repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/pandas/core/common.py
7
15175
""" Misc tools for implementing data structures """ import sys import warnings from datetime import datetime, timedelta from functools import partial import numpy as np import pandas.lib as lib import pandas.tslib as tslib from pandas import compat from pandas.compat import long, zip, iteritems from pandas.core.config import get_option from pandas.types.generic import ABCSeries from pandas.types.common import _NS_DTYPE from pandas.types.inference import _iterable_not_string from pandas.types.missing import isnull from pandas.api import types from pandas.types import common # back-compat of public API # deprecate these functions m = sys.modules['pandas.core.common'] for t in [t for t in dir(types) if not t.startswith('_')]: def outer(t=t): def wrapper(*args, **kwargs): warnings.warn("pandas.core.common.{t} is deprecated. " "import from the public API: " "pandas.api.types.{t} instead".format(t=t), DeprecationWarning, stacklevel=3) return getattr(types, t)(*args, **kwargs) return wrapper setattr(m, t, outer(t)) # back-compat for non-public functions # deprecate these functions for t in ['is_datetime_arraylike', 'is_datetime_or_timedelta_dtype', 'is_datetimelike', 'is_datetimelike_v_numeric', 'is_datetimelike_v_object', 'is_datetimetz', 'is_int_or_datetime_dtype', 'is_period_arraylike', 'is_string_like', 'is_string_like_dtype']: def outer(t=t): def wrapper(*args, **kwargs): warnings.warn("pandas.core.common.{t} is deprecated. " "These are not longer public API functions, " "but can be imported from " "pandas.types.common.{t} instead".format(t=t), DeprecationWarning, stacklevel=3) return getattr(common, t)(*args, **kwargs) return wrapper setattr(m, t, outer(t)) # deprecate array_equivalent def array_equivalent(*args, **kwargs): warnings.warn("'pandas.core.common.array_equivalent' is deprecated and " "is no longer public API", DeprecationWarning, stacklevel=2) from pandas.types import missing return missing.array_equivalent(*args, **kwargs) class PandasError(Exception): pass class PerformanceWarning(Warning): pass class SettingWithCopyError(ValueError): pass class SettingWithCopyWarning(Warning): pass class AmbiguousIndexError(PandasError, KeyError): pass class UnsupportedFunctionCall(ValueError): pass class AbstractMethodError(NotImplementedError): """Raise this error instead of NotImplementedError for abstract methods while keeping compatibility with Python 2 and Python 3. """ def __init__(self, class_instance): self.class_instance = class_instance def __str__(self): return ("This method must be defined in the concrete class of %s" % self.class_instance.__class__.__name__) def flatten(l): """Flatten an arbitrarily nested sequence. Parameters ---------- l : sequence The non string sequence to flatten Notes ----- This doesn't consider strings sequences. Returns ------- flattened : generator """ for el in l: if _iterable_not_string(el): for s in flatten(el): yield s else: yield el def _consensus_name_attr(objs): name = objs[0].name for obj in objs[1:]: if obj.name != name: return None return name def _maybe_match_name(a, b): a_has = hasattr(a, 'name') b_has = hasattr(b, 'name') if a_has and b_has: if a.name == b.name: return a.name else: return None elif a_has: return a.name elif b_has: return b.name return None def _get_info_slice(obj, indexer): """Slice the info axis of `obj` with `indexer`.""" if not hasattr(obj, '_info_axis_number'): raise TypeError('object of type %r has no info axis' % type(obj).__name__) slices = [slice(None)] * obj.ndim slices[obj._info_axis_number] = indexer return tuple(slices) def _maybe_box(indexer, values, obj, key): # if we have multiples coming back, box em if isinstance(values, np.ndarray): return obj[indexer.get_loc(key)] # return the value return values def _maybe_box_datetimelike(value): # turn a datetime like into a Timestamp/timedelta as needed if isinstance(value, (np.datetime64, datetime)): value = tslib.Timestamp(value) elif isinstance(value, (np.timedelta64, timedelta)): value = tslib.Timedelta(value) return value _values_from_object = lib.values_from_object def is_bool_indexer(key): if isinstance(key, (ABCSeries, np.ndarray)): if key.dtype == np.object_: key = np.asarray(_values_from_object(key)) if not lib.is_bool_array(key): if isnull(key).any(): raise ValueError('cannot index with vector containing ' 'NA / NaN values') return False return True elif key.dtype == np.bool_: return True elif isinstance(key, list): try: arr = np.asarray(key) return arr.dtype == np.bool_ and len(arr) == len(key) except TypeError: # pragma: no cover return False return False def _default_index(n): from pandas.core.index import RangeIndex return RangeIndex(0, n, name=None) def _mut_exclusive(**kwargs): item1, item2 = kwargs.items() label1, val1 = item1 label2, val2 = item2 if val1 is not None and val2 is not None: raise TypeError('mutually exclusive arguments: %r and %r' % (label1, label2)) elif val1 is not None: return val1 else: return val2 def _not_none(*args): return (arg for arg in args if arg is not None) def _any_none(*args): for arg in args: if arg is None: return True return False def _all_not_none(*args): for arg in args: if arg is None: return False return True def _count_not_none(*args): return sum(x is not None for x in args) def _try_sort(iterable): listed = list(iterable) try: return sorted(listed) except Exception: return listed def iterpairs(seq): """ Parameters ---------- seq : sequence Returns ------- iterator returning overlapping pairs of elements Examples -------- >>> list(iterpairs([1, 2, 3, 4])) [(1, 2), (2, 3), (3, 4)] """ # input may not be sliceable seq_it = iter(seq) seq_it_next = iter(seq) next(seq_it_next) return zip(seq_it, seq_it_next) def split_ranges(mask): """ Generates tuples of ranges which cover all True value in mask >>> list(split_ranges([1,0,0,1,0])) [(0, 1), (3, 4)] """ ranges = [(0, len(mask))] for pos, val in enumerate(mask): if not val: # this pos should be ommited, split off the prefix range r = ranges.pop() if pos > r[0]: # yield non-zero range yield (r[0], pos) if pos + 1 < len(mask): # save the rest for processing ranges.append((pos + 1, len(mask))) if ranges: yield ranges[-1] def _long_prod(vals): result = long(1) for x in vals: result *= x return result class groupby(dict): """ A simple groupby different from the one in itertools. Does not require the sequence elements to be sorted by keys, however it is slower. """ def __init__(self, seq, key=lambda x: x): for value in seq: k = key(value) self.setdefault(k, []).append(value) try: __iter__ = dict.iteritems except AttributeError: # pragma: no cover # Python 3 def __iter__(self): return iter(dict.items(self)) def map_indices_py(arr): """ Returns a dictionary with (element, index) pairs for each element in the given array/list """ return dict([(x, i) for i, x in enumerate(arr)]) def union(*seqs): result = set([]) for seq in seqs: if not isinstance(seq, set): seq = set(seq) result |= seq return type(seqs[0])(list(result)) def difference(a, b): return type(a)(list(set(a) - set(b))) def intersection(*seqs): result = set(seqs[0]) for seq in seqs: if not isinstance(seq, set): seq = set(seq) result &= seq return type(seqs[0])(list(result)) def _asarray_tuplesafe(values, dtype=None): from pandas.core.index import Index if not (isinstance(values, (list, tuple)) or hasattr(values, '__array__')): values = list(values) elif isinstance(values, Index): return values.values if isinstance(values, list) and dtype in [np.object_, object]: return lib.list_to_object_array(values) result = np.asarray(values, dtype=dtype) if issubclass(result.dtype.type, compat.string_types): result = np.asarray(values, dtype=object) if result.ndim == 2: if isinstance(values, list): return lib.list_to_object_array(values) else: # Making a 1D array that safely contains tuples is a bit tricky # in numpy, leading to the following try: result = np.empty(len(values), dtype=object) result[:] = values except ValueError: # we have a list-of-list result[:] = [tuple(x) for x in values] return result def _index_labels_to_array(labels): if isinstance(labels, (compat.string_types, tuple)): labels = [labels] if not isinstance(labels, (list, np.ndarray)): try: labels = list(labels) except TypeError: # non-iterable labels = [labels] labels = _asarray_tuplesafe(labels) return labels def _maybe_make_list(obj): if obj is not None and not isinstance(obj, (tuple, list)): return [obj] return obj def is_null_slice(obj): """ we have a null slice """ return (isinstance(obj, slice) and obj.start is None and obj.stop is None and obj.step is None) def is_full_slice(obj, l): """ we have a full length slice """ return (isinstance(obj, slice) and obj.start == 0 and obj.stop == l and obj.step is None) def _get_callable_name(obj): # typical case has name if hasattr(obj, '__name__'): return getattr(obj, '__name__') # some objects don't; could recurse if isinstance(obj, partial): return _get_callable_name(obj.func) # fall back to class name if hasattr(obj, '__call__'): return obj.__class__.__name__ # everything failed (probably because the argument # wasn't actually callable); we return None # instead of the empty string in this case to allow # distinguishing between no name and a name of '' return None def _apply_if_callable(maybe_callable, obj, **kwargs): """ Evaluate possibly callable input using obj and kwargs if it is callable, otherwise return as it is """ if callable(maybe_callable): return maybe_callable(obj, **kwargs) return maybe_callable def _all_none(*args): for arg in args: if arg is not None: return False return True def _where_compat(mask, arr1, arr2): if arr1.dtype == _NS_DTYPE and arr2.dtype == _NS_DTYPE: new_vals = np.where(mask, arr1.view('i8'), arr2.view('i8')) return new_vals.view(_NS_DTYPE) import pandas.tslib as tslib if arr1.dtype == _NS_DTYPE: arr1 = tslib.ints_to_pydatetime(arr1.view('i8')) if arr2.dtype == _NS_DTYPE: arr2 = tslib.ints_to_pydatetime(arr2.view('i8')) return np.where(mask, arr1, arr2) def _dict_compat(d): """ Helper function to convert datetimelike-keyed dicts to Timestamp-keyed dict Parameters ---------- d: dict like object Returns ------- dict """ return dict((_maybe_box_datetimelike(key), value) for key, value in iteritems(d)) def sentinel_factory(): class Sentinel(object): pass return Sentinel() # ---------------------------------------------------------------------- # Detect our environment def in_interactive_session(): """ check if we're running in an interactive shell returns True if running under python/ipython interactive shell """ def check_main(): import __main__ as main return (not hasattr(main, '__file__') or get_option('mode.sim_interactive')) try: return __IPYTHON__ or check_main() # noqa except: return check_main() def in_qtconsole(): """ check if we're inside an IPython qtconsole DEPRECATED: This is no longer needed, or working, in IPython 3 and above. """ try: ip = get_ipython() # noqa front_end = ( ip.config.get('KernelApp', {}).get('parent_appname', "") or ip.config.get('IPKernelApp', {}).get('parent_appname', "")) if 'qtconsole' in front_end.lower(): return True except: return False return False def in_ipnb(): """ check if we're inside an IPython Notebook DEPRECATED: This is no longer used in pandas, and won't work in IPython 3 and above. """ try: ip = get_ipython() # noqa front_end = ( ip.config.get('KernelApp', {}).get('parent_appname', "") or ip.config.get('IPKernelApp', {}).get('parent_appname', "")) if 'notebook' in front_end.lower(): return True except: return False return False def in_ipython_frontend(): """ check if we're inside an an IPython zmq frontend """ try: ip = get_ipython() # noqa return 'zmq' in str(type(ip)).lower() except: pass return False def _random_state(state=None): """ Helper function for processing random_state arguments. Parameters ---------- state : int, np.random.RandomState, None. If receives an int, passes to np.random.RandomState() as seed. If receives an np.random.RandomState object, just returns object. If receives `None`, returns np.random. If receives anything else, raises an informative ValueError. Default None. Returns ------- np.random.RandomState """ if types.is_integer(state): return np.random.RandomState(state) elif isinstance(state, np.random.RandomState): return state elif state is None: return np.random else: raise ValueError("random_state must be an integer, a numpy " "RandomState, or None")
apache-2.0
jakevdp/Mmani
megaman/embedding/tests/test_lle.py
4
4114
# LICENSE: Simplified BSD https://github.com/mmp2/megaman/blob/master/LICENSE import sys import numpy as np import scipy as sp import scipy.sparse as sparse from scipy.spatial.distance import squareform, pdist from itertools import product from numpy.testing import assert_array_almost_equal from sklearn import manifold, datasets from sklearn.neighbors import NearestNeighbors import megaman.embedding.locally_linear as lle import megaman.geometry.geometry as geom from megaman.utils.eigendecomp import EIGEN_SOLVERS def _check_with_col_sign_flipping(A, B, tol=0.0): """ Check array A and B are equal with possible sign flipping on each columns""" sign = True for column_idx in range(A.shape[1]): sign = sign and ((((A[:, column_idx] - B[:, column_idx]) ** 2).mean() <= tol ** 2) or (((A[:, column_idx] + B[:, column_idx]) ** 2).mean() <= tol ** 2)) if not sign: return False return True def test_lle_with_sklearn(): N = 10 X, color = datasets.samples_generator.make_s_curve(N, random_state=0) n_components = 2 n_neighbors = 3 knn = NearestNeighbors(n_neighbors + 1).fit(X) G = geom.Geometry() G.set_data_matrix(X) G.set_adjacency_matrix(knn.kneighbors_graph(X, mode = 'distance')) sk_Y_lle = manifold.LocallyLinearEmbedding(n_neighbors, n_components, method = 'standard').fit_transform(X) (mm_Y_lle, err) = lle.locally_linear_embedding(G, n_components) assert(_check_with_col_sign_flipping(sk_Y_lle, mm_Y_lle, 0.05)) def test_barycenter_kneighbors_graph(): X = np.array([[0, 1], [1.01, 1.], [2, 0]]) distance_matrix = squareform(pdist(X)) A = lle.barycenter_graph(distance_matrix, X) # check that columns sum to one assert_array_almost_equal(np.sum(A.toarray(), 1), np.ones(3)) pred = np.dot(A.toarray(), X) assert(np.linalg.norm(pred - X) / X.shape[0] < 1) def test_lle_simple_grid(): # note: ARPACK is numerically unstable, so this test will fail for # some random seeds. We choose 20 because the tests pass. rng = np.random.RandomState(20) tol = 0.1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(5), repeat=2))) X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 G = geom.Geometry(adjacency_kwds = {'radius':3}) G.set_data_matrix(X) tol = 0.1 distance_matrix = G.compute_adjacency_matrix() N = lle.barycenter_graph(distance_matrix, X).todense() reconstruction_error = np.linalg.norm(np.dot(N, X) - X, 'fro') assert(reconstruction_error < tol) for eigen_solver in EIGEN_SOLVERS: clf = lle.LocallyLinearEmbedding(n_components = n_components, geom = G, eigen_solver = eigen_solver, random_state = rng) clf.fit(X) assert(clf.embedding_.shape[1] == n_components) reconstruction_error = np.linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 assert(reconstruction_error < tol) def test_lle_manifold(): rng = np.random.RandomState(0) # similar test on a slightly more complex manifold X = np.array(list(product(np.arange(18), repeat=2))) X = np.c_[X, X[:, 0] ** 2 / 18] X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 G = geom.Geometry(adjacency_kwds = {'radius':3}) G.set_data_matrix(X) distance_matrix = G.compute_adjacency_matrix() tol = 1.5 N = lle.barycenter_graph(distance_matrix, X).todense() reconstruction_error = np.linalg.norm(np.dot(N, X) - X) assert(reconstruction_error < tol) for eigen_solver in EIGEN_SOLVERS: clf = lle.LocallyLinearEmbedding(n_components = n_components, geom = G, eigen_solver = eigen_solver, random_state = rng) clf.fit(X) assert(clf.embedding_.shape[1] == n_components) reconstruction_error = np.linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 assert(reconstruction_error < tol)
bsd-2-clause
mixturemodel-flow/tensorflow
tensorflow/python/estimator/inputs/queues/feeding_functions_test.py
58
9375
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests feeding functions using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np from tensorflow.python.estimator.inputs.queues import feeding_functions as ff from tensorflow.python.platform import test try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def vals_to_list(a): return { key: val.tolist() if isinstance(val, np.ndarray) else val for key, val in a.items() } class _FeedingFunctionsTestCase(test.TestCase): """Tests for feeding functions.""" def testArrayFeedFnBatchOne(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 1) # cycle around a couple times for x in range(0, 100): i = x % 16 expected = { "index_placeholder": [i], "value_placeholder": [[2 * i, 2 * i + 1]] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchFive(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 5) # cycle around a couple times for _ in range(0, 101, 2): aff() expected = { "index_placeholder": [15, 0, 1, 2, 3], "value_placeholder": [[30, 31], [0, 1], [2, 3], [4, 5], [6, 7]] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchTwoWithOneEpoch(self): array = np.arange(5) + 10 placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, batch_size=2, num_epochs=1) expected = { "index_placeholder": [0, 1], "value_placeholder": [10, 11] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [2, 3], "value_placeholder": [12, 13] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [4], "value_placeholder": [14] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchOneHundred(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 100) expected = { "index_placeholder": list(range(0, 16)) * 6 + list(range(0, 4)), "value_placeholder": np.arange(32).reshape([16, 2]).tolist() * 6 + [[0, 1], [2, 3], [4, 5], [6, 7]] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchOneHundredWithSmallerArrayAndMultipleEpochs(self): array = np.arange(2) + 10 placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, batch_size=100, num_epochs=2) expected = { "index_placeholder": [0, 1, 0, 1], "value_placeholder": [10, 11, 10, 11], } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchOne(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 1) # cycle around a couple times for x in range(0, 100): i = x % 32 expected = { "index_placeholder": [i + 96], "a_placeholder": [32 + i], "b_placeholder": [64 + i] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchFive(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 5) # cycle around a couple times for _ in range(0, 101, 2): aff() expected = { "index_placeholder": [127, 96, 97, 98, 99], "a_placeholder": [63, 32, 33, 34, 35], "b_placeholder": [95, 64, 65, 66, 67] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchTwoWithOneEpoch(self): if not HAS_PANDAS: return array1 = np.arange(32, 37) array2 = np.arange(64, 69) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 101)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, batch_size=2, num_epochs=1) expected = { "index_placeholder": [96, 97], "a_placeholder": [32, 33], "b_placeholder": [64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [98, 99], "a_placeholder": [34, 35], "b_placeholder": [66, 67] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [100], "a_placeholder": [36], "b_placeholder": [68] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchOneHundred(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 100) expected = { "index_placeholder": list(range(96, 128)) * 3 + list(range(96, 100)), "a_placeholder": list(range(32, 64)) * 3 + list(range(32, 36)), "b_placeholder": list(range(64, 96)) * 3 + list(range(64, 68)) } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchOneHundredWithSmallDataArrayAndMultipleEpochs(self): if not HAS_PANDAS: return array1 = np.arange(32, 34) array2 = np.arange(64, 66) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 98)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, batch_size=100, num_epochs=2) expected = { "index_placeholder": [96, 97, 96, 97], "a_placeholder": [32, 33, 32, 33], "b_placeholder": [64, 65, 64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testOrderedDictNumpyFeedFnBatchTwoWithOneEpoch(self): a = np.arange(32, 37) b = np.arange(64, 69) x = {"a": a, "b": b} ordered_dict_x = collections.OrderedDict( sorted(x.items(), key=lambda t: t[0])) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._OrderedDictNumpyFeedFn( placeholders, ordered_dict_x, batch_size=2, num_epochs=1) expected = { "index_placeholder": [0, 1], "a_placeholder": [32, 33], "b_placeholder": [64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [2, 3], "a_placeholder": [34, 35], "b_placeholder": [66, 67] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [4], "a_placeholder": [36], "b_placeholder": [68] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testOrderedDictNumpyFeedFnLargeBatchWithSmallArrayAndMultipleEpochs(self): a = np.arange(32, 34) b = np.arange(64, 66) x = {"a": a, "b": b} ordered_dict_x = collections.OrderedDict( sorted(x.items(), key=lambda t: t[0])) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._OrderedDictNumpyFeedFn( placeholders, ordered_dict_x, batch_size=100, num_epochs=2) expected = { "index_placeholder": [0, 1, 0, 1], "a_placeholder": [32, 33, 32, 33], "b_placeholder": [64, 65, 64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) if __name__ == "__main__": test.main()
apache-2.0
davidsamu/seal
seal/plot/pquality.py
1
8091
# -*- coding: utf-8 -*- """ Functions to plot quality metrics of units after spike sorting. @author: David Samu """ import numpy as np import pandas as pd from quantities import us from seal.plot import putil, pplot, pwaveform from seal.quality import test_sorting from seal.util import util # %% Plot quality metrics. def plot_qm(u, bs_stats, stab_prd_res, prd_inc, tr_inc, spk_inc, add_lbls=False, ftempl=None, fig=None, sps=None): """Plot quality metrics related figures.""" # Init values. waveforms = np.array(u.Waveforms) wavetime = u.Waveforms.columns * us spk_times = np.array(u.SpikeParams['time'], dtype=float) base_rate = u.QualityMetrics['baseline'] # Minimum and maximum gain. gmin = u.SessParams['minV'] gmax = u.SessParams['maxV'] # %% Init plots. # Disable inline plotting to prevent memory leak. putil.inline_off() # Init figure and gridspec. fig = putil.figure(fig) if sps is None: sps = putil.gridspec(1, 1)[0] ogsp = putil.embed_gsp(sps, 2, 1, height_ratios=[0.02, 1]) info_sps, qm_sps = ogsp[0], ogsp[1] # Info header. info_ax = fig.add_subplot(info_sps) putil.hide_axes(info_ax) title = putil.get_unit_info_title(u) putil.set_labels(ax=info_ax, title=title, ytitle=0.80) # Create axes. gsp = putil.embed_gsp(qm_sps, 3, 2, wspace=0.3, hspace=0.4) ax_wf_inc, ax_wf_exc = [fig.add_subplot(gsp[0, i]) for i in (0, 1)] ax_wf_amp, ax_wf_dur = [fig.add_subplot(gsp[1, i]) for i in (0, 1)] ax_amp_dur, ax_rate = [fig.add_subplot(gsp[2, i]) for i in (0, 1)] # Trial markers. trial_starts, trial_stops = u.TrData.TrialStart, u.TrData.TrialStop tr_markers = pd.DataFrame({'time': trial_starts[9::10]}) tr_markers['label'] = [str(itr+1) if i % 2 else '' for i, itr in enumerate(tr_markers.index)] # Common variables, limits and labels. WF_T_START = test_sorting.WF_T_START spk_t = u.SessParams.sampl_prd * (np.arange(waveforms.shape[1])-WF_T_START) ses_t_lim = test_sorting.get_start_stop_times(spk_times, trial_starts, trial_stops) ss, sa = 1.0, 0.8 # marker size and alpha on scatter plot # Color spikes by their occurance over session time. my_cmap = putil.get_cmap('jet') spk_cols = np.tile(np.array([.25, .25, .25, .25]), (len(spk_times), 1)) if np.any(spk_inc): # check if there is any spike included spk_t_inc = np.array(spk_times[spk_inc]) tmin, tmax = float(spk_times.min()), float(spk_times.max()) spk_cols[spk_inc, :] = my_cmap((spk_t_inc-tmin) / (tmax-tmin)) # Put excluded trials to the front, and randomise order of included trials # so later spikes don't systematically cover earlier ones. spk_order = np.hstack((np.where(np.invert(spk_inc))[0], np.random.permutation(np.where(spk_inc)[0]))) # Common labels for plots ses_t_lab = 'Recording time (s)' # %% Waveform shape analysis. # Plot included and excluded waveforms on different axes. # Color included by occurance in session time to help detect drifts. s_waveforms, s_spk_cols = waveforms[spk_order, :], spk_cols[spk_order] wf_t_lim, glim = [min(spk_t), max(spk_t)], [gmin, gmax] wf_t_lab, volt_lab = 'WF time ($\mu$s)', 'Voltage' for st in ('Included', 'Excluded'): ax = ax_wf_inc if st == 'Included' else ax_wf_exc spk_idx = spk_inc if st == 'Included' else np.invert(spk_inc) tr_idx = tr_inc if st == 'Included' else np.invert(tr_inc) nspsk, ntrs = sum(spk_idx), sum(tr_idx) title = '{} WFs, {} spikes, {} trials'.format(st, nspsk, ntrs) # Select waveforms and colors. rand_spk_idx = spk_idx[spk_order] wfs = s_waveforms[rand_spk_idx, :] cols = s_spk_cols[rand_spk_idx] # Plot waveforms. xlab, ylab = (wf_t_lab, volt_lab) if add_lbls else (None, None) pwaveform.plot_wfs(wfs, spk_t, cols=cols, lw=0.1, alpha=0.05, xlim=wf_t_lim, ylim=glim, title=title, xlab=xlab, ylab=ylab, ax=ax) # %% Waveform summary metrics. # Init data. wf_amp_all = u.SpikeParams['amplitude'] wf_amp_inc = wf_amp_all[spk_inc] wf_dur_all = u.SpikeParams['duration'] wf_dur_inc = wf_dur_all[spk_inc] # Set common limits and labels. dur_lim = [0, wavetime[-2]-wavetime[WF_T_START]] # same across units glim = max(wf_amp_all.max(), gmax-gmin) amp_lim = [0, glim] amp_lab = 'Amplitude' dur_lab = 'Duration ($\mu$s)' # Waveform amplitude across session time. m_amp, sd_amp = wf_amp_inc.mean(), wf_amp_inc.std() title = 'WF amplitude: {:.1f} $\pm$ {:.1f}'.format(m_amp, sd_amp) xlab, ylab = (ses_t_lab, amp_lab) if add_lbls else (None, None) pplot.scatter(spk_times, wf_amp_all, spk_inc, c='m', bc='grey', s=ss, xlab=xlab, ylab=ylab, xlim=ses_t_lim, ylim=amp_lim, edgecolors='', alpha=sa, id_line=False, title=title, ax=ax_wf_amp) # Waveform duration across session time. mdur, sdur = wf_dur_inc.mean(), wf_dur_inc.std() title = 'WF duration: {:.1f} $\pm$ {:.1f} $\mu$s'.format(mdur, sdur) xlab, ylab = (ses_t_lab, dur_lab) if add_lbls else (None, None) pplot.scatter(spk_times, wf_dur_all, spk_inc, c='c', bc='grey', s=ss, xlab=xlab, ylab=ylab, xlim=ses_t_lim, ylim=dur_lim, edgecolors='', alpha=sa, id_line=False, title=title, ax=ax_wf_dur) # Waveform duration against amplitude. title = 'WF duration - amplitude' xlab, ylab = (dur_lab, amp_lab) if add_lbls else (None, None) pplot.scatter(wf_dur_all[spk_order], wf_amp_all[spk_order], c=spk_cols[spk_order], s=ss, xlab=xlab, ylab=ylab, xlim=dur_lim, ylim=amp_lim, edgecolors='', alpha=sa, id_line=False, title=title, ax=ax_amp_dur) # %% Firing rate. tmean = np.array(bs_stats['tmean']) rmean = util.remove_dim_from_series(bs_stats['rate']) prd_tstart, prd_tstop = stab_prd_res['tstart'], stab_prd_res['tstop'] # Color segments depending on whether they are included / excluded. def plot_periods(v, color, ax): # Plot line segments. for i in range(len(prd_inc[:-1])): col = color if prd_inc[i] and prd_inc[i+1] else 'grey' x, y = [(tmean[i], tmean[i+1]), (v[i], v[i+1])] ax.plot(x, y, color=col) # Plot line points. for i in range(len(prd_inc)): col = color if prd_inc[i] else 'grey' x, y = [tmean[i], v[i]] ax.plot(x, y, color=col, marker='o', markersize=3, markeredgecolor=col) # Firing rate over session time. title = 'Baseline rate: {:.1f} spike/s'.format(float(base_rate)) xlab, ylab = (ses_t_lab, putil.FR_lbl) if add_lbls else (None, None) ylim = [0, 1.25*np.max(rmean)] plot_periods(rmean, 'b', ax_rate) pplot.lines([], [], c='b', xlim=ses_t_lim, ylim=ylim, title=title, xlab=xlab, ylab=ylab, ax=ax_rate) # Trial markers. putil.plot_events(tr_markers, lw=0.5, ls='--', alpha=0.35, y_lbl=0.92, ax=ax_rate) # Excluded periods. excl_prds = [] tstart, tstop = ses_t_lim if tstart != prd_tstart: excl_prds.append(('beg', tstart, prd_tstart)) if tstop != prd_tstop: excl_prds.append(('end', prd_tstop, tstop)) putil.plot_periods(excl_prds, ymax=0.92, ax=ax_rate) # %% Post-formatting. # Maximize number of ticks on recording time axes to prevent covering. for ax in (ax_wf_amp, ax_wf_dur, ax_rate): putil.set_max_n_ticks(ax, 6, 'x') # %% Save figure. if ftempl is not None: fname = ftempl.format(u.name_to_fname()) putil.save_fig(fname, fig, title, rect_height=0.92) putil.inline_on() return [ax_wf_inc, ax_wf_exc], ax_wf_amp, ax_wf_dur, ax_amp_dur, ax_rate
gpl-3.0
ARudiuk/mne-python
mne/tests/test_source_estimate.py
2
30296
from __future__ import print_function import os.path as op from nose.tools import assert_true, assert_raises import warnings from copy import deepcopy import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_allclose, assert_equal) from scipy.fftpack import fft from mne.datasets import testing from mne import (stats, SourceEstimate, VolSourceEstimate, Label, read_source_spaces, MixedSourceEstimate, read_source_estimate, morph_data, extract_label_time_course, spatio_temporal_tris_connectivity, spatio_temporal_src_connectivity, spatial_inter_hemi_connectivity) from mne.source_estimate import (compute_morph_matrix, grade_to_vertices, grade_to_tris) from mne.minimum_norm import read_inverse_operator from mne.label import read_labels_from_annot, label_sign_flip from mne.utils import (_TempDir, requires_pandas, requires_sklearn, requires_h5py, run_tests_if_main, slow_test) warnings.simplefilter('always') # enable b/c these tests throw warnings data_path = testing.data_path(download=False) subjects_dir = op.join(data_path, 'subjects') fname_inv = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif') fname_t1 = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz') fname_src = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif') fname_src_3 = op.join(data_path, 'subjects', 'sample', 'bem', 'sample-oct-4-src.fif') fname_stc = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg') fname_smorph = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg') fname_fmorph = op.join(data_path, 'MEG', 'sample', 'fsaverage_audvis_trunc-meg') fname_vol = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w') fname_vsrc = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-vol-7-fwd.fif') rng = np.random.RandomState(0) @testing.requires_testing_data def test_aaspatial_inter_hemi_connectivity(): """Test spatial connectivity between hemispheres""" # trivial cases conn = spatial_inter_hemi_connectivity(fname_src_3, 5e-6) assert_equal(conn.data.size, 0) conn = spatial_inter_hemi_connectivity(fname_src_3, 5e6) assert_equal(conn.data.size, np.prod(conn.shape) // 2) # actually interesting case (1cm), should be between 2 and 10% of verts src = read_source_spaces(fname_src_3) conn = spatial_inter_hemi_connectivity(src, 10e-3) conn = conn.tocsr() n_src = conn.shape[0] assert_true(n_src * 0.02 < conn.data.size < n_src * 0.10) assert_equal(conn[:src[0]['nuse'], :src[0]['nuse']].data.size, 0) assert_equal(conn[-src[1]['nuse']:, -src[1]['nuse']:].data.size, 0) c = (conn.T + conn) / 2. - conn c.eliminate_zeros() assert_equal(c.data.size, 0) # check locations upper_right = conn[:src[0]['nuse'], src[0]['nuse']:].toarray() assert_equal(upper_right.sum(), conn.sum() // 2) good_labels = ['S_pericallosal', 'Unknown', 'G_and_S_cingul-Mid-Post', 'G_cuneus'] for hi, hemi in enumerate(('lh', 'rh')): has_neighbors = src[hi]['vertno'][np.where(np.any(upper_right, axis=1 - hi))[0]] labels = read_labels_from_annot('sample', 'aparc.a2009s', hemi, subjects_dir=subjects_dir) use_labels = [l.name[:-3] for l in labels if np.in1d(l.vertices, has_neighbors).any()] assert_true(set(use_labels) - set(good_labels) == set()) @slow_test @testing.requires_testing_data def test_volume_stc(): """Test volume STCs """ tempdir = _TempDir() N = 100 data = np.arange(N)[:, np.newaxis] datas = [data, data, np.arange(2)[:, np.newaxis]] vertno = np.arange(N) vertnos = [vertno, vertno[:, np.newaxis], np.arange(2)[:, np.newaxis]] vertno_reads = [vertno, vertno, np.arange(2)] for data, vertno, vertno_read in zip(datas, vertnos, vertno_reads): stc = VolSourceEstimate(data, vertno, 0, 1) fname_temp = op.join(tempdir, 'temp-vl.stc') stc_new = stc for _ in range(2): stc_new.save(fname_temp) stc_new = read_source_estimate(fname_temp) assert_true(isinstance(stc_new, VolSourceEstimate)) assert_array_equal(vertno_read, stc_new.vertices) assert_array_almost_equal(stc.data, stc_new.data) # now let's actually read a MNE-C processed file stc = read_source_estimate(fname_vol, 'sample') assert_true(isinstance(stc, VolSourceEstimate)) assert_true('sample' in repr(stc)) stc_new = stc assert_raises(ValueError, stc.save, fname_vol, ftype='whatever') for _ in range(2): fname_temp = op.join(tempdir, 'temp-vol.w') stc_new.save(fname_temp, ftype='w') stc_new = read_source_estimate(fname_temp) assert_true(isinstance(stc_new, VolSourceEstimate)) assert_array_equal(stc.vertices, stc_new.vertices) assert_array_almost_equal(stc.data, stc_new.data) # save the stc as a nifti file and export try: import nibabel as nib with warnings.catch_warnings(record=True): warnings.simplefilter('always') src = read_source_spaces(fname_vsrc) vol_fname = op.join(tempdir, 'stc.nii.gz') stc.save_as_volume(vol_fname, src, dest='surf', mri_resolution=False) with warnings.catch_warnings(record=True): # nib<->numpy img = nib.load(vol_fname) assert_true(img.shape == src[0]['shape'] + (len(stc.times),)) with warnings.catch_warnings(record=True): # nib<->numpy t1_img = nib.load(fname_t1) stc.save_as_volume(op.join(tempdir, 'stc.nii.gz'), src, dest='mri', mri_resolution=True) with warnings.catch_warnings(record=True): # nib<->numpy img = nib.load(vol_fname) assert_true(img.shape == t1_img.shape + (len(stc.times),)) assert_array_almost_equal(img.get_affine(), t1_img.get_affine(), decimal=5) # export without saving img = stc.as_volume(src, dest='mri', mri_resolution=True) assert_true(img.shape == t1_img.shape + (len(stc.times),)) assert_array_almost_equal(img.get_affine(), t1_img.get_affine(), decimal=5) except ImportError: print('Save as nifti test skipped, needs NiBabel') @testing.requires_testing_data def test_expand(): """Test stc expansion """ stc = read_source_estimate(fname_stc, 'sample') assert_true('sample' in repr(stc)) labels_lh = read_labels_from_annot('sample', 'aparc', 'lh', subjects_dir=subjects_dir) new_label = labels_lh[0] + labels_lh[1] stc_limited = stc.in_label(new_label) stc_new = stc_limited.copy() stc_new.data.fill(0) for label in labels_lh[:2]: stc_new += stc.in_label(label).expand(stc_limited.vertices) assert_raises(TypeError, stc_new.expand, stc_limited.vertices[0]) assert_raises(ValueError, stc_new.expand, [stc_limited.vertices[0]]) # make sure we can't add unless vertno agree assert_raises(ValueError, stc.__add__, stc.in_label(labels_lh[0])) def _fake_stc(n_time=10): verts = [np.arange(10), np.arange(90)] return SourceEstimate(np.random.rand(100, n_time), verts, 0, 1e-1, 'foo') def test_io_stc(): """Test IO for STC files """ tempdir = _TempDir() stc = _fake_stc() stc.save(op.join(tempdir, "tmp.stc")) stc2 = read_source_estimate(op.join(tempdir, "tmp.stc")) assert_array_almost_equal(stc.data, stc2.data) assert_array_almost_equal(stc.tmin, stc2.tmin) assert_equal(len(stc.vertices), len(stc2.vertices)) for v1, v2 in zip(stc.vertices, stc2.vertices): assert_array_almost_equal(v1, v2) assert_array_almost_equal(stc.tstep, stc2.tstep) @requires_h5py def test_io_stc_h5(): """Test IO for STC files using HDF5 """ tempdir = _TempDir() stc = _fake_stc() assert_raises(ValueError, stc.save, op.join(tempdir, 'tmp'), ftype='foo') out_name = op.join(tempdir, 'tmp') stc.save(out_name, ftype='h5') stc3 = read_source_estimate(out_name) stc4 = read_source_estimate(out_name + '-stc.h5') assert_raises(RuntimeError, read_source_estimate, out_name, subject='bar') for stc_new in stc3, stc4: assert_equal(stc_new.subject, stc.subject) assert_array_equal(stc_new.data, stc.data) assert_array_equal(stc_new.tmin, stc.tmin) assert_array_equal(stc_new.tstep, stc.tstep) assert_equal(len(stc_new.vertices), len(stc.vertices)) for v1, v2 in zip(stc_new.vertices, stc.vertices): assert_array_equal(v1, v2) def test_io_w(): """Test IO for w files """ tempdir = _TempDir() stc = _fake_stc(n_time=1) w_fname = op.join(tempdir, 'fake') stc.save(w_fname, ftype='w') src = read_source_estimate(w_fname) src.save(op.join(tempdir, 'tmp'), ftype='w') src2 = read_source_estimate(op.join(tempdir, 'tmp-lh.w')) assert_array_almost_equal(src.data, src2.data) assert_array_almost_equal(src.lh_vertno, src2.lh_vertno) assert_array_almost_equal(src.rh_vertno, src2.rh_vertno) def test_stc_arithmetic(): """Test arithmetic for STC files """ stc = _fake_stc() data = stc.data.copy() out = list() for a in [data, stc]: a = a + a * 3 + 3 * a - a ** 2 / 2 a += a a -= a with warnings.catch_warnings(record=True): warnings.simplefilter('always') a /= 2 * a a *= -a a += 2 a -= 1 a *= -1 a /= 2 b = 2 + a b = 2 - a b = +a assert_array_equal(b.data, a.data) with warnings.catch_warnings(record=True): warnings.simplefilter('always') a **= 3 out.append(a) assert_array_equal(out[0], out[1].data) assert_array_equal(stc.sqrt().data, np.sqrt(stc.data)) stc_mean = stc.mean() assert_array_equal(stc_mean.data, np.mean(stc.data, 1)[:, None]) @slow_test @testing.requires_testing_data def test_stc_methods(): """Test stc methods lh_data, rh_data, bin(), center_of_mass(), resample() """ stc = read_source_estimate(fname_stc) # lh_data / rh_data assert_array_equal(stc.lh_data, stc.data[:len(stc.lh_vertno)]) assert_array_equal(stc.rh_data, stc.data[len(stc.lh_vertno):]) # bin bin = stc.bin(.12) a = np.array((1,), dtype=stc.data.dtype) a[0] = np.mean(stc.data[0, stc.times < .12]) assert a[0] == bin.data[0, 0] assert_raises(ValueError, stc.center_of_mass, 'sample') stc.lh_data[:] = 0 vertex, hemi, t = stc.center_of_mass('sample', subjects_dir=subjects_dir) assert_true(hemi == 1) # XXX Should design a fool-proof test case, but here were the results: assert_equal(vertex, 124791) assert_equal(np.round(t, 2), 0.12) stc = read_source_estimate(fname_stc) stc.subject = 'sample' label_lh = read_labels_from_annot('sample', 'aparc', 'lh', subjects_dir=subjects_dir)[0] label_rh = read_labels_from_annot('sample', 'aparc', 'rh', subjects_dir=subjects_dir)[0] label_both = label_lh + label_rh for label in (label_lh, label_rh, label_both): assert_true(isinstance(stc.shape, tuple) and len(stc.shape) == 2) stc_label = stc.in_label(label) if label.hemi != 'both': if label.hemi == 'lh': verts = stc_label.vertices[0] else: # label.hemi == 'rh': verts = stc_label.vertices[1] n_vertices_used = len(label.get_vertices_used(verts)) assert_equal(len(stc_label.data), n_vertices_used) stc_lh = stc.in_label(label_lh) assert_raises(ValueError, stc_lh.in_label, label_rh) label_lh.subject = 'foo' assert_raises(RuntimeError, stc.in_label, label_lh) stc_new = deepcopy(stc) o_sfreq = 1.0 / stc.tstep # note that using no padding for this STC reduces edge ringing... stc_new.resample(2 * o_sfreq, npad=0, n_jobs=2) assert_true(stc_new.data.shape[1] == 2 * stc.data.shape[1]) assert_true(stc_new.tstep == stc.tstep / 2) stc_new.resample(o_sfreq, npad=0) assert_true(stc_new.data.shape[1] == stc.data.shape[1]) assert_true(stc_new.tstep == stc.tstep) assert_array_almost_equal(stc_new.data, stc.data, 5) @testing.requires_testing_data def test_extract_label_time_course(): """Test extraction of label time courses from stc """ n_stcs = 3 n_times = 50 src = read_inverse_operator(fname_inv)['src'] vertices = [src[0]['vertno'], src[1]['vertno']] n_verts = len(vertices[0]) + len(vertices[1]) # get some labels labels_lh = read_labels_from_annot('sample', hemi='lh', subjects_dir=subjects_dir) labels_rh = read_labels_from_annot('sample', hemi='rh', subjects_dir=subjects_dir) labels = list() labels.extend(labels_lh[:5]) labels.extend(labels_rh[:4]) n_labels = len(labels) label_means = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times)) label_maxs = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times)) # compute the mean with sign flip label_means_flipped = np.zeros_like(label_means) for i, label in enumerate(labels): label_means_flipped[i] = i * np.mean(label_sign_flip(label, src)) # generate some stc's with known data stcs = list() for i in range(n_stcs): data = np.zeros((n_verts, n_times)) # set the value of the stc within each label for j, label in enumerate(labels): if label.hemi == 'lh': idx = np.intersect1d(vertices[0], label.vertices) idx = np.searchsorted(vertices[0], idx) elif label.hemi == 'rh': idx = np.intersect1d(vertices[1], label.vertices) idx = len(vertices[0]) + np.searchsorted(vertices[1], idx) data[idx] = label_means[j] this_stc = SourceEstimate(data, vertices, 0, 1) stcs.append(this_stc) # test some invalid inputs assert_raises(ValueError, extract_label_time_course, stcs, labels, src, mode='notamode') # have an empty label empty_label = labels[0].copy() empty_label.vertices += 1000000 assert_raises(ValueError, extract_label_time_course, stcs, empty_label, src, mode='mean') # but this works: with warnings.catch_warnings(record=True): # empty label tc = extract_label_time_course(stcs, empty_label, src, mode='mean', allow_empty=True) for arr in tc: assert_true(arr.shape == (1, n_times)) assert_array_equal(arr, np.zeros((1, n_times))) # test the different modes modes = ['mean', 'mean_flip', 'pca_flip', 'max'] for mode in modes: label_tc = extract_label_time_course(stcs, labels, src, mode=mode) label_tc_method = [stc.extract_label_time_course(labels, src, mode=mode) for stc in stcs] assert_true(len(label_tc) == n_stcs) assert_true(len(label_tc_method) == n_stcs) for tc1, tc2 in zip(label_tc, label_tc_method): assert_true(tc1.shape == (n_labels, n_times)) assert_true(tc2.shape == (n_labels, n_times)) assert_true(np.allclose(tc1, tc2, rtol=1e-8, atol=1e-16)) if mode == 'mean': assert_array_almost_equal(tc1, label_means) if mode == 'mean_flip': assert_array_almost_equal(tc1, label_means_flipped) if mode == 'max': assert_array_almost_equal(tc1, label_maxs) # test label with very few vertices (check SVD conditionals) label = Label(vertices=src[0]['vertno'][:2], hemi='lh') x = label_sign_flip(label, src) assert_true(len(x) == 2) label = Label(vertices=[], hemi='lh') x = label_sign_flip(label, src) assert_true(x.size == 0) @slow_test @testing.requires_testing_data def test_morph_data(): """Test morphing of data """ tempdir = _TempDir() subject_from = 'sample' subject_to = 'fsaverage' stc_from = read_source_estimate(fname_smorph, subject='sample') stc_to = read_source_estimate(fname_fmorph) # make sure we can specify grade stc_from.crop(0.09, 0.1) # for faster computation stc_to.crop(0.09, 0.1) # for faster computation assert_array_equal(stc_to.time_as_index([0.09, 0.1], use_rounding=True), [0, len(stc_to.times) - 1]) assert_raises(ValueError, stc_from.morph, subject_to, grade=3, smooth=-1, subjects_dir=subjects_dir) stc_to1 = stc_from.morph(subject_to, grade=3, smooth=12, buffer_size=1000, subjects_dir=subjects_dir) stc_to1.save(op.join(tempdir, '%s_audvis-meg' % subject_to)) # make sure we can specify vertices vertices_to = grade_to_vertices(subject_to, grade=3, subjects_dir=subjects_dir) stc_to2 = morph_data(subject_from, subject_to, stc_from, grade=vertices_to, smooth=12, buffer_size=1000, subjects_dir=subjects_dir) # make sure we can use different buffer_size stc_to3 = morph_data(subject_from, subject_to, stc_from, grade=vertices_to, smooth=12, buffer_size=3, subjects_dir=subjects_dir) # make sure we get a warning about # of steps with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') morph_data(subject_from, subject_to, stc_from, grade=vertices_to, smooth=1, buffer_size=3, subjects_dir=subjects_dir) assert_equal(len(w), 2) assert_array_almost_equal(stc_to.data, stc_to1.data, 5) assert_array_almost_equal(stc_to1.data, stc_to2.data) assert_array_almost_equal(stc_to1.data, stc_to3.data) # make sure precomputed morph matrices work morph_mat = compute_morph_matrix(subject_from, subject_to, stc_from.vertices, vertices_to, smooth=12, subjects_dir=subjects_dir) stc_to3 = stc_from.morph_precomputed(subject_to, vertices_to, morph_mat) assert_array_almost_equal(stc_to1.data, stc_to3.data) assert_raises(ValueError, stc_from.morph_precomputed, subject_to, vertices_to, 'foo') assert_raises(ValueError, stc_from.morph_precomputed, subject_to, [vertices_to[0]], morph_mat) assert_raises(ValueError, stc_from.morph_precomputed, subject_to, [vertices_to[0][:-1], vertices_to[1]], morph_mat) assert_raises(ValueError, stc_from.morph_precomputed, subject_to, vertices_to, morph_mat, subject_from='foo') # steps warning with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') compute_morph_matrix(subject_from, subject_to, stc_from.vertices, vertices_to, smooth=1, subjects_dir=subjects_dir) assert_equal(len(w), 2) mean_from = stc_from.data.mean(axis=0) mean_to = stc_to1.data.mean(axis=0) assert_true(np.corrcoef(mean_to, mean_from).min() > 0.999) # make sure we can fill by morphing stc_to5 = morph_data(subject_from, subject_to, stc_from, grade=None, smooth=12, buffer_size=3, subjects_dir=subjects_dir) assert_true(stc_to5.data.shape[0] == 163842 + 163842) # Morph sparse data # Make a sparse stc stc_from.vertices[0] = stc_from.vertices[0][[100, 500]] stc_from.vertices[1] = stc_from.vertices[1][[200]] stc_from._data = stc_from._data[:3] assert_raises(RuntimeError, stc_from.morph, subject_to, sparse=True, grade=5, subjects_dir=subjects_dir) stc_to_sparse = stc_from.morph(subject_to, grade=None, sparse=True, subjects_dir=subjects_dir) assert_array_almost_equal(np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))) assert_equal(len(stc_from.rh_vertno), len(stc_to_sparse.rh_vertno)) assert_equal(len(stc_from.lh_vertno), len(stc_to_sparse.lh_vertno)) assert_equal(stc_to_sparse.subject, subject_to) assert_equal(stc_from.tmin, stc_from.tmin) assert_equal(stc_from.tstep, stc_from.tstep) stc_from.vertices[0] = np.array([], dtype=np.int64) stc_from._data = stc_from._data[:1] stc_to_sparse = stc_from.morph(subject_to, grade=None, sparse=True, subjects_dir=subjects_dir) assert_array_almost_equal(np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))) assert_equal(len(stc_from.rh_vertno), len(stc_to_sparse.rh_vertno)) assert_equal(len(stc_from.lh_vertno), len(stc_to_sparse.lh_vertno)) assert_equal(stc_to_sparse.subject, subject_to) assert_equal(stc_from.tmin, stc_from.tmin) assert_equal(stc_from.tstep, stc_from.tstep) def _my_trans(data): """FFT that adds an additional dimension by repeating result""" data_t = fft(data) data_t = np.concatenate([data_t[:, :, None], data_t[:, :, None]], axis=2) return data_t, None def test_transform_data(): """Test applying linear (time) transform to data""" # make up some data n_sensors, n_vertices, n_times = 10, 20, 4 kernel = rng.randn(n_vertices, n_sensors) sens_data = rng.randn(n_sensors, n_times) vertices = np.arange(n_vertices) data = np.dot(kernel, sens_data) for idx, tmin_idx, tmax_idx in\ zip([None, np.arange(n_vertices // 2, n_vertices)], [None, 1], [None, 3]): if idx is None: idx_use = slice(None, None) else: idx_use = idx data_f, _ = _my_trans(data[idx_use, tmin_idx:tmax_idx]) for stc_data in (data, (kernel, sens_data)): stc = VolSourceEstimate(stc_data, vertices=vertices, tmin=0., tstep=1.) stc_data_t = stc.transform_data(_my_trans, idx=idx, tmin_idx=tmin_idx, tmax_idx=tmax_idx) assert_allclose(data_f, stc_data_t) def test_transform(): """Test applying linear (time) transform to data""" # make up some data n_verts_lh, n_verts_rh, n_times = 10, 10, 10 vertices = [np.arange(n_verts_lh), n_verts_lh + np.arange(n_verts_rh)] data = rng.randn(n_verts_lh + n_verts_rh, n_times) stc = SourceEstimate(data, vertices=vertices, tmin=-0.1, tstep=0.1) # data_t.ndim > 2 & copy is True stcs_t = stc.transform(_my_trans, copy=True) assert_true(isinstance(stcs_t, list)) assert_array_equal(stc.times, stcs_t[0].times) assert_equal(stc.vertices, stcs_t[0].vertices) data = np.concatenate((stcs_t[0].data[:, :, None], stcs_t[1].data[:, :, None]), axis=2) data_t = stc.transform_data(_my_trans) assert_array_equal(data, data_t) # check against stc.transform_data() # data_t.ndim > 2 & copy is False assert_raises(ValueError, stc.transform, _my_trans, copy=False) # data_t.ndim = 2 & copy is True tmp = deepcopy(stc) stc_t = stc.transform(np.abs, copy=True) assert_true(isinstance(stc_t, SourceEstimate)) assert_array_equal(stc.data, tmp.data) # xfrm doesn't modify original? # data_t.ndim = 2 & copy is False times = np.round(1000 * stc.times) verts = np.arange(len(stc.lh_vertno), len(stc.lh_vertno) + len(stc.rh_vertno), 1) verts_rh = stc.rh_vertno t_idx = [np.where(times >= -50)[0][0], np.where(times <= 500)[0][-1]] data_t = stc.transform_data(np.abs, idx=verts, tmin_idx=t_idx[0], tmax_idx=t_idx[-1]) stc.transform(np.abs, idx=verts, tmin=-50, tmax=500, copy=False) assert_true(isinstance(stc, SourceEstimate)) assert_true((stc.tmin == 0.) & (stc.times[-1] == 0.5)) assert_true(len(stc.vertices[0]) == 0) assert_equal(stc.vertices[1], verts_rh) assert_array_equal(stc.data, data_t) times = np.round(1000 * stc.times) t_idx = [np.where(times >= 0)[0][0], np.where(times <= 250)[0][-1]] data_t = stc.transform_data(np.abs, tmin_idx=t_idx[0], tmax_idx=t_idx[-1]) stc.transform(np.abs, tmin=0, tmax=250, copy=False) assert_true((stc.tmin == 0.) & (stc.times[-1] == 0.2)) assert_array_equal(stc.data, data_t) @requires_sklearn def test_spatio_temporal_tris_connectivity(): """Test spatio-temporal connectivity from triangles""" tris = np.array([[0, 1, 2], [3, 4, 5]]) connectivity = spatio_temporal_tris_connectivity(tris, 2) x = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] components = stats.cluster_level._get_components(np.array(x), connectivity) # _get_components works differently now... old_fmt = [0, 0, -2, -2, -2, -2, 0, -2, -2, -2, -2, 1] new_fmt = np.array(old_fmt) new_fmt = [np.nonzero(new_fmt == v)[0] for v in np.unique(new_fmt[new_fmt >= 0])] assert_true(len(new_fmt), len(components)) for c, n in zip(components, new_fmt): assert_array_equal(c, n) @testing.requires_testing_data def test_spatio_temporal_src_connectivity(): """Test spatio-temporal connectivity from source spaces""" tris = np.array([[0, 1, 2], [3, 4, 5]]) src = [dict(), dict()] connectivity = spatio_temporal_tris_connectivity(tris, 2) src[0]['use_tris'] = np.array([[0, 1, 2]]) src[1]['use_tris'] = np.array([[0, 1, 2]]) src[0]['vertno'] = np.array([0, 1, 2]) src[1]['vertno'] = np.array([0, 1, 2]) connectivity2 = spatio_temporal_src_connectivity(src, 2) assert_array_equal(connectivity.todense(), connectivity2.todense()) # add test for dist connectivity src[0]['dist'] = np.ones((3, 3)) - np.eye(3) src[1]['dist'] = np.ones((3, 3)) - np.eye(3) src[0]['vertno'] = [0, 1, 2] src[1]['vertno'] = [0, 1, 2] connectivity3 = spatio_temporal_src_connectivity(src, 2, dist=2) assert_array_equal(connectivity.todense(), connectivity3.todense()) # add test for source space connectivity with omitted vertices inverse_operator = read_inverse_operator(fname_inv) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') src_ = inverse_operator['src'] connectivity = spatio_temporal_src_connectivity(src_, n_times=2) assert len(w) == 1 a = connectivity.shape[0] / 2 b = sum([s['nuse'] for s in inverse_operator['src']]) assert_true(a == b) assert_equal(grade_to_tris(5).shape, [40960, 3]) @requires_pandas def test_to_data_frame(): """Test stc Pandas exporter""" n_vert, n_times = 10, 5 vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)] data = rng.randn(n_vert, n_times) stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1, subject='sample') stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1, subject='sample') for stc in [stc_surf, stc_vol]: assert_raises(ValueError, stc.to_data_frame, index=['foo', 'bar']) for ncat, ind in zip([1, 0], ['time', ['subject', 'time']]): df = stc.to_data_frame(index=ind) assert_true(df.index.names == ind if isinstance(ind, list) else [ind]) assert_array_equal(df.values.T[ncat:], stc.data) # test that non-indexed data were present as categorial variables assert_true(all([c in ['time', 'subject'] for c in df.reset_index().columns][:2])) def test_get_peak(): """Test peak getter """ n_vert, n_times = 10, 5 vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)] data = rng.randn(n_vert, n_times) stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1, subject='sample') stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1, subject='sample') for ii, stc in enumerate([stc_surf, stc_vol]): assert_raises(ValueError, stc.get_peak, tmin=-100) assert_raises(ValueError, stc.get_peak, tmax=90) assert_raises(ValueError, stc.get_peak, tmin=0.002, tmax=0.001) vert_idx, time_idx = stc.get_peak() vertno = np.concatenate(stc.vertices) if ii == 0 else stc.vertices assert_true(vert_idx in vertno) assert_true(time_idx in stc.times) ch_idx, time_idx = stc.get_peak(vert_as_index=True, time_as_index=True) assert_true(vert_idx < stc.data.shape[0]) assert_true(time_idx < len(stc.times)) @testing.requires_testing_data def test_mixed_stc(): """Test source estimate from mixed source space """ N = 90 # number of sources T = 2 # number of time points S = 3 # number of source spaces data = rng.randn(N, T) vertno = S * [np.arange(N // S)] # make sure error is raised if vertices are not a list of length >= 2 assert_raises(ValueError, MixedSourceEstimate, data=data, vertices=[np.arange(N)]) stc = MixedSourceEstimate(data, vertno, 0, 1) vol = read_source_spaces(fname_vsrc) # make sure error is raised for plotting surface with volume source assert_raises(ValueError, stc.plot_surface, src=vol) run_tests_if_main()
bsd-3-clause
endolith/scikit-image
doc/examples/features_detection/plot_gabor.py
21
4450
""" ============================================= Gabor filter banks for texture classification ============================================= In this example, we will see how to classify textures based on Gabor filter banks. Frequency and orientation representations of the Gabor filter are similar to those of the human visual system. The images are filtered using the real parts of various different Gabor filter kernels. The mean and variance of the filtered images are then used as features for classification, which is based on the least squared error for simplicity. """ from __future__ import print_function import matplotlib.pyplot as plt import numpy as np from scipy import ndimage as ndi from skimage import data from skimage.util import img_as_float from skimage.filters import gabor_kernel def compute_feats(image, kernels): feats = np.zeros((len(kernels), 2), dtype=np.double) for k, kernel in enumerate(kernels): filtered = ndi.convolve(image, kernel, mode='wrap') feats[k, 0] = filtered.mean() feats[k, 1] = filtered.var() return feats def match(feats, ref_feats): min_error = np.inf min_i = None for i in range(ref_feats.shape[0]): error = np.sum((feats - ref_feats[i, :])**2) if error < min_error: min_error = error min_i = i return min_i # prepare filter bank kernels kernels = [] for theta in range(4): theta = theta / 4. * np.pi for sigma in (1, 3): for frequency in (0.05, 0.25): kernel = np.real(gabor_kernel(frequency, theta=theta, sigma_x=sigma, sigma_y=sigma)) kernels.append(kernel) shrink = (slice(0, None, 3), slice(0, None, 3)) brick = img_as_float(data.load('brick.png'))[shrink] grass = img_as_float(data.load('grass.png'))[shrink] wall = img_as_float(data.load('rough-wall.png'))[shrink] image_names = ('brick', 'grass', 'wall') images = (brick, grass, wall) # prepare reference features ref_feats = np.zeros((3, len(kernels), 2), dtype=np.double) ref_feats[0, :, :] = compute_feats(brick, kernels) ref_feats[1, :, :] = compute_feats(grass, kernels) ref_feats[2, :, :] = compute_feats(wall, kernels) print('Rotated images matched against references using Gabor filter banks:') print('original: brick, rotated: 30deg, match result: ', end='') feats = compute_feats(ndi.rotate(brick, angle=190, reshape=False), kernels) print(image_names[match(feats, ref_feats)]) print('original: brick, rotated: 70deg, match result: ', end='') feats = compute_feats(ndi.rotate(brick, angle=70, reshape=False), kernels) print(image_names[match(feats, ref_feats)]) print('original: grass, rotated: 145deg, match result: ', end='') feats = compute_feats(ndi.rotate(grass, angle=145, reshape=False), kernels) print(image_names[match(feats, ref_feats)]) def power(image, kernel): # Normalize images for better comparison. image = (image - image.mean()) / image.std() return np.sqrt(ndi.convolve(image, np.real(kernel), mode='wrap')**2 + ndi.convolve(image, np.imag(kernel), mode='wrap')**2) # Plot a selection of the filter bank kernels and their responses. results = [] kernel_params = [] for theta in (0, 1): theta = theta / 4. * np.pi for frequency in (0.1, 0.4): kernel = gabor_kernel(frequency, theta=theta) params = 'theta=%d,\nfrequency=%.2f' % (theta * 180 / np.pi, frequency) kernel_params.append(params) # Save kernel and the power image for each image results.append((kernel, [power(img, kernel) for img in images])) fig, axes = plt.subplots(nrows=5, ncols=4, figsize=(5, 6)) plt.gray() fig.suptitle('Image responses for Gabor filter kernels', fontsize=12) axes[0][0].axis('off') # Plot original images for label, img, ax in zip(image_names, images, axes[0][1:]): ax.imshow(img) ax.set_title(label, fontsize=9) ax.axis('off') for label, (kernel, powers), ax_row in zip(kernel_params, results, axes[1:]): # Plot Gabor kernel ax = ax_row[0] ax.imshow(np.real(kernel), interpolation='nearest') ax.set_ylabel(label, fontsize=7) ax.set_xticks([]) ax.set_yticks([]) # Plot Gabor responses with the contrast normalized for each filter vmin = np.min(powers) vmax = np.max(powers) for patch, ax in zip(powers, ax_row[1:]): ax.imshow(patch, vmin=vmin, vmax=vmax) ax.axis('off') plt.show()
bsd-3-clause
lancezlin/ml_template_py
lib/python2.7/site-packages/matplotlib/backends/backend_webagg.py
7
12216
""" Displays Agg images in the browser, with interactivity """ from __future__ import (absolute_import, division, print_function, unicode_literals) # The WebAgg backend is divided into two modules: # # - `backend_webagg_core.py` contains code necessary to embed a WebAgg # plot inside of a web application, and communicate in an abstract # way over a web socket. # # - `backend_webagg.py` contains a concrete implementation of a basic # application, implemented with tornado. from matplotlib.externals import six import datetime import errno import json import os import random import sys import socket import threading try: import tornado except ImportError: raise RuntimeError("The WebAgg backend requires Tornado.") import tornado.web import tornado.ioloop import tornado.websocket import matplotlib from matplotlib import rcParams from matplotlib import backend_bases from matplotlib.figure import Figure from matplotlib._pylab_helpers import Gcf from . import backend_webagg_core as core from .backend_webagg_core import TimerTornado def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasWebAgg(figure) manager = core.FigureManagerWebAgg(canvas, num) return manager def draw_if_interactive(): """ Is called after every pylab drawing command """ if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.canvas.draw_idle() class Show(backend_bases.ShowBase): def mainloop(self): WebAggApplication.initialize() url = "http://127.0.0.1:{port}{prefix}".format( port=WebAggApplication.port, prefix=WebAggApplication.url_prefix) if rcParams['webagg.open_in_browser']: import webbrowser webbrowser.open(url) else: print("To view figure, visit {0}".format(url)) WebAggApplication.start() show = Show().mainloop class ServerThread(threading.Thread): def run(self): tornado.ioloop.IOLoop.instance().start() webagg_server_thread = ServerThread() class FigureCanvasWebAgg(core.FigureCanvasWebAggCore): def show(self): # show the figure window show() def new_timer(self, *args, **kwargs): return TimerTornado(*args, **kwargs) def start_event_loop(self, timeout): backend_bases.FigureCanvasBase.start_event_loop_default( self, timeout) start_event_loop.__doc__ = \ backend_bases.FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): backend_bases.FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__ = \ backend_bases.FigureCanvasBase.stop_event_loop_default.__doc__ class WebAggApplication(tornado.web.Application): initialized = False started = False class FavIcon(tornado.web.RequestHandler): def get(self): image_path = os.path.join( os.path.dirname(os.path.dirname(__file__)), 'mpl-data', 'images') self.set_header('Content-Type', 'image/png') with open(os.path.join(image_path, 'matplotlib.png'), 'rb') as fd: self.write(fd.read()) class SingleFigurePage(tornado.web.RequestHandler): def __init__(self, application, request, **kwargs): self.url_prefix = kwargs.pop('url_prefix', '') return tornado.web.RequestHandler.__init__(self, application, request, **kwargs) def get(self, fignum): fignum = int(fignum) manager = Gcf.get_fig_manager(fignum) ws_uri = 'ws://{req.host}{prefix}/'.format(req=self.request, prefix=self.url_prefix) self.render( "single_figure.html", prefix=self.url_prefix, ws_uri=ws_uri, fig_id=fignum, toolitems=core.NavigationToolbar2WebAgg.toolitems, canvas=manager.canvas) class AllFiguresPage(tornado.web.RequestHandler): def __init__(self, application, request, **kwargs): self.url_prefix = kwargs.pop('url_prefix', '') return tornado.web.RequestHandler.__init__(self, application, request, **kwargs) def get(self): ws_uri = 'ws://{req.host}{prefix}/'.format(req=self.request, prefix=self.url_prefix) self.render( "all_figures.html", prefix=self.url_prefix, ws_uri=ws_uri, figures=sorted( list(Gcf.figs.items()), key=lambda item: item[0]), toolitems=core.NavigationToolbar2WebAgg.toolitems) class MplJs(tornado.web.RequestHandler): def get(self): self.set_header('Content-Type', 'application/javascript') js_content = core.FigureManagerWebAgg.get_javascript() self.write(js_content) class Download(tornado.web.RequestHandler): def get(self, fignum, fmt): fignum = int(fignum) manager = Gcf.get_fig_manager(fignum) # TODO: Move this to a central location mimetypes = { 'ps': 'application/postscript', 'eps': 'application/postscript', 'pdf': 'application/pdf', 'svg': 'image/svg+xml', 'png': 'image/png', 'jpeg': 'image/jpeg', 'tif': 'image/tiff', 'emf': 'application/emf' } self.set_header('Content-Type', mimetypes.get(fmt, 'binary')) buff = six.BytesIO() manager.canvas.print_figure(buff, format=fmt) self.write(buff.getvalue()) class WebSocket(tornado.websocket.WebSocketHandler): supports_binary = True def open(self, fignum): self.fignum = int(fignum) self.manager = Gcf.get_fig_manager(self.fignum) self.manager.add_web_socket(self) if hasattr(self, 'set_nodelay'): self.set_nodelay(True) def on_close(self): self.manager.remove_web_socket(self) def on_message(self, message): message = json.loads(message) # The 'supports_binary' message is on a client-by-client # basis. The others affect the (shared) canvas as a # whole. if message['type'] == 'supports_binary': self.supports_binary = message['value'] else: manager = Gcf.get_fig_manager(self.fignum) # It is possible for a figure to be closed, # but a stale figure UI is still sending messages # from the browser. if manager is not None: manager.handle_json(message) def send_json(self, content): self.write_message(json.dumps(content)) def send_binary(self, blob): if self.supports_binary: self.write_message(blob, binary=True) else: data_uri = "data:image/png;base64,{0}".format( blob.encode('base64').replace('\n', '')) self.write_message(data_uri) def __init__(self, url_prefix=''): if url_prefix: assert url_prefix[0] == '/' and url_prefix[-1] != '/', \ 'url_prefix must start with a "/" and not end with one.' super(WebAggApplication, self).__init__( [ # Static files for the CSS and JS (url_prefix + r'/_static/(.*)', tornado.web.StaticFileHandler, {'path': core.FigureManagerWebAgg.get_static_file_path()}), # An MPL favicon (url_prefix + r'/favicon.ico', self.FavIcon), # The page that contains all of the pieces (url_prefix + r'/([0-9]+)', self.SingleFigurePage, {'url_prefix': url_prefix}), # The page that contains all of the figures (url_prefix + r'/?', self.AllFiguresPage, {'url_prefix': url_prefix}), (url_prefix + r'/mpl.js', self.MplJs), # Sends images and events to the browser, and receives # events from the browser (url_prefix + r'/([0-9]+)/ws', self.WebSocket), # Handles the downloading (i.e., saving) of static images (url_prefix + r'/([0-9]+)/download.([a-z0-9.]+)', self.Download), ], template_path=core.FigureManagerWebAgg.get_static_file_path()) @classmethod def initialize(cls, url_prefix='', port=None): if cls.initialized: return # Create the class instance app = cls(url_prefix=url_prefix) cls.url_prefix = url_prefix # This port selection algorithm is borrowed, more or less # verbatim, from IPython. def random_ports(port, n): """ Generate a list of n random ports near the given port. The first 5 ports will be sequential, and the remaining n-5 will be randomly selected in the range [port-2*n, port+2*n]. """ for i in range(min(5, n)): yield port + i for i in range(n - 5): yield port + random.randint(-2 * n, 2 * n) success = None cls.port = rcParams['webagg.port'] for port in random_ports(cls.port, rcParams['webagg.port_retries']): try: app.listen(port) except socket.error as e: if e.errno != errno.EADDRINUSE: raise else: cls.port = port success = True break if not success: raise SystemExit( "The webagg server could not be started because an available " "port could not be found") cls.initialized = True @classmethod def start(cls): if cls.started: return # Set the flag to True *before* blocking on IOLoop.instance().start() cls.started = True """ IOLoop.running() was removed as of Tornado 2.4; see for example https://groups.google.com/forum/#!topic/python-tornado/QLMzkpQBGOY Thus there is no correct way to check if the loop has already been launched. We may end up with two concurrently running loops in that unlucky case with all the expected consequences. """ print("Press Ctrl+C to stop WebAgg server") sys.stdout.flush() try: tornado.ioloop.IOLoop.instance().start() except KeyboardInterrupt: print("Server is stopped") sys.stdout.flush() finally: cls.started = False def ipython_inline_display(figure): import tornado.template WebAggApplication.initialize() if not webagg_server_thread.is_alive(): webagg_server_thread.start() with open(os.path.join( core.FigureManagerWebAgg.get_static_file_path(), 'ipython_inline_figure.html')) as fd: tpl = fd.read() fignum = figure.number t = tornado.template.Template(tpl) return t.generate( prefix=WebAggApplication.url_prefix, fig_id=fignum, toolitems=core.NavigationToolbar2WebAgg.toolitems, canvas=figure.canvas, port=WebAggApplication.port).decode('utf-8') FigureCanvas = FigureCanvasWebAgg
mit
mmottahedi/neuralnilm_prototype
scripts/e112.py
2
9691
