repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
zamattiac/osf.io
scripts/annotate_rsvps.py
60
2256
"""Utilities for annotating workshop RSVP data. Example :: import pandas as pd from scripts import annotate_rsvps frame = pd.read_csv('workshop.csv') annotated = annotate_rsvps.process(frame) annotated.to_csv('workshop-annotated.csv') """ import re import logging from dateutil.parser import parse as parse_date from modularodm import Q from modularodm.exceptions import ModularOdmException from website.models import User, Node, NodeLog logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def find_by_email(email): try: return User.find_one(Q('username', 'iexact', email)) except ModularOdmException: return None def find_by_name(name): try: parts = re.split(r'\s+', name.strip()) except: return None if len(parts) < 2: return None users = User.find( reduce( lambda acc, value: acc & value, [ Q('fullname', 'icontains', part.decode('utf-8', 'ignore')) for part in parts ] ) ).sort('-date_created') if not users: return None if len(users) > 1: logger.warn('Multiple users found for name {}'.format(name)) return users[0] def logs_since(user, date): return NodeLog.find( Q('user', 'eq', user._id) & Q('date', 'gt', date) ) def nodes_since(user, date): return Node.find( Q('creator', 'eq', user._id) & Q('date_created', 'gt', date) ) def process(frame): frame = frame.copy() frame['user_id'] = '' frame['user_logs'] = '' frame['user_nodes'] = '' frame['last_log'] = '' for idx, row in frame.iterrows(): user = ( find_by_email(row['Email address'].strip()) or find_by_name(row['Name']) ) if user: date = parse_date(row['Workshop_date']) frame.loc[idx, 'user_id'] = user._id logs = logs_since(user, date) frame.loc[idx, 'user_logs'] = logs.count() frame.loc[idx, 'user_nodes'] = nodes_since(user, date).count() if logs: frame.loc[idx, 'last_log'] = logs.sort('-date')[0].date.strftime('%c') return frame
apache-2.0
hschovanec-usgs/magpy
magpy/gui/monitorpage.py
1
10276
#!/usr/bin/env python from __future__ import print_function try: from magpy.stream import * from magpy.absolutes import * from magpy.transfer import * from magpy.database import * except: from magpy.stream import * from magpy.absolutes import * from magpy.transfer import * from magpy.database import * import wx from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.backends.backend_wx import NavigationToolbar2Wx from matplotlib.figure import Figure import multiprocessing class MonitorPage(wx.Panel): def __init__(self, *args, **kwds): wx.Panel.__init__(self, *args, **kwds) self.createControls() self.doLayout() # Widgets def createControls(self): # all buttons open dlg to add parameters (e.g. IP, self.getMARTASButton = wx.Button(self,-1,"Connect to MARTAS", size=(160,30)) self.getMARCOSButton = wx.Button(self,-1,"Connect to MARCOS", size=(160,30)) self.getMQTTButton = wx.Button(self,-1,"Connect to MQTT", size=(160,30)) self.martasLabel = wx.TextCtrl(self, value="not connected", size=(160,30), style=wx.TE_RICH) # red bg self.marcosLabel = wx.TextCtrl(self, value="not connected", size=(160,30), style=wx.TE_RICH) # red bg self.mqttLabel = wx.TextCtrl(self, value="not connected", size=(160,30), style=wx.TE_RICH) # red bg self.marcosLabel.SetEditable(False) self.martasLabel.SetEditable(False) self.mqttLabel.SetEditable(False) # Parameters if connection is established # self.coverageLabel = wx.StaticText(self, label="Plot coverage (sec):", size=(160,30)) self.coverageTextCtrl = wx.TextCtrl(self, value="600", size=(160,30)) self.sliderLabel = wx.StaticText(self, label="Update period (sec):", size=(160,30)) self.frequSlider = wx.Slider(self, -1, 10, 1, 60, (-1, -1), (100, -1), wx.SL_AUTOTICKS | wx.SL_HORIZONTAL | wx.SL_LABELS) self.startMonitorButton = wx.Button(self,-1,"Start Monitor", size=(160,30)) # if started then everything else will be disabled ..... except save monitor self.stopMonitorButton = wx.Button(self,-1,"Stop Monitor", size=(160,30)) self.saveMonitorButton = wx.Button(self,-1,"Log data", size=(160,30)) # produces a bin file #self.startMonitorButton.Disable() #self.stopMonitorButton.Disable() # Connection Log # self.connectionLogLabel = wx.StaticText(self, label="Connection Log:") self.connectionLogTextCtrl = wx.TextCtrl(self, wx.ID_ANY, size=(330,300), style = wx.TE_MULTILINE|wx.TE_READONLY|wx.HSCROLL|wx.VSCROLL) def doLayout(self): mainSizer = wx.BoxSizer(wx.VERTICAL) # A horizontal BoxSizer will contain the GridSizer (on the left) # and the logger text control (on the right): boxSizer = wx.BoxSizer(orient=wx.HORIZONTAL) # A GridSizer will contain the other controls: gridSizer = wx.FlexGridSizer(rows=20, cols=2, vgap=10, hgap=10) # Prepare some reusable arguments for calling sizer.Add(): expandOption = dict(flag=wx.EXPAND) noOptions = dict() emptySpace = ((0, 0), noOptions) # Add the controls to the sizers: for control, options in \ [(self.getMARTASButton, dict(flag=wx.ALIGN_CENTER)), (self.martasLabel, noOptions), (self.getMARCOSButton, dict(flag=wx.ALIGN_CENTER)), (self.marcosLabel, noOptions), (self.getMQTTButton, dict(flag=wx.ALIGN_CENTER)), (self.mqttLabel, noOptions), emptySpace, emptySpace, (self.coverageLabel, noOptions), (self.coverageTextCtrl, expandOption), (self.sliderLabel, noOptions), (self.frequSlider, expandOption), emptySpace, emptySpace, (self.startMonitorButton, dict(flag=wx.ALIGN_CENTER)), (self.stopMonitorButton, dict(flag=wx.ALIGN_CENTER)), (self.saveMonitorButton, dict(flag=wx.ALIGN_CENTER)), emptySpace]: gridSizer.Add(control, **options) for control, options in \ [(gridSizer, dict(border=5, flag=wx.ALL))]: boxSizer.Add(control, **options) #self.SetSizerAndFit(boxSizer) mainSizer.Add(boxSizer, 1, wx.EXPAND) mainSizer.Add(self.connectionLogLabel, 0, wx.ALIGN_LEFT | wx.ALL, 3) mainSizer.Add(self.connectionLogTextCtrl, 0, wx.ALIGN_LEFT | wx.ALL, 3) self.SetSizerAndFit(mainSizer) def logMsg(self, message): ''' Private method to append a string to the logger text control. ''' #print message self.connectionLogTextCtrl.AppendText('%s\n'%message) def collector(self): """ A copy of the collector moon function To be called using multiprocessing This way the buffer should be accessible for displaying data """ # To be defined clientname = 'europa' clientip = '192.168.178.21' martaspath = '/home/cobs/MARTAS' # To be defined in options destpath = "/tmp" homedir = '/home/leon/CronScripts/MagPyAnalysis/Subscribing2MARTAS' defaultuser = 'cobs' stationid = 'MyHome' dbname = 'mydb' # Select destination (options: 'file' or 'db') - Files are saved in .../MARCOS/MartasFiles/ dest = 'file' # For Testing purposes - Print received data to screen: printdata = True # Please make sure that the db and scp connection data is stored # within the credential file -otherwise provide this data directly martasname = 'europa' dbhost = mpcred.lc(dbname,'host') dbuser = mpcred.lc(dbname,'user') dbpasswd = mpcred.lc(dbname,'passwd') dbname = mpcred.lc(dbname,'db') scpuser = mpcred.lc(martasname,'user') scppasswd = mpcred.lc(martasname,'passwd') logdir = os.path.join(homedir,'MARCOS','Logs') logfile = os.path.join(logdir,'marcos.log') if not os.path.exists(logdir): os.makedirs(logdir) log.startLogging(open(logfile,'a')) #log.startLogging(sys.stdout) sshcredlst = [scpuser,scppasswd] # ---------------------------------------------------------- # 2. connect to database and check availability and version # ---------------------------------------------------------- # The following should only be required in case of db if dest == 'db': try: db = mysql.connect (host=dbhost,user=dbuser,passwd=dbpasswd,db=dbname) dbcredlst = [dbhost,dbuser,dbpasswd,dbname] except: print("Create a credential file first or provide login info for database directly") raise cursor = db.cursor () cursor.execute ("SELECT VERSION()") row = cursor.fetchone () print("MySQL server version:", row[0]) cursor.close () db.close () else: dbcredlst = [] # Please note: scp is not workings from root # Therefore the following processes are performed as defaultuser (ideally as a subprocess) uid=pwd.getpwnam(defaultuser)[2] os.setuid(uid) sensfile = os.path.join(martaspath,'sensors.txt') owfile = os.path.join(martaspath,'owlist.csv') if not os.path.exists(os.path.join(destpath,'MartasSensors')): os.makedirs(os.path.join(destpath,'MartasSensors')) destsensfile = os.path.join(destpath,'MartasSensors',clientname+'_sensors.txt') destowfile = os.path.join(destpath,'MartasSensors',clientname+'_owlist.csv') print("Getting sensor information from ", clientname) try: scptransfer(scpuser+'@'+clientip+':'+sensfile,destsensfile,scppasswd) except: print("Could not connect to/get sensor info of client %s - aborting" % clientname) print("Please make sure that you connected at least once to the client by ssh") print(" from your defaultuser %s " % defaultuser) print(" This way the essential key data is established.") sys.exit() print("Searching for onewire data from ", clientname) try: scptransfer(scpuser+'@'+clientip+':'+owfile,destowfile,scppasswd) except: print("No one wire info available on client %s - proceeding" % clientname) pass s,o = [],[] if os.path.exists(destsensfile): with open(destsensfile,'rb') as f: reader = csv.reader(f) s = [] for line in reader: print(line) if len(line) < 2: try: s.append(line[0].split()) except: # Empty line for example pass else: s.append(line) print(s) else: print("Apparently no sensors defined on client %s - aborting" % clientname) sys.exit() if os.path.exists(destowfile): with open(destowfile,'rb') as f: reader = csv.reader(f) o = [line for line in reader] print(o) factory = WampClientFactory("ws://"+clientip+":9100", debugWamp = False) cl.sendparameter(clientname,clientip,destpath,dest,stationid,sshcredlst,s,o,printdata,dbcredlst) factory.protocol = cl.PubSubClient connectWS(factory) reactor.run() def run(self): """ Now start the collection process """ # Start collection as process one p1 = multiprocessing.Process(target=self.collector) p1.start() p1.join() # Start visualization as process two # google search, how to access an gradually filling array
gpl-3.0
abinashpanda/pgmpy
pgmpy/sampling/NUTS.py
1
28385
# -*- coding: utf-8 -*- from __future__ import division import numpy as np try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False from pgmpy.sampling import HamiltonianMCDA from pgmpy.sampling import LeapFrog from pgmpy.utils import _check_1d_array_object, _check_length_equal class NoUTurnSampler(HamiltonianMCDA): """ Class for performing sampling in Continuous model using No U Turn Sampler (a variant of Hamiltonian Monte Carlo) Parameters: ----------- model: An instance pgmpy.models Model from which sampling has to be done grad_log_pdf: A subclass of pgmpy.inference.continuous.GradientLogPDF Class to compute the log and gradient log of distribution simulate_dynamics: A subclass of pgmpy.inference.continuous.BaseSimulateHamiltonianDynamics Class to propose future states of position and momentum in time by simulating HamiltonianDynamics Public Methods: --------------- sample() generate_sample() Example: -------- >>> from pgmpy.inference.continuous import NoUTurnSampler as NUTS, LeapFrog, GradLogPDFGaussian >>> from pgmpy.factors import JointGaussianDistribution as JGD >>> import numpy as np >>> mean = np.array([1, 2, 3]) >>> covariance = np.array([[4, 0.1, 0.2], [0.1, 1, 0.3], [0.2, 0.3, 8]]) >>> model = JGD(['x', 'y', 'z'], mean, covariance) >>> sampler = NUTS(model=model, grad_log_pdf=GradLogPDFGaussian, simulate_dynamics=LeapFrog) >>> samples = sampler.sample(initial_pos=np.array([0.1, 0.9, 0.3]), num_samples=20000,stepsize=0.4) >>> samples rec.array([(0.1, 0.9, 0.3), (-0.27303886844752756, 0.5028580705249155, 0.2895768065049909), (1.7139810571103862, 2.809135711303245, 5.690811523613858), ..., (-0.7742669710786649, 2.092867703984895, 6.139480724333439), (1.3916152816323692, 1.394952482021687, 3.446906546649354), (-0.2726336476939125, 2.6230854954595357, 2.923948403903159)], dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')]) References ---------- Matthew D. Hoffman, Andrew Gelman, The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15 (2014) 1351-1381 Algorithm 3 : Efficient No-U-Turn Sampler """ def __init__(self, model, grad_log_pdf, simulate_dynamics=LeapFrog): super(NoUTurnSampler, self).__init__(model=model, grad_log_pdf=grad_log_pdf, simulate_dynamics=simulate_dynamics) def _initalize_tree(self, position, momentum, slice_var, stepsize): """ Initalizes root node of the tree, i.e depth = 0 """ position_bar, momentum_bar, _ = self.simulate_dynamics(self.model, position, momentum, stepsize, self.grad_log_pdf).get_proposed_values() _, logp_bar = self.grad_log_pdf(position_bar, self.model).get_gradient_log_pdf() hamiltonian = logp_bar - 0.5 * np.dot(momentum_bar, momentum_bar) candidate_set_size = slice_var < np.exp(hamiltonian) accept_set_bool = hamiltonian > np.log(slice_var) - 10000 # delta_max = 10000 return position_bar, momentum_bar, candidate_set_size, accept_set_bool def _update_acceptance_criteria(self, position_forward, position_backward, momentum_forward, momentum_backward, accept_set_bool, candidate_set_size, candidate_set_size2): # criteria1 = I[(θ+ − θ−)·r− ≥ 0] criteria1 = np.dot((position_forward - position_backward), momentum_backward) >= 0 # criteira2 = I[(θ+ − θ− )·r+ ≥ 0] criteria2 = np.dot((position_forward - position_backward), momentum_forward) >= 0 accept_set_bool = accept_set_bool and criteria1 and criteria2 candidate_set_size += candidate_set_size2 return accept_set_bool, candidate_set_size def _build_tree(self, position, momentum, slice_var, direction, depth, stepsize): """ Recursively builds a tree for proposing new position and momentum """ # Parameter names in algorithm (here -> representation in algorithm) # position -> theta, momentum -> r, slice_var -> u, direction -> v, depth ->j, stepsize -> epsilon # candidate_set_size -> n, accept_set_bool -> s if depth == 0: # Take single leapfrog step in the given direction (direction * stepsize) position_bar, momentum_bar, candidate_set_size, accept_set_bool =\ self._initalize_tree(position, momentum, slice_var, direction * stepsize) return (position_bar, momentum_bar, position_bar, momentum_bar, position_bar, candidate_set_size, accept_set_bool) else: # Build left and right subtrees (position_backward, momentum_backward, position_forward, momentum_forward, position_bar, candidate_set_size, accept_set_bool) = self._build_tree(position, momentum, slice_var, direction, depth - 1, stepsize) if accept_set_bool == 1: if direction == -1: # Build tree in backward direction (position_backward, momentum_backward, _, _, position_bar2, candidate_set_size2, accept_set_bool2) = self._build_tree(position_backward, momentum_backward, slice_var, direction, depth - 1, stepsize) else: # Build tree in forward direction (_, _, position_forward, momentum_forward, position_bar2, candidate_set_size2, accept_set_bool2) = self._build_tree(position_forward, momentum_forward, slice_var, direction, depth - 1, stepsize) if np.random.rand() < candidate_set_size2 / (candidate_set_size2 + candidate_set_size): position_bar = position_bar2 accept_set_bool, candidate_set_size =\ self._update_acceptance_criteria(position_forward, position_backward, momentum_forward, momentum_backward, accept_set_bool2, candidate_set_size, candidate_set_size2) return (position_backward, momentum_backward, position_forward, momentum_forward, position_bar, candidate_set_size, accept_set_bool) def _sample(self, position, stepsize): """ Returns a sample using a single iteration of NUTS """ # Re-sampling momentum momentum = np.random.normal(0, 1, len(position)) # Initializations depth = 0 position_backward, position_forward = position, position momentum_backward, momentum_forward = momentum, momentum candidate_set_size = accept_set_bool = 1 _, log_pdf = self.grad_log_pdf(position, self.model).get_gradient_log_pdf() # Resample slice variable `u` slice_var = np.random.uniform(0, np.exp(log_pdf - 0.5 * np.dot(momentum, momentum))) while accept_set_bool == 1: direction = np.random.choice([-1, 1], p=[0.5, 0.5]) if direction == -1: # Build a tree in backward direction (position_backward, momentum_backward, _, _, position_bar, candidate_set_size2, accept_set_bool2) = self._build_tree(position_backward, momentum_backward, slice_var, direction, depth, stepsize) else: # Build tree in forward direction (_, _, position_forward, momentum_forward, position_bar, candidate_set_size2, accept_set_bool2) = self._build_tree(position_forward, momentum_forward, slice_var, direction, depth, stepsize) if accept_set_bool2 == 1: if np.random.rand() < candidate_set_size2 / candidate_set_size: position = position_bar.copy() accept_set_bool, candidate_set_size = self._update_acceptance_criteria(position_forward, position_backward, momentum_forward, momentum_backward, accept_set_bool2, candidate_set_size, candidate_set_size2) depth += 1 return position def sample(self, initial_pos, num_samples, stepsize=None): """ Method to return samples using No U Turn Sampler Parameters ---------- initial_pos: A 1d array like object Vector representing values of parameter position, the starting state in markov chain. num_samples: int Number of samples to be generated stepsize: float , defaults to None The stepsize for proposing new values of position and momentum in simulate_dynamics If None, then will be choosen suitably Returns ------- Returns two different types (based on installations) pandas.DataFrame: Returns samples as pandas.DataFrame if environment has a installation of pandas numpy.recarray: Returns samples in form of numpy recorded arrays (numpy.recarray) Examples --------- >>> # If environment has a installation of pandas >>> from pgmpy.inference.continuous import NoUTurnSampler as NUTS, GradLogPDFGaussian, LeapFrog >>> from pgmpy.factors import JointGaussianDistribution as JGD >>> import numpy as np >>> mean = np.array([0, 0, 0]) >>> covariance = np.array([[6, 0.7, 0.2], [0.7, 3, 0.9], [0.2, 0.9, 1]]) >>> model = JGD(['x', 'y', 'z'], mean, covariance) >>> sampler = NUTS(model=model, grad_log_pdf=GradLogPDFGaussian, simulate_dynamics=LeapFrog) >>> samples = sampler.sample(initial_pos=np.array([1, 1, 1]), num_samples=10, stepsize=0.4) >>> samples x y z 0 1.000000 1.000000 1.000000 1 1.760756 0.271543 -0.613309 2 1.883387 0.990745 -0.611720 3 0.980812 0.340336 -0.916283 4 0.781338 0.647220 -0.948640 5 0.040308 -1.391406 0.412201 6 1.179549 -1.450552 1.105216 7 1.100320 -1.313926 1.207815 8 1.484520 -1.349247 0.768599 9 0.934942 -1.894589 0.471772 """ initial_pos = _check_1d_array_object(initial_pos, 'initial_pos') _check_length_equal(initial_pos, self.model.variables, 'initial_pos', 'model.variables') if stepsize is None: stepsize = self._find_reasonable_stepsize(initial_pos) types = [(var_name, 'float') for var_name in self.model.variables] samples = np.zeros(num_samples, dtype=types).view(np.recarray) samples[0] = tuple(initial_pos) position_m = initial_pos for i in range(1, num_samples): # Genrating sample position_m = self._sample(position_m, stepsize) samples[i] = position_m if HAS_PANDAS is True: return pd.DataFrame.from_records(samples) return samples def generate_sample(self, initial_pos, num_samples, stepsize=None): """ Returns a generator type object whose each iteration yields a sample Parameters ---------- initial_pos: A 1d array like object Vector representing values of parameter position, the starting state in markov chain. num_samples: int Number of samples to be generated stepsize: float , defaults to None The stepsize for proposing new values of position and momentum in simulate_dynamics If None, then will be choosen suitably Returns ------- genrator: yielding a numpy.array type object for a sample Examples --------- >>> from pgmpy.inference.continuous import NoUTurnSampler as NUTS, GradLogPDFGaussian >>> from pgmpy.factors import JointGaussianDistribution as JGD >>> import numpy as np >>> mean = np.array([11, -6]) >>> covariance = np.array([[0.7, 0.2], [0.2, 14]]) >>> model = JGD(['x', 'y'], mean, covariance) >>> sampler = NUTS(model=model, grad_log_pdf=GradLogPDFGaussian) >>> samples = sampler.generate_sample(initial_pos=np.array([1, 1]), num_samples=10, stepsize=0.4) >>> samples = np.array([sample for sample in samples]) >>> samples array([[ 10.26357538, 0.10062725], [ 12.70600336, 0.63392499], [ 10.95523217, -0.62079273], [ 10.66263031, -4.08135962], [ 10.59255762, -8.48085076], [ 9.99860242, -9.47096032], [ 10.5733564 , -9.83504745], [ 11.51302059, -9.49919523], [ 11.31892143, -8.5873259 ], [ 11.29008667, -0.43809674]]) """ initial_pos = _check_1d_array_object(initial_pos, 'initial_pos') _check_length_equal(initial_pos, self.model.variables, 'initial_pos', 'model.variables') if stepsize is None: stepsize = self._find_reasonable_stepsize(initial_pos) position_m = initial_pos for _ in range(0, num_samples): position_m = self._sample(position_m, stepsize) yield position_m class NoUTurnSamplerDA(NoUTurnSampler): """ Class for performing sampling in Continuous model using No U Turn sampler with dual averaging for adaptaion of parameter stepsize. Parameters: ----------- model: An instance pgmpy.models Model from which sampling has to be done grad_log_pdf: A subclass of pgmpy.inference.continuous.GradientLogPDF Class to compute the log and gradient log of distribution simulate_dynamics: A subclass of pgmpy.inference.continuous.BaseSimulateHamiltonianDynamics Class to propose future states of position and momentum in time by simulating HamiltonianDynamics delta: float (in between 0 and 1), defaults to 0.65 The target HMC acceptance probability Public Methods: --------------- sample() generate_sample() Example: -------- >>> from pgmpy.inference.continuous import NoUTurnSamplerDA as NUTSda, GradLogPDFGaussian >>> from pgmpy.factors import JointGaussianDistribution as JGD >>> import numpy as np >>> mean = np.array([-1, 12, -3]) >>> covariance = np.array([[-2, 7, 2], [7, 14, 4], [2, 4, -1]]) >>> model = JGD(['x', 'v', 't'], mean, covariance) >>> sampler = NUTSda(model=model, grad_log_pdf=GradLogPDFGaussian) >>> samples = sampler.sample(initial_pos=np.array([0, 0, 0]), num_adapt=10, num_samples=10, stepsize=0.25) >>> samples rec.array([(0.0, 0.0, 0.0), (0.06100992691638076, -0.17118088764170125, 0.14048470935160887), (0.06100992691638076, -0.17118088764170125, 0.14048470935160887), (-0.7451883138013118, 1.7975387358691155, 2.3090698721374436), (-0.6207457594500309, 1.4611049498441024, 2.5890867012835574), (0.24043604780911487, 1.8660976216530618, 3.2508715592645347), (0.21509819341468212, 2.157760225367607, 3.5749582768731476), (0.20699150582681913, 2.0605044285377305, 3.8588980251618135), (0.20699150582681913, 2.0605044285377305, 3.8588980251618135), (0.085332419611991, 1.7556171374575567, 4.49985082288814)], dtype=[('x', '<f8'), ('v', '<f8'), ('t', '<f8')]) References ---------- Matthew D. Hoffman, Andrew Gelman, The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15 (2014) 1351-1381 Algorithm 6 : No-U-Turn Sampler with Dual Averaging """ def __init__(self, model, grad_log_pdf, simulate_dynamics=LeapFrog, delta=0.65): if not isinstance(delta, float) or delta > 1.0 or delta < 0.0: raise ValueError( "delta should be a floating value in between 0 and 1") self.delta = delta super(NoUTurnSamplerDA, self).__init__(model=model, grad_log_pdf=grad_log_pdf, simulate_dynamics=simulate_dynamics) def _build_tree(self, position, momentum, slice_var, direction, depth, stepsize, position0, momentum0): """ Recursively builds a tree for proposing new position and momentum """ if depth == 0: position_bar, momentum_bar, candidate_set_size, accept_set_bool =\ self._initalize_tree(position, momentum, slice_var, direction * stepsize) alpha = min(1, self._acceptance_prob(position, position_bar, momentum, momentum_bar)) return (position_bar, momentum_bar, position_bar, momentum_bar, position_bar, candidate_set_size, accept_set_bool, alpha, 1) else: (position_backward, momentum_backward, position_forward, momentum_forward, position_bar, candidate_set_size, accept_set_bool, alpha, n_alpha) =\ self._build_tree(position, momentum, slice_var, direction, depth - 1, stepsize, position0, momentum0) if accept_set_bool == 1: if direction == -1: # Build tree in backward direction (position_backward, momentum_backward, _, _, position_bar2, candidate_set_size2, accept_set_bool2, alpha2, n_alpha2) = self._build_tree(position_backward, momentum_backward, slice_var, direction, depth - 1, stepsize, position0, momentum0) else: # Build tree in forward direction (_, _, position_forward, momentum_forward, position_bar2, candidate_set_size2, accept_set_bool2, alpha2, n_alpha2) = self._build_tree(position_forward, momentum_forward, slice_var, direction, depth - 1, stepsize, position0, momentum0) if np.random.rand() < candidate_set_size2 / (candidate_set_size2 + candidate_set_size): position_bar = position_bar2 alpha += alpha2 n_alpha += n_alpha2 accept_set_bool, candidate_set_size =\ self._update_acceptance_criteria(position_forward, position_backward, momentum_forward, momentum_backward, accept_set_bool2, candidate_set_size, candidate_set_size2) return (position_backward, momentum_backward, position_forward, momentum_forward, position_bar, candidate_set_size, accept_set_bool, alpha, n_alpha) def _sample(self, position, stepsize): """ Returns a sample using a single iteration of NUTS with dual averaging """ # Re-sampling momentum momentum = np.random.normal(0, 1, len(position)) # Initializations depth = 0 position_backward, position_forward = position, position momentum_backward, momentum_forward = momentum, momentum candidate_set_size = accept_set_bool = 1 position_m_1 = position _, log_pdf = self.grad_log_pdf(position, self.model).get_gradient_log_pdf() # Resample slice variable `u` slice_var = np.random.uniform(0, np.exp(log_pdf - 0.5 * np.dot(momentum, momentum))) while accept_set_bool == 1: direction = np.random.choice([-1, 1], p=[0.5, 0.5]) if direction == -1: # Build a tree in backward direction (position_backward, momentum_backward, _, _, position_bar, candidate_set_size2, accept_set_bool2, alpha, n_alpha) = self._build_tree(position_backward, momentum_backward, slice_var, direction, depth, stepsize, position_m_1, momentum) else: # Build tree in forward direction (_, _, position_forward, momentum_forward, position_bar, candidate_set_size2, accept_set_bool2, alpha, n_alpha) = self._build_tree(position_forward, momentum_forward, slice_var, direction, depth, stepsize, position_m_1, momentum) if accept_set_bool2 == 1: if np.random.rand() < candidate_set_size2 / candidate_set_size: position = position_bar accept_set_bool, candidate_set_size = self._update_acceptance_criteria(position_forward, position_backward, momentum_forward, momentum_backward, accept_set_bool2, candidate_set_size, candidate_set_size2) depth += 1 return position, alpha, n_alpha def sample(self, initial_pos, num_adapt, num_samples, stepsize=None): """ Returns samples using No U Turn Sampler with dual averaging Parameters ---------- initial_pos: A 1d array like object Vector representing values of parameter position, the starting state in markov chain. num_adapt: int The number of interations to run the adaptation of stepsize num_samples: int Number of samples to be generated stepsize: float , defaults to None The stepsize for proposing new values of position and momentum in simulate_dynamics If None, then will be choosen suitably Returns ------- Returns two different types (based on installations) pandas.DataFrame: Returns samples as pandas.DataFrame if environment has a installation of pandas numpy.recarray: Returns samples in form of numpy recorded arrays (numpy.recarray) Examples --------- >>> # If environment has a installation of pandas >>> from pgmpy.inference.continuous import NoUTurnSamplerDA as NUTSda, GradLogPDFGaussian, LeapFrog >>> from pgmpy.factors import JointGaussianDistribution as JGD >>> import numpy as np >>> mean = np.array([10, -13]) >>> covariance = np.array([[16, -3], [-3, 13]]) >>> model = JGD(['x', 'y'], mean, covariance) >>> sampler = NUTSda(model=model, grad_log_pdf=GradLogPDFGaussian, simulate_dynamics=LeapFrog) >>> samples = sampler.sample(initial_pos=np.array([12, -4]), num_adapt=10, num_samples=10, stepsize=0.1) >>> samples x y 0 12.000000 -4.000000 1 11.864821 -3.696109 2 10.546986 -4.892169 3 8.526596 -21.555793 4 8.526596 -21.555793 5 11.343194 -6.353789 6 -1.583269 -12.802931 7 12.411957 -11.704859 8 13.253336 -20.169492 9 11.295901 -7.665058 """ initial_pos = _check_1d_array_object(initial_pos, 'initial_pos') _check_length_equal(initial_pos, self.model.variables, 'initial_pos', 'model.variables') if stepsize is None: stepsize = self._find_reasonable_stepsize(initial_pos) if num_adapt <= 1: return NoUTurnSampler(self.model, self.grad_log_pdf, self.simulate_dynamics).sample(initial_pos, num_samples, stepsize) mu = np.log(10.0 * stepsize) stepsize_bar = 1.0 h_bar = 0.0 types = [(var_name, 'float') for var_name in self.model.variables] samples = np.zeros(num_samples, dtype=types).view(np.recarray) samples[0] = tuple(initial_pos) position_m = initial_pos for i in range(1, num_samples): position_m, alpha, n_alpha = self._sample(position_m, stepsize) samples[i] = position_m if i <= num_adapt: stepsize, stepsize_bar, h_bar = self._adapt_params(stepsize, stepsize_bar, h_bar, mu, i, alpha, n_alpha) else: stepsize = stepsize_bar if HAS_PANDAS is True: return pd.DataFrame.from_records(samples) return samples def generate_sample(self, initial_pos, num_adapt, num_samples, stepsize=None): """ Returns a generator type object whose each iteration yields a sample Parameters ---------- initial_pos: A 1d array like object Vector representing values of parameter position, the starting state in markov chain. num_adapt: int The number of interations to run the adaptation of stepsize num_samples: int Number of samples to be generated stepsize: float , defaults to None The stepsize for proposing new values of position and momentum in simulate_dynamics If None, then will be choosen suitably Returns ------- genrator: yielding a numpy.array type object for a sample Examples -------- >>> from pgmpy.inference.continuous import NoUTurnSamplerDA as NUTSda, GradLogPDFGaussian >>> from pgmpy.factors import JointGaussianDistribution as JGD >>> import numpy as np >>> mean = np.array([1, -100]) >>> covariance = np.array([[-12, 45], [45, -10]]) >>> model = JGD(['a', 'b'], mean, covariance) >>> sampler = NUTSda(model=model, grad_log_pdf=GradLogPDFGaussian, simulate_dynamics=LeapFrog) >>> samples = sampler.generate_sample(initial_pos=np.array([12, -4]), num_adapt=10, ... num_samples=10, stepsize=0.1) >>> samples <generator object NoUTurnSamplerDA.generate_sample at 0x7f4fed46a4c0> >>> samples_array = np.array([sample for sample in samples]) >>> samples_array array([[ 11.89963386, -4.06572636], [ 10.3453755 , -7.5700289 ], [-26.56899659, -15.3920684 ], [-29.97143077, -12.0801625 ], [-29.97143077, -12.0801625 ], [-33.07960829, -8.90440347], [-55.28263496, -17.31718524], [-55.28263496, -17.31718524], [-56.63440044, -16.03309364], [-63.880094 , -19.19981944]]) """ initial_pos = _check_1d_array_object(initial_pos, 'initial_pos') _check_length_equal(initial_pos, self.model.variables, 'initial_pos', 'model.variables') if stepsize is None: stepsize = self._find_reasonable_stepsize(initial_pos) if num_adapt <= 1: # return sample generated using Simple HMC algorithm for sample in NoUTurnSampler(self.model, self.grad_log_pdf, self.simulate_dynamics).generate_sample(initial_pos, num_samples, stepsize): yield sample return mu = np.log(10.0 * stepsize) stepsize_bar = 1.0 h_bar = 0.0 position_m = initial_pos.copy() num_adapt += 1 for i in range(1, num_samples + 1): position_m, alpha, n_alpha = self._sample(position_m, stepsize) if i <= num_adapt: stepsize, stepsize_bar, h_bar = self._adapt_params(stepsize, stepsize_bar, h_bar, mu, i, alpha, n_alpha) else: stepsize = stepsize_bar yield position_m
mit
openmrslab/suspect
tests/test_mrs/test_io.py
1
4519
import suspect import suspect.io.tarquin import pytest import unittest.mock import builtins from unittest.mock import patch import os from suspect.io._common import complex_array_from_iter import numpy def test_complex_from_iter(): float_list = [1.0, 0.0, 0.0, 1.0] array = complex_array_from_iter(iter(float_list)) assert array.shape == (2,) assert array[0] == 1 assert array[1] == 1j def test_shaped_complex_from_iter(): float_list = [1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0] array = complex_array_from_iter(iter(float_list), shape=[2, 2]) assert array.shape == (2, 2) def test_write_dpt(): data = suspect.MRSData(numpy.zeros(1), 1e-3, 123.456) mock = unittest.mock.mock_open() with patch.object(builtins, 'open', mock): suspect.io.tarquin.save_dpt("/home/ben/test_dpt.dpt", data) #print(mock.mock_calls) #handle = mock() #print(handle.write.call_args()) def test_read_tarquin_results(): fitting_result = suspect.io.tarquin.read_output("tests/test_data/tarquin/tarquin_results.txt") assert "metabolite_fits" in fitting_result assert "quality" in fitting_result assert fitting_result["quality"]["Metab FWHM (PPM)"] == 0.04754 assert fitting_result["quality"]["Q"] == 4.048 def test_write_raw(): # lcmodel needs to know the transform properties transform = suspect.transformation_matrix([1, 0, 0], [0, 1, 0], [0, 0, 0], [10, 10, 10]) data = suspect.MRSData(numpy.zeros(1, 'complex'), 1e-3, 123.456, transform=transform) mock = unittest.mock.mock_open() with patch.object(builtins, 'open', mock): suspect.io.lcmodel.save_raw("/home/ben/test_raw.raw", data) #print(mock().write.mock_calls) #handle = mock() #print(handle.write.call_args()) def test_lcmodel_all_files(): # lcmodel needs to know the transform properties transform = suspect.transformation_matrix([1, 0, 0], [0, 1, 0], [0, 0, 0], [10, 10, 10]) data = suspect.MRSData(numpy.zeros(1, 'complex'), 1e-3, 123.456, transform=transform) mock = unittest.mock.mock_open() with patch.object(builtins, 'open', mock): suspect.io.lcmodel.write_all_files(os.path.join(os.getcwd(), "lcmodel"), data) #print(mock.call_args) #print(mock().write.mock_calls) def test_lcmodel_read_coord(): fitting_result = suspect.io.lcmodel.read_coord("tests/test_data/lcmodel/svs_97.COORD") assert len(fitting_result["metabolite_fits"]) == 41 def test_lcmodel_read_liver_coord(): fitting_result = suspect.io.lcmodel.read_coord("tests/test_data/lcmodel/liver.COORD") def test_lcmodel_read_basis(): basis = suspect.io.lcmodel.read_basis("tests/test_data/lcmodel/press_30ms_3T.basis") #print(basis) #from matplotlib import pyplot #met = "NAA" #sw = 1.0 / basis["BASIS1"]["BADELT"] #fa = numpy.linspace(0, sw, len(basis[met]["data"])) #pyplot.plot(fa, numpy.abs(numpy.roll(basis[met]["data"], -basis[met]["ISHIFT"]))) #pyplot.show() assert basis["BASIS1"]["BADELT"] == 0.000207357807 assert basis["BASIS1"]["NDATAB"] == 4944 assert "NAA" in basis["SPECTRA"] def test_lcmodel_write_basis(): basis = suspect.io.lcmodel.read_basis("tests/test_data/lcmodel/press_30ms_3T.basis") mock = unittest.mock.mock_open() with patch.object(builtins, 'open', mock): suspect.io.lcmodel.save_basis("/home/ben/test_raw.raw", basis) #print(mock().write.mock_calls) # handle = mock() # print(handle.write.call_args()) #def test_extract_csi_fid(): # data = suspect.io.rda.load_rda("suspect/tests/test_data/CSITEST_20151028_97_1.rda") # single_voxel = data[0, 8, 8] # suspect.io.tarquin.save_dpt("/home/ben/test_dpt2.dpt", single_voxel) #def test_load_sdat(): # data = suspect.io.load_sdat("suspect/tests/test_data/SS0044_214-SS0044_214-WIP_SV_P40_LOC_R1-601_act.sdat") # assert data.te == 30 # assert data.f0 == 127.769903 # assert data.shape == (192, 2048) def test_felix_save_mat(): data = suspect.MRSData(numpy.zeros((16, 32), dtype='complex'), 1e-3, 123.456) mock = unittest.mock.mock_open() with patch.object(builtins, 'open', mock): suspect.io.felix.save_mat("test.mat", data) #print(mock.mock_calls) # handle = mock() # print(handle.write.call_args())
mit
elkingtonmcb/scikit-learn
examples/linear_model/plot_lasso_model_selection.py
311
5431
""" =================================================== Lasso model selection: Cross-Validation / AIC / BIC =================================================== Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an optimal value of the regularization parameter alpha of the :ref:`lasso` estimator. Results obtained with LassoLarsIC are based on AIC/BIC criteria. Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated by this model. They also tend to break when the problem is badly conditioned (more features than samples). For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms give roughly the same results. They differ with regards to their execution speed and sources of numerical errors. Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of few kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without setting any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here we use the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the path. Such a strategy can be interesting if the number of features is really large and there are enough samples to select a large amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more errors, while the coordinate descent algorithm will only sample the path on a grid. Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice of parameter may not be optimal for unseen data. """ print(__doc__) # Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target rng = np.random.RandomState(42) X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features # normalize data as done by Lars to allow for comparison X /= np.sqrt(np.sum(X ** 2, axis=0)) ############################################################################## # LassoLarsIC: least angle regression with BIC/AIC criterion model_bic = LassoLarsIC(criterion='bic') t1 = time.time() model_bic.fit(X, y) t_bic = time.time() - t1 alpha_bic_ = model_bic.alpha_ model_aic = LassoLarsIC(criterion='aic') model_aic.fit(X, y) alpha_aic_ = model_aic.alpha_ def plot_ic_criterion(model, name, color): alpha_ = model.alpha_ alphas_ = model.alphas_ criterion_ = model.criterion_ plt.plot(-np.log10(alphas_), criterion_, '--', color=color, linewidth=3, label='%s criterion' % name) plt.axvline(-np.log10(alpha_), color=color, linewidth=3, label='alpha: %s estimate' % name) plt.xlabel('-log(alpha)') plt.ylabel('criterion') plt.figure() plot_ic_criterion(model_aic, 'AIC', 'b') plot_ic_criterion(model_bic, 'BIC', 'r') plt.legend() plt.title('Information-criterion for model selection (training time %.3fs)' % t_bic) ############################################################################## # LassoCV: coordinate descent # Compute paths print("Computing regularization path using the coordinate descent lasso...") t1 = time.time() model = LassoCV(cv=20).fit(X, y) t_lasso_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.alphas_) plt.figure() ymin, ymax = 2300, 3800 plt.plot(m_log_alphas, model.mse_path_, ':') plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha: CV estimate') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: coordinate descent ' '(train time: %.2fs)' % t_lasso_cv) plt.axis('tight') plt.ylim(ymin, ymax) ############################################################################## # LassoLarsCV: least angle regression # Compute paths print("Computing regularization path using the Lars lasso...") t1 = time.time() model = LassoLarsCV(cv=20).fit(X, y) t_lasso_lars_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.cv_alphas_) plt.figure() plt.plot(m_log_alphas, model.cv_mse_path_, ':') plt.plot(m_log_alphas, model.cv_mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha CV') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: Lars (train time: %.2fs)' % t_lasso_lars_cv) plt.axis('tight') plt.ylim(ymin, ymax) plt.show()
bsd-3-clause
FESOM/pyfesom
pyfesom/tools/showme.py
1
10117
import click from netCDF4 import Dataset, MFDataset, num2date import matplotlib as mpl mpl.use('Qt5Agg') #%matplotlib inline import matplotlib.pylab as plt import numpy as np import cartopy.crs as ccrs import cartopy.feature as cfeature from cmocean import cm as cmo from matplotlib import cm import sys, os sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../")) print(sys.path) import pyfesom as pf from cartopy.util import add_cyclic_point from scipy.interpolate import griddata import scipy.spatial.qhull as qhull from scipy.interpolate import LinearNDInterpolator, CloughTocher2DInterpolator from cartopy.util import add_cyclic_point @click.command() @click.argument('meshpath', type=click.Path(exists=True)) @click.argument('ifile', type=click.Path(exists=True)) @click.argument('variable', default='temp', required=False) @click.option('--depth', '-d', default=0, type=click.FLOAT, show_default=True, help='Depth in meters.') @click.option('--box', '-b', nargs=4, type=(click.IntRange(-180, 180), click.IntRange(-180, 180), click.IntRange(-90, 90), click.IntRange(-90, 90)), default=(-180,180,-80,90), show_default=True, help='Map boundaries in -180 180 -90 90 format.') @click.option('--res', '-r', nargs=2, type=(click.INT, click.INT), default=(360, 170), show_default=True, help='Number of points along each axis (for lon and lat).') @click.option('--influence','-i', default=80000, show_default=True, help='Radius of influence for interpolation, in meters.') @click.option('--timestep', '-t', default=0, show_default=True, help='Timstep from netCDF variable, strats with 0.') @click.option('--levels', '-l', nargs=3, type=click.FLOAT, help='Levels for contour plot in format min max numberOfLevels.\ If not provided min/max values from data will be used with 40 levels.') @click.option('--quiet', '-q', is_flag=True, help='If present additional information will not be printed.') @click.option('--ofile', '-o', type=click.Path(exists=False), help='Path to the output figure. If present the image\ will be saved to the file instead of showing it. ') @click.option('--mapproj','-m', type=click.Choice(['merc', 'pc', 'np', 'sp', 'rob']), default='rob', show_default=True, help = 'Map projection. Options are Mercator (merc), Plate Carree (pc), North Polar Stereo (np), South Polar Stereo (sp), Robinson (rob)') @click.option('--abg', nargs=3, type=(click.FLOAT, click.FLOAT, click.FLOAT), default=(50, 15, -90), show_default=True, help='Alpha, beta and gamma Euler angles. If you plots look rotated, you use wrong abg values. Usually nessesary only during the first use of the mesh.') @click.option('--clim','-c', type=click.Choice(['phc', 'woa05', 'gdem']), help='Select climatology to compare to. If option is set the model bias to climatology will be shown.') @click.option('--cmap', help='Name of the colormap from cmocean package or from the standard matplotlib set. By default `Spectral_r` will be used for property plots and `balance` for bias plots.') @click.option('--interp', type=click.Choice(['nn', 'idist', 'linear', 'cubic']), default='nn', show_default=True, help = 'Interpolation method. Options are nn - nearest neighbor (KDTree implementation, fast), idist - inverse distance (KDTree implementation, decent speed), linear (scipy implementation, slow) and cubic (scipy implementation, slowest and give strange results on corarse meshes).') @click.option('--ptype', type=click.Choice(['cf', 'pcm']), default = 'cf', show_default=True, help = 'Plot type. Options are contourf (\'cf\') and pcolormesh (\'pcm\')') @click.option('-k', type=click.INT, default = 5, show_default=True, help ='k-th nearest neighbors to use. Only used when interpolation method (--interp) is idist') def showfile(ifile, variable, depth, meshpath, box, res, influence, timestep, levels, quiet, ofile, mapproj, abg, clim, cmap, interp, ptype, k): ''' meshpath - Path to the folder with FESOM1.4 mesh files. ifile - Path to FESOM1.4 netCDF file. variable - The netCDF variable to be plotted. ''' if not quiet: click.secho('Mesh: {}'.format(meshpath)) click.secho('File: {}'.format(ifile)) click.secho('Variable: {}'.format(variable), fg='red') click.secho('Depth: {}'.format(depth), fg='red') click.secho('BOX: {}'.format(box)) click.secho('Resolution: {}'.format(res)) click.secho('Influence raduis: {} meters'.format(influence), fg='red') click.secho('Timestep: {}'.format(timestep)) if levels: click.secho('Levels: {}'.format(levels), fg='red') else: click.secho('Levels: auto', fg='red') mesh = loadmeshdata(meshpath, abg) showme(mesh, ifile, variable, depth, box, res, influence, timestep, levels, quiet, ofile, mapproj, abg, clim, cmap, interp, ptype, k) def loadmeshdata(meshpath, abg): mesh = pf.load_mesh(meshpath, abg=abg, usepickle=False, usejoblib=True) return mesh def showme(mesh, ifile, variable='temp', depth=0, box=[-180, 180, -90, 90], res=[360, 180], influence=80000, timestep=0, levels=None, quiet=None, ofile=None, mapproj='rob', abg=(50, 15, -90), clim=None, cmap=None, interp='nn', ptype='cf', k=5): if cmap: if cmap in cmo.cmapnames: colormap = cmo.cmap_d[cmap] elif cmap in plt.cm.datad: colormap = plt.get_cmap(cmap) else: raise ValueError('Get unrecognised name for the colormap `{}`. Colormaps should be from standard matplotlib set of from cmocean package.'.format(cmap)) else: if clim: colormap = cmo.cmap_d['balance'] else: colormap = plt.get_cmap('Spectral_r') sstep = timestep radius_of_influence = influence left, right, down, up = box lonNumber, latNumber = res print(ifile) flf = Dataset(ifile) lonreg = np.linspace(left, right, lonNumber) latreg = np.linspace(down, up, latNumber) lonreg2, latreg2 = np.meshgrid(lonreg, latreg) dind=(abs(mesh.zlevs-depth)).argmin() realdepth = mesh.zlevs[dind] level_data, nnn = pf.get_data(flf.variables[variable][sstep], mesh, realdepth) if interp =='nn': ofesom = pf.fesom2regular(level_data, mesh, lonreg2, latreg2, radius_of_influence=radius_of_influence) elif interp == 'idist': ofesom = pf.fesom2regular(level_data, mesh, lonreg2, latreg2, radius_of_influence=radius_of_influence, how = 'idist', k = k) elif interp == 'linear': points = np.vstack((mesh.x2, mesh.y2)).T qh = qhull.Delaunay(points) ofesom = LinearNDInterpolator(qh, level_data)((lonreg2, latreg2)) elif interp == 'cubic': points = np.vstack((mesh.x2, mesh.y2)).T qh = qhull.Delaunay(points) ofesom = CloughTocher2DInterpolator(qh, level_data)((lonreg2, latreg2)) if clim: if variable=='temp': climvar = 'T' elif variable == 'salt': climvar = 'S' else: raise ValueError('You have selected --clim/-c option, but variable `{}` is not in climatology. Acceptable values are `temp` and `salt` only.'.format(variable)) #os.path.join(os.path.dirname(__file__), "../") pathToClim = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../data/") print(pathToClim) w = pf.climatology(pathToClim, clim) xx, yy, oclim = pf.clim2regular(w, climvar, lonreg2, latreg2, levels=[realdepth], radius_of_influence=radius_of_influence) oclim = oclim[0, :, :] data = ofesom - oclim else: data = ofesom if mapproj == 'merc': ax = plt.subplot(111, projection=ccrs.Mercator()) elif mapproj == 'pc': ax = plt.subplot(111, projection=ccrs.PlateCarree()) elif mapproj == 'np': ax = plt.subplot(111, projection=ccrs.NorthPolarStereo()) elif mapproj == 'sp': ax = plt.subplot(111, projection=ccrs.SouthPolarStereo()) elif mapproj == 'rob': ax = plt.subplot(111, projection=ccrs.Robinson()) ax.set_extent([left, right, down, up], crs=ccrs.PlateCarree()) if levels: mmin, mmax, nnum = levels nnum = int(nnum) else: mmin = np.nanmin(data) mmax = np.nanmax(data) nnum = 40 data_levels = np.linspace(mmin, mmax, nnum) if ptype == 'cf': mm = ax.contourf(lonreg,\ latreg,\ data, levels = data_levels, transform=ccrs.PlateCarree(), cmap=colormap, extend='both') elif ptype == 'pcm': data_cyc, lon_cyc = add_cyclic_point(data, coord=lonreg) mm = ax.pcolormesh(lon_cyc,\ latreg,\ data_cyc, vmin = mmin, vmax = mmax, transform=ccrs.PlateCarree(), cmap=colormap, ) else: raise ValueError('Inknown plot type {}'.format(ptype)) ax.coastlines(resolution = '50m',lw=0.5) ax.add_feature(cfeature.GSHHSFeature(levels=[1], scale='low', facecolor='lightgray')) cb = plt.colorbar(mm, orientation='horizontal', pad=0.03) cb.set_label(flf.variables[variable].units) plt.title('{} at {}m.'.format(variable, realdepth)) plt.tight_layout() if ofile: plt.savefig(ofile, dpi=100) else: plt.show() if __name__ == '__main__': showfile()
mit
walid-ahmad/TieDecay
fast_process.py
1
2952
#!/usr/bin/env python """\ Fast-process data set by applying decay and summation directly at discrete time points Record only PageRank scores (not iterations) """ import sys import operator import numpy as np import pandas as pd import networkx as nx from scipy import sparse from tqdm import * import tieDecayMat import storage import prcust if __name__ == "__main__": try: half_lives = sys.argv[1:] half_lives = [int(h) for h in half_lives] half_lives = np.array(half_lives) print "Half lives: ", half_lives except IndexError: print "Please provide the half life (or half lives) as argument(s)" sys.exit() dataPath = '/Users/walid/Dropbox/Tie_Decay_Centrality/Data/NHSadjList' usersPath = '/Users/walid/Dropbox/Tie_Decay_Centrality/Data/NHSusersDict' print "Loading data..." dataAdjList = storage.load_obj(dataPath) usersDict = storage.load_obj(usersPath) print "Data loaded!" nb_users = len(usersDict) # sort list by time to get start and end times print "Sorting data..." dataAdjList = sorted(dataAdjList, key=operator.itemgetter(2)) print "Data sorted!" t_initial = dataAdjList[0][2] t_final = dataAdjList[-1][2] # convert to dictionary for O(1) lookup print "Converting to dictionary..." dataAdjDict = tieDecayMat.convert_List_to_Dict(dataAdjList) print "Converting to dictionary done!" # specify the number of timepoints we'll sample the data at nb_timepoints = 1000 total_seconds = (pd.to_datetime(t_final) - pd.to_datetime(t_initial)).total_seconds() seconds_per_sample = int(total_seconds) / nb_timepoints sampling_range = pd.date_range(start=t_initial, end=t_final, freq=str(seconds_per_sample)+'s') sampling_range_plus = sampling_range[1:] # set threshold for eliminating small values threshold = 10**(-7) # set associated decay values alphas = np.log(2)/half_lives/3600 # create storage variable for centrality scores and iterations TD_PRs = np.zeros(shape=(nb_users, nb_timepoints), dtype=np.float32) B = sparse.csr_matrix((nb_users,nb_users), dtype=np.float32) # now iterate through the time range print "Alphas progress: " for hl,alpha in tqdm(zip(half_lives, alphas)): print "\n Sampling range progress: " for i,t in tqdm(enumerate(sampling_range_plus)): t1 = t-pd.Timedelta(str(seconds_per_sample)+'s') t2 = t B = tieDecayMat.getDecayAdjBatch(dataAdjDict, t1, t2, B, nb_users, alpha) B = B.multiply(B>=threshold) # create network with B_t as adj matrix G = nx.from_scipy_sparse_matrix(B, create_using=nx.DiGraph()) pr_t = nx.pagerank(G) for u, score in pr_t.items(): TD_PRs[u][i] = float(score) storage.save_obj(TD_PRs, 'TD_PRs'+'_alpha_'+str(hl))
mit
CKPalk/SeattleCrime_DM
DataMining/Stats/Weather/append_weather.py
1
1706
from urllib.request import urlopen from urllib.request import Request import json import sys import pandas as pd import numpy as np date_format = '%Y-%m-%d' datetime_format = date_format + ' %H:%M:%S' def appendAttrsIfNeeded( df ): if 'Temp' not in df.columns: df['Temp'] = np.nan if 'Rain' not in df.columns: df['Rain'] = np.nan return df def findTempAndRain( json, date ): date_str = date.strftime( date_format ) try: loc1 = json[date_str] loc2 = loc1['history'] loc3 = loc2['observations'] observation = loc3[ date.hour - 1] temperature = float( observation[ 'tempi' ] ) rain = int( observation[ 'rain' ] ) return ( temperature, rain ) except: return ( np.nan, np.nan ) def addWeatherData( json_filename, csv_filename ): js = json.loads( open( json_filename, 'r' ).read() ) df = pd.read_csv( csv_filename, parse_dates=['Dates'], date_parser=lambda x: pd.datetime.strptime(x, datetime_format ) ) df = appendAttrsIfNeeded( df ) for idx, row in df.iterrows(): if pd.isnull( row['Temp'] ) and pd.isnull( row['Rain'] ): temp_rain = findTempAndRain( js, row['Dates'] ) print( "Setting temperature {} and rain {} for row {}".format( str(temp_rain[0]), str(temp_rain[1]), str(idx) ) ) df.set_value( idx, 'Temp', temp_rain[0] ) df.set_value( idx, 'Rain', temp_rain[1] ) else: print( "Found temperature", row['Temp'] ) print( "Found rain", row['Rain'] ) print() df.to_csv( csv_filename, index=False ) print( "File saved" ) #response = getWeatherJSON( 9, 6, 1994 ) #print( response['history']['dailysummary'][0]['meantempi'] ) def main( argv ): addWeatherData( argv[1], argv[2] ) if __name__ == '__main__': main( sys.argv )
mit
jayhetee/BDA_py_demos
demos_pystan/pystan_demo.py
19
12220
"""Bayesian Data Analysis, 3rd ed PyStan demo Demo for using Stan with Python interface PyStan. """ import numpy as np import pystan import matplotlib.pyplot as plt # edit default plot settings (colours from colorbrewer2.org) plt.rc('font', size=14) plt.rc('lines', color='#377eb8', linewidth=2) plt.rc('axes', color_cycle=('#377eb8','#e41a1c','#4daf4a', '#984ea3','#ff7f00','#ffff33')) # ====== Bernoulli model ======================================================= bernoulli_code = """ data { int<lower=0> N; int<lower=0,upper=1> y[N]; } parameters { real<lower=0,upper=1> theta; } model { theta ~ beta(1,1); for (n in 1:N) y[n] ~ bernoulli(theta); } """ data = dict(N=10, y=[0,1,0,0,1,1,1,0,1,0]) fit = pystan.stan(model_code=bernoulli_code, data=data) print(fit) samples = fit.extract(permuted=True) plt.hist(samples['theta'], 50) plt.show() # ====== Vectorized Bernoulli model ============================================ bernoulli_code = """ data { int<lower=0> N; int<lower=0,upper=1> y[N]; } parameters { real<lower=0,upper=1> theta; } model { theta ~ beta(1,1); y ~ bernoulli(theta); } """ data = dict(N=10, y=[1,1,1,0,1,1,1,0,1,1]) fit = pystan.stan(model_code=bernoulli_code, data=data) # ====== Binomial model ======================================================== binomial_code = """ data { int<lower=0> N; int<lower=0> y; } parameters { real<lower=0,upper=1> theta; } model { theta ~ beta(1,1); y ~ binomial(N,theta); } """ data = dict(N=10, y=8) fit = pystan.stan(model_code=binomial_code, data=data) samples = fit.extract(permuted=True) plt.hist(samples['theta'], 50) plt.show() # ====== Re-running Binomial model with new data =============================== data = dict(N=10, y=10) fit = pystan.stan(fit=fit, data=data) samples = fit.extract(permuted=True) plt.hist(samples['theta'], 50) plt.show() # ====== Comparison of two groups with Binomial ================================ binomial_code = """ data { int<lower=0> N1; int<lower=0> y1; int<lower=0> N2; int<lower=0> y2; } parameters { real<lower=0,upper=1> theta1; real<lower=0,upper=1> theta2; } transformed parameters { real oddsratio; oddsratio <- (theta2/(1-theta2))/(theta1/(1-theta1)); } model { theta1 ~ beta(1,1); theta2 ~ beta(1,1); y1 ~ binomial(N1,theta1); y2 ~ binomial(N2,theta2); } """ data = dict(N1=674, y1=39, N2=680, y2=22) fit = pystan.stan(model_code=binomial_code, data=data) samples = fit.extract(permuted=True) plt.hist(samples['oddsratio'], 50) plt.show() # ====== Gaussian linear model ================================================= linear_code = """ data { int<lower=0> N; // number of data points vector[N] x; // vector[N] y; // } parameters { real alpha; real beta; real<lower=0> sigma; } transformed parameters { vector[N] mu; mu <- alpha + beta*x; } model { y ~ normal(mu, sigma); } """ # Data for Stan d = np.loadtxt('kilpisjarvi-summer-temp.csv', dtype=np.double, delimiter=';', skiprows=1) x = np.repeat(d[:,0], 4) y = d[:,1:5].ravel() N = len(x) data = dict(N=N, x=x, y=y) # Compile and fit the model fit = pystan.stan(model_code=linear_code, data=data) # Plot samples = fit.extract(permuted=True) plt.figure(figsize=(8,10)) plt.subplot(3,1,1) plt.plot(x, np.percentile(samples['mu'], 50, axis=0), color='#e41a1c', linewidth=1 ) plt.plot( x, np.asarray(np.percentile(samples['mu'], [5, 95], axis=0)).T, color='#e41a1c', linestyle='--', linewidth=1, ) plt.scatter(x, y, 5, color='#377eb8') plt.xlabel('Year') plt.ylabel('Summer temperature at Kilpisjarvi') plt.xlim((1952,2013)) plt.subplot(3,1,2) plt.hist(samples['beta'], 50) plt.xlabel('beta') print 'Pr(beta > 0) = {}'.format(np.mean(samples['beta']>0)) plt.subplot(3,1,3) plt.hist(samples['sigma'], 50) plt.xlabel('sigma') plt.tight_layout() plt.show() # ====== Gaussian linear model with adjustable priors ========================== linear_code = """ data { int<lower=0> N; // number of data points vector[N] x; // vector[N] y; // real pmualpha; // prior mean for alpha real psalpha; // prior std for alpha real pmubeta; // prior mean for beta real psbeta; // prior std for beta } parameters { real alpha; real beta; real<lower=0> sigma; } transformed parameters { vector[N] mu; mu <- alpha + beta*x; } model { alpha ~ normal(pmualpha,psalpha); beta ~ normal(pmubeta,psbeta); y ~ normal(mu, sigma); } """ # Data for Stan d = np.loadtxt('kilpisjarvi-summer-temp.csv', dtype=np.double, delimiter=';', skiprows=1) x = np.repeat(d[:,0], 4) y = d[:,1:5].ravel() N = len(x) data = dict( N = N, x = x, y = y, pmualpha = y.mean(), # Centered psalpha = (14-4)/6.0, # avg temp between 4-14 pmubeta = 0, # a priori increase and decrese as likely psbeta = (.1--.1)/6.0 # avg temp probably does not increase more than 1 # degree per 10 years ) # Compile and fit the model fit = pystan.stan(model_code=linear_code, data=data) # Plot samples = fit.extract(permuted=True) plt.figure(figsize=(8,10)) plt.subplot(3,1,1) plt.plot(x, np.percentile(samples['mu'], 50, axis=0), color='#e41a1c', linewidth=1 ) plt.plot( x, np.asarray(np.percentile(samples['mu'], [5, 95], axis=0)).T, color='#e41a1c', linestyle='--', linewidth=1, ) plt.scatter(x, y, 5, color='#377eb8') plt.xlabel('Year') plt.ylabel('Summer temperature at Kilpisjarvi') plt.xlim((1952,2013)) plt.subplot(3,1,2) plt.hist(samples['beta'], 50) plt.xlabel('beta') print 'Pr(beta > 0) = {}'.format(np.mean(samples['beta']>0)) plt.subplot(3,1,3) plt.hist(samples['sigma'], 50) plt.xlabel('sigma') plt.tight_layout() plt.show() # ====== Gaussian linear model with standardized data ========================== linear_code = """ data { int<lower=0> N; // number of data points vector[N] x; // vector[N] y; // } transformed data { vector[N] x_std; vector[N] y_std; x_std <- (x - mean(x)) / sd(x); y_std <- (y - mean(y)) / sd(y); } parameters { real alpha; real beta; real<lower=0> sigma_std; } transformed parameters { vector[N] mu_std; mu_std <- alpha + beta*x_std; } model { alpha ~ normal(0,1); beta ~ normal(0,1); y_std ~ normal(mu_std, sigma_std); } generated quantities { vector[N] mu; real<lower=0> sigma; mu <- mean(y) + mu_std*sd(y); sigma <- sigma_std*sd(y); } """ # Data for Stan data_path = '../utilities_and_data/kilpisjarvi-summer-temp.csv' d = np.loadtxt(data_path, dtype=np.double, delimiter=';', skiprows=1) x = np.repeat(d[:,0], 4) y = d[:,1:5].ravel() N = len(x) data = dict(N = N, x = x, y = y) # Compile and fit the model fit = pystan.stan(model_code=linear_code, data=data) # Plot samples = fit.extract(permuted=True) plt.figure(figsize=(8,10)) plt.subplot(3,1,1) plt.plot(x, np.percentile(samples['mu'], 50, axis=0), color='#e41a1c', linewidth=1 ) plt.plot( x, np.asarray(np.percentile(samples['mu'], [5, 95], axis=0)).T, color='#e41a1c', linestyle='--', linewidth=1, ) plt.scatter(x, y, 5, color='#377eb8') plt.xlabel('Year') plt.ylabel('Summer temperature at Kilpisjarvi') plt.xlim((1952,2013)) plt.subplot(3,1,2) plt.hist(samples['beta'], 50) plt.xlabel('beta') print 'Pr(beta > 0) = {}'.format(np.mean(samples['beta']>0)) plt.subplot(3,1,3) plt.hist(samples['sigma'], 50) plt.xlabel('sigma') plt.tight_layout() plt.show() # ====== Gaussian linear student-t model ======================================= linear_code = """ data { int<lower=0> N; // number of data points vector[N] x; // vector[N] y; // } parameters { real alpha; real beta; real<lower=0> sigma; real<lower=1,upper=80> nu; } transformed parameters { vector[N] mu; mu <- alpha + beta*x; } model { nu ~ gamma(2,0.1); // Juarez and Steel (2010) y ~ student_t(nu, mu, sigma); } """ # Data for Stan data_path = '../utilities_and_data/kilpisjarvi-summer-temp.csv' d = np.loadtxt(data_path, dtype=np.double, delimiter=';', skiprows=1) x = np.repeat(d[:,0], 4) y = d[:,1:5].ravel() N = len(x) data = dict(N = N, x = x, y = y) # Compile and fit the model fit = pystan.stan(model_code=linear_code, data=data) # Plot samples = fit.extract(permuted=True) plt.figure(figsize=(8,12)) plt.subplot(4,1,1) plt.plot(x, np.percentile(samples['mu'], 50, axis=0), color='#e41a1c', linewidth=1 ) plt.plot( x, np.asarray(np.percentile(samples['mu'], [5, 95], axis=0)).T, color='#e41a1c', linestyle='--', linewidth=1, ) plt.scatter(x, y, 5, color='#377eb8') plt.xlabel('Year') plt.ylabel('Summer temperature at Kilpisjarvi') plt.xlim((1952,2013)) plt.subplot(4,1,2) plt.hist(samples['beta'], 50) plt.xlabel('beta') print 'Pr(beta > 0) = {}'.format(np.mean(samples['beta']>0)) plt.subplot(4,1,3) plt.hist(samples['sigma'], 50) plt.xlabel('sigma') plt.subplot(4,1,4) plt.hist(samples['nu'], 50) plt.xlabel('nu') plt.tight_layout() plt.show() # ====== Comparison of k groups (ANOVA) ======================================== group_code = """ data { int<lower=0> N; // number of data points int<lower=0> K; // number of groups int<lower=1,upper=K> x[N]; // group indicator vector[N] y; // } parameters { vector[K] mu; // group means vector<lower=0>[K] sigma; // group stds } model { for (n in 1:N) y[n] ~ normal(mu[x[n]], sigma[x[n]]); } """ # Data for Stan data_path = '../utilities_and_data/kilpisjarvi-summer-temp.csv' d = np.loadtxt(data_path, dtype=np.double, delimiter=';', skiprows=1) # Is there difference between different summer months? x = np.tile(np.arange(1,5), d.shape[0]) # summer months are numbered from 1 to 4 y = d[:,1:5].ravel() N = len(x) data = dict( N = N, K = 4, # 4 groups x = x, # group indicators y = y # observations ) # Compile and fit the model fit = pystan.stan(model_code=group_code, data=data) # Analyse results mu = fit.extract(permuted=True)['mu'] # Matrix of probabilities that one mu is larger than other ps = np.zeros((4,4)) for k1 in range(4): for k2 in range(k1+1,4): ps[k1,k2] = np.mean(mu[:,k1]>mu[:,k2]) ps[k2,k1] = 1 - ps[k1,k2] print "Matrix of probabilities that one mu is larger than other:" print ps # Plot plt.boxplot(mu) plt.show() # ====== Hierarchical prior model for comparison of k groups (ANOVA) =========== # results do not differ much from the previous, because there is only # few groups and quite much data per group, but this works as an example anyway hier_code = """ data { int<lower=0> N; // number of data points int<lower=0> K; // number of groups int<lower=1,upper=K> x[N]; // group indicator vector[N] y; // } parameters { real mu0; // prior mean real<lower=0> sigma0; // prior std vector[K] mu; // group means vector<lower=0>[K] sigma; // group stds } model { mu0 ~ normal(10,10); // weakly informative prior sigma0 ~ cauchy(0,4); // weakly informative prior mu ~ normal(mu0, sigma0); // population prior with unknown parameters for (n in 1:N) y[n] ~ normal(mu[x[n]], sigma[x[n]]); } """ # Data for Stan data_path = '../utilities_and_data/kilpisjarvi-summer-temp.csv' d = np.loadtxt(data_path, dtype=np.double, delimiter=';', skiprows=1) # Is there difference between different summer months? x = np.tile(np.arange(1,5), d.shape[0]) # summer months are numbered from 1 to 4 y = d[:,1:5].ravel() N = len(x) data = dict( N = N, K = 4, # 4 groups x = x, # group indicators y = y # observations ) # Compile and fit the model fit = pystan.stan(model_code=hier_code, data=data) # Analyse results samples = fit.extract(permuted=True) print "std(mu0): {}".format(np.std(samples['mu0'])) mu = samples['mu'] # Matrix of probabilities that one mu is larger than other ps = np.zeros((4,4)) for k1 in range(4): for k2 in range(k1+1,4): ps[k1,k2] = np.mean(mu[:,k1]>mu[:,k2]) ps[k2,k1] = 1 - ps[k1,k2] print "Matrix of probabilities that one mu is larger than other:" print ps # Plot plt.boxplot(mu) plt.show()
gpl-3.0
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/pandas/computation/expressions.py
7
7788
""" Expressions ----------- Offer fast expression evaluation through numexpr """ import warnings import numpy as np from pandas.core.common import _values_from_object from pandas.computation import _NUMEXPR_INSTALLED if _NUMEXPR_INSTALLED: import numexpr as ne _TEST_MODE = None _TEST_RESULT = None _USE_NUMEXPR = _NUMEXPR_INSTALLED _evaluate = None _where = None # the set of dtypes that we will allow pass to numexpr _ALLOWED_DTYPES = { 'evaluate': set(['int64', 'int32', 'float64', 'float32', 'bool']), 'where': set(['int64', 'float64', 'bool']) } # the minimum prod shape that we will use numexpr _MIN_ELEMENTS = 10000 def set_use_numexpr(v=True): # set/unset to use numexpr global _USE_NUMEXPR if _NUMEXPR_INSTALLED: _USE_NUMEXPR = v # choose what we are going to do global _evaluate, _where if not _USE_NUMEXPR: _evaluate = _evaluate_standard _where = _where_standard else: _evaluate = _evaluate_numexpr _where = _where_numexpr def set_numexpr_threads(n=None): # if we are using numexpr, set the threads to n # otherwise reset if _NUMEXPR_INSTALLED and _USE_NUMEXPR: if n is None: n = ne.detect_number_of_cores() ne.set_num_threads(n) def _evaluate_standard(op, op_str, a, b, raise_on_error=True, **eval_kwargs): """ standard evaluation """ if _TEST_MODE: _store_test_result(False) with np.errstate(all='ignore'): return op(a, b) def _can_use_numexpr(op, op_str, a, b, dtype_check): """ return a boolean if we WILL be using numexpr """ if op_str is not None: # required min elements (otherwise we are adding overhead) if np.prod(a.shape) > _MIN_ELEMENTS: # check for dtype compatiblity dtypes = set() for o in [a, b]: if hasattr(o, 'get_dtype_counts'): s = o.get_dtype_counts() if len(s) > 1: return False dtypes |= set(s.index) elif isinstance(o, np.ndarray): dtypes |= set([o.dtype.name]) # allowed are a superset if not len(dtypes) or _ALLOWED_DTYPES[dtype_check] >= dtypes: return True return False def _evaluate_numexpr(op, op_str, a, b, raise_on_error=False, truediv=True, reversed=False, **eval_kwargs): result = None if _can_use_numexpr(op, op_str, a, b, 'evaluate'): try: # we were originally called by a reversed op # method if reversed: a, b = b, a a_value = getattr(a, "values", a) b_value = getattr(b, "values", b) result = ne.evaluate('a_value %s b_value' % op_str, local_dict={'a_value': a_value, 'b_value': b_value}, casting='safe', truediv=truediv, **eval_kwargs) except ValueError as detail: if 'unknown type object' in str(detail): pass except Exception as detail: if raise_on_error: raise if _TEST_MODE: _store_test_result(result is not None) if result is None: result = _evaluate_standard(op, op_str, a, b, raise_on_error) return result def _where_standard(cond, a, b, raise_on_error=True): return np.where(_values_from_object(cond), _values_from_object(a), _values_from_object(b)) def _where_numexpr(cond, a, b, raise_on_error=False): result = None if _can_use_numexpr(None, 'where', a, b, 'where'): try: cond_value = getattr(cond, 'values', cond) a_value = getattr(a, 'values', a) b_value = getattr(b, 'values', b) result = ne.evaluate('where(cond_value, a_value, b_value)', local_dict={'cond_value': cond_value, 'a_value': a_value, 'b_value': b_value}, casting='safe') except ValueError as detail: if 'unknown type object' in str(detail): pass except Exception as detail: if raise_on_error: raise TypeError(str(detail)) if result is None: result = _where_standard(cond, a, b, raise_on_error) return result # turn myself on set_use_numexpr(True) def _has_bool_dtype(x): try: return x.dtype == bool except AttributeError: try: return 'bool' in x.blocks except AttributeError: return isinstance(x, (bool, np.bool_)) def _bool_arith_check(op_str, a, b, not_allowed=frozenset(('/', '//', '**')), unsupported=None): if unsupported is None: unsupported = {'+': '|', '*': '&', '-': '^'} if _has_bool_dtype(a) and _has_bool_dtype(b): if op_str in unsupported: warnings.warn("evaluating in Python space because the %r operator" " is not supported by numexpr for the bool " "dtype, use %r instead" % (op_str, unsupported[op_str])) return False if op_str in not_allowed: raise NotImplementedError("operator %r not implemented for bool " "dtypes" % op_str) return True def evaluate(op, op_str, a, b, raise_on_error=False, use_numexpr=True, **eval_kwargs): """ evaluate and return the expression of the op on a and b Parameters ---------- op : the actual operand op_str: the string version of the op a : left operand b : right operand raise_on_error : pass the error to the higher level if indicated (default is False), otherwise evaluate the op with and return the results use_numexpr : whether to try to use numexpr (default True) """ use_numexpr = use_numexpr and _bool_arith_check(op_str, a, b) if use_numexpr: return _evaluate(op, op_str, a, b, raise_on_error=raise_on_error, **eval_kwargs) return _evaluate_standard(op, op_str, a, b, raise_on_error=raise_on_error) def where(cond, a, b, raise_on_error=False, use_numexpr=True): """ evaluate the where condition cond on a and b Parameters ---------- cond : a boolean array a : return if cond is True b : return if cond is False raise_on_error : pass the error to the higher level if indicated (default is False), otherwise evaluate the op with and return the results use_numexpr : whether to try to use numexpr (default True) """ if use_numexpr: return _where(cond, a, b, raise_on_error=raise_on_error) return _where_standard(cond, a, b, raise_on_error=raise_on_error) def set_test_mode(v=True): """ Keeps track of whether numexpr was used. Stores an additional ``True`` for every successful use of evaluate with numexpr since the last ``get_test_result`` """ global _TEST_MODE, _TEST_RESULT _TEST_MODE = v _TEST_RESULT = [] def _store_test_result(used_numexpr): global _TEST_RESULT if used_numexpr: _TEST_RESULT.append(used_numexpr) def get_test_result(): """get test result and reset test_results""" global _TEST_RESULT res = _TEST_RESULT _TEST_RESULT = [] return res
apache-2.0
PythonProgramming/Support-Vector-Machines---Basics-and-Fundamental-Investing-Project
p12.py
1
8235
import pandas as pd import os import time from datetime import datetime import re from time import mktime import matplotlib import matplotlib.pyplot as plt from matplotlib import style style.use("dark_background") # path = "X:/Backups/intraQuarter" # for Windows with X files :) # if git clone'ed then use relative path, # assuming you extracted the downloaded zip into this project's folder: path = "intraQuarter" def Key_Stats( gather=[ "Total Debt/Equity", 'Trailing P/E', 'Price/Sales', 'Price/Book', 'Profit Margin', 'Operating Margin', 'Return on Assets', 'Return on Equity', 'Revenue Per Share', 'Market Cap', 'Enterprise Value', 'Forward P/E', 'PEG Ratio', 'Enterprise Value/Revenue', 'Enterprise Value/EBITDA', 'Revenue', 'Gross Profit', 'EBITDA', 'Net Income Avl to Common ', 'Diluted EPS', 'Earnings Growth', 'Revenue Growth', 'Total Cash', 'Total Cash Per Share', 'Total Debt', 'Current Ratio', 'Book Value Per Share', 'Cash Flow', 'Beta', 'Held by Insiders', 'Held by Institutions', 'Shares Short (as of', 'Short Ratio', 'Short % of Float', 'Shares Short (prior ' ] ): statspath = path+'/_KeyStats' stock_list = [x[0] for x in os.walk(statspath)] df = pd.DataFrame( columns = [ 'Date', 'Unix', 'Ticker', 'Price', 'stock_p_change', 'SP500', 'sp500_p_change', 'Difference', ############## 'DE Ratio', 'Trailing P/E', 'Price/Sales', 'Price/Book', 'Profit Margin', 'Operating Margin', 'Return on Assets', 'Return on Equity', 'Revenue Per Share', 'Market Cap', 'Enterprise Value', 'Forward P/E', 'PEG Ratio', 'Enterprise Value/Revenue', 'Enterprise Value/EBITDA', 'Revenue', 'Gross Profit', 'EBITDA', 'Net Income Avl to Common ', 'Diluted EPS', 'Earnings Growth', 'Revenue Growth', 'Total Cash', 'Total Cash Per Share', 'Total Debt', 'Current Ratio', 'Book Value Per Share', 'Cash Flow', 'Beta', 'Held by Insiders', 'Held by Institutions', 'Shares Short (as of', 'Short Ratio', 'Short % of Float', 'Shares Short (prior ', ############## 'Status' ] ) sp500_df = pd.DataFrame.from_csv("YAHOO-INDEX_GSPC.csv") ticker_list = [] for each_dir in stock_list[1:]: each_file = os.listdir(each_dir) # ticker = each_dir.split("\\")[1] # Windows only # ticker = each_dir.split("/")[1] # this didn't work so do this: ticker = os.path.basename(os.path.normpath(each_dir)) # print(ticker) # uncomment to verify ticker_list.append(ticker) starting_stock_value = False starting_sp500_value = False if len(each_file) > 0: for file in each_file: date_stamp = datetime.strptime(file, '%Y%m%d%H%M%S.html') unix_time = time.mktime(date_stamp.timetuple()) full_file_path = each_dir+'/'+file source = open(full_file_path,'r').read() try: value_list = [] for each_data in gather: try: regex = re.escape(each_data) + r'.*?(\d{1,8}\.\d{1,8}M?B?|N/A)%?</td>' value = re.search(regex, source) value = (value.group(1)) if "B" in value: value = float(value.replace("B",''))*1000000000 elif "M" in value: value = float(value.replace("M",''))*1000000 value_list.append(value) except Exception as e: value = "N/A" value_list.append(value) try: sp500_date = datetime.fromtimestamp(unix_time).strftime('%Y-%m-%d') row = sp500_df[(sp500_df.index == sp500_date)] sp500_value = float(row["Adjusted Close"]) except: sp500_date = datetime.fromtimestamp(unix_time-259200).strftime('%Y-%m-%d') row = sp500_df[(sp500_df.index == sp500_date)] sp500_value = float(row["Adjusted Close"]) try: stock_price = float(source.split('</small><big><b>')[1].split('</b></big>')[0]) except Exception as e: # <span id="yfs_l10_afl">43.27</span> try: stock_price = (source.split('</small><big><b>')[1].split('</b></big>')[0]) stock_price = re.search(r'(\d{1,8}\.\d{1,8})',stock_price) stock_price = float(stock_price.group(1)) #print(stock_price) except Exception as e: try: stock_price = (source.split('<span class="time_rtq_ticker">')[1].split('</span>')[0]) stock_price = re.search(r'(\d{1,8}\.\d{1,8})',stock_price) stock_price = float(stock_price.group(1)) except Exception as e: print(str(e),'stock_price 3rd try+except',file,ticker) #print('Latest:',stock_price) #print('stock price',str(e),ticker,file) #time.sleep(15) #print("stock_price:",stock_price,"ticker:", ticker) if not starting_stock_value: starting_stock_value = stock_price if not starting_sp500_value: starting_sp500_value = sp500_value stock_p_change = ((stock_price - starting_stock_value) / starting_stock_value) * 100 sp500_p_change = ((sp500_value - starting_sp500_value) / starting_sp500_value) * 100 difference = stock_p_change - sp500_p_change if difference > 0: status = "outperform" else: status = "underperform" if value_list.count("N/A") > 0: pass else: df = df.append( { 'Date':date_stamp, 'Unix':unix_time, 'Ticker':ticker, 'Price':stock_price, 'stock_p_change':stock_p_change, 'SP500':sp500_value, 'sp500_p_change':sp500_p_change, 'Difference':difference, 'DE Ratio':value_list[0], #'Market Cap':value_list[1], 'Trailing P/E':value_list[1], 'Price/Sales':value_list[2], 'Price/Book':value_list[3], 'Profit Margin':value_list[4], 'Operating Margin':value_list[5], 'Return on Assets':value_list[6], 'Return on Equity':value_list[7], 'Revenue Per Share':value_list[8], 'Market Cap':value_list[9], 'Enterprise Value':value_list[10], 'Forward P/E':value_list[11], 'PEG Ratio':value_list[12], 'Enterprise Value/Revenue':value_list[13], 'Enterprise Value/EBITDA':value_list[14], 'Revenue':value_list[15], 'Gross Profit':value_list[16], 'EBITDA':value_list[17], 'Net Income Avl to Common ':value_list[18], 'Diluted EPS':value_list[19], 'Earnings Growth':value_list[20], 'Revenue Growth':value_list[21], 'Total Cash':value_list[22], 'Total Cash Per Share':value_list[23], 'Total Debt':value_list[24], 'Current Ratio':value_list[25], 'Book Value Per Share':value_list[26], 'Cash Flow':value_list[27], 'Beta':value_list[28], 'Held by Insiders':value_list[29], 'Held by Institutions':value_list[30], 'Shares Short (as of':value_list[31], 'Short Ratio':value_list[32], 'Short % of Float':value_list[33], 'Shares Short (prior ':value_list[34], 'Status':status }, ignore_index=True) except Exception as e: pass df.to_csv("key_stats.csv") Key_Stats()
mit
harisbal/pandas
pandas/tests/tseries/test_holiday.py
16
16104
