandas.DataFrame to Spark using to_records(), this will correct the dtypes of fields in a record so they can be properly loaded into Spark. :param rec: a numpy record to check field dtypes :return corrected dtype for a numpy.record or None if no correction needed """ import numpy as np cur_dtypes = rec.dtype col_names = cur_dtypes.names record_type_list = [] has_rec_fix = False for i in xrange(len(cur_dtypes)): curr_type = cur_dtypes[i] # If type is a datetime64 timestamp, convert to microseconds # NOTE: if dtype is datetime[ns] then np.record.tolist() will output values as longs, # conversion from [us] or lower will lead to py datetime objects, see SPARK-22417 if curr_type == np.dtype('datetime64[ns]'): curr_type = 'datetime64[us]' has_rec_fix = True record_type_list.append((str(col_names[i]), curr_type)) return np.dtype(record_type_list) if has_rec_fix else None def _convert_from_pandas(self, pdf, schema, timezone): """ Convert a pandas.DataFrame to list of records that can be used to make a DataFrame :return list of records """ if timezone is not None: from pyspark.sql.types import _check_series_convert_timestamps_tz_local copied = False if isinstance(schema, StructType): for field in schema: # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if isinstance(field.dataType, TimestampType): s = _check_series_convert_timestamps_tz_local(pdf[field.name], timezone) if s is not pdf[field.name]: if not copied: # Copy once if the series is modified to prevent the original # Pandas DataFrame from being updated pdf = pdf.copy() copied = True pdf[field.name] = s else: for column, series in pdf.iteritems(): s = _check_series_convert_timestamps_tz_local(series, timezone) if s is not series: if not copied: # Copy once if the series is modified to prevent the original # Pandas DataFrame from being updated pdf = pdf.copy() copied = True pdf[column] = s # Convert pandas.DataFrame to list of numpy records np_records = pdf.to_records(index=False) # Check if any columns need to be fixed for Spark to infer properly if len(np_records) > 0: record_dtype = self._get_numpy_record_dtype(np_records[0]) if record_dtype is not None: return [r.astype(record_dtype).tolist() for r in np_records] # Convert list of numpy records to python lists return [r.tolist() for r in np_records] def _create_from_pandas_with_arrow(self, pdf, schema, timezone): """ Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the data types will be used to coerce the data in Pandas to Arrow conversion. """ from pyspark.serializers import ArrowStreamSerializer, _create_batch from pyspark.sql.types import from_arrow_schema, to_arrow_type, TimestampType from pyspark.sql.utils import require_minimum_pandas_version, \ require_minimum_pyarrow_version require_minimum_pandas_version() require_minimum_pyarrow_version() from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype # Determine arrow types to coerce data when creating batches if isinstance(schema, StructType): arrow_types = [to_arrow_type(f.dataType) for f in schema.fields] elif isinstance(schema, DataType): raise ValueError("Single data type %s is not supported with Arrow" % str(schema)) else: # Any timestamps must be coerced to be compatible with Spark arrow_types = [to_arrow_type(TimestampType()) if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None for t in pdf.dtypes] # Slice the DataFrame to be batched step = -(-len(pdf) // self.sparkContext.defaultParallelism) # round int up pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step)) # Create Arrow record batches batches = [_create_batch([(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)], timezone) for pdf_slice in pdf_slices] # Create the Spark schema from the first Arrow batch (always at least 1 batch after slicing) if isinstance(schema, (list, tuple)): struct = from_arrow_schema(batches[0].schema) for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct jsqlContext = self._wrapped._jsqlContext def reader_func(temp_filename): return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename) def create_RDD_server(): return self._jvm.ArrowRDDServer(jsqlContext) # Create Spark DataFrame from Arrow stream file, using one batch per partition jrdd = self._sc._serialize_to_jvm(batches, ArrowStreamSerializer(), reader_func, create_RDD_server) jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext) df = DataFrame(jdf, self._wrapped) df._schema = schema return df @staticmethod def _create_shell_session(): """ Initialize a SparkSession for a pyspark shell session. This is called from shell.py to make error handling simpler without needing to declare local variables in that script, which would expose those to users. """ import py4j from pyspark.conf import SparkConf from pyspark.context import SparkContext try: # Try to access HiveConf, it will raise exception if Hive is not added conf = SparkConf() if conf.get('spark.sql.catalogImplementation', 'hive').lower() == 'hive': SparkContext._jvm.org.apache.hadoop.hive.conf.HiveConf() return SparkSession.builder\ .enableHiveSupport()\ .getOrCreate() else: return SparkSession.builder.getOrCreate() except (py4j.protocol.Py4JError, TypeError): if conf.get('spark.sql.catalogImplementation', '').lower() == 'hive': warnings.warn("Fall back to non-hive support because failing to access HiveConf, " "please make sure you build spark with hive") return SparkSession.builder.getOrCreate() @since(2.0) @ignore_unicode_prefix def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True): """ Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. When ``schema`` is a list of column names, the type of each column will be inferred from ``data``. When ``schema`` is ``None``, it will try to infer the schema (column names and types) from ``data``, which should be an RDD of :class:`Row`, or :class:`namedtuple`, or :class:`dict`. When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string, it must match the real data, or an exception will be thrown at runtime. If the given schema is not :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value", each record will also be wrapped into a tuple, which can be converted to row later. If schema inference is needed, ``samplingRatio`` is used to determined the ratio of rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. :param data: an RDD of any kind of SQL data representation(e.g. row, tuple, int, boolean, etc.), or :class:`list`, or :class:`pandas.DataFrame`. :param schema: a :class:`pyspark.sql.types.DataType` or a datatype string or a list of column names, default is ``None``. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for ``IntegerType``. :param samplingRatio: the sample ratio of rows used for inferring :param verifySchema: verify data types of every row against schema. :return: :class:`DataFrame` .. versionchanged:: 2.1 Added verifySchema. .. note:: Usage with spark.sql.execution.arrow.enabled=True is experimental. >>> l = [('Alice', 1)] >>> spark.createDataFrame(l).collect() [Row(_1=u'Alice', _2=1)] >>> spark.createDataFrame(l, ['name', 'age']).collect() [Row(name=u'Alice', age=1)] >>> d = [{'name': 'Alice', 'age': 1}] >>> spark.createDataFrame(d).collect() [Row(age=1, name=u'Alice')] >>> rdd = sc.parallelize(l) >>> spark.createDataFrame(rdd).collect() [Row(_1=u'Alice', _2=1)] >>> df = spark.createDataFrame(rdd, ['name', 'age']) >>> df.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql import Row >>> Person = Row('name', 'age') >>> person = rdd.map(lambda r: Person(*r)) >>> df2 = spark.createDataFrame(person) >>> df2.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql.types import * >>> schema = StructType([ ... StructField("name", StringType(), True), ... StructField("age", IntegerType(), True)]) >>> df3 = spark.createDataFrame(rdd, schema) >>> df3.collect() [Row(name=u'Alice', age=1)] >>> spark.createDataFrame(df.toPandas()).collect() # doctest: +SKIP [Row(name=u'Alice', age=1)] >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP [Row(0=1, 1=2)] >>> spark.createDataFrame(rdd, "a: string, b: int").collect() [Row(a=u'Alice', b=1)] >>> rdd = rdd.map(lambda row: row[1]) >>> spark.createDataFrame(rdd, "int").collect() [Row(value=1)] >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError: ... """ if isinstance(data, DataFrame): raise TypeError("data is already a DataFrame") if isinstance(schema, basestring): schema = _parse_datatype_string(schema) elif isinstance(schema, (list, tuple)): # Must re-encode any unicode strings to be consistent with StructField names schema = [x.encode('utf-8') if not isinstance(x, str) else x for x in schema] try: import pandas has_pandas = True except Exception: has_pandas = False if has_pandas and isinstance(data, pandas.DataFrame): from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() if self._wrapped._conf.pandasRespectSessionTimeZone(): timezone = self._wrapped._conf.sessionLocalTimeZone() else: timezone = None # If no schema supplied by user then get the names of columns only if schema is None: schema = [str(x) if not isinstance(x, basestring) else (x.encode('utf-8') if not isinstance(x, str) else x) for x in data.columns] if self._wrapped._conf.arrowEnabled() and len(data) > 0: try: return self._create_from_pandas_with_arrow(data, schema, timezone) except Exception as e: from pyspark.util import _exception_message if self._wrapped._conf.arrowFallbackEnabled(): msg = ( "createDataFrame attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true; however, " "failed by the reason below:\n %s\n" "Attempting non-optimization as " "'spark.sql.execution.arrow.fallback.enabled' is set to " "true." % _exception_message(e)) warnings.warn(msg) else: msg = ( "createDataFrame attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true, but has reached " "the error below and will not continue because automatic fallback " "with 'spark.sql.execution.arrow.fallback.enabled' has been set to " "false.\n %s" % _exception_message(e)) warnings.warn(msg) raise data = self._convert_from_pandas(data, schema, timezone) if isinstance(schema, StructType): verify_func = _make_type_verifier(schema) if verifySchema else lambda _: True def prepare(obj): verify_func(obj) return obj elif isinstance(schema, DataType): dataType = schema schema = StructType().add("value", schema) verify_func = _make_type_verifier( dataType, name="field value") if verifySchema else lambda _: True def prepare(obj): verify_func(obj) return obj, else: prepare = lambda obj: obj if isinstance(data, RDD): rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio) else: rdd, schema = self._createFromLocal(map(prepare, data), schema) jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd()) jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json()) df = DataFrame(jdf, self._wrapped) df._schema = schema return df @ignore_unicode_prefix @since(2.0) def sql(self, sqlQuery): """Returns a :class:`DataFrame` representing the result of the given query. :return: :class:`DataFrame` >>> df.createOrReplaceTempView("table1") >>> df2 = spark.sql("SELECT field1 AS f1, field2 as f2 from table1") >>> df2.collect() [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')] """ return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped) @since(2.0) def table(self, tableName): """Returns the specified table as a :class:`DataFrame`. :return: :class:`DataFrame` >>> df.createOrReplaceTempView("table1") >>> df2 = spark.table("table1") >>> sorted(df.collect()) == sorted(df2.collect()) True """ return DataFrame(self._jsparkSession.table(tableName), self._wrapped) @property @since(2.0) def read(self): """ Returns a :class:`DataFrameReader` that can be used to read data in as a :class:`DataFrame`. :return: :class:`DataFrameReader` """ return DataFrameReader(self._wrapped) @property @since(2.0) def readStream(self): """ Returns a :class:`DataStreamReader` that can be used to read data streams as a streaming :class:`DataFrame`. .. note:: Evolving. :return: :class:`DataStreamReader` """ return DataStreamReader(self._wrapped) @property @since(2.0) def streams(self): """Returns a :class:`StreamingQueryManager` that allows managing all the :class:`StreamingQuery` StreamingQueries active on `this` context. .. note:: Evolving. :return: :class:`StreamingQueryManager` """ from pyspark.sql.streaming import StreamingQueryManager return StreamingQueryManager(self._jsparkSession.streams()) @since(2.0) def stop(self): """Stop the underlying :class:`SparkContext`. """ self._sc.stop() # We should clean the default session up. See SPARK-23228. self._jvm.SparkSession.clearDefaultSession() SparkSession._instantiatedSession = None @since(2.0) def __enter__(self): """ Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax. """ return self @since(2.0) def __exit__(self, exc_type, exc_val, exc_tb): """ Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax. Specifically stop the SparkSession on exit of the with block. """ self.stop() def _test(): import os import doctest from pyspark.context import SparkContext from pyspark.sql import Row import pyspark.sql.session os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.sql.session.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['spark'] = SparkSession(sc) globs['rdd'] = rdd = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")]) globs['df'] = rdd.toDF() (failure_count, test_count) = doctest.testmod( pyspark.sql.session, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