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, SubsampleLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer from lasagne.updates import adagrad, nesterov_momentum from functools import partial import os from neuralnilm.source import standardise from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e103 Discovered that bottom layer is hardly changing. So will try just a single lstm layer e104 standard init lower learning rate e106 lower learning rate to 0.001 e108 is e107 but with batch size of 5 e109 Normal(1) for LSTM e110 * Back to Uniform(5) for LSTM * Using nntools eb17bd923ef9ff2cacde2e92d7323b4e51bb5f1f RESULTS: Seems to run fine again! e111 * Try with nntools head * peepholes=False RESULTS: appears to be working well. Haven't seen a NaN, even with training rate of 0.1 e112 * n_seq_per_batch = 50 """ def exp_a(name): source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television' # 'dish washer', # ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200], #, 2500, 2400], on_power_thresholds=[20, 20, 20], #, 20, 20], max_input_power=1000, min_on_durations=[60, 60, 60], #, 1800, 1800], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=False, boolean_targets=False, min_off_duration=60, train_buildings=[1], validation_buildings=[1], skip_probability=0, n_seq_per_batch=50 ) net = Net( experiment_name=name, source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=0.1), layers_config=[ { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'b': Uniform(25), 'W': Uniform(25) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'b': Uniform(10), 'W': Uniform(10) }, { 'type': LSTMLayer, 'num_units': 50, 'W_in_to_cell': Uniform(5), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] ) return net def exp_b(name): # as above but without gradient_steps source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television' # 'dish washer', # ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200], #, 2500, 2400], on_power_thresholds=[20, 20, 20], #, 20, 20], max_input_power=1000, min_on_durations=[60, 60, 60], #, 1800, 1800], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=False, boolean_targets=False, min_off_duration=60, train_buildings=[1], validation_buildings=[1], skip_probability=0, n_seq_per_batch=50 ) net = Net( experiment_name=name, source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=0.1), layers_config=[ { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'b': Uniform(25), 'W': Uniform(25) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'b': Uniform(10), 'W': Uniform(10) }, { 'type': LSTMLayer, 'num_units': 50, 'W_in_to_cell': Uniform(5), 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] ) return net def exp_c(name): # Same as above but with learning rate = 0.01 source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television' # 'dish washer', # ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200], #, 2500, 2400], on_power_thresholds=[20, 20, 20], #, 20, 20], max_input_power=1000, min_on_durations=[60, 60, 60], #, 1800, 1800], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=False, boolean_targets=False, min_off_duration=60, train_buildings=[1], validation_buildings=[1], skip_probability=0, n_seq_per_batch=50 ) net = Net( experiment_name=name, source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=0.01), layers_config=[ { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'b': Uniform(25), 'W': Uniform(25) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'b': Uniform(10), 'W': Uniform(10) }, { 'type': LSTMLayer, 'num_units': 50, 'W_in_to_cell': Uniform(5), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] ) return net def exp_d(name): # Same as above but with learning rate = 0.001 source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television' # 'dish washer', # ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200], #, 2500, 2400], on_power_thresholds=[20, 20, 20], #, 20, 20], max_input_power=1000, min_on_durations=[60, 60, 60], #, 1800, 1800], window=("2013-06-01", "2014-07-01"), seq_length=1000, output_one_appliance=False, boolean_targets=False, min_off_duration=60, train_buildings=[1], validation_buildings=[1], skip_probability=0, n_seq_per_batch=50 ) net = Net( experiment_name=name, source=source, save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=0.001), layers_config=[ { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'b': Uniform(25), 'W': Uniform(25) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'b': Uniform(10), 'W': Uniform(10) }, { 'type': LSTMLayer, 'num_units': 50, 'W_in_to_cell': Uniform(5), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] ) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('abcd'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=5000) except KeyboardInterrupt: break except TrainingError as e: print("EXCEPTION:", e) if __name__ == "__main__": main()
mit
mattilyra/scikit-learn
examples/cluster/plot_kmeans_stability_low_dim_dense.py
338
4324
""" ============================================================ Empirical evaluation of the impact of k-means initialization ============================================================ Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative standard deviation of the inertia of the clustering (i.e. the sum of distances to the nearest cluster center). The first plot shows the best inertia reached for each combination of the model (``KMeans`` or ``MiniBatchKMeans``) and the init method (``init="random"`` or ``init="kmeans++"``) for increasing values of the ``n_init`` parameter that controls the number of initializations. The second plot demonstrate one single run of the ``MiniBatchKMeans`` estimator using a ``init="random"`` and ``n_init=1``. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth clusters. The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.utils import shuffle from sklearn.utils import check_random_state from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import KMeans random_state = np.random.RandomState(0) # Number of run (with randomly generated dataset) for each strategy so as # to be able to compute an estimate of the standard deviation n_runs = 5 # k-means models can do several random inits so as to be able to trade # CPU time for convergence robustness n_init_range = np.array([1, 5, 10, 15, 20]) # Datasets generation parameters n_samples_per_center = 100 grid_size = 3 scale = 0.1 n_clusters = grid_size ** 2 def make_data(random_state, n_samples_per_center, grid_size, scale): random_state = check_random_state(random_state) centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)]) n_clusters_true, n_features = centers.shape noise = random_state.normal( scale=scale, size=(n_samples_per_center, centers.shape[1])) X = np.concatenate([c + noise for c in centers]) y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)]) return shuffle(X, y, random_state=random_state) # Part 1: Quantitative evaluation of various init methods fig = plt.figure() plots = [] legends = [] cases = [ (KMeans, 'k-means++', {}), (KMeans, 'random', {}), (MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}), (MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}), ] for factory, init, params in cases: print("Evaluation of %s with %s init" % (factory.__name__, init)) inertia = np.empty((len(n_init_range), n_runs)) for run_id in range(n_runs): X, y = make_data(run_id, n_samples_per_center, grid_size, scale) for i, n_init in enumerate(n_init_range): km = factory(n_clusters=n_clusters, init=init, random_state=run_id, n_init=n_init, **params).fit(X) inertia[i, run_id] = km.inertia_ p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1)) plots.append(p[0]) legends.append("%s with %s init" % (factory.__name__, init)) plt.xlabel('n_init') plt.ylabel('inertia') plt.legend(plots, legends) plt.title("Mean inertia for various k-means init across %d runs" % n_runs) # Part 2: Qualitative visual inspection of the convergence X, y = make_data(random_state, n_samples_per_center, grid_size, scale) km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1, random_state=random_state).fit(X) fig = plt.figure() for k in range(n_clusters): my_members = km.labels_ == k color = cm.spectral(float(k) / n_clusters, 1) plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color) cluster_center = km.cluster_centers_[k] plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=color, markeredgecolor='k', markersize=6) plt.title("Example cluster allocation with a single random init\n" "with MiniBatchKMeans") plt.show()
bsd-3-clause
abhishekgahlot/scikit-learn
examples/decomposition/plot_incremental_pca.py
244
1878
""" =============== Incremental PCA =============== Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage. This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip), while only processing a few samples at a time. This can be considered a "toy example", as IPCA is intended for large datasets which do not fit in main memory, requiring incremental approaches. """ print(__doc__) # Authors: Kyle Kastner # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA iris = load_iris() X = iris.data y = iris.target n_components = 2 ipca = IncrementalPCA(n_components=n_components, batch_size=10) X_ipca = ipca.fit_transform(X) pca = PCA(n_components=n_components) X_pca = pca.fit_transform(X) for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]: plt.figure(figsize=(8, 8)) for c, i, target_name in zip("rgb", [0, 1, 2], iris.target_names): plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1], c=c, label=target_name) if "Incremental" in title: err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() plt.title(title + " of iris dataset\nMean absolute unsigned error " "%.6f" % err) else: plt.title(title + " of iris dataset") plt.legend(loc="best") plt.axis([-4, 4, -1.5, 1.5]) plt.show()
bsd-3-clause
alexeyum/scikit-learn
sklearn/gaussian_process/gpc.py
42
31571
"""Gaussian processes classification.""" # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import warnings from operator import itemgetter import numpy as np from scipy.linalg import cholesky, cho_solve, solve from scipy.optimize import fmin_l_bfgs_b from scipy.special import erf from sklearn.base import BaseEstimator, ClassifierMixin, clone from sklearn.gaussian_process.kernels \ import RBF, CompoundKernel, ConstantKernel as C from sklearn.utils.validation import check_X_y, check_is_fitted, check_array from sklearn.utils import check_random_state from sklearn.preprocessing import LabelEncoder from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier # Values required for approximating the logistic sigmoid by # error functions. coefs are obtained via: # x = np.array([0, 0.6, 2, 3.5, 4.5, np.inf]) # b = logistic(x) # A = (erf(np.dot(x, self.lambdas)) + 1) / 2 # coefs = lstsq(A, b)[0] LAMBDAS = np.array([0.41, 0.4, 0.37, 0.44, 0.39])[:, np.newaxis] COEFS = np.array([-1854.8214151, 3516.89893646, 221.29346712, 128.12323805, -2010.49422654])[:, np.newaxis] class _BinaryGaussianProcessClassifierLaplace(BaseEstimator): """Binary Gaussian process classification based on Laplace approximation. The implementation is based on Algorithm 3.1, 3.2, and 5.1 of ``Gaussian Processes for Machine Learning'' (GPML) by Rasmussen and Williams. Internally, the Laplace approximation is used for approximating the non-Gaussian posterior by a Gaussian. Currently, the implementation is restricted to using the logistic link function. Parameters ---------- kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that the kernel's hyperparameters are optimized during fitting. optimizer : string or callable, optional (default: "fmin_l_bfgs_b") Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:: def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be maximized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min Per default, the 'fmin_l_bfgs_b' algorithm from scipy.optimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are:: 'fmin_l_bfgs_b' n_restarts_optimizer: int, optional (default: 0) The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer=0 implies that one run is performed. max_iter_predict: int, optional (default: 100) The maximum number of iterations in Newton's method for approximating the posterior during predict. Smaller values will reduce computation time at the cost of worse results. warm_start : bool, optional (default: False) If warm-starts are enabled, the solution of the last Newton iteration on the Laplace approximation of the posterior mode is used as initialization for the next call of _posterior_mode(). This can speed up convergence when _posterior_mode is called several times on similar problems as in hyperparameter optimization. copy_X_train : bool, optional (default: True) If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- X_train_ : array-like, shape = (n_samples, n_features) Feature values in training data (also required for prediction) y_train_: array-like, shape = (n_samples,) Target values in training data (also required for prediction) classes_ : array-like, shape = (n_classes,) Unique class labels. kernel_: kernel object The kernel used for prediction. The structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters L_: array-like, shape = (n_samples, n_samples) Lower-triangular Cholesky decomposition of the kernel in X_train_ pi_: array-like, shape = (n_samples,) The probabilities of the positive class for the training points X_train_ W_sr_: array-like, shape = (n_samples,) Square root of W, the Hessian of log-likelihood of the latent function values for the observed labels. Since W is diagonal, only the diagonal of sqrt(W) is stored. log_marginal_likelihood_value_: float The log-marginal-likelihood of ``self.kernel_.theta`` """ def __init__(self, kernel=None, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None): self.kernel = kernel self.optimizer = optimizer self.n_restarts_optimizer = n_restarts_optimizer self.max_iter_predict = max_iter_predict self.warm_start = warm_start self.copy_X_train = copy_X_train self.random_state = random_state def fit(self, X, y): """Fit Gaussian process classification model Parameters ---------- X : array-like, shape = (n_samples, n_features) Training data y : array-like, shape = (n_samples,) Target values, must be binary Returns ------- self : returns an instance of self. """ if self.kernel is None: # Use an RBF kernel as default self.kernel_ = C(1.0, constant_value_bounds="fixed") \ * RBF(1.0, length_scale_bounds="fixed") else: self.kernel_ = clone(self.kernel) self.rng = check_random_state(self.random_state) self.X_train_ = np.copy(X) if self.copy_X_train else X # Encode class labels and check that it is a binary classification # problem label_encoder = LabelEncoder() self.y_train_ = label_encoder.fit_transform(y) self.classes_ = label_encoder.classes_ if self.classes_.size > 2: raise ValueError("%s supports only binary classification. " "y contains classes %s" % (self.__class__.__name__, self.classes_)) elif self.classes_.size == 1: raise ValueError("{0:s} requires 2 classes.".format( self.__class__.__name__)) if self.optimizer is not None and self.kernel_.n_dims > 0: # Choose hyperparameters based on maximizing the log-marginal # likelihood (potentially starting from several initial values) def obj_func(theta, eval_gradient=True): if eval_gradient: lml, grad = self.log_marginal_likelihood( theta, eval_gradient=True) return -lml, -grad else: return -self.log_marginal_likelihood(theta) # First optimize starting from theta specified in kernel optima = [self._constrained_optimization(obj_func, self.kernel_.theta, self.kernel_.bounds)] # Additional runs are performed from log-uniform chosen initial # theta if self.n_restarts_optimizer > 0: if not np.isfinite(self.kernel_.bounds).all(): raise ValueError( "Multiple optimizer restarts (n_restarts_optimizer>0) " "requires that all bounds are finite.") bounds = self.kernel_.bounds for iteration in range(self.n_restarts_optimizer): theta_initial = np.exp(self.rng.uniform(bounds[:, 0], bounds[:, 1])) optima.append( self._constrained_optimization(obj_func, theta_initial, bounds)) # Select result from run with minimal (negative) log-marginal # likelihood lml_values = list(map(itemgetter(1), optima)) self.kernel_.theta = optima[np.argmin(lml_values)][0] self.log_marginal_likelihood_value_ = -np.min(lml_values) else: self.log_marginal_likelihood_value_ = \ self.log_marginal_likelihood(self.kernel_.theta) # Precompute quantities required for predictions which are independent # of actual query points K = self.kernel_(self.X_train_) _, (self.pi_, self.W_sr_, self.L_, _, _) = \ self._posterior_mode(K, return_temporaries=True) return self def predict(self, X): """Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array, shape = (n_samples,) Predicted target values for X, values are from ``classes_`` """ check_is_fitted(self, ["X_train_", "y_train_", "pi_", "W_sr_", "L_"]) # As discussed on Section 3.4.2 of GPML, for making hard binary # decisions, it is enough to compute the MAP of the posterior and # pass it through the link function K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star) f_star = K_star.T.dot(self.y_train_ - self.pi_) # Algorithm 3.2,Line 4 return np.where(f_star > 0, self.classes_[1], self.classes_[0]) def predict_proba(self, X): """Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array-like, shape = (n_samples, n_classes) Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute ``classes_``. """ check_is_fitted(self, ["X_train_", "y_train_", "pi_", "W_sr_", "L_"]) # Based on Algorithm 3.2 of GPML K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star) f_star = K_star.T.dot(self.y_train_ - self.pi_) # Line 4 v = solve(self.L_, self.W_sr_[:, np.newaxis] * K_star) # Line 5 # Line 6 (compute np.diag(v.T.dot(v)) via einsum) var_f_star = self.kernel_.diag(X) - np.einsum("ij,ij->j", v, v) # Line 7: # Approximate \int log(z) * N(z | f_star, var_f_star) # Approximation is due to Williams & Barber, "Bayesian Classification # with Gaussian Processes", Appendix A: Approximate the logistic # sigmoid by a linear combination of 5 error functions. # For information on how this integral can be computed see # blitiri.blogspot.de/2012/11/gaussian-integral-of-error-function.html alpha = 1 / (2 * var_f_star) gamma = LAMBDAS * f_star integrals = np.sqrt(np.pi / alpha) \ * erf(gamma * np.sqrt(alpha / (alpha + LAMBDAS**2))) \ / (2 * np.sqrt(var_f_star * 2 * np.pi)) pi_star = (COEFS * integrals).sum(axis=0) + .5 * COEFS.sum() return np.vstack((1 - pi_star, pi_star)).T def log_marginal_likelihood(self, theta=None, eval_gradient=False): """Returns log-marginal likelihood of theta for training data. Parameters ---------- theta : array-like, shape = (n_kernel_params,) or None Kernel hyperparameters for which the log-marginal likelihood is evaluated. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default: False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. If True, theta must not be None. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : array, shape = (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """ if theta is None: if eval_gradient: raise ValueError( "Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ kernel = self.kernel_.clone_with_theta(theta) if eval_gradient: K, K_gradient = kernel(self.X_train_, eval_gradient=True) else: K = kernel(self.X_train_) # Compute log-marginal-likelihood Z and also store some temporaries # which can be reused for computing Z's gradient Z, (pi, W_sr, L, b, a) = \ self._posterior_mode(K, return_temporaries=True) if not eval_gradient: return Z # Compute gradient based on Algorithm 5.1 of GPML d_Z = np.empty(theta.shape[0]) # XXX: Get rid of the np.diag() in the next line R = W_sr[:, np.newaxis] * cho_solve((L, True), np.diag(W_sr)) # Line 7 C = solve(L, W_sr[:, np.newaxis] * K) # Line 8 # Line 9: (use einsum to compute np.diag(C.T.dot(C)))) s_2 = -0.5 * (np.diag(K) - np.einsum('ij, ij -> j', C, C)) \ * (pi * (1 - pi) * (1 - 2 * pi)) # third derivative for j in range(d_Z.shape[0]): C = K_gradient[:, :, j] # Line 11 # Line 12: (R.T.ravel().dot(C.ravel()) = np.trace(R.dot(C))) s_1 = .5 * a.T.dot(C).dot(a) - .5 * R.T.ravel().dot(C.ravel()) b = C.dot(self.y_train_ - pi) # Line 13 s_3 = b - K.dot(R.dot(b)) # Line 14 d_Z[j] = s_1 + s_2.T.dot(s_3) # Line 15 return Z, d_Z def _posterior_mode(self, K, return_temporaries=False): """Mode-finding for binary Laplace GPC and fixed kernel. This approximates the posterior of the latent function values for given inputs and target observations with a Gaussian approximation and uses Newton's iteration to find the mode of this approximation. """ # Based on Algorithm 3.1 of GPML # If warm_start are enabled, we reuse the last solution for the # posterior mode as initialization; otherwise, we initialize with 0 if self.warm_start and hasattr(self, "f_cached") \ and self.f_cached.shape == self.y_train_.shape: f = self.f_cached else: f = np.zeros_like(self.y_train_, dtype=np.float64) # Use Newton's iteration method to find mode of Laplace approximation log_marginal_likelihood = -np.inf for _ in range(self.max_iter_predict): # Line 4 pi = 1 / (1 + np.exp(-f)) W = pi * (1 - pi) # Line 5 W_sr = np.sqrt(W) W_sr_K = W_sr[:, np.newaxis] * K B = np.eye(W.shape[0]) + W_sr_K * W_sr L = cholesky(B, lower=True) # Line 6 b = W * f + (self.y_train_ - pi) # Line 7 a = b - W_sr * cho_solve((L, True), W_sr_K.dot(b)) # Line 8 f = K.dot(a) # Line 10: Compute log marginal likelihood in loop and use as # convergence criterion lml = -0.5 * a.T.dot(f) \ - np.log(1 + np.exp(-(self.y_train_ * 2 - 1) * f)).sum() \ - np.log(np.diag(L)).sum() # Check if we have converged (log marginal likelihood does # not decrease) # XXX: more complex convergence criterion if lml - log_marginal_likelihood < 1e-10: break log_marginal_likelihood = lml self.f_cached = f # Remember solution for later warm-starts if return_temporaries: return log_marginal_likelihood, (pi, W_sr, L, b, a) else: return log_marginal_likelihood def _constrained_optimization(self, obj_func, initial_theta, bounds): if self.optimizer == "fmin_l_bfgs_b": theta_opt, func_min, convergence_dict = \ fmin_l_bfgs_b(obj_func, initial_theta, bounds=bounds) if convergence_dict["warnflag"] != 0: warnings.warn("fmin_l_bfgs_b terminated abnormally with the " " state: %s" % convergence_dict) elif callable(self.optimizer): theta_opt, func_min = \ self.optimizer(obj_func, initial_theta, bounds=bounds) else: raise ValueError("Unknown optimizer %s." % self.optimizer) return theta_opt, func_min class GaussianProcessClassifier(BaseEstimator, ClassifierMixin): """Gaussian process classification (GPC) based on Laplace approximation. The implementation is based on Algorithm 3.1, 3.2, and 5.1 of Gaussian Processes for Machine Learning (GPML) by Rasmussen and Williams. Internally, the Laplace approximation is used for approximating the non-Gaussian posterior by a Gaussian. Currently, the implementation is restricted to using the logistic link function. For multi-class classification, several binary one-versus rest classifiers are fitted. Note that this class thus does not implement a true multi-class Laplace approximation. Parameters ---------- kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that the kernel's hyperparameters are optimized during fitting. optimizer : string or callable, optional (default: "fmin_l_bfgs_b") Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:: def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be maximized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min Per default, the 'fmin_l_bfgs_b' algorithm from scipy.optimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are:: 'fmin_l_bfgs_b' n_restarts_optimizer: int, optional (default: 0) The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer=0 implies that one run is performed. max_iter_predict: int, optional (default: 100) The maximum number of iterations in Newton's method for approximating the posterior during predict. Smaller values will reduce computation time at the cost of worse results. warm_start : bool, optional (default: False) If warm-starts are enabled, the solution of the last Newton iteration on the Laplace approximation of the posterior mode is used as initialization for the next call of _posterior_mode(). This can speed up convergence when _posterior_mode is called several times on similar problems as in hyperparameter optimization. copy_X_train : bool, optional (default: True) If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. multi_class: string, default: "one_vs_rest" Specifies how multi-class classification problems are handled. Supported are "one_vs_rest" and "one_vs_one". In "one_vs_rest", one binary Gaussian process classifier is fitted for each class, which is trained to separate this class from the rest. In "one_vs_one", one binary Gaussian process classifier is fitted for each pair of classes, which is trained to separate these two classes. The predictions of these binary predictors are combined into multi-class predictions. Note that "one_vs_one" does not support predicting probability estimates. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Attributes ---------- kernel_ : kernel object The kernel used for prediction. In case of binary classification, the structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters. In case of multi-class classification, a CompoundKernel is returned which consists of the different kernels used in the one-versus-rest classifiers. log_marginal_likelihood_value_: float The log-marginal-likelihood of ``self.kernel_.theta`` classes_ : array-like, shape = (n_classes,) Unique class labels. n_classes_ : int The number of classes in the training data """ def __init__(self, kernel=None, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None, multi_class="one_vs_rest", n_jobs=1): self.kernel = kernel self.optimizer = optimizer self.n_restarts_optimizer = n_restarts_optimizer self.max_iter_predict = max_iter_predict self.warm_start = warm_start self.copy_X_train = copy_X_train self.random_state = random_state self.multi_class = multi_class self.n_jobs = n_jobs def fit(self, X, y): """Fit Gaussian process classification model Parameters ---------- X : array-like, shape = (n_samples, n_features) Training data y : array-like, shape = (n_samples,) Target values, must be binary Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, multi_output=False) self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace( self.kernel, self.optimizer, self.n_restarts_optimizer, self.max_iter_predict, self.warm_start, self.copy_X_train, self.random_state) self.classes_ = np.unique(y) self.n_classes_ = self.classes_.size if self.n_classes_ == 1: raise ValueError("GaussianProcessClassifier requires 2 or more " "distinct classes. Only class %s present." % self.classes_[0]) if self.n_classes_ > 2: if self.multi_class == "one_vs_rest": self.base_estimator_ = \ OneVsRestClassifier(self.base_estimator_, n_jobs=self.n_jobs) elif self.multi_class == "one_vs_one": self.base_estimator_ = \ OneVsOneClassifier(self.base_estimator_, n_jobs=self.n_jobs) else: raise ValueError("Unknown multi-class mode %s" % self.multi_class) self.base_estimator_.fit(X, y) if self.n_classes_ > 2: self.log_marginal_likelihood_value_ = np.mean( [estimator.log_marginal_likelihood() for estimator in self.base_estimator_.estimators_]) else: self.log_marginal_likelihood_value_ = \ self.base_estimator_.log_marginal_likelihood() return self def predict(self, X): """Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array, shape = (n_samples,) Predicted target values for X, values are from ``classes_`` """ check_is_fitted(self, ["classes_", "n_classes_"]) X = check_array(X) return self.base_estimator_.predict(X) def predict_proba(self, X): """Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array-like, shape = (n_samples, n_classes) Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ check_is_fitted(self, ["classes_", "n_classes_"]) if self.n_classes_ > 2 and self.multi_class == "one_vs_one": raise ValueError("one_vs_one multi-class mode does not support " "predicting probability estimates. Use " "one_vs_rest mode instead.") X = check_array(X) return self.base_estimator_.predict_proba(X) @property def kernel_(self): if self.n_classes_ == 2: return self.base_estimator_.kernel_ else: return CompoundKernel( [estimator.kernel_ for estimator in self.base_estimator_.estimators_]) def log_marginal_likelihood(self, theta=None, eval_gradient=False): """Returns log-marginal likelihood of theta for training data. In the case of multi-class classification, the mean log-marginal likelihood of the one-versus-rest classifiers are returned. Parameters ---------- theta : array-like, shape = (n_kernel_params,) or none Kernel hyperparameters for which the log-marginal likelihood is evaluated. In the case of multi-class classification, theta may be the hyperparameters of the compound kernel or of an individual kernel. In the latter case, all individual kernel get assigned the same theta values. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default: False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. Note that gradient computation is not supported for non-binary classification. If True, theta must not be None. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : array, shape = (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """ check_is_fitted(self, ["classes_", "n_classes_"]) if theta is None: if eval_gradient: raise ValueError( "Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ theta = np.asarray(theta) if self.n_classes_ == 2: return self.base_estimator_.log_marginal_likelihood( theta, eval_gradient) else: if eval_gradient: raise NotImplementedError( "Gradient of log-marginal-likelihood not implemented for " "multi-class GPC.") estimators = self.base_estimator_.estimators_ n_dims = estimators[0].kernel_.n_dims if theta.shape[0] == n_dims: # use same theta for all sub-kernels return np.mean( [estimator.log_marginal_likelihood(theta) for i, estimator in enumerate(estimators)]) elif theta.shape[0] == n_dims * self.classes_.shape[0]: # theta for compound kernel return np.mean( [estimator.log_marginal_likelihood( theta[n_dims * i:n_dims * (i + 1)]) for i, estimator in enumerate(estimators)]) else: raise ValueError("Shape of theta must be either %d or %d. " "Obtained theta with shape %d." % (n_dims, n_dims * self.classes_.shape[0], theta.shape[0]))
bsd-3-clause
johnmgregoire/PythonCompositionPlots
quaternary_ternary_faces_demo3.py
1
3340
import matplotlib.cm as cm import numpy, sys import pylab import operator, copy, os from PyQt4.QtCore import * from PyQt4.QtGui import * from quaternary_ternary_faces import ternaryfaces from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas try: from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar except ImportError: from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure from myquaternaryutility import QuaternaryPlot class plotwidget(FigureCanvas): def __init__(self, parent, width=12, height=6, dpi=72, projection3d=False): #plotdata can be 2d array for image plot or list of 2 1d arrays for x-y plot or 2d array for image plot or list of lists of 2 1D arrays self.projection3d=projection3d self.fig=Figure(figsize=(width, height), dpi=dpi) if projection3d: self.axes=self.fig.add_subplot(111, navigate=True, projection='3d') else: self.axes=self.fig.add_subplot(111, navigate=True) self.axes.hold(True) FigureCanvas.__init__(self, self.fig) self.setParent(parent) #self.parent=parent FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) #NavigationToolbar(self, parent) NavigationToolbar(self, self) self.mpl_connect('button_press_event', self.myclick) self.clicklist=[] self.cbax=None def myclick(self, event): if not (event.xdata is None or event.ydata is None): arrayxy=[event.xdata, event.ydata] print 'clicked on image: array indeces ', arrayxy, ' using button', event.button self.clicklist+=[arrayxy] self.emit(SIGNAL("genericclickonplot"), [event.xdata, event.ydata, event.button, event.inaxes]) class dialog(QDialog): def __init__(self, parent=None, title='', folderpath=None): super(dialog, self).__init__(parent) plotw=plotwidget(self) ax=plotw.axes intervs=20 compsint=[[b, c, (intervs-a-b-c), a] for a in numpy.arange(0,intervs+1)[::-1] for b in numpy.arange(0,intervs+1-a) for c in numpy.arange(0,intervs+1-a-b)][::-1] print len(compsint) comps=numpy.float32(compsint)/intervs pylab.figure() stpquat=QuaternaryPlot(111) cols=stpquat.rgb_comp(comps) stpquat.scatter(comps, c=cols, s=100, edgecolors='none') stpquat.label() self.tf=ternaryfaces(ax) self.tf.label() self.tf.scatter(comps, cols, skipinds=[0, 1, 2, 3], s='patch') QObject.connect(plotw, SIGNAL("genericclickonplot"), self.plotclick) mainlayout=QGridLayout() mainlayout.addWidget(plotw, 0, 0) self.setLayout(mainlayout) def plotclick(self, coords_button_ax): xc, yc, button, ax=coords_button_ax print self.tf.toComp(xc, yc) class MainMenu(QMainWindow): def __init__(self): super(MainMenu, self).__init__(None) x=dialog() x.exec_() mainapp=QApplication(sys.argv) form=MainMenu() form.show() form.setFocus() mainapp.exec_()
bsd-3-clause
eteq/catterplotpy
catterplot/core.py
1
4056
# Copyright 2017 Erik Tollerud # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals # just in case, for py2 to be py3-ish import pkgutil, io import numpy as np from matplotlib import image, cm from matplotlib import pyplot as plt __all__ = ['get_cat_num', 'n_cats', 'catter'] # N_cats x 72 x 72, 0 is transparent, 1 is full-cat _CAT_DATA = np.load(io.BytesIO(pkgutil.get_data('catterplot', 'data/cats.npy'))) def get_cat_num(i): return _CAT_DATA[i] def n_cats(): return len(_CAT_DATA) def catter(x, y, s=40, c=None, cat='random', alpha=1, ax=None, cmap=None, aspects='auto'): """ A catter plot (scatter plot with cats). Most arguments are interpreted the same as the matplotlib `scatter` function, except that ``s`` is the *data* size of the symbol (not pixel). Additional kwargs include: ``cat`` can be: * int : the index of the cat symbol to use - you can use ``catterplot.n_cats()`` to get the number of cats available * a squence of ints : must match the data, but otherwise interpreted as for a scalar * 'random'/'rand' : random cats ``ax`` can be: * None: use the current default (pyplot) axes * an `Axes` : random cats ``aspects`` can be: * 'auto': the cats length-to-width is set to be square given the spread of inputs * a float: the height/width of the cats. If not 1, ``s`` is interpreted as the geometric mean of the sizes * a sequence of floats: much match data, gives height/width """ if ax is None: ax = plt.gca() if c is not None: if cmap is None: cmap = plt.rcParams['image.cmap'] smap = cm.ScalarMappable(cmap=cmap) rgba = smap.to_rgba(c) else: rgba = np.ones((len(x), 4)) rgba[:, 3] *= alpha if np.isscalar(s) or s.shape==tuple(): s = np.ones(len(x))*s # otherwise assume shapes match if cat in ('rand', 'random'): cats = np.random.randint(n_cats(), size=len(x)) else: try: cats = np.ones(len(x)) * cat except TypeError as e: raise TypeError('`cat` argument needs to be "random", a scalar, or match the input.', e) if aspects == 'auto': aspects = np.ptp(y)/np.ptp(x) if np.isscalar(aspects) or aspects.shape==tuple(): aspects = np.ones(len(x)) * aspects ims = [] for xi, yi, si, ci, cati, aspecti in zip(x, y, s, rgba, cats, aspects): data = get_cat_num(cati) offsetx = si * aspecti**-0.5 / (2 * data.shape[0]) offsety = si * aspecti**0.5 / (2 * data.shape[1]) im = image.AxesImage(ax, extent=(xi - offsetx, xi + offsetx, yi - offsety, yi + offsety)) if c is None: # defaults to fading "black" cdata = 1-data else: # leave just the alpha to control the fading cdata = np.ones(data.shape) imarr = np.transpose([cdata*ci[0], cdata*ci[1], cdata*ci[2], data*ci[3]], (1, 2, 0)) im.set_data(imarr) ims.append(im) for im in ims: ax.add_image(im) #ax.autoscale_view() # for some reason autoscaling fails for images. So we'll just force it via # scatter... sc = plt.scatter(x, y) sc.remove() return ims
apache-2.0
INGEOTEC/b4msa
b4msa/classifier.py
1
6720
# Copyright 2016 Ranyart R. Suarez (https://github.com/RanyartRodrigo) and Mario Graff (https://github.com/mgraffg) # with collaborations of Eric S. Tellez # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sklearn.svm import LinearSVC # from b4msa.textmodel import TextModel import numpy as np from microtc.utils import read_data_labels, read_data, tweet_iterator from sklearn import preprocessing from sklearn.model_selection import StratifiedKFold from b4msa.textmodel import TextModel from multiprocessing import Pool from scipy.sparse import csr_matrix class SVC(object): """Classifier :param model: TextModel :type model: class Usage: >>> from b4msa.textmodel import TextModel >>> from b4msa.classifier import SVC >>> corpus = ['buenos dias', 'catedras conacyt', 'categorizacion de texto ingeotec'] >>> textmodel = TextModel(corpus) >>> svc = SVC(textmodel) >>> _ = svc.fit([textmodel[x] for x in corpus], [1, 0, 0]) >>> svc.predict_text('hola') 0 """ def __init__(self, model, **kwargs): self.svc = LinearSVC(**kwargs) self.model = model @property def num_terms(self): """Dimension which is the number of terms of the corpus :rtype: int """ try: return self._num_terms except AttributeError: self._num_terms = None return None def tonp(self, X): """Sparse representation to sparce matrix :param X: Sparse representation of matrix :type X: list :rtype: csr_matrix """ data = [] row = [] col = [] for r, x in enumerate(X): cc = [_[0] for _ in x if np.isfinite(_[1]) and (self.num_terms is None or _[0] < self.num_terms)] col += cc data += [_[1] for _ in x if np.isfinite(_[1]) and (self.num_terms is None or _[0] < self.num_terms)] _ = [r] * len(cc) row += _ if self.num_terms is None: _ = csr_matrix((data, (row, col))) self._num_terms = _.shape[1] return _ return csr_matrix((data, (row, col)), shape=(len(X), self.num_terms)) def fit(self, X, y): """Train the classifier :param X: inputs - independent variables :type X: lst :param y: output - dependent variable :rtype: instance """ X = self.tonp(X) self.le = preprocessing.LabelEncoder() self.le.fit(y) y = self.le.transform(y) if self.num_terms == 0: return self self.svc.fit(X, y) return self def decision_function(self, Xnew): Xnew = self.tonp(Xnew) return self.svc.decision_function(Xnew) def predict(self, Xnew): if self.num_terms == 0: return self.le.inverse_transform(np.zeros(len(Xnew), dtype=np.int)) Xnew = self.tonp(Xnew) ynew = self.svc.predict(Xnew) return self.le.inverse_transform(ynew) def predict_text(self, text): y = self.predict([self.model[text]]) return y[0] def fit_file(self, fname, get_tweet='text', get_klass='klass', maxitems=1e100): X, y = read_data_labels(fname, get_klass=get_klass, get_tweet=get_tweet, maxitems=maxitems) self.fit([self.model[x] for x in X], y) return self def predict_file(self, fname, get_tweet='text', maxitems=1e100): hy = [self.predict_text(x) for x in read_data(fname, get_tweet=get_tweet, maxitems=maxitems)] return hy @classmethod def predict_kfold(cls, X, y, n_folds=10, seed=0, textModel_params={}, kfolds=None, pool=None, use_tqdm=True): try: from tqdm import tqdm except ImportError: def tqdm(x, **kwargs): return x le = preprocessing.LabelEncoder().fit(y) y = np.array(le.transform(y)) hy = np.zeros(len(y), dtype=np.int) if kfolds is None: kfolds = StratifiedKFold(n_splits=n_folds, shuffle=True, random_state=seed).split(X, y) args = [(X, y, tr, ts, textModel_params) for tr, ts in kfolds] if pool is not None: if use_tqdm: res = [x for x in tqdm(pool.imap_unordered(cls.train_predict_pool, args), desc='Params', total=len(args))] else: res = [x for x in pool.imap_unordered(cls.train_predict_pool, args)] else: if use_tqdm: args = tqdm(args) res = [cls.train_predict_pool(x) for x in args] for ts, _hy in res: hy[ts] = _hy return le.inverse_transform(hy) @classmethod def train_predict_pool(cls, args): X, y, tr, ts, textModel_params = args params = TextModel.params() textModel_params = {k: v for k, v in textModel_params.items() if k in params} t = TextModel([X[x] for x in tr], **textModel_params) m = cls(t).fit([t[X[x]] for x in tr], [y[x] for x in tr]) return ts, np.array(m.predict([t[X[x]] for x in ts])) @classmethod def predict_kfold_params(cls, fname, n_folds=10, score=None, numprocs=None, seed=0, param_kwargs={}): from b4msa.params import ParameterSelection, Wrapper X, y = read_data_labels(fname) if numprocs is not None: pool = Pool(numprocs) else: pool = None numprocs = 1 if n_folds % numprocs == 0: f = Wrapper(X, y, score, n_folds, cls, pool=pool, seed=seed) pool = None else: f = Wrapper(X, y, score, n_folds, cls, seed=seed) return ParameterSelection().search(f.f, pool=pool, **param_kwargs) @classmethod def fit_from_file(cls, fname, textModel_params={}): D = [x for x in tweet_iterator(fname)] # X, y = read_data_labels(fname) y = [x['klass'] for x in D] model = TextModel(D, **textModel_params) svc = cls(model) return svc.fit([model[x] for x in D], y)
apache-2.0
harisbal/pandas
asv_bench/benchmarks/ctors.py
3
1817
import numpy as np import pandas.util.testing as tm from pandas import Series, Index, DatetimeIndex, Timestamp, MultiIndex class SeriesConstructors(object): param_names = ["data_fmt", "with_index"] params = [[lambda x: x, list, lambda arr: list(arr.astype(str)), lambda arr: dict(zip(range(len(arr)), arr)), lambda arr: [(i, -i) for i in arr], lambda arr: [[i, -i] for i in arr], lambda arr: ([(i, -i) for i in arr][:-1] + [None]), lambda arr: ([[i, -i] for i in arr][:-1] + [None])], [False, True]] def setup(self, data_fmt, with_index): N = 10**4 arr = np.random.randn(N) self.data = data_fmt(arr) self.index = np.arange(N) if with_index else None def time_series_constructor(self, data_fmt, with_index): Series(self.data, index=self.index) class SeriesDtypesConstructors(object): def setup(self): N = 10**4 self.arr = np.random.randn(N, N) self.arr_str = np.array(['foo', 'bar', 'baz'], dtype=object) self.s = Series([Timestamp('20110101'), Timestamp('20120101'), Timestamp('20130101')] * N * 10) def time_index_from_array_string(self): Index(self.arr_str) def time_index_from_array_floats(self): Index(self.arr) def time_dtindex_from_series(self): DatetimeIndex(self.s) def time_dtindex_from_index_with_series(self): Index(self.s) class MultiIndexConstructor(object): def setup(self): N = 10**4 self.iterables = [tm.makeStringIndex(N), range(20)] def time_multiindex_from_iterables(self): MultiIndex.from_product(self.iterables) from .pandas_vb_common import setup # noqa: F401
bsd-3-clause
lancezlin/ml_template_py
lib/python2.7/site-packages/IPython/core/shellapp.py
7
16199
# encoding: utf-8 """ A mixin for :class:`~IPython.core.application.Application` classes that launch InteractiveShell instances, load extensions, etc. """ # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. from __future__ import absolute_import from __future__ import print_function import glob import os import sys from traitlets.config.application import boolean_flag from traitlets.config.configurable import Configurable from traitlets.config.loader import Config from IPython.core import pylabtools from IPython.utils import py3compat from IPython.utils.contexts import preserve_keys from IPython.utils.path import filefind from traitlets import ( Unicode, Instance, List, Bool, CaselessStrEnum, observe, ) from IPython.terminal import pt_inputhooks #----------------------------------------------------------------------------- # Aliases and Flags #----------------------------------------------------------------------------- gui_keys = tuple(sorted(pt_inputhooks.backends) + sorted(pt_inputhooks.aliases)) backend_keys = sorted(pylabtools.backends.keys()) backend_keys.insert(0, 'auto') shell_flags = {} addflag = lambda *args: shell_flags.update(boolean_flag(*args)) addflag('autoindent', 'InteractiveShell.autoindent', 'Turn on autoindenting.', 'Turn off autoindenting.' ) addflag('automagic', 'InteractiveShell.automagic', """Turn on the auto calling of magic commands. Type %%magic at the IPython prompt for more information.""", 'Turn off the auto calling of magic commands.' ) addflag('pdb', 'InteractiveShell.pdb', "Enable auto calling the pdb debugger after every exception.", "Disable auto calling the pdb debugger after every exception." ) addflag('pprint', 'PlainTextFormatter.pprint', "Enable auto pretty printing of results.", "Disable auto pretty printing of results." ) addflag('color-info', 'InteractiveShell.color_info', """IPython can display information about objects via a set of functions, and optionally can use colors for this, syntax highlighting source code and various other elements. This is on by default, but can cause problems with some pagers. If you see such problems, you can disable the colours.""", "Disable using colors for info related things." ) nosep_config = Config() nosep_config.InteractiveShell.separate_in = '' nosep_config.InteractiveShell.separate_out = '' nosep_config.InteractiveShell.separate_out2 = '' shell_flags['nosep']=(nosep_config, "Eliminate all spacing between prompts.") shell_flags['pylab'] = ( {'InteractiveShellApp' : {'pylab' : 'auto'}}, """Pre-load matplotlib and numpy for interactive use with the default matplotlib backend.""" ) shell_flags['matplotlib'] = ( {'InteractiveShellApp' : {'matplotlib' : 'auto'}}, """Configure matplotlib for interactive use with the default matplotlib backend.""" ) # it's possible we don't want short aliases for *all* of these: shell_aliases = dict( autocall='InteractiveShell.autocall', colors='InteractiveShell.colors', logfile='InteractiveShell.logfile', logappend='InteractiveShell.logappend', c='InteractiveShellApp.code_to_run', m='InteractiveShellApp.module_to_run', ext='InteractiveShellApp.extra_extension', gui='InteractiveShellApp.gui', pylab='InteractiveShellApp.pylab', matplotlib='InteractiveShellApp.matplotlib', ) shell_aliases['cache-size'] = 'InteractiveShell.cache_size' #----------------------------------------------------------------------------- # Main classes and functions #----------------------------------------------------------------------------- class InteractiveShellApp(Configurable): """A Mixin for applications that start InteractiveShell instances. Provides configurables for loading extensions and executing files as part of configuring a Shell environment. The following methods should be called by the :meth:`initialize` method of the subclass: - :meth:`init_path` - :meth:`init_shell` (to be implemented by the subclass) - :meth:`init_gui_pylab` - :meth:`init_extensions` - :meth:`init_code` """ extensions = List(Unicode(), help="A list of dotted module names of IPython extensions to load." ).tag(config=True) extra_extension = Unicode('', help="dotted module name of an IPython extension to load." ).tag(config=True) reraise_ipython_extension_failures = Bool(False, help="Reraise exceptions encountered loading IPython extensions?", ).tag(config=True) # Extensions that are always loaded (not configurable) default_extensions = List(Unicode(), [u'storemagic']).tag(config=False) hide_initial_ns = Bool(True, help="""Should variables loaded at startup (by startup files, exec_lines, etc.) be hidden from tools like %who?""" ).tag(config=True) exec_files = List(Unicode(), help="""List of files to run at IPython startup.""" ).tag(config=True) exec_PYTHONSTARTUP = Bool(True, help="""Run the file referenced by the PYTHONSTARTUP environment variable at IPython startup.""" ).tag(config=True) file_to_run = Unicode('', help="""A file to be run""").tag(config=True) exec_lines = List(Unicode(), help="""lines of code to run at IPython startup.""" ).tag(config=True) code_to_run = Unicode('', help="Execute the given command string." ).tag(config=True) module_to_run = Unicode('', help="Run the module as a script." ).tag(config=True) gui = CaselessStrEnum(gui_keys, allow_none=True, help="Enable GUI event loop integration with any of {0}.".format(gui_keys) ).tag(config=True) matplotlib = CaselessStrEnum(backend_keys, allow_none=True, help="""Configure matplotlib for interactive use with the default matplotlib backend.""" ).tag(config=True) pylab = CaselessStrEnum(backend_keys, allow_none=True, help="""Pre-load matplotlib and numpy for interactive use, selecting a particular matplotlib backend and loop integration. """ ).tag(config=True) pylab_import_all = Bool(True, help="""If true, IPython will populate the user namespace with numpy, pylab, etc. and an ``import *`` is done from numpy and pylab, when using pylab mode. When False, pylab mode should not import any names into the user namespace. """ ).tag(config=True) shell = Instance('IPython.core.interactiveshell.InteractiveShellABC', allow_none=True) # whether interact-loop should start interact = Bool(True) user_ns = Instance(dict, args=None, allow_none=True) @observe('user_ns') def _user_ns_changed(self, change): if self.shell is not None: self.shell.user_ns = change['new'] self.shell.init_user_ns() def init_path(self): """Add current working directory, '', to sys.path""" if sys.path[0] != '': sys.path.insert(0, '') def init_shell(self): raise NotImplementedError("Override in subclasses") def init_gui_pylab(self): """Enable GUI event loop integration, taking pylab into account.""" enable = False shell = self.shell if self.pylab: enable = lambda key: shell.enable_pylab(key, import_all=self.pylab_import_all) key = self.pylab elif self.matplotlib: enable = shell.enable_matplotlib key = self.matplotlib elif self.gui: enable = shell.enable_gui key = self.gui if not enable: return try: r = enable(key) except ImportError: self.log.warning("Eventloop or matplotlib integration failed. Is matplotlib installed?") self.shell.showtraceback() return except Exception: self.log.warning("GUI event loop or pylab initialization failed") self.shell.showtraceback() return if isinstance(r, tuple): gui, backend = r[:2] self.log.info("Enabling GUI event loop integration, " "eventloop=%s, matplotlib=%s", gui, backend) if key == "auto": print("Using matplotlib backend: %s" % backend) else: gui = r self.log.info("Enabling GUI event loop integration, " "eventloop=%s", gui) def init_extensions(self): """Load all IPython extensions in IPythonApp.extensions. This uses the :meth:`ExtensionManager.load_extensions` to load all the extensions listed in ``self.extensions``. """ try: self.log.debug("Loading IPython extensions...") extensions = self.default_extensions + self.extensions if self.extra_extension: extensions.append(self.extra_extension) for ext in extensions: try: self.log.info("Loading IPython extension: %s" % ext) self.shell.extension_manager.load_extension(ext) except: if self.reraise_ipython_extension_failures: raise msg = ("Error in loading extension: {ext}\n" "Check your config files in {location}".format( ext=ext, location=self.profile_dir.location )) self.log.warning(msg, exc_info=True) except: if self.reraise_ipython_extension_failures: raise self.log.warning("Unknown error in loading extensions:", exc_info=True) def init_code(self): """run the pre-flight code, specified via exec_lines""" self._run_startup_files() self._run_exec_lines() self._run_exec_files() # Hide variables defined here from %who etc. if self.hide_initial_ns: self.shell.user_ns_hidden.update(self.shell.user_ns) # command-line execution (ipython -i script.py, ipython -m module) # should *not* be excluded from %whos self._run_cmd_line_code() self._run_module() # flush output, so itwon't be attached to the first cell sys.stdout.flush() sys.stderr.flush() def _run_exec_lines(self): """Run lines of code in IPythonApp.exec_lines in the user's namespace.""" if not self.exec_lines: return try: self.log.debug("Running code from IPythonApp.exec_lines...") for line in self.exec_lines: try: self.log.info("Running code in user namespace: %s" % line) self.shell.run_cell(line, store_history=False) except: self.log.warning("Error in executing line in user " "namespace: %s" % line) self.shell.showtraceback() except: self.log.warning("Unknown error in handling IPythonApp.exec_lines:") self.shell.showtraceback() def _exec_file(self, fname, shell_futures=False): try: full_filename = filefind(fname, [u'.', self.ipython_dir]) except IOError: self.log.warning("File not found: %r"%fname) return # Make sure that the running script gets a proper sys.argv as if it # were run from a system shell. save_argv = sys.argv sys.argv = [full_filename] + self.extra_args[1:] # protect sys.argv from potential unicode strings on Python 2: if not py3compat.PY3: sys.argv = [ py3compat.cast_bytes(a) for a in sys.argv ] try: if os.path.isfile(full_filename): self.log.info("Running file in user namespace: %s" % full_filename) # Ensure that __file__ is always defined to match Python # behavior. with preserve_keys(self.shell.user_ns, '__file__'): self.shell.user_ns['__file__'] = fname if full_filename.endswith('.ipy'): self.shell.safe_execfile_ipy(full_filename, shell_futures=shell_futures) else: # default to python, even without extension self.shell.safe_execfile(full_filename, self.shell.user_ns, shell_futures=shell_futures, raise_exceptions=True) finally: sys.argv = save_argv def _run_startup_files(self): """Run files from profile startup directory""" startup_dir = self.profile_dir.startup_dir startup_files = [] if self.exec_PYTHONSTARTUP and os.environ.get('PYTHONSTARTUP', False) and \ not (self.file_to_run or self.code_to_run or self.module_to_run): python_startup = os.environ['PYTHONSTARTUP'] self.log.debug("Running PYTHONSTARTUP file %s...", python_startup) try: self._exec_file(python_startup) except: self.log.warning("Unknown error in handling PYTHONSTARTUP file %s:", python_startup) self.shell.showtraceback() startup_files += glob.glob(os.path.join(startup_dir, '*.py')) startup_files += glob.glob(os.path.join(startup_dir, '*.ipy')) if not startup_files: return self.log.debug("Running startup files from %s...", startup_dir) try: for fname in sorted(startup_files): self._exec_file(fname) except: self.log.warning("Unknown error in handling startup files:") self.shell.showtraceback() def _run_exec_files(self): """Run files from IPythonApp.exec_files""" if not self.exec_files: return self.log.debug("Running files in IPythonApp.exec_files...") try: for fname in self.exec_files: self._exec_file(fname) except: self.log.warning("Unknown error in handling IPythonApp.exec_files:") self.shell.showtraceback() def _run_cmd_line_code(self): """Run code or file specified at the command-line""" if self.code_to_run: line = self.code_to_run try: self.log.info("Running code given at command line (c=): %s" % line) self.shell.run_cell(line, store_history=False) except: self.log.warning("Error in executing line in user namespace: %s" % line) self.shell.showtraceback() if not self.interact: self.exit(1) # Like Python itself, ignore the second if the first of these is present elif self.file_to_run: fname = self.file_to_run if os.path.isdir(fname): fname = os.path.join(fname, "__main__.py") try: self._exec_file(fname, shell_futures=True) except: self.shell.showtraceback(tb_offset=4) if not self.interact: self.exit(1) def _run_module(self): """Run module specified at the command-line.""" if self.module_to_run: # Make sure that the module gets a proper sys.argv as if it were # run using `python -m`. save_argv = sys.argv sys.argv = [sys.executable] + self.extra_args try: self.shell.safe_run_module(self.module_to_run, self.shell.user_ns) finally: sys.argv = save_argv
mit
openturns/otwrapy
otwrapy/_otwrapy.py
2
19844
#!/usr/bin/env python # -*- coding: utf-8 -*- """ General purpose OpenTURNS python wrapper tools """ import os import gzip import pickle from tempfile import mkdtemp import shutil from functools import wraps import logging import openturns as ot import numpy as np __author__ = "Felipe Aguirre Martinez" __copyright__ = "Copyright 2015-2019 Phimeca" __email__ = "[email protected]" __all__ = ['load_array', 'dump_array', '_exec_sample_joblib', '_exec_sample_multiprocessing', '_exec_sample_ipyparallel', 'FunctionDecorator', 'TempWorkDir', 'Parallelizer', 'create_logger', 'Debug', 'safemakedirs'] base_dir = os.path.dirname(__file__) def load_array(filename, compressed=False): """Load a (possibly compressed) pickled array. Parameters ---------- filename : str Path to the file to be loaded. If the extension is '.pklz', it considers that the file is compressed with *gzip*. compressed : bool Indicates if the file is compressed with gzip or not. """ if compressed or (filename.split('.')[-1] == 'pklz'): with gzip.open(filename, 'rb') as fh: return pickle.load(fh) else: with open(filename, 'rb') as fh: return pickle.load(fh) def dump_array(array, filename, compress=False): """Dump an array to a (possibly compressed) file. Parameters ---------- array : array Array to be compressed. Typically a np.array or ot.Sample. filename : str Path where the file is dumped. If the extension is '.pklz', it considers that the file has to be compressed with *gzip*. compressed : bool Indicates if the file has to be compressed with gzip or not. """ if compress or (filename.split('.')[-1] == 'pklz'): with gzip.open(filename, 'wb') as fh: pickle.dump(array, fh, protocol=2) else: with open(filename, 'wb') as fh: pickle.dump(array, fh, protocol=2) def safemakedirs(folder): """Make a directory without raising an error if it exists. Parameters ---------- folder : str Path of the folder to be created. """ if not os.path.exists(folder): os.makedirs(folder) def create_logger(logfile, loglevel=None): """Create a logger with a FileHandler at the given loglevel. Parameters ---------- logfile : str Filename for the logger FileHandler to be created. loglevel : logging level Threshold for the logger. Logging messages which are less severe than loglevel will be ignored. It defaults to logging.DEBUG. """ if loglevel is None: loglevel = logging.DEBUG logger = logging.getLogger('logger_otwrapy') logger.setLevel(loglevel) # ---------------------------------------------------------- # Create file handler which logs even DEBUG messages fh = logging.FileHandler(filename=logfile, mode='w') fh.setLevel(logging.DEBUG) # Create a formatter for the file handlers formatter = logging.Formatter( fmt='%(asctime)s %(levelname)-8s %(message)s', datefmt='%y-%m-%d %H:%M:%S') fh.setFormatter(formatter) # Add the handler to the logger logger.addHandler(fh) return logger class Debug(object): """Decorator that catches exceptions inside a function and logs them. A decorator used to protect functions so that exceptions are logged to a file. It can either be instantiated with a Logger or with a filename for which a logger will be created with a FileHandler. It comes specially handy when you launch your codes in a non interactive environment (e.g., HPC cluster through submission scripts), given that Exceptions are captured and logged to a file. The great benefit of this implementation is that with a simple decorator you can protect the methods of your Wrapper class with a try/except structure. However, this might not be useful for a deeper debugging where you want to have access to the locals() of the place where the Exception jumped. If you bump into such a case, add a try/except structure that catches the Exception on the specific place. It is advised to use the decorator once you have developed the wrapper and that you are ready to launch your uncertainty studies. Parameters ---------- logger : logging.Logger or str Either a Logger instance or a filename for the logger to be created. loglevel : logging level Threshold for the logger. Logging messages which are less severe than loglevel will be ignored. It defaults to logging.DEBUG. Examples -------- To catch exceptions raised inside a function and log them to a file : >>> import otwrapy as otw >>> @otw.Debug('func.log') >>> def func(*args, **kwargs): >>> pass """ def __init__(self, logger, loglevel=None): if isinstance(logger, logging.Logger): self.logger = logger if loglevel is not None: self.logger.setLevel(loglevel) elif isinstance(logger, str): self.logger = create_logger(logger, loglevel=loglevel) def __call__(self, func): @wraps(func) def func_debugged(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: self.logger.error(e, exc_info=True) raise e return func_debugged class FunctionDecorator(object): """Convert an OpenTURNSPythonFunction into a Function. This class is intended to be used as a decorator. Parameters ---------- enableCache : bool (Optional) If True, enable cache of the returned ot.Function Examples -------- In order to always get an ot.Function when instantiating your wrapper, decorate it as follows: >>> import otwrapy as otw >>> import openturns as ot >>> @otw.FunctionDecorator(enableCache=True) >>> class Wrapper(ot.OpenTURNSPythonFunction): >>> pass Note that a great disadvantage of this decorator is that your wrapper cannot be parallelized afterwards. Only use it if you don't plan to parallelize your wrapper or if the wrapper itself is parallelized already. However, if you plan to use :class:`Parallelizer`, there is no need to use this decorator ! Notes ----- I wanted this decorator to work also with Wrapper class, but it only works with ParallelWrapper for the moment. The problem is that, apparently, decorated classes are not picklable, and Wrapper instances must be picklable so that they can be easily distributed with `multiprocessing` References ---------- http://simeonfranklin.com/blog/2012/jul/1/python-decorators-in-12-steps/ http://www.artima.com/weblogs/viewpost.jsp?thread=240808 http://stackoverflow.com/questions/30714485/why-does-a-decorated-class-looses-its-docstrings http://stackoverflow.com/questions/30711730/decorated-class-looses-acces-to-its-attributes """ def __init__(self, enableCache=True, doc=None): self.enableCache = enableCache self.doc = doc def __call__(self, wrapper): @wraps(wrapper) def numericalmathfunction(*args, **kwargs): func = ot.Function(wrapper(*args, **kwargs)) # Enable cache if self.enableCache: func = ot.MemoizeFunction(func) func.disableHistory() # Update __doc__ of the function if self.doc is None: # Inherit __doc__ from ParallelWrapper. func.__doc__ = wrapper.__doc__ else: func.__doc__ = self.doc # Add the kwargs as attributes of the function for reference # purposes. func.__dict__.update(kwargs) return func # Keep the wrapper class as reference numericalmathfunction.__wrapper__ = wrapper return numericalmathfunction class TempWorkDir(object): """Implement a context manager that creates a temporary working directory. Create a temporary working directory on `base_temp_work_dir` preceded by `prefix` and clean up at the exit if necessary. See: http://sametmax.com/les-context-managers-et-le-mot-cle-with-en-python/ Parameters ---------- base_temp_work_dir : str (optional) Root path where the temporary working directory will be created. If None, it will default to the platform dependant temporary working directory Default = None prefix : str (optional) String that preceeds the directory name. Default = 'run-' cleanup : bool (optional) If True erase the directory and its children at the exit. Default = False transfer : list (optional) List of files or folders to transfer to the temporary working directory Examples -------- In the following example, everything that is executed inside the `with` environment will happen at a temporary working directory created at :file:`/tmp` with :file:`/run-` as a prefix. The created directory will be erased upon the exit of the `with` environment and python will go back to the preceding working directory, even if an Exception is raised. >>> import otwrapy as otw >>> import os >>> print "I'm on my project directory" >>> print os.getcwd() >>> with otw.TempWorkDir('/tmp', prefix='run-', cleanup=True): >>> # >>> # Do stuff >>> # >>> print "..." >>> print "Now I'm in a temporary directory" >>> print os.getcwd() >>> print "..." >>> print "I'm back to my project directory :" >>> print os.getcwd() I'm on my project directory /home/aguirre/otwrapy ... Now I'm in a temporary directory /tmp/run-pZYpzQ ... I'm back to my project directory : /home/aguirre/otwrapy """ def __init__(self, base_temp_work_dir=None, prefix='run-', cleanup=False, transfer=None): if base_temp_work_dir is not None: safemakedirs(base_temp_work_dir) self.dirname = mkdtemp(dir=base_temp_work_dir, prefix=prefix) self.cleanup = cleanup self.transfer = transfer def __enter__(self): self.curdir = os.getcwd() os.chdir(self.dirname) if self.transfer is not None: for file in self.transfer: if os.path.isfile(file): shutil.copy(file, self.dirname) elif os.path.isdir(file): shutil.copytree(file, os.path.join(self.dirname, file.split(os.sep)[-1])) else: raise Exception('In otwrapy.TempWorkDir : the current ' + \ 'path "{}" is not a file '.format(file) + \ 'nor a directory to transfer.') return self.dirname def __exit__(self, type, value, traceback): os.chdir(self.curdir) if self.cleanup: shutil.rmtree(self.dirname) def _exec_sample_joblib(func, n_cpus, verbosity): """Return a function that executes a sample in parallel using joblib. Parameters ---------- func : Function or callable A callable python object, usually a function. The function should take an input vector as argument and return an output vector. n_cpus : int Number of CPUs on which to distribute the function calls. Returns ------- _exec_sample : Function or callable The parallelized function. """ try: from joblib import Parallel, delayed except ImportError: from sklearn.externals.joblib import Parallel, delayed def _exec_sample(X): Y = Parallel(n_jobs=n_cpus, verbose=verbosity)( delayed(func)(x) for x in X) return ot.Sample(Y) return _exec_sample def _exec_sample_multiprocessing(func, n_cpus): """Return a function that executes a sample in parallel using multiprocessing. Parameters ---------- func : Function or callable A callable python object, usually a function. The function should take an input vector as argument and return an output vector. n_cpus : int Number of CPUs on which to distribute the function calls. Returns ------- _exec_sample : Function or callable The parallelized function. """ def _exec_sample(X): from multiprocessing import Pool p = Pool(processes=n_cpus) rs = p.map_async(func, X) p.close() return ot.Sample(rs.get()) return _exec_sample def _exec_sample_pathos(func, n_cpus): """Return a function that executes a sample in parallel using pathos. Parameters ---------- func : Function or callable A callable python object, usually a function. The function should take an input vector as argument and return an output vector. n_cpus : int Number of CPUs on which to distribute the function calls. Returns ------- _exec_sample : Function or callable The parallelized function. """ def _exec_sample(X): from pathos.multiprocessing import ProcessingPool try: p = ProcessingPool(n_cpus) X = np.array(X) x = np.array_split(X, n_cpus) # array_split is not supposed to return a list of length n_cpus when len(X)<n_cpus n_active = min(len(X), n_cpus) pipe = [] for i in range(n_active): pipe.append(p.apipe(func, x[i])) rs = [] for i in range(n_active): rs.append(pipe[i].get()) rs = [item for sublist in rs for item in sublist] return ot.Sample(rs) except ValueError: # Get there if the chuck size left some single evaluations left return func(X) return _exec_sample def _exec_sample_ipyparallel(func, n, p): """Return a function that executes a sample in parallel using ipyparallel. Parameters ---------- func : Function or callable A callable python object, usually a function. The function should take an input vector as argument and return an output vector. n_cpus : int Number of CPUs on which to distribute the function calls. Returns ------- _exec_sample : Function or callable The parallelized function. """ import ipyparallel as ipp rc = ipp.Client() return ot.PythonFunction(func_sample=lambda X: rc[:].map_sync(func, X), n=func.getInputDimension(), p=func.getOutputDimension()) @FunctionDecorator(enableCache=True) class Parallelizer(ot.OpenTURNSPythonFunction): """Parallelize a Wrapper using 'ipyparallel', 'joblib', 'pathos' or 'multiprocessing'. Parameters ---------- wrapper : ot.Function or instance of ot.OpenTURNSPythonFunction openturns wrapper to be distributed backend : string (Optional) Whether to parallelize using 'ipyparallel', 'joblib', pathos, or 'multiprocessing'. n_cpus : int (Optional) Number of CPUs on which the simulations will be distributed. Needed Only if using 'joblib', pathos or 'multiprocessing' as backend. verbosity : int (Optional) verbose parameter when using 'joblib'. Default is 10. Examples -------- For example, in order to parallelize the beam wrapper :class:`examples.beam.Wrapper` you simply instantiate your wrapper and parallelize it as follows: >>> from otwrapy.examples.beam import Wrapper >>> import otwrapy as otw >>> model = otw.Parallelizer(Wrapper(), n_cpus=-1) `model` will distribute calls to Wrapper() using multiprocessing and as many CPUs as you have minus one for the scheduler. Because Parallelize is decorated with :class:`FunctionDecorator`, `model` is already an :class:`ot.Function`. """ def __init__(self, wrapper, backend='multiprocessing', n_cpus=-1, verbosity=10): # -1 cpus means all available cpus - 1 for the scheduler if n_cpus == -1: import multiprocessing n_cpus = multiprocessing.cpu_count() - 1 self.n_cpus = n_cpus self.wrapper = wrapper self.verbosity = verbosity # This configures how to run single point simulations on the model: self._exec = self.wrapper ot.OpenTURNSPythonFunction.__init__(self, self.wrapper.getInputDimension(), self.wrapper.getOutputDimension()) self.setInputDescription(self.wrapper.getInputDescription()) self.setOutputDescription(self.wrapper.getOutputDescription()) assert backend in ['ipython', 'ipyparallel', 'multiprocessing', 'pathos', 'joblib'], "Unknown backend" # This configures how to run samples on the model : if self.n_cpus == 1: self._exec_sample = self.wrapper elif (backend == 'ipython') or (backend == 'ipyparallel'): # Check that ipyparallel is installed try: import ipyparallel as ipp # If it is, see if there is a cluster running try: rc = ipp.Client() ipy_backend = True except (ipp.error.TimeoutError, IOError) as e: ipy_backend = False import logging logging.warning('Unable to connect to an ipython cluster.') except ImportError: ipy_backend = False import logging logging.warning('ipyparallel package missing.') if ipy_backend: self._exec_sample = _exec_sample_ipyparallel(self.wrapper, self.getInputDimension(), self.getOutputDimension()) else: logging.warning('Using multiprocessing backend instead') self._exec_sample = _exec_sample_multiprocessing(self.wrapper, self.n_cpus) elif backend == 'joblib': # Check that joblib is installed try: import joblib joblib_backend = True except ImportError: try: from sklearn.externals import joblib joblib_backend = True except ImportError: joblib_backend = False import logging logging.warning('joblib package missing.') if joblib_backend: self._exec_sample = _exec_sample_joblib(self.wrapper, self.n_cpus, self.verbosity) else: logging.warning('Using multiprocessing backend instead') self._exec_sample = _exec_sample_multiprocessing(self.wrapper, self.n_cpus) elif backend == 'multiprocessing': self._exec_sample = _exec_sample_multiprocessing( self.wrapper, self.n_cpus) elif backend == 'pathos': self._exec_sample = _exec_sample_pathos(self.wrapper, self.n_cpus)