import pytest from datetime import datetime import pandas.util.testing as tm from pandas import compat from pandas import DatetimeIndex from pandas.tseries.holiday import (USFederalHolidayCalendar, USMemorialDay, USThanksgivingDay, nearest_workday, next_monday_or_tuesday, next_monday, previous_friday, sunday_to_monday, Holiday, DateOffset, MO, SA, Timestamp, AbstractHolidayCalendar, get_calendar, HolidayCalendarFactory, next_workday, previous_workday, before_nearest_workday, EasterMonday, GoodFriday, after_nearest_workday, weekend_to_monday, USLaborDay, USColumbusDay, USMartinLutherKingJr, USPresidentsDay) from pytz import utc class TestCalendar(object): def setup_method(self, method): self.holiday_list = [ datetime(2012, 1, 2), datetime(2012, 1, 16), datetime(2012, 2, 20), datetime(2012, 5, 28), datetime(2012, 7, 4), datetime(2012, 9, 3), datetime(2012, 10, 8), datetime(2012, 11, 12), datetime(2012, 11, 22), datetime(2012, 12, 25)] self.start_date = datetime(2012, 1, 1) self.end_date = datetime(2012, 12, 31) def test_calendar(self): calendar = USFederalHolidayCalendar() holidays = calendar.holidays(self.start_date, self.end_date) holidays_1 = calendar.holidays( self.start_date.strftime('%Y-%m-%d'), self.end_date.strftime('%Y-%m-%d')) holidays_2 = calendar.holidays( Timestamp(self.start_date), Timestamp(self.end_date)) assert list(holidays.to_pydatetime()) == self.holiday_list assert list(holidays_1.to_pydatetime()) == self.holiday_list assert list(holidays_2.to_pydatetime()) == self.holiday_list def test_calendar_caching(self): # Test for issue #9552 class TestCalendar(AbstractHolidayCalendar): def __init__(self, name=None, rules=None): super(TestCalendar, self).__init__(name=name, rules=rules) jan1 = TestCalendar(rules=[Holiday('jan1', year=2015, month=1, day=1)]) jan2 = TestCalendar(rules=[Holiday('jan2', year=2015, month=1, day=2)]) tm.assert_index_equal(jan1.holidays(), DatetimeIndex(['01-Jan-2015'])) tm.assert_index_equal(jan2.holidays(), DatetimeIndex(['02-Jan-2015'])) def test_calendar_observance_dates(self): # Test for issue 11477 USFedCal = get_calendar('USFederalHolidayCalendar') holidays0 = USFedCal.holidays(datetime(2015, 7, 3), datetime( 2015, 7, 3)) # <-- same start and end dates holidays1 = USFedCal.holidays(datetime(2015, 7, 3), datetime( 2015, 7, 6)) # <-- different start and end dates holidays2 = USFedCal.holidays(datetime(2015, 7, 3), datetime( 2015, 7, 3)) # <-- same start and end dates tm.assert_index_equal(holidays0, holidays1) tm.assert_index_equal(holidays0, holidays2) def test_rule_from_name(self): USFedCal = get_calendar('USFederalHolidayCalendar') assert USFedCal.rule_from_name('Thanksgiving') == USThanksgivingDay class TestHoliday(object): def setup_method(self, method): self.start_date = datetime(2011, 1, 1) self.end_date = datetime(2020, 12, 31) def check_results(self, holiday, start, end, expected): assert list(holiday.dates(start, end)) == expected # Verify that timezone info is preserved. assert (list(holiday.dates(utc.localize(Timestamp(start)), utc.localize(Timestamp(end)))) == [utc.localize(dt) for dt in expected]) def test_usmemorialday(self): self.check_results(holiday=USMemorialDay, start=self.start_date, end=self.end_date, expected=[ datetime(2011, 5, 30), datetime(2012, 5, 28), datetime(2013, 5, 27), datetime(2014, 5, 26), datetime(2015, 5, 25), datetime(2016, 5, 30), datetime(2017, 5, 29), datetime(2018, 5, 28), datetime(2019, 5, 27), datetime(2020, 5, 25), ], ) def test_non_observed_holiday(self): self.check_results( Holiday('July 4th Eve', month=7, day=3), start="2001-01-01", end="2003-03-03", expected=[ Timestamp('2001-07-03 00:00:00'), Timestamp('2002-07-03 00:00:00') ] ) self.check_results( Holiday('July 4th Eve', month=7, day=3, days_of_week=(0, 1, 2, 3)), start="2001-01-01", end="2008-03-03", expected=[ Timestamp('2001-07-03 00:00:00'), Timestamp('2002-07-03 00:00:00'), Timestamp('2003-07-03 00:00:00'), Timestamp('2006-07-03 00:00:00'), Timestamp('2007-07-03 00:00:00'), ] ) def test_easter(self): self.check_results(EasterMonday, start=self.start_date, end=self.end_date, expected=[ Timestamp('2011-04-25 00:00:00'), Timestamp('2012-04-09 00:00:00'), Timestamp('2013-04-01 00:00:00'), Timestamp('2014-04-21 00:00:00'), Timestamp('2015-04-06 00:00:00'), Timestamp('2016-03-28 00:00:00'), Timestamp('2017-04-17 00:00:00'), Timestamp('2018-04-02 00:00:00'), Timestamp('2019-04-22 00:00:00'), Timestamp('2020-04-13 00:00:00'), ], ) self.check_results(GoodFriday, start=self.start_date, end=self.end_date, expected=[ Timestamp('2011-04-22 00:00:00'), Timestamp('2012-04-06 00:00:00'), Timestamp('2013-03-29 00:00:00'), Timestamp('2014-04-18 00:00:00'), Timestamp('2015-04-03 00:00:00'), Timestamp('2016-03-25 00:00:00'), Timestamp('2017-04-14 00:00:00'), Timestamp('2018-03-30 00:00:00'), Timestamp('2019-04-19 00:00:00'), Timestamp('2020-04-10 00:00:00'), ], ) def test_usthanksgivingday(self): self.check_results(USThanksgivingDay, start=self.start_date, end=self.end_date, expected=[ datetime(2011, 11, 24), datetime(2012, 11, 22), datetime(2013, 11, 28), datetime(2014, 11, 27), datetime(2015, 11, 26), datetime(2016, 11, 24), datetime(2017, 11, 23), datetime(2018, 11, 22), datetime(2019, 11, 28), datetime(2020, 11, 26), ], ) def test_holidays_within_dates(self): # Fix holiday behavior found in #11477 # where holiday.dates returned dates outside start/end date # or observed rules could not be applied as the holiday # was not in the original date range (e.g., 7/4/2015 -> 7/3/2015) start_date = datetime(2015, 7, 1) end_date = datetime(2015, 7, 1) calendar = get_calendar('USFederalHolidayCalendar') new_years = calendar.rule_from_name('New Years Day') july_4th = calendar.rule_from_name('July 4th') veterans_day = calendar.rule_from_name('Veterans Day') christmas = calendar.rule_from_name('Christmas') # Holiday: (start/end date, holiday) holidays = {USMemorialDay: ("2015-05-25", "2015-05-25"), USLaborDay: ("2015-09-07", "2015-09-07"), USColumbusDay: ("2015-10-12", "2015-10-12"), USThanksgivingDay: ("2015-11-26", "2015-11-26"), USMartinLutherKingJr: ("2015-01-19", "2015-01-19"), USPresidentsDay: ("2015-02-16", "2015-02-16"), GoodFriday: ("2015-04-03", "2015-04-03"), EasterMonday: [("2015-04-06", "2015-04-06"), ("2015-04-05", [])], new_years: [("2015-01-01", "2015-01-01"), ("2011-01-01", []), ("2010-12-31", "2010-12-31")], july_4th: [("2015-07-03", "2015-07-03"), ("2015-07-04", [])], veterans_day: [("2012-11-11", []), ("2012-11-12", "2012-11-12")], christmas: [("2011-12-25", []), ("2011-12-26", "2011-12-26")]} for rule, dates in compat.iteritems(holidays): empty_dates = rule.dates(start_date, end_date) assert empty_dates.tolist() == [] if isinstance(dates, tuple): dates = [dates] for start, expected in dates: if len(expected): expected = [Timestamp(expected)] self.check_results(rule, start, start, expected) def test_argument_types(self): holidays = USThanksgivingDay.dates(self.start_date, self.end_date) holidays_1 = USThanksgivingDay.dates( self.start_date.strftime('%Y-%m-%d'), self.end_date.strftime('%Y-%m-%d')) holidays_2 = USThanksgivingDay.dates( Timestamp(self.start_date), Timestamp(self.end_date)) tm.assert_index_equal(holidays, holidays_1) tm.assert_index_equal(holidays, holidays_2) def test_special_holidays(self): base_date = [datetime(2012, 5, 28)] holiday_1 = Holiday('One-Time', year=2012, month=5, day=28) holiday_2 = Holiday('Range', month=5, day=28, start_date=datetime(2012, 1, 1), end_date=datetime(2012, 12, 31), offset=DateOffset(weekday=MO(1))) assert base_date == holiday_1.dates(self.start_date, self.end_date) assert base_date == holiday_2.dates(self.start_date, self.end_date) def test_get_calendar(self): class TestCalendar(AbstractHolidayCalendar): rules = [] calendar = get_calendar('TestCalendar') assert TestCalendar == calendar.__class__ def test_factory(self): class_1 = HolidayCalendarFactory('MemorialDay', AbstractHolidayCalendar, USMemorialDay) class_2 = HolidayCalendarFactory('Thansksgiving', AbstractHolidayCalendar, USThanksgivingDay) class_3 = HolidayCalendarFactory('Combined', class_1, class_2) assert len(class_1.rules) == 1 assert len(class_2.rules) == 1 assert len(class_3.rules) == 2 class TestObservanceRules(object): def setup_method(self, method): self.we = datetime(2014, 4, 9) self.th = datetime(2014, 4, 10) self.fr = datetime(2014, 4, 11) self.sa = datetime(2014, 4, 12) self.su = datetime(2014, 4, 13) self.mo = datetime(2014, 4, 14) self.tu = datetime(2014, 4, 15) def test_next_monday(self): assert next_monday(self.sa) == self.mo assert next_monday(self.su) == self.mo def test_next_monday_or_tuesday(self): assert next_monday_or_tuesday(self.sa) == self.mo assert next_monday_or_tuesday(self.su) == self.tu assert next_monday_or_tuesday(self.mo) == self.tu def test_previous_friday(self): assert previous_friday(self.sa) == self.fr assert previous_friday(self.su) == self.fr def test_sunday_to_monday(self): assert sunday_to_monday(self.su) == self.mo def test_nearest_workday(self): assert nearest_workday(self.sa) == self.fr assert nearest_workday(self.su) == self.mo assert nearest_workday(self.mo) == self.mo def test_weekend_to_monday(self): assert weekend_to_monday(self.sa) == self.mo assert weekend_to_monday(self.su) == self.mo assert weekend_to_monday(self.mo) == self.mo def test_next_workday(self): assert next_workday(self.sa) == self.mo assert next_workday(self.su) == self.mo assert next_workday(self.mo) == self.tu def test_previous_workday(self): assert previous_workday(self.sa) == self.fr assert previous_workday(self.su) == self.fr assert previous_workday(self.tu) == self.mo def test_before_nearest_workday(self): assert before_nearest_workday(self.sa) == self.th assert before_nearest_workday(self.su) == self.fr assert before_nearest_workday(self.tu) == self.mo def test_after_nearest_workday(self): assert after_nearest_workday(self.sa) == self.mo assert after_nearest_workday(self.su) == self.tu assert after_nearest_workday(self.fr) == self.mo class TestFederalHolidayCalendar(object): def test_no_mlk_before_1986(self): # see gh-10278 class MLKCalendar(AbstractHolidayCalendar): rules = [USMartinLutherKingJr] holidays = MLKCalendar().holidays(start='1984', end='1988').to_pydatetime().tolist() # Testing to make sure holiday is not incorrectly observed before 1986 assert holidays == [datetime(1986, 1, 20, 0, 0), datetime(1987, 1, 19, 0, 0)] def test_memorial_day(self): class MemorialDay(AbstractHolidayCalendar): rules = [USMemorialDay] holidays = MemorialDay().holidays(start='1971', end='1980').to_pydatetime().tolist() # Fixes 5/31 error and checked manually against Wikipedia assert holidays == [datetime(1971, 5, 31, 0, 0), datetime(1972, 5, 29, 0, 0), datetime(1973, 5, 28, 0, 0), datetime(1974, 5, 27, 0, 0), datetime(1975, 5, 26, 0, 0), datetime(1976, 5, 31, 0, 0), datetime(1977, 5, 30, 0, 0), datetime(1978, 5, 29, 0, 0), datetime(1979, 5, 28, 0, 0)] class TestHolidayConflictingArguments(object): def test_both_offset_observance_raises(self): # see gh-10217 with pytest.raises(NotImplementedError): Holiday("Cyber Monday", month=11, day=1, offset=[DateOffset(weekday=SA(4))], observance=next_monday)
bsd-3-clause
barentsen/exoplanet-charts
k2-planets/k2-planets-for-atmospheric-characterization.py
1
2685
import matplotlib.pyplot as pl from matplotlib.ticker import MultipleLocator from matplotlib import style import seaborn as sns import pandas as pd SHOW_KEPLER = True #True K_MAGNITUDE_CUT = 11 OUTPUT_PREFIX = 'k2-planets-for-atmospheric-characterization' OUTPUT_SUFFIX = '.png' if SHOW_KEPLER: OUTPUT_PREFIX += '-with-kepler' palette = sns.color_palette(['#f1c40f', '#2980b9']) style.use('../styles/black.mplstyle') k2_df = pd.read_csv('../data/k2-candidate-planets.csv') k2_df = k2_df[k2_df.st_k2 <= K_MAGNITUDE_CUT] print('Plotting {} points.'.format(len(k2_df))) fig = pl.figure(figsize=(8, 4.5)) pl.fill_between([.5, .5, 2.5, 2.5, .5], [2000, 4000, 4000, 2000, 2000], zorder=-1, alpha=0.3, facecolor=palette[1], lw=0) pl.plot([.5, .5, 2.5, 2.5, .5], [2000, 4000, 4000, 2000, 2000], zorder=-1, alpha=1, color='white', lw=1.5, linestyle='dotted', dashes=[2, 4]) grp = k2_df.groupby('epic_candname') pl.scatter(grp.pl_rade.mean(), grp.st_teff.mean(), lw=0.4, s=35, label='K2', facecolor=palette[0], edgecolor='black', zorder=30) if SHOW_KEPLER: kepler_df = pd.read_csv('../data/kepler-candidate-planets.csv') kepler_df = kepler_df[kepler_df.koi_kmag <= K_MAGNITUDE_CUT] pl.scatter(kepler_df.koi_prad, kepler_df.koi_steff, lw=0.4, s=35, label='Kepler', facecolor='#2980b9', edgecolor='black', zorder=20) pl.legend(bbox_to_anchor=(0., 1., 1., 0.), loc=8, ncol=2, borderaxespad=0., handlelength=0.8, frameon=False, scatterpoints=3) # Annotations pl.annotate("Earth and Super Earth-size Candidates\n" "Orbiting Cool Dwarfs", style='italic', xy=(2.5, 2900), xycoords='data', xytext=(2.8, 2900), textcoords='data', va="center", size=12, arrowprops=dict(arrowstyle="-", lw=1) ) pl.suptitle("Planet Candidates for Atmospheric Characterization (Ks < 11)") # Axes pl.yticks([3000, 4000, 5000, 6000, 7000], ['3,000 K', '4,000 K', '5,000 K', '6,000 K', '7,000 K']) pl.axes().xaxis.set_minor_locator(MultipleLocator(0.5)) pl.axes().yaxis.set_minor_locator(MultipleLocator(500)) pl.xlim(0.0, 5) pl.ylim(2250, 7000) pl.xlabel('Planet Size Relative to Earth (Radius)') pl.ylabel('Host Star Temperature') pl.tight_layout(rect=(0, 0, 1, 0.92)) output_fn = OUTPUT_PREFIX + OUTPUT_SUFFIX print('Writing {}'.format(output_fn)) pl.savefig(output_fn, dpi=200) pl.close()
mit
themrmax/scikit-learn
examples/preprocessing/plot_robust_scaling.py
85
2698
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Robust Scaling on Toy Data ========================================================= Making sure that each Feature has approximately the same scale can be a crucial preprocessing step. However, when data contains outliers, :class:`StandardScaler <sklearn.preprocessing.StandardScaler>` can often be mislead. In such cases, it is better to use a scaler that is robust against outliers. Here, we demonstrate this on a toy dataset, where one single datapoint is a large outlier. """ from __future__ import print_function print(__doc__) # Code source: Thomas Unterthiner # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import StandardScaler, RobustScaler # Create training and test data np.random.seed(42) n_datapoints = 100 Cov = [[0.9, 0.0], [0.0, 20.0]] mu1 = [100.0, -3.0] mu2 = [101.0, -3.0] X1 = np.random.multivariate_normal(mean=mu1, cov=Cov, size=n_datapoints) X2 = np.random.multivariate_normal(mean=mu2, cov=Cov, size=n_datapoints) Y_train = np.hstack([[-1]*n_datapoints, [1]*n_datapoints]) X_train = np.vstack([X1, X2]) X1 = np.random.multivariate_normal(mean=mu1, cov=Cov, size=n_datapoints) X2 = np.random.multivariate_normal(mean=mu2, cov=Cov, size=n_datapoints) Y_test = np.hstack([[-1]*n_datapoints, [1]*n_datapoints]) X_test = np.vstack([X1, X2]) X_train[0, 0] = -1000 # a fairly large outlier # Scale data standard_scaler = StandardScaler() Xtr_s = standard_scaler.fit_transform(X_train) Xte_s = standard_scaler.transform(X_test) robust_scaler = RobustScaler() Xtr_r = robust_scaler.fit_transform(X_train) Xte_r = robust_scaler.transform(X_test) # Plot data fig, ax = plt.subplots(1, 3, figsize=(12, 4)) ax[0].scatter(X_train[:, 0], X_train[:, 1], color=np.where(Y_train > 0, 'r', 'b')) ax[1].scatter(Xtr_s[:, 0], Xtr_s[:, 1], color=np.where(Y_train > 0, 'r', 'b')) ax[2].scatter(Xtr_r[:, 0], Xtr_r[:, 1], color=np.where(Y_train > 0, 'r', 'b')) ax[0].set_title("Unscaled data") ax[1].set_title("After standard scaling (zoomed in)") ax[2].set_title("After robust scaling (zoomed in)") # for the scaled data, we zoom in to the data center (outlier can't be seen!) for a in ax[1:]: a.set_xlim(-3, 3) a.set_ylim(-3, 3) plt.tight_layout() plt.show() # Classify using k-NN from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() knn.fit(Xtr_s, Y_train) acc_s = knn.score(Xte_s, Y_test) print("Testset accuracy using standard scaler: %.3f" % acc_s) knn.fit(Xtr_r, Y_train) acc_r = knn.score(Xte_r, Y_test) print("Testset accuracy using robust scaler: %.3f" % acc_r)
bsd-3-clause
openelections/openelections-data-nv
scripts/nv-parser.py
1
3163
from __future__ import division, print_function """ Parse Nevada election results into OpenElection format available here: http://nvsos.gov/sos/elections/election-information/precinct-level-results """ import pandas as pd import requests from nameparser import HumanName positions = ['President', 'U.S. Senate', 'U.S. House', 'State Senate','State House', 'Governor', 'Secretary of State', 'Attorney General'] header_map = {'jurisdiction':'county', 'precinct':'precinct', 'contest':'office', 'district':'district', 'party':'party', 'selection':'candidate', 'votes':'votes'} def parser(file, **kwargs): """ Generic parser for NV election results """ # read in the file df = pd.read_csv(file, **kwargs) # assign headers in lowercase df.columns = [x.lower() for x in df.columns] # extract district information from the contest column df['district'] = df['contest'].str.extract('(\d{1,3})', expand=True) df['precinct'] = df['precinct'].str.extract('(\d{1,3})', expand=False) df.loc[df['contest'].str.contains( '(Republican)', case=False), 'party'] = 'Republican' df.loc[df['contest'].str.contains( '(Democratic)', case=False), 'party'] = 'Democratic' df.contest.unique() # clean up office descriptions df.loc[df['contest'].str.contains( 'PRESIDENT AND VICE', case=False), 'contest'] = 'President' df.loc[df['contest'].str.contains( 'Governor', case=False), 'contest'] = 'Governor' df.loc[df['contest'].str.contains( 'UNITED STATES SENATOR', case=False), 'contest'] = 'U.S. Senate' df.loc[df['contest'].str.contains( 'U.S. REPRESENTATIVE', case=False), 'contest'] = 'U.S. House' df.loc[df['contest'].str.contains( 'Lieutenant Governor', case=False), 'contest'] = 'Lieutenant Governor' df.loc[df['contest'].str.contains( 'Governor', case=False), 'contest'] = 'Governor' df.loc[df['contest'].str.contains( 'Attorney General', case=False), 'contest'] = 'Attorney General' df.loc[df['contest'].str.contains( 'Secretary Of State', case=False), 'contest'] = 'Secretary of State' df.loc[df['contest'].str.contains( 'STATE ASSEMBLY', case=False), 'contest'] = 'State House' df.loc[df['contest'].str.contains( 'STATE SENATE', case=False), 'contest'] = 'State Senate' # select only the positions of interest df = df[df['contest'].isin(positions)].copy() df.votes = pd.to_numeric(df.votes, errors='coerce') # reverse naming convention from last, first to first last names = [] for index, row in df.iterrows(): name = HumanName(row['selection']) names.append(" ".join([name.first, name.last, name.suffix])) names = pd.Series(names) df.selection = names.values df.selection = df.selection.str.title() df.selection = df.selection.str.strip() df = df.rename(columns = header_map) return df if __name__ == '__main__': df = parser('scripts/primary_2018.csv') df.to_csv('2018/20180612__nv__primary__precinct.csv', index=False, float_format='%.0f')
mit
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/tests/indexes/timedeltas/test_tools.py
2
8150
from datetime import time, timedelta import numpy as np import pytest from pandas._libs.tslib import iNaT import pandas as pd from pandas import Series, TimedeltaIndex, isna, to_timedelta import pandas.util.testing as tm from pandas.util.testing import assert_series_equal class TestTimedeltas: def test_to_timedelta(self): def conv(v): return v.astype("m8[ns]") d1 = np.timedelta64(1, "D") with tm.assert_produces_warning(FutureWarning): assert to_timedelta("1 days 06:05:01.00003", box=False) == conv( d1 + np.timedelta64(6 * 3600 + 5 * 60 + 1, "s") + np.timedelta64(30, "us") ) with tm.assert_produces_warning(FutureWarning): assert to_timedelta("15.5us", box=False) == conv( np.timedelta64(15500, "ns") ) # empty string result = to_timedelta("", box=False) assert result.astype("int64") == iNaT result = to_timedelta(["", ""]) assert isna(result).all() # pass thru result = to_timedelta(np.array([np.timedelta64(1, "s")])) expected = pd.Index(np.array([np.timedelta64(1, "s")])) tm.assert_index_equal(result, expected) with tm.assert_produces_warning(FutureWarning): # ints result = np.timedelta64(0, "ns") expected = to_timedelta(0, box=False) assert result == expected # Series expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)]) result = to_timedelta(Series(["1d", "1days 00:00:01"])) tm.assert_series_equal(result, expected) # with units result = TimedeltaIndex( [np.timedelta64(0, "ns"), np.timedelta64(10, "s").astype("m8[ns]")] ) expected = to_timedelta([0, 10], unit="s") tm.assert_index_equal(result, expected) with tm.assert_produces_warning(FutureWarning): # single element conversion v = timedelta(seconds=1) result = to_timedelta(v, box=False) expected = np.timedelta64(timedelta(seconds=1)) assert result == expected with tm.assert_produces_warning(FutureWarning): v = np.timedelta64(timedelta(seconds=1)) result = to_timedelta(v, box=False) expected = np.timedelta64(timedelta(seconds=1)) assert result == expected # arrays of various dtypes arr = np.array([1] * 5, dtype="int64") result = to_timedelta(arr, unit="s") expected = TimedeltaIndex([np.timedelta64(1, "s")] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype="int64") result = to_timedelta(arr, unit="m") expected = TimedeltaIndex([np.timedelta64(1, "m")] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype="int64") result = to_timedelta(arr, unit="h") expected = TimedeltaIndex([np.timedelta64(1, "h")] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype="timedelta64[s]") result = to_timedelta(arr) expected = TimedeltaIndex([np.timedelta64(1, "s")] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype="timedelta64[D]") result = to_timedelta(arr) expected = TimedeltaIndex([np.timedelta64(1, "D")] * 5) tm.assert_index_equal(result, expected) with tm.assert_produces_warning(FutureWarning): # Test with lists as input when box=false expected = np.array(np.arange(3) * 1000000000, dtype="timedelta64[ns]") result = to_timedelta(range(3), unit="s", box=False) tm.assert_numpy_array_equal(expected, result) with tm.assert_produces_warning(FutureWarning): result = to_timedelta(np.arange(3), unit="s", box=False) tm.assert_numpy_array_equal(expected, result) with tm.assert_produces_warning(FutureWarning): result = to_timedelta([0, 1, 2], unit="s", box=False) tm.assert_numpy_array_equal(expected, result) with tm.assert_produces_warning(FutureWarning): # Tests with fractional seconds as input: expected = np.array( [0, 500000000, 800000000, 1200000000], dtype="timedelta64[ns]" ) result = to_timedelta([0.0, 0.5, 0.8, 1.2], unit="s", box=False) tm.assert_numpy_array_equal(expected, result) def test_to_timedelta_invalid(self): # bad value for errors parameter msg = "errors must be one of" with pytest.raises(ValueError, match=msg): to_timedelta(["foo"], errors="never") # these will error msg = "invalid unit abbreviation: foo" with pytest.raises(ValueError, match=msg): to_timedelta([1, 2], unit="foo") with pytest.raises(ValueError, match=msg): to_timedelta(1, unit="foo") # time not supported ATM msg = ( "Value must be Timedelta, string, integer, float, timedelta or" " convertible" ) with pytest.raises(ValueError, match=msg): to_timedelta(time(second=1)) assert to_timedelta(time(second=1), errors="coerce") is pd.NaT msg = "unit abbreviation w/o a number" with pytest.raises(ValueError, match=msg): to_timedelta(["foo", "bar"]) tm.assert_index_equal( TimedeltaIndex([pd.NaT, pd.NaT]), to_timedelta(["foo", "bar"], errors="coerce"), ) tm.assert_index_equal( TimedeltaIndex(["1 day", pd.NaT, "1 min"]), to_timedelta(["1 day", "bar", "1 min"], errors="coerce"), ) # gh-13613: these should not error because errors='ignore' invalid_data = "apple" assert invalid_data == to_timedelta(invalid_data, errors="ignore") invalid_data = ["apple", "1 days"] tm.assert_numpy_array_equal( np.array(invalid_data, dtype=object), to_timedelta(invalid_data, errors="ignore"), ) invalid_data = pd.Index(["apple", "1 days"]) tm.assert_index_equal(invalid_data, to_timedelta(invalid_data, errors="ignore")) invalid_data = Series(["apple", "1 days"]) tm.assert_series_equal( invalid_data, to_timedelta(invalid_data, errors="ignore") ) def test_to_timedelta_via_apply(self): # GH 5458 expected = Series([np.timedelta64(1, "s")]) result = Series(["00:00:01"]).apply(to_timedelta) tm.assert_series_equal(result, expected) result = Series([to_timedelta("00:00:01")]) tm.assert_series_equal(result, expected) def test_to_timedelta_on_missing_values(self): # GH5438 timedelta_NaT = np.timedelta64("NaT") actual = pd.to_timedelta(Series(["00:00:01", np.nan])) expected = Series( [np.timedelta64(1000000000, "ns"), timedelta_NaT], dtype="<m8[ns]" ) assert_series_equal(actual, expected) actual = pd.to_timedelta(Series(["00:00:01", pd.NaT])) assert_series_equal(actual, expected) actual = pd.to_timedelta(np.nan) assert actual.value == timedelta_NaT.astype("int64") actual = pd.to_timedelta(pd.NaT) assert actual.value == timedelta_NaT.astype("int64") def test_to_timedelta_float(self): # https://github.com/pandas-dev/pandas/issues/25077 arr = np.arange(0, 1, 1e-6)[-10:] result = pd.to_timedelta(arr, unit="s") expected_asi8 = np.arange(999990000, int(1e9), 1000, dtype="int64") tm.assert_numpy_array_equal(result.asi8, expected_asi8) def test_to_timedelta_box_deprecated(self): result = np.timedelta64(0, "ns") # Deprecated - see GH24416 with tm.assert_produces_warning(FutureWarning): to_timedelta(0, box=False) expected = to_timedelta(0).to_timedelta64() assert result == expected
apache-2.0
aroth85/aroth85.github.io
markdown_generator/publications.py
197
3887
# coding: utf-8 # # Publications markdown generator for academicpages # # Takes a TSV of publications with metadata and converts them for use with [academicpages.github.io](academicpages.github.io). This is an interactive Jupyter notebook, with the core python code in publications.py. Run either from the `markdown_generator` folder after replacing `publications.tsv` with one that fits your format. # # TODO: Make this work with BibTex and other databases of citations, rather than Stuart's non-standard TSV format and citation style. # # ## Data format # # The TSV needs to have the following columns: pub_date, title, venue, excerpt, citation, site_url, and paper_url, with a header at the top. # # - `excerpt` and `paper_url` can be blank, but the others must have values. # - `pub_date` must be formatted as YYYY-MM-DD. # - `url_slug` will be the descriptive part of the .md file and the permalink URL for the page about the paper. The .md file will be `YYYY-MM-DD-[url_slug].md` and the permalink will be `https://[yourdomain]/publications/YYYY-MM-DD-[url_slug]` # ## Import pandas # # We are using the very handy pandas library for dataframes. # In[2]: import pandas as pd # ## Import TSV # # Pandas makes this easy with the read_csv function. We are using a TSV, so we specify the separator as a tab, or `\t`. # # I found it important to put this data in a tab-separated values format, because there are a lot of commas in this kind of data and comma-separated values can get messed up. However, you can modify the import statement, as pandas also has read_excel(), read_json(), and others. # In[3]: publications = pd.read_csv("publications.tsv", sep="\t", header=0) publications # ## Escape special characters # # YAML is very picky about how it takes a valid string, so we are replacing single and double quotes (and ampersands) with their HTML encoded equivilents. This makes them look not so readable in raw format, but they are parsed and rendered nicely. # In[4]: html_escape_table = { "&": "&amp;", '"': "&quot;", "'": "&apos;" } def html_escape(text): """Produce entities within text.""" return "".join(html_escape_table.get(c,c) for c in text) # ## Creating the markdown files # # This is where the heavy lifting is done. This loops through all the rows in the TSV dataframe, then starts to concatentate a big string (```md```) that contains the markdown for each type. It does the YAML metadata first, then does the description for the individual page. If you don't want something to appear (like the "Recommended citation") # In[5]: import os for row, item in publications.iterrows(): md_filename = str(item.pub_date) + "-" + item.url_slug + ".md" html_filename = str(item.pub_date) + "-" + item.url_slug year = item.pub_date[:4] ## YAML variables md = "---\ntitle: \"" + item.title + '"\n' md += """collection: publications""" md += """\npermalink: /publication/""" + html_filename if len(str(item.excerpt)) > 5: md += "\nexcerpt: '" + html_escape(item.excerpt) + "'" md += "\ndate: " + str(item.pub_date) md += "\nvenue: '" + html_escape(item.venue) + "'" if len(str(item.paper_url)) > 5: md += "\npaperurl: '" + item.paper_url + "'" md += "\ncitation: '" + html_escape(item.citation) + "'" md += "\n---" ## Markdown description for individual page if len(str(item.paper_url)) > 5: md += "\n\n<a href='" + item.paper_url + "'>Download paper here</a>\n" if len(str(item.excerpt)) > 5: md += "\n" + html_escape(item.excerpt) + "\n" md += "\nRecommended citation: " + item.citation md_filename = os.path.basename(md_filename) with open("../_publications/" + md_filename, 'w') as f: f.write(md)
mit
deepesch/scikit-learn
examples/cluster/plot_segmentation_toy.py
258
3336
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
pianomania/scikit-learn
benchmarks/bench_plot_ward.py
117
1283
""" Benchmark scikit-learn's Ward implement compared to SciPy's """ import time import numpy as np from scipy.cluster import hierarchy import matplotlib.pyplot as plt from sklearn.cluster import AgglomerativeClustering ward = AgglomerativeClustering(n_clusters=3, linkage='ward') n_samples = np.logspace(.5, 3, 9) n_features = np.logspace(1, 3.5, 7) N_samples, N_features = np.meshgrid(n_samples, n_features) scikits_time = np.zeros(N_samples.shape) scipy_time = np.zeros(N_samples.shape) for i, n in enumerate(n_samples): for j, p in enumerate(n_features): X = np.random.normal(size=(n, p)) t0 = time.time() ward.fit(X) scikits_time[j, i] = time.time() - t0 t0 = time.time() hierarchy.ward(X) scipy_time[j, i] = time.time() - t0 ratio = scikits_time / scipy_time plt.figure("scikit-learn Ward's method benchmark results") plt.imshow(np.log(ratio), aspect='auto', origin="lower") plt.colorbar() plt.contour(ratio, levels=[1, ], colors='k') plt.yticks(range(len(n_features)), n_features.astype(np.int)) plt.ylabel('N features') plt.xticks(range(len(n_samples)), n_samples.astype(np.int)) plt.xlabel('N samples') plt.title("Scikit's time, in units of scipy time (log)") plt.show()
bsd-3-clause
RedhawkSDR/integration-gnuhawk
gnuradio/gr-utils/src/python/plot_psd_base.py
75
12725
#!/usr/bin/env python # # Copyright 2007,2008,2010,2011 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # try: import scipy from scipy import fftpack except ImportError: print "Please install SciPy to run this script (http://www.scipy.org/)" raise SystemExit, 1 try: from pylab import * except ImportError: print "Please install Matplotlib to run this script (http://matplotlib.sourceforge.net/)" raise SystemExit, 1 from optparse import OptionParser from scipy import log10 from gnuradio.eng_option import eng_option class plot_psd_base: def __init__(self, datatype, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.psdfftsize = options.psd_size self.specfftsize = options.spec_size self.dospec = options.enable_spec # if we want to plot the spectrogram self.datatype = getattr(scipy, datatype) #scipy.complex64 self.sizeof_data = self.datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 12), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.95, ("File: %s" % filename), weight="heavy", size=self.text_size) self.text_file_pos = figtext(0.10, 0.92, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.35, 0.92, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.915, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = scipy.array(self.sp_iq.get_xlim()) self.manager = get_current_fig_manager() connect('draw_event', self.zoom) connect('key_press_event', self.click) show() def get_data(self): self.position = self.hfile.tell()/self.sizeof_data self.text_file_pos.set_text("File Position: %d" % self.position) try: self.iq = scipy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print "End of File" return False else: # retesting length here as newer version of scipy does not throw a MemoryError, just # returns a zero-length array if(len(self.iq) > 0): tstep = 1.0 / self.sample_rate #self.time = scipy.array([tstep*(self.position + i) for i in xrange(len(self.iq))]) self.time = scipy.array([tstep*(i) for i in xrange(len(self.iq))]) self.iq_psd, self.freq = self.dopsd(self.iq) return True else: print "End of File" return False def dopsd(self, iq): ''' Need to do this here and plot later so we can do the fftshift ''' overlap = self.psdfftsize/4 winfunc = scipy.blackman psd,freq = mlab.psd(iq, self.psdfftsize, self.sample_rate, window = lambda d: d*winfunc(self.psdfftsize), noverlap = overlap) psd = 10.0*log10(abs(psd)) return (psd, freq) def make_plots(self): # if specified on the command-line, set file pointer self.hfile.seek(self.sizeof_data*self.start, 1) iqdims = [[0.075, 0.2, 0.4, 0.6], [0.075, 0.55, 0.4, 0.3]] psddims = [[0.575, 0.2, 0.4, 0.6], [0.575, 0.55, 0.4, 0.3]] specdims = [0.2, 0.125, 0.6, 0.3] # Subplot for real and imaginary parts of signal self.sp_iq = self.fig.add_subplot(2,2,1, position=iqdims[self.dospec]) self.sp_iq.set_title(("I&Q"), fontsize=self.title_font_size, fontweight="bold") self.sp_iq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_iq.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") # Subplot for PSD plot self.sp_psd = self.fig.add_subplot(2,2,2, position=psddims[self.dospec]) self.sp_psd.set_title(("PSD"), fontsize=self.title_font_size, fontweight="bold") self.sp_psd.set_xlabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.sp_psd.set_ylabel("Power Spectrum (dBm)", fontsize=self.label_font_size, fontweight="bold") r = self.get_data() self.plot_iq = self.sp_iq.plot([], 'bo-') # make plot for reals self.plot_iq += self.sp_iq.plot([], 'ro-') # make plot for imags self.draw_time(self.time, self.iq) # draw the plot self.plot_psd = self.sp_psd.plot([], 'b') # make plot for PSD self.draw_psd(self.freq, self.iq_psd) # draw the plot if self.dospec: # Subplot for spectrogram plot self.sp_spec = self.fig.add_subplot(2,2,3, position=specdims) self.sp_spec.set_title(("Spectrogram"), fontsize=self.title_font_size, fontweight="bold") self.sp_spec.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_spec.set_ylabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.draw_spec(self.time, self.iq) draw() def draw_time(self, t, iq): reals = iq.real imags = iq.imag self.plot_iq[0].set_data([t, reals]) self.plot_iq[1].set_data([t, imags]) self.sp_iq.set_xlim(t.min(), t.max()) self.sp_iq.set_ylim([1.5*min([reals.min(), imags.min()]), 1.5*max([reals.max(), imags.max()])]) def draw_psd(self, f, p): self.plot_psd[0].set_data([f, p]) self.sp_psd.set_ylim([p.min()-10, p.max()+10]) self.sp_psd.set_xlim([f.min(), f.max()]) def draw_spec(self, t, s): overlap = self.specfftsize/4 winfunc = scipy.blackman self.sp_spec.clear() self.sp_spec.specgram(s, self.specfftsize, self.sample_rate, window = lambda d: d*winfunc(self.specfftsize), noverlap = overlap, xextent=[t.min(), t.max()]) def update_plots(self): self.draw_time(self.time, self.iq) self.draw_psd(self.freq, self.iq_psd) if self.dospec: self.draw_spec(self.time, self.iq) self.xlim = scipy.array(self.sp_iq.get_xlim()) # so zoom doesn't get called draw() def zoom(self, event): newxlim = scipy.array(self.sp_iq.get_xlim()) curxlim = scipy.array(self.xlim) if(newxlim[0] != curxlim[0] or newxlim[1] != curxlim[1]): #xmin = max(0, int(ceil(self.sample_rate*(newxlim[0] - self.position)))) #xmax = min(int(ceil(self.sample_rate*(newxlim[1] - self.position))), len(self.iq)) xmin = max(0, int(ceil(self.sample_rate*(newxlim[0])))) xmax = min(int(ceil(self.sample_rate*(newxlim[1]))), len(self.iq)) iq = scipy.array(self.iq[xmin : xmax]) time = scipy.array(self.time[xmin : xmax]) iq_psd, freq = self.dopsd(iq) self.draw_psd(freq, iq_psd) self.xlim = scipy.array(self.sp_iq.get_xlim()) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): r = self.get_data() if(r): self.update_plots() def step_backward(self): # Step back in file position if(self.hfile.tell() >= 2*self.sizeof_data*self.block_length ): self.hfile.seek(-2*self.sizeof_data*self.block_length, 1) else: self.hfile.seek(-self.hfile.tell(),1) r = self.get_data() if(r): self.update_plots() @staticmethod def setup_options(): usage="%prog: [options] input_filename" description = "Takes a GNU Radio binary file (with specified data type using --data-type) and displays the I&Q data versus time as well as the power spectral density (PSD) plot. The y-axis values are plotted assuming volts as the amplitude of the I&Q streams and converted into dBm in the frequency domain (the 1/N power adjustment out of the FFT is performed internally). The script plots a certain block of data at a time, specified on the command line as -B or --block. The start position in the file can be set by specifying -s or --start and defaults to 0 (the start of the file). By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time and frequency axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples. Finally, the size of the FFT to use for the PSD and spectrogram plots can be set independently with --psd-size and --spec-size, respectively. The spectrogram plot does not display by default and is turned on with -S or --enable-spec." parser = OptionParser(option_class=eng_option, conflict_handler="resolve", usage=usage, description=description) parser.add_option("-d", "--data-type", type="string", default="complex64", help="Specify the data type (complex64, float32, (u)int32, (u)int16, (u)int8) [default=%default]") parser.add_option("-B", "--block", type="int", default=8192, help="Specify the block size [default=%default]") parser.add_option("-s", "--start", type="int", default=0, help="Specify where to start in the file [default=%default]") parser.add_option("-R", "--sample-rate", type="eng_float", default=1.0, help="Set the sampler rate of the data [default=%default]") parser.add_option("", "--psd-size", type="int", default=1024, help="Set the size of the PSD FFT [default=%default]") parser.add_option("", "--spec-size", type="int", default=256, help="Set the size of the spectrogram FFT [default=%default]") parser.add_option("-S", "--enable-spec", action="store_true", default=False, help="Turn on plotting the spectrogram [default=%default]") return parser def find(item_in, list_search): try: return list_search.index(item_in) != None except ValueError: return False def main(): parser = plot_psd_base.setup_options() (options, args) = parser.parse_args () if len(args) != 1: parser.print_help() raise SystemExit, 1 filename = args[0] dc = plot_psd_base(options.data_type, filename, options) if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
wright-group/diagram_artist
examples/WMEL_examples.py
1
11119
import matplotlib.pyplot as plt import diagram_artist.WMEL as WMEL #off-diagonal TRIEE------------------------------------------------------------- off_diagonal = WMEL.diagram(size = [6, 2], energies = [0., 0.43, 0.57, 1.], state_names = ['g', 'a', 'b', 'a+b']) off_diagonal.label_rows([r'$\mathrm{\alpha}$', r'$\mathrm{\beta}$', r'$\mathrm{\gamma}$']) off_diagonal.label_columns(['I', 'II', 'III', 'IV', 'V', 'VI']) #pw1 alpha off_diagonal.add_arrow([0, 0], 0, [0, 1], 'ket', '1') off_diagonal.add_arrow([0, 0], 1, [0, 2], 'bra', '-2') off_diagonal.add_arrow([0, 0], 2, [2, 0], 'bra', '2\'') off_diagonal.add_arrow([0, 0], 3, [1, 0], 'out') #pw1 beta off_diagonal.add_arrow([0, 1], 0, [0, 1], 'ket', '1') off_diagonal.add_arrow([0, 1], 1, [0, 2], 'bra', '-2') off_diagonal.add_arrow([0, 1], 2, [1, 3], 'ket', '2\'') off_diagonal.add_arrow([0, 1], 3, [3, 2], 'out') #pw2 alpha off_diagonal.add_arrow([1, 0], 0, [0, 1], 'ket', '1') off_diagonal.add_arrow([1, 0], 1, [1, 3], 'ket', '2\'') off_diagonal.add_arrow([1, 0], 2, [3, 1], 'ket', '-2') off_diagonal.add_arrow([1, 0], 3, [1, 0], 'out') #pw2 beta off_diagonal.add_arrow([1, 1], 0, [0, 1], 'ket', '1') off_diagonal.add_arrow([1, 1], 1, [1, 3], 'ket', '2\'') off_diagonal.add_arrow([1, 1], 2, [0, 2], 'bra', '-2') off_diagonal.add_arrow([1, 1], 3, [3, 2], 'out') #pw3 alpha off_diagonal.add_arrow([2, 0], 0, [0, 2], 'bra', '-2') off_diagonal.add_arrow([2, 0], 1, [0, 1], 'ket', '1') off_diagonal.add_arrow([2, 0], 2, [2, 0], 'bra', '2\'') off_diagonal.add_arrow([2, 0], 3, [1, 0], 'out') #pw3 beta off_diagonal.add_arrow([2, 1], 0, [0, 2], 'ket', '-2') off_diagonal.add_arrow([2, 1], 1, [0, 1], 'ket', '1') off_diagonal.add_arrow([2, 1], 2, [1, 3], 'bra', '2\'') off_diagonal.add_arrow([2, 1], 3, [3, 2], 'out') #pw4 alpha off_diagonal.add_arrow([3, 0], 0, [0, 2], 'ket', '2\'') off_diagonal.add_arrow([3, 0], 1, [2, 3], 'ket', '1') off_diagonal.add_arrow([3, 0], 2, [3, 1], 'ket', '-2') off_diagonal.add_arrow([3, 0], 3, [1, 0], 'out') #pw4 beta off_diagonal.add_arrow([3, 1], 0, [0, 2], 'ket', '2\'') off_diagonal.add_arrow([3, 1], 1, [2, 3], 'ket', '1') off_diagonal.add_arrow([3, 1], 2, [0, 2], 'bra', '-2') off_diagonal.add_arrow([3, 1], 3, [3, 2], 'out') #pw5 alpha off_diagonal.add_arrow([4, 0], 0, [0, 2], 'bra', '-2') off_diagonal.add_arrow([4, 0], 1, [2, 0], 'bra', '2\'') off_diagonal.add_arrow([4, 0], 2, [0, 1], 'ket', '1') off_diagonal.add_arrow([4, 0], 3, [1, 0], 'out') #pw5 beta off_diagonal.add_arrow([4, 1], 0, [0, 2], 'bra', '-2') off_diagonal.add_arrow([4, 1], 1, [0, 2], 'ket', '2\'') off_diagonal.add_arrow([4, 1], 2, [2, 3], 'ket', '1') off_diagonal.add_arrow([4, 1], 3, [3, 2], 'out') #pw6 alpha off_diagonal.add_arrow([5, 0], 0, [0, 2], 'ket', '2\'') off_diagonal.add_arrow([5, 0], 1, [2, 0], 'ket', '-2') off_diagonal.add_arrow([5, 0], 2, [0, 1], 'ket', '1') off_diagonal.add_arrow([5, 0], 3, [1, 0], 'out') #pw6 beta off_diagonal.add_arrow([5, 1], 0, [0, 2], 'ket', '2\'') off_diagonal.add_arrow([5, 1], 1, [0, 2], 'bra', '-2') off_diagonal.add_arrow([5, 1], 2, [2, 3], 'ket', '1') off_diagonal.add_arrow([5, 1], 3, [3, 2], 'out') off_diagonal.plot('WMEL_off_diagonal.png') plt.close() #on-diagonal TRIEE-------------------------------------------------------------- on_diagonal = WMEL.diagram(size = [6, 3], energies = [0., .5, 1.], state_names = ['g', 'a', 'b', 'a+b']) on_diagonal.label_rows([r'$\mathrm{\alpha}$', r'$\mathrm{\beta}$', r'$\mathrm{\gamma}$']) on_diagonal.label_columns(['I', 'II', 'III', 'IV', 'V', 'VI']) on_diagonal.clear_diagram([1, 2]) on_diagonal.clear_diagram([3, 2]) #pw1 alpha on_diagonal.add_arrow([0, 0], 0, [0, 1], 'ket', '1') on_diagonal.add_arrow([0, 0], 1, [0, 1], 'bra', '-2') on_diagonal.add_arrow([0, 0], 2, [1, 0], 'bra', '2\'') on_diagonal.add_arrow([0, 0], 3, [1, 0], 'out') #pw1 beta on_diagonal.add_arrow([0, 1], 0, [0, 1], 'ket', '1') on_diagonal.add_arrow([0, 1], 1, [0, 1], 'bra', '-2') on_diagonal.add_arrow([0, 1], 2, [1, 2], 'ket', '2\'') on_diagonal.add_arrow([0, 1], 3, [2, 1], 'out') #pw1 gamma on_diagonal.add_arrow([0, 2], 0, [0, 1], 'ket', '1') on_diagonal.add_arrow([0, 2], 1, [1, 0], 'ket', '-2') on_diagonal.add_arrow([0, 2], 2, [0, 1], 'ket', '2\'') on_diagonal.add_arrow([0, 2], 3, [1, 0], 'out') #pw2 alpha on_diagonal.add_arrow([1, 0], 0, [0, 1], 'ket', '1') on_diagonal.add_arrow([1, 0], 1, [1, 2], 'ket', '2\'') on_diagonal.add_arrow([1, 0], 2, [2, 1], 'ket', '-2') on_diagonal.add_arrow([1, 0], 3, [1, 0], 'out') #pw2 beta on_diagonal.add_arrow([1, 1], 0, [0, 1], 'ket', '1') on_diagonal.add_arrow([1, 1], 1, [1, 2], 'ket', '2\'') on_diagonal.add_arrow([1, 1], 2, [0, 1], 'bra', '-2') on_diagonal.add_arrow([1, 1], 3, [2, 1], 'out') #pw3 alpha on_diagonal.add_arrow([2, 0], 0, [0, 1], 'bra', '-2') on_diagonal.add_arrow([2, 0], 1, [0, 1], 'ket', '1') on_diagonal.add_arrow([2, 0], 2, [1, 0], 'bra', '2\'') on_diagonal.add_arrow([2, 0], 3, [1, 0], 'out') #pw3 beta on_diagonal.add_arrow([2, 1], 0, [0, 1], 'bra', '-2') on_diagonal.add_arrow([2, 1], 1, [0, 1], 'ket', '1') on_diagonal.add_arrow([2, 1], 2, [1, 2], 'ket', '2\'') on_diagonal.add_arrow([2, 1], 3, [2, 1], 'out') #pw3 gamma on_diagonal.add_arrow([2, 2], 0, [0, 1], 'bra', '-2') on_diagonal.add_arrow([2, 2], 1, [1, 0], 'bra', '1') on_diagonal.add_arrow([2, 2], 2, [0, 1], 'ket', '2\'') on_diagonal.add_arrow([2, 2], 3, [1, 0], 'out') #pw4 alpha on_diagonal.add_arrow([3, 0], 0, [0, 1], 'ket', '2\'') on_diagonal.add_arrow([3, 0], 1, [1, 2], 'ket', '1') on_diagonal.add_arrow([3, 0], 2, [2, 1], 'ket', '-2') on_diagonal.add_arrow([3, 0], 3, [1, 0], 'out') #pw4 beta on_diagonal.add_arrow([3, 1], 0, [0, 1], 'ket', '2\'') on_diagonal.add_arrow([3, 1], 1, [1, 2], 'ket', '1') on_diagonal.add_arrow([3, 1], 2, [0, 1], 'bra', '-2') on_diagonal.add_arrow([3, 1], 3, [2, 1], 'out') #pw5 alpha on_diagonal.add_arrow([4, 0], 0, [0, 1], 'bra', '-2') on_diagonal.add_arrow([4, 0], 1, [1, 0], 'bra', '2\'') on_diagonal.add_arrow([4, 0], 2, [0, 1], 'ket', '1') on_diagonal.add_arrow([4, 0], 3, [1, 0], 'out') #pw5 beta on_diagonal.add_arrow([4, 1], 0, [0, 1], 'bra', '-2') on_diagonal.add_arrow([4, 1], 1, [0, 1], 'ket', '2\'') on_diagonal.add_arrow([4, 1], 2, [1, 2], 'ket', '1') on_diagonal.add_arrow([4, 1], 3, [2, 1], 'out') #pw5 gamma on_diagonal.add_arrow([4, 2], 0, [0, 1], 'bra', '-2') on_diagonal.add_arrow([4, 2], 1, [0, 1], 'ket', '2\'') on_diagonal.add_arrow([4, 2], 2, [1, 0], 'bra', '1') on_diagonal.add_arrow([4, 2], 3, [0, 1], 'out') #pw6 alpha on_diagonal.add_arrow([5, 0], 0, [0, 1], 'ket', '2\'') on_diagonal.add_arrow([5, 0], 1, [1, 0], 'ket', '-2') on_diagonal.add_arrow([5, 0], 2, [0, 1], 'ket', '1') on_diagonal.add_arrow([5, 0], 3, [1, 0], 'out') #pw6 beta on_diagonal.add_arrow([5, 1], 0, [0, 1], 'ket', '2\'') on_diagonal.add_arrow([5, 1], 1, [0, 1], 'bra', '-2') on_diagonal.add_arrow([5, 1], 2, [1, 2], 'ket', '1') on_diagonal.add_arrow([5, 1], 3, [2, 1], 'out') #pw6 beta on_diagonal.add_arrow([5, 2], 0, [0, 1], 'ket', '2\'') on_diagonal.add_arrow([5, 2], 1, [0, 1], 'bra', '-2') on_diagonal.add_arrow([5, 2], 2, [1, 0], 'bra', '1') on_diagonal.add_arrow([5, 2], 3, [1, 0], 'out') on_diagonal.plot('WMEL_on_diagonal.png') plt.close() #TSF---------------------------------------------------------------------------- tsf = WMEL.diagram(size = [1, 1], energies = [0., 0.15, 0.25, 1.], state_names = ['g', 'v', 'v+v\'', 'virt'], virtual = [3]) #pw1 alpha tsf.add_arrow([0, 0], 0, [0, 1], 'ket', '1') tsf.add_arrow([0, 0], 1, [1, 2], 'ket', '2') tsf.add_arrow([0, 0], 2, [2, 3], 'ket', '800') tsf.add_arrow([0, 0], 3, [3, 0], 'out') tsf.plot('TSF.png') plt.close() #population transfer------------------------------------------------------------ pop_transfer = WMEL.diagram(size = [4, 3], energies = [0., 0.4, 0.5, 0.8, 0.9, 1.], number_of_interactions = 6, state_names = ['g', '1S', '1P', '2x 1S', '1S+1P', '2x 1P']) pop_transfer.label_rows([r'$\mathrm{\alpha}$', r'$\mathrm{\beta}$', r'$\mathrm{\gamma}$']) pop_transfer.label_columns(['diag before', 'cross before', 'diag after', 'cross after'], font_size = 8) pop_transfer.clear_diagram([1, 2]) pop_transfer.clear_diagram([2, 2]) #diag before alpha pop_transfer.add_arrow([0, 0], 0, [0, 2], 'ket', '-2') pop_transfer.add_arrow([0, 0], 1, [2, 0], 'ket', '2\'') pop_transfer.add_arrow([0, 0], 2, [0, 2], 'ket', '1') pop_transfer.add_arrow([0, 0], 3, [2, 0], 'out') #diag before beta pop_transfer.add_arrow([0, 1], 0, [0, 2], 'ket', '-2') pop_transfer.add_arrow([0, 1], 1, [0, 2], 'bra', '2\'') pop_transfer.add_arrow([0, 1], 2, [2, 5], 'ket', '1') pop_transfer.add_arrow([0, 1], 3, [5, 2], 'out') #diag before gamma pop_transfer.add_arrow([0, 2], 0, [0, 2], 'ket', '-2') pop_transfer.add_arrow([0, 2], 1, [0, 2], 'bra', '2\'') pop_transfer.add_arrow([0, 2], 2, [2, 0], 'bra', '1') pop_transfer.add_arrow([0, 2], 3, [2, 0], 'out') #cross before alpha pop_transfer.add_arrow([1, 0], 0, [0, 2], 'ket', '-2') pop_transfer.add_arrow([1, 0], 1, [2, 0], 'ket', '2\'') pop_transfer.add_arrow([1, 0], 2, [0, 1], 'ket', '1') pop_transfer.add_arrow([1, 0], 3, [1, 0], 'out') #cross before beta pop_transfer.add_arrow([1, 1], 0, [0, 2], 'ket', '-2') pop_transfer.add_arrow([1, 1], 1, [0, 2], 'bra', '2\'') pop_transfer.add_arrow([1, 1], 2, [2, 4], 'ket', '1') pop_transfer.add_arrow([1, 1], 3, [4, 2], 'out') #diag after alpha pop_transfer.add_arrow([2, 0], 0, [0, 2], 'ket', '-2') pop_transfer.add_arrow([2, 0], 1, [2, 0], 'ket', '2\'') pop_transfer.add_arrow([2, 0], 4, [0, 2], 'ket', '1') pop_transfer.add_arrow([2, 0], 5, [2, 0], 'out') #diag after beta pop_transfer.add_arrow([2, 1], 0, [0, 2], 'ket', '-2') pop_transfer.add_arrow([2, 1], 1, [0, 2], 'bra', '2\'') pop_transfer.add_arrow([2, 1], 2, [2, 1], 'ket') pop_transfer.add_arrow([2, 1], 3, [2, 1], 'bra') pop_transfer.add_arrow([2, 1], 4, [1, 4], 'ket', '1') pop_transfer.add_arrow([2, 1], 5, [4, 1], 'out') #cross after alpha pop_transfer.add_arrow([3, 0], 0, [0, 2], 'ket', '-2') pop_transfer.add_arrow([3, 0], 1, [2, 0], 'ket', '2\'') pop_transfer.add_arrow([3, 0], 4, [0, 1], 'ket', '1') pop_transfer.add_arrow([3, 0], 5, [1, 0], 'out') #cross after beta pop_transfer.add_arrow([3, 1], 0, [0, 2], 'ket', '-2') pop_transfer.add_arrow([3, 1], 1, [0, 2], 'bra', '2\'') pop_transfer.add_arrow([3, 1], 2, [2, 1], 'ket') pop_transfer.add_arrow([3, 1], 3, [2, 1], 'bra') pop_transfer.add_arrow([3, 1], 4, [1, 3], 'ket', '1') pop_transfer.add_arrow([3, 1], 5, [3, 1], 'out') #cross after gamma pop_transfer.add_arrow([3, 2], 0, [0, 2], 'ket', '-2') pop_transfer.add_arrow([3, 2], 1, [0, 2], 'bra', '2\'') pop_transfer.add_arrow([3, 2], 2, [2, 1], 'ket') pop_transfer.add_arrow([3, 2], 3, [2, 1], 'bra') pop_transfer.add_arrow([3, 2], 4, [1, 0], 'bra', '1') pop_transfer.add_arrow([3, 2], 5, [1, 0], 'out') pop_transfer.plot('pop_transfer.png') plt.close()
mit
multigcs/quadfork
Libraries/Mavlink/pymavlink/tools/mavgpslag.py
43
3446
#!/usr/bin/env python ''' calculate GPS lag from DF log ''' import sys, time, os from argparse import ArgumentParser parser = ArgumentParser(description=__doc__) parser.add_argument("--plot", action='store_true', default=False, help="plot errors") parser.add_argument("--minspeed", type=float, default=6, help="minimum speed") parser.add_argument("logs", metavar="LOG", nargs="+") args = parser.parse_args() from pymavlink import mavutil from pymavlink.mavextra import * from pymavlink.rotmat import Vector3, Matrix3 ''' Support having a $HOME/.pymavlink/mavextra.py for extra graphing functions ''' home = os.getenv('HOME') if home is not None: extra = os.path.join(home, '.pymavlink', 'mavextra.py') if os.path.exists(extra): import imp mavuser = imp.load_source('pymavlink.mavuser', extra) from pymavlink.mavuser import * def velocity_error(timestamps, vel, gaccel, accel_indexes, imu_dt, shift=0): '''return summed velocity error''' sum = 0 count = 0 for i in range(0, len(vel)-1): dv = vel[i+1] - vel[i] da = Vector3() for idx in range(1+accel_indexes[i]-shift, 1+accel_indexes[i+1]-shift): da += gaccel[idx] dt1 = timestamps[i+1] - timestamps[i] dt2 = (accel_indexes[i+1] - accel_indexes[i]) * imu_dt da *= imu_dt da *= dt1/dt2 #print(accel_indexes[i+1] - accel_indexes[i]) ex = abs(dv.x - da.x) ey = abs(dv.y - da.y) sum += 0.5*(ex+ey) count += 1 if count == 0: return None return sum/count def gps_lag(logfile): '''work out gps velocity lag times for a log file''' print("Processing log %s" % filename) mlog = mavutil.mavlink_connection(filename) timestamps = [] vel = [] gaccel = [] accel_indexes = [] ATT = None IMU = None dtsum = 0 dtcount = 0 while True: m = mlog.recv_match(type=['GPS','IMU','ATT']) if m is None: break t = m.get_type() if t == 'GPS' and m.Status==3 and m.Spd>args.minspeed: v = Vector3(m.Spd*cos(radians(m.GCrs)), m.Spd*sin(radians(m.GCrs)), m.VZ) vel.append(v) timestamps.append(m._timestamp) accel_indexes.append(max(len(gaccel)-1,0)) elif t == 'ATT': ATT = m elif t == 'IMU': if ATT is not None: gaccel.append(earth_accel_df(m, ATT)) if IMU is not None: dt = m._timestamp - IMU._timestamp dtsum += dt dtcount += 1 IMU = m imu_dt = dtsum / dtcount print("Loaded %u samples imu_dt=%.3f" % (len(vel), imu_dt)) besti = -1 besterr = 0 delays = [] errors = [] for i in range(0,100): err = velocity_error(timestamps, vel, gaccel, accel_indexes, imu_dt, shift=i) if err is None: break errors.append(err) delays.append(i*imu_dt) if besti == -1 or err < besterr: besti = i besterr = err print("Best %u (%.3fs) %f" % (besti, besti*imu_dt, besterr)) if args.plot: import matplotlib.pyplot as plt plt.plot(delays, errors, 'bo-') x1,x2,y1,y2 = plt.axis() plt.axis((x1,x2,0,y2)) plt.ylabel('Error') plt.xlabel('Delay(s)') plt.show() for filename in args.logs: gps_lag(filename)
gpl-3.0
inside-track/pemi
jobs/simple_job.py
1
7428
from pathlib import Path import pandas as pd import pemi import pemi.pipes.csv import pemi.pipes.dask class JoinSalesToBeersPipe(pemi.Pipe): def config(self): # Maybe we only need the *REQUIRED* fields in the schemas for data subjects? # OR!!! We don't even really need the schemas if they're just "pass-through" # Schemas are used to do data-validation and formatting. If we don't need to # do validation or formatting , we don't need the schema. # Blarg..... but we do need the schemas in order to stub the data. # So... here's what it might look like if we did default values.... self.source( name='sales', schema={ 'beer_id': {'type': 'integer', 'required': True} } ) self.source( name='beers', schema={ 'id': {'type': 'integer', 'required': True}, 'style_id': {'type': 'string'} } ) self.target( name='joined', schema={ 'beer_id': {'type': 'integer', 'required': True}, 'style_id': {'type': 'string'} } ) self.target( name='styles', schema={ 'style_id': {'type': 'string'} } ) def flow(self): sales_df = self.sources['sales'].data beers_df = self.sources['beers'].data joined_df = pd.merge(sales_df, beers_df, how='inner', left_on='beer_id', right_on='id') self.targets['joined'].data = joined_df self.targets['styles'].data = joined_df[['style_id']] class LookupStylePipe(pemi.Pipe): def config(self): self.source( name='ids', schema={ 'style_id': {'type': 'string'} } ) self.target( name='names', schema={ 'style': {'type': 'string'} } ) self.style_dict = { '1': 'IPA', '2': 'Pale', '3': 'Stout' } def lookup(self, key): result = self.style_dict.get(key) if result == None: result = 'Unknown id {}'.format(key) return result def flow(self): self.targets['names'].data = pd.DataFrame() self.targets['names'].data['style'] = self.sources['ids'].data['style_id'].apply(self.lookup) class AddLookupPipe(pemi.Pipe): def config(self): self.source( name='joined', schema={ 'beer_id': {'type': 'integer', 'required': True}, 'sold_at': {'type': 'date', 'in_format': '%d/%m/%Y', 'required': True}, } ) self.source( name='style', schema={ 'style': {'type': 'string'} } ) self.target( name='beer_sales', schema={ 'beer_id': {'type': 'integer', 'required': True}, 'sold_at': {'type': 'date', 'in_format': '%d/%m/%Y', 'required': True}, 'style': {'type': 'string'} } ) def flow(self): beer_sales_df = self.sources['joined'].data beer_sales_df['style'] = self.sources['style'].data['style'] self.targets['beer_sales'].data = beer_sales_df class MyJob(pemi.Pipe): def config(self): self.schemas = { 'sources': { 'sales_file': { 'beer_id': {'type': 'integer', 'required': True}, 'sold_at': {'type': 'date', 'in_format': '%m/%d/%Y', 'required': True}, 'quantity': {'type': 'integer', 'required': True} }, 'beers_file': { 'id': {'type': 'integer', 'required': True}, 'name': {'type': 'string', 'required': True}, 'style_id': {'type': 'string'}, 'abv': {'type': 'float'}, 'price': {'type': 'decimal', 'precision': 16, 'scale': 2} } }, 'targets': { 'beer_sales_file': { 'beer_id': {'type': 'integer', 'required': True}, 'name': {'type': 'string', 'required': True}, 'style': {'type': 'string'}, 'sold_at': {'type': 'date', 'in_format': '%m/%d/%Y', 'required': True}, 'quantity': {'type': 'integer', 'required': True}, 'unit_price': {'type': 'decimal', 'precision': 16, 'scale': 2}, 'sell_price': {'type': 'decimal', 'precision': 16, 'scale': 2} } } } # This "job" doesn't really have sources/targets # It's just a pipe connector # So, how do I deal with schemas? Particularly the intermediate ones? # We could put them in the parameters of the pipes # Or make a distinction between required and inferred schemas..... # Named pipes # Call these pipes? Pipes in pipes self.pipe( name='sales_file', pipe=pemi.pipes.csv.LocalCsvFileSourcePipe( schema=self.schemas['sources']['sales_file'], paths=[Path(__file__).parent / Path('fixtures') / Path('sales.csv')], csv_opts={ 'sep': '|' } ) ) self.pipe( name='beers_file', pipe=pemi.pipes.csv.LocalCsvFileSourcePipe( schema=self.schemas['sources']['beers_file'], paths=[Path(__file__).parent / Path('fixtures') / Path('beers.csv')], csv_opts={ 'sep': '|' } ) ) self.pipe( name='join_sales_to_beers', pipe=JoinSalesToBeersPipe() ) self.pipe( name='lookup_style', pipe=LookupStylePipe() ) self.pipe( name='add_lookup', pipe=AddLookupPipe() ) self.pipe( name='beer_sales_file', pipe=pemi.pipes.csv.LocalCsvFileTargetPipe( schema = self.schemas['targets']['beer_sales_file'], path='beer_sales.csv' ) ) # Connections self.connect( self.pipes['sales_file'], 'main' ).to( self.pipes['join_sales_to_beers'], 'sales' ) self.connect( self.pipes['beers_file'], 'main' ).to( self.pipes['join_sales_to_beers'], 'beers' ) self.connect( self.pipes['join_sales_to_beers'], 'joined' ).to( self.pipes['add_lookup'], 'joined' ) self.connect( self.pipes['join_sales_to_beers'], 'styles' ).to( self.pipes['lookup_style'], 'ids' ) self.connect( self.pipes['lookup_style'], 'names' ).to( self.pipes['add_lookup'], 'style' ) self.connect( self.pipes['add_lookup'], 'beer_sales' ).to( self.pipes['beer_sales_file'], 'main' ) self.dask = pemi.pipes.dask.DaskFlow(self.connections) def flow(self): self.dask.flow()
mit
youprofit/scikit-image
doc/examples/plot_brief.py
32
1879
""" ======================= BRIEF binary descriptor ======================= This example demonstrates the BRIEF binary description algorithm. The descriptor consists of relatively few bits and can be computed using a set of intensity difference tests. The short binary descriptor results in low memory footprint and very efficient matching based on the Hamming distance metric. BRIEF does not provide rotation-invariance. Scale-invariance can be achieved by detecting and extracting features at different scales. """ from skimage import data from skimage import transform as tf from skimage.feature import (match_descriptors, corner_peaks, corner_harris, plot_matches, BRIEF) from skimage.color import rgb2gray import matplotlib.pyplot as plt img1 = rgb2gray(data.astronaut()) tform = tf.AffineTransform(scale=(1.2, 1.2), translation=(0, -100)) img2 = tf.warp(img1, tform) img3 = tf.rotate(img1, 25) keypoints1 = corner_peaks(corner_harris(img1), min_distance=5) keypoints2 = corner_peaks(corner_harris(img2), min_distance=5) keypoints3 = corner_peaks(corner_harris(img3), min_distance=5) extractor = BRIEF() extractor.extract(img1, keypoints1) keypoints1 = keypoints1[extractor.mask] descriptors1 = extractor.descriptors extractor.extract(img2, keypoints2) keypoints2 = keypoints2[extractor.mask] descriptors2 = extractor.descriptors extractor.extract(img3, keypoints3) keypoints3 = keypoints3[extractor.mask] descriptors3 = extractor.descriptors matches12 = match_descriptors(descriptors1, descriptors2, cross_check=True) matches13 = match_descriptors(descriptors1, descriptors3, cross_check=True) fig, ax = plt.subplots(nrows=2, ncols=1) plt.gray() plot_matches(ax[0], img1, img2, keypoints1, keypoints2, matches12) ax[0].axis('off') plot_matches(ax[1], img1, img3, keypoints1, keypoints3, matches13) ax[1].axis('off') plt.show()
bsd-3-clause
mfjb/scikit-learn
examples/covariance/plot_robust_vs_empirical_covariance.py
248
6359
r""" ======================================= Robust vs Empirical covariance estimate ======================================= The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set. Minimum Covariance Determinant Estimator ---------------------------------------- The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples} - n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples} + n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. After a correction step aiming at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust estimates of the data set location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]_. Evaluation ---------- In this example, we compare the estimation errors that are made when using various types of location and covariance estimates on contaminated Gaussian distributed data sets: - The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the data set - The robust MCD, that has a low error provided :math:`n_\text{samples} > 5n_\text{features}` - The mean and the empirical covariance of the observations that are known to be good ones. This can be considered as a "perfect" MCD estimation, so one can trust our implementation by comparing to this case. References ---------- .. [1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984. .. [2] Johanna Hardin, David M Rocke. Journal of Computational and Graphical Statistics. December 1, 2005, 14(4): 928-946. .. [3] Zoubir A., Koivunen V., Chakhchoukh Y. and Muma M. (2012). Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts. IEEE Signal Processing Magazine 29(4), 61-80. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.covariance import EmpiricalCovariance, MinCovDet # example settings n_samples = 80 n_features = 5 repeat = 10 range_n_outliers = np.concatenate( (np.linspace(0, n_samples / 8, 5), np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])) # definition of arrays to store results err_loc_mcd = np.zeros((range_n_outliers.size, repeat)) err_cov_mcd = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_full = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_full = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat)) # computation for i, n_outliers in enumerate(range_n_outliers): for j in range(repeat): rng = np.random.RandomState(i * j) # generate data X = rng.randn(n_samples, n_features) # add some outliers outliers_index = rng.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (np.random.randint(2, size=(n_outliers, n_features)) - 0.5) X[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False # fit a Minimum Covariance Determinant (MCD) robust estimator to data mcd = MinCovDet().fit(X) # compare raw robust estimates with the true location and covariance err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2) err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features)) # compare estimators learned from the full data set with true # parameters err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2) err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm( np.eye(n_features)) # compare with an empirical covariance learned from a pure data set # (i.e. "perfect" mcd) pure_X = X[inliers_mask] pure_location = pure_X.mean(0) pure_emp_cov = EmpiricalCovariance().fit(pure_X) err_loc_emp_pure[i, j] = np.sum(pure_location ** 2) err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features)) # Display results font_prop = matplotlib.font_manager.FontProperties(size=11) plt.subplot(2, 1, 1) plt.errorbar(range_n_outliers, err_loc_mcd.mean(1), yerr=err_loc_mcd.std(1) / np.sqrt(repeat), label="Robust location", color='m') plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1), yerr=err_loc_emp_full.std(1) / np.sqrt(repeat), label="Full data set mean", color='green') plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1), yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat), label="Pure data set mean", color='black') plt.title("Influence of outliers on the location estimation") plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)") plt.legend(loc="upper left", prop=font_prop) plt.subplot(2, 1, 2) x_size = range_n_outliers.size plt.errorbar(range_n_outliers, err_cov_mcd.mean(1), yerr=err_cov_mcd.std(1), label="Robust covariance (mcd)", color='m') plt.errorbar(range_n_outliers[:(x_size / 5 + 1)], err_cov_emp_full.mean(1)[:(x_size / 5 + 1)], yerr=err_cov_emp_full.std(1)[:(x_size / 5 + 1)], label="Full data set empirical covariance", color='green') plt.plot(range_n_outliers[(x_size / 5):(x_size / 2 - 1)], err_cov_emp_full.mean(1)[(x_size / 5):(x_size / 2 - 1)], color='green', ls='--') plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1), yerr=err_cov_emp_pure.std(1), label="Pure data set empirical covariance", color='black') plt.title("Influence of outliers on the covariance estimation") plt.xlabel("Amount of contamination (%)") plt.ylabel("RMSE") plt.legend(loc="upper center", prop=font_prop) plt.show()
bsd-3-clause
RobertABT/heightmap
build/matplotlib/examples/widgets/menu.py
10
4936
from __future__ import division, print_function import numpy as np import matplotlib import matplotlib.colors as colors import matplotlib.patches as patches import matplotlib.mathtext as mathtext import matplotlib.pyplot as plt import matplotlib.artist as artist import matplotlib.image as image class ItemProperties: def __init__(self, fontsize=14, labelcolor='black', bgcolor='yellow', alpha=1.0): self.fontsize = fontsize self.labelcolor = labelcolor self.bgcolor = bgcolor self.alpha = alpha self.labelcolor_rgb = colors.colorConverter.to_rgb(labelcolor) self.bgcolor_rgb = colors.colorConverter.to_rgb(bgcolor) class MenuItem(artist.Artist): parser = mathtext.MathTextParser("Bitmap") padx = 5 pady = 5 def __init__(self, fig, labelstr, props=None, hoverprops=None, on_select=None): artist.Artist.__init__(self) self.set_figure(fig) self.labelstr = labelstr if props is None: props = ItemProperties() if hoverprops is None: hoverprops = ItemProperties() self.props = props self.hoverprops = hoverprops self.on_select = on_select x, self.depth = self.parser.to_mask( labelstr, fontsize=props.fontsize, dpi=fig.dpi) if props.fontsize!=hoverprops.fontsize: raise NotImplementedError( 'support for different font sizes not implemented') self.labelwidth = x.shape[1] self.labelheight = x.shape[0] self.labelArray = np.zeros((x.shape[0], x.shape[1], 4)) self.labelArray[:, :, -1] = x/255. self.label = image.FigureImage(fig, origin='upper') self.label.set_array(self.labelArray) # we'll update these later self.rect = patches.Rectangle((0,0), 1,1) self.set_hover_props(False) fig.canvas.mpl_connect('button_release_event', self.check_select) def check_select(self, event): over, junk = self.rect.contains(event) if not over: return if self.on_select is not None: self.on_select(self) def set_extent(self, x, y, w, h): print(x, y, w, h) self.rect.set_x(x) self.rect.set_y(y) self.rect.set_width(w) self.rect.set_height(h) self.label.ox = x+self.padx self.label.oy = y-self.depth+self.pady/2. self.rect._update_patch_transform() self.hover = False def draw(self, renderer): self.rect.draw(renderer) self.label.draw(renderer) def set_hover_props(self, b): if b: props = self.hoverprops else: props = self.props r, g, b = props.labelcolor_rgb self.labelArray[:, :, 0] = r self.labelArray[:, :, 1] = g self.labelArray[:, :, 2] = b self.label.set_array(self.labelArray) self.rect.set(facecolor=props.bgcolor, alpha=props.alpha) def set_hover(self, event): 'check the hover status of event and return true if status is changed' b,junk = self.rect.contains(event) changed = (b != self.hover) if changed: self.set_hover_props(b) self.hover = b return changed class Menu: def __init__(self, fig, menuitems): self.figure = fig fig.suppressComposite = True self.menuitems = menuitems self.numitems = len(menuitems) maxw = max([item.labelwidth for item in menuitems]) maxh = max([item.labelheight for item in menuitems]) totalh = self.numitems*maxh + (self.numitems+1)*2*MenuItem.pady x0 = 100 y0 = 400 width = maxw + 2*MenuItem.padx height = maxh+MenuItem.pady for item in menuitems: left = x0 bottom = y0-maxh-MenuItem.pady item.set_extent(left, bottom, width, height) fig.artists.append(item) y0 -= maxh + MenuItem.pady fig.canvas.mpl_connect('motion_notify_event', self.on_move) def on_move(self, event): draw = False for item in self.menuitems: draw = item.set_hover(event) if draw: self.figure.canvas.draw() break fig = plt.figure() fig.subplots_adjust(left=0.3) props = ItemProperties(labelcolor='black', bgcolor='yellow', fontsize=15, alpha=0.2) hoverprops = ItemProperties(labelcolor='white', bgcolor='blue', fontsize=15, alpha=0.2) menuitems = [] for label in ('open', 'close', 'save', 'save as', 'quit'): def on_select(item): print('you selected %s' % item.labelstr) item = MenuItem(fig, label, props=props, hoverprops=hoverprops, on_select=on_select) menuitems.append(item) menu = Menu(fig, menuitems) plt.show()
mit
RuthAngus/K2rotation
plots/k2_rotation_plots.py
1
12290
# This script creates the K2_rotation_poster_child.pdf figure # it can also plot the FFT of the eigen light curves, # the 2nd K2pgram (periodogram of a 2nd frequency), # the data conditioned on the best freqency and the top # eigen light curves. import numpy as np import matplotlib.pyplot as plt import fitsio from K2pgram import K2pgram, eval_freq from rotation_poster_child import max_peak_detect import h5py from gatspy.periodic import LombScargle import wget import subprocess import scipy.signal as sps from plotstuff import colours cols = colours() def read_data(epid, nbases): # read the data try: data = fitsio.read("../data/c1/ktwo%s-c01_lpd-lc.fits" % epid) except: e = str(int(epid)) base_url = "http://bbq.dfm.io/ketu/lightcurves/c1" url = "%s/%s00000/%s000/ktwo%s-c01_lpd-lc.fits" \ % (base_url, e[:4], e[4:6], e) print url wget.download(url) subprocess.call("mv ktwo%s-c01_lpd-lc.fits ../data/c1" % epid, shell=True) data = fitsio.read("../data/c1/ktwo%s-c01_lpd-lc.fits" % epid) aps = fitsio.read("../data/c1/ktwo%s-c01_lpd-lc.fits" % epid, 2) y = data["flux"][:, np.argmin(aps["cdpp6"])] x = data["time"] q = data["quality"] l = np.isfinite(y) * np.isfinite(x) * (q==0) y, x = y[l], x[l] y /= np.median(y) y -= 1 # load basis with h5py.File("../data/c1.h5", "r") as f: basis = f["basis"][:nbases, l] return x, y, basis # create file containing highest amplitude frequency for all elcs def bases_FFT(eid, nbases): x, y, basis = read_data(eid, nbases) fs = np.linspace(1e-6, .7, 1000) ps = 1./fs plt.clf() cols = np.linspace(.1, .99, len(basis)) freqs = [] for i in range(len(basis)): model = LombScargle().fit(x, basis[i], np.ones_like(x)*1e-5) pgram = model.periodogram(ps) plt.plot(fs, pgram, color="%s" % cols[i]) freqs.append(fs[pgram==max(pgram)][0]) plt.savefig("all_bases") freqs = np.array(freqs) np.savetxt("elc_freqs.txt", np.transpose((np.arange(nbases), freqs))) def K2pgram2(x, y, fs, basis): # construct arrays AT = np.concatenate((basis, np.ones((5, len(y)))), axis=0) ATA = np.dot(AT, AT.T) # compute 2nd k2pgram s2n = K2pgram2(x, y, mx, fs, AT, ATA) plt.clf() plt.subplot(2, 1, 1) plt.plot(x, y, "k") plt.xlim(min(x), max(x)) plt.xlabel("$\mathrm{BJD-2454833~(days)}$") plt.ylabel("$\mathrm{Normalized~Flux}$") plt.subplot(2, 1, 2) plt.plot(fs, s2n, "k") plt.xlabel("$\mathrm{Frequency~(days}^{-1}\mathrm{)}$") # plt.ylabel("$\mathrm{S/N}$") plt.ylabel("$\mathrm{Power}$") plt.subplots_adjust(hspace=.4) mx, my = max_peak_detect(fs, s2n) plt.axvline(mx, color=".5", linestyle="--", label="$P_{rot}=%.2f$" % mx) plt.savefig("../documents/K22_rotation_poster_child.pdf") # plot the best frequencies def plot_best(x, y, fs, AT, ATA, mx): plt.clf() f = mx plt.subplot(2, 1, 1) s2n, trends = eval_freq(x, y, f, AT, ATA, compute_trends=True) plt.plot(x, y-trends, "k") plt.subplot(2, 1, 2) s2n, trends = eval_freq(x, y, f, AT, ATA, compute_trends=True) plt.plot(x, y, x, trends) plt.savefig("test1") plt.clf() f = mx plt.subplot(2, 1, 1) s2n, trends = eval_freq(x, y, 1./10.52, AT, ATA, compute_trends=True) plt.plot(x, y-trends, "k") plt.subplot(2, 1, 2) s2n, trends = eval_freq(x, y, 1./10.52, AT, ATA, compute_trends=True) plt.plot(x, y, x, trends) plt.savefig("test2") def K2_poster_child_plot(x, y, fs, s2n, epid): plotpar = {'axes.labelsize': 16, 'text.fontsize': 16, 'legend.fontsize': 16, 'xtick.labelsize': 14, 'ytick.labelsize': 16, 'text.usetex': True} plt.rcParams.update(plotpar) # find highest peak mx, my = max_peak_detect(fs, s2n) fname = "../data/c1/ktwo%s-c01_lpd-lc.fits" % epid data = fitsio.read(fname) aps = fitsio.read(fname, 2) y = data["flux"][:, np.argmin(aps["cdpp6"])] x = data["time"] q = data["quality"] l = np.isfinite(y) * np.isfinite(x) * (q==0) y, x = y[l], x[l] MAD = np.median(y - np.median(y)) # construct arrays AT = np.concatenate((basis, np.ones((3, len(y)))), axis=0) ATA = np.dot(AT, AT.T) _, _, trends = eval_freq(x, y, mx, AT, ATA, compute_trends=True) plt.clf() plt.subplot(2, 1, 1) l = x < 2016 m1 = np.median(y[l]) m2 = np.median(y[~l]) plt.plot(x[l], y[l], ".7") plt.plot(x[l], y[l]-trends[l]+m1, "k") plt.plot(x[~l], y[~l], ".7") plt.plot(x[~l], y[~l]-trends[~l]+m1, "k") plt.xlim(min(x), max(x)) plt.xlabel("$\mathrm{BJD-2454833~(days)}$") plt.ylabel("$\mathrm{Relative~Flux}$") plt.title("$\mathrm{EPIC~%s}$" % epid) ps2, pgram = np.genfromtxt("lspgram_%s.txt" % epid).T plt.subplot(2, 1, 2) if MAD == 0.: MAD = 1 signal = s2n/MAD**2 oom = - int(np.log10(signal[signal==max(signal)])) if abs(oom) > 1: # if epid == 201142023: # print "plotting both", "\n" # plt.plot(ps2, pgram*2, "r") plt.plot(1./fs, signal*10**oom, "k") plt.ylabel("$\mathrm{Relative~(S/N}^2\mathrm{)~(} \\times 10^%s\mathrm{)}$" % oom) else: # if epid == 201142023: # print "plotting both", "\n" # plt.plot(ps2, pgram*2, "r") plt.plot(1./fs, signal, "k") plt.ylabel("$\mathrm{Relative~(S/N)}^2$") plt.xlabel("$\mathrm{Period~(days)}$") if epid == 201142023: plt.xscale("log") plt.xlim(10**.2, 10**2) else: plt.xlim(min(1./fs), 70) plt.subplots_adjust(left=.13, hspace=.4) plt.axvline(1./mx, color=".5", linestyle="--", label="$P_{max}=%.2f ~\mathrm{days}$" % (1./mx)) plt.legend(loc="best") print "../documents/K2_rotation_%s.pdf" % epid plt.savefig("../documents/K2_rotation_%s.pdf" % epid) plt.savefig("K2_rotation_%s" % epid, transparent=True) return mx def K2_conditioned_plot(fs, epid): x, y, basis = read_data(epid, 150) amps2, s2n, w = K2pgram(x, y, basis, fs) # find highest peak mx, my = max_peak_detect(fs, s2n) # construct arrays AT = np.concatenate((basis, np.ones((3, len(y)))), axis=0) ATA = np.dot(AT, AT.T) _, _, trends = eval_freq(x, y, mx, AT, ATA, compute_trends=True) plt.clf() plt.subplot(2, 1, 1) l = x < 2016 plt.plot(x[l], y[l], "k") plt.plot(x[l], y[l]-trends[l]) plt.plot(x[~l], y[~l], "k") plt.plot(x[~l], y[~l]-trends[~l]) plt.xlim(min(x), max(x)) plt.xlabel("$\mathrm{BJD-2454833~(days)}$") plt.ylabel("$\mathrm{Normalized~Flux}$") plt.subplot(2, 1, 2) plt.plot(fs, s2n*1e5, "k") plt.xlabel("$\mathrm{Frequency~(days}^{-1}\mathrm{)}$") plt.ylabel(r"$\mathrm{S/N~(} \\times 10^5\mathrm{)}$") plt.ylim(0, my*1e5) plt.subplots_adjust(hspace=.4, bottom=.2) plt.axvline(mx, color=".5", linestyle="--", label="$P_{rot}=%.2f ~\mathrm{days}$" % (1./mx)) plt.legend() plt.savefig("K2_%s" % epid) return mx # plot the top 5 components def top_5(x, basis, w): b = 3 sw = np.sort(w) l = np.arange(len(w))[w == sw[0]][0] print l plt.clf() plt.subplot(5, 1, 1) plt.plot(x[::b], basis[l, :][::b], "k") plt.xticks(visible=False) plt.yticks(visible=False) plt.xlim(x[0], x[-1]) plt.subplot(5, 1, 2) l = np.arange(len(w))[w == sw[1]][0] print l plt.plot(x[::b], basis[l, :][::b], "k") plt.yticks(visible=False) plt.xticks(visible=False) plt.xlim(x[0], x[-1]) plt.subplot(5, 1, 3) l = np.arange(len(w))[w == sw[2]][0] print l plt.plot(x[::b], basis[l, :][::b], "k") plt.xticks(visible=False) plt.yticks(visible=False) plt.xlim(x[0], x[-1]) plt.subplot(5, 1, 4) l = np.arange(len(w))[w == sw[3]][0] print l plt.plot(x[::b], basis[l, :][::b], "k") plt.xticks(visible=False) plt.yticks(visible=False) plt.xlim(x[0], x[-1]) plt.subplot(5, 1, 5) l = np.arange(len(w))[w == sw[4]][0] print l plt.plot(x[::b], basis[l, :][::b], "k") plt.yticks(visible=False) plt.xlabel("$\mathrm{BJD-2454833}$") plt.subplots_adjust(hspace=0) plt.xlim(x[0], x[-1]) plt.savefig("../documents/%s_top5.pdf" % epid) # plot the top 5 components def top_5_pgram(x, basis, w): plotpar = {'axes.labelsize': 15, 'text.fontsize': 15, 'legend.fontsize': 15, 'xtick.labelsize': 12, 'ytick.labelsize': 14, 'text.usetex': True} plt.rcParams.update(plotpar) x = np.array([j.astype("float64") for j in x]) b = 3 ps = np.linspace(1., 70, 500) fs = 1./ps sw = np.sort(w) l = np.arange(len(w))[w == sw[0]][0] print l plt.clf() plt.subplot(5, 2, 1) plt.plot(x[::b], basis[l, :][::b], "k") plt.xticks(visible=False) plt.yticks(visible=False) plt.xlim(x[0], x[-1]) plt.title("$\mathrm{Top~5~Eigen~light~curves}$") plt.subplot(5, 2, 2) pgram = sps.lombscargle(x, basis[l, :], 2*np.pi*fs) # plt.plot(fs, pgram, "k") plt.plot(ps, pgram, "k") plt.xticks(visible=False) plt.yticks(visible=False) plt.xlim(min(ps), max(ps)) plt.title("$\mathrm{LS~periodograms}$") plt.subplot(5, 2, 3) l = np.arange(len(w))[w == sw[1]][0] print l plt.plot(x[::b], basis[l, :][::b], "k") plt.yticks(visible=False) plt.xticks(visible=False) plt.xlim(x[0], x[-1]) plt.subplot(5, 2, 4) pgram = sps.lombscargle(x, basis[l, :], 2*np.pi*fs) plt.plot(ps, pgram, "k") plt.xticks(visible=False) plt.yticks(visible=False) plt.xlim(min(ps), max(ps)) plt.subplot(5, 2, 5) l = np.arange(len(w))[w == sw[2]][0] print l plt.plot(x[::b], basis[l, :][::b], "k") plt.xticks(visible=False) plt.yticks(visible=False) plt.xlim(x[0], x[-1]) plt.subplot(5, 2, 6) pgram = sps.lombscargle(x, basis[l, :], 2*np.pi*fs) plt.plot(ps, pgram, "k") plt.xticks(visible=False) plt.yticks(visible=False) plt.ylabel("$\mathrm{Power}$") plt.xlim(min(ps), max(ps)) plt.subplot(5, 2, 7) l = np.arange(len(w))[w == sw[3]][0] print l plt.plot(x[::b], basis[l, :][::b], "k") plt.xticks(visible=False) plt.yticks(visible=False) plt.xlim(x[0], x[-1]) plt.subplot(5, 2, 8) pgram = sps.lombscargle(x, basis[l, :], 2*np.pi*fs) plt.plot(ps, pgram, "k") plt.xticks(visible=False) plt.yticks(visible=False) plt.xlim(min(ps), max(ps)) plt.subplot(5, 2, 9) l = np.arange(len(w))[w == sw[4]][0] print l plt.plot(x[::b], basis[l, :][::b], "k") plt.yticks(visible=False) plt.xlabel("$\mathrm{BJD-2454833 (days)}$") plt.subplots_adjust(hspace=0) plt.xlim(x[0], x[-1]) plt.subplot(5, 2, 10) pgram = sps.lombscargle(x, basis[l, :], 2*np.pi*fs) plt.plot(ps, pgram, "k") plt.yticks(visible=False) plt.xlabel("$\mathrm{Period (days)}$") plt.xlim(min(ps), max(ps)) plt.subplots_adjust(left=.01, right=.97, wspace=.1) plt.savefig("../documents/top5pgram_%s.pdf" % epid) if __name__ == "__main__": # epid = "201317002" # original # epid = "201129544" # slight discrepancy between ACF and pgrams # epid = "201132518" # eids = [201129544, 201132518, 201133037, 201133147, 201135311, 201138638, # 201138849, 201142023, 201142127] eids = [201133037, 201142023] # eids = [201142023] for epid in eids: x, y, basis = read_data(epid, 150) # compute K2 pgram try: fs, s2n, w = np.genfromtxt("%spgram_.txt" % epid).T print "periodogram file found" except: print "calculating SIP" fs = np.linspace(1e-6, .7, 1000) s2n, amp2s, w = K2pgram(x, y, basis, fs) amp2s, s2n, w = K2pgram(x, y, basis, fs) np.savetxt("%spgram.txt" % epid, np.transpose((fs, s2n))) K2_poster_child_plot(x, y, fs, s2n, epid) # top_5(x, basis, w) # top_5_pgram(x, basis, w) # K2_conditioned_plot(fs, epid)
mit