demianw/dipy
scratch/very_scratch/simulation_comparisons_modified.py
20
13117
import nibabel import os import numpy as np import dipy as dp import dipy.core.generalized_q_sampling as dgqs import dipy.io.pickles as pkl import scipy as sp from matplotlib.mlab import find import dipy.core.sphere_plots as splots import dipy.core.sphere_stats as sphats import dipy.core.geometry as geometry import get_vertices as gv #old SimData files ''' results_SNR030_1fibre results_SNR030_1fibre+iso results_SNR030_2fibres_15deg results_SNR030_2fibres_30deg results_SNR030_2fibres_60deg results_SNR030_2fibres_90deg results_SNR030_2fibres+iso_15deg results_SNR030_2fibres+iso_30deg results_SNR030_2fibres+iso_60deg results_SNR030_2fibres+iso_90deg results_SNR030_isotropic ''' #fname='/home/ian/Data/SimData/results_SNR030_1fibre' ''' file has one row for every voxel, every voxel is repeating 1000 times with the same noise level , then we have 100 different directions. 1000 * 100 is the number of all rows. The 100 conditions are given by 10 polar angles (in degrees) 0, 20, 40, 60, 80, 80, 60, 40, 20 and 0, and each of these with longitude angle 0, 40, 80, 120, 160, 200, 240, 280, 320, 360. ''' #new complete SimVoxels files simdata = ['fibres_2_SNR_80_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_60_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_100_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_100_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_1_SNR_20_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_80_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_20_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_80_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_40_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_60_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_1_SNR_40_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00'] simdir = '/home/ian/Data/SimVoxels/' def gq_tn_calc_save(): for simfile in simdata: dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) marta_table_fname='/home/ian/Data/SimData/Dir_and_bvals_DSI_marta.txt' b_vals_dirs=np.loadtxt(marta_table_fname) bvals=b_vals_dirs[:,0]*1000 gradients=b_vals_dirs[:,1:] gq = dp.GeneralizedQSampling(sim_data,bvals,gradients) gqfile = simdir+'gq/'+dataname+'.pkl' pkl.save_pickle(gqfile,gq) ''' gq.IN gq.__doc__ gq.glob_norm_param gq.QA gq.__init__ gq.odf gq.__class__ gq.__module__ gq.q2odf_params ''' tn = dp.Tensor(sim_data,bvals,gradients) tnfile = simdir+'tn/'+dataname+'.pkl' pkl.save_pickle(tnfile,tn) ''' tn.ADC tn.__init__ tn._getevals tn.B tn.__module__ tn._getevecs tn.D tn.__new__ tn._getndim tn.FA tn.__reduce__ tn._getshape tn.IN tn.__reduce_ex__ tn._setevals tn.MD tn.__repr__ tn._setevecs tn.__class__ tn.__setattr__ tn.adc tn.__delattr__ tn.__sizeof__ tn.evals tn.__dict__ tn.__str__ tn.evecs tn.__doc__ tn.__subclasshook__ tn.fa tn.__format__ tn.__weakref__ tn.md tn.__getattribute__ tn._evals tn.ndim tn.__getitem__ tn._evecs tn.shape tn.__hash__ tn._getD ''' ''' file has one row for every voxel, every voxel is repeating 1000 times with the same noise level , then we have 100 different directions. 100 * 1000 is the number of all rows. At the moment this module is hardwired to the use of the EDS362 spherical mesh. I am assumung (needs testing) that directions 181 to 361 are the antipodal partners of directions 0 to 180. So when counting the number of different vertices that occur as maximal directions we wll map the indices modulo 181. ''' def analyze_maxima(indices, max_dirs, subsets): '''This calculates the eigenstats for each of the replicated batches of the simulation data ''' results = [] for direction in subsets: batch = max_dirs[direction,:,:] index_variety = np.array([len(set(np.remainder(indices[direction,:],181)))]) #normed_centroid, polar_centroid, centre, b1 = sphats.eigenstats(batch) centre, b1 = sphats.eigenstats(batch) # make azimuth be in range (0,360) rather than (-180,180) centre[1] += 360*(centre[1] < 0) #results.append(np.concatenate((normed_centroid, polar_centroid, centre, b1, index_variety))) results.append(np.concatenate((centre, b1, index_variety))) return results #dt_first_directions = tn.evecs[:,:,0].reshape((100,1000,3)) # these are the principal directions for the full set of simulations #gq_tn_calc_save() eds=np.load(os.path.join(os.path.dirname(dp.__file__),'core','matrices','evenly_distributed_sphere_362.npz')) odf_vertices=eds['vertices'] def run_comparisons(sample_data=35): for simfile in [simdata[sample_data]]: dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) gqfile = simdir+'gq/'+dataname+'.pkl' gq = pkl.load_pickle(gqfile) tnfile = simdir+'tn/'+dataname+'.pkl' tn = pkl.load_pickle(tnfile) dt_first_directions_in=odf_vertices[tn.IN] dt_indices = tn.IN.reshape((100,1000)) dt_results = analyze_maxima(dt_indices, dt_first_directions_in.reshape((100,1000,3)),range(10,90)) gq_indices = np.array(gq.IN[:,0],dtype='int').reshape((100,1000)) gq_first_directions_in=odf_vertices[np.array(gq.IN[:,0],dtype='int')] #print gq_first_directions_in.shape gq_results = analyze_maxima(gq_indices, gq_first_directions_in.reshape((100,1000,3)),range(10,90)) #for gqi see example dicoms_2_tracks gq.IN[:,0] np.set_printoptions(precision=3, suppress=True, linewidth=200, threshold=5000) out = open('/home/ian/Data/SimVoxels/Out/'+'***_'+dataname,'w') #print np.vstack(dt_results).shape, np.vstack(gq_results).shape results = np.hstack((np.vstack(dt_results), np.vstack(gq_results))) #print results.shape #results = np.vstack(dt_results) print >> out, results[:,:] out.close() #up = dt_batch[:,2]>= 0 #splots.plot_sphere(dt_batch[up], 'batch '+str(direction)) #splots.plot_lambert(dt_batch[up],'batch '+str(direction), centre) #spread = gq.q2odf_params e,v = np.linalg.eigh(np.dot(spread,spread.transpose())) effective_dimension = len(find(np.cumsum(e) > 0.05*np.sum(e))) #95% #rotated = np.dot(dt_batch,evecs) #rot_evals, rot_evecs = np.linalg.eig(np.dot(rotated.T,rotated)/rotated.shape[0]) #eval_order = np.argsort(rot_evals) #rotated = rotated[:,eval_order] #up = rotated[:,2]>= 0 #splot.plot_sphere(rotated[up],'first1000') #splot.plot_lambert(rotated[up],'batch '+str(direction)) def run_gq_sims(sample_data=[35,23,46,39,40,10,37,27,21,20]): results = [] out = open('/home/ian/Data/SimVoxels/Out/'+'npa+fa','w') for j in range(len(sample_data)): sample = sample_data[j] simfile = simdata[sample] dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) marta_table_fname='/home/ian/Data/SimData/Dir_and_bvals_DSI_marta.txt' b_vals_dirs=np.loadtxt(marta_table_fname) bvals=b_vals_dirs[:,0]*1000 gradients=b_vals_dirs[:,1:] for j in np.vstack((np.arange(100)*1000,np.arange(100)*1000+1)).T.ravel(): # 0,1,1000,1001,2000,2001,... s = sim_data[j,:] gqs = dp.GeneralizedQSampling(s.reshape((1,102)),bvals,gradients,Lambda=3.5) tn = dp.Tensor(s.reshape((1,102)),bvals,gradients,fit_method='LS') t0, t1, t2, npa = gqs.npa(s, width = 5) print >> out, dataname, j, npa, tn.fa()[0] ''' for (i,o) in enumerate(gqs.odf(s)): print i,o for (i,o) in enumerate(gqs.odf_vertices): print i,o ''' #o = gqs.odf(s) #v = gqs.odf_vertices #pole = v[t0[0]] #eqv = dgqs.equatorial_zone_vertices(v, pole, 5) #print 'Number of equatorial vertices: ', len(eqv) #print np.max(o[eqv]),np.min(o[eqv]) #cos_e_pole = [np.dot(pole.T, v[i]) for i in eqv] #print np.min(cos1), np.max(cos1) #print 'equatorial max in equatorial vertices:', t1[0] in eqv #x = np.cross(v[t0[0]],v[t1[0]]) #x = x/np.sqrt(np.sum(x**2)) #print x #ptchv = dgqs.patch_vertices(v, x, 5) #print len(ptchv) #eqp = eqv[np.argmin([np.abs(np.dot(v[t1[0]].T,v[p])) for p in eqv])] #print (eqp, o[eqp]) #print t2[0] in ptchv, t2[0] in eqv #print np.dot(pole.T, v[t1[0]]), np.dot(pole.T, v[t2[0]]) #print ptchv[np.argmin([o[v] for v in ptchv])] #gq_indices = np.array(gq.IN[:,0],dtype='int').reshape((100,1000)) #gq_first_directions_in=odf_vertices[np.array(gq.IN[:,0],dtype='int')] #print gq_first_directions_in.shape #gq_results = analyze_maxima(gq_indices, gq_first_directions_in.reshape((100,1000,3)),range(100)) #for gqi see example dicoms_2_tracks gq.IN[:,0] #np.set_printoptions(precision=6, suppress=True, linewidth=200, threshold=5000) #out = open('/home/ian/Data/SimVoxels/Out/'+'+++_'+dataname,'w') #results = np.hstack((np.vstack(dt_results), np.vstack(gq_results))) #results = np.vstack(dt_results) #print >> out, results[:,:] out.close() run_comparisons() #run_gq_sims()
bsd-3-clause
karthikvadla16/spark-tk
regression-tests/sparktkregtests/testcases/dicom/dicom_export_dcm_test.py
11
4051
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """tests export_dcm functionality""" import unittest from sparktkregtests.lib import sparktk_test import numpy from lxml import etree class ExportDicomTest(sparktk_test.SparkTKTestCase): def setUp(self): """import dicom data for testing""" super(ExportDicomTest, self).setUp() self.dataset = self.get_file("dicom_uncompressed") self.dicom = self.context.dicom.import_dcm(self.dataset) self.xml_directory = self.get_local_dataset("dicom_xml/") self.image_directory = self.get_local_dataset("dicom_uncompressed/") @unittest.skip("Sparktk: dicom export to dcm throws error") def test_export_to_dcm(self): # first we will set aside the original data so that we can use it to # compare with later original_metadata = self.dicom.metadata.to_pandas()["metadata"] original_formatted = [] # we will remove the bulkdata tag from our original metadata # since the bulkdata tag records source of dicom and should # be ignored during comparison for metadata in original_metadata: ascii_metadata = metadata.encode("ascii", "ignore") xml_root = etree.fromstring(ascii_metadata) bulk_data_tag = xml_root.xpath("//BulkData")[0] bulk_data_tag.getparent().remove(bulk_data_tag) original_formatted.append(etree.tostring(xml_root)) original_imagedata = self.dicom.pixeldata.to_pandas()["imagematrix"] # now we export the dicom object # we use our QA libraries to generate a path # we save the dicom to that path dcm_export_path = self.get_export_file(self.get_name("DICOM_EXPORT")) self.dicom.export_to_dcm(dcm_export_path) # Now we will load back the data we just saved into a new dicom object # so that we can ensure the data is the same loaded_dicom = self.context.dicom.import_dcm(dcm_export_path) # get the loaded metadata and imagedata loaded_metadata = loaded_dicom.metadata.to_pandas()["metadata"] loaded_imagedata = loaded_dicom.pixeldata.to_pandas()["imagematrix"] # ensure that the loaded metadata and imagedata is of the same len # as the original data, # then iterate through the records and ensure they are the same self.assertEqual(len(loaded_metadata), len(original_metadata)) self.assertEqual(len(loaded_imagedata), len(original_imagedata)) for actual in loaded_metadata: # for each metadata we will remove the bulkdata tag before we # compare it with the original data since the bulk data tag # records the source for the dcm and may differ since # we are loading from a different location than the original dicom actual_root = etree.fromstring(actual.encode("ascii", "ignore")) actual_bulk_data_tag = actual_root.xpath("//BulkData")[0] actual_bulk_data_tag.getparent().remove(actual_bulk_data_tag) actual = etree.tostring(actual_root) self.assertTrue(actual in original_formatted) for actual in loaded_imagedata: result = any(numpy.array_equal(actual, original) for original in original_imagedata) self.assertTrue(result) if __name__ == "__main__": unittest.main()
apache-2.0
CallaJun/hackprince
indico/skimage/viewer/canvastools/linetool.py
5
6887