lgpl-3.0
nddsg/TreeDecomps
xplodnTree/core/td_rndGraphs.py
1
15573
#!/usr/bin/env python __version__="0.1.0" # ToDo: # [] process mult dimacs.trees to hrg import sys import math import numpy as np import traceback import argparse import os from glob import glob import networkx as nx import pandas as pd from PHRG import graph_checks import subprocess import math import itertools import graph_sampler as gs import platform from itertools import combinations from collections import defaultdict from arbolera import jacc_dist_for_pair_dfrms import pprint as pp import isomorph_interxn as isoint #_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~# def get_parser (): parser = argparse.ArgumentParser(description='Random graphs (BA graph model). --clqs is used when'\ '.bz2 files are already computed given a path with wild card. Example: `python '\ 'itd_rndGraphs.py --clqs`') parser.add_argument('--clqs', action='store_true', default=False, required=False, \ help="tree_objs_to_hrg_clique_trees") parser.add_argument('--bam', action='store_true', default=False, required=False, \ help="Barabasi-Albert graph model") parser.add_argument('--version', action='version', version=__version__) return parser def dimacs_nddgo_tree(dimacsfnm_lst, heuristic): ''' dimacsfnm_lst => list of dimacs file names heuristic =====> list of variable elimination schemes to use returns: results - a list of tree files ''' # print heuristic,dimacsfnm_lst results = [] for dimacsfname in dimacsfnm_lst: if isinstance(dimacsfname, list): dimacsfname= dimacsfname[0] nddgoout = "" outfname = dimacsfname+"."+heuristic+".tree" if platform.system() == "Linux": args = ["bin/linux/serial_wis -f {} -nice -{} -w {}".format(dimacsfname, heuristic, outfname)] else: args = ["bin/mac/serial_wis -f {} -nice -{} -w {}".format(dimacsfname, heuristic, outfname)] while not nddgoout: popen = subprocess.Popen(args, stdout=subprocess.PIPE, shell=True) popen.wait() # output = popen.stdout.read() out, err = popen.communicate() nddgoout = out.split('\n') results.append(outfname) return results def load_edgelist(gfname): import pandas as pd try: edglst = pd.read_csv(gfname, comment='%', delimiter='\t') # print edglst.shape if edglst.shape[1]==1: edglst = pd.read_csv(gfname, comment='%', delimiter="\s+") except Exception, e: print "EXCEPTION:",str(e) traceback.print_exc() sys.exit(1) if edglst.shape[1] == 3: edglst.columns = ['src', 'trg', 'wt'] elif edglst.shape[1] == 4: edglst.columns = ['src', 'trg', 'wt','ts'] else: edglst.columns = ['src', 'trg'] g = nx.from_pandas_dataframe(edglst,source='src',target='trg') g.name = os.path.basename(gfname) return g def nx_edges_to_nddgo_graph_sampling(graph, n, m, peo_h): G = graph if n is None and m is None: return # n = G.number_of_nodes() # m = G.number_of_edges() nbr_nodes = 256 basefname = 'datasets/{}_{}'.format(G.name, peo_h) K = int(math.ceil(.25*G.number_of_nodes()/nbr_nodes)) print "--", nbr_nodes, K, '--'; for j,Gprime in enumerate(gs.rwr_sample(G, K, nbr_nodes)): # if gname is "": # # nx.write_edgelist(Gprime, '/tmp/sampled_subgraph_200_{}.tsv'.format(j), delimiter="\t", data=False) # gprime_lst.append(Gprime) # else: # # nx.write_edgelist(Gprime, '/tmp/{}{}.tsv'.format(gname, j), delimiter="\t", data=False) # gprime_lst.append(Gprime) # # print "... files written: /tmp/{}{}.tsv".format(gname, j) edges = Gprime.edges() edges = [(int(e[0]), int(e[1])) for e in edges] df = pd.DataFrame(edges) df.sort_values(by=[0], inplace=True) ofname = basefname+"_{}.dimacs".format(j) with open(ofname, 'w') as f: f.write('c {}\n'.format(G.name)) f.write('p edge\t{}\t{}\n'.format(n,m)) # for e in df.iterrows(): output_edges = lambda x: f.write("e\t{}\t{}\n".format(x[0], x[1])) df.apply(output_edges, axis=1) # f.write("e\t{}\t{}\n".format(e[0]+1,e[1]+1)) if os.path.exists(ofname): print 'Wrote: {}'.format(ofname) return basefname def edgelist_dimacs_graph(orig_graph, peo_h, prn_tw = False): fname = orig_graph gname = os.path.basename(fname).split(".") gname = sorted(gname,reverse=True, key=len)[0] if ".tar.bz2" in fname: from tdec.read_tarbz2 import read_tarbz2_file edglst = read_tarbz2_file(fname) df = pd.DataFrame(edglst,dtype=int) G = nx.from_pandas_dataframe(df,source=0, target=1) else: G = nx.read_edgelist(fname, comments="%", data=False, nodetype=int) # print "...", G.number_of_nodes(), G.number_of_edges() # from numpy import max # print "...", max(G.nodes()) ## to handle larger 300K+ nodes with much larger labels N = max(G.nodes()) M = G.number_of_edges() # +++ Graph Checks if G is None: sys.exit(1) G.remove_edges_from(G.selfloop_edges()) giant_nodes = max(nx.connected_component_subgraphs(G), key=len) G = nx.subgraph(G, giant_nodes) graph_checks(G) # --- graph checks G.name = gname # print "...", G.number_of_nodes(), G.number_of_edges() if G.number_of_nodes() > 500 and not prn_tw: return (nx_edges_to_nddgo_graph_sampling(G, n=N, m=M, peo_h=peo_h), gname) else: return (nx_edges_to_nddgo_graph(G, n=N, m=M, varel=peo_h), gname) def print_treewidth (in_dimacs, var_elim): nddgoout = "" if platform.system() == "Linux": args = ["bin/linux/serial_wis -f {} -nice -{} -width".format(in_dimacs, var_elim)] else: args = ["bin/mac/serial_wis -f {} -nice -{} -width".format(in_dimacs, var_elim)] while not nddgoout: popen = subprocess.Popen(args, stdout=subprocess.PIPE, shell=True) popen.wait() # output = popen.stdout.read() out, err = popen.communicate() nddgoout = out.split('\n') print nddgoout return nddgoout def tree_decomposition_with_varelims(fnames, var_elims): ''' fnames ====> list of dimacs file names var_elims => list of variable elimination schemes to use returns: ''' # print "~~~~ tree_decomposition_with_varelims",'.'*10 # print type(fnames), type(var_elims) trees_files_d = {}#(list) for f in fnames: trees_files_d[f[0]]= [dimacs_nddgo_tree(f,td) for td in var_elims] # for varel in var_elims: # tree_files.append([dimacs_nddgo_tree([f], varel) for f in fnames]) return trees_files_d def convert_nx_gObjs_to_dimacs_gObjs(nx_gObjs): ''' Take list of graphs and convert to dimacs ''' dimacs_glst=[] for G in nx_gObjs: N = max(G.nodes()) M = G.number_of_edges() # +++ Graph Checks if G is None: sys.exit(1) G.remove_edges_from(G.selfloop_edges()) giant_nodes = max(nx.connected_component_subgraphs(G), key=len) G = nx.subgraph(G, giant_nodes) graph_checks(G) # --- graph checks G.name = "synthG_{}_{}".format(N,M) from tdec.arbolera import nx_edges_to_nddgo_graph dimacs_glst.append(nx_edges_to_nddgo_graph(G, n=N, m=M, save_g=True)) return dimacs_glst def convert_dimacs_tree_objs_to_hrg_clique_trees(treeObjs): # print '~~~~ convert_dimacs_tree_objs_to_hrg_clique_trees','~'*10 results = [] from dimacsTree2ProdRules import dimacs_td_ct for f in treeObjs: results.append(dimacs_td_ct(f[0], synthg=True)) return results def get_hrg_prod_rules(prules): ''' These are production rules prules is list of bz2 files ''' mdf = pd.DataFrame()#columns=['rnbr', 'lhs', 'rhs', 'pr']) for f in prules: df = pd.read_csv(f, index_col=0, compression='bz2') df.columns=['rnbr', 'lhs', 'rhs', 'pr'] tname = os.path.basename(f).split(".") df['cate'] = ".".join(tname[:2]) mdf = pd.concat([mdf,df]) mdf.to_csv(f.split(".")[0]+".prs", sep="\t", index=False) return mdf def get_isom_overlap_in_stacked_prod_rules(td_keys_lst, df ): # for p in [",".join(map(str, comb)) for comb in combinations(td_keys_lst, 2)]: # p p.split(',') # print df[df.cate == p[0]].head() # print df[df.cate == p[1]].head() # print # js = jacc_dist_for_pair_dfrms(stckd_df[stckd_df['cate']==p[0]], # stckd_df[stckd_df['cate']==p[1]]) # print js # print stckd_df[stckd_df['cate']==p[0]].head() for comb in combinations(td_keys_lst, 2): js = jacc_dist_for_pair_dfrms(df[df['cate']==comb[0]], df[df['cate']==comb[1]]) print "\t", js def graph_stats_and_visuals(gobjs=None): """ graph stats & visuals :gobjs: input nx graph objects :return: """ import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as plt import matplotlib.pylab as pylab params = {'legend.fontsize': 'small', 'figure.figsize': (1.6 * 7, 1.0 * 7), 'axes.labelsize': 'small', 'axes.titlesize': 'small', 'xtick.labelsize': 'small', 'ytick.labelsize': 'small'} pylab.rcParams.update(params) import matplotlib.gridspec as gridspec print "BA G(V,E)" if gobjs is None: gobjs = glob("datasets/synthG*.dimacs") dimacs_g = {} for fl in gobjs: with open(fl, 'r') as f: l=f.readline() l=f.readline().rstrip('\r\n') bn = os.path.basename(fl) dimacs_g[bn] = [int(x) for x in l.split()[-2:]] print "%d\t%s" %(dimacs_g[bn][0], dimacs_g[bn][1]) print "BA Prod rules size" for k in dimacs_g.keys(): fname = "ProdRules/"+k.split('.')[0]+".prs" f_sz = np.loadtxt(fname, delimiter="\t", dtype=str) print k, len(f_sz) def main (): print "Hello" #~# #~# Graph stats and visualization # graph_stats_and_visuals() # exit() n_nodes_set = [math.pow(2,x) for x in range(8,9,1)] ba_gObjs = [nx.barabasi_albert_graph(n, 2) for n in n_nodes_set] print 'Groups of Random Graphs (BA):' print ' G(V,E):', [(g.number_of_nodes(), g.number_of_edges()) for g in ba_gObjs] #~# #~# convert to dimacs graph print '~~~~ convert_nx_gObjs_to_dimacs_gObjs' dimacs_gObjs = convert_nx_gObjs_to_dimacs_gObjs(ba_gObjs,) #~# #~# decompose the given graphs print '~~~~ tree_decomposition_with_varelims' var_el_m = ['mcs','mind','minf','mmd'] trees_d = tree_decomposition_with_varelims(dimacs_gObjs, var_el_m) print ' ', trees_d.keys() #~# #~# dimacs tree to HRG clique tree print '~~~~ convert_dimacs_tree_objs_to_hrg_clique_trees' pr_rules_d={} for k in trees_d.keys(): pr_rules_d[k] = convert_dimacs_tree_objs_to_hrg_clique_trees(trees_d[k]) #~# #~# get stacked HRG prod rules #~# - read sets of prod rules *.bz2 print '~~~~ get_hrg_prod_rules (stacked | prs)' st_prs_d = {} for k in pr_rules_d.keys(): st_prs_d[k] = get_hrg_prod_rules(pr_rules_d[k]) print' ', st_prs_d.keys() for k in st_prs_d.keys(): df = pd.DataFrame(st_prs_d[k]) outfname = "Results/"+os.path.basename(k).split('.')[0]+"stckd_prs.tsv" df[['rnbr','lhs','rhs','pr']].to_csv(outfname, header=False, index=False, sep="\t") #~# #~# get the isomophic overlap # intxn_prod_rules = get_isom_overlap_in_stacked_prod_rules(stck_prod_rules) # for nm in sorted(stck_prod_rules.groupby(['cate']).groups.keys()): # if os.path.exists('ProdRules/'+nm+'.bz2'): # print ' ProdRules/'+nm+'.bz2' print '~~~~ get_isom_overlap_in_stacked_prod_rules' for k in st_prs_d.keys(): df = st_prs_d[k] gb = df.groupby(['cate']).groups.keys() get_isom_overlap_in_stacked_prod_rules(gb, df) #~# #~# get the isomophic overlap production rules subset #~# (two diff animals, not the same as the Jaccard Sim above) print '~~~~ isom intrxn from stacked df' for k in st_prs_d.keys(): stacked_df = st_prs_d[k] iso_union, iso_interx = isoint.isomorph_intersection_2dfstacked(stacked_df) gname = os.path.basename(k).split(".")[0] iso_interx[[1,2,3,4]].to_csv('Results/{}_isom_interxn.tsv'.format(gname), sep="\t", header=False, index=False) #~# # hrg_graph_gen_from_interxn(iso_interx[[1,2,3,4]]) #def hrg_graph_gen_from_interxn(iso_interxn_df): def trees_to_hrg_clq_trees(): gname = 'synthG_15_60' files = glob('ProdRules/{}*.bz2'.format(gname)) print files print '\tNbr of files:',len(files) prod_rules_lst = [] stacked_pr_rules = get_hrg_prod_rules(files) print '\tSize of the df',len(stacked_pr_rules) df = stacked_pr_rules gb = df.groupby(['cate']).groups.keys() print 'Jaccard Similarity' A = get_isom_overlap_in_stacked_prod_rules(gb, df) print A print iso_union, iso_interx = isoint.isomorph_intersection_2dfstacked(df) iso_interx[[1,2,3,4]].to_csv('Results/{}_isom_interxn.tsv'.format(gname), sep="\t", header=False, index=False) if os.path.exists('Results/{}_isom_interxn.tsv'.format(gname)): print 'Results/{}_isom_interxn.tsv'.format(gname)+' saved' def main2 (args_d): print "Hello" #~# #~# Graph stats and visualization # graph_stats_and_visuals() # exit() if (args_d['bam']): print "~~~~ Groups of Random Graphs (BA):" n_nodes_set = [math.pow(2,x) for x in range(5,11,1)] ba_gObjs = [nx.barabasi_albert_graph(n, 3) for n in n_nodes_set] for g in ba_gObjs: print "\tG(V,E):", (g.number_of_nodes(), g.number_of_edges()) out_el_fname = 'datasets/bar_alb_{}_exp3.tsv'.format(g.number_of_nodes()) if not os.path.exists(out_el_fname): nx.write_edgelist(g, out_el_fname, delimiter="\t") print "\t",out_el_fname #~# #~# convert to dimacs graph print '~~~~ convert to_dimacs' dimacs_gObjs = convert_nx_gObjs_to_dimacs_gObjs(ba_gObjs,) print "\t",type(dimacs_gObjs) #~# #~# decompose the given graphs print '~~~~ tree_decomposition_with_varelims' var_el_m = ['mcs','mind','minf','mmd','lexm','mcsm'] trees_d = tree_decomposition_with_varelims(dimacs_gObjs, var_el_m) for k in trees_d.keys(): print '\t',k, "==>" for v in trees_d[k]: print "\t ", v #~# #~# dimacs tree to HRG clique tree print '~~~~ tree_objs_to_hrg_clique_trees' print '~~~~ prules.bz2 saved in ProdRules; individual files' pr_rules_d={} for k in trees_d.keys(): pr_rules_d[k] = convert_dimacs_tree_objs_to_hrg_clique_trees(trees_d[k]) print "\tCT:", len(pr_rules_d[k]) #~# #~# get stacked HRG prod rules #~# - read sets of prod rules *.bz2 print '~~~~ Stacked HRG get_hrg_prod_rules (stacked | prs)' st_prs_d = {} for k in pr_rules_d.keys(): st_prs_d[k] = get_hrg_prod_rules(pr_rules_d[k]) print' ', st_prs_d.keys() for k in st_prs_d.keys(): df = pd.DataFrame(st_prs_d[k]) outfname = "Results/"+os.path.basename(k).split('.')[0]+"stckd_prs.tsv" df[['rnbr','lhs','rhs','pr']].to_csv(outfname, header=False, index=False, sep="\t") #~# #~# get the isomophic overlap # intxn_prod_rules = get_isom_overlap_in_stacked_prod_rules(stck_prod_rules) # for nm in sorted(stck_prod_rules.groupby(['cate']).groups.keys()): # if os.path.exists('ProdRules/'+nm+'.bz2'): # print ' ProdRules/'+nm+'.bz2' print '\n~~~~ get_isom_overlap_in_stacked_prod_rules' print '~~~~ output is Jaccard Sim Scores' for k in st_prs_d.keys(): df = st_prs_d[k] gb = df.groupby(['cate']).groups.keys() get_isom_overlap_in_stacked_prod_rules(gb, df) #~# #~# get the isomophic overlap production rules subset #~# (two diff animals, not the same as the Jaccard Sim above) print '~~~~ isom intrxn from stacked df' for k in st_prs_d.keys(): stacked_df = st_prs_d[k] iso_union, iso_interx = isoint.isomorph_intersection_2dfstacked(stacked_df) gname = os.path.basename(k).split(".")[0] iso_interx[[1,2,3,4]].to_csv('Results/{}_isom_interxn.tsv'.format(gname), sep="\t", header=False, index=False) if os.path.exists('Results/{}_isom_interxn.tsv'.format(gname)): print "\t", 'Written:','Results/{}_isom_interxn.tsv'.format(gname) #~# #~# hrg_graph_gen_from_interxn(iso_interx[[1,2,3,4]]) if __name__ == '__main__': parser = get_parser() args = vars(parser.parse_args()) try: main(args) except Exception, e: print str(e) traceback.print_exc() sys.exit(1) sys.exit(0)
mit
mahak/spark
python/pyspark/pandas/tests/data_type_ops/test_complex_ops.py
7
9065
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import decimal import datetime import pandas as pd from pyspark import pandas as ps from pyspark.pandas.config import option_context from pyspark.pandas.tests.data_type_ops.testing_utils import TestCasesUtils from pyspark.testing.pandasutils import PandasOnSparkTestCase class ComplexOpsTest(PandasOnSparkTestCase, TestCasesUtils): @property def numeric_array_psers(self): return [ pd.Series([[1, 2, 3]]), pd.Series([[0.1, 0.2, 0.3]]), pd.Series([[decimal.Decimal(1), decimal.Decimal(2), decimal.Decimal(3)]]), ] @property def non_numeric_array_psers(self): return { "string": pd.Series([["x", "y", "z"]]), "date": pd.Series( [[datetime.date(1994, 1, 1), datetime.date(1994, 1, 2), datetime.date(1994, 1, 3)]] ), "bool": pd.Series([[True, True, False]]), } @property def numeric_array_pssers(self): return [ps.from_pandas(pser) for pser in self.numeric_array_psers] @property def non_numeric_array_pssers(self): pssers = {} for k, v in self.non_numeric_array_psers.items(): pssers[k] = ps.from_pandas(v) return pssers @property def psers(self): return self.numeric_array_psers + list(self.non_numeric_array_psers.values()) @property def pssers(self): return self.numeric_array_pssers + list(self.non_numeric_array_pssers.values()) @property def pser(self): return pd.Series([[1, 2, 3]]) @property def psser(self): return ps.from_pandas(self.pser) def test_add(self): for pser, psser in zip(self.psers, self.pssers): self.assert_eq(pser + pser, psser + psser) with option_context("compute.ops_on_diff_frames", True): # Numeric array + Numeric array for pser1, psser1 in zip(self.numeric_array_psers, self.numeric_array_pssers): for pser2, psser2 in zip(self.numeric_array_psers, self.numeric_array_pssers): self.assert_eq((pser1 + pser2).sort_values(), (psser1 + psser2).sort_values()) # Non-numeric array + Non-numeric array self.assertRaises( TypeError, lambda: self.non_numeric_array_pssers["string"] + self.non_numeric_array_pssers["bool"], ) self.assertRaises( TypeError, lambda: self.non_numeric_array_pssers["string"] + self.non_numeric_array_pssers["date"], ) self.assertRaises( TypeError, lambda: self.non_numeric_array_pssers["bool"] + self.non_numeric_array_pssers["date"], ) for data_type in self.non_numeric_array_psers.keys(): self.assert_eq( self.non_numeric_array_psers.get(data_type) + self.non_numeric_array_psers.get(data_type), self.non_numeric_array_pssers.get(data_type) + self.non_numeric_array_pssers.get(data_type), ) # Numeric array + Non-numeric array for numeric_ppser in self.numeric_array_pssers: for non_numeric_ppser in self.non_numeric_array_pssers.values(): self.assertRaises(TypeError, lambda: numeric_ppser + non_numeric_ppser) def test_sub(self): self.assertRaises(TypeError, lambda: self.psser - "x") self.assertRaises(TypeError, lambda: self.psser - 1) with option_context("compute.ops_on_diff_frames", True): for psser1 in self.pssers: for psser2 in self.pssers: self.assertRaises(TypeError, lambda: psser1 - psser2) def test_mul(self): self.assertRaises(TypeError, lambda: self.psser * "x") self.assertRaises(TypeError, lambda: self.psser * 1) with option_context("compute.ops_on_diff_frames", True): for psser1 in self.pssers: for psser2 in self.pssers: self.assertRaises(TypeError, lambda: psser1 * psser2) def test_truediv(self): self.assertRaises(TypeError, lambda: self.psser / "x") self.assertRaises(TypeError, lambda: self.psser / 1) with option_context("compute.ops_on_diff_frames", True): for psser1 in self.pssers: for psser2 in self.pssers: self.assertRaises(TypeError, lambda: psser1 / psser2) def test_floordiv(self): self.assertRaises(TypeError, lambda: self.psser // "x") self.assertRaises(TypeError, lambda: self.psser // 1) with option_context("compute.ops_on_diff_frames", True): for psser1 in self.pssers: for psser2 in self.pssers: self.assertRaises(TypeError, lambda: psser1 // psser2) def test_mod(self): self.assertRaises(TypeError, lambda: self.psser % "x") self.assertRaises(TypeError, lambda: self.psser % 1) with option_context("compute.ops_on_diff_frames", True): for psser1 in self.pssers: for psser2 in self.pssers: self.assertRaises(TypeError, lambda: psser1 % psser2) def test_pow(self): self.assertRaises(TypeError, lambda: self.psser ** "x") self.assertRaises(TypeError, lambda: self.psser ** 1) with option_context("compute.ops_on_diff_frames", True): for psser1 in self.pssers: for psser2 in self.pssers: self.assertRaises(TypeError, lambda: psser1 ** psser2) def test_radd(self): self.assertRaises(TypeError, lambda: "x" + self.psser) self.assertRaises(TypeError, lambda: 1 + self.psser) def test_rsub(self): self.assertRaises(TypeError, lambda: "x" - self.psser) self.assertRaises(TypeError, lambda: 1 - self.psser) def test_rmul(self): self.assertRaises(TypeError, lambda: "x" * self.psser) self.assertRaises(TypeError, lambda: 2 * self.psser) def test_rtruediv(self): self.assertRaises(TypeError, lambda: "x" / self.psser) self.assertRaises(TypeError, lambda: 1 / self.psser) def test_rfloordiv(self): self.assertRaises(TypeError, lambda: "x" // self.psser) self.assertRaises(TypeError, lambda: 1 // self.psser) def test_rmod(self): self.assertRaises(TypeError, lambda: 1 % self.psser) def test_rpow(self): self.assertRaises(TypeError, lambda: "x" ** self.psser) self.assertRaises(TypeError, lambda: 1 ** self.psser) def test_and(self): self.assertRaises(TypeError, lambda: self.psser & True) self.assertRaises(TypeError, lambda: self.psser & False) self.assertRaises(TypeError, lambda: self.psser & self.psser) def test_rand(self): self.assertRaises(TypeError, lambda: True & self.psser) self.assertRaises(TypeError, lambda: False & self.psser) def test_or(self): self.assertRaises(TypeError, lambda: self.psser | True) self.assertRaises(TypeError, lambda: self.psser | False) self.assertRaises(TypeError, lambda: self.psser | self.psser) def test_ror(self): self.assertRaises(TypeError, lambda: True | self.psser) self.assertRaises(TypeError, lambda: False | self.psser) def test_from_to_pandas(self): for pser, psser in zip(self.psers, self.pssers): self.assert_eq(pser, psser.to_pandas()) self.assert_eq(ps.from_pandas(pser), psser) def test_isnull(self): for pser, psser in zip(self.psers, self.pssers): self.assert_eq(pser.isnull(), psser.isnull()) def test_astype(self): self.assert_eq(self.pser.astype(str), self.psser.astype(str)) if __name__ == "__main__": import unittest from pyspark.pandas.tests.data_type_ops.test_complex_ops import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
cybernet14/scikit-learn
sklearn/linear_model/passive_aggressive.py
97
10879
# Authors: Rob Zinkov, Mathieu Blondel # License: BSD 3 clause from .stochastic_gradient import BaseSGDClassifier from .stochastic_gradient import BaseSGDRegressor from .stochastic_gradient import DEFAULT_EPSILON class PassiveAggressiveClassifier(BaseSGDClassifier): """Passive Aggressive Classifier Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. fit_intercept : bool, default=False Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. loss : string, optional The loss function to be used: hinge: equivalent to PA-I in the reference paper. squared_hinge: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDClassifier Perceptron References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="hinge", n_jobs=1, random_state=None, warm_start=False, class_weight=None): BaseSGDClassifier.__init__(self, penalty=None, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, eta0=1.0, warm_start=warm_start, class_weight=class_weight, n_jobs=n_jobs) self.C = C self.loss = loss def partial_fit(self, X, y, classes=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of the training data y : numpy array of shape [n_samples] Subset of the target values classes : array, shape = [n_classes] Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. Returns ------- self : returns an instance of self. """ if self.class_weight == 'balanced': raise ValueError("class_weight 'balanced' is not supported for " "partial_fit. For 'balanced' weights, use " "`sklearn.utils.compute_class_weight` with " "`class_weight='balanced'`. In place of y you " "can use a large enough subset of the full " "training set target to properly estimate the " "class frequency distributions. Pass the " "resulting weights as the class_weight " "parameter.") lr = "pa1" if self.loss == "hinge" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, n_iter=1, classes=classes, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_classes,n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [n_classes] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "hinge" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init) class PassiveAggressiveRegressor(BaseSGDRegressor): """Passive Aggressive Regressor Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. epsilon : float If the difference between the current prediction and the correct label is below this threshold, the model is not updated. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level loss : string, optional The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDRegressor References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="epsilon_insensitive", epsilon=DEFAULT_EPSILON, random_state=None, warm_start=False): BaseSGDRegressor.__init__(self, penalty=None, l1_ratio=0, epsilon=epsilon, eta0=1.0, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, warm_start=warm_start) self.C = C self.loss = loss def partial_fit(self, X, y): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of training data y : numpy array of shape [n_samples] Subset of target values Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, n_iter=1, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [1] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init)
bsd-3-clause
leehongming/wrpc_sw
tools/wr_graph.py
9
5280
#!/usr/bin/python ##################################################### ## This work is part of the White Rabbit project ## ## The script analyzes log messages from ## _stat cont_ shell command of WRPC. ## ## Author: Grzegorz Daniluk, Anders Wallin ##################################################### import sys import time import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter DISP_FIELDS = ['lock', 'mu', 'cko', 'sec'] ANL_FIELDS = ['lock', 'mu', 'cko', 'sec', 'nsec', 'ss'] MIN_TIME_INTERVAL = 0.5 # for logs produced every second, MUST BE CHANGED if MAX_TIME_INTERVAL = 1.5 # logs are produced more often MAX_MU_JUMP = 4000 MAX_CKO_JUMP = 50 ##################################################### # parse log file and return 2d array with values we want to analyze (ANL_FIELDS) def get_wr_data(filename): f = open(filename) vals = [] for i in range(0, len(ANL_FIELDS)): vals.append([]) for line in f: found = 0 if line.startswith( 'lnk:' ): # process only lines with stat-data for field in line.split(): if found == len(ANL_FIELDS): break val = field.split(':') if val[0] in ANL_FIELDS: found +=1 try: vals[ANL_FIELDS.index(val[0])].append(int(val[1])) except ValueError: vals[ANL_FIELDS.index(val[0])].append(val[1]) return vals ##################################################### def plot_combo_data(vals): fig = [] ax = [] tstamp = time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime()) for i in range(0, len(vals)): fig.append(plt.figure(i)) plt.title('%s, updated %s' % (DISP_FIELDS[i], tstamp) ) ax.append(fig[i].add_subplot(111)) ax[i].set_xlabel('datapoint number') ax[i].set_ylabel(DISP_FIELDS[i]) ax[i].plot(range(0, len(vals[i])), vals[i], marker='.', linestyle='None', c='b',scaley=True,scalex=False) ax[i].set_xlim([ 0 , len(vals[i]) ]) ##################################################### # analyze if _lock_ is always 1 def anl_lock(vals): lock_idx = ANL_FIELDS.index("lock") # find first sample when it got locked start=0; for lock in vals[lock_idx]: if lock == 1: break start += 1 #now from that place we check if it's always locked passed = 1; for i in range(start, len(vals[lock_idx])): if vals[lock_idx][i] != 1: print "ERROR: loss lock at sample " + str(i) passed = 0; return passed ##################################################### # analyze if _ss_ is always 'TRACK_PHASE' def anl_state(vals): state_idx = ANL_FIELDS.index("ss") # find first sample when it got to TRACK_PHASE start=0; for ss in vals[state_idx]: if ss == """'TRACK_PHASE'""": break start += 1 #now from that place we check if it's always TRACK_PHASE passed = 1; for i in range(start, len(vals[state_idx])): if vals[state_idx][i] != """'TRACK_PHASE'""": print "ERROR: quit TRACK_PHASE at sample " + str(i) + " to " + vals[state_idx][i] passed = 0; return passed ##################################################### def anl_time(vals): sec_idx = ANL_FIELDS.index("sec") nsec_idx = ANL_FIELDS.index("nsec") ss_idx = ANL_FIELDS.index("ss") # first convert sec,nsec to float time_log = [] for i in range(0, len(vals[sec_idx])): time_log.append(float(vals[sec_idx][i]) + float(vals[nsec_idx][i])/1000000000) # find where it first was synchronized (state == TRACK_PHASE) start=0; for ss in vals[ss_idx]: if ss == """'TRACK_PHASE'""": break start += 1 passed = 1 # check if it always increases for i in range(start+1, len(time_log)): if time_log[i] < time_log[i-1] or time_log[i] - time_log[i-1] < MIN_TIME_INTERVAL or time_log[i] - time_log[i-1] > MAX_TIME_INTERVAL: print "ERROR: time counter at sample " + str(i) passed = 0; return passed ##################################################### def anl_rtt(vals): mu_idx = ANL_FIELDS.index("mu") passed = 1 for i in range(1, len(vals[mu_idx])): if vals[mu_idx][i] - vals[mu_idx][i-1] > MAX_MU_JUMP or vals[mu_idx][i] - vals[mu_idx][i-1] < -MAX_MU_JUMP: print "ERROR: rtt jump at sample " + str(i) + " is " + str(vals[mu_idx][i]-vals[mu_idx][i-1]) + "ps" passed = 0 return passed ##################################################### def anl_cko(vals): ss_idx = ANL_FIELDS.index("ss") cko_idx = ANL_FIELDS.index("cko") # find where it was first synchronized (state == TRACK_PHASE) start=0; for ss in vals[ss_idx]: if ss == """'TRACK_PHASE'""": break start += 1 passed = 1 for i in range(start, len(vals[cko_idx])): if vals[cko_idx][i] > MAX_CKO_JUMP or vals[cko_idx][i] < -MAX_CKO_JUMP: print "ERROR: cko too large at sample " + str(i) + " value is " + str(vals[cko_idx][i]) + "ps" passed = 0 return passed ##################################################### if len(sys.argv) == 1: print "You did not specify the log file" sys.exit() vals = get_wr_data(sys.argv[1]) if anl_lock(vals): print "LOCK:\t Success, always locked" if anl_state(vals): print "STATE:\t Success, always TRACK_PHASE" if anl_time(vals): print "TIME:\t Success, always growing" if anl_rtt(vals): print "RTT:\t Success, no jumps detected" if anl_cko(vals): print "CKO:\t Success, no values outside accepted range" plot_combo_data(vals[0:len(DISP_FIELDS)]) plt.show()
gpl-2.0
iohannez/gnuradio
gr-filter/examples/chirp_channelize.py
7
7144
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from __future__ import print_function from __future__ import division from __future__ import unicode_literals from gnuradio import gr from gnuradio import blocks from gnuradio import filter import sys, time import numpy try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: import pylab from pylab import mlab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 200000 # number of samples to use self._fs = 9000 # initial sampling rate self._M = 9 # Number of channels to channelize # Create a set of taps for the PFB channelizer self._taps = filter.firdes.low_pass_2(1, self._fs, 500, 20, attenuation_dB=10, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = numpy.ceil(float(len(self._taps)) / float(self._M)) print("Number of taps: ", len(self._taps)) print("Number of channels: ", self._M) print("Taps per channel: ", tpc) repeated = True if(repeated): self.vco_input = analog.sig_source_f(self._fs, analog.GR_SIN_WAVE, 0.25, 110) else: amp = 100 data = numpy.arange(0, amp, amp / float(self._N)) self.vco_input = blocks.vector_source_f(data, False) # Build a VCO controlled by either the sinusoid or single chirp tone # Then convert this to a complex signal self.vco = blocks.vco_f(self._fs, 225, 1) self.f2c = blocks.float_to_complex() self.head = blocks.head(gr.sizeof_gr_complex, self._N) # Construct the channelizer filter self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps) # Construct a vector sink for the input signal to the channelizer self.snk_i = blocks.vector_sink_c() # Connect the blocks self.connect(self.vco_input, self.vco, self.f2c) self.connect(self.f2c, self.head, self.pfb) self.connect(self.f2c, self.snk_i) # Create a vector sink for each of M output channels of the filter and connect it self.snks = list() for i in range(self._M): self.snks.append(blocks.vector_sink_c()) self.connect((self.pfb, i), self.snks[i]) def main(): tstart = time.time() tb = pfb_top_block() tb.run() tend = time.time() print("Run time: %f" % (tend - tstart)) if 1: fig_in = pylab.figure(1, figsize=(16,9), facecolor="w") fig1 = pylab.figure(2, figsize=(16,9), facecolor="w") fig2 = pylab.figure(3, figsize=(16,9), facecolor="w") fig3 = pylab.figure(4, figsize=(16,9), facecolor="w") Ns = 650 Ne = 20000 fftlen = 8192 winfunc = numpy.blackman fs = tb._fs # Plot the input signal on its own figure d = tb.snk_i.data()[Ns:Ne] spin_f = fig_in.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen / 4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*numpy.log10(abs(numpy.fft.fftshift(X))) f_in = numpy.arange(-fs / 2.0, fs / 2.0, fs / float(X_in.size)) pin_f = spin_f.plot(f_in, X_in, "b") spin_f.set_xlim([min(f_in), max(f_in)+1]) spin_f.set_ylim([-200.0, 50.0]) spin_f.set_title("Input Signal", weight="bold") spin_f.set_xlabel("Frequency (Hz)") spin_f.set_ylabel("Power (dBW)") Ts = 1.0 / fs Tmax = len(d)*Ts t_in = numpy.arange(0, Tmax, Ts) x_in = numpy.array(d) spin_t = fig_in.add_subplot(2, 1, 2) pin_t = spin_t.plot(t_in, x_in.real, "b") pin_t = spin_t.plot(t_in, x_in.imag, "r") spin_t.set_xlabel("Time (s)") spin_t.set_ylabel("Amplitude") Ncols = int(numpy.floor(numpy.sqrt(tb._M))) Nrows = int(numpy.floor(tb._M / Ncols)) if(tb._M % Ncols != 0): Nrows += 1 # Plot each of the channels outputs. Frequencies on Figure 2 and # time signals on Figure 3 fs_o = tb._fs / tb._M Ts_o = 1.0 / fs_o Tmax_o = len(d)*Ts_o for i in range(len(tb.snks)): # remove issues with the transients at the beginning # also remove some corruption at the end of the stream # this is a bug, probably due to the corner cases d = tb.snks[i].data()[Ns:Ne] sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen / 4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*numpy.log10(abs(X)) f_o = freq p2_f = sp1_f.plot(f_o, X_o, "b") sp1_f.set_xlim([min(f_o), max(f_o)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title(("Channel %d" % i), weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") x_o = numpy.array(d) t_o = numpy.arange(0, Tmax_o, Ts_o) sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i) p2_o = sp2_o.plot(t_o, x_o.real, "b") p2_o = sp2_o.plot(t_o, x_o.imag, "r") sp2_o.set_xlim([min(t_o), max(t_o)+1]) sp2_o.set_ylim([-2, 2]) sp2_o.set_title(("Channel %d" % i), weight="bold") sp2_o.set_xlabel("Time (s)") sp2_o.set_ylabel("Amplitude") sp3 = fig3.add_subplot(1,1,1) p3 = sp3.plot(t_o, x_o.real) sp3.set_xlim([min(t_o), max(t_o)+1]) sp3.set_ylim([-2, 2]) sp3.set_title("All Channels") sp3.set_xlabel("Time (s)") sp3.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
Gabriel-p/photom
IRAF_compare/final_phot.py
2
2392
import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from astropy.io import ascii from astropy.table import Table phot = ascii.read('3_DAOM/daom.obs', fill_values=('INDEF', np.nan)) id_, x, y, v, ev, b, eb, u, eu, i, ei, XV, XB, XU, XI =\ phot['col1'], phot['col2'], phot['col3'], phot['col4'], phot['col5'],\ phot['col6'], phot['col7'], phot['col8'], phot['col9'], phot['col10'],\ phot['col11'], phot['col14'], phot['col15'], phot['col16'], phot['col17'] # print(len(x)) # plt.subplot(121) # plt.scatter(x, y, s=5) # msk = ~np.isnan(v) # x, y = x[msk], y[msk] # print(len(x)) # plt.subplot(122) # plt.scatter(x, y, s=5) # plt.show() ext_coeffs = {'U': .442, 'B': .232, 'V': .136, 'I': .048} transf_coeffs = ascii.read('fit_coeffs.dat') # Transform to zero airmass instrumental magnitudes. V_za = v - ext_coeffs['V'] * XV[0] B_za = b - ext_coeffs['B'] * XB[0] U_za = u - ext_coeffs['U'] * XU[0] I_za = i - ext_coeffs['I'] * XI[0] # Generate instrumental colors. BV_za, UB_za, VI_za = B_za - V_za, U_za - B_za, V_za - I_za # Transform to calibrated standard system. BV = transf_coeffs[1][3] * BV_za + transf_coeffs[1][4] UB = transf_coeffs[2][3] * UB_za + transf_coeffs[2][4] VI = transf_coeffs[3][3] * VI_za + transf_coeffs[3][4] V = V_za + transf_coeffs[0][3] * BV + transf_coeffs[0][4] # Errors in calibrated system. eBV = (eb + ev) * transf_coeffs[1][3] eVI = (ev + ei) * transf_coeffs[2][3] eUB = (eu + eb) * transf_coeffs[3][3] eV = ev plt.style.use('seaborn-darkgrid') fig = plt.figure(figsize=(30, 10)) gs = gridspec.GridSpec(1, 3) ax = fig.add_subplot(gs[0]) plt.xlim(-1., 4.5) plt.ylim(22.5, 10.) plt.title("BV vs V") plt.scatter(BV, V, s=3) ax = fig.add_subplot(gs[1]) plt.xlim(-1., 4.5) plt.ylim(22.5, 10.) plt.title("VI vs V") plt.scatter(VI, V, s=3) ax = fig.add_subplot(gs[2]) plt.xlim(0., 3.) plt.ylim(1.7, -1.) plt.title("BV vs UB") plt.scatter(BV, UB, s=3) fig.tight_layout() plt.savefig('output/final_phot.png', dpi=300, bbox_inches='tight') tab = Table([id_, x, y, V, eV, BV, eBV, VI, eVI, UB, eUB], names=('ID', 'x', 'y', 'V', 'eV', 'BV', 'eBV', 'VI', 'eVI', 'UB', 'eUB')) ascii.write( tab, 'input/phot_compare/final_phot.dat', format='fixed_width', delimiter=' ', formats={_: '%10.4f' for _ in tab.keys()[1:]}, fill_values=[(ascii.masked, 'nan')], overwrite=True)
gpl-3.0
subodhchhabra/pandashells
pandashells/bin/p_rand.py
3
5729
#! /usr/bin/env python # standard library imports import argparse import textwrap import sys # NOQA importing sys so I can mock sys.argv in tests from pandashells.lib import module_checker_lib, arg_lib module_checker_lib.check_for_modules(['pandas']) from pandashells.lib import io_lib import pandas as pd import numpy as np # want different default mu values for normal and poisson distributions def fill_default_mu(args): if args.type[0] == 'normal': args.mu = [0.] if args.mu is None else args.mu elif args.type[0] == 'poisson': args.mu = [1.] if args.mu is None else args.mu return args def get_samples(args): """ Return samples from selected distribution """ # dictionary to hold numpy arguments for different distributions distribution_for = { 'uniform': { 'function': np.random.uniform, 'kwargs': { 'low': args.min[0], 'high': args.max[0], 'size': (args.num_samples[0], args.columns[0]), }, }, 'normal': { 'function': np.random.normal, 'kwargs': { 'loc': args.mu[0] if args.mu else None, 'scale': args.sigma[0], 'size': (args.num_samples[0], args.columns[0]), }, }, 'poisson': { 'function': np.random.poisson, 'kwargs': { 'lam': args.mu[0] if args.mu else None, 'size': (args.num_samples[0], args.columns[0]), }, }, 'beta': { 'function': np.random.beta, 'kwargs': { 'a': args.alpha[0], 'b': args.beta[0], 'size': (args.num_samples[0], args.columns[0]), }, }, 'gamma': { 'function': np.random.gamma, 'kwargs': { 'shape': args.alpha[0], 'scale': 1. / args.beta[0], 'size': (args.num_samples[0], args.columns[0]), }, }, 'binomial': { 'function': np.random.binomial, 'kwargs': { 'n': args.N[0], 'p': args.p[0], 'size': (args.num_samples[0], args.columns[0]), }, }, } # grab the function for generating proper distribution dist = distribution_for[args.type[0]] # call the random generating function with the proper kwargs values = dist['function'](**dist['kwargs']) # set column names of output dataframe columns = ['c{}'.format(c) for c in range(args.columns[0])] # framify and return results return pd.DataFrame(values, columns=columns) def main(): msg = textwrap.dedent( """ Return random samples from common probability distrubtions. ----------------------------------------------------------------------- Examples: uniform: p.rand -n 1000 -t uniform --min=0 --max=1 | p.hist normal: p.rand -n 1000 -t normal --mu=0 --sigma=1 | p.hist poisson: p.rand -n 1000 -t poisson --mu=1 | p.hist beta: p.rand -n 1000 -t beta --alpha=2 --beta=6 | p.hist gamma: p.rand -n 1000 -t gamma --alpha=1 --beta=1 | p.hist binomial: p.rand -n 1000 -t binomial --N=10 --p=0.4 | p.hist ----------------------------------------------------------------------- """ ) # read command line arguments parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=msg) parser.add_argument( '-t', '--type', nargs=1, type=str, default=['uniform'], choices=['uniform', 'normal', 'beta', 'gamma', 'binomial', 'poisson'], help='type of distribution (default=\'uniform\')') parser.add_argument( '-n', '--num_samples', nargs=1, default=[10], type=int, help='The number of rows to generate (default=10)') parser.add_argument( '-c', '--columns', nargs=1, default=[1], type=int, help='The number of columns to generate per row (default=1)') parser.add_argument( '--N', nargs=1, default=[10], type=int, help=( '(Binomial Dist) Largest possible value for random variable. ' '(default=10)' ) ) parser.add_argument( '--p', nargs=1, default=[.5], type=float, help=( '(Binomial Dist) Bernoulli probability for each trial' '(default=.5)' ) ) parser.add_argument( '--mu', nargs=1, type=float, help='(Normal, Poisson) Mean (defaults: normal:0, poisson:1') parser.add_argument( '--sigma', nargs=1, default=[1.], type=float, help='(Normal) standard deviation, (default: 1)') parser.add_argument( '--min', nargs=1, default=[0.], type=float, help='(Uniform) Minimum value of range, (default: 0)') parser.add_argument( '--max', nargs=1, default=[1.], type=float, help='(Uniform) Maximum value of range, (default: 1)') parser.add_argument( '--alpha', nargs=1, default=[2.], type=float, help='(Beta, Gamma) (default: 2)') parser.add_argument( '--beta', nargs=1, default=[2.], type=float, help='(Beta, Gamma) (default: 2)') arg_lib.add_args(parser, 'io_out') # parse arguments args = parser.parse_args() # set some defaults args = fill_default_mu(args) # get the samples df = get_samples(args) # write dataframe to output io_lib.df_to_output(args, df) if __name__ == '__main__': # pragma: no cover main()
bsd-2-clause
vermouthmjl/scikit-learn
examples/feature_selection/plot_permutation_test_for_classification.py
94
2264
""" ================================================================= Test with permutations the significance of a classification score ================================================================= In order to test if a classification score is significative a technique in repeating the classification procedure after randomizing, permuting, the labels. The p-value is then given by the percentage of runs for which the score obtained is greater than the classification score obtained in the first place. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import permutation_test_score from sklearn import datasets ############################################################################## # Loading a dataset iris = datasets.load_iris() X = iris.data y = iris.target n_classes = np.unique(y).size # Some noisy data not correlated random = np.random.RandomState(seed=0) E = random.normal(size=(len(X), 2200)) # Add noisy data to the informative features for make the task harder X = np.c_[X, E] svm = SVC(kernel='linear') cv = StratifiedKFold(2) score, permutation_scores, pvalue = permutation_test_score( svm, X, y, scoring="accuracy", cv=cv, n_permutations=100, n_jobs=1) print("Classification score %s (pvalue : %s)" % (score, pvalue)) ############################################################################### # View histogram of permutation scores plt.hist(permutation_scores, 20, label='Permutation scores') ylim = plt.ylim() # BUG: vlines(..., linestyle='--') fails on older versions of matplotlib #plt.vlines(score, ylim[0], ylim[1], linestyle='--', # color='g', linewidth=3, label='Classification Score' # ' (pvalue %s)' % pvalue) #plt.vlines(1.0 / n_classes, ylim[0], ylim[1], linestyle='--', # color='k', linewidth=3, label='Luck') plt.plot(2 * [score], ylim, '--g', linewidth=3, label='Classification Score' ' (pvalue %s)' % pvalue) plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck') plt.ylim(ylim) plt.legend() plt.xlabel('Score') plt.show()
bsd-3-clause
kagayakidan/scikit-learn
benchmarks/bench_plot_ward.py
290
1260
""" Benchmark scikit-learn's Ward implement compared to SciPy's """ import time import numpy as np from scipy.cluster import hierarchy import pylab as pl from sklearn.cluster import AgglomerativeClustering ward = AgglomerativeClustering(n_clusters=3, linkage='ward') n_samples = np.logspace(.5, 3, 9) n_features = np.logspace(1, 3.5, 7) N_samples, N_features = np.meshgrid(n_samples, n_features) scikits_time = np.zeros(N_samples.shape) scipy_time = np.zeros(N_samples.shape) for i, n in enumerate(n_samples): for j, p in enumerate(n_features): X = np.random.normal(size=(n, p)) t0 = time.time() ward.fit(X) scikits_time[j, i] = time.time() - t0 t0 = time.time() hierarchy.ward(X) scipy_time[j, i] = time.time() - t0 ratio = scikits_time / scipy_time pl.figure("scikit-learn Ward's method benchmark results") pl.imshow(np.log(ratio), aspect='auto', origin="lower") pl.colorbar() pl.contour(ratio, levels=[1, ], colors='k') pl.yticks(range(len(n_features)), n_features.astype(np.int)) pl.ylabel('N features') pl.xticks(range(len(n_samples)), n_samples.astype(np.int)) pl.xlabel('N samples') pl.title("Scikit's time, in units of scipy time (log)") pl.show()
bsd-3-clause
jreback/pandas
pandas/tests/frame/methods/test_get_numeric_data.py
2
3173
import numpy as np import pandas as pd from pandas import Categorical, DataFrame, Index, Series, Timestamp import pandas._testing as tm from pandas.core.arrays import IntervalArray class TestGetNumericData: def test_get_numeric_data_preserve_dtype(self): # get the numeric data obj = DataFrame({"A": [1, "2", 3.0]}) result = obj._get_numeric_data() expected = DataFrame(index=[0, 1, 2], dtype=object) tm.assert_frame_equal(result, expected) def test_get_numeric_data(self): datetime64name = np.dtype("M8[ns]").name objectname = np.dtype(np.object_).name df = DataFrame( {"a": 1.0, "b": 2, "c": "foo", "f": Timestamp("20010102")}, index=np.arange(10), ) result = df.dtypes expected = Series( [ np.dtype("float64"), np.dtype("int64"), np.dtype(objectname), np.dtype(datetime64name), ], index=["a", "b", "c", "f"], ) tm.assert_series_equal(result, expected) df = DataFrame( { "a": 1.0, "b": 2, "c": "foo", "d": np.array([1.0] * 10, dtype="float32"), "e": np.array([1] * 10, dtype="int32"), "f": np.array([1] * 10, dtype="int16"), "g": Timestamp("20010102"), }, index=np.arange(10), ) result = df._get_numeric_data() expected = df.loc[:, ["a", "b", "d", "e", "f"]] tm.assert_frame_equal(result, expected) only_obj = df.loc[:, ["c", "g"]] result = only_obj._get_numeric_data() expected = df.loc[:, []] tm.assert_frame_equal(result, expected) df = DataFrame.from_dict({"a": [1, 2], "b": ["foo", "bar"], "c": [np.pi, np.e]}) result = df._get_numeric_data() expected = DataFrame.from_dict({"a": [1, 2], "c": [np.pi, np.e]}) tm.assert_frame_equal(result, expected) df = result.copy() result = df._get_numeric_data() expected = df tm.assert_frame_equal(result, expected) def test_get_numeric_data_mixed_dtype(self): # numeric and object columns df = DataFrame( { "a": [1, 2, 3], "b": [True, False, True], "c": ["foo", "bar", "baz"], "d": [None, None, None], "e": [3.14, 0.577, 2.773], } ) result = df._get_numeric_data() tm.assert_index_equal(result.columns, Index(["a", "b", "e"])) def test_get_numeric_data_extension_dtype(self): # GH#22290 df = DataFrame( { "A": pd.array([-10, np.nan, 0, 10, 20, 30], dtype="Int64"), "B": Categorical(list("abcabc")), "C": pd.array([0, 1, 2, 3, np.nan, 5], dtype="UInt8"), "D": IntervalArray.from_breaks(range(7)), } ) result = df._get_numeric_data() expected = df.loc[:, ["A", "C"]] tm.assert_frame_equal(result, expected)
bsd-3-clause
mhue/scikit-learn
sklearn/utils/tests/test_fixes.py
281
1829
# Authors: Gael Varoquaux <[email protected]> # Justin Vincent # Lars Buitinck # License: BSD 3 clause import numpy as np from nose.tools import assert_equal from nose.tools import assert_false from nose.tools import assert_true from numpy.testing import (assert_almost_equal, assert_array_almost_equal) from sklearn.utils.fixes import divide, expit from sklearn.utils.fixes import astype def test_expit(): # Check numerical stability of expit (logistic function). # Simulate our previous Cython implementation, based on #http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression assert_almost_equal(expit(1000.), 1. / (1. + np.exp(-1000.)), decimal=16) assert_almost_equal(expit(-1000.), np.exp(-1000.) / (1. + np.exp(-1000.)), decimal=16) x = np.arange(10) out = np.zeros_like(x, dtype=np.float32) assert_array_almost_equal(expit(x), expit(x, out=out)) def test_divide(): assert_equal(divide(.6, 1), .600000000000) def test_astype_copy_memory(): a_int32 = np.ones(3, np.int32) # Check that dtype conversion works b_float32 = astype(a_int32, dtype=np.float32, copy=False) assert_equal(b_float32.dtype, np.float32) # Changing dtype forces a copy even if copy=False assert_false(np.may_share_memory(b_float32, a_int32)) # Check that copy can be skipped if requested dtype match c_int32 = astype(a_int32, dtype=np.int32, copy=False) assert_true(c_int32 is a_int32) # Check that copy can be forced, and is the case by default: d_int32 = astype(a_int32, dtype=np.int32, copy=True) assert_false(np.may_share_memory(d_int32, a_int32)) e_int32 = astype(a_int32, dtype=np.int32) assert_false(np.may_share_memory(e_int32, a_int32))
bsd-3-clause
marqh/cartopy
lib/cartopy/examples/global_map.py
1
2094
# (C) British Crown Copyright 2011 - 2012, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <http://www.gnu.org/licenses/>. """ This example demonstrates the way a box is warped when it is defined in a rotated space. Notice that the box contains the north pole, adding extra complexity to the underlying transformation. """ import matplotlib.pyplot as plt import cartopy.crs as ccrs def main(): pc = ccrs.PlateCarree() rob = ccrs.Robinson() sph = ccrs.Geodetic() ax = plt.axes(projection=rob) # ax = plt.axes(projection=pc) # ax = plt.axes(projection=ccrs.NorthPolarStereo()) ax.set_global() from cartopy.examples.waves import sample_data x, y, data = sample_data((20, 40)) # ax.contourf(x, y, data, transform=pc, alpha=0.3) # ax.contour(x, y, data, transform=pc, alpha=0.3) # ax.contourf(x, y, data, 3, transform=pc, alpha=0.3) # ax.contourf(x, y, data, 5, transform=pc, alpha=0.3) #print 'getting domain' #print ax.native_extents() #print ax.map_domain(ccrs.PlateCarree()) #print ax.ll_boundary_poly() ax.stock_img() ax.coastlines() #ax.gshhs_line() # ax.coastlines_land() plt.plot(-0.08, 51.53, 'o', transform=pc) plt.plot([-0.08, 132], [51.53, 43.17], transform=pc) plt.plot([-0.08, 132], [51.53, 43.17], transform=sph) # ax.gshhs_line(resolution='coarse', domain=ax.boundary_poly()) plt.show() if __name__ == '__main__': main()
gpl-3.0
turbomanage/training-data-analyst
courses/machine_learning/deepdive/09_sequence/labs/txtclsmodel/trainer/model.py
3
11578
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import pandas as pd import numpy as np import re import pickle from tensorflow.python.keras.preprocessing import sequence from tensorflow.python.keras.preprocessing import text from tensorflow.python.keras import models from tensorflow.python.keras.layers import Dense from tensorflow.python.keras.layers import Dropout from tensorflow.python.keras.layers import Embedding from tensorflow.python.keras.layers import Conv1D from tensorflow.python.keras.layers import MaxPooling1D from tensorflow.python.keras.layers import GlobalAveragePooling1D from google.cloud import storage tf.logging.set_verbosity(tf.logging.INFO) CLASSES = {'github': 0, 'nytimes': 1, 'techcrunch': 2} # label-to-int mapping TOP_K = 20000 # Limit on the number vocabulary size used for tokenization MAX_SEQUENCE_LENGTH = 50 # Sentences will be truncated/padded to this length """ Helper function to download data from Google Cloud Storage # Arguments: source: string, the GCS URL to download from (e.g. 'gs://bucket/file.csv') destination: string, the filename to save as on local disk. MUST be filename ONLY, doesn't support folders. (e.g. 'file.csv', NOT 'folder/file.csv') # Returns: nothing, downloads file to local disk """ def download_from_gcs(source, destination): search = re.search('gs://(.*?)/(.*)', source) bucket_name = search.group(1) blob_name = search.group(2) storage_client = storage.Client() bucket = storage_client.get_bucket(bucket_name) bucket.blob(blob_name).download_to_filename(destination) """ Parses raw tsv containing hacker news headlines and returns (sentence, integer label) pairs # Arguments: train_data_path: string, path to tsv containing training data. can be a local path or a GCS url (gs://...) eval_data_path: string, path to tsv containing eval data. can be a local path or a GCS url (gs://...) # Returns: ((train_sentences, train_labels), (test_sentences, test_labels)): sentences are lists of strings, labels are numpy integer arrays """ def load_hacker_news_data(train_data_path, eval_data_path): if train_data_path.startswith('gs://'): download_from_gcs(train_data_path, destination='train.csv') train_data_path = 'train.csv' if eval_data_path.startswith('gs://'): download_from_gcs(eval_data_path, destination='eval.csv') eval_data_path = 'eval.csv' # Parse CSV using pandas column_names = ('label', 'text') df_train = pd.read_csv(train_data_path, names=column_names, sep='\t') df_eval = pd.read_csv(eval_data_path, names=column_names, sep='\t') return ((list(df_train['text']), np.array(df_train['label'].map(CLASSES))), (list(df_eval['text']), np.array(df_eval['label'].map(CLASSES)))) """ Create tf.estimator compatible input function # Arguments: texts: [strings], list of sentences labels: numpy int vector, integer labels for sentences tokenizer: tf.python.keras.preprocessing.text.Tokenizer used to convert sentences to integers batch_size: int, number of records to use for each train batch mode: tf.estimator.ModeKeys.TRAIN or tf.estimator.ModeKeys.EVAL # Returns: tf.estimator.inputs.numpy_input_fn, produces feature and label tensors one batch at a time """ def input_fn(texts, labels, tokenizer, batch_size, mode): # Transform text to sequence of integers x = # TODO (hint: use tokenizer) # Fix sequence length to max value. Sequences shorter than the length are # padded in the beginning and sequences longer are truncated # at the beginning. x = # TODO (hint: there is a useful function in tf.keras.preprocessing...) # default settings for training num_epochs = None shuffle = True # override if this is eval if mode == tf.estimator.ModeKeys.EVAL: num_epochs = 1 shuffle = False return tf.estimator.inputs.numpy_input_fn( x, y=labels, batch_size=batch_size, num_epochs=num_epochs, shuffle=shuffle, queue_capacity=50000 ) """ Builds a CNN model using keras and converts to tf.estimator.Estimator # Arguments model_dir: string, file path where training files will be written config: tf.estimator.RunConfig, specifies properties of tf Estimator filters: int, output dimension of the layers. kernel_size: int, length of the convolution window. embedding_dim: int, dimension of the embedding vectors. dropout_rate: float, percentage of input to drop at Dropout layers. pool_size: int, factor by which to downscale input at MaxPooling layer. embedding_path: string , file location of pre-trained embedding (if used) defaults to None which will cause the model to train embedding from scratch word_index: dictionary, mapping of vocabulary to integers. used only if pre-trained embedding is provided # Returns A tf.estimator.Estimator """ def keras_estimator(model_dir, config, learning_rate, filters=64, dropout_rate=0.2, embedding_dim=200, kernel_size=3, pool_size=3, embedding_path=None, word_index=None): # Create model instance. model = models.Sequential() num_features = min(len(word_index) + 1, TOP_K) # Add embedding layer. If pre-trained embedding is used add weights to the # embeddings layer and set trainable to input is_embedding_trainable flag. if embedding_path != None: embedding_matrix = get_embedding_matrix(word_index, embedding_path, embedding_dim) is_embedding_trainable = True # set to False to freeze embedding weights model.add(Embedding(input_dim=num_features, output_dim=embedding_dim, input_length=MAX_SEQUENCE_LENGTH, weights=[embedding_matrix], trainable=is_embedding_trainable)) else: model.add(Embedding(input_dim=num_features, output_dim=embedding_dim, input_length=MAX_SEQUENCE_LENGTH)) model.add(Dropout(rate=dropout_rate)) model.add(Conv1D(filters=filters, kernel_size=kernel_size, activation='relu', bias_initializer='random_uniform', padding='same')) model.add(MaxPooling1D(pool_size=pool_size)) model.add(Conv1D(filters=filters * 2, kernel_size=kernel_size, activation='relu', bias_initializer='random_uniform', padding='same')) model.add(GlobalAveragePooling1D()) model.add(Dropout(rate=dropout_rate)) model.add(Dense(len(CLASSES), activation='softmax')) # Compile model with learning parameters. optimizer = tf.keras.optimizers.Adam(lr=learning_rate) model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['acc']) estimator = # TODO: convert keras model to tf.estimator.Estimator return estimator """ Defines the features to be passed to the model during inference Expects already tokenized and padded representation of sentences # Arguments: none # Returns: tf.estimator.export.ServingInputReceiver """ def serving_input_fn(): feature_placeholder = tf.placeholder(tf.int16, [None, MAX_SEQUENCE_LENGTH]) features = feature_placeholder # pass as-is return tf.estimator.export.TensorServingInputReceiver(features, feature_placeholder) """ Takes embedding for generic voabulary and extracts the embeddings matching the current vocabulary The pre-trained embedding file is obtained from https://nlp.stanford.edu/projects/glove/ # Arguments: word_index: dict, {key =word in vocabulary: value= integer mapped to that word} embedding_path: string, location of the pre-trained embedding file on disk embedding_dim: int, dimension of the embedding space # Returns: numpy matrix of shape (vocabulary, embedding_dim) that contains the embedded representation of each word in the vocabulary. """ def get_embedding_matrix(word_index, embedding_path, embedding_dim): # Read the pre-trained embedding file and get word to word vector mappings. embedding_matrix_all = {} # Download if embedding file is in GCS if embedding_path.startswith('gs://'): download_from_gcs(embedding_path, destination='embedding.csv') embedding_path = 'embedding.csv' with open(embedding_path) as f: for line in f: # Every line contains word followed by the vector value values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embedding_matrix_all[word] = coefs # Prepare embedding matrix with just the words in our word_index dictionary num_words = min(len(word_index) + 1, TOP_K) embedding_matrix = np.zeros((num_words, embedding_dim)) for word, i in word_index.items(): if i >= TOP_K: continue embedding_vector = embedding_matrix_all.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. embedding_matrix[i] = embedding_vector return embedding_matrix """ Main orchestrator. Responsible for calling all other functions in model.py # Arguments: output_dir: string, file path where training files will be written hparams: dict, command line parameters passed from task.py # Returns: nothing, kicks off training and evaluation """ def train_and_evaluate(output_dir, hparams): tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file # Load Data ((train_texts, train_labels), (test_texts, test_labels)) = load_hacker_news_data( hparams['train_data_path'], hparams['eval_data_path']) # Create vocabulary from training corpus. tokenizer = text.Tokenizer(num_words=TOP_K) tokenizer.fit_on_texts(train_texts) # Save token dictionary to use during prediction time pickle.dump(tokenizer, open('tokenizer.pickled', 'wb')) # Create estimator run_config = tf.estimator.RunConfig(save_checkpoints_steps=500) estimator = # TODO: create estimator # Create TrainSpec train_steps = hparams['num_epochs'] * len(train_texts) / hparams['batch_size'] train_spec = tf.estimator.TrainSpec( input_fn=input_fn( train_texts, train_labels, tokenizer, hparams['batch_size'], mode=tf.estimator.ModeKeys.TRAIN), max_steps=train_steps ) # Create EvalSpec exporter = tf.estimator.LatestExporter('exporter', serving_input_fn) eval_spec = tf.estimator.EvalSpec( input_fn=input_fn( test_texts, test_labels, tokenizer, hparams['batch_size'], mode=tf.estimator.ModeKeys.EVAL), steps=None, exporters=exporter, start_delay_secs=10, throttle_secs=10 ) # Start training tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
apache-2.0
pradyu1993/scikit-learn
examples/cluster/plot_cluster_iris.py
2
2602
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= K-means Clustering ========================================================= The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters would deliver and finally the ground truth. """ print __doc__ # Code source: Gael Varoqueux # Modified for Documentation merge by Jaques Grobler # License: BSD import numpy as np import pylab as pl from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1, init='random'), } fignum = 1 for name, est in estimators.iteritems(): fig = pl.figure(fignum, figsize=(4, 3)) pl.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) pl.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') fignum = fignum + 1 # Plot the ground truth fig = pl.figure(fignum, figsize=(4, 3)) pl.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) pl.cla() for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 3].mean(), X[y == label, 0].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w'), ) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') pl.show()
bsd-3-clause
treycausey/scikit-learn
sklearn/cluster/tests/test_affinity_propagation.py
31
2633
""" Testing for Clustering methods """ import numpy as np from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.cluster.affinity_propagation_ import AffinityPropagation from sklearn.cluster.affinity_propagation_ import affinity_propagation from sklearn.datasets.samples_generator import make_blobs from sklearn.metrics import euclidean_distances n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=60, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=0) def test_affinity_propagation(): """Affinity Propagation algorithm """ # Compute similarities S = -euclidean_distances(X, squared=True) preference = np.median(S) * 10 # Compute Affinity Propagation cluster_centers_indices, labels = affinity_propagation( S, preference=preference) n_clusters_ = len(cluster_centers_indices) assert_equal(n_clusters, n_clusters_) af = AffinityPropagation(preference=preference, affinity="precomputed") labels_precomputed = af.fit(S).labels_ af = AffinityPropagation(preference=preference, verbose=True) labels = af.fit(X).labels_ assert_array_equal(labels, labels_precomputed) cluster_centers_indices = af.cluster_centers_indices_ n_clusters_ = len(cluster_centers_indices) assert_equal(np.unique(labels).size, n_clusters_) assert_equal(n_clusters, n_clusters_) # Test also with no copy _, labels_no_copy = affinity_propagation(S, preference=preference, copy=False) assert_array_equal(labels, labels_no_copy) # Test input validation assert_raises(ValueError, affinity_propagation, S[:, :-1]) assert_raises(ValueError, affinity_propagation, S, damping=0) af = AffinityPropagation(affinity="unknown") assert_raises(ValueError, af.fit, X) def test_affinity_propagation_predict(): """Test AffinityPropagation.predict""" af = AffinityPropagation(affinity="euclidean") labels = af.fit_predict(X) labels2 = af.predict(X) assert_array_equal(labels, labels2) def test_affinity_propagation_predict_error(): """Test exception in AffinityPropagation.predict""" # Not fitted. af = AffinityPropagation(affinity="euclidean") assert_raises(ValueError, af.predict, X) # Predict not supported when affinity="precomputed". S = np.dot(X, X.T) af = AffinityPropagation(affinity="precomputed") af.fit(S) assert_raises(ValueError, af.predict, X)
bsd-3-clause
yavalvas/yav_com
build/matplotlib/lib/matplotlib/backends/backend_qt5agg.py
11
7342