egoruss/phaseom
MainPhaseOM.py
1
2356
# !python.exe # coding: cp1251 ''' -*- coding: utf-8 -*- ''' from __future__ import with_statement import os from datetime import datetime, date, time from time import * from types import * import sip sip.setapi('QVariant', 2) from PyQt4 import QtCore, QtGui from pandas import read_csv, read_excel, DataFrame from sklearn import preprocessing from sklearn import metrics from sklearn.ensemble import ExtraTreesClassifier from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import r2_score from sklearn.feature_selection import RFE from sklearn.cross_validation import train_test_split def ToPrintLog (sMess): print str(datetime.now().strftime("%d.%m.%Y %H:%M:%S ")) + str(sMess) dataset = read_excel("EnergyEfficiency\ENB2012_data.xls", sheet_name='Data1', index_col=None, na_values=['NA']) #dataset.head() ToPrintLog ("Êîëè÷åñòâî íàáëþäåíèé : " + str(dataset.Y1.count())) print dataset.head() # Ñïèñîê èì¸í ïðèçíàêîâ ListPRZ = dataset.columns._array_values() # normalize the data attributes X = dataset[ListPRZ] Y1 = dataset[[u'Y1']] # X = dataset[:,0:7] # Y1 = dataset[:,8] # Y1 = dataset[[8]].ravel([8]) Y2 = dataset[[u'Y2']] Y1Y2 = dataset[[u'Y1',u'Y2']] normalized_X = preprocessing.normalize(X) # print normalized_X normalized_Y1 = preprocessing.normalize(Y1) normalized_Y2 = preprocessing.normalize(Y2) # standardize the data attributes standardized_X = preprocessing.scale(dataset[ListPRZ]) mcorr = dataset.corr() print "-=:: Ìàòðèöà êîððåëÿöèé ::=-" print mcorr mcorr.to_excel("EnergyEfficiency\ENB2012_corr.xls", sheet_name=u'Êîððåëÿöèè') model = ExtraTreesClassifier() # model.fit(normalized_X, Y1) model.fit(X,Y1Y2) # Ïîêàçàòü ñòåïåíè ñóùåñòâåííîñòè êàæäîãî ïðèçíàêà-ïðåäèêòîðà print "-=:: Ñóùåñòâåííîñòü ïðèçíàêîâ ::=-" print(model.feature_importances_) # Óäàëåíèå ñòîëáöîâ ñ ìèíèìàëüíûìè êîððåëÿöèÿìè ñ öåëåâûìè ôàêòîðàìè modeli = LogisticRegression() # create the RFE model and select 3 attributes rfe = RFE(model, 3) rfe = rfe.fit(X, Y1Y2) # summarize the selection of the attributes print(rfe.support_) print(rfe.ranking_) # dataset = dataset.drop(['X1','X4'], axis=1) # print dataset.head() print (" -= :: END - ÊÎÍÅÖ :: =-")
gpl-2.0
lukas/scikit-class
examples/scikit/embedding.py
2
1038
import numpy as np from sklearn.base import BaseEstimator, TransformerMixin #import gensim # let X be a list of tokenized texts (i.e. list of lists of tokens) #model = gensim.models.Word2Vec(X, size=100) #w2v = dict(zip(model.wv.index2word, model.wv.syn0)) class MeanEmbeddingVectorizer(BaseEstimator, TransformerMixin): def __init__(self, word2vec): self.word2vec = word2vec # pull out a single value from the dictionary and check its dimension # this is a little ugly to make it work in python 2 and 3 self.dim = len(next(iter(word2vec.values()))) def fit(self, X, y): return self def transform(self, X): mean_vects = [] for words in X: word_vects = [] for w in words: if w in self.word2vec: word_vects.append(self.word2vec[w]) mean_vect = np.mean(word_vects, axis=0) mean_vects.append(np.array(mean_vect)) mean_vects = np.array(mean_vects) return mean_vects
gpl-2.0
Winand/pandas
pandas/tests/indexing/test_floats.py
7
27713
# -*- coding: utf-8 -*- import pytest from warnings import catch_warnings import numpy as np from pandas import Series, DataFrame, Index, Float64Index from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm class TestFloatIndexers(object): def check(self, result, original, indexer, getitem): """ comparator for results we need to take care if we are indexing on a Series or a frame """ if isinstance(original, Series): expected = original.iloc[indexer] else: if getitem: expected = original.iloc[:, indexer] else: expected = original.iloc[indexer] assert_almost_equal(result, expected) def test_scalar_error(self): # GH 4892 # float_indexers should raise exceptions # on appropriate Index types & accessors # this duplicates the code below # but is spefically testing for the error # message for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeCategoricalIndex, tm.makeDateIndex, tm.makeTimedeltaIndex, tm.makePeriodIndex, tm.makeIntIndex, tm.makeRangeIndex]: i = index(5) s = Series(np.arange(len(i)), index=i) def f(): s.iloc[3.0] tm.assert_raises_regex(TypeError, 'cannot do positional indexing', f) def f(): s.iloc[3.0] = 0 pytest.raises(TypeError, f) def test_scalar_non_numeric(self): # GH 4892 # float_indexers should raise exceptions # on appropriate Index types & accessors for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeCategoricalIndex, tm.makeDateIndex, tm.makeTimedeltaIndex, tm.makePeriodIndex]: i = index(5) for s in [Series( np.arange(len(i)), index=i), DataFrame( np.random.randn( len(i), len(i)), index=i, columns=i)]: # getting for idxr, getitem in [(lambda x: x.ix, False), (lambda x: x.iloc, False), (lambda x: x, True)]: def f(): with catch_warnings(record=True): idxr(s)[3.0] # gettitem on a DataFrame is a KeyError as it is indexing # via labels on the columns if getitem and isinstance(s, DataFrame): error = KeyError else: error = TypeError pytest.raises(error, f) # label based can be a TypeError or KeyError def f(): s.loc[3.0] if s.index.inferred_type in ['string', 'unicode', 'mixed']: error = KeyError else: error = TypeError pytest.raises(error, f) # contains assert 3.0 not in s # setting with a float fails with iloc def f(): s.iloc[3.0] = 0 pytest.raises(TypeError, f) # setting with an indexer if s.index.inferred_type in ['categorical']: # Value or Type Error pass elif s.index.inferred_type in ['datetime64', 'timedelta64', 'period']: # these should prob work # and are inconsisten between series/dataframe ATM # for idxr in [lambda x: x.ix, # lambda x: x]: # s2 = s.copy() # def f(): # idxr(s2)[3.0] = 0 # pytest.raises(TypeError, f) pass else: s2 = s.copy() s2.loc[3.0] = 10 assert s2.index.is_object() for idxr in [lambda x: x.ix, lambda x: x]: s2 = s.copy() with catch_warnings(record=True): idxr(s2)[3.0] = 0 assert s2.index.is_object() # fallsback to position selection, series only s = Series(np.arange(len(i)), index=i) s[3] pytest.raises(TypeError, lambda: s[3.0]) def test_scalar_with_mixed(self): s2 = Series([1, 2, 3], index=['a', 'b', 'c']) s3 = Series([1, 2, 3], index=['a', 'b', 1.5]) # lookup in a pure string index # with an invalid indexer for idxr in [lambda x: x.ix, lambda x: x, lambda x: x.iloc]: def f(): with catch_warnings(record=True): idxr(s2)[1.0] pytest.raises(TypeError, f) pytest.raises(KeyError, lambda: s2.loc[1.0]) result = s2.loc['b'] expected = 2 assert result == expected # mixed index so we have label # indexing for idxr in [lambda x: x.ix, lambda x: x]: def f(): with catch_warnings(record=True): idxr(s3)[1.0] pytest.raises(TypeError, f) result = idxr(s3)[1] expected = 2 assert result == expected pytest.raises(TypeError, lambda: s3.iloc[1.0]) pytest.raises(KeyError, lambda: s3.loc[1.0]) result = s3.loc[1.5] expected = 3 assert result == expected def test_scalar_integer(self): # test how scalar float indexers work on int indexes # integer index for index in [tm.makeIntIndex, tm.makeRangeIndex]: i = index(5) for s in [Series(np.arange(len(i))), DataFrame(np.random.randn(len(i), len(i)), index=i, columns=i)]: # coerce to equal int for idxr, getitem in [(lambda x: x.ix, False), (lambda x: x.loc, False), (lambda x: x, True)]: with catch_warnings(record=True): result = idxr(s)[3.0] self.check(result, s, 3, getitem) # coerce to equal int for idxr, getitem in [(lambda x: x.ix, False), (lambda x: x.loc, False), (lambda x: x, True)]: if isinstance(s, Series): def compare(x, y): assert x == y expected = 100 else: compare = tm.assert_series_equal if getitem: expected = Series(100, index=range(len(s)), name=3) else: expected = Series(100., index=range(len(s)), name=3) s2 = s.copy() with catch_warnings(record=True): idxr(s2)[3.0] = 100 result = idxr(s2)[3.0] compare(result, expected) result = idxr(s2)[3] compare(result, expected) # contains # coerce to equal int assert 3.0 in s def test_scalar_float(self): # scalar float indexers work on a float index index = Index(np.arange(5.)) for s in [Series(np.arange(len(index)), index=index), DataFrame(np.random.randn(len(index), len(index)), index=index, columns=index)]: # assert all operations except for iloc are ok indexer = index[3] for idxr, getitem in [(lambda x: x.ix, False), (lambda x: x.loc, False), (lambda x: x, True)]: # getting with catch_warnings(record=True): result = idxr(s)[indexer] self.check(result, s, 3, getitem) # setting s2 = s.copy() def f(): with catch_warnings(record=True): idxr(s2)[indexer] = expected with catch_warnings(record=True): result = idxr(s2)[indexer] self.check(result, s, 3, getitem) # random integer is a KeyError with catch_warnings(record=True): pytest.raises(KeyError, lambda: idxr(s)[3.5]) # contains assert 3.0 in s # iloc succeeds with an integer expected = s.iloc[3] s2 = s.copy() s2.iloc[3] = expected result = s2.iloc[3] self.check(result, s, 3, False) # iloc raises with a float pytest.raises(TypeError, lambda: s.iloc[3.0]) def g(): s2.iloc[3.0] = 0 pytest.raises(TypeError, g) def test_slice_non_numeric(self): # GH 4892 # float_indexers should raise exceptions # on appropriate Index types & accessors for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makeTimedeltaIndex, tm.makePeriodIndex]: index = index(5) for s in [Series(range(5), index=index), DataFrame(np.random.randn(5, 2), index=index)]: # getitem for l in [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)]: def f(): s.iloc[l] pytest.raises(TypeError, f) for idxr in [lambda x: x.ix, lambda x: x.loc, lambda x: x.iloc, lambda x: x]: def f(): with catch_warnings(record=True): idxr(s)[l] pytest.raises(TypeError, f) # setitem for l in [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)]: def f(): s.iloc[l] = 0 pytest.raises(TypeError, f) for idxr in [lambda x: x.ix, lambda x: x.loc, lambda x: x.iloc, lambda x: x]: def f(): with catch_warnings(record=True): idxr(s)[l] = 0 pytest.raises(TypeError, f) def test_slice_integer(self): # same as above, but for Integer based indexes # these coerce to a like integer # oob indiciates if we are out of bounds # of positional indexing for index, oob in [(tm.makeIntIndex(5), False), (tm.makeRangeIndex(5), False), (tm.makeIntIndex(5) + 10, True)]: # s is an in-range index s = Series(range(5), index=index) # getitem for l in [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)]: for idxr in [lambda x: x.loc, lambda x: x.ix]: with catch_warnings(record=True): result = idxr(s)[l] # these are all label indexing # except getitem which is positional # empty if oob: indexer = slice(0, 0) else: indexer = slice(3, 5) self.check(result, s, indexer, False) # positional indexing def f(): s[l] pytest.raises(TypeError, f) # getitem out-of-bounds for l in [slice(-6, 6), slice(-6.0, 6.0)]: for idxr in [lambda x: x.loc, lambda x: x.ix]: with catch_warnings(record=True): result = idxr(s)[l] # these are all label indexing # except getitem which is positional # empty if oob: indexer = slice(0, 0) else: indexer = slice(-6, 6) self.check(result, s, indexer, False) # positional indexing def f(): s[slice(-6.0, 6.0)] pytest.raises(TypeError, f) # getitem odd floats for l, res1 in [(slice(2.5, 4), slice(3, 5)), (slice(2, 3.5), slice(2, 4)), (slice(2.5, 3.5), slice(3, 4))]: for idxr in [lambda x: x.loc, lambda x: x.ix]: with catch_warnings(record=True): result = idxr(s)[l] if oob: res = slice(0, 0) else: res = res1 self.check(result, s, res, False) # positional indexing def f(): s[l] pytest.raises(TypeError, f) # setitem for l in [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)]: for idxr in [lambda x: x.loc, lambda x: x.ix]: sc = s.copy() with catch_warnings(record=True): idxr(sc)[l] = 0 result = idxr(sc)[l].values.ravel() assert (result == 0).all() # positional indexing def f(): s[l] = 0 pytest.raises(TypeError, f) def test_integer_positional_indexing(self): """ make sure that we are raising on positional indexing w.r.t. an integer index """ s = Series(range(2, 6), index=range(2, 6)) result = s[2:4] expected = s.iloc[2:4] assert_series_equal(result, expected) for idxr in [lambda x: x, lambda x: x.iloc]: for l in [slice(2, 4.0), slice(2.0, 4), slice(2.0, 4.0)]: def f(): idxr(s)[l] pytest.raises(TypeError, f) def test_slice_integer_frame_getitem(self): # similar to above, but on the getitem dim (of a DataFrame) for index in [tm.makeIntIndex, tm.makeRangeIndex]: index = index(5) s = DataFrame(np.random.randn(5, 2), index=index) for idxr in [lambda x: x.loc, lambda x: x.ix]: # getitem for l in [slice(0.0, 1), slice(0, 1.0), slice(0.0, 1.0)]: with catch_warnings(record=True): result = idxr(s)[l] indexer = slice(0, 2) self.check(result, s, indexer, False) # positional indexing def f(): s[l] pytest.raises(TypeError, f) # getitem out-of-bounds for l in [slice(-10, 10), slice(-10.0, 10.0)]: result = idxr(s)[l] self.check(result, s, slice(-10, 10), True) # positional indexing def f(): s[slice(-10.0, 10.0)] pytest.raises(TypeError, f) # getitem odd floats for l, res in [(slice(0.5, 1), slice(1, 2)), (slice(0, 0.5), slice(0, 1)), (slice(0.5, 1.5), slice(1, 2))]: with catch_warnings(record=True): result = idxr(s)[l] self.check(result, s, res, False) # positional indexing def f(): s[l] pytest.raises(TypeError, f) # setitem for l in [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)]: sc = s.copy() with catch_warnings(record=True): idxr(sc)[l] = 0 result = idxr(sc)[l].values.ravel() assert (result == 0).all() # positional indexing def f(): s[l] = 0 pytest.raises(TypeError, f) def test_slice_float(self): # same as above, but for floats index = Index(np.arange(5.)) + 0.1 for s in [Series(range(5), index=index), DataFrame(np.random.randn(5, 2), index=index)]: for l in [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)]: expected = s.iloc[3:4] for idxr in [lambda x: x.ix, lambda x: x.loc, lambda x: x]: # getitem with catch_warnings(record=True): result = idxr(s)[l] if isinstance(s, Series): tm.assert_series_equal(result, expected) else: tm.assert_frame_equal(result, expected) # setitem s2 = s.copy() with catch_warnings(record=True): idxr(s2)[l] = 0 result = idxr(s2)[l].values.ravel() assert (result == 0).all() def test_floating_index_doc_example(self): index = Index([1.5, 2, 3, 4.5, 5]) s = Series(range(5), index=index) assert s[3] == 2 assert s.loc[3] == 2 assert s.loc[3] == 2 assert s.iloc[3] == 3 def test_floating_misc(self): # related 236 # scalar/slicing of a float index s = Series(np.arange(5), index=np.arange(5) * 2.5, dtype=np.int64) # label based slicing result1 = s[1.0:3.0] result2 = s.loc[1.0:3.0] result3 = s.loc[1.0:3.0] assert_series_equal(result1, result2) assert_series_equal(result1, result3) # exact indexing when found result1 = s[5.0] result2 = s.loc[5.0] result3 = s.loc[5.0] assert result1 == result2 assert result1 == result3 result1 = s[5] result2 = s.loc[5] result3 = s.loc[5] assert result1 == result2 assert result1 == result3 assert s[5.0] == s[5] # value not found (and no fallbacking at all) # scalar integers pytest.raises(KeyError, lambda: s.loc[4]) pytest.raises(KeyError, lambda: s.loc[4]) pytest.raises(KeyError, lambda: s[4]) # fancy floats/integers create the correct entry (as nan) # fancy tests expected = Series([2, 0], index=Float64Index([5.0, 0.0])) for fancy_idx in [[5.0, 0.0], np.array([5.0, 0.0])]: # float assert_series_equal(s[fancy_idx], expected) assert_series_equal(s.loc[fancy_idx], expected) assert_series_equal(s.loc[fancy_idx], expected) expected = Series([2, 0], index=Index([5, 0], dtype='int64')) for fancy_idx in [[5, 0], np.array([5, 0])]: # int assert_series_equal(s[fancy_idx], expected) assert_series_equal(s.loc[fancy_idx], expected) assert_series_equal(s.loc[fancy_idx], expected) # all should return the same as we are slicing 'the same' result1 = s.loc[2:5] result2 = s.loc[2.0:5.0] result3 = s.loc[2.0:5] result4 = s.loc[2.1:5] assert_series_equal(result1, result2) assert_series_equal(result1, result3) assert_series_equal(result1, result4) # previously this did fallback indexing result1 = s[2:5] result2 = s[2.0:5.0] result3 = s[2.0:5] result4 = s[2.1:5] assert_series_equal(result1, result2) assert_series_equal(result1, result3) assert_series_equal(result1, result4) result1 = s.loc[2:5] result2 = s.loc[2.0:5.0] result3 = s.loc[2.0:5] result4 = s.loc[2.1:5] assert_series_equal(result1, result2) assert_series_equal(result1, result3) assert_series_equal(result1, result4) # combined test result1 = s.loc[2:5] result2 = s.loc[2:5] result3 = s[2:5] assert_series_equal(result1, result2) assert_series_equal(result1, result3) # list selection result1 = s[[0.0, 5, 10]] result2 = s.loc[[0.0, 5, 10]] result3 = s.loc[[0.0, 5, 10]] result4 = s.iloc[[0, 2, 4]] assert_series_equal(result1, result2) assert_series_equal(result1, result3) assert_series_equal(result1, result4) result1 = s[[1.6, 5, 10]] result2 = s.loc[[1.6, 5, 10]] result3 = s.loc[[1.6, 5, 10]] assert_series_equal(result1, result2) assert_series_equal(result1, result3) assert_series_equal(result1, Series( [np.nan, 2, 4], index=[1.6, 5, 10])) result1 = s[[0, 1, 2]] result2 = s.loc[[0, 1, 2]] result3 = s.loc[[0, 1, 2]] assert_series_equal(result1, result2) assert_series_equal(result1, result3) assert_series_equal(result1, Series( [0.0, np.nan, np.nan], index=[0, 1, 2])) result1 = s.loc[[2.5, 5]] result2 = s.loc[[2.5, 5]] assert_series_equal(result1, result2) assert_series_equal(result1, Series([1, 2], index=[2.5, 5.0])) result1 = s[[2.5]] result2 = s.loc[[2.5]] result3 = s.loc[[2.5]] assert_series_equal(result1, result2) assert_series_equal(result1, result3) assert_series_equal(result1, Series([1], index=[2.5])) def test_floating_tuples(self): # see gh-13509 s = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.1, 0.2], name='foo') result = s[0.0] assert result == (1, 1) expected = Series([(1, 1), (2, 2)], index=[0.0, 0.0], name='foo') s = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.0, 0.2], name='foo') result = s[0.0] tm.assert_series_equal(result, expected) def test_float64index_slicing_bug(self): # GH 5557, related to slicing a float index ser = {256: 2321.0, 1: 78.0, 2: 2716.0, 3: 0.0, 4: 369.0, 5: 0.0, 6: 269.0, 7: 0.0, 8: 0.0, 9: 0.0, 10: 3536.0, 11: 0.0, 12: 24.0, 13: 0.0, 14: 931.0, 15: 0.0, 16: 101.0, 17: 78.0, 18: 9643.0, 19: 0.0, 20: 0.0, 21: 0.0, 22: 63761.0, 23: 0.0, 24: 446.0, 25: 0.0, 26: 34773.0, 27: 0.0, 28: 729.0, 29: 78.0, 30: 0.0, 31: 0.0, 32: 3374.0, 33: 0.0, 34: 1391.0, 35: 0.0, 36: 361.0, 37: 0.0, 38: 61808.0, 39: 0.0, 40: 0.0, 41: 0.0, 42: 6677.0, 43: 0.0, 44: 802.0, 45: 0.0, 46: 2691.0, 47: 0.0, 48: 3582.0, 49: 0.0, 50: 734.0, 51: 0.0, 52: 627.0, 53: 70.0, 54: 2584.0, 55: 0.0, 56: 324.0, 57: 0.0, 58: 605.0, 59: 0.0, 60: 0.0, 61: 0.0, 62: 3989.0, 63: 10.0, 64: 42.0, 65: 0.0, 66: 904.0, 67: 0.0, 68: 88.0, 69: 70.0, 70: 8172.0, 71: 0.0, 72: 0.0, 73: 0.0, 74: 64902.0, 75: 0.0, 76: 347.0, 77: 0.0, 78: 36605.0, 79: 0.0, 80: 379.0, 81: 70.0, 82: 0.0, 83: 0.0, 84: 3001.0, 85: 0.0, 86: 1630.0, 87: 7.0, 88: 364.0, 89: 0.0, 90: 67404.0, 91: 9.0, 92: 0.0, 93: 0.0, 94: 7685.0, 95: 0.0, 96: 1017.0, 97: 0.0, 98: 2831.0, 99: 0.0, 100: 2963.0, 101: 0.0, 102: 854.0, 103: 0.0, 104: 0.0, 105: 0.0, 106: 0.0, 107: 0.0, 108: 0.0, 109: 0.0, 110: 0.0, 111: 0.0, 112: 0.0, 113: 0.0, 114: 0.0, 115: 0.0, 116: 0.0, 117: 0.0, 118: 0.0, 119: 0.0, 120: 0.0, 121: 0.0, 122: 0.0, 123: 0.0, 124: 0.0, 125: 0.0, 126: 67744.0, 127: 22.0, 128: 264.0, 129: 0.0, 260: 197.0, 268: 0.0, 265: 0.0, 269: 0.0, 261: 0.0, 266: 1198.0, 267: 0.0, 262: 2629.0, 258: 775.0, 257: 0.0, 263: 0.0, 259: 0.0, 264: 163.0, 250: 10326.0, 251: 0.0, 252: 1228.0, 253: 0.0, 254: 2769.0, 255: 0.0} # smoke test for the repr s = Series(ser) result = s.value_counts() str(result)
bsd-3-clause
secimTools/SECIMTools
src/scripts/modify_design_file.py
1
5778
#!/usr/bin/env python ################################################################################ # DATE: 2016/October/10 # # MODULE: subset_data.py # # VERSION: 1.2 # # AUTHOR: Miguel Ibarra ([email protected]) # # DESCRIPTION: Subsets design file data based on the groups in the # design file. # ################################################################################ # Standard Libraries import os import re import logging import argparse from itertools import chain # AddOn Libraries import numpy as np import pandas as pd # Local Libraries from secimtools.dataManager import logger as sl from secimtools.dataManager.interface import wideToDesign def getOptions(): """Function to pull arguments""" parser = argparse.ArgumentParser(description="Removes samples from the design file" \ "belonging to the user-specified group(s).") # Standar Input standar = parser.add_argument_group(title="Standard input", description= "Standard input for SECIM tools.") standar.add_argument("-i","--input",dest="input", action='store', required=True, help="Input dataset in wide format.") standar.add_argument("-d","--design",dest="design", action='store', required=True, help="Design file.") standar.add_argument("-id","--uniqID",dest="uniqID",action="store", required=True, help="Name of the column with unique" \ "dentifiers.") standar.add_argument("-g","--group", dest="group", action='store', required=False, help="Name of column in design file" \ "with Group/treatment information.") # Tool Especific tool = parser.add_argument_group(title="Tool specific input", description= "Input that is especific for this tool.") tool.add_argument("-dp","--drops", dest="drops", action='store', required=True, help="Name of the groups in your"\ "group/treatment column that you want to remove from the design file.") # Output Paths output = parser.add_argument_group(title='Output paths', description="Paths for the output files") output.add_argument("-o","--out",dest="out",action="store", required=True,help="Output path for the new design file") args = parser.parse_args() # Standardize paths args.out = os.path.abspath(args.out) args.input = os.path.abspath(args.input) args.design = os.path.abspath(args.design) # Split groups/samples to drop args.drops = args.drops.split(",") return (args) def cleanStr(x): """ Clean strings so they behave. For some modules, uniqIDs and groups cannot contain spaces, '-', '*', '/', '+', or '()'. For example, statsmodel parses the strings and interprets them in the model. :Arguments: x (str): A string that needs cleaning :Returns: x (str): The cleaned string. self.origString (dict): A dictionary where the key is the new string and the value is the original string. This will be useful for reverting back to original values. """ if isinstance(x, str): val = x x = re.sub(r'^-([0-9].*)', r'__\1', x) x = x.replace(' ', '_') x = x.replace('.', '_') x = x.replace('-', '_') x = x.replace('*', '_') x = x.replace('/', '_') x = x.replace('+', '_') x = x.replace('(', '_') x = x.replace(')', '_') x = x.replace('[', '_') x = x.replace(']', '_') x = x.replace('{', '_') x = x.replace('}', '_') x = x.replace('"', '_') x = x.replace('\'', '_') x = re.sub(r'^([0-9].*)', r'_\1', x) return x def main(args): # Importing data trough logger.info("Importing data through wideToDesign data manager") dat = wideToDesign(args.input, args.design, args.uniqID, logger=logger) # Cleaning from missing data dat.dropMissing() # Making sure all the groups to drop actually exist on the design column if args.group: for todrop in args.drops: if todrop in list(set(dat.design[args.group].values)): pass else: logger.error("The group '{0}' is not located in the column '{1}' "\ "of your design file".format(todrop,args.group)) raise ValueError # If the subsetting is going to be made by group the select de sampleIDs # from the design file logger.info(u"Getting sampleNames to drop") if args.group: iToDrop = list() for name,group in dat.design.groupby(args.group): if name in args.drops: iToDrop+=(group.index.tolist()) else: iToDrop = args.drops # Remove weird characters iToDrop = [cleanStr(x) for x in iToDrop] # Dropping elements selectedDesign = dat.design.drop(iToDrop,axis=0, inplace=False) # Output wide results logger.info("Outputing design file") selectedDesign.to_csv(args.out, sep='\t') logger.info("Script Complete!") if __name__ == '__main__': #Import data args = getOptions() #Setting logger logger = logging.getLogger() sl.setLogger(logger) logger.info("Importing data with following parameters:" "\n\tInput: {0}" "\n\tDesign: {1}" "\n\tuniqID: {2}" "\n\tgroup: {3}" "\n\tToDrop: {4}".format(args.input, args.design, args.uniqID, args.group, args.drops)) # Main script main(args)
mit
npdoty/bigbang
bin/mail_to_activity.py
3
1973
import sys import os import os.path import getopt import bigbang.mailman as mailman import bigbang.archive import pandas as pd import logging import argparse parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, description=r""" Creates activity frames from mailing list archives. Provide the path to a directory of archives, containing subdirectories for each mailing list. For example: python bin/mail_to_activity.py --archives ../archives """) parser.add_argument('--archives', type=str, help='Path to a specified directory of downloaded mail archives', required=True) parser.add_argument('-f', '--force', action='store_true', help='Overwrite existing -activity.csv files; by default this is false and directories with an existing file are skipped.') args = parser.parse_args() logging.basicConfig(level=logging.INFO) def main(args): subdirectories = next(os.walk(args.archives))[1] for subdirectory in subdirectories: logging.info('Processing archives in %s' % subdirectory) if not args.force: out_path = os.path.join(args.archives, subdirectory, ('%s-activity.csv' % subdirectory)) if os.path.isfile(out_path): # if file already exists, skip continue try: archives = mailman.open_list_archives(subdirectory, args.archives) activity = bigbang.archive.Archive(archives).get_activity() # sum the message count, rather than by date, to prevent enormous, sparse files activity = pd.DataFrame(activity.sum(0), columns=['Message Count']) out_path = os.path.join(args.archives, subdirectory, ('%s-activity.csv' % subdirectory)) with open(out_path, 'w') as f: activity.to_csv(f, encoding='utf-8') except Exception: logging.warning(('Failed to produce activity frame export for %s.' % subdirectory), exc_info=True) if __name__ == "__main__": main(args)
agpl-3.0
KU-CCB/PyPUG
pypug.py
1
8083
#!/bin/python import sys if sys.version_info[0] < 3: from StringIO import StringIO else: from io import StringIO import pandas as pd import requests # PUG URL Prolog PROLOG = "https://pubchem.ncbi.nlm.nih.gov/rest/pug" # default encoding for strings ENCODING = "utf-8" # Don't report errors SILENT = False """ --------------------------------------------------------------------------- Error Handling --------------------------------------------------------------------------- """ PugRestErrors = { 200: { "code": "(none)", "message": "Success"}, 400: { "code": "PugRest.BadRequest", "message": "Request is improperly formed"}, 404: { "code": "PugRest.NotFound", "message": "The input record was not found"}, 405: { "code": "PugRest.MethodNotAllowed", "message": "Request not allowed (such as invalid MIME type in the HTTP Accept header)"}, 504: { "code": "PugRest.Timeout", "message": "The request timed out, from server overload or too broad a request"}, 501: { "code": "PugRest.Unimplemented", "message": "The requested operation has not (yet) been implemented by the server"}, 500: { "code": "PugRest.ServerError", "message": "Some problem on the server side (such as a database server down, etc.)"}, 414: { "code": "Unknown", "message": "Unknown"}, #500: { "code": "PugRest.Unknown", "message": "An unknown error occurred"} } # This should be split into many different classes of errors based on PugRestErrors class PugRestException(Exception): """ Exception thrown when a request to PUG returns with a status code other than 200 (assuming the status code is in PugRestErrors) """ def __init__(self, *args, **kwargs): self.url = kwargs.pop('url', None) self.code = kwargs.pop('code', None) self.message = kwargs.pop('message', None) self.response = kwargs.pop('response', None) super(PugRestException, self).__init__(args, kwargs) def __str__(self): msg = ( "--url: "+self.url+"\n" "--code: "+self.code+"\n" "--message: "+self.message+"\n" "--response: "+self.response+"\n") return msg def handleKeyError(error): sys.stderr.write("[pypug KeyError]\n") sys.stderr.write("--The Pug server returned an unhandled status code:") sys.stderr.write("--This status code is unhandled in pypug.py") sys.stderr.write(e) sys.exit() """ --------------------------------------------------------------------------- Requests Wrapper --------------------------------------------------------------------------- """ def get(url): """ Make an HTTP Get request to the PubChem ftp server """ global SILENT response = requests.get(url) if str(response.status_code) != "200": if SILENT: return "" else: raise PugRestException(response.text, url=url, code=PugRestErrors[response.status_code]["code"], message=PugRestErrors[response.status_code]["message"], response=response.text.strip().replace('\n', ',')) else: return response.text.strip() def post(url, payload): """ Make an HTTP Post request to the PubChem ftp server """ global SILENT headers = {'content-type': 'application/x-www-form-urlencoded'} response = requests.post(url, data=payload, headers=headers) if str(response.status_code) != "200": if SILENT: return "" else: try: raise PugRestException(response.text, payload=payload, url=url, code=PugRestErrors[response.status_code]["code"], message=PugRestErrors[response.status_code]["message"], response=response.text.strip().replace('\n', ',')) except KeyError as e: handleKeyError(e) else: return response.text.strip() """ --------------------------------------------------------------------------- PyPUG API --------------------------------------------------------------------------- """ def SetSilent(silent): """ Sets error reporting on or off. silent should be either True or False. Any other values will be ignored @param silent True or False """ global SILENT if silent in (True, False): SILENT = silent def getAIDsFromGeneID(geneID, usepost=True): """ Returns a list of Assay IDs that have geneID as a target @param geneID The geneID to search on. @param usepost Boolean value indicating whether post or get should be used. """ response = "" if usepost: url = PROLOG + "/assay/target/GeneID/aids/TXT" payload = {'geneid':geneID} response = post(url, payload).split('\n') else: url = PROLOG + ("/assay/target/GeneID/%s/aids/TXT" % geneID) response = get(url).split('\n') return [id.encode(ENCODING) for id in response] def getAssayFromSIDs(AID, SIDs=[]): """ Returns a pandas DataFrame containing the assay data for AID. This is useful when an assay has more than 10000 associated SIDs and can't be retrieved with getAssayFromAID due to PUG data restrictions. SIDs can be a list of the prefetched SIDs for the assay or it can be an empty list, in which case the SIDs for the given assay will be fetched automatically. @param AID The AID to search on. @param SIDs The SIDs for the given AID """ response = "" pos = 0 groupSz = 9999 if len(SIDs) < 1: SIDs = getSIDsFromAID(AID) while pos < len(SIDs): url = PROLOG + "/assay/aid/CSV" payload = {'aid':AID, 'sid':",".join(SIDs[pos:pos+groupSz])} pos = pos + groupSz + 1 if len(response) == 0: response += post(url, payload) else: data = post(url, payload) response += data[data.index('\n'):] response = StringIO(response.encode(ENCODING)) return pd.DataFrame.from_csv(response, index_col=False, header=0) def getAssayFromAID(AID, usepost=True): """ Returns a pandas DataFrame containing the assay data for AID. @param AID The AID to search on. @param usepost Boolean value indicating whether post or get should be used. """ response = "" if usepost: url = PROLOG + "/assay/aid/CSV" payload = {'aid':AID} response = StringIO(post(url, payload).encode(ENCODING)) else: url = PROLOG + "/assay/aid/%s/CSV" % AID response = StringIO(get(url).encode(ENCODING)) return pd.DataFrame.from_csv(response, index_col=False, header=0) def getAssayDescriptionFromAID(AID): """ Return the assay description for a given AID @param AID The AID to search on """ #url = PROLOG + ("/assay/aid/%s/description/ASNT" % AID) url = PROLOG + ("/assay/aid/%s/summary/JSON" % AID) # simplified description response = get(url) # needs to be parsed into an object return response def _getCompoundPropertiesFromCID(CID, properties): """ Return the compound and its properties identified by CID @param CID The CID to search on """ url = PROLOG + ("/compound/cid/%s/property/%s/CSV" % (CID, ",".join(properties))) response = get(url) return response def getCanonicalSMILESFromCID(CID): response = _getCompoundPropertiesFromCID(CID, ["CanonicalSMILES"]) smiles = response.split('\n')[1].split(',')[1] return smiles def getSIDsFromAID(AID, usepost=True): """ Returns a list of SIDs associated with an AID. @param geneID The geneID to search on """ response = "" if usepost: url = PROLOG + "/assay/aid/sids/TXT" payload = {'aid':AID} response = post(url, payload).split('\n') else: url = PROLOG + ("/assay/aid/%s/sids/TXT" % AID) response = get(url).split('\n') return [id.encode(ENCODING) for id in response] def getCIDsFromAID(AID, usepost=True): """ Return a list of pubchem cids that correspond to an AID. @param AID The AID to search on. @param usepost Boolean value indicating whether post or get should be used. """ if usepost: url = PROLOG + "/assay/aid/cids/TXT" payload = {'aid':AID} response = post(url, payload).split('\n') else: url = PROLOG + ("/assay/aid/%s/cids/TXT" % AID) response = get(url).split('\n') return [id.encode(ENCODING) for id in response]
apache-2.0
prheenan/Research
Perkins/Projects/Primers/Util/MeltingTemperatureUtil.py
1
7466
# force floating point division. Can still use integer with // from __future__ import division # This file is used for importing the common utilities classes. import numpy as np import matplotlib.pyplot as plt import sys from Bio.SeqUtils import MeltingTemp as mt from Bio.Seq import Seq # #get better names for the common table we will use # see: # biopython.org/DIST/docs/api/Bio.SeqUtils.MeltingTemp-module.html#Tm_NN NEAREST_N_ALLAWI_LUCIA_1997= mt.DNA_NN3 # see : #biopython.org/DIST/docs/api/Bio.SeqUtils.MeltingTemp-pysrc.html#salt_correction SALT_MONO_Owczarzy_2004 = 6 SALT_DIV_Owczarzy_2008 = 7 # tables DEF_NN_TABLE = NEAREST_N_ALLAWI_LUCIA_1997 DEF_SALT=SALT_DIV_Owczarzy_2008 # default concentrations DEF_K =0 # 10uL of 8mM (2mM per dNTP) in 100uL, converted to uM DEF_dNTPs=10*2/100 # all concentrations below in mM, unless otherwise noted DEF_NA=50 DEF_TRIS=0 # 6uL of 25mM in 100uL DEF_Mg=(6*25/100.) # oligo concentrations, in nM DEF_OLIGO = 250 DEF_OTHER = 0 class MeltingParams: """ Class to encapsulate melting parameters """ def __init__(self,Na=DEF_NA,K=DEF_K,Tris=DEF_TRIS,Mg=DEF_Mg,dNTPs=DEF_dNTPs, saltcorr=DEF_SALT,nn_table=DEF_NN_TABLE,dnac1=DEF_OLIGO, dnac2=DEF_OTHER,**kwargs): """ Class to wrap up parameters for melting temperature Args: Na: Sodioum Concentration [mM] K : potassium concentraion [mM] Tris: tris concentrtion [mM] Mg: magnesium concentation [mM] dNTPs: dNTP concentration [mM] saltcorr: salt correction method. See nn_table: the nearest neighbor table dnac1: concentration of strand 1 [nM] dnac2: concentratin of strand 2 [nM] kwargs: passed directly to melting temperature """ self.Na = Na self.K = K self.Tris = Tris self.Mg = Mg self.dNTPs = dNTPs self.saltcorr = saltcorr self.nn_table = nn_table self.dnac1 = dnac1 self.dnac2 = dnac2 # anything else, also adds for key,val in (kwargs.items()): setattr(self,key,val) def concdict(self): """ Returns all concentrations as a dict """ return dict(Na=self.Na, K=self.K, Tris=self.Tris, Mg=self.Mg, dNTPs=self.dNTPs) # 3/16/2015: # IDT (http://www.idtdna.com/calc/analyzer) uses # (all biopython stuff from # http://biopython.org/DIST/docs/api/Bio.SeqUtils.MeltingTemp-module.html ) # DNA/DNA +/- 1.4C (Allawi '97) idtTable = NEAREST_N_ALLAWI_LUCIA_1997 # Divalent cation correction +/- 0.5C (Owczarzy '08) # Triphosphate correction +/- 0.0C (Owczarzy '08) # Note: monovalent must be done post; see GetIdtMeltingTemp, Below idtSaltCorr = SALT_DIV_Owczarzy_2008 # default oligo concentration, nM idtDnaOligoConc = 250 """ ibid: "Oligo concentration [250nM] is assumed to be significantly larger (at least 6x) than concentration of the complementary target." """ idtOtherConc = idtDnaOligoConc/6 IdtParams = MeltingParams(Na=50, # 50mM by default Tris=0, dNTPs=0, Mg = 0, K=0, saltcorr=idtSaltCorr, nn_table=idtTable, dnac1=idtDnaOligoConc, dnac2=idtOtherConc,selfcomp=True) """ 2016/8/10: see http://www.idtdna.com/calc/analyzer, select 'qPCR' parameter set """ IdtParams_qPCR = MeltingParams(Na=50, Tris=0, # 0.8 mM, for *all* dTNPS dNTPs=0.8, # mM Mg=3, K=0, saltcorr=idtSaltCorr, nn_table=idtTable, # 200nM dnac1=200, dnac2=200/6, # see ibid selfcomp=True) # all possible salt corrrections # from #biopython.org/DIST/docs/api/Bio.SeqUtils.MeltingTemp-module.html#salt_correction # note that some of these are redundant, so I just pick the ones that arent # note that 5 through 7 are methods for something completely difference SaltCorrections = [i for i in range(8)] # all possible NN correction tables # from # http://biopython.org/DIST/docs/api/Bio.SeqUtils.MeltingTemp-pysrc.html NearestNeighborTablesDNA = [mt.DNA_NN1,mt.DNA_NN2,mt.DNA_NN3, mt.DNA_NN4] def MeltingTemperature(Sequence, **kwargs): """ Gets the melting temperature of a sequence. All concentrations in mM For saltcorr and nn_table (or just generally), see: http://biopython.org/DIST/docs/api/Bio.SeqUtils.MeltingTemp-module.html Args: Sequence: the sting we care about **kwargs: passed directly to melting temperature. See MeltingParams """ mParams = MeltingParams(**kwargs) paramDict= mParams.__dict__ return mt.Tm_NN(Seq(Sequence),**paramDict) def GetAllMeltingTemperatures(sequence,**kwargs): """ Gets the melting temperatures from *all possible* combinations of NN tables and salt corrections Args: sequence: sequence to use **kwargs: Arguments for MeltingTemperature, concentrations only (ie: dont try assing in saltcorr or nn_table, this does *all* of them) returns 2-D matrix, element [i,j] is using salt correction i, nn_table j from the 'SaltCorrections' and 'NearestNeighborTablesDNA' tables """ numNN = len(NearestNeighborTablesDNA) numSalt = len(SaltCorrections) toRet = np.zeros((numSalt,numNN)) for i,saltcorr in enumerate(SaltCorrections): for j,nn_table in enumerate(NearestNeighborTablesDNA): toRet[i,j] = MeltingTemperature(sequence,saltcorr=saltcorr, nn_table=nn_table,**kwargs) return toRet def GetCorrectedIdtTemperature(Sequence,Params): """ Given a DNA sequence and parameters, uses salt correction tables to correct it, using IDTs table (see CorrectIdtMeltingTemp) Args: Sequence: string to use. DNA Params: for correction and getting hte melting temperature. instance of MeltingParams Returns: float, corrected temperature """ mParamDict = Params.__dict__ melting_temp = MeltingTemperature(Sequence,**mParamDict) return melting_temp def GetIdtMeltingTemperature(sequence): """ Gets the melting temperature of a primer, using what IDT does. This s essentially just DNA in a (weak) salt solution Args: sequence: see GetAllMeltingTemperatures Returns: the melting temperature, according to IDT """ return GetCorrectedIdtTemperature(sequence,IdtParams) def GetIdtMeltingTemperatureForPCR(sequence): """ Gets the melting temperature of a primer, using what IDT does for its 'PCR' parameter set Args: sequence: see GetAllMeltingTemperatures Returns: the melting temperature, according to IDT """ return GetCorrectedIdtTemperature(sequence,IdtParams_qPCR)
gpl-3.0
ishanic/scikit-learn
sklearn/utils/tests/test_utils.py
215
8100
import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import pinv2 from itertools import chain from sklearn.utils.testing import (assert_equal, assert_raises, assert_true, assert_almost_equal, assert_array_equal, SkipTest, assert_raises_regex) from sklearn.utils import check_random_state from sklearn.utils import deprecated from sklearn.utils import resample from sklearn.utils import safe_mask from sklearn.utils import column_or_1d from sklearn.utils import safe_indexing from sklearn.utils import shuffle from sklearn.utils import gen_even_slices from sklearn.utils.extmath import pinvh from sklearn.utils.mocking import MockDataFrame def test_make_rng(): # Check the check_random_state utility function behavior assert_true(check_random_state(None) is np.random.mtrand._rand) assert_true(check_random_state(np.random) is np.random.mtrand._rand) rng_42 = np.random.RandomState(42) assert_true(check_random_state(42).randint(100) == rng_42.randint(100)) rng_42 = np.random.RandomState(42) assert_true(check_random_state(rng_42) is rng_42) rng_42 = np.random.RandomState(42) assert_true(check_random_state(43).randint(100) != rng_42.randint(100)) assert_raises(ValueError, check_random_state, "some invalid seed") def test_resample_noarg(): # Border case not worth mentioning in doctests assert_true(resample() is None) def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from http://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham(object): SPAM = 1 ham = Ham() assert_true(hasattr(ham, "SPAM")) assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) def test_resample_value_errors(): # Check that invalid arguments yield ValueError assert_raises(ValueError, resample, [0], [0, 1]) assert_raises(ValueError, resample, [0, 1], [0, 1], n_samples=3) assert_raises(ValueError, resample, [0, 1], [0, 1], meaning_of_life=42) def test_safe_mask(): random_state = check_random_state(0) X = random_state.rand(5, 4) X_csr = sp.csr_matrix(X) mask = [False, False, True, True, True] mask = safe_mask(X, mask) assert_equal(X[mask].shape[0], 3) mask = safe_mask(X_csr, mask) assert_equal(X_csr[mask].shape[0], 3) def test_pinvh_simple_real(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]], dtype=np.float64) a = np.dot(a, a.T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_pinvh_nonpositive(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64) a = np.dot(a, a.T) u, s, vt = np.linalg.svd(a) s[0] *= -1 a = np.dot(u * s, vt) # a is now symmetric non-positive and singular a_pinv = pinv2(a) a_pinvh = pinvh(a) assert_almost_equal(a_pinv, a_pinvh) def test_pinvh_simple_complex(): a = (np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) + 1j * np.array([[10, 8, 7], [6, 5, 4], [3, 2, 1]])) a = np.dot(a, a.conj().T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_column_or_1d(): EXAMPLES = [ ("binary", ["spam", "egg", "spam"]), ("binary", [0, 1, 0, 1]), ("continuous", np.arange(10) / 20.), ("multiclass", [1, 2, 3]), ("multiclass", [0, 1, 2, 2, 0]), ("multiclass", [[1], [2], [3]]), ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("continuous-multioutput", np.arange(30).reshape((-1, 3))), ] for y_type, y in EXAMPLES: if y_type in ["binary", 'multiclass', "continuous"]: assert_array_equal(column_or_1d(y), np.ravel(y)) else: assert_raises(ValueError, column_or_1d, y) def test_safe_indexing(): X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] inds = np.array([1, 2]) X_inds = safe_indexing(X, inds) X_arrays = safe_indexing(np.array(X), inds) assert_array_equal(np.array(X_inds), X_arrays) assert_array_equal(np.array(X_inds), np.array(X)[inds]) def test_safe_indexing_pandas(): try: import pandas as pd except ImportError: raise SkipTest("Pandas not found") X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = pd.DataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) # fun with read-only data in dataframes # this happens in joblib memmapping X.setflags(write=False) X_df_readonly = pd.DataFrame(X) with warnings.catch_warnings(record=True): X_df_ro_indexed = safe_indexing(X_df_readonly, inds) assert_array_equal(np.array(X_df_ro_indexed), X_indexed) def test_safe_indexing_mock_pandas(): X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = MockDataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_shuffle_on_ndim_equals_three(): def to_tuple(A): # to make the inner arrays hashable return tuple(tuple(tuple(C) for C in B) for B in A) A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) S = set(to_tuple(A)) shuffle(A) # shouldn't raise a ValueError for dim = 3 assert_equal(set(to_tuple(A)), S) def test_shuffle_dont_convert_to_array(): # Check that shuffle does not try to convert to numpy arrays with float # dtypes can let any indexable datastructure pass-through. a = ['a', 'b', 'c'] b = np.array(['a', 'b', 'c'], dtype=object) c = [1, 2, 3] d = MockDataFrame(np.array([['a', 0], ['b', 1], ['c', 2]], dtype=object)) e = sp.csc_matrix(np.arange(6).reshape(3, 2)) a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0) assert_equal(a_s, ['c', 'b', 'a']) assert_equal(type(a_s), list) assert_array_equal(b_s, ['c', 'b', 'a']) assert_equal(b_s.dtype, object) assert_equal(c_s, [3, 2, 1]) assert_equal(type(c_s), list) assert_array_equal(d_s, np.array([['c', 2], ['b', 1], ['a', 0]], dtype=object)) assert_equal(type(d_s), MockDataFrame) assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]])) def test_gen_even_slices(): # check that gen_even_slices contains all samples some_range = range(10) joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)])) assert_array_equal(some_range, joined_range) # check that passing negative n_chunks raises an error slices = gen_even_slices(10, -1) assert_raises_regex(ValueError, "gen_even_slices got n_packs=-1, must be" " >=1", next, slices)
bsd-3-clause
wzbozon/scikit-learn
sklearn/linear_model/passive_aggressive.py
97
10879
# Authors: Rob Zinkov, Mathieu Blondel # License: BSD 3 clause from .stochastic_gradient import BaseSGDClassifier from .stochastic_gradient import BaseSGDRegressor from .stochastic_gradient import DEFAULT_EPSILON class PassiveAggressiveClassifier(BaseSGDClassifier): """Passive Aggressive Classifier Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. fit_intercept : bool, default=False Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. loss : string, optional The loss function to be used: hinge: equivalent to PA-I in the reference paper. squared_hinge: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDClassifier Perceptron References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="hinge", n_jobs=1, random_state=None, warm_start=False, class_weight=None): BaseSGDClassifier.__init__(self, penalty=None, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, eta0=1.0, warm_start=warm_start, class_weight=class_weight, n_jobs=n_jobs) self.C = C self.loss = loss def partial_fit(self, X, y, classes=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of the training data y : numpy array of shape [n_samples] Subset of the target values classes : array, shape = [n_classes] Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. Returns ------- self : returns an instance of self. """ if self.class_weight == 'balanced': raise ValueError("class_weight 'balanced' is not supported for " "partial_fit. For 'balanced' weights, use " "`sklearn.utils.compute_class_weight` with " "`class_weight='balanced'`. In place of y you " "can use a large enough subset of the full " "training set target to properly estimate the " "class frequency distributions. Pass the " "resulting weights as the class_weight " "parameter.") lr = "pa1" if self.loss == "hinge" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, n_iter=1, classes=classes, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_classes,n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [n_classes] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "hinge" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init) class PassiveAggressiveRegressor(BaseSGDRegressor): """Passive Aggressive Regressor Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. epsilon : float If the difference between the current prediction and the correct label is below this threshold, the model is not updated. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level loss : string, optional The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDRegressor References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="epsilon_insensitive", epsilon=DEFAULT_EPSILON, random_state=None, warm_start=False): BaseSGDRegressor.__init__(self, penalty=None, l1_ratio=0, epsilon=epsilon, eta0=1.0, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, warm_start=warm_start) self.C = C self.loss = loss def partial_fit(self, X, y): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of training data y : numpy array of shape [n_samples] Subset of target values Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, n_iter=1, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [1] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init)
bsd-3-clause
marfcg/fludashboard
tests/test_fludb.py
2
1437
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_fludashboard ---------------------------------- Tests for `fludashboard` module. """ # local from fludashboard.libs.flu_data import FluDB import unittest import pandas as pd class TestFluDB(unittest.TestCase): @classmethod def setUpClass(cls): cls.fludb = FluDB() def tearDown(self): pass def test_get_territory_id_from_name(self): territory_id = self.fludb.get_territory_id_from_name('Rio de Janeiro') assert territory_id == 33 territory_id = self.fludb.get_territory_id_from_name('SÃO PAULO') assert territory_id == 35 def test_read_data(self): df = self.fludb.read_data( table_name='current_estimated_values', dataset_id=1, scale_id=1, territory_id=33, year=2017, week=25, base_year=None, base_week=None, historical_week=None ) assert not df.empty assert df.loc[0, 'epiyear'] == 2017 assert df.loc[0, 'epiweek'] == 25 assert df.loc[0, 'territory_id'] == 33 def test_get_data(self): df = self.fludb.get_data( dataset_id=1, scale_id=1, year=2017, territory_id=33, week=25, show_historical_weeks=True ) # pandas configuration pd.set_option('display.max_columns', 99) assert not df.empty if __name__ == '__main__': unittest.main()
gpl-3.0
ryfeus/lambda-packs
Tensorflow_Pandas_Numpy/source3.6/tensorflow/contrib/learn/python/learn/estimators/__init__.py
34
12484
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An estimator is a rule for calculating an estimate of a given quantity. # Estimators * **Estimators** are used to train and evaluate TensorFlow models. They support regression and classification problems. * **Classifiers** are functions that have discrete outcomes. * **Regressors** are functions that predict continuous values. ## Choosing the correct estimator * For **Regression** problems use one of the following: * `LinearRegressor`: Uses linear model. * `DNNRegressor`: Uses DNN. * `DNNLinearCombinedRegressor`: Uses Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `Estimator`: Use when you need a custom model. * For **Classification** problems use one of the following: * `LinearClassifier`: Multiclass classifier using Linear model. * `DNNClassifier`: Multiclass classifier using DNN. * `DNNLinearCombinedClassifier`: Multiclass classifier using Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `SVM`: Binary classifier using linear SVMs. * `LogisticRegressor`: Use when you need custom model for binary classification. * `Estimator`: Use when you need custom model for N class classification. ## Pre-canned Estimators Pre-canned estimators are machine learning estimators premade for general purpose problems. If you need more customization, you can always write your own custom estimator as described in the section below. Pre-canned estimators are tested and optimized for speed and quality. ### Define the feature columns Here are some possible types of feature columns used as inputs to a pre-canned estimator. Feature columns may vary based on the estimator used. So you can see which feature columns are fed to each estimator in the below section. ```python sparse_feature_a = sparse_column_with_keys( column_name="sparse_feature_a", keys=["AB", "CD", ...]) embedding_feature_a = embedding_column( sparse_id_column=sparse_feature_a, dimension=3, combiner="sum") sparse_feature_b = sparse_column_with_hash_bucket( column_name="sparse_feature_b", hash_bucket_size=1000) embedding_feature_b = embedding_column( sparse_id_column=sparse_feature_b, dimension=16, combiner="sum") crossed_feature_a_x_b = crossed_column( columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000) real_feature = real_valued_column("real_feature") real_feature_buckets = bucketized_column( source_column=real_feature, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) ``` ### Create the pre-canned estimator DNNClassifier, DNNRegressor, and DNNLinearCombinedClassifier are all pretty similar to each other in how you use them. You can easily plug in an optimizer and/or regularization to those estimators. #### DNNClassifier A classifier for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNClassifier( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNRegressor A regressor for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNLinearCombinedClassifier A classifier for TensorFlow Linear and DNN joined training models. * Wide and deep model * Multi class (2 by default) ```python my_linear_features = [crossed_feature_a_x_b] my_deep_features = [embedding_feature_a, embedding_feature_b] estimator = DNNLinearCombinedClassifier( # Common settings n_classes=n_classes, weight_column_name=weight_column_name, # Wide settings linear_feature_columns=my_linear_features, linear_optimizer=tf.train.FtrlOptimizer(...), # Deep settings dnn_feature_columns=my_deep_features, dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.AdagradOptimizer(...)) ``` #### LinearClassifier Train a linear model to classify instances into one of multiple possible classes. When number of possible classes is 2, this is binary classification. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearClassifier( feature_columns=my_features, optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### LinearRegressor Train a linear regression model to predict a label value given observation of feature values. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearRegressor( feature_columns=my_features) ``` ### LogisticRegressor Logistic regression estimator for binary classification. ```python # See tf.contrib.learn.Estimator(...) for details on model_fn structure def my_model_fn(...): pass estimator = LogisticRegressor(model_fn=my_model_fn) # Input builders def input_fn_train: pass estimator.fit(input_fn=input_fn_train) estimator.predict(x=x) ``` #### SVM - Support Vector Machine Support Vector Machine (SVM) model for binary classification. Currently only linear SVMs are supported. ```python my_features = [real_feature, sparse_feature_a] estimator = SVM( example_id_column='example_id', feature_columns=my_features, l2_regularization=10.0) ``` #### DynamicRnnEstimator An `Estimator` that uses a recurrent neural network with dynamic unrolling. ```python problem_type = ProblemType.CLASSIFICATION # or REGRESSION prediction_type = PredictionType.SINGLE_VALUE # or MULTIPLE_VALUE estimator = DynamicRnnEstimator(problem_type, prediction_type, my_feature_columns) ``` ### Use the estimator There are two main functions for using estimators, one of which is for training, and one of which is for evaluation. You can specify different data sources for each one in order to use different datasets for train and eval. ```python # Input builders def input_fn_train: # returns x, Y ... estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, Y ... estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` ## Creating Custom Estimator To create a custom `Estimator`, provide a function to `Estimator`'s constructor that builds your model (`model_fn`, below): ```python estimator = tf.contrib.learn.Estimator( model_fn=model_fn, model_dir=model_dir) # Where the model's data (e.g., checkpoints) # are saved. ``` Here is a skeleton of this function, with descriptions of its arguments and return values in the accompanying tables: ```python def model_fn(features, targets, mode, params): # Logic to do the following: # 1. Configure the model via TensorFlow operations # 2. Define the loss function for training/evaluation # 3. Define the training operation/optimizer # 4. Generate predictions return predictions, loss, train_op ``` You may use `mode` and check against `tf.contrib.learn.ModeKeys.{TRAIN, EVAL, INFER}` to parameterize `model_fn`. In the Further Reading section below, there is an end-to-end TensorFlow tutorial for building a custom estimator. ## Additional Estimators There is an additional estimators under `tensorflow.contrib.factorization.python.ops`: * Gaussian mixture model (GMM) clustering ## Further reading For further reading, there are several tutorials with relevant topics, including: * [Overview of linear models](../../../tutorials/linear/overview.md) * [Linear model tutorial](../../../tutorials/wide/index.md) * [Wide and deep learning tutorial](../../../tutorials/wide_and_deep/index.md) * [Custom estimator tutorial](../../../tutorials/estimators/index.md) * [Building input functions](../../../tutorials/input_fn/index.md) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.estimators.constants import ProblemType from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNEstimator from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNRegressor from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedEstimator from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedRegressor from tensorflow.contrib.learn.python.learn.estimators.dynamic_rnn_estimator import DynamicRnnEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import BaseEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import Estimator from tensorflow.contrib.learn.python.learn.estimators.estimator import GraphRewriteSpec from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input_fn from tensorflow.contrib.learn.python.learn.estimators.estimator import SKCompat from tensorflow.contrib.learn.python.learn.estimators.head import binary_svm_head from tensorflow.contrib.learn.python.learn.estimators.head import Head from tensorflow.contrib.learn.python.learn.estimators.head import loss_only_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_class_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_label_head from tensorflow.contrib.learn.python.learn.estimators.head import no_op_train_fn from tensorflow.contrib.learn.python.learn.estimators.head import poisson_regression_head from tensorflow.contrib.learn.python.learn.estimators.head import regression_head from tensorflow.contrib.learn.python.learn.estimators.kmeans import KMeansClustering from tensorflow.contrib.learn.python.learn.estimators.linear import LinearClassifier from tensorflow.contrib.learn.python.learn.estimators.linear import LinearEstimator from tensorflow.contrib.learn.python.learn.estimators.linear import LinearRegressor from tensorflow.contrib.learn.python.learn.estimators.logistic_regressor import LogisticRegressor from tensorflow.contrib.learn.python.learn.estimators.metric_key import MetricKey from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModeKeys from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModelFnOps from tensorflow.contrib.learn.python.learn.estimators.prediction_key import PredictionKey from tensorflow.contrib.learn.python.learn.estimators.rnn_common import PredictionType from tensorflow.contrib.learn.python.learn.estimators.run_config import ClusterConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import Environment from tensorflow.contrib.learn.python.learn.estimators.run_config import RunConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import TaskType from tensorflow.contrib.learn.python.learn.estimators.svm import SVM
mit
untom/scikit-learn
examples/decomposition/plot_pca_vs_fa_model_selection.py
78
4510
#!/usr/bin/python # -*- coding: utf-8 -*- """ =============================================================== Model selection with Probabilistic PCA and Factor Analysis (FA) =============================================================== Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods obtained from shrinkage covariance estimators. One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than shrinkage models. The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P. Minka is also compared. """ print(__doc__) # Authors: Alexandre Gramfort # Denis A. Engemann # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.decomposition import PCA, FactorAnalysis from sklearn.covariance import ShrunkCovariance, LedoitWolf from sklearn.cross_validation import cross_val_score from sklearn.grid_search import GridSearchCV ############################################################################### # Create the data n_samples, n_features, rank = 1000, 50, 10 sigma = 1. rng = np.random.RandomState(42) U, _, _ = linalg.svd(rng.randn(n_features, n_features)) X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T) # Adding homoscedastic noise X_homo = X + sigma * rng.randn(n_samples, n_features) # Adding heteroscedastic noise sigmas = sigma * rng.rand(n_features) + sigma / 2. X_hetero = X + rng.randn(n_samples, n_features) * sigmas ############################################################################### # Fit the models n_components = np.arange(0, n_features, 5) # options for n_components def compute_scores(X): pca = PCA() fa = FactorAnalysis() pca_scores, fa_scores = [], [] for n in n_components: pca.n_components = n fa.n_components = n pca_scores.append(np.mean(cross_val_score(pca, X))) fa_scores.append(np.mean(cross_val_score(fa, X))) return pca_scores, fa_scores def shrunk_cov_score(X): shrinkages = np.logspace(-2, 0, 30) cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages}) return np.mean(cross_val_score(cv.fit(X).best_estimator_, X)) def lw_score(X): return np.mean(cross_val_score(LedoitWolf(), X)) for X, title in [(X_homo, 'Homoscedastic Noise'), (X_hetero, 'Heteroscedastic Noise')]: pca_scores, fa_scores = compute_scores(X) n_components_pca = n_components[np.argmax(pca_scores)] n_components_fa = n_components[np.argmax(fa_scores)] pca = PCA(n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("best n_components by PCA CV = %d" % n_components_pca) print("best n_components by FactorAnalysis CV = %d" % n_components_fa) print("best n_components by PCA MLE = %d" % n_components_pca_mle) plt.figure() plt.plot(n_components, pca_scores, 'b', label='PCA scores') plt.plot(n_components, fa_scores, 'r', label='FA scores') plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-') plt.axvline(n_components_pca, color='b', label='PCA CV: %d' % n_components_pca, linestyle='--') plt.axvline(n_components_fa, color='r', label='FactorAnalysis CV: %d' % n_components_fa, linestyle='--') plt.axvline(n_components_pca_mle, color='k', label='PCA MLE: %d' % n_components_pca_mle, linestyle='--') # compare with other covariance estimators plt.axhline(shrunk_cov_score(X), color='violet', label='Shrunk Covariance MLE', linestyle='-.') plt.axhline(lw_score(X), color='orange', label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.') plt.xlabel('nb of components') plt.ylabel('CV scores') plt.legend(loc='lower right') plt.title(title) plt.show()
bsd-3-clause
andyh616/mne-python
examples/preprocessing/plot_find_ecg_artifacts.py
19
1304
""" ================== Find ECG artifacts ================== Locate QRS component of ECG. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' # Setup for reading the raw data raw = io.Raw(raw_fname) event_id = 999 ecg_events, _, _ = mne.preprocessing.find_ecg_events(raw, event_id, ch_name='MEG 1531') # Read epochs picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, eog=False, include=['MEG 1531'], exclude='bads') tmin, tmax = -0.1, 0.1 epochs = mne.Epochs(raw, ecg_events, event_id, tmin, tmax, picks=picks, proj=False) data = epochs.get_data() print("Number of detected ECG artifacts : %d" % len(data)) ############################################################################### # Plot ECG artifacts plt.plot(1e3 * epochs.times, np.squeeze(data).T) plt.xlabel('Times (ms)') plt.ylabel('ECG') plt.show()
bsd-3-clause
datapythonista/pandas
pandas/tests/indexes/test_common.py
1
14359
""" Collection of tests asserting things that should be true for any index subclass. Makes use of the `indices` fixture defined in pandas/tests/indexes/conftest.py. """ import re import numpy as np import pytest from pandas._libs.tslibs import iNaT from pandas.compat import IS64 from pandas.core.dtypes.common import ( is_period_dtype, needs_i8_conversion, ) import pandas as pd from pandas import ( CategoricalIndex, DatetimeIndex, MultiIndex, PeriodIndex, RangeIndex, TimedeltaIndex, ) import pandas._testing as tm class TestCommon: def test_droplevel(self, index): # GH 21115 if isinstance(index, MultiIndex): # Tested separately in test_multi.py return assert index.droplevel([]).equals(index) for level in index.name, [index.name]: if isinstance(index.name, tuple) and level is index.name: # GH 21121 : droplevel with tuple name continue msg = ( "Cannot remove 1 levels from an index with 1 levels: at least one " "level must be left." ) with pytest.raises(ValueError, match=msg): index.droplevel(level) for level in "wrong", ["wrong"]: with pytest.raises( KeyError, match=r"'Requested level \(wrong\) does not match index name \(None\)'", ): index.droplevel(level) def test_constructor_non_hashable_name(self, index_flat): # GH 20527 index = index_flat message = "Index.name must be a hashable type" renamed = [["1"]] # With .rename() with pytest.raises(TypeError, match=message): index.rename(name=renamed) # With .set_names() with pytest.raises(TypeError, match=message): index.set_names(names=renamed) def test_constructor_unwraps_index(self, index_flat): a = index_flat b = type(a)(a) tm.assert_equal(a._data, b._data) def test_to_flat_index(self, index_flat): # 22866 index = index_flat result = index.to_flat_index() tm.assert_index_equal(result, index) def test_set_name_methods(self, index_flat): # MultiIndex tested separately index = index_flat new_name = "This is the new name for this index" original_name = index.name new_ind = index.set_names([new_name]) assert new_ind.name == new_name assert index.name == original_name res = index.rename(new_name, inplace=True) # should return None assert res is None assert index.name == new_name assert index.names == [new_name] # FIXME: dont leave commented-out # with pytest.raises(TypeError, match="list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with pytest.raises(ValueError, match="Level must be None"): index.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ("A", "B") index.rename(name, inplace=True) assert index.name == name assert index.names == [name] def test_copy_and_deepcopy(self, index_flat): from copy import ( copy, deepcopy, ) index = index_flat for func in (copy, deepcopy): idx_copy = func(index) assert idx_copy is not index assert idx_copy.equals(index) new_copy = index.copy(deep=True, name="banana") assert new_copy.name == "banana" def test_unique(self, index_flat): # don't test a MultiIndex here (as its tested separated) index = index_flat # GH 17896 expected = index.drop_duplicates() for level in 0, index.name, None: result = index.unique(level=level) tm.assert_index_equal(result, expected) msg = "Too many levels: Index has only 1 level, not 4" with pytest.raises(IndexError, match=msg): index.unique(level=3) msg = ( fr"Requested level \(wrong\) does not match index name " fr"\({re.escape(index.name.__repr__())}\)" ) with pytest.raises(KeyError, match=msg): index.unique(level="wrong") def test_get_unique_index(self, index_flat): # MultiIndex tested separately index = index_flat if not len(index): pytest.skip("Skip check for empty Index and MultiIndex") idx = index[[0] * 5] idx_unique = index[[0]] # We test against `idx_unique`, so first we make sure it's unique # and doesn't contain nans. assert idx_unique.is_unique is True try: assert idx_unique.hasnans is False except NotImplementedError: pass result = idx._get_unique_index() tm.assert_index_equal(result, idx_unique) # nans: if not index._can_hold_na: pytest.skip("Skip na-check if index cannot hold na") if is_period_dtype(index.dtype): vals = index[[0] * 5]._data vals[0] = pd.NaT elif needs_i8_conversion(index.dtype): vals = index._data._ndarray[[0] * 5] vals[0] = iNaT else: vals = index.values[[0] * 5] vals[0] = np.nan vals_unique = vals[:2] if index.dtype.kind in ["m", "M"]: # i.e. needs_i8_conversion but not period_dtype, as above vals = type(index._data)(vals, dtype=index.dtype) vals_unique = type(index._data)._simple_new(vals_unique, dtype=index.dtype) idx_nan = index._shallow_copy(vals) idx_unique_nan = index._shallow_copy(vals_unique) assert idx_unique_nan.is_unique is True assert idx_nan.dtype == index.dtype assert idx_unique_nan.dtype == index.dtype expected = idx_unique_nan for i in [idx_nan, idx_unique_nan]: result = i._get_unique_index() tm.assert_index_equal(result, expected) def test_searchsorted_monotonic(self, index_flat): # GH17271 index = index_flat # not implemented for tuple searches in MultiIndex # or Intervals searches in IntervalIndex if isinstance(index, pd.IntervalIndex): pytest.skip("Skip check for MultiIndex/IntervalIndex") # nothing to test if the index is empty if index.empty: pytest.skip("Skip check for empty Index") value = index[0] # determine the expected results (handle dupes for 'right') expected_left, expected_right = 0, (index == value).argmin() if expected_right == 0: # all values are the same, expected_right should be length expected_right = len(index) # test _searchsorted_monotonic in all cases # test searchsorted only for increasing if index.is_monotonic_increasing: ssm_left = index._searchsorted_monotonic(value, side="left") assert expected_left == ssm_left ssm_right = index._searchsorted_monotonic(value, side="right") assert expected_right == ssm_right ss_left = index.searchsorted(value, side="left") assert expected_left == ss_left ss_right = index.searchsorted(value, side="right") assert expected_right == ss_right elif index.is_monotonic_decreasing: ssm_left = index._searchsorted_monotonic(value, side="left") assert expected_left == ssm_left ssm_right = index._searchsorted_monotonic(value, side="right") assert expected_right == ssm_right else: # non-monotonic should raise. msg = "index must be monotonic increasing or decreasing" with pytest.raises(ValueError, match=msg): index._searchsorted_monotonic(value, side="left") def test_drop_duplicates(self, index_flat, keep): # MultiIndex is tested separately index = index_flat if isinstance(index, RangeIndex): pytest.skip( "RangeIndex is tested in test_drop_duplicates_no_duplicates " "as it cannot hold duplicates" ) if len(index) == 0: pytest.skip( "empty index is tested in test_drop_duplicates_no_duplicates " "as it cannot hold duplicates" ) # make unique index holder = type(index) unique_values = list(set(index)) unique_idx = holder(unique_values) # make duplicated index n = len(unique_idx) duplicated_selection = np.random.choice(n, int(n * 1.5)) idx = holder(unique_idx.values[duplicated_selection]) # Series.duplicated is tested separately expected_duplicated = ( pd.Series(duplicated_selection).duplicated(keep=keep).values ) tm.assert_numpy_array_equal(idx.duplicated(keep=keep), expected_duplicated) # Series.drop_duplicates is tested separately expected_dropped = holder(pd.Series(idx).drop_duplicates(keep=keep)) tm.assert_index_equal(idx.drop_duplicates(keep=keep), expected_dropped) def test_drop_duplicates_no_duplicates(self, index_flat): # MultiIndex is tested separately index = index_flat # make unique index if isinstance(index, RangeIndex): # RangeIndex cannot have duplicates unique_idx = index else: holder = type(index) unique_values = list(set(index)) unique_idx = holder(unique_values) # check on unique index expected_duplicated = np.array([False] * len(unique_idx), dtype="bool") tm.assert_numpy_array_equal(unique_idx.duplicated(), expected_duplicated) result_dropped = unique_idx.drop_duplicates() tm.assert_index_equal(result_dropped, unique_idx) # validate shallow copy assert result_dropped is not unique_idx def test_drop_duplicates_inplace(self, index): msg = r"drop_duplicates\(\) got an unexpected keyword argument" with pytest.raises(TypeError, match=msg): index.drop_duplicates(inplace=True) def test_has_duplicates(self, index_flat): # MultiIndex tested separately in: # tests/indexes/multi/test_unique_and_duplicates. index = index_flat holder = type(index) if not len(index) or isinstance(index, RangeIndex): # MultiIndex tested separately in: # tests/indexes/multi/test_unique_and_duplicates. # RangeIndex is unique by definition. pytest.skip("Skip check for empty Index, MultiIndex, and RangeIndex") idx = holder([index[0]] * 5) assert idx.is_unique is False assert idx.has_duplicates is True @pytest.mark.parametrize( "dtype", ["int64", "uint64", "float64", "category", "datetime64[ns]", "timedelta64[ns]"], ) def test_astype_preserves_name(self, index, dtype): # https://github.com/pandas-dev/pandas/issues/32013 if isinstance(index, MultiIndex): index.names = ["idx" + str(i) for i in range(index.nlevels)] else: index.name = "idx" warn = None if dtype in ["int64", "uint64"]: if needs_i8_conversion(index.dtype): warn = FutureWarning elif ( isinstance(index, DatetimeIndex) and index.tz is not None and dtype == "datetime64[ns]" ): # This astype is deprecated in favor of tz_localize warn = FutureWarning try: # Some of these conversions cannot succeed so we use a try / except with tm.assert_produces_warning(warn): result = index.astype(dtype) except (ValueError, TypeError, NotImplementedError, SystemError): return if isinstance(index, MultiIndex): assert result.names == index.names else: assert result.name == index.name def test_asi8_deprecation(self, index): # GH#37877 if isinstance(index, (DatetimeIndex, TimedeltaIndex, PeriodIndex)): warn = None else: warn = FutureWarning with tm.assert_produces_warning(warn): index.asi8 @pytest.mark.parametrize("na_position", [None, "middle"]) def test_sort_values_invalid_na_position(index_with_missing, na_position): with pytest.raises(ValueError, match=f"invalid na_position: {na_position}"): index_with_missing.sort_values(na_position=na_position) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_sort_values_with_missing(index_with_missing, na_position): # GH 35584. Test that sort_values works with missing values, # sort non-missing and place missing according to na_position if isinstance(index_with_missing, CategoricalIndex): pytest.skip("missing value sorting order not well-defined") missing_count = np.sum(index_with_missing.isna()) not_na_vals = index_with_missing[index_with_missing.notna()].values sorted_values = np.sort(not_na_vals) if na_position == "first": sorted_values = np.concatenate([[None] * missing_count, sorted_values]) else: sorted_values = np.concatenate([sorted_values, [None] * missing_count]) expected = type(index_with_missing)(sorted_values) result = index_with_missing.sort_values(na_position=na_position) tm.assert_index_equal(result, expected) def test_ndarray_compat_properties(index): if isinstance(index, PeriodIndex) and not IS64: pytest.skip("Overflow") idx = index assert idx.T.equals(idx) assert idx.transpose().equals(idx) values = idx.values assert idx.shape == values.shape assert idx.ndim == values.ndim assert idx.size == values.size if not isinstance(index, (RangeIndex, MultiIndex)): # These two are not backed by an ndarray assert idx.nbytes == values.nbytes # test for validity idx.nbytes idx.values.nbytes