import numpy as np from matplotlib import lines from ...viewer.canvastools.base import CanvasToolBase, ToolHandles __all__ = ['LineTool', 'ThickLineTool'] class LineTool(CanvasToolBase): """Widget for line selection in a plot. Parameters ---------- viewer : :class:`skimage.viewer.Viewer` Skimage viewer object. on_move : function Function called whenever a control handle is moved. This function must accept the end points of line as the only argument. on_release : function Function called whenever the control handle is released. on_enter : function Function called whenever the "enter" key is pressed. maxdist : float Maximum pixel distance allowed when selecting control handle. line_props : dict Properties for :class:`matplotlib.lines.Line2D`. handle_props : dict Marker properties for the handles (also see :class:`matplotlib.lines.Line2D`). Attributes ---------- end_points : 2D array End points of line ((x1, y1), (x2, y2)). """ def __init__(self, viewer, on_move=None, on_release=None, on_enter=None, maxdist=10, line_props=None, handle_props=None, **kwargs): super(LineTool, self).__init__(viewer, on_move=on_move, on_enter=on_enter, on_release=on_release, **kwargs) props = dict(color='r', linewidth=1, alpha=0.4, solid_capstyle='butt') props.update(line_props if line_props is not None else {}) self.linewidth = props['linewidth'] self.maxdist = maxdist self._active_pt = None x = (0, 0) y = (0, 0) self._end_pts = np.transpose([x, y]) self._line = lines.Line2D(x, y, visible=False, animated=True, **props) self.ax.add_line(self._line) self._handles = ToolHandles(self.ax, x, y, marker_props=handle_props) self._handles.set_visible(False) self.artists = [self._line, self._handles.artist] if on_enter is None: def on_enter(pts): x, y = np.transpose(pts) print("length = %0.2f" % np.sqrt(np.diff(x)**2 + np.diff(y)**2)) self.callback_on_enter = on_enter viewer.add_tool(self) @property def end_points(self): return self._end_pts.astype(int) @end_points.setter def end_points(self, pts): self._end_pts = np.asarray(pts) self._line.set_data(np.transpose(pts)) self._handles.set_data(np.transpose(pts)) self._line.set_linewidth(self.linewidth) self.set_visible(True) self.redraw() def hit_test(self, event): if event.button != 1 or not self.ax.in_axes(event): return False idx, px_dist = self._handles.closest(event.x, event.y) if px_dist < self.maxdist: self._active_pt = idx return True else: self._active_pt = None return False def on_mouse_press(self, event): self.set_visible(True) if self._active_pt is None: self._active_pt = 0 x, y = event.xdata, event.ydata self._end_pts = np.array([[x, y], [x, y]]) def on_mouse_release(self, event): if event.button != 1: return self._active_pt = None self.callback_on_release(self.geometry) self.redraw() def on_move(self, event): if event.button != 1 or self._active_pt is None: return if not self.ax.in_axes(event): return self.update(event.xdata, event.ydata) self.callback_on_move(self.geometry) def update(self, x=None, y=None): if x is not None: self._end_pts[self._active_pt, :] = x, y self.end_points = self._end_pts @property def geometry(self): return self.end_points class ThickLineTool(LineTool): """Widget for line selection in a plot. The thickness of the line can be varied using the mouse scroll wheel, or with the '+' and '-' keys. Parameters ---------- viewer : :class:`skimage.viewer.Viewer` Skimage viewer object. on_move : function Function called whenever a control handle is moved. This function must accept the end points of line as the only argument. on_release : function Function called whenever the control handle is released. on_enter : function Function called whenever the "enter" key is pressed. on_change : function Function called whenever the line thickness is changed. maxdist : float Maximum pixel distance allowed when selecting control handle. line_props : dict Properties for :class:`matplotlib.lines.Line2D`. handle_props : dict Marker properties for the handles (also see :class:`matplotlib.lines.Line2D`). Attributes ---------- end_points : 2D array End points of line ((x1, y1), (x2, y2)). """ def __init__(self, viewer, on_move=None, on_enter=None, on_release=None, on_change=None, maxdist=10, line_props=None, handle_props=None): super(ThickLineTool, self).__init__(viewer, on_move=on_move, on_enter=on_enter, on_release=on_release, maxdist=maxdist, line_props=line_props, handle_props=handle_props) if on_change is None: def on_change(*args): pass self.callback_on_change = on_change def on_scroll(self, event): if not event.inaxes: return if event.button == 'up': self._thicken_scan_line() elif event.button == 'down': self._shrink_scan_line() def on_key_press(self, event): if event.key == '+': self._thicken_scan_line() elif event.key == '-': self._shrink_scan_line() def _thicken_scan_line(self): self.linewidth += 1 self.update() self.callback_on_change(self.geometry) def _shrink_scan_line(self): if self.linewidth > 1: self.linewidth -= 1 self.update() self.callback_on_change(self.geometry) if __name__ == '__main__': # pragma: no cover from ... import data from ...viewer import ImageViewer image = data.camera() viewer = ImageViewer(image) h, w = image.shape line_tool = ThickLineTool(viewer) line_tool.end_points = ([w/3, h/2], [2*w/3, h/2]) viewer.show()
lgpl-3.0
gef756/statsmodels
statsmodels/genmod/cov_struct.py
19
46892
from statsmodels.compat.python import iterkeys, itervalues, zip, range from statsmodels.stats.correlation_tools import cov_nearest import numpy as np import pandas as pd from scipy import linalg as spl from collections import defaultdict from statsmodels.tools.sm_exceptions import (ConvergenceWarning, IterationLimitWarning) import warnings """ Some details for the covariance calculations can be found in the Stata docs: http://www.stata.com/manuals13/xtxtgee.pdf """ class CovStruct(object): """ A base class for correlation and covariance structures of grouped data. Each implementation of this class takes the residuals from a regression model that has been fitted to grouped data, and uses them to estimate the within-group dependence structure of the random errors in the model. The state of the covariance structure is represented through the value of the class variable `dep_params`. The default state of a newly-created instance should correspond to the identity correlation matrix. """ def __init__(self, cov_nearest_method="clipped"): # Parameters describing the dependency structure self.dep_params = None # Keep track of the number of times that the covariance was # adjusted. self.cov_adjust = [] # Method for projecting the covariance matrix if it not SPD. self.cov_nearest_method = cov_nearest_method def initialize(self, model): """ Called by GEE, used by implementations that need additional setup prior to running `fit`. Parameters ---------- model : GEE class A reference to the parent GEE class instance. """ self.model = model def update(self, params): """ Updates the association parameter values based on the current regression coefficients. Parameters ---------- params : array-like Working values for the regression parameters. """ raise NotImplementedError def covariance_matrix(self, endog_expval, index): """ Returns the working covariance or correlation matrix for a given cluster of data. Parameters ---------- endog_expval: array-like The expected values of endog for the cluster for which the covariance or correlation matrix will be returned index: integer The index of the cluster for which the covariane or correlation matrix will be returned Returns ------- M: matrix The covariance or correlation matrix of endog is_cor: bool True if M is a correlation matrix, False if M is a covariance matrix """ raise NotImplementedError def covariance_matrix_solve(self, expval, index, stdev, rhs): """ Solves matrix equations of the form `covmat * soln = rhs` and returns the values of `soln`, where `covmat` is the covariance matrix represented by this class. Parameters ---------- expval: array-like The expected value of endog for each observed value in the group. index: integer The group index. stdev : array-like The standard deviation of endog for each observation in the group. rhs : list/tuple of array-like A set of right-hand sides; each defines a matrix equation to be solved. Returns ------- soln : list/tuple of array-like The solutions to the matrix equations. Notes ----- Returns None if the solver fails. Some dependence structures do not use `expval` and/or `index` to determine the correlation matrix. Some families (e.g. binomial) do not use the `stdev` parameter when forming the covariance matrix. If the covariance matrix is singular or not SPD, it is projected to the nearest such matrix. These projection events are recorded in the fit_history member of the GEE model. Systems of linear equations with the covariance matrix as the left hand side (LHS) are solved for different right hand sides (RHS); the LHS is only factorized once to save time. This is a default implementation, it can be reimplemented in subclasses to optimize the linear algebra according to the struture of the covariance matrix. """ vmat, is_cor = self.covariance_matrix(expval, index) if is_cor: vmat *= np.outer(stdev, stdev) # Factor the covariance matrix. If the factorization fails, # attempt to condition it into a factorizable matrix. threshold = 1e-2 success = False cov_adjust = 0 for itr in range(20): try: vco = spl.cho_factor(vmat) success = True break except np.linalg.LinAlgError: vmat = cov_nearest(vmat, method=self.cov_nearest_method, threshold=threshold) threshold *= 2 cov_adjust += 1 self.cov_adjust.append(cov_adjust) # Last resort if we still can't factor the covariance matrix. if success == False: warnings.warn("Unable to condition covariance matrix to an SPD matrix using cov_nearest", ConvergenceWarning) vmat = np.diag(np.diag(vmat)) vco = spl.cho_factor(vmat) soln = [spl.cho_solve(vco, x) for x in rhs] return soln def summary(self): """ Returns a text summary of the current estimate of the dependence structure. """ raise NotImplementedError class Independence(CovStruct): """ An independence working dependence structure. """ # Nothing to update def update(self, params): return def covariance_matrix(self, expval, index): dim = len(expval) return np.eye(dim, dtype=np.float64), True def covariance_matrix_solve(self, expval, index, stdev, rhs): v = stdev**2 rslt = [] for x in rhs: if x.ndim == 1: rslt.append(x / v) else: rslt.append(x / v[:, None]) return rslt update.__doc__ = CovStruct.update.__doc__ covariance_matrix.__doc__ = CovStruct.covariance_matrix.__doc__ covariance_matrix_solve.__doc__ = CovStruct.covariance_matrix_solve.__doc__ def summary(self): return "Observations within a cluster are modeled as being independent." class Exchangeable(CovStruct): """ An exchangeable working dependence structure. """ def __init__(self): super(Exchangeable, self).__init__() # The correlation between any two values in the same cluster self.dep_params = 0. def update(self, params): endog = self.model.endog_li nobs = self.model.nobs varfunc = self.model.family.variance cached_means = self.model.cached_means has_weights = self.model.weights is not None weights_li = self.model.weights residsq_sum, scale = 0, 0 fsum1, fsum2, n_pairs = 0., 0., 0. for i in range(self.model.num_group): expval, _ = cached_means[i] stdev = np.sqrt(varfunc(expval)) resid = (endog[i] - expval) / stdev f = weights_li[i] if has_weights else 1. ngrp = len(resid) residsq = np.outer(resid, resid) scale += f * np.trace(residsq) fsum1 += f * len(endog[i]) residsq = np.tril(residsq, -1) residsq_sum += f * residsq.sum() npr = 0.5 * ngrp * (ngrp - 1) fsum2 += f * npr n_pairs += npr ddof = self.model.ddof_scale scale /= (fsum1 * (nobs - ddof) / float(nobs)) residsq_sum /= scale self.dep_params = residsq_sum / (fsum2 * (n_pairs - ddof) / float(n_pairs)) def covariance_matrix(self, expval, index): dim = len(expval) dp = self.dep_params * np.ones((dim, dim), dtype=np.float64) np.fill_diagonal(dp, 1) return dp, True def covariance_matrix_solve(self, expval, index, stdev, rhs): k = len(expval) c = self.dep_params / (1. - self.dep_params) c /= 1. + self.dep_params * (k - 1) rslt = [] for x in rhs: if x.ndim == 1: x1 = x / stdev y = x1 / (1. - self.dep_params) y -= c * sum(x1) y /= stdev else: x1 = x / stdev[:, None] y = x1 / (1. - self.dep_params) y -= c * x1.sum(0) y /= stdev[:, None] rslt.append(y) return rslt update.__doc__ = CovStruct.update.__doc__ covariance_matrix.__doc__ = CovStruct.covariance_matrix.__doc__ covariance_matrix_solve.__doc__ = CovStruct.covariance_matrix_solve.