""" Render to qt from agg """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os # not used import sys import ctypes import warnings import matplotlib from matplotlib.figure import Figure from .backend_agg import FigureCanvasAgg from .backend_qt5 import QtCore from .backend_qt5 import QtGui from .backend_qt5 import FigureManagerQT from .backend_qt5 import NavigationToolbar2QT ##### Modified Qt5 backend import from .backend_qt5 import FigureCanvasQT ##### not used from .backend_qt5 import show from .backend_qt5 import draw_if_interactive from .backend_qt5 import backend_version ###### from matplotlib.cbook import mplDeprecation DEBUG = False _decref = ctypes.pythonapi.Py_DecRef _decref.argtypes = [ctypes.py_object] _decref.restype = None def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if DEBUG: print('backend_qt5agg.new_figure_manager') FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasQTAgg(figure) return FigureManagerQT(canvas, num) class FigureCanvasQTAggBase(object): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance """ def drawRectangle(self, rect): self._drawRect = rect self.repaint() def paintEvent(self, e): """ Copy the image from the Agg canvas to the qt.drawable. In Qt, all drawing should be done inside of here when a widget is shown onscreen. """ # FigureCanvasQT.paintEvent(self, e) if DEBUG: print('FigureCanvasQtAgg.paintEvent: ', self, self.get_width_height()) if self.blitbox is None: # matplotlib is in rgba byte order. QImage wants to put the bytes # into argb format and is in a 4 byte unsigned int. Little endian # system is LSB first and expects the bytes in reverse order # (bgra). if QtCore.QSysInfo.ByteOrder == QtCore.QSysInfo.LittleEndian: stringBuffer = self.renderer._renderer.tostring_bgra() else: stringBuffer = self.renderer._renderer.tostring_argb() refcnt = sys.getrefcount(stringBuffer) # convert the Agg rendered image -> qImage qImage = QtGui.QImage(stringBuffer, self.renderer.width, self.renderer.height, QtGui.QImage.Format_ARGB32) # get the rectangle for the image rect = qImage.rect() p = QtGui.QPainter(self) # reset the image area of the canvas to be the back-ground color p.eraseRect(rect) # draw the rendered image on to the canvas p.drawPixmap(QtCore.QPoint(0, 0), QtGui.QPixmap.fromImage(qImage)) # draw the zoom rectangle to the QPainter if self._drawRect is not None: p.setPen(QtGui.QPen(QtCore.Qt.black, 1, QtCore.Qt.DotLine)) x, y, w, h = self._drawRect p.drawRect(x, y, w, h) p.end() # This works around a bug in PySide 1.1.2 on Python 3.x, # where the reference count of stringBuffer is incremented # but never decremented by QImage. # TODO: revert PR #1323 once the issue is fixed in PySide. del qImage if refcnt != sys.getrefcount(stringBuffer): _decref(stringBuffer) else: bbox = self.blitbox l, b, r, t = bbox.extents w = int(r) - int(l) h = int(t) - int(b) t = int(b) + h reg = self.copy_from_bbox(bbox) stringBuffer = reg.to_string_argb() qImage = QtGui.QImage(stringBuffer, w, h, QtGui.QImage.Format_ARGB32) pixmap = QtGui.QPixmap.fromImage(qImage) p = QtGui.QPainter(self) p.drawPixmap(QtCore.QPoint(l, self.renderer.height-t), pixmap) p.end() self.blitbox = None self._drawRect = None def draw(self): """ Draw the figure with Agg, and queue a request for a Qt draw. """ # The Agg draw is done here; delaying it until the paintEvent # causes problems with code that uses the result of the # draw() to update plot elements. FigureCanvasAgg.draw(self) self._priv_update() def blit(self, bbox=None): """ Blit the region in bbox """ self.blitbox = bbox l, b, w, h = bbox.bounds t = b + h self.repaint(l, self.renderer.height-t, w, h) def print_figure(self, *args, **kwargs): FigureCanvasAgg.print_figure(self, *args, **kwargs) self.draw() class FigureCanvasQTAgg(FigureCanvasQTAggBase, FigureCanvasQT, FigureCanvasAgg): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc. Modified to import from Qt5 backend for new-style mouse events. Public attribute figure - A Figure instance """ def __init__(self, figure): if DEBUG: print('FigureCanvasQtAgg: ', figure) FigureCanvasQT.__init__(self, figure) FigureCanvasAgg.__init__(self, figure) self._drawRect = None self.blitbox = None self.setAttribute(QtCore.Qt.WA_OpaquePaintEvent) # it has been reported that Qt is semi-broken in a windows # environment. If `self.draw()` uses `update` to trigger a # system-level window repaint (as is explicitly advised in the # Qt documentation) the figure responds very slowly to mouse # input. The work around is to directly use `repaint` # (against the advice of the Qt documentation). The # difference between `update` and repaint is that `update` # schedules a `repaint` for the next time the system is idle, # where as `repaint` repaints the window immediately. The # risk is if `self.draw` gets called with in another `repaint` # method there will be an infinite recursion. Thus, we only # expose windows users to this risk. if sys.platform.startswith('win'): self._priv_update = self.repaint else: self._priv_update = self.update class NavigationToolbar2QTAgg(NavigationToolbar2QT): def __init__(*args, **kwargs): warnings.warn('This class has been deprecated in 1.4 ' + 'as it has no additional functionality over ' + '`NavigationToolbar2QT`. Please change your code to ' 'use `NavigationToolbar2QT` instead', mplDeprecation) NavigationToolbar2QT.__init__(*args, **kwargs) FigureCanvas = FigureCanvasQTAgg FigureManager = FigureManagerQT
mit
yl565/statsmodels
statsmodels/iolib/summary.py
22
33071
from statsmodels.compat.python import range, lrange, lmap, lzip, zip_longest import numpy as np from statsmodels.iolib.table import SimpleTable from statsmodels.iolib.tableformatting import (gen_fmt, fmt_2, fmt_params, fmt_base, fmt_2cols) #from statsmodels.iolib.summary2d import summary_params_2dflat #from summary2d import summary_params_2dflat def forg(x, prec=3): if prec == 3: #for 3 decimals if (abs(x) >= 1e4) or (abs(x) < 1e-4): return '%9.3g' % x else: return '%9.3f' % x elif prec == 4: if (abs(x) >= 1e4) or (abs(x) < 1e-4): return '%10.4g' % x else: return '%10.4f' % x else: raise NotImplementedError def summary(self, yname=None, xname=None, title=0, alpha=.05, returns='text', model_info=None): """ Parameters ----------- yname : string optional, Default is `Y` xname : list of strings optional, Default is `X.#` for # in p the number of regressors Confidance interval : (0,1) not implimented title : string optional, Defualt is 'Generalized linear model' returns : string 'text', 'table', 'csv', 'latex', 'html' Returns ------- Default : returns='print' Prints the summarirized results Option : returns='text' Prints the summarirized results Option : returns='table' SimpleTable instance : summarizing the fit of a linear model. Option : returns='csv' returns a string of csv of the results, to import into a spreadsheet Option : returns='latex' Not implimented yet Option : returns='HTML' Not implimented yet Examples (needs updating) -------- >>> import statsmodels as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> ols_results = sm.OLS(data.endog, data.exog).results >>> print ols_results.summary() ... Notes ----- conf_int calculated from normal dist. """ import time as time #TODO Make sure all self.model.__class__.__name__ are listed model_types = {'OLS' : 'Ordinary least squares', 'GLS' : 'Generalized least squares', 'GLSAR' : 'Generalized least squares with AR(p)', 'WLS' : 'Weigthed least squares', 'RLM' : 'Robust linear model', 'GLM' : 'Generalized linear model' } model_methods = {'OLS' : 'Least Squares', 'GLS' : 'Least Squares', 'GLSAR' : 'Least Squares', 'WLS' : 'Least Squares', 'RLM' : '?', 'GLM' : '?' } if title==0: title = model_types[self.model.__class__.__name__] if yname is None: try: yname = self.model.endog_names except AttributeError: yname = 'y' if xname is None: try: xname = self.model.exog_names except AttributeError: xname = ['var_%d' % i for i in range(len(self.params))] time_now = time.localtime() time_of_day = [time.strftime("%H:%M:%S", time_now)] date = time.strftime("%a, %d %b %Y", time_now) modeltype = self.model.__class__.__name__ #dist_family = self.model.family.__class__.__name__ nobs = self.nobs df_model = self.df_model df_resid = self.df_resid #General part of the summary table, Applicable to all? models #------------------------------------------------------------ #TODO: define this generically, overwrite in model classes #replace definition of stubs data by single list #e.g. gen_left = [('Model type:', [modeltype]), ('Date:', [date]), ('Dependent Variable:', yname), #What happens with multiple names? ('df model', [df_model]) ] gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col gen_title = title gen_header = None ## gen_stubs_left = ('Model type:', ## 'Date:', ## 'Dependent Variable:', ## 'df model' ## ) ## gen_data_left = [[modeltype], ## [date], ## yname, #What happens with multiple names? ## [df_model] ## ] gen_table_left = SimpleTable(gen_data_left, gen_header, gen_stubs_left, title = gen_title, txt_fmt = gen_fmt ) gen_stubs_right = ('Method:', 'Time:', 'Number of Obs:', 'df resid' ) gen_data_right = ([modeltype], #was dist family need to look at more time_of_day, [nobs], [df_resid] ) gen_table_right = SimpleTable(gen_data_right, gen_header, gen_stubs_right, title = gen_title, txt_fmt = gen_fmt ) gen_table_left.extend_right(gen_table_right) general_table = gen_table_left #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal tstats = {'OLS' : self.t(), 'GLS' : self.t(), 'GLSAR' : self.t(), 'WLS' : self.t(), 'RLM' : self.t(), 'GLM' : self.t() } prob_stats = {'OLS' : self.pvalues, 'GLS' : self.pvalues, 'GLSAR' : self.pvalues, 'WLS' : self.pvalues, 'RLM' : self.pvalues, 'GLM' : self.pvalues } #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype alp = str((1-alpha)*100)+'%' param_header = { 'OLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLSAR' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'WLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLM' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], #glm uses t-distribution 'RLM' : ['coef', 'std err', 'z', 'P>|z|', alp + ' Conf. Interval'] #checke z } params_stubs = xname params = self.params conf_int = self.conf_int(alpha) std_err = self.bse exog_len = lrange(len(xname)) tstat = tstats[modeltype] prob_stat = prob_stats[modeltype] # Simpletable should be able to handle the formating params_data = lzip(["%#6.4g" % (params[i]) for i in exog_len], ["%#6.4f" % (std_err[i]) for i in exog_len], ["%#6.4f" % (tstat[i]) for i in exog_len], ["%#6.4f" % (prob_stat[i]) for i in exog_len], ["(%#5g, %#5g)" % tuple(conf_int[i]) for i in \ exog_len] ) parameter_table = SimpleTable(params_data, param_header[modeltype], params_stubs, title = None, txt_fmt = fmt_2, #gen_fmt, ) #special table #------------- #TODO: exists in linear_model, what about other models #residual diagnostics #output options #-------------- #TODO: JP the rest needs to be fixed, similar to summary in linear_model def ols_printer(): """ print summary table for ols models """ table = str(general_table)+'\n'+str(parameter_table) return table def ols_to_csv(): """ exports ols summary data to csv """ pass def glm_printer(): table = str(general_table)+'\n'+str(parameter_table) return table pass printers = {'OLS': ols_printer, 'GLM' : glm_printer } if returns=='print': try: return printers[modeltype]() except KeyError: return printers['OLS']() def _getnames(self, yname=None, xname=None): '''extract names from model or construct names ''' if yname is None: if hasattr(self.model, 'endog_names') and ( not self.model.endog_names is None): yname = self.model.endog_names else: yname = 'y' if xname is None: if hasattr(self.model, 'exog_names') and ( not self.model.exog_names is None): xname = self.model.exog_names else: xname = ['var_%d' % i for i in range(len(self.params))] return yname, xname def summary_top(results, title=None, gleft=None, gright=None, yname=None, xname=None): '''generate top table(s) TODO: this still uses predefined model_methods ? allow gleft, gright to be 1 element tuples instead of filling with None? ''' #change of names ? gen_left, gen_right = gleft, gright #time and names are always included import time time_now = time.localtime() time_of_day = [time.strftime("%H:%M:%S", time_now)] date = time.strftime("%a, %d %b %Y", time_now) yname, xname = _getnames(results, yname=yname, xname=xname) #create dictionary with default #use lambdas because some values raise exception if they are not available #alternate spellings are commented out to force unique labels default_items = dict([ ('Dependent Variable:', lambda: [yname]), ('Dep. Variable:', lambda: [yname]), ('Model:', lambda: [results.model.__class__.__name__]), #('Model type:', lambda: [results.model.__class__.__name__]), ('Date:', lambda: [date]), ('Time:', lambda: time_of_day), ('Number of Obs:', lambda: [results.nobs]), #('No. of Observations:', lambda: ["%#6d" % results.nobs]), ('No. Observations:', lambda: ["%#6d" % results.nobs]), #('Df model:', lambda: [results.df_model]), ('Df Model:', lambda: ["%#6d" % results.df_model]), #TODO: check when we have non-integer df ('Df Residuals:', lambda: ["%#6d" % results.df_resid]), #('Df resid:', lambda: [results.df_resid]), #('df resid:', lambda: [results.df_resid]), #check capitalization ('Log-Likelihood:', lambda: ["%#8.5g" % results.llf]) #doesn't exist for RLM - exception #('Method:', lambda: [???]), #no default for this ]) if title is None: title = results.model.__class__.__name__ + 'Regression Results' if gen_left is None: #default: General part of the summary table, Applicable to all? models gen_left = [('Dep. Variable:', None), ('Model type:', None), ('Date:', None), ('No. Observations:', None), ('Df model:', None), ('Df resid:', None)] try: llf = results.llf gen_left.append(('Log-Likelihood', None)) except: #AttributeError, NotImplementedError pass gen_right = [] gen_title = title gen_header = None #needed_values = [k for k,v in gleft + gright if v is None] #not used anymore #replace missing (None) values with default values gen_left_ = [] for item, value in gen_left: if value is None: value = default_items[item]() #let KeyErrors raise exception gen_left_.append((item, value)) gen_left = gen_left_ if gen_right: gen_right_ = [] for item, value in gen_right: if value is None: value = default_items[item]() #let KeyErrors raise exception gen_right_.append((item, value)) gen_right = gen_right_ #check missing_values = [k for k,v in gen_left + gen_right if v is None] assert missing_values == [], missing_values #pad both tables to equal number of rows if gen_right: if len(gen_right) < len(gen_left): #fill up with blank lines to same length gen_right += [(' ', ' ')] * (len(gen_left) - len(gen_right)) elif len(gen_right) > len(gen_left): #fill up with blank lines to same length, just to keep it symmetric gen_left += [(' ', ' ')] * (len(gen_right) - len(gen_left)) #padding in SimpleTable doesn't work like I want #force extra spacing and exact string length in right table gen_right = [('%-21s' % (' '+k), v) for k,v in gen_right] gen_stubs_right, gen_data_right = zip_longest(*gen_right) #transpose row col gen_table_right = SimpleTable(gen_data_right, gen_header, gen_stubs_right, title = gen_title, txt_fmt = fmt_2cols #gen_fmt ) else: gen_table_right = [] #because .extend_right seems works with [] #moved below so that we can pad if needed to match length of gen_right #transpose rows and columns, `unzip` gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col gen_table_left = SimpleTable(gen_data_left, gen_header, gen_stubs_left, title = gen_title, txt_fmt = fmt_2cols ) gen_table_left.extend_right(gen_table_right) general_table = gen_table_left return general_table #, gen_table_left, gen_table_right def summary_params(results, yname=None, xname=None, alpha=.05, use_t=True, skip_header=False, title=None): '''create a summary table for the parameters Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) skip_headers : bool If false (default), then the header row is added. If true, then no header row is added. Returns ------- params_table : SimpleTable instance ''' #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal if isinstance(results, tuple): #for multivariate endog #TODO: check whether I don't want to refactor this #we need to give parameter alpha to conf_int results, params, std_err, tvalues, pvalues, conf_int = results else: params = results.params std_err = results.bse tvalues = results.tvalues #is this sometimes called zvalues pvalues = results.pvalues conf_int = results.conf_int(alpha) #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype if use_t: param_header = ['coef', 'std err', 't', 'P>|t|', '[' + str(alpha/2), str(1-alpha/2) + ']'] else: param_header = ['coef', 'std err', 'z', 'P>|z|', '[' + str(alpha/2), str(1-alpha/2) + ']'] if skip_header: param_header = None _, xname = _getnames(results, yname=yname, xname=xname) params_stubs = xname exog_idx = lrange(len(xname)) params_data = lzip([forg(params[i], prec=4) for i in exog_idx], [forg(std_err[i]) for i in exog_idx], [forg(tvalues[i]) for i in exog_idx], ["%#6.3f" % (pvalues[i]) for i in exog_idx], [forg(conf_int[i,0]) for i in exog_idx], [forg(conf_int[i,1]) for i in exog_idx] ) parameter_table = SimpleTable(params_data, param_header, params_stubs, title = title, txt_fmt = fmt_params #gen_fmt #fmt_2, #gen_fmt, ) return parameter_table def summary_params_frame(results, yname=None, xname=None, alpha=.05, use_t=True): '''create a summary table for the parameters Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) skip_headers : bool If false (default), then the header row is added. If true, then no header row is added. Returns ------- params_table : SimpleTable instance ''' #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal if isinstance(results, tuple): #for multivariate endog #TODO: check whether I don't want to refactor this #we need to give parameter alpha to conf_int results, params, std_err, tvalues, pvalues, conf_int = results else: params = results.params std_err = results.bse tvalues = results.tvalues #is this sometimes called zvalues pvalues = results.pvalues conf_int = results.conf_int(alpha) #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype alp = str((1-alpha)*100)+'%' if use_t: param_header = ['coef', 'std err', 't', 'P>|t|', 'Conf. Int. Low', 'Conf. Int. Upp.'] else: param_header = ['coef', 'std err', 'z', 'P>|z|', 'Conf. Int. Low', 'Conf. Int. Upp.'] _, xname = _getnames(results, yname=yname, xname=xname) #------------------ from pandas import DataFrame table = np.column_stack((params, std_err, tvalues, pvalues, conf_int)) return DataFrame(table, columns=param_header, index=xname) def summary_params_2d(result, extras=None, endog_names=None, exog_names=None, title=None): '''create summary table of regression parameters with several equations This allows interleaving of parameters with bse and/or tvalues Parameters ---------- result : result instance the result instance with params and attributes in extras extras : list of strings additional attributes to add below a parameter row, e.g. bse or tvalues endog_names : None or list of strings names for rows of the parameter array (multivariate endog) exog_names : None or list of strings names for columns of the parameter array (exog) alpha : float level for confidence intervals, default 0.95 title : None or string Returns ------- tables : list of SimpleTable this contains a list of all seperate Subtables table_all : SimpleTable the merged table with results concatenated for each row of the parameter array ''' if endog_names is None: #TODO: note the [1:] is specific to current MNLogit endog_names = ['endog_%d' % i for i in np.unique(result.model.endog)[1:]] if exog_names is None: exog_names = ['var%d' %i for i in range(len(result.params))] #TODO: check formatting options with different values #res_params = [['%10.4f'%item for item in row] for row in result.params] res_params = [[forg(item, prec=4) for item in row] for row in result.params] if extras: #not None or non-empty #maybe this should be a simple triple loop instead of list comprehension? #below_list = [[['%10s' % ('('+('%10.3f'%v).strip()+')') extras_list = [[['%10s' % ('(' + forg(v, prec=3).strip() + ')') for v in col] for col in getattr(result, what)] for what in extras ] data = lzip(res_params, *extras_list) data = [i for j in data for i in j] #flatten stubs = lzip(endog_names, *[['']*len(endog_names)]*len(extras)) stubs = [i for j in stubs for i in j] #flatten #return SimpleTable(data, headers=exog_names, stubs=stubs) else: data = res_params stubs = endog_names # return SimpleTable(data, headers=exog_names, stubs=stubs, # data_fmts=['%10.4f']) import copy txt_fmt = copy.deepcopy(fmt_params) txt_fmt.update(dict(data_fmts = ["%s"]*result.params.shape[1])) return SimpleTable(data, headers=exog_names, stubs=stubs, title=title, # data_fmts = ["%s"]), txt_fmt = txt_fmt) def summary_params_2dflat(result, endog_names=None, exog_names=None, alpha=0.05, use_t=True, keep_headers=True, endog_cols=False): #skip_headers2=True): '''summary table for parameters that are 2d, e.g. multi-equation models Parameters ---------- result : result instance the result instance with params, bse, tvalues and conf_int endog_names : None or list of strings names for rows of the parameter array (multivariate endog) exog_names : None or list of strings names for columns of the parameter array (exog) alpha : float level for confidence intervals, default 0.95 use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) keep_headers : bool If true (default), then sub-tables keep their headers. If false, then only the first headers are kept, the other headerse are blanked out endog_cols : bool If false (default) then params and other result statistics have equations by rows. If true, then equations are assumed to be in columns. Not implemented yet. Returns ------- tables : list of SimpleTable this contains a list of all seperate Subtables table_all : SimpleTable the merged table with results concatenated for each row of the parameter array ''' res = result params = res.params if params.ndim == 2: # we've got multiple equations n_equ = params.shape[1] if not len(endog_names) == params.shape[1]: raise ValueError('endog_names has wrong length') else: if not len(endog_names) == len(params): raise ValueError('endog_names has wrong length') n_equ = 1 #VAR doesn't have conf_int #params = res.params.T # this is a convention for multi-eq models if not isinstance(endog_names, list): #this might be specific to multinomial logit type, move? if endog_names is None: endog_basename = 'endog' else: endog_basename = endog_names #TODO: note, the [1:] is specific to current MNLogit endog_names = res.model.endog_names[1:] #check if we have the right length of names tables = [] for eq in range(n_equ): restup = (res, res.params[:,eq], res.bse[:,eq], res.tvalues[:,eq], res.pvalues[:,eq], res.conf_int(alpha)[eq]) #not used anymore in current version # if skip_headers2: # skiph = (row != 0) # else: # skiph = False skiph = False tble = summary_params(restup, yname=endog_names[eq], xname=exog_names, alpha=alpha, use_t=use_t, skip_header=skiph) tables.append(tble) #add titles, they will be moved to header lines in table_extend for i in range(len(endog_names)): tables[i].title = endog_names[i] table_all = table_extend(tables, keep_headers=keep_headers) return tables, table_all def table_extend(tables, keep_headers=True): '''extend a list of SimpleTables, adding titles to header of subtables This function returns the merged table as a deepcopy, in contrast to the SimpleTable extend method. Parameters ---------- tables : list of SimpleTable instances keep_headers : bool If true, then all headers are kept. If falls, then the headers of subtables are blanked out. Returns ------- table_all : SimpleTable merged tables as a single SimpleTable instance ''' from copy import deepcopy for ii, t in enumerate(tables[:]): #[1:]: t = deepcopy(t) #move title to first cell of header #TODO: check if we have multiline headers if t[0].datatype == 'header': t[0][0].data = t.title t[0][0]._datatype = None t[0][0].row = t[0][1].row if not keep_headers and (ii > 0): for c in t[0][1:]: c.data = '' #add separating line and extend tables if ii == 0: table_all = t else: r1 = table_all[-1] r1.add_format('txt', row_dec_below='-') table_all.extend(t) table_all.title = None return table_all def summary_return(tables, return_fmt='text'): ######## Return Summary Tables ######## # join table parts then print if return_fmt == 'text': strdrop = lambda x: str(x).rsplit('\n',1)[0] #convert to string drop last line return '\n'.join(lmap(strdrop, tables[:-1]) + [str(tables[-1])]) elif return_fmt == 'tables': return tables elif return_fmt == 'csv': return '\n'.join(map(lambda x: x.as_csv(), tables)) elif return_fmt == 'latex': #TODO: insert \hline after updating SimpleTable import copy table = copy.deepcopy(tables[0]) del table[-1] for part in tables[1:]: table.extend(part) return table.as_latex_tabular() elif return_fmt == 'html': return "\n".join(table.as_html() for table in tables) else: raise ValueError('available output formats are text, csv, latex, html') class Summary(object): '''class to hold tables for result summary presentation Construction does not take any parameters. Tables and text can be added with the `add_` methods. Attributes ---------- tables : list of tables Contains the list of SimpleTable instances, horizontally concatenated tables are not saved separately. extra_txt : string extra lines that are added to the text output, used for warnings and explanations. ''' def __init__(self): self.tables = [] self.extra_txt = None def __str__(self): return self.as_text() def __repr__(self): #return '<' + str(type(self)) + '>\n"""\n' + self.__str__() + '\n"""' return str(type(self)) + '\n"""\n' + self.__str__() + '\n"""' def _repr_html_(self): '''Display as HTML in IPython notebook.''' return self.as_html() def add_table_2cols(self, res, title=None, gleft=None, gright=None, yname=None, xname=None): '''add a double table, 2 tables with one column merged horizontally Parameters ---------- res : results instance some required information is directly taken from the result instance title : string or None if None, then a default title is used. gleft : list of tuples elements for the left table, tuples are (name, value) pairs If gleft is None, then a default table is created gright : list of tuples or None elements for the right table, tuples are (name, value) pairs yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" Returns ------- None : tables are attached ''' table = summary_top(res, title=title, gleft=gleft, gright=gright, yname=yname, xname=xname) self.tables.append(table) def add_table_params(self, res, yname=None, xname=None, alpha=.05, use_t=True): '''create and add a table for the parameter estimates Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) Returns ------- None : table is attached ''' if res.params.ndim == 1: table = summary_params(res, yname=yname, xname=xname, alpha=alpha, use_t=use_t) elif res.params.ndim == 2: # _, table = summary_params_2dflat(res, yname=yname, xname=xname, # alpha=alpha, use_t=use_t) _, table = summary_params_2dflat(res, endog_names=yname, exog_names=xname, alpha=alpha, use_t=use_t) else: raise ValueError('params has to be 1d or 2d') self.tables.append(table) def add_extra_txt(self, etext): '''add additional text that will be added at the end in text format Parameters ---------- etext : string string with lines that are added to the text output. ''' self.extra_txt = '\n'.join(etext) def as_text(self): '''return tables as string Returns ------- txt : string summary tables and extra text as one string ''' txt = summary_return(self.tables, return_fmt='text') if not self.extra_txt is None: txt = txt + '\n\n' + self.extra_txt return txt def as_latex(self): '''return tables as string Returns ------- latex : string summary tables and extra text as string of Latex Notes ----- This currently merges tables with different number of columns. It is recommended to use `as_latex_tabular` directly on the individual tables. ''' return summary_return(self.tables, return_fmt='latex') def as_csv(self): '''return tables as string Returns ------- csv : string concatenated summary tables in comma delimited format ''' return summary_return(self.tables, return_fmt='csv') def as_html(self): '''return tables as string Returns ------- html : string concatenated summary tables in HTML format ''' return summary_return(self.tables, return_fmt='html') if __name__ == "__main__": import statsmodels.api as sm data = sm.datasets.longley.load() data.exog = sm.add_constant(data.exog) res = sm.OLS(data.endog, data.exog).fit() #summary(
bsd-3-clause
gabyx/GRSFramework
simulations/python/modules/GRSFPlotSettings/loadSettings.py
1
1329
import sys,os,inspect from .generalSettings import * # use the matpllotlibrc settings in this folder def loadPlotSettings(mplModule): def getScriptPath(): return os.path.dirname(inspect.getfile(inspect.currentframe())) matplotlibrcFile = os.path.join(getScriptPath(),"matplotlibrc") # update matplotlib settings ======================================= if matplotlibrcFile is not None: print("Setting matplotlib settings from file: %s" % matplotlibrcFile) mplModule.rcParams = mplModule.rc_params_from_file(matplotlibrcFile, fail_on_error=True) defaults = { 'lines.linewidth': defaultLineSettings["thin"] , 'axes.linewidth': defaultLineSettings["thick"], "lines.marker" : None, # the default marker "lines.markeredgewidth" : cm2inch(defaultLineSettings["extra-thin"]), # the line width around the marker symbol "lines.markersize" : cm2pt(0.12), # markersize, in points "figure.figsize": (cm2inch(16),cm2inch(12)) } mplModule.rcParams.update(defaults) path = os.path.join(getScriptPath(),"MathMacros.sty") mplModule.rcParams["text.latex.preamble"] = [r"\def\dontLoadMathEnv{}",r"\input{%s}" % path] # ==================================================================
gpl-3.0
dricciardelli/vae2vec
capt_gen_e2e_adv.py
1
30123
# -*- coding: utf-8 -*- import math import os import tensorflow as tf import numpy as np import pandas as pd import pickle import pickle as pkl import cv2 import skimage import tensorflow.python.platform from tensorflow.python.ops import rnn from keras.preprocessing import sequence from collections import Counter from collections import defaultdict import itertools import discriminators test_image_path='./data/acoustic-guitar-player.jpg' vgg_path='./data/vgg16-20160129.tfmodel' n=50000-2 def map_lambda(): return n+1 def rev_map_lambda(): return "<UNK>" def load_text(n,capts,num_samples=None): # fname = 'Oxford_English_Dictionary.txt' # txt = [] # with open(fname,'rb') as f: # txt = f.readlines() # txt = [x.decode('utf-8').strip() for x in txt] # txt = [re.sub(r'[^a-zA-Z ]+', '', x) for x in txt if len(x) > 1] # List of words # word_list = [x.split(' ', 1)[0].strip() for x in txt] # # List of definitions # def_list = [x.split(' ', 1)[1].strip()for x in txt] with open('./training_data/training_data.pkl','rb') as raw: word_list,dl=pkl.load(raw) def_list=[] # def_list=[' '.join(defi) for defi in def_list] i=0 while i<len( dl): defi=dl[i] if len(defi)>0: def_list+=[' '.join(defi)] i+=1 else: dl.pop(i) word_list.pop(i) maxlen=0 minlen=100 for defi in def_list: minlen=min(minlen,len(defi.split())) maxlen=max(maxlen,len(defi.split())) print(minlen) print(maxlen) maxlen=30 # # Initialize the "CountVectorizer" object, which is scikit-learn's # # bag of words tool. # vectorizer = CountVectorizer(analyzer = "word", \ # tokenizer = None, \ # preprocessor = None, \ # stop_words = None, \ # max_features = None, \ # token_pattern='\\b\\w+\\b') # Keep single character words # _map,rev_map=get_one_hot_map(word_list,def_list,n) _map=pkl.load(open('maps.pkl','rb')) rev_map=pkl.load(open('rev_maps.pkl','rb')) if num_samples is not None: num_samples=len(capts) # X = map_one_hot(word_list[:num_samples],_map,1,n) # y = (36665, 56210) # print _map if capts is not None: # y,mask = map_one_hot(capts[:num_samples],_map,maxlen,n) # np.save('ycoh') y=np.load('ycoh.npy','r') else: # np.save('X',X) # np.save('yc',y) # np.save('maskc',mask) y=np.load('yaoh.npy','r') X=np.load('Xaoh.npy','r') mask=np.load('maskaoh.npy','r') print (np.max(y)) return X, y, mask,rev_map def get_one_hot_map(to_def,corpus,n): # words={} # for line in to_def: # if line: # words[line.split()[0]]=1 # counts=defaultdict(int) # uniq=defaultdict(int) # for line in corpus: # for word in line.split(): # if word not in words: # counts[word]+=1 # words=list(words.keys()) words=[] counts=defaultdict(int) uniq=defaultdict(int) for line in to_def+corpus: for word in line.split(): if word not in words: counts[word]+=1 _map=defaultdict(lambda :n+1) rev_map=defaultdict(lambda:"<UNK>") # words=words[:25000] for i in counts.values(): uniq[i]+=1 print (len(words)) # random.shuffle(words) words+=list(map(lambda z:z[0],reversed(sorted(counts.items(),key=lambda x:x[1]))))[:n-len(words)] print (len(words)) i=0 # random.shuffle(words) for num_bits in range(binary_dim): for bit_config in itertools.combinations_with_replacement(range(binary_dim),num_bits+1): bitmap=np.zeros(binary_dim) bitmap[np.array(bit_config)]=1 num=bitmap*(2** np.arange(binary_dim )) num=np.sum(num).astype(np.uint32) word=words[i] _map[word]=num rev_map[num]=word i+=1 if i>=len(words): break if i>=len(words): break # for word in words: # i+=1 # _map[word]=i # rev_map[i]=word rev_map[n+1]='<UNK>' if zero_end_tok: rev_map[0]='.' else: rev_map[0]='Start' rev_map[n+2]='End' print (list(reversed(sorted(uniq.items())))) print (len(list(uniq.items()))) # print rev_map return _map,rev_map def map_word_emb(corpus,_map): ### NOTE: ONLY WORKS ON TARGET WORD (DOES NOT HANDLE UNK PROPERLY) rtn=[] rtn2=[] for word in corpus: mapped=_map[word] rtn.append(mapped) if get_rand_vec: mapped_rand=random.choice(list(_map.keys())) while mapped_rand==word: mapped_rand=random.choice(list(_map.keys())) mapped_rand=_map[mapped_rand] rtn2.append(mapped_rand) if get_rand_vec: return np.array(rtn),np.array(rtn2) return np.array(rtn) def map_one_hot(corpus,_map,maxlen,n): if maxlen==1: if not form2: total_not=0 rtn=np.zeros([len(corpus),n+3],dtype=np.float32) for l,line in enumerate(corpus): if len(line)==0: rtn[l,-1]=1 else: mapped=_map[line] if mapped==75001: total_not+=1 rtn[l,mapped]=1 print (total_not,len(corpus)) return rtn else: total_not=0 if not onehot: rtn=np.zeros([len(corpus),binary_dim],dtype=np.float32) else: rtn=np.zeros([len(corpus),2**binary_dim],dtype=np.float32) for l,line in enumerate(corpus): # if len(line)==0: # rtn[l]=n+2 # else: # if line not in _map: # total_not+=1 mapped=_map[line] if mapped==75001: total_not+=1 if onehot: binrep=np.zeros(2**binary_dim) print line binrep[mapped]=1 else: binrep=(1&(mapped/(2**np.arange(binary_dim))).astype(np.uint32)).astype(np.float32) rtn[l]=binrep print (total_not,len(corpus)) return rtn else: if form2: rtn=np.zeros([len(corpus),maxlen+2,binary_dim],dtype=np.float32) else: rtn=np.zeros([len(corpus),maxlen+2],dtype=np.int32) print (rtn.shape) mask=np.zeros([len(corpus),maxlen+2],dtype=np.float32) print (mask.shape) mask[:,1]=1.0 totes=0 nopes=0 wtf=0 for l,_line in enumerate(corpus): x=0 line=_line.split() for i in range(min(len(line),maxlen)): # if line[i] not in _map: # nopes+=1 mapped=_map[line[i]] if form2: binrep=(1&(mapped/(2**np.arange(binary_dim))).astype(np.uint32)).astype(np.float32) rtn[l,i+1,:]=binrep else: rtn[l,i+1]=mapped if mapped==75001: wtf+=1 mask[l,i+1]=1.0 totes+=1 x=i+1 to_app=n+2 if zero_end_tok: to_app=0 if form2: rtn[l,x+1,:]=(1&(to_app/(2**np.arange(binary_dim))).astype(np.uint32)).astype(np.float32) else: rtn[l,x+1]=to_app mask[l,x+1]=1.0 print (nopes,totes,wtf) return rtn,mask def xavier_init(fan_in, fan_out, constant=1e-4): """ Xavier initialization of network weights""" # https://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow low = -constant*np.sqrt(6.0/(fan_in + fan_out)) high = constant*np.sqrt(6.0/(fan_in + fan_out)) return tf.random_uniform((fan_in, fan_out), minval=low, maxval=high, dtype=tf.float32) class Caption_Generator(): def __init__(self, dim_in, dim_embed, dim_hidden, batch_size, n_lstm_steps, n_words, init_b=None,from_image=False,n_input=None,n_lstm_input=None,n_z=None,discriminator=None): self.dim_in = dim_in self.dim_embed = dim_embed self.dim_hidden = dim_hidden self.batch_size = batch_size self.n_lstm_steps = n_lstm_steps self.n_words = n_words self.n_input = n_input self.n_lstm_input=n_lstm_input self.n_z=n_z self.discriminator= if from_image: with open(vgg_path,'rb') as f: fileContent = f.read() graph_def = tf.GraphDef() graph_def.ParseFromString(fileContent) self.images = tf.placeholder("float32", [1, 224, 224, 3]) tf.import_graph_def(graph_def, input_map={"images":self.images}) graph = tf.get_default_graph() self.sess = tf.InteractiveSession(graph=graph) self.from_image=from_image # declare the variables to be used for our word embeddings self.word_embedding = tf.Variable(tf.random_uniform([self.n_z, self.dim_embed], -0.1, 0.1), name='word_embedding') self.embedding_bias = tf.Variable(tf.zeros([dim_embed]), name='embedding_bias') # declare the LSTM itself self.lstm = tf.contrib.rnn.BasicLSTMCell(dim_hidden) # declare the variables to be used to embed the image feature embedding to the word embedding space self.img_embedding = tf.Variable(tf.random_uniform([dim_in, dim_hidden], -0.1, 0.1), name='img_embedding') self.img_embedding_bias = tf.Variable(tf.zeros([dim_hidden]), name='img_embedding_bias') # declare the variables to go from an LSTM output to a word encoding output self.word_encoding = tf.Variable(tf.random_uniform([dim_hidden, self.n_z], -0.1, 0.1), name='word_encoding') # initialize this bias variable from the preProBuildWordVocab output # optional initialization setter for encoding bias variable if init_b is not None: self.word_encoding_bias = tf.Variable(init_b, name='word_encoding_bias') else: self.word_encoding_bias = tf.Variable(tf.zeros([self.n_z]), name='word_encoding_bias') self.embw=tf.Variable(xavier_init(self.n_input,self.n_z),name='embw') self.embb=tf.Variable(tf.zeros([self.n_z]),name='embb') self.all_encoding_weights=[self.embw,self.embb] def build_model(self): # declaring the placeholders for our extracted image feature vectors, our caption, and our mask # (describes how long our caption is with an array of 0/1 values of length `maxlen` img = tf.placeholder(tf.float32, [self.batch_size, self.dim_in]) self.img=img caption_placeholder = tf.placeholder(tf.int32, [self.batch_size, self.n_lstm_steps]) self.caption_placeholder=caption_placeholder mask = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps]) self.mask=mask self.output_placeholder = tf.placeholder(tf.int32, [self.batch_size, self.n_lstm_steps]) network_weights = self._initialize_weights() # getting an initial LSTM embedding from our image_imbedding image_embedding = tf.matmul(img, self.img_embedding) + self.img_embedding_bias flat_caption_placeholder=tf.reshape(caption_placeholder,[-1]) #leverage one-hot sparsity to lookup embeddings fast embedded_input,KLD_loss=self._get_word_embedding([network_weights['variational_encoding'],network_weights['biases_variational_encoding']],network_weights['input_meaning'],flat_caption_placeholder,logit=True) KLD_loss=tf.multiply(KLD_loss,tf.reshape(mask,[-1,1])) KLD_loss=tf.reduce_sum(KLD_loss)*0 word_embeddings=tf.matmul(embedded_input,self.word_embedding)+self.embedding_bias word_embeddings=tf.reshape(word_embeddings,[self.batch_size,self.n_lstm_steps,-1]) #initialize lstm state state = self.lstm.zero_state(self.batch_size, dtype=tf.float32) rnn_output=[] with tf.variable_scope("RNN"): # unroll lstm for i in range(self.n_lstm_steps): if i > 0: # if this isn’t the first iteration of our LSTM we need to get the word_embedding corresponding # to the (i-1)th word in our caption current_embedding = word_embeddings[:,i-1,:] else: #if this is the first iteration of our LSTM we utilize the embedded image as our input current_embedding = image_embedding if i > 0: # allows us to reuse the LSTM tensor variable on each iteration tf.get_variable_scope().reuse_variables() out, state = self.lstm(current_embedding, state) # if i>0: rnn_output.append(tf.expand_dims(out,1)) #perform classification of output rnn_output=tf.concat(rnn_output,axis=1) rnn_output=tf.reshape(rnn_output,[self.batch_size*(self.n_lstm_steps),-1]) encoded_output=tf.matmul(rnn_output,self.word_encoding)+self.word_encoding_bias encoded_output=tf.reshape(tf.square(encoded_output),[self.batch_size*self.n_lstm_steps,-1])[:,1:] #get loss # normed_embedding= tf.nn.l2_normalize(encoded_output, dim=-1) # normed_target=tf.nn.l2_normalize(embedded_input,dim=-1) # cos_sim=tf.multiply(normed_embedding,normed_target)[:,1:] # cos_sim=(tf.reduce_sum(cos_sim,axis=-1)) # cos_sim=tf.reshape(cos_sim,[self.batch_size,-1]) # cos_sim=tf.reduce_sum(cos_sim[:,1:]*mask[:,1:]) # cos_sim=cos_sim/tf.reduce_sum(mask[:,1:]) # self.exp_loss=tf.reduce_sum((-cos_sim)) # # self.exp_loss=tf.reduce_sum(xentropy)/float(self.batch_size) # total_loss = tf.reduce_sum(-(cos_sim)) # mse=tf.reduce_sum(tf.reshape(tf.square(encoded_output-embedded_input),[self.batch_size*self.n_lstm_steps,1]),axis=-1)[:,1:]*(mask[:,1:]) # mse=tf.reduce_sum(mse)/tf.reduce_sum(mask[:,1:]) with tf.variable_scope('D',reuse=True) as scope: total_loss+=tf.reduce_mean(-tf.log(self.discriminator.discriminate(encoded_output,train=False))) self.D2=self.discriminator.discriminate(tf.stop_gradients(encoded_output),train=True) #average over timeseries length # total_loss=tf.reduce_sum(masked_xentropy)/tf.reduce_sum(mask[:,1:]) self.print_loss=total_loss total_loss+=KLD_loss/tf.reduce_sum(mask) return total_loss, img, caption_placeholder, mask def build_generator(self, maxlen, batchsize=1,from_image=False): #same setup as `build_model` function img = self.img image_embedding = tf.matmul(img, self.img_embedding) + self.img_embedding_bias state = self.lstm.zero_state(batchsize,dtype=tf.float32) #declare list to hold the words of our generated captions all_words = [] with tf.variable_scope("RNN"): # in the first iteration we have no previous word, so we directly pass in the image embedding # and set the `previous_word` to the embedding of the start token ([0]) for the future iterations output, state = self.lstm(image_embedding, state) previous_word = tf.nn.embedding_lookup(self.word_embedding, [0]) + self.embedding_bias for i in range(maxlen): tf.get_variable_scope().reuse_variables() out, state = self.lstm(previous_word, state) # get a get maximum probability word and it's encoding from the output of the LSTM logit = tf.matmul(out, self.word_encoding) + self.word_encoding_bias best_word = tf.argmax(logit, 1) with tf.device("/cpu:0"): # get the embedding of the best_word to use as input to the next iteration of our LSTM previous_word = tf.nn.embedding_lookup(self.word_embedding, best_word) previous_word += self.embedding_bias all_words.append(best_word) self.img=img self.all_words=all_words return img, all_words def _initialize_weights(self): all_weights = dict() trainability=False if not same_embedding: all_weights['input_meaning'] = { 'affine_weight': tf.Variable(xavier_init(self.n_z, self.n_lstm_input),name='affine_weight',trainable=trainability), 'affine_bias': tf.Variable(tf.zeros(self.n_lstm_input),name='affine_bias',trainable=trainability)} with tf.device('/cpu:0'): om=tf.Variable(xavier_init(self.n_z, self.n_z),name='out_mean',trainable=trainability) if not vanilla: all_weights['biases_variational_encoding'] = { 'out_mean': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_meanb',trainable=trainability), 'out_log_sigma': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_log_sigmab',trainable=trainability)} all_weights['variational_encoding'] = { 'out_mean': om, 'out_log_sigma': tf.Variable(xavier_init(self.n_input, self.n_z),name='out_log_sigma',trainable=trainability)} else: all_weights['biases_variational_encoding'] = { 'out_mean': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_meanb',trainable=trainability)} all_weights['variational_encoding'] = { 'out_mean': om} # self.no_reload+=all_weights['input_meaning'].values() # self.var_embs=[] # if transfertype2: # self.var_embs=all_weights['biases_variational_encoding'].values()+all_weights['variational_encoding'].values() # self.lstm=tf.contrib.rnn.BasicLSTMCell(n_lstm_input) # if lstm_stack>1: # self.lstm=tf.contrib.rnn.MultiRNNCell([self.lstm]*lstm_stack) # all_weights['LSTM'] = { # 'affine_weight': tf.Variable(xavier_init(n_z, n_lstm_input),name='affine_weight2'), # 'affine_bias': tf.Variable(tf.zeros(n_lstm_input),name='affine_bias2'), # 'encoding_weight': tf.Variable(xavier_init(n_lstm_input,n_input),name='encoding_weight'), # 'encoding_bias': tf.Variable(tf.zeros(n_input),name='encoding_bias'), # 'lstm': self.lstm} all_encoding_weights=[all_weights[x].values() for x in all_weights] for w in all_encoding_weights: self.all_encoding_weights+=w return all_weights def _get_word_embedding(self, ve_weights, lstm_weights, x,logit=False): # x=tf.matmul(x,self.embw)+self.embb if logit: z,vae_loss=self._vae_sample(ve_weights[0],ve_weights[1],x,lookup=True) else: if not form2: z,vae_loss=self._vae_sample(ve_weights[0],ve_weights[1],x, True) else: z,vae_loss=self._vae_sample(ve_weights[0],ve_weights[1],tf.one_hot(x,depth=self.n_input)) all_the_f_one_h.append(tf.one_hot(x,depth=self.n_input)) embedding=tf.matmul(z,self.word_embedding)+self.embedding_bias return embedding,vae_loss def _vae_sample(self, weights, biases, x, lookup=False): #TODO: consider adding a linear transform layer+relu or softplus here first if not lookup: mu=tf.matmul(x,weights['out_mean'])+biases['out_mean'] if not vanilla: logvar=tf.matmul(x,weights['out_log_sigma'])+biases['out_log_sigma'] else: with tf.device('/cpu:0'): mu=tf.nn.embedding_lookup(weights['out_mean'],x) mu+=biases['out_mean'] if not vanilla: with tf.device('/cpu:0'): logvar=tf.nn.embedding_lookup(weights['out_log_sigma'],x) logvar+=biases['out_log_sigma'] if not vanilla: epsilon=tf.random_normal(tf.shape(logvar),name='epsilon') std=tf.exp(.5*logvar) z=mu+tf.multiply(std,epsilon) else: z=mu KLD=0.0 if not vanilla: KLD = -0.5 * tf.reduce_sum(1 + logvar - tf.pow(mu, 2) - tf.exp(logvar),axis=-1) print logvar.shape,epsilon.shape,std.shape,z.shape,KLD.shape return z,KLD def crop_image(self,x, target_height=227, target_width=227, as_float=True,from_path=True): #image preprocessing to crop and resize image image = (x) if from_path==True: image=cv2.imread(image) if as_float: image = image.astype(np.float32) if len(image.shape) == 2: image = np.tile(image[:,:,None], 3) elif len(image.shape) == 4: image = image[:,:,:,0] height, width, rgb = image.shape if width == height: resized_image = cv2.resize(image, (target_height,target_width)) elif height < width: resized_image = cv2.resize(image, (int(width * float(target_height)/height), target_width)) cropping_length = int((resized_image.shape[1] - target_height) / 2) resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length] else: resized_image = cv2.resize(image, (target_height, int(height * float(target_width) / width))) cropping_length = int((resized_image.shape[0] - target_width) / 2) resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:] return cv2.resize(resized_image, (target_height, target_width)) def read_image(self,path=None): # parses image from file path and crops/resizes if path is None: path=test_image_path img = crop_image(path, target_height=224, target_width=224) if img.shape[2] == 4: img = img[:,:,:3] img = img[None, ...] return img def get_caption(self,x=None): #gets caption from an image by feeding it through imported VGG16 graph if self.from_image: feat = read_image(x) fc7 = self.sess.run(graph.get_tensor_by_name("import/Relu_1:0"), feed_dict={self.images:feat}) else: fc7=np.load(x,'r') generated_word_index= self.sess.run(self.generated_words, feed_dict={self.img:fc7}) generated_word_index = np.hstack(generated_word_index) generated_words = [ixtoword[x] for x in generated_word_index] punctuation = np.argmax(np.array(generated_words) == '.')+1 generated_words = generated_words[:punctuation] generated_sentence = ' '.join(generated_words) return (generated_sentence) def get_data(annotation_path, feature_path): #load training/validation data annotations = pd.read_table(annotation_path, sep='\t', header=None, names=['image', 'caption']) return np.load(feature_path,'r'), annotations['caption'].values def preProBuildWordVocab(sentence_iterator, word_count_threshold=30): # function from Andre Karpathy's NeuralTalk #process and vectorize training/validation captions print('preprocessing %d word vocab' % (word_count_threshold, )) word_counts = {} nsents = 0 for sent in sentence_iterator: nsents += 1 for w in sent.lower().split(' '): word_counts[w] = word_counts.get(w, 0) + 1 vocab = [w for w in word_counts if word_counts[w] >= word_count_threshold] print('preprocessed words %d -> %d' % (len(word_counts), len(vocab))) ixtoword = {} ixtoword[0] = '.' wordtoix = {} wordtoix['#START#'] = 0 ix = 1 for w in vocab: wordtoix[w] = ix ixtoword[ix] = w ix += 1 word_counts['.'] = nsents bias_init_vector = np.array([1.0*word_counts[ixtoword[i]] for i in ixtoword]) bias_init_vector /= np.sum(bias_init_vector) bias_init_vector = np.log(bias_init_vector) bias_init_vector -= np.max(bias_init_vector) return wordtoix, ixtoword, bias_init_vector.astype(np.float32) dim_embed = 256 dim_hidden = 256 dim_in = 4096 batch_size = 128 momentum = 0.9 n_epochs = 25 def train(learning_rate=0.001, continue_training=False): tf.reset_default_graph() feats, captions = get_data(annotation_path, feature_path) wordtoix, ixtoword, init_b = preProBuildWordVocab(captions) np.save('data/ixtoword', ixtoword) print ('num words:',len(ixtoword)) sess = tf.InteractiveSession() n_words = len(wordtoix) maxlen = 30 X, final_captions, mask, _map = load_text(2**19-3,captions) running_decay=1 decay_rate=0.9999302192204246 # with tf.device('/gpu:0'): with tf.variable_scope('D',reuse=True): D=discriminators.DLSTM(maxlen+2,2,256,512,n_z) caption_generator = Caption_Generator(dim_in, dim_hidden, dim_embed, batch_size, maxlen+2, n_words, np.zeros(n_lstm_input).astype(np.float32),n_input=n_input,n_lstm_input=n_lstm_input,n_z=n_z,discriminator=D) loss, image, sentence, mask = caption_generator.build_model() saver = tf.train.Saver(max_to_keep=100) train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss) tf.global_variables_initializer().run() tf.train.Saver(var_list=caption_generator.all_encoding_weights,max_to_keep=100).restore(sess,tf.train.latest_checkpoint('./models/tensorflow')) if continue_training: saver.restore(sess,tf.train.latest_checkpoint(model_path)) losses=[] for epoch in range(n_epochs): if epoch==1: for w in caption_generator.all_encoding_weights: w.trainable=True index = (np.arange(len(feats)).astype(int)) np.random.shuffle(index) index=index[:] i=0 for start, end in zip( range(0, len(index), batch_size), range(batch_size, len(index), batch_size)): #format data batch current_feats = feats[index[start:end]] current_captions = captions[index[start:end]] current_caption_ind = [x for x in map(lambda cap: [wordtoix[word] for word in cap.lower().split(' ')[:-1] if word in wordtoix], current_captions)] current_caption_matrix = sequence.pad_sequences(current_caption_ind, padding='post', maxlen=maxlen+1) current_caption_matrix = np.hstack( [np.full( (len(current_caption_matrix),1), 0), current_caption_matrix] ) current_mask_matrix = np.zeros((current_caption_matrix.shape[0], current_caption_matrix.shape[1])) nonzeros = np.array([x for x in map(lambda x: (x != 0).sum()+2, current_caption_matrix )]) current_capts=final_captions[index[start:end]] for ind, row in enumerate(current_mask_matrix): row[:nonzeros[ind]] = 1 _, loss_value,total_loss = sess.run([train_op, caption_generator.print_loss,loss], feed_dict={ image: current_feats.astype(np.float32), caption_generator.output_placeholder : current_caption_matrix.astype(np.int32), mask : current_mask_matrix.astype(np.float32), sentence : current_capts.astype(np.float32) }) print("Current Cost: ", loss_value, "\t Epoch {}/{}".format(epoch, n_epochs), "\t Iter {}/{}".format(start,len(feats))) losses.append(loss_value*running_decay) if epoch<9: if i%3==0: running_decay*=decay_rate else: if i%8==0: running_decay*=decay_rate i+=1 print losses[-1] print("Saving the model from epoch: ", epoch) pkl.dump(losses,open('losses/loss_e2e.pkl','wb')) saver.save(sess, os.path.join(model_path, 'model'), global_step=epoch) learning_rate *= 0.95 def test(sess,image,generated_words,ixtoword,idx=0): # Naive greedy search feats, captions = get_data(annotation_path, feature_path) feat = np.array([feats[idx]]) saver = tf.train.Saver() sanity_check= False # sanity_check=True if not sanity_check: saved_path=tf.train.latest_checkpoint(model_path) saver.restore(sess, saved_path) else: tf.global_variables_initializer().run() generated_word_index= sess.run(generated_words, feed_dict={image:feat}) generated_word_index = np.hstack(generated_word_index) generated_sentence = [ixtoword[x] for x in generated_word_index] print(generated_sentence) if __name__=='__main__': model_path = './models/tensorflow_e2e_adv' feature_path = './data/feats.npy' annotation_path = './data/results_20130124.token' import sys feats, captions = get_data(annotation_path, feature_path) n_input=19 binary_dim=n_input n_lstm_input=512 n_z=512/2 zero_end_tok=True form2=True vanilla=True onehot=False same_embedding=False if sys.argv[1]=='train': train() elif sys.argv[1]=='test': ixtoword = np.load('data/ixtoword.npy').tolist() n_words = len(ixtoword) maxlen=15 sess = tf.InteractiveSession() batch_size=1 caption_generator = Caption_Generator(dim_in, dim_hidden, dim_embed, 1, maxlen+2, n_words,n_input=n_input,n_lstm_input=n_lstm_input,n_z=n_z) image, generated_words = caption_generator.build_generator(maxlen=maxlen) test(sess,image,generated_words,ixtoword,1)
mit
sanjanalab/GUIDES
static/data/pre_processed/precompute_exon_expression.py
2
2146
# Goal: To precompute gene expression information for each exon using cPickle for easy access later. # NO MORE PD DATAFRAMES. They are slow. Let's optimize on C. import pickle import msgpack import json import math df_normalized = pickle.load(open('pd_by_tissue_normalized.p', "rb")) tissues = df_normalized.columns[1:] with open('genes_list.json') as genes_list_file: genes_list = json.load(genes_list_file) # gene format: {"ensembl_id": "ENSG00000261122.2", "name": "5S_rRNA", "description": ""} for gene in genes_list: exon = 0 df_gene = df_normalized[df_normalized.Id.str.contains(ensembl_gene + '_' + exon)] # We're done here... if df_gene.shape[0] == 0: exon = 0 continue # Make an associative array from tissues -> expression values expression = {} exon = df_gene.iloc[0] for t in tissues: expression_val = exon[t] if math.isnan(expression_val): expression_val = 0 expression[t] = expression_val outfile_name = gene["ensembl_id"] + "_" + str(exon) + ".p" output_path = os.path.join('../exon_expression_msgpack/', outfile_name) with open(output_path, 'w') as outfile: msgpack.dump(gRNAs, outfile) seq = gene_exon_file(gene["ensembl_id"], exon) import time i = 0 def test_pandas_timing(): t0 = time.time() with open('genes_list.json') as genes_list_file: genes_list = json.load(genes_list_file) for gene in genes_list[:100]: df_gene = df_normalized[df_normalized.Id.str.contains(gene['ensembl_id'] + '_0')] print time.time() - t0 print (time.time() - t0) / 100 def test_guides_timing(): t0 = time.time() with open('genes_list.json') as genes_list_file: genes_list = json.load(genes_list_file) for gene in genes_list[:100]: dfff_gene = getGuides(gene['ensembl_id'] + '_0') print time.time() - t0 print (time.time() - t0) / 100 def getGuides(gene_exon): try: filename = gene_exon + ".p" path = os.path.join('../GRCh37_guides_cpickle/', filename) with open(path) as datafile: gRNAs = cPickle.load(datafile) return gRNAs except IOError: pass
bsd-3-clause
giuliavezzani/giuliavezzani.github.io
markdown_generator/publications.py
197
3887
# coding: utf-8 # # Publications markdown generator for academicpages # # Takes a TSV of publications with metadata and converts them for use with [academicpages.github.io](academicpages.github.io). This is an interactive Jupyter notebook, with the core python code in publications.py. Run either from the `markdown_generator` folder after replacing `publications.tsv` with one that fits your format. # # TODO: Make this work with BibTex and other databases of citations, rather than Stuart's non-standard TSV format and citation style. # # ## Data format # # The TSV needs to have the following columns: pub_date, title, venue, excerpt, citation, site_url, and paper_url, with a header at the top. # # - `excerpt` and `paper_url` can be blank, but the others must have values. # - `pub_date` must be formatted as YYYY-MM-DD. # - `url_slug` will be the descriptive part of the .md file and the permalink URL for the page about the paper. The .md file will be `YYYY-MM-DD-[url_slug].md` and the permalink will be `https://[yourdomain]/publications/YYYY-MM-DD-[url_slug]` # ## Import pandas # # We are using the very handy pandas library for dataframes. # In[2]: import pandas as pd # ## Import TSV # # Pandas makes this easy with the read_csv function. We are using a TSV, so we specify the separator as a tab, or `\t`. # # I found it important to put this data in a tab-separated values format, because there are a lot of commas in this kind of data and comma-separated values can get messed up. However, you can modify the import statement, as pandas also has read_excel(), read_json(), and others. # In[3]: publications = pd.read_csv("publications.tsv", sep="\t", header=0) publications # ## Escape special characters # # YAML is very picky about how it takes a valid string, so we are replacing single and double quotes (and ampersands) with their HTML encoded equivilents. This makes them look not so readable in raw format, but they are parsed and rendered nicely. # In[4]: html_escape_table = { "&": "&amp;", '"': "&quot;", "'": "&apos;" } def html_escape(text): """Produce entities within text.""" return "".join(html_escape_table.get(c,c) for c in text) # ## Creating the markdown files # # This is where the heavy lifting is done. This loops through all the rows in the TSV dataframe, then starts to concatentate a big string (```md```) that contains the markdown for each type. It does the YAML metadata first, then does the description for the individual page. If you don't want something to appear (like the "Recommended citation") # In[5]: import os for row, item in publications.iterrows(): md_filename = str(item.pub_date) + "-" + item.url_slug + ".md" html_filename = str(item.pub_date) + "-" + item.url_slug year = item.pub_date[:4] ## YAML variables md = "---\ntitle: \"" + item.title + '"\n' md += """collection: publications""" md += """\npermalink: /publication/""" + html_filename if len(str(item.excerpt)) > 5: md += "\nexcerpt: '" + html_escape(item.excerpt) + "'" md += "\ndate: " + str(item.pub_date) md += "\nvenue: '" + html_escape(item.venue) + "'" if len(str(item.paper_url)) > 5: md += "\npaperurl: '" + item.paper_url + "'" md += "\ncitation: '" + html_escape(item.citation) + "'" md += "\n---" ## Markdown description for individual page if len(str(item.paper_url)) > 5: md += "\n\n<a href='" + item.paper_url + "'>Download paper here</a>\n" if len(str(item.excerpt)) > 5: md += "\n" + html_escape(item.excerpt) + "\n" md += "\nRecommended citation: " + item.citation md_filename = os.path.basename(md_filename) with open("../_publications/" + md_filename, 'w') as f: f.write(md)
mit
shuangshuangwang/spark
python/pyspark/sql/tests/test_pandas_udf_grouped_agg.py
1
20804
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from pyspark.rdd import PythonEvalType from pyspark.sql import Row from pyspark.sql.functions import array, explode, col, lit, mean, sum, \ udf, pandas_udf, PandasUDFType from pyspark.sql.types import ArrayType, TimestampType from pyspark.sql.utils import AnalysisException from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ pandas_requirement_message, pyarrow_requirement_message from pyspark.testing.utils import QuietTest if have_pandas: import pandas as pd from pandas.util.testing import assert_frame_equal @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) # type: ignore[arg-type] class GroupedAggPandasUDFTests(ReusedSQLTestCase): @property def data(self): return self.spark.range(10).toDF('id') \ .withColumn("vs", array([lit(i * 1.0) + col('id') for i in range(20, 30)])) \ .withColumn("v", explode(col('vs'))) \ .drop('vs') \ .withColumn('w', lit(1.0)) @property def python_plus_one(self): @udf('double') def plus_one(v): assert isinstance(v, (int, float)) return v + 1 return plus_one @property def pandas_scalar_plus_two(self): @pandas_udf('double', PandasUDFType.SCALAR) def plus_two(v): assert isinstance(v, pd.Series) return v + 2 return plus_two @property def pandas_agg_mean_udf(self): @pandas_udf('double', PandasUDFType.GROUPED_AGG) def avg(v): return v.mean() return avg @property def pandas_agg_sum_udf(self): @pandas_udf('double', PandasUDFType.GROUPED_AGG) def sum(v): return v.sum() return sum @property def pandas_agg_weighted_mean_udf(self): import numpy as np @pandas_udf('double', PandasUDFType.GROUPED_AGG) def weighted_mean(v, w): return np.average(v, weights=w) return weighted_mean def test_manual(self): df = self.data sum_udf = self.pandas_agg_sum_udf mean_udf = self.pandas_agg_mean_udf mean_arr_udf = pandas_udf( self.pandas_agg_mean_udf.func, ArrayType(self.pandas_agg_mean_udf.returnType), self.pandas_agg_mean_udf.evalType) result1 = df.groupby('id').agg( sum_udf(df.v), mean_udf(df.v), mean_arr_udf(array(df.v))).sort('id') expected1 = self.spark.createDataFrame( [[0, 245.0, 24.5, [24.5]], [1, 255.0, 25.5, [25.5]], [2, 265.0, 26.5, [26.5]], [3, 275.0, 27.5, [27.5]], [4, 285.0, 28.5, [28.5]], [5, 295.0, 29.5, [29.5]], [6, 305.0, 30.5, [30.5]], [7, 315.0, 31.5, [31.5]], [8, 325.0, 32.5, [32.5]], [9, 335.0, 33.5, [33.5]]], ['id', 'sum(v)', 'avg(v)', 'avg(array(v))']) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_basic(self): df = self.data weighted_mean_udf = self.pandas_agg_weighted_mean_udf # Groupby one column and aggregate one UDF with literal result1 = df.groupby('id').agg(weighted_mean_udf(df.v, lit(1.0))).sort('id') expected1 = df.groupby('id').agg(mean(df.v).alias('weighted_mean(v, 1.0)')).sort('id') assert_frame_equal(expected1.toPandas(), result1.toPandas()) # Groupby one expression and aggregate one UDF with literal result2 = df.groupby((col('id') + 1)).agg(weighted_mean_udf(df.v, lit(1.0)))\ .sort(df.id + 1) expected2 = df.groupby((col('id') + 1))\ .agg(mean(df.v).alias('weighted_mean(v, 1.0)')).sort(df.id + 1) assert_frame_equal(expected2.toPandas(), result2.toPandas()) # Groupby one column and aggregate one UDF without literal result3 = df.groupby('id').agg(weighted_mean_udf(df.v, df.w)).sort('id') expected3 = df.groupby('id').agg(mean(df.v).alias('weighted_mean(v, w)')).sort('id') assert_frame_equal(expected3.toPandas(), result3.toPandas()) # Groupby one expression and aggregate one UDF without literal result4 = df.groupby((col('id') + 1).alias('id'))\ .agg(weighted_mean_udf(df.v, df.w))\ .sort('id') expected4 = df.groupby((col('id') + 1).alias('id'))\ .agg(mean(df.v).alias('weighted_mean(v, w)'))\ .sort('id') assert_frame_equal(expected4.toPandas(), result4.toPandas()) def test_unsupported_types(self): with QuietTest(self.sc): with self.assertRaisesRegexp(NotImplementedError, 'not supported'): pandas_udf( lambda x: x, ArrayType(ArrayType(TimestampType())), PandasUDFType.GROUPED_AGG) with QuietTest(self.sc): with self.assertRaisesRegexp(NotImplementedError, 'not supported'): @pandas_udf('mean double, std double', PandasUDFType.GROUPED_AGG) def mean_and_std_udf(v): return v.mean(), v.std() with QuietTest(self.sc): with self.assertRaisesRegexp(NotImplementedError, 'not supported'): @pandas_udf(ArrayType(TimestampType()), PandasUDFType.GROUPED_AGG) def mean_and_std_udf(v): return {v.mean(): v.std()} def test_alias(self): df = self.data mean_udf = self.pandas_agg_mean_udf result1 = df.groupby('id').agg(mean_udf(df.v).alias('mean_alias')) expected1 = df.groupby('id').agg(mean(df.v).alias('mean_alias')) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_mixed_sql(self): """ Test mixing group aggregate pandas UDF with sql expression. """ df = self.data sum_udf = self.pandas_agg_sum_udf # Mix group aggregate pandas UDF with sql expression result1 = (df.groupby('id') .agg(sum_udf(df.v) + 1) .sort('id')) expected1 = (df.groupby('id') .agg(sum(df.v) + 1) .sort('id')) # Mix group aggregate pandas UDF with sql expression (order swapped) result2 = (df.groupby('id') .agg(sum_udf(df.v + 1)) .sort('id')) expected2 = (df.groupby('id') .agg(sum(df.v + 1)) .sort('id')) # Wrap group aggregate pandas UDF with two sql expressions result3 = (df.groupby('id') .agg(sum_udf(df.v + 1) + 2) .sort('id')) expected3 = (df.groupby('id') .agg(sum(df.v + 1) + 2) .sort('id')) assert_frame_equal(expected1.toPandas(), result1.toPandas()) assert_frame_equal(expected2.toPandas(), result2.toPandas()) assert_frame_equal(expected3.toPandas(), result3.toPandas()) def test_mixed_udfs(self): """ Test mixing group aggregate pandas UDF with python UDF and scalar pandas UDF. """ df = self.data plus_one = self.python_plus_one plus_two = self.pandas_scalar_plus_two sum_udf = self.pandas_agg_sum_udf # Mix group aggregate pandas UDF and python UDF result1 = (df.groupby('id') .agg(plus_one(sum_udf(df.v))) .sort('id')) expected1 = (df.groupby('id') .agg(plus_one(sum(df.v))) .sort('id')) # Mix group aggregate pandas UDF and python UDF (order swapped) result2 = (df.groupby('id') .agg(sum_udf(plus_one(df.v))) .sort('id')) expected2 = (df.groupby('id') .agg(sum(plus_one(df.v))) .sort('id')) # Mix group aggregate pandas UDF and scalar pandas UDF result3 = (df.groupby('id') .agg(sum_udf(plus_two(df.v))) .sort('id')) expected3 = (df.groupby('id') .agg(sum(plus_two(df.v))) .sort('id')) # Mix group aggregate pandas UDF and scalar pandas UDF (order swapped) result4 = (df.groupby('id') .agg(plus_two(sum_udf(df.v))) .sort('id')) expected4 = (df.groupby('id') .agg(plus_two(sum(df.v))) .sort('id')) # Wrap group aggregate pandas UDF with two python UDFs and use python UDF in groupby result5 = (df.groupby(plus_one(df.id)) .agg(plus_one(sum_udf(plus_one(df.v)))) .sort('plus_one(id)')) expected5 = (df.groupby(plus_one(df.id)) .agg(plus_one(sum(plus_one(df.v)))) .sort('plus_one(id)')) # Wrap group aggregate pandas UDF with two scala pandas UDF and user scala pandas UDF in # groupby result6 = (df.groupby(plus_two(df.id)) .agg(plus_two(sum_udf(plus_two(df.v)))) .sort('plus_two(id)')) expected6 = (df.groupby(plus_two(df.id)) .agg(plus_two(sum(plus_two(df.v)))) .sort('plus_two(id)')) assert_frame_equal(expected1.toPandas(), result1.toPandas()) assert_frame_equal(expected2.toPandas(), result2.toPandas()) assert_frame_equal(expected3.toPandas(), result3.toPandas()) assert_frame_equal(expected4.toPandas(), result4.toPandas()) assert_frame_equal(expected5.toPandas(), result5.toPandas()) assert_frame_equal(expected6.toPandas(), result6.toPandas()) def test_multiple_udfs(self): """ Test multiple group aggregate pandas UDFs in one agg function. """ df = self.data mean_udf = self.pandas_agg_mean_udf sum_udf = self.pandas_agg_sum_udf weighted_mean_udf = self.pandas_agg_weighted_mean_udf result1 = (df.groupBy('id') .agg(mean_udf(df.v), sum_udf(df.v), weighted_mean_udf(df.v, df.w)) .sort('id') .toPandas()) expected1 = (df.groupBy('id') .agg(mean(df.v), sum(df.v), mean(df.v).alias('weighted_mean(v, w)')) .sort('id') .toPandas()) assert_frame_equal(expected1, result1) def test_complex_groupby(self): df = self.data sum_udf = self.pandas_agg_sum_udf plus_one = self.python_plus_one plus_two = self.pandas_scalar_plus_two # groupby one expression result1 = df.groupby(df.v % 2).agg(sum_udf(df.v)) expected1 = df.groupby(df.v % 2).agg(sum(df.v)) # empty groupby result2 = df.groupby().agg(sum_udf(df.v)) expected2 = df.groupby().agg(sum(df.v)) # groupby one column and one sql expression result3 = df.groupby(df.id, df.v % 2).agg(sum_udf(df.v)).orderBy(df.id, df.v % 2) expected3 = df.groupby(df.id, df.v % 2).agg(sum(df.v)).orderBy(df.id, df.v % 2) # groupby one python UDF result4 = df.groupby(plus_one(df.id)).agg(sum_udf(df.v)) expected4 = df.groupby(plus_one(df.id)).agg(sum(df.v)) # groupby one scalar pandas UDF result5 = df.groupby(plus_two(df.id)).agg(sum_udf(df.v)).sort('sum(v)') expected5 = df.groupby(plus_two(df.id)).agg(sum(df.v)).sort('sum(v)') # groupby one expression and one python UDF result6 = df.groupby(df.v % 2, plus_one(df.id)).agg(sum_udf(df.v)) expected6 = df.groupby(df.v % 2, plus_one(df.id)).agg(sum(df.v)) # groupby one expression and one scalar pandas UDF result7 = (df.groupby(df.v % 2, plus_two(df.id)) .agg(sum_udf(df.v)).sort(['sum(v)', 'plus_two(id)'])) expected7 = (df.groupby(df.v % 2, plus_two(df.id)) .agg(sum(df.v)).sort(['sum(v)', 'plus_two(id)'])) assert_frame_equal(expected1.toPandas(), result1.toPandas()) assert_frame_equal(expected2.toPandas(), result2.toPandas()) assert_frame_equal(expected3.toPandas(), result3.toPandas()) assert_frame_equal(expected4.toPandas(), result4.toPandas()) assert_frame_equal(expected5.toPandas(), result5.toPandas()) assert_frame_equal(expected6.toPandas(), result6.toPandas()) assert_frame_equal(expected7.toPandas(), result7.toPandas()) def test_complex_expressions(self): df = self.data plus_one = self.python_plus_one plus_two = self.pandas_scalar_plus_two sum_udf = self.pandas_agg_sum_udf # Test complex expressions with sql expression, python UDF and # group aggregate pandas UDF result1 = (df.withColumn('v1', plus_one(df.v)) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum_udf(col('v')), sum_udf(col('v1') + 3), sum_udf(col('v2')) + 5, plus_one(sum_udf(col('v1'))), sum_udf(plus_one(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) expected1 = (df.withColumn('v1', df.v + 1) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum(col('v')), sum(col('v1') + 3), sum(col('v2')) + 5, plus_one(sum(col('v1'))), sum(plus_one(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) # Test complex expressions with sql expression, scala pandas UDF and # group aggregate pandas UDF result2 = (df.withColumn('v1', plus_one(df.v)) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum_udf(col('v')), sum_udf(col('v1') + 3), sum_udf(col('v2')) + 5, plus_two(sum_udf(col('v1'))), sum_udf(plus_two(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) expected2 = (df.withColumn('v1', df.v + 1) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum(col('v')), sum(col('v1') + 3), sum(col('v2')) + 5, plus_two(sum(col('v1'))), sum(plus_two(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) # Test sequential groupby aggregate result3 = (df.groupby('id') .agg(sum_udf(df.v).alias('v')) .groupby('id') .agg(sum_udf(col('v'))) .sort('id') .toPandas()) expected3 = (df.groupby('id') .agg(sum(df.v).alias('v')) .groupby('id') .agg(sum(col('v'))) .sort('id') .toPandas()) assert_frame_equal(expected1, result1) assert_frame_equal(expected2, result2) assert_frame_equal(expected3, result3) def test_retain_group_columns(self): with self.sql_conf({"spark.sql.retainGroupColumns": False}): df = self.data sum_udf = self.pandas_agg_sum_udf result1 = df.groupby(df.id).agg(sum_udf(df.v)) expected1 = df.groupby(df.id).agg(sum(df.v)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_array_type(self): df = self.data array_udf = pandas_udf(lambda x: [1.0, 2.0], 'array<double>', PandasUDFType.GROUPED_AGG) result1 = df.groupby('id').agg(array_udf(df['v']).alias('v2')) self.assertEquals(result1.first()['v2'], [1.0, 2.0]) def test_invalid_args(self): df = self.data plus_one = self.python_plus_one mean_udf = self.pandas_agg_mean_udf with QuietTest(self.sc): with self.assertRaisesRegexp( AnalysisException, 'nor.*aggregate function'): df.groupby(df.id).agg(plus_one(df.v)).collect() with QuietTest(self.sc): with self.assertRaisesRegexp( AnalysisException, 'aggregate function.*argument.*aggregate function'): df.groupby(df.id).agg(mean_udf(mean_udf(df.v))).collect() with QuietTest(self.sc): with self.assertRaisesRegexp( AnalysisException, 'mixture.*aggregate function.*group aggregate pandas UDF'): df.groupby(df.id).agg(mean_udf(df.v), mean(df.v)).collect() def test_register_vectorized_udf_basic(self): sum_pandas_udf = pandas_udf( lambda v: v.sum(), "integer", PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF) self.assertEqual(sum_pandas_udf.evalType, PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF) group_agg_pandas_udf = self.spark.udf.register("sum_pandas_udf", sum_pandas_udf) self.assertEqual(group_agg_pandas_udf.evalType, PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF) q = "SELECT sum_pandas_udf(v1) FROM VALUES (3, 0), (2, 0), (1, 1) tbl(v1, v2) GROUP BY v2" actual = sorted(map(lambda r: r[0], self.spark.sql(q).collect())) expected = [1, 5] self.assertEqual(actual, expected) def test_grouped_with_empty_partition(self): data = [Row(id=1, x=2), Row(id=1, x=3), Row(id=2, x=4)] expected = [Row(id=1, sum=5), Row(id=2, x=4)] num_parts = len(data) + 1 df = self.spark.createDataFrame(self.sc.parallelize(data, numSlices=num_parts)) f = pandas_udf(lambda x: x.sum(), 'int', PandasUDFType.GROUPED_AGG) result = df.groupBy('id').agg(f(df['x']).alias('sum')).collect() self.assertEqual(result, expected) def test_grouped_without_group_by_clause(self): @pandas_udf('double', PandasUDFType.GROUPED_AGG) def max_udf(v): return v.max() df = self.spark.range(0, 100) self.spark.udf.register('max_udf', max_udf) with self.tempView("table"): df.createTempView('table') agg1 = df.agg(max_udf(df['id'])) agg2 = self.spark.sql("select max_udf(id) from table") assert_frame_equal(agg1.toPandas(), agg2.toPandas()) def test_no_predicate_pushdown_through(self): # SPARK-30921: We should not pushdown predicates of PythonUDFs through Aggregate. import numpy as np @pandas_udf('float', PandasUDFType.GROUPED_AGG) def mean(x): return np.mean(x) df = self.spark.createDataFrame([ Row(id=1, foo=42), Row(id=2, foo=1), Row(id=2, foo=2) ]) agg = df.groupBy('id').agg(mean('foo').alias("mean")) filtered = agg.filter(agg['mean'] > 40.0) assert(filtered.collect()[0]["mean"] == 42.0) if __name__ == "__main__": from pyspark.sql.tests.test_pandas_udf_grouped_agg import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