bsd-3-clause
amolkahat/pandas
pandas/core/computation/align.py
6
5618
"""Core eval alignment algorithms """ import warnings from functools import partial, wraps from pandas.compat import zip, range import numpy as np import pandas as pd from pandas import compat from pandas.errors import PerformanceWarning import pandas.core.common as com from pandas.core.computation.common import _result_type_many def _align_core_single_unary_op(term): if isinstance(term.value, np.ndarray): typ = partial(np.asanyarray, dtype=term.value.dtype) else: typ = type(term.value) ret = typ, if not hasattr(term.value, 'axes'): ret += None, else: ret += _zip_axes_from_type(typ, term.value.axes), return ret def _zip_axes_from_type(typ, new_axes): axes = {} for ax_ind, ax_name in compat.iteritems(typ._AXIS_NAMES): axes[ax_name] = new_axes[ax_ind] return axes def _any_pandas_objects(terms): """Check a sequence of terms for instances of PandasObject.""" return any(isinstance(term.value, pd.core.generic.PandasObject) for term in terms) def _filter_special_cases(f): @wraps(f) def wrapper(terms): # single unary operand if len(terms) == 1: return _align_core_single_unary_op(terms[0]) term_values = (term.value for term in terms) # we don't have any pandas objects if not _any_pandas_objects(terms): return _result_type_many(*term_values), None return f(terms) return wrapper @_filter_special_cases def _align_core(terms): term_index = [i for i, term in enumerate(terms) if hasattr(term.value, 'axes')] term_dims = [terms[i].value.ndim for i in term_index] ndims = pd.Series(dict(zip(term_index, term_dims))) # initial axes are the axes of the largest-axis'd term biggest = terms[ndims.idxmax()].value typ = biggest._constructor axes = biggest.axes naxes = len(axes) gt_than_one_axis = naxes > 1 for value in (terms[i].value for i in term_index): is_series = isinstance(value, pd.Series) is_series_and_gt_one_axis = is_series and gt_than_one_axis for axis, items in enumerate(value.axes): if is_series_and_gt_one_axis: ax, itm = naxes - 1, value.index else: ax, itm = axis, items if not axes[ax].is_(itm): axes[ax] = axes[ax].join(itm, how='outer') for i, ndim in compat.iteritems(ndims): for axis, items in zip(range(ndim), axes): ti = terms[i].value if hasattr(ti, 'reindex'): transpose = isinstance(ti, pd.Series) and naxes > 1 reindexer = axes[naxes - 1] if transpose else items term_axis_size = len(ti.axes[axis]) reindexer_size = len(reindexer) ordm = np.log10(max(1, abs(reindexer_size - term_axis_size))) if ordm >= 1 and reindexer_size >= 10000: w = ('Alignment difference on axis {axis} is larger ' 'than an order of magnitude on term {term!r}, by ' 'more than {ordm:.4g}; performance may suffer' ).format(axis=axis, term=terms[i].name, ordm=ordm) warnings.warn(w, category=PerformanceWarning, stacklevel=6) f = partial(ti.reindex, reindexer, axis=axis, copy=False) terms[i].update(f()) terms[i].update(terms[i].value.values) return typ, _zip_axes_from_type(typ, axes) def _align(terms): """Align a set of terms""" try: # flatten the parse tree (a nested list, really) terms = list(com.flatten(terms)) except TypeError: # can't iterate so it must just be a constant or single variable if isinstance(terms.value, pd.core.generic.NDFrame): typ = type(terms.value) return typ, _zip_axes_from_type(typ, terms.value.axes) return np.result_type(terms.type), None # if all resolved variables are numeric scalars if all(term.is_scalar for term in terms): return _result_type_many(*(term.value for term in terms)).type, None # perform the main alignment typ, axes = _align_core(terms) return typ, axes def _reconstruct_object(typ, obj, axes, dtype): """Reconstruct an object given its type, raw value, and possibly empty (None) axes. Parameters ---------- typ : object A type obj : object The value to use in the type constructor axes : dict The axes to use to construct the resulting pandas object Returns ------- ret : typ An object of type ``typ`` with the value `obj` and possible axes `axes`. """ try: typ = typ.type except AttributeError: pass res_t = np.result_type(obj.dtype, dtype) if (not isinstance(typ, partial) and issubclass(typ, pd.core.generic.PandasObject)): return typ(obj, dtype=res_t, **axes) # special case for pathological things like ~True/~False if hasattr(res_t, 'type') and typ == np.bool_ and res_t != np.bool_: ret_value = res_t.type(obj) else: ret_value = typ(obj).astype(res_t) # The condition is to distinguish 0-dim array (returned in case of # scalar) and 1 element array # e.g. np.array(0) and np.array([0]) if len(obj.shape) == 1 and len(obj) == 1: if not isinstance(ret_value, np.ndarray): ret_value = np.array([ret_value]).astype(res_t) return ret_value
bsd-3-clause
shuiruge/nn4post
tests/mnist.py
1
7886
""" Description ----------- Focked from Nealson's repository (Python3 version), with some modification. """ import pickle import gzip import numpy as np from sklearn.utils import shuffle def load_data(): """Return the MNIST data as a tuple containing the training data, the validation data, and the test data. The ``training_data`` is returned as a tuple with two entries. The first entry contains the actual training images. This is a numpy ndarray with 50,000 entries. Each entry is, in turn, a numpy ndarray with 784 values, representing the 28 * 28 = 784 pixels in a single MNIST image. The second entry in the ``training_data`` tuple is a numpy ndarray containing 50,000 entries. Those entries are just the digit values (0...9) for the corresponding images contained in the first entry of the tuple. The ``validation_data`` and ``test_data`` are similar, except each contains only 10,000 images. This is a nice data format, but for use in neural networks it's helpful to modify the format of the ``training_data`` a little. That's done in the wrapper function ``load_data_wrapper()``, see below. """ f = gzip.open('../dat/mnist.pkl.gz', 'rb') training_data, validation_data, test_data = pickle.load(f, encoding="latin1") f.close() return (training_data, validation_data, test_data) def load_data_wrapper(one_hot_y=False): """Return a tuple containing ``(training_data, validation_data, test_data)``. Based on ``load_data``, but the format is more convenient for use in our implementation of neural networks. XXX """ tr_d, va_d, te_d = load_data() training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]] training_results = [vectorized_result(y) for y in tr_d[1]] training_data = (training_inputs, training_results) if one_hot_y: validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]] validation_results = [vectorized_result(y) for y in va_d[1]] validation_data = (validation_inputs, validation_results) test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]] test_results = [vectorized_result(y) for y in te_d[1]] test_data = (test_inputs, test_results) else: validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]] validation_data = (validation_inputs, va_d[1]) test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]] test_data = (test_inputs, te_d[1]) return (training_data, validation_data, test_data) def vectorized_result(j): """Return a 10-dimensional unit vector with a 1.0 in the jth position and zeroes elsewhere. This is used to convert a digit (0...9) into a corresponding desired output from the neural network.""" e = np.zeros((10, 1)) e[j] = 1.0 return e class MNIST(object): """ Utils of loading, processing, and batch-emitting of MNIST dataset. The MNIST are (28, 28)-pixal images. Args: noise_std: `float`, as the standard derivative of Gaussian noise that is to add to output `y`. batch_size: `int`, as the size of mini-batch of training data. We employ no mini-batch for test data. dtype: Numpy `Dtype` object of `float`, optional. As the dtype of output data. Default is `np.float32`. seed: `int` or `None`, optional. If `int`, then set the random-seed of the noise in the output data. If `None`, do nothing. This arg is for debugging. Default is `None`. Attributes: training_data: Tuple of three numpy arries, as `x`, `y`, and `y_error` for training data, with shape `(50000, 784)`, `(50000, 10)`, and `(50000, 10)` respectively. validation_data: Tuple of three numpy arries, as `x`, `y`, and `y_error` for validation data, with shape `(10000, 784)`, `(10000,)`, and `(10000,)` respectively. test_data: Tuple of three numpy arries, as `x`, `y`, and `y_error` for test data, with shape `(10000, 784)`, `(10000)`, and `(10000)` respectively. n_data: `int`, as the number of training_data. batch_size: `int`, as the batch-size of training_data, as the same argument in `__init__`. n_batches_per_epoch: `int`, as the number of mini-batches per epoch. Methods: batch_generator: Used to define a generator that emits mini-batch of training data, by acting `next()`. """ def __init__(self, noise_std, batch_size, dtype=np.float32, seed=None, verbose=True): self._dtype = dtype self._noise_std = noise_std self.batch_size = batch_size if seed is not None: np.random.seed(seed) self._get_data() def _get_data(self): """ Generate attributes: `training_data`, `validation_data`, and `test_data`, as well as `n_data` and `n_batches_per_epoch`. """ training_data, validation_data, test_data = load_data_wrapper() # Preprocess training data x_tr, y_tr = training_data x_tr = self._preprocess(x_tr) y_tr = self._preprocess(y_tr) y_err_tr = self._noise_std * np.ones(y_tr.shape, dtype=self._dtype) self.training_data = (x_tr, y_tr, y_err_tr) self.n_data = x_tr.shape[0] self.n_batches_per_epoch = round(self.n_data/self.batch_size) # Preprocess training data x_va, y_va = validation_data x_va = self._preprocess(x_va) y_va = self._preprocess(y_va) y_err_va = 0.0 * np.ones(y_va.shape, dtype=self._dtype) self.validation_data = (x_va, y_va, y_err_va) # Preprocess test data x_te, y_te = test_data x_te = self._preprocess(x_te) y_te = self._preprocess(y_te) y_err_te = 0.0 * np.ones(y_te.shape, dtype=self._dtype) self.test_data = (x_te, y_te, y_err_te) def _preprocess(self, data): """ Preprocessing MNIST data, including converting to numpy array, re-arrange the shape and dtype. Args: data: Any element of the tuple as the output of calling `mnist_loader.load_data_wrapper()`. Returns: The preprocessed, as numpy array. (This copies the input `data`, so that the input `data` will not be altered.) """ data = np.asarray(data, dtype=self._dtype) data = np.squeeze(data) return data def batch_generator(self): """ Used to define a generator that emits mini-batch of training data, by acting `next()`. Example: ``` python: mnist_ = MNIST(...) batch_generator = mnist_.batch_generator() x_batch, y_batch, y_error_batch = next(batch_generator) ```` Returns: Tuple of three numpy arraies `(x, y, y_error)`, for the inputs of the model, the observed outputs of the model , and the standard derivatives of the observation, respectively. They are used for training only. """ x, y, y_err = self.training_data batch_size = self.batch_size n_data = self.n_data while True: x, y, y_err = shuffle(x, y, y_err) # XXX: copy ??? for k in range(0, n_data, batch_size): mini_batch = (x[k:k+batch_size], y[k:k+batch_size], y_err[k:k+batch_size]) yield mini_batch if __name__ == '__main__': """ Test. """ mnist_ = MNIST(noise_std=0.1, batch_size=128)
gpl-3.0
shusenl/scikit-learn
sklearn/metrics/tests/test_ranking.py
127
40813
from __future__ import division, print_function import numpy as np from itertools import product import warnings from scipy.sparse import csr_matrix from sklearn import datasets from sklearn import svm from sklearn import ensemble from sklearn.datasets import make_multilabel_classification from sklearn.random_projection import sparse_random_matrix from sklearn.utils.validation import check_array, check_consistent_length from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.metrics import auc from sklearn.metrics import average_precision_score from sklearn.metrics import coverage_error from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import label_ranking_loss from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.metrics.base import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def _auc(y_true, y_score): """Alternative implementation to check for correctness of `roc_auc_score`.""" pos_label = np.unique(y_true)[1] # Count the number of times positive samples are correctly ranked above # negative samples. pos = y_score[y_true == pos_label] neg = y_score[y_true != pos_label] diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1) n_correct = np.sum(diff_matrix > 0) return n_correct / float(len(pos) * len(neg)) def _average_precision(y_true, y_score): """Alternative implementation to check for correctness of `average_precision_score`.""" pos_label = np.unique(y_true)[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_score = y_score[order] y_true = y_true[order] score = 0 for i in range(len(y_score)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= (i + 1.0) score += prec return score / n_pos def test_roc_curve(): # Test Area under Receiver Operating Characteristic (ROC) curve y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) roc_auc = auc(fpr, tpr) expected_auc = _auc(y_true, probas_pred) assert_array_almost_equal(roc_auc, expected_auc, decimal=2) assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred)) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_end_points(): # Make sure that roc_curve returns a curve start at 0 and ending and # 1 even in corner cases rng = np.random.RandomState(0) y_true = np.array([0] * 50 + [1] * 50) y_pred = rng.randint(3, size=100) fpr, tpr, thr = roc_curve(y_true, y_pred) assert_equal(fpr[0], 0) assert_equal(fpr[-1], 1) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thr.shape) def test_roc_returns_consistency(): # Test whether the returned threshold matches up with tpr # make small toy dataset y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) # use the given thresholds to determine the tpr tpr_correct = [] for t in thresholds: tp = np.sum((probas_pred >= t) & y_true) p = np.sum(y_true) tpr_correct.append(1.0 * tp / p) # compare tpr and tpr_correct to see if the thresholds' order was correct assert_array_almost_equal(tpr, tpr_correct, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_nonrepeating_thresholds(): # Test to ensure that we don't return spurious repeating thresholds. # Duplicated thresholds can arise due to machine precision issues. dataset = datasets.load_digits() X = dataset['data'] y = dataset['target'] # This random forest classifier can only return probabilities # significant to two decimal places clf = ensemble.RandomForestClassifier(n_estimators=100, random_state=0) # How well can the classifier predict whether a digit is less than 5? # This task contributes floating point roundoff errors to the probabilities train, test = slice(None, None, 2), slice(1, None, 2) probas_pred = clf.fit(X[train], y[train]).predict_proba(X[test]) y_score = probas_pred[:, :5].sum(axis=1) # roundoff errors begin here y_true = [yy < 5 for yy in y[test]] # Check for repeating values in the thresholds fpr, tpr, thresholds = roc_curve(y_true, y_score) assert_equal(thresholds.size, np.unique(np.round(thresholds, 2)).size) def test_roc_curve_multi(): # roc_curve not applicable for multi-class problems y_true, _, probas_pred = make_prediction(binary=False) assert_raises(ValueError, roc_curve, y_true, probas_pred) def test_roc_curve_confidence(): # roc_curve for confidence scores y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred - 0.5) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.90, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_hard(): # roc_curve for hard decisions y_true, pred, probas_pred = make_prediction(binary=True) # always predict one trivial_pred = np.ones(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # always predict zero trivial_pred = np.zeros(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # hard decisions fpr, tpr, thresholds = roc_curve(y_true, pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.78, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_one_label(): y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # assert there are warnings w = UndefinedMetricWarning fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred) # all true labels, all fpr should be nan assert_array_equal(fpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # assert there are warnings fpr, tpr, thresholds = assert_warns(w, roc_curve, [1 - x for x in y_true], y_pred) # all negative labels, all tpr should be nan assert_array_equal(tpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_toydata(): # Binary classification y_true = [0, 1] y_score = [0, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [0, 1] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1, 1]) assert_array_almost_equal(fpr, [0, 0, 1]) assert_almost_equal(roc_auc, 0.) y_true = [1, 0] y_score = [1, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, 0.5) y_true = [1, 0] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, .5) y_true = [0, 0] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [0., 0.5, 1.]) assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan]) y_true = [1, 1] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [np.nan, np.nan]) assert_array_almost_equal(fpr, [0.5, 1.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), .5) def test_auc(): # Test Area Under Curve (AUC) computation x = [0, 1] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0, 0] y = [0, 1, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [0, 1] y = [1, 1] assert_array_almost_equal(auc(x, y), 1) x = [0, 0.5, 1] y = [0, 0.5, 1] assert_array_almost_equal(auc(x, y), 0.5) def test_auc_duplicate_values(): # Test Area Under Curve (AUC) computation with duplicate values # auc() was previously sorting the x and y arrays according to the indices # from numpy.argsort(x), which was reordering the tied 0's in this example # and resulting in an incorrect area computation. This test detects the # error. x = [-2.0, 0.0, 0.0, 0.0, 1.0] y1 = [2.0, 0.0, 0.5, 1.0, 1.0] y2 = [2.0, 1.0, 0.0, 0.5, 1.0] y3 = [2.0, 1.0, 0.5, 0.0, 1.0] for y in (y1, y2, y3): assert_array_almost_equal(auc(x, y, reorder=True), 3.0) def test_auc_errors(): # Incompatible shapes assert_raises(ValueError, auc, [0.0, 0.5, 1.0], [0.1, 0.2]) # Too few x values assert_raises(ValueError, auc, [0.0], [0.1]) # x is not in order assert_raises(ValueError, auc, [1.0, 0.0, 0.5], [0.0, 0.0, 0.0]) def test_auc_score_non_binary_class(): # Test that roc_auc_score function returns an error when trying # to compute AUC for non-binary class values. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) clean_warning_registry() with warnings.catch_warnings(record=True): rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) def test_precision_recall_curve(): y_true, _, probas_pred = make_prediction(binary=True) _test_precision_recall_curve(y_true, probas_pred) # Use {-1, 1} for labels; make sure original labels aren't modified y_true[np.where(y_true == 0)] = -1 y_true_copy = y_true.copy() _test_precision_recall_curve(y_true, probas_pred) assert_array_equal(y_true_copy, y_true) labels = [1, 0, 0, 1] predict_probas = [1, 2, 3, 4] p, r, t = precision_recall_curve(labels, predict_probas) assert_array_almost_equal(p, np.array([0.5, 0.33333333, 0.5, 1., 1.])) assert_array_almost_equal(r, np.array([1., 0.5, 0.5, 0.5, 0.])) assert_array_almost_equal(t, np.array([1, 2, 3, 4])) assert_equal(p.size, r.size) assert_equal(p.size, t.size + 1) def test_precision_recall_curve_pos_label(): y_true, _, probas_pred = make_prediction(binary=False) pos_label = 2 p, r, thresholds = precision_recall_curve(y_true, probas_pred[:, pos_label], pos_label=pos_label) p2, r2, thresholds2 = precision_recall_curve(y_true == pos_label, probas_pred[:, pos_label]) assert_array_almost_equal(p, p2) assert_array_almost_equal(r, r2) assert_array_almost_equal(thresholds, thresholds2) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def _test_precision_recall_curve(y_true, probas_pred): # Test Precision-Recall and aread under PR curve p, r, thresholds = precision_recall_curve(y_true, probas_pred) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.85, 2) assert_array_almost_equal(precision_recall_auc, average_precision_score(y_true, probas_pred)) assert_almost_equal(_average_precision(y_true, probas_pred), precision_recall_auc, 1) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) # Smoke test in the case of proba having only one value p, r, thresholds = precision_recall_curve(y_true, np.zeros_like(probas_pred)) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.75, 3) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def test_precision_recall_curve_errors(): # Contains non-binary labels assert_raises(ValueError, precision_recall_curve, [0, 1, 2], [[0.0], [1.0], [1.0]]) def test_precision_recall_curve_toydata(): with np.errstate(all="raise"): # Binary classification y_true = [0, 1] y_score = [0, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [0, 1] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 0., 1.]) assert_array_almost_equal(r, [1., 0., 0.]) assert_almost_equal(auc_prc, 0.25) y_true = [1, 0] y_score = [1, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1., 0]) assert_almost_equal(auc_prc, .75) y_true = [1, 0] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1, 0.]) assert_almost_equal(auc_prc, .75) y_true = [0, 0] y_score = [0.25, 0.75] assert_raises(Exception, precision_recall_curve, y_true, y_score) assert_raises(Exception, average_precision_score, y_true, y_score) y_true = [1, 1] y_score = [0.25, 0.75] p, r, _ = precision_recall_curve(y_true, y_score) assert_almost_equal(average_precision_score(y_true, y_score), 1.) assert_array_almost_equal(p, [1., 1., 1.]) assert_array_almost_equal(r, [1, 0.5, 0.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.625) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.625) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.25) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.75) def test_score_scale_invariance(): # Test that average_precision_score and roc_auc_score are invariant by # the scaling or shifting of probabilities y_true, _, probas_pred = make_prediction(binary=True) roc_auc = roc_auc_score(y_true, probas_pred) roc_auc_scaled = roc_auc_score(y_true, 100 * probas_pred) roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10) assert_equal(roc_auc, roc_auc_scaled) assert_equal(roc_auc, roc_auc_shifted) pr_auc = average_precision_score(y_true, probas_pred) pr_auc_scaled = average_precision_score(y_true, 100 * probas_pred) pr_auc_shifted = average_precision_score(y_true, probas_pred - 10) assert_equal(pr_auc, pr_auc_scaled) assert_equal(pr_auc, pr_auc_shifted) def check_lrap_toy(lrap_score): # Check on several small example that it works assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 1) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1) # Tie handling assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3) assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]), 3 / 4) def check_zero_or_all_relevant_labels(lrap_score): random_state = check_random_state(0) for n_labels in range(2, 5): y_score = random_state.uniform(size=(1, n_labels)) y_score_ties = np.zeros_like(y_score) # No relevant labels y_true = np.zeros((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Only relevant labels y_true = np.ones((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Degenerate case: only one label assert_almost_equal(lrap_score([[1], [0], [1], [0]], [[0.5], [0.5], [0.5], [0.5]]), 1.) def check_lrap_error_raised(lrap_score): # Raise value error if not appropriate format assert_raises(ValueError, lrap_score, [0, 1, 0], [0.25, 0.3, 0.2]) assert_raises(ValueError, lrap_score, [0, 1, 2], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) assert_raises(ValueError, lrap_score, [(0), (1), (2)], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) # Check that that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, lrap_score, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) def check_lrap_only_ties(lrap_score): # Check tie handling in score # Basic check with only ties and increasing label space for n_labels in range(2, 10): y_score = np.ones((1, n_labels)) # Check for growing number of consecutive relevant for n_relevant in range(1, n_labels): # Check for a bunch of positions for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), n_relevant / n_labels) def check_lrap_without_tie_and_increasing_score(lrap_score): # Check that Label ranking average precision works for various # Basic check with increasing label space size and decreasing score for n_labels in range(2, 10): y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels)) + 1) # First and last y_true = np.zeros((1, n_labels)) y_true[0, 0] = 1 y_true[0, -1] = 1 assert_almost_equal(lrap_score(y_true, y_score), (2 / n_labels + 1) / 2) # Check for growing number of consecutive relevant label for n_relevant in range(1, n_labels): # Check for a bunch of position for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), sum((r + 1) / ((pos + r + 1) * n_relevant) for r in range(n_relevant))) def _my_lrap(y_true, y_score): """Simple implementation of label ranking average precision""" check_consistent_length(y_true, y_score) y_true = check_array(y_true) y_score = check_array(y_score) n_samples, n_labels = y_true.shape score = np.empty((n_samples, )) for i in range(n_samples): # The best rank correspond to 1. Rank higher than 1 are worse. # The best inverse ranking correspond to n_labels. unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True) n_ranks = unique_rank.size rank = n_ranks - inv_rank # Rank need to be corrected to take into account ties # ex: rank 1 ex aequo means that both label are rank 2. corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum() rank = corr_rank[rank] relevant = y_true[i].nonzero()[0] if relevant.size == 0 or relevant.size == n_labels: score[i] = 1 continue score[i] = 0. for label in relevant: # Let's count the number of relevant label with better rank # (smaller rank). n_ranked_above = sum(rank[r] <= rank[label] for r in relevant) # Weight by the rank of the actual label score[i] += n_ranked_above / rank[label] score[i] /= relevant.size return score.mean() def check_alternative_lrap_implementation(lrap_score, n_classes=5, n_samples=20, random_state=0): _, y_true = make_multilabel_classification(n_features=1, allow_unlabeled=False, random_state=random_state, n_classes=n_classes, n_samples=n_samples) # Score with ties y_score = sparse_random_matrix(n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) def test_label_ranking_avp(): for fn in [label_ranking_average_precision_score, _my_lrap]: yield check_lrap_toy, fn yield check_lrap_without_tie_and_increasing_score, fn yield check_lrap_only_ties, fn yield check_zero_or_all_relevant_labels, fn yield check_lrap_error_raised, label_ranking_average_precision_score for n_samples, n_classes, random_state in product((1, 2, 8, 20), (2, 5, 10), range(1)): yield (check_alternative_lrap_implementation, label_ranking_average_precision_score, n_classes, n_samples, random_state) def test_coverage_error(): # Toy case assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3) # Non trival case assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (1 + 3) / 2.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) def test_coverage_tie_handling(): assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3) def test_label_ranking_loss(): assert_almost_equal(label_ranking_loss([[0, 1]], [[0.25, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) # Undefined metrics - the ranking doesn't matter assert_almost_equal(label_ranking_loss([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 0) # Non trival case assert_almost_equal(label_ranking_loss([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (0 + 2 / 2) / 2.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) # Sparse csr matrices assert_almost_equal(label_ranking_loss( csr_matrix(np.array([[0, 1, 0], [1, 1, 0]])), [[0.1, 10, -3], [3, 1, 3]]), (0 + 2 / 2) / 2.) def test_ranking_appropriate_input_shape(): # Check that that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) def test_ranking_loss_ties_handling(): # Tie handling assert_almost_equal(label_ranking_loss([[1, 0]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 1)
bsd-3-clause
dparks1134/PETs
scripts/plotSeqLenVsSupportedSplits.py
1
2100
#!/usr/bin/env python __author__ = 'Donovan Parks' __copyright__ = 'Copyright 2013' __credits__ = ['Donovan Parks'] __license__ = 'GPL3' __version__ = '1.0.0' __maintainer__ = 'Donovan Parks' __email__ = '[email protected]' __status__ = 'Development' import sys, argparse from colorsys import hsv_to_rgb from math import atan2, pi, sin, cos import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import numpy as np from numpy import mean, min, cov, dot, linalg def doWork(args): # read clustering data geneIdToSupportedSplits = {} for line in open(args.cluster): if line.strip() == '' or line[0] == '%': continue lineSplit = line.split('\t') geneIdToSupportedSplits[lineSplit[0]] = int(lineSplit[2]) # read sequence length geneIdToLen = {} for line in open(args.seqLen): lineSplit = line.split('\t') geneIdToLen[lineSplit[0]] = float(lineSplit[1]) # plot results x = [] y = [] for geneId in geneIdToSupportedSplits: x.append(geneIdToLen[geneId]) y.append(geneIdToSupportedSplits[geneId]) fig = plt.figure() fig.set_size_inches(args.width, args.width) ax = fig.add_axes([0.13,0.08,.82,.87]) ax.set_xlabel('Sequence Length', fontsize=10) ax.set_ylabel('Supported Splits', fontsize=10) ax.scatter(x, y, s = 18, lw=0.5) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(8) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(8) fig.savefig(args.output, dpi = args.dpi) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('cluster', help='File indicating clustering of genes.') parser.add_argument('seqLen', help='File indicating length of genes.') parser.add_argument('output', help='Output image file. Specify format with extension: .jpg, .png, .pdf, .svg.') parser.add_argument('--dpi', help='Resolution of output image (default = 600).', type=int, default=600) parser.add_argument('-w', '--width', help='Width of image in inches (default = 6).', type=float, default=6) args = parser.parse_args() doWork(args)
gpl-3.0
Gillu13/scipy
doc/source/conf.py
17
10926
# -*- coding: utf-8 -*- import sys, os, re # Check Sphinx version import sphinx if sphinx.__version__ < "1.1": raise RuntimeError("Sphinx 1.1 or newer required") needs_sphinx = '1.1' # ----------------------------------------------------------------------------- # General configuration # ----------------------------------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. sys.path.insert(0, os.path.abspath('../sphinxext')) sys.path.insert(0, os.path.abspath(os.path.dirname(__file__))) extensions = ['sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'numpydoc', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.autosummary', 'scipyoptdoc'] # Determine if the matplotlib has a recent enough version of the # plot_directive. try: from matplotlib.sphinxext import plot_directive except ImportError: use_matplotlib_plot_directive = False else: try: use_matplotlib_plot_directive = (plot_directive.__version__ >= 2) except AttributeError: use_matplotlib_plot_directive = False if use_matplotlib_plot_directive: extensions.append('matplotlib.sphinxext.plot_directive') else: raise RuntimeError("You need a recent enough version of matplotlib") # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General substitutions. project = 'SciPy' copyright = '2008-2016, The Scipy community' # The default replacements for |version| and |release|, also used in various # other places throughout the built documents. import scipy version = re.sub(r'\.dev-.*$', r'.dev', scipy.__version__) release = scipy.__version__ print "Scipy (VERSION %s)" % (version,) # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # The reST default role (used for this markup: `text`) to use for all documents. default_role = "autolink" # List of directories, relative to source directories, that shouldn't be searched # for source files. exclude_dirs = [] # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # ----------------------------------------------------------------------------- # HTML output # ----------------------------------------------------------------------------- themedir = os.path.join(os.pardir, 'scipy-sphinx-theme', '_theme') if os.path.isdir(themedir): html_theme = 'scipy' html_theme_path = [themedir] if 'scipyorg' in tags: # Build for the scipy.org website html_theme_options = { "edit_link": True, "sidebar": "right", "scipy_org_logo": True, "rootlinks": [("https://scipy.org/", "Scipy.org"), ("https://docs.scipy.org/", "Docs")] } else: # Default build html_theme_options = { "edit_link": False, "sidebar": "left", "scipy_org_logo": False, "rootlinks": [] } html_logo = '_static/scipyshiny_small.png' html_sidebars = {'index': 'indexsidebar.html'} else: # Build without scipy.org sphinx theme present if 'scipyorg' in tags: raise RuntimeError("Get the scipy-sphinx-theme first, " "via git submodule init & update") else: html_style = 'scipy_fallback.css' html_logo = '_static/scipyshiny_small.png' html_sidebars = {'index': 'indexsidebar.html'} html_title = "%s v%s Reference Guide" % (project, version) html_static_path = ['_static'] html_last_updated_fmt = '%b %d, %Y' html_additional_pages = {} html_use_modindex = True html_copy_source = False html_file_suffix = '.html' htmlhelp_basename = 'scipy' mathjax_path = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" # ----------------------------------------------------------------------------- # LaTeX output # ----------------------------------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual]). _stdauthor = 'Written by the SciPy community' latex_documents = [ ('index', 'scipy-ref.tex', 'SciPy Reference Guide', _stdauthor, 'manual'), # ('user/index', 'scipy-user.tex', 'SciPy User Guide', # _stdauthor, 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r''' \usepackage{amsmath} \DeclareUnicodeCharacter{00A0}{\nobreakspace} % In the parameters etc. sections, align uniformly, and adjust label emphasis \usepackage{expdlist} \let\latexdescription=\description \let\endlatexdescription=\enddescription \renewenvironment{description}% {\begin{latexdescription}[\setleftmargin{60pt}\breaklabel\setlabelstyle{\bfseries\itshape}]}% {\end{latexdescription}} % Make Examples/etc section headers smaller and more compact \makeatletter \titleformat{\paragraph}{\normalsize\normalfont\bfseries\itshape}% {\py@NormalColor}{0em}{\py@NormalColor}{\py@NormalColor} \titlespacing*{\paragraph}{0pt}{1ex}{0pt} \makeatother % Save vertical space in parameter lists and elsewhere \makeatletter \renewenvironment{quote}% {\list{}{\topsep=0pt% \parsep \z@ \@plus\p@}% \item\relax}% {\endlist} \makeatother % Fix footer/header \renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{\thechapter.\ #1}}{}} \renewcommand{\sectionmark}[1]{\markright{\MakeUppercase{\thesection.\ #1}}} ''' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_use_modindex = False # ----------------------------------------------------------------------------- # Intersphinx configuration # ----------------------------------------------------------------------------- intersphinx_mapping = { 'http://docs.python.org/dev': None, 'https://docs.scipy.org/doc/numpy': None, } # ----------------------------------------------------------------------------- # Numpy extensions # ----------------------------------------------------------------------------- # If we want to do a phantom import from an XML file for all autodocs phantom_import_file = 'dump.xml' # Generate plots for example sections numpydoc_use_plots = True # ----------------------------------------------------------------------------- # Autosummary # ----------------------------------------------------------------------------- if sphinx.__version__ >= "0.7": import glob autosummary_generate = glob.glob("*.rst") # ----------------------------------------------------------------------------- # Coverage checker # ----------------------------------------------------------------------------- coverage_ignore_modules = r""" """.split() coverage_ignore_functions = r""" test($|_) (some|all)true bitwise_not cumproduct pkgload generic\. """.split() coverage_ignore_classes = r""" """.split() coverage_c_path = [] coverage_c_regexes = {} coverage_ignore_c_items = {} #------------------------------------------------------------------------------ # Plot #------------------------------------------------------------------------------ plot_pre_code = """ import numpy as np np.random.seed(123) """ plot_include_source = True plot_formats = [('png', 96), 'pdf'] plot_html_show_formats = False import math phi = (math.sqrt(5) + 1)/2 font_size = 13*72/96.0 # 13 px plot_rcparams = { 'font.size': font_size, 'axes.titlesize': font_size, 'axes.labelsize': font_size, 'xtick.labelsize': font_size, 'ytick.labelsize': font_size, 'legend.fontsize': font_size, 'figure.figsize': (3*phi, 3), 'figure.subplot.bottom': 0.2, 'figure.subplot.left': 0.2, 'figure.subplot.right': 0.9, 'figure.subplot.top': 0.85, 'figure.subplot.wspace': 0.4, 'text.usetex': False, } if not use_matplotlib_plot_directive: import matplotlib matplotlib.rcParams.update(plot_rcparams) # ----------------------------------------------------------------------------- # Source code links # ----------------------------------------------------------------------------- import inspect from os.path import relpath, dirname for name in ['sphinx.ext.linkcode', 'linkcode', 'numpydoc.linkcode']: try: __import__(name) extensions.append(name) break except ImportError: pass else: print "NOTE: linkcode extension not found -- no links to source generated" def linkcode_resolve(domain, info): """ Determine the URL corresponding to Python object """ if domain != 'py': return None modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return None obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except: return None try: fn = inspect.getsourcefile(obj) except: fn = None if not fn: try: fn = inspect.getsourcefile(sys.modules[obj.__module__]) except: fn = None if not fn: return None try: source, lineno = inspect.getsourcelines(obj) except: lineno = None if lineno: linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1) else: linespec = "" fn = relpath(fn, start=dirname(scipy.__file__)) if 'dev' in scipy.__version__: return "http://github.com/scipy/scipy/blob/master/scipy/%s%s" % ( fn, linespec) else: return "http://github.com/scipy/scipy/blob/v%s/scipy/%s%s" % ( scipy.__version__, fn, linespec)
bsd-3-clause
wrshoemaker/ffpopsim
examples/neutral_coalescent.py
2
1560
import FFPopSim as h import numpy as np from matplotlib import pyplot as plt import random as rd L=100 pop=h.haploid_highd(L) pop.outcrossing_rate=0.1 pop.crossover_rate=1.0/pop.L pop.mutation_rate=5.0/pop.L pop.carrying_capacity=30 #track the loci 10, 50 and 90 pop.track_locus_genealogy([10,50,90]) #initialize the populations pop.set_wildtype(pop.carrying_capacity) pop.status() #evolve population for several coalescent times pop.evolve(4*pop.N) #get tree at locus 10 tree = pop.genealogy.get_tree(10) print "\nTree statistics:" print "Branch length:", tree.total_branch_length() print "External branch length:", tree.external_branch_length() print "Number of leafs:", len(tree.leafs) print "Number of internal nodes:", len(tree.nodes)-len(tree.leafs) print "Time to MRCA:", pop.generation - tree.MRCA.age #produce a subtree with of a sample of leafs n = 5 subsample = rd.sample(tree.leafs, n) sub_tree = tree.create_subtree_from_keys(subsample) print "\nSubtree with",n,"leafs" print sub_tree.print_newick() print "Each tree label is composed of the index if the individual and the size of the clone" #trees can be exported as a BioPython tree structure from Bio import Phylo as P BPtree = tree.to_Biopython_tree() plt.figure() P.draw(BPtree) #in absence of recombination, trees at all three loci are identical. #with crossovers, tree decouple with increasing outcrossing rate. for locus in pop.genealogy.loci: BPtree = pop.genealogy.get_tree(locus).to_Biopython_tree() plt.figure() plt.title('Tree at locus '+str(locus)) P.draw(BPtree)
gpl-3.0
ClusterWhisperer/clusterstats
clusterstats/stats.py
1
1664
""" stats.py ~~~~~~~~ """ import json import pandas as pd FIELD_APPLICATION = 'Application' FIELD_VERSION = 'Version' FIELD_SUCCESS_COUNT = 'Success_Count' OPERATOR_ADD = "+" def calc_qos(total_queries, success_queries_cnt): """ Calculate QoS """ return (float(success_queries_cnt)/float(total_queries)) * 100 def check_qos(threshold, total_queries, success_queries_cnt): """ Validate QoS """ return calc_qos(total_queries, success_queries_cnt) >= threshold def calc_stats(data, group_by_fields, aggregate_field, aggregate_operator): """ Generic function to apply group by and aggregation operation on the dataset. Args: data - list of dictionary group_by_fields - fields that will be grouped by aggregate_field - field on which aggreagation operator applied aggregate_operator - aggregation operation, currently supports only sum. Returns: DataFrame Object """ data_frame = pd.read_json(json.dumps(data)) if aggregate_operator != OPERATOR_ADD: raise ValueError("Unsupported aggregate operator:{}".format(aggregate_operator)) return data_frame.groupby(group_by_fields).agg({aggregate_field : sum}) def write_stats(data_frame, output_dir): """Given the data_frame write csv output in the output directory with the filename as current time stamp. Args: - data_frame: DataFrame that to be serialized to the file. - output_dir: File output directory. Returns: the file path """ import time import os.path millis = int(round(time.time() * 1000)) path = os.path.join(output_dir, "{}.csv".format(millis)) data_frame.to_csv(path) return path
mit
poryfly/scikit-learn
sklearn/svm/classes.py
126
40114
import warnings import numpy as np from .base import _fit_liblinear, BaseSVC, BaseLibSVM from ..base import BaseEstimator, RegressorMixin from ..linear_model.base import LinearClassifierMixin, SparseCoefMixin, \ LinearModel from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_X_y from ..utils.validation import _num_samples class LinearSVC(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Linear Support Vector Classification. Similar to SVC with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. loss : string, 'hinge' or 'squared_hinge' (default='squared_hinge') Specifies the loss function. 'hinge' is the standard SVM loss (used e.g. by the SVC class) while 'squared_hinge' is the square of the hinge loss. penalty : string, 'l1' or 'l2' (default='l2') Specifies the norm used in the penalization. The 'l2' penalty is the standard used in SVC. The 'l1' leads to `coef_` vectors that are sparse. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. multi_class: string, 'ovr' or 'crammer_singer' (default='ovr') Determines the multi-class strategy if `y` contains more than two classes. `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` optimizes a joint objective over all classes. While `crammer_singer` is interesting from a theoretical perspective as it is consistent, it is seldom used in practice as it rarely leads to better accuracy and is more expensive to compute. If `crammer_singer` is chosen, the options loss, penalty and dual will be ignored. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon to have slightly different results for the same input data. If that happens, try with a smaller ``tol`` parameter. The underlying implementation (liblinear) uses a sparse internal representation for the data that will incur a memory copy. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. **References:** `LIBLINEAR: A Library for Large Linear Classification <http://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__ See also -------- SVC Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to implement one vs the rest with SVC by using the :class:`sklearn.multiclass.OneVsRestClassifier` wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data will still incur memory copy though. sklearn.linear_model.SGDClassifier SGDClassifier can optimize the same cost function as LinearSVC by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, penalty='l2', loss='squared_hinge', dual=True, tol=1e-4, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000): self.dual = dual self.tol = tol self.C = C self.multi_class = multi_class self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.penalty = penalty self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'hinge', 'l2': 'squared_hinge'}.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") self.classes_ = np.unique(y) self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, self.multi_class, self.loss) if self.multi_class == "crammer_singer" and len(self.classes_) == 2: self.coef_ = (self.coef_[1] - self.coef_[0]).reshape(1, -1) if self.fit_intercept: intercept = self.intercept_[1] - self.intercept_[0] self.intercept_ = np.array([intercept]) return self class LinearSVR(LinearModel, RegressorMixin): """Linear Support Vector Regression. Similar to SVR with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. The penalty is a squared l2 penalty. The bigger this parameter, the less regularization is used. loss : string, 'epsilon_insensitive' or 'squared_epsilon_insensitive' (default='epsilon_insensitive') Specifies the loss function. 'l1' is the epsilon-insensitive loss (standard SVR) while 'l2' is the squared epsilon-insensitive loss. epsilon : float, optional (default=0.1) Epsilon parameter in the epsilon-insensitive loss function. Note that the value of this parameter depends on the scale of the target variable y. If unsure, set epsilon=0. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- LinearSVC Implementation of Support Vector Machine classifier using the same library as this class (liblinear). SVR Implementation of Support Vector Machine regression using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. sklearn.linear_model.SGDRegressor SGDRegressor can optimize the same cost function as LinearSVR by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, epsilon=0.0, tol=1e-4, C=1.0, loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1., dual=True, verbose=0, random_state=None, max_iter=1000): self.tol = tol self.C = C self.epsilon = epsilon self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.dual = dual self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'epsilon_insensitive', 'l2': 'squared_epsilon_insensitive' }.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") penalty = 'l2' # SVR only accepts l2 penalty self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, None, penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, loss=self.loss, epsilon=self.epsilon) self.coef_ = self.coef_.ravel() return self class SVC(BaseSVC): """C-Support Vector Classification. The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme. For details on the precise mathematical formulation of the provided kernel functions and how `gamma`, `coef0` and `degree` affect each other, see the corresponding section in the narrative documentation: :ref:`svm_kernels`. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape ``(n_samples, n_samples)``. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') ecision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import SVC >>> clf = SVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVR Support Vector Machine for Regression implemented using libsvm. LinearSVC Scalable Linear Support Vector Machine for classification implemented using liblinear. Check the See also section of LinearSVC for more comparison element. """ def __init__(self, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(SVC, self).__init__( impl='c_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class NuSVC(BaseSVC): """Nu-Support Vector Classification. Similar to SVC but uses a parameter to control the number of support vectors. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- nu : float, optional (default=0.5) An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'auto'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The 'auto' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') ecision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import NuSVC >>> clf = NuSVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVC(cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.5, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVC Support Vector Machine for classification using libsvm. LinearSVC Scalable linear Support Vector Machine for classification using liblinear. """ def __init__(self, nu=0.5, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(NuSVC, self).__init__( impl='nu_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=0., nu=nu, shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class SVR(BaseLibSVM, RegressorMixin): """Epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. epsilon : float, optional (default=0.1) Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import SVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = SVR(C=1.0, epsilon=0.2) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='auto', kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVR Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors. LinearSVR Scalable Linear Support Vector Machine for regression implemented using liblinear. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1): super(SVR, self).__init__( 'epsilon_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., epsilon=epsilon, verbose=verbose, shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, max_iter=max_iter, random_state=None) class NuSVR(BaseLibSVM, RegressorMixin): """Nu Support Vector Regression. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import NuSVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = NuSVR(C=1.0, nu=0.1) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVC Support Vector Machine for classification implemented with libsvm with a parameter to control the number of support vectors. SVR epsilon Support Vector Machine for regression implemented with libsvm. """ def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=1e-3, cache_size=200, verbose=False, max_iter=-1): super(NuSVR, self).__init__( 'nu_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=nu, epsilon=0., shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, verbose=verbose, max_iter=max_iter, random_state=None) class OneClassSVM(BaseLibSVM): """Unsupervised Outlier Detection. Estimate the support of a high-dimensional distribution. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_outlier_detection>`. Parameters ---------- kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. tol : float, optional Tolerance for stopping criterion. shrinking : boolean, optional Whether to use the shrinking heuristic. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [n_classes-1, n_SV] Coefficients of the support vectors in the decision function. coef_ : array, shape = [n_classes-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` intercept_ : array, shape = [n_classes-1] Constants in decision function. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(OneClassSVM, self).__init__( 'one_class', kernel, degree, gamma, coef0, tol, 0., nu, 0., shrinking, False, cache_size, None, verbose, max_iter, random_state) def fit(self, X, y=None, sample_weight=None, **params): """ Detects the soft boundary of the set of samples X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Set of samples, where n_samples is the number of samples and n_features is the number of features. sample_weight : array-like, shape (n_samples,) Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Returns self. Notes ----- If X is not a C-ordered contiguous array it is copied. """ super(OneClassSVM, self).fit(X, np.ones(_num_samples(X)), sample_weight=sample_weight, **params) return self def decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array-like, shape (n_samples,) Returns the decision function of the samples. """ dec = self._decision_function(X) return dec
bsd-3-clause
GuessWhoSamFoo/pandas
pandas/tests/indexes/period/test_arithmetic.py
2
4539
# -*- coding: utf-8 -*- import numpy as np import pytest import pandas as pd from pandas import PeriodIndex, period_range import pandas.util.testing as tm class TestPeriodIndexArithmetic(object): # --------------------------------------------------------------- # PeriodIndex.shift is used by __add__ and __sub__ def test_pi_shift_ndarray(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') result = idx.shift(np.array([1, 2, 3, 4])) expected = PeriodIndex(['2011-02', '2011-04', 'NaT', '2011-08'], freq='M', name='idx') tm.assert_index_equal(result, expected) result = idx.shift(np.array([1, -2, 3, -4])) expected = PeriodIndex(['2011-02', '2010-12', 'NaT', '2010-12'], freq='M', name='idx') tm.assert_index_equal(result, expected) def test_shift(self): pi1 = period_range(freq='A', start='1/1/2001', end='12/1/2009') pi2 = period_range(freq='A', start='1/1/2002', end='12/1/2010') tm.assert_index_equal(pi1.shift(0), pi1) assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(1), pi2) pi1 = period_range(freq='A', start='1/1/2001', end='12/1/2009') pi2 = period_range(freq='A', start='1/1/2000', end='12/1/2008') assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(-1), pi2) pi1 = period_range(freq='M', start='1/1/2001', end='12/1/2009') pi2 = period_range(freq='M', start='2/1/2001', end='1/1/2010') assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(1), pi2) pi1 = period_range(freq='M', start='1/1/2001', end='12/1/2009') pi2 = period_range(freq='M', start='12/1/2000', end='11/1/2009') assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(-1), pi2) pi1 = period_range(freq='D', start='1/1/2001', end='12/1/2009') pi2 = period_range(freq='D', start='1/2/2001', end='12/2/2009') assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(1), pi2) pi1 = period_range(freq='D', start='1/1/2001', end='12/1/2009') pi2 = period_range(freq='D', start='12/31/2000', end='11/30/2009') assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(-1), pi2) def test_shift_corner_cases(self): # GH#9903 idx = pd.PeriodIndex([], name='xxx', freq='H') with pytest.raises(TypeError): # period shift doesn't accept freq idx.shift(1, freq='H') tm.assert_index_equal(idx.shift(0), idx) tm.assert_index_equal(idx.shift(3), idx) idx = pd.PeriodIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(0), idx) exp = pd.PeriodIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(3), exp) exp = pd.PeriodIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(-3), exp) def test_shift_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') result = idx.shift(1) expected = PeriodIndex(['2011-02', '2011-03', 'NaT', '2011-05'], freq='M', name='idx') tm.assert_index_equal(result, expected) assert result.name == expected.name def test_shift_gh8083(self): # test shift for PeriodIndex # GH#8083 drange = pd.period_range('20130101', periods=5, freq='D') result = drange.shift(1) expected = PeriodIndex(['2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], freq='D') tm.assert_index_equal(result, expected) def test_shift_periods(self): # GH #22458 : argument 'n' was deprecated in favor of 'periods' idx = period_range(freq='A', start='1/1/2001', end='12/1/2009') tm.assert_index_equal(idx.shift(periods=0), idx) tm.assert_index_equal(idx.shift(0), idx) with tm.assert_produces_warning(FutureWarning, check_stacklevel=True): tm.assert_index_equal(idx.shift(n=0), idx)
bsd-3-clause
jorisvandenbossche/geopandas
geopandas/tests/test_types.py
3
2818
from __future__ import absolute_import import numpy as np from shapely.geometry import Point from pandas import Series, DataFrame from geopandas import GeoSeries, GeoDataFrame from geopandas.tests.util import unittest OLD_PANDAS = issubclass(Series, np.ndarray) class TestSeries(unittest.TestCase): def setUp(self): N = self.N = 10 r = 0.5 self.pts = GeoSeries([Point(x, y) for x, y in zip(range(N), range(N))]) self.polys = self.pts.buffer(r) def test_slice(self): assert type(self.pts[:2]) is GeoSeries assert type(self.pts[::2]) is GeoSeries assert type(self.polys[:2]) is GeoSeries def test_head(self): assert type(self.pts.head()) is GeoSeries def test_tail(self): assert type(self.pts.tail()) is GeoSeries def test_sort_index(self): assert type(self.pts.sort_index()) is GeoSeries def test_loc(self): assert type(self.pts.loc[5:]) is GeoSeries def test_iloc(self): assert type(self.pts.iloc[5:]) is GeoSeries def test_fancy(self): idx = (self.pts.index.to_series() % 2).astype(bool) assert type(self.pts[idx]) is GeoSeries def test_take(self): assert type(self.pts.take(list(range(0, self.N, 2)))) is GeoSeries def test_select(self): assert type(self.pts.select(lambda x: x % 2 == 0)) is GeoSeries @unittest.skipIf(OLD_PANDAS, 'Groupby not supported on pandas <= 0.12') def test_groupby(self): for f, s in self.pts.groupby(lambda x: x % 2): assert type(s) is GeoSeries class TestDataFrame(unittest.TestCase): def setUp(self): N = 10 self.df = GeoDataFrame([ {'geometry' : Point(x, y), 'value1': x + y, 'value2': x*y} for x, y in zip(range(N), range(N))]) def test_geometry(self): assert type(self.df.geometry) is GeoSeries # still GeoSeries if different name df2 = GeoDataFrame({"coords": [Point(x,y) for x, y in zip(range(5), range(5))], "nums": range(5)}, geometry="coords") assert type(df2.geometry) is GeoSeries assert type(df2['coords']) is GeoSeries def test_nongeometry(self): assert type(self.df['value1']) is Series def test_geometry_multiple(self): assert type(self.df[['geometry', 'value1']]) is GeoDataFrame def test_nongeometry_multiple(self): assert type(self.df[['value1', 'value2']]) is DataFrame def test_slice(self): assert type(self.df[:2]) is GeoDataFrame assert type(self.df[::2]) is GeoDataFrame def test_fancy(self): idx = (self.df.index.to_series() % 2).astype(bool) assert type(self.df[idx]) is GeoDataFrame
bsd-3-clause
johnb30/eventscale
eventscale.py
1
2471
from __future__ import division import pandas as pd import os def _get_data(path): """Private function to get the absolute path to the installed files.""" cwd = os.path.abspath(os.path.dirname(__file__)) return os.path.join(cwd, 'data', path) class Scale(): def __init__(self, data, merge_var=None): self.data = data self.orig_vars = data.columns.tolist() if not merge_var: print 'Must provide a variable on which to merge!' else: self.merge_var = merge_var if self.merge_var not in self.orig_vars: print 'The `merge_var` variable does not exist in the oringal \ data!' self.columns = [self.merge_var, 'total_count'] self.dataset_map = {'daily': 'daily_scale.csv', 'monthly': 'monthly_scale.csv', 'yearly': 'yearly_scale.csv', 'daily_monadic': 'daily_scale_monadic.csv', 'monthly_monadic': 'monthly_scale_monadic.csv', 'yearly_monadic': 'yearly_scale_monadic.csv' } def _prep_data(self, in_data, col_names=None): data = pd.read_csv(_get_data(in_data), sep='\t', names=self.col_names) data[self.merge_var] = data[self.merge_var].map(lambda x: int(x)) return data def _transform_data(self, dataset, new_name=None, old_name=None,): try: hold_data = pd.merge(self.data, dataset, on=self.merge_name) except KeyError: print 'The variable names for merging do not match.' hold_data[new_name] = (hold_data[old_name] / hold_data['total_count']) output_data = hold_data[self.orig_names + [new_name]] return output_data def scale(self, scale=None, new_var='scaled_count', old_var=None, outpath=None): if not scale: print 'Please indicate which type of scaling should be used!' scale_data = self._prep_data(self.dataset_map[scale]) if not old_var: print 'Please indicate which variable should be scaled.' else: final_data = self._transform_data(scale_data, old_name=old_var, new_name=new_var) if outpath: final_data.to_csv(outpath, sep='\t', index=False) else: return final_data
mit
ishanic/scikit-learn
examples/model_selection/plot_validation_curve.py
229
1823
""" ========================== Plotting Validation Curves ========================== In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter gamma. For very low values of gamma, you can see that both the training score and the validation score are low. This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but the validation score is poor. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.learning_curve import validation_curve digits = load_digits() X, y = digits.data, digits.target param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) plt.semilogx(param_range, train_scores_mean, label="Training score", color="r") plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="r") plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="g") plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="g") plt.legend(loc="best") plt.show()
bsd-3-clause
vals/GPclust
GPclust/MOG.py
4
6407
# Copyright (c) 2012, 2013, 2014 James Hensman # Licensed under the GPL v3 (see LICENSE.txt) import numpy as np try: from .utilities import multiple_pdinv, lngammad except ImportError: from .np_utilities import multiple_pdinv, lngammad from scipy.special import gammaln, digamma from scipy import stats from .collapsed_mixture import CollapsedMixture class MOG(CollapsedMixture): """ A Mixture of Gaussians, using the fast variational framework Arguments ========= X - a np.array of the observed data: each row contains one datum. K - the number of clusters (or initial number of clusters in the Dirichlet Process case) alpha - the A priori dirichlet concentrationn parameter (default 1.) prior_Z - either 'symmetric' or 'DP', specifies whether to use a symmetric Dirichlet prior for the clusters, or a (truncated) Dirichlet process. name - a convenient string for printing the model (default MOG) Optional arguments for the parameters of the Gaussian-Wishart priors on the clusters prior_m - prior mean (defaults to mean of the data) prior_kappa - prior connectivity (default 1e-6) prior_S - prior Wishart covariance (defaults to 1e-3 * I) prior_v - prior Wishart degrees of freedom (defaults to dimension of the problem +1.) """ def __init__(self, X, K=2, prior_Z='symmetric', alpha=1., prior_m=None, prior_kappa=1e-6, prior_S=None, prior_v=None, name='MOG'): self.X = X self.N, self.D = X.shape # store the prior cluster parameters self.m0 = self.X.mean(0) if prior_m is None else prior_m self.k0 = prior_kappa self.S0 = np.eye(self.D)*1e-3 if prior_S is None else prior_S self.v0 = prior_v or self.D+1. #precomputed stuff self.k0m0m0T = self.k0*self.m0[:,np.newaxis]*self.m0[np.newaxis,:] self.XXT = self.X[:,:,np.newaxis]*self.X[:,np.newaxis,:] self.S0_halflogdet = np.sum(np.log(np.sqrt(np.diag(np.linalg.cholesky(self.S0))))) CollapsedMixture.__init__(self, self.N, K, prior_Z, alpha, name=name) self.do_computations() def do_computations(self): #computations needed for bound, gradient and predictions self.kNs = self.phi_hat + self.k0 self.vNs = self.phi_hat + self.v0 self.Xsumk = np.tensordot(self.X,self.phi,((0),(0))) #D x K Ck = np.tensordot(self.phi, self.XXT,((0),(0))).T# D x D x K self.mun = (self.k0*self.m0[:,None] + self.Xsumk)/self.kNs[None,:] # D x K self.munmunT = self.mun[:,None,:]*self.mun[None,:,:] self.Sns = self.S0[:,:,None] + Ck + self.k0m0m0T[:,:,None] - self.kNs[None,None,:]*self.munmunT self.Sns_inv, self.Sns_halflogdet = multiple_pdinv(self.Sns) def bound(self): """Compute the lower bound on the model evidence. """ return -0.5*self.D*np.sum(np.log(self.kNs/self.k0))\ +self.K*self.v0*self.S0_halflogdet - np.sum(self.vNs*self.Sns_halflogdet)\ +np.sum(lngammad(self.vNs, self.D))- self.K*lngammad(self.v0, self.D)\ +self.mixing_prop_bound()\ +self.H\ -0.5*self.N*self.D*np.log(np.pi) def vb_grad_natgrad(self): """Gradients of the bound""" x_m = self.X[:,:,None]-self.mun[None,:,:] dS = x_m[:,:,None,:]*x_m[:,None,:,:] SnidS = self.Sns_inv[None,:,:,:]*dS dlndtS_dphi = np.dot(np.ones(self.D), np.dot(np.ones(self.D), SnidS)) grad_phi = (-0.5*self.D/self.kNs + 0.5*digamma((self.vNs-np.arange(self.D)[:,None])/2.).sum(0) + self.mixing_prop_bound_grad() - self.Sns_halflogdet -1.) + (self.Hgrad-0.5*dlndtS_dphi*self.vNs) natgrad = grad_phi - np.sum(self.phi*grad_phi, 1)[:,None] # corrects for softmax (over) parameterisation grad = natgrad*self.phi return grad.flatten(), natgrad.flatten() def predict_components_ln(self, Xnew): """The log predictive density under each component at Xnew""" Dist = Xnew[:,:,np.newaxis]-self.mun[np.newaxis,:,:] # Nnew x D x K tmp = np.sum(Dist[:,:,None,:]*self.Sns_inv[None,:,:,:],1)#*(kn+1.)/(kn*(vn-self.D+1.)) mahalanobis = np.sum(tmp*Dist, 1)/(self.kNs+1.)*self.kNs*(self.vNs-self.D+1.) halflndetSigma = self.Sns_halflogdet + 0.5*self.D*np.log((self.kNs+1.)/(self.kNs*(self.vNs-self.D+1.))) Z = gammaln(0.5*(self.vNs[np.newaxis,:]+1.))\ -gammaln(0.5*(self.vNs[np.newaxis,:]-self.D+1.))\ -(0.5*self.D)*(np.log(self.vNs[np.newaxis,:]-self.D+1.) + np.log(np.pi))\ - halflndetSigma \ - (0.5*(self.vNs[np.newaxis,:]+1.))*np.log(1.+mahalanobis/(self.vNs[np.newaxis,:]-self.D+1.)) return Z def predict_components(self, Xnew): """The predictive density under each component at Xnew""" return np.exp(self.predict_components_ln(Xnew)) def predict(self, Xnew): """The predictive density of the model at Xnew""" Z = self.predict_components(Xnew) #calculate the weights for each component phi_hat = self.phi.sum(0) pi = phi_hat+self.alpha pi /= pi.sum() Z *= pi[np.newaxis,:] return Z.sum(1) def plot(self, newfig=True): from matplotlib import pyplot as plt if self.X.shape[1]==2: if newfig:plt.figure() xmin, ymin = self.X.min(0) xmax, ymax = self.X.max(0) xmin, xmax = xmin-0.1*(xmax-xmin), xmax+0.1*(xmax-xmin) ymin, ymax = ymin-0.1*(ymax-ymin), ymax+0.1*(ymax-ymin) xx, yy = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] Xgrid = np.vstack((xx.flatten(), yy.flatten())).T zz = self.predict(Xgrid).reshape(100, 100) zz_data = self.predict(self.X) plt.contour(xx, yy, zz, [stats.scoreatpercentile(zz_data, 5)], colors='k', linewidths=3) plt.scatter(self.X[:,0], self.X[:,1], 30, np.argmax(self.phi, 1), linewidth=0, cmap=plt.cm.gist_rainbow) zz_components = self.predict_components(Xgrid) phi_hat = self.phi.sum(0) pi = phi_hat+self.alpha pi /= pi.sum() zz_components *= pi[np.newaxis,:] [plt.contour(xx, yy, zz.reshape(100, 100), [stats.scoreatpercentile(zz_data, 5.)], colors='k', linewidths=1) for zz in zz_components.T] else: print("plotting only for 2D mixtures")
gpl-3.0
anirudhjayaraman/scikit-learn
sklearn/metrics/cluster/tests/test_supervised.py
206
7643
import numpy as np from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.cluster import homogeneity_score from sklearn.metrics.cluster import completeness_score from sklearn.metrics.cluster import v_measure_score from sklearn.metrics.cluster import homogeneity_completeness_v_measure from sklearn.metrics.cluster import adjusted_mutual_info_score from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.metrics.cluster import mutual_info_score from sklearn.metrics.cluster import expected_mutual_information from sklearn.metrics.cluster import contingency_matrix from sklearn.metrics.cluster import entropy from sklearn.utils.testing import assert_raise_message from nose.tools import assert_almost_equal from nose.tools import assert_equal from numpy.testing import assert_array_almost_equal score_funcs = [ adjusted_rand_score, homogeneity_score, completeness_score, v_measure_score, adjusted_mutual_info_score, normalized_mutual_info_score, ] def test_error_messages_on_wrong_input(): for score_func in score_funcs: expected = ('labels_true and labels_pred must have same size,' ' got 2 and 3') assert_raise_message(ValueError, expected, score_func, [0, 1], [1, 1, 1]) expected = "labels_true must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [[0, 1], [1, 0]], [1, 1, 1]) expected = "labels_pred must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [0, 1, 0], [[1, 1], [0, 0]]) def test_perfect_matches(): for score_func in score_funcs: assert_equal(score_func([], []), 1.0) assert_equal(score_func([0], [1]), 1.0) assert_equal(score_func([0, 0, 0], [0, 0, 0]), 1.0) assert_equal(score_func([0, 1, 0], [42, 7, 42]), 1.0) assert_equal(score_func([0., 1., 0.], [42., 7., 42.]), 1.0) assert_equal(score_func([0., 1., 2.], [42., 7., 2.]), 1.0) assert_equal(score_func([0, 1, 2], [42, 7, 2]), 1.0) def test_homogeneous_but_not_complete_labeling(): # homogeneous but not complete clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 2, 2]) assert_almost_equal(h, 1.00, 2) assert_almost_equal(c, 0.69, 2) assert_almost_equal(v, 0.81, 2) def test_complete_but_not_homogeneous_labeling(): # complete but not homogeneous clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 1, 1, 2, 2], [0, 0, 1, 1, 1, 1]) assert_almost_equal(h, 0.58, 2) assert_almost_equal(c, 1.00, 2) assert_almost_equal(v, 0.73, 2) def test_not_complete_and_not_homogeneous_labeling(): # neither complete nor homogeneous but not so bad either h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) def test_non_consicutive_labels(): # regression tests for labels with gaps h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 2, 2, 2], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(ari_1, 0.24, 2) assert_almost_equal(ari_2, 0.24, 2) def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10, seed=42): # Compute score for random uniform cluster labelings random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(k_range), n_runs)) for i, k in enumerate(k_range): for j in range(n_runs): labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores def test_adjustment_for_chance(): # Check that adjusted scores are almost zero on random labels n_clusters_range = [2, 10, 50, 90] n_samples = 100 n_runs = 10 scores = uniform_labelings_scores( adjusted_rand_score, n_samples, n_clusters_range, n_runs) max_abs_scores = np.abs(scores).max(axis=1) assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2) def test_adjusted_mutual_info_score(): # Compute the Adjusted Mutual Information and test against known values labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) # Mutual information mi = mutual_info_score(labels_a, labels_b) assert_almost_equal(mi, 0.41022, 5) # Expected mutual information C = contingency_matrix(labels_a, labels_b) n_samples = np.sum(C) emi = expected_mutual_information(C, n_samples) assert_almost_equal(emi, 0.15042, 5) # Adjusted mutual information ami = adjusted_mutual_info_score(labels_a, labels_b) assert_almost_equal(ami, 0.27502, 5) ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3]) assert_equal(ami, 1.0) # Test with a very large array a110 = np.array([list(labels_a) * 110]).flatten() b110 = np.array([list(labels_b) * 110]).flatten() ami = adjusted_mutual_info_score(a110, b110) # This is not accurate to more than 2 places assert_almost_equal(ami, 0.37, 2) def test_entropy(): ent = entropy([0, 0, 42.]) assert_almost_equal(ent, 0.6365141, 5) assert_almost_equal(entropy([]), 1) def test_contingency_matrix(): labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) C = contingency_matrix(labels_a, labels_b) C2 = np.histogram2d(labels_a, labels_b, bins=(np.arange(1, 5), np.arange(1, 5)))[0] assert_array_almost_equal(C, C2) C = contingency_matrix(labels_a, labels_b, eps=.1) assert_array_almost_equal(C, C2 + .1) def test_exactly_zero_info_score(): # Check numerical stability when information is exactly zero for i in np.logspace(1, 4, 4).astype(np.int): labels_a, labels_b = np.ones(i, dtype=np.int),\ np.arange(i, dtype=np.int) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(v_measure_score(labels_a, labels_b), 0.0) assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) def test_v_measure_and_mutual_information(seed=36): # Check relation between v_measure, entropy and mutual information for i in np.logspace(1, 4, 4).astype(np.int): random_state = np.random.RandomState(seed) labels_a, labels_b = random_state.random_integers(0, 10, i),\ random_state.random_integers(0, 10, i) assert_almost_equal(v_measure_score(labels_a, labels_b), 2.0 * mutual_info_score(labels_a, labels_b) / (entropy(labels_a) + entropy(labels_b)), 0)
bsd-3-clause
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/pandas/tests/indexes/test_frozen.py
18
2435
import numpy as np from pandas.util import testing as tm from pandas.tests.test_base import CheckImmutable, CheckStringMixin from pandas.core.indexes.frozen import FrozenList, FrozenNDArray from pandas.compat import u class TestFrozenList(CheckImmutable, CheckStringMixin): mutable_methods = ('extend', 'pop', 'remove', 'insert') unicode_container = FrozenList([u("\u05d0"), u("\u05d1"), "c"]) def setup_method(self, method): self.lst = [1, 2, 3, 4, 5] self.container = FrozenList(self.lst) self.klass = FrozenList def test_add(self): result = self.container + (1, 2, 3) expected = FrozenList(self.lst + [1, 2, 3]) self.check_result(result, expected) result = (1, 2, 3) + self.container expected = FrozenList([1, 2, 3] + self.lst) self.check_result(result, expected) def test_inplace(self): q = r = self.container q += [5] self.check_result(q, self.lst + [5]) # other shouldn't be mutated self.check_result(r, self.lst) class TestFrozenNDArray(CheckImmutable, CheckStringMixin): mutable_methods = ('put', 'itemset', 'fill') unicode_container = FrozenNDArray([u("\u05d0"), u("\u05d1"), "c"]) def setup_method(self, method): self.lst = [3, 5, 7, -2] self.container = FrozenNDArray(self.lst) self.klass = FrozenNDArray def test_shallow_copying(self): original = self.container.copy() assert isinstance(self.container.view(), FrozenNDArray) assert not isinstance(self.container.view(np.ndarray), FrozenNDArray) assert self.container.view() is not self.container tm.assert_numpy_array_equal(self.container, original) # Shallow copy should be the same too assert isinstance(self.container._shallow_copy(), FrozenNDArray) # setting should not be allowed def testit(container): container[0] = 16 self.check_mutable_error(testit, self.container) def test_values(self): original = self.container.view(np.ndarray).copy() n = original[0] + 15 vals = self.container.values() tm.assert_numpy_array_equal(original, vals) assert original is not vals vals[0] = n assert isinstance(self.container, FrozenNDArray) tm.assert_numpy_array_equal(self.container.values(), original) assert vals[0] == n
mit
schets/scikit-learn
sklearn/utils/tests/test_extmath.py
13
16336
# Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis Engemann <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import linalg from scipy import stats from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.extmath import density from sklearn.utils.extmath import logsumexp from sklearn.utils.extmath import norm, squared_norm from sklearn.utils.extmath import randomized_svd from sklearn.utils.extmath import row_norms from sklearn.utils.extmath import weighted_mode from sklearn.utils.extmath import cartesian from sklearn.utils.extmath import log_logistic from sklearn.utils.extmath import fast_dot, _fast_dot from sklearn.utils.extmath import svd_flip from sklearn.utils.extmath import _batch_mean_variance_update from sklearn.utils.extmath import _deterministic_vector_sign_flip from sklearn.datasets.samples_generator import make_low_rank_matrix def test_density(): rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 5)) X[1, 2] = 0 X[5, 3] = 0 X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_coo = sparse.coo_matrix(X) X_lil = sparse.lil_matrix(X) for X_ in (X_csr, X_csc, X_coo, X_lil): assert_equal(density(X_), density(X)) def test_uniform_weights(): # with uniform weights, results should be identical to stats.mode rng = np.random.RandomState(0) x = rng.randint(10, size=(10, 5)) weights = np.ones(x.shape) for axis in (None, 0, 1): mode, score = stats.mode(x, axis) mode2, score2 = weighted_mode(x, weights, axis) assert_true(np.all(mode == mode2)) assert_true(np.all(score == score2)) def test_random_weights(): # set this up so that each row should have a weighted mode of 6, # with a score that is easily reproduced mode_result = 6 rng = np.random.RandomState(0) x = rng.randint(mode_result, size=(100, 10)) w = rng.random_sample(x.shape) x[:, :5] = mode_result w[:, :5] += 1 mode, score = weighted_mode(x, w, axis=1) assert_array_equal(mode, mode_result) assert_array_almost_equal(score.ravel(), w[:, :5].sum(1)) def test_logsumexp(): # Try to add some smallish numbers in logspace x = np.array([1e-40] * 1000000) logx = np.log(x) assert_almost_equal(np.exp(logsumexp(logx)), x.sum()) X = np.vstack([x, x]) logX = np.vstack([logx, logx]) assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0)) assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1)) def test_randomized_svd_low_rank(): # Check that extmath.randomized_svd is consistent with linalg.svd n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X of approximate effective rank `rank` and no noise # component (very structured signal): X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method U, s, V = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd(X, k) assert_equal(Ua.shape, (n_samples, k)) assert_equal(sa.shape, (k,)) assert_equal(Va.shape, (k, n_features)) # ensure that the singular values of both methods are equal up to the real # rank of the matrix assert_almost_equal(s[:k], sa) # check the singular vectors too (while not checking the sign) assert_almost_equal(np.dot(U[:, :k], V[:k, :]), np.dot(Ua, Va)) # check the sparse matrix representation X = sparse.csr_matrix(X) # compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd(X, k) assert_almost_equal(s[:rank], sa[:rank]) def test_norm_squared_norm(): X = np.random.RandomState(42).randn(50, 63) X *= 100 # check stability X += 200 assert_almost_equal(np.linalg.norm(X.ravel()), norm(X)) assert_almost_equal(norm(X) ** 2, squared_norm(X), decimal=6) assert_almost_equal(np.linalg.norm(X), np.sqrt(squared_norm(X)), decimal=6) def test_row_norms(): X = np.random.RandomState(42).randn(100, 100) sq_norm = (X ** 2).sum(axis=1) assert_array_almost_equal(sq_norm, row_norms(X, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X)) Xcsr = sparse.csr_matrix(X, dtype=np.float32) assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr)) def test_randomized_svd_low_rank_with_noise(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X wity structure approximate rank `rank` and an # important noisy component X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.05) # compute the singular values of X using the fast approximate method with # iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5) # the iterated power method is helping getting rid of the noise: assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_infinite_rank(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # let us try again without 'low_rank component': just regularly but slowly # decreasing singular values: the rank of the data matrix is infinite X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=1.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.1) # compute the singular values of X using the fast approximate method with # iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5) # the iterated power method is still managing to get most of the structure # at the requested rank assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_transpose_consistency(): # Check that transposing the design matrix has limit impact n_samples = 100 n_features = 500 rank = 4 k = 10 X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False, random_state=0) U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True, random_state=0) U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto', random_state=0) U4, s4, V4 = linalg.svd(X, full_matrices=False) assert_almost_equal(s1, s4[:k], decimal=3) assert_almost_equal(s2, s4[:k], decimal=3) assert_almost_equal(s3, s4[:k], decimal=3) assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]), decimal=2) assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]), decimal=2) # in this case 'auto' is equivalent to transpose assert_almost_equal(s2, s3) def test_svd_flip(): # Check that svd_flip works in both situations, and reconstructs input. rs = np.random.RandomState(1999) n_samples = 20 n_features = 10 X = rs.randn(n_samples, n_features) # Check matrix reconstruction U, S, V = linalg.svd(X, full_matrices=False) U1, V1 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6) # Check transposed matrix reconstruction XT = X.T U, S, V = linalg.svd(XT, full_matrices=False) U2, V2 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6) # Check that different flip methods are equivalent under reconstruction U_flip1, V_flip1 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6) U_flip2, V_flip2 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6) def test_randomized_svd_sign_flip(): a = np.array([[2.0, 0.0], [0.0, 1.0]]) u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41) for seed in range(10): u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed) assert_almost_equal(u1, u2) assert_almost_equal(v1, v2) assert_almost_equal(np.dot(u2 * s2, v2), a) assert_almost_equal(np.dot(u2.T, u2), np.eye(2)) assert_almost_equal(np.dot(v2.T, v2), np.eye(2)) def test_cartesian(): # Check if cartesian product delivers the right results axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7])) true_out = np.array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) out = cartesian(axes) assert_array_equal(true_out, out) # check single axis x = np.arange(3) assert_array_equal(x[:, np.newaxis], cartesian((x,))) def test_logistic_sigmoid(): # Check correctness and robustness of logistic sigmoid implementation naive_logistic = lambda x: 1 / (1 + np.exp(-x)) naive_log_logistic = lambda x: np.log(naive_logistic(x)) x = np.linspace(-2, 2, 50) assert_array_almost_equal(log_logistic(x), naive_log_logistic(x)) extreme_x = np.array([-100., 100.]) assert_array_almost_equal(log_logistic(extreme_x), [-100, 0]) def test_fast_dot(): # Check fast dot blas wrapper function if fast_dot is np.dot: return rng = np.random.RandomState(42) A = rng.random_sample([2, 10]) B = rng.random_sample([2, 10]) try: linalg.get_blas_funcs(['gemm'])[0] has_blas = True except (AttributeError, ValueError): has_blas = False if has_blas: # Test _fast_dot for invalid input. # Maltyped data. for dt1, dt2 in [['f8', 'f4'], ['i4', 'i4']]: assert_raises(ValueError, _fast_dot, A.astype(dt1), B.astype(dt2).T) # Malformed data. ## ndim == 0 E = np.empty(0) assert_raises(ValueError, _fast_dot, E, E) ## ndim == 1 assert_raises(ValueError, _fast_dot, A, A[0]) ## ndim > 2 assert_raises(ValueError, _fast_dot, A.T, np.array([A, A])) ## min(shape) == 1 assert_raises(ValueError, _fast_dot, A, A[0, :][None, :]) # test for matrix mismatch error assert_raises(ValueError, _fast_dot, A, A) # Test cov-like use case + dtypes. for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) # col < row C = np.dot(A.T, A) C_ = fast_dot(A.T, A) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A, B.T) C_ = fast_dot(A, B.T) assert_almost_equal(C, C_, decimal=5) # Test square matrix * rectangular use case. A = rng.random_sample([2, 2]) for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) C = np.dot(A, B) C_ = fast_dot(A, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) if has_blas: for x in [np.array([[d] * 10] * 2) for d in [np.inf, np.nan]]: assert_raises(ValueError, _fast_dot, x, x.T) def test_incremental_variance_update_formulas(): # Test Youngs and Cramer incremental variance formulas. # Doggie data from http://www.mathsisfun.com/data/standard-deviation.html A = np.array([[600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300]]).T idx = 2 X1 = A[:idx, :] X2 = A[idx:, :] old_means = X1.mean(axis=0) old_variances = X1.var(axis=0) old_sample_count = X1.shape[0] final_means, final_variances, final_count = _batch_mean_variance_update( X2, old_means, old_variances, old_sample_count) assert_almost_equal(final_means, A.mean(axis=0), 6) assert_almost_equal(final_variances, A.var(axis=0), 6) assert_almost_equal(final_count, A.shape[0]) def test_incremental_variance_ddof(): # Test that degrees of freedom parameter for calculations are correct. rng = np.random.RandomState(1999) X = rng.randn(50, 10) n_samples, n_features = X.shape for batch_size in [11, 20, 37]: steps = np.arange(0, X.shape[0], batch_size) if steps[-1] != X.shape[0]: steps = np.hstack([steps, n_samples]) for i, j in zip(steps[:-1], steps[1:]): batch = X[i:j, :] if i == 0: incremental_means = batch.mean(axis=0) incremental_variances = batch.var(axis=0) # Assign this twice so that the test logic is consistent incremental_count = batch.shape[0] sample_count = batch.shape[0] else: result = _batch_mean_variance_update( batch, incremental_means, incremental_variances, sample_count) (incremental_means, incremental_variances, incremental_count) = result sample_count += batch.shape[0] calculated_means = np.mean(X[:j], axis=0) calculated_variances = np.var(X[:j], axis=0) assert_almost_equal(incremental_means, calculated_means, 6) assert_almost_equal(incremental_variances, calculated_variances, 6) assert_equal(incremental_count, sample_count) def test_vector_sign_flip(): # Testing that sign flip is working & largest value has positive sign data = np.random.RandomState(36).randn(5, 5) max_abs_rows = np.argmax(np.abs(data), axis=1) data_flipped = _deterministic_vector_sign_flip(data) max_rows = np.argmax(data_flipped, axis=1) assert_array_equal(max_abs_rows, max_rows) signs = np.sign(data[range(data.shape[0]), max_abs_rows]) assert_array_equal(data, data_flipped * signs[:, np.newaxis]) if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
davidgbe/scikit-learn
examples/linear_model/plot_bayesian_ridge.py
248
2588
""" ========================= Bayesian Ridge Regression ========================= Computes a Bayesian Ridge Regression on a synthetic dataset. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import BayesianRidge, LinearRegression ############################################################################### # Generating simulated data with Gaussian weigthts np.random.seed(0) n_samples, n_features = 100, 100 X = np.random.randn(n_samples, n_features) # Create Gaussian data # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noise with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the Bayesian Ridge Regression and an OLS for comparison clf = BayesianRidge(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot true weights, estimated weights and histogram of the weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="Bayesian Ridge estimate") plt.plot(w, 'g-', label="Ground truth") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc="best", prop=dict(size=12)) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc="lower left") plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
animesh-garg/dtw
dtw.py
1
2764
from numpy import array, zeros, argmin, inf def dtw(x, y, dist): """ Computes Dynamic Time Warping (DTW) of two sequences. :param array x: N1*M array :param array y: N2*M array :param func dist: distance used as cost measure Returns the minimum distance, the cost matrix, the accumulated cost matrix, and the wrap path. """ assert len(x) assert len(y) r, c = len(x), len(y) D0 = zeros((r + 1, c + 1)) D0[0, 1:] = inf D0[1:, 0] = inf D1 = D0[1:, 1:] # view for i in range(r): for j in range(c): D1[i, j] = dist(x[i], y[j]) C = D1.copy() for i in range(r): for j in range(c): D1[i, j] += min(D0[i, j], D0[i, j+1], D0[i+1, j]) if len(x)==1: path = zeros(len(y)), range(len(y)) elif len(y) == 1: path = range(len(x)), zeros(len(x)) else: path = _traceback(D0) return D1[-1, -1] / sum(D1.shape), C, D1, path def _traceback(D): i, j = array(D.shape) - 2 p, q = [i], [j] while ((i > 0) or (j > 0)): tb = argmin((D[i, j], D[i, j+1], D[i+1, j])) if (tb == 0): i -= 1 j -= 1 elif (tb == 1): i -= 1 else: # (tb == 2): j -= 1 p.insert(0, i) q.insert(0, j) return array(p), array(q) if __name__ == '__main__': if 0: # 1-D numeric from sklearn.metrics.pairwise import manhattan_distances x = [0, 0, 1, 1, 2, 4, 2, 1, 2, 0] y = [1, 1, 1, 2, 2, 2, 2, 3, 2, 0] dist_fun = manhattan_distances elif 0: # 2-D numeric from sklearn.metrics.pairwise import euclidean_distances x = [[0, 0], [0, 1], [1, 1], [1, 2], [2, 2], [4, 3], [2, 3], [1, 1], [2, 2], [0, 1]] y = [[1, 0], [1, 1], [1, 1], [2, 1], [4, 3], [4, 3], [2, 3], [3, 1], [1, 2], [1, 0]] dist_fun = euclidean_distances else: # 1-D list of strings from nltk.metrics.distance import edit_distance #x = ['we', 'shelled', 'clams', 'for', 'the', 'chowder'] #y = ['class', 'too'] x = ['i', 'soon', 'found', 'myself', 'muttering', 'to', 'the', 'walls'] y = ['see', 'drown', 'himself'] #x = 'we talked about the situation'.split() #y = 'we talked about the situation'.split() dist_fun = edit_distance dist, cost, acc, path = dtw(x, y, dist_fun) # vizualize from matplotlib import pyplot as plt plt.imshow(cost.T, origin='lower', cmap=plt.cm.Reds, interpolation='nearest') plt.plot(path[0], path[1], '-o') # relation plt.xticks(range(len(x)), x) plt.yticks(range(len(y)), y) plt.xlabel('x') plt.ylabel('y') plt.axis('tight') plt.title('Minimum distance: {}'.format(dist)) plt.show()
gpl-3.0
vladsaveliev/bcbio-nextgen
bcbio/structural/validate.py
4
19051
"""Provide validation of structural variations against truth sets. """ import csv import os import six import toolz as tz import numpy as np import pandas as pd import pybedtools from bcbio.log import logger from bcbio import utils from bcbio.bam import ref from bcbio.pipeline import datadict as dd from bcbio.provenance import do from bcbio.structural import convert from bcbio.distributed.transaction import file_transaction from bcbio.variation import vcfutils, ploidy, validateplot from bcbio.pipeline import config_utils mpl = utils.LazyImport("matplotlib") plt = utils.LazyImport("matplotlib.pyplot") sns = utils.LazyImport("seaborn") # -- VCF based validation def _evaluate_vcf(calls, truth_vcf, work_dir, data): out_file = os.path.join(work_dir, os.path.join("%s-sv-validate.csv" % dd.get_sample_name(data))) if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: with open(tx_out_file, "w") as out_handle: writer = csv.writer(out_handle) writer.writerow(["sample", "caller", "vtype", "metric", "value"]) for call in calls: detail_dir = utils.safe_makedir(os.path.join(work_dir, call["variantcaller"])) if call.get("vrn_file"): for stats in _validate_caller_vcf(call["vrn_file"], truth_vcf, dd.get_sample_callable(data), call["variantcaller"], detail_dir, data): writer.writerow(stats) return out_file def _validate_caller_vcf(call_vcf, truth_vcf, callable_bed, svcaller, work_dir, data): """Validate a caller VCF against truth within callable regions using SURVIVOR. Combines files with SURIVOR merge and counts (https://github.com/fritzsedlazeck/SURVIVOR/) """ stats = _calculate_comparison_stats(truth_vcf) call_vcf = _prep_vcf(call_vcf, callable_bed, dd.get_sample_name(data), dd.get_sample_name(data), stats, work_dir, data) truth_vcf = _prep_vcf(truth_vcf, callable_bed, vcfutils.get_samples(truth_vcf)[0], "%s-truth" % dd.get_sample_name(data), stats, work_dir, data) cmp_vcf = _survivor_merge(call_vcf, truth_vcf, stats, work_dir, data) return _comparison_stats_from_merge(cmp_vcf, stats, svcaller, data) def _comparison_stats_from_merge(in_file, stats, svcaller, data): """Extract true/false positive/negatives from a merged SURIVOR VCF. """ truth_stats = {"tp": [], "fn": [], "fp": []} samples = ["truth" if x.endswith("-truth") else "eval" for x in vcfutils.get_samples(in_file)] with open(in_file) as in_handle: for call in (l.rstrip().split("\t") for l in in_handle if not l.startswith("#")): supp_vec_str = [x for x in call[7].split(";") if x.startswith("SUPP_VEC=")][0] _, supp_vec = supp_vec_str.split("=") calls = dict(zip(samples, [int(x) for x in supp_vec])) if calls["truth"] and calls["eval"]: metric = "tp" elif calls["truth"]: metric = "fn" else: metric = "fp" truth_stats[metric].append(_summarize_call(call)) return _to_csv(truth_stats, stats, dd.get_sample_name(data), svcaller) def _survivor_merge(call_vcf, truth_vcf, stats, work_dir, data): """Perform a merge of two callsets using SURVIVOR, """ out_file = os.path.join(work_dir, "eval-merge.vcf") if not utils.file_uptodate(out_file, call_vcf): in_call_vcf = call_vcf.replace(".vcf.gz", ".vcf") if not utils.file_exists(in_call_vcf): with file_transaction(data, in_call_vcf) as tx_in_call_vcf: do.run("gunzip -c {call_vcf} > {tx_in_call_vcf}".format(**locals())) in_truth_vcf = truth_vcf.replace(".vcf.gz", ".vcf") if not utils.file_exists(in_truth_vcf): with file_transaction(data, in_truth_vcf) as tx_in_truth_vcf: do.run("gunzip -c {truth_vcf} > {tx_in_truth_vcf}".format(**locals())) in_list_file = os.path.join(work_dir, "eval-inputs.txt") with open(in_list_file, "w") as out_handle: out_handle.write("%s\n%s\n" % (in_call_vcf, in_truth_vcf)) with file_transaction(data, out_file) as tx_out_file: cmd = ("SURVIVOR merge {in_list_file} {stats[merge_size]} 1 0 0 0 {stats[min_size]} {tx_out_file}") do.run(cmd.format(**locals()), "Merge SV files for validation: %s" % dd.get_sample_name(data)) return out_file def _to_csv(truth_stats, stats, sample, svcaller): out = [] for metric, vals in truth_stats.items(): for svtype in sorted(list(stats["svtypes"])): count = len([x for x in vals if x["svtype"] == svtype]) out.append([sample, svcaller, svtype, metric, count]) for start, end in stats["ranges"]: count = len([x for x in vals if (x["svtype"] == svtype and x["size"] >= start and x["size"] < end)]) out.append([sample, svcaller, "%s_%s-%s" % (svtype, start, end), metric, count]) return out def _calculate_comparison_stats(truth_vcf): """Identify calls to validate from the input truth VCF. """ # Avoid very small events for average calculations min_stat_size = 50 min_median_size = 250 sizes = [] svtypes = set([]) with utils.open_gzipsafe(truth_vcf) as in_handle: for call in (l.rstrip().split("\t") for l in in_handle if not l.startswith("#")): stats = _summarize_call(call) if stats["size"] > min_stat_size: sizes.append(stats["size"]) svtypes.add(stats["svtype"]) pct10 = int(np.percentile(sizes, 10)) pct25 = int(np.percentile(sizes, 25)) pct50 = int(np.percentile(sizes, 50)) pct75 = int(np.percentile(sizes, 75)) ranges_detailed = [(int(min(sizes)), pct10), (pct10, pct25), (pct25, pct50), (pct50, pct75), (pct75, max(sizes))] ranges_split = [(int(min(sizes)), pct50), (pct50, max(sizes))] return {"min_size": int(min(sizes) * 0.95), "max_size": int(max(sizes) + 1.05), "svtypes": svtypes, "merge_size": int(np.percentile([x for x in sizes if x > min_median_size], 50)), "ranges": []} def _get_start_end(parts, index=7): """Retrieve start and end for a VCF record, skips BNDs without END coords """ start = parts[1] end = [x.split("=")[-1] for x in parts[index].split(";") if x.startswith("END=")] if end: end = end[0] return start, end return None, None def _summarize_call(parts): """Provide summary metrics on size and svtype for a SV call. """ svtype = [x.split("=")[1] for x in parts[7].split(";") if x.startswith("SVTYPE=")] svtype = svtype[0] if svtype else "" start, end = _get_start_end(parts) return {"svtype": svtype, "size": int(end) - int(start)} def _prep_vcf(in_file, region_bed, sample, new_sample, stats, work_dir, data): """Prepare VCF for SV validation: - Subset to passing variants - Subset to genotyped variants -- removes reference and no calls - Selects and names samples - Subset to callable regions - Remove larger annotations which slow down VCF processing """ in_file = vcfutils.bgzip_and_index(in_file, data, remove_orig=False) out_file = os.path.join(work_dir, "%s-vprep.vcf.gz" % utils.splitext_plus(os.path.basename(in_file))[0]) if not utils.file_uptodate(out_file, in_file): callable_bed = _prep_callable_bed(region_bed, work_dir, stats, data) with file_transaction(data, out_file) as tx_out_file: ann_remove = _get_anns_to_remove(in_file) ann_str = " | bcftools annotate -x {ann_remove}" if ann_remove else "" cmd = ("bcftools view -T {callable_bed} -f 'PASS,.' --min-ac '1:nref' -s {sample} {in_file} " + ann_str + r"| sed 's|\t{sample}|\t{new_sample}|' " "| bgzip -c > {out_file}") do.run(cmd.format(**locals()), "Create SV validation VCF for %s" % new_sample) return vcfutils.bgzip_and_index(out_file, data["config"]) def _prep_callable_bed(in_file, work_dir, stats, data): """Sort and merge callable BED regions to prevent SV double counting """ out_file = os.path.join(work_dir, "%s-merge.bed.gz" % utils.splitext_plus(os.path.basename(in_file))[0]) gsort = config_utils.get_program("gsort", data) if not utils.file_uptodate(out_file, in_file): with file_transaction(data, out_file) as tx_out_file: fai_file = ref.fasta_idx(dd.get_ref_file(data)) cmd = ("{gsort} {in_file} {fai_file} | bedtools merge -i - -d {stats[merge_size]} | " "bgzip -c > {tx_out_file}") do.run(cmd.format(**locals()), "Prepare SV callable BED regions") return vcfutils.bgzip_and_index(out_file, data["config"]) def _get_anns_to_remove(in_file): """Find larger annotations, if present in VCF, that slow down processing. """ to_remove = ["ANN", "LOF"] to_remove_str = tuple(["##INFO=<ID=%s" % x for x in to_remove]) cur_remove = [] with utils.open_gzipsafe(in_file) as in_handle: for line in in_handle: if not line.startswith("#"): break elif line.startswith(to_remove_str): cur_id = line.split("ID=")[-1].split(",")[0] cur_remove.append("INFO/%s" % cur_id) return ",".join(cur_remove) # -- BED based evaluation EVENT_SIZES = [(100, 450), (450, 2000), (2000, 4000), (4000, 20000), (20000, 60000), (60000, int(1e6))] def _stat_str(x, n): if n > 0: val = float(x) / float(n) * 100.0 return {"label": "%.1f%% (%s / %s)" % (val, x, n), "val": val} else: return {"label": "", "val": 0} def cnv_to_event(name, data): """Convert a CNV to an event name. """ cur_ploidy = ploidy.get_ploidy([data]) if name.startswith("cnv"): num = max([int(x) for x in name.split("_")[0].replace("cnv", "").split(";")]) if num < cur_ploidy: return "DEL" elif num > cur_ploidy: return "DUP" else: return name else: return name def _evaluate_one(caller, svtype, size_range, ensemble, truth, data): """Compare a ensemble results for a caller against a specific caller and SV type. """ def cnv_matches(name): return cnv_to_event(name, data) == svtype def is_breakend(name): return name.startswith("BND") def in_size_range(max_buffer=0): def _work(feat): minf, maxf = size_range buffer = min(max_buffer, int(((maxf + minf) / 2.0) / 10.0)) size = feat.end - feat.start return size >= max([0, minf - buffer]) and size < maxf + buffer return _work def is_caller_svtype(feat): for name in feat.name.split(","): if ((name.startswith(svtype) or cnv_matches(name) or is_breakend(name)) and (caller == "sv-ensemble" or name.endswith(caller))): return True return False minf, maxf = size_range efeats = pybedtools.BedTool(ensemble).filter(in_size_range(0)).filter(is_caller_svtype).saveas().sort().merge() tfeats = pybedtools.BedTool(truth).filter(in_size_range(0)).sort().merge().saveas() etotal = efeats.count() ttotal = tfeats.count() match = efeats.intersect(tfeats, u=True).sort().merge().saveas().count() return {"sensitivity": _stat_str(match, ttotal), "precision": _stat_str(match, etotal)} def _evaluate_multi(calls, truth_svtypes, work_dir, data): base = os.path.join(work_dir, "%s-sv-validate" % (dd.get_sample_name(data))) out_file = base + ".csv" df_file = base + "-df.csv" if any((not utils.file_uptodate(out_file, x["vrn_file"]) or not utils.file_uptodate(df_file, x["vrn_file"])) for x in calls): with file_transaction(data, out_file) as tx_out_file: with open(tx_out_file, "w") as out_handle: with open(df_file, "w") as df_out_handle: writer = csv.writer(out_handle) dfwriter = csv.writer(df_out_handle) writer.writerow(["svtype", "size", "caller", "sensitivity", "precision"]) dfwriter.writerow(["svtype", "size", "caller", "metric", "value", "label"]) for svtype, truth in truth_svtypes.items(): for size in EVENT_SIZES: str_size = "%s-%s" % size for call in calls: call_bed = convert.to_bed(call, dd.get_sample_name(data), work_dir, calls, data) if utils.file_exists(call_bed): evalout = _evaluate_one(call["variantcaller"], svtype, size, call_bed, truth, data) writer.writerow([svtype, str_size, call["variantcaller"], evalout["sensitivity"]["label"], evalout["precision"]["label"]]) for metric in ["sensitivity", "precision"]: dfwriter.writerow([svtype, str_size, call["variantcaller"], metric, evalout[metric]["val"], evalout[metric]["label"]]) return out_file, df_file def _plot_evaluation(df_csv): if mpl is None or plt is None or sns is None: not_found = ", ".join([x for x in ['mpl', 'plt', 'sns'] if eval(x) is None]) logger.info("No validation plot. Missing imports: %s" % not_found) return None mpl.use('Agg', force=True) df = pd.read_csv(df_csv).fillna("0%") out = {} for event in df["svtype"].unique(): out[event] = _plot_evaluation_event(df_csv, event) return out def _plot_evaluation_event(df_csv, svtype): """Provide plot of evaluation metrics for an SV event, stratified by event size. """ titles = {"INV": "Inversions", "DEL": "Deletions", "DUP": "Duplications", "INS": "Insertions"} out_file = "%s-%s.png" % (os.path.splitext(df_csv)[0], svtype) sns.set(style='white') if not utils.file_uptodate(out_file, df_csv): metrics = ["sensitivity", "precision"] df = pd.read_csv(df_csv).fillna("0%") df = df[(df["svtype"] == svtype)] event_sizes = _find_events_to_include(df, EVENT_SIZES) fig, axs = plt.subplots(len(event_sizes), len(metrics), tight_layout=True) if len(event_sizes) == 1: axs = [axs] callers = sorted(df["caller"].unique()) if "sv-ensemble" in callers: callers.remove("sv-ensemble") callers.append("sv-ensemble") for i, size in enumerate(event_sizes): size_label = "%s to %sbp" % size size = "%s-%s" % size for j, metric in enumerate(metrics): ax = axs[i][j] ax.get_xaxis().set_ticks([]) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.set_xlim(0, 125.0) if i == 0: ax.set_title(metric, size=12, y=1.2) vals, labels = _get_plot_val_labels(df, size, metric, callers) ax.barh(range(1,len(vals)+1), vals) if j == 0: ax.tick_params(axis='y', which='major', labelsize=8) ax.locator_params(axis="y", tight=True) ax.set_yticks(range(1,len(callers)+1,1)) ax.set_yticklabels(callers, va="center") ax.text(100, len(callers)+1, size_label, fontsize=10) else: ax.get_yaxis().set_ticks([]) for ai, (val, label) in enumerate(zip(vals, labels)): ax.annotate(label, (val + 0.75, ai + 1), va='center', size=7) if svtype in titles: fig.text(0.025, 0.95, titles[svtype], size=14) fig.set_size_inches(7, len(event_sizes) + 1) fig.savefig(out_file) return out_file def _find_events_to_include(df, event_sizes): out = [] for size in event_sizes: str_size = "%s-%s" % size curdf = df[(df["size"] == str_size) & (df["metric"] == "sensitivity")] for val in list(curdf["label"]): if val != "0%": out.append(size) break return out def _get_plot_val_labels(df, size, metric, callers): curdf = df[(df["size"] == size) & (df["metric"] == metric)] vals, labels = [], [] for caller in callers: row = curdf[curdf["caller"] == caller] val = list(row["value"])[0] if val == 0: val = 0.1 vals.append(val) labels.append(list(row["label"])[0]) return vals, labels # -- general functionality def evaluate(data): """Provide evaluations for multiple callers split by structural variant type. """ work_dir = utils.safe_makedir(os.path.join(data["dirs"]["work"], "structural", dd.get_sample_name(data), "validate")) truth_sets = tz.get_in(["config", "algorithm", "svvalidate"], data) if truth_sets and data.get("sv"): if isinstance(truth_sets, dict): val_summary, df_csv = _evaluate_multi(data["sv"], truth_sets, work_dir, data) summary_plots = _plot_evaluation(df_csv) data["sv-validate"] = {"csv": val_summary, "plot": summary_plots, "df": df_csv} else: assert isinstance(truth_sets, six.string_types) and utils.file_exists(truth_sets), truth_sets val_summary = _evaluate_vcf(data["sv"], truth_sets, work_dir, data) title = "%s structural variants" % dd.get_sample_name(data) summary_plots = validateplot.classifyplot_from_valfile(val_summary, outtype="png", title=title) data["sv-validate"] = {"csv": val_summary, "plot": summary_plots[0] if len(summary_plots) > 0 else None} return data if __name__ == "__main__": #_, df_csv = _evaluate_multi(["lumpy", "delly", "wham", "sv-ensemble"], # {"DEL": "synthetic_challenge_set3_tumor_20pctmasked_truth_sv_DEL.bed"}, # "syn3-tumor-ensemble-filter.bed", "sv_exclude.bed") #_, df_csv = _evaluate_multi(["lumpy", "delly", "cn_mops", "sv-ensemble"], # {"DEL": "NA12878.50X.ldgp.molpb_val.20140508.bed"}, # "NA12878-ensemble.bed", "LCR.bed.gz") import sys _plot_evaluation(sys.argv[1])
mit
cwu2011/scikit-learn
sklearn/covariance/tests/test_robust_covariance.py
213
3359
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.validation import NotFittedError from sklearn import datasets from sklearn.covariance import empirical_covariance, MinCovDet, \ EllipticEnvelope X = datasets.load_iris().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_mcd(): # Tests the FastMCD algorithm implementation # Small data set # test without outliers (random independent normal data) launch_mcd_on_dataset(100, 5, 0, 0.01, 0.1, 80) # test with a contaminated data set (medium contamination) launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70) # test with a contaminated data set (strong contamination) launch_mcd_on_dataset(100, 5, 40, 0.1, 0.1, 50) # Medium data set launch_mcd_on_dataset(1000, 5, 450, 0.1, 0.1, 540) # Large data set launch_mcd_on_dataset(1700, 5, 800, 0.1, 0.1, 870) # 1D data set launch_mcd_on_dataset(500, 1, 100, 0.001, 0.001, 350) def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov, tol_support): rand_gen = np.random.RandomState(0) data = rand_gen.randn(n_samples, n_features) # add some outliers outliers_index = rand_gen.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5) data[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False pure_data = data[inliers_mask] # compute MCD by fitting an object mcd_fit = MinCovDet(random_state=rand_gen).fit(data) T = mcd_fit.location_ S = mcd_fit.covariance_ H = mcd_fit.support_ # compare with the estimates learnt from the inliers error_location = np.mean((pure_data.mean(0) - T) ** 2) assert(error_location < tol_loc) error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2) assert(error_cov < tol_cov) assert(np.sum(H) >= tol_support) assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_) def test_mcd_issue1127(): # Check that the code does not break with X.shape = (3, 1) # (i.e. n_support = n_samples) rnd = np.random.RandomState(0) X = rnd.normal(size=(3, 1)) mcd = MinCovDet() mcd.fit(X) def test_outlier_detection(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) assert_raises(NotFittedError, clf.predict, X) assert_raises(NotFittedError, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) decision = clf.decision_function(X, raw_values=True) decision_transformed = clf.decision_function(X, raw_values=False) assert_array_almost_equal( decision, clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decision_transformed < 0))
bsd-3-clause
crichardson17/starburst_atlas
Low_resolution_sims/DustFree_LowRes/Padova_cont_subsolar_.2/Optical2.py
33
7437
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith(".grd"): inputfile = file for file in os.listdir('.'): if file.endswith(".txt"): inputfile2 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine def add_sub_plot(sub_num): numplots = 16 plt.subplot(numplots/4.,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12,14,15,16]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8,9,10,11,12]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 13: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 16 : plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid = []; with open(inputfile, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid.append(row); grid = asarray(grid) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines = []; with open(inputfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines.append(row); dataEmissionlines = asarray(dataEmissionlines) print "import files complete" # --------------------------------------------------- #for grid phi_values = grid[1:len(dataEmissionlines)+1,6] hdens_values = grid[1:len(dataEmissionlines)+1,7] #for lines headers = headers[1:] Emissionlines = dataEmissionlines[:, 1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(Emissionlines[0]),4)) #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = Emissionlines[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(Emissionlines),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] line = [56, #AR 4 4740 58, #4861 59, #O III 4959 60, #O 3 5007 61, #N 1 5200 63, #O 1 5577 64, #N 2 5755 65, #HE 1 5876 66, #O 1 6300 67, #S 3 6312 68, #O 1 6363 69, #H 1 6563 70, #N 2 6584 71, #S II 6716 72, #S 2 6720 73] #S II 6731 #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("Optical Lines Continued", fontsize=14) # --------------------------------------------------- for i in range(16): add_sub_plot(i) ax1 = plt.subplot(4,4,1) add_patches(ax1) print "complete" plt.savefig('Optical_lines_cntd.pdf') plt.clf()
gpl-2.0
alexcpsec/coursera-compinvesting1-hw
HW2/hw2_event.py
2
2823
## Computational Investing I ## HW 2 ## ## Author: alexcpsec import pandas as pd import numpy as np import math import copy import QSTK.qstkutil.qsdateutil as du import datetime as dt import QSTK.qstkutil.DataAccess as da import QSTK.qstkutil.tsutil as tsu import QSTK.qstkstudy.EventProfiler as ep """ Accepts a list of symbols along with start and end date Returns the Event Matrix which is a pandas Datamatrix Event matrix has the following structure : |IBM |GOOG|XOM |MSFT| GS | JP | (d1)|nan |nan | 1 |nan |nan | 1 | (d2)|nan | 1 |nan |nan |nan |nan | (d3)| 1 |nan | 1 |nan | 1 |nan | (d4)|nan | 1 |nan | 1 |nan |nan | ................................... ................................... Also, d1 = start date nan = no information about any event. 1 = status bit(positively confirms the event occurence) """ def find_events(ls_symbols, d_data): df_close = d_data['actual_close'] ts_market = df_close['SPY'] print "Finding Events" # Creating an empty dataframe df_events = copy.deepcopy(df_close) df_events = df_events * np.NAN # Time stamps for the event range ldt_timestamps = df_close.index for s_sym in ls_symbols: for i in range(1, len(ldt_timestamps)): # Calculating the returns for this timestamp f_symprice_today = df_close[s_sym].ix[ldt_timestamps[i]] f_symprice_yest = df_close[s_sym].ix[ldt_timestamps[i - 1]] if f_symprice_yest >= 6.00 and f_symprice_today < 6.00: df_events[s_sym].ix[ldt_timestamps[i]] = 1 return df_events def event_profiler(ldt_timestamps, symbols_list): dataobj = da.DataAccess('Yahoo') ls_symbols = dataobj.get_symbols_from_list(symbols_list) ls_symbols.append('SPY') ls_keys = ['close','actual_close'] ldf_data = dataobj.get_data(ldt_timestamps, ls_symbols, ls_keys) d_data = dict(zip(ls_keys, ldf_data)) for s_key in ls_keys: d_data[s_key] = d_data[s_key].fillna(method = 'ffill') d_data[s_key] = d_data[s_key].fillna(method = 'bfill') d_data[s_key] = d_data[s_key].fillna(1.0) df_events = find_events(ls_symbols, d_data) report_filename = "hw2_event_study6_" + symbols_list + ".pdf" print "Creating Study " + symbols_list ep.eventprofiler(df_events, d_data, i_lookback=20, i_lookforward=20, s_filename=report_filename, b_market_neutral=True, b_errorbars=True, s_market_sym='SPY') if __name__ == '__main__': dt_start = dt.datetime(2008, 1, 1) dt_end = dt.datetime(2009, 12, 31) ldt_timestamps = du.getNYSEdays(dt_start, dt_end, dt.timedelta(hours=16)) ## Starting up with SP500 2008 event_profiler(ldt_timestamps, 'sp5002008') ## Doing the SP500 2012 event_profiler(ldt_timestamps, 'sp5002012')
mit
Universal-Model-Converter/UMC3.0a
data/Python/x86/Lib/site-packages/scipy/signal/spectral.py
3
13369
"""Tools for spectral analysis. """ from __future__ import division, print_function, absolute_import import numpy as np from scipy import fftpack from . import signaltools from .windows import get_window from ._spectral import lombscargle import warnings from scipy.lib.six import string_types __all__ = ['periodogram', 'welch', 'lombscargle'] def periodogram(x, fs=1.0, window=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate power spectral density using a periodogram. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series in units of Hz. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is an array it will be used directly as the window. Defaults to None; equivalent to 'boxcar'. nfft : int, optional Length of the FFT used. If None the length of `x` will be used. detrend : str or function, optional Specifies how to detrend `x` prior to computing the spectrum. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it should return a detrended array. Defaults to 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz if `x` is measured in V and computing the power spectrum ('spectrum') where `Pxx` has units of V**2 if `x` is measured in V. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of `x`. Notes ----- .. versionadded:: 0.12.0 See Also -------- welch: Estimate power spectral density using Welch's method lombscargle: Lomb-Scargle periodogram for unevenly sampled data Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.periodogram(x, fs) >>> plt.semilogy(f, Pxx_den) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0009924865443739191 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ x = np.asarray(x) if x.size == 0: return np.empty(x.shape), np.empty(x.shape) if window is None: window = 'boxcar' if nfft is None: nperseg = x.shape[axis] elif nfft == x.shape[axis]: nperseg = nfft elif nfft > x.shape[axis]: nperseg = x.shape[axis] elif nfft < x.shape[axis]: s = [np.s_[:]]*len(x.shape) s[axis] = np.s_[:nfft] x = x[s] nperseg = nfft nfft = None return welch(x, fs, window, nperseg, 0, nfft, detrend, return_onesided, scaling, axis) def welch(x, fs=1.0, window='hanning', nperseg=256, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate power spectral density using Welch's method. Welch's method [1]_ computes an estimate of the power spectral density by dividing the data into overlapping segments, computing a modified periodogram for each segment and averaging the periodograms. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series in units of Hz. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length will be used for nperseg. Defaults to 'hanning'. nperseg : int, optional Length of each segment. Defaults to 256. noverlap: int, optional Number of points to overlap between segments. If None, ``noverlap = nperseg / 2``. Defaults to None. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is `nperseg`. Defaults to None. detrend : str or function, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it takes a segment and returns a detrended segment. Defaults to 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where Pxx has units of V**2/Hz if x is measured in V and computing the power spectrum ('spectrum') where Pxx has units of V**2 if x is measured in V. Defaults to 'density'. axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of x. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data Notes ----- An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default 'hanning' window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. If `noverlap` is 0, this method is equivalent to Bartlett's method [2]_. .. versionadded:: 0.12.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika, vol. 37, pp. 1-16, 1950. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.welch(x, fs, 1024) >>> plt.semilogy(f, Pxx_den) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0009924865443739191 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ x = np.asarray(x) if x.size == 0: return np.empty(x.shape), np.empty(x.shape) if axis != -1: x = np.rollaxis(x, axis, len(x.shape)) if x.shape[-1] < nperseg: warnings.warn('nperseg = %d, is greater than x.shape[%d] = %d, using ' 'nperseg = x.shape[%d]' % (nperseg, axis, x.shape[axis], axis)) nperseg = x.shape[-1] if isinstance(window, string_types) or type(window) is tuple: win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if win.shape[0] > x.shape[-1]: raise ValueError('window is longer than x.') nperseg = win.shape[0] if scaling == 'density': scale = 1.0 / (fs * (win*win).sum()) elif scaling == 'spectrum': scale = 1.0 / win.sum()**2 else: raise ValueError('Unknown scaling: %r' % scaling) if noverlap is None: noverlap = nperseg // 2 elif noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') if nfft is None: nfft = nperseg elif nfft < nperseg: raise ValueError('nfft must be greater than or equal to nperseg.') if not hasattr(detrend, '__call__'): detrend_func = lambda seg: signaltools.detrend(seg, type=detrend) elif axis != -1: # Wrap this function so that it receives a shape that it could # reasonably expect to receive. def detrend_func(seg): seg = np.rollaxis(seg, -1, axis) seg = detrend(seg) return np.rollaxis(seg, axis, len(seg.shape)) else: detrend_func = detrend step = nperseg - noverlap indices = np.arange(0, x.shape[-1]-nperseg+1, step) if np.isrealobj(x) and return_onesided: outshape = list(x.shape) if nfft % 2 == 0: # even outshape[-1] = nfft // 2 + 1 Pxx = np.empty(outshape, x.dtype) for k, ind in enumerate(indices): x_dt = detrend_func(x[..., ind:ind+nperseg]) xft = fftpack.rfft(x_dt*win, nfft) # fftpack.rfft returns the positive frequency part of the fft # as real values, packed r r i r i r i ... # this indexing is to extract the matching real and imaginary # parts, while also handling the pure real zero and nyquist # frequencies. if k == 0: Pxx[..., (0,-1)] = xft[..., (0,-1)]**2 Pxx[..., 1:-1] = xft[..., 1:-1:2]**2 + xft[..., 2::2]**2 else: Pxx *= k/(k+1.0) Pxx[..., (0,-1)] += xft[..., (0,-1)]**2 / (k+1.0) Pxx[..., 1:-1] += (xft[..., 1:-1:2]**2 + xft[..., 2::2]**2) \ / (k+1.0) else: # odd outshape[-1] = (nfft+1) // 2 Pxx = np.empty(outshape, x.dtype) for k, ind in enumerate(indices): x_dt = detrend_func(x[..., ind:ind+nperseg]) xft = fftpack.rfft(x_dt*win, nfft) if k == 0: Pxx[..., 0] = xft[..., 0]**2 Pxx[..., 1:] = xft[..., 1::2]**2 + xft[..., 2::2]**2 else: Pxx *= k/(k+1.0) Pxx[..., 0] += xft[..., 0]**2 / (k+1) Pxx[..., 1:] += (xft[..., 1::2]**2 + xft[..., 2::2]**2) \ / (k+1.0) Pxx[..., 1:-1] *= 2*scale Pxx[..., (0,-1)] *= scale f = np.arange(Pxx.shape[-1]) * (fs/nfft) else: for k, ind in enumerate(indices): x_dt = detrend_func(x[..., ind:ind+nperseg]) xft = fftpack.fft(x_dt*win, nfft) if k == 0: Pxx = (xft * xft.conj()).real else: Pxx *= k/(k+1.0) Pxx += (xft * xft.conj()).real / (k+1.0) Pxx *= scale f = fftpack.fftfreq(nfft, 1.0/fs) if axis != -1: Pxx = np.rollaxis(Pxx, -1, axis) return f, Pxx
mit
hansomesong/TracesAnalyzer
20160218Tasks/Plot_stability_change_num.py
1
7889
# -*- coding: utf-8 -*- __author__ = 'yueli' import matplotlib.pyplot as plt from config.config import * import numpy as np import math from collections import Counter import matplotlib as mpl mpl.rcParams['text.usetex'] = True mpl.rcParams.update({'figure.autolayout': True}) def change_num_counter(target_file): file_num_counter = 0 change_num_list = [] nb_observation = 0.0 with open(target_file) as f_handler: next(f_handler) for line in f_handler: tmp_list = line.split(';') if tmp_list[LOG_TIME_COLUMN['coherence']] != "True": file_num_counter += 1 file_path = tmp_list[LOG_TIME_COLUMN['log_file_name']] with open(file_path) as tmp_handler: nb_observation = sum(1 for line in tmp_handler)-1.0 if tmp_list[15] != '0': change_num_list.append(len(tmp_list[15].split(','))/nb_observation*100.0) else: if tmp_list[18] != '0': change_num_list.append(len(tmp_list[18].split(','))/nb_observation*100.0) return file_num_counter, change_num_list def cdf(pdf_list): cdf_list = [] for value in pdf_list: if not cdf_list: cdf_list.append(value) else: cdf_list.append(value + cdf_list[-1]) return cdf_list # 计算 <EID, MR, VP> csv file 中的 change number / experiment number # input = <EID, MR, VP> csv file # output = experiment number def experiment_number_counter(target_file): with open(target_file) as f_handler: experiment_number = float(sum(1 for line in f_handler)-1.0) return experiment_number # 此函数用来统计针对一个 comparison time VP CSV file 里 Coherence列为 False 的文件的变化百分比, # 对应 <EID, MR, VP> csv file 中的 change number / experiment number # input = comparison time VP CSV file # output = percentage_list def instability_occurence(taget_file): with open(target_file) as f_handler: unstable_file_num_counter = 0.0 unstable_percentage_list = [] next(f_handler) for line in f_handler: lines = line.split(";") if lines[LOG_TIME_COLUMN['coherence']] == 'False': unstable_file_num_counter = unstable_file_num_counter + 1.0 change_number = float(len(lines[LOG_TIME_COLUMN['case1_change_time']].split(",")) + len(lines[LOG_TIME_COLUMN['case3_4_change_time']].split(","))) file_name = os.path.join(PLANET_CSV_DIR, lines[LOG_TIME_COLUMN['vantage']], "{0}.csv".format(lines[LOG_TIME_COLUMN['log_file_name']].split("/")[-1])) unstable_percentage_list.append(change_number / experiment_number_counter(file_name) * 100.0) return unstable_file_num_counter, unstable_percentage_list if __name__ == '__main__': # 读取环境变量 ‘PROJECT_LOG_DIR’ (此变量定义在工作目录下.profile或者.bashprofile) try: PLANET_DIR = os.environ['PLANETLAB'] CSV_FILE_DESTDIR = os.environ['PROJECT_LOG_DIR'] PLANET_CSV_DIR = os.environ['PLANETLAB_CSV'] PLOT_DIR = os.environ['PROJECT_PLOT_DIR'] except KeyError: print "Environment variable PROJECT_LOG_DIR is not properly defined or " \ "the definition about this variable is not taken into account." print "If PROJECT_LOG_DIR is well defined, restart Pycharm to try again!" # # 创建一个list,用来存储每一个含有NormalReply返回的percentage # file_total_num = 0 # change_num_total_list = [] # # # 遍历VP_LIST里的5个vp # for vp in VP_LIST: # # for vp in ["wiilab"]: # # Creat a CSV file 来存储 SRC_reply != Locator 的情况 # target_file = os.path.join(CSV_FILE_DESTDIR, 'comparison_time_{0}.csv'.format(vp)) # print target_file # file_num_counter, change_num_list = change_num_counter(target_file) # file_total_num = file_total_num + file_num_counter # change_num_total_list.extend(change_num_list) # print "Unstable number =", len(change_num_list) # # print "change_num_total_list =", change_num_total_list # # # 计算 stable file 的数量有多少 # # print "file_total_num =", file_total_num # # stable_file_num = file_total_num - len(change_num_total_list) # # print "stable_file_num =", stable_file_num # # 此处默认每次实验次数都是 802 # # change_num_total_counter = Counter((i/802.0*100.0) for i in change_num_total_list) # print "change_num_total_list =", len([math.ceil(i*100) for i in change_num_total_list]) # change_num_total_counter = Counter(math.ceil(i*100) for i in change_num_total_list) # tmp =sorted(change_num_total_counter.items(), key=lambda x: x[0]) # # pdf_x_axis = [list(i)[0] for i in tmp] # # pdf_x_axis.insert(0, 0.0) # pdf_y_axis = [list(i)[1]/(float(file_total_num))*100 for i in tmp] # # pdf_y_axis.insert(0, float(stable_file_num)/float(file_total_num)*100) # cdf_y_axis = cdf(pdf_y_axis) # # # print "change_num_total_counter =", change_num_total_counter # print "pdf_x_axis =", pdf_x_axis # print "pdf_y_axis =", pdf_y_axis # print "cdf_y_axis =", cdf_y_axis # # # # Plot part # # Modify the size and dpi of picture, default size is (8,6), default dpi is 80 # plt.gcf().set_size_inches(10,9) # # Define font # font_label = { # 'fontname' : 'Times New Roman', # 'color' : 'black', # 'fontsize' : 40 # } # plt.grid(True) # # Plot pdf # plt.plot(pdf_x_axis, pdf_y_axis, c='black', linewidth=3) # plt.scatter(pdf_x_axis, pdf_y_axis, c='black', s=80) # plt.xlabel("instability frequency (%)", fontsize=45, fontname='Times New Roman') # plt.ylabel("pdf (%)", fontsize=45, fontname='Times New Roman') # plt.xlim(0, 50) # plt.ylim(0, 8) # plt.savefig(os.path.join(PLOT_DIR, 'Plot_newSize', 'pdf_instability_occur.eps'), dpi=300, transparent=True) # plt.show() # # Plot cdf # plt.plot(pdf_x_axis, cdf_y_axis, c='black', linewidth=5) # # plt.scatter(pdf_x_axis, cdf_y_axis, c='black', s=50) # plt.xlabel("instability frequency (%)", font_label) # plt.ylabel("cdf (%)", font_label) # plt.xticks(fontsize=16) # plt.yticks(fontsize=16) # #plt.xlim(1, 50) # # plt.savefig(os.path.join(PLOT_DIR, 'Plot_newSize', 'cdf_instability_occur.eps'), dpi=300, transparent=True) # plt.show() unstable_total_num = 0.0 unstable_total_per_list = [] for vp in VP_LIST: target_file = os.path.join(CSV_FILE_DESTDIR, 'comparison_time_{0}.csv'.format(vp)) print target_file unstable_file_num, unstable_percentage_list = instability_occurence(target_file) unstable_total_num = unstable_total_num + unstable_file_num unstable_total_per_list.extend(unstable_percentage_list) unstable_total_per_int_list = [math.ceil(i) for i in unstable_total_per_list] x_axis = Counter(unstable_total_per_int_list).keys() y_pdf_axis = [(float(i) / unstable_total_num * 100) for i in Counter(unstable_total_per_int_list).values()] y_cdf_axis = cdf(y_pdf_axis) print unstable_total_num print Counter(unstable_total_per_int_list) print x_axis print y_pdf_axis print y_cdf_axis plt.plot(x_axis, y_cdf_axis, c='black', linewidth=5) # plt.scatter(pdf_x_axis, cdf_y_axis, c='black', s=50) plt.xlabel(r"instability frequency (\%)", font) plt.ylabel(r"cdf (\%)", font) plt.xticks(fontsize=40, fontname="Times New Roman") plt.yticks(fontsize=40, fontname="Times New Roman") plt.xlim(1, len(x_axis)) plt.grid(True) # plt.savefig(os.path.join(PLOT_DIR, 'Plot_newSize', 'cdf_instability_occur.eps'), dpi=300, transparent=True) plt.show()
gpl-2.0
sunzhxjs/JobGIS
lib/python2.7/site-packages/pandas/tests/test_nanops.py
9
40509
# -*- coding: utf-8 -*- from __future__ import division, print_function from functools import partial import warnings import numpy as np from pandas import Series from pandas.core.common import isnull, is_integer_dtype import pandas.core.nanops as nanops import pandas.util.testing as tm use_bn = nanops._USE_BOTTLENECK class TestnanopsDataFrame(tm.TestCase): def setUp(self): np.random.seed(11235) nanops._USE_BOTTLENECK = False self.arr_shape = (11, 7, 5) self.arr_float = np.random.randn(*self.arr_shape) self.arr_float1 = np.random.randn(*self.arr_shape) self.arr_complex = self.arr_float + self.arr_float1*1j self.arr_int = np.random.randint(-10, 10, self.arr_shape) self.arr_bool = np.random.randint(0, 2, self.arr_shape) == 0 self.arr_str = np.abs(self.arr_float).astype('S') self.arr_utf = np.abs(self.arr_float).astype('U') self.arr_date = np.random.randint(0, 20000, self.arr_shape).astype('M8[ns]') self.arr_tdelta = np.random.randint(0, 20000, self.arr_shape).astype('m8[ns]') self.arr_nan = np.tile(np.nan, self.arr_shape) self.arr_float_nan = np.vstack([self.arr_float, self.arr_nan]) self.arr_float1_nan = np.vstack([self.arr_float1, self.arr_nan]) self.arr_nan_float1 = np.vstack([self.arr_nan, self.arr_float1]) self.arr_nan_nan = np.vstack([self.arr_nan, self.arr_nan]) self.arr_inf = self.arr_float*np.inf self.arr_float_inf = np.vstack([self.arr_float, self.arr_inf]) self.arr_float1_inf = np.vstack([self.arr_float1, self.arr_inf]) self.arr_inf_float1 = np.vstack([self.arr_inf, self.arr_float1]) self.arr_inf_inf = np.vstack([self.arr_inf, self.arr_inf]) self.arr_nan_inf = np.vstack([self.arr_nan, self.arr_inf]) self.arr_float_nan_inf = np.vstack([self.arr_float, self.arr_nan, self.arr_inf]) self.arr_nan_float1_inf = np.vstack([self.arr_float, self.arr_inf, self.arr_nan]) self.arr_nan_nan_inf = np.vstack([self.arr_nan, self.arr_nan, self.arr_inf]) self.arr_obj = np.vstack([self.arr_float.astype('O'), self.arr_int.astype('O'), self.arr_bool.astype('O'), self.arr_complex.astype('O'), self.arr_str.astype('O'), self.arr_utf.astype('O'), self.arr_date.astype('O'), self.arr_tdelta.astype('O')]) self.arr_nan_nanj = self.arr_nan + self.arr_nan*1j self.arr_complex_nan = np.vstack([self.arr_complex, self.arr_nan_nanj]) self.arr_nan_infj = self.arr_inf*1j self.arr_complex_nan_infj = np.vstack([self.arr_complex, self.arr_nan_infj]) self.arr_float_2d = self.arr_float[:, :, 0] self.arr_float1_2d = self.arr_float1[:, :, 0] self.arr_complex_2d = self.arr_complex[:, :, 0] self.arr_int_2d = self.arr_int[:, :, 0] self.arr_bool_2d = self.arr_bool[:, :, 0] self.arr_str_2d = self.arr_str[:, :, 0] self.arr_utf_2d = self.arr_utf[:, :, 0] self.arr_date_2d = self.arr_date[:, :, 0] self.arr_tdelta_2d = self.arr_tdelta[:, :, 0] self.arr_nan_2d = self.arr_nan[:, :, 0] self.arr_float_nan_2d = self.arr_float_nan[:, :, 0] self.arr_float1_nan_2d = self.arr_float1_nan[:, :, 0] self.arr_nan_float1_2d = self.arr_nan_float1[:, :, 0] self.arr_nan_nan_2d = self.arr_nan_nan[:, :, 0] self.arr_nan_nanj_2d = self.arr_nan_nanj[:, :, 0] self.arr_complex_nan_2d = self.arr_complex_nan[:, :, 0] self.arr_inf_2d = self.arr_inf[:, :, 0] self.arr_float_inf_2d = self.arr_float_inf[:, :, 0] self.arr_nan_inf_2d = self.arr_nan_inf[:, :, 0] self.arr_float_nan_inf_2d = self.arr_float_nan_inf[:, :, 0] self.arr_nan_nan_inf_2d = self.arr_nan_nan_inf[:, :, 0] self.arr_float_1d = self.arr_float[:, 0, 0] self.arr_float1_1d = self.arr_float1[:, 0, 0] self.arr_complex_1d = self.arr_complex[:, 0, 0] self.arr_int_1d = self.arr_int[:, 0, 0] self.arr_bool_1d = self.arr_bool[:, 0, 0] self.arr_str_1d = self.arr_str[:, 0, 0] self.arr_utf_1d = self.arr_utf[:, 0, 0] self.arr_date_1d = self.arr_date[:, 0, 0] self.arr_tdelta_1d = self.arr_tdelta[:, 0, 0] self.arr_nan_1d = self.arr_nan[:, 0, 0] self.arr_float_nan_1d = self.arr_float_nan[:, 0, 0] self.arr_float1_nan_1d = self.arr_float1_nan[:, 0, 0] self.arr_nan_float1_1d = self.arr_nan_float1[:, 0, 0] self.arr_nan_nan_1d = self.arr_nan_nan[:, 0, 0] self.arr_nan_nanj_1d = self.arr_nan_nanj[:, 0, 0] self.arr_complex_nan_1d = self.arr_complex_nan[:, 0, 0] self.arr_inf_1d = self.arr_inf.ravel() self.arr_float_inf_1d = self.arr_float_inf[:, 0, 0] self.arr_nan_inf_1d = self.arr_nan_inf[:, 0, 0] self.arr_float_nan_inf_1d = self.arr_float_nan_inf[:, 0, 0] self.arr_nan_nan_inf_1d = self.arr_nan_nan_inf[:, 0, 0] def tearDown(self): nanops._USE_BOTTLENECK = use_bn def check_results(self, targ, res, axis): res = getattr(res, 'asm8', res) res = getattr(res, 'values', res) # timedeltas are a beast here def _coerce_tds(targ, res): if targ.dtype == 'm8[ns]': if len(targ) == 1: targ = targ[0].item() res = res.item() else: targ = targ.view('i8') return targ, res try: if axis != 0 and hasattr(targ, 'shape') and targ.ndim and targ.shape != res.shape: res = np.split(res, [targ.shape[0]], axis=0)[0] except: targ, res = _coerce_tds(targ, res) try: tm.assert_almost_equal(targ, res) except: if targ.dtype == 'm8[ns]': targ, res = _coerce_tds(targ, res) tm.assert_almost_equal(targ, res) return # There are sometimes rounding errors with # complex and object dtypes. # If it isn't one of those, re-raise the error. if not hasattr(res, 'dtype') or res.dtype.kind not in ['c', 'O']: raise # convert object dtypes to something that can be split into # real and imaginary parts if res.dtype.kind == 'O': if targ.dtype.kind != 'O': res = res.astype(targ.dtype) else: try: res = res.astype('c16') except: res = res.astype('f8') try: targ = targ.astype('c16') except: targ = targ.astype('f8') # there should never be a case where numpy returns an object # but nanops doesn't, so make that an exception elif targ.dtype.kind == 'O': raise tm.assert_almost_equal(targ.real, res.real) tm.assert_almost_equal(targ.imag, res.imag) def check_fun_data(self, testfunc, targfunc, testarval, targarval, targarnanval, **kwargs): for axis in list(range(targarval.ndim))+[None]: for skipna in [False, True]: targartempval = targarval if skipna else targarnanval try: targ = targfunc(targartempval, axis=axis, **kwargs) res = testfunc(testarval, axis=axis, skipna=skipna, **kwargs) self.check_results(targ, res, axis) if skipna: res = testfunc(testarval, axis=axis, **kwargs) self.check_results(targ, res, axis) if axis is None: res = testfunc(testarval, skipna=skipna, **kwargs) self.check_results(targ, res, axis) if skipna and axis is None: res = testfunc(testarval, **kwargs) self.check_results(targ, res, axis) except BaseException as exc: exc.args += ('axis: %s of %s' % (axis, testarval.ndim-1), 'skipna: %s' % skipna, 'kwargs: %s' % kwargs) raise if testarval.ndim <= 1: return try: testarval2 = np.take(testarval, 0, axis=-1) targarval2 = np.take(targarval, 0, axis=-1) targarnanval2 = np.take(targarnanval, 0, axis=-1) except ValueError: return self.check_fun_data(testfunc, targfunc, testarval2, targarval2, targarnanval2, **kwargs) def check_fun(self, testfunc, targfunc, testar, targar=None, targarnan=None, **kwargs): if targar is None: targar = testar if targarnan is None: targarnan = testar testarval = getattr(self, testar) targarval = getattr(self, targar) targarnanval = getattr(self, targarnan) try: self.check_fun_data(testfunc, targfunc, testarval, targarval, targarnanval, **kwargs) except BaseException as exc: exc.args += ('testar: %s' % testar, 'targar: %s' % targar, 'targarnan: %s' % targarnan) raise def check_funs(self, testfunc, targfunc, allow_complex=True, allow_all_nan=True, allow_str=True, allow_date=True, allow_tdelta=True, allow_obj=True, **kwargs): self.check_fun(testfunc, targfunc, 'arr_float', **kwargs) self.check_fun(testfunc, targfunc, 'arr_float_nan', 'arr_float', **kwargs) self.check_fun(testfunc, targfunc, 'arr_int', **kwargs) self.check_fun(testfunc, targfunc, 'arr_bool', **kwargs) objs = [self.arr_float.astype('O'), self.arr_int.astype('O'), self.arr_bool.astype('O')] if allow_all_nan: self.check_fun(testfunc, targfunc, 'arr_nan', **kwargs) if allow_complex: self.check_fun(testfunc, targfunc, 'arr_complex', **kwargs) self.check_fun(testfunc, targfunc, 'arr_complex_nan', 'arr_complex', **kwargs) if allow_all_nan: self.check_fun(testfunc, targfunc, 'arr_nan_nanj', **kwargs) objs += [self.arr_complex.astype('O')] if allow_str: self.check_fun(testfunc, targfunc, 'arr_str', **kwargs) self.check_fun(testfunc, targfunc, 'arr_utf', **kwargs) objs += [self.arr_str.astype('O'), self.arr_utf.astype('O')] if allow_date: try: targfunc(self.arr_date) except TypeError: pass else: self.check_fun(testfunc, targfunc, 'arr_date', **kwargs) objs += [self.arr_date.astype('O')] if allow_tdelta: try: targfunc(self.arr_tdelta) except TypeError: pass else: self.check_fun(testfunc, targfunc, 'arr_tdelta', **kwargs) objs += [self.arr_tdelta.astype('O')] if allow_obj: self.arr_obj = np.vstack(objs) # some nanops handle object dtypes better than their numpy # counterparts, so the numpy functions need to be given something # else if allow_obj == 'convert': targfunc = partial(self._badobj_wrap, func=targfunc, allow_complex=allow_complex) self.check_fun(testfunc, targfunc, 'arr_obj', **kwargs) def check_funs_ddof(self, testfunc, targfunc, allow_complex=True, allow_all_nan=True, allow_str=True, allow_date=False, allow_tdelta=False, allow_obj=True,): for ddof in range(3): try: self.check_funs(testfunc, targfunc, allow_complex, allow_all_nan, allow_str, allow_date, allow_tdelta, allow_obj, ddof=ddof) except BaseException as exc: exc.args += ('ddof %s' % ddof,) raise def _badobj_wrap(self, value, func, allow_complex=True, **kwargs): if value.dtype.kind == 'O': if allow_complex: value = value.astype('c16') else: value = value.astype('f8') return func(value, **kwargs) def test_nanany(self): self.check_funs(nanops.nanany, np.any, allow_all_nan=False, allow_str=False, allow_date=False, allow_tdelta=False) def test_nanall(self): self.check_funs(nanops.nanall, np.all, allow_all_nan=False, allow_str=False, allow_date=False, allow_tdelta=False) def test_nansum(self): self.check_funs(nanops.nansum, np.sum, allow_str=False, allow_date=False, allow_tdelta=True) def test_nanmean(self): self.check_funs(nanops.nanmean, np.mean, allow_complex=False, allow_obj=False, allow_str=False, allow_date=False, allow_tdelta=True) def test_nanmean_overflow(self): # GH 10155 # In the previous implementation mean can overflow for int dtypes, it # is now consistent with numpy # numpy < 1.9.0 is not computing this correctly from distutils.version import LooseVersion if LooseVersion(np.__version__) >= '1.9.0': for a in [2 ** 55, -2 ** 55, 20150515061816532]: s = Series(a, index=range(500), dtype=np.int64) result = s.mean() np_result = s.values.mean() self.assertEqual(result, a) self.assertEqual(result, np_result) self.assertTrue(result.dtype == np.float64) def test_returned_dtype(self): dtypes = [np.int16, np.int32, np.int64, np.float32, np.float64] if hasattr(np,'float128'): dtypes.append(np.float128) for dtype in dtypes: s = Series(range(10), dtype=dtype) group_a = ['mean', 'std', 'var', 'skew', 'kurt'] group_b = ['min', 'max'] for method in group_a + group_b: result = getattr(s, method)() if is_integer_dtype(dtype) and method in group_a: self.assertTrue(result.dtype == np.float64, "return dtype expected from %s is np.float64, got %s instead" % (method, result.dtype)) else: self.assertTrue(result.dtype == dtype, "return dtype expected from %s is %s, got %s instead" % (method, dtype, result.dtype)) def test_nanmedian(self): with warnings.catch_warnings(record=True): self.check_funs(nanops.nanmedian, np.median, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=True, allow_obj='convert') def test_nanvar(self): self.check_funs_ddof(nanops.nanvar, np.var, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=True, allow_obj='convert') def test_nanstd(self): self.check_funs_ddof(nanops.nanstd, np.std, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=True, allow_obj='convert') def test_nansem(self): tm.skip_if_no_package('scipy.stats') from scipy.stats import sem self.check_funs_ddof(nanops.nansem, sem, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=True, allow_obj='convert') def _minmax_wrap(self, value, axis=None, func=None): res = func(value, axis) if res.dtype.kind == 'm': res = np.atleast_1d(res) return res def test_nanmin(self): func = partial(self._minmax_wrap, func=np.min) self.check_funs(nanops.nanmin, func, allow_str=False, allow_obj=False) def test_nanmax(self): func = partial(self._minmax_wrap, func=np.max) self.check_funs(nanops.nanmax, func, allow_str=False, allow_obj=False) def _argminmax_wrap(self, value, axis=None, func=None): res = func(value, axis) nans = np.min(value, axis) nullnan = isnull(nans) if res.ndim: res[nullnan] = -1 elif (hasattr(nullnan, 'all') and nullnan.all() or not hasattr(nullnan, 'all') and nullnan): res = -1 return res def test_nanargmax(self): func = partial(self._argminmax_wrap, func=np.argmax) self.check_funs(nanops.nanargmax, func, allow_str=False, allow_obj=False, allow_date=True, allow_tdelta=True) def test_nanargmin(self): func = partial(self._argminmax_wrap, func=np.argmin) if tm.sys.version_info[0:2] == (2, 6): self.check_funs(nanops.nanargmin, func, allow_date=True, allow_tdelta=True, allow_str=False, allow_obj=False) else: self.check_funs(nanops.nanargmin, func, allow_str=False, allow_obj=False) def _skew_kurt_wrap(self, values, axis=None, func=None): if not isinstance(values.dtype.type, np.floating): values = values.astype('f8') result = func(values, axis=axis, bias=False) # fix for handling cases where all elements in an axis are the same if isinstance(result, np.ndarray): result[np.max(values, axis=axis) == np.min(values, axis=axis)] = 0 return result elif np.max(values) == np.min(values): return 0. return result def test_nanskew(self): tm.skip_if_no_package('scipy.stats') from scipy.stats import skew func = partial(self._skew_kurt_wrap, func=skew) self.check_funs(nanops.nanskew, func, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=False) def test_nankurt(self): tm.skip_if_no_package('scipy.stats') from scipy.stats import kurtosis func1 = partial(kurtosis, fisher=True) func = partial(self._skew_kurt_wrap, func=func1) self.check_funs(nanops.nankurt, func, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=False) def test_nanprod(self): self.check_funs(nanops.nanprod, np.prod, allow_str=False, allow_date=False, allow_tdelta=False) def check_nancorr_nancov_2d(self, checkfun, targ0, targ1, **kwargs): res00 = checkfun(self.arr_float_2d, self.arr_float1_2d, **kwargs) res01 = checkfun(self.arr_float_2d, self.arr_float1_2d, min_periods=len(self.arr_float_2d)-1, **kwargs) tm.assert_almost_equal(targ0, res00) tm.assert_almost_equal(targ0, res01) res10 = checkfun(self.arr_float_nan_2d, self.arr_float1_nan_2d, **kwargs) res11 = checkfun(self.arr_float_nan_2d, self.arr_float1_nan_2d, min_periods=len(self.arr_float_2d)-1, **kwargs) tm.assert_almost_equal(targ1, res10) tm.assert_almost_equal(targ1, res11) targ2 = np.nan res20 = checkfun(self.arr_nan_2d, self.arr_float1_2d, **kwargs) res21 = checkfun(self.arr_float_2d, self.arr_nan_2d, **kwargs) res22 = checkfun(self.arr_nan_2d, self.arr_nan_2d, **kwargs) res23 = checkfun(self.arr_float_nan_2d, self.arr_nan_float1_2d, **kwargs) res24 = checkfun(self.arr_float_nan_2d, self.arr_nan_float1_2d, min_periods=len(self.arr_float_2d)-1, **kwargs) res25 = checkfun(self.arr_float_2d, self.arr_float1_2d, min_periods=len(self.arr_float_2d)+1, **kwargs) tm.assert_almost_equal(targ2, res20) tm.assert_almost_equal(targ2, res21) tm.assert_almost_equal(targ2, res22) tm.assert_almost_equal(targ2, res23) tm.assert_almost_equal(targ2, res24) tm.assert_almost_equal(targ2, res25) def check_nancorr_nancov_1d(self, checkfun, targ0, targ1, **kwargs): res00 = checkfun(self.arr_float_1d, self.arr_float1_1d, **kwargs) res01 = checkfun(self.arr_float_1d, self.arr_float1_1d, min_periods=len(self.arr_float_1d)-1, **kwargs) tm.assert_almost_equal(targ0, res00) tm.assert_almost_equal(targ0, res01) res10 = checkfun(self.arr_float_nan_1d, self.arr_float1_nan_1d, **kwargs) res11 = checkfun(self.arr_float_nan_1d, self.arr_float1_nan_1d, min_periods=len(self.arr_float_1d)-1, **kwargs) tm.assert_almost_equal(targ1, res10) tm.assert_almost_equal(targ1, res11) targ2 = np.nan res20 = checkfun(self.arr_nan_1d, self.arr_float1_1d, **kwargs) res21 = checkfun(self.arr_float_1d, self.arr_nan_1d, **kwargs) res22 = checkfun(self.arr_nan_1d, self.arr_nan_1d, **kwargs) res23 = checkfun(self.arr_float_nan_1d, self.arr_nan_float1_1d, **kwargs) res24 = checkfun(self.arr_float_nan_1d, self.arr_nan_float1_1d, min_periods=len(self.arr_float_1d)-1, **kwargs) res25 = checkfun(self.arr_float_1d, self.arr_float1_1d, min_periods=len(self.arr_float_1d)+1, **kwargs) tm.assert_almost_equal(targ2, res20) tm.assert_almost_equal(targ2, res21) tm.assert_almost_equal(targ2, res22) tm.assert_almost_equal(targ2, res23) tm.assert_almost_equal(targ2, res24) tm.assert_almost_equal(targ2, res25) def test_nancorr(self): targ0 = np.corrcoef(self.arr_float_2d, self.arr_float1_2d)[0, 1] targ1 = np.corrcoef(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1) targ0 = np.corrcoef(self.arr_float_1d, self.arr_float1_1d)[0, 1] targ1 = np.corrcoef(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method='pearson') def test_nancorr_pearson(self): targ0 = np.corrcoef(self.arr_float_2d, self.arr_float1_2d)[0, 1] targ1 = np.corrcoef(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method='pearson') targ0 = np.corrcoef(self.arr_float_1d, self.arr_float1_1d)[0, 1] targ1 = np.corrcoef(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method='pearson') def test_nancorr_kendall(self): tm.skip_if_no_package('scipy.stats') from scipy.stats import kendalltau targ0 = kendalltau(self.arr_float_2d, self.arr_float1_2d)[0] targ1 = kendalltau(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0] self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method='kendall') targ0 = kendalltau(self.arr_float_1d, self.arr_float1_1d)[0] targ1 = kendalltau(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0] self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method='kendall') def test_nancorr_spearman(self): tm.skip_if_no_package('scipy.stats') from scipy.stats import spearmanr targ0 = spearmanr(self.arr_float_2d, self.arr_float1_2d)[0] targ1 = spearmanr(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0] self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method='spearman') targ0 = spearmanr(self.arr_float_1d, self.arr_float1_1d)[0] targ1 = spearmanr(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0] self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method='spearman') def test_nancov(self): targ0 = np.cov(self.arr_float_2d, self.arr_float1_2d)[0, 1] targ1 = np.cov(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] self.check_nancorr_nancov_2d(nanops.nancov, targ0, targ1) targ0 = np.cov(self.arr_float_1d, self.arr_float1_1d)[0, 1] targ1 = np.cov(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] self.check_nancorr_nancov_1d(nanops.nancov, targ0, targ1) def check_nancomp(self, checkfun, targ0): arr_float = self.arr_float arr_float1 = self.arr_float1 arr_nan = self.arr_nan arr_nan_nan = self.arr_nan_nan arr_float_nan = self.arr_float_nan arr_float1_nan = self.arr_float1_nan arr_nan_float1 = self.arr_nan_float1 while targ0.ndim: try: res0 = checkfun(arr_float, arr_float1) tm.assert_almost_equal(targ0, res0) if targ0.ndim > 1: targ1 = np.vstack([targ0, arr_nan]) else: targ1 = np.hstack([targ0, arr_nan]) res1 = checkfun(arr_float_nan, arr_float1_nan) tm.assert_almost_equal(targ1, res1) targ2 = arr_nan_nan res2 = checkfun(arr_float_nan, arr_nan_float1) tm.assert_almost_equal(targ2, res2) except Exception as exc: exc.args += ('ndim: %s' % arr_float.ndim,) raise try: arr_float = np.take(arr_float, 0, axis=-1) arr_float1 = np.take(arr_float1, 0, axis=-1) arr_nan = np.take(arr_nan, 0, axis=-1) arr_nan_nan = np.take(arr_nan_nan, 0, axis=-1) arr_float_nan = np.take(arr_float_nan, 0, axis=-1) arr_float1_nan = np.take(arr_float1_nan, 0, axis=-1) arr_nan_float1 = np.take(arr_nan_float1, 0, axis=-1) targ0 = np.take(targ0, 0, axis=-1) except ValueError: break def test_nangt(self): targ0 = self.arr_float > self.arr_float1 self.check_nancomp(nanops.nangt, targ0) def test_nange(self): targ0 = self.arr_float >= self.arr_float1 self.check_nancomp(nanops.nange, targ0) def test_nanlt(self): targ0 = self.arr_float < self.arr_float1 self.check_nancomp(nanops.nanlt, targ0) def test_nanle(self): targ0 = self.arr_float <= self.arr_float1 self.check_nancomp(nanops.nanle, targ0) def test_naneq(self): targ0 = self.arr_float == self.arr_float1 self.check_nancomp(nanops.naneq, targ0) def test_nanne(self): targ0 = self.arr_float != self.arr_float1 self.check_nancomp(nanops.nanne, targ0) def check_bool(self, func, value, correct, *args, **kwargs): while getattr(value, 'ndim', True): try: res0 = func(value, *args, **kwargs) if correct: self.assertTrue(res0) else: self.assertFalse(res0) except BaseException as exc: exc.args += ('dim: %s' % getattr(value, 'ndim', value),) raise if not hasattr(value, 'ndim'): break try: value = np.take(value, 0, axis=-1) except ValueError: break def test__has_infs(self): pairs = [('arr_complex', False), ('arr_int', False), ('arr_bool', False), ('arr_str', False), ('arr_utf', False), ('arr_complex', False), ('arr_complex_nan', False), ('arr_nan_nanj', False), ('arr_nan_infj', True), ('arr_complex_nan_infj', True)] pairs_float = [('arr_float', False), ('arr_nan', False), ('arr_float_nan', False), ('arr_nan_nan', False), ('arr_float_inf', True), ('arr_inf', True), ('arr_nan_inf', True), ('arr_float_nan_inf', True), ('arr_nan_nan_inf', True)] for arr, correct in pairs: val = getattr(self, arr) try: self.check_bool(nanops._has_infs, val, correct) except BaseException as exc: exc.args += (arr,) raise for arr, correct in pairs_float: val = getattr(self, arr) try: self.check_bool(nanops._has_infs, val, correct) self.check_bool(nanops._has_infs, val.astype('f4'), correct) self.check_bool(nanops._has_infs, val.astype('f2'), correct) except BaseException as exc: exc.args += (arr,) raise def test__isfinite(self): pairs = [('arr_complex', False), ('arr_int', False), ('arr_bool', False), ('arr_str', False), ('arr_utf', False), ('arr_complex', False), ('arr_complex_nan', True), ('arr_nan_nanj', True), ('arr_nan_infj', True), ('arr_complex_nan_infj', True)] pairs_float = [('arr_float', False), ('arr_nan', True), ('arr_float_nan', True), ('arr_nan_nan', True), ('arr_float_inf', True), ('arr_inf', True), ('arr_nan_inf', True), ('arr_float_nan_inf', True), ('arr_nan_nan_inf', True)] func1 = lambda x: np.any(nanops._isfinite(x).ravel()) func2 = lambda x: np.any(nanops._isfinite(x).values.ravel()) for arr, correct in pairs: val = getattr(self, arr) try: self.check_bool(func1, val, correct) except BaseException as exc: exc.args += (arr,) raise for arr, correct in pairs_float: val = getattr(self, arr) try: self.check_bool(func1, val, correct) self.check_bool(func1, val.astype('f4'), correct) self.check_bool(func1, val.astype('f2'), correct) except BaseException as exc: exc.args += (arr,) raise def test__bn_ok_dtype(self): self.assertTrue(nanops._bn_ok_dtype(self.arr_float.dtype, 'test')) self.assertTrue(nanops._bn_ok_dtype(self.arr_complex.dtype, 'test')) self.assertTrue(nanops._bn_ok_dtype(self.arr_int.dtype, 'test')) self.assertTrue(nanops._bn_ok_dtype(self.arr_bool.dtype, 'test')) self.assertTrue(nanops._bn_ok_dtype(self.arr_str.dtype, 'test')) self.assertTrue(nanops._bn_ok_dtype(self.arr_utf.dtype, 'test')) self.assertFalse(nanops._bn_ok_dtype(self.arr_date.dtype, 'test')) self.assertFalse(nanops._bn_ok_dtype(self.arr_tdelta.dtype, 'test')) self.assertFalse(nanops._bn_ok_dtype(self.arr_obj.dtype, 'test')) class TestEnsureNumeric(tm.TestCase): def test_numeric_values(self): # Test integer self.assertEqual(nanops._ensure_numeric(1), 1, 'Failed for int') # Test float self.assertEqual(nanops._ensure_numeric(1.1), 1.1, 'Failed for float') # Test complex self.assertEqual(nanops._ensure_numeric(1 + 2j), 1 + 2j, 'Failed for complex') def test_ndarray(self): # Test numeric ndarray values = np.array([1, 2, 3]) self.assertTrue(np.allclose(nanops._ensure_numeric(values), values), 'Failed for numeric ndarray') # Test object ndarray o_values = values.astype(object) self.assertTrue(np.allclose(nanops._ensure_numeric(o_values), values), 'Failed for object ndarray') # Test convertible string ndarray s_values = np.array(['1', '2', '3'], dtype=object) self.assertTrue(np.allclose(nanops._ensure_numeric(s_values), values), 'Failed for convertible string ndarray') # Test non-convertible string ndarray s_values = np.array(['foo', 'bar', 'baz'], dtype=object) self.assertRaises(ValueError, lambda: nanops._ensure_numeric(s_values)) def test_convertable_values(self): self.assertTrue(np.allclose(nanops._ensure_numeric('1'), 1.0), 'Failed for convertible integer string') self.assertTrue(np.allclose(nanops._ensure_numeric('1.1'), 1.1), 'Failed for convertible float string') self.assertTrue(np.allclose(nanops._ensure_numeric('1+1j'), 1 + 1j), 'Failed for convertible complex string') def test_non_convertable_values(self): self.assertRaises(TypeError, lambda: nanops._ensure_numeric('foo')) self.assertRaises(TypeError, lambda: nanops._ensure_numeric({})) self.assertRaises(TypeError, lambda: nanops._ensure_numeric([])) class TestNanvarFixedValues(tm.TestCase): # xref GH10242 def setUp(self): # Samples from a normal distribution. self.variance = variance = 3.0 self.samples = self.prng.normal(scale=variance ** 0.5, size=100000) def test_nanvar_all_finite(self): samples = self.samples actual_variance = nanops.nanvar(samples) np.testing.assert_almost_equal( actual_variance, self.variance, decimal=2) def test_nanvar_nans(self): samples = np.nan * np.ones(2 * self.samples.shape[0]) samples[::2] = self.samples actual_variance = nanops.nanvar(samples, skipna=True) np.testing.assert_almost_equal( actual_variance, self.variance, decimal=2) actual_variance = nanops.nanvar(samples, skipna=False) np.testing.assert_almost_equal( actual_variance, np.nan, decimal=2) def test_nanstd_nans(self): samples = np.nan * np.ones(2 * self.samples.shape[0]) samples[::2] = self.samples actual_std = nanops.nanstd(samples, skipna=True) np.testing.assert_almost_equal( actual_std, self.variance ** 0.5, decimal=2) actual_std = nanops.nanvar(samples, skipna=False) np.testing.assert_almost_equal( actual_std, np.nan, decimal=2) def test_nanvar_axis(self): # Generate some sample data. samples_norm = self.samples samples_unif = self.prng.uniform(size=samples_norm.shape[0]) samples = np.vstack([samples_norm, samples_unif]) actual_variance = nanops.nanvar(samples, axis=1) np.testing.assert_array_almost_equal( actual_variance, np.array([self.variance, 1.0 / 12]), decimal=2) def test_nanvar_ddof(self): n = 5 samples = self.prng.uniform(size=(10000, n+1)) samples[:, -1] = np.nan # Force use of our own algorithm. variance_0 = nanops.nanvar(samples, axis=1, skipna=True, ddof=0).mean() variance_1 = nanops.nanvar(samples, axis=1, skipna=True, ddof=1).mean() variance_2 = nanops.nanvar(samples, axis=1, skipna=True, ddof=2).mean() # The unbiased estimate. var = 1.0 / 12 np.testing.assert_almost_equal(variance_1, var, decimal=2) # The underestimated variance. np.testing.assert_almost_equal( variance_0, (n - 1.0) / n * var, decimal=2) # The overestimated variance. np.testing.assert_almost_equal( variance_2, (n - 1.0) / (n - 2.0) * var, decimal=2) def test_ground_truth(self): # Test against values that were precomputed with Numpy. samples = np.empty((4, 4)) samples[:3, :3] = np.array([[0.97303362, 0.21869576, 0.55560287], [0.72980153, 0.03109364, 0.99155171], [0.09317602, 0.60078248, 0.15871292]]) samples[3] = samples[:, 3] = np.nan # Actual variances along axis=0, 1 for ddof=0, 1, 2 variance = np.array( [[[0.13762259, 0.05619224, 0.11568816], [0.20643388, 0.08428837, 0.17353224], [0.41286776, 0.16857673, 0.34706449]], [[0.09519783, 0.16435395, 0.05082054], [0.14279674, 0.24653093, 0.07623082], [0.28559348, 0.49306186, 0.15246163]]] ) # Test nanvar. for axis in range(2): for ddof in range(3): var = nanops.nanvar(samples, skipna=True, axis=axis, ddof=ddof) np.testing.assert_array_almost_equal( var[:3], variance[axis, ddof] ) np.testing.assert_equal(var[3], np.nan) # Test nanstd. for axis in range(2): for ddof in range(3): std = nanops.nanstd(samples, skipna=True, axis=axis, ddof=ddof) np.testing.assert_array_almost_equal( std[:3], variance[axis, ddof] ** 0.5 ) np.testing.assert_equal(std[3], np.nan) def test_nanstd_roundoff(self): # Regression test for GH 10242 (test data taken from GH 10489). Ensure # that variance is stable. data = Series(766897346 * np.ones(10)) for ddof in range(3): result = data.std(ddof=ddof) self.assertEqual(result, 0.0) @property def prng(self): return np.random.RandomState(1234) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure', '-s'], exit=False)
mit