__doc__ def summary(self): return ("The correlation between two observations in the " + "same cluster is %.3f" % self.dep_params) class Nested(CovStruct): """ A nested working dependence structure. A working dependence structure that captures a nested hierarchy of groups, each level of which contributes to the random error term of the model. When using this working covariance structure, `dep_data` of the GEE instance should contain a n_obs x k matrix of 0/1 indicators, corresponding to the k subgroups nested under the top-level `groups` of the GEE instance. These subgroups should be nested from left to right, so that two observations with the same value for column j of `dep_data` should also have the same value for all columns j' < j (this only applies to observations in the same top-level cluster given by the `groups` argument to GEE). Examples -------- Suppose our data are student test scores, and the students are in classrooms, nested in schools, nested in school districts. The school district is the highest level of grouping, so the school district id would be provided to GEE as `groups`, and the school and classroom id's would be provided to the Nested class as the `dep_data` argument, e.g. 0 0 # School 0, classroom 0, student 0 0 0 # School 0, classroom 0, student 1 0 1 # School 0, classroom 1, student 0 0 1 # School 0, classroom 1, student 1 1 0 # School 1, classroom 0, student 0 1 0 # School 1, classroom 0, student 1 1 1 # School 1, classroom 1, student 0 1 1 # School 1, classroom 1, student 1 Labels lower in the hierarchy are recycled, so that student 0 in classroom 0 is different fro student 0 in classroom 1, etc. Notes ----- The calculations for this dependence structure involve all pairs of observations within a group (that is, within the top level `group` structure passed to GEE). Large group sizes will result in slow iterations. The variance components are estimated using least squares regression of the products r*r', for standardized residuals r and r' in the same group, on a vector of indicators defining which variance components are shared by r and r'. """ def initialize(self, model): """ Called on the first call to update `ilabels` is a list of n_i x n_i matrices containing integer labels that correspond to specific correlation parameters. Two elements of ilabels[i] with the same label share identical variance components. `designx` is a matrix, with each row containing dummy variables indicating which variance components are associated with the corresponding element of QY. """ super(Nested, self).initialize(model) if self.model.weights is not None: warnings.warn("weights not implemented for nested cov_struct, using unweighted covariance estimate") # A bit of processing of the nest data id_matrix = np.asarray(self.model.dep_data) if id_matrix.ndim == 1: id_matrix = id_matrix[:,None] self.id_matrix = id_matrix endog = self.model.endog_li designx, ilabels = [], [] # The number of layers of nesting n_nest = self.id_matrix.shape[1] for i in range(self.model.num_group): ngrp = len(endog[i]) glab = self.model.group_labels[i] rix = self.model.group_indices[glab] # Determine the number of common variance components # shared by each pair of observations. ix1, ix2 = np.tril_indices(ngrp, -1) ncm = (self.id_matrix[rix[ix1], :] == self.id_matrix[rix[ix2], :]).sum(1) # This is used to construct the working correlation # matrix. ilabel = np.zeros((ngrp, ngrp), dtype=np.int32) ilabel[[ix1, ix2]] = ncm + 1 ilabel[[ix2, ix1]] = ncm + 1 ilabels.append(ilabel) # This is used to estimate the variance components. dsx = np.zeros((len(ix1), n_nest+1), dtype=np.float64) dsx[:,0] = 1 for k in np.unique(ncm): ii = np.flatnonzero(ncm == k) dsx[ii, 1:k+1] = 1 designx.append(dsx) self.designx = np.concatenate(designx, axis=0) self.ilabels = ilabels svd = np.linalg.svd(self.designx, 0) self.designx_u = svd[0] self.designx_s = svd[1] self.designx_v = svd[2].T def update(self, params): endog = self.model.endog_li nobs = self.model.nobs dim = len(params) if self.designx is None: self._compute_design(self.model) cached_means = self.model.cached_means varfunc = self.model.family.variance dvmat = [] scale = 0. for i in range(self.model.num_group): expval, _ = cached_means[i] stdev = np.sqrt(varfunc(expval)) resid = (endog[i] - expval) / stdev ix1, ix2 = np.tril_indices(len(resid), -1) dvmat.append(resid[ix1] * resid[ix2]) scale += np.sum(resid**2) dvmat = np.concatenate(dvmat) scale /= (nobs - dim) # Use least squares regression to estimate the variance # components vcomp_coeff = np.dot(self.designx_v, np.dot(self.designx_u.T, dvmat) / self.designx_s) self.vcomp_coeff = np.clip(vcomp_coeff, 0, np.inf) self.scale = scale self.dep_params = self.vcomp_coeff.copy() def covariance_matrix(self, expval, index): dim = len(expval) # First iteration if self.dep_params is None: return np.eye(dim, dtype=np.float64), True ilabel = self.ilabels[index] c = np.r_[self.scale, np.cumsum(self.vcomp_coeff)] vmat = c[ilabel] vmat /= self.scale return vmat, True update.__doc__ = CovStruct.update.__doc__ covariance_matrix.__doc__ = CovStruct.covariance_matrix.__doc__ def summary(self): """ Returns a summary string describing the state of the dependence structure. """ msg = "Variance estimates\n------------------\n" for k in range(len(self.vcomp_coeff)): msg += "Component %d: %.3f\n" % (k+1, self.vcomp_coeff[k]) msg += "Residual: %.3f\n" % (self.scale - np.sum(self.vcomp_coeff)) return msg class Stationary(CovStruct): """ A stationary covariance structure. The correlation between two observations is an arbitrary function of the distance between them. Distances up to a given maximum value are included in the covariance model. Parameters ---------- max_lag : float The largest distance that is included in the covariance model. grid : bool If True, the index positions in the data (after dropping missing values) are used to define distances, and the `time` variable is ignored. """ def __init__(self, max_lag=1, grid=False): super(Stationary, self).__init__() self.max_lag = max_lag self.grid = grid self.dep_params = np.zeros(max_lag) def initialize(self, model): super(Stationary, self).initialize(model) # Time used as an index needs to be integer type. if self.grid == False: time = self.model.time[:, 0].astype(np.int32) self.time = self.model.cluster_list(time) def update(self, params): if self.grid: self.update_grid(params) else: self.update_nogrid(params) def update_grid(self, params): endog = self.model.endog_li cached_means = self.model.cached_means varfunc = self.model.family.variance dep_params = np.zeros(self.max_lag + 1) for i in range(self.model.num_group): expval, _ = cached_means[i] stdev = np.sqrt(varfunc(expval)) resid = (endog[i] - expval) / stdev dep_params[0] += np.sum(resid * resid) / len(resid) for j in range(1, self.max_lag + 1): dep_params[j] += np.sum(resid[0:-j] * resid[j:]) / len(resid[j:]) self.dep_params = dep_params[1:] / dep_params[0] def update_nogrid(self, params): endog = self.model.endog_li cached_means = self.model.cached_means varfunc = self.model.family.variance dep_params = np.zeros(self.max_lag + 1) dn = np.zeros(self.max_lag + 1) for i in range(self.model.num_group): expval, _ = cached_means[i] stdev = np.sqrt(varfunc(expval)) resid = (endog[i] - expval) / stdev j1, j2 = np.tril_indices(len(expval)) dx = np.abs(self.time[i][j1] - self.time[i][j2]) ii = np.flatnonzero(dx <= self.max_lag) j1 = j1[ii] j2 = j2[ii] dx = dx[ii] vs = np.bincount(dx, weights=resid[j1] * resid[j2], minlength=self.max_lag+1) vd = np.bincount(dx, minlength=self.max_lag+1) ii = np.flatnonzero(vd > 0) dn[ii] += 1 if len(ii) > 0: dep_params[ii] += vs[ii] / vd[ii] dep_params /= dn self.dep_params = dep_params[1:] / dep_params[0] def covariance_matrix(self, endog_expval, index): if self.grid: return self.covariance_matrix_grid(endog_expal, index) j1, j2 = np.tril_indices(len(endog_expval)) dx = np.abs(self.time[index][j1] - self.time[index][j2]) ii = np.flatnonzero((0 < dx) & (dx <= self.max_lag)) j1 = j1[ii] j2 = j2[ii] dx = dx[ii] cmat = np.eye(len(endog_expval)) cmat[j1, j2] = self.dep_params[dx - 1] cmat[j2, j1] = self.dep_params[dx - 1] return cmat, True def covariance_matrix_grid(self, endog_expval, index): from scipy.linalg import toeplitz r = np.zeros(len(endog_expval)) r[0] = 1 r[1:self.max_lag + 1] = self.dep_params return toeplitz(r), True def covariance_matrix_solve(self, expval, index, stdev, rhs): if self.grid == False: return super(Stationary, self).covariance_matrix_solve(expval, index, stdev, rhs) from statsmodels.tools.linalg import stationary_solve r = np.zeros(len(expval)) r[0:self.max_lag] = self.dep_params return [stationary_solve(r, x) for x in rhs] update.__doc__ = CovStruct.update.__doc__ covariance_matrix.__doc__ = CovStruct.covariance_matrix.__doc__ covariance_matrix_solve.__doc__ = CovStruct.covariance_matrix_solve.__doc__ def summary(self): return ("Stationary dependence parameters\n", self.dep_params) class Autoregressive(CovStruct): """ A first-order autoregressive working dependence structure. The dependence is defined in terms of the `time` component of the parent GEE class, which defaults to the index position of each value within its cluster, based on the order of values in the input data set. Time represents a potentially multidimensional index from which distances between pairs of observations can be determined. The correlation between two observations in the same cluster is dep_params^distance, where `dep_params` contains the (scalar) autocorrelation parameter to be estimated, and `distance` is the distance between the two observations, calculated from their corresponding time values. `time` is stored as an n_obs x k matrix, where `k` represents the number of dimensions in the time index. The autocorrelation parameter is estimated using weighted nonlinear least squares, regressing each value within a cluster on each preceeding value in the same cluster. Parameters ---------- dist_func: function from R^k x R^k to R^+, optional A function that computes the distance between the two observations based on their `time` values. References ---------- B Rosner, A Munoz. Autoregressive modeling for the analysis of longitudinal data with unequally spaced examinations. Statistics in medicine. Vol 7, 59-71, 1988. """ def __init__(self, dist_func=None): super(Autoregressive, self).__init__() # The function for determining distances based on time if dist_func is None: self.dist_func = lambda x, y: np.abs(x - y).sum() else: self.dist_func = dist_func self.designx = None # The autocorrelation parameter self.dep_params = 0. def update(self, params): if self.model.weights is not None: warnings.warn("weights not implemented for autoregressive cov_struct, using unweighted covariance estimate") endog = self.model.endog_li time = self.model.time_li # Only need to compute this once if self.designx is not None: designx = self.designx else: designx = [] for i in range(self.model.num_group): ngrp = len(endog[i]) if ngrp == 0: continue # Loop over pairs of observations within a cluster for j1 in range(ngrp): for j2 in range(j1): designx.append(self.dist_func(time[i][j1, :], time[i][j2, :])) designx = np.array(designx) self.designx = designx scale = self.model.estimate_scale() varfunc = self.model.family.variance cached_means = self.model.cached_means # Weights var = 1. - self.dep_params**(2*designx) var /= 1. - self.dep_params**2 wts = 1. / var wts /= wts.sum() residmat = [] for i in range(self.model.num_group): expval, _ = cached_means[i] stdev = np.sqrt(scale * varfunc(expval)) resid = (endog[i] - expval) / stdev ngrp = len(resid) for j1 in range(ngrp): for j2 in range(j1): residmat.append([resid[j1], resid[j2]]) residmat = np.array(residmat) # Need to minimize this def fitfunc(a): dif = residmat[:, 0] - (a**designx)*residmat[:, 1] return np.dot(dif**2, wts) # Left bracket point b_lft, f_lft = 0., fitfunc(0.) # Center bracket point b_ctr, f_ctr = 0.5, fitfunc(0.5) while f_ctr > f_lft: b_ctr /= 2 f_ctr = fitfunc(b_ctr) if b_ctr < 1e-8: self.dep_params = 0 return # Right bracket point b_rgt, f_rgt = 0.75, fitfunc(0.75) while f_rgt < f_ctr: b_rgt = b_rgt + (1. - b_rgt) / 2 f_rgt = fitfunc(b_rgt) if b_rgt > 1. - 1e-6: raise ValueError( "Autoregressive: unable to find right bracket") from scipy.optimize import brent self.dep_params = brent(fitfunc, brack=[b_lft, b_ctr, b_rgt]) def covariance_matrix(self, endog_expval, index): ngrp = len(endog_expval) if self.dep_params == 0: return np.eye(ngrp, dtype=np.float64), True idx = np.arange(ngrp) cmat = self.dep_params**np.abs(idx[:, None] - idx[None, :]) return cmat, True def covariance_matrix_solve(self, expval, index, stdev, rhs): # The inverse of an AR(1) covariance matrix is tri-diagonal. k = len(expval) soln = [] # LHS has 1 column if k == 1: return [x / stdev**2 for x in rhs] # LHS has 2 columns if k == 2: mat = np.array([[1, -self.dep_params], [-self.dep_params, 1]]) mat /= (1. - self.dep_params**2) for x in rhs: if x.ndim == 1: x1 = x / stdev else: x1 = x / stdev[:, None] x1 = np.dot(mat, x1) if x.ndim == 1: x1 /= stdev else: x1 /= stdev[:, None] soln.append(x1) return soln # LHS has >= 3 columns: values c0, c1, c2 defined below give # the inverse. c0 is on the diagonal, except for the first # and last position. c1 is on the first and last position of # the diagonal. c2 is on the sub/super diagonal. c0 = (1. + self.dep_params**2) / (1. - self.dep_params**2) c1 = 1. / (1. - self.dep_params**2) c2 = -self.dep_params / (1. - self.dep_params**2) soln = [] for x in rhs: flatten = False if x.ndim == 1: x = x[:, None] flatten = True x1 = x / stdev[:, None] z0 = np.zeros((1, x.shape[1])) rhs1 = np.concatenate((x[1:,:], z0), axis=0) rhs2 = np.concatenate((z0, x[0:-1,:]), axis=0) y = c0*x + c2*rhs1 + c2*rhs2 y[0, :] = c1*x[0, :] + c2*x[1, :] y[-1, :] = c1*x[-1, :] + c2*x[-2, :] y /= stdev[:, None] if flatten: y = np.squeeze(y) soln.append(y) return soln update.__doc__ = CovStruct.update.__doc__ covariance_matrix.__doc__ = CovStruct.covariance_matrix.__doc__ covariance_matrix_solve.__doc__ = CovStruct.covariance_matrix_solve.