wanghaven/nupic
examples/opf/tools/MirrorImageViz/mirrorImageViz.py
50
7221
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- # Author: Surabhi Gupta import sys import numpy as np import matplotlib.pylab as pyl def analyzeOverlaps(activeCoincsFile, encodingsFile, dataset): '''Mirror Image Visualization: Shows the encoding space juxtaposed against the coincidence space. The encoding space is the bottom-up sensory encoding and the coincidence space depicts the corresponding activation of coincidences in the SP. Hence, the mirror image visualization is a visual depiction of the mapping of SP cells to the input representations. Note: * The files spBUOut and sensorBUOut are assumed to be in the output format used for LPF experiment outputs. * BU outputs for some sample datasets are provided. Specify the name of the dataset as an option while running this script. ''' lines = activeCoincsFile.readlines() inputs = encodingsFile.readlines() w = len(inputs[0].split(' '))-1 patterns = set([]) encodings = set([]) coincs = [] #The set of all coincidences that have won at least once reUsedCoincs = [] firstLine = inputs[0].split(' ') size = int(firstLine.pop(0)) spOutput = np.zeros((len(lines),40)) inputBits = np.zeros((len(lines),w)) print 'Total n:', size print 'Total number of records in the file:', len(lines), '\n' print 'w:', w count = 0 for x in xrange(len(lines)): inputSpace = [] #Encoded representation for each input spBUout = [int(z) for z in lines[x].split(' ')] spBUout.pop(0) #The first element of each row of spBUOut is the size of the SP temp = set(spBUout) spOutput[x]=spBUout input = [int(z) for z in inputs[x].split(' ')] input.pop(0) #The first element of each row of sensorBUout is the size of the encoding space tempInput = set(input) inputBits[x]=input #Creating the encoding space for m in xrange(size): if m in tempInput: inputSpace.append(m) else: inputSpace.append('|') #A non-active bit repeatedBits = tempInput.intersection(encodings) #Storing the bits that have been previously active reUsed = temp.intersection(patterns) #Checking if any of the active cells have been previously active #Dividing the coincidences into two difference categories. if len(reUsed)==0: coincs.append((count,temp,repeatedBits,inputSpace, tempInput)) #Pattern no, active cells, repeated bits, encoding (full), encoding (summary) else: reUsedCoincs.append((count,temp,repeatedBits,inputSpace, tempInput)) patterns=patterns.union(temp) #Adding the active cells to the set of coincs that have been active at least once encodings = encodings.union(tempInput) count +=1 overlap = {} overlapVal = 0 seen = [] seen = (printOverlaps(coincs, coincs, seen)) print len(seen), 'sets of 40 cells' seen = printOverlaps(reUsedCoincs, coincs, seen) Summ=[] for z in coincs: c=0 for y in reUsedCoincs: c += len(z[1].intersection(y[1])) Summ.append(c) print 'Sum: ', Summ for m in xrange(3): displayLimit = min(51, len(spOutput[m*200:])) if displayLimit>0: drawFile(dataset, np.zeros([len(inputBits[:(m+1)*displayLimit]),len(inputBits[:(m+1)*displayLimit])]), inputBits[:(m+1)*displayLimit], spOutput[:(m+1)*displayLimit], w, m+1) else: print 'No more records to display' pyl.show() def drawFile(dataset, matrix, patterns, cells, w, fnum): '''The similarity of two patterns in the bit-encoding space is displayed alongside their similarity in the sp-coinc space.''' score=0 count = 0 assert len(patterns)==len(cells) for p in xrange(len(patterns)-1): matrix[p+1:,p] = [len(set(patterns[p]).intersection(set(q)))*100/w for q in patterns[p+1:]] matrix[p,p+1:] = [len(set(cells[p]).intersection(set(r)))*5/2 for r in cells[p+1:]] score += sum(abs(np.array(matrix[p+1:,p])-np.array(matrix[p,p+1:]))) count += len(matrix[p+1:,p]) print 'Score', score/count fig = pyl.figure(figsize = (10,10), num = fnum) pyl.matshow(matrix, fignum = fnum) pyl.colorbar() pyl.title('Coincidence Space', verticalalignment='top', fontsize=12) pyl.xlabel('The Mirror Image Visualization for '+dataset, fontsize=17) pyl.ylabel('Encoding space', fontsize=12) def printOverlaps(comparedTo, coincs, seen): """ Compare the results and return True if success, False if failure Parameters: -------------------------------------------------------------------- coincs: Which cells are we comparing? comparedTo: The set of 40 cells we being compared to (they have no overlap with seen) seen: Which of the cells we are comparing to have already been encountered. This helps glue together the unique and reused coincs """ inputOverlap = 0 cellOverlap = 0 for y in comparedTo: closestInputs = [] closestCells = [] if len(seen)>0: inputOverlap = max([len(seen[m][1].intersection(y[4])) for m in xrange(len(seen))]) cellOverlap = max([len(seen[m][0].intersection(y[1])) for m in xrange(len(seen))]) for m in xrange( len(seen) ): if len(seen[m][1].intersection(y[4]))==inputOverlap: closestInputs.append(seen[m][2]) if len(seen[m][0].intersection(y[1]))==cellOverlap: closestCells.append(seen[m][2]) seen.append((y[1], y[4], y[0])) print 'Pattern',y[0]+1,':',' '.join(str(len(z[1].intersection(y[1]))).rjust(2) for z in coincs),'input overlap:', inputOverlap, ';', len(closestInputs), 'closest encodings:',','.join(str(m+1) for m in closestInputs).ljust(15), \ 'cell overlap:', cellOverlap, ';', len(closestCells), 'closest set(s):',','.join(str(m+1) for m in closestCells) return seen if __name__=='__main__': if len(sys.argv)<2: #Use basil if no dataset specified print ('Input files required. Read documentation for details.') else: dataset = sys.argv[1] activeCoincsPath = dataset+'/'+dataset+'_spBUOut.txt' encodingsPath = dataset+'/'+dataset+'_sensorBUOut.txt' activeCoincsFile=open(activeCoincsPath, 'r') encodingsFile=open(encodingsPath, 'r') analyzeOverlaps(activeCoincsFile, encodingsFile, dataset)
agpl-3.0
unnikrishnankgs/va
venv/lib/python3.5/site-packages/matplotlib/tests/test_dviread.py
15
1788
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from nose.tools import assert_equal import matplotlib.dviread as dr import os.path original_find_tex_file = dr.find_tex_file def setup(): dr.find_tex_file = lambda x: x def teardown(): dr.find_tex_file = original_find_tex_file def test_PsfontsMap(): filename = os.path.join( os.path.dirname(__file__), 'baseline_images', 'dviread', 'test.map') fontmap = dr.PsfontsMap(filename) # Check all properties of a few fonts for n in [1, 2, 3, 4, 5]: key = 'TeXfont%d' % n entry = fontmap[key] assert_equal(entry.texname, key) assert_equal(entry.psname, 'PSfont%d' % n) if n not in [3, 5]: assert_equal(entry.encoding, 'font%d.enc' % n) elif n == 3: assert_equal(entry.encoding, 'enc3.foo') # We don't care about the encoding of TeXfont5, which specifies # multiple encodings. if n not in [1, 5]: assert_equal(entry.filename, 'font%d.pfa' % n) else: assert_equal(entry.filename, 'font%d.pfb' % n) if n == 4: assert_equal(entry.effects, {'slant': -0.1, 'extend': 2.2}) else: assert_equal(entry.effects, {}) # Some special cases entry = fontmap['TeXfont6'] assert_equal(entry.filename, None) assert_equal(entry.encoding, None) entry = fontmap['TeXfont7'] assert_equal(entry.filename, None) assert_equal(entry.encoding, 'font7.enc') entry = fontmap['TeXfont8'] assert_equal(entry.filename, 'font8.pfb') assert_equal(entry.encoding, None) entry = fontmap['TeXfont9'] assert_equal(entry.filename, '/absolute/font9.pfb')
bsd-2-clause
deeplook/bokeh
bokeh/sampledata/gapminder.py
41
2655
from __future__ import absolute_import import pandas as pd from os.path import join import sys from . import _data_dir ''' This module provides a pandas DataFrame instance of four of the datasets from gapminder.org. These are read in from csvs that have been downloaded from Bokeh's sample data on S3. But the original code that generated the csvs from the raw gapminder data is available at the bottom of this file. ''' data_dir = _data_dir() datasets = [ 'fertility', 'life_expectancy', 'population', 'regions', ] for dataset in datasets: filename = join(data_dir, 'gapminder_%s.csv' % dataset) try: setattr( sys.modules[__name__], dataset, pd.read_csv(filename, index_col='Country') ) except (IOError, OSError): raise RuntimeError('Could not load gapminder data file "%s". Please execute bokeh.sampledata.download()' % filename) __all__ = datasets # ==================================================== # Original data is from Gapminder - www.gapminder.org. # The google docs links are maintained by gapminder # The following script was used to get the data from gapminder # and process it into the csvs stored in bokeh's sampledata. """ population_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0XOoBL_n5tAQ&output=xls" fertility_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0TAlJeCEzcGQ&output=xls" life_expectancy_url = "http://spreadsheets.google.com/pub?key=tiAiXcrneZrUnnJ9dBU-PAw&output=xls" regions_url = "https://docs.google.com/spreadsheets/d/1OxmGUNWeADbPJkQxVPupSOK5MbAECdqThnvyPrwG5Os/pub?gid=1&output=xls" def _get_data(url): # Get the data from the url and return only 1962 - 2013 df = pd.read_excel(url, index_col=0) df = df.unstack().unstack() df = df[(df.index >= 1964) & (df.index <= 2013)] df = df.unstack().unstack() return df fertility_df = _get_data(fertility_url) life_expectancy_df = _get_data(life_expectancy_url) population_df = _get_data(population_url) regions_df = pd.read_excel(regions_url, index_col=0) # have common countries across all data fertility_df = fertility_df.drop(fertility_df.index.difference(life_expectancy_df.index)) population_df = population_df.drop(population_df.index.difference(life_expectancy_df.index)) regions_df = regions_df.drop(regions_df.index.difference(life_expectancy_df.index)) fertility_df.to_csv('gapminder_fertility.csv') population_df.to_csv('gapminder_population.csv') life_expectancy_df.to_csv('gapminder_life_expectancy.csv') regions_df.to_csv('gapminder_regions.csv') """ # ======================================================
bsd-3-clause
UCL/sfdata_wrangler
sfdata_wrangler/Utils.py
2
1634
__author__ = "Gregory D. Erhardt" __copyright__ = "Copyright 2013 SFCTA" __license__ = """ This file is part of sfdata_wrangler. sfdata_wrangler is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. sfdata_wrangler is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with sfdata_wrangler. If not, see <http://www.gnu.org/licenses/>. """ import pandas as pd import numpy as np def cleanCrosstab(rows, cols, values, aggfunc=sum, weight=None): """ Performs a crosstab on the rows, cols and values specified. In the end, if there are no observations, it the value is zero, but if there are observations with a np.nan value, then those remain as missing values. Also, adds in proper row and column totals """ if weight is None: t = pd.crosstab(rows, cols, values, aggfunc=aggfunc, dropna=False) else: t = pd.crosstab(rows, cols, values*weight, aggfunc=aggfunc, dropna=False) count = pd.crosstab(rows, cols, dropna=False) t = t.mask(count==0, other=0) t['Total'] = t.sum(axis=1) t = t.append(pd.Series(t.sum(axis=0), name='Total')) return t
gpl-3.0
prtx/Fast-Fourier-Transform-FFT-in-Notation-Recognition
fft.py
1
1261
import cmath from scipy.io.wavfile import read from matplotlib import pyplot from pylab import specgram from math import log import numpy as np note_list = ['A','A#','B','C','C#','D','D#','E','F','F#','G','G#',] def freq_2_note(freq): SEMITONE = 1.059463 try: interval = int(round(log(freq/440.0, SEMITONE))) % 12 return note_list[interval] except Exception: pass def omega(p, q): return cmath.exp((2.0 * cmath.pi * 1j * q) / p) def fft(signal): n = len(signal) if n == 1: return signal else: Feven = fft([signal[i] for i in xrange(0, n, 2)]) Fodd = fft([signal[i] for i in xrange(1, n, 2)]) combined = [0] * n for m in xrange(n/2): combined[m] = Feven[m] + omega(n, -m) * Fodd[m] combined[m + n/2] = Feven[m] - omega(n, -m) * Fodd[m] return combined def main(): frame_rate, amplitude = read('G.wav') if type(amplitude[0]) == np.ndarray: amplitude = (amplitude[:,0] + amplitude[:,1])/2 frequencies = [ freq_2_note(abs(freq)) for freq in fft(amplitude)] note_count = [] for note in note_list: note_count.append(frequencies.count(note)) print 'Notation is', note_list[note_count.index(max(note_count))] if __name__ == '__main__': main()
mit
hpfem/hermes2d
python/hermes2d/plot.py
4
11213
from hermes2d import Linearizer, Solution def sln2png(sln, filename): """ Creates a nice png image of the Solution sln. """ plot_sln_mayavi(sln) from enthought.mayavi.mlab import savefig savefig(filename) def plot_sln_mpl(sln, method="default", just_mesh=False, axes=None): """ Plots the Solution() instance sln using Linearizer() and matplotlib. method = "default" ... creates a plot using triangles (the triangles are not interpolated, so sometimes one can see small defects) method = "contour" ... takes the vertices from linearizer and interpolates them using contour and contourf (it doesn't take into account the triangulation, so one can see the defects from the convex hull approximation) just_mesh ... only shows the mesh, but not the solution """ lin = Linearizer() lin.process_solution(sln) v = lin.get_vertices() if method=="contour": from numpy import min, max, linspace from matplotlib.mlab import griddata import matplotlib.pyplot as plt x = v[:, 0] y = v[:, 1] z = v[:, 2] # define grid. xi = linspace(min(x), max(x), 100) yi = linspace(min(y), max(y), 100) # grid the data. zi = griddata(x, y, z, xi, yi) # contour the gridded data, plotting dots at the nonuniform data points. CS = plt.contour(xi, yi, zi, 15, linewidths=0.5, colors='k') CS = plt.contourf(xi, yi, zi, 15, cmap=plt.cm.jet) plt.colorbar() plt.title('Solution') elif method == "default": from numpy import array import matplotlib.collections as collections #import matplotlib.pyplot as plt if axes is None: from pylab import gca axes = gca() verts = [] vals = [] for t in lin.get_triangles(): triangle = tuple([tuple(v[n][:2]) for n in t]) val = sum([v[n][2] for n in t]) vals.append(val/3.) verts.append(triangle) verts = array(verts) vals = array(vals) if just_mesh: lw = 1 else: lw = 0 col = collections.PolyCollection(verts, linewidths=lw, antialiaseds=0) col.set_array(vals) #col.set_cmap(plt.cm.jet) ax = axes ax.add_collection(col) ax.set_xlim(verts[:, :, 0].min(), verts[:, :, 0].max()) ax.set_ylim(verts[:, :, 1].min(), verts[:, :, 1].max()) ax.set_aspect("equal") #plt.colorbar() #plt.title('Solution') else: raise ValueError("Unknown method (%s)" % method) def plot_sln_mayavi(sln, notebook=False): """ Plots the Solution() instance sln using Linearizer() and matplotlib. Currently only a very simple version is implemented, that takes the vertices from linearizer and interpolates them. More sophisticated version should take the triangles. """ lin = Linearizer() lin.process_solution(sln) vert = lin.get_vertices() triangles = lin.get_triangles() from numpy import zeros from enthought.mayavi import mlab x = vert[:, 0] y = vert[:, 1] z = zeros(len(y)) t = vert[:, 2] if notebook: # the off screen rendering properly works only with VTK-5.2 or above: mlab.options.offscreen = True mlab.clf() s = mlab.triangular_mesh(x, y, z, triangles, scalars=t) mlab.view(0, 0) # Below is a code that does exactly what the "View along the +Z axis" # button does: #scene = mlab.get_engine().current_scene.scene #scene.camera.focal_point = [0, 0, 0] #scene.camera.position = [0, 0, 1] #scene.camera.view_up = [0, 1, 0] #scene.renderer.reset_camera() #scene.render() # the above looks ok, but there is still quite a large margin, so we prefer # to just call .view(0, 0), which seems to be working fine. return s def plot_hermes_mesh_mpl(mesh, space=None, edges_only=False): if space is None: polynomial_orders = None else: polynomial_orders = mesh.get_elements_order(space) return plot_mesh_mpl(mesh.nodes_dict, mesh.elements, mesh.get_polygonal_boundary(), polynomial_orders=polynomial_orders, edges_only=edges_only) def plot_mesh_mpl(nodes, elements, polygons=None, polynomial_orders=None, edges_only=False): from matplotlib import pyplot from matplotlib.path import Path from matplotlib.patches import PathPatch from matplotlib.patches import Rectangle colors_old = { 1: '#000684', 2: '#3250fc', 3: '#36c4ee', 4: '#04eabc', 5: '#62ff2a', 6: '#fdff07', 7: '#ffa044', 8: '#ff1111', 9: '#b02c2c', 10: '#820f97', } colors = { 0: '#7f7f7f', 1: '#7f2aff', 2: '#2a2aff', 3: '#2a7fff', 4: '#00d4aa', 5: '#00aa44', 6: '#abc837', 7: '#ffd42a', 8: '#c87137', 9: '#c83737', 10: '#ff0000', } fig = pyplot.figure() sp = fig.add_subplot(111) for el_id in polygons: x = list(polygons[el_id][:, 0]) y = list(polygons[el_id][:, 1]) x.append(x[0]) y.append(y[0]) vertices = zip(x, y) codes = [Path.MOVETO] + [Path.LINETO]*(len(vertices)-2) + \ [Path.CLOSEPOLY] p = Path(vertices, codes) if edges_only: color = "white" linewidth = 2 else: if polynomial_orders is None: color = colors[0] else: color = colors[polynomial_orders[el_id]] linewidth = 1 patch = PathPatch(p, facecolor=color, lw=linewidth, edgecolor='#000000') sp.add_patch(patch) show_legend = polynomial_orders is not None if show_legend: # Create legend def split_nodes(): x = [] y = [] if isinstance(nodes, dict): _nodes = nodes.items() else: _nodes = enumerate(nodes) for k, pnt in _nodes: x.append(pnt[0]) y.append(pnt[1]) return (x, y) def get_max(what='x'): x, y = split_nodes() if what == 'x': return max(x) else: return max(y) def get_min(what='x'): x, y = split_nodes() if what == 'x': return min(x) else: return min(y) maxX = get_max('x') maxY = get_max('y') minX = get_min('x') minY = get_min('y') dy = (maxY - minY) / 20 dx = (maxX - minX) / 20 y = minY + dy x = maxX + dx ord = polynomial_orders.items() order_list = [] for k,v in ord: order_list.append(v) m = max(order_list) for k,c in colors.items(): if k <= m : p = Rectangle(xy=(x,y), width=dx, height=dy, fill=True, facecolor=c) sp.add_patch(p) sp.text(x + dx + (dx/2), y + (dy/4), str(k)) y += dy else: break sp.text(x, y + (dy/2), str('Orders')) sp.set_title("Mesh") sp.set_aspect("equal") sp.autoscale_view() return sp.figure class ScalarView(object): def __init__(self, name="Solution", x=0, y=0, w=50, h=50): self._name = name self._lib = None self._notebook = False self._glut_view = None def show_scale(self, *args): pass def show_mesh(self, *args): pass def wait(self): if self._lib == "mpl" and self._notebook == False: import pylab pylab.show() def show(self, sln, show=True, lib="mayavi", notebook=None, filename="scalar.png", **options): """ Shows the solution. show ... should it actually plot the window? Set to False in tests. lib .... which library to use for the plotting? either "mpl" or "mayavi" notebook ... are we running inside Sage notebook? If True, just save the image to a.png filename ... the name of the filename if we are saving the image (e.g. notebook == False) Example: >>> 1 + 1 2 >>> 1 + 2 3 """ if notebook is None: try: from sagenb.misc.support import EMBEDDED_MODE except ImportError: EMBEDDED_MODE = False notebook = EMBEDDED_MODE self._lib = lib self._notebook = notebook if lib == "glut": if self._glut_view is None: from _hermes2d import ScalarView self._glut_view = ScalarView(self._name) self._glut_view.show(sln) elif lib == "mpl": plot_sln_mpl(sln, **options) import pylab if show: if notebook: pylab.savefig(filename) else: pylab.ion() pylab.draw() pylab.ioff() elif lib == "mayavi": plot_sln_mayavi(sln, notebook=notebook) from enthought.mayavi import mlab if show: engine = mlab.get_engine() image = engine.current_scene image.scene.background = (1.0, 1.0, 1.0) image.scene.foreground = (0.0, 0.0, 0.0) #mlab.colorbar(orientation="vertical") if notebook: mlab.savefig(filename) else: mlab.show() else: raise NotImplementedError("Unknown library '%s'" % lib) class MeshView(object): def __init__(self, name="Solution", x=0, y=0, w=500, h=500): self._name = name self._x = x self._y = y self._w = w self._h = h def wait(self): pass def show(self, mesh, show=True, lib="mpl", notebook=None, space=None, filename="mesh.png", **options): if notebook is None: try: from sagenb.misc.support import EMBEDDED_MODE except ImportError: EMBEDDED_MODE = False notebook = EMBEDDED_MODE if lib == "glut": from _hermes2d import MeshView m = MeshView(self._name, self._x, self._y, self._w, self._h) m.show(mesh) m.wait() elif lib == "mpl": p = plot_hermes_mesh_mpl(mesh, space=space, **options) if show: if notebook: p.savefig(filename) else: p.show() import pylab pylab.show() return p else: raise NotImplementedError("Unknown library '%s'" % lib)
gpl-2.0
NelisVerhoef/scikit-learn
sklearn/svm/tests/test_svm.py
70
31674
""" Testing for Support Vector Machine module (sklearn.svm) TODO: remove hard coded numerical results when possible """ import numpy as np import itertools from numpy.testing import assert_array_equal, assert_array_almost_equal from numpy.testing import assert_almost_equal from scipy import sparse from nose.tools import assert_raises, assert_true, assert_equal, assert_false from sklearn.base import ChangedBehaviorWarning from sklearn import svm, linear_model, datasets, metrics, base from sklearn.cross_validation import train_test_split from sklearn.datasets import make_classification, make_blobs from sklearn.metrics import f1_score from sklearn.metrics.pairwise import rbf_kernel from sklearn.utils import check_random_state from sklearn.utils import ConvergenceWarning from sklearn.utils.validation import NotFittedError from sklearn.utils.testing import assert_greater, assert_in, assert_less from sklearn.utils.testing import assert_raises_regexp, assert_warns from sklearn.utils.testing import assert_warns_message, assert_raise_message from sklearn.utils.testing import ignore_warnings # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] Y = [1, 1, 1, 2, 2, 2] T = [[-1, -1], [2, 2], [3, 2]] true_result = [1, 2, 2] # also load the iris dataset iris = datasets.load_iris() rng = check_random_state(42) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_libsvm_parameters(): # Test parameters on classes that make use of libsvm. clf = svm.SVC(kernel='linear').fit(X, Y) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.support_vectors_, (X[1], X[3])) assert_array_equal(clf.intercept_, [0.]) assert_array_equal(clf.predict(X), Y) def test_libsvm_iris(): # Check consistency on dataset iris. # shuffle the dataset so that labels are not ordered for k in ('linear', 'rbf'): clf = svm.SVC(kernel=k).fit(iris.data, iris.target) assert_greater(np.mean(clf.predict(iris.data) == iris.target), 0.9) assert_array_equal(clf.classes_, np.sort(clf.classes_)) # check also the low-level API model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64)) pred = svm.libsvm.predict(iris.data, *model) assert_greater(np.mean(pred == iris.target), .95) model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64), kernel='linear') pred = svm.libsvm.predict(iris.data, *model, kernel='linear') assert_greater(np.mean(pred == iris.target), .95) pred = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_greater(np.mean(pred == iris.target), .95) # If random_seed >= 0, the libsvm rng is seeded (by calling `srand`), hence # we should get deteriministic results (assuming that there is no other # thread calling this wrapper calling `srand` concurrently). pred2 = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_array_equal(pred, pred2) @ignore_warnings def test_single_sample_1d(): # Test whether SVCs work on a single sample given as a 1-d array clf = svm.SVC().fit(X, Y) clf.predict(X[0]) clf = svm.LinearSVC(random_state=0).fit(X, Y) clf.predict(X[0]) def test_precomputed(): # SVC with a precomputed kernel. # We test it with a toy dataset and with iris. clf = svm.SVC(kernel='precomputed') # Gram matrix for train data (square matrix) # (we use just a linear kernel) K = np.dot(X, np.array(X).T) clf.fit(K, Y) # Gram matrix for test data (rectangular matrix) KT = np.dot(T, np.array(X).T) pred = clf.predict(KT) assert_raises(ValueError, clf.predict, KT.T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. KT = np.zeros_like(KT) for i in range(len(T)): for j in clf.support_: KT[i, j] = np.dot(T[i], X[j]) pred = clf.predict(KT) assert_array_equal(pred, true_result) # same as before, but using a callable function instead of the kernel # matrix. kernel is just a linear kernel kfunc = lambda x, y: np.dot(x, y.T) clf = svm.SVC(kernel=kfunc) clf.fit(X, Y) pred = clf.predict(T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # test a precomputed kernel with the iris dataset # and check parameters against a linear SVC clf = svm.SVC(kernel='precomputed') clf2 = svm.SVC(kernel='linear') K = np.dot(iris.data, iris.data.T) clf.fit(K, iris.target) clf2.fit(iris.data, iris.target) pred = clf.predict(K) assert_array_almost_equal(clf.support_, clf2.support_) assert_array_almost_equal(clf.dual_coef_, clf2.dual_coef_) assert_array_almost_equal(clf.intercept_, clf2.intercept_) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. K = np.zeros_like(K) for i in range(len(iris.data)): for j in clf.support_: K[i, j] = np.dot(iris.data[i], iris.data[j]) pred = clf.predict(K) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) clf = svm.SVC(kernel=kfunc) clf.fit(iris.data, iris.target) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) def test_svr(): # Test Support Vector Regression diabetes = datasets.load_diabetes() for clf in (svm.NuSVR(kernel='linear', nu=.4, C=1.0), svm.NuSVR(kernel='linear', nu=.4, C=10.), svm.SVR(kernel='linear', C=10.), svm.LinearSVR(C=10.), svm.LinearSVR(C=10.), ): clf.fit(diabetes.data, diabetes.target) assert_greater(clf.score(diabetes.data, diabetes.target), 0.02) # non-regression test; previously, BaseLibSVM would check that # len(np.unique(y)) < 2, which must only be done for SVC svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data))) svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) def test_linearsvr(): # check that SVR(kernel='linear') and LinearSVC() give # comparable results diabetes = datasets.load_diabetes() lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target) score1 = lsvr.score(diabetes.data, diabetes.target) svr = svm.SVR(kernel='linear', C=1e3).fit(diabetes.data, diabetes.target) score2 = svr.score(diabetes.data, diabetes.target) assert np.linalg.norm(lsvr.coef_ - svr.coef_) / np.linalg.norm(svr.coef_) < .1 assert np.abs(score1 - score2) < 0.1 def test_svr_errors(): X = [[0.0], [1.0]] y = [0.0, 0.5] # Bad kernel clf = svm.SVR(kernel=lambda x, y: np.array([[1.0]])) clf.fit(X, y) assert_raises(ValueError, clf.predict, X) def test_oneclass(): # Test OneClassSVM clf = svm.OneClassSVM() clf.fit(X) pred = clf.predict(T) assert_array_almost_equal(pred, [-1, -1, -1]) assert_array_almost_equal(clf.intercept_, [-1.008], decimal=3) assert_array_almost_equal(clf.dual_coef_, [[0.632, 0.233, 0.633, 0.234, 0.632, 0.633]], decimal=3) assert_raises(ValueError, lambda: clf.coef_) def test_oneclass_decision_function(): # Test OneClassSVM decision function clf = svm.OneClassSVM() rnd = check_random_state(2) # Generate train data X = 0.3 * rnd.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rnd.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) # predict things y_pred_test = clf.predict(X_test) assert_greater(np.mean(y_pred_test == 1), .9) y_pred_outliers = clf.predict(X_outliers) assert_greater(np.mean(y_pred_outliers == -1), .9) dec_func_test = clf.decision_function(X_test) assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1) dec_func_outliers = clf.decision_function(X_outliers) assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1) def test_tweak_params(): # Make sure some tweaking of parameters works. # We change clf.dual_coef_ at run time and expect .predict() to change # accordingly. Notice that this is not trivial since it involves a lot # of C/Python copying in the libsvm bindings. # The success of this test ensures that the mapping between libsvm and # the python classifier is complete. clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, Y) assert_array_equal(clf.dual_coef_, [[-.25, .25]]) assert_array_equal(clf.predict([[-.1, -.1]]), [1]) clf._dual_coef_ = np.array([[.0, 1.]]) assert_array_equal(clf.predict([[-.1, -.1]]), [2]) def test_probability(): # Predict probabilities using SVC # This uses cross validation, so we use a slightly bigger testing set. for clf in (svm.SVC(probability=True, random_state=0, C=1.0), svm.NuSVC(probability=True, random_state=0)): clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal( np.sum(prob_predict, 1), np.ones(iris.data.shape[0])) assert_true(np.mean(np.argmax(prob_predict, 1) == clf.predict(iris.data)) > 0.9) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8) def test_decision_function(): # Test decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(iris.data, iris.target) dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int)]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) # kernel binary: clf = svm.SVC(kernel='rbf', gamma=1, decision_function_shape='ovo') clf.fit(X, Y) rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) def test_decision_function_shape(): # check that decision_function_shape='ovr' gives # correct shape and is consistent with predict clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(iris.data, iris.target) dec = clf.decision_function(iris.data) assert_equal(dec.shape, (len(iris.data), 3)) assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1)) # with five classes: X, y = make_blobs(n_samples=80, centers=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(X_train, y_train) dec = clf.decision_function(X_test) assert_equal(dec.shape, (len(X_test), 5)) assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1)) # check shape of ovo_decition_function=True clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(X_train, y_train) dec = clf.decision_function(X_train) assert_equal(dec.shape, (len(X_train), 10)) # check deprecation warning clf.decision_function_shape = None msg = "change the shape of the decision function" dec = assert_warns_message(ChangedBehaviorWarning, msg, clf.decision_function, X_train) assert_equal(dec.shape, (len(X_train), 10)) def test_svr_decision_function(): # Test SVR's decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm X = iris.data y = iris.target # linear kernel reg = svm.SVR(kernel='linear', C=0.1).fit(X, y) dec = np.dot(X, reg.coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) # rbf kernel reg = svm.SVR(kernel='rbf', gamma=1).fit(X, y) rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma) dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) def test_weight(): # Test class weights clf = svm.SVC(class_weight={1: 0.1}) # we give a small weights to class 1 clf.fit(X, Y) # so all predicted values belong to class 2 assert_array_almost_equal(clf.predict(X), [2] * 6) X_, y_ = make_classification(n_samples=200, n_features=10, weights=[0.833, 0.167], random_state=2) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: .1, 1: 10}) clf.fit(X_[:100], y_[:100]) y_pred = clf.predict(X_[100:]) assert_true(f1_score(y_[100:], y_pred) > .3) def test_sample_weights(): # Test weights on individual samples # TODO: check on NuSVR, OneClass, etc. clf = svm.SVC() clf.fit(X, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) # test that rescaling all samples is the same as changing C clf = svm.SVC() clf.fit(X, Y) dual_coef_no_weight = clf.dual_coef_ clf.set_params(C=100) clf.fit(X, Y, sample_weight=np.repeat(0.01, len(X))) assert_array_almost_equal(dual_coef_no_weight, clf.dual_coef_) def test_auto_weight(): # Test class weights for imbalanced data from sklearn.linear_model import LogisticRegression # We take as dataset the two-dimensional projection of iris so # that it is not separable and remove half of predictors from # class 1. # We add one to the targets as a non-regression test: class_weight="balanced" # used to work only when the labels where a range [0..K). from sklearn.utils import compute_class_weight X, y = iris.data[:, :2], iris.target + 1 unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2]) classes = np.unique(y[unbalanced]) class_weights = compute_class_weight('balanced', classes, y[unbalanced]) assert_true(np.argmax(class_weights) == 2) for clf in (svm.SVC(kernel='linear'), svm.LinearSVC(random_state=0), LogisticRegression()): # check that score is better when class='balanced' is set. y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X) clf.set_params(class_weight='balanced') y_pred_balanced = clf.fit(X[unbalanced], y[unbalanced],).predict(X) assert_true(metrics.f1_score(y, y_pred, average='weighted') <= metrics.f1_score(y, y_pred_balanced, average='weighted')) def test_bad_input(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X, Y2) # Test with arrays that are non-contiguous. for clf in (svm.SVC(), svm.LinearSVC(random_state=0)): Xf = np.asfortranarray(X) assert_false(Xf.flags['C_CONTIGUOUS']) yf = np.ascontiguousarray(np.tile(Y, (2, 1)).T) yf = yf[:, -1] assert_false(yf.flags['F_CONTIGUOUS']) assert_false(yf.flags['C_CONTIGUOUS']) clf.fit(Xf, yf) assert_array_equal(clf.predict(T), true_result) # error for precomputed kernelsx clf = svm.SVC(kernel='precomputed') assert_raises(ValueError, clf.fit, X, Y) # sample_weight bad dimensions clf = svm.SVC() assert_raises(ValueError, clf.fit, X, Y, sample_weight=range(len(X) - 1)) # predict with sparse input when trained with dense clf = svm.SVC().fit(X, Y) assert_raises(ValueError, clf.predict, sparse.lil_matrix(X)) Xt = np.array(X).T clf.fit(np.dot(X, Xt), Y) assert_raises(ValueError, clf.predict, X) clf = svm.SVC() clf.fit(X, Y) assert_raises(ValueError, clf.predict, Xt) def test_sparse_precomputed(): clf = svm.SVC(kernel='precomputed') sparse_gram = sparse.csr_matrix([[1, 0], [0, 1]]) try: clf.fit(sparse_gram, [0, 1]) assert not "reached" except TypeError as e: assert_in("Sparse precomputed", str(e)) def test_linearsvc_parameters(): # Test possible parameter combinations in LinearSVC # Generate list of possible parameter combinations losses = ['hinge', 'squared_hinge', 'logistic_regression', 'foo'] penalties, duals = ['l1', 'l2', 'bar'], [True, False] X, y = make_classification(n_samples=5, n_features=5) for loss, penalty, dual in itertools.product(losses, penalties, duals): clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual) if ((loss, penalty) == ('hinge', 'l1') or (loss, penalty, dual) == ('hinge', 'l2', False) or (penalty, dual) == ('l1', True) or loss == 'foo' or penalty == 'bar'): assert_raises_regexp(ValueError, "Unsupported set of arguments.*penalty='%s.*" "loss='%s.*dual=%s" % (penalty, loss, dual), clf.fit, X, y) else: clf.fit(X, y) # Incorrect loss value - test if explicit error message is raised assert_raises_regexp(ValueError, ".*loss='l3' is not supported.*", svm.LinearSVC(loss="l3").fit, X, y) # FIXME remove in 1.0 def test_linearsvx_loss_penalty_deprecations(): X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the %s will be removed in %s") # LinearSVC # loss l1/L1 --> hinge assert_warns_message(DeprecationWarning, msg % ("l1", "hinge", "loss='l1'", "1.0"), svm.LinearSVC(loss="l1").fit, X, y) # loss l2/L2 --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("L2", "squared_hinge", "loss='L2'", "1.0"), svm.LinearSVC(loss="L2").fit, X, y) # LinearSVR # loss l1/L1 --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("L1", "epsilon_insensitive", "loss='L1'", "1.0"), svm.LinearSVR(loss="L1").fit, X, y) # loss l2/L2 --> squared_epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("l2", "squared_epsilon_insensitive", "loss='l2'", "1.0"), svm.LinearSVR(loss="l2").fit, X, y) # FIXME remove in 0.18 def test_linear_svx_uppercase_loss_penalty(): # Check if Upper case notation is supported by _fit_liblinear # which is called by fit X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the uppercase notation will be removed in %s") # loss SQUARED_hinge --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("SQUARED_hinge", "squared_hinge", "0.18"), svm.LinearSVC(loss="SQUARED_hinge").fit, X, y) # penalty L2 --> l2 assert_warns_message(DeprecationWarning, msg.replace("loss", "penalty") % ("L2", "l2", "0.18"), svm.LinearSVC(penalty="L2").fit, X, y) # loss EPSILON_INSENSITIVE --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("EPSILON_INSENSITIVE", "epsilon_insensitive", "0.18"), svm.LinearSVR(loss="EPSILON_INSENSITIVE").fit, X, y) def test_linearsvc(): # Test basic routines using LinearSVC clf = svm.LinearSVC(random_state=0).fit(X, Y) # by default should have intercept assert_true(clf.fit_intercept) assert_array_equal(clf.predict(T), true_result) assert_array_almost_equal(clf.intercept_, [0], decimal=3) # the same with l1 penalty clf = svm.LinearSVC(penalty='l1', loss='squared_hinge', dual=False, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty with dual formulation clf = svm.LinearSVC(penalty='l2', dual=True, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty, l1 loss clf = svm.LinearSVC(penalty='l2', loss='hinge', dual=True, random_state=0) clf.fit(X, Y) assert_array_equal(clf.predict(T), true_result) # test also decision function dec = clf.decision_function(T) res = (dec > 0).astype(np.int) + 1 assert_array_equal(res, true_result) def test_linearsvc_crammer_singer(): # Test LinearSVC with crammer_singer multi-class svm ovr_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) cs_clf = svm.LinearSVC(multi_class='crammer_singer', random_state=0) cs_clf.fit(iris.data, iris.target) # similar prediction for ovr and crammer-singer: assert_true((ovr_clf.predict(iris.data) == cs_clf.predict(iris.data)).mean() > .9) # classifiers shouldn't be the same assert_true((ovr_clf.coef_ != cs_clf.coef_).all()) # test decision function assert_array_equal(cs_clf.predict(iris.data), np.argmax(cs_clf.decision_function(iris.data), axis=1)) dec_func = np.dot(iris.data, cs_clf.coef_.T) + cs_clf.intercept_ assert_array_almost_equal(dec_func, cs_clf.decision_function(iris.data)) def test_crammer_singer_binary(): # Test Crammer-Singer formulation in the binary case X, y = make_classification(n_classes=2, random_state=0) for fit_intercept in (True, False): acc = svm.LinearSVC(fit_intercept=fit_intercept, multi_class="crammer_singer", random_state=0).fit(X, y).score(X, y) assert_greater(acc, 0.9) def test_linearsvc_iris(): # Test that LinearSVC gives plausible predictions on the iris dataset # Also, test symbolic class names (classes_). target = iris.target_names[iris.target] clf = svm.LinearSVC(random_state=0).fit(iris.data, target) assert_equal(set(clf.classes_), set(iris.target_names)) assert_greater(np.mean(clf.predict(iris.data) == target), 0.8) dec = clf.decision_function(iris.data) pred = iris.target_names[np.argmax(dec, 1)] assert_array_equal(pred, clf.predict(iris.data)) def test_dense_liblinear_intercept_handling(classifier=svm.LinearSVC): # Test that dense liblinear honours intercept_scaling param X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = classifier(fit_intercept=True, penalty='l1', loss='squared_hinge', dual=False, C=4, tol=1e-7, random_state=0) assert_true(clf.intercept_scaling == 1, clf.intercept_scaling) assert_true(clf.fit_intercept) # when intercept_scaling is low the intercept value is highly "penalized" # by regularization clf.intercept_scaling = 1 clf.fit(X, y) assert_almost_equal(clf.intercept_, 0, decimal=5) # when intercept_scaling is sufficiently high, the intercept value # is not affected by regularization clf.intercept_scaling = 100 clf.fit(X, y) intercept1 = clf.intercept_ assert_less(intercept1, -1) # when intercept_scaling is sufficiently high, the intercept value # doesn't depend on intercept_scaling value clf.intercept_scaling = 1000 clf.fit(X, y) intercept2 = clf.intercept_ assert_array_almost_equal(intercept1, intercept2, decimal=2) def test_liblinear_set_coef(): # multi-class case clf = svm.LinearSVC().fit(iris.data, iris.target) values = clf.decision_function(iris.data) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(iris.data) assert_array_almost_equal(values, values2) # binary-class case X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = svm.LinearSVC().fit(X, y) values = clf.decision_function(X) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(X) assert_array_equal(values, values2) def test_immutable_coef_property(): # Check that primal coef modification are not silently ignored svms = [ svm.SVC(kernel='linear').fit(iris.data, iris.target), svm.NuSVC(kernel='linear').fit(iris.data, iris.target), svm.SVR(kernel='linear').fit(iris.data, iris.target), svm.NuSVR(kernel='linear').fit(iris.data, iris.target), svm.OneClassSVM(kernel='linear').fit(iris.data), ] for clf in svms: assert_raises(AttributeError, clf.__setattr__, 'coef_', np.arange(3)) assert_raises((RuntimeError, ValueError), clf.coef_.__setitem__, (0, 0), 0) def test_linearsvc_verbose(): # stdout: redirect import os stdout = os.dup(1) # save original stdout os.dup2(os.pipe()[1], 1) # replace it # actual call clf = svm.LinearSVC(verbose=1) clf.fit(X, Y) # stdout: restore os.dup2(stdout, 1) # restore original stdout def test_svc_clone_with_callable_kernel(): # create SVM with callable linear kernel, check that results are the same # as with built-in linear kernel svm_callable = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, decision_function_shape='ovr') # clone for checking clonability with lambda functions.. svm_cloned = base.clone(svm_callable) svm_cloned.fit(iris.data, iris.target) svm_builtin = svm.SVC(kernel='linear', probability=True, random_state=0, decision_function_shape='ovr') svm_builtin.fit(iris.data, iris.target) assert_array_almost_equal(svm_cloned.dual_coef_, svm_builtin.dual_coef_) assert_array_almost_equal(svm_cloned.intercept_, svm_builtin.intercept_) assert_array_equal(svm_cloned.predict(iris.data), svm_builtin.predict(iris.data)) assert_array_almost_equal(svm_cloned.predict_proba(iris.data), svm_builtin.predict_proba(iris.data), decimal=4) assert_array_almost_equal(svm_cloned.decision_function(iris.data), svm_builtin.decision_function(iris.data)) def test_svc_bad_kernel(): svc = svm.SVC(kernel=lambda x, y: x) assert_raises(ValueError, svc.fit, X, Y) def test_timeout(): a = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, a.fit, X, Y) def test_unfitted(): X = "foo!" # input validation not required when SVM not fitted clf = svm.SVC() assert_raises_regexp(Exception, r".*\bSVC\b.*\bnot\b.*\bfitted\b", clf.predict, X) clf = svm.NuSVR() assert_raises_regexp(Exception, r".*\bNuSVR\b.*\bnot\b.*\bfitted\b", clf.predict, X) # ignore convergence warnings from max_iter=1 @ignore_warnings def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2) def test_linear_svc_convergence_warnings(): # Test that warnings are raised if model does not converge lsvc = svm.LinearSVC(max_iter=2, verbose=1) assert_warns(ConvergenceWarning, lsvc.fit, X, Y) assert_equal(lsvc.n_iter_, 2) def test_svr_coef_sign(): # Test that SVR(kernel="linear") has coef_ with the right sign. # Non-regression test for #2933. X = np.random.RandomState(21).randn(10, 3) y = np.random.RandomState(12).randn(10) for svr in [svm.SVR(kernel='linear'), svm.NuSVR(kernel='linear'), svm.LinearSVR()]: svr.fit(X, y) assert_array_almost_equal(svr.predict(X), np.dot(X, svr.coef_.ravel()) + svr.intercept_) def test_linear_svc_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: lsvc = svm.LinearSVC(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % lsvc.intercept_scaling) assert_raise_message(ValueError, msg, lsvc.fit, X, Y) def test_lsvc_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False lsvc = svm.LinearSVC(fit_intercept=False) lsvc.fit(X, Y) assert_equal(lsvc.intercept_, 0.) def test_hasattr_predict_proba(): # Method must be (un)available before or after fit, switched by # `probability` param G = svm.SVC(probability=True) assert_true(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_true(hasattr(G, 'predict_proba')) G = svm.SVC(probability=False) assert_false(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_false(hasattr(G, 'predict_proba')) # Switching to `probability=True` after fitting should make # predict_proba available, but calling it must not work: G.probability = True assert_true(hasattr(G, 'predict_proba')) msg = "predict_proba is not available when fitted with probability=False" assert_raise_message(NotFittedError, msg, G.predict_proba, iris.data)
bsd-3-clause
wzbozon/scikit-learn
examples/svm/plot_svm_regression.py
249
1451
""" =================================================================== Support Vector Regression (SVR) using linear and non-linear kernels =================================================================== Toy example of 1D regression using linear, polynomial and RBF kernels. """ print(__doc__) import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plt ############################################################################### # Generate sample data X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() ############################################################################### # Add noise to targets y[::5] += 3 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) y_rbf = svr_rbf.fit(X, y).predict(X) y_lin = svr_lin.fit(X, y).predict(X) y_poly = svr_poly.fit(X, y).predict(X) ############################################################################### # look at the results plt.scatter(X, y, c='k', label='data') plt.hold('on') plt.plot(X, y_rbf, c='g', label='RBF model') plt.plot(X, y_lin, c='r', label='Linear model') plt.plot(X, y_poly, c='b', label='Polynomial model') plt.xlabel('data') plt.ylabel('target') plt.title('Support Vector Regression') plt.legend() plt.show()
bsd-3-clause
junwucs/h2o-3
h2o-py/h2o/model/model_base.py
1
20203
""" This module implements the base model class. All model things inherit from this class. """ import h2o from . import H2OFrame from . import H2OConnection class ModelBase(object): def __init__(self, dest_key, model_json, metrics_class): self._id = dest_key self._model_json = model_json self._metrics_class = metrics_class self._is_xvalidated=False self._xval_keys=None if dest_key is not None and model_json is not None and metrics_class is not None: # build Metric objects out of each metrics for metric in ["training_metrics", "validation_metrics", "cross_validation_metrics"]: if metric in model_json["output"]: if model_json["output"][metric] is not None: if metric=="cross_validation_metrics": self._is_xvalidated=True model_json["output"][metric] = metrics_class(model_json["output"][metric],metric,model_json["algo"]) if self._is_xvalidated: self._xval_keys= [i["name"] for i in model_json["output"]["cross_validation_models"]] # build a useful dict of the params self._params={} for p in self._model_json["parameters"]: self._params[p["label"]]=p @property def id(self): """ :return: Retrieve this model's identifier. """ return self._id @property def params(self): """ Get the parameters and the actual/default values only. :return: A dictionary of parameters used to build this model. """ params = {} for p in self._params: params[p] = {"default":self._params[p]["default_value"], "actual":self._params[p]["actual_value"]} return params @property def full_parameters(self): """ Get the full specification of all parameters. :return: a dictionary of parameters used to build this model. """ return self._params def __repr__(self): self.show() return "" def predict(self, test_data): """ Predict on a dataset. :param test_data: Data to be predicted on. :return: A new H2OFrame filled with predictions. """ if not isinstance(test_data, H2OFrame): raise ValueError("test_data must be an instance of H2OFrame") test_data._eager() j = H2OConnection.post_json("Predictions/models/" + self._id + "/frames/" + test_data._id) prediction_frame_id = j["model_metrics"][0]["predictions"]["frame_id"]["name"] return h2o.get_frame(prediction_frame_id) def is_cross_validated(self): """ :return: True if the model was cross-validated. """ return self._is_xvalidated def xval_keys(self): """ :return: The model keys for the cross-validated model. """ return self._xval_keys def get_xval_models(self,key=None): """ Return a Model object. :param key: If None, return all cross-validated models; otherwise return the model that key points to. :return: A model or list of models. """ return h2o.get_model(key) if key is not None else [h2o.get_model(k) for k in self._xval_keys] @property def xvals(self): """ Return a list of the cross-validated models. :return: A list of models """ return self.get_xval_models() def deepfeatures(self, test_data, layer): """ Return hidden layer details :param test_data: Data to create a feature space on :param layer: 0 index hidden layer """ if test_data is None: raise ValueError("Must specify test data") test_data._eager() j = H2OConnection.post_json("Predictions/models/" + self._id + "/frames/" + test_data._id, deep_features_hidden_layer=layer) return h2o.get_frame(j["predictions_frame"]["name"]) def weights(self, matrix_id=0): """ Return the frame for the respective weight matrix :param: matrix_id: an integer, ranging from 0 to number of layers, that specifies the weight matrix to return. :return: an H2OFrame which represents the weight matrix identified by matrix_id """ num_weight_matrices = len(self._model_json['output']['weights']) if matrix_id not in range(num_weight_matrices): raise ValueError("Weight matrix does not exist. Model has {0} weight matrices (0-based indexing), but matrix {1} " "was requested.".format(num_weight_matrices, matrix_id)) return h2o.get_frame(self._model_json['output']['weights'][matrix_id]['URL'].split('/')[3]) def biases(self, vector_id=0): """ Return the frame for the respective bias vector :param: vector_id: an integer, ranging from 0 to number of layers, that specifies the bias vector to return. :return: an H2OFrame which represents the bias vector identified by vector_id """ num_bias_vectors = len(self._model_json['output']['biases']) if vector_id not in range(num_bias_vectors): raise ValueError("Bias vector does not exist. Model has {0} bias vectors (0-based indexing), but vector {1} " "was requested.".format(num_bias_vectors, vector_id)) return h2o.get_frame(self._model_json['output']['biases'][vector_id]['URL'].split('/')[3]) def model_performance(self, test_data=None, train=False, valid=False): """ Generate model metrics for this model on test_data. :param test_data: Data set for which model metrics shall be computed against. Both train and valid arguments are ignored if test_data is not None. :param train: Report the training metrics for the model. If the test_data is the training data, the training metrics are returned. :param valid: Report the validation metrics for the model. If train and valid are True, then it defaults to True. :return: An object of class H2OModelMetrics. """ if test_data is None: if not train and not valid: train = True # default to train if train: return self._model_json["output"]["training_metrics"] if valid: return self._model_json["output"]["validation_metrics"] else: # cases dealing with test_data not None if not isinstance(test_data, H2OFrame): raise ValueError("`test_data` must be of type H2OFrame. Got: " + type(test_data)) test_data._eager() res = H2OConnection.post_json("ModelMetrics/models/" + self._id + "/frames/" + test_data._id) # FIXME need to do the client-side filtering... PUBDEV-874: https://0xdata.atlassian.net/browse/PUBDEV-874 raw_metrics = None for mm in res["model_metrics"]: if mm["frame"]["name"] == test_data._id: raw_metrics = mm break return self._metrics_class(raw_metrics,algo=self._model_json["algo"]) def score_history(self): """ Retrieve Model Score History :return: the score history (H2OTwoDimTable) """ model = self._model_json["output"] if 'scoring_history' in model.keys() and model["scoring_history"] != None: s = model["scoring_history"] if h2o.can_use_pandas(): import pandas pandas.options.display.max_rows = 20 return pandas.DataFrame(s.cell_values,columns=s.col_header) return model["scoring_history"] else: print "No score history for this model" def summary(self): """ Print a detailed summary of the model. :return: """ model = self._model_json["output"] if model["model_summary"]: model["model_summary"].show() # H2OTwoDimTable object def show(self): """ Print innards of model, without regards to type :return: None """ model = self._model_json["output"] print "Model Details" print "=============" print self.__class__.__name__, ": ", self._model_json["algo_full_name"] print "Model Key: ", self._id self.summary() print # training metrics tm = model["training_metrics"] if tm: tm.show() vm = model["validation_metrics"] if vm: vm.show() xm = model["cross_validation_metrics"] if xm: xm.show() if "scoring_history" in model.keys() and model["scoring_history"]: model["scoring_history"].show() if "variable_importances" in model.keys() and model["variable_importances"]: model["variable_importances"].show() def varimp(self, return_list=False): """ Pretty print the variable importances, or return them in a list :param return_list: if True, then return the variable importances in an list (ordered from most important to least important). Each entry in the list is a 4-tuple of (variable, relative_importance, scaled_importance, percentage). :return: None or ordered list """ model = self._model_json["output"] if "variable_importances" in model.keys() and model["variable_importances"]: if not return_list: return model["variable_importances"].show() else: return model["variable_importances"].cell_values else: print "Warning: This model doesn't have variable importances" def residual_deviance(self,train=False,valid=False,xval=False): """ Retreive the residual deviance if this model has the attribute, or None otherwise. :param train: Get the residual deviance for the training set. If both train and valid are False, then train is selected by default. :param valid: Get the residual deviance for the validation set. If both train and valid are True, then train is selected by default. :return: Return the residual deviance, or None if it is not present. """ if xval: raise ValueError("Cross-validation metrics are not available.") if not train and not valid: train = True if train and valid: train = True return self._model_json["output"]["training_metrics"].residual_deviance() if train else self._model_json["output"]["validation_metrics"].residual_deviance() def residual_degrees_of_freedom(self,train=False,valid=False,xval=False): """ Retreive the residual degress of freedom if this model has the attribute, or None otherwise. :param train: Get the residual dof for the training set. If both train and valid are False, then train is selected by default. :param valid: Get the residual dof for the validation set. If both train and valid are True, then train is selected by default. :return: Return the residual dof, or None if it is not present. """ if xval: raise ValueError("Cross-validation metrics are not available.") if not train and not valid: train = True if train and valid: train = True return self._model_json["output"]["training_metrics"].residual_degrees_of_freedom() if train else self._model_json["output"]["validation_metrics"].residual_degrees_of_freedom() def null_deviance(self,train=False,valid=False,xval=False): """ Retreive the null deviance if this model has the attribute, or None otherwise. :param: train Get the null deviance for the training set. If both train and valid are False, then train is selected by default. :param: valid Get the null deviance for the validation set. If both train and valid are True, then train is selected by default. :return: Return the null deviance, or None if it is not present. """ if xval: raise ValueError("Cross-validation metrics are not available.") if not train and not valid: train = True if train and valid: train = True return self._model_json["output"]["training_metrics"].null_deviance() if train else self._model_json["output"]["validation_metrics"].null_deviance() def null_degrees_of_freedom(self,train=False,valid=False,xval=False): """ Retreive the null degress of freedom if this model has the attribute, or None otherwise. :param train: Get the null dof for the training set. If both train and valid are False, then train is selected by default. :param valid: Get the null dof for the validation set. If both train and valid are True, then train is selected by default. :return: Return the null dof, or None if it is not present. """ if xval: raise ValueError("Cross-validation metrics are not available.") if not train and not valid: train = True if train and valid: train = True return self._model_json["output"]["training_metrics"].null_degrees_of_freedom() if train else self._model_json["output"]["validation_metrics"].null_degrees_of_freedom() def pprint_coef(self): """ Pretty print the coefficents table (includes normalized coefficients) :return: None """ print self._model_json["output"]["coefficients_table"] # will return None if no coefs! def coef(self): """ :return: Return the coefficients for this model. """ tbl = self._model_json["output"]["coefficients_table"] if tbl is None: return None tbl = tbl.cell_values return {a[0]:a[1] for a in tbl} def coef_norm(self): """ :return: Return the normalized coefficients """ tbl = self._model_json["output"]["coefficients_table"] if tbl is None: return None tbl = tbl.cell_values return {a[0]:a[2] for a in tbl} def r2(self, train=False, valid=False, xval=False): """ Return the R^2 for this regression model. The R^2 value is defined to be 1 - MSE/var, where var is computed as sigma*sigma. If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval" :param train: If train is True, then return the R^2 value for the training data. :param valid: If valid is True, then return the R^2 value for the validation data. :param xval: If xval is True, then return the R^2 value for the cross validation data. :return: The R^2 for this regression model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k,v in zip(tm.keys(),tm.values()): m[k] = None if v is None else v.r2() return m.values()[0] if len(m) == 1 else m def mse(self, train=False, valid=False, xval=False): """ Get the MSE(s). If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval" :param train: If train is True, then return the MSE value for the training data. :param valid: If valid is True, then return the MSE value for the validation data. :param xval: If xval is True, then return the MSE value for the cross validation data. :return: The MSE for this regression model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k,v in zip(tm.keys(),tm.values()): m[k] = None if v is None else v.mse() return m.values()[0] if len(m) == 1 else m def logloss(self, train=False, valid=False, xval=False): """ Get the Log Loss(s). If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval" :param train: If train is True, then return the Log Loss value for the training data. :param valid: If valid is True, then return the Log Loss value for the validation data. :param xval: If xval is True, then return the Log Loss value for the cross validation data. :return: The Log Loss for this binomial model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k,v in zip(tm.keys(),tm.values()): m[k] = None if v is None else v.logloss() return m.values()[0] if len(m) == 1 else m def mean_residual_deviance(self, train=False, valid=False, xval=False): """ Get the Mean Residual Deviances(s). If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval" :param train: If train is True, then return the Mean Residual Deviance value for the training data. :param valid: If valid is True, then return the Mean Residual Deviance value for the validation data. :param xval: If xval is True, then return the Mean Residual Deviance value for the cross validation data. :return: The Mean Residual Deviance for this regression model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k,v in zip(tm.keys(),tm.values()): m[k] = None if v is None else v.mean_residual_deviance() return m.values()[0] if len(m) == 1 else m def auc(self, train=False, valid=False, xval=False): """ Get the AUC(s). If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval" :param train: If train is True, then return the AUC value for the training data. :param valid: If valid is True, then return the AUC value for the validation data. :param xval: If xval is True, then return the AUC value for the validation data. :return: The AUC. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k,v in zip(tm.keys(),tm.values()): m[k] = None if v is None else v.auc() return m.values()[0] if len(m) == 1 else m def aic(self, train=False, valid=False, xval=False): """ Get the AIC(s). If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval" :param train: If train is True, then return the AIC value for the training data. :param valid: If valid is True, then return the AIC value for the validation data. :param xval: If xval is True, then return the AIC value for the validation data. :return: The AIC. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k,v in zip(tm.keys(),tm.values()): m[k] = None if v is None else v.aic() return m.values()[0] if len(m) == 1 else m def giniCoef(self, train=False, valid=False, xval=False): """ Get the Gini Coefficient(s). If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval" :param train: If train is True, then return the Gini Coefficient value for the training data. :param valid: If valid is True, then return the Gini Coefficient value for the validation data. :param xval: If xval is True, then return the Gini Coefficient value for the cross validation data. :return: The Gini Coefficient for this binomial model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k,v in zip(tm.keys(),tm.values()): m[k] = None if v is None else v.giniCoef() return m.values()[0] if len(m) == 1 else m def download_pojo(self,path=""): """ Download the POJO for this model to the directory specified by path (no trailing slash!). If path is "", then dump to screen. :param model: Retrieve this model's scoring POJO. :param path: An absolute path to the directory where POJO should be saved. :return: None """ h2o.download_pojo(self,path) # call the "package" function @staticmethod def _get_metrics(o, train, valid, xval): metrics = {} if train: metrics["train"] = o._model_json["output"]["training_metrics"] if valid: metrics["valid"] = o._model_json["output"]["validation_metrics"] if xval : metrics["xval"] = o._model_json["output"]["cross_validation_metrics"] if len(metrics) == 0: metrics["train"] = o._model_json["output"]["training_metrics"] return metrics # Delete from cluster as model goes out of scope # def __del__(self): # h2o.remove(self._id) @staticmethod def _has(dictionary, key): return key in dictionary and dictionary[key] is not None @staticmethod def _check_targets(y_actual, y_predicted): """ Check that y_actual and y_predicted have the same length. :param y_actual: An H2OFrame :param y_predicted: An H2OFrame :return: None """ if len(y_actual) != len(y_predicted): raise ValueError("Row mismatch: [{},{}]".format(len(y_actual),len(y_predicted)))
apache-2.0
IamJeffG/geopandas
geopandas/tests/test_plotting.py
1
10101