FluidityStokes/fluidity
tests/wetting_and_drying_balzano3_cg_parallel/plotfs_detec.py
2
5094
#!/usr/bin/env python3 import vtktools import sys import math import re import matplotlib.pyplot as plt import getopt from scipy.special import erf from numpy import poly1d from matplotlib.pyplot import figure, show from numpy import pi, sin, linspace from matplotlib.mlab import stineman_interp from numpy import exp, cos from fluidity_tools import stat_parser def mirror(x): return 13800-x def usage(): print('Usage:') print('plotfs_detec.py --file=detector_filename --save=filename') print('--save=... saves the plots as images instead of plotting them on the screen.') # should be copied from the diamond extrude function. X is 2 dimensional def bathymetry_function(X): if X<=3600 or X>6000: return -X/2760 elif X>3600 and X<=4800: return X/2760-60.0/23 elif X>4800 and X<=6000: return -X/920+100.0/23 ################# Main ########################### def main(argv=None): filename='' timestep_ana=0.0 dzero=0.01 save='' # If nonempty, we save the plots as images instead if showing them wetting=False try: opts, args = getopt.getopt(sys.argv[1:], "", ['file=','save=']) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt == '--file': filename=arg elif opt == '--save': save=arg if filename=='': print('No filename specified. You have to give the detectors filename.') usage() sys.exit(2) ####################### Print time plot ########################### print('Generating time plot') s = stat_parser(filename) timesteps=s["ElapsedTime"]["value"] timestep=timesteps[1]-timesteps[0] print("Found ", len(timesteps), " timesteps with dt=", timestep) if timestep_ana==0.0: timestep_ana=timestep fs=s["water"]["FreeSurface"] print("Found ", len(fs), " detectors. We assume they are equidistant distributed over the domain (", 0, "-", 13800, ").") # Get and plot results plt.ion() # swith on interactive mode plt.rcParams['font.size'] = 22 fig2 = figure(figsize=(8, 6.2)) fig2.subplots_adjust(left=0.15, bottom=0.15) ax2 = fig2.add_subplot(111) plot_start=580 # in timesteps plot_end=581 # in timesteps plot_name='' for t in range(0,len(timesteps)): # ignore the first waveperiod if t<plot_start: continue if t>plot_end: continue fsvalues=[] xcoords=[] for name, item in fs.iteritems(): #print name xcoords.append(mirror(s[name]['position'][0][0])) #print xcoord fsvalues.append(fs[name][t]) # Plot result of one timestep ax2.plot(xcoords,fsvalues,'b,', label='Numerical solution') # Plot Analytical solution fsvalues_ana=[] offset=-bathymetry_function(0.0)+dzero xcoords.sort() for x in xcoords: fsvalues_ana.append(bathymetry_function(mirror(x))-offset) # Plot vertical line in bathmetry on right boundary xcoords.append(xcoords[len(xcoords)-1]+0.000000001) fsvalues_ana.append(2.1) ax2.plot(xcoords, fsvalues_ana, 'k', label='Bathymetry', linewidth=2.5) #plt.legend() if t==plot_end: # change from meters in kilometers in the x-axis # return locs, labels where locs is an array of tick locations and # labels is an array of tick labels. locs, labels = plt.xticks() for i in range(0,len(locs)): labels[i]=str(locs[i]/1000) plt.xticks(locs, labels) plt.ylim(-2.2,1.4) # plt.title(plot_name) plt.xlabel('Position [km]') plt.ylabel('Free surface [m]') if save=='': plt.draw() raw_input("Please press Enter") else: plt.savefig(save+'.pdf', facecolor='white', edgecolor='black', dpi=100) plt.cla() t=t+1 # Make video from the images: # mencoder "mf://*.png" -mf type=png:fps=30 -ovc lavc -o output.avi if __name__ == "__main__": main()
lgpl-2.1
jreback/pandas
pandas/tests/scalar/timestamp/test_unary_ops.py
1
15498
from datetime import datetime from dateutil.tz import gettz import pytest import pytz from pytz import utc from pandas._libs.tslibs import NaT, Timestamp, conversion, to_offset from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG import pandas.util._test_decorators as td import pandas._testing as tm class TestTimestampUnaryOps: # -------------------------------------------------------------- # Timestamp.round @pytest.mark.parametrize( "timestamp, freq, expected", [ ("20130101 09:10:11", "D", "20130101"), ("20130101 19:10:11", "D", "20130102"), ("20130201 12:00:00", "D", "20130202"), ("20130104 12:00:00", "D", "20130105"), ("2000-01-05 05:09:15.13", "D", "2000-01-05 00:00:00"), ("2000-01-05 05:09:15.13", "H", "2000-01-05 05:00:00"), ("2000-01-05 05:09:15.13", "S", "2000-01-05 05:09:15"), ], ) def test_round_frequencies(self, timestamp, freq, expected): dt = Timestamp(timestamp) result = dt.round(freq) expected = Timestamp(expected) assert result == expected def test_round_tzaware(self): dt = Timestamp("20130101 09:10:11", tz="US/Eastern") result = dt.round("D") expected = Timestamp("20130101", tz="US/Eastern") assert result == expected dt = Timestamp("20130101 09:10:11", tz="US/Eastern") result = dt.round("s") assert result == dt def test_round_30min(self): # round dt = Timestamp("20130104 12:32:00") result = dt.round("30Min") expected = Timestamp("20130104 12:30:00") assert result == expected def test_round_subsecond(self): # GH#14440 & GH#15578 result = Timestamp("2016-10-17 12:00:00.0015").round("ms") expected = Timestamp("2016-10-17 12:00:00.002000") assert result == expected result = Timestamp("2016-10-17 12:00:00.00149").round("ms") expected = Timestamp("2016-10-17 12:00:00.001000") assert result == expected ts = Timestamp("2016-10-17 12:00:00.0015") for freq in ["us", "ns"]: assert ts == ts.round(freq) result = Timestamp("2016-10-17 12:00:00.001501031").round("10ns") expected = Timestamp("2016-10-17 12:00:00.001501030") assert result == expected def test_round_nonstandard_freq(self): with tm.assert_produces_warning(False): Timestamp("2016-10-17 12:00:00.001501031").round("1010ns") def test_round_invalid_arg(self): stamp = Timestamp("2000-01-05 05:09:15.13") with pytest.raises(ValueError, match=INVALID_FREQ_ERR_MSG): stamp.round("foo") @pytest.mark.parametrize( "test_input, rounder, freq, expected", [ ("2117-01-01 00:00:45", "floor", "15s", "2117-01-01 00:00:45"), ("2117-01-01 00:00:45", "ceil", "15s", "2117-01-01 00:00:45"), ( "2117-01-01 00:00:45.000000012", "floor", "10ns", "2117-01-01 00:00:45.000000010", ), ( "1823-01-01 00:00:01.000000012", "ceil", "10ns", "1823-01-01 00:00:01.000000020", ), ("1823-01-01 00:00:01", "floor", "1s", "1823-01-01 00:00:01"), ("1823-01-01 00:00:01", "ceil", "1s", "1823-01-01 00:00:01"), ("NaT", "floor", "1s", "NaT"), ("NaT", "ceil", "1s", "NaT"), ], ) def test_ceil_floor_edge(self, test_input, rounder, freq, expected): dt = Timestamp(test_input) func = getattr(dt, rounder) result = func(freq) if dt is NaT: assert result is NaT else: expected = Timestamp(expected) assert result == expected @pytest.mark.parametrize( "test_input, freq, expected", [ ("2018-01-01 00:02:06", "2s", "2018-01-01 00:02:06"), ("2018-01-01 00:02:00", "2T", "2018-01-01 00:02:00"), ("2018-01-01 00:04:00", "4T", "2018-01-01 00:04:00"), ("2018-01-01 00:15:00", "15T", "2018-01-01 00:15:00"), ("2018-01-01 00:20:00", "20T", "2018-01-01 00:20:00"), ("2018-01-01 03:00:00", "3H", "2018-01-01 03:00:00"), ], ) @pytest.mark.parametrize("rounder", ["ceil", "floor", "round"]) def test_round_minute_freq(self, test_input, freq, expected, rounder): # Ensure timestamps that shouldn't round dont! # GH#21262 dt = Timestamp(test_input) expected = Timestamp(expected) func = getattr(dt, rounder) result = func(freq) assert result == expected def test_ceil(self): dt = Timestamp("20130101 09:10:11") result = dt.ceil("D") expected = Timestamp("20130102") assert result == expected def test_floor(self): dt = Timestamp("20130101 09:10:11") result = dt.floor("D") expected = Timestamp("20130101") assert result == expected @pytest.mark.parametrize("method", ["ceil", "round", "floor"]) def test_round_dst_border_ambiguous(self, method): # GH 18946 round near "fall back" DST ts = Timestamp("2017-10-29 00:00:00", tz="UTC").tz_convert("Europe/Madrid") # result = getattr(ts, method)("H", ambiguous=True) assert result == ts result = getattr(ts, method)("H", ambiguous=False) expected = Timestamp("2017-10-29 01:00:00", tz="UTC").tz_convert( "Europe/Madrid" ) assert result == expected result = getattr(ts, method)("H", ambiguous="NaT") assert result is NaT msg = "Cannot infer dst time" with pytest.raises(pytz.AmbiguousTimeError, match=msg): getattr(ts, method)("H", ambiguous="raise") @pytest.mark.parametrize( "method, ts_str, freq", [ ["ceil", "2018-03-11 01:59:00-0600", "5min"], ["round", "2018-03-11 01:59:00-0600", "5min"], ["floor", "2018-03-11 03:01:00-0500", "2H"], ], ) def test_round_dst_border_nonexistent(self, method, ts_str, freq): # GH 23324 round near "spring forward" DST ts = Timestamp(ts_str, tz="America/Chicago") result = getattr(ts, method)(freq, nonexistent="shift_forward") expected = Timestamp("2018-03-11 03:00:00", tz="America/Chicago") assert result == expected result = getattr(ts, method)(freq, nonexistent="NaT") assert result is NaT msg = "2018-03-11 02:00:00" with pytest.raises(pytz.NonExistentTimeError, match=msg): getattr(ts, method)(freq, nonexistent="raise") @pytest.mark.parametrize( "timestamp", [ "2018-01-01 0:0:0.124999360", "2018-01-01 0:0:0.125000367", "2018-01-01 0:0:0.125500", "2018-01-01 0:0:0.126500", "2018-01-01 12:00:00", "2019-01-01 12:00:00", ], ) @pytest.mark.parametrize( "freq", [ "2ns", "3ns", "4ns", "5ns", "6ns", "7ns", "250ns", "500ns", "750ns", "1us", "19us", "250us", "500us", "750us", "1s", "2s", "3s", "1D", ], ) def test_round_int64(self, timestamp, freq): # check that all rounding modes are accurate to int64 precision # see GH#22591 dt = Timestamp(timestamp) unit = to_offset(freq).nanos # test floor result = dt.floor(freq) assert result.value % unit == 0, f"floor not a {freq} multiple" assert 0 <= dt.value - result.value < unit, "floor error" # test ceil result = dt.ceil(freq) assert result.value % unit == 0, f"ceil not a {freq} multiple" assert 0 <= result.value - dt.value < unit, "ceil error" # test round result = dt.round(freq) assert result.value % unit == 0, f"round not a {freq} multiple" assert abs(result.value - dt.value) <= unit // 2, "round error" if unit % 2 == 0 and abs(result.value - dt.value) == unit // 2: # round half to even assert result.value // unit % 2 == 0, "round half to even error" # -------------------------------------------------------------- # Timestamp.replace def test_replace_naive(self): # GH#14621, GH#7825 ts = Timestamp("2016-01-01 09:00:00") result = ts.replace(hour=0) expected = Timestamp("2016-01-01 00:00:00") assert result == expected def test_replace_aware(self, tz_aware_fixture): tz = tz_aware_fixture # GH#14621, GH#7825 # replacing datetime components with and w/o presence of a timezone ts = Timestamp("2016-01-01 09:00:00", tz=tz) result = ts.replace(hour=0) expected = Timestamp("2016-01-01 00:00:00", tz=tz) assert result == expected def test_replace_preserves_nanos(self, tz_aware_fixture): tz = tz_aware_fixture # GH#14621, GH#7825 ts = Timestamp("2016-01-01 09:00:00.000000123", tz=tz) result = ts.replace(hour=0) expected = Timestamp("2016-01-01 00:00:00.000000123", tz=tz) assert result == expected def test_replace_multiple(self, tz_aware_fixture): tz = tz_aware_fixture # GH#14621, GH#7825 # replacing datetime components with and w/o presence of a timezone # test all ts = Timestamp("2016-01-01 09:00:00.000000123", tz=tz) result = ts.replace( year=2015, month=2, day=2, hour=0, minute=5, second=5, microsecond=5, nanosecond=5, ) expected = Timestamp("2015-02-02 00:05:05.000005005", tz=tz) assert result == expected def test_replace_invalid_kwarg(self, tz_aware_fixture): tz = tz_aware_fixture # GH#14621, GH#7825 ts = Timestamp("2016-01-01 09:00:00.000000123", tz=tz) msg = r"replace\(\) got an unexpected keyword argument" with pytest.raises(TypeError, match=msg): ts.replace(foo=5) def test_replace_integer_args(self, tz_aware_fixture): tz = tz_aware_fixture # GH#14621, GH#7825 ts = Timestamp("2016-01-01 09:00:00.000000123", tz=tz) msg = "value must be an integer, received <class 'float'> for hour" with pytest.raises(ValueError, match=msg): ts.replace(hour=0.1) def test_replace_tzinfo_equiv_tz_localize_none(self): # GH#14621, GH#7825 # assert conversion to naive is the same as replacing tzinfo with None ts = Timestamp("2013-11-03 01:59:59.999999-0400", tz="US/Eastern") assert ts.tz_localize(None) == ts.replace(tzinfo=None) @td.skip_if_windows def test_replace_tzinfo(self): # GH#15683 dt = datetime(2016, 3, 27, 1) tzinfo = pytz.timezone("CET").localize(dt, is_dst=False).tzinfo result_dt = dt.replace(tzinfo=tzinfo) result_pd = Timestamp(dt).replace(tzinfo=tzinfo) # datetime.timestamp() converts in the local timezone with tm.set_timezone("UTC"): assert result_dt.timestamp() == result_pd.timestamp() assert result_dt == result_pd assert result_dt == result_pd.to_pydatetime() result_dt = dt.replace(tzinfo=tzinfo).replace(tzinfo=None) result_pd = Timestamp(dt).replace(tzinfo=tzinfo).replace(tzinfo=None) # datetime.timestamp() converts in the local timezone with tm.set_timezone("UTC"): assert result_dt.timestamp() == result_pd.timestamp() assert result_dt == result_pd assert result_dt == result_pd.to_pydatetime() @pytest.mark.parametrize( "tz, normalize", [ (pytz.timezone("US/Eastern"), lambda x: x.tzinfo.normalize(x)), (gettz("US/Eastern"), lambda x: x), ], ) def test_replace_across_dst(self, tz, normalize): # GH#18319 check that 1) timezone is correctly normalized and # 2) that hour is not incorrectly changed by this normalization ts_naive = Timestamp("2017-12-03 16:03:30") ts_aware = conversion.localize_pydatetime(ts_naive, tz) # Preliminary sanity-check assert ts_aware == normalize(ts_aware) # Replace across DST boundary ts2 = ts_aware.replace(month=6) # Check that `replace` preserves hour literal assert (ts2.hour, ts2.minute) == (ts_aware.hour, ts_aware.minute) # Check that post-replace object is appropriately normalized ts2b = normalize(ts2) assert ts2 == ts2b def test_replace_dst_border(self): # Gh 7825 t = Timestamp("2013-11-3", tz="America/Chicago") result = t.replace(hour=3) expected = Timestamp("2013-11-3 03:00:00", tz="America/Chicago") assert result == expected @pytest.mark.parametrize("fold", [0, 1]) @pytest.mark.parametrize("tz", ["dateutil/Europe/London", "Europe/London"]) def test_replace_dst_fold(self, fold, tz): # GH 25017 d = datetime(2019, 10, 27, 2, 30) ts = Timestamp(d, tz=tz) result = ts.replace(hour=1, fold=fold) expected = Timestamp(datetime(2019, 10, 27, 1, 30)).tz_localize( tz, ambiguous=not fold ) assert result == expected # -------------------------------------------------------------- # Timestamp.normalize @pytest.mark.parametrize("arg", ["2013-11-30", "2013-11-30 12:00:00"]) def test_normalize(self, tz_naive_fixture, arg): tz = tz_naive_fixture ts = Timestamp(arg, tz=tz) result = ts.normalize() expected = Timestamp("2013-11-30", tz=tz) assert result == expected def test_normalize_pre_epoch_dates(self): # GH: 36294 result = Timestamp("1969-01-01 09:00:00").normalize() expected = Timestamp("1969-01-01 00:00:00") assert result == expected # -------------------------------------------------------------- @td.skip_if_windows def test_timestamp(self): # GH#17329 # tz-naive --> treat it as if it were UTC for purposes of timestamp() ts = Timestamp.now() uts = ts.replace(tzinfo=utc) assert ts.timestamp() == uts.timestamp() tsc = Timestamp("2014-10-11 11:00:01.12345678", tz="US/Central") utsc = tsc.tz_convert("UTC") # utsc is a different representation of the same time assert tsc.timestamp() == utsc.timestamp() # datetime.timestamp() converts in the local timezone with tm.set_timezone("UTC"): # should agree with datetime.timestamp method dt = ts.to_pydatetime() assert dt.timestamp() == ts.timestamp() @pytest.mark.parametrize("fold", [0, 1]) def test_replace_preserves_fold(fold): # GH 37610. Check that replace preserves Timestamp fold property tz = gettz("Europe/Moscow") ts = Timestamp(year=2009, month=10, day=25, hour=2, minute=30, fold=fold, tzinfo=tz) ts_replaced = ts.replace(second=1) assert ts_replaced.fold == fold
bsd-3-clause
squaregoldfish/QuinCe
external_scripts/NRT/Saildrone_conversion/saildrone_module/api.py
2
4650
############################################################################### ### FUNCTIONS WHICH SEND REQUESTS TO THE SAILDRONE API ### ############################################################################### ### Description: # Several requests are sent to the Saildrone API: # - request a token (function 'auth') # - request a list of what we can access (function 'get_available') # - request to download data (function 'write_json') # This document contains functions executing such requests. #------------------------------------------------------------------------------ import json import urllib.request from urllib.error import HTTPError import os import pandas as pd from datetime import datetime REQUEST_HEADER = {'Content-Type':'application/json', 'Accept':'application/json'} # Function which converts html request output to a dictionary def to_dict(url): response = None # urlopen throws an error if the HTTP status is not 200. # The error is still a response object, so we can grab it - # we need to examine it either way try: response = urllib.request.urlopen(url) except HTTPError as e: response = e # Get the response body as a dictionary dictionary = json.loads(response.read().decode('utf-8')) error = False if response.status == 400: if dictionary['message'] != "Request out of time bound": error = True elif response.status >= 400: error = True if error: # The response is an error, so we can simply raise it raise response return dictionary # Function which returns the token needed for authentication def auth(authentication): # Define the authentication request url auth_url = 'https://developer-mission.saildrone.com/v1/auth' # Define our data our_data = json.dumps({'key':authentication['key'], 'secret':authentication['secret']}).encode() # Send the request auth_request = urllib.request.Request( url=auth_url, headers=REQUEST_HEADER, data=our_data, method='POST') # Convert the response to a dictionary. Extract and return the token auth_response_dict = to_dict(auth_request) token = auth_response_dict['token'] return token # Function returning a list of what's available from the Saildrone API def get_available(token): # Define the url for requesting what's available check_available_url = 'https://developer-mission.saildrone.com/v1/auth/'\ + 'access?token=' + token # Send the request check_available_request = urllib.request.Request( check_available_url, method='GET') # Convert the output to a dictionary. Extract and return the access list. available_dict = to_dict(check_available_request) data = available_dict['data'] access_list = data['access'] return access_list # Function which requests data download. I returns the path to the downloaded # json file. def write_json(data_dir, drone_id, dataset, start, end, token): # Since we can only receive 1000 records per download request we need to # keep requesting (while loop) until we do not receive any data more_to_request = True data_list_concat = [] offset = 0 while (more_to_request is True): # Define the download request URL get_data_url = 'https://developer-mission.saildrone.com/v1/timeseries/'\ + f'{drone_id}?data_set={dataset}&interval=1&start_date={start}&end_date='\ + f'{end}&order_by=asc&limit=1000&offset={offset}&token={token}' #print(get_data_url) # Send request data_request = urllib.request.Request( get_data_url, headers=REQUEST_HEADER, method='GET') # Store output from request in dictionary data_dict = to_dict(data_request) # Continue adding new data to the concatenated data list until # we receive less than 10 records. (Because the data is being updated) # constantly, we can get into odd loops where we're chasing one new record # every time.) # # Once that's done, add one second to the last record received to be the # start point for the next request. #print('Received ' + str(len(data_dict['data']))) if len(data_dict['data']) < 10: more_to_request = False else: data_list_concat = data_list_concat + data_dict['data'] offset = offset + len(data_dict['data']) #print('Total length ' + str(len(data_list_concat))) # Replace the data section of the last json file received with the # concatenated data list data_dict['data'] = data_list_concat # Write the dictionary to a json file output_file_name = str(drone_id) + '_' + dataset + '.json' output_file_path = os.path.join(data_dir, output_file_name) with open(output_file_path, 'w') as outfile: json.dump(data_dict, outfile, sort_keys=True, indent=4, separators=(',',': ')) return output_file_path
gpl-3.0
znreza/supervised_classification
findBestCgamma.py
1
2632
import pandas as pd import numpy as np from sklearn import preprocessing from sklearn import svm from sklearn.utils import shuffle from sklearn.model_selection import KFold from sklearn.metrics import roc_curve, auc, mean_squared_error,accuracy_score from scipy import interp import random import matplotlib.pyplot as plt data = pd.read_csv('twogaussians.csv',header=None) #data = pd.read_csv('twospirals.csv',header=None) #data = pd.read_csv('halfkernel.csv',header=None) #data = pd.read_csv('clusterincluster.csv',header=None) data.columns = ['a','b','class'] #random.shuffle(data) data = shuffle(data) X = np.array(data.drop(['class'],1)) X = preprocessing.scale(X) Y = np.array(data['class']) for c in range(len(Y)): if(Y[c] == 1): Y[c] = 0 else : Y[c] = 1 #random.shuffle(zip(X,Y)) C_range = np.logspace(-2, 10, 5) gamma_range = np.logspace(-9, 3, 5) degree = np.arange(2,11,1) fpv = [] tprs = [] aucs = [] mse = [] lowest_mse = [] mean_fpr = np.linspace(0, 1, 100) classifiers = [] acc = [] X_train = X[:-100] Y_train = Y[:-100] X_test = X[-100:] Y_test = Y[-100:] for C in C_range: for gamma in gamma_range: clf = svm.SVC(kernel='rbf',C=C, gamma=gamma,probability=True) clf.fit(X_train, Y_train) prediction = clf.predict(X_test) mse.append((mean_squared_error(Y_test, prediction),C,gamma)) prediction = clf.predict(X_test) acc.append(accuracy_score(Y_test, prediction)) probas_ = clf.predict_proba(X_test) # Compute ROC curve and area underthe curve lowest_mse.append(min(mse)) lowest_mse.append(mse[3]) lowest_mse.append(mse[20]) for i in range(len(lowest_mse)): clf = svm.SVC(kernel='rbf',C=lowest_mse[i][1], gamma=lowest_mse[i][2],probability=True) clf.fit(X_train, Y_train) probas_ = clf.predict_proba(X_test) fpr, tpr, thresholds = roc_curve(Y_test, probas_[:, 1]) #tprs.append(interp(mean_fpr, fpr, tpr)) #tprs[-1][0] = 0.0 roc_auc = auc(fpr, tpr) aucs.append(roc_auc) plt.plot(fpr, tpr, lw=1, alpha=0.8, label='C = %f gamma = %f (AUC = %0.2f)' %(lowest_mse[i][1],lowest_mse[i][2],roc_auc)) plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Random', alpha=.8) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC curve and AUC for C and gamma') plt.legend(loc="lower right") plt.show() print(min(mse))
gpl-3.0
mediagit2016/workcamp-maschinelles-lernen-grundlagen
17-12-11-workcamp-ml/mglearn/plot_knn_regression.py
4
1285
import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import euclidean_distances from .datasets import make_wave from .plot_helpers import cm3 def plot_knn_regression(n_neighbors=1): X, y = make_wave(n_samples=40) X_test = np.array([[-1.5], [0.9], [1.5]]) dist = euclidean_distances(X, X_test) closest = np.argsort(dist, axis=0) plt.figure(figsize=(10, 6)) reg = KNeighborsRegressor(n_neighbors=n_neighbors).fit(X, y) y_pred = reg.predict(X_test) for x, y_, neighbors in zip(X_test, y_pred, closest.T): for neighbor in neighbors[:n_neighbors]: plt.arrow(x[0], y_, X[neighbor, 0] - x[0], y[neighbor] - y_, head_width=0, fc='k', ec='k') train, = plt.plot(X, y, 'o', c=cm3(0)) test, = plt.plot(X_test, -3 * np.ones(len(X_test)), '*', c=cm3(2), markersize=20) pred, = plt.plot(X_test, y_pred, '*', c=cm3(0), markersize=20) plt.vlines(X_test, -3.1, 3.1, linestyle="--") plt.legend([train, test, pred], ["training data/target", "test data", "test prediction"], ncol=3, loc=(.1, 1.025)) plt.ylim(-3.1, 3.1) plt.xlabel("Feature") plt.ylabel("Target")
gpl-3.0
marcusrehm/data-compare
datacompare/__init__.py
1
1929
__all__ = ['compare_datasets'] import pandas as pd import numpy as np SUFFIX_DF1 = '_df1' SUFFIX_DF2 = '_df2' def equals_condition(df1_columns_to_compare, df2_columns_to_compare): condition = [] for col_x, col_y in zip(df1_columns_to_compare, df2_columns_to_compare): condition.append(col_x + ' == ' + col_y) return ' and '.join(condition) def not_exists_condition(df_columns_to_compare): condition = [] for col in df_columns_to_compare: condition.append(col) return ' + '.join(condition) + ' != ' + ' + '.join(condition) def compare_datasets(df1, df2, df1_keys, df2_keys, df1_columns_to_compare=None, df2_columns_to_compare=None): if not df1_columns_to_compare: df1_columns_to_compare = list(column for column in df1.columns.difference(df1_keys)) if not df2_columns_to_compare: df2_columns_to_compare = list(column for column in df2.columns.difference(df2_keys)) for column in df1_columns_to_compare: if column in df2_columns_to_compare: df1_columns_to_compare[df1_columns_to_compare.index(column)] = column + SUFFIX_DF1 df2_columns_to_compare[df2_columns_to_compare.index(column)] = column + SUFFIX_DF2 df_result = pd.merge(df1, df2, how='outer', indicator=True, suffixes=(SUFFIX_DF1, SUFFIX_DF2), left_on=df1_keys, right_on=df2_keys) df_result.eval('equals = ' + equals_condition(df1_columns_to_compare, df2_columns_to_compare), inplace=True) df_result['_merge'] = np.where(df_result['equals'], 'equals', df_result['_merge']) df_result.drop(labels='equals', axis=1, inplace=True) df_result.rename(columns={'_merge': 'result'}, inplace=True) return df_result
mit
jungla/ICOM-fluidity-toolbox
Detectors/plot_FSLE_v.py
1
2388
#!~/python import fluidity_tools import matplotlib as mpl mpl.use('ps') import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import myfun import numpy as np import pyvtk import vtktools import copy import os exp = 'r_3k_B_1F0_r' filename = './ring_checkpoint.detectors' filename2 = '/tamay2/mensa/fluidity/'+exp+'/ring_30.pvtu' data = vtktools.vtu(filename2) coords = data.GetLocations() depths = sorted(list(set(coords[:,2]))) Xlist = np.arange(-100000,100000+10000,10000)# x co-ordinates of the desired array shape Ylist = np.arange(0,1)*0.0 Zlist = np.arange(-10,-900,-10)# y co-ordinates of the desired array shape [X,Y,Z] = myfun.meshgrid2(Xlist,Ylist,Zlist) Y = np.reshape(Y,(np.size(Y),)) X = np.reshape(X,(np.size(X),)) Z = np.reshape(Z,(np.size(Z),)) pts = zip(X,Y,Z) pts = vtktools.arr(pts) R = data.ProbeData(pts, 'Density_CG') rho = np.reshape(R,[len(Zlist),len(Ylist),len(Xlist)]) try: os.stat('./plot/'+exp) except OSError: os.mkdir('./plot/'+exp) print 'reading detectors' det = fluidity_tools.stat_parser(filename) keys = det.keys() # particles print 'done.' tt = 1200 pt = 5896 step = 1 z = range(-10,-890,-10) x = range(-100000,100000,3000) y = 0.0 par = np.zeros((pt,3,tt)) time = range(1800,1800*(tt+1),1800) # read particles for d in range(pt): temp = det['particles_'+myfun.digit(d+1,4)]['position'] par[d,:,:] = temp[:,0:tt] #fsle param di = 10 # base separation distance [m]. Taken as the distance between the particles in the triplet. # read T from archive for r in np.linspace(1,3): #print 'plotting for dr:',r*di fsle = np.zeros(pt)*np.nan df = 11.0 #r*di # separation distance # # loop triplets in time # # for t in range(tt): for d in range(0,pt-len(x)): # loop particles if par[d,2,t] < 0.0 and par[d+len(x),2,t] < 0.0: dr = np.linalg.norm(par[d,2,t]-par[d+len(x),2,t]) # if dr > 15.0: print dr,d,t if (dr > df and np.isnan(fsle[d])): fsle[d] = np.log(dr/di)/time[t] min_fsle = np.percentile(fsle,0.1) max_fsle = 0.0000005 #np.percentile(fsle,99) fsler = np.reshape(fsle,(len(z),len(x))) # plt.figure() v = np.linspace(1e-7,1e-6, 25, endpoint=True) plt.contourf(x,z,fsler,v,extend='both',cmap='jet') plt.colorbar(format='%.3e') plt.contour(Xlist,Zlist,np.squeeze(rho),20,colors=[0.5,0.5,0.5]) plt.savefig('./plot/'+exp+'/fsle_'+exp+'_'+str(df)+'.eps',bbox_inches='tight') plt.close()
gpl-2.0
madscatt/zazzie
src/sassie/calculate/sascalc_pbc/lennard_gofr.py
2
3859
from __future__ import division import numpy as np import sys import os import sasmol.sasmol as sasmol import compiledUtils.dna_overlap as dna_overlap def deduceBoxSize(xCoor, yCoor, zCoor): # first check if there is CRYST1 thing xLen = xCoor.max() - xCoor.min() yLen = yCoor.max() - yCoor.min() zLen = zCoor.max() - zCoor.min() # print(xLen) # print(yLen) # print(zLen) # print('lens ^^^^^^^^^^^^^^^^^^^') return max(map(round, [xLen, yLen, zLen])) ''' for this_segname in system.segnames(): basis = 'segname[i] == "' + this_segname + '"' error, this_mask = system.get_subset_mask(basis) if len(error) > 0: print("ERROR: "+str(error)) sys.exit() print(this_mask) print(type(this_mask)) x = system.coor()[0][:,0] y = system.coor()[0][:,1] z = system.coor()[0][:,2] xCoor[int(this_segname)-1]=np.ma.masked_array(x,this_mask).compressed() yCoor[int(this_segname)-1]=np.ma.masked_array(y,this_mask).compressed() zCoor[int(this_segname)-1]=np.ma.masked_array(z,this_mask).compressed() ''' class gofr_calc: ngr = 0 g = 0 length = 0 delg = 0 coors = 0 npart = 0 def __init__(self, mol, box_length, nhis=600): self.ngr = 0 self.g = np.zeros(nhis) self.nhis = nhis self.coors = mol.coor() xCoor = self.coors[0][:, 0] yCoor = self.coors[0][:, 1] zCoor = self.coors[0][:, 2] self.length = deduceBoxSize(xCoor, yCoor, zCoor) self.delg = self.length / (2 * self.nhis) self.npart = len(xCoor) def g_hist(self, frame=0): ''' takes in a sasmol object+ frame number outputs the g histogram for that frame ''' xCoor = self.coors[frame][:, 0] yCoor = self.coors[frame][:, 1] zCoor = self.coors[frame][:, 2] npart = len(xCoor) self.ngr += 1 self.g = dna_overlap.gr( 1, self.coors[frame], self.g, self.length, self.delg, 0) ''' dist = np.zeros((self.npart,self.npart)) for part1 in xrange(self.npart-1): for part2 in xrange(part1+1,self.npart): # ngr += 1 #dx = xCoor[part1] - xCoor[part2] #dy = yCoor[part1] - yCoor[part2] #dz = zCoor[part1] - zCoor[part2] #dx = dx - self.length*int(dx/self.length) #dy = dy - self.length*int(dy/self.length) #dz = dz - self.length*int(dz/self.length) #dr = np.sqrt(dx**2+dy**2+dz**2) dr = dist[part1,part2] if(dr<self.length/2): # can extend this to use the corners ig =int(dr/self.delg)#int(dr/delg) self.g[ig] += 2 ''' def g_of_r(self, sigma=3.405): for i in range(self.nhis): r = self.delg * (i + .5) vb = ((i + 1)**3 - i**3) * self.delg**3 rho = self.npart / self.length**3 nid = (4 / 3) * np.pi * vb * rho self.g[i] = self.g[i] / (self.npart * nid * self.ngr) x = np.linspace(0, self.length / 2, len(self.g)) * sigma return (x, self.g) if __name__ == '__main__': path = '/home/schowell/ellipsoids_simulation/simulations/LJ_sphere_monomer' pdb_file = os.path.join(path, 'run_0.pdb') dcd_file = os.path.join(path, 'run_1.dcd') box_length_file = os.path.join(path, 'box_length.txt') mol = sasmol.SasMol(0) mol.read_pdb(pdb_file) mol.read_dcd(dcd_file) box_length = np.loadtxt(box_length_file)[:, 1] gc = gofr_calc(mol, box_length, nhis=200) gc.g_hist(200) r, g_of_r = gc.g_of_r() if True: import matplotlib.pyplot as plt plt.figure() plt.plot(r, g_of_r) plt.savefig('g_of_r.png', dpi=400) print('\m/ >.< \m/') l
gpl-3.0
gfyoung/pandas
pandas/tests/api/test_api.py
3
7706
import subprocess import sys from typing import List import pytest import pandas as pd from pandas import api import pandas._testing as tm class Base: def check(self, namespace, expected, ignored=None): # see which names are in the namespace, minus optional # ignored ones # compare vs the expected result = sorted(f for f in dir(namespace) if not f.startswith("__")) if ignored is not None: result = sorted(set(result) - set(ignored)) expected = sorted(expected) tm.assert_almost_equal(result, expected) class TestPDApi(Base): # these are optionally imported based on testing # & need to be ignored ignored = ["tests", "locale", "conftest"] # top-level sub-packages lib = [ "api", "arrays", "compat", "core", "errors", "pandas", "plotting", "test", "testing", "tseries", "util", "options", "io", ] # these are already deprecated; awaiting removal deprecated_modules: List[str] = ["np", "datetime"] # misc misc = ["IndexSlice", "NaT", "NA"] # top-level classes classes = [ "Categorical", "CategoricalIndex", "DataFrame", "DateOffset", "DatetimeIndex", "ExcelFile", "ExcelWriter", "Float64Index", "Flags", "Grouper", "HDFStore", "Index", "Int64Index", "MultiIndex", "Period", "PeriodIndex", "RangeIndex", "UInt64Index", "Series", "SparseDtype", "StringDtype", "Timedelta", "TimedeltaIndex", "Timestamp", "Interval", "IntervalIndex", "CategoricalDtype", "PeriodDtype", "IntervalDtype", "DatetimeTZDtype", "BooleanDtype", "Int8Dtype", "Int16Dtype", "Int32Dtype", "Int64Dtype", "UInt8Dtype", "UInt16Dtype", "UInt32Dtype", "UInt64Dtype", "Float32Dtype", "Float64Dtype", "NamedAgg", ] # these are already deprecated; awaiting removal deprecated_classes: List[str] = [] # these should be deprecated in the future deprecated_classes_in_future: List[str] = ["SparseArray"] # external modules exposed in pandas namespace modules: List[str] = [] # top-level functions funcs = [ "array", "bdate_range", "concat", "crosstab", "cut", "date_range", "interval_range", "eval", "factorize", "get_dummies", "infer_freq", "isna", "isnull", "lreshape", "melt", "notna", "notnull", "offsets", "merge", "merge_ordered", "merge_asof", "period_range", "pivot", "pivot_table", "qcut", "show_versions", "timedelta_range", "unique", "value_counts", "wide_to_long", ] # top-level option funcs funcs_option = [ "reset_option", "describe_option", "get_option", "option_context", "set_option", "set_eng_float_format", ] # top-level read_* funcs funcs_read = [ "read_clipboard", "read_csv", "read_excel", "read_fwf", "read_gbq", "read_hdf", "read_html", "read_json", "read_pickle", "read_sas", "read_sql", "read_sql_query", "read_sql_table", "read_stata", "read_table", "read_feather", "read_parquet", "read_orc", "read_spss", ] # top-level json funcs funcs_json = ["json_normalize"] # top-level to_* funcs funcs_to = ["to_datetime", "to_numeric", "to_pickle", "to_timedelta"] # top-level to deprecate in the future deprecated_funcs_in_future: List[str] = [] # these are already deprecated; awaiting removal deprecated_funcs: List[str] = [] # private modules in pandas namespace private_modules = [ "_config", "_hashtable", "_lib", "_libs", "_np_version_under1p17", "_np_version_under1p18", "_is_numpy_dev", "_testing", "_tslib", "_typing", "_version", ] def test_api(self): checkthese = ( self.lib + self.misc + self.modules + self.classes + self.funcs + self.funcs_option + self.funcs_read + self.funcs_json + self.funcs_to + self.private_modules ) self.check(pd, checkthese, self.ignored) def test_depr(self): deprecated_list = ( self.deprecated_modules + self.deprecated_classes + self.deprecated_classes_in_future + self.deprecated_funcs + self.deprecated_funcs_in_future ) for depr in deprecated_list: with tm.assert_produces_warning(FutureWarning): _ = getattr(pd, depr) def test_datetime(): from datetime import datetime import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) assert datetime(2015, 1, 2, 0, 0) == pd.datetime(2015, 1, 2, 0, 0) assert isinstance(pd.datetime(2015, 1, 2, 0, 0), pd.datetime) def test_sparsearray(): import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) assert isinstance(pd.array([1, 2, 3], dtype="Sparse"), pd.SparseArray) def test_np(): import warnings import numpy as np with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) assert (pd.np.arange(0, 10) == np.arange(0, 10)).all() class TestApi(Base): allowed = ["types", "extensions", "indexers"] def test_api(self): self.check(api, self.allowed) class TestTesting(Base): funcs = [ "assert_frame_equal", "assert_series_equal", "assert_index_equal", "assert_extension_array_equal", ] def test_testing(self): from pandas import testing self.check(testing, self.funcs) def test_util_testing_deprecated(self): # avoid cache state affecting the test sys.modules.pop("pandas.util.testing", None) with tm.assert_produces_warning(FutureWarning) as m: import pandas.util.testing # noqa: F401 assert "pandas.util.testing is deprecated" in str(m[0].message) assert "pandas.testing instead" in str(m[0].message) def test_util_testing_deprecated_direct(self): # avoid cache state affecting the test sys.modules.pop("pandas.util.testing", None) with tm.assert_produces_warning(FutureWarning) as m: from pandas.util.testing import assert_series_equal # noqa: F401 assert "pandas.util.testing is deprecated" in str(m[0].message) assert "pandas.testing instead" in str(m[0].message) def test_util_in_top_level(self): # in a subprocess to avoid import caching issues out = subprocess.check_output( [ sys.executable, "-c", "import pandas; pandas.util.testing.assert_series_equal", ], stderr=subprocess.STDOUT, ).decode() assert "pandas.util.testing is deprecated" in out with pytest.raises(AttributeError, match="foo"): pd.util.foo
bsd-3-clause
hgrif/incubator-airflow
airflow/contrib/hooks/bigquery_hook.py
4
44979
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains a BigQuery Hook, as well as a very basic PEP 249 implementation for BigQuery. """ import time from apiclient.discovery import build, HttpError from googleapiclient import errors from builtins import range from pandas_gbq.gbq import GbqConnector, \ _parse_data as gbq_parse_data, \ _check_google_client_version as gbq_check_google_client_version, \ _test_google_api_imports as gbq_test_google_api_imports from pandas.tools.merge import concat from past.builtins import basestring from airflow.contrib.hooks.gcp_api_base_hook import GoogleCloudBaseHook from airflow.hooks.dbapi_hook import DbApiHook from airflow.utils.log.logging_mixin import LoggingMixin class BigQueryHook(GoogleCloudBaseHook, DbApiHook, LoggingMixin): """ Interact with BigQuery. This hook uses the Google Cloud Platform connection. """ conn_name_attr = 'bigquery_conn_id' def __init__(self, bigquery_conn_id='bigquery_default', delegate_to=None): super(BigQueryHook, self).__init__( conn_id=bigquery_conn_id, delegate_to=delegate_to) def get_conn(self): """ Returns a BigQuery PEP 249 connection object. """ service = self.get_service() project = self._get_field('project') return BigQueryConnection(service=service, project_id=project) def get_service(self): """ Returns a BigQuery service object. """ http_authorized = self._authorize() return build('bigquery', 'v2', http=http_authorized) def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ Insertion is currently unsupported. Theoretically, you could use BigQuery's streaming API to insert rows into a table, but this hasn't been implemented. """ raise NotImplementedError() def get_pandas_df(self, bql, parameters=None, dialect='legacy'): """ Returns a Pandas DataFrame for the results produced by a BigQuery query. The DbApiHook method must be overridden because Pandas doesn't support PEP 249 connections, except for SQLite. See: https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447 https://github.com/pydata/pandas/issues/6900 :param bql: The BigQuery SQL to execute. :type bql: string :param parameters: The parameters to render the SQL query with (not used, leave to override superclass method) :type parameters: mapping or iterable :param dialect: Dialect of BigQuery SQL – legacy SQL or standard SQL :type dialect: string in {'legacy', 'standard'}, default 'legacy' """ service = self.get_service() project = self._get_field('project') connector = BigQueryPandasConnector(project, service, dialect=dialect) schema, pages = connector.run_query(bql) dataframe_list = [] while len(pages) > 0: page = pages.pop() dataframe_list.append(gbq_parse_data(schema, page)) if len(dataframe_list) > 0: return concat(dataframe_list, ignore_index=True) else: return gbq_parse_data(schema, []) def table_exists(self, project_id, dataset_id, table_id): """ Checks for the existence of a table in Google BigQuery. :param project_id: The Google cloud project in which to look for the table. The connection supplied to the hook must provide access to the specified project. :type project_id: string :param dataset_id: The name of the dataset in which to look for the table. storage bucket. :type dataset_id: string :param table_id: The name of the table to check the existence of. :type table_id: string """ service = self.get_service() try: service.tables().get( projectId=project_id, datasetId=dataset_id, tableId=table_id ).execute() return True except errors.HttpError as e: if e.resp['status'] == '404': return False raise class BigQueryPandasConnector(GbqConnector): """ This connector behaves identically to GbqConnector (from Pandas), except that it allows the service to be injected, and disables a call to self.get_credentials(). This allows Airflow to use BigQuery with Pandas without forcing a three legged OAuth connection. Instead, we can inject service account credentials into the binding. """ def __init__(self, project_id, service, reauth=False, verbose=False, dialect='legacy'): gbq_check_google_client_version() gbq_test_google_api_imports() self.project_id = project_id self.reauth = reauth self.service = service self.verbose = verbose self.dialect = dialect class BigQueryConnection(object): """ BigQuery does not have a notion of a persistent connection. Thus, these objects are small stateless factories for cursors, which do all the real work. """ def __init__(self, *args, **kwargs): self._args = args self._kwargs = kwargs def close(self): """ BigQueryConnection does not have anything to close. """ pass def commit(self): """ BigQueryConnection does not support transactions. """ pass def cursor(self): """ Return a new :py:class:`Cursor` object using the connection. """ return BigQueryCursor(*self._args, **self._kwargs) def rollback(self): raise NotImplementedError( "BigQueryConnection does not have transactions") class BigQueryBaseCursor(LoggingMixin): """ The BigQuery base cursor contains helper methods to execute queries against BigQuery. The methods can be used directly by operators, in cases where a PEP 249 cursor isn't needed. """ def __init__(self, service, project_id): self.service = service self.project_id = project_id self.running_job_id = None def run_query( self, bql, destination_dataset_table = False, write_disposition = 'WRITE_EMPTY', allow_large_results=False, udf_config = False, use_legacy_sql=True, maximum_billing_tier=None, create_disposition='CREATE_IF_NEEDED', query_params=None): """ Executes a BigQuery SQL query. Optionally persists results in a BigQuery table. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param bql: The BigQuery SQL to execute. :type bql: string :param destination_dataset_table: The dotted <dataset>.<table> BigQuery table to save the query results. :param write_disposition: What to do if the table already exists in BigQuery. :type write_disposition: string :param create_disposition: Specifies whether the job is allowed to create new tables. :type create_disposition: string :param allow_large_results: Whether to allow large results. :type allow_large_results: boolean :param udf_config: The User Defined Function configuration for the query. See https://cloud.google.com/bigquery/user-defined-functions for details. :type udf_config: list :param use_legacy_sql: Whether to use legacy SQL (true) or standard SQL (false). :type use_legacy_sql: boolean :param maximum_billing_tier: Positive integer that serves as a multiplier of the basic price. :type maximum_billing_tier: integer """ configuration = { 'query': { 'query': bql, 'useLegacySql': use_legacy_sql, 'maximumBillingTier': maximum_billing_tier } } if destination_dataset_table: assert '.' in destination_dataset_table, ( 'Expected destination_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(destination_dataset_table) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_dataset_table, default_project_id=self.project_id) configuration['query'].update({ 'allowLargeResults': allow_large_results, 'writeDisposition': write_disposition, 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, } }) if udf_config: assert isinstance(udf_config, list) configuration['query'].update({ 'userDefinedFunctionResources': udf_config }) if query_params: configuration['query']['queryParameters'] = query_params return self.run_with_configuration(configuration) def run_extract( # noqa self, source_project_dataset_table, destination_cloud_storage_uris, compression='NONE', export_format='CSV', field_delimiter=',', print_header=True): """ Executes a BigQuery extract command to copy data from BigQuery to Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param source_project_dataset_table: The dotted <dataset>.<table> BigQuery table to use as the source data. :type source_project_dataset_table: string :param destination_cloud_storage_uris: The destination Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). Follows convention defined here: https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple :type destination_cloud_storage_uris: list :param compression: Type of compression to use. :type compression: string :param export_format: File format to export. :type export_format: string :param field_delimiter: The delimiter to use when extracting to a CSV. :type field_delimiter: string :param print_header: Whether to print a header for a CSV file extract. :type print_header: boolean """ source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') configuration = { 'extract': { 'sourceTable': { 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table, }, 'compression': compression, 'destinationUris': destination_cloud_storage_uris, 'destinationFormat': export_format, } } if export_format == 'CSV': # Only set fieldDelimiter and printHeader fields if using CSV. # Google does not like it if you set these fields for other export # formats. configuration['extract']['fieldDelimiter'] = field_delimiter configuration['extract']['printHeader'] = print_header return self.run_with_configuration(configuration) def run_copy(self, source_project_dataset_tables, destination_project_dataset_table, write_disposition='WRITE_EMPTY', create_disposition='CREATE_IF_NEEDED'): """ Executes a BigQuery copy command to copy data from one BigQuery table to another. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy For more details about these parameters. :param source_project_dataset_tables: One or more dotted (project:|project.)<dataset>.<table> BigQuery tables to use as the source data. Use a list if there are multiple source tables. If <project> is not included, project will be the project defined in the connection json. :type source_project_dataset_tables: list|string :param destination_project_dataset_table: The destination BigQuery table. Format is: (project:|project.)<dataset>.<table> :type destination_project_dataset_table: string :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string """ source_project_dataset_tables = ( [source_project_dataset_tables] if not isinstance(source_project_dataset_tables, list) else source_project_dataset_tables) source_project_dataset_tables_fixup = [] for source_project_dataset_table in source_project_dataset_tables: source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') source_project_dataset_tables_fixup.append({ 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table }) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id) configuration = { 'copy': { 'createDisposition': create_disposition, 'writeDisposition': write_disposition, 'sourceTables': source_project_dataset_tables_fixup, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table } } } return self.run_with_configuration(configuration) def run_load(self, destination_project_dataset_table, schema_fields, source_uris, source_format='CSV', create_disposition='CREATE_IF_NEEDED', skip_leading_rows=0, write_disposition='WRITE_EMPTY', field_delimiter=',', max_bad_records=0, quote_character=None, allow_quoted_newlines=False, allow_jagged_rows=False, schema_update_options=(), src_fmt_configs={}): """ Executes a BigQuery load command to load data from Google Cloud Storage to BigQuery. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param destination_project_dataset_table: The dotted (<project>.|<project>:)<dataset>.<table> BigQuery table to load data into. If <project> is not included, project will be the project defined in the connection json. :type destination_project_dataset_table: string :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load :type schema_fields: list :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: string :param max_bad_records: The maximum number of bad records that BigQuery can ignore when running the job. :type max_bad_records: int :param quote_character: The value that is used to quote data sections in a CSV file. :type quote_character: string :param allow_quoted_newlines: Whether to allow quoted newlines (true) or not (false). :type allow_quoted_newlines: boolean :param allow_jagged_rows: Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. Only applicable when soure_format is CSV. :type allow_jagged_rows: bool :param schema_update_options: Allows the schema of the desitination table to be updated as a side effect of the load job. :type schema_update_options: list :param src_fmt_configs: configure optional fields specific to the source format :type src_fmt_configs: dict """ # bigquery only allows certain source formats # we check to make sure the passed source format is valid # if it's not, we raise a ValueError # Refer to this link for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.tableDefinitions.(key).sourceFormat source_format = source_format.upper() allowed_formats = ["CSV", "NEWLINE_DELIMITED_JSON", "AVRO", "GOOGLE_SHEETS", "DATASTORE_BACKUP"] if source_format not in allowed_formats: raise ValueError("{0} is not a valid source format. " "Please use one of the following types: {1}" .format(source_format, allowed_formats)) # bigquery also allows you to define how you want a table's schema to change # as a side effect of a load # for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schemaUpdateOptions allowed_schema_update_options = [ 'ALLOW_FIELD_ADDITION', "ALLOW_FIELD_RELAXATION" ] if not set(allowed_schema_update_options).issuperset(set(schema_update_options)): raise ValueError( "{0} contains invalid schema update options. " "Please only use one or more of the following options: {1}" .format(schema_update_options, allowed_schema_update_options) ) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id, var_name='destination_project_dataset_table') configuration = { 'load': { 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, }, 'sourceFormat': source_format, 'sourceUris': source_uris, 'writeDisposition': write_disposition, } } if schema_fields: configuration['load']['schema'] = { 'fields': schema_fields } if schema_update_options: if write_disposition not in ["WRITE_APPEND", "WRITE_TRUNCATE"]: raise ValueError( "schema_update_options is only " "allowed if write_disposition is " "'WRITE_APPEND' or 'WRITE_TRUNCATE'." ) else: self.log.info( "Adding experimental " "'schemaUpdateOptions': {0}".format(schema_update_options) ) configuration['load']['schemaUpdateOptions'] = schema_update_options if max_bad_records: configuration['load']['maxBadRecords'] = max_bad_records # if following fields are not specified in src_fmt_configs, # honor the top-level params for backward-compatibility if 'skipLeadingRows' not in src_fmt_configs: src_fmt_configs['skipLeadingRows'] = skip_leading_rows if 'fieldDelimiter' not in src_fmt_configs: src_fmt_configs['fieldDelimiter'] = field_delimiter if quote_character: src_fmt_configs['quote'] = quote_character if allow_quoted_newlines: src_fmt_configs['allowQuotedNewlines'] = allow_quoted_newlines src_fmt_to_configs_mapping = { 'CSV': ['allowJaggedRows', 'allowQuotedNewlines', 'autodetect', 'fieldDelimiter', 'skipLeadingRows', 'ignoreUnknownValues', 'nullMarker', 'quote'], 'DATASTORE_BACKUP': ['projectionFields'], 'NEWLINE_DELIMITED_JSON': ['autodetect', 'ignoreUnknownValues'], 'AVRO': [], } valid_configs = src_fmt_to_configs_mapping[source_format] src_fmt_configs = {k: v for k, v in src_fmt_configs.items() if k in valid_configs} configuration['load'].update(src_fmt_configs) if allow_jagged_rows: configuration['load']['allowJaggedRows'] = allow_jagged_rows return self.run_with_configuration(configuration) def run_with_configuration(self, configuration): """ Executes a BigQuery SQL query. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about the configuration parameter. :param configuration: The configuration parameter maps directly to BigQuery's configuration field in the job object. See https://cloud.google.com/bigquery/docs/reference/v2/jobs for details. """ jobs = self.service.jobs() job_data = { 'configuration': configuration } # Send query and wait for reply. query_reply = jobs \ .insert(projectId=self.project_id, body=job_data) \ .execute() self.running_job_id = query_reply['jobReference']['jobId'] # Wait for query to finish. keep_polling_job = True while (keep_polling_job): try: job = jobs.get(projectId=self.project_id, jobId=self.running_job_id).execute() if (job['status']['state'] == 'DONE'): keep_polling_job = False # Check if job had errors. if 'errorResult' in job['status']: raise Exception( 'BigQuery job failed. Final error was: {}. The job was: {}'.format( job['status']['errorResult'], job ) ) else: self.log.info('Waiting for job to complete : %s, %s', self.project_id, self.running_job_id) time.sleep(5) except HttpError as err: if err.resp.status in [500, 503]: self.log.info('%s: Retryable error, waiting for job to complete: %s', err.resp.status, self.running_job_id) time.sleep(5) else: raise Exception( 'BigQuery job status check failed. Final error was: %s', err.resp.status) return self.running_job_id def poll_job_complete(self, job_id): jobs = self.service.jobs() try: job = jobs.get(projectId=self.project_id, jobId=job_id).execute() if (job['status']['state'] == 'DONE'): return True except HttpError as err: if err.resp.status in [500, 503]: self.log.info('%s: Retryable error while polling job with id %s', err.resp.status, job_id) else: raise Exception( 'BigQuery job status check failed. Final error was: %s', err.resp.status) return False def cancel_query(self): """ Cancel all started queries that have not yet completed """ jobs = self.service.jobs() if (self.running_job_id and not self.poll_job_complete(self.running_job_id)): self.log.info('Attempting to cancel job : %s, %s', self.project_id, self.running_job_id) jobs.cancel(projectId=self.project_id, jobId=self.running_job_id).execute() else: self.log.info('No running BigQuery jobs to cancel.') return # Wait for all the calls to cancel to finish max_polling_attempts = 12 polling_attempts = 0 job_complete = False while (polling_attempts < max_polling_attempts and not job_complete): polling_attempts = polling_attempts+1 job_complete = self.poll_job_complete(self.running_job_id) if (job_complete): self.log.info('Job successfully canceled: %s, %s', self.project_id, self.running_job_id) elif(polling_attempts == max_polling_attempts): self.log.info('Stopping polling due to timeout. Job with id %s has not completed cancel and may or may not finish.', self.running_job_id) else: self.log.info('Waiting for canceled job with id %s to finish.', self.running_job_id) time.sleep(5) def get_schema(self, dataset_id, table_id): """ Get the schema for a given datset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :param dataset_id: the dataset ID of the requested table :param table_id: the table ID of the requested table :return: a table schema """ tables_resource = self.service.tables() \ .get(projectId=self.project_id, datasetId=dataset_id, tableId=table_id) \ .execute() return tables_resource['schema'] def get_tabledata(self, dataset_id, table_id, max_results=None, page_token=None, start_index=None): """ Get the data of a given dataset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tabledata/list :param dataset_id: the dataset ID of the requested table. :param table_id: the table ID of the requested table. :param max_results: the maximum results to return. :param page_token: page token, returned from a previous call, identifying the result set. :param start_index: zero based index of the starting row to read. :return: map containing the requested rows. """ optional_params = {} if max_results: optional_params['maxResults'] = max_results if page_token: optional_params['pageToken'] = page_token if start_index: optional_params['startIndex'] = start_index return ( self.service.tabledata() .list( projectId=self.project_id, datasetId=dataset_id, tableId=table_id, **optional_params) .execute() ) def run_table_delete(self, deletion_dataset_table, ignore_if_missing=False): """ Delete an existing table from the dataset; If the table does not exist, return an error unless ignore_if_missing is set to True. :param deletion_dataset_table: A dotted (<project>.|<project>:)<dataset>.<table> that indicates which table will be deleted. :type deletion_dataset_table: str :param ignore_if_missing: if True, then return success even if the requested table does not exist. :type ignore_if_missing: boolean :return: """ assert '.' in deletion_dataset_table, ( 'Expected deletion_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(deletion_dataset_table) deletion_project, deletion_dataset, deletion_table = \ _split_tablename(table_input=deletion_dataset_table, default_project_id=self.project_id) try: tables_resource = self.service.tables() \ .delete(projectId=deletion_project, datasetId=deletion_dataset, tableId=deletion_table) \ .execute() self.log.info('Deleted table %s:%s.%s.', deletion_project, deletion_dataset, deletion_table) except HttpError: if not ignore_if_missing: raise Exception( 'Table deletion failed. Table does not exist.') else: self.log.info('Table does not exist. Skipping.') def run_table_upsert(self, dataset_id, table_resource, project_id=None): """ creates a new, empty table in the dataset; If the table already exists, update the existing table. Since BigQuery does not natively allow table upserts, this is not an atomic operation. :param dataset_id: the dataset to upsert the table into. :type dataset_id: str :param table_resource: a table resource. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :type table_resource: dict :param project_id: the project to upsert the table into. If None, project will be self.project_id. :return: """ # check to see if the table exists table_id = table_resource['tableReference']['tableId'] project_id = project_id if project_id is not None else self.project_id tables_list_resp = self.service.tables().list(projectId=project_id, datasetId=dataset_id).execute() while True: for table in tables_list_resp.get('tables', []): if table['tableReference']['tableId'] == table_id: # found the table, do update self.log.info( 'Table %s:%s.%s exists, updating.', project_id, dataset_id, table_id ) return self.service.tables().update(projectId=project_id, datasetId=dataset_id, tableId=table_id, body=table_resource).execute() # If there is a next page, we need to check the next page. if 'nextPageToken' in tables_list_resp: tables_list_resp = self.service.tables()\ .list(projectId=project_id, datasetId=dataset_id, pageToken=tables_list_resp['nextPageToken'])\ .execute() # If there is no next page, then the table doesn't exist. else: # do insert self.log.info( 'Table %s:%s.%s does not exist. creating.', project_id, dataset_id, table_id ) return self.service.tables().insert(projectId=project_id, datasetId=dataset_id, body=table_resource).execute() def run_grant_dataset_view_access(self, source_dataset, view_dataset, view_table, source_project = None, view_project = None): """ Grant authorized view access of a dataset to a view table. If this view has already been granted access to the dataset, do nothing. This method is not atomic. Running it may clobber a simultaneous update. :param source_dataset: the source dataset :type source_dataset: str :param view_dataset: the dataset that the view is in :type view_dataset: str :param view_table: the table of the view :type view_table: str :param source_project: the project of the source dataset. If None, self.project_id will be used. :type source_project: str :param view_project: the project that the view is in. If None, self.project_id will be used. :type view_project: str :return: the datasets resource of the source dataset. """ # Apply default values to projects source_project = source_project if source_project else self.project_id view_project = view_project if view_project else self.project_id # we don't want to clobber any existing accesses, so we have to get # info on the dataset before we can add view access source_dataset_resource = self.service.datasets().get(projectId=source_project, datasetId=source_dataset).execute() access = source_dataset_resource['access'] if 'access' in source_dataset_resource else [] view_access = {'view': {'projectId': view_project, 'datasetId': view_dataset, 'tableId': view_table}} # check to see if the view we want to add already exists. if view_access not in access: self.log.info( 'Granting table %s:%s.%s authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset ) access.append(view_access) return self.service.datasets().patch(projectId=source_project, datasetId=source_dataset, body={'access': access}).execute() else: # if view is already in access, do nothing. self.log.info( 'Table %s:%s.%s already has authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset ) return source_dataset_resource class BigQueryCursor(BigQueryBaseCursor): """ A very basic BigQuery PEP 249 cursor implementation. The PyHive PEP 249 implementation was used as a reference: https://github.com/dropbox/PyHive/blob/master/pyhive/presto.py https://github.com/dropbox/PyHive/blob/master/pyhive/common.py """ def __init__(self, service, project_id): super(BigQueryCursor, self).__init__(service=service, project_id=project_id) self.buffersize = None self.page_token = None self.job_id = None self.buffer = [] self.all_pages_loaded = False @property def description(self): """ The schema description method is not currently implemented. """ raise NotImplementedError def close(self): """ By default, do nothing """ pass @property def rowcount(self): """ By default, return -1 to indicate that this is not supported. """ return -1 def execute(self, operation, parameters=None): """ Executes a BigQuery query, and returns the job ID. :param operation: The query to execute. :type operation: string :param parameters: Parameters to substitute into the query. :type parameters: dict """ bql = _bind_parameters(operation, parameters) if parameters else operation self.job_id = self.run_query(bql) def executemany(self, operation, seq_of_parameters): """ Execute a BigQuery query multiple times with different parameters. :param operation: The query to execute. :type operation: string :param parameters: List of dictionary parameters to substitute into the query. :type parameters: list """ for parameters in seq_of_parameters: self.execute(operation, parameters) def fetchone(self): """ Fetch the next row of a query result set. """ return self.next() def next(self): """ Helper method for fetchone, which returns the next row from a buffer. If the buffer is empty, attempts to paginate through the result set for the next page, and load it into the buffer. """ if not self.job_id: return None if len(self.buffer) == 0: if self.all_pages_loaded: return None query_results = ( self.service.jobs() .getQueryResults( projectId=self.project_id, jobId=self.job_id, pageToken=self.page_token) .execute() ) if 'rows' in query_results and query_results['rows']: self.page_token = query_results.get('pageToken') fields = query_results['schema']['fields'] col_types = [field['type'] for field in fields] rows = query_results['rows'] for dict_row in rows: typed_row = ([ _bq_cast(vs['v'], col_types[idx]) for idx, vs in enumerate(dict_row['f']) ]) self.buffer.append(typed_row) if not self.page_token: self.all_pages_loaded = True else: # Reset all state since we've exhausted the results. self.page_token = None self.job_id = None self.page_token = None return None return self.buffer.pop(0) def fetchmany(self, size=None): """ Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. An :py:class:`~pyhive.exc.Error` (or subclass) exception is raised if the previous call to :py:meth:`execute` did not produce any result set or no call was issued yet. """ if size is None: size = self.arraysize result = [] for _ in range(size): one = self.fetchone() if one is None: break else: result.append(one) return result def fetchall(self): """ Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples). """ result = [] while True: one = self.fetchone() if one is None: break else: result.append(one) return result def get_arraysize(self): """ Specifies the number of rows to fetch at a time with .fetchmany() """ return self._buffersize if self.buffersize else 1 def set_arraysize(self, arraysize): """ Specifies the number of rows to fetch at a time with .fetchmany() """ self.buffersize = arraysize arraysize = property(get_arraysize, set_arraysize) def setinputsizes(self, sizes): """ Does nothing by default """ pass def setoutputsize(self, size, column=None): """ Does nothing by default """ pass def _bind_parameters(operation, parameters): """ Helper method that binds parameters to a SQL query. """ # inspired by MySQL Python Connector (conversion.py) string_parameters = {} for (name, value) in parameters.iteritems(): if value is None: string_parameters[name] = 'NULL' elif isinstance(value, basestring): string_parameters[name] = "'" + _escape(value) + "'" else: string_parameters[name] = str(value) return operation % string_parameters def _escape(s): """ Helper method that escapes parameters to a SQL query. """ e = s e = e.replace('\\', '\\\\') e = e.replace('\n', '\\n') e = e.replace('\r', '\\r') e = e.replace("'", "\\'") e = e.replace('"', '\\"') return e def _bq_cast(string_field, bq_type): """ Helper method that casts a BigQuery row to the appropriate data types. This is useful because BigQuery returns all fields as strings. """ if string_field is None: return None elif bq_type == 'INTEGER' or bq_type == 'TIMESTAMP': return int(string_field) elif bq_type == 'FLOAT': return float(string_field) elif bq_type == 'BOOLEAN': assert string_field in set(['true', 'false']) return string_field == 'true' else: return string_field def _split_tablename(table_input, default_project_id, var_name=None): assert default_project_id is not None, "INTERNAL: No default project is specified" def var_print(var_name): if var_name is None: return "" else: return "Format exception for {var}: ".format(var=var_name) if table_input.count('.') + table_input.count(':') > 3: raise Exception(( '{var}Use either : or . to specify project ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) cmpt = table_input.rsplit(':', 1) project_id = None rest = table_input if len(cmpt) == 1: project_id = None rest = cmpt[0] elif len(cmpt) == 2 and cmpt[0].count(':') <= 1: if cmpt[-1].count('.') != 2: project_id = cmpt[0] rest = cmpt[1] else: raise Exception(( '{var}Expect format of (<project:)<dataset>.<table>, ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) cmpt = rest.split('.') if len(cmpt) == 3: assert project_id is None, ( "{var}Use either : or . to specify project" ).format(var=var_print(var_name)) project_id = cmpt[0] dataset_id = cmpt[1] table_id = cmpt[2] elif len(cmpt) == 2: dataset_id = cmpt[0] table_id = cmpt[1] else: raise Exception(( '{var}Expect format of (<project.|<project:)<dataset>.<table>, ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) if project_id is None: if var_name is not None: log = LoggingMixin().log log.info( 'Project not included in {var}: {input}; using project "{project}"'.format( var=var_name, input=table_input, project=default_project_id ) ) project_id = default_project_id return project_id, dataset_id, table_id
apache-2.0
ahoyosid/scikit-learn
examples/linear_model/plot_bayesian_ridge.py
248
2588
""" ========================= Bayesian Ridge Regression ========================= Computes a Bayesian Ridge Regression on a synthetic dataset. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import BayesianRidge, LinearRegression ############################################################################### # Generating simulated data with Gaussian weigthts np.random.seed(0) n_samples, n_features = 100, 100 X = np.random.randn(n_samples, n_features) # Create Gaussian data # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noise with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the Bayesian Ridge Regression and an OLS for comparison clf = BayesianRidge(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot true weights, estimated weights and histogram of the weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="Bayesian Ridge estimate") plt.plot(w, 'g-', label="Ground truth") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc="best", prop=dict(size=12)) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc="lower left") plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
aayushidwivedi01/spark-tk
regression-tests/sparktkregtests/testcases/graph/graph_triangle_count_test.py
10
2503
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Tests triangle count for ATK against the networkx implementation""" import unittest import networkx as nx from sparktkregtests.lib import sparktk_test class TriangleCount(sparktk_test.SparkTKTestCase): def test_triangle_counts(self): """Build frames and graphs to exercise""" super(TriangleCount, self).setUp() graph_data = self.get_file("clique_10.csv") schema = [('src', str), ('dst', str)] # set up the vertex frame, which is the union of the src and # the dst columns of the edges self.frame = self.context.frame.import_csv(graph_data, schema=schema) self.vertices = self.frame.copy() self.vertices2 = self.frame.copy() self.vertices.rename_columns({"src": "id"}) self.vertices.drop_columns(["dst"]) self.vertices2.rename_columns({"dst": "id"}) self.vertices2.drop_columns(["src"]) self.vertices.append(self.vertices2) self.vertices.drop_duplicates() self.graph = self.context.graph.create(self.vertices, self.frame) result = self.graph.triangle_count() triangles = result.to_pandas(result.count()) # Create a dictionary of triangle count per triangle: dictionary_of_triangle_count = {vertex['id']: (vertex['count']) for (index, vertex) in triangles.iterrows()} edge_list = self.frame.take( n=self.frame.count(), columns=['src', 'dst']) # build the network x result g = nx.Graph() g.add_edges_from(edge_list) triangle_counts_from_networkx = nx.triangles(g) self.assertEqual( dictionary_of_triangle_count, triangle_counts_from_networkx) if __name__ == '__main__': unittest.main()
apache-2.0
itoijala/pyfeyner
setup.py
1
2375
#!/usr/bin/env python2 # # pyfeyner - a simple Python interface for making Feynman diagrams. # Copyright (C) 2005-2010 Andy Buckley, Georg von Hippel # Copyright (C) 2013 Ismo Toijala # # pyfeyner is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # pyfeyner is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with pyfeyner; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # from setuptools import setup longdesc = """pyfeyner is a package which makes drawing Feynman diagrams simple and programmatic. Feynman diagrams are important constructs in perturbative field theory, so being able to draw them in a programmatic fashion is important if attempting to enumerate a large number of diagram configurations is important. The output quality of pyfeyner diagrams (into PDF or EPS formats) is very high, and special effects can be obtained by using constructs from PyX, which pyfeyner is based around.""" setup(name = 'pyfeyner', version = '0.1', author = 'Andy Buckley, Georg von Hippel, Ismo Toijala', author_email = '[email protected]', url = 'https://github.com/itoijala/pyfeyner', description = 'An easy-to-use Python library to help physicists draw Feynman diagrams.', long_description = longdesc, keywords = 'feynman hep physics particle diagram', license = 'GPLv2+', packages = ['pyfeyner'], install_requires = ['PyX', 'matplotlib'], zip_safe = False, classifiers = ['Development Status :: 2 - Per-Alpha', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU General Public License v2 or later (GPLv2+)', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Topic :: Scientific/Engineering :: Physics', ], )
gpl-2.0
McIntyre-Lab/papers
nanni_maize_2021/scripts/prep_rnaseq_4_tappas_02avn.py
1
4816
#!/usr/bin/env python import pandas as pd import numpy as np import argparse import sys def getOptions(): # Parse command line arguments parser = argparse.ArgumentParser(description="Prepare files for tappAS (genotype expression matrix of expected counts and design files) for maize ozone RSEM") # Input data parser.add_argument("-t", "--input-TPM", dest="inTPM", required=True, help="Input TSV of combined rsem expression matrix with TPM on/off flags (used to determine detected transcripts)") parser.add_argument("-c", "--input-count", dest="inCount", required=True, help="Input TSV of combined rsem expression matrix with expected counts (used to output expected counts for detected transcripts for tappas)") parser.add_argument("-e", "--exclude", dest="exclude", required=False, action='append', help="Samples to exclude from expression matrices, multiple values can be listed with each '-e'") parser.add_argument("-v", "--value-type", dest="inVal", required=False, choices=['TPM','expected_count'], default='TPM', help="Value type to include in tappas expression matrix (TPM or expected_count, default: TPM)") # Output data parser.add_argument("-o", "--output-directory", dest="outDir", required=True, help="Output directory") args = parser.parse_args() return args def main(): # Get combined expression matrix with on/off flags tpmDF = pd.read_csv(args.inTPM, sep="\t") countDF = pd.read_csv(args.inCount, sep="\t") # Remove excluded columns if provided if args.exclude is not None: for s in args.exclude: tpmDF = tpmDF.drop(columns=[c for c in tpmDF.columns if c==s]) countDF = countDF.drop(columns=[c for c in countDF.columns if c==s]) print("Removed {} columns from matrix...".format(s)) # Count and drop transcripts that are not detected in any samples # and transcripts only detected in one samples print("{} transcripts detected in 0 samples\n{} transcripts detected in 1 sample\n...Dropped from tappas files".format( len(tpmDF[tpmDF['sum_flag']==0]),len(tpmDF[tpmDF['sum_flag']==1]))) detectDF = tpmDF[tpmDF['sum_flag']>1].copy() # Merge detected transcripts wtih expected count values # Select only those in both (no left_only so it is everyhting in detected DF) if args.inVal == "expected_count": mergeDF = pd.merge(detectDF['transcript_id'],countDF,how='outer',on='transcript_id',indicator='merge_check') mergeDF = mergeDF[mergeDF['merge_check']=="both"] else: mergeDF = detectDF.copy() # Get Amb vs. Oz expression matrices and design files for genotype in ["B73","C123","Hp301","Mo17","NC338"]: cols = [c for c in mergeDF.columns if (genotype in c) and ('flag' not in c) and ('mean' not in c)] mergeDF[['transcript_id']+cols].rename(columns={'transcript_id':""}).to_csv( "{}/sbys_{}_4_tappas_{}.tsv".format(args.outDir,genotype,args.inVal),sep="\t",index=False) designDF = pd.DataFrame({'Sample':cols}) designDF['Condition'] = np.where(designDF['Sample'].str.contains('Amb'),"Ambient", np.where(designDF['Sample'].str.contains('Ele'),"Ozone","oops")) if len(designDF[designDF['Condition']=="oops"])>0: print("ERROR: Cannot assign Condition in {}...".format(genotype)) sys.exit() else: designDF.sort_values('Condition').to_csv("{}/df_{}_4_tappas.tsv".format(args.outDir,genotype),sep="\t",index=False) # Get B73 Amb vs. all other genotype Amb expression matrices and design files B73ambCols = [c for c in mergeDF.columns if ('B73' in c) and ('Amb' in c) and ('flag' not in c) and ('mean' not in c)] for genotype in ["C123","Hp301","Mo17","NC338"]: AmbCols = [c for c in mergeDF.columns if (genotype in c) and ('Amb' in c) and ('flag' not in c) and ('mean' not in c)] mergeDF[['transcript_id']+B73ambCols+AmbCols].rename(columns={'transcript_id':""}).to_csv( "{}/sbys_B73_vs_{}_Amb_4_tappas_{}.tsv".format(args.outDir,genotype,args.inVal),sep="\t",index=False) designDF = pd.DataFrame({'Sample':B73ambCols+AmbCols}) designDF['Condition'] = np.where(designDF['Sample'].str.contains('B73'),"B73", np.where(designDF['Sample'].str.contains(genotype),genotype,"oops")) if len(designDF[designDF['Condition']=="oops"])>0: print("ERROR: Cannot assign Condition in {}...".format(genotype)) sys.exit() else: designDF.sort_values('Condition').to_csv("{}/df_B73_vs_{}_Amb_4_tappas.tsv".format(args.outDir,genotype),sep="\t",index=False) if __name__ == '__main__': # Parse command line arguments global args args = getOptions() main()