__doc__ def summary(self): return ("Autoregressive(1) dependence parameter: %.3f\n" % self.dep_params) class CategoricalCovStruct(CovStruct): """ Parent class for covariance structure for categorical data models. Attributes ---------- nlevel : int The number of distinct levels for the outcome variable. ibd : list A list whose i^th element ibd[i] is an array whose rows contain integer pairs (a,b), where endog_li[i][a:b] is the subvector of binary indicators derived from the same ordinal value. """ def initialize(self, model): super(CategoricalCovStruct, self).initialize(model) self.nlevel = len(model.endog_values) self._ncut = self.nlevel - 1 from numpy.lib.stride_tricks import as_strided b = np.dtype(np.int64).itemsize ibd = [] for v in model.endog_li: jj = np.arange(0, len(v) + 1, self._ncut, dtype=np.int64) jj = as_strided(jj, shape=(len(jj) - 1, 2), strides=(b, b)) ibd.append(jj) self.ibd = ibd class GlobalOddsRatio(CategoricalCovStruct): """ Estimate the global odds ratio for a GEE with ordinal or nominal data. References ---------- PJ Heagerty and S Zeger. "Marginal Regression Models for Clustered Ordinal Measurements". Journal of the American Statistical Association Vol. 91, Issue 435 (1996). Thomas Lumley. Generalized Estimating Equations for Ordinal Data: A Note on Working Correlation Structures. Biometrics Vol. 52, No. 1 (Mar., 1996), pp. 354-361 http://www.jstor.org/stable/2533173 Notes ----- The following data structures are calculated in the class: 'ibd' is a list whose i^th element ibd[i] is a sequence of integer pairs (a,b), where endog_li[i][a:b] is the subvector of binary indicators derived from the same ordinal value. `cpp` is a dictionary where cpp[group] is a map from cut-point pairs (c,c') to the indices of all between-subject pairs derived from the given cut points. """ def __init__(self, endog_type): super(GlobalOddsRatio, self).__init__() self.endog_type = endog_type self.dep_params = 0. def initialize(self, model): super(GlobalOddsRatio, self).initialize(model) if self.model.weights is not None: warnings.warn("weights not implemented for GlobalOddsRatio cov_struct, using unweighted covariance estimate") # Need to restrict to between-subject pairs cpp = [] for v in model.endog_li: # Number of subjects in this group m = int(len(v) / self._ncut) i1, i2 = np.tril_indices(m, -1) cpp1 = {} for k1 in range(self._ncut): for k2 in range(k1+1): jj = np.zeros((len(i1), 2), dtype=np.int64) jj[:, 0] = i1*self._ncut + k1 jj[:, 1] = i2*self._ncut + k2 cpp1[(k2, k1)] = jj cpp.append(cpp1) self.cpp = cpp # Initialize the dependence parameters self.crude_or = self.observed_crude_oddsratio() if self.model.update_dep: self.dep_params = self.crude_or def pooled_odds_ratio(self, tables): """ Returns the pooled odds ratio for a list of 2x2 tables. The pooled odds ratio is the inverse variance weighted average of the sample odds ratios of the tables. """ if len(tables) == 0: return 1. # Get the sampled odds ratios and variances log_oddsratio, var = [], [] for table in tables: lor = np.log(table[1, 1]) + np.log(table[0, 0]) -\ np.log(table[0, 1]) - np.log(table[1, 0]) log_oddsratio.append(lor) var.append((1 / table.astype(np.float64)).sum()) # Calculate the inverse variance weighted average wts = [1 / v for v in var] wtsum = sum(wts) wts = [w / wtsum for w in wts] log_pooled_or = sum([w*e for w, e in zip(wts, log_oddsratio)]) return np.exp(log_pooled_or) def covariance_matrix(self, expected_value, index): vmat = self.get_eyy(expected_value, index) vmat -= np.outer(expected_value, expected_value) return vmat, False def observed_crude_oddsratio(self): """ To obtain the crude (global) odds ratio, first pool all binary indicators corresponding to a given pair of cut points (c,c'), then calculate the odds ratio for this 2x2 table. The crude odds ratio is the inverse variance weighted average of these odds ratios. Since the covariate effects are ignored, this OR will generally be greater than the stratified OR. """ cpp = self.cpp endog = self.model.endog_li # Storage for the contingency tables for each (c,c') tables = {} for ii in iterkeys(cpp[0]): tables[ii] = np.zeros((2, 2), dtype=np.float64) # Get the observed crude OR for i in range(len(endog)): # The observed joint values for the current cluster yvec = endog[i] endog_11 = np.outer(yvec, yvec) endog_10 = np.outer(yvec, 1. - yvec) endog_01 = np.outer(1. - yvec, yvec) endog_00 = np.outer(1. - yvec, 1. - yvec) cpp1 = cpp[i] for ky in iterkeys(cpp1): ix = cpp1[ky] tables[ky][1, 1] += endog_11[ix[:, 0], ix[:, 1]].sum() tables[ky][1, 0] += endog_10[ix[:, 0], ix[:, 1]].sum() tables[ky][0, 1] += endog_01[ix[:, 0], ix[:, 1]].sum() tables[ky][0, 0] += endog_00[ix[:, 0], ix[:, 1]].sum() return self.pooled_odds_ratio(list(itervalues(tables))) def get_eyy(self, endog_expval, index): """ Returns a matrix V such that V[i,j] is the joint probability that endog[i] = 1 and endog[j] = 1, based on the marginal probabilities of endog and the global odds ratio `current_or`. """ current_or = self.dep_params ibd = self.ibd[index] # The between-observation joint probabilities if current_or == 1.0: vmat = np.outer(endog_expval, endog_expval) else: psum = endog_expval[:, None] + endog_expval[None, :] pprod = endog_expval[:, None] * endog_expval[None, :] pfac = np.sqrt((1. + psum * (current_or - 1.))**2 + 4 * current_or * (1. - current_or) * pprod) vmat = 1. + psum * (current_or - 1.) - pfac vmat /= 2. * (current_or - 1) # Fix E[YY'] for elements that belong to same observation for bdl in ibd: evy = endog_expval[bdl[0]:bdl[1]] if self.endog_type == "ordinal": vmat[bdl[0]:bdl[1], bdl[0]:bdl[1]] =\ np.minimum.outer(evy, evy) else: vmat[bdl[0]:bdl[1], bdl[0]:bdl[1]] = np.diag(evy) return vmat def update(self, params): """ Update the global odds ratio based on the current value of params. """ endog = self.model.endog_li cpp = self.cpp cached_means = self.model.cached_means # This will happen if all the clusters have only # one observation if len(cpp[0]) == 0: return tables = {} for ii in cpp[0]: tables[ii] = np.zeros((2, 2), dtype=np.float64) for i in range(self.model.num_group): endog_expval, _ = cached_means[i] emat_11 = self.get_eyy(endog_expval, i) emat_10 = endog_expval[:, None] - emat_11 emat_01 = -emat_11 + endog_expval emat_00 = 1. - (emat_11 + emat_10 + emat_01) cpp1 = cpp[i] for ky in iterkeys(cpp1): ix = cpp1[ky] tables[ky][1, 1] += emat_11[ix[:, 0], ix[:, 1]].sum() tables[ky][1, 0] += emat_10[ix[:, 0], ix[:, 1]].sum() tables[ky][0, 1] += emat_01[ix[:, 0], ix[:, 1]].sum() tables[ky][0, 0] += emat_00[ix[:, 0], ix[:, 1]].sum() cor_expval = self.pooled_odds_ratio(list(itervalues(tables))) self.dep_params *= self.crude_or / cor_expval if not np.isfinite(self.dep_params): self.dep_params = 1. warnings.warn("dep_params became inf, resetting to 1", ConvergenceWarning) update.__doc__ = CovStruct.update.__doc__ covariance_matrix.__doc__ = CovStruct.covariance_matrix.__doc__ def summary(self): return "Global odds ratio: %.3f\n" % self.dep_params class OrdinalIndependence(CategoricalCovStruct): """ An independence covariance structure for ordinal models. The working covariance between indicators derived from different observations is zero. The working covariance between indicators derived form a common observation is determined from their current mean values. There are no parameters to estimate in this covariance structure. """ def covariance_matrix(self, expected_value, index): ibd = self.ibd[index] n = len(expected_value) vmat = np.zeros((n, n)) for bdl in ibd: ev = expected_value[bdl[0]:bdl[1]] vmat[bdl[0]:bdl[1], bdl[0]:bdl[1]] =\ np.minimum.outer(ev, ev) - np.outer(ev, ev) return vmat, False # Nothing to update def update(self, params): pass class NominalIndependence(CategoricalCovStruct): """ An independence covariance structure for nominal models. The working covariance between indicators derived from different observations is zero. The working covariance between indicators derived form a common observation is determined from their current mean values. There are no parameters to estimate in this covariance structure. """ def covariance_matrix(self, expected_value, index): ibd = self.ibd[index] n = len(expected_value) vmat = np.zeros((n, n)) for bdl in ibd: ev = expected_value[bdl[0]:bdl[1]] vmat[bdl[0]:bdl[1], bdl[0]:bdl[1]] =\ np.diag(ev) - np.outer(ev, ev) return vmat, False # Nothing to update def update(self, params): pass class Equivalence(CovStruct): """ A covariance structure defined in terms of equivalence classes. An 'equivalence class' is a set of pairs of observations such that the covariance of every pair within the equivalence class has a common value. Parameters ---------- pairs : dict-like A dictionary of dictionaries, where `pairs[group][label]` provides the indices of all pairs of observations in the group that have the same covariance value. Specifically, `pairs[group][label]` is a tuple `(j1, j2)`, where `j1` and `j2` are integer arrays of the same length. `j1[i], j2[i]` is one index pair that belongs to the `label` equivalence class. Only one triangle of each covariance matrix should be included. Positions where j1 and j2 have the same value are variance parameters. labels : array-like An array of labels such that every distinct pair of labels defines an equivalence class. Either `labels` or `pairs` must be provided. When the two labels in a pair are equal two equivalence classes are defined: one for the diagonal elements (corresponding to variances) and one for the off-diagonal elements (corresponding to covariances). return_cov : boolean If True, `covariance_matrix` returns an estimate of the covariance matrix, otherwise returns an estimate of the correlation matrix. Notes ----- Using `labels` to define the class is much easier than using `pairs`, but is less general. Any pair of values not contained in `pairs` will be assigned zero covariance. The index values in `pairs` are row indices into the `exog` matrix. They are not updated if missing data are present. When using this covariance structure, missing data should be removed before constructing the model. If using `labels`, after a model is defined using the covariance structure it is possible to remove a label pair from the second level of the `pairs` dictionary to force the corresponding covariance to be zero. Examples -------- The following sets up the `pairs` dictionary for a model with two groups, equal variance for all observations, and constant covariance for all pairs of observations within each group. >> pairs = {0: {}, 1: {}} >> pairs[0][0] = (np.r_[0, 1, 2], np.r_[0, 1, 2]) >> pairs[0][1] = np.tril_indices(3, -1) >> pairs[1][0] = (np.r_[3, 4, 5], np.r_[3, 4, 5]) >> pairs[1][2] = 3 + np.tril_indices(3, -1) """ def __init__(self, pairs=None, labels=None, return_cov=False): super(Equivalence, self).__init__() if (pairs is None) and (labels is None): raise ValueError("Equivalence cov_struct requires either `pairs` or `labels`") if (pairs is not None) and (labels is not None): raise ValueError("Equivalence cov_struct accepts only one of `pairs` and `labels`") if pairs is not None: import copy self.pairs = copy.deepcopy(pairs) if labels is not None: self.labels = np.asarray(labels) self.return_cov = return_cov def _make_pairs(self, i, j): """ Create arrays `i_`, `j_` containing all unique ordered pairs of elements in `i` and `j`. The arrays `i` and `j` must be one-dimensional containing non-negative integers. """ mat = np.zeros((len(i)*len(j), 2), dtype=np.int32) # Create the pairs and order them f = np.ones(len(j)) mat[:, 0] = np.kron(f, i).astype(np.int32) f = np.ones(len(i)) mat[:, 1] = np.kron(j, f).astype(np.int32) mat.sort(1) # Remove repeated rows try: dtype = np.dtype((np.void, mat.dtype.itemsize * mat.shape[1])) bmat = np.ascontiguousarray(mat).view(dtype) _, idx = np.unique(bmat, return_index=True) except TypeError: # workaround for old numpy that can't call unique with complex # dtypes np.random.seed(4234) bmat = np.dot(mat, np.random.uniform(size=mat.shape[1])) _, idx = np.unique(bmat, return_index=True) mat = mat[idx, :] return mat[:, 0], mat[:, 1] def _pairs_from_labels(self): from collections import defaultdict pairs = defaultdict(lambda : defaultdict(lambda : None)) model = self.model df = pd.DataFrame({"labels": self.labels, "groups": model.groups}) gb = df.groupby(["groups", "labels"]) ulabels = np.unique(self.labels) for g_ix, g_lb in enumerate(model.group_labels): # Loop over label pairs for lx1 in range(len(ulabels)): for lx2 in range(lx1+1): lb1 = ulabels[lx1] lb2 = ulabels[lx2] try: i1 = gb.groups[(g_lb, lb1)] i2 = gb.groups[(g_lb, lb2)] except KeyError: continue i1, i2 = self._make_pairs(i1, i2) clabel = str(lb1) + "/" + str(lb2) # Variance parameters belong in their own equiv class. jj = np.flatnonzero(i1 == i2) if len(jj) > 0: clabelv = clabel + "/v" pairs[g_lb][clabelv] = (i1[jj], i2[jj]) # Covariance parameters jj = np.flatnonzero(i1 != i2) if len(jj) > 0: i1 = i1[jj] i2 = i2[jj] pairs[g_lb][clabel] = (i1, i2) self.pairs = pairs def initialize(self, model): super(Equivalence, self).initialize(model) if self.model.weights is not None: warnings.warn("weights not implemented for equalence cov_struct, using unweighted covariance estimate") if not hasattr(self, 'pairs'): self._pairs_from_labels() # Initialize so that any equivalence class containing a # variance parameter has value 1. self.dep_params = defaultdict(lambda : 0.) self._var_classes = set([]) for