from __future__ import absolute_import, division import numpy as np import os import shutil import tempfile import matplotlib matplotlib.use('Agg', warn=False) from matplotlib.pyplot import Artist, savefig, clf, cm, get_cmap from matplotlib.testing.noseclasses import ImageComparisonFailure from matplotlib.testing.compare import compare_images from numpy import cos, sin, pi from shapely.geometry import Polygon, LineString, Point from six.moves import xrange from .util import unittest from geopandas import GeoSeries, GeoDataFrame, read_file # If set to True, generate images rather than perform tests (all tests will pass!) GENERATE_BASELINE = False BASELINE_DIR = os.path.join(os.path.dirname(__file__), 'baseline_images', 'test_plotting') TRAVIS = bool(os.environ.get('TRAVIS', False)) class TestImageComparisons(unittest.TestCase): @classmethod def setUpClass(cls): cls.tempdir = tempfile.mkdtemp() return @classmethod def tearDownClass(cls): shutil.rmtree(cls.tempdir) return def _compare_images(self, ax, filename, tol=10): """ Helper method to do the comparisons """ assert isinstance(ax, Artist) if GENERATE_BASELINE: savefig(os.path.join(BASELINE_DIR, filename)) savefig(os.path.join(self.tempdir, filename)) err = compare_images(os.path.join(BASELINE_DIR, filename), os.path.join(self.tempdir, filename), tol, in_decorator=True) if err: raise ImageComparisonFailure('images not close: %(actual)s ' 'vs. %(expected)s ' '(RMS %(rms).3f)' % err) def test_poly_plot(self): """ Test plotting a simple series of polygons """ clf() filename = 'poly_plot.png' t1 = Polygon([(0, 0), (1, 0), (1, 1)]) t2 = Polygon([(1, 0), (2, 0), (2, 1)]) polys = GeoSeries([t1, t2]) ax = polys.plot() self._compare_images(ax=ax, filename=filename) def test_point_plot(self): """ Test plotting a simple series of points """ clf() filename = 'points_plot.png' N = 10 points = GeoSeries(Point(i, i) for i in xrange(N)) ax = points.plot() self._compare_images(ax=ax, filename=filename) def test_line_plot(self): """ Test plotting a simple series of lines """ clf() filename = 'lines_plot.png' N = 10 lines = GeoSeries([LineString([(0, i), (9, i)]) for i in xrange(N)]) ax = lines.plot() self._compare_images(ax=ax, filename=filename) @unittest.skipIf(TRAVIS, 'Skip on Travis (fails even though it passes locally)') def test_plot_GeoDataFrame_with_kwargs(self): """ Test plotting a simple GeoDataFrame consisting of a series of polygons with increasing values using various extra kwargs. """ clf() filename = 'poly_plot_with_kwargs.png' ts = np.linspace(0, 2*pi, 10, endpoint=False) # Build GeoDataFrame from a series of triangles wrapping around in a ring # and a second column containing a list of increasing values. r1 = 1.0 # radius of inner ring boundary r2 = 1.5 # radius of outer ring boundary def make_triangle(t0, t1): return Polygon([(r1*cos(t0), r1*sin(t0)), (r2*cos(t0), r2*sin(t0)), (r1*cos(t1), r1*sin(t1))]) polys = GeoSeries([make_triangle(t0, t1) for t0, t1 in zip(ts, ts[1:])]) values = np.arange(len(polys)) df = GeoDataFrame({'geometry': polys, 'values': values}) # Plot the GeoDataFrame using various keyword arguments to see if they are honoured ax = df.plot(column='values', cmap=cm.RdBu, vmin=+2, vmax=None, figsize=(8, 4)) self._compare_images(ax=ax, filename=filename) class TestPointPlotting(unittest.TestCase): def setUp(self): self.N = 10 self.points = GeoSeries(Point(i, i) for i in range(self.N)) values = np.arange(self.N) self.df = GeoDataFrame({'geometry': self.points, 'values': values}) def test_default_colors(self): ## without specifying values -> max 9 different colors # GeoSeries ax = self.points.plot() cmap = get_cmap('Set1', 9) expected_colors = cmap(list(range(9))*2) _check_colors(ax.get_lines(), expected_colors) # GeoDataFrame -> uses 'jet' instead of 'Set1' ax = self.df.plot() cmap = get_cmap('jet', 9) expected_colors = cmap(list(range(9))*2) _check_colors(ax.get_lines(), expected_colors) ## with specifying values ax = self.df.plot(column='values') cmap = get_cmap('jet') expected_colors = cmap(np.arange(self.N)/(self.N-1)) _check_colors(ax.get_lines(), expected_colors) def test_colormap(self): ## without specifying values -> max 9 different colors # GeoSeries ax = self.points.plot(cmap='RdYlGn') cmap = get_cmap('RdYlGn', 9) expected_colors = cmap(list(range(9))*2) _check_colors(ax.get_lines(), expected_colors) # GeoDataFrame -> same as GeoSeries in this case ax = self.df.plot(cmap='RdYlGn') _check_colors(ax.get_lines(), expected_colors) ## with specifying values ax = self.df.plot(column='values', cmap='RdYlGn') cmap = get_cmap('RdYlGn') expected_colors = cmap(np.arange(self.N)/(self.N-1)) _check_colors(ax.get_lines(), expected_colors) def test_single_color(self): ax = self.points.plot(color='green') _check_colors(ax.get_lines(), ['green']*self.N) ax = self.df.plot(color='green') _check_colors(ax.get_lines(), ['green']*self.N) ax = self.df.plot(column='values', color='green') _check_colors(ax.get_lines(), ['green']*self.N) def test_style_kwargs(self): # markersize ax = self.points.plot(markersize=10) ms = [l.get_markersize() for l in ax.get_lines()] assert ms == [10] * self.N ax = self.df.plot(markersize=10) ms = [l.get_markersize() for l in ax.get_lines()] assert ms == [10] * self.N ax = self.df.plot(column='values', markersize=10) ms = [l.get_markersize() for l in ax.get_lines()] assert ms == [10] * self.N class TestLineStringPlotting(unittest.TestCase): def setUp(self): self.N = 10 values = np.arange(self.N) self.lines = GeoSeries([LineString([(0, i), (9, i)]) for i in xrange(self.N)]) self.df = GeoDataFrame({'geometry': self.lines, 'values': values}) def test_single_color(self): ax = self.lines.plot(color='green') _check_colors(ax.get_lines(), ['green']*self.N) ax = self.df.plot(color='green') _check_colors(ax.get_lines(), ['green']*self.N) ax = self.df.plot(column='values', color='green') _check_colors(ax.get_lines(), ['green']*self.N) def test_style_kwargs(self): # linestyle ax = self.lines.plot(linestyle='dashed') ls = [l.get_linestyle() for l in ax.get_lines()] assert ls == ['--'] * self.N ax = self.df.plot(linestyle='dashed') ls = [l.get_linestyle() for l in ax.get_lines()] assert ls == ['--'] * self.N ax = self.df.plot(column='values', linestyle='dashed') ls = [l.get_linestyle() for l in ax.get_lines()] assert ls == ['--'] * self.N class TestPolygonPlotting(unittest.TestCase): def setUp(self): t1 = Polygon([(0, 0), (1, 0), (1, 1)]) t2 = Polygon([(1, 0), (2, 0), (2, 1)]) self.polys = GeoSeries([t1, t2]) self.df = GeoDataFrame({'geometry': self.polys, 'values': [0, 1]}) return def test_single_color(self): ax = self.polys.plot(color='green') _check_colors(ax.patches, ['green']*2, alpha=0.5) ax = self.df.plot(color='green') _check_colors(ax.patches, ['green']*2, alpha=0.5) ax = self.df.plot(column='values', color='green') _check_colors(ax.patches, ['green']*2, alpha=0.5) def test_vmin_vmax(self): # when vmin == vmax, all polygons should be the same color ax = self.df.plot(column='values', categorical=True, vmin=0, vmax=0) cmap = get_cmap('Set1', 2) self.assertEqual(ax.patches[0].get_facecolor(), ax.patches[1].get_facecolor()) def test_facecolor(self): t1 = Polygon([(0, 0), (1, 0), (1, 1)]) t2 = Polygon([(1, 0), (2, 0), (2, 1)]) polys = GeoSeries([t1, t2]) df = GeoDataFrame({'geometry': polys, 'values': [0, 1]}) ax = polys.plot(facecolor='k') _check_colors(ax.patches, ['k']*2, alpha=0.5) class TestPySALPlotting(unittest.TestCase): @classmethod def setUpClass(cls): try: import pysal as ps except ImportError: raise unittest.SkipTest("PySAL is not installed") pth = ps.examples.get_path("columbus.shp") cls.tracts = read_file(pth) def test_legend(self): ax = self.tracts.plot(column='CRIME', scheme='QUANTILES', k=3, cmap='OrRd', legend=True) labels = [t.get_text() for t in ax.get_legend().get_texts()] expected = [u'0.00 - 26.07', u'26.07 - 41.97', u'41.97 - 68.89'] self.assertEqual(labels, expected) def _check_colors(collection, expected_colors, alpha=None): from matplotlib.lines import Line2D import matplotlib.colors as colors conv = colors.colorConverter for patch, color in zip(collection, expected_colors): if isinstance(patch, Line2D): # points/lines result = patch.get_color() else: # polygons result = patch.get_facecolor() assert conv.to_rgba(result) == conv.to_rgba(color, alpha=alpha) if __name__ == '__main__': unittest.main()
bsd-3-clause
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py
7
16859
# Authors: Alexandre Gramfort <[email protected]> # Vincent Michel <[email protected]> # Gilles Louppe <[email protected]> # # License: BSD 3 clause """Recursive feature elimination for feature ranking""" import numpy as np from ..utils import check_X_y, safe_sqr from ..utils.metaestimators import if_delegate_has_method from ..utils.validation import check_is_fitted from ..base import BaseEstimator from ..base import MetaEstimatorMixin from ..base import clone from ..base import is_classifier from ..externals.joblib import Parallel, delayed from ..model_selection import check_cv from ..model_selection._validation import _safe_split, _score from ..metrics.scorer import check_scoring from .base import SelectorMixin def _rfe_single_fit(rfe, estimator, X, y, train, test, scorer): """ Return the score for a fit across one fold. """ X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) return rfe._fit( X_train, y_train, lambda estimator, features: _score(estimator, X_test[:, features], y_test, scorer)).scores_ class RFE(BaseEstimator, MetaEstimatorMixin, SelectorMixin): """Feature ranking with recursive feature elimination. Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the estimator is trained on the initial set of features and the importance of each feature is obtained either through a ``coef_`` attribute or through a ``feature_importances_`` attribute. Then, the least important features are pruned from current set of features. That procedure is recursively repeated on the pruned set until the desired number of features to select is eventually reached. Read more in the :ref:`User Guide <rfe>`. Parameters ---------- estimator : object A supervised learning estimator with a ``fit`` method that provides information about feature importance either through a ``coef_`` attribute or through a ``feature_importances_`` attribute. n_features_to_select : int or None (default=None) The number of features to select. If `None`, half of the features are selected. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. verbose : int, default=0 Controls verbosity of output. Attributes ---------- n_features_ : int The number of selected features. support_ : array of shape [n_features] The mask of selected features. ranking_ : array of shape [n_features] The feature ranking, such that ``ranking_[i]`` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. estimator_ : object The external estimator fit on the reduced dataset. Examples -------- The following example shows how to retrieve the 5 right informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFE >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFE(estimator, 5, step=1) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) References ---------- .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002. """ def __init__(self, estimator, n_features_to_select=None, step=1, verbose=0): self.estimator = estimator self.n_features_to_select = n_features_to_select self.step = step self.verbose = verbose @property def _estimator_type(self): return self.estimator._estimator_type def fit(self, X, y): """Fit the RFE model and then the underlying estimator on the selected features. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] The target values. """ return self._fit(X, y) def _fit(self, X, y, step_score=None): # Parameter step_score controls the calculation of self.scores_ # step_score is not exposed to users # and is used when implementing RFECV # self.scores_ will not be calculated when calling _fit through fit X, y = check_X_y(X, y, "csc") # Initialization n_features = X.shape[1] if self.n_features_to_select is None: n_features_to_select = n_features // 2 else: n_features_to_select = self.n_features_to_select if 0.0 < self.step < 1.0: step = int(max(1, self.step * n_features)) else: step = int(self.step) if step <= 0: raise ValueError("Step must be >0") support_ = np.ones(n_features, dtype=np.bool) ranking_ = np.ones(n_features, dtype=np.int) if step_score: self.scores_ = [] # Elimination while np.sum(support_) > n_features_to_select: # Remaining features features = np.arange(n_features)[support_] # Rank the remaining features estimator = clone(self.estimator) if self.verbose > 0: print("Fitting estimator with %d features." % np.sum(support_)) estimator.fit(X[:, features], y) # Get coefs if hasattr(estimator, 'coef_'): coefs = estimator.coef_ else: coefs = getattr(estimator, 'feature_importances_', None) if coefs is None: raise RuntimeError('The classifier does not expose ' '"coef_" or "feature_importances_" ' 'attributes') # Get ranks if coefs.ndim > 1: ranks = np.argsort(safe_sqr(coefs).sum(axis=0)) else: ranks = np.argsort(safe_sqr(coefs)) # for sparse case ranks is matrix ranks = np.ravel(ranks) # Eliminate the worse features threshold = min(step, np.sum(support_) - n_features_to_select) # Compute step score on the previous selection iteration # because 'estimator' must use features # that have not been eliminated yet if step_score: self.scores_.append(step_score(estimator, features)) support_[features[ranks][:threshold]] = False ranking_[np.logical_not(support_)] += 1 # Set final attributes features = np.arange(n_features)[support_] self.estimator_ = clone(self.estimator) self.estimator_.fit(X[:, features], y) # Compute step score when only n_features_to_select features left if step_score: self.scores_.append(step_score(self.estimator_, features)) self.n_features_ = support_.sum() self.support_ = support_ self.ranking_ = ranking_ return self @if_delegate_has_method(delegate='estimator') def predict(self, X): """Reduce X to the selected features and then predict using the underlying estimator. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. Returns ------- y : array of shape [n_samples] The predicted target values. """ check_is_fitted(self, 'estimator_') return self.estimator_.predict(self.transform(X)) @if_delegate_has_method(delegate='estimator') def score(self, X, y): """Reduce X to the selected features and then return the score of the underlying estimator. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The target values. """ check_is_fitted(self, 'estimator_') return self.estimator_.score(self.transform(X), y) def _get_support_mask(self): check_is_fitted(self, 'support_') return self.support_ @if_delegate_has_method(delegate='estimator') def decision_function(self, X): check_is_fitted(self, 'estimator_') return self.estimator_.decision_function(self.transform(X)) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): check_is_fitted(self, 'estimator_') return self.estimator_.predict_proba(self.transform(X)) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): check_is_fitted(self, 'estimator_') return self.estimator_.predict_log_proba(self.transform(X)) class RFECV(RFE, MetaEstimatorMixin): """Feature ranking with recursive feature elimination and cross-validated selection of the best number of features. Read more in the :ref:`User Guide <rfe>`. Parameters ---------- estimator : object A supervised learning estimator with a ``fit`` method that provides information about feature importance either through a ``coef_`` attribute or through a ``feature_importances_`` attribute. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. If the estimator is a classifier or if ``y`` is neither binary nor multiclass, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int, default=0 Controls verbosity of output. n_jobs : int, default 1 Number of cores to run in parallel while fitting across folds. Defaults to 1 core. If `n_jobs=-1`, then number of jobs is set to number of cores. Attributes ---------- n_features_ : int The number of selected features with cross-validation. support_ : array of shape [n_features] The mask of selected features. ranking_ : array of shape [n_features] The feature ranking, such that `ranking_[i]` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. grid_scores_ : array of shape [n_subsets_of_features] The cross-validation scores such that ``grid_scores_[i]`` corresponds to the CV score of the i-th subset of features. estimator_ : object The external estimator fit on the reduced dataset. Notes ----- The size of ``grid_scores_`` is equal to ceil((n_features - 1) / step) + 1, where step is the number of features removed at each iteration. Examples -------- The following example shows how to retrieve the a-priori not known 5 informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFECV >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFECV(estimator, step=1, cv=5) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) References ---------- .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002. """ def __init__(self, estimator, step=1, cv=None, scoring=None, verbose=0, n_jobs=1): self.estimator = estimator self.step = step self.cv = cv self.scoring = scoring self.verbose = verbose self.n_jobs = n_jobs def fit(self, X, y): """Fit the RFE model and automatically tune the number of selected features. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where `n_samples` is the number of samples and `n_features` is the total number of features. y : array-like, shape = [n_samples] Target values (integers for classification, real numbers for regression). """ X, y = check_X_y(X, y, "csr") # Initialization cv = check_cv(self.cv, y, is_classifier(self.estimator)) scorer = check_scoring(self.estimator, scoring=self.scoring) n_features = X.shape[1] n_features_to_select = 1 if 0.0 < self.step < 1.0: step = int(max(1, self.step * n_features)) else: step = int(self.step) if step <= 0: raise ValueError("Step must be >0") rfe = RFE(estimator=self.estimator, n_features_to_select=n_features_to_select, step=self.step, verbose=self.verbose) # Determine the number of subsets of features by fitting across # the train folds and choosing the "features_to_select" parameter # that gives the least averaged error across all folds. # Note that joblib raises a non-picklable error for bound methods # even if n_jobs is set to 1 with the default multiprocessing # backend. # This branching is done so that to # make sure that user code that sets n_jobs to 1 # and provides bound methods as scorers is not broken with the # addition of n_jobs parameter in version 0.18. if self.n_jobs == 1: parallel, func = list, _rfe_single_fit else: parallel, func, = Parallel(n_jobs=self.n_jobs), delayed(_rfe_single_fit) scores = parallel( func(rfe, self.estimator, X, y, train, test, scorer) for train, test in cv.split(X, y)) scores = np.sum(scores, axis=0) n_features_to_select = max( n_features - (np.argmax(scores) * step), n_features_to_select) # Re-execute an elimination with best_k over the whole set rfe = RFE(estimator=self.estimator, n_features_to_select=n_features_to_select, step=self.step) rfe.fit(X, y) # Set final attributes self.support_ = rfe.support_ self.n_features_ = rfe.n_features_ self.ranking_ = rfe.ranking_ self.estimator_ = clone(self.estimator) self.estimator_.fit(self.transform(X), y) # Fixing a normalization error, n is equal to get_n_splits(X, y) - 1 # here, the scores are normalized by get_n_splits(X, y) self.grid_scores_ = scores[::-1] / cv.get_n_splits(X, y) return self
mit
jasonleaster/Machine_Learning
Adaboost/adaboost.py
1
3667
""" Programmer : EOF Cooperator : Wei Chen. Date : 2015.11.22 File : adaboost.py File Description: AdaBoost is a machine learning meta-algorithm. That is the short for "Adaptive Boosting". Thanks Wei Chen. Without him, I can't understand AdaBoost in this short time. We help each other and learn this algorithm. """ import numpy from decisionStump import * import matplotlib.pyplot as pyplot class AdaBoost: def __init__(self, Mat, Tag, WeakerClassifier = DecisionStump): """ self._Mat: A matrix which store the samples. Every column vector in this matrix is a point of sample. self._Tag: self.W: A vecter which is the weight of weaker classifier self.N: A number which descripte how many weaker classifier is enough for solution. """ self._Mat = numpy.array(Mat) * 1.0 self._Tag = numpy.array(Tag) * 1.0 self.SamplesDem = self._Mat.shape[0] self.SamplesNum = self._Mat.shape[1] # Make sure that the inputed data's demention is right. assert self.SamplesNum == self._Tag.size self.Weaker = WeakerClassifier # Initialization of weight self.W = [1.0/self.SamplesNum for i in range(self.SamplesNum)] self.N = 0 self.G = {} self.alpha = {} self.accuracy = [] def is_good_enough(self): output = numpy.zeros((self.SamplesNum, 1)) for i in range(self.N+1): output += self.G[i].prediction(self._Mat) * self.alpha[i] output = numpy.sign(output) output = output.flatten() e = numpy.count_nonzero(output ==self._Tag)/(self.SamplesNum*1.) self.accuracy.append( e ) if output.tolist() == self._Tag.tolist(): return True else: return False def train(self, M = 4): """ function @train() is the main process which run AdaBoost algorithm. @M : Upper bound weaker classifier. How many weaker classifier will be used to construct a strong classifier. """ for m in range(M): self.G[m] = self.Weaker(self._Mat, self._Tag, self.W) self.G[m].train() errorRate = self.G[m].opt_errorRate self.alpha[m] = 0.5 * numpy.log((1-errorRate)/errorRate) output = self.G[m].prediction(self._Mat) if self.is_good_enough(): print (self.N + 1) ," weak classifier is enough to ",\ "classify the inputed sample points" print "Training Done :)" break Z = 0.0 for i in range(self.SamplesNum): Z += self.W[i] * numpy.exp(-self.alpha[m] * self._Tag[i] * output[i]) for i in range(self.SamplesNum): self.W[i] = (self.W[i] / Z) * numpy.exp(-self.alpha[m] * self._Tag[i] * output[i]) self.N += 1 if self.accuracy[self.N-1] > 0.97 or self.N > 100: self.showErrRates() return def prediction(self, Mat): Mat = numpy.array(Mat) output = numpy.zeros((Mat.shape[1], 1)) for i in range(self.N + 1): output += self.G[i].prediction(Mat) * self.alpha[i] #print output output = numpy.sign(output) return output def showErrRates(self): pyplot.title("The changes of accuracy (Figure by Jason Leaster)") pyplot.xlabel("Iteration times") pyplot.ylabel("Accuracy of Prediction") pyplot.plot([i for i in range(self.N)], self.accuracy, '-.', label = "Accuracy * 100%") pyplot.show()
gpl-2.0
rcrowder/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/scale.py
69
13414
import textwrap import numpy as np from numpy import ma MaskedArray = ma.MaskedArray from cbook import dedent from ticker import NullFormatter, ScalarFormatter, LogFormatterMathtext, Formatter from ticker import NullLocator, LogLocator, AutoLocator, SymmetricalLogLocator, FixedLocator from transforms import Transform, IdentityTransform class ScaleBase(object): """ The base class for all scales. Scales are separable transformations, working on a single dimension. Any subclasses will want to override: - :attr:`name` - :meth:`get_transform` And optionally: - :meth:`set_default_locators_and_formatters` - :meth:`limit_range_for_scale` """ def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` object associated with this scale. """ raise NotImplementedError def set_default_locators_and_formatters(self, axis): """ Set the :class:`~matplotlib.ticker.Locator` and :class:`~matplotlib.ticker.Formatter` objects on the given axis to match this scale. """ raise NotImplementedError def limit_range_for_scale(self, vmin, vmax, minpos): """ Returns the range *vmin*, *vmax*, possibly limited to the domain supported by this scale. *minpos* should be the minimum positive value in the data. This is used by log scales to determine a minimum value. """ return vmin, vmax class LinearScale(ScaleBase): """ The default linear scale. """ name = 'linear' def __init__(self, axis, **kwargs): pass def set_default_locators_and_formatters(self, axis): """ Set the locators and formatters to reasonable defaults for linear scaling. """ axis.set_major_locator(AutoLocator()) axis.set_major_formatter(ScalarFormatter()) axis.set_minor_locator(NullLocator()) axis.set_minor_formatter(NullFormatter()) def get_transform(self): """ The transform for linear scaling is just the :class:`~matplotlib.transforms.IdentityTransform`. """ return IdentityTransform() def _mask_non_positives(a): """ Return a Numpy masked array where all non-positive values are masked. If there are no non-positive values, the original array is returned. """ mask = a <= 0.0 if mask.any(): return ma.MaskedArray(a, mask=mask) return a class LogScale(ScaleBase): """ A standard logarithmic scale. Care is taken so non-positive values are not plotted. For computational efficiency (to push as much as possible to Numpy C code in the common cases), this scale provides different transforms depending on the base of the logarithm: - base 10 (:class:`Log10Transform`) - base 2 (:class:`Log2Transform`) - base e (:class:`NaturalLogTransform`) - arbitrary base (:class:`LogTransform`) """ name = 'log' class Log10Transform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = 10.0 def transform(self, a): a = _mask_non_positives(a * 10.0) if isinstance(a, MaskedArray): return ma.log10(a) return np.log10(a) def inverted(self): return LogScale.InvertedLog10Transform() class InvertedLog10Transform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = 10.0 def transform(self, a): return ma.power(10.0, a) / 10.0 def inverted(self): return LogScale.Log10Transform() class Log2Transform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = 2.0 def transform(self, a): a = _mask_non_positives(a * 2.0) if isinstance(a, MaskedArray): return ma.log(a) / np.log(2) return np.log2(a) def inverted(self): return LogScale.InvertedLog2Transform() class InvertedLog2Transform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = 2.0 def transform(self, a): return ma.power(2.0, a) / 2.0 def inverted(self): return LogScale.Log2Transform() class NaturalLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = np.e def transform(self, a): a = _mask_non_positives(a * np.e) if isinstance(a, MaskedArray): return ma.log(a) return np.log(a) def inverted(self): return LogScale.InvertedNaturalLogTransform() class InvertedNaturalLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = np.e def transform(self, a): return ma.power(np.e, a) / np.e def inverted(self): return LogScale.NaturalLogTransform() class LogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True def __init__(self, base): Transform.__init__(self) self.base = base def transform(self, a): a = _mask_non_positives(a * self.base) if isinstance(a, MaskedArray): return ma.log(a) / np.log(self.base) return np.log(a) / np.log(self.base) def inverted(self): return LogScale.InvertedLogTransform(self.base) class InvertedLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True def __init__(self, base): Transform.__init__(self) self.base = base def transform(self, a): return ma.power(self.base, a) / self.base def inverted(self): return LogScale.LogTransform(self.base) def __init__(self, axis, **kwargs): """ *basex*/*basey*: The base of the logarithm *subsx*/*subsy*: Where to place the subticks between each major tick. Should be a sequence of integers. For example, in a log10 scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]`` will place 10 logarithmically spaced minor ticks between each major tick. """ if axis.axis_name == 'x': base = kwargs.pop('basex', 10.0) subs = kwargs.pop('subsx', None) else: base = kwargs.pop('basey', 10.0) subs = kwargs.pop('subsy', None) if base == 10.0: self._transform = self.Log10Transform() elif base == 2.0: self._transform = self.Log2Transform() elif base == np.e: self._transform = self.NaturalLogTransform() else: self._transform = self.LogTransform(base) self.base = base self.subs = subs def set_default_locators_and_formatters(self, axis): """ Set the locators and formatters to specialized versions for log scaling. """ axis.set_major_locator(LogLocator(self.base)) axis.set_major_formatter(LogFormatterMathtext(self.base)) axis.set_minor_locator(LogLocator(self.base, self.subs)) axis.set_minor_formatter(NullFormatter()) def get_transform(self): """ Return a :class:`~matplotlib.transforms.Transform` instance appropriate for the given logarithm base. """ return self._transform def limit_range_for_scale(self, vmin, vmax, minpos): """ Limit the domain to positive values. """ return (vmin <= 0.0 and minpos or vmin, vmax <= 0.0 and minpos or vmax) class SymmetricalLogScale(ScaleBase): """ The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin. Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter *linthresh* allows the user to specify the size of this range (-*linthresh*, *linthresh*). """ name = 'symlog' class SymmetricalLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True def __init__(self, base, linthresh): Transform.__init__(self) self.base = base self.linthresh = linthresh self._log_base = np.log(base) self._linadjust = (np.log(linthresh) / self._log_base) / linthresh def transform(self, a): a = np.asarray(a) sign = np.sign(a) masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False) log = sign * ma.log(np.abs(masked)) / self._log_base if masked.mask.any(): return np.asarray(ma.where(masked.mask, a * self._linadjust, log)) else: return np.asarray(log) def inverted(self): return SymmetricalLogScale.InvertedSymmetricalLogTransform(self.base, self.linthresh) class InvertedSymmetricalLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True def __init__(self, base, linthresh): Transform.__init__(self) self.base = base self.linthresh = linthresh self._log_base = np.log(base) self._log_linthresh = np.log(linthresh) / self._log_base self._linadjust = linthresh / (np.log(linthresh) / self._log_base) def transform(self, a): a = np.asarray(a) return np.where(a <= self._log_linthresh, np.where(a >= -self._log_linthresh, a * self._linadjust, -(np.power(self.base, -a))), np.power(self.base, a)) def inverted(self): return SymmetricalLogScale.SymmetricalLogTransform(self.base) def __init__(self, axis, **kwargs): """ *basex*/*basey*: The base of the logarithm *linthreshx*/*linthreshy*: The range (-*x*, *x*) within which the plot is linear (to avoid having the plot go to infinity around zero). *subsx*/*subsy*: Where to place the subticks between each major tick. Should be a sequence of integers. For example, in a log10 scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]`` will place 10 logarithmically spaced minor ticks between each major tick. """ if axis.axis_name == 'x': base = kwargs.pop('basex', 10.0) linthresh = kwargs.pop('linthreshx', 2.0) subs = kwargs.pop('subsx', None) else: base = kwargs.pop('basey', 10.0) linthresh = kwargs.pop('linthreshy', 2.0) subs = kwargs.pop('subsy', None) self._transform = self.SymmetricalLogTransform(base, linthresh) self.base = base self.linthresh = linthresh self.subs = subs def set_default_locators_and_formatters(self, axis): """ Set the locators and formatters to specialized versions for symmetrical log scaling. """ axis.set_major_locator(SymmetricalLogLocator(self.get_transform())) axis.set_major_formatter(LogFormatterMathtext(self.base)) axis.set_minor_locator(SymmetricalLogLocator(self.get_transform(), self.subs)) axis.set_minor_formatter(NullFormatter()) def get_transform(self): """ Return a :class:`SymmetricalLogTransform` instance. """ return self._transform _scale_mapping = { 'linear' : LinearScale, 'log' : LogScale, 'symlog' : SymmetricalLogScale } def get_scale_names(): names = _scale_mapping.keys() names.sort() return names def scale_factory(scale, axis, **kwargs): """ Return a scale class by name. ACCEPTS: [ %(names)s ] """ scale = scale.lower() if scale is None: scale = 'linear' if scale not in _scale_mapping: raise ValueError("Unknown scale type '%s'" % scale) return _scale_mapping[scale](axis, **kwargs) scale_factory.__doc__ = dedent(scale_factory.__doc__) % \ {'names': " | ".join(get_scale_names())} def register_scale(scale_class): """ Register a new kind of scale. *scale_class* must be a subclass of :class:`ScaleBase`. """ _scale_mapping[scale_class.name] = scale_class def get_scale_docs(): """ Helper function for generating docstrings related to scales. """ docs = [] for name in get_scale_names(): scale_class = _scale_mapping[name] docs.append(" '%s'" % name) docs.append("") class_docs = dedent(scale_class.__init__.__doc__) class_docs = "".join([" %s\n" % x for x in class_docs.split("\n")]) docs.append(class_docs) docs.append("") return "\n".join(docs)
agpl-3.0
NonVolatileComputing/arrow
python/pyarrow/tests/test_io.py
1
10283
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from io import BytesIO import gc import os import pytest import sys import numpy as np import pandas as pd from pyarrow.compat import u, guid import pyarrow as pa # ---------------------------------------------------------------------- # Python file-like objects def test_python_file_write(): buf = BytesIO() f = pa.PythonFile(buf) assert f.tell() == 0 s1 = b'enga\xc3\xb1ado' s2 = b'foobar' f.write(s1.decode('utf8')) assert f.tell() == len(s1) f.write(s2) expected = s1 + s2 result = buf.getvalue() assert result == expected f.close() def test_python_file_read(): data = b'some sample data' buf = BytesIO(data) f = pa.PythonFile(buf, mode='r') assert f.size() == len(data) assert f.tell() == 0 assert f.read(4) == b'some' assert f.tell() == 4 f.seek(0) assert f.tell() == 0 f.seek(5) assert f.tell() == 5 v = f.read(50) assert v == b'sample data' assert len(v) == 11 f.close() def test_bytes_reader(): # Like a BytesIO, but zero-copy underneath for C++ consumers data = b'some sample data' f = pa.BufferReader(data) assert f.tell() == 0 assert f.size() == len(data) assert f.read(4) == b'some' assert f.tell() == 4 f.seek(0) assert f.tell() == 0 f.seek(5) assert f.tell() == 5 assert f.read(50) == b'sample data' f.close() def test_bytes_reader_non_bytes(): with pytest.raises(ValueError): pa.BufferReader(u('some sample data')) def test_bytes_reader_retains_parent_reference(): import gc # ARROW-421 def get_buffer(): data = b'some sample data' * 1000 reader = pa.BufferReader(data) reader.seek(5) return reader.read_buffer(6) buf = get_buffer() gc.collect() assert buf.to_pybytes() == b'sample' assert buf.parent is not None # ---------------------------------------------------------------------- # Buffers def test_buffer_bytes(): val = b'some data' buf = pa.frombuffer(val) assert isinstance(buf, pa.Buffer) result = buf.to_pybytes() assert result == val def test_buffer_memoryview(): val = b'some data' buf = pa.frombuffer(val) assert isinstance(buf, pa.Buffer) result = memoryview(buf) assert result == val def test_buffer_bytearray(): val = bytearray(b'some data') buf = pa.frombuffer(val) assert isinstance(buf, pa.Buffer) result = bytearray(buf) assert result == val def test_buffer_numpy(): # Make sure creating a numpy array from an arrow buffer works byte_array = bytearray(20) byte_array[0] = 42 buf = pa.frombuffer(byte_array) array = np.frombuffer(buf, dtype="uint8") assert array[0] == byte_array[0] assert array.base == buf def test_allocate_buffer(): buf = pa.allocate_buffer(100) assert buf.size == 100 assert buf.is_mutable bit = b'abcde' writer = pa.FixedSizeBufferWriter(buf) writer.write(bit) assert buf.to_pybytes()[:5] == bit def test_buffer_memoryview_is_immutable(): val = b'some data' buf = pa.frombuffer(val) assert isinstance(buf, pa.Buffer) result = memoryview(buf) with pytest.raises(TypeError) as exc: result[0] = b'h' assert 'cannot modify read-only' in str(exc.value) b = bytes(buf) with pytest.raises(TypeError) as exc: b[0] = b'h' assert 'cannot modify read-only' in str(exc.value) def test_memory_output_stream(): # 10 bytes val = b'dataabcdef' f = pa.BufferOutputStream() K = 1000 for i in range(K): f.write(val) buf = f.get_result() assert len(buf) == len(val) * K assert buf.to_pybytes() == val * K def test_inmemory_write_after_closed(): f = pa.BufferOutputStream() f.write(b'ok') f.get_result() with pytest.raises(IOError): f.write(b'not ok') def test_buffer_protocol_ref_counting(): def make_buffer(bytes_obj): return bytearray(pa.frombuffer(bytes_obj)) buf = make_buffer(b'foo') gc.collect() assert buf == b'foo' # ARROW-1053 val = b'foo' refcount_before = sys.getrefcount(val) for i in range(10): make_buffer(val) gc.collect() assert refcount_before == sys.getrefcount(val) def test_nativefile_write_memoryview(): f = pa.BufferOutputStream() data = b'ok' arr = np.frombuffer(data, dtype='S1') f.write(arr) f.write(bytearray(data)) buf = f.get_result() assert buf.to_pybytes() == data * 2 # ---------------------------------------------------------------------- # Mock output stream def test_mock_output_stream(): # Make sure that the MockOutputStream and the BufferOutputStream record the # same size # 10 bytes val = b'dataabcdef' f1 = pa.MockOutputStream() f2 = pa.BufferOutputStream() K = 1000 for i in range(K): f1.write(val) f2.write(val) assert f1.size() == len(f2.get_result()) # Do the same test with a pandas DataFrame val = pd.DataFrame({'a': [1, 2, 3]}) record_batch = pa.RecordBatch.from_pandas(val) f1 = pa.MockOutputStream() f2 = pa.BufferOutputStream() stream_writer1 = pa.RecordBatchStreamWriter(f1, record_batch.schema) stream_writer2 = pa.RecordBatchStreamWriter(f2, record_batch.schema) stream_writer1.write_batch(record_batch) stream_writer2.write_batch(record_batch) stream_writer1.close() stream_writer2.close() assert f1.size() == len(f2.get_result()) # ---------------------------------------------------------------------- # OS files and memory maps @pytest.fixture def sample_disk_data(request, tmpdir): SIZE = 4096 arr = np.random.randint(0, 256, size=SIZE).astype('u1') data = arr.tobytes()[:SIZE] path = os.path.join(str(tmpdir), guid()) with open(path, 'wb') as f: f.write(data) def teardown(): _try_delete(path) request.addfinalizer(teardown) return path, data def _check_native_file_reader(FACTORY, sample_data): path, data = sample_data f = FACTORY(path, mode='r') assert f.read(10) == data[:10] assert f.read(0) == b'' assert f.tell() == 10 assert f.read() == data[10:] assert f.size() == len(data) f.seek(0) assert f.tell() == 0 # Seeking past end of file not supported in memory maps f.seek(len(data) + 1) assert f.tell() == len(data) + 1 assert f.read(5) == b'' # Test whence argument of seek, ARROW-1287 assert f.seek(3) == 3 assert f.seek(3, os.SEEK_CUR) == 6 assert f.tell() == 6 ex_length = len(data) - 2 assert f.seek(-2, os.SEEK_END) == ex_length assert f.tell() == ex_length def test_memory_map_reader(sample_disk_data): _check_native_file_reader(pa.memory_map, sample_disk_data) def test_memory_map_retain_buffer_reference(sample_disk_data): path, data = sample_disk_data cases = [] with pa.memory_map(path, 'rb') as f: cases.append((f.read_buffer(100), data[:100])) cases.append((f.read_buffer(100), data[100:200])) cases.append((f.read_buffer(100), data[200:300])) # Call gc.collect() for good measure gc.collect() for buf, expected in cases: assert buf.to_pybytes() == expected def test_os_file_reader(sample_disk_data): _check_native_file_reader(pa.OSFile, sample_disk_data) def _try_delete(path): try: os.remove(path) except os.error: pass def test_memory_map_writer(tmpdir): SIZE = 4096 arr = np.random.randint(0, 256, size=SIZE).astype('u1') data = arr.tobytes()[:SIZE] path = os.path.join(str(tmpdir), guid()) with open(path, 'wb') as f: f.write(data) f = pa.memory_map(path, mode='r+b') f.seek(10) f.write('peekaboo') assert f.tell() == 18 f.seek(10) assert f.read(8) == b'peekaboo' f2 = pa.memory_map(path, mode='r+b') f2.seek(10) f2.write(b'booapeak') f2.seek(10) f.seek(10) assert f.read(8) == b'booapeak' # Does not truncate file f3 = pa.memory_map(path, mode='w') f3.write('foo') with pa.memory_map(path) as f4: assert f4.size() == SIZE with pytest.raises(IOError): f3.read(5) f.seek(0) assert f.read(3) == b'foo' def test_os_file_writer(tmpdir): SIZE = 4096 arr = np.random.randint(0, 256, size=SIZE).astype('u1') data = arr.tobytes()[:SIZE] path = os.path.join(str(tmpdir), guid()) with open(path, 'wb') as f: f.write(data) # Truncates file f2 = pa.OSFile(path, mode='w') f2.write('foo') with pa.OSFile(path) as f3: assert f3.size() == 3 with pytest.raises(IOError): f2.read(5) def test_native_file_modes(tmpdir): path = os.path.join(str(tmpdir), guid()) with open(path, 'wb') as f: f.write(b'foooo') with pa.OSFile(path, mode='r') as f: assert f.mode == 'rb' with pa.OSFile(path, mode='rb') as f: assert f.mode == 'rb' with pa.OSFile(path, mode='w') as f: assert f.mode == 'wb' with pa.OSFile(path, mode='wb') as f: assert f.mode == 'wb' with open(path, 'wb') as f: f.write(b'foooo') with pa.memory_map(path, 'r') as f: assert f.mode == 'rb' with pa.memory_map(path, 'r+') as f: assert f.mode == 'rb+' with pa.memory_map(path, 'r+b') as f: assert f.mode == 'rb+'
apache-2.0
arunlodhi/pymc3
pymc3/backends/tracetab.py
8
1818
"""Functions for converting traces into a table-like format """ import numpy as np import pandas as pd __all__ = ['trace_to_dataframe'] def trace_to_dataframe(trace, chains=None, flat_names=None): """Convert trace to Pandas DataFrame. Parameters ---------- trace : NDarray trace chains : int or list of ints Chains to include. If None, all chains are used. A single chain value can also be given. flat_names : dict or None A dictionary that maps each variable name in `trace` to a list """ var_shapes = trace._straces[0].var_shapes if flat_names is None: flat_names = {v: create_flat_names(v, shape) for v, shape in var_shapes.items()} var_dfs = [] for varname, shape in var_shapes.items(): vals = trace.get_values(varname, combine=True, chains=chains) flat_vals = vals.reshape(vals.shape[0], -1) var_dfs.append(pd.DataFrame(flat_vals, columns=flat_names[varname])) return pd.concat(var_dfs, axis=1) def create_flat_names(varname, shape): """Return flat variable names for `varname` of `shape`. Examples -------- >>> create_flat_names('x', (5,)) ['x__0', 'x__1', 'x__2', 'x__3', 'x__4'] >>> create_flat_names('x', (2, 2)) ['x__0_0', 'x__0_1', 'x__1_0', 'x__1_1'] """ if not shape: return [varname] labels = (np.ravel(xs).tolist() for xs in np.indices(shape)) labels = (map(str, xs) for xs in labels) return ['{}__{}'.format(varname, '_'.join(idxs)) for idxs in zip(*labels)] def _create_shape(flat_names): "Determine shape from `create_flat_names` output." try: _, shape_str = flat_names[-1].rsplit('__', 1) except ValueError: return () return tuple(int(i) + 1 for i in shape_str.split('_'))
apache-2.0
charanpald/wallhack
wallhack/viroscopy/model/ProcessResults.py
1
17156
import numpy import logging import sys import multiprocessing import os from apgl.graph.GraphStatistics import GraphStatistics from sandbox.util.PathDefaults import PathDefaults from sandbox.util.Util import Util from sandbox.util.Latex import Latex from sandbox.util.FileLock import FileLock from sandbox.predictors.ABCSMC import loadThetaArray from wallhack.viroscopy.model.HIVModelUtils import HIVModelUtils assert False, "Must run with -O flag" FORMAT = "%(levelname)s:root:%(process)d:%(message)s" logging.basicConfig(stream=sys.stdout, level=logging.DEBUG, format=FORMAT) numpy.set_printoptions(suppress=True, precision=4, linewidth=150) processReal = False saveResults = False def loadParams(ind): if processReal: resultsDir = PathDefaults.getOutputDir() + "viroscopy/real/theta" + str(ind) + "/" outputDir = resultsDir + "stats/" N, matchAlpha, breakScale, numEpsilons, epsilon, minEpsilon, matchAlg, abcMaxRuns, batchSize, pertScale = HIVModelUtils.realABCParams(True) startDate, endDate, recordStep, M, targetGraph, numInds = HIVModelUtils.realSimulationParams(test=True, ind=ind) realTheta, sigmaTheta, pertTheta = HIVModelUtils.estimatedRealTheta(ind) numInds=2 prefix = "Real" else: resultsDir = PathDefaults.getOutputDir() + "viroscopy/toy/theta/" outputDir = resultsDir + "stats/" N, matchAlpha, breakScale, numEpsilons, epsilon, minEpsilon, matchAlg, abcMaxRuns, batchSize, pertScale = HIVModelUtils.toyABCParams() startDate, endDate, recordStep, M, targetGraph = HIVModelUtils.toySimulationParams(test=True) realTheta, sigmaTheta, pertTheta = HIVModelUtils.toyTheta() prefix = "Toy" numInds = 1 breakSize = (targetGraph.subgraph(targetGraph.removedIndsAt(endDate)).size - targetGraph.subgraph(targetGraph.removedIndsAt(startDate)).size) * breakScale return N, resultsDir, outputDir, recordStep, startDate, endDate, prefix, targetGraph, breakSize, numEpsilons, M, matchAlpha, matchAlg, numInds def saveStats(args): i, theta = args resultsFileName = outputDir + "SimStats" + str(i) + ".pkl" lock = FileLock(resultsFileName) if not lock.fileExists() and not lock.isLocked(): lock.lock() model = HIVModelUtils.createModel(targetGraph, startDate, endDate, recordStep, M, matchAlpha, breakSize, matchAlg, theta=thetaArray[i]) times, infectedIndices, removedIndices, graph, compTimes, graphMetrics = HIVModelUtils.simulate(model) times = numpy.arange(startDate, endDate+1, recordStep) vertexArray, infectedIndices, removedIndices, contactGraphStats, removedGraphStats, finalRemovedDegrees = HIVModelUtils.generateStatistics(graph, times) stats = times, vertexArray, infectedIndices, removedGraphStats, finalRemovedDegrees, graphMetrics.objectives, compTimes Util.savePickle(stats, resultsFileName) lock.unlock() else: logging.debug("Results already computed: " + str(resultsFileName)) N, resultsDir, outputDir, recordStep, startDate, endDate, prefix, targetGraph, breakSize, numEpsilons, M, matchAlpha, matchAlg, numInds = loadParams(0) if saveResults: for ind in range(numInds): logging.debug("Record step: " + str(recordStep)) logging.debug("Start date: " + str(startDate)) logging.debug("End date: " + str(endDate)) logging.debug("End date - start date: " + str(endDate - startDate)) N, resultsDir, outputDir, recordStep, startDate, endDate, prefix, targetGraph, breakSize, numEpsilons, M, matchAlpha, matchAlg, numInds = loadParams(ind) t = 0 for i in range(numEpsilons): thetaArray, objArray = loadThetaArray(N, resultsDir, i) if thetaArray.shape[0] == N: t = i logging.debug("Using population " + str(t)) try: os.mkdir(outputDir) except: logging.debug("Directory exists: " + outputDir) thetaArray = loadThetaArray(N, resultsDir, t)[0] logging.debug(thetaArray) paramList = [] for i in range(thetaArray.shape[0]): paramList.append((i, thetaArray[i, :])) pool = multiprocessing.Pool(multiprocessing.cpu_count()) resultIterator = pool.map(saveStats, paramList) #resultIterator = map(saveStats, paramList) pool.terminate() #Now save the statistics on the target graph times = numpy.arange(startDate, endDate+1, recordStep) vertexArray, infectedIndices, removedIndices, contactGraphStats, removedGraphStats, finalRemovedDegrees = HIVModelUtils.generateStatistics(targetGraph, times) stats = vertexArray, infectedIndices, removedIndices, contactGraphStats, removedGraphStats, finalRemovedDegrees resultsFileName = outputDir + "IdealStats.pkl" Util.savePickle(stats, resultsFileName) else: import matplotlib matplotlib.use("GTK3Agg") import matplotlib.pyplot as plt plotStyles = ['k-', 'kx-', 'k+-', 'k.-', 'k*-'] N, resultsDir, outputDir, recordStep, startDate, endDate, prefix, targetGraph, breakSize, numEpsilons, M, matchAlpha, matchAlg, numInds = loadParams(0) inds = range(numInds) numRecordSteps = int((endDate-startDate)/recordStep)+1 #We store: number of detections, CT detections, rand detections, infectives, max componnent size, num components, edges, objectives numMeasures = 12 numTimings = 2 thetas = [] measures = numpy.zeros((len(inds), numMeasures, N, numRecordSteps)) idealMeasures = numpy.zeros((len(inds), numMeasures, numRecordSteps)) timings = numpy.zeros((len(inds), numTimings, N)) numDegrees = 20 degreeDists = numpy.zeros((len(inds), numDegrees, N)) idealDegreeDists = numpy.zeros((len(inds), numDegrees)) #Note all the inds numDetectsInd = 0 maleInd = 1 femaleInd = 2 heteroInd = 3 biInd = 4 randDetectInd = 5 contactDetectInd = 6 infectedInd = 7 numCompsInd = 8 maxCompSizeInd = 9 numEdgesInd = 10 objsInd = 11 plotInd = 0 if processReal: timeInds = [5, 6] else: timeInds = [10, 11, 12, 13] for ind in inds: logging.debug("ind=" + str(ind)) N, resultsDir, outputDir, recordStep, startDate, endDate, prefix, targetGraph, breakSize, numEpsilons, M, matchAlpha, matchAlg, numInds = loadParams(ind) #Find the max number t for which we have a complete set of particles t = 0 for i in range(numEpsilons): thetaArray, objArray = loadThetaArray(N, resultsDir, i) if thetaArray.shape[0] == N: t = i logging.debug("Using particle number " + str(t)) times = numpy.arange(startDate, endDate+1, recordStep) realTheta, sigmaTheta, purtTheta = HIVModelUtils.toyTheta() thetaArray, objArray = loadThetaArray(N, resultsDir, t) thetas.append(thetaArray) print(thetaArray) resultsFileName = outputDir + "IdealStats.pkl" stats = Util.loadPickle(resultsFileName) vertexArrayIdeal, idealInfectedIndices, idealRemovedIndices, idealContactGraphStats, idealRemovedGraphStats, idealFinalRemovedDegrees = stats graphStats = GraphStatistics() idealMeasures[ind, numDetectsInd, :] = vertexArrayIdeal[:, numDetectsInd] idealMeasures[ind, maleInd, :] = vertexArrayIdeal[:, maleInd] idealMeasures[ind, femaleInd, :] = vertexArrayIdeal[:, femaleInd] idealMeasures[ind, heteroInd, :] = vertexArrayIdeal[:, heteroInd] idealMeasures[ind, biInd, :] = vertexArrayIdeal[:, biInd] idealMeasures[ind, randDetectInd, :] = vertexArrayIdeal[:, randDetectInd] idealMeasures[ind, contactDetectInd, :] = vertexArrayIdeal[:, contactDetectInd] idealMeasures[ind, numCompsInd, :] = idealRemovedGraphStats[:, graphStats.numComponentsIndex] idealMeasures[ind, maxCompSizeInd, :] = idealRemovedGraphStats[:, graphStats.maxComponentSizeIndex] idealMeasures[ind, numEdgesInd, :] = idealRemovedGraphStats[:, graphStats.numEdgesIndex] maxDegrees = min(idealFinalRemovedDegrees.shape[0], numDegrees) idealDegreeDists[ind, 0:maxDegrees] = idealFinalRemovedDegrees[0:maxDegrees] for i in range(thetaArray.shape[0]): resultsFileName = outputDir + "SimStats" + str(i) + ".pkl" stats = Util.loadPickle(resultsFileName) times, vertexArray, infectedIndices, removedGraphStats, finalRemovedDegrees, objs, compTimes = stats measures[ind, numDetectsInd, i, :] = vertexArray[:, numDetectsInd] measures[ind, maleInd, i, :] = vertexArray[:, maleInd] measures[ind, femaleInd, i, :] = vertexArray[:, femaleInd] measures[ind, heteroInd, i, :] = vertexArray[:, heteroInd] measures[ind, biInd, i, :] = vertexArray[:, biInd] measures[ind, randDetectInd, i, :] = vertexArray[:, randDetectInd] measures[ind, contactDetectInd, i, :] = vertexArray[:, contactDetectInd] measures[ind, infectedInd, i, :] = numpy.array([len(x) for x in infectedIndices]) measures[ind, numCompsInd, i, :] = removedGraphStats[:, graphStats.numComponentsIndex] measures[ind, maxCompSizeInd, i, :] = removedGraphStats[:, graphStats.maxComponentSizeIndex] measures[ind, numEdgesInd, i, :] = removedGraphStats[:, graphStats.numEdgesIndex] measures[ind, objsInd, i, 1:] = objs maxDegrees = min(finalRemovedDegrees.shape[0], numDegrees) degreeDists[ind, 0:maxDegrees, i] = finalRemovedDegrees[0:maxDegrees] #objectives[inds, i, :] = objs timings[ind, :, i] = compTimes times = times - numpy.min(times) logging.debug("times="+str(times)) logging.debug("computational times="+str(numpy.mean(timings, 2))) meanMeasures = numpy.mean(measures, 2) stdMeasures = numpy.std(measures, 2) #Infections and detections plt.figure(plotInd) if not processReal: numInfects = [len(x) for x in idealInfectedIndices] plt.errorbar(times, meanMeasures[ind, infectedInd, :], color="k", yerr=stdMeasures[ind, infectedInd, :], label="est. infectives") plt.plot(times, numInfects, "k--", label="infectives") plt.errorbar(times, meanMeasures[ind, numDetectsInd, :], color="r", yerr=stdMeasures[ind, numDetectsInd, :], label="est. detections") plt.plot(times, idealMeasures[ind, numDetectsInd, :], "r--", label="detections") plt.xlabel("time (days)") if not processReal: plt.ylabel("infectives/detections") lims = plt.xlim() plt.xlim([0, lims[1]]) filename = outputDir + prefix + "InfectDetects.eps" else: plt.ylabel("detections") filename = outputDir + prefix + "Detects" + str(ind) + ".eps" plt.legend(loc="lower right") plt.savefig(filename) plotInd += 1 #Gender plt.figure(plotInd) plt.errorbar(times, meanMeasures[ind, maleInd, :], yerr=stdMeasures[ind, maleInd, :], label="est. male") plt.plot(times, idealMeasures[ind, maleInd, :], "r", label="male") plt.errorbar(times, meanMeasures[ind, femaleInd, :], yerr=stdMeasures[ind, femaleInd, :], label="est. female") plt.plot(times, idealMeasures[ind, femaleInd, :], "k", label="female") plt.xlabel("time (days)") plt.ylabel("detections") plt.legend(loc="upper left") plotInd += 1 #Orientation plt.figure(plotInd) plt.errorbar(times, meanMeasures[ind, heteroInd, :], yerr=stdMeasures[ind, heteroInd, :], label="est. hetero") plt.plot(times, idealMeasures[ind, heteroInd, :], "r", label="hetero") plt.errorbar(times, meanMeasures[ind, biInd, :], yerr=stdMeasures[ind, biInd, :], label="est. bi") plt.plot(times, idealMeasures[ind, biInd, :], "k", label="bi") plt.xlabel("time (days)") plt.ylabel("detections") plt.legend(loc="upper left") plotInd += 1 #Contact tracing rand random detections plt.figure(plotInd) if processReal: plt.errorbar(times, meanMeasures[ind, numDetectsInd, :], color="k", yerr=stdMeasures[ind, numDetectsInd, :], label="est. detections") plt.plot(times, idealMeasures[ind, numDetectsInd, :], "k--", label="detections") plt.errorbar(times, meanMeasures[ind, contactDetectInd, :], color="r", yerr=stdMeasures[ind, contactDetectInd, :], label="est. CT detections") plt.plot(times, idealMeasures[ind, contactDetectInd, :], "r--", label="CT detections") plt.errorbar(times, meanMeasures[ind, randDetectInd, :], color="b", yerr=stdMeasures[ind, randDetectInd, :], label="est. random detections") plt.plot(times, idealMeasures[ind, randDetectInd, :], "b--", label="random detections") plt.xlabel("time (days)") plt.ylabel("detections") if not processReal: lims = plt.xlim() plt.xlim([0, lims[1]]) plt.legend(loc="upper left") plt.savefig(outputDir + prefix + "CTRandDetects" + str(ind) + ".eps") plotInd += 1 #Number of components plt.figure(plotInd) plt.errorbar(times, meanMeasures[ind, numCompsInd, :], yerr=stdMeasures[ind, numCompsInd, :]) plt.xlabel("time (days)") plt.ylabel("num components") plt.plot(times, idealMeasures[ind, numCompsInd, :], "r") plotInd += 1 #Max component size plt.figure(plotInd) plt.errorbar(times, meanMeasures[ind, maxCompSizeInd, :], yerr=stdMeasures[ind, maxCompSizeInd, :]) plt.xlabel("time (days)") plt.ylabel("max component size") plt.plot(times, idealMeasures[ind, maxCompSizeInd, :], "r") plotInd += 1 #Num edges plt.figure(plotInd) plt.errorbar(times, meanMeasures[ind, numEdgesInd, :], yerr=stdMeasures[ind, numEdgesInd, :]) plt.xlabel("time (days)") plt.ylabel("number of edges") plt.plot(times, idealMeasures[ind, numEdgesInd, :], "r") plotInd += 1 #Objectives plt.figure(plotInd) plt.errorbar(times[1:], meanMeasures[ind, objsInd, 1:], yerr=stdMeasures[ind, objsInd, 1:]) plt.xlabel("time (days)") plt.ylabel("objectives") plotInd += 1 #Degrees meanDegreeDists = numpy.mean(degreeDists, 2) stdDegreeDists = numpy.std(degreeDists, 2) plt.figure(plotInd) plt.errorbar(numpy.arange(numDegrees), meanDegreeDists[ind, :], yerr=stdDegreeDists[ind, :], color="k") plt.plot(numpy.arange(numDegrees), idealDegreeDists[ind, :], "k--") plt.xlabel("degree") plt.ylabel("frequency") plotInd += 1 #Print the table of thetas thetas = numpy.array(thetas) meanThetas = numpy.mean(thetas, 1) stdThetas = numpy.std(thetas, 1) table = Latex.array2DToRows(meanThetas.T, stdThetas.T, precision=4) rowNames = ["$|\\mathcal{I}_0 |$", "$\\alpha$", "$\\gamma$", "$\\beta$", "$\\lambda$", "$\\sigma$"] table = Latex.addRowNames(rowNames, table) print(table) #Now print the graph properties idealTable = [] tableMeanArray = [] tableStdArray = [] for ind in inds: idealTable.append(idealMeasures[ind, :, timeInds]) tableMeanArray.append(meanMeasures[ind, :, timeInds]) tableStdArray.append(stdMeasures[ind, :, timeInds]) idealTable = numpy.vstack(idealTable).T tableMeanArray = numpy.vstack(tableMeanArray).T tableStdArray = numpy.vstack(tableStdArray).T rowNames = ["$|\\mathcal{R}_{t_0}|$.", "male", "female", "hetero", "bi", "RD", "CT", "$|\\mathcal{I}_{t_0}|$", "NC", "LC", "$|E|$", "objs"] idealTable = Latex.array2DToRows(idealTable, precision=0) idealTable = Latex.addRowNames(rowNames, idealTable) print(idealTable) rowNames = [x + " est." for x in rowNames] table = Latex.array2DToRows(tableMeanArray, tableStdArray, precision=0) table = Latex.addRowNames(rowNames, table) print(table) #Now print timings rowNames = [str(x) for x in range(numInds)] table = Latex.array2DToRows(numpy.mean(timings, 2), numpy.std(timings, 2), precision=1) table = Latex.addRowNames(rowNames, table) print(table) plt.show()
gpl-3.0
seckcoder/lang-learn
python/sklearn/sklearn/cluster/tests/test_affinity_propagation.py
1
1989
""" Testing for Clustering methods """ import numpy as np from sklearn.utils.testing import (assert_equal, assert_array_equal, assert_raises) from sklearn.cluster.affinity_propagation_ import AffinityPropagation from sklearn.cluster.affinity_propagation_ import affinity_propagation from sklearn.datasets.samples_generator import make_blobs from sklearn.metrics import euclidean_distances n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=60, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=0) def test_affinity_propagation(): """Affinity Propagation algorithm """ # Compute similarities S = -euclidean_distances(X, squared=True) preference = np.median(S) * 10 # Compute Affinity Propagation cluster_centers_indices, labels = affinity_propagation(S, preference=preference) n_clusters_ = len(cluster_centers_indices) assert_equal(n_clusters, n_clusters_) af = AffinityPropagation(preference=preference, affinity="precomputed") labels_precomputed = af.fit(S).labels_ af = AffinityPropagation(preference=preference, verbose=True) labels = af.fit(X).labels_ assert_array_equal(labels, labels_precomputed) cluster_centers_indices = af.cluster_centers_indices_ n_clusters_ = len(cluster_centers_indices) assert_equal(np.unique(labels).size, n_clusters_) assert_equal(n_clusters, n_clusters_) # Test also with no copy _, labels_no_copy = affinity_propagation(S, preference=preference, copy=False) assert_array_equal(labels, labels_no_copy) # Test input validation assert_raises(ValueError, affinity_propagation, S[:, :-1]) assert_raises(ValueError, affinity_propagation, S, damping=0) af = AffinityPropagation(affinity="unknown") assert_raises(ValueError, af.fit, X)
unlicense
mxjl620/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
230
2649
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
haphaeu/yoshimi
PandasDataFrame/dataframe.py
1
3901
# -*- coding: utf-8 -*- """ Created on Mon Jul 06 16:03:29 2015 @author: rarossi """ import pandas as pd import numpy as np from scipy import stats as ss # # data = pd.read_table('data.txt') data = pd.read_table('Results.txt') # # don't worry too much about this ugly generator, # it just emulates the format of my data... # total = 4500 # data = pd.DataFrame() # data['Hs'] = np.random.randint(1,4,size=total) # data['Tp'] = np.random.randint(5,15,size=total) # data['wd'] = [[165, 180, 195][np.random.randint(0,3)] for _ in xrange(total)] # data['seed'] = np.random.randint(1,51,size=total) # data['Tmax'] = np.random.randint(100,250,size=total) # data['Tmin'] = np.random.randint(10,25,size=total) # %% # and here it starts. would the creators of pandas pull their hair out if # they see this? # can this be made better? cols = ['Hs', 'Tp'] cols.extend(data.columns[4:]) stdev = pd.DataFrame(columns=cols) i = 0 for hs in set(data['Hs']): data_Hs = data[data['Hs'] == hs] for tp in set(data_Hs['Tp']): data_tp = data_Hs[data_Hs['Tp'] == tp] rw = [hs, tp] for c in cols[2:]: if c.lower().find('max') is not -1: # max # # moment estimators # mx = max([np.mean(data_tp[data_tp['wd'] == wd][c]) + # 1.305*np.std(data_tp[data_tp['wd'] == wd][c]) # for wd in set(data_tp['wd'])]) # MLE's mx = max([ss.gumbel_r(*ss.gumbel_r.fit( data_tp[data_tp['wd'] == wd][c])).ppf(0.9) for wd in set(data_tp['wd'])]) else: # # moment estimators # mx = min([np.mean(data_tp[data_tp['wd'] == wd][c]) + # 1.305*np.std(data_tp[data_tp['wd'] == wd][c]) # for wd in set(data_tp['wd'])]) # MLE's mx = min([ss.gumbel_l(*ss.gumbel_l.fit( data_tp[data_tp['wd'] == wd][c])).ppf(0.1) for wd in set(data_tp['wd'])]) rw.extend([mx]) stdev.loc[i] = rw i += 1 # adjust and sort index stdev = stdev.sort_index(by=['Hs', 'Tp']) stdev = stdev.reset_index() del stdev['index'] # %% # this works, but how to apply +/- depending on max/min stdev3 = (1.305 * data.groupby(['Hs', 'Tp', 'wd'])[['Tmax', 'Tmin']].std() + data.groupby(['Hs', 'Tp', 'wd'])[['Tmax', 'Tmin']].mean()).max( level=[0, 1]).reset_index() # %% # this works for one variable only # the .max(level=['Hs', 'Tp']) does the magic in getting the worst wave heading stdev4 = data.groupby(['Hs', 'Tp', 'wd'])['Tmax'].apply( lambda x: ss.gumbel_r(*ss.gumbel_r.fit(x)).ppf(0.9)).max( level=['Hs', 'Tp']).reset_index() # one possibility is to loop, once stdev4 is set, add Tmin with: stdev4['Tmin'] = data.groupby(['Hs', 'Tp', 'wd'])['Tmin'].apply( lambda x: ss.gumbel_l(*ss.gumbel_l.fit(x)).ppf(0.1)).min( level=['Hs', 'Tp']).reset_index()['Tmin'] # %% stdev['Tmax'].plot() # stdev3['Tmax'].plot() stdev4['Tmax'].plot(style='r--') # %% ''' # gumbel can be fit and frozen in one line by unpacking (*) # the returned tuple from fit: g = gumbel_l(*gumbel_l.fit(data)) # some tips to dataframe stdev2 = data.groupby(['Hs', 'Tp', 'wd'])[['Tmax', 'Tmin']].std().max( level=[0, 1]).reset_index() data.ix[0:4, ['Hs', 'Tp']] data.ix[[0,10,22], ['Hs', 'Tp']] data.get_value(0, 'Hs') gb = data.groupby(['Hs', 'Tp', 'wd']) def get_max_Tmax(group): return group.ix[group.Tmax.idxmax()] data.groupby('Hs').apply(get_max_Tmax) #apply can have arguments to func res = data.groupby(['Hs','Tp'])['Tmax'].describe() ''' # data=data.set_index(['Hs', 'Tp', 'wd']) # gb = data.groupby(['Hs', 'Tp', 'wd']) # res = gb.apply(max)
lgpl-3.0
procoder317/scikit-learn
examples/decomposition/plot_kernel_pca.py
353
2011
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.plot(X[reds, 0], X[reds, 1], "ro") plt.plot(X[blues, 0], X[blues, 1], "bo") plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") plt.title("Projection by KPCA") plt.xlabel("1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.plot(X_back[reds, 0], X_back[reds, 1], "ro") plt.plot(X_back[blues, 0], X_back[blues, 1], "bo") plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) plt.show()
bsd-3-clause
Djabbz/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting.py
4
39718