lgpl-3.0
stuarteberg/vigra
vigranumpy/examples/non_local_mean_2d_color.py
10
1407
import vigra from vigra import numpy from matplotlib import pylab from time import time import multiprocessing path = "69015.jpg" #path = "12074.jpg" path = "100075.jpg" path = "12003.jpg" data = vigra.impex.readImage(path).astype(numpy.float32) cpus = multiprocessing.cpu_count() print "nCpus",cpus t0 =time() #for c in range(3): # cimg=data[:,:,c] # cimg-=cimg.min() # cimg/=cimg.max() iters = 10 #policy = vigra.filters.RatioPolicy(sigma=10.0, meanRatio=0.95, varRatio=0.5) policy = vigra.filters.NormPolicy(sigma=50.0, meanDist=50, varRatio=0.5) #data-=100.0 res = vigra.filters.nonLocalMean2d(data,policy=policy,searchRadius=5,patchRadius=1,nThreads=cpus+1,stepSize=2,verbose=True,sigmaMean=10.0) for i in range(iters-1): res = vigra.filters.nonLocalMean2d(res,policy=policy,searchRadius=5,patchRadius=2,nThreads=cpus+1,stepSize=2,verbose=True,sigmaMean=10.0) t1 = time() res = vigra.taggedView(res,'xyc') gma = vigra.filters.gaussianGradientMagnitude(res,4.0) gmb = vigra.filters.gaussianGradientMagnitude(data,4.0) #data+=100.0 print t1-t0 imgs = [data,res,gma,gmb] for img in imgs: for c in range(img.shape[2]): cimg=img[:,:,c] cimg-=cimg.min() cimg/=cimg.max() f = pylab.figure() for n, arr in enumerate(imgs): arr = arr.squeeze() f.add_subplot(1, len(imgs), n) pylab.imshow(arr.swapaxes(0,1)) pylab.title('denoised') pylab.show()
mit
kjung/scikit-learn
sklearn/utils/graph.py
289
6239
""" Graph utilities and algorithms Graphs are represented with their adjacency matrices, preferably using sparse matrices. """ # Authors: Aric Hagberg <[email protected]> # Gael Varoquaux <[email protected]> # Jake Vanderplas <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from .validation import check_array from .graph_shortest_path import graph_shortest_path ############################################################################### # Path and connected component analysis. # Code adapted from networkx def single_source_shortest_path_length(graph, source, cutoff=None): """Return the shortest path length from source to all reachable nodes. Returns a dictionary of shortest path lengths keyed by target. Parameters ---------- graph: sparse matrix or 2D array (preferably LIL matrix) Adjacency matrix of the graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search - only paths of length <= cutoff are returned. Examples -------- >>> from sklearn.utils.graph import single_source_shortest_path_length >>> import numpy as np >>> graph = np.array([[ 0, 1, 0, 0], ... [ 1, 0, 1, 0], ... [ 0, 1, 0, 1], ... [ 0, 0, 1, 0]]) >>> single_source_shortest_path_length(graph, 0) {0: 0, 1: 1, 2: 2, 3: 3} >>> single_source_shortest_path_length(np.ones((6, 6)), 2) {0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1} """ if sparse.isspmatrix(graph): graph = graph.tolil() else: graph = sparse.lil_matrix(graph) seen = {} # level (number of hops) when seen in BFS level = 0 # the current level next_level = [source] # dict of nodes to check at next level while next_level: this_level = next_level # advance to next level next_level = set() # and start a new list (fringe) for v in this_level: if v not in seen: seen[v] = level # set the level of vertex v next_level.update(graph.rows[v]) if cutoff is not None and cutoff <= level: break level += 1 return seen # return all path lengths as dictionary if hasattr(sparse, 'connected_components'): connected_components = sparse.connected_components else: from .sparsetools import connected_components ############################################################################### # Graph laplacian def graph_laplacian(csgraph, normed=False, return_diag=False): """ Return the Laplacian matrix of a directed graph. For non-symmetric graphs the out-degree is used in the computation. Parameters ---------- csgraph : array_like or sparse matrix, 2 dimensions compressed-sparse graph, with shape (N, N). normed : bool, optional If True, then compute normalized Laplacian. return_diag : bool, optional If True, then return diagonal as well as laplacian. Returns ------- lap : ndarray The N x N laplacian matrix of graph. diag : ndarray The length-N diagonal of the laplacian matrix. diag is returned only if return_diag is True. Notes ----- The Laplacian matrix of a graph is sometimes referred to as the "Kirchoff matrix" or the "admittance matrix", and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph. For non-symmetric directed graphs, the laplacian is computed using the out-degree of each node. """ if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: raise ValueError('csgraph must be a square matrix or array') if normed and (np.issubdtype(csgraph.dtype, np.int) or np.issubdtype(csgraph.dtype, np.uint)): csgraph = check_array(csgraph, dtype=np.float64, accept_sparse=True) if sparse.isspmatrix(csgraph): return _laplacian_sparse(csgraph, normed=normed, return_diag=return_diag) else: return _laplacian_dense(csgraph, normed=normed, return_diag=return_diag) def _laplacian_sparse(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] if not graph.format == 'coo': lap = (-graph).tocoo() else: lap = -graph.copy() diag_mask = (lap.row == lap.col) if not diag_mask.sum() == n_nodes: # The sparsity pattern of the matrix has holes on the diagonal, # we need to fix that diag_idx = lap.row[diag_mask] diagonal_holes = list(set(range(n_nodes)).difference(diag_idx)) new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))]) new_row = np.concatenate([lap.row, diagonal_holes]) new_col = np.concatenate([lap.col, diagonal_holes]) lap = sparse.coo_matrix((new_data, (new_row, new_col)), shape=lap.shape) diag_mask = (lap.row == lap.col) lap.data[diag_mask] = 0 w = -np.asarray(lap.sum(axis=1)).squeeze() if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap.data /= w[lap.row] lap.data /= w[lap.col] lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype( lap.data.dtype) else: lap.data[diag_mask] = w[lap.row[diag_mask]] if return_diag: return lap, w return lap def _laplacian_dense(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] lap = -np.asarray(graph) # minus sign leads to a copy # set diagonal to zero lap.flat[::n_nodes + 1] = 0 w = -lap.sum(axis=0) if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap /= w lap /= w[:, np.newaxis] lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype) else: lap.flat[::n_nodes + 1] = w.astype(lap.dtype) if return_diag: return lap, w return lap
bsd-3-clause
parantapa/seaborn
seaborn/tests/test_matrix.py
3
32144
import itertools import tempfile import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd from scipy.spatial import distance from scipy.cluster import hierarchy import nose.tools as nt import numpy.testing as npt import pandas.util.testing as pdt from numpy.testing.decorators import skipif from .. import matrix as mat from .. import color_palette from ..external.six.moves import range try: import fastcluster assert fastcluster _no_fastcluster = False except ImportError: _no_fastcluster = True class TestHeatmap(object): rs = np.random.RandomState(sum(map(ord, "heatmap"))) x_norm = rs.randn(4, 8) letters = pd.Series(["A", "B", "C", "D"], name="letters") df_norm = pd.DataFrame(x_norm, index=letters) x_unif = rs.rand(20, 13) df_unif = pd.DataFrame(x_unif) default_kws = dict(vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=False, fmt=".2f", annot_kws=None, cbar=True, cbar_kws=None, mask=None) def test_ndarray_input(self): p = mat._HeatMapper(self.x_norm, **self.default_kws) npt.assert_array_equal(p.plot_data, self.x_norm[::-1]) pdt.assert_frame_equal(p.data, pd.DataFrame(self.x_norm).ix[::-1]) npt.assert_array_equal(p.xticklabels, np.arange(8)) npt.assert_array_equal(p.yticklabels, np.arange(4)[::-1]) nt.assert_equal(p.xlabel, "") nt.assert_equal(p.ylabel, "") def test_df_input(self): p = mat._HeatMapper(self.df_norm, **self.default_kws) npt.assert_array_equal(p.plot_data, self.x_norm[::-1]) pdt.assert_frame_equal(p.data, self.df_norm.ix[::-1]) npt.assert_array_equal(p.xticklabels, np.arange(8)) npt.assert_array_equal(p.yticklabels, ["D", "C", "B", "A"]) nt.assert_equal(p.xlabel, "") nt.assert_equal(p.ylabel, "letters") def test_df_multindex_input(self): df = self.df_norm.copy() index = pd.MultiIndex.from_tuples([("A", 1), ("B", 2), ("C", 3), ("D", 4)], names=["letter", "number"]) index.name = "letter-number" df.index = index p = mat._HeatMapper(df, **self.default_kws) npt.assert_array_equal(p.yticklabels, ["D-4", "C-3", "B-2", "A-1"]) nt.assert_equal(p.ylabel, "letter-number") p = mat._HeatMapper(df.T, **self.default_kws) npt.assert_array_equal(p.xticklabels, ["A-1", "B-2", "C-3", "D-4"]) nt.assert_equal(p.xlabel, "letter-number") def test_mask_input(self): kws = self.default_kws.copy() mask = self.x_norm > 0 kws['mask'] = mask p = mat._HeatMapper(self.x_norm, **kws) plot_data = np.ma.masked_where(mask, self.x_norm) npt.assert_array_equal(p.plot_data, plot_data[::-1]) def test_default_sequential_vlims(self): p = mat._HeatMapper(self.df_unif, **self.default_kws) nt.assert_equal(p.vmin, self.x_unif.min()) nt.assert_equal(p.vmax, self.x_unif.max()) nt.assert_true(not p.divergent) def test_default_diverging_vlims(self): p = mat._HeatMapper(self.df_norm, **self.default_kws) vlim = max(abs(self.x_norm.min()), abs(self.x_norm.max())) nt.assert_equal(p.vmin, -vlim) nt.assert_equal(p.vmax, vlim) nt.assert_true(p.divergent) def test_robust_sequential_vlims(self): kws = self.default_kws.copy() kws["robust"] = True p = mat._HeatMapper(self.df_unif, **kws) nt.assert_equal(p.vmin, np.percentile(self.x_unif, 2)) nt.assert_equal(p.vmax, np.percentile(self.x_unif, 98)) def test_custom_sequential_vlims(self): kws = self.default_kws.copy() kws["vmin"] = 0 kws["vmax"] = 1 p = mat._HeatMapper(self.df_unif, **kws) nt.assert_equal(p.vmin, 0) nt.assert_equal(p.vmax, 1) def test_custom_diverging_vlims(self): kws = self.default_kws.copy() kws["vmin"] = -4 kws["vmax"] = 5 p = mat._HeatMapper(self.df_norm, **kws) nt.assert_equal(p.vmin, -5) nt.assert_equal(p.vmax, 5) def test_array_with_nans(self): x1 = self.rs.rand(10, 10) nulls = np.zeros(10) * np.nan x2 = np.c_[x1, nulls] m1 = mat._HeatMapper(x1, **self.default_kws) m2 = mat._HeatMapper(x2, **self.default_kws) nt.assert_equal(m1.vmin, m2.vmin) nt.assert_equal(m1.vmax, m2.vmax) def test_mask(self): df = pd.DataFrame(data={'a': [1, 1, 1], 'b': [2, np.nan, 2], 'c': [3, 3, np.nan]}) kws = self.default_kws.copy() kws["mask"] = np.isnan(df.values) m = mat._HeatMapper(df, **kws) npt.assert_array_equal(np.isnan(m.plot_data.data), m.plot_data.mask) def test_custom_cmap(self): kws = self.default_kws.copy() kws["cmap"] = "BuGn" p = mat._HeatMapper(self.df_unif, **kws) nt.assert_equal(p.cmap, "BuGn") def test_centered_vlims(self): kws = self.default_kws.copy() kws["center"] = .5 p = mat._HeatMapper(self.df_unif, **kws) nt.assert_true(p.divergent) nt.assert_equal(p.vmax - .5, .5 - p.vmin) def test_tickabels_off(self): kws = self.default_kws.copy() kws['xticklabels'] = False kws['yticklabels'] = False p = mat._HeatMapper(self.df_norm, **kws) nt.assert_equal(p.xticklabels, ['' for _ in range( self.df_norm.shape[1])]) nt.assert_equal(p.yticklabels, ['' for _ in range( self.df_norm.shape[0])]) def test_custom_ticklabels(self): kws = self.default_kws.copy() xticklabels = list('iheartheatmaps'[:self.df_norm.shape[1]]) yticklabels = list('heatmapsarecool'[:self.df_norm.shape[0]]) kws['xticklabels'] = xticklabels kws['yticklabels'] = yticklabels p = mat._HeatMapper(self.df_norm, **kws) nt.assert_equal(p.xticklabels, xticklabels) nt.assert_equal(p.yticklabels, yticklabels[::-1]) def test_custom_ticklabel_interval(self): kws = self.default_kws.copy() kws['xticklabels'] = 2 kws['yticklabels'] = 3 p = mat._HeatMapper(self.df_norm, **kws) nx, ny = self.df_norm.T.shape ystart = (ny - 1) % 3 npt.assert_array_equal(p.xticks, np.arange(0, nx, 2) + .5) npt.assert_array_equal(p.yticks, np.arange(ystart, ny, 3) + .5) npt.assert_array_equal(p.xticklabels, self.df_norm.columns[::2]) npt.assert_array_equal(p.yticklabels, self.df_norm.index[::-1][ystart:ny:3]) def test_heatmap_annotation(self): ax = mat.heatmap(self.df_norm, annot=True, fmt=".1f", annot_kws={"fontsize": 14}) for val, text in zip(self.x_norm[::-1].flat, ax.texts): nt.assert_equal(text.get_text(), "{:.1f}".format(val)) nt.assert_equal(text.get_fontsize(), 14) plt.close("all") def test_heatmap_annotation_with_mask(self): df = pd.DataFrame(data={'a': [1, 1, 1], 'b': [2, np.nan, 2], 'c': [3, 3, np.nan]}) mask = np.isnan(df.values) df_masked = np.ma.masked_where(mask, df) ax = mat.heatmap(df, annot=True, fmt='.1f', mask=mask) nt.assert_equal(len(df_masked[::-1].compressed()), len(ax.texts)) for val, text in zip(df_masked[::-1].compressed(), ax.texts): nt.assert_equal("{:.1f}".format(val), text.get_text()) plt.close("all") def test_heatmap_cbar(self): f = plt.figure() mat.heatmap(self.df_norm) nt.assert_equal(len(f.axes), 2) plt.close(f) f = plt.figure() mat.heatmap(self.df_norm, cbar=False) nt.assert_equal(len(f.axes), 1) plt.close(f) f, (ax1, ax2) = plt.subplots(2) mat.heatmap(self.df_norm, ax=ax1, cbar_ax=ax2) nt.assert_equal(len(f.axes), 2) plt.close(f) def test_heatmap_axes(self): ax = mat.heatmap(self.df_norm) xtl = [int(l.get_text()) for l in ax.get_xticklabels()] nt.assert_equal(xtl, list(self.df_norm.columns)) ytl = [l.get_text() for l in ax.get_yticklabels()] nt.assert_equal(ytl, list(self.df_norm.index[::-1])) nt.assert_equal(ax.get_xlabel(), "") nt.assert_equal(ax.get_ylabel(), "letters") nt.assert_equal(ax.get_xlim(), (0, 8)) nt.assert_equal(ax.get_ylim(), (0, 4)) plt.close("all") def test_heatmap_ticklabel_rotation(self): f, ax = plt.subplots(figsize=(2, 2)) mat.heatmap(self.df_norm, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 0) for t in ax.get_yticklabels(): nt.assert_equal(t.get_rotation(), 90) plt.close(f) df = self.df_norm.copy() df.columns = [str(c) * 10 for c in df.columns] df.index = [i * 10 for i in df.index] f, ax = plt.subplots(figsize=(2, 2)) mat.heatmap(df, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 90) for t in ax.get_yticklabels(): nt.assert_equal(t.get_rotation(), 0) plt.close(f) def test_heatmap_inner_lines(self): c = (0, 0, 1, 1) ax = mat.heatmap(self.df_norm, linewidths=2, linecolor=c) mesh = ax.collections[0] nt.assert_equal(mesh.get_linewidths()[0], 2) nt.assert_equal(tuple(mesh.get_edgecolor()[0]), c) plt.close("all") def test_square_aspect(self): ax = mat.heatmap(self.df_norm, square=True) nt.assert_equal(ax.get_aspect(), "equal") plt.close("all") def test_mask_validation(self): mask = mat._matrix_mask(self.df_norm, None) nt.assert_equal(mask.shape, self.df_norm.shape) nt.assert_equal(mask.values.sum(), 0) with nt.assert_raises(ValueError): bad_array_mask = self.rs.randn(3, 6) > 0 mat._matrix_mask(self.df_norm, bad_array_mask) with nt.assert_raises(ValueError): bad_df_mask = pd.DataFrame(self.rs.randn(4, 8) > 0) mat._matrix_mask(self.df_norm, bad_df_mask) def test_missing_data_mask(self): data = pd.DataFrame(np.arange(4, dtype=np.float).reshape(2, 2)) data.loc[0, 0] = np.nan mask = mat._matrix_mask(data, None) npt.assert_array_equal(mask, [[True, False], [False, False]]) mask_in = np.array([[False, True], [False, False]]) mask_out = mat._matrix_mask(data, mask_in) npt.assert_array_equal(mask_out, [[True, True], [False, False]]) class TestDendrogram(object): rs = np.random.RandomState(sum(map(ord, "dendrogram"))) x_norm = rs.randn(4, 8) + np.arange(8) x_norm = (x_norm.T + np.arange(4)).T letters = pd.Series(["A", "B", "C", "D", "E", "F", "G", "H"], name="letters") df_norm = pd.DataFrame(x_norm, columns=letters) try: import fastcluster x_norm_linkage = fastcluster.linkage_vector(x_norm.T, metric='euclidean', method='single') except ImportError: x_norm_distances = distance.squareform( distance.pdist(x_norm.T, metric='euclidean')) x_norm_linkage = hierarchy.linkage(x_norm_distances, method='single') x_norm_dendrogram = hierarchy.dendrogram(x_norm_linkage, no_plot=True, color_list=['k'], color_threshold=-np.inf) x_norm_leaves = x_norm_dendrogram['leaves'] df_norm_leaves = np.asarray(df_norm.columns[x_norm_leaves]) default_kws = dict(linkage=None, metric='euclidean', method='single', axis=1, label=True, rotate=False) def test_ndarray_input(self): p = mat._DendrogramPlotter(self.x_norm, **self.default_kws) npt.assert_array_equal(p.array.T, self.x_norm) pdt.assert_frame_equal(p.data.T, pd.DataFrame(self.x_norm)) npt.assert_array_equal(p.linkage, self.x_norm_linkage) nt.assert_dict_equal(p.dendrogram, self.x_norm_dendrogram) npt.assert_array_equal(p.reordered_ind, self.x_norm_leaves) npt.assert_array_equal(p.xticklabels, self.x_norm_leaves) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, None) nt.assert_equal(p.ylabel, '') def test_df_input(self): p = mat._DendrogramPlotter(self.df_norm, **self.default_kws) npt.assert_array_equal(p.array.T, np.asarray(self.df_norm)) pdt.assert_frame_equal(p.data.T, self.df_norm) npt.assert_array_equal(p.linkage, self.x_norm_linkage) nt.assert_dict_equal(p.dendrogram, self.x_norm_dendrogram) npt.assert_array_equal(p.xticklabels, np.asarray(self.df_norm.columns)[ self.x_norm_leaves]) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, 'letters') nt.assert_equal(p.ylabel, '') def test_df_multindex_input(self): df = self.df_norm.copy() index = pd.MultiIndex.from_tuples([("A", 1), ("B", 2), ("C", 3), ("D", 4)], names=["letter", "number"]) index.name = "letter-number" df.index = index kws = self.default_kws.copy() kws['label'] = True p = mat._DendrogramPlotter(df.T, **kws) xticklabels = ["A-1", "B-2", "C-3", "D-4"] xticklabels = [xticklabels[i] for i in p.reordered_ind] npt.assert_array_equal(p.xticklabels, xticklabels) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, "letter-number") def test_axis0_input(self): kws = self.default_kws.copy() kws['axis'] = 0 p = mat._DendrogramPlotter(self.df_norm.T, **kws) npt.assert_array_equal(p.array, np.asarray(self.df_norm.T)) pdt.assert_frame_equal(p.data, self.df_norm.T) npt.assert_array_equal(p.linkage, self.x_norm_linkage) nt.assert_dict_equal(p.dendrogram, self.x_norm_dendrogram) npt.assert_array_equal(p.xticklabels, self.df_norm_leaves) npt.assert_array_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, 'letters') nt.assert_equal(p.ylabel, '') def test_rotate_input(self): kws = self.default_kws.copy() kws['rotate'] = True p = mat._DendrogramPlotter(self.df_norm, **kws) npt.assert_array_equal(p.array.T, np.asarray(self.df_norm)) pdt.assert_frame_equal(p.data.T, self.df_norm) npt.assert_array_equal(p.xticklabels, []) npt.assert_array_equal(p.yticklabels, self.df_norm_leaves) nt.assert_equal(p.xlabel, '') nt.assert_equal(p.ylabel, 'letters') def test_rotate_axis0_input(self): kws = self.default_kws.copy() kws['rotate'] = True kws['axis'] = 0 p = mat._DendrogramPlotter(self.df_norm.T, **kws) npt.assert_array_equal(p.reordered_ind, self.x_norm_leaves) def test_custom_linkage(self): kws = self.default_kws.copy() try: import fastcluster linkage = fastcluster.linkage_vector(self.x_norm, method='single', metric='euclidean') except ImportError: d = distance.squareform(distance.pdist(self.x_norm, metric='euclidean')) linkage = hierarchy.linkage(d, method='single') dendrogram = hierarchy.dendrogram(linkage, no_plot=True, color_list=['k'], color_threshold=-np.inf) kws['linkage'] = linkage p = mat._DendrogramPlotter(self.df_norm, **kws) npt.assert_array_equal(p.linkage, linkage) nt.assert_dict_equal(p.dendrogram, dendrogram) def test_label_false(self): kws = self.default_kws.copy() kws['label'] = False p = mat._DendrogramPlotter(self.df_norm, **kws) nt.assert_equal(p.xticks, []) nt.assert_equal(p.yticks, []) nt.assert_equal(p.xticklabels, []) nt.assert_equal(p.yticklabels, []) nt.assert_equal(p.xlabel, "") nt.assert_equal(p.ylabel, "") def test_linkage_scipy(self): p = mat._DendrogramPlotter(self.x_norm, **self.default_kws) scipy_linkage = p._calculate_linkage_scipy() from scipy.spatial import distance from scipy.cluster import hierarchy dists = distance.squareform(distance.pdist(self.x_norm.T, metric=self.default_kws[ 'metric'])) linkage = hierarchy.linkage(dists, method=self.default_kws['method']) npt.assert_array_equal(scipy_linkage, linkage) @skipif(_no_fastcluster) def test_fastcluster_other_method(self): import fastcluster kws = self.default_kws.copy() kws['method'] = 'average' linkage = fastcluster.linkage(self.x_norm.T, method='average', metric='euclidean') p = mat._DendrogramPlotter(self.x_norm, **kws) npt.assert_array_equal(p.linkage, linkage) @skipif(_no_fastcluster) def test_fastcluster_non_euclidean(self): import fastcluster kws = self.default_kws.copy() kws['metric'] = 'cosine' kws['method'] = 'average' linkage = fastcluster.linkage(self.x_norm.T, method=kws['method'], metric=kws['metric']) p = mat._DendrogramPlotter(self.x_norm, **kws) npt.assert_array_equal(p.linkage, linkage) def test_dendrogram_plot(self): d = mat.dendrogram(self.x_norm, **self.default_kws) ax = plt.gca() d.xmin, d.xmax = ax.get_xlim() xmax = min(map(min, d.X)) + max(map(max, d.X)) nt.assert_equal(d.xmin, 0) nt.assert_equal(d.xmax, xmax) nt.assert_equal(len(ax.get_lines()), len(d.X)) nt.assert_equal(len(ax.get_lines()), len(d.Y)) plt.close('all') def test_dendrogram_rotate(self): kws = self.default_kws.copy() kws['rotate'] = True d = mat.dendrogram(self.x_norm, **kws) ax = plt.gca() d.ymin, d.ymax = ax.get_ylim() ymax = min(map(min, d.Y)) + max(map(max, d.Y)) nt.assert_equal(d.ymin, 0) nt.assert_equal(d.ymax, ymax) plt.close('all') def test_dendrogram_ticklabel_rotation(self): f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(self.df_norm, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 0) plt.close(f) df = self.df_norm.copy() df.columns = [str(c) * 10 for c in df.columns] df.index = [i * 10 for i in df.index] f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(df, ax=ax) for t in ax.get_xticklabels(): nt.assert_equal(t.get_rotation(), 90) plt.close(f) f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(df.T, axis=0, rotate=True) for t in ax.get_yticklabels(): nt.assert_equal(t.get_rotation(), 0) plt.close(f) class TestClustermap(object): rs = np.random.RandomState(sum(map(ord, "clustermap"))) x_norm = rs.randn(4, 8) + np.arange(8) x_norm = (x_norm.T + np.arange(4)).T letters = pd.Series(["A", "B", "C", "D", "E", "F", "G", "H"], name="letters") df_norm = pd.DataFrame(x_norm, columns=letters) try: import fastcluster x_norm_linkage = fastcluster.linkage_vector(x_norm.T, metric='euclidean', method='single') except ImportError: x_norm_distances = distance.squareform( distance.pdist(x_norm.T, metric='euclidean')) x_norm_linkage = hierarchy.linkage(x_norm_distances, method='single') x_norm_dendrogram = hierarchy.dendrogram(x_norm_linkage, no_plot=True, color_list=['k'], color_threshold=-np.inf) x_norm_leaves = x_norm_dendrogram['leaves'] df_norm_leaves = np.asarray(df_norm.columns[x_norm_leaves]) default_kws = dict(pivot_kws=None, z_score=None, standard_scale=None, figsize=None, row_colors=None, col_colors=None) default_plot_kws = dict(metric='euclidean', method='average', colorbar_kws=None, row_cluster=True, col_cluster=True, row_linkage=None, col_linkage=None) row_colors = color_palette('Set2', df_norm.shape[0]) col_colors = color_palette('Dark2', df_norm.shape[1]) def test_ndarray_input(self): cm = mat.ClusterGrid(self.x_norm, **self.default_kws) pdt.assert_frame_equal(cm.data, pd.DataFrame(self.x_norm)) nt.assert_equal(len(cm.fig.axes), 4) nt.assert_equal(cm.ax_row_colors, None) nt.assert_equal(cm.ax_col_colors, None) plt.close('all') def test_df_input(self): cm = mat.ClusterGrid(self.df_norm, **self.default_kws) pdt.assert_frame_equal(cm.data, self.df_norm) plt.close('all') def test_corr_df_input(self): df = self.df_norm.corr() cg = mat.ClusterGrid(df, **self.default_kws) cg.plot(**self.default_plot_kws) diag = cg.data2d.values[np.diag_indices_from(cg.data2d)] npt.assert_array_equal(diag, np.ones(cg.data2d.shape[0])) plt.close('all') def test_pivot_input(self): df_norm = self.df_norm.copy() df_norm.index.name = 'numbers' df_long = pd.melt(df_norm.reset_index(), var_name='letters', id_vars='numbers') kws = self.default_kws.copy() kws['pivot_kws'] = dict(index='numbers', columns='letters', values='value') cm = mat.ClusterGrid(df_long, **kws) pdt.assert_frame_equal(cm.data2d, df_norm) plt.close('all') def test_colors_input(self): kws = self.default_kws.copy() kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.ClusterGrid(self.df_norm, **kws) npt.assert_array_equal(cm.row_colors, self.row_colors) npt.assert_array_equal(cm.col_colors, self.col_colors) nt.assert_equal(len(cm.fig.axes), 6) plt.close('all') def test_nested_colors_input(self): kws = self.default_kws.copy() row_colors = [self.row_colors, self.row_colors] col_colors = [self.col_colors, self.col_colors] kws['row_colors'] = row_colors kws['col_colors'] = col_colors cm = mat.ClusterGrid(self.df_norm, **kws) npt.assert_array_equal(cm.row_colors, row_colors) npt.assert_array_equal(cm.col_colors, col_colors) nt.assert_equal(len(cm.fig.axes), 6) plt.close('all') def test_colors_input_custom_cmap(self): kws = self.default_kws.copy() kws['cmap'] = mpl.cm.PRGn kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.clustermap(self.df_norm, **kws) npt.assert_array_equal(cm.row_colors, self.row_colors) npt.assert_array_equal(cm.col_colors, self.col_colors) nt.assert_equal(len(cm.fig.axes), 6) plt.close('all') def test_z_score(self): df = self.df_norm.copy() df = (df - df.mean()) / df.var() kws = self.default_kws.copy() kws['z_score'] = 1 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) plt.close('all') def test_z_score_axis0(self): df = self.df_norm.copy() df = df.T df = (df - df.mean()) / df.var() df = df.T kws = self.default_kws.copy() kws['z_score'] = 0 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) plt.close('all') def test_standard_scale(self): df = self.df_norm.copy() df = (df - df.min()) / (df.max() - df.min()) kws = self.default_kws.copy() kws['standard_scale'] = 1 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) plt.close('all') def test_standard_scale_axis0(self): df = self.df_norm.copy() df = df.T df = (df - df.min()) / (df.max() - df.min()) df = df.T kws = self.default_kws.copy() kws['standard_scale'] = 0 cm = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cm.data2d, df) plt.close('all') def test_z_score_standard_scale(self): kws = self.default_kws.copy() kws['z_score'] = True kws['standard_scale'] = True with nt.assert_raises(ValueError): cm = mat.ClusterGrid(self.df_norm, **kws) plt.close('all') def test_color_list_to_matrix_and_cmap(self): matrix, cmap = mat.ClusterGrid.color_list_to_matrix_and_cmap( self.col_colors, self.x_norm_leaves) colors_set = set(self.col_colors) col_to_value = dict((col, i) for i, col in enumerate(colors_set)) matrix_test = np.array([col_to_value[col] for col in self.col_colors])[self.x_norm_leaves] shape = len(self.col_colors), 1 matrix_test = matrix_test.reshape(shape) cmap_test = mpl.colors.ListedColormap(colors_set) npt.assert_array_equal(matrix, matrix_test) npt.assert_array_equal(cmap.colors, cmap_test.colors) plt.close('all') def test_nested_color_list_to_matrix_and_cmap(self): colors = [self.col_colors, self.col_colors] matrix, cmap = mat.ClusterGrid.color_list_to_matrix_and_cmap( colors, self.x_norm_leaves) all_colors = set(itertools.chain(*colors)) color_to_value = dict((col, i) for i, col in enumerate(all_colors)) matrix_test = np.array( [color_to_value[c] for color in colors for c in color]) shape = len(colors), len(colors[0]) matrix_test = matrix_test.reshape(shape) matrix_test = matrix_test[:, self.x_norm_leaves] matrix_test = matrix_test.T cmap_test = mpl.colors.ListedColormap(all_colors) npt.assert_array_equal(matrix, matrix_test) npt.assert_array_equal(cmap.colors, cmap_test.colors) plt.close('all') def test_color_list_to_matrix_and_cmap_axis1(self): matrix, cmap = mat.ClusterGrid.color_list_to_matrix_and_cmap( self.col_colors, self.x_norm_leaves, axis=1) colors_set = set(self.col_colors) col_to_value = dict((col, i) for i, col in enumerate(colors_set)) matrix_test = np.array([col_to_value[col] for col in self.col_colors])[self.x_norm_leaves] shape = 1, len(self.col_colors) matrix_test = matrix_test.reshape(shape) cmap_test = mpl.colors.ListedColormap(colors_set) npt.assert_array_equal(matrix, matrix_test) npt.assert_array_equal(cmap.colors, cmap_test.colors) plt.close('all') def test_savefig(self): # Not sure if this is the right way to test.... cm = mat.ClusterGrid(self.df_norm, **self.default_kws) cm.plot(**self.default_plot_kws) cm.savefig(tempfile.NamedTemporaryFile(), format='png') plt.close('all') def test_plot_dendrograms(self): cm = mat.clustermap(self.df_norm, **self.default_kws) nt.assert_equal(len(cm.ax_row_dendrogram.get_lines()), len(cm.dendrogram_row.X)) nt.assert_equal(len(cm.ax_col_dendrogram.get_lines()), len(cm.dendrogram_col.X)) data2d = self.df_norm.iloc[cm.dendrogram_row.reordered_ind, cm.dendrogram_col.reordered_ind] pdt.assert_frame_equal(cm.data2d, data2d) plt.close('all') def test_cluster_false(self): kws = self.default_kws.copy() kws['row_cluster'] = False kws['col_cluster'] = False cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(len(cm.ax_row_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_col_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_yticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_yticks()), 0) pdt.assert_frame_equal(cm.data2d, self.df_norm) plt.close('all') def test_row_col_colors(self): kws = self.default_kws.copy() kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(len(cm.ax_row_colors.collections), 1) nt.assert_equal(len(cm.ax_col_colors.collections), 1) plt.close('all') def test_cluster_false_row_col_colors(self): kws = self.default_kws.copy() kws['row_cluster'] = False kws['col_cluster'] = False kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cm = mat.clustermap(self.df_norm, **kws) nt.assert_equal(len(cm.ax_row_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_col_dendrogram.lines), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_row_dendrogram.get_yticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_xticks()), 0) nt.assert_equal(len(cm.ax_col_dendrogram.get_yticks()), 0) nt.assert_equal(len(cm.ax_row_colors.collections), 1) nt.assert_equal(len(cm.ax_col_colors.collections), 1) pdt.assert_frame_equal(cm.data2d, self.df_norm) plt.close('all') def test_mask_reorganization(self): kws = self.default_kws.copy() kws["mask"] = self.df_norm > 0 g = mat.clustermap(self.df_norm, **kws) npt.assert_array_equal(g.data2d.index, g.mask.index) npt.assert_array_equal(g.data2d.columns, g.mask.columns) npt.assert_array_equal(g.mask.index, self.df_norm.index[ g.dendrogram_row.reordered_ind]) npt.assert_array_equal(g.mask.columns, self.df_norm.columns[ g.dendrogram_col.reordered_ind]) plt.close("all") def test_ticklabel_reorganization(self): kws = self.default_kws.copy() xtl = np.arange(self.df_norm.shape[1]) kws["xticklabels"] = list(xtl) ytl = self.letters.ix[:self.df_norm.shape[0]] kws["yticklabels"] = ytl g = mat.clustermap(self.df_norm, **kws) xtl_actual = [t.get_text() for t in g.ax_heatmap.get_xticklabels()] ytl_actual = [t.get_text() for t in g.ax_heatmap.get_yticklabels()] xtl_want = xtl[g.dendrogram_col.reordered_ind].astype("<U1") ytl_want = ytl[g.dendrogram_row.reordered_ind].astype("<U1")[::-1] npt.assert_array_equal(xtl_actual, xtl_want) npt.assert_array_equal(ytl_actual, ytl_want) plt.close("all")
bsd-3-clause
ephes/scikit-learn
sklearn/utils/tests/test_utils.py
215
8100
import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import pinv2 from itertools import chain from sklearn.utils.testing import (assert_equal, assert_raises, assert_true, assert_almost_equal, assert_array_equal, SkipTest, assert_raises_regex) from sklearn.utils import check_random_state from sklearn.utils import deprecated from sklearn.utils import resample from sklearn.utils import safe_mask from sklearn.utils import column_or_1d from sklearn.utils import safe_indexing from sklearn.utils import shuffle from sklearn.utils import gen_even_slices from sklearn.utils.extmath import pinvh from sklearn.utils.mocking import MockDataFrame def test_make_rng(): # Check the check_random_state utility function behavior assert_true(check_random_state(None) is np.random.mtrand._rand) assert_true(check_random_state(np.random) is np.random.mtrand._rand) rng_42 = np.random.RandomState(42) assert_true(check_random_state(42).randint(100) == rng_42.randint(100)) rng_42 = np.random.RandomState(42) assert_true(check_random_state(rng_42) is rng_42) rng_42 = np.random.RandomState(42) assert_true(check_random_state(43).randint(100) != rng_42.randint(100)) assert_raises(ValueError, check_random_state, "some invalid seed") def test_resample_noarg(): # Border case not worth mentioning in doctests assert_true(resample() is None) def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from http://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham(object): SPAM = 1 ham = Ham() assert_true(hasattr(ham, "SPAM")) assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) def test_resample_value_errors(): # Check that invalid arguments yield ValueError assert_raises(ValueError, resample, [0], [0, 1]) assert_raises(ValueError, resample, [0, 1], [0, 1], n_samples=3) assert_raises(ValueError, resample, [0, 1], [0, 1], meaning_of_life=42) def test_safe_mask(): random_state = check_random_state(0) X = random_state.rand(5, 4) X_csr = sp.csr_matrix(X) mask = [False, False, True, True, True] mask = safe_mask(X, mask) assert_equal(X[mask].shape[0], 3) mask = safe_mask(X_csr, mask) assert_equal(X_csr[mask].shape[0], 3) def test_pinvh_simple_real(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]], dtype=np.float64) a = np.dot(a, a.T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_pinvh_nonpositive(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64) a = np.dot(a, a.T) u, s, vt = np.linalg.svd(a) s[0] *= -1 a = np.dot(u * s, vt) # a is now symmetric non-positive and singular a_pinv = pinv2(a) a_pinvh = pinvh(a) assert_almost_equal(a_pinv, a_pinvh) def test_pinvh_simple_complex(): a = (np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) + 1j * np.array([[10, 8, 7], [6, 5, 4], [3, 2, 1]])) a = np.dot(a, a.conj().T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_column_or_1d(): EXAMPLES = [ ("binary", ["spam", "egg", "spam"]), ("binary", [0, 1, 0, 1]), ("continuous", np.arange(10) / 20.), ("multiclass", [1, 2, 3]), ("multiclass", [0, 1, 2, 2, 0]), ("multiclass", [[1], [2], [3]]), ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("continuous-multioutput", np.arange(30).reshape((-1, 3))), ] for y_type, y in EXAMPLES: if y_type in ["binary", 'multiclass', "continuous"]: assert_array_equal(column_or_1d(y), np.ravel(y)) else: assert_raises(ValueError, column_or_1d, y) def test_safe_indexing(): X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] inds = np.array([1, 2]) X_inds = safe_indexing(X, inds) X_arrays = safe_indexing(np.array(X), inds) assert_array_equal(np.array(X_inds), X_arrays) assert_array_equal(np.array(X_inds), np.array(X)[inds]) def test_safe_indexing_pandas(): try: import pandas as pd except ImportError: raise SkipTest("Pandas not found") X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = pd.DataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) # fun with read-only data in dataframes # this happens in joblib memmapping X.setflags(write=False) X_df_readonly = pd.DataFrame(X) with warnings.catch_warnings(record=True): X_df_ro_indexed = safe_indexing(X_df_readonly, inds) assert_array_equal(np.array(X_df_ro_indexed), X_indexed) def test_safe_indexing_mock_pandas(): X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = MockDataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_shuffle_on_ndim_equals_three(): def to_tuple(A): # to make the inner arrays hashable return tuple(tuple(tuple(C) for C in B) for B in A) A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) S = set(to_tuple(A)) shuffle(A) # shouldn't raise a ValueError for dim = 3 assert_equal(set(to_tuple(A)), S) def test_shuffle_dont_convert_to_array(): # Check that shuffle does not try to convert to numpy arrays with float # dtypes can let any indexable datastructure pass-through. a = ['a', 'b', 'c'] b = np.array(['a', 'b', 'c'], dtype=object) c = [1, 2, 3] d = MockDataFrame(np.array([['a', 0], ['b', 1], ['c', 2]], dtype=object)) e = sp.csc_matrix(np.arange(6).reshape(3, 2)) a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0) assert_equal(a_s, ['c', 'b', 'a']) assert_equal(type(a_s), list) assert_array_equal(b_s, ['c', 'b', 'a']) assert_equal(b_s.dtype, object) assert_equal(c_s, [3, 2, 1]) assert_equal(type(c_s), list) assert_array_equal(d_s, np.array([['c', 2], ['b', 1], ['a', 0]], dtype=object)) assert_equal(type(d_s), MockDataFrame) assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]])) def test_gen_even_slices(): # check that gen_even_slices contains all samples some_range = range(10) joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)])) assert_array_equal(some_range, joined_range) # check that passing negative n_chunks raises an error slices = gen_even_slices(10, -1) assert_raises_regex(ValueError, "gen_even_slices got n_packs=-1, must be" " >=1", next, slices)
bsd-3-clause
mjsauvinen/P4UL
pyRaster/processDomain.py
1
3976
#!/usr/bin/env python3 import sys import argparse import numpy as np from mapTools import * from utilities import filesFromList, writeLog from plotTools import addImagePlot, addScatterPlot import matplotlib.pyplot as plt ''' Description: Author: Mikko Auvinen [email protected] Finnish Meteorological Institute ''' #==========================================================# parser = argparse.ArgumentParser(prog='processDomain.py') parser.add_argument("-f", "--filename",type=str, help="Name of the comp domain data file.") parser.add_argument("-fo", "--fileout",type=str, help="Name of output Palm topography file.") parser.add_argument("-i0","--iZero", help="Pixel ids [N,E] for the zero level.",\ type=int,nargs=2,default=[None,None]) parser.add_argument("-na", "--nansAbove", type=float, default=None,\ help="Replace values above given threshold by <nans> (i.e. fill values). Default=None") parser.add_argument("-nb", "--nansBelow", type=float, default=None,\ help="Replace values below given threshold by <nans> (i.e. fill values). Default=None") parser.add_argument("-mw","--mrgnW", help="Zero or non-zero margin widths as ratios (0-1): [L,R,B,T]",\ type=float,nargs=4,default=[None,None,None,None]) parser.add_argument("-mr","--mrgnR", help="Margin ramp widths as ratios (0-1): [L,R,B,T]",\ type=float,nargs=4,default=[None,None,None,None]) parser.add_argument("-mh","--mrgnH", help="Margins heights: [L,R,B,T]. Default=0",\ type=float,nargs=4,default=[0.,0.,0.,0.]) helpFlt = ''' Filter type and its associated number. Available filters: median, percentile, rank, gaussian, local. Entering \"user, num\" allows the user to specify <num> different filters consecutively. Example entry: median 5''' parser.add_argument("-ft","--filter",type=str,nargs=2,default=[None,None], help=helpFlt) parser.add_argument("-rx","--rmax", type=float, default=None,\ help="Recover peaks (after filtering) above given value.") parser.add_argument("-hx","--hmax", type=float, default=None,\ help="Maximum allowable height.") parser.add_argument("-p", "--printOn", action="store_true", default=False,\ help="Print the resulting raster data.") parser.add_argument("-pp", "--printOnly", help="Only print the resulting data. Don't save.",\ action="store_true", default=False) args = parser.parse_args() writeLog( parser, args, args.printOnly ) #==========================================================# filename= args.filename fileout = args.fileout na = args.nansAbove nb = args.nansBelow i0 = args.iZero # Rename mw = args.mrgnW mr = args.mrgnR mh = args.mrgnH flt = args.filter hmax = args.hmax rmax = args.rmax printOn = args.printOn printOnly = args.printOnly # Test comment # Another one if( flt[0] == None): fltStr = ' ' else: fltStr = flt[0]+'-filtered: ' # Read the raster tile to be processed. Rdict = readNumpyZTile(filename) R = Rdict['R'] Rdims = np.array(np.shape(R)) ROrig = Rdict['GlobOrig'] print(' Rdims = {} '.format(Rdims)) print(' ROrig = {} '.format(ROrig)) # Set the zero level according to the given pixel value. if(i0.count(None) == 0): print(' Zero Level: {} '.format(R[i0[0],i0[1]])) R0 = R[i0[0],i0[1]] R -= R0 R[R<0.] = 0. R = applyMargins( R , mw, mr, mh ) # Apply desired filters. Rf = np.zeros( np.shape(R) , float) Rf = filterAndScale(Rf, R, flt ) # Apply nans where fill values are desired. Rf = replaceByNans( Rf, na, nb) if( rmax is not None ): idv = (Rf > rmax) Rf[idv] = np.maximum( Rf[idv], R[idv] ) if( hmax ): Rf = np.minimum( hmax , Rf ) Rdict['R'] = Rf; Rdict['GlobOrig'] = ROrig if( not args.printOnly ): saveTileAsNumpyZ( fileout, Rdict ) if( args.printOn or args.printOnly ): figDims = 13.*(Rdims[::-1].astype(float)/np.max(Rdims)) #print('Sum = {}'.format(np.sum(Rf))) fig = plt.figure(num=1, figsize=figDims) fig = addImagePlot( fig, Rf, fltStr+fileout ) plt.show() R = Rf = None
mit
simvisage/aramis_cdt
aramis_cdt/aramis_cdt.py
1
17920
#------------------------------------------------------------------------- # # Copyright (c) 2013 # IMB, RWTH Aachen University, # ISM, Brno University of Technology # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in the AramisCDT top directory "license.txt" and may be # redistributed only under the conditions described in the aforementioned # license. # # Thanks for using Simvisage open source! # #------------------------------------------------------------------------- from traits.api import \ HasTraits, Float, Property, cached_property, Int, Array, Bool, \ Instance, DelegatesTo, Button, List, Event, on_trait_change from traitsui.api import View, Item, Group, UItem import numpy as np import os import platform import time if platform.system() == 'Linux': sysclock = time.time elif platform.system() == 'Windows': sysclock = time.clock from aramis_info import AramisInfo from aramis_data import AramisFieldData class AramisCDT(HasTraits): '''Crack Detection Tool for detection of cracks, etc. from Aramis data. ''' aramis_info = Instance(AramisInfo, params_changed=True) aramis_data = Instance(AramisFieldData, params_changed=True) number_of_steps = DelegatesTo('aramis_info') crack_detection_step = Int(params_changed=True) '''Index of the step used to determine the crack pattern ''' #========================================================================= # Thresholds #========================================================================= d_ux_threshold = Float(0.0, params_changed=True) '''The first derivative of displacement in x-direction threshold ''' dd_ux_threshold = Float(0.0, params_changed=True) '''The second derivative of displacement in x-direction threshold ''' ddd_ux_threshold = Float(-1e-4, params_changed=True) '''The third derivative of displacement in x-direction threshold ''' d_ux_avg_threshold = Float(0.0, params_changed=True) '''The first derivative of displacement in x-direction threshold ''' dd_ux_avg_threshold = Float(0.0, params_changed=True) '''Average of he second derivative of displacement in x-direction threshold ''' ddd_ux_avg_threshold = Float(-1e-4, params_changed=True) '''Average of the third derivative of displacement in x-direction threshold ''' #========================================================================= # Crack detection #========================================================================= crack_filter = Property( Array, depends_on='aramis_data.+params_changed, +params_changed') @cached_property def _get_crack_filter(self): dd_ux = self.aramis_data.dd_ux ddd_ux = self.aramis_data.ddd_ux crack_filter = ((dd_ux[:, 1:] * dd_ux[:, :-1] < self.dd_ux_threshold) * ((ddd_ux[:, 1:] + ddd_ux[:, :-1]) / 2.0 < self.ddd_ux_threshold)) # print "number of cracks determined by 'crack_filter': ", np.sum(crack_filter, axis=1) return crack_filter number_of_subcracks = Property( Int, depends_on='aramis_data.+params_changed, +params_changed') '''Number of sub-cracks ''' def _get_number_of_subcracks(self): return np.sum(self.crack_filter) crack_filter_avg = Property( Array, depends_on='aramis_data.+params_changed, +params_changed') @cached_property def _get_crack_filter_avg(self): dd_ux_avg = self.aramis_data.dd_ux_avg ddd_ux_avg = self.aramis_data.ddd_ux_avg crack_filter_avg = ((dd_ux_avg[1:] * dd_ux_avg[:-1] < self.dd_ux_avg_threshold) * ((ddd_ux_avg[1:] + ddd_ux_avg[:-1]) / 2.0 < self.ddd_ux_avg_threshold)) print 'crack detection step', self.crack_detection_step print "number of cracks determined by 'crack_filter_avg': ", np.sum(crack_filter_avg) return crack_filter_avg number_of_cracks_avg = Property( Int, depends_on='aramis_data.+params_changed, +params_changed') '''Number of cracks using averaging ''' def _get_number_of_cracks_avg(self): return np.sum(self.crack_filter_avg) crack_spacing_avg = Property( Array, depends_on='aramis_data.+params_changed, +params_changed') @cached_property def _get_crack_spacing_avg(self): n_cr_avg = np.sum(self.crack_filter_avg) if n_cr_avg > 0: s_cr_avg = self.aramis_data.lx_0 / n_cr_avg # print "average crack spacing [mm]: %.1f" % (s_cr_avg) return s_cr_avg crack_arr = Property( Array, depends_on='aramis_data.+params_changed, +params_changed') @cached_property def _get_crack_arr(self): # TODO: why #from aramis_data import get_d2 #print '#'*50, np.nanmax(get_d2(self.aramis_data.ux_arr, self.aramis_data.integ_radius)) #return (get_d2(self.aramis_data.ux_arr, self.aramis_data.integ_radius))[np.where(self.crack_filter)] #return self.aramis_data.d_ux[np.where(self.crack_filter)] crack_arr = self.aramis_data.delta_ux_arr[np.where(self.crack_filter)] return crack_arr crack_arr_mean = Property( Float, depends_on='aramis_data.+params_changed, +params_changed') def _get_crack_arr_mean(self): return self.crack_arr.mean() crack_arr_std = Property( Float, depends_on='aramis_data.+params_changed, +params_changed') def _get_crack_arr_std(self): return self.crack_arr.std() crack_avg_arr = Property( Array, depends_on='aramis_data.+params_changed, +params_changed') @cached_property def _get_crack_avg_arr(self): return self.aramis_data.d_ux_avg[np.where(self.crack_filter_avg)] crack_field_arr = Property( Array, depends_on='aramis_data.+params_changed, +params_changed') @cached_property def _get_crack_field_arr(self): cf_w = np.zeros_like(self.aramis_data.d_ux) cf_w[np.where(self.crack_filter)] = self.crack_arr # look at neighboring entries of crack_filter indices for higher displacement jumps # (=local maximum of 'delta_ux_arr' around indices detected by 'crack_filter') # # delta_ux_arr_max = self.aramis_data.delta_ux_arr[np.where(self.crack_filter)] # y_idx, x_idx = np.where(self.crack_filter) # for i in range(self.aramis_data.integ_radius_crack + 1): # x_idx_ = np.minimum(x_idx + i, self.aramis_data.right_i - self.aramis_data.left_i - 1) # delta_ux_arr_max_ = np.maximum(delta_ux_arr_max, self.aramis_data.delta_ux_arr[(y_idx, x_idx_)]) # for i in range(self.aramis_data.integ_radius_crack + 1): # x_idx_ = np.maximum(x_idx - i, self.aramis_data.left_i) # delta_ux_arr_max_ = np.maximum(delta_ux_arr_max, self.aramis_data.delta_ux_arr[(y_idx, x_idx_)]) # cf_w[np.where(self.crack_filter)] = delta_ux_arr_max_ return cf_w #========================================================================= # Crack detection in time #========================================================================= number_of_cracks_t = Array '''Number of cracks in time ''' number_of_missing_facets_t = List '''Number of missing facets in time (missing, unidentified, not satisfying conditions, destroyed by crack) ''' control_strain_t = Array() '''Control strain measured in the middle of y ''' init_step_avg_lst = List() '''List of steps (list length is equal to number of cracks at the crack_detection_step) when the crack initiate ''' init_step_lst = List() crack_width_avg_t = Array crack_stress_t = Array number_of_cracks_t_analyse = Bool(True) def __number_of_cracks_t(self): self.number_of_cracks_t = np.append(self.number_of_cracks_t, self.number_of_cracks_avg) crack_detect_mask_avg = Property(Array, depends_on='crack_detection_step') '''Mask of cracks identified in crack_detection_step and used for backward identification of the crack initialization. ''' @cached_property def _get_crack_detect_mask_avg(self): self.aramis_data.current_step = self.crack_detection_step return self.crack_filter_avg crack_detect_mask = Property(Array, depends_on='crack_detection_step') '''Mask of cracks identified in crack_detection_step and used for backward identification of the crack initialization. ''' @cached_property def _get_crack_detect_mask(self): self.aramis_data.current_step = self.crack_detection_step return self.crack_filter run_t = Button('Run in time') '''Run analysis of all steps in time ''' def _run_t_fired(self): import matplotlib.pyplot as plt # x = self.aramis_data.step_times # self.aramis_cdt.control_strain_t force = self.aramis_data.ad_channels_arr[:, 1] x = [] for step_idx in self.aramis_info.step_list: self.aramis_data.current_step = step_idx x.append((self.aramis_data.ux_arr[:, -5] - self.aramis_data.ux_arr[:, 5]) / (self.aramis_data.x_arr_0[:, -5] - self.aramis_data.x_arr_0[:, 5])) x = np.array(x) # plt.plot(x, force, color='grey') x = [] for step_idx in self.aramis_info.step_list: self.aramis_data.current_step = step_idx x.append(np.mean((self.aramis_data.ux_arr[:, -5] - self.aramis_data.ux_arr[:, 5])) / np.mean((self.aramis_data.x_arr_0[:, -5] - self.aramis_data.x_arr_0[:, 5]))) x = np.array(x) # plt.plot(x, force, 'k-', linewidth=3) self.control_strain_t = x self.force = force # x = [] # for step_idx in self.aramis_info.step_list: # self.aramis_data.current_step = step_idx # x.append((self.aramis_data.ux_arr[0, -5] - self.aramis_data.ux_arr[0, 5]) / # (self.aramis_data.x_arr_0[0, -5] - self.aramis_data.x_arr_0[1, 5])) # x = np.array(x) # plt.plot(x, force, color='red') # # x = [] # for step_idx in self.aramis_info.step_list: # self.aramis_data.current_step = step_idx # x.append((self.aramis_data.ux_arr[-1, -5] - self.aramis_data.ux_arr[-1, 5]) / # (self.aramis_data.x_arr_0[-1, -5] - self.aramis_data.x_arr_0[-1, 5])) # x = np.array(x) # plt.plot(x, force, color='red') # plt.plot(x[self.init_step_avg_lst], force[ # self.init_step_avg_lst], 'go', ms=6) # plt.show() # data_to_save = np.vstack((self.aramis_data.step_times, x, force)).T # np.savetxt('%s_LD.txt' % self.aramis_info.specimen_name, data_to_save, delimiter=';', # header='time; strain; force') ''' start_step_idx = self.aramis_data.current_step self.number_of_cracks_t = np.array([]) self.number_of_missing_facets_t = [] self.control_strain_t = np.array([]) for step_idx in self.aramis_info.step_list: self.aramis_data.current_step = step_idx if self.number_of_cracks_t_analyse: self.__number_of_cracks_t() self.control_strain_t = np.append(self.control_strain_t, (self.aramis_data.ux_arr[20, -10] - self.aramis_data.ux_arr[20, 10]) / (self.aramis_data.x_arr_0[20, -10] - self.aramis_data.x_arr_0[20, 10])) self.number_of_missing_facets_t.append(np.sum(np.isnan(self.aramis_data.data_array).astype(int))) self.aramis_data.current_step = start_step_idx ''' run_back = Button('Run back in time') '''Run analysis of all steps in time ''' def _run_back_fired(self): step = self.crack_detection_step crack_step_avg = np.zeros_like(self.crack_detect_mask_avg, dtype=int) crack_step_avg[self.crack_detect_mask_avg] = step m = self.crack_detect_mask_avg.copy() step -= 1 while step: if step == 0: break print step self.aramis_data.current_step = step d_ux_avg_mask = (self.aramis_data.d_ux_avg[1:] + self.aramis_data.d_ux_avg[:-1]) * 0.5 > self.d_ux_avg_threshold mask = d_ux_avg_mask * m crack_step_avg[mask] = step if np.sum(mask) == 0: break step -= 1 init_steps_avg = crack_step_avg[crack_step_avg > 0] self.init_step_avg_lst = init_steps_avg.tolist() print self.init_step_avg_lst position_index = np.argwhere(self.crack_detect_mask_avg).flatten() print 'position index', position_index position = self.aramis_data.x_arr_0[0, :][self.crack_detect_mask_avg] print 'position', position time_of_init = self.aramis_data.step_times[self.init_step_avg_lst] print 'time of initiation', time_of_init force = self.aramis_data.ad_channels_arr[:, 1][self.init_step_avg_lst] print 'force', force # data_to_save = np.vstack( # (position_index, position, time_of_init, force)).T # np.savetxt('%s.txt' % self.aramis_info.specimen_name, data_to_save, delimiter=';', # header='position_index; position; time_of_init; force') ''' # todo: better # x = self.aramis_data.x_arr_0[20, :] # import matplotlib.pyplot as plt # plt.rc('font', size=25) step = self.crack_detection_step crack_step_avg = np.zeros_like(self.crack_detect_mask_avg, dtype=int) crack_step_avg[self.crack_detect_mask_avg] = step crack_step = np.zeros_like(self.crack_detect_mask, dtype=int) crack_step[self.crack_detect_mask] = step step -= 1 self.crack_width_avg_t = np.zeros((np.sum(self.crack_detect_mask_avg), self.number_of_steps)) self.crack_width_t = np.zeros((np.sum(self.crack_detect_mask), self.number_of_steps)) self.crack_stress_t = np.zeros((np.sum(self.crack_detect_mask_avg), self.number_of_steps)) # plt.figure() m = self.crack_detect_mask_avg.copy() # idx1 = np.argwhere(m == True) - 1 # idx1 = np.delete(idx1, np.argwhere(idx1 < 0)) # m[idx1] = True # idx2 = np.argwhere(m == True) + 1 # idx2 = np.delete(idx1, np.argwhere(idx2 >= m.shape[0])) # m[idx2] = True while step: print 'step', step self.aramis_data.current_step = step mask = self.crack_filter_avg # * m crack_step_avg[mask] = step mask = self.crack_filter * self.crack_detect_mask crack_step[mask] = step # if number of cracks = 0 break # plt.plot(x, self.aramis_data.d_ux_avg, color='grey') # if step == 178: # # print '[asdfasfas[', self.aramis_data.d_ux_avg # plt.plot(x, self.aramis_data.d_ux_avg, 'k-', linewidth=3, zorder=10000) # if np.any(mask) == False: # print mask # break if step == 0: break # self.crack_width_avg_t[:, step] = self.aramis_data.d_ux_avg[crack_step_avg > 0] # self.crack_width_t[:, step] = self.aramis_data.d_ux[crack_step > 0] # y = self.ad_channels_arr[:, :, 2] - self.ad_channels_arr[:, :, 1] # self.crack_stress_t[:, step] = y[:, 0][step] * 1e5 / (140 * 60) step -= 1 # y_max_lim = plt.gca().get_ylim()[-1] # plt.vlines(x[:-1], [0], self.crack_detect_mask_avg * y_max_lim, # color='magenta', linewidth=1, zorder=10) # plt.xlim(0, 527) # plt.ylim(0, 0.25) # print 'initializationinit_steps time/step of the crack' , crack_step_avg[crack_step_avg > 0] # print 'finished' # for i in idx1: # if crack_step_avg[i] < crack_step_avg[i + 1]: # crack_step_avg[i] = crack_step_avg[i + 1] # crack_step_avg[i] = 0 # for i in idx2: # if crack_step_avg[i] < crack_step_avg[i - 1]: # crack_step_avg[i] = crack_step_avg[i - 1] # crack_step_avg[i] = 0 init_steps_avg = crack_step_avg[crack_step_avg > 0] init_steps = crack_step[crack_step > 0] self.init_step_avg_lst = init_steps_avg.tolist() self.init_step_lst = init_steps.tolist() print self.init_step_avg_lst # init_steps_avg.sort() # x = np.hstack((0, np.repeat(init_steps_avg, 2), self.aramis_info.last_step)) # y = np.repeat(np.arange(init_steps_avg.size + 1), 2) # print x, y # # plt.figure() # plt.title('number of cracks vs. step') # plt.plot(x, y) # # plt.figure() # x = np.hstack((0, np.repeat(init_steps_avg, 2), self.aramis_info.last_step)) # x = self.control_strain_t[x] # y = np.repeat(np.arange(init_steps_avg.size + 1), 2) # plt.title('number of cracks vs. control strain') # plt.plot(x, y) # plt.show() ''' view = View( Item('crack_detection_step'), Item('d_ux_threshold'), Item('dd_ux_threshold'), Item('ddd_ux_threshold'), Item('d_ux_avg_threshold'), Item('dd_ux_avg_threshold'), Item('ddd_ux_avg_threshold'), Group( 'number_of_cracks_t_analyse', UItem('run_t'), UItem('run_back'), ), id='aramisCDT.cdt', )
bsd-3-clause
dsquareindia/scikit-learn
sklearn/metrics/cluster/tests/test_bicluster.py
394
1770
"""Testing for bicluster metrics module""" import numpy as np from sklearn.utils.testing import assert_equal, assert_almost_equal from sklearn.metrics.cluster.bicluster import _jaccard from sklearn.metrics import consensus_score def test_jaccard(): a1 = np.array([True, True, False, False]) a2 = np.array([True, True, True, True]) a3 = np.array([False, True, True, False]) a4 = np.array([False, False, True, True]) assert_equal(_jaccard(a1, a1, a1, a1), 1) assert_equal(_jaccard(a1, a1, a2, a2), 0.25) assert_equal(_jaccard(a1, a1, a3, a3), 1.0 / 7) assert_equal(_jaccard(a1, a1, a4, a4), 0) def test_consensus_score(): a = [[True, True, False, False], [False, False, True, True]] b = a[::-1] assert_equal(consensus_score((a, a), (a, a)), 1) assert_equal(consensus_score((a, a), (b, b)), 1) assert_equal(consensus_score((a, b), (a, b)), 1) assert_equal(consensus_score((a, b), (b, a)), 1) assert_equal(consensus_score((a, a), (b, a)), 0) assert_equal(consensus_score((a, a), (a, b)), 0) assert_equal(consensus_score((b, b), (a, b)), 0) assert_equal(consensus_score((b, b), (b, a)), 0) def test_consensus_score_issue2445(): ''' Different number of biclusters in A and B''' a_rows = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) a_cols = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) idx = [0, 2] s = consensus_score((a_rows, a_cols), (a_rows[idx], a_cols[idx])) # B contains 2 of the 3 biclusters in A, so score should be 2/3 assert_almost_equal(s, 2.0/3.0)
bsd-3-clause
chaluemwut/fbserver
venv/lib/python2.7/site-packages/sklearn/tests/test_learning_curve.py
19
10790
# Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.learning_curve import learning_curve, validation_curve from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import make_classification from sklearn.cross_validation import KFold from sklearn.linear_model import PassiveAggressiveClassifier class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2. - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes): super(MockIncrementalImprovingEstimator, self).__init__( n_max_train_sizes) self.x = None def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset def test_learning_curve(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) with warnings.catch_warnings(record=True) as w: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_equal(train_scores.shape, (10, 3)) assert_equal(test_scores.shape, (10, 3)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_verbose(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) old_stdout = sys.stdout sys.stdout = StringIO() try: train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=3, verbose=1) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[learning_curve]" in out) def test_learning_curve_incremental_learning_not_possible(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) # The mockup does not have partial_fit() estimator = MockImprovingEstimator(1) assert_raises(ValueError, learning_curve, estimator, X, y, exploit_incremental_learning=True) def test_learning_curve_incremental_learning(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_incremental_learning_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_batch_and_incremental_learning_are_equal(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) train_sizes = np.linspace(0.2, 1.0, 5) estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False) train_sizes_inc, train_scores_inc, test_scores_inc = \ learning_curve( estimator, X, y, train_sizes=train_sizes, cv=3, exploit_incremental_learning=True) train_sizes_batch, train_scores_batch, test_scores_batch = \ learning_curve( estimator, X, y, cv=3, train_sizes=train_sizes, exploit_incremental_learning=False) assert_array_equal(train_sizes_inc, train_sizes_batch) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_learning_curve_n_sample_range_out_of_bounds(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.0, 1.0]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.1, 1.1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 20]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[1, 21]) def test_learning_curve_remove_duplicate_sample_sizes(): X, y = make_classification(n_samples=3, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(2) train_sizes, _, _ = assert_warns( RuntimeWarning, learning_curve, estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)) assert_array_equal(train_sizes, [1, 2]) def test_learning_curve_with_boolean_indices(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) cv = KFold(n=30, n_folds=3, indices=False) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_validation_curve(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) param_range = np.linspace(0, 1, 10) with warnings.catch_warnings(record=True) as w: train_scores, test_scores = validation_curve( MockEstimatorWithParameter(), X, y, param_name="param", param_range=param_range, cv=2) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_array_almost_equal(train_scores.mean(axis=1), param_range) assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
apache-2.0
faridborbar/02Tarea
codigo.py
1
5656
import numpy as np import matplotlib.pyplot as plt from scipy import optimize as opti ''' PARTE 1 definiremos una funcion choque, que reasigna una velocidad v_n1 para cada v_n, analogo para las posiciones y_inter y y_n. Las funciones que devuelve están evaluada en "cero", que corresponde a las intersecciones de las posiciones de la superficie y la pelota. Con esto, a partir de cada velocidad de la particula, podemos obtener la velocidad con la que rebota luego del impacto, junto con la posicion en la cual ocurre. def choques(y_n,v_n): A=1 t_ini=0 g= -1 t_0=0 n=0.15 omega=1.66 y_sup= lambda x: A*(np.sin(omega*x)) #posicion de la superficie y_pel= lambda x: y_n + v_n*x + ((x**2)*g)*(1/2.) #posicion de la pelota, ecuacion de itinerario v_sup= lambda x: omega*A*(np.cos(omega*x)) #respectivas velocidades v_pel= lambda x: v_n + g*x inter= lambda x: y_pel(x) - y_sup(x) #Ahora definimos los limites para la biseccion a= (-1*v_n) * g b= ((-v_n - ((v_n)**2 - 2*(y_n+A)**(0.5)*g)))/g #encontramos las intersecciones cero=opti.bisect(inter,a,b) v_n1= (n+1)*v_sup(cero) - n*v_pel(cero) #reformulamos la velocidad a partir de la ecuacion dada para v_p'(t) y_inter=y_pel(cero) return [y_inter,v_n1] Iteraciones=input('ingrese numero de iteraciones') #guardamos las velocidades de la pelota, justo despues del choque, en una lista #v_0=input('ingrese velocidad inicial') v_0=2 vel=[] vel=np.append(vel,v_0) #Guardaremos los "y" donde choca la pelota con la superficie en una lista y_0=0 y_inter=[] y_inter=np.append(y_inter,y_0) #guardamos los intentos en una lista. i=0 intento=[] intento=np.append(intento,i) #iteramos para obtener arreglos de las posiciones y las velocidades en las que chocan la pelota con la superficie. while i <=Iteraciones: y_n = y_inter[i] v_n = vel[i] choque = choques(y_n,v_n) #nos entrega la posicion y la velocidad de la pelota justo despues de impactar, Yn+1 y Vn+1 v_choque = choque[1] y_choque = choque[0] y_inter = np.append(y_inter,y_choque) vel = np.append(vel,v_choque) i+=1 intento=np.append(intento,i) plt.plot(intento,vel) plt.ylabel('Velocidad luego del impacto: Vn+1') plt.xlabel('Numero de intento') #plt.axis([0,(Iteraciones + 5),0,3]) plt.draw() plt.show() ''' ''' PARTE 2 Para esta parte basta repetir la iteracion para cada Velocidad inicial, luego implementeamos otra iteracion. Iteraciones=input('ingrese el numero de iteraciones') vel_iniciales= [2,3,4,5,6] for k in vel_iniciales: v_0=k vel=[] vel=np.append(vel,v_0) #Guardaremos los "y" donde choca la pelota con la superficie en una lista y_0=0 y_inter=[] y_inter=np.append(y_inter,y_0) #guardamos los intentos en una lista. i=0 intento=[] intento=np.append(intento,i) #iteramos para obtener arreglos de las posiciones y las velocidades en las que chocan la pelota con el suelo. while i <=Iteraciones: y_n = y_inter[i] v_n = vel[i] choque = choques(y_n,v_n) v_choque = choque[1] y_choque = choque[0] y_inter = np.append(y_inter,y_choque) vel = np.append(vel,v_choque) i+=1 intento=np.append(intento,i) plt.plot(intento,vel) plt.ylabel('Velocidad luego del impacto: Vn+1') plt.xlabel('Numero de intento') plt.axis([0,(Iteraciones + 5),0,3]) plt.draw() plt.show() no supe como graficar todo en una foto, perdon. Aqui tocaria ticar un grafico para todos los Viniciales, para ver cuando empiezan a relajar, de todas formas puede verce en cada grafico por separado. ''' ''' PARTE 4 Analogamente a la parte 2, haremos iterar la funcion para varios valores de la frecuencia, pero esta vez la funcion choques dependera tambien de la frecuencia. ''' def choques(y_n,v_n,omega): A=1 t_ini=0 g= -1 t_0=0 n=0.15 y_sup= lambda x: A*(np.sin(omega*x)) #posicion de la superficie y_pel= lambda x: y_n + v_n*x + ((x**2)*g)*(1/2.) #posicion de la pelota, ecuacion de itinerario v_sup= lambda x: omega*A*(np.cos(omega*x)) v_pel= lambda x: v_n + g*x inter= lambda x: y_pel(x) - y_sup(x) #Ahora definimos los limites para la biseccion a= (*v_n) * (-1)*g b= ((-v_n - ((v_n)**2 - 2*(y_n+A)**(0.5)*g)))/g #encontramos las intersecciones cero=opti.bisect(inter,a,b) v_n1= (n+1)*v_sup(cero) - n*v_pel(cero) y_inter=y_pel(cero) return [y_inter,v_n1] Iteraciones=input('ingrese el numero de iteraciones') vel_iniciales= [2] Q=input('ingrese el numero de frecuencias a considerar, se elijiran en un rango uniforme') Salto=(1.79-1.66)/Q Omegas= np.arange(1.66, 1.79, Salto) for k in Omegas: v_0=2 vel=[] vel=np.append(vel,v_0) #Guardaremos los "y" donde choca la pelota con la superficie en una lista y_0=0 y_inter=[] y_inter=np.append(y_inter,y_0) #guardamos los intentos en una lista. i=0 intento=[] intento=np.append(intento,i) #iteramos para obtener arreglos de las posiciones y las velocidades en las que chocan la pelota con el suelo. while i <=Iteraciones: y_n = y_inter[i] v_n = vel[i] choque = choques(y_n,v_n,k) v_choque = choque[1] y_choque = choque[0] y_inter = np.append(y_inter,y_choque) vel = np.append(vel,v_choque) i+=1 intento=np.append(intento,i) plt.plot(intento,vel) plt.ylabel('Velocidad luego del impacto: Vn+1') plt.xlabel('Numero de intento') #plt.axis([0,(Iteraciones + 5),0,3]) plt.draw() plt.show()
mit
LiaoPan/blaze
blaze/compute/core.py
5
14061
from __future__ import absolute_import, division, print_function import numbers from datetime import date, datetime import toolz from toolz import first, concat, memoize, unique, assoc import itertools from collections import Iterator from ..compatibility import basestring from ..expr import Expr, Field, Symbol, symbol, eval_str from ..dispatch import dispatch __all__ = ['compute', 'compute_up'] base = (numbers.Number, basestring, date, datetime) @dispatch(Expr, object) def pre_compute(leaf, data, scope=None, **kwargs): """ Transform data prior to calling ``compute`` """ return data @dispatch(Expr, object) def post_compute(expr, result, scope=None): """ Effects after the computation is complete """ return result @dispatch(Expr, object) def optimize(expr, data): """ Optimize expression to be computed on data """ return expr @dispatch(object, object) def compute_up(a, b, **kwargs): raise NotImplementedError("Blaze does not know how to compute " "expression of type `%s` on data of type `%s`" % (type(a).__name__, type(b).__name__)) @dispatch(base) def compute_up(a, **kwargs): return a @dispatch((list, tuple)) def compute_up(seq, scope=None, **kwargs): return type(seq)(compute(item, scope or {}, **kwargs) for item in seq) @dispatch(Expr, object) def compute(expr, o, **kwargs): """ Compute against single input Assumes that only one Symbol exists in expression >>> t = symbol('t', 'var * {name: string, balance: int}') >>> deadbeats = t[t['balance'] < 0]['name'] >>> data = [['Alice', 100], ['Bob', -50], ['Charlie', -20]] >>> # list(compute(deadbeats, {t: data})) >>> list(compute(deadbeats, data)) ['Bob', 'Charlie'] """ ts = set([x for x in expr._subterms() if isinstance(x, Symbol)]) if len(ts) == 1: return compute(expr, {first(ts): o}, **kwargs) else: raise ValueError("Give compute dictionary input, got %s" % str(o)) @dispatch(object) def compute_down(expr, **kwargs): """ Compute the expression on the entire inputs inputs match up to leaves of the expression """ return expr def issubtype(a, b): """ A custom issubclass """ if issubclass(a, b): return True if issubclass(a, (tuple, list, set)) and issubclass(b, Iterator): return True if issubclass(b, (tuple, list, set)) and issubclass(a, Iterator): return True return False def type_change(old, new): """ Was there a significant type change between old and new data? >>> type_change([1, 2], [3, 4]) False >>> type_change([1, 2], [3, [1,2,3]]) True Some special cases exist, like no type change from list to Iterator >>> type_change([[1, 2]], [iter([1, 2])]) False """ if all(isinstance(x, base) for x in old + new): return False if len(old) != len(new): return True new_types = list(map(type, new)) old_types = list(map(type, old)) return not all(map(issubtype, new_types, old_types)) def top_then_bottom_then_top_again_etc(expr, scope, **kwargs): """ Compute expression against scope Does the following interpreter strategy: 1. Try compute_down on the entire expression 2. Otherwise compute_up from the leaves until we experience a type change (e.g. data changes from dict -> pandas DataFrame) 3. Re-optimize expression and re-pre-compute data 4. Go to step 1 Examples -------- >>> import numpy as np >>> s = symbol('s', 'var * {name: string, amount: int}') >>> data = np.array([('Alice', 100), ('Bob', 200), ('Charlie', 300)], ... dtype=[('name', 'S7'), ('amount', 'i4')]) >>> e = s.amount.sum() + 1 >>> top_then_bottom_then_top_again_etc(e, {s: data}) 601 See Also -------- bottom_up_until_type_break -- uses this for bottom-up traversal top_to_bottom -- older version bottom_up -- older version still """ # 0. Base case: expression is in dict, return associated data if expr in scope: return scope[expr] if not hasattr(expr, '_leaves'): return expr leaf_exprs = list(expr._leaves()) leaf_data = [scope.get(leaf) for leaf in leaf_exprs] # 1. See if we have a direct computation path with compute_down try: return compute_down(expr, *leaf_data, **kwargs) except NotImplementedError: pass # 2. Compute from the bottom until there is a data type change expr2, scope2 = bottom_up_until_type_break(expr, scope, **kwargs) # 3. Re-optimize data and expressions optimize_ = kwargs.get('optimize', optimize) pre_compute_ = kwargs.get('pre_compute', pre_compute) if pre_compute_: scope3 = dict((e, pre_compute_(e, datum, **assoc(kwargs, 'scope', scope2))) for e, datum in scope2.items()) else: scope3 = scope2 if optimize_: try: expr3 = optimize_(expr2, *[scope3[leaf] for leaf in expr2._leaves()]) _d = dict(zip(expr2._leaves(), expr3._leaves())) scope4 = dict((e._subs(_d), d) for e, d in scope3.items()) except NotImplementedError: expr3 = expr2 scope4 = scope3 else: expr3 = expr2 scope4 = scope3 # 4. Repeat if expr.isidentical(expr3): raise NotImplementedError("Don't know how to compute:\n" "expr: %s\n" "data: %s" % (expr3, scope4)) else: return top_then_bottom_then_top_again_etc(expr3, scope4, **kwargs) def top_to_bottom(d, expr, **kwargs): """ Processes an expression top-down then bottom-up """ # Base case: expression is in dict, return associated data if expr in d: return d[expr] if not hasattr(expr, '_leaves'): return expr leaves = list(expr._leaves()) data = [d.get(leaf) for leaf in leaves] # See if we have a direct computation path with compute_down try: return compute_down(expr, *data, **kwargs) except NotImplementedError: pass optimize_ = kwargs.get('optimize', optimize) pre_compute_ = kwargs.get('pre_compute', pre_compute) # Otherwise... # Compute children of this expression if hasattr(expr, '_inputs'): children = [top_to_bottom(d, child, **kwargs) for child in expr._inputs] else: children = [] # Did we experience a data type change? if type_change(data, children): # If so call pre_compute again if pre_compute_: children = [pre_compute_(expr, child, **kwargs) for child in children] # If so call optimize again if optimize_: try: expr = optimize_(expr, *children) except NotImplementedError: pass # Compute this expression given the children return compute_up(expr, *children, scope=d, **kwargs) _names = ('leaf_%d' % i for i in itertools.count(1)) _leaf_cache = dict() _used_tokens = set() def _reset_leaves(): _leaf_cache.clear() _used_tokens.clear() def makeleaf(expr): """ Name of a new leaf replacement for this expression >>> _reset_leaves() >>> t = symbol('t', '{x: int, y: int, z: int}') >>> makeleaf(t) t >>> makeleaf(t.x) x >>> makeleaf(t.x + 1) x >>> makeleaf(t.x + 1) x >>> makeleaf(t.x).isidentical(makeleaf(t.x + 1)) False >>> from blaze import sin, cos >>> x = symbol('x', 'real') >>> makeleaf(cos(x)**2).isidentical(sin(x)**2) False >>> makeleaf(t) is t # makeleaf passes on Symbols True """ name = expr._name or '_' token = None if expr in _leaf_cache: return _leaf_cache[expr] if isinstance(expr, Symbol): # Idempotent on symbols return expr if (name, token) in _used_tokens: for token in itertools.count(): if (name, token) not in _used_tokens: break result = symbol(name, expr.dshape, token) _used_tokens.add((name, token)) _leaf_cache[expr] = result return result def data_leaves(expr, scope): return [scope[leaf] for leaf in expr._leaves()] def bottom_up_until_type_break(expr, scope, **kwargs): """ Traverse bottom up until data changes significantly Parameters ---------- expr: Expression Expression to compute scope: dict namespace matching leaves of expression to data Returns ------- expr: Expression New expression with lower subtrees replaced with leaves scope: dict New scope with entries for those leaves Examples -------- >>> import numpy as np >>> s = symbol('s', 'var * {name: string, amount: int}') >>> data = np.array([('Alice', 100), ('Bob', 200), ('Charlie', 300)], ... dtype=[('name', 'S7'), ('amount', 'i8')]) This computation completes without changing type. We get back a leaf symbol and a computational result >>> e = (s.amount + 1).distinct() >>> bottom_up_until_type_break(e, {s: data}) # doctest: +SKIP (amount, {amount: array([101, 201, 301])}) This computation has a type change midstream (``list`` to ``int``), so we stop and get the unfinished computation. >>> e = s.amount.sum() + 1 >>> bottom_up_until_type_break(e, {s: data}) (amount_sum + 1, {amount_sum: 600}) """ # 0. Base case. Return if expression is in scope if expr in scope: leaf = makeleaf(expr) return leaf, {leaf: scope[expr]} inputs = list(unique(expr._inputs)) # 1. Recurse down the tree, calling this function on children # (this is the bottom part of bottom up) exprs, new_scopes = zip(*[bottom_up_until_type_break(i, scope, **kwargs) for i in inputs]) # 2. Form new (much shallower) expression and new (more computed) scope new_scope = toolz.merge(new_scopes) new_expr = expr._subs(dict((i, e) for i, e in zip(inputs, exprs) if not i.isidentical(e))) old_expr_leaves = expr._leaves() old_data_leaves = [scope.get(leaf) for leaf in old_expr_leaves] # 3. If the leaves have changed substantially then stop key = lambda x: str(type(x)) if type_change(sorted(new_scope.values(), key=key), sorted(old_data_leaves, key=key)): return new_expr, new_scope # 4. Otherwise try to do some actual work try: leaf = makeleaf(expr) _data = [new_scope[i] for i in new_expr._inputs] except KeyError: return new_expr, new_scope try: return leaf, {leaf: compute_up(new_expr, *_data, scope=new_scope, **kwargs)} except NotImplementedError: return new_expr, new_scope def bottom_up(d, expr): """ Process an expression from the leaves upwards Parameters ---------- d : dict mapping {Symbol: data} Maps expressions to data elements, likely at the leaves of the tree expr : Expr Expression to compute Helper function for ``compute`` """ # Base case: expression is in dict, return associated data if expr in d: return d[expr] # Compute children of this expression children = ([bottom_up(d, child) for child in expr._inputs] if hasattr(expr, '_inputs') else []) # Compute this expression given the children result = compute_up(expr, *children, scope=d) return result def swap_resources_into_scope(expr, scope): """ Translate interactive expressions into normal abstract expressions Interactive Blaze expressions link to data on their leaves. From the expr/compute perspective, this is a hack. We push the resources onto the scope and return simple unadorned expressions instead. Examples -------- >>> from blaze import Data >>> t = Data([1, 2, 3], dshape='3 * int', name='t') >>> swap_resources_into_scope(t.head(2), {}) (t.head(2), {t: [1, 2, 3]}) >>> expr, scope = _ >>> list(scope.keys())[0]._resources() {} """ resources = expr._resources() symbol_dict = dict((t, symbol(t._name, t.dshape)) for t in resources) resources = dict((symbol_dict[k], v) for k, v in resources.items()) other_scope = dict((k, v) for k, v in scope.items() if k not in symbol_dict) new_scope = toolz.merge(resources, other_scope) expr = expr._subs(symbol_dict) return expr, new_scope @dispatch(Expr, dict) def compute(expr, d, **kwargs): """ Compute expression against data sources >>> t = symbol('t', 'var * {name: string, balance: int}') >>> deadbeats = t[t['balance'] < 0]['name'] >>> data = [['Alice', 100], ['Bob', -50], ['Charlie', -20]] >>> list(compute(deadbeats, {t: data})) ['Bob', 'Charlie'] """ _reset_leaves() optimize_ = kwargs.get('optimize', optimize) pre_compute_ = kwargs.get('pre_compute', pre_compute) post_compute_ = kwargs.get('post_compute', post_compute) expr2, d2 = swap_resources_into_scope(expr, d) if pre_compute_: d3 = dict( (e, pre_compute_(e, dat, **kwargs)) for e, dat in d2.items() if e in expr2 ) else: d3 = d2 if optimize_: try: expr3 = optimize_(expr2, *[v for e, v in d3.items() if e in expr2]) _d = dict(zip(expr2._leaves(), expr3._leaves())) d4 = dict((e._subs(_d), d) for e, d in d3.items()) except NotImplementedError: expr3 = expr2 d4 = d3 else: expr3 = expr2 d4 = d3 result = top_then_bottom_then_top_again_etc(expr3, d4, **kwargs) if post_compute_: result = post_compute_(expr3, result, scope=d4) return result @dispatch(Field, dict) def compute_up(expr, data, **kwargs): return data[expr._name]