gp in self.model.group_labels: for lb in self.pairs[gp]: j1, j2 = self.pairs[gp][lb] if np.any(j1 == j2): if not np.all(j1 == j2): warnings.warn("equivalence class contains both variance and covariance parameters") self._var_classes.add(lb) self.dep_params[lb] = 1 # Need to start indexing at 0 within each group. # rx maps olds indices to new indices rx = -1 * np.ones(len(self.model.endog), dtype=np.int32) for g_ix, g_lb in enumerate(self.model.group_labels): ii = self.model.group_indices[g_lb] rx[ii] = np.arange(len(ii), dtype=np.int32) # Reindex for gp in self.model.group_labels: for lb in self.pairs[gp].keys(): a, b = self.pairs[gp][lb] self.pairs[gp][lb] = (rx[a], rx[b]) def update(self, params): endog = self.model.endog_li varfunc = self.model.family.variance cached_means = self.model.cached_means dep_params = defaultdict(lambda : [0., 0., 0.]) n_pairs = defaultdict(lambda : 0) dim = len(params) for k, gp in enumerate(self.model.group_labels): expval, _ = cached_means[k] stdev = np.sqrt(varfunc(expval)) resid = (endog[k] - expval) / stdev for lb in self.pairs[gp].keys(): if (not self.return_cov) and lb in self._var_classes: continue jj = self.pairs[gp][lb] dep_params[lb][0] += np.sum(resid[jj[0]] * resid[jj[1]]) if not self.return_cov: dep_params[lb][1] += np.sum(resid[jj[0]]**2) dep_params[lb][2] += np.sum(resid[jj[1]]**2) n_pairs[lb] += len(jj[0]) if self.return_cov: for lb in dep_params.keys(): dep_params[lb] = dep_params[lb][0] / (n_pairs[lb] - dim) else: for lb in dep_params.keys(): den = np.sqrt(dep_params[lb][1] * dep_params[lb][2]) dep_params[lb] = dep_params[lb][0] / den for lb in self._var_classes: dep_params[lb] = 1. self.dep_params = dep_params self.n_pairs = n_pairs def covariance_matrix(self, expval, index): dim = len(expval) cmat = np.zeros((dim, dim)) g_lb = self.model.group_labels[index] for lb in self.pairs[g_lb].keys(): j1, j2 = self.pairs[g_lb][lb] cmat[j1, j2] = self.dep_params[lb] cmat = cmat + cmat.T np.fill_diagonal(cmat, cmat.diagonal() / 2) return cmat, not self.return_cov update.__doc__ = CovStruct.update.__doc__ covariance_matrix.__doc__ = CovStruct.covariance_matrix.__doc__
bsd-3-clause
kashif/scikit-learn
examples/linear_model/plot_ridge_path.py
55
2138
""" =========================================================== Plot Ridge coefficients as a function of the regularization =========================================================== Shows the effect of collinearity in the coefficients of an estimator. .. currentmodule:: sklearn.linear_model :class:`Ridge` Regression is the estimator used in this example. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. This example also shows the usefulness of applying Ridge regression to highly ill-conditioned matrices. For such matrices, a slight change in the target variable can cause huge variances in the calculated weights. In such cases, it is useful to set a certain regularization (alpha) to reduce this variation (noise). When alpha is very large, the regularization effect dominates the squared loss function and the coefficients tend to zero. At the end of the path, as alpha tends toward zero and the solution tends towards the ordinary least squares, coefficients exhibit big oscillations. In practise it is necessary to tune alpha in such a way that a balance is maintained between both. """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # X is the 10x10 Hilbert matrix X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis]) y = np.ones(10) ############################################################################### # Compute paths n_alphas = 200 alphas = np.logspace(-10, -2, n_alphas) clf = linear_model.Ridge(fit_intercept=False) coefs = [] for a in alphas: clf.set_params(alpha=a) clf.fit(X, y) coefs.append(clf.coef_) ############################################################################### # Display results ax = plt.gca() ax.plot(alphas, coefs) ax.set_xscale('log') ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis plt.xlabel('alpha') plt.ylabel('weights') plt.title('Ridge coefficients as a function of the regularization') plt.axis('tight') plt.show()
bsd-3-clause
siconos/siconos-deb
examples/Control/train_brakes/train_tslcp.py
1
4764
"""Train brake example from B. Caillaud, <[email protected]>, Inria, Rennes, September 2013 Time-Stepping with LCP. Equations are :: for all i=1...n j_{i-1} - k_i - l_i - j_i = 0 w_i = u_i + v_i w_{i-1} - R j_{i-1} - w_i = 0 h_i + S k_i = v_i u'_i = 1/C (k_i + l_i) v'_i = 1/D l_i 0 <= k_i complementarity -h_i >= 0 w_0 is a constant j_n is a constant """ import matplotlib matplotlib.use('Agg') import numpy as np import matplotlib.pyplot as plt import siconos.kernel as sk from math import ceil # == User-defined parameters == number_of_cars = 3 t0 = 0.0 T = 10 # Total simulation times tau = 1e-3 # Time step tscale = 1. # Resistors (Ohm) R = 100. S = 10. # Capacitors (Farad) C = 1000.e-6 D = 100.e-6 # Initial state u0 = 7.5 # C capacitors voltates (V) v0 = - u0 # D capacitors voltages (V) rho = 0.6667 # factor epsilon = rho * u0 / number_of_cars # increment of capacitor voltages (V) # Constant perturbation w0 = 10.0 # Voltage at the head of the brake line jn = 0.0 # current at the tail of the brake line # -- Dynamical system -- # *** Linear time-invariant dynamical system (LTIDS) *** # q' = A.q + b + r with : # # q = [ u1 ... u_n v_1 ... v_n ] # q(t0) = q0 = [ u0 ... u0 v0 ... v0 ] ndof = 2 * number_of_cars q0 = np.zeros(ndof, dtype=np.float64) q0[:number_of_cars] = (1. - rho) * u0 + epsilon * np.arange(number_of_cars) q0[number_of_cars:] = (1. - rho) * v0 -\ epsilon * np.arange(number_of_cars, ndof) A = np.zeros((ndof, ndof), dtype=np.float64) val = -2. / (R * C) np.fill_diagonal(A[:number_of_cars, :number_of_cars], val) np.fill_diagonal(A[:number_of_cars, number_of_cars:ndof], val) val2 = -2. / (R * D) np.fill_diagonal(A[number_of_cars:ndof, :number_of_cars], val2) np.fill_diagonal(A[number_of_cars:ndof, number_of_cars:ndof], val2) A[number_of_cars - 1, number_of_cars - 1] *= 0.5 A[number_of_cars - 1, ndof - 1] *= 0.5 A[ndof - 1, number_of_cars - 1] *= 0.5 A[ndof - 1, ndof - 1] *= 0.5 # extra-diag values for i in xrange(1, number_of_cars): A[i, i - 1] = A[i - 1, i] = 1. / (R * C) A[i, i + number_of_cars - 1] = A[i - 1, i + number_of_cars] = 1. / (R * C) A[i + number_of_cars, i - 1] = A[i + number_of_cars - 1, i] = 1. / (R * D) A[i + number_of_cars, i + number_of_cars - 1] = 1. / (R * D) A[i + number_of_cars - 1, i + number_of_cars] = 1. / (R * D) b = np.zeros(ndof, np.float64) b[0] = w0 / (R * C) b[number_of_cars - 1] = - jn / C b[number_of_cars] = w0 / (R * D) b[ndof - 1] = -jn / D RC = sk.FirstOrderLinearTIDS(q0, A, b) # -- Interaction -- # *** Linear time invariant relation (LTIR) *** # y = N.q + M.x and r = B.x # y = [ -h_1 ... -h_n ] # x = [ k_1 ... k_n ] # + complementarity(x,y) ninter = number_of_cars B = np.zeros((ndof, ninter), dtype=np.float64) np.fill_diagonal(B[number_of_cars:, :number_of_cars], -1. / D) M = np.zeros((ninter, ninter), dtype=np.float64) np.fill_diagonal(M[:number_of_cars, :number_of_cars], S) N = np.zeros((ninter, ndof), dtype=np.float64) np.fill_diagonal(N[:number_of_cars, number_of_cars:], -1.) relation = sk.FirstOrderLinearTIR(N, B) relation.setDPtr(M) nslaw = sk.ComplementarityConditionNSL(ninter) interaction = sk.Interaction(ninter, nslaw, relation) # -- The Model -- circuit = sk.Model(t0, T, 'train') nsds = circuit.nonSmoothDynamicalSystem() nsds.insertDynamicalSystem(RC) nsds.link(interaction, RC) # -- Simulation -- td = sk.TimeDiscretisation(t0, tau) simu = sk.TimeStepping(td) # osi theta = 0.50000000000001 osi = sk.EulerMoreauOSI(theta) simu.insertIntegrator(osi) # osns osnspb = sk.LCP() simu.insertNonSmoothProblem(osnspb) circuit.initialize(simu) # -- Get the values to be plotted -- output_size = 2 * number_of_cars + 1 nb_time_steps = ceil((T - t0) / tau) + 1 data_plot = np.empty((nb_time_steps, output_size)) data_plot[0, 0] = circuit.t0() / tscale data_plot[0, 1:] = RC.x() # time loop k = 1 while simu.hasNextEvent(): # update input current = 2 * k - nb_time_steps if current >= 0 and current <= 1: RC.b()[0] = 0.0 RC.b()[number_of_cars] = 0 simu.computeOneStep() data_plot[k, 0] = simu.nextTime() / tscale data_plot[k, 1:] = RC.x() k += 1 simu.nextStep() # save to disk np.savetxt('train_tslcp.dat', data_plot) def plot_results(): """Plot 3d curve z = f(x, y) with ds_state = [x, y, z] """ plt.subplot(211) time = data_plot[:, 0] q = data_plot[:, 1:number_of_cars + 1] v = data_plot[:, number_of_cars + 1:] plt.plot(time, q, label='u') plt.ylabel('u') plt.subplot(212) plt.plot(time, v, label='v') plt.ylabel('v') plt.xlabel('time') plt.savefig('train_brakes.png') # --- Uncomment lines below to plot interesting stuff --- plot_results()
apache-2.0
MohammedWasim/scikit-learn
sklearn/neighbors/tests/test_kd_tree.py
159
7852
import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.kd_tree import (KDTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils.testing import SkipTest, assert_allclose V = np.random.random((3, 3)) V = np.dot(V, V.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'chebyshev': {}, 'minkowski': dict(p=3)} def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_kd_tree_query(): np.random.seed(0) X = np.random.random((40, DIMENSION)) Y = np.random.random((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): kdt = KDTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = kdt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_kd_tree_query_radius(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail kdt = KDTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = kdt.query_radius([query_pt], r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_kd_tree_query_radius_distance(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail kdt = KDTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = kdt.query_radius([query_pt], r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_kd_tree_kde(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) kdt = KDTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) def check_results(kernel, h, atol, rtol, breadth_first): dens = kdt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde np.random.seed(0) x_in = np.random.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: kdt = KDTree(x_in[:, None]) try: gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) except TypeError: raise SkipTest("Old scipy, does not accept explicit bandwidth.") dens_kdt = kdt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_kdt, dens_gkde, decimal=3) def test_kd_tree_two_point(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) r = np.linspace(0, 1, 10) kdt = KDTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = kdt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_kd_tree_pickle(): import pickle np.random.seed(0) X = np.random.random((10, 3)) kdt1 = KDTree(X, leaf_size=1) ind1, dist1 = kdt1.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(kdt1, protocol=protocol) kdt2 = pickle.loads(s) ind2, dist2 = kdt2.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = np.random.random(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = np.random.random(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = np.random.random((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2)
bsd-3-clause
mrkrd/thorns
thorns/spikes.py
1
8431