""" Testing for the gradient boosting module (sklearn.ensemble.gradient_boosting). """ import warnings import numpy as np from itertools import product from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn import datasets from sklearn.base import clone from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.gradient_boosting import ZeroEstimator from sklearn.metrics import mean_squared_error from sklearn.utils import check_random_state, tosequence from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.exceptions import DataConversionWarning from sklearn.exceptions import NotFittedError # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] rng = np.random.RandomState(0) # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def check_classification_toy(presort, loss): # Check classification on a toy dataset. clf = GradientBoostingClassifier(loss=loss, n_estimators=10, random_state=1, presort=presort) assert_raises(ValueError, clf.predict, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf.estimators_)) deviance_decrease = (clf.train_score_[:-1] - clf.train_score_[1:]) assert_true(np.any(deviance_decrease >= 0.0)) leaves = clf.apply(X) assert_equal(leaves.shape, (6, 10, 1)) def test_classification_toy(): for presort, loss in product(('auto', True, False), ('deviance', 'exponential')): yield check_classification_toy, presort, loss def test_parameter_checks(): # Check input parameter validation. assert_raises(ValueError, GradientBoostingClassifier(n_estimators=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(n_estimators=-1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='foobar').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=0.6).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=1.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(init={}).fit, X, y) # test fit before feature importance assert_raises(ValueError, lambda: GradientBoostingClassifier().feature_importances_) # deviance requires ``n_classes >= 2``. assert_raises(ValueError, lambda X, y: GradientBoostingClassifier( loss='deviance').fit(X, y), X, [0, 0, 0, 0]) def test_loss_function(): assert_raises(ValueError, GradientBoostingClassifier(loss='ls').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='lad').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='quantile').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='huber').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='deviance').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='exponential').fit, X, y) def check_classification_synthetic(presort, loss): # Test GradientBoostingClassifier on synthetic dataset used by # Hastie et al. in ESLII Example 12.7. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=1, max_depth=1, loss=loss, learning_rate=1.0, random_state=0, presort=presort) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert_less(error_rate, 0.09) gbrt = GradientBoostingClassifier(n_estimators=200, min_samples_split=1, max_depth=1, learning_rate=1.0, subsample=0.5, random_state=0, presort=presort) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert_less(error_rate, 0.08) def test_classification_synthetic(): for presort, loss in product(('auto', True, False), ('deviance', 'exponential')): yield check_classification_synthetic, presort, loss def check_boston(presort, loss, subsample): # Check consistency on dataset boston house prices with least squares # and least absolute deviation. ones = np.ones(len(boston.target)) last_y_pred = None for sample_weight in None, ones, 2*ones: clf = GradientBoostingRegressor(n_estimators=100, loss=loss, max_depth=4, subsample=subsample, min_samples_split=1, random_state=1, presort=presort) assert_raises(ValueError, clf.predict, boston.data) clf.fit(boston.data, boston.target, sample_weight=sample_weight) leaves = clf.apply(boston.data) assert_equal(leaves.shape, (506, 100)) y_pred = clf.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_less( mse, 6.0 ) if last_y_pred is not None: assert_array_almost_equal(last_y_pred, y_pred) last_y_pred = y_pred def test_boston(): for presort, loss, subsample in product(('auto', True, False), ('ls', 'lad', 'huber'), (1.0, 0.5)): yield check_boston, presort, loss, subsample def check_iris(presort, subsample, sample_weight): # Check consistency on dataset iris. clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=subsample, presort=presort) clf.fit(iris.data, iris.target, sample_weight=sample_weight) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9) leaves = clf.apply(iris.data) assert_equal(leaves.shape, (150, 100, 3)) def test_iris(): ones = np.ones(len(iris.target)) for presort, subsample, sample_weight in product(('auto', True, False), (1.0, 0.5), (None, ones)): yield check_iris, presort, subsample, sample_weight def test_regression_synthetic(): # Test on synthetic regression datasets used in Leo Breiman, # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). random_state = check_random_state(1) regression_params = {'n_estimators': 100, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.1, 'loss': 'ls'} # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=random_state, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: clf = GradientBoostingRegressor(presort=presort) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 5.0) # Friedman2 X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: regression_params['presort'] = presort clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 1700.0) # Friedman3 X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: regression_params['presort'] = presort clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 0.015) def test_feature_importances(): X = np.array(boston.data, dtype=np.float32) y = np.array(boston.target, dtype=np.float32) for presort in True, False: clf = GradientBoostingRegressor(n_estimators=100, max_depth=5, min_samples_split=1, random_state=1, presort=presort) clf.fit(X, y) assert_true(hasattr(clf, 'feature_importances_')) # XXX: Remove this test in 0.19 after transform support to estimators # is removed. X_new = assert_warns( DeprecationWarning, clf.transform, X, threshold="mean") assert_less(X_new.shape[1], X.shape[1]) feature_mask = ( clf.feature_importances_ > clf.feature_importances_.mean()) assert_array_almost_equal(X_new, X[:, feature_mask]) def test_probability_log(): # Predict probabilities. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert_true(np.all(y_proba >= 0.0)) assert_true(np.all(y_proba <= 1.0)) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_check_inputs(): # Test input checks (shape and type of X and y). clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y + [0, 1]) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y, sample_weight=([1] * len(y)) + [0, 1]) def test_check_inputs_predict(): # X has wrong shape clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, rng.rand(len(X))) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) def test_check_max_features(): # test if max_features is valid. clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=0) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=(len(X[0]) + 1)) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=-0.1) assert_raises(ValueError, clf.fit, X, y) def test_max_feature_regression(): # Test to make sure random state is set properly. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=5, max_depth=2, learning_rate=.1, max_features=2, random_state=1) gbrt.fit(X_train, y_train) deviance = gbrt.loss_(y_test, gbrt.decision_function(X_test)) assert_true(deviance < 0.5, "GB failed with deviance %.4f" % deviance) def test_max_feature_auto(): # Test if max features is set properly for floats and str. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) _, n_features = X.shape X_train = X[:2000] y_train = y[:2000] gbrt = GradientBoostingClassifier(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, n_features) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.3) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(n_features * 0.3)) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='sqrt') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='log2') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.log2(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.01 / X.shape[1]) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, 1) def test_staged_predict(): # Test whether staged decision function eventually gives # the same prediction. X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test = X[200:] clf = GradientBoostingRegressor() # test raise ValueError if not fitted assert_raises(ValueError, lambda X: np.fromiter( clf.staged_predict(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # test if prediction for last stage equals ``predict`` for y in clf.staged_predict(X_test): assert_equal(y.shape, y_pred.shape) assert_array_equal(y_pred, y) def test_staged_predict_proba(): # Test whether staged predict proba eventually gives # the same prediction. X, y = datasets.make_hastie_10_2(n_samples=1200, random_state=1) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingClassifier(n_estimators=20) # test raise NotFittedError if not fitted assert_raises(NotFittedError, lambda X: np.fromiter( clf.staged_predict_proba(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) # test if prediction for last stage equals ``predict`` for y_pred in clf.staged_predict(X_test): assert_equal(y_test.shape, y_pred.shape) assert_array_equal(clf.predict(X_test), y_pred) # test if prediction for last stage equals ``predict_proba`` for staged_proba in clf.staged_predict_proba(X_test): assert_equal(y_test.shape[0], staged_proba.shape[0]) assert_equal(2, staged_proba.shape[1]) assert_array_equal(clf.predict_proba(X_test), staged_proba) def test_staged_functions_defensive(): # test that staged_functions make defensive copies rng = np.random.RandomState(0) X = rng.uniform(size=(10, 3)) y = (4 * X[:, 0]).astype(np.int) + 1 # don't predict zeros for estimator in [GradientBoostingRegressor(), GradientBoostingClassifier()]: estimator.fit(X, y) for func in ['predict', 'decision_function', 'predict_proba']: staged_func = getattr(estimator, "staged_" + func, None) if staged_func is None: # regressor has no staged_predict_proba continue with warnings.catch_warnings(record=True): staged_result = list(staged_func(X)) staged_result[1][:] = 0 assert_true(np.all(staged_result[0] != 0)) def test_serialization(): # Check model serialization. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) try: import cPickle as pickle except ImportError: import pickle serialized_clf = pickle.dumps(clf, protocol=pickle.HIGHEST_PROTOCOL) clf = None clf = pickle.loads(serialized_clf) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_degenerate_targets(): # Check if we can fit even though all targets are equal. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) # classifier should raise exception assert_raises(ValueError, clf.fit, X, np.ones(len(X))) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, np.ones(len(X))) clf.predict([rng.rand(2)]) assert_array_equal(np.ones((1,), dtype=np.float64), clf.predict([rng.rand(2)])) def test_quantile_loss(): # Check if quantile loss with alpha=0.5 equals lad. clf_quantile = GradientBoostingRegressor(n_estimators=100, loss='quantile', max_depth=4, alpha=0.5, random_state=7) clf_quantile.fit(boston.data, boston.target) y_quantile = clf_quantile.predict(boston.data) clf_lad = GradientBoostingRegressor(n_estimators=100, loss='lad', max_depth=4, random_state=7) clf_lad.fit(boston.data, boston.target) y_lad = clf_lad.predict(boston.data) assert_array_almost_equal(y_quantile, y_lad, decimal=4) def test_symbol_labels(): # Test with non-integer class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) symbol_y = tosequence(map(str, y)) clf.fit(X, symbol_y) assert_array_equal(clf.predict(T), tosequence(map(str, true_result))) assert_equal(100, len(clf.estimators_)) def test_float_class_labels(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) float_y = np.asarray(y, dtype=np.float32) clf.fit(X, float_y) assert_array_equal(clf.predict(T), np.asarray(true_result, dtype=np.float32)) assert_equal(100, len(clf.estimators_)) def test_shape_y(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) y_ = np.asarray(y, dtype=np.int32) y_ = y_[:, np.newaxis] # This will raise a DataConversionWarning that we want to # "always" raise, elsewhere the warnings gets ignored in the # later tests, and the tests that check for this warning fail assert_warns(DataConversionWarning, clf.fit, X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_mem_layout(): # Test with different memory layouts of X and y X_ = np.asfortranarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) X_ = np.ascontiguousarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.ascontiguousarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.asfortranarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_oob_improvement(): # Test if oob improvement has correct shape and regression test. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=0.5) clf.fit(X, y) assert_equal(clf.oob_improvement_.shape[0], 100) # hard-coded regression test - change if modification in OOB computation assert_array_almost_equal(clf.oob_improvement_[:5], np.array([0.19, 0.15, 0.12, -0.12, -0.11]), decimal=2) def test_oob_improvement_raise(): # Test if oob improvement has correct shape. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=1.0) clf.fit(X, y) assert_raises(AttributeError, lambda: clf.oob_improvement_) def test_oob_multilcass_iris(): # Check OOB improvement on multi-class dataset. clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=0.5) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9) assert_equal(clf.oob_improvement_.shape[0], clf.n_estimators) # hard-coded regression test - change if modification in OOB computation # FIXME: the following snippet does not yield the same results on 32 bits # assert_array_almost_equal(clf.oob_improvement_[:5], # np.array([12.68, 10.45, 8.18, 6.43, 5.13]), # decimal=2) def test_verbose_output(): # Check verbose=1 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=1, subsample=0.8) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # with OOB true_header = ' '.join(['%10s'] + ['%16s'] * 3) % ( 'Iter', 'Train Loss', 'OOB Improve', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # one for 1-10 and then 9 for 20-100 assert_equal(10 + 9, n_lines) def test_more_verbose_output(): # Check verbose=2 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=2) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # no OOB true_header = ' '.join(['%10s'] + ['%16s'] * 2) % ( 'Iter', 'Train Loss', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # 100 lines for n_estimators==100 assert_equal(100, n_lines) def test_warm_start(): # Test if warm start equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_n_estimators(): # Test if warm start equals fit - set n_estimators. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=300, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=300) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_max_depth(): # Test if possible to fit trees of different depth in ensemble. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, max_depth=2) est.fit(X, y) # last 10 trees have different depth assert_equal(est.estimators_[0, 0].max_depth, 1) for i in range(1, 11): assert_equal(est.estimators_[-i, 0].max_depth, 2) def test_warm_start_clear(): # Test if fit clears state. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est_2 = Cls(n_estimators=100, max_depth=1, warm_start=True) est_2.fit(X, y) # inits state est_2.set_params(warm_start=False) est_2.fit(X, y) # clears old state and equals est assert_array_almost_equal(est_2.predict(X), est.predict(X)) def test_warm_start_zero_n_estimators(): # Test if warm start with zero n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=0) assert_raises(ValueError, est.fit, X, y) def test_warm_start_smaller_n_estimators(): # Test if warm start with smaller n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=99) assert_raises(ValueError, est.fit, X, y) def test_warm_start_equal_n_estimators(): # Test if warm start with equal n_estimators does nothing X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est2 = clone(est) est2.set_params(n_estimators=est.n_estimators, warm_start=True) est2.fit(X, y) assert_array_almost_equal(est2.predict(X), est.predict(X)) def test_warm_start_oob_switch(): # Test if oob can be turned on during warm start. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, subsample=0.5) est.fit(X, y) assert_array_equal(est.oob_improvement_[:100], np.zeros(100)) # the last 10 are not zeros assert_array_equal(est.oob_improvement_[-10:] == 0.0, np.zeros(10, dtype=np.bool)) def test_warm_start_oob(): # Test if warm start OOB equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1, subsample=0.5, random_state=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, subsample=0.5, random_state=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.oob_improvement_[:100], est.oob_improvement_[:100]) def early_stopping_monitor(i, est, locals): """Returns True on the 10th iteration. """ if i == 9: return True else: return False def test_monitor_early_stopping(): # Test if monitor return value works. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) # this is not altered assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.train_score_.shape[0], 30) est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5, warm_start=True) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30, warm_start=False) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.train_score_.shape[0], 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.oob_improvement_.shape[0], 30) def test_complete_classification(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 est = GradientBoostingClassifier(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, k) assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_complete_regression(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF k = 4 est = GradientBoostingRegressor(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(boston.data, boston.target) tree = est.estimators_[-1, 0].tree_ assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_zero_estimator_reg(): # Test if ZeroEstimator works for regression. est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, boston.data, boston.target) def test_zero_estimator_clf(): # Test if ZeroEstimator works for classification. X = iris.data y = np.array(iris.target) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(X, y) assert_greater(est.score(X, y), 0.96) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert_greater(est.score(X, y), 0.96) # binary clf mask = y != 0 y[mask] = 1 y[~mask] = 0 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert_greater(est.score(X, y), 0.96) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test preceedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [GradientBoostingRegressor, GradientBoostingClassifier] k = 4 for GBEstimator in all_estimators: est = GBEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_greater(tree.max_depth, 1) est = GBEstimator(max_depth=1).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, 1) def test_warm_start_wo_nestimators_change(): # Test if warm_start does nothing if n_estimators is not changed. # Regression test for #3513. clf = GradientBoostingClassifier(n_estimators=10, warm_start=True) clf.fit([[0, 1], [2, 3]], [0, 1]) assert_equal(clf.estimators_.shape[0], 10) clf.fit([[0, 1], [2, 3]], [0, 1]) assert_equal(clf.estimators_.shape[0], 10) def test_probability_exponential(): # Predict probabilities. clf = GradientBoostingClassifier(loss='exponential', n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert_true(np.all(y_proba >= 0.0)) assert_true(np.all(y_proba <= 1.0)) score = clf.decision_function(T).ravel() assert_array_almost_equal(y_proba[:, 1], 1.0 / (1.0 + np.exp(-2 * score))) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_non_uniform_weights_toy_edge_case_reg(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('huber', 'ls', 'lad', 'quantile'): gb = GradientBoostingRegressor(learning_rate=1.0, n_estimators=2, loss=loss) gb.fit(X, y, sample_weight=sample_weight) assert_greater(gb.predict([[1, 0]])[0], 0.5) def test_non_uniform_weights_toy_edge_case_clf(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('deviance', 'exponential'): gb = GradientBoostingClassifier(n_estimators=5) gb.fit(X, y, sample_weight=sample_weight) assert_array_equal(gb.predict([[1, 0]]), [1]) def check_sparse_input(EstimatorClass, X, X_sparse, y): dense = EstimatorClass(n_estimators=10, random_state=0, max_depth=2).fit(X, y) sparse = EstimatorClass(n_estimators=10, random_state=0, max_depth=2, presort=False).fit(X_sparse, y) auto = EstimatorClass(n_estimators=10, random_state=0, max_depth=2, presort='auto').fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) assert_array_almost_equal(sparse.apply(X), auto.apply(X)) assert_array_almost_equal(sparse.predict(X), auto.predict(X)) assert_array_almost_equal(sparse.feature_importances_, auto.feature_importances_) if isinstance(EstimatorClass, GradientBoostingClassifier): assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) assert_array_almost_equal(sparse.predict_proba(X), auto.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), auto.predict_log_proba(X)) def test_sparse_input(): ests = (GradientBoostingClassifier, GradientBoostingRegressor) sparse_matrices = (csr_matrix, csc_matrix, coo_matrix) y, X = datasets.make_multilabel_classification(random_state=0, n_samples=50, n_features=1, n_classes=20) y = y[:, 0] for EstimatorClass, sparse_matrix in product(ests, sparse_matrices): yield check_sparse_input, EstimatorClass, X, sparse_matrix(X), y
bsd-3-clause
elvandy/nltools
nltools/external/srm.py
1
22395
#!/usr/bin/env python # coding: latin-1 """ Shared Response Model (SRM) =========================== The implementations are based on the following publications: Chen, P. H. C., Chen, J., Yeshurun, Y., Hasson, U., Haxby, J., & Ramadge, P. J. (2015). A reduced-dimension fMRI shared response model. In Advances in Neural Information Processing Systems (pp. 460-468). Anderson, M. J., Capota, M., Turek, J. S., Zhu, X., Willke, T. L., Wang, Y., & Norman, K. A. (2016, December). Enabling factor analysis on thousand-subject neuroimaging datasets. In Big Data (Big Data), 2016 IEEE International Conference on (pp. 1151-1160). IEEE. Copyright 2016 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Authors: Po-Hsuan Chen (Princeton Neuroscience Institute) and Javier Turek # (Intel Labs), 2015 from __future__ import division import logging import numpy as np import scipy from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils import assert_all_finite from sklearn.utils.validation import NotFittedError __all__ = [ "SRM", "DetSRM" ] logger = logging.getLogger(__name__) def _init_w_transforms(data, features): """Initialize the mappings (Wi) for the SRM with random orthogonal matrices. Parameters ---------- data : list of 2D arrays, element i has shape=[voxels_i, samples] Each element in the list contains the fMRI data of one subject. features : int The number of features in the model. Returns ------- w : list of array, element i has shape=[voxels_i, features] The initialized orthogonal transforms (mappings) :math:`W_i` for each subject. voxels : list of int A list with the number of voxels per subject. Note ---- This function assumes that the numpy random number generator was initialized. Not thread safe. """ w = [] subjects = len(data) voxels = np.empty(subjects, dtype=int) # Set Wi to a random orthogonal voxels by features matrix for subject in range(subjects): voxels[subject] = data[subject].shape[0] rnd_matrix = np.random.random((voxels[subject], features)) q, r = np.linalg.qr(rnd_matrix) w.append(q) return w, voxels class SRM(BaseEstimator, TransformerMixin): """Probabilistic Shared Response Model (SRM) Given multi-subject data, factorize it as a shared response S among all subjects and an orthogonal transform W per subject: .. math:: X_i \\approx W_i S, \\forall i=1 \\dots N Parameters ---------- n_iter : int, default: 10 Number of iterations to run the algorithm. features : int, default: 50 Number of features to compute. rand_seed : int, default: 0 Seed for initializing the random number generator. Attributes ---------- w_ : list of array, element i has shape=[voxels_i, features] The orthogonal transforms (mappings) for each subject. s_ : array, shape=[features, samples] The shared response. sigma_s_ : array, shape=[features, features] The covariance of the shared response Normal distribution. mu_ : list of array, element i has shape=[voxels_i] The voxel means over the samples for each subject. rho2_ : array, shape=[subjects] The estimated noise variance :math:`\\rho_i^2` for each subject Note ---- The number of voxels may be different between subjects. However, the number of samples must be the same across subjects. The probabilistic Shared Response Model is approximated using the Expectation Maximization (EM) algorithm proposed in [Chen2015]_. The implementation follows the optimizations published in [Anderson2016]_. This is a single node version. The run-time complexity is :math:`O(I (V T K + V K^2 + K^3))` and the memory complexity is :math:`O(V T)` with I - the number of iterations, V - the sum of voxels from all subjects, T - the number of samples, and K - the number of features (typically, :math:`V \\gg T \\gg K`). """ def __init__(self, n_iter=10, features=50, rand_seed=0): self.n_iter = n_iter self.features = features self.rand_seed = rand_seed return def fit(self, X, y=None): """Compute the probabilistic Shared Response Model Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, samples] Each element in the list contains the fMRI data of one subject. y : not used """ logger.info('Starting Probabilistic SRM') # Check the number of subjects if len(X) <= 1: raise ValueError("There are not enough subjects " "({0:d}) to train the model.".format(len(X))) # Check for input data sizes if X[0].shape[1] < self.features: raise ValueError( "There are not enough samples to train the model with " "{0:d} features.".format(self.features)) # Check if all subjects have same number of TRs number_trs = X[0].shape[1] number_subjects = len(X) for subject in range(number_subjects): assert_all_finite(X[subject]) if X[subject].shape[1] != number_trs: raise ValueError("Different number of samples between subjects" ".") # Run SRM self.sigma_s_, self.w_, self.mu_, self.rho2_, self.s_ = self._srm(X) return self def transform(self, X, y=None): """Use the model to transform matrix to Shared Response space Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, samples_i] Each element in the list contains the fMRI data of one subject note that number of voxels and samples can vary across subjects y : not used (as it is unsupervised learning) Returns ------- s : list of 2D arrays, element i has shape=[features_i, samples_i] Shared responses from input data (X) """ # Check if the model exist if hasattr(self, 'w_') is False: raise NotFittedError("The model fit has not been run yet.") # Check the number of subjects if len(X) != len(self.w_): raise ValueError("The number of subjects does not match the one" " in the model.") s = [None] * len(X) for subject in range(len(X)): s[subject] = self.w_[subject].T.dot(X[subject]) return s def _init_structures(self, data, subjects): """Initializes data structures for SRM and preprocess the data. Parameters ---------- data : list of 2D arrays, element i has shape=[voxels_i, samples] Each element in the list contains the fMRI data of one subject. subjects : int The total number of subjects in `data`. Returns ------- x : list of array, element i has shape=[voxels_i, samples] Demeaned data for each subject. mu : list of array, element i has shape=[voxels_i] Voxel means over samples, per subject. rho2 : array, shape=[subjects] Noise variance :math:`\\rho^2` per subject. trace_xtx : array, shape=[subjects] The squared Frobenius norm of the demeaned data in `x`. """ x = [] mu = [] rho2 = np.zeros(subjects) trace_xtx = np.zeros(subjects) for subject in range(subjects): mu.append(np.mean(data[subject], 1)) rho2[subject] = 1 trace_xtx[subject] = np.sum(data[subject] ** 2) x.append(data[subject] - mu[subject][:, np.newaxis]) return x, mu, rho2, trace_xtx def _likelihood(self, chol_sigma_s_rhos, log_det_psi, chol_sigma_s, trace_xt_invsigma2_x, inv_sigma_s_rhos, wt_invpsi_x, samples): """Calculate the log-likelihood function Parameters ---------- chol_sigma_s_rhos : array, shape=[features, features] Cholesky factorization of the matrix (Sigma_S + sum_i(1/rho_i^2) * I) log_det_psi : float Determinant of diagonal matrix Psi (containing the rho_i^2 value voxels_i times). chol_sigma_s : array, shape=[features, features] Cholesky factorization of the matrix Sigma_S trace_xt_invsigma2_x : float Trace of :math:`\\sum_i (||X_i||_F^2/\\rho_i^2)` inv_sigma_s_rhos : array, shape=[features, features] Inverse of :math:`(\\Sigma_S + \\sum_i(1/\\rho_i^2) * I)` wt_invpsi_x : array, shape=[features, samples] samples : int The total number of samples in the data. Returns ------- loglikehood : float The log-likelihood value. """ log_det = (np.log(np.diag(chol_sigma_s_rhos) ** 2).sum() + log_det_psi + np.log(np.diag(chol_sigma_s) ** 2).sum()) loglikehood = -0.5 * samples * log_det - 0.5 * trace_xt_invsigma2_x loglikehood += 0.5 * np.trace( wt_invpsi_x.T.dot(inv_sigma_s_rhos).dot(wt_invpsi_x)) # + const --> -0.5*nTR*nvoxel*subjects*math.log(2*math.pi) return loglikehood def _srm(self, data): """Expectation-Maximization algorithm for fitting the probabilistic SRM. Parameters ---------- data : list of 2D arrays, element i has shape=[voxels_i, samples] Each element in the list contains the fMRI data of one subject. Returns ------- sigma_s : array, shape=[features, features] The covariance :math:`\\Sigma_s` of the shared response Normal distribution. w : list of array, element i has shape=[voxels_i, features] The orthogonal transforms (mappings) :math:`W_i` for each subject. mu : list of array, element i has shape=[voxels_i] The voxel means :math:`\\mu_i` over the samples for each subject. rho2 : array, shape=[subjects] The estimated noise variance :math:`\\rho_i^2` for each subject s : array, shape=[features, samples] The shared response. """ samples = data[0].shape[1] subjects = len(data) np.random.seed(self.rand_seed) # Initialization step: initialize the outputs with initial values, # voxels with the number of voxels in each subject, and trace_xtx with # the ||X_i||_F^2 of each subject. w, voxels = _init_w_transforms(data, self.features) x, mu, rho2, trace_xtx = self._init_structures(data, subjects) shared_response = np.zeros((self.features, samples)) sigma_s = np.identity(self.features) # Main loop of the algorithm (run for iteration in range(self.n_iter): logger.info('Iteration %d' % (iteration + 1)) # E-step: # Sum the inverted the rho2 elements for computing W^T * Psi^-1 * W rho0 = (1 / rho2).sum() # Invert Sigma_s using Cholesky factorization (chol_sigma_s, lower_sigma_s) = scipy.linalg.cho_factor( sigma_s, check_finite=False) inv_sigma_s = scipy.linalg.cho_solve( (chol_sigma_s, lower_sigma_s), np.identity(self.features), check_finite=False) # Invert (Sigma_s + rho_0 * I) using Cholesky factorization sigma_s_rhos = inv_sigma_s + np.identity(self.features) * rho0 (chol_sigma_s_rhos, lower_sigma_s_rhos) = scipy.linalg.cho_factor( sigma_s_rhos, check_finite=False) inv_sigma_s_rhos = scipy.linalg.cho_solve( (chol_sigma_s_rhos, lower_sigma_s_rhos), np.identity(self.features), check_finite=False) # Compute the sum of W_i^T * rho_i^-2 * X_i, and the sum of traces # of X_i^T * rho_i^-2 * X_i wt_invpsi_x = np.zeros((self.features, samples)) trace_xt_invsigma2_x = 0.0 for subject in range(subjects): wt_invpsi_x += (w[subject].T.dot(x[subject])) / rho2[subject] trace_xt_invsigma2_x += trace_xtx[subject] / rho2[subject] log_det_psi = np.sum(np.log(rho2) * voxels) # Update the shared response shared_response = sigma_s.dot( np.identity(self.features) - rho0 * inv_sigma_s_rhos).dot( wt_invpsi_x) # M-step # Update Sigma_s and compute its trace sigma_s = (inv_sigma_s_rhos + shared_response.dot(shared_response.T) / samples) trace_sigma_s = samples * np.trace(sigma_s) # Update each subject's mapping transform W_i and error variance # rho_i^2 for subject in range(subjects): a_subject = x[subject].dot(shared_response.T) perturbation = np.zeros(a_subject.shape) np.fill_diagonal(perturbation, 0.001) u_subject, s_subject, v_subject = np.linalg.svd( a_subject + perturbation, full_matrices=False) w[subject] = u_subject.dot(v_subject) rho2[subject] = trace_xtx[subject] rho2[subject] += -2 * np.sum(w[subject] * a_subject).sum() rho2[subject] += trace_sigma_s rho2[subject] /= samples * voxels[subject] if logger.isEnabledFor(logging.INFO): # Calculate and log the current log-likelihood for checking # convergence loglike = self._likelihood( chol_sigma_s_rhos, log_det_psi, chol_sigma_s, trace_xt_invsigma2_x, inv_sigma_s_rhos, wt_invpsi_x, samples) logger.info('Objective function %f' % loglike) return sigma_s, w, mu, rho2, shared_response class DetSRM(BaseEstimator, TransformerMixin): """Deterministic Shared Response Model (DetSRM) Given multi-subject data, factorize it as a shared response S among all subjects and an orthogonal transform W per subject: .. math:: X_i \\approx W_i S, \\forall i=1 \\dots N Parameters ---------- n_iter : int, default: 10 Number of iterations to run the algorithm. features : int, default: 50 Number of features to compute. rand_seed : int, default: 0 Seed for initializing the random number generator. Attributes ---------- w_ : list of array, element i has shape=[voxels_i, features] The orthogonal transforms (mappings) for each subject. s_ : array, shape=[features, samples] The shared response. Note ---- The number of voxels may be different between subjects. However, the number of samples must be the same across subjects. The Deterministic Shared Response Model is approximated using the Block Coordinate Descent (BCD) algorithm proposed in [Chen2015]_. This is a single node version. The run-time complexity is :math:`O(I (V T K + V K^2))` and the memory complexity is :math:`O(V T)` with I - the number of iterations, V - the sum of voxels from all subjects, T - the number of samples, K - the number of features (typically, :math:`V \\gg T \\gg K`), and N - the number of subjects. """ def __init__(self, n_iter=10, features=50, rand_seed=0): self.n_iter = n_iter self.features = features self.rand_seed = rand_seed return def fit(self, X, y=None): """Compute the Deterministic Shared Response Model Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, samples] Each element in the list contains the fMRI data of one subject. y : not used """ logger.info('Starting Deterministic SRM') # Check the number of subjects if len(X) <= 1: raise ValueError("There are not enough subjects " "({0:d}) to train the model.".format(len(X))) # Check for input data sizes if X[0].shape[1] < self.features: raise ValueError( "There are not enough samples to train the model with " "{0:d} features.".format(self.features)) # Check if all subjects have same number of TRs number_trs = X[0].shape[1] number_subjects = len(X) for subject in range(number_subjects): assert_all_finite(X[subject]) if X[subject].shape[1] != number_trs: raise ValueError("Different number of samples between subjects" ".") # Run SRM self.w_, self.s_ = self._srm(X) return self def transform(self, X, y=None): """Use the model to transform data to the Shared Response subspace Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, samples_i] Each element in the list contains the fMRI data of one subject. y : not used Returns ------- s : list of 2D arrays, element i has shape=[features_i, samples_i] Shared responses from input data (X) """ # Check if the model exist if hasattr(self, 'w_') is False: raise NotFittedError("The model fit has not been run yet.") # Check the number of subjects if len(X) != len(self.w_): raise ValueError("The number of subjects does not match the one" " in the model.") s = [None] * len(X) for subject in range(len(X)): s[subject] = self.w_[subject].T.dot(X[subject]) return s def _objective_function(self, data, w, s): """Calculate the objective function Parameters ---------- data : list of 2D arrays, element i has shape=[voxels_i, samples] Each element in the list contains the fMRI data of one subject. w : list of 2D arrays, element i has shape=[voxels_i, features] The orthogonal transforms (mappings) :math:`W_i` for each subject. s : array, shape=[features, samples] The shared response Returns ------- objective : float The objective function value. """ subjects = len(data) objective = 0.0 for m in range(subjects): objective += \ np.linalg.norm(data[m] - w[m].dot(s), 'fro')**2 return objective * 0.5 / data[0].shape[1] def _compute_shared_response(self, data, w): """ Compute the shared response S Parameters ---------- data : list of 2D arrays, element i has shape=[voxels_i, samples] Each element in the list contains the fMRI data of one subject. w : list of 2D arrays, element i has shape=[voxels_i, features] The orthogonal transforms (mappings) :math:`W_i` for each subject. Returns ------- s : array, shape=[features, samples] The shared response for the subjects data with the mappings in w. """ s = np.zeros((w[0].shape[1], data[0].shape[1])) for m in range(len(w)): s = s + w[m].T.dot(data[m]) s /= len(w) return s def _srm(self, data): """Expectation-Maximization algorithm for fitting the probabilistic SRM. Parameters ---------- data : list of 2D arrays, element i has shape=[voxels_i, samples] Each element in the list contains the fMRI data of one subject. Returns ------- w : list of array, element i has shape=[voxels_i, features] The orthogonal transforms (mappings) :math:`W_i` for each subject. s : array, shape=[features, samples] The shared response. """ subjects = len(data) np.random.seed(self.rand_seed) # Initialization step: initialize the outputs with initial values, # voxels with the number of voxels in each subject. w, _ = _init_w_transforms(data, self.features) shared_response = self._compute_shared_response(data, w) if logger.isEnabledFor(logging.INFO): # Calculate the current objective function value objective = self._objective_function(data, w, shared_response) logger.info('Objective function %f' % objective) # Main loop of the algorithm for iteration in range(self.n_iter): logger.info('Iteration %d' % (iteration + 1)) # Update each subject's mapping transform W_i: for subject in range(subjects): a_subject = data[subject].dot(shared_response.T) perturbation = np.zeros(a_subject.shape) np.fill_diagonal(perturbation, 0.001) u_subject, _, v_subject = np.linalg.svd( a_subject + perturbation, full_matrices=False) w[subject] = u_subject.dot(v_subject) # Update the shared response: shared_response = self._compute_shared_response(data, w) if logger.isEnabledFor(logging.INFO): # Calculate the current objective function value objective = self._objective_function(data, w, shared_response) logger.info('Objective function %f' % objective) return w, shared_response
mit
sonnyhu/scikit-learn
sklearn/tests/test_pipeline.py
23
15392
""" Test the pipeline module. """ import numpy as np from scipy import sparse from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns_message from sklearn.base import clone from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA, TruncatedSVD from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import CountVectorizer JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) class IncorrectT(object): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class T(IncorrectT): def fit(self, X, y): return self def get_params(self, deep=False): return {'a': self.a, 'b': self.b} def set_params(self, **params): self.a = params['a'] return self class TransfT(T): def transform(self, X, y=None): return X def inverse_transform(self, X): return X class FitParamT(object): """Mock classifier """ def __init__(self): self.successful = False def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def test_pipeline_init(): # Test the various init parameters of the pipeline. assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method pipe = assert_raises(TypeError, Pipeline, [('svc', IncorrectT)]) # Smoke test with only an estimator clf = T() pipe = Pipeline([('svc', clf)]) assert_equal(pipe.get_params(deep=True), dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False))) # Check that params are set pipe.set_params(svc__a=0.1) assert_equal(clf.a, 0.1) assert_equal(clf.b, None) # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't use the same stage name twice assert_raises(ValueError, Pipeline, [('svc', SVC()), ('svc', SVC())]) # Check that params are set pipe.set_params(svc__C=0.1) assert_equal(clf.C, 0.1) # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = clone(pipe) assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc']) # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert_equal(params, params2) def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert_true(pipe.predict(None)) # and transformer params should not be changed assert_true(pipe.named_steps['transf'].a is None) assert_true(pipe.named_steps['transf'].b is None) def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) # expected error message error_msg = ('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.') assert_raise_message(ValueError, error_msg % ('fake', 'Pipeline'), pipe.set_params, fake='nope') # nested model check assert_raise_message(ValueError, error_msg % ("fake", pipe), pipe.set_params, fake__estimator='nope') def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(svd_solver='full', n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = PCA(n_components=2, svd_solver='randomized', whiten=True) clf = SVC(probability=True, random_state=0, decision_function_shape='ovr') for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert_equal(predict.shape, (n_samples,)) proba = pipe.predict_proba(X) assert_equal(proba.shape, (n_samples, n_classes)) log_proba = pipe.predict_log_proba(X) assert_equal(log_proba.shape, (n_samples, n_classes)) decision_function = pipe.decision_function(X) assert_equal(decision_function.shape, (n_samples, n_classes)) pipe.score(X, y) def test_fit_predict_on_pipeline(): # test that the fit_predict method is implemented on a pipeline # test that the fit_predict on pipeline yields same results as applying # transform and clustering steps separately iris = load_iris() scaler = StandardScaler() km = KMeans(random_state=0) # first compute the transform and clustering step separately scaled = scaler.fit_transform(iris.data) separate_pred = km.fit_predict(scaled) # use a pipeline to do the transform and clustering in one step pipe = Pipeline([('scaler', scaler), ('Kmeans', km)]) pipeline_pred = pipe.fit_predict(iris.data) assert_array_almost_equal(pipeline_pred, separate_pred) def test_fit_predict_on_pipeline_without_fit_predict(): # tests that a pipeline does not have fit_predict method when final # step of pipeline does not have fit_predict defined scaler = StandardScaler() pca = PCA(svd_solver='full') pipe = Pipeline([('scaler', scaler), ('pca', pca)]) assert_raises_regex(AttributeError, "'PCA' object has no attribute 'fit_predict'", getattr, pipe, 'fit_predict') def test_feature_union(): # basic sanity check for feature union iris = load_iris() X = iris.data X -= X.mean(axis=0) y = iris.target svd = TruncatedSVD(n_components=2, random_state=0) select = SelectKBest(k=1) fs = FeatureUnion([("svd", svd), ("select", select)]) fs.fit(X, y) X_transformed = fs.transform(X) assert_equal(X_transformed.shape, (X.shape[0], 3)) # check if it does the expected thing assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) # test if it also works for sparse input # We use a different svd object to control the random_state stream fs = FeatureUnion([("svd", svd), ("select", select)]) X_sp = sparse.csr_matrix(X) X_sp_transformed = fs.fit_transform(X_sp, y) assert_array_almost_equal(X_transformed, X_sp_transformed.toarray()) # test setting parameters fs.set_params(select__k=2) assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4)) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)]) X_transformed = fs.fit_transform(X, y) assert_equal(X_transformed.shape, (X.shape[0], 8)) def test_make_union(): pca = PCA(svd_solver='full') mock = TransfT() fu = make_union(pca, mock) names, transformers = zip(*fu.transformer_list) assert_equal(names, ("pca", "transft")) assert_equal(transformers, (pca, mock)) def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2, svd_solver='full') pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transft = TransfT() pipeline = Pipeline([('mock', transft)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transft.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_make_pipeline(): t1 = TransfT() t2 = TransfT() pipe = make_pipeline(t1, t2) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") pipe = make_pipeline(t1, t2, FitParamT()) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") assert_equal(pipe.steps[2][0], "fitparamt") def test_feature_union_weights(): # test feature union with transformer weights iris = load_iris() X = iris.data y = iris.target pca = PCA(n_components=2, svd_solver='randomized', random_state=0) select = SelectKBest(k=1) # test using fit followed by transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) fs.fit(X, y) X_transformed = fs.transform(X) # test using fit_transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) X_fit_transformed = fs.fit_transform(X, y) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)], transformer_weights={"mock": 10}) X_fit_transformed_wo_method = fs.fit_transform(X, y) # check against expected result # We use a different pca object to control the random_state stream assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_array_almost_equal(X_fit_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_fit_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7)) def test_feature_union_parallel(): # test that n_jobs work for FeatureUnion X = JUNK_FOOD_DOCS fs = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ]) fs_parallel = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs_parallel2 = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs.fit(X) X_transformed = fs.transform(X) assert_equal(X_transformed.shape[0], len(X)) fs_parallel.fit(X) X_transformed_parallel = fs_parallel.transform(X) assert_equal(X_transformed.shape, X_transformed_parallel.shape) assert_array_equal( X_transformed.toarray(), X_transformed_parallel.toarray() ) # fit_transform should behave the same X_transformed_parallel2 = fs_parallel2.fit_transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) # transformers should stay fit after fit_transform X_transformed_parallel2 = fs_parallel2.transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) def test_feature_union_feature_names(): word_vect = CountVectorizer(analyzer="word") char_vect = CountVectorizer(analyzer="char_wb", ngram_range=(3, 3)) ft = FeatureUnion([("chars", char_vect), ("words", word_vect)]) ft.fit(JUNK_FOOD_DOCS) feature_names = ft.get_feature_names() for feat in feature_names: assert_true("chars__" in feat or "words__" in feat) assert_equal(len(feature_names), 35) def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) assert_raises(AttributeError, getattr, reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) assert_raises(AttributeError, getattr, clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) def test_X1d_inverse_transform(): transformer = TransfT() pipeline = make_pipeline(transformer) X = np.ones(10) msg = "1d X will not be reshaped in pipeline.inverse_transform" assert_warns_message(FutureWarning, msg, pipeline.inverse_transform, X)
bsd-3-clause
dnjohnstone/hyperspy
hyperspy/drawing/_widgets/scalebar.py
4
5335
# -*- coding: utf-8 -*- # Copyright 2007-2020 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. from hyperspy.misc.math_tools import closest_nice_number class ScaleBar(object): def __init__(self, ax, units, pixel_size=None, color='white', position=None, max_size_ratio=0.25, lw=2, length=None, animated=False): """Add a scale bar to an image. Parameters ---------- ax : matplotlib axes The axes where to draw the scale bar. units : str pixel_size : {None, float} If None the axes of the image are supposed to be calibrated. Otherwise the pixel size must be specified. color : a valid matplotlib color position {None, (float, float)} If None the position is automatically determined. max_size_ratio : float The maximum size of the scale bar in respect to the length of the x axis lw : int The line width length : {None, float} If None the length is automatically calculated using the max_size_ratio. """ self.animated = animated self.ax = ax self.units = units self.pixel_size = pixel_size self.xmin, self.xmax = ax.get_xlim() self.ymin, self.ymax = ax.get_ylim() self.text = None self.line = None self.tex_bold = False if length is None: self.calculate_size(max_size_ratio=max_size_ratio) else: self.length = length if position is None: self.position = self.calculate_line_position() else: self.position = position self.calculate_text_position() self.plot_scale(line_width=lw) self.set_color(color) def get_units_string(self): if self.tex_bold is True: if (self.units[0] and self.units[-1]) == '$': return r'$\mathbf{%g\,%s}$' % \ (self.length, self.units[1:-1]) else: return r'$\mathbf{%g\,}$\textbf{%s}' % \ (self.length, self.units) else: return r'$%g\,$%s' % (self.length, self.units) def calculate_line_position(self, pad=0.05): return ((1 - pad) * self.xmin + pad * self.xmax, (1 - pad) * self.ymin + pad * self.ymax) def calculate_text_position(self, pad=1 / 100.): ps = self.pixel_size if self.pixel_size is not None else 1 x1, y1 = self.position x2, y2 = x1 + self.length / ps, y1 self.text_position = ((x1 + x2) / 2., y2 + (self.ymax - self.ymin) / ps * pad) def calculate_size(self, max_size_ratio=0.25): ps = self.pixel_size if self.pixel_size is not None else 1 size = closest_nice_number(ps * (self.xmax - self.xmin) * max_size_ratio) self.length = size def remove(self): if self.line is not None: self.ax.lines.remove(self.line) if self.text is not None: self.ax.texts.remove(self.text) def plot_scale(self, line_width=1): self.remove() ps = self.pixel_size if self.pixel_size is not None else 1 x1, y1 = self.position x2, y2 = x1 + self.length / ps, y1 self.line, = self.ax.plot([x1, x2], [y1, y2], linestyle='-', lw=line_width, animated=self.animated) self.text = self.ax.text(*self.text_position, s=self.get_units_string(), ha='center', size='medium', animated=self.animated) self.ax.set_xlim(self.xmin, self.xmax) self.ax.set_ylim(self.ymin, self.ymax) self.ax.figure.canvas.draw_idle() def _set_position(self, x, y): self.position = x, y self.calculate_text_position() self.plot_scale(line_width=self.line.get_linewidth()) def set_color(self, c): self.line.set_color(c) self.text.set_color(c) self.ax.figure.canvas.draw_idle() def set_length(self, length): color = self.line.get_color() self.length = length self.calculate_scale_size() self.calculate_text_position() self.plot_scale(line_width=self.line.get_linewidth()) self.set_color(color) def set_tex_bold(self): self.tex_bold = True self.text.set_text(self.get_units_string()) self.ax.figure.canvas.draw_idle()
gpl-3.0
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/sklearn/discriminant_analysis.py
7
27513
""" Linear Discriminant Analysis and Quadratic Discriminant Analysis """ # Authors: Clemens Brunner # Martin Billinger # Matthieu Perrot # Mathieu Blondel # License: BSD 3-Clause from __future__ import print_function import warnings import numpy as np from .utils import deprecated from scipy import linalg from .externals.six import string_types from .externals.six.moves import xrange from .base import BaseEstimator, TransformerMixin, ClassifierMixin from .linear_model.base import LinearClassifierMixin from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance from .utils.multiclass import unique_labels from .utils import check_array, check_X_y from .utils.validation import check_is_fitted from .utils.multiclass import check_classification_targets from .preprocessing import StandardScaler __all__ = ['LinearDiscriminantAnalysis', 'QuadraticDiscriminantAnalysis'] def _cov(X, shrinkage=None): """Estimate covariance matrix (using optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. shrinkage : string or float, optional Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- s : array, shape (n_features, n_features) Estimated covariance matrix. """ shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, string_types): if shrinkage == 'auto': sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = ledoit_wolf(X)[0] # rescale s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :] elif shrinkage == 'empirical': s = empirical_covariance(X) else: raise ValueError('unknown shrinkage parameter') elif isinstance(shrinkage, float) or isinstance(shrinkage, int): if shrinkage < 0 or shrinkage > 1: raise ValueError('shrinkage parameter must be between 0 and 1') s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError('shrinkage must be of string or int type') return s def _class_means(X, y): """Compute class means. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like, shape (n_features,) Class means. """ means = [] classes = np.unique(y) for group in classes: Xg = X[y == group, :] means.append(Xg.mean(0)) return np.asarray(means) def _class_cov(X, y, priors=None, shrinkage=None): """Compute class covariance matrix. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like, shape (n_classes,) Class priors. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- cov : array-like, shape (n_features, n_features) Class covariance matrix. """ classes = np.unique(y) covs = [] for group in classes: Xg = X[y == group, :] covs.append(np.atleast_2d(_cov(Xg, shrinkage))) return np.average(covs, axis=0, weights=priors) class LinearDiscriminantAnalysis(BaseEstimator, LinearClassifierMixin, TransformerMixin): """Linear Discriminant Analysis A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix. The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions. .. versionadded:: 0.17 *LinearDiscriminantAnalysis*. Read more in the :ref:`User Guide <lda_qda>`. Parameters ---------- solver : string, optional Solver to use, possible values: - 'svd': Singular value decomposition (default). Does not compute the covariance matrix, therefore this solver is recommended for data with a large number of features. - 'lsqr': Least squares solution, can be combined with shrinkage. - 'eigen': Eigenvalue decomposition, can be combined with shrinkage. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Note that shrinkage works only with 'lsqr' and 'eigen' solvers. priors : array, optional, shape (n_classes,) Class priors. n_components : int, optional Number of components (< n_classes - 1) for dimensionality reduction. store_covariance : bool, optional Additionally compute class covariance matrix (default False), used only in 'svd' solver. .. versionadded:: 0.17 tol : float, optional, (default 1.0e-4) Threshold used for rank estimation in SVD solver. .. versionadded:: 0.17 Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : array, shape (n_features,) Intercept term. covariance_ : array-like, shape (n_features, n_features) Covariance matrix (shared by all classes). explained_variance_ratio_ : array, shape (n_components,) Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0. Only available when eigen or svd solver is used. means_ : array-like, shape (n_classes, n_features) Class means. priors_ : array-like, shape (n_classes,) Class priors (sum to 1). scalings_ : array-like, shape (rank, n_classes - 1) Scaling of the features in the space spanned by the class centroids. xbar_ : array-like, shape (n_features,) Overall mean. classes_ : array-like, shape (n_classes,) Unique class labels. See also -------- sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis: Quadratic Discriminant Analysis Notes ----- The default solver is 'svd'. It can perform both classification and transform, and it does not rely on the calculation of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the 'svd' solver cannot be used with shrinkage. The 'lsqr' solver is an efficient algorithm that only works for classification. It supports shrinkage. The 'eigen' solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used for both classification and transform, and it supports shrinkage. However, the 'eigen' solver needs to compute the covariance matrix, so it might not be suitable for situations with a high number of features. Examples -------- >>> import numpy as np >>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = LinearDiscriminantAnalysis() >>> clf.fit(X, y) LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] """ def __init__(self, solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=1e-4): self.solver = solver self.shrinkage = shrinkage self.priors = priors self.n_components = n_components self.store_covariance = store_covariance # used only in svd solver self.tol = tol # used only in svd solver def _solve_lsqr(self, X, y, shrinkage): """Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with optional shrinkage), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_eigen(self, X, y, shrinkage): """Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) Sw = self.covariance_ # within scatter St = _cov(X, shrinkage) # total scatter Sb = St - Sw # between scatter evals, evecs = linalg.eigh(Sb, Sw) self.explained_variance_ratio_ = np.sort(evals / np.sum(evals) )[::-1][:self._max_components] evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors evecs /= np.linalg.norm(evecs, axis=0) self.scalings_ = evecs self.coef_ = np.dot(self.means_, evecs).dot(evecs.T) self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_svd(self, X, y): """SVD solver. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. """ n_samples, n_features = X.shape n_classes = len(self.classes_) self.means_ = _class_means(X, y) if self.store_covariance: self.covariance_ = _class_cov(X, y, self.priors_) Xc = [] for idx, group in enumerate(self.classes_): Xg = X[y == group, :] Xc.append(Xg - self.means_[idx]) self.xbar_ = np.dot(self.priors_, self.means_) Xc = np.concatenate(Xc, axis=0) # 1) within (univariate) scaling by with classes std-dev std = Xc.std(axis=0) # avoid division by zero in normalization std[std == 0] = 1. fac = 1. / (n_samples - n_classes) # 2) Within variance scaling X = np.sqrt(fac) * (Xc / std) # SVD of centered (within)scaled data U, S, V = linalg.svd(X, full_matrices=False) rank = np.sum(S > self.tol) if rank < n_features: warnings.warn("Variables are collinear.") # Scaling of within covariance is: V' 1/S scalings = (V[:rank] / std).T / S[:rank] # 3) Between variance scaling # Scale weighted centers X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T).T, scalings) # Centers are living in a space with n_classes-1 dim (maximum) # Use SVD to find projection in the space spanned by the # (n_classes) centers _, S, V = linalg.svd(X, full_matrices=0) self.explained_variance_ratio_ = (S**2 / np.sum( S**2))[:self._max_components] rank = np.sum(S > self.tol * S[0]) self.scalings_ = np.dot(scalings, V.T[:, :rank]) coef = np.dot(self.means_ - self.xbar_, self.scalings_) self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) + np.log(self.priors_)) self.coef_ = np.dot(coef, self.scalings_.T) self.intercept_ -= np.dot(self.xbar_, self.coef_.T) def fit(self, X, y): """Fit LinearDiscriminantAnalysis model according to the given training data and parameters. .. versionchanged:: 0.19 *store_covariance* has been moved to main constructor. .. versionchanged:: 0.19 *tol* has been moved to main constructor. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array, shape (n_samples,) Target values. """ X, y = check_X_y(X, y, ensure_min_samples=2, estimator=self) self.classes_ = unique_labels(y) if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = np.bincount(y_t) / float(len(y)) else: self.priors_ = np.asarray(self.priors) if (self.priors_ < 0).any(): raise ValueError("priors must be non-negative") if self.priors_.sum() != 1: warnings.warn("The priors do not sum to 1. Renormalizing", UserWarning) self.priors_ = self.priors_ / self.priors_.sum() # Get the maximum number of components if self.n_components is None: self._max_components = len(self.classes_) - 1 else: self._max_components = min(len(self.classes_) - 1, self.n_components) if self.solver == 'svd': if self.shrinkage is not None: raise NotImplementedError('shrinkage not supported') self._solve_svd(X, y) elif self.solver == 'lsqr': self._solve_lsqr(X, y, shrinkage=self.shrinkage) elif self.solver == 'eigen': self._solve_eigen(X, y, shrinkage=self.shrinkage) else: raise ValueError("unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver)) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2) self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0], ndmin=1) return self def transform(self, X): """Project data to maximize class separation. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data. """ if self.solver == 'lsqr': raise NotImplementedError("transform not implemented for 'lsqr' " "solver (use 'svd' or 'eigen').") check_is_fitted(self, ['xbar_', 'scalings_'], all_or_any=any) X = check_array(X) if self.solver == 'svd': X_new = np.dot(X - self.xbar_, self.scalings_) elif self.solver == 'eigen': X_new = np.dot(X, self.scalings_) return X_new[:, :self._max_components] def predict_proba(self, X): """Estimate probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated probabilities. """ prob = self.decision_function(X) prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if len(self.classes_) == 2: # binary case return np.column_stack([1 - prob, prob]) else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob def predict_log_proba(self, X): """Estimate log probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated log probabilities. """ return np.log(self.predict_proba(X)) class QuadraticDiscriminantAnalysis(BaseEstimator, ClassifierMixin): """Quadratic Discriminant Analysis A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class. .. versionadded:: 0.17 *QuadraticDiscriminantAnalysis* Read more in the :ref:`User Guide <lda_qda>`. Parameters ---------- priors : array, optional, shape = [n_classes] Priors on classes reg_param : float, optional Regularizes the covariance estimate as ``(1-reg_param)*Sigma + reg_param*np.eye(n_features)`` store_covariance : boolean If True the covariance matrices are computed and stored in the `self.covariance_` attribute. .. versionadded:: 0.17 tol : float, optional, default 1.0e-4 Threshold used for rank estimation. .. versionadded:: 0.17 Attributes ---------- covariance_ : list of array-like, shape = [n_features, n_features] Covariance matrices of each class. means_ : array-like, shape = [n_classes, n_features] Class means. priors_ : array-like, shape = [n_classes] Class priors (sum to 1). rotations_ : list of arrays For each class k an array of shape [n_features, n_k], with ``n_k = min(n_features, number of elements in class k)`` It is the rotation of the Gaussian distribution, i.e. its principal axis. scalings_ : list of arrays For each class k an array of shape [n_k]. It contains the scaling of the Gaussian distributions along its principal axes, i.e. the variance in the rotated coordinate system. Examples -------- >>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = QuadraticDiscriminantAnalysis() >>> clf.fit(X, y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0, store_covariance=False, store_covariances=None, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.discriminant_analysis.LinearDiscriminantAnalysis: Linear Discriminant Analysis """ def __init__(self, priors=None, reg_param=0., store_covariance=False, tol=1.0e-4, store_covariances=None): self.priors = np.asarray(priors) if priors is not None else None self.reg_param = reg_param self.store_covariances = store_covariances self.store_covariance = store_covariance self.tol = tol @property @deprecated("Attribute covariances_ was deprecated in version" " 0.19 and will be removed in 0.21. Use " "covariance_ instead") def covariances_(self): return self.covariance_ def fit(self, X, y): """Fit the model according to the given training data and parameters. .. versionchanged:: 0.19 ``store_covariances`` has been moved to main constructor as ``store_covariance`` .. versionchanged:: 0.19 ``tol`` has been moved to main constructor. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) """ X, y = check_X_y(X, y) check_classification_targets(y) self.classes_, y = np.unique(y, return_inverse=True) n_samples, n_features = X.shape n_classes = len(self.classes_) if n_classes < 2: raise ValueError('y has less than 2 classes') if self.priors is None: self.priors_ = np.bincount(y) / float(n_samples) else: self.priors_ = self.priors cov = None store_covariance = self.store_covariance or self.store_covariances if self.store_covariances: warnings.warn("'store_covariances' was renamed to store_covariance" " in version 0.19 and will be removed in 0.21.", DeprecationWarning) if store_covariance: cov = [] means = [] scalings = [] rotations = [] for ind in xrange(n_classes): Xg = X[y == ind, :] meang = Xg.mean(0) means.append(meang) if len(Xg) == 1: raise ValueError('y has only 1 sample in class %s, covariance ' 'is ill defined.' % str(self.classes_[ind])) Xgc = Xg - meang # Xgc = U * S * V.T U, S, Vt = np.linalg.svd(Xgc, full_matrices=False) rank = np.sum(S > self.tol) if rank < n_features: warnings.warn("Variables are collinear") S2 = (S ** 2) / (len(Xg) - 1) S2 = ((1 - self.reg_param) * S2) + self.reg_param if self.store_covariance or store_covariance: # cov = V * (S^2 / (n-1)) * V.T cov.append(np.dot(S2 * Vt.T, Vt)) scalings.append(S2) rotations.append(Vt.T) if self.store_covariance or store_covariance: self.covariance_ = cov self.means_ = np.asarray(means) self.scalings_ = scalings self.rotations_ = rotations return self def _decision_function(self, X): check_is_fitted(self, 'classes_') X = check_array(X) norm2 = [] for i in range(len(self.classes_)): R = self.rotations_[i] S = self.scalings_[i] Xm = X - self.means_[i] X2 = np.dot(Xm, R * (S ** (-0.5))) norm2.append(np.sum(X2 ** 2, 1)) norm2 = np.array(norm2).T # shape = [len(X), n_classes] u = np.asarray([np.sum(np.log(s)) for s in self.scalings_]) return (-0.5 * (norm2 + u) + np.log(self.priors_)) def decision_function(self, X): """Apply decision function to an array of samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples (test vectors). Returns ------- C : array, shape = [n_samples, n_classes] or [n_samples,] Decision function values related to each class, per sample. In the two-class case, the shape is [n_samples,], giving the log likelihood ratio of the positive class. """ dec_func = self._decision_function(X) # handle special case of two classes if len(self.classes_) == 2: return dec_func[:, 1] - dec_func[:, 0] return dec_func def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] """ d = self._decision_function(X) y_pred = self.classes_.take(d.argmax(1)) return y_pred def predict_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior probabilities of classification per class. """ values = self._decision_function(X) # compute the likelihood of the underlying gaussian models # up to a multiplicative constant. likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis]) # compute posterior probabilities return likelihood / likelihood.sum(axis=1)[:, np.newaxis] def predict_log_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior log-probabilities of classification per class. """ # XXX : can do better to avoid precision overflows probas_ = self.predict_proba(X) return np.log(probas_)
mit
ChanderG/scipy
scipy/interpolate/interpolate.py
25
80287