bsd-3-clause
mblondel/scikit-learn
sklearn/utils/graph.py
50
6169
""" Graph utilities and algorithms Graphs are represented with their adjacency matrices, preferably using sparse matrices. """ # Authors: Aric Hagberg <[email protected]> # Gael Varoquaux <[email protected]> # Jake Vanderplas <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from .graph_shortest_path import graph_shortest_path ############################################################################### # Path and connected component analysis. # Code adapted from networkx def single_source_shortest_path_length(graph, source, cutoff=None): """Return the shortest path length from source to all reachable nodes. Returns a dictionary of shortest path lengths keyed by target. Parameters ---------- graph: sparse matrix or 2D array (preferably LIL matrix) Adjacency matrix of the graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search - only paths of length <= cutoff are returned. Examples -------- >>> from sklearn.utils.graph import single_source_shortest_path_length >>> import numpy as np >>> graph = np.array([[ 0, 1, 0, 0], ... [ 1, 0, 1, 0], ... [ 0, 1, 0, 1], ... [ 0, 0, 1, 0]]) >>> single_source_shortest_path_length(graph, 0) {0: 0, 1: 1, 2: 2, 3: 3} >>> single_source_shortest_path_length(np.ones((6, 6)), 2) {0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1} """ if sparse.isspmatrix(graph): graph = graph.tolil() else: graph = sparse.lil_matrix(graph) seen = {} # level (number of hops) when seen in BFS level = 0 # the current level next_level = [source] # dict of nodes to check at next level while next_level: this_level = next_level # advance to next level next_level = set() # and start a new list (fringe) for v in this_level: if v not in seen: seen[v] = level # set the level of vertex v next_level.update(graph.rows[v]) if cutoff is not None and cutoff <= level: break level += 1 return seen # return all path lengths as dictionary if hasattr(sparse, 'connected_components'): connected_components = sparse.connected_components else: from .sparsetools import connected_components ############################################################################### # Graph laplacian def graph_laplacian(csgraph, normed=False, return_diag=False): """ Return the Laplacian matrix of a directed graph. For non-symmetric graphs the out-degree is used in the computation. Parameters ---------- csgraph : array_like or sparse matrix, 2 dimensions compressed-sparse graph, with shape (N, N). normed : bool, optional If True, then compute normalized Laplacian. return_diag : bool, optional If True, then return diagonal as well as laplacian. Returns ------- lap : ndarray The N x N laplacian matrix of graph. diag : ndarray The length-N diagonal of the laplacian matrix. diag is returned only if return_diag is True. Notes ----- The Laplacian matrix of a graph is sometimes referred to as the "Kirchoff matrix" or the "admittance matrix", and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph. For non-symmetric directed graphs, the laplacian is computed using the out-degree of each node. """ if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: raise ValueError('csgraph must be a square matrix or array') if normed and (np.issubdtype(csgraph.dtype, np.int) or np.issubdtype(csgraph.dtype, np.uint)): csgraph = csgraph.astype(np.float) if sparse.isspmatrix(csgraph): return _laplacian_sparse(csgraph, normed=normed, return_diag=return_diag) else: return _laplacian_dense(csgraph, normed=normed, return_diag=return_diag) def _laplacian_sparse(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] if not graph.format == 'coo': lap = (-graph).tocoo() else: lap = -graph.copy() diag_mask = (lap.row == lap.col) if not diag_mask.sum() == n_nodes: # The sparsity pattern of the matrix has holes on the diagonal, # we need to fix that diag_idx = lap.row[diag_mask] diagonal_holes = list(set(range(n_nodes)).difference(diag_idx)) new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))]) new_row = np.concatenate([lap.row, diagonal_holes]) new_col = np.concatenate([lap.col, diagonal_holes]) lap = sparse.coo_matrix((new_data, (new_row, new_col)), shape=lap.shape) diag_mask = (lap.row == lap.col) lap.data[diag_mask] = 0 w = -np.asarray(lap.sum(axis=1)).squeeze() if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap.data /= w[lap.row] lap.data /= w[lap.col] lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype( lap.data.dtype) else: lap.data[diag_mask] = w[lap.row[diag_mask]] if return_diag: return lap, w return lap def _laplacian_dense(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] lap = -np.asarray(graph) # minus sign leads to a copy # set diagonal to zero lap.flat[::n_nodes + 1] = 0 w = -lap.sum(axis=0) if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap /= w lap /= w[:, np.newaxis] lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype) else: lap.flat[::n_nodes + 1] = w.astype(lap.dtype) if return_diag: return lap, w return lap
bsd-3-clause
unicef/rhizome
rhizome/tests/test_refresh_master.py
1
14788
import json from django.test import TestCase from django.contrib.auth.models import User from pandas import read_csv, notnull, to_datetime from rhizome.models.campaign_models import Campaign, CampaignType from rhizome.models.location_models import Location from rhizome.models.indicator_models import Indicator, IndicatorTag,\ CalculatedIndicatorComponent from rhizome.models.document_models import Document, DocDetailType, \ DocumentDetail, SourceSubmission, SourceObjectMap from rhizome.models.datapoint_models import DocDataPoint, DataPoint # ./manage.py test rhizome.tests.test_refresh_master.RefreshMasterTestCase.test_refresh_master_init --settings=rhizome.settings.test class RefreshMasterTestCase(TestCase): def __init__(self, *args, **kwargs): self.location_code_input_column = 'geocode' self.campaign_code_input_column = 'campaign' self.data_date_input_column = 'submission_date' self.uq_code_input_column = 'uq_id' super(RefreshMasterTestCase, self).__init__(*args, **kwargs) def set_up(self): ''' Refresh master needs a few peices of metadata to be abel to do it's job. Location, Campaign, User .. all of the main models that you can see initialized in the first migrations in the datapoints application. The set up method also runs the CampaignDocTransform method which simulates the upload of a csv or processing of an ODK submission. Ideally this test will run independently of this module, but for now this is how we initialize data in the system via the .csv below. ''' self.test_file_location = 'ebola_data.csv' self.location_list = Location.objects.all().values_list('name', flat=True) self.create_metadata() self.user = User.objects.get(username='test') self.document = Document.objects.get(doc_title='test') self.document.docfile = self.test_file_location self.document.save() self.document.transform_upload() def test_refresh_master_init(self): self.set_up() self.document.refresh_master() self.assertTrue(True) # FIXME .. def test_submission_detail_refresh(self,): self.set_up() source_submissions_data = SourceSubmission.objects\ .filter(document_id=self.document.id)\ .values_list('id', flat=True) self.document.refresh_submission_details() submission_details = SourceSubmission.objects\ .filter(document_id=self.document.id) self.assertEqual(len(source_submissions_data), len(submission_details)) def test_latest_data_gets_synced(self): ''' I upload a spreadsheet on tuesday, but i realized that the data was wrong, so i upload another sheet with the same locations, dates and indicators. The new spreasheet should override, and not aggregate any duplicative data. ''' self.set_up() test_ind_id = Indicator.objects.all()[0].id test_loc_id = Location.objects.all()[0].id test_campaign_id = Campaign.objects.all()[0].id bad_val, good_val = 10, 20 data_date = '2015-12-31' ss_old = SourceSubmission.objects\ .filter(document_id=self.document.id)[0] doc_to_override = Document.objects.create( doc_title='override', created_by_id=self.user.id, guid='override' ) ss_new = SourceSubmission.objects.create( document_id=doc_to_override.id, instance_guid='override', row_number=1, data_date='2016-01-01', location_code='OVERRIDE', location_display='OVERRIDE', submission_json='', process_status=1 ) base_doc_dp_dict = { 'document_id': self.document.id, 'indicator_id': test_ind_id, 'location_id': test_loc_id, 'campaign_id': test_campaign_id, 'data_date': data_date, 'agg_on_location': True, } bad_doc_dp_dict = { 'value': bad_val, 'data_date': data_date, 'campaign_id': test_campaign_id, 'source_submission_id': ss_old.id, } bad_doc_dp_dict.update(base_doc_dp_dict) good_doc_dp_dict = { 'value': good_val, 'data_date': data_date, 'campaign_id': test_campaign_id, 'source_submission_id': ss_new.id, } good_doc_dp_dict.update(base_doc_dp_dict) DocDataPoint.objects.create(**good_doc_dp_dict) DocDataPoint.objects.create(**bad_doc_dp_dict) self.document.sync_datapoint() dp_result = DataPoint.objects.filter( location_id=test_loc_id, indicator_id=test_ind_id, data_date=data_date ) self.assertEqual(1, len(dp_result)) self.assertEqual(good_val, dp_result[0].value) def test_submission_to_datapoint(self): ''' This simulates the following use case: As a user journey we can describe this test case as: - user uploads file ( see how set_up method calls CampaignDocTransform ) - user maps metadata - user clicks " refresh master " -> user checks to see if data is correct - user realizes that the data is wrong, due to an invalid mapping - user re-mapps the data and clicks " refresh master" -> data from old mapping should be deleted and associated to the newly mapped value TEST CASES: 1. WHen the submission detail is refreshed, the location/campaign ids that we mapped should exist in that row. 2. DocDataPoint records are created if the necessary mapping exists 3. There are no zero or null values allowed in doc_datapoint 4. The doc_datapoint from #3 is merged into datpaoint. 5. I create mappings, sync data, realize the mapping was incorrect, re-map the metadata and the old data should be deleted, the new data created. -> was the old data deleted? -> was the new data created? ''' self.set_up() submission_qs = SourceSubmission.objects\ .filter(document_id=self.document.id)\ .values_list('id', 'submission_json')[0] ss_id, first_submission = submission_qs[ 0], json.loads(submission_qs[1]) location_code = first_submission[self.location_code_input_column] campaign_code = first_submission[self.campaign_code_input_column] first_submission[self.data_date_input_column] raw_indicator_list = [k for k, v in first_submission.iteritems()] indicator_code = raw_indicator_list[-1] ## SIMULATED USER MAPPING ## # see: source-data/Nigeria/2015/06/mapping/2 ## choose meta data values for the source_map update ## map_location_id = Location.objects.all()[0].id first_indicator_id = Indicator.objects.all()[0].id first_campaign = Campaign.objects.all()[0].id ## map location ## som_id_l = SourceObjectMap.objects.get( content_type='location', source_object_code=location_code, ) som_id_l.master_object_id = map_location_id som_id_l.save() ## map indicator ## som_id_i = SourceObjectMap.objects.get( content_type='indicator', source_object_code=indicator_code, ) som_id_i.master_object_id = first_indicator_id som_id_i.save() ## map campaign ## som_id_c = SourceObjectMap.objects.get( content_type='campaign', source_object_code=campaign_code, ) som_id_c.master_object_id = first_campaign som_id_c.save() self.document.refresh_submission_details() first_submission_detail = SourceSubmission.objects\ .get(id=ss_id) ## Test Case 2 ## self.assertEqual( first_submission_detail.get_location_id(), map_location_id) ## now that we have created the mappign, "refresh_master" ## ## should create the relevant datapoints ## self.document.submissions_to_doc_datapoints() doc_dp_ids = DocDataPoint.objects.filter( document_id=self.document.id, indicator_id=first_indicator_id).values() # Test Case #3 self.assertEqual(1, len(doc_dp_ids)) self.document.sync_datapoint() dps = DataPoint.objects.all() # Test Case #4 self.assertEqual(1, len(dps)) # Test Case #5 ## update the mapping with a new indicator value ## new_indicator_id = Indicator.objects.all()[1].id som_id_i.master_object_id = new_indicator_id som_id_i.save() self.document.refresh_master() dp_with_new_indicator = DataPoint.objects.filter( indicator_id=new_indicator_id) dp_with_old_indicator = DataPoint.objects.filter( indicator_id=first_indicator_id) ## did new indicator flow through the system ?## self.assertEqual(1, len(dp_with_new_indicator)) # did the old indicator data get deleted? self.assertEqual(0, len(dp_with_old_indicator)) def create_metadata(self): ''' Creating the Indicator, location, Campaign, meta data needed for the system to aggregate / caclulate. ''' top_lvl_tag = IndicatorTag.objects.create(id=1, tag_name='Polio') campaign_df = read_csv('rhizome/tests/_data/campaigns.csv') location_df = read_csv('rhizome/tests/_data/locations.csv') indicator_df = read_csv('rhizome/tests/_data/indicators.csv') calc_indicator_df = read_csv\ ('rhizome/tests/_data/calculated_indicator_component.csv') user_id = User.objects.create_user('test', '[email protected]', 'test').id document_id = Document.objects.create( doc_title='test', created_by_id=user_id, guid='test').id for ddt in ['uq_id_column', 'username_column', 'image_col', 'date_column', 'location_column', 'location_display_name']: DocDetailType.objects.create(name=ddt) for rt in ["country", "settlement", "province", "district", "sub-district"]: DocDetailType.objects.create(name=rt) campaign_type = CampaignType.objects.create(id=1, name="test") self.model_df_to_data(location_df, Location) campaign_df['start_date'] = to_datetime(campaign_df['start_date']) campaign_df['end_date'] = to_datetime(campaign_df['end_date']) self.model_df_to_data(campaign_df, Campaign) self.model_df_to_data(indicator_df, Indicator) calc_indicator_ids = self.model_df_to_data(calc_indicator_df, CalculatedIndicatorComponent) rg_conif = DocumentDetail.objects.create( document_id=document_id, doc_detail_type_id=DocDetailType .objects.get(name='location_column').id, doc_detail_value=self.location_code_input_column ) cp_conif = DocumentDetail.objects.create( document_id=document_id, doc_detail_type_id=DocDetailType .objects.get(name='date_column').id, doc_detail_value=self.data_date_input_column ) uq_id_config = DocumentDetail.objects.create( document_id=document_id, doc_detail_type_id=DocDetailType .objects.get(name='uq_id_column').id, doc_detail_value=self.uq_code_input_column ) def test_campaign_data_ingest(self): # ./manage.py test rhizome.tests.test_refresh_master.RefreshMasterTestCase.test_campaign_data_ingest --settings=rhizome.settings.test self.set_up() test_file_location = 'allAccessData.csv' test_df = read_csv('rhizome/tests/_data/' + test_file_location) document = Document.objects.create(doc_title='allAccessData') document.docfile = test_file_location document.save() ## create locatino_meta ## distinct_location_codes = test_df['geocode'].unique() for l in distinct_location_codes: l_id = Location.objects.create( name=l, location_code=l, location_type_id=1 ).id l_som = SourceObjectMap.objects.create( master_object_id=l_id, content_type='location', source_object_code=str(l) ) ## create campaign meta ## distinct_campaign_codes = test_df['campaign'].unique() for i, (c) in enumerate(distinct_campaign_codes): c_id = Campaign.objects.create( name=c, campaign_type_id=1, start_date='2010-01-0' + str(i + 1), end_date='2010-01-0' + str(i + 1) ).id c_som = SourceObjectMap.objects.create( master_object_id=c_id, content_type='campaign', source_object_code=str(c) ) ## create indicator_meta ## access_indicator_id = Indicator.objects.create( name='access', short_name='access' ).id som_obj = SourceObjectMap.objects.create( master_object_id=access_indicator_id, content_type='indicator', source_object_code='# Missed children due to inaccessibility (NEPI)' ) document.transform_upload() self.document.refresh_master() ss_id_list = SourceSubmission.objects\ .filter(document_id=document.id)\ .values_list('id', flat=True) doc_dp_id_list = DocDataPoint.objects\ .filter(source_submission_id__in=ss_id_list)\ .values_list('id', flat=True) dp_id_list = DataPoint.objects\ .filter(source_submission_id__in=ss_id_list)\ .values_list('id', flat=True) self.assertEqual(len(ss_id_list), len(test_df)) self.assertEqual(len(doc_dp_id_list), len(dp_id_list)) def model_df_to_data(self, model_df, model): meta_ids = [] non_null_df = model_df.where((notnull(model_df)), None) list_of_dicts = non_null_df.transpose().to_dict() for row_ix, row_dict in list_of_dicts.iteritems(): row_id = model.objects.create(**row_dict) meta_ids.append(row_id) return meta_ids
agpl-3.0
michaelhuang/QuantSoftwareToolkit
QSTK/qstkstudy/Events.py
5
1878
# (c) 2011, 2012 Georgia Tech Research Corporation # This source code is released under the New BSD license. Please see # http://wiki.quantsoftware.org/index.php?title=QSTK_License # for license details. #Created on October <day>, 2011 # #@author: Vishal Shekhar #@contact: [email protected] #@summary: Example Event Datamatrix acceptable to EventProfiler App # import pandas from QSTK.qstkutil import DataAccess as da import numpy as np import math import QSTK.qstkutil.qsdateutil as du import datetime as dt import QSTK.qstkutil.DataAccess as da """ Accepts a list of symbols along with start and end date Returns the Event Matrix which is a pandas Datamatrix Event matrix has the following structure : |IBM |GOOG|XOM |MSFT| GS | JP | (d1)|nan |nan | 1 |nan |nan | 1 | (d2)|nan | 1 |nan |nan |nan |nan | (d3)| 1 |nan | 1 |nan | 1 |nan | (d4)|nan | 1 |nan | 1 |nan |nan | ................................... ................................... Also, d1 = start date nan = no information about any event. 1 = status bit(positively confirms the event occurence) """ def find_events(symbols, d_data, verbose=False): # Get the data from the data store storename = "Yahoo" # get data from our daily prices source # Available field names: open, close, high, low, close, actual_close, volume closefield = "close" volumefield = "volume" window = 10 if verbose: print __name__ + " reading data" close = d_data[closefield] if verbose: print __name__ + " finding events" for symbol in symbols: close[symbol][close[symbol]>= 1.0] = np.NAN for i in range(1,len(close[symbol])): if np.isnan(close[symbol][i-1]) and close[symbol][i] < 1.0 :#(i-1)th was > $1, and (i)th is <$1 close[symbol][i] = 1.0 #overwriting the price by the bit close[symbol][close[symbol]< 1.0] = np.NAN return close
bsd-3-clause
lazywei/scikit-learn
examples/model_selection/plot_roc.py
146
3697
""" ======================================= Receiver Operating Characteristic (ROC) ======================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC curve and ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC curve can be drawn per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). .. note:: See also :func:`sklearn.metrics.roc_auc_score`, :ref:`example_model_selection_plot_roc_crossval.py`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier # Import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features to make the problem harder random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) # Learn to predict each class against the other classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) # Plot of a ROC curve for a specific class plt.figure() plt.plot(fpr[2], tpr[2], label='ROC curve (area = %0.2f)' % roc_auc[2]) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() # Plot ROC curve plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"])) for i in range(n_classes): plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show()
bsd-3-clause
vshtanko/scikit-learn
sklearn/svm/classes.py
22
39977
import warnings import numpy as np from .base import _fit_liblinear, BaseSVC, BaseLibSVM from ..base import BaseEstimator, RegressorMixin from ..linear_model.base import LinearClassifierMixin, SparseCoefMixin, \ LinearModel from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_X_y class LinearSVC(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Linear Support Vector Classification. Similar to SVC with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. loss : string, 'hinge' or 'squared_hinge' (default='squared_hinge') Specifies the loss function. 'hinge' is the standard SVM loss (used e.g. by the SVC class) while 'squared_hinge' is the square of the hinge loss. penalty : string, 'l1' or 'l2' (default='l2') Specifies the norm used in the penalization. The 'l2' penalty is the standard used in SVC. The 'l1' leads to `coef_` vectors that are sparse. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. multi_class: string, 'ovr' or 'crammer_singer' (default='ovr') Determines the multi-class strategy if `y` contains more than two classes. `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` optimizes a joint objective over all classes. While `crammer_singer` is interesting from a theoretical perspective as it is consistent, it is seldom used in practice as it rarely leads to better accuracy and is more expensive to compute. If `crammer_singer` is chosen, the options loss, penalty and dual will be ignored. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 \ else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that \ follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon to have slightly different results for the same input data. If that happens, try with a smaller ``tol`` parameter. The underlying implementation (liblinear) uses a sparse internal representation for the data that will incur a memory copy. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. **References:** `LIBLINEAR: A Library for Large Linear Classification <http://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__ See also -------- SVC Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to implement one vs the rest with SVC by using the :class:`sklearn.multiclass.OneVsRestClassifier` wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data will still incur memory copy though. sklearn.linear_model.SGDClassifier SGDClassifier can optimize the same cost function as LinearSVC by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, penalty='l2', loss='squared_hinge', dual=True, tol=1e-4, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000): self.dual = dual self.tol = tol self.C = C self.multi_class = multi_class self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.penalty = penalty self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'hinge', 'l2': 'squared_hinge'}.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") self.classes_ = np.unique(y) self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, self.multi_class, self.loss) if self.multi_class == "crammer_singer" and len(self.classes_) == 2: self.coef_ = (self.coef_[1] - self.coef_[0]).reshape(1, -1) if self.fit_intercept: intercept = self.intercept_[1] - self.intercept_[0] self.intercept_ = np.array([intercept]) return self class LinearSVR(LinearModel, RegressorMixin): """Linear Support Vector Regression. Similar to SVR with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. The penalty is a squared l2 penalty. The bigger this parameter, the less regularization is used. loss : string, 'epsilon_insensitive' or 'squared_epsilon_insensitive' \ (default='epsilon_insensitive') Specifies the loss function. 'l1' is the epsilon-insensitive loss (standard SVR) while 'l2' is the squared epsilon-insensitive loss. epsilon : float, optional (default=0.1) Epsilon parameter in the epsilon-insensitive loss function. Note that the value of this parameter depends on the scale of the target variable y. If unsure, set epsilon=0. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 \ else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that \ follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- LinearSVC Implementation of Support Vector Machine classifier using the same library as this class (liblinear). SVR Implementation of Support Vector Machine regression using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. sklearn.linear_model.SGDRegressor SGDRegressor can optimize the same cost function as LinearSVR by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, epsilon=0.0, tol=1e-4, C=1.0, loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1., dual=True, verbose=0, random_state=None, max_iter=1000): self.tol = tol self.C = C self.epsilon = epsilon self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.dual = dual self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'epsilon_insensitive', 'l2': 'squared_epsilon_insensitive' }.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") penalty = 'l2' # SVR only accepts l2 penalty self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, None, penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, loss=self.loss, epsilon=self.epsilon) self.coef_ = self.coef_.ravel() return self class SVC(BaseSVC): """C-Support Vector Classification. The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme. For details on the precise mathematical formulation of the provided kernel functions and how `gamma`, `coef0` and `degree` affect each other, see the corresponding section in the narrative documentation: :ref:`svm_kernels`. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') ecision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. \ For multiclass, coefficient for all 1-vs-1 classifiers. \ The layout of the coefficients in the multiclass case is somewhat \ non-trivial. See the section about multi-class classification in the \ SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import SVC >>> clf = SVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVR Support Vector Machine for Regression implemented using libsvm. LinearSVC Scalable Linear Support Vector Machine for classification implemented using liblinear. Check the See also section of LinearSVC for more comparison element. """ def __init__(self, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(SVC, self).__init__( impl='c_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class NuSVC(BaseSVC): """Nu-Support Vector Classification. Similar to SVC but uses a parameter to control the number of support vectors. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- nu : float, optional (default=0.5) An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'auto'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The 'auto' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') ecision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. \ For multiclass, coefficient for all 1-vs-1 classifiers. \ The layout of the coefficients in the multiclass case is somewhat \ non-trivial. See the section about multi-class classification in \ the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import NuSVC >>> clf = NuSVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVC(cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.5, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVC Support Vector Machine for classification using libsvm. LinearSVC Scalable linear Support Vector Machine for classification using liblinear. """ def __init__(self, nu=0.5, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(NuSVC, self).__init__( impl='nu_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=0., nu=nu, shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class SVR(BaseLibSVM, RegressorMixin): """Epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. epsilon : float, optional (default=0.1) Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import SVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = SVR(C=1.0, epsilon=0.2) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='auto', kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVR Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors. LinearSVR Scalable Linear Support Vector Machine for regression implemented using liblinear. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1): super(SVR, self).__init__( 'epsilon_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., epsilon=epsilon, verbose=verbose, shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, max_iter=max_iter, random_state=None) class NuSVR(BaseLibSVM, RegressorMixin): """Nu Support Vector Regression. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import NuSVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = NuSVR(C=1.0, nu=0.1) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVC Support Vector Machine for classification implemented with libsvm with a parameter to control the number of support vectors. SVR epsilon Support Vector Machine for regression implemented with libsvm. """ def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=1e-3, cache_size=200, verbose=False, max_iter=-1): super(NuSVR, self).__init__( 'nu_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=nu, epsilon=0., shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, verbose=verbose, max_iter=max_iter, random_state=None) class OneClassSVM(BaseLibSVM): """Unsupervised Outlier Detection. Estimate the support of a high-dimensional distribution. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_outlier_detection>`. Parameters ---------- kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. tol : float, optional Tolerance for stopping criterion. shrinking : boolean, optional Whether to use the shrinking heuristic. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [n_classes-1, n_SV] Coefficients of the support vectors in the decision function. coef_ : array, shape = [n_classes-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` intercept_ : array, shape = [n_classes-1] Constants in decision function. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(OneClassSVM, self).__init__( 'one_class', kernel, degree, gamma, coef0, tol, 0., nu, 0., shrinking, False, cache_size, None, verbose, max_iter, random_state) def fit(self, X, y=None, sample_weight=None, **params): """ Detects the soft boundary of the set of samples X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Set of samples, where n_samples is the number of samples and n_features is the number of features. sample_weight : array-like, shape (n_samples,) Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Returns self. Notes ----- If X is not a C-ordered contiguous array it is copied. """ super(OneClassSVM, self).fit(X, [], sample_weight=sample_weight, **params) return self def decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array-like, shape (n_samples,) Returns the decision function of the samples. """ dec = self._decision_function(X) return dec
bsd-3-clause
michigraber/scikit-learn
sklearn/linear_model/tests/test_omp.py
272
7752
# Author: Vlad Niculae # Licence: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.linear_model import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, LinearRegression) from sklearn.utils import check_random_state from sklearn.datasets import make_sparse_coded_signal n_samples, n_features, n_nonzero_coefs, n_targets = 20, 30, 5, 3 y, X, gamma = make_sparse_coded_signal(n_targets, n_features, n_samples, n_nonzero_coefs, random_state=0) G, Xy = np.dot(X.T, X), np.dot(X.T, y) # this makes X (n_samples, n_features) # and y (n_samples, 3) def test_correct_shapes(): assert_equal(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp(X, y, n_nonzero_coefs=5).shape, (n_features, 3)) def test_correct_shapes_gram(): assert_equal(orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape, (n_features, 3)) def test_n_nonzero_coefs(): assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5) assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5, precompute=True)) <= 5) def test_tol(): tol = 0.5 gamma = orthogonal_mp(X, y[:, 0], tol=tol) gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True) assert_true(np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol) assert_true(np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol) def test_with_without_gram(): assert_array_almost_equal( orthogonal_mp(X, y, n_nonzero_coefs=5), orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True)) def test_with_without_gram_tol(): assert_array_almost_equal( orthogonal_mp(X, y, tol=1.), orthogonal_mp(X, y, tol=1., precompute=True)) def test_unreachable_accuracy(): assert_array_almost_equal( orthogonal_mp(X, y, tol=0), orthogonal_mp(X, y, n_nonzero_coefs=n_features)) assert_array_almost_equal( assert_warns(RuntimeWarning, orthogonal_mp, X, y, tol=0, precompute=True), orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_features)) def test_bad_input(): assert_raises(ValueError, orthogonal_mp, X, y, tol=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=n_features + 1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, tol=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=n_features + 1) def test_perfect_signal_recovery(): idx, = gamma[:, 0].nonzero() gamma_rec = orthogonal_mp(X, y[:, 0], 5) gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], 5) assert_array_equal(idx, np.flatnonzero(gamma_rec)) assert_array_equal(idx, np.flatnonzero(gamma_gram)) assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2) assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2) def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) def test_identical_regressors(): newX = X.copy() newX[:, 1] = newX[:, 0] gamma = np.zeros(n_features) gamma[0] = gamma[1] = 1. newy = np.dot(newX, gamma) assert_warns(RuntimeWarning, orthogonal_mp, newX, newy, 2) def test_swapped_regressors(): gamma = np.zeros(n_features) # X[:, 21] should be selected first, then X[:, 0] selected second, # which will take X[:, 21]'s place in case the algorithm does # column swapping for optimization (which is the case at the moment) gamma[21] = 1.0 gamma[0] = 0.5 new_y = np.dot(X, gamma) new_Xy = np.dot(X.T, new_y) gamma_hat = orthogonal_mp(X, new_y, 2) gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, 2) assert_array_equal(np.flatnonzero(gamma_hat), [0, 21]) assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21]) def test_no_atoms(): y_empty = np.zeros_like(y) Xy_empty = np.dot(X.T, y_empty) gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, 1) gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, 1) assert_equal(np.all(gamma_empty == 0), True) assert_equal(np.all(gamma_empty_gram == 0), True) def test_omp_path(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_return_path_prop_with_gram(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True, precompute=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False, precompute=True) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_cv(): y_ = y[:, 0] gamma_ = gamma[:, 0] ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False, max_iter=10, cv=5) ompcv.fit(X, y_) assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs) assert_array_almost_equal(ompcv.coef_, gamma_) omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False, n_nonzero_coefs=ompcv.n_nonzero_coefs_) omp.fit(X, y_) assert_array_almost_equal(ompcv.coef_, omp.coef_) def test_omp_reaches_least_squares(): # Use small simple data; it's a sanity check but OMP can stop early rng = check_random_state(0) n_samples, n_features = (10, 8) n_targets = 3 X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_targets) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features) lstsq = LinearRegression() omp.fit(X, Y) lstsq.fit(X, Y) assert_array_almost_equal(omp.coef_, lstsq.coef_)
bsd-3-clause
olologin/scikit-learn
examples/neural_networks/plot_mnist_filters.py
57
2195
""" ===================================== Visualization of MLP weights on MNIST ===================================== Sometimes looking at the learned coefficients of a neural network can provide insight into the learning behavior. For example if weights look unstructured, maybe some were not used at all, or if very large coefficients exist, maybe regularization was too low or the learning rate too high. This example shows how to plot some of the first layer weights in a MLPClassifier trained on the MNIST dataset. The input data consists of 28x28 pixel handwritten digits, leading to 784 features in the dataset. Therefore the first layer weight matrix have the shape (784, hidden_layer_sizes[0]). We can therefore visualize a single column of the weight matrix as a 28x28 pixel image. To make the example run faster, we use very few hidden units, and train only for a very short time. Training longer would result in weights with a much smoother spatial appearance. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import fetch_mldata from sklearn.neural_network import MLPClassifier mnist = fetch_mldata("MNIST original") # rescale the data, use the traditional train/test split X, y = mnist.data / 255., mnist.target X_train, X_test = X[:60000], X[60000:] y_train, y_test = y[:60000], y[60000:] # mlp = MLPClassifier(hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4, # algorithm='sgd', verbose=10, tol=1e-4, random_state=1) mlp = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4, algorithm='sgd', verbose=10, tol=1e-4, random_state=1, learning_rate_init=.1) mlp.fit(X_train, y_train) print("Training set score: %f" % mlp.score(X_train, y_train)) print("Test set score: %f" % mlp.score(X_test, y_test)) fig, axes = plt.subplots(4, 4) # use global min / max to ensure all weights are shown on the same scale vmin, vmax = mlp.coefs_[0].min(), mlp.coefs_[0].max() for coef, ax in zip(mlp.coefs_[0].T, axes.ravel()): ax.matshow(coef.reshape(28, 28), cmap=plt.cm.gray, vmin=.5 * vmin, vmax=.5 * vmax) ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
ifarup/ciefunctions
tc1_97/plot.py
2
33194
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ plot: Generate matplotlib plots for the tc1_97 package. Copyright (C) 2012-2020 Ivar Farup and Jan Henrik Wold This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import numpy as np import matplotlib import threading from matplotlib.ticker import MaxNLocator lock = threading.Lock() def LMS(axes, plots, options): """ Plot the CIE 2006 LMS cone fundamentals (6 sign.figs.) onto the given axes. Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) if options['log10']: axes.plot(plots['logLMS'][:, 0], plots['logLMS'][:, 1], 'r') axes.plot(plots['logLMS'][:, 0], plots['logLMS'][:, 2], 'g') axes.plot(plots['logLMS'][:, 0], plots['logLMS'][:, 3], 'b') axes.axis('auto') axes.set_xlim((350, 850)) axes.set_ylim((-7.4, 0.4)) axes.yaxis.set_major_locator(MaxNLocator(nbins = 7, min_n_ticks = 6)) else: axes.plot(plots['LMS'][:, 0], plots['LMS'][:, 1], 'r') axes.plot(plots['LMS'][:, 0], plots['LMS'][:, 2], 'g') axes.plot(plots['LMS'][:, 0], plots['LMS'][:, 3], 'b') axes.axis('auto') axes.axis([350, 850, -.05, 1.05]) if options['axis_labels']: axes.set_xlabel('Wavelength (nm)', fontsize=10.5) if options['log10']: axes.set_ylabel('$\mathrm{Log}\,_{10}\,\mathrm{(relativ\,\,energy\,\,sensitivity)}$', fontsize=10.5) else: axes.set_ylabel('Relative energy sensitivities', fontsize=10.5) if options['full_title']: title = (u'CIE 2006 LMS cone fundamentals\u000a' + 'Field size: %s''' % plots['field_size'] + u'\N{DEGREE SIGN}, Age: ' + str(plots['age']) + u' yr, Domain: %s nm \u2013 %s nm' % (plots['λ_min'], plots['λ_max']) + ', Step: %s nm' % plots['λ_step']) if options['log10']: title += ', Logarithmic values' axes.set_title(title, fontsize=options['title_fontsize']) else: axes.set_title('CIE 2006 LMS cone fundamentals', fontsize=options['title_fontsize']) lock.release() def LMS_base(axes, plots, options): """ Plot the CIE 2006 LMS cone fundamentals (9 sign. figs) onto the given axes. Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) if options['log10']: axes.plot(plots['logLMS_base'][:, 0], plots['logLMS_base'][:, 1], 'r') axes.plot(plots['logLMS_base'][:, 0], plots['logLMS_base'][:, 2], 'g') axes.plot(plots['logLMS_base'][:, 0], plots['logLMS_base'][:, 3], 'b') axes.axis('auto') axes.set_xlim((350, 850)) axes.set_ylim((-7.4, 0.4)) axes.yaxis.set_major_locator(MaxNLocator(nbins = 7, min_n_ticks = 6)) else: axes.plot(plots['LMS_base'][:, 0], plots['LMS_base'][:, 1], 'r') axes.plot(plots['LMS_base'][:, 0], plots['LMS_base'][:, 2], 'g') axes.plot(plots['LMS_base'][:, 0], plots['LMS_base'][:, 3], 'b') axes.axis('auto') axes.axis([350, 850, -.05, 1.05]) if options['axis_labels']: axes.set_xlabel('Wavelength (nm)', fontsize=10.5) if options['log10']: axes.set_ylabel('$\mathrm{Log}\,_{10}\,\mathrm{(relativ\,\,energy\,\,sensitivity)}$', fontsize=10.5) else: axes.set_ylabel('Relative energy sensitivities', fontsize=10.5) if options['full_title']: title = ('CIE 2006 LMS cone fundamentals ' + '(9 sign. figs. data)\nField size: %s''' % plots['field_size'] + u'\N{DEGREE SIGN}, Age: ' + str(plots['age']) + u' yr, Domain: %s nm \u2013 %s nm' % ( plots['λ_min'], plots['λ_max']) + ', Step: %s nm' % plots['λ_step']) if options['log10']: title += ', Logarithmic values' axes.set_title(title, fontsize=options['title_fontsize']) else: axes.set_title('CIE 2006 LMS cone fundamentals (9 sign. figs. data)', fontsize=options['title_fontsize']) lock.release() def ls_mb(axes, plots, options): """ Plot the MacLeod-Boynton ls diagram onto the given axes Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) axes.plot(plots['lms_mb'][:, 1], plots['lms_mb'][:, 3], 'k') axes.plot(plots['lms_mb_tg_purple'][:, 1], plots['lms_mb_tg_purple'][:, 2], 'k') λ_values = np.concatenate( ([plots['lms_mb'][0, 0]], np.arange(410, 490, 10), [500, 550, 575, 600, 700], [plots['lms_mb'][-1, 0]])) for λ in λ_values: # add wavelength parameters ind = np.nonzero(plots['lms_mb'][:, 0] == λ)[0] axes.plot(plots['lms_mb'][ind, 1], plots['lms_mb'][ind, 3], 'o', markeredgecolor='k', markerfacecolor='w') if λ > 490: align = 'bottom' elif λ == 830: align = 'top' else: align = 'center' if options['labels'] and np.shape(ind)[0] > 0: axes.text(plots['lms_mb'][ind, 1], plots['lms_mb'][ind, 3], ' ' + '%.0f' % λ, fontsize=options['label_fontsize'], verticalalignment=align) axes.plot(plots['lms_mb_white'][0], plots['lms_mb_white'][2], 'kx') if options['labels']: axes.text(plots['lms_mb_white'][0], plots['lms_mb_white'][2], ' E', fontsize=options['label_fontsize'], verticalalignment=align) axes.axis('scaled') axes.set_xlim((-.05, 1.05)) axes.set_ylim((-.05, 1.05)) if options['axis_labels']: if (float(plots['λ_min']) == 390 and float(plots['λ_max']) == 830 and float(plots['λ_step']) == 1): axes.set_xlabel('$l_\mathrm{\,MB,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '}$', fontsize=11) axes.set_ylabel('$s_\mathrm{\,MB,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '}$', fontsize=11) else: axes.set_xlabel('$l_\mathrm{\,MB,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '\,(%s-%s,\,%s)}$' % (plots['λ_min'], plots['λ_max'], plots['λ_step']), fontsize=11) axes.set_ylabel('$s_\mathrm{\,MB,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '\,(%s-%s,\,%s)}$' % (plots['λ_min'], plots['λ_max'], plots['λ_step']), fontsize=11) if options['full_title']: axes.set_title((u'MacLeod\u2013Boynton ls chromaticity ' + u'diagram\nField size: %s''' % plots['field_size'] + u'\N{DEGREE SIGN}, Age: ' + str(plots['age']) + u' yr, Domain: %s nm \u2013 %s nm' % (plots['λ_min'], plots['λ_max']) + ', Step: %s nm' % plots['λ_step']), fontsize=options['title_fontsize']) else: axes.set_title(u'MacLeod\u2013Boynton ls chromaticity diagram', fontsize=options['title_fontsize']) lock.release() def lm_mw(axes, plots, options): """ Plot the Maxwellian lm diagram onto the given axes. Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) axes.plot(plots['lms_mw'][:, 1], plots['lms_mw'][:, 2], 'k') axes.plot(plots['lms_mw_tg_purple'][:, 1], plots['lms_mw_tg_purple'][:, 2], 'k') λ_values = np.concatenate( (np.arange(450, 631, 10), [700], [plots['lms_mw'][0, 0]], [plots['lms_mw'][-1, 0]])) for λ in λ_values: # add wavelength parameters ind = np.nonzero(plots['lms_mw'][:, 0] == λ)[0] axes.plot(plots['lms_mw'][ind, 1], plots['lms_mw'][ind, 2], 'o', markeredgecolor='k', markerfacecolor='w') if λ == 390: align = 'top' else: align = 'center' if options['labels'] and np.shape(ind)[0] > 0: axes.text(plots['lms_mw'][ind, 1], plots['lms_mw'][ind, 2], ' ' + '%.0f' % λ, fontsize=options['label_fontsize'], verticalalignment=align) axes.plot(plots['lms_mw_white'][0], plots['lms_mw_white'][1], 'kx') if options['labels']: axes.text(plots['lms_mw_white'][0], plots['lms_mw_white'][1], ' E', fontsize=options['label_fontsize'], verticalalignment=align) axes.axis('scaled') axes.set_xlim((-.05, 1.05)) axes.xaxis.set_major_locator( MaxNLocator(nbins = 6, min_n_ticks = 3) ) axes.set_ylim((-.05, .65)) axes.yaxis.set_major_locator( MaxNLocator(nbins = 4, min_n_ticks = 3) ) if options['axis_labels']: if (float(plots['λ_min']) == 390 and float(plots['λ_max']) == 830 and float(plots['λ_step']) == 1): axes.set_xlabel('$l_\mathrm{\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '}$', fontsize=11) axes.set_ylabel('$m_\mathrm{\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '}$', fontsize=11) else: axes.set_xlabel('$l_\mathrm{\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '\,(%s-%s,\,%s)}$' % (plots['λ_min'], plots['λ_max'], plots['λ_step']), fontsize=11) axes.set_ylabel('$m_\mathrm{\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '\,(%s-%s,\,%s)}$' % (plots['λ_min'], plots['λ_max'], plots['λ_step']), fontsize=11) if options['full_title']: axes.set_title( ('Maxwellian lm chromaticity diagram\nField size: %s' % plots['field_size'] + u'\N{DEGREE SIGN}, Age: ' + str(plots['age']) + u' yr, Domain: %s nm \u2013 %s nm' % (plots['λ_min'], plots['λ_max']) + ', Step: %s nm' % plots['λ_step'] + ', Renormalized values'), fontsize=options['title_fontsize']) else: axes.set_title('Maxwellian lm chromaticity diagram', fontsize=options['title_fontsize']) lock.release() def XYZ(axes, plots, options): """ Plot the CIE XYZ cone-fundamental-based tristimulus functions onto the given axes. Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() if options['norm']: XYZ = plots['XYZ_N'] else: XYZ = plots['XYZ'] axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) axes.plot(XYZ[:, 0], XYZ[:, 1], 'r') axes.plot(XYZ[:, 0], XYZ[:, 2], 'g') axes.plot(XYZ[:, 0], XYZ[:, 3], 'b') if options['cie31']: axes.plot(plots['XYZ31'][:, 0], plots['XYZ31'][:, 1], 'r--') axes.plot(plots['XYZ31'][:, 0], plots['XYZ31'][:, 2], 'g--') axes.plot(plots['XYZ31'][:, 0], plots['XYZ31'][:, 3], 'b--') if options['cie64']: axes.plot(plots['XYZ64'][:, 0], plots['XYZ64'][:, 1], 'r:') axes.plot(plots['XYZ64'][:, 0], plots['XYZ64'][:, 2], 'g:') axes.plot(plots['XYZ64'][:, 0], plots['XYZ64'][:, 3], 'b:') axes.axis('auto') axes.axis([350, 850, -.2, 2.3]) if options['axis_labels']: axes.set_xlabel('Wavelength (nm)', fontsize=10.5) axes.set_ylabel('Cone-fundamental-based tristimulus values', fontsize=10.5) if options['full_title']: title = 'CIE XYZ cone-fundamental-based tristimulus functions\n' + \ 'Field size: %s''' % plots['field_size'] + \ u'\N{DEGREE SIGN}, Age: ' + str(plots['age']) + \ u' yr, Domain: %s nm \u2013 %s nm' % \ (plots['λ_min'], plots['λ_max']) + \ ', Step: %s nm' % plots['λ_step'] if options['norm']: title += ', Renormalized values' axes.set_title(title, fontsize=options['title_fontsize']) else: axes.set_title('CIE XYZ cone-fundamental-based ' + 'tristimulus functions', fontsize=options['title_fontsize']) lock.release() def xy(axes, plots, options): """ Plot the CIE xy cone-fundamental-based chromaticity diagram onto the given axes. Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() if options['norm']: xyz = plots['xyz_N'] xyz_white = plots['xyz_white_N'] xyz_tg_purple = plots['xyz_tg_purple_N'] else: xyz = plots['xyz'] xyz_white = plots['xyz_white'] xyz_tg_purple = plots['xyz_tg_purple'] axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) λ_values = np.concatenate( ([xyz[0, 0]], np.arange(470, 611, 10), [700], [xyz[-1, 0]])) if options['cie31']: axes.plot(plots['xyz31'][:, 1], plots['xyz31'][:, 2], 'k--') axes.plot(plots['xyz31_tg_purple'][:, 1], plots['xyz31_tg_purple'][:, 2], 'k--') for l in λ_values: # add wavelength parameters ind = np.nonzero(plots['xyz31'][:, 0] == l)[0] axes.plot(plots['xyz31'][ind, 1], plots['xyz31'][ind, 2], 'ko') if options['cie64']: axes.plot(plots['xyz64'][:, 1], plots['xyz64'][:, 2], 'k:') axes.plot(plots['xyz64_tg_purple'][:, 1], plots['xyz64_tg_purple'][:, 2], 'k:') for l in λ_values: # add wavelength parameters ind = np.nonzero(plots['xyz64'][:, 0] == l)[0] axes.plot(plots['xyz64'][ind, 1], plots['xyz64'][ind, 2], 'ks') axes.plot(xyz[:, 1], xyz[:, 2], 'k') axes.plot(xyz_tg_purple[:, 1], xyz_tg_purple[:, 2], 'k') for l in λ_values: # add wavelength parameters ind = np.nonzero(xyz[:, 0] == l)[0] axes.plot(xyz[ind, 1], xyz[ind, 2], 'o', markeredgecolor='k', markerfacecolor='w') if l == 700 or l == 390: align = 'top' elif l == 830: align = 'bottom' else: align = 'center' if options['labels']: if np.shape(ind)[0] > 0: axes.text(xyz[ind, 1], xyz[ind, 2], ' ' + '%.0f' % l, fontsize=options['label_fontsize'], verticalalignment=align) axes.plot(xyz_white[0], xyz_white[1], 'kx') if options['labels']: axes.text(xyz_white[0], xyz_white[1], ' E', fontsize=options['label_fontsize'], verticalalignment=align) axes.axis('scaled') axes.set_xlim((-.05, 1.05)) axes.set_ylim((-.05, 1.05)) if options['axis_labels']: if (float(plots['λ_min']) == 390 and float(plots['λ_max']) == 830 and float(plots['λ_step']) == 1): axes.set_xlabel('$x_\mathrm{\,F,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '}$', fontsize=11) axes.set_ylabel('$y_\mathrm{\,F,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '}$', fontsize=11) else: axes.set_xlabel('$x_\mathrm{\,F,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '\,(%s-%s,\,%s)}$' % (plots['λ_min'], plots['λ_max'], plots['λ_step']), fontsize=11) axes.set_ylabel('$y_\mathrm{\,F,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '\,(%s-%s,\,%s)}$' % (plots['λ_min'], plots['λ_max'], plots['λ_step']), fontsize=11) if options['full_title']: title = 'CIE xy cone-fundamental-based chromaticity diagram\n' +\ 'Field size: %s' % plots['field_size'] + \ u'\N{DEGREE SIGN}, Age: ' + str(plots['age']) + \ u' yr, Domain: %s nm \u2013 %s nm' % (plots['λ_min'], plots['λ_max']) + \ ', Step: %s nm' % plots['λ_step'] if options['norm']: title += ', Renormalized values' axes.set_title(title, fontsize=options['title_fontsize']) else: axes.set_title('CIE xy cone-fundamental-based chromaticity diagram', fontsize=options['title_fontsize']) lock.release() def XYZ_purples(axes, plots, options): """ Plot the XYZ cone-fundamental-based tristimulus functions for purple- line stimuli, as parameterized by complementary wavelength, onto the given axes. Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() if options['norm']: XYZ_p = plots['XYZ_purples_N'] else: XYZ_p = plots['XYZ_purples'] axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) axes.plot(XYZ_p[:, 0], XYZ_p[:, 1], 'r') axes.plot(XYZ_p[:, 0], XYZ_p[:, 2], 'g') axes.plot(XYZ_p[:, 0], XYZ_p[:, 3], 'b') axes.axis('auto') axes.axis([480, 580, -.04, .54]) if options['axis_labels']: axes.set_xlabel('Complementary wavelength (nm)', fontsize=10.5) axes.set_ylabel('Cone-fundamental-based tristimulus values', fontsize=10.5) if options['full_title']: title = 'XYZ cone-fundamental-based tristimulus functions for ' + \ 'purple-line stimuli\n' + \ 'Field size: %s''' % plots['field_size'] + \ u'\N{DEGREE SIGN}, Age: ' + str(plots['age']) + \ u' yr, Domain: %s nm \u2013 %s nm' % \ (plots['λ_min'], plots['λ_max']) + \ ', Step: %s nm' % plots['λ_step'] if options['norm']: title += ', Renormalized values' axes.set_title(title, fontsize=options['title_fontsize']) else: axes.set_title('CIE XYZ cone-fundamental-based ' + 'tristimulus functions', fontsize=options['title_fontsize']) lock.release() def xy_purples(axes, plots, options): """ Plot the CIE xy chromaticity diagram, with marking of purple-line stimuli, onto the given axes. Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() if options['norm']: xyz = plots['xyz_N'] xyz_purples = plots['xyz_purples_N'] xyz_white = plots['xyz_white_N'] xyz_tg_purple = plots['xyz_tg_purple_N'] else: xyz = plots['xyz'] xyz_purples = plots['xyz_purples'] xyz_white = plots['xyz_white'] xyz_tg_purple = plots['xyz_tg_purple'] axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) axes.plot(xyz_purples[:, 1], xyz_purples[:, 2], 'k') λ_values = np.arange(400, 700, 10) axes.plot(xyz[:, 1], xyz[:, 2], 'k') axes.plot(xyz_tg_purple[:, 1], xyz_tg_purple[:, 2], 'k') axes.plot(xyz_white[0], xyz_white[1], 'kx') axes.plot(xyz_tg_purple[0, 1], xyz_tg_purple[0, 2], 'o', markeredgecolor='k', markerfacecolor='w') axes.plot(xyz_tg_purple[1, 1], xyz_tg_purple[1, 2], 'o', markeredgecolor='k', markerfacecolor='w') if options['labels']: axes.text(xyz_tg_purple[0, 1], xyz_tg_purple[0, 2], ' ' + '%.1f' % xyz_tg_purple[0, 0], fontsize=options['label_fontsize'], verticalalignment='center') axes.text(xyz_tg_purple[1, 1], xyz_tg_purple[1, 2], ' ' + '%.1f' % xyz_tg_purple[1, 0], fontsize=options['label_fontsize'], verticalalignment='center') for l in λ_values: # add complementary-wavelength parameters ind = np.nonzero(xyz_purples[:, 0] == l)[0] axes.plot(xyz_purples[ind, 1], xyz_purples[ind, 2], 'o', markeredgecolor='k', markerfacecolor='w') if options['labels']: if np.shape(ind)[0] > 0: axes.text(xyz_purples[ind, 1], xyz_purples[ind, 2], ' ' + '%.0fc' % l, fontsize=options['label_fontsize'], verticalalignment='center') if options['labels']: axes.text(xyz_white[0], xyz_white[1], ' E', fontsize=options['label_fontsize'], verticalalignment='center') axes.axis('scaled') axes.set_xlim((-.05, 1.05)) axes.set_ylim((-.05, 1.05)) if options['axis_labels']: if (float(plots['λ_min']) == 390 and float(plots['λ_max']) == 830 and float(plots['λ_step']) == 1): axes.set_xlabel('$x_\mathrm{\,F,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '}$', fontsize=11) axes.set_ylabel('$y_\mathrm{\,F,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '}$', fontsize=11) else: axes.set_xlabel('$x_\mathrm{\,F,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '\,(%s-%s,\,%s)}$' % (plots['λ_min'], plots['λ_max'], plots['λ_step']), fontsize=11) axes.set_ylabel('$y_\mathrm{\,F,\,' + str(plots['field_size']) + ',\,' + str(plots['age']) + '\,(%s-%s,\,%s)}$' % (plots['λ_min'], plots['λ_max'], plots['λ_step']), fontsize=11) if options['full_title']: title = 'xy cone-fundamental-based chromaticity diagram (purple-line stimuli)\n' + \ 'Field size: %s' % plots['field_size'] + \ u'\N{DEGREE SIGN}, Age: ' + str(plots['age']) + \ u' yr, Domain: %s nm \u2013 %s nm' % (plots['λ_min'], \ plots['λ_max']) + \ ', Step: %s nm' % plots['λ_step'] if options['norm']: title += ', Renormalized values' axes.set_title(title, fontsize=options['title_fontsize']) else: axes.set_title('CIE xy cone-fundamental-based chromaticity diagram', fontsize=options['title_fontsize']) lock.release() def XYZ31(axes, plots, options): """ Plot the CIE 1931 XYZ CMFs onto the given axes. Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) axes.plot(plots['XYZ31'][:, 0], plots['XYZ31'][:, 1], 'r') axes.plot(plots['XYZ31'][:, 0], plots['XYZ31'][:, 2], 'g') axes.plot(plots['XYZ31'][:, 0], plots['XYZ31'][:, 3], 'b') if options['cie64']: axes.plot(plots['XYZ64'][:, 0], plots['XYZ64'][:, 1], 'r:') axes.plot(plots['XYZ64'][:, 0], plots['XYZ64'][:, 2], 'g:') axes.plot(plots['XYZ64'][:, 0], plots['XYZ64'][:, 3], 'b:') axes.axis('auto') axes.axis([350, 850, -.2, 2.3]) if options['axis_labels']: axes.set_xlabel('Wavelength (nm)', fontsize=10.5) axes.set_ylabel('Tristimulus values', fontsize=10.5) axes.set_title( u'CIE 1931 XYZ standard 2\N{DEGREE SIGN} colour-matching functions', fontsize=options['title_fontsize']) lock.release() def XYZ64(axes, plots, options): """ Plot the CIE 1964 XYZ CMFs onto the given axes. Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) axes.plot(plots['XYZ64'][:, 0], plots['XYZ64'][:, 1], 'r') axes.plot(plots['XYZ64'][:, 0], plots['XYZ64'][:, 2], 'g') axes.plot(plots['xyz64'][:, 0], plots['XYZ64'][:, 3], 'b') if options['cie31']: axes.plot(plots['XYZ31'][:, 0], plots['XYZ31'][:, 1], 'r--') axes.plot(plots['XYZ31'][:, 0], plots['XYZ31'][:, 2], 'g--') axes.plot(plots['XYZ31'][:, 0], plots['XYZ31'][:, 3], 'b--') axes.axis('auto') axes.axis([350, 850, -.2, 2.3]) if options['axis_labels']: axes.set_xlabel('Wavelength (nm)', fontsize=10.5) axes.set_ylabel('Tristimulus values', fontsize=10.5) axes.set_title( u'CIE 1964 XYZ standard 10\N{DEGREE SIGN} colour-matching functions', fontsize=options['title_fontsize']) lock.release() def xy31(axes, plots, options): """ Plot the CIE 1931 xy chromaticity diagram onto the given axes. Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) λ_values = np.concatenate(([390], np.arange(470, 611, 10), [700, 830])) if options['cie64']: axes.plot(plots['xyz64'][:, 1], plots['xyz64'][:, 2], 'k:') axes.plot(plots['xyz64_tg_purple'][:, 1], plots['xyz64_tg_purple'][:, 2], 'k:') for l in λ_values: # add wavelength parameters ind = np.nonzero(plots['xyz64'][:, 0] == l)[0] axes.plot(plots['xyz64'][ind, 1], plots['xyz64'][ind, 2], 'ks') axes.plot(plots['xyz31'][:, 1], plots['xyz31'][:, 2], 'k') axes.plot(plots['xyz31_tg_purple'][:, 1], plots['xyz31_tg_purple'][:, 2], 'k') for l in λ_values: # add wavelength parameters ind = np.nonzero(plots['xyz31'][:, 0] == l)[0] axes.plot(plots['xyz31'][ind, 1], plots['xyz31'][ind, 2], 'ko') if l == 700 or l == 390: align = 'top' elif l == 830: align = 'bottom' else: align = 'center' if options['labels']: axes.text(plots['xyz31'][ind, 1], plots['xyz31'][ind, 2], ' ' + '%.0f' % l, fontsize=options['label_fontsize'], verticalalignment=align) axes.plot(0.33331,0.33329, 'kx') if options['labels']: axes.text(1./3, 1./3, ' E', fontsize=options['label_fontsize'], verticalalignment=align) axes.axis('scaled') axes.set_xlim((-.05, 1.05)) axes.set_ylim((-.05, 1.05)) if options['axis_labels']: axes.set_xlabel('$x$', fontsize=11) axes.set_ylabel('$y$', fontsize=11) axes.set_title( u'CIE 1931 xy standard 2\N{DEGREE SIGN} chromaticity diagram', fontsize=options['title_fontsize']) lock.release() def xy64(axes, plots, options): """ Plot the CIE 1964 xy chromaticity diagram onto the given axes. Parameters ---------- axes : Axes Matplotlib axes on which to plot. plots : dict Data for plotting as returned by tc1_97. options : dict Plotting options (see code for use). """ lock.acquire() axes.clear() axes.grid(options['grid']) axes.tick_params(labelsize=10) λ_values = np.concatenate(([390], np.arange(470, 611, 10), [700, 830])) if options['cie31']: axes.plot(plots['xyz31'][:, 1], plots['xyz31'][:, 2], 'k--') axes.plot(plots['xyz31_tg_purple'][:, 1], plots['xyz31_tg_purple'][:, 2], 'k--') for l in λ_values: # add wavelength parameters ind = np.nonzero(plots['xyz31'][:, 0] == l)[0] axes.plot(plots['xyz31'][ind, 1], plots['xyz31'][ind, 2], 'ko') axes.plot(plots['xyz64'][:, 1], plots['xyz64'][:, 2], 'k') axes.plot(plots['xyz64_tg_purple'][:, 1], plots['xyz64_tg_purple'][:, 2], 'k') for l in λ_values: # add wavelength parameters ind = np.nonzero(plots['xyz64'][:, 0] == l)[0] axes.plot(plots['xyz64'][ind, 1], plots['xyz64'][ind, 2], 'ks') if l == 700 or l == 390: align = 'top' elif l == 830: align = 'bottom' else: align = 'center' if options['labels']: axes.text(plots['xyz64'][ind, 1], plots['xyz64'][ind, 2], ' ' + '%.0f' % l, fontsize=options['label_fontsize'], verticalalignment=align) axes.plot(0.33330, 0.33333, 'kx') if options['labels']: axes.text(1./3, 1./3, ' E', fontsize=options['label_fontsize'], verticalalignment=align) axes.axis('scaled') axes.set_xlim((-.05, 1.05)) axes.set_ylim((-.05, 1.05)) if options['axis_labels']: axes.set_xlabel('$x_{10}$', fontsize=11) axes.set_ylabel('$y_{10}$', fontsize=11) axes.set_title( u'CIE 1964 xy standard 10\N{DEGREE SIGN} chromaticity diagram', fontsize=options['title_fontsize']) lock.release()
gpl-3.0
bjackman/trappy
trappy/plotter/ILinePlotGen.py
1
9380
# Copyright 2015-2017 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """This is helper module for :mod:`trappy.plotter.ILinePlot` for adding HTML and javascript necessary for interactive plotting. The Linear to 2-D co-ordination transformations are done by using the functionality in :mod:`trappy.plotter.PlotLayout` """ from trappy.plotter import AttrConf import uuid from collections import OrderedDict import json import os from trappy.plotter import IPythonConf from trappy.plotter.ColorMap import to_dygraph_colors if not IPythonConf.check_ipython(): raise ImportError("No Ipython Environment found") from IPython.display import display, HTML def df_to_dygraph(data_frame): """Helper function to convert a :mod:`pandas.DataFrame` to dygraph data :param data_frame: The DataFrame to be converted :type data_frame: :mod:`pandas.DataFrame` """ values = data_frame.values.tolist() data = [[x] for x in data_frame.index.tolist()] for idx, (_, val) in enumerate(zip(data, values)): data[idx] += val return { "data": data, "labels": ["index"] + data_frame.columns.tolist(), } class ILinePlotGen(object): """ :param num_plots: The total number of plots :type num_plots: int The linear co-ordinate system :math:`[0, N_{plots}]` is mapped to a 2-D coordinate system with :math:`N_{rows}` and :math:`N_{cols}` such that: .. math:: N_{rows} = \\frac{N_{cols}}{N_{plots}} """ def _add_graph_cell(self, fig_name, color_map): """Add a HTML table cell to hold the plot""" colors_opt_arg = ", " + to_dygraph_colors(color_map) if color_map else "" graph_js = '' lib_urls = [IPythonConf.DYGRAPH_COMBINED_URL, IPythonConf.DYGRAPH_SYNC_URL, IPythonConf.UNDERSCORE_URL] for url in lib_urls: graph_js += '<!-- TRAPPY_PUBLISH_SOURCE_LIB = "{}" -->\n'.format(url) graph_js += """ <script> /* TRAPPY_PUBLISH_IMPORT = "plotter/js/ILinePlot.js" */ /* TRAPPY_PUBLISH_REMOVE_START */ var ilp_req = require.config( { paths: { "dygraph-sync": '""" + IPythonConf.add_web_base("plotter_scripts/ILinePlot/synchronizer") + """', "dygraph": '""" + IPythonConf.add_web_base("plotter_scripts/ILinePlot/dygraph-combined") + """', "ILinePlot": '""" + IPythonConf.add_web_base("plotter_scripts/ILinePlot/ILinePlot") + """', "underscore": '""" + IPythonConf.add_web_base("plotter_scripts/ILinePlot/underscore-min") + """', }, shim: { "dygraph-sync": ["dygraph"], "ILinePlot": { "deps": ["dygraph-sync", "dygraph", "underscore"], "exports": "ILinePlot" } } }); /* TRAPPY_PUBLISH_REMOVE_STOP */ ilp_req(["require", "ILinePlot"], function() { /* TRAPPY_PUBLISH_REMOVE_LINE */ ILinePlot.generate(""" + fig_name + "_data" + colors_opt_arg + """); }); /* TRAPPY_PUBLISH_REMOVE_LINE */ </script> """ cell = '<td style="border-style: hidden;"><div class="ilineplot" id="{}"></div></td>'.format(fig_name) self._html.append(cell) self._js.append(graph_js) def _add_legend_cell(self, fig_name): """Add HTML table cell for the legend""" legend_div_name = fig_name + "_legend" cell = '<td style="border-style: hidden;"><div style="text-align:center" id="{}"></div></td>'.format(legend_div_name) self._html.append(cell) def _begin_row(self): """Add the opening tag for HTML row""" self._html.append("<tr>") def _end_row(self): """Add the closing tag for the HTML row""" self._html.append("</tr>") def _end_table(self): """Add the closing tag for the HTML table""" self._html.append("</table>") def _generate_fig_name(self): """Generate a unique figure name""" fig_name = "fig_" + uuid.uuid4().hex self._fig_map[self._fig_index] = fig_name self._fig_index += 1 return fig_name def _init_html(self, color_map): """Initialize HTML code for the plots""" table = '<table style="border-style: hidden;">' self._html.append(table) if self._attr["title"]: cell = '<caption style="text-align:center; font: 24px sans-serif bold; color: black">{}</caption>'.format(self._attr["title"]) self._html.append(cell) for _ in range(self._rows): self._begin_row() legend_figs = [] for _ in range(self._attr["per_line"]): fig_name = self._generate_fig_name() legend_figs.append(fig_name) self._add_graph_cell(fig_name, color_map) self._end_row() self._begin_row() for l_fig in legend_figs: self._add_legend_cell(l_fig) self._end_row() self._end_table() def __init__(self, num_plots, **kwargs): self._attr = kwargs self._html = [] self._js = [] self._js_plot_data = [] self.num_plots = num_plots self._fig_map = {} self._fig_index = 0 self._single_plot = False if self.num_plots == 0: raise RuntimeError("No plots for the given constraints") if self.num_plots < self._attr["per_line"]: self._attr["per_line"] = self.num_plots self._rows = (self.num_plots / self._attr["per_line"]) if self.num_plots % self._attr["per_line"] != 0: self._rows += 1 self._attr["height"] = AttrConf.HTML_HEIGHT self._init_html(kwargs.pop("colors", None)) def _check_add_scatter(self, fig_params): """Check if a scatter plot is needed and augment the fig_params accordingly""" if self._attr["scatter"]: fig_params["drawPoints"] = True fig_params["strokeWidth"] = 0.0 else: fig_params["drawPoints"] = False fig_params["strokeWidth"] = AttrConf.LINE_WIDTH fig_params["pointSize"] = self._attr["point_size"] def add_plot(self, plot_num, data_frame, title="", test=False): """Add a plot for the corresponding index :param plot_num: The linear index of the plot :type plot_num: int :param data_frame: The data for the plot :type data_frame: :mod:`pandas.DataFrame` :param title: The title for the plot :type title: str """ datapoints = sum(len(v) for _, v in data_frame.iteritems()) if datapoints > self._attr["max_datapoints"]: msg = "This plot is too big and will probably make your browser unresponsive. If you are happy to wait, pass max_datapoints={} to view()".\ format(datapoints + 1) raise ValueError(msg) fig_name = self._fig_map[plot_num] fig_params = {} fig_params["data"] = df_to_dygraph(data_frame) fig_params["name"] = fig_name fig_params["rangesel"] = False fig_params["logscale"] = False fig_params["title"] = title fig_params["step_plot"] = self._attr["step_plot"] fig_params["fill_graph"] = self._attr["fill"] if "fill_alpha" in self._attr: fig_params["fill_alpha"] = self._attr["fill_alpha"] fig_params["fill_graph"] = True fig_params["per_line"] = self._attr["per_line"] fig_params["height"] = self._attr["height"] self._check_add_scatter(fig_params) # Use a hash of this object as a default for the sync group, so that if # 'sync_zoom=True' then by default (i.e. if 'group' is not specified), # all the plots in a figure are synced. fig_params["syncGroup"] = self._attr.get("group", str(hash(self))) fig_params["syncZoom"] = self._attr.get("sync_zoom", AttrConf.DEFAULT_SYNC_ZOOM) if "ylim" in self._attr: fig_params["valueRange"] = self._attr["ylim"] if "xlim" in self._attr: fig_params["dateWindow"] = self._attr["xlim"] fig_data = "var {}_data = {};".format(fig_name, json.dumps(fig_params)) self._js_plot_data.append("<script>") self._js_plot_data.append(fig_data) self._js_plot_data.append("</script>") def finish(self): """Called when the Plotting is finished""" display(HTML(self.html())) def html(self): """Return the raw HTML text""" return "\n".join(self._html + self._js_plot_data + self._js)
apache-2.0
elijah513/scikit-learn
examples/applications/plot_prediction_latency.py
234
11277
""" ================== Prediction Latency ================== This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode. The plots represent the distribution of the prediction latency as a boxplot. """ # Authors: Eustache Diemert <[email protected]> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import time import gc import numpy as np import matplotlib.pyplot as plt from scipy.stats import scoreatpercentile from sklearn.datasets.samples_generator import make_regression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.svm.classes import SVR def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() def atomic_benchmark_estimator(estimator, X_test, verbose=False): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_instances, dtype=np.float) for i in range(n_instances): instance = X_test[i, :] start = time.time() estimator.predict(instance) runtimes[i] = time.time() - start if verbose: print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose): """Measure runtime prediction of the whole input.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_bulk_repeats, dtype=np.float) for i in range(n_bulk_repeats): start = time.time() estimator.predict(X_test) runtimes[i] = time.time() - start runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes))) if verbose: print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False): """ Measure runtimes of prediction in both atomic and bulk mode. Parameters ---------- estimator : already trained estimator supporting `predict()` X_test : test input n_bulk_repeats : how many times to repeat when evaluating bulk mode Returns ------- atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the runtimes in seconds. """ atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose) bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose) return atomic_runtimes, bulk_runtimes def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False): """Generate a regression dataset with the given parameters.""" if verbose: print("generating dataset...") X, y, coef = make_regression(n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() if verbose: print("ok") return X_train, y_train, X_test, y_test def boxplot_runtimes(runtimes, pred_type, configuration): """ Plot a new `Figure` with boxplots of prediction runtimes. Parameters ---------- runtimes : list of `np.array` of latencies in micro-seconds cls_names : list of estimator class names that generated the runtimes pred_type : 'bulk' or 'atomic' """ fig, ax1 = plt.subplots(figsize=(10, 6)) bp = plt.boxplot(runtimes, ) cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] plt.setp(ax1, xticklabels=cls_infos) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Prediction Time per Instance - %s, %d feats.' % ( pred_type.capitalize(), configuration['n_features'])) ax1.set_ylabel('Prediction Time (us)') plt.show() def benchmark(configuration): """Run the whole benchmark.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) stats = {} for estimator_conf in configuration['estimators']: print("Benchmarking", estimator_conf['instance']) estimator_conf['instance'].fit(X_train, y_train) gc.collect() a, b = benchmark_estimator(estimator_conf['instance'], X_test) stats[estimator_conf['name']] = {'atomic': a, 'bulk': b} cls_names = [estimator_conf['name'] for estimator_conf in configuration[ 'estimators']] runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'atomic', configuration) runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'], configuration) def n_feature_influence(estimators, n_train, n_test, n_features, percentile): """ Estimate influence of the number of features on prediction time. Parameters ---------- estimators : dict of (name (str), estimator) to benchmark n_train : nber of training instances (int) n_test : nber of testing instances (int) n_features : list of feature-space dimensionality to test (int) percentile : percentile at which to measure the speed (int [0-100]) Returns: -------- percentiles : dict(estimator_name, dict(n_features, percentile_perf_in_us)) """ percentiles = defaultdict(defaultdict) for n in n_features: print("benchmarking with %d features" % n) X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n) for cls_name, estimator in estimators.items(): estimator.fit(X_train, y_train) gc.collect() runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False) percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes, percentile) return percentiles def plot_n_features_influence(percentiles, percentile): fig, ax1 = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] for i, cls_name in enumerate(percentiles.keys()): x = np.array(sorted([n for n in percentiles[cls_name].keys()])) y = np.array([percentiles[cls_name][n] for n in x]) plt.plot(x, y, color=colors[i], ) ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Evolution of Prediction Time with #Features') ax1.set_xlabel('#Features') ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile) plt.show() def benchmark_throughputs(configuration, duration_secs=0.1): """benchmark throughput for different estimators.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) throughputs = dict() for estimator_config in configuration['estimators']: estimator_config['instance'].fit(X_train, y_train) start_time = time.time() n_predictions = 0 while (time.time() - start_time) < duration_secs: estimator_config['instance'].predict(X_test[0]) n_predictions += 1 throughputs[estimator_config['name']] = n_predictions / duration_secs return throughputs def plot_benchmark_throughput(throughputs, configuration): fig, ax = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] cls_values = [throughputs[estimator_conf['name']] for estimator_conf in configuration['estimators']] plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors) ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs))) ax.set_xticklabels(cls_infos, fontsize=10) ymax = max(cls_values) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('Throughput (predictions/sec)') ax.set_title('Prediction Throughput for different estimators (%d ' 'features)' % configuration['n_features']) plt.show() ############################################################################### # main code start_time = time.time() # benchmark bulk/atomic prediction speed for various regressors configuration = { 'n_train': int(1e3), 'n_test': int(1e2), 'n_features': int(1e2), 'estimators': [ {'name': 'Linear Model', 'instance': SGDRegressor(penalty='elasticnet', alpha=0.01, l1_ratio=0.25, fit_intercept=True), 'complexity_label': 'non-zero coefficients', 'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)}, {'name': 'RandomForest', 'instance': RandomForestRegressor(), 'complexity_label': 'estimators', 'complexity_computer': lambda clf: clf.n_estimators}, {'name': 'SVR', 'instance': SVR(kernel='rbf'), 'complexity_label': 'support vectors', 'complexity_computer': lambda clf: len(clf.support_vectors_)}, ] } benchmark(configuration) # benchmark n_features influence on prediction speed percentile = 90 percentiles = n_feature_influence({'ridge': Ridge()}, configuration['n_train'], configuration['n_test'], [100, 250, 500], percentile) plot_n_features_influence(percentiles, percentile) # benchmark throughput throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) stop_time = time.time() print("example run in %.2fs" % (stop_time - start_time))
bsd-3-clause