# -*- coding: utf-8 -*- # # Copyright 2014 Marek Rudnicki # # This file is part of thorns. # # thorns is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # thorns is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with thorns. If not, see <http://www.gnu.org/licenses/>. """Contains `spike_trains` creation and manipulation functions. `spike_trains` is a data format to contain physiological action potentials data and meta information. It is based on `pd.DataFrame`, which MUST contain two columns *spikes* and *duration*. The values in *spikes* are numpy arrays of spike timings in seconds. The values in the *duration* column are the durations of the stimuli also in seconds. """ from __future__ import division, print_function, absolute_import import random import numpy as np import pandas as pd import sys from collections import Iterable from thorns.stats import get_duration def select_trains(spike_trains, **kwargs): """Select trains from `spike_trains` where `kwargs` are equal to the metadata. """ mask = np.ones(len(spike_trains), dtype=bool) for key,val in kwargs.items(): mask = mask & np.array(spike_trains[key] == val) selected = spike_trains[mask] return selected def make_trains(data, **kwargs): """Create spike trains from various data formats. """ if 'fs' in kwargs: assert 'duration' not in kwargs meta = dict(kwargs) if 'fs' in meta: del meta['fs'] if isinstance(data, np.ndarray) and (data.ndim == 2) and ('fs' in kwargs): trains = _array_to_trains(data, kwargs['fs'], **meta) elif isinstance(data, dict): # brian like spiketimes (dict of arrays) # TODO: test this case arrays = [a for a in data.itervalues()] trains = _arrays_to_trains(arrays, **meta) elif ('brian' in sys.modules) and isinstance(data, sys.modules['brian'].SpikeMonitor): import brian meta.setdefault('duration', float(data.clock.t/brian.second)) spikes = [np.array(spiketimes/brian.second) for spiketimes in data.spiketimes.itervalues()] trains = _arrays_to_trains(spikes, **meta) elif len(data) == 0: trains = pd.DataFrame(columns=(['spikes'] + meta.keys())) elif isinstance(data[0], Iterable): trains = _arrays_to_trains(data, **meta) else: raise RuntimeError("Spike train format not supported.") return trains def _arrays_to_trains(arrays, **meta): """Convert a list of arrays with spike times to spike trains.""" ### Make sure we have duration if 'duration' not in meta: max_spikes = [np.max(a) for a in arrays if len(a)>0] if max_spikes: duration = np.max(max_spikes) else: duration = 0 meta['duration'] = float(duration) else: if np.isscalar(meta['duration']): meta['duration'] = float(meta['duration']) else: meta['duration'] = np.array(meta['duration']).astype(float) trains = {'spikes': [np.array(a, dtype=float) for a in arrays]} trains.update(meta) trains = pd.DataFrame(trains) return trains def _array_to_trains(array, fs, **meta): """Convert time functions to a list of spike trains. Parameters ---------- array : array_like Input array. fs : float Samping frequency in Hz. Returns ------- spike_trains """ assert array.ndim == 2 trains = [] for a in array.T: a = a.astype(int) t = np.arange(len(a)) / fs spikes = np.repeat(t, a) trains.append( spikes ) assert 'duration' not in meta meta['duration'] = len(array)/fs spike_trains = _arrays_to_trains( trains, **meta ) return spike_trains def trains_to_array(spike_trains, fs): """Convert `spike_trains` to 2D array (signals) with samlping frequency `fs`. """ duration = get_duration(spike_trains) nbins = int(np.ceil(duration * fs)) tmax = nbins / fs signals = [] for spikes in spike_trains['spikes']: signal, bin_edges = np.histogram( spikes, bins=nbins, range=(0, tmax) ) signals.append( signal ) signals = np.array(signals).T return signals def accumulate(spike_trains, ignore=None, keep=None): """Concatenate spike trains with the same meta data. Trains will be sorted by the metadata. """ assert None in (ignore, keep) keys = spike_trains.columns.tolist() if ignore is not None: for k in ignore: keys.remove(k) if keep is not None: keys = keep if 'duration' not in keys: keys.append('duration') if 'spikes' in keys: keys.remove('spikes') groups = spike_trains.groupby(keys, as_index=False) acc = [] for name,group in groups: if not isinstance(name, tuple): name = (name,) spikes = np.concatenate(tuple(group['spikes'])) acc.append(name + (spikes,)) columns = list(keys) columns.append('spikes') acc = pd.DataFrame(acc, columns=columns) return acc def trim(spike_trains, start=0, stop=None): """Trim the spike trains. Remove all spikes outside of the (`start`, `stop`) range. """ tmin = float(start) if stop is None: tmaxs = spike_trains['duration'] else: tmaxs = np.ones(len(spike_trains)) * stop assert np.all(tmin < tmaxs) trimmed = [] for train,tmax in zip(spike_trains['spikes'], tmaxs): spikes = train[(train >= tmin) & (train <= tmax)] spikes -= tmin trimmed.append(spikes) durations = np.array(spike_trains['duration']) durations[ np.array(durations>tmaxs) ] = tmaxs[ np.array(durations>tmaxs) ] durations -= tmin out = spike_trains.copy() out['spikes'] = trimmed out['duration'] = durations return out # def remove_empty(spike_trains): # new_trains = [] # for train in spike_trains: # if len(train) != 0: # new_trains.append(train) # return new_trains def fold(spike_trains, period): """Fold `spike_trains` by `period`.""" # data = {key:[] for key in spike_trains.dtype.names} rows = [] for i,row in spike_trains.iterrows(): period_num = int( np.ceil(row['duration'] / period) ) last_period = np.fmod(row['duration'], period) spikes = row['spikes'] for idx in range(period_num): lo = idx * period hi = (idx+1) * period sec = spikes[(spikes>=lo) & (spikes<hi)] sec = np.fmod(sec, period) r = row.copy() r['spikes'] = sec r['duration'] = period rows.append(r) if last_period > 0: rows[-1]['duration'] = last_period folded_trains = pd.DataFrame(rows) folded_trains = folded_trains.reset_index(drop=True) return folded_trains # def concatenate_spikes(spike_trains): # return [np.concatenate(tuple(spike_trains))] # concatenate = concatenate_spikes # concat = concatenate_spikes # def shift_spikes(spike_trains, shift): # shifted = [train+shift for train in spike_trains] # return shifted # shift = shift_spikes # def split_and_fold_trains(spike_trains, # silence_duration, # tone_duration, # pad_duration, # remove_pads): # silence = trim(spike_trains, 0, silence_duration) # tones_and_pads = trim(spike_trains, silence_duration) # tones_and_pads = fold(tones_and_pads, tone_duration+pad_duration) # # import plot # # plot.raster(tones_and_pads).show() # if remove_pads: # tones_and_pads = trim(tones_and_pads, 0, tone_duration) # return silence, tones_and_pads # split_and_fold = split_and_fold_trains
gpl-3.0
cowlicks/numpy
numpy/fft/fftpack.py
14
42176
""" Discrete Fourier Transforms Routines in this module: fft(a, n=None, axis=-1) ifft(a, n=None, axis=-1) rfft(a, n=None, axis=-1) irfft(a, n=None, axis=-1) hfft(a, n=None, axis=-1) ihfft(a, n=None, axis=-1) fftn(a, s=None, axes=None) ifftn(a, s=None, axes=None) rfftn(a, s=None, axes=None) irfftn(a, s=None, axes=None) fft2(a, s=None, axes=(-2,-1)) ifft2(a, s=None, axes=(-2, -1)) rfft2(a, s=None, axes=(-2,-1)) irfft2(a, s=None, axes=(-2, -1)) i = inverse transform r = transform of purely real data h = Hermite transform n = n-dimensional transform 2 = 2-dimensional transform (Note: 2D routines are just nD routines with different default behavior.) The underlying code for these functions is an f2c-translated and modified version of the FFTPACK routines. """ from __future__ import division, absolute_import, print_function __all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn', 'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn'] from numpy.core import asarray, zeros, swapaxes, shape, conjugate, \ take from . import fftpack_lite as fftpack _fft_cache = {} _real_fft_cache = {} def _raw_fft(a, n=None, axis=-1, init_function=fftpack.cffti, work_function=fftpack.cfftf, fft_cache=_fft_cache): a = asarray(a) if n is None: n = a.shape[axis] if n < 1: raise ValueError("Invalid number of FFT data points (%d) specified." % n) try: # Thread-safety note: We rely on list.pop() here to atomically # retrieve-and-remove a wsave from the cache. This ensures that no # other thread can get the same wsave while we're using it. wsave = fft_cache.setdefault(n, []).pop() except (IndexError): wsave = init_function(n) if a.shape[axis] != n: s = list(a.shape) if s[axis] > n: index = [slice(None)]*len(s) index[axis] = slice(0, n) a = a[index] else: index = [slice(None)]*len(s) index[axis] = slice(0, s[axis]) s[axis] = n z = zeros(s, a.dtype.char) z[index] = a a = z if axis != -1: a = swapaxes(a, axis, -1) r = work_function(a, wsave) if axis != -1: r = swapaxes(r, axis, -1) # As soon as we put wsave back into the cache, another thread could pick it # up and start using it, so we must not do this until after we're # completely done using it ourselves. fft_cache[n].append(wsave) return r def fft(a, n=None, axis=-1): """ Compute the one-dimensional discrete Fourier Transform. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [CT]. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError if `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : for definition of the DFT and conventions used. ifft : The inverse of `fft`. fft2 : The two-dimensional FFT. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. fftfreq : Frequency bins for given FFT parameters. Notes ----- FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when `n` is a power of 2, and the transform is therefore most efficient for these sizes. The DFT is defined, with the conventions used in this implementation, in the documentation for the `numpy.fft` module. References ---------- .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the machine calculation of complex Fourier series," *Math. Comput.* 19: 297-301. Examples -------- >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) array([ -3.44505240e-16 +1.14383329e-17j, 8.00000000e+00 -5.71092652e-15j, 2.33482938e-16 +1.22460635e-16j, 1.64863782e-15 +1.77635684e-15j, 9.95839695e-17 +2.33482938e-16j, 0.00000000e+00 +1.66837030e-15j, 1.14383329e-17 +1.22460635e-16j, -1.64863782e-15 +1.77635684e-15j]) >>> import matplotlib.pyplot as plt >>> t = np.arange(256) >>> sp = np.fft.fft(np.sin(t)) >>> freq = np.fft.fftfreq(t.shape[-1]) >>> plt.plot(freq, sp.real, freq, sp.imag) [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.show() In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in the imaginary part, as described in the `numpy.fft` documentation. """ return _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftf, _fft_cache) def ifft(a, n=None, axis=-1): """ Compute the one-dimensional inverse discrete Fourier Transform. This function computes the inverse of the one-dimensional *n*-point discrete Fourier transform computed by `fft`. In other words, ``ifft(fft(a)) == a`` to within numerical accuracy. For a general description of the algorithm and definitions, see `numpy.fft`. The input should be ordered in the same way as is returned by `fft`, i.e., ``a[0]`` should contain the zero frequency term, ``a[1:n/2+1]`` should contain the positive-frequency terms, and ``a[n/2+1:]`` should contain the negative-frequency terms, in order of decreasingly negative frequency. See `numpy.fft` for details. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. See notes about padding issues. axis : int, optional Axis over which to compute the inverse DFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError If `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : An introduction, with definitions and general explanations. fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse ifft2 : The two-dimensional inverse FFT. ifftn : The n-dimensional inverse FFT. Notes ----- If the input parameter `n` is larger than the size of the input, the input is padded by appending zeros at the end. Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be performed before calling `ifft`. Examples -------- >>> np.fft.ifft([0, 4, 0, 0]) array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) Create and plot a band-limited signal with random phases: >>> import matplotlib.pyplot as plt >>> t = np.arange(400) >>> n = np.zeros((400,), dtype=complex) >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,))) >>> s = np.fft.ifft(n) >>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--') [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.legend(('real', 'imaginary')) <matplotlib.legend.Legend object at 0x...> >>> plt.show() """ a = asarray(a).astype(complex) if n is None: n = shape(a)[axis] return _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftb, _fft_cache) / n def rfft(a, n=None, axis=-1): """ Compute the one-dimensional discrete Fourier Transform for real input. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array n : int, optional Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. irfft : The inverse of `rfft`. fft : The one-dimensional FFT of general (complex) input. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. Notes ----- When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the transformed axis of the output is therefore ``n//2 + 1``. When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains the zero-frequency term 0*fs, which is real due to Hermitian symmetry. If `n` is even, ``A[-1]`` contains the term representing both positive and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains the largest positive frequency (fs/2*(n-1)/n), and is complex in the general case. If the input `a` contains an imaginary part, it is silently discarded. Examples -------- >>> np.fft.fft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) >>> np.fft.rfft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j]) Notice how the final element of the `fft` output is the complex conjugate of the second element, for real input. For `rfft`, this symmetry is exploited to compute only the non-negative frequency terms. """ a = asarray(a).astype(float) return _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftf, _real_fft_cache) def irfft(a, n=None, axis=-1): """ Compute the inverse of the n-point DFT for real input. This function computes the inverse of the one-dimensional *n*-point discrete Fourier Transform of real input computed by `rfft`. In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical accuracy. (See Notes below for why ``len(a)`` is necessary here.) The input is expected to be in the form returned by `rfft`, i.e. the real zero-frequency term followed by the complex positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding positive frequency terms. Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. rfft : The one-dimensional FFT of real input, of which `irfft` is inverse. fft : The one-dimensional FFT. irfft2 : The inverse of the two-dimensional FFT of real input. irfftn : The inverse of the *n*-dimensional FFT of real input. Notes ----- Returns the real valued `n`-point inverse discrete Fourier transform of `a`, where `a` contains the non-negative frequency terms of a Hermitian-symmetric sequence. `n` is the length of the result, not the input. If you specify an `n` such that `a` must be zero-padded or truncated, the extra/removed values will be added/removed at high frequencies. One can thus resample a series to `m` points via Fourier interpolation by: ``a_resamp = irfft(rfft(a), m)``. Examples -------- >>> np.fft.ifft([1, -1j, -1, 1j]) array([ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) >>> np.fft.irfft([1, -1j, -1]) array([ 0., 1., 0., 0.]) Notice how the last term in the input to the ordinary `ifft` is the complex conjugate of the second term, and the output has zero imaginary part everywhere. When calling `irfft`, the negative frequencies are not specified, and the output array is purely real. """ a = asarray(a).astype(complex) if n is None: n = (shape(a)[axis] - 1) * 2 return _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftb, _real_fft_cache) / n def hfft(a, n=None, axis=-1): """ Compute the FFT of a signal which has Hermitian symmetry (real spectrum). Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See also -------- rfft : Compute the one-dimensional FFT for real input. ihfft : The inverse of `hfft`. Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> signal = np.array([1, 2, 3, 4, 3, 2]) >>> np.fft.fft(signal) array([ 15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) >>> np.fft.hfft(signal[:4]) # Input first half of signal array([ 15., -4., 0., -1., 0., -4.]) >>> np.fft.hfft(signal, 6) # Input entire signal and truncate array([ 15., -4., 0., -1., 0., -4.]) >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, 0.+0.j], [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]]) """ a = asarray(a).astype(complex) if n is None: n = (shape(a)[axis] - 1) * 2 return irfft(conjugate(a), n, axis) * n def ihfft(a, n=None, axis=-1): """ Compute the inverse FFT of a signal which has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT. Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) """ a = asarray(a).astype(float) if n is None: n = shape(a)[axis] return conjugate(rfft(a, n, axis))/n def _cook_nd_args(a, s=None, axes=None, invreal=0): if s is None: shapeless = 1 if axes is None: s = list(a.shape) else: s = take(a.shape, axes) else: shapeless = 0 s = list(s) if axes is None: axes = list(range(-len(s), 0)) if len(s) != len(axes): raise ValueError("Shape and axes have different lengths.") if invreal and shapeless: s[-1] = (a.shape[axes[-1]] - 1) * 2 return s, axes def _raw_fftnd(a, s=None, axes=None, function=fft): a = asarray(a) s, axes = _cook_nd_args(a, s, axes) itl = list(range(len(axes))) itl.reverse() for ii in itl: a = function(a, n=s[ii], axis=axes[ii]) return a def fftn(a, s=None, axes=None): """ Compute the N-dimensional discrete Fourier Transform. This function computes the *N*-dimensional discrete Fourier Transform over any number of axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the transform over that axis is performed multiple times. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT. fft : The one-dimensional FFT, with definitions and conventions used. rfftn : The *n*-dimensional FFT of real input. fft2 : The two-dimensional FFT. fftshift : Shifts zero-frequency terms to centre of array Notes ----- The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of all axes, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. See `numpy.fft` for details, definitions and conventions used. Examples -------- >>> a = np.mgrid[:3, :3, :3][0] >>> np.fft.fftn(a, axes=(1, 2)) array([[[ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 9.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 18.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> np.fft.fftn(a, (2, 2), axes=(0, 1)) array([[[ 2.+0.j, 2.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[-2.+0.j, -2.+0.j, -2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> import matplotlib.pyplot as plt >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12, ... 2 * np.pi * np.arange(200) / 34) >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape) >>> FS = np.fft.fftn(S) >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2)) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ return _raw_fftnd(a, s, axes, fft) def ifftn(a, s=None, axes=None): """ Compute the N-dimensional inverse discrete Fourier Transform. This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifftn(fftn(a)) == a`` to within numerical accuracy. For a description of the definitions and conventions used, see `numpy.fft`. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fftn`, i.e. it should have the term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to ``n`` for ``ifft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the IFFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse. ifft : The one-dimensional inverse FFT. ifft2 : The two-dimensional inverse FFT. ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning of array. Notes ----- See `numpy.fft` for definitions and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifftn` is called. Examples -------- >>> a = np.eye(4) >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,)) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]]) Create and plot an image with band-limited frequency content: >>> import matplotlib.pyplot as plt >>> n = np.zeros((200,200), dtype=complex) >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20))) >>> im = np.fft.ifftn(n).real >>> plt.imshow(im) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ return _raw_fftnd(a, s, axes, ifft) def fft2(a, s=None, axes=(-2, -1)): """ Compute the 2-dimensional discrete Fourier Transform This function computes the *n*-dimensional discrete Fourier Transform over any axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a 2-dimensional FFT. Parameters ---------- a : array_like Input array, can be complex s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifft2 : The inverse two-dimensional FFT. fft : The one-dimensional FFT. fftn : The *n*-dimensional FFT. fftshift : Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third quadrants, and second and fourth quadrants. Notes ----- `fft2` is just `fftn` with a different default for `axes`. The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of the transformed axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency. See `fftn` for details and a plotting example, and `numpy.fft` for definitions and conventions used. Examples -------- >>> a = np.mgrid[:5, :5][0] >>> np.fft.fft2(a) array([[ 50.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ]]) """ return _raw_fftnd(a, s, axes, fft) def ifft2(a, s=None, axes=(-2, -1)): """ Compute the 2-dimensional inverse discrete Fourier Transform. This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a`` to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input array. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fft2`, i.e. it should have the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of both axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse. ifftn : The inverse of the *n*-dimensional FFT. fft : The one-dimensional FFT. ifft : The one-dimensional inverse FFT. Notes ----- `ifft2` is just `ifftn` with a different default for `axes`. See `ifftn` for details and a plotting example, and `numpy.fft` for definition and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifft2` is called. Examples -------- >>> a = 4 * np.eye(4) >>> np.fft.ifft2(a) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]) """ return _raw_fftnd(a, s, axes, ifft) def rfftn(a, s=None, axes=None): """ Compute the N-dimensional discrete Fourier Transform for real input. This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with the real transform performed over the last axis, while the remaining transforms are complex. Parameters ---------- a : array_like Input array, taken to be real. s : sequence of ints, optional Shape (length along each transformed axis) to use from the input. (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). The final element of `s` corresponds to `n` for ``rfft(x, n)``, while for the remaining axes, it corresponds to `n` for ``fft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. The length of the last axis transformed will be ``s[-1]//2+1``, while the remaining transformed axes will have lengths according to `s`, or unchanged from the input. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT of real input. fft : The one-dimensional FFT, with definitions and conventions used. rfft : The one-dimensional FFT of real input. fftn : The n-dimensional FFT. rfft2 : The two-dimensional FFT of real input. Notes ----- The transform for real input is performed over the last transformation axis, as by `rfft`, then the transform over the remaining axes is performed as by `fftn`. The order of the output is as for `rfft` for the final transformation axis, and as for `fftn` for the remaining transformation axes. See `fft` for details, definitions and conventions used. Examples -------- >>> a = np.ones((2, 2, 2)) >>> np.fft.rfftn(a) array([[[ 8.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]]) >>> np.fft.rfftn(a, axes=(2, 0)) array([[[ 4.+0.j, 0.+0.j], [ 4.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]]) """ a = asarray(a).astype(float) s, axes = _cook_nd_args(a, s, axes) a = rfft(a, s[-1], axes[-1]) for ii in range(len(axes)-1): a = fft(a, s[ii], axes[ii]) return a def rfft2(a, s=None, axes=(-2, -1)): """ Compute the 2-dimensional FFT of a real array. Parameters ---------- a : array Input array, taken to be real. s : sequence of ints, optional Shape of the FFT. axes : sequence of ints, optional Axes over which to compute the FFT. Returns ------- out : ndarray The result of the real 2-D FFT. See Also -------- rfftn : Compute the N-dimensional discrete Fourier Transform for real input. Notes ----- This is really just `rfftn` with different default behavior. For more details see `rfftn`. """ return rfftn(a, s, axes) def irfftn(a, s=None, axes=None): """ Compute the inverse of the N-dimensional FFT of real input. This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`, and for the same reason.) The input should be ordered in the same way as is returned by `rfftn`, i.e. as for `irfft` for the final transformation axis, and as for `ifftn` along all the other axes. Parameters ---------- a : array_like Input array. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the number of input points used along this axis, except for the last axis, where ``s[-1]//2+1`` points of the input are used. Along any axis, if the shape indicated by `s` is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the inverse FFT. If not given, the last `len(s)` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. The length of each transformed axis is as given by the corresponding element of `s`, or the length of the input in every axis except for the last one if `s` is not given. In the final transformed axis the length of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the length of the final transformed axis of the input. To get an odd number of output points in the final axis, `s` must be specified. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- rfftn : The forward n-dimensional FFT of real input, of which `ifftn` is the inverse. fft : The one-dimensional FFT, with definitions and conventions used. irfft : The inverse of the one-dimensional FFT of real input. irfft2 : The inverse of the two-dimensional FFT of real input. Notes ----- See `fft` for definitions and conventions used. See `rfft` for definitions and conventions used for real input. Examples -------- >>> a = np.zeros((3, 2, 2)) >>> a[0, 0, 0] = 3 * 2 * 2 >>> np.fft.irfftn(a) array([[[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]]]) """ a = asarray(a).astype(complex) s, axes = _cook_nd_args(a, s, axes, invreal=1) for ii in range(len(axes)-1): a = ifft(a, s[ii], axes[ii]) a = irfft(a, s[-1], axes[-1]) return a def irfft2(a, s=None, axes=(-2, -1)): """ Compute the 2-dimensional inverse FFT of a real array. Parameters ---------- a : array_like The input array s : sequence of ints, optional Shape of the inverse FFT. axes : sequence of ints, optional The axes over which to compute the inverse fft. Default is the last two axes. Returns ------- out : ndarray The result of the inverse real 2-D FFT. See Also -------- irfftn : Compute the inverse of the N-dimensional FFT of real input. Notes ----- This is really `irfftn` with different defaults. For more details see `irfftn`. """ return irfftn(a, s, axes)
bsd-3-clause