""" Classes for interpolating values. """ from __future__ import division, print_function, absolute_import __all__ = ['interp1d', 'interp2d', 'spline', 'spleval', 'splmake', 'spltopp', 'ppform', 'lagrange', 'PPoly', 'BPoly', 'RegularGridInterpolator', 'interpn'] import itertools from numpy import (shape, sometrue, array, transpose, searchsorted, ones, logical_or, atleast_1d, atleast_2d, ravel, dot, poly1d, asarray, intp) import numpy as np import scipy.linalg import scipy.special as spec from scipy.special import comb import math import warnings import functools import operator from scipy._lib.six import xrange, integer_types from . import fitpack from . import dfitpack from . import _fitpack from .polyint import _Interpolator1D from . import _ppoly from .fitpack2 import RectBivariateSpline from .interpnd import _ndim_coords_from_arrays def reduce_sometrue(a): all = a while len(shape(all)) > 1: all = sometrue(all, axis=0) return all def prod(x): """Product of a list of numbers; ~40x faster vs np.prod for Python tuples""" if len(x) == 0: return 1 return functools.reduce(operator.mul, x) def lagrange(x, w): """ Return a Lagrange interpolating polynomial. Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating polynomial through the points ``(x, w)``. Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally. Parameters ---------- x : array_like `x` represents the x-coordinates of a set of datapoints. w : array_like `w` represents the y-coordinates of a set of datapoints, i.e. f(`x`). Returns ------- lagrange : numpy.poly1d instance The Lagrange interpolating polynomial. """ M = len(x) p = poly1d(0.0) for j in xrange(M): pt = poly1d(w[j]) for k in xrange(M): if k == j: continue fac = x[j]-x[k] pt *= poly1d([1.0, -x[k]])/fac p += pt return p # !! Need to find argument for keeping initialize. If it isn't # !! found, get rid of it! class interp2d(object): """ interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=nan) Interpolate over a 2-D grid. `x`, `y` and `z` are arrays of values used to approximate some function f: ``z = f(x, y)``. This class returns a function whose call method uses spline interpolation to find the value of new points. If `x` and `y` represent a regular grid, consider using RectBivariateSpline. Methods ------- __call__ Parameters ---------- x, y : array_like Arrays defining the data point coordinates. If the points lie on a regular grid, `x` can specify the column coordinates and `y` the row coordinates, for example:: >>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]] Otherwise, `x` and `y` must specify the full coordinates for each point, for example:: >>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6] If `x` and `y` are multi-dimensional, they are flattened before use. z : array_like The values of the function to interpolate at the data points. If `z` is a multi-dimensional array, it is flattened before use. The length of a flattened `z` array is either len(`x`)*len(`y`) if `x` and `y` specify the column and row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y` specify coordinates for each point. kind : {'linear', 'cubic', 'quintic'}, optional The kind of spline interpolation to use. Default is 'linear'. copy : bool, optional If True, the class makes internal copies of x, y and z. If False, references may be used. The default is to copy. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data (x,y), a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If omitted (None), values outside the domain are extrapolated. Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. See Also -------- RectBivariateSpline : Much faster 2D interpolation if your input data is on a grid bisplrep, bisplev : Spline interpolation based on FITPACK BivariateSpline : a more recent wrapper of the FITPACK routines interp1d : one dimension version of this function Notes ----- The minimum number of data points required along the interpolation axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for quintic interpolation. The interpolator is constructed by `bisplrep`, with a smoothing factor of 0. If more control over smoothing is needed, `bisplrep` should be used directly. Examples -------- Construct a 2-D grid and interpolate on it: >>> from scipy import interpolate >>> x = np.arange(-5.01, 5.01, 0.25) >>> y = np.arange(-5.01, 5.01, 0.25) >>> xx, yy = np.meshgrid(x, y) >>> z = np.sin(xx**2+yy**2) >>> f = interpolate.interp2d(x, y, z, kind='cubic') Now use the obtained interpolation function and plot the result: >>> import matplotlib.pyplot as plt >>> xnew = np.arange(-5.01, 5.01, 1e-2) >>> ynew = np.arange(-5.01, 5.01, 1e-2) >>> znew = f(xnew, ynew) >>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') >>> plt.show() """ def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None): x = ravel(x) y = ravel(y) z = asarray(z) rectangular_grid = (z.size == len(x) * len(y)) if rectangular_grid: if z.ndim == 2: if z.shape != (len(y), len(x)): raise ValueError("When on a regular grid with x.size = m " "and y.size = n, if z.ndim == 2, then z " "must have shape (n, m)") if not np.all(x[1:] >= x[:-1]): j = np.argsort(x) x = x[j] z = z[:, j] if not np.all(y[1:] >= y[:-1]): j = np.argsort(y) y = y[j] z = z[j, :] z = ravel(z.T) else: z = ravel(z) if len(x) != len(y): raise ValueError( "x and y must have equal lengths for non rectangular grid") if len(z) != len(x): raise ValueError( "Invalid length for input z for non rectangular grid") try: kx = ky = {'linear': 1, 'cubic': 3, 'quintic': 5}[kind] except KeyError: raise ValueError("Unsupported interpolation type.") if not rectangular_grid: # TODO: surfit is really not meant for interpolation! self.tck = fitpack.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0) else: nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth( x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0) self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky) self.bounds_error = bounds_error self.fill_value = fill_value self.x, self.y, self.z = [array(a, copy=copy) for a in (x, y, z)] self.x_min, self.x_max = np.amin(x), np.amax(x) self.y_min, self.y_max = np.amin(y), np.amax(y) def __call__(self, x, y, dx=0, dy=0, assume_sorted=False): """Interpolate the function. Parameters ---------- x : 1D array x-coordinates of the mesh on which to interpolate. y : 1D array y-coordinates of the mesh on which to interpolate. dx : int >= 0, < kx Order of partial derivatives in x. dy : int >= 0, < ky Order of partial derivatives in y. assume_sorted : bool, optional If False, values of `x` and `y` can be in any order and they are sorted first. If True, `x` and `y` have to be arrays of monotonically increasing values. Returns ------- z : 2D array with shape (len(y), len(x)) The interpolated values. """ x = atleast_1d(x) y = atleast_1d(y) if x.ndim != 1 or y.ndim != 1: raise ValueError("x and y should both be 1-D arrays") if not assume_sorted: x = np.sort(x) y = np.sort(y) if self.bounds_error or self.fill_value is not None: out_of_bounds_x = (x < self.x_min) | (x > self.x_max) out_of_bounds_y = (y < self.y_min) | (y > self.y_max) any_out_of_bounds_x = np.any(out_of_bounds_x) any_out_of_bounds_y = np.any(out_of_bounds_y) if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y): raise ValueError("Values out of range; x must be in %r, y in %r" % ((self.x_min, self.x_max), (self.y_min, self.y_max))) z = fitpack.bisplev(x, y, self.tck, dx, dy) z = atleast_2d(z) z = transpose(z) if self.fill_value is not None: if any_out_of_bounds_x: z[:, out_of_bounds_x] = self.fill_value if any_out_of_bounds_y: z[out_of_bounds_y, :] = self.fill_value if len(z) == 1: z = z[0] return array(z) class interp1d(_Interpolator1D): """ Interpolate a 1-D function. `x` and `y` are arrays of values used to approximate some function f: ``y = f(x)``. This class returns a function whose call method uses interpolation to find the value of new points. Parameters ---------- x : (N,) array_like A 1-D array of real values. y : (...,N,...) array_like A N-D array of real values. The length of `y` along the interpolation axis must be equal to the length of `x`. kind : str or int, optional Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic' where 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of first, second or third order) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'. axis : int, optional Specifies the axis of `y` along which to interpolate. Interpolation defaults to the last axis of `y`. copy : bool, optional If True, the class makes internal copies of x and y. If False, references to `x` and `y` are used. The default is to copy. bounds_error : bool, optional If True, a ValueError is raised any time interpolation is attempted on a value outside of the range of x (where extrapolation is necessary). If False, out of bounds values are assigned `fill_value`. By default, an error is raised. fill_value : float, optional If provided, then this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN. assume_sorted : bool, optional If False, values of `x` can be in any order and they are sorted first. If True, `x` has to be an array of monotonically increasing values. Methods ------- __call__ See Also -------- splrep, splev Spline interpolation/smoothing based on FITPACK. UnivariateSpline : An object-oriented wrapper of the FITPACK routines. interp2d : 2-D interpolation Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import interpolate >>> x = np.arange(0, 10) >>> y = np.exp(-x/3.0) >>> f = interpolate.interp1d(x, y) >>> xnew = np.arange(0, 9, 0.1) >>> ynew = f(xnew) # use interpolation function returned by `interp1d` >>> plt.plot(x, y, 'o', xnew, ynew, '-') >>> plt.show() """ def __init__(self, x, y, kind='linear', axis=-1, copy=True, bounds_error=True, fill_value=np.nan, assume_sorted=False): """ Initialize a 1D linear interpolation class.""" _Interpolator1D.__init__(self, x, y, axis=axis) self.copy = copy self.bounds_error = bounds_error self.fill_value = fill_value if kind in ['zero', 'slinear', 'quadratic', 'cubic']: order = {'nearest': 0, 'zero': 0,'slinear': 1, 'quadratic': 2, 'cubic': 3}[kind] kind = 'spline' elif isinstance(kind, int): order = kind kind = 'spline' elif kind not in ('linear', 'nearest'): raise NotImplementedError("%s is unsupported: Use fitpack " "routines for other types." % kind) x = array(x, copy=self.copy) y = array(y, copy=self.copy) if not assume_sorted: ind = np.argsort(x) x = x[ind] y = np.take(y, ind, axis=axis) if x.ndim != 1: raise ValueError("the x array must have exactly one dimension.") if y.ndim == 0: raise ValueError("the y array must have at least one dimension.") # Force-cast y to a floating-point type, if it's not yet one if not issubclass(y.dtype.type, np.inexact): y = y.astype(np.float_) # Backward compatibility self.axis = axis % y.ndim # Interpolation goes internally along the first axis self.y = y y = self._reshape_yi(y) # Adjust to interpolation kind; store reference to *unbound* # interpolation methods, in order to avoid circular references to self # stored in the bound instance methods, and therefore delayed garbage # collection. See: http://docs.python.org/2/reference/datamodel.html if kind in ('linear', 'nearest'): # Make a "view" of the y array that is rotated to the interpolation # axis. minval = 2 if kind == 'nearest': self.x_bds = (x[1:] + x[:-1]) / 2.0 self._call = self.__class__._call_nearest else: self._call = self.__class__._call_linear else: minval = order + 1 self._spline = splmake(x, y, order=order) self._call = self.__class__._call_spline if len(x) < minval: raise ValueError("x and y arrays must have at " "least %d entries" % minval) self._kind = kind self.x = x self._y = y def _call_linear(self, x_new): # 2. Find where in the orignal data, the values to interpolate # would be inserted. # Note: If x_new[n] == x[m], then m is returned by searchsorted. x_new_indices = searchsorted(self.x, x_new) # 3. Clip x_new_indices so that they are within the range of # self.x indices and at least 1. Removes mis-interpolation # of x_new[n] = x[0] x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int) # 4. Calculate the slope of regions that each x_new value falls in. lo = x_new_indices - 1 hi = x_new_indices x_lo = self.x[lo] x_hi = self.x[hi] y_lo = self._y[lo] y_hi = self._y[hi] # Note that the following two expressions rely on the specifics of the # broadcasting semantics. slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None] # 5. Calculate the actual value for each entry in x_new. y_new = slope*(x_new - x_lo)[:, None] + y_lo return y_new def _call_nearest(self, x_new): """ Find nearest neighbour interpolated y_new = f(x_new).""" # 2. Find where in the averaged data the values to interpolate # would be inserted. # Note: use side='left' (right) to searchsorted() to define the # halfway point to be nearest to the left (right) neighbour x_new_indices = searchsorted(self.x_bds, x_new, side='left') # 3. Clip x_new_indices so that they are within the range of x indices. x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp) # 4. Calculate the actual value for each entry in x_new. y_new = self._y[x_new_indices] return y_new def _call_spline(self, x_new): return spleval(self._spline, x_new) def _evaluate(self, x_new): # 1. Handle values in x_new that are outside of x. Throw error, # or return a list of mask array indicating the outofbounds values. # The behavior is set by the bounds_error variable. x_new = asarray(x_new) out_of_bounds = self._check_bounds(x_new) y_new = self._call(self, x_new) if len(y_new) > 0: y_new[out_of_bounds] = self.fill_value return y_new def _check_bounds(self, x_new): """Check the inputs for being in the bounds of the interpolated data. Parameters ---------- x_new : array Returns ------- out_of_bounds : bool array The mask on x_new of values that are out of the bounds. """ # If self.bounds_error is True, we raise an error if any x_new values # fall outside the range of x. Otherwise, we return an array indicating # which values are outside the boundary region. below_bounds = x_new < self.x[0] above_bounds = x_new > self.x[-1] # !! Could provide more information about which values are out of bounds if self.bounds_error and below_bounds.any(): raise ValueError("A value in x_new is below the interpolation " "range.") if self.bounds_error and above_bounds.any(): raise ValueError("A value in x_new is above the interpolation " "range.") # !! Should we emit a warning if some values are out of bounds? # !! matlab does not. out_of_bounds = logical_or(below_bounds, above_bounds) return out_of_bounds class _PPolyBase(object): """ Base class for piecewise polynomials. """ __slots__ = ('c', 'x', 'extrapolate', 'axis') def __init__(self, c, x, extrapolate=None, axis=0): self.c = np.asarray(c) self.x = np.ascontiguousarray(x, dtype=np.float64) if extrapolate is None: extrapolate = True self.extrapolate = bool(extrapolate) if not (0 <= axis < self.c.ndim - 1): raise ValueError("%s must be between 0 and %s" % (axis, c.ndim-1)) self.axis = axis if axis != 0: # roll the interpolation axis to be the first one in self.c # More specifically, the target shape for self.c is (k, m, ...), # and axis !=0 means that we have c.shape (..., k, m, ...) # ^ # axis # So we roll two of them. self.c = np.rollaxis(self.c, axis+1) self.c = np.rollaxis(self.c, axis+1) if self.x.ndim != 1: raise ValueError("x must be 1-dimensional") if self.x.size < 2: raise ValueError("at least 2 breakpoints are needed") if self.c.ndim < 2: raise ValueError("c must have at least 2 dimensions") if self.c.shape[0] == 0: raise ValueError("polynomial must be at least of order 0") if self.c.shape[1] != self.x.size-1: raise ValueError("number of coefficients != len(x)-1") if np.any(self.x[1:] - self.x[:-1] < 0): raise ValueError("x-coordinates are not in increasing order") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ @classmethod def construct_fast(cls, c, x, extrapolate=None, axis=0): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments `c` and `x` must be arrays of the correct shape and type. The `c` array can only be of dtypes float and complex, and `x` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x self.axis = axis if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _ensure_c_contiguous(self): """ c and x may be modified by the user. The Cython code expects that they are C contiguous. """ if not self.x.flags.c_contiguous: self.x = self.x.copy() if not self.c.flags.c_contiguous: self.c = self.c.copy() def extend(self, c, x, right=True): """ Add additional breakpoints and coefficients to the polynomial. Parameters ---------- c : ndarray, size (k, m, ...) Additional coefficients for polynomials in intervals ``self.x[-1] <= x < x_right[0]``, ``x_right[0] <= x < x_right[1]``, ..., ``x_right[m-2] <= x < x_right[m-1]`` x : ndarray, size (m,) Additional breakpoints. Must be sorted and either to the right or to the left of the current breakpoints. right : bool, optional Whether the new intervals are to the right or to the left of the current intervals. """ c = np.asarray(c) x = np.asarray(x) if c.ndim < 2: raise ValueError("invalid dimensions for c") if x.ndim != 1: raise ValueError("invalid dimensions for x") if x.shape[0] != c.shape[1]: raise ValueError("x and c have incompatible sizes") if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim: raise ValueError("c and self.c have incompatible shapes") if right: if x[0] < self.x[-1]: raise ValueError("new x are not to the right of current ones") else: if x[-1] > self.x[0]: raise ValueError("new x are not to the left of current ones") if c.size == 0: return dtype = self._get_dtype(c.dtype) k2 = max(c.shape[0], self.c.shape[0]) c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:], dtype=dtype) if right: c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c c2[k2-c.shape[0]:, self.c.shape[1]:] = c self.x = np.r_[self.x, x] else: c2[k2-self.c.shape[0]:, :c.shape[1]] = c c2[k2-c.shape[0]:, c.shape[1]:] = self.c self.x = np.r_[x, self.x] self.c = c2 def __call__(self, x, nu=0, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative Parameters ---------- x : array_like Points to evaluate the interpolant at. nu : int, optional Order of derivative to evaluate. Must be non-negative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- y : array_like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate x = np.asarray(x) x_shape, x_ndim = x.shape, x.ndim x = np.ascontiguousarray(x.ravel(), dtype=np.float_) out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype) self._ensure_c_contiguous() self._evaluate(x, nu, extrapolate, out) out = out.reshape(x_shape + self.c.shape[2:]) if self.axis != 0: # transpose to move the calculated values to the interpolation axis l = list(range(out.ndim)) l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:] out = out.transpose(l) return out class PPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial in the ith interval is ``x[i] <= xp < x[i+1]``:: S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) where ``k`` is the degree of the polynomial. This representation is the local power basis. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ derivative antiderivative integrate roots extend from_spline from_bernstein_basis construct_fast See also -------- BPoly : piecewise polynomials in the Bernstein basis Notes ----- High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear for orders larger than 20-30. """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if nu < 0: return self.antiderivative(-nu) # reduce order if nu == 0: c2 = self.c.copy() else: c2 = self.c[:-nu,:].copy() if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu) c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)] # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. (Default: 1) If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. """ if nu <= 0: return self.derivative(-nu) c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:], dtype=self.c.dtype) c[:-nu] = self.c # divide by the correct rising factorials factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu) c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom self._ensure_c_contiguous() _ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1), self.x, nu - 1) # construct a compatible polynomial return self.construct_fast(c, self.x, self.extrapolate, self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a, b] """ if extrapolate is None: extrapolate = self.extrapolate # Swap integration bounds if needed sign = 1 if b < a: a, b = b, a sign = -1 # Compute the integral range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype) self._ensure_c_contiguous() _ppoly.integrate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, bool(extrapolate), out=range_int) # Return range_int *= sign return range_int.reshape(self.c.shape[2:]) def roots(self, discontinuity=True, extrapolate=None): """ Find real roots of the piecewise polynomial. Parameters ---------- discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : bool, optional Whether to return roots from the polynomial extrapolated based on first and last intervals. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. Notes ----- This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that are identically zero, the root list will contain the start point of the corresponding interval, followed by a ``nan`` value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint, this is reported if the `discont` parameter is True. Examples -------- Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals ``[-2, 1], [1, 2]``: >>> from scipy.interpolate import PPoly >>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2]) >>> pp.roots() array([-1., 1.]) """ if extrapolate is None: extrapolate = self.extrapolate self._ensure_c_contiguous() if np.issubdtype(self.c.dtype, np.complexfloating): raise ValueError("Root finding is only for " "real-valued polynomials") r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, bool(discontinuity), bool(extrapolate)) if self.c.ndim == 2: return r[0] else: r2 = np.empty(prod(self.c.shape[2:]), dtype=object) # this for-loop is equivalent to ``r2[...] = r``, but that's broken # in numpy 1.6.0 for ii, root in enumerate(r): r2[ii] = root return r2.reshape(self.c.shape[2:]) @classmethod def from_spline(cls, tck, extrapolate=None): """ Construct a piecewise polynomial from a spline Parameters ---------- tck A spline, as returned by `splrep` extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ t, c, k = tck cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype) for m in xrange(k, -1, -1): y = fitpack.splev(t[:-1], tck, der=m) cvals[k - m, :] = y/spec.gamma(m+1) return cls.construct_fast(cvals, t, extrapolate) @classmethod def from_bernstein_basis(cls, bp, extrapolate=None): """ Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis. Parameters ---------- bp : BPoly A Bernstein basis polynomial, as created by BPoly extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ dx = np.diff(bp.x) k = bp.c.shape[0] - 1 # polynomial order rest = (None,)*(bp.c.ndim-2) c = np.zeros_like(bp.c) for a in range(k+1): factor = (-1)**(a) * comb(k, a) * bp.c[a] for s in range(a, k+1): val = comb(k-a, s-a) * (-1)**s c[k-s] += factor * val / dx[(slice(None),)+rest]**s if extrapolate is None: extrapolate = bp.extrapolate return cls.construct_fast(c, bp.x, extrapolate, bp.axis) class BPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial in the ``i``-th interval ``x[i] <= xp < x[i+1]`` is written in the Bernstein polynomial basis:: S = sum(c[a, i] * b(a, k; x) for a in range(k+1)) where ``k`` is the degree of the polynomial, and:: b(a, k; x) = comb(k, a) * t**k * (1 - t)**(k - a) with ``t = (x - x[i]) / (x[i+1] - x[i])``. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ extend derivative antiderivative integrate construct_fast from_power_basis from_derivatives See also -------- PPoly : piecewise polynomials in the power basis Notes ----- Properties of Bernstein polynomials are well documented in the literature. Here's a non-exhaustive list: .. [1] http://en.wikipedia.org/wiki/Bernstein_polynomial .. [2] Kenneth I. Joy, Bernstein polynomials, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf .. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, vol 2011, article ID 829546, doi:10.1155/2011/829543 Examples -------- >>> from scipy.interpolate import BPoly >>> x = [0, 1] >>> c = [[1], [2], [3]] >>> bp = BPoly(c, x) This creates a 2nd order polynomial .. math:: B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3 \\times b_{2, 2}(x) \\\\ = 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2 """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate_bernstein( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k2 = k - nu representing the derivative of this polynomial. """ if nu < 0: return self.antiderivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.derivative() return bp # reduce order if nu == 0: c2 = self.c.copy() else: # For a polynomial # B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x), # we use the fact that # b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ), # which leads to # B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1} # # finally, for an interval [y, y + dy] with dy != 1, # we need to correct for an extra power of dy rest = (None,)*(self.c.ndim-2) k = self.c.shape[0] - 1 dx = np.diff(self.x)[(None, slice(None))+rest] c2 = k * np.diff(self.c, axis=0) / dx if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the derivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k2 = k + nu representing the antiderivative of this polynomial. """ if nu <= 0: return self.derivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.antiderivative() return bp # Construct the indefinite integrals on individual intervals c, x = self.c, self.x k = c.shape[0] c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype) c2[1:, ...] = np.cumsum(c, axis=0) / k delta = x[1:] - x[:-1] c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)] # Now fix continuity: on the very first interval, take the integration # constant to be zero; on an interval [x_j, x_{j+1}) with j>0, # the integration constant is then equal to the jump of the `bp` at x_j. # The latter is given by the coefficient of B_{n+1, n+1} # *on the previous interval* (other B. polynomials are zero at the breakpoint) # Finally, use the fact that BPs form a partition of unity. c2[:,1:] += np.cumsum(c2[k,:], axis=0)[:-1] return self.construct_fast(c2, x, self.extrapolate, axis=self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Defaults to ``self.extrapolate``. Returns ------- array_like Definite integral of the piecewise polynomial over [a, b] """ # XXX: can probably use instead the fact that # \int_0^{1} B_{j, n}(x) \dx = 1/(n+1) ib = self.antiderivative() if extrapolate is not None: ib.extrapolate = extrapolate return ib(b) - ib(a) def extend(self, c, x, right=True): k = max(self.c.shape[0], c.shape[0]) self.c = self._raise_degree(self.c, k - self.c.shape[0]) c = self._raise_degree(c, k - c.shape[0]) return _PPolyBase.extend(self, c, x, right) extend.__doc__ = _PPolyBase.extend.__doc__ @classmethod def from_power_basis(cls, pp, extrapolate=None): """ Construct a piecewise polynomial in Bernstein basis from a power basis polynomial. Parameters ---------- pp : PPoly A piecewise polynomial in the power basis extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ dx = np.diff(pp.x) k = pp.c.shape[0] - 1 # polynomial order rest = (None,)*(pp.c.ndim-2) c = np.zeros_like(pp.c) for a in range(k+1): factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a) for j in range(k-a, k+1): c[j] += factor * comb(j, k-a) if extrapolate is None: extrapolate = pp.extrapolate return cls.construct_fast(c, pp.x, extrapolate, pp.axis) @classmethod def from_derivatives(cls, xi, yi, orders=None, extrapolate=None): """Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array_likes ``yi[i][j]`` is the ``j``-th derivative known at ``xi[i]`` orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. Notes ----- If ``k`` derivatives are specified at a breakpoint ``x``, the constructed polynomial is exactly ``k`` times continuously differentiable at ``x``, unless the ``order`` is provided explicitly. In the latter case, the smoothness of the polynomial at the breakpoint is controlled by the ``order``. Deduces the number of derivatives to match at each end from ``order`` and the number of derivatives available. If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra one from y2. In any case if not enough derivatives are available at one end or another it draws enough to make up the total from the other end. If the order is too high and not enough derivatives are available, an exception is raised. Examples -------- >>> from scipy.interpolate import BPoly >>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]]) Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]` such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4` >>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]]) Creates a piecewise polynomial `f(x)`, such that `f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`. Based on the number of derivatives provided, the order of the local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`. Notice that no restriction is imposed on the derivatives at `x = 1` and `x = 2`. Indeed, the explicit form of the polynomial is:: f(x) = | x * (1 - x), 0 <= x < 1 | 2 * (x - 1), 1 <= x <= 2 So that f'(1-0) = -1 and f'(1+0) = 2 """ xi = np.asarray(xi) if len(xi) != len(yi): raise ValueError("xi and yi need to have the same length") if np.any(xi[1:] - xi[:1] <= 0): raise ValueError("x coordinates are not in increasing order") # number of intervals m = len(xi) - 1 # global poly order is k-1, local orders are <=k and can vary try: k = max(len(yi[i]) + len(yi[i+1]) for i in range(m)) except TypeError: raise ValueError("Using a 1D array for y? Please .reshape(-1, 1).") if orders is None: orders = [None] * m else: if isinstance(orders, integer_types): orders = [orders] * m k = max(k, max(orders)) if any(o <= 0 for o in orders): raise ValueError("Orders must be positive.") c = [] for i in range(m): y1, y2 = yi[i], yi[i+1] if orders[i] is None: n1, n2 = len(y1), len(y2) else: n = orders[i]+1 n1 = min(n//2, len(y1)) n2 = min(n - n1, len(y2)) n1 = min(n - n2, len(y2)) if n1+n2 != n: raise ValueError("Point %g has %d derivatives, point %g" " has %d derivatives, but order %d requested" % (xi[i], len(y1), xi[i+1], len(y2), orders[i])) if not (n1 <= len(y1) and n2 <= len(y2)): raise ValueError("`order` input incompatible with" " length y1 or y2.") b = BPoly._construct_from_derivatives(xi[i], xi[i+1], y1[:n1], y2[:n2]) if len(b) < k: b = BPoly._raise_degree(b, k - len(b)) c.append(b) c = np.asarray(c) return cls(c.swapaxes(0, 1), xi, extrapolate) @staticmethod def _construct_from_derivatives(xa, xb, ya, yb): """Compute the coefficients of a polynomial in the Bernstein basis given the values and derivatives at the edges. Return the coefficients of a polynomial in the Bernstein basis defined on `[xa, xb]` and having the values and derivatives at the endpoints ``xa`` and ``xb`` as specified by ``ya`` and ``yb``. The polynomial constructed is of the minimal possible degree, i.e., if the lengths of ``ya`` and ``yb`` are ``na`` and ``nb``, the degree of the polynomial is ``na + nb - 1``. Parameters ---------- xa : float Left-hand end point of the interval xb : float Right-hand end point of the interval ya : array_like Derivatives at ``xa``. ``ya[0]`` is the value of the function, and ``ya[i]`` for ``i > 0`` is the value of the ``i``-th derivative. yb : array_like Derivatives at ``xb``. Returns ------- array coefficient array of a polynomial having specified derivatives Notes ----- This uses several facts from life of Bernstein basis functions. First of all, .. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1}) If B(x) is a linear combination of the form .. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n}, then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}. Iterating the latter one, one finds for the q-th derivative .. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q}, with .. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a} This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and `c_q` are found one by one by iterating `q = 0, ..., na`. At `x = xb` it's the same with `a = n - q`. """ ya, yb = np.asarray(ya), np.asarray(yb) if ya.shape[1:] != yb.shape[1:]: raise ValueError('ya and yb have incompatible dimensions.') dta, dtb = ya.dtype, yb.dtype if (np.issubdtype(dta, np.complexfloating) or np.issubdtype(dtb, np.complexfloating)): dt = np.complex_ else: dt = np.float_ na, nb = len(ya), len(yb) n = na + nb c = np.empty((na+nb,) + ya.shape[1:], dtype=dt) # compute coefficients of a polynomial degree na+nb-1 # walk left-to-right for q in range(0, na): c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q for j in range(0, q): c[q] -= (-1)**(j+q) * comb(q, j) * c[j] # now walk right-to-left for q in range(0, nb): c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q for j in range(0, q): c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j] return c @staticmethod def _raise_degree(c, d): """Raise a degree of a polynomial in the Bernstein basis. Given the coefficients of a polynomial degree `k`, return (the coefficients of) the equivalent polynomial of degree `k+d`. Parameters ---------- c : array_like coefficient array, 1D d : integer Returns ------- array coefficient array, 1D array of length `c.shape[0] + d` Notes ----- This uses the fact that a Bernstein polynomial `b_{a, k}` can be identically represented as a linear combination of polynomials of a higher degree `k+d`: .. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \ comb(d, j) / comb(k+d, a+j) """ if d == 0: return c k = c.shape[0] - 1 out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype) for a in range(c.shape[0]): f = c[a] * comb(k, a) for j in range(d+1): out[a+j] += f * comb(d, j) / comb(k+d, a+j) return out class RegularGridInterpolator(object): """ Interpolation on a regular grid in arbitrary dimensions The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbour interpolation are supported. After setting up the interpolator object, the interpolation method (*linear* or *nearest*) may be chosen at each evaluation. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest". This parameter will become the default for the object's ``__call__`` method. Default is "linear". bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Methods ------- __call__ Notes ----- Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input data by taking advantage of the regular grid structure. .. versionadded:: 0.14 Examples -------- Evaluate a simple example function on the points of a 3D grid: >>> from scipy.interpolate import RegularGridInterpolator >>> def f(x,y,z): ... return 2 * x**3 + 3 * y**2 - z >>> x = np.linspace(1, 4, 11) >>> y = np.linspace(4, 7, 22) >>> z = np.linspace(7, 9, 33) >>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True)) ``data`` is now a 3D array with ``data[i,j,k] = f(x[i], y[j], z[k])``. Next, define an interpolating function from this data: >>> my_interpolating_function = RegularGridInterpolator((x, y, z), data) Evaluate the interpolating function at the two points ``(x,y,z) = (2.1, 6.2, 8.3)`` and ``(3.3, 5.2, 7.1)``: >>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]]) >>> my_interpolating_function(pts) array([ 125.80469388, 146.30069388]) which is indeed a close approximation to ``[f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)]``. See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions References ---------- .. [1] Python package *regulargrid* by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/ .. [2] Trilinear interpolation. (2013, January 17). In Wikipedia, The Free Encyclopedia. Retrieved 27 Feb 2013 01:28. http://en.wikipedia.org/w/index.php?title=Trilinear_interpolation&oldid=533448871 .. [3] Weiser, Alan, and Sergio E. Zarantonello. "A note on piecewise linear and multilinear table interpolation in many dimensions." MATH. COMPUT. 50.181 (1988): 189-196. http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf """ # this class is based on code originally programmed by Johannes Buchner, # see https://github.com/JohannesBuchner/regulargrid def __init__(self, points, values, method="linear", bounds_error=True, fill_value=np.nan): if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) self.method = method self.bounds_error = bounds_error if not hasattr(values, 'ndim'): # allow reasonable duck-typed values values = np.asarray(values) if len(points) > values.ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), values.ndim)) if hasattr(values, 'dtype') and hasattr(values, 'astype'): if not np.issubdtype(values.dtype, np.inexact): values = values.astype(float) self.fill_value = fill_value if fill_value is not None: fill_value_dtype = np.asarray(fill_value).dtype if (hasattr(values, 'dtype') and not np.can_cast(fill_value_dtype, values.dtype, casting='same_kind')): raise ValueError("fill_value must be either 'None' or " "of a type compatible with values") for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) self.grid = tuple([np.asarray(p) for p in points]) self.values = values def __call__(self, xi, method=None): """ Interpolation at coordinates Parameters ---------- xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str The method of interpolation to perform. Supported are "linear" and "nearest". """ method = self.method if method is None else method if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) ndim = len(self.grid) xi = _ndim_coords_from_arrays(xi, ndim=ndim) if xi.shape[-1] != len(self.grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], ndim)) xi_shape = xi.shape xi = xi.reshape(-1, xi_shape[-1]) if self.bounds_error: for i, p in enumerate(xi.T): if not np.logical_and(np.all(self.grid[i][0] <= p), np.all(p <= self.grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) indices, norm_distances, out_of_bounds = self._find_indices(xi.T) if method == "linear": result = self._evaluate_linear(indices, norm_distances, out_of_bounds) elif method == "nearest": result = self._evaluate_nearest(indices, norm_distances, out_of_bounds) if not self.bounds_error and self.fill_value is not None: result[out_of_bounds] = self.fill_value return result.reshape(xi_shape[:-1] + self.values.shape[ndim:]) def _evaluate_linear(self, indices, norm_distances, out_of_bounds): # slice for broadcasting over trailing dimensions in self.values vslice = (slice(None),) + (None,)*(self.values.ndim - len(indices)) # find relevant values # each i and i+1 represents a edge edges = itertools.product(*[[i, i + 1] for i in indices]) values = 0. for edge_indices in edges: weight = 1. for ei, i, yi in zip(edge_indices, indices, norm_distances): weight *= np.where(ei == i, 1 - yi, yi) values += np.asarray(self.values[edge_indices]) * weight[vslice] return values def _evaluate_nearest(self, indices, norm_distances, out_of_bounds): idx_res = [] for i, yi in zip(indices, norm_distances): idx_res.append(np.where(yi <= .5, i, i + 1)) return self.values[idx_res] def _find_indices(self, xi): # find relevant edges between which xi are situated indices = [] # compute distance to lower edge in unity units norm_distances = [] # check for out of bounds xi out_of_bounds = np.zeros((xi.shape[1]), dtype=bool) # iterate through dimensions for x, grid in zip(xi, self.grid): i = np.searchsorted(grid, x) - 1 i[i < 0] = 0 i[i > grid.size - 2] = grid.size - 2 indices.append(i) norm_distances.append((x - grid[i]) / (grid[i + 1] - grid[i])) if not self.bounds_error: out_of_bounds += x < grid[0] out_of_bounds += x > grid[-1] return indices, norm_distances, out_of_bounds def interpn(points, values, xi, method="linear", bounds_error=True, fill_value=np.nan): """ Multidimensional interpolation on regular grids. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. Notes ----- .. versionadded:: 0.14 See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions RegularGridInterpolator : Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions RectBivariateSpline : Bivariate spline approximation over a rectangular mesh """ # sanity check 'method' kwarg if method not in ["linear", "nearest", "splinef2d"]: raise ValueError("interpn only understands the methods 'linear', " "'nearest', and 'splinef2d'. You provided %s." % method) if not hasattr(values, 'ndim'): values = np.asarray(values) ndim = values.ndim if ndim > 2 and method == "splinef2d": raise ValueError("The method spline2fd can only be used for " "2-dimensional input data") if not bounds_error and fill_value is None and method == "splinef2d": raise ValueError("The method spline2fd does not support extrapolation.") # sanity check consistency of input dimensions if len(points) > ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), ndim)) if len(points) != ndim and method == 'splinef2d': raise ValueError("The method spline2fd can only be used for " "scalar data with one point per coordinate") # sanity check input grid for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) grid = tuple([np.asarray(p) for p in points]) # sanity check requested xi xi = _ndim_coords_from_arrays(xi, ndim=len(grid)) if xi.shape[-1] != len(grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], len(grid))) for i, p in enumerate(xi.T): if bounds_error and not np.logical_and(np.all(grid[i][0] <= p), np.all(p <= grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) # perform interpolation if method == "linear": interp = RegularGridInterpolator(points, values, method="linear", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "nearest": interp = RegularGridInterpolator(points, values, method="nearest", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "splinef2d": xi_shape = xi.shape xi = xi.reshape(-1, xi.shape[-1]) # RectBivariateSpline doesn't support fill_value; we need to wrap here idx_valid = np.all((grid[0][0] <= xi[:, 0], xi[:, 0] <= grid[0][-1], grid[1][0] <= xi[:, 1], xi[:, 1] <= grid[1][-1]), axis=0) result = np.empty_like(xi[:, 0]) # make a copy of values for RectBivariateSpline interp = RectBivariateSpline(points[0], points[1], values[:]) result[idx_valid] = interp.ev(xi[idx_valid, 0], xi[idx_valid, 1]) result[np.logical_not(idx_valid)] = fill_value return result.reshape(xi_shape[:-1]) # backward compatibility wrapper class ppform(PPoly): """ Deprecated piecewise polynomial class. New code should use the `PPoly` class instead. """ def __init__(self, coeffs, breaks, fill=0.0, sort=False): warnings.warn("ppform is deprecated -- use PPoly instead", category=DeprecationWarning) if sort: breaks = np.sort(breaks) else: breaks = np.asarray(breaks) PPoly.__init__(self, coeffs, breaks) self.coeffs = self.c self.breaks = self.x self.K = self.coeffs.shape[0] self.fill = fill self.a = self.breaks[0] self.b = self.breaks[-1] def __call__(self, x): return PPoly.__call__(self, x, 0, False) def _evaluate(self, x, nu, extrapolate, out): PPoly._evaluate(self, x, nu, extrapolate, out) out[~((x >= self.a) & (x <= self.b))] = self.fill return out @classmethod def fromspline(cls, xk, cvals, order, fill=0.0): # Note: this spline representation is incompatible with FITPACK N = len(xk)-1 sivals = np.empty((order+1, N), dtype=float) for m in xrange(order, -1, -1): fact = spec.gamma(m+1) res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m) res /= fact sivals[order-m, :] = res return cls(sivals, xk, fill=fill) def _dot0(a, b): """Similar to numpy.dot, but sum over last axis of a and 1st axis of b""" if b.ndim <= 2: return dot(a, b) else: axes = list(range(b.ndim)) axes.insert(-1, 0) axes.pop(0) return dot(a, b.transpose(axes)) def _find_smoothest(xk, yk, order, conds=None, B=None): # construct Bmatrix, and Jmatrix # e = J*c # minimize norm(e,2) given B*c=yk # if desired B can be given # conds is ignored N = len(xk)-1 K = order if B is None: B = _fitpack._bsplmat(order, xk) J = _fitpack._bspldismat(order, xk) u, s, vh = scipy.linalg.svd(B) ind = K-1 V2 = vh[-ind:,:].T V1 = vh[:-ind,:].T A = dot(J.T,J) tmp = dot(V2.T,A) Q = dot(tmp,V2) p = scipy.linalg.solve(Q, tmp) tmp = dot(V2,p) tmp = np.eye(N+K) - tmp tmp = dot(tmp,V1) tmp = dot(tmp,np.diag(1.0/s)) tmp = dot(tmp,u.T) return _dot0(tmp, yk) def _setdiag(a, k, v): if not a.ndim == 2: raise ValueError("Input array should be 2-D.") M,N = a.shape if k > 0: start = k num = N - k else: num = M + k start = abs(k)*N end = start + num*(N+1)-1 a.flat[start:end:(N+1)] = v # Return the spline that minimizes the dis-continuity of the # "order-th" derivative; for order >= 2. def _find_smoothest2(xk, yk): N = len(xk) - 1 Np1 = N + 1 # find pseudo-inverse of B directly. Bd = np.empty((Np1, N)) for k in range(-N,N): if (k < 0): l = np.arange(-k, Np1) v = (l+k+1) if ((k+1) % 2): v = -v else: l = np.arange(k,N) v = N - l if ((k % 2)): v = -v _setdiag(Bd, k, v) Bd /= (Np1) V2 = np.ones((Np1,)) V2[1::2] = -1 V2 /= math.sqrt(Np1) dk = np.diff(xk) b = 2*np.diff(yk, axis=0)/dk J = np.zeros((N-1,N+1)) idk = 1.0/dk _setdiag(J,0,idk[:-1]) _setdiag(J,1,-idk[1:]-idk[:-1]) _setdiag(J,2,idk[1:]) A = dot(J.T,J) val = dot(V2,dot(A,V2)) res1 = dot(np.outer(V2,V2)/val,A) mk = dot(np.eye(Np1)-res1, _dot0(Bd,b)) return mk def _get_spline2_Bb(xk, yk, kind, conds): Np1 = len(xk) dk = xk[1:]-xk[:-1] if kind == 'not-a-knot': # use banded-solver nlu = (1,1) B = ones((3,Np1)) alpha = 2*(yk[1:]-yk[:-1])/dk zrs = np.zeros((1,)+yk.shape[1:]) row = (Np1-1)//2 b = np.concatenate((alpha[:row],zrs,alpha[row:]),axis=0) B[0,row+2:] = 0 B[2,:(row-1)] = 0 B[0,row+1] = dk[row-1] B[1,row] = -dk[row]-dk[row-1] B[2,row-1] = dk[row] return B, b, None, nlu else: raise NotImplementedError("quadratic %s is not available" % kind) def _get_spline3_Bb(xk, yk, kind, conds): # internal function to compute different tri-diagonal system # depending on the kind of spline requested. # conds is only used for 'second' and 'first' Np1 = len(xk) if kind in ['natural', 'second']: if kind == 'natural': m0, mN = 0.0, 0.0 else: m0, mN = conds # the matrix to invert is (N-1,N-1) # use banded solver beta = 2*(xk[2:]-xk[:-2]) alpha = xk[1:]-xk[:-1] nlu = (1,1) B = np.empty((3,Np1-2)) B[0,1:] = alpha[2:] B[1,:] = beta B[2,:-1] = alpha[1:-1] dyk = yk[1:]-yk[:-1] b = (dyk[1:]/alpha[1:] - dyk[:-1]/alpha[:-1]) b *= 6 b[0] -= m0 b[-1] -= mN def append_func(mk): # put m0 and mN into the correct shape for # concatenation ma = array(m0,copy=0,ndmin=yk.ndim) mb = array(mN,copy=0,ndmin=yk.ndim) if ma.shape[1:] != yk.shape[1:]: ma = ma*(ones(yk.shape[1:])[np.newaxis,...]) if mb.shape[1:] != yk.shape[1:]: mb = mb*(ones(yk.shape[1:])[np.newaxis,...]) mk = np.concatenate((ma,mk),axis=0) mk = np.concatenate((mk,mb),axis=0) return mk return B, b, append_func, nlu elif kind in ['clamped', 'endslope', 'first', 'not-a-knot', 'runout', 'parabolic']: if kind == 'endslope': # match slope of lagrange interpolating polynomial of # order 3 at end-points. x0,x1,x2,x3 = xk[:4] sl_0 = (1./(x0-x1)+1./(x0-x2)+1./(x0-x3))*yk[0] sl_0 += (x0-x2)*(x0-x3)/((x1-x0)*(x1-x2)*(x1-x3))*yk[1] sl_0 += (x0-x1)*(x0-x3)/((x2-x0)*(x2-x1)*(x3-x2))*yk[2] sl_0 += (x0-x1)*(x0-x2)/((x3-x0)*(x3-x1)*(x3-x2))*yk[3] xN3,xN2,xN1,xN0 = xk[-4:] sl_N = (1./(xN0-xN1)+1./(xN0-xN2)+1./(xN0-xN3))*yk[-1] sl_N += (xN0-xN2)*(xN0-xN3)/((xN1-xN0)*(xN1-xN2)*(xN1-xN3))*yk[-2] sl_N += (xN0-xN1)*(xN0-xN3)/((xN2-xN0)*(xN2-xN1)*(xN3-xN2))*yk[-3] sl_N += (xN0-xN1)*(xN0-xN2)/((xN3-xN0)*(xN3-xN1)*(xN3-xN2))*yk[-4] elif kind == 'clamped': sl_0, sl_N = 0.0, 0.0 elif kind == 'first': sl_0, sl_N = conds # Now set up the (N+1)x(N+1) system of equations beta = np.r_[0,2*(xk[2:]-xk[:-2]),0] alpha = xk[1:]-xk[:-1] gamma = np.r_[0,alpha[1:]] B = np.diag(alpha,k=-1) + np.diag(beta) + np.diag(gamma,k=1) d1 = alpha[0] dN = alpha[-1] if kind == 'not-a-knot': d2 = alpha[1] dN1 = alpha[-2] B[0,:3] = [d2,-d1-d2,d1] B[-1,-3:] = [dN,-dN1-dN,dN1] elif kind == 'runout': B[0,:3] = [1,-2,1] B[-1,-3:] = [1,-2,1] elif kind == 'parabolic': B[0,:2] = [1,-1] B[-1,-2:] = [-1,1] elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: B[0,:2] = [2*d1,d1] B[-1,-2:] = [dN,2*dN] # Set up RHS (b) b = np.empty((Np1,)+yk.shape[1:]) dyk = (yk[1:]-yk[:-1])*1.0 if kind in ['not-a-knot', 'runout', 'parabolic']: b[0] = b[-1] = 0.0 elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: b[0] = (dyk[0]/d1 - sl_0) b[-1] = -(dyk[-1]/dN - sl_N) b[1:-1,...] = (dyk[1:]/alpha[1:]-dyk[:-1]/alpha[:-1]) b *= 6.0 return B, b, None, None else: raise ValueError("%s not supported" % kind) # conds is a tuple of an array and a vector # giving the left-hand and the right-hand side # of the additional equations to add to B def _find_user(xk, yk, order, conds, B): lh = conds[0] rh = conds[1] B = np.concatenate((B, lh), axis=0) w = np.concatenate((yk, rh), axis=0) M, N = B.shape if (M > N): raise ValueError("over-specification of conditions") elif (M < N): return _find_smoothest(xk, yk, order, None, B) else: return scipy.linalg.solve(B, w) # If conds is None, then use the not_a_knot condition # at K-1 farthest separated points in the interval def _find_not_a_knot(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued second # derivative at K-1 farthest separated points def _find_natural(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued first # derivative at K-1 farthest separated points def _find_clamped(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def _find_fixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then use coefficient periodicity # If conds is 'function' then use function periodicity def _find_periodic(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # Doesn't use conds def _find_symmetric(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # conds is a dictionary with multiple values def _find_mixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def splmake(xk, yk, order=3, kind='smoothest', conds=None): """ Return a representation of a spline given data-points at internal knots Parameters ---------- xk : array_like The input array of x values of rank 1 yk : array_like The input array of y values of rank N. `yk` can be an N-d array to represent more than one curve, through the same `xk` points. The first dimension is assumed to be the interpolating dimension and is the same length of `xk`. order : int, optional Order of the spline kind : str, optional Can be 'smoothest', 'not_a_knot', 'fixed', 'clamped', 'natural', 'periodic', 'symmetric', 'user', 'mixed' and it is ignored if order < 2 conds : optional Conds Returns ------- splmake : tuple Return a (`xk`, `cvals`, `k`) representation of a spline given data-points where the (internal) knots are at the data-points. """ yk = np.asanyarray(yk) order = int(order) if order < 0: raise ValueError("order must not be negative") if order == 0: return xk, yk[:-1], order elif order == 1: return xk, yk, order try: func = eval('_find_%s' % kind) except: raise NotImplementedError # the constraint matrix B = _fitpack._bsplmat(order, xk) coefs = func(xk, yk, order, conds, B) return xk, coefs, order def spleval(xck, xnew, deriv=0): """ Evaluate a fixed spline represented by the given tuple at the new x-values The `xj` values are the interior knot points. The approximation region is `xj[0]` to `xj[-1]`. If N+1 is the length of `xj`, then `cvals` should have length N+k where `k` is the order of the spline. Parameters ---------- (xj, cvals, k) : tuple Parameters that define the fixed spline xj : array_like Interior knot points cvals : array_like Curvature k : int Order of the spline xnew : array_like Locations to calculate spline deriv : int Deriv Returns ------- spleval : ndarray If `cvals` represents more than one curve (`cvals.ndim` > 1) and/or `xnew` is N-d, then the result is `xnew.shape` + `cvals.shape[1:]` providing the interpolation of multiple curves. Notes ----- Internally, an additional `k`-1 knot points are added on either side of the spline. """ (xj,cvals,k) = xck oldshape = np.shape(xnew) xx = np.ravel(xnew) sh = cvals.shape[1:] res = np.empty(xx.shape + sh, dtype=cvals.dtype) for index in np.ndindex(*sh): sl = (slice(None),)+index if issubclass(cvals.dtype.type, np.complexfloating): res[sl].real = _fitpack._bspleval(xx,xj,cvals.real[sl],k,deriv) res[sl].imag = _fitpack._bspleval(xx,xj,cvals.imag[sl],k,deriv) else: res[sl] = _fitpack._bspleval(xx,xj,cvals[sl],k,deriv) res.shape = oldshape + sh return res def spltopp(xk, cvals, k): """Return a piece-wise polynomial object from a fixed-spline tuple. """ return ppform.fromspline(xk, cvals, k) def spline(xk, yk, xnew, order=3, kind='smoothest', conds=None): """ Interpolate a curve at new points using a spline fit Parameters ---------- xk, yk : array_like The x and y values that define the curve. xnew : array_like The x values where spline should estimate the y values. order : int Default is 3. kind : string One of {'smoothest'} conds : Don't know Don't know Returns ------- spline : ndarray An array of y values; the spline evaluated at the positions `xnew`. """ return spleval(splmake(xk,yk,order=order,kind=kind,conds=conds),xnew)
bsd-3-clause
sunericd/ISTools
GeneTK/mods/gel_visualizer.py
1
8025
# 07/09/2017 Modified to take a list of sequences, change window sizes to accommodate more gels, and label columns. import pandas as pd from graphics import * from math import * from PIL import Image as NewImage #'Runs' the plasmid_seqs through a 'gel' with restriction enzymes from re_list. restriction_sites is a database of restriction enzymes. def gel_visualize(plasmid_seqs, re_list, restriction_sites): max_lengths, lengths_list = digestSeq(plasmid_seqs, re_list, restriction_sites) #print (max_lengths) #print (lengths_list) if max(max_lengths) > 1000: #print("big") bigDraw(lengths_list) else: #print("Small") smallDraw(lengths_list) def digestSeq (plasmid_seqs, re_list,restriction_sites): plasmid_seqs = plasmid_seqs.split() # Changes all to upper case (so user can input case insensitive) plasmid_seqs_upper = [] for plasmid_seq in plasmid_seqs: plasmid_seqs_upper.append(plasmid_seq.upper()) plasmid_seqs = plasmid_seqs_upper # ERROR HANDLING # 30 well maximum if len(plasmid_seqs) > 30: raise UserWarning( 'You have exceeded the 30 well maximum. Also, check to ensure that the only spaces are between sequences' ) for plasmid_seq in plasmid_seqs: # Max ladder is 3KB if len(plasmid_seq) > 3000: raise UserWarning( 'Our gel cannot handle sequences larger than 3KB!' ) # Only capital A,T,C,G for nuc in plasmid_seq: if nuc not in "ATCG": raise UserWarning( 'Sequences must only contain A, T, C, or G!' ) # Parsing biolabs restriction sites restriction_enzymes = restriction_sites.values.T.tolist() restriction_enzymes = restriction_enzymes[0] restriction_sites = restriction_sites.values.tolist() restriction_sites = restriction_sites[1:] # Cleaning NaNs restriction_seqs = [] for site in restriction_sites: clean_site = [x for x in site if str(x) != 'nan'] del clean_site[0] restriction_seqs.append(clean_site) del restriction_enzymes[0] # Matching restriction enzyme names ERROR for re in re_list: if re not in restriction_enzymes: raise UserWarning( str(re) + ' is not in our list. Please check to make sure that the enzyme name matches the names in our Enzyme List.' ) ##### Gel Visualization ###### lengths_list = [] max_lengths = [] # Finding cut indicies for plasmid_seq in plasmid_seqs: cut_idxs = [] for re in re_list: re_index = restriction_enzymes.index(re) seq_index = 0 for cut_site in restriction_seqs[re_index]: site_idx = plasmid_seq.find(restriction_seqs[re_index][seq_index]) if site_idx != -1: cut_idxs.append(site_idx) while site_idx < len(plasmid_seq): site_idx = plasmid_seq.find(restriction_seqs[re_index][seq_index], site_idx) if site_idx == -1: break cut_idxs.append(site_idx) site_idx += len(restriction_seqs[re_index][seq_index]) seq_index += 1 cut_idxs.sort() # print(cut_idxs) cut_idxs.append(len(plasmid_seq)) lengths = [] start_idx = 0 # Collecting fragment lengths for idx in cut_idxs: frag = plasmid_seq[start_idx:idx] lengths.append(len(frag)) start_idx = idx # Since plasmids are circular if len(lengths) >= 2: connected_length = lengths[0] + lengths[-1] del lengths [0] del lengths [-1] lengths.append(connected_length) # Cleaning lengths lengths = [x for x in lengths if str(x) != '0'] lengths_list.append(lengths) max_lengths.append(max(lengths)) #print ('Fragment Lengths:') #print (lengths) return (max_lengths, lengths_list) #Small Ladder def smallDraw (lengths): numSeq=len(lengths) if numSeq>2: x=150*0.2*(numSeq+3) else: x=150 win=GraphWin('Gel',x,300) xWin=win.getWidth() yWin=win.getHeight() standardX=150*0.3 standardY=yWin*0.1 lenBand=150*0.15 scale=1.35 listBText=['1.0 kb','0.8 kb', '0.6 kb', '0.5 kb', '0.4 kb', '0.3 kb', '0.2 kb','0.15 kb','0.1 kb','0.075 kb' , '0.05 kb'] listBand=[float(1000),float(800),float(600),float(500),float(400),float(300),float(200),float(150),float(100),float(75),float(50)] listY=[] for i in listBand: listY.append(float(-1/0.098*(log10(i)-3.8494))) largest=max(listY) for i in range(len(listY)): listY[i]=float(listY[i])/largest*yWin for i in range(len(listY)): yVal=scale*(listY[i]-min(listY)+15) pt=Point(standardX,yVal) l=Line(Point(standardX+lenBand,yVal),pt) kblabel=Text(Point((standardX)/2,yVal),listBText[i]) kblabel.setSize(7) l.draw(win) kblabel.draw(win) stdlabel=Text(Point(standardX+0.5*lenBand,yWin*0.02),'ladder') stdlabel.setSize(7) stdlabel.draw(win) for i in range(numSeq): testX=standardX+150*0.2*(i+1) testY=yWin*0.1 numlabel=Text(Point(testX+0.5*lenBand,yWin*0.02),(i+1)) numlabel.setSize(7) numlabel.draw(win) listTY=[] for j in lengths[i]: listTY.append(float(-1/0.098*(log10(j)-3.8494))) for j in range(len(listTY)): listTY[j]=float(listTY[j])/largest*yWin for j in range(len(listTY)): yVal=scale*(listTY[j]-min(listY)+15) pt=Point(testX,yVal) l=Line(Point(testX+lenBand,yVal),pt) l.draw(win) # Saving File # win.postscript(file="Gel.eps", colormode='color') # img = NewImage.open("Gel.eps") # PNG_Title = "Gel.png" # img.save(PNG_Title, "png") #Large Ladder def bigDraw (lengths): numSeq=len(lengths) if numSeq>2: x=150*0.2*(numSeq+3) else: x=150 win=GraphWin('Gel',x,250) xWin=win.getWidth() yWin=win.getHeight() standardX=150*0.3 standardY=yWin*0.1 lenBand=150*0.15 scale=1.1 listBText=['3.0 kb','2.0 kb', '1.5 kb', '1.0 kb', '0.8 kb', '0.6 kb', '0.5 kb','0.4 kb','0.3 kb','0.2 kb','0.15 kb' , '0.1 kb'] listBand=[float(3000),float(2000),float(1500),float(1000),float(800),float(600),float(500),float(400),float(300),float(200),float(150), float(100)] listY=[] for i in listBand: listY.append(float(-1/0.098*(log10(i)-3.8494))) largest=max(listY) for i in range(len(listY)): listY[i]=float(listY[i])/largest*yWin for i in range(len(listY)): yVal=scale*(listY[i]-min(listY)+15) pt=Point(standardX,yVal) l=Line(Point(standardX+lenBand,yVal),pt) kblabel=Text(Point((standardX)/2,yVal),listBText[i]) l.draw(win) kblabel.draw(win) kblabel.setSize(7) stdlabel=Text(Point(standardX+0.5*lenBand,yWin*0.02),'ladder') stdlabel.setSize(7) stdlabel.draw(win) for i in range(numSeq): testX=standardX+150*0.2*(i+1) testY=yWin*0.1 numlabel=Text(Point(testX+0.5*lenBand,yWin*0.02),(i+1)) numlabel.setSize(7) numlabel.draw(win) listTY=[] for j in lengths[i]: listTY.append(float(-1/0.098*(log10(j)-3.8494))) for j in range(len(listTY)): listTY[j]=float(listTY[j])/largest*yWin for j in range(len(listTY)): yVal=scale*(listTY[j]-min(listY)+15) pt=Point(testX,yVal) l=Line(Point(testX+lenBand,yVal),pt) l.draw(win)
mit
mxjl620/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
297
1247
# Author: Mathieu Blondel <[email protected]> # License: BSD 3 clause import time import pylab as pl from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) pl.figure('scikit-learn parallel %s benchmark results' % func.__name__) pl.plot(sample_sizes, one_core, label="one core") pl.plot(sample_sizes, multi_core, label="multi core") pl.xlabel('n_samples') pl.ylabel('Time (s)') pl.title('Parallel %s' % func.__name__) pl.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) pl.show()
bsd-3-clause
kmiddleton/ThinkStats2
code/hypothesis.py
75
10162
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import nsfg import nsfg2 import first import thinkstats2 import thinkplot import copy import random import numpy as np import matplotlib.pyplot as pyplot class CoinTest(thinkstats2.HypothesisTest): """Tests the hypothesis that a coin is fair.""" def TestStatistic(self, data): """Computes the test statistic. data: data in whatever form is relevant """ heads, tails = data test_stat = abs(heads - tails) return test_stat def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ heads, tails = self.data n = heads + tails sample = [random.choice('HT') for _ in range(n)] hist = thinkstats2.Hist(sample) data = hist['H'], hist['T'] return data class DiffMeansPermute(thinkstats2.HypothesisTest): """Tests a difference in means by permutation.""" def TestStatistic(self, data): """Computes the test statistic. data: data in whatever form is relevant """ group1, group2 = data test_stat = abs(group1.mean() - group2.mean()) return test_stat def MakeModel(self): """Build a model of the null hypothesis. """ group1, group2 = self.data self.n, self.m = len(group1), len(group2) self.pool = np.hstack((group1, group2)) def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ np.random.shuffle(self.pool) data = self.pool[:self.n], self.pool[self.n:] return data class DiffMeansOneSided(DiffMeansPermute): """Tests a one-sided difference in means by permutation.""" def TestStatistic(self, data): """Computes the test statistic. data: data in whatever form is relevant """ group1, group2 = data test_stat = group1.mean() - group2.mean() return test_stat class DiffStdPermute(DiffMeansPermute): """Tests a one-sided difference in standard deviation by permutation.""" def TestStatistic(self, data): """Computes the test statistic. data: data in whatever form is relevant """ group1, group2 = data test_stat = group1.std() - group2.std() return test_stat class CorrelationPermute(thinkstats2.HypothesisTest): """Tests correlations by permutation.""" def TestStatistic(self, data): """Computes the test statistic. data: tuple of xs and ys """ xs, ys = data test_stat = abs(thinkstats2.Corr(xs, ys)) return test_stat def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ xs, ys = self.data xs = np.random.permutation(xs) return xs, ys class DiceTest(thinkstats2.HypothesisTest): """Tests whether a six-sided die is fair.""" def TestStatistic(self, data): """Computes the test statistic. data: list of frequencies """ observed = data n = sum(observed) expected = np.ones(6) * n / 6 test_stat = sum(abs(observed - expected)) return test_stat def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ n = sum(self.data) values = [1,2,3,4,5,6] rolls = np.random.choice(values, n, replace=True) hist = thinkstats2.Hist(rolls) freqs = hist.Freqs(values) return freqs class DiceChiTest(DiceTest): """Tests a six-sided die using a chi-squared statistic.""" def TestStatistic(self, data): """Computes the test statistic. data: list of frequencies """ observed = data n = sum(observed) expected = np.ones(6) * n / 6 test_stat = sum((observed - expected)**2 / expected) return test_stat class PregLengthTest(thinkstats2.HypothesisTest): """Tests difference in pregnancy length using a chi-squared statistic.""" def TestStatistic(self, data): """Computes the test statistic. data: pair of lists of pregnancy lengths """ firsts, others = data stat = self.ChiSquared(firsts) + self.ChiSquared(others) return stat def ChiSquared(self, lengths): """Computes the chi-squared statistic. lengths: sequence of lengths returns: float """ hist = thinkstats2.Hist(lengths) observed = np.array(hist.Freqs(self.values)) expected = self.expected_probs * len(lengths) stat = sum((observed - expected)**2 / expected) return stat def MakeModel(self): """Build a model of the null hypothesis. """ firsts, others = self.data self.n = len(firsts) self.pool = np.hstack((firsts, others)) pmf = thinkstats2.Pmf(self.pool) self.values = range(35, 44) self.expected_probs = np.array(pmf.Probs(self.values)) def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ np.random.shuffle(self.pool) data = self.pool[:self.n], self.pool[self.n:] return data def RunDiceTest(): """Tests whether a die is fair. """ data = [8, 9, 19, 5, 8, 11] dt = DiceTest(data) print('dice test', dt.PValue(iters=10000)) dt = DiceChiTest(data) print('dice chi test', dt.PValue(iters=10000)) def FalseNegRate(data, num_runs=1000): """Computes the chance of a false negative based on resampling. data: pair of sequences num_runs: how many experiments to simulate returns: float false negative rate """ group1, group2 = data count = 0 for i in range(num_runs): sample1 = thinkstats2.Resample(group1) sample2 = thinkstats2.Resample(group2) ht = DiffMeansPermute((sample1, sample2)) p_value = ht.PValue(iters=101) if p_value > 0.05: count += 1 return count / num_runs def PrintTest(p_value, ht): """Prints results from a hypothesis test. p_value: float ht: HypothesisTest """ print('p-value =', p_value) print('actual =', ht.actual) print('ts max =', ht.MaxTestStat()) def RunTests(data, iters=1000): """Runs several tests on the given data. data: pair of sequences iters: number of iterations to run """ # test the difference in means ht = DiffMeansPermute(data) p_value = ht.PValue(iters=iters) print('\nmeans permute two-sided') PrintTest(p_value, ht) ht.PlotCdf() thinkplot.Save(root='hypothesis1', title='Permutation test', xlabel='difference in means (weeks)', ylabel='CDF', legend=False) # test the difference in means one-sided ht = DiffMeansOneSided(data) p_value = ht.PValue(iters=iters) print('\nmeans permute one-sided') PrintTest(p_value, ht) # test the difference in std ht = DiffStdPermute(data) p_value = ht.PValue(iters=iters) print('\nstd permute one-sided') PrintTest(p_value, ht) def ReplicateTests(): """Replicates tests with the new NSFG data.""" live, firsts, others = nsfg2.MakeFrames() # compare pregnancy lengths print('\nprglngth2') data = firsts.prglngth.values, others.prglngth.values ht = DiffMeansPermute(data) p_value = ht.PValue(iters=1000) print('means permute two-sided') PrintTest(p_value, ht) print('\nbirth weight 2') data = (firsts.totalwgt_lb.dropna().values, others.totalwgt_lb.dropna().values) ht = DiffMeansPermute(data) p_value = ht.PValue(iters=1000) print('means permute two-sided') PrintTest(p_value, ht) # test correlation live2 = live.dropna(subset=['agepreg', 'totalwgt_lb']) data = live2.agepreg.values, live2.totalwgt_lb.values ht = CorrelationPermute(data) p_value = ht.PValue() print('\nage weight correlation 2') PrintTest(p_value, ht) # compare pregnancy lengths (chi-squared) data = firsts.prglngth.values, others.prglngth.values ht = PregLengthTest(data) p_value = ht.PValue() print('\npregnancy length chi-squared 2') PrintTest(p_value, ht) def main(): thinkstats2.RandomSeed(17) # run the coin test ct = CoinTest((140, 110)) pvalue = ct.PValue() print('coin test p-value', pvalue) # compare pregnancy lengths print('\nprglngth') live, firsts, others = first.MakeFrames() data = firsts.prglngth.values, others.prglngth.values RunTests(data) # compare birth weights print('\nbirth weight') data = (firsts.totalwgt_lb.dropna().values, others.totalwgt_lb.dropna().values) ht = DiffMeansPermute(data) p_value = ht.PValue(iters=1000) print('means permute two-sided') PrintTest(p_value, ht) # test correlation live2 = live.dropna(subset=['agepreg', 'totalwgt_lb']) data = live2.agepreg.values, live2.totalwgt_lb.values ht = CorrelationPermute(data) p_value = ht.PValue() print('\nage weight correlation') print('n=', len(live2)) PrintTest(p_value, ht) # run the dice test RunDiceTest() # compare pregnancy lengths (chi-squared) data = firsts.prglngth.values, others.prglngth.values ht = PregLengthTest(data) p_value = ht.PValue() print('\npregnancy length chi-squared') PrintTest(p_value, ht) # compute the false negative rate for difference in pregnancy length data = firsts.prglngth.values, others.prglngth.values neg_rate = FalseNegRate(data) print('false neg rate', neg_rate) # run the tests with new nsfg data ReplicateTests() if __name__ == "__main__": main()
gpl-3.0
ananthamurthy/eyeBlinkBehaviour
analysis/old/analyze_dir.py
1
5444
#!/usr/bin/env python """analyze_dir.py: Analyze a given directory. All trials are accumulated and plotted. """ __author__ = "Dilawar Singh" __copyright__ = "Copyright 2016, Dilawar Singh " __credits__ = ["NCBS Bangalore"] __license__ = "GNU GPL" __version__ = "1.0.0" __maintainer__ = "Dilawar Singh" __email__ = "[email protected]" __status__ = "Development" import os import sys import numpy as np import dateutil import dateutil.parser import matplotlib import matplotlib.pyplot as plt from collections import defaultdict import logging import re import analyze_trial as at import matplotlib.cm as cm from scipy.interpolate import interp1d #matplotlib.rcParams.update( {'font.size' : 10} ) args_ = None csplus, csminus = [], [] csplusIdx, csminusIdx = [], [] distraction = [] distractionIdx = [] probes = [] probesIdx = [] # This is the valid trial time. min_trial_time_ = 17500 # ms def plot_subplot( ax, data, idx, tvecs, title ): assert len( data ) > 2 assert len(tvecs) == len(data) # Dimention mismatch, use histogram2d newImg = [] for i, tvec in enumerate( tvecs ): t = tvec.values d = data[i].values # Nearest gives the best fit. f = interp1d( t, d, kind='nearest' ) tnew = np.arange( 200, min_trial_time_, 5 ) dnew = f( tnew ) meanErr = abs(np.mean( dnew ) - np.mean( d )) stdErr = abs(np.std( dnew ) - np.std( d )) if meanErr > 1.0: print( '[Warn] Got error in mean after resampling %f' % meanErr ) if stdErr > 2.0: print( '[WARN] Got error in std %f' % stdErr ) newImg.append( dnew ) plt.imshow( np.vstack(newImg), cmap = "jet" , interpolation = 'none', aspect='auto' ) # ax.set_xticks( range(0,len(idx),2), idx[::2] ) ax.set_xlabel( 'Time (ms)' ) ax.set_ylabel( '# Trial' ) ax.set_title( title ) ax.legend( ) def main( ): global args_ if not args_.output_dir: args_.output_dir = os.path.join(args_.dir, '_plots') if not os.path.isdir( args_.output_dir): os.makedirs( args_.output_dir ) files = {} print( '[INFO] Searching in %s' % args_.dir ) for d, sd, fs in os.walk( args_.dir ): for f in fs: ext = f.split('.')[-1] if ext == 'dat': filepath = os.path.join(d, f) trialIndex = re.search( r'trial=(?P<index>\d+)\.%s'%ext, filepath) if trialIndex: index = int(trialIndex.groupdict()['index']) files[index] = (filepath, f) # Sort the trials according to trial number fileIdx = sorted( files ) if len(fileIdx) == 0: print('[WARN] No files found' ) quit() cstvecs, probetvecs = [], [] for idx in fileIdx: f, fname = files[idx] result = None try: result = at.main( { 'input' : f , 'output' : os.path.join(args_.output_dir, fname+'.png') , 'plot' : False } ) except Exception as e: result = None print( '[WARN] Failed to process file %s' % f ) if not result: continue tVec = result['time'] if tVec.max() < min_trial_time_: print( '[WARN] Ignoring file %s' % fname ) continue row = result['sensor'] if len(row) > 100: r = row if idx % 10 == 0: probetvecs.append( tVec ) probes.append( r ) probesIdx.append( idx ) else: csplus.append( r ) csplusIdx.append( idx ) cstvecs.append( tVec ) if csplus: ax = plt.subplot(2, 1, 1) print( 'Plotting csplus' ) plot_subplot( ax, csplus, csplusIdx, cstvecs, 'CS+' ) plt.colorbar() if probes: ax = plt.subplot(2, 1, 2) print( 'Plotting probes' ) plot_subplot( ax, probes, probesIdx, probetvecs, 'PROBES' ) plt.colorbar( ) outfile = '%s/summary.png' % args_.output_dir print('[INFO] Saving file to %s' % outfile ) plt.suptitle( args_.dir.split('/')[-1].replace('_', ', ') , horizontalalignment = 'left' , fontsize = 9 ) plt.savefig( outfile ) if __name__ == '__main__': import argparse # Argument parser. description = '''Summaries data in one directory''' parser = argparse.ArgumentParser(description=description) parser.add_argument('--dir', '-d' , required = True , help = 'Directory to seach for behaviour data ' ) parser.add_argument('--max', '-m' , required = False , default = -1 , help = 'Max number of trials to be plotted. Default all' ) parser.add_argument('--subplots', '-s' , action = 'store_true' , help = 'Each trial in subplot.' ) parser.add_argument('--output_dir', '-o' , required = False , default = '' , help = 'Directory to save results.' ) parser.add_argument('--analysis', '-a' , required = False , default = 'heatmap' , help = 'heatmap, default = heatmap' ) class Args: pass args_ = Args() parser.parse_args(namespace=args_) main( )
gpl-3.0
shahankhatch/scikit-learn
examples/linear_model/plot_theilsen.py
232
3615
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] ############################################################################## # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') ############################################################################## # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.show()
bsd-3-clause
HasanIssa88/EMG_Classification
Plot_EMG.py
1
3400
import os import glob import pandas as pd import numpy as np import matplotlib.pylab as plt def plot_EMG(file_name): df=pd.read_csv(file_name,sep=',',skiprows=13,header=None,na_values="null",delimiter=',') df.columns=['Force_sensor','EMG_radial_1','EMG_radial_2','EMG_radial_3','EMG_radial_4', 'EMG_radial_5','EMG_radial_6','EMG_special_1','EMG_special_2','EMG_special_3','EMG_special_4'] # first sensor Configuration Force_sensor=df['Force_sensor'] EMG_radial_1=df['EMG_radial_1'] EMG_radial_2=df['EMG_radial_2'] EMG_radial_3=df['EMG_radial_3'] EMG_radial_4=df['EMG_radial_4'] EMG_radial_5=df['EMG_radial_5'] EMG_radial_6=df['EMG_radial_6'] # second sensor Configuration EMG_special_1=df['EMG_special_1'] EMG_special_2=df['EMG_special_2'] EMG_special_3=df['EMG_special_3'] EMG_special_4=df['EMG_special_4'] # time vectors Sampl_Freq=1000 Sampl_Time=1/Sampl_Freq time_data_force =np.linspace(0,len(Force_sensor),num=len(Force_sensor)) time_data_radial=np.linspace(0,len(EMG_radial_1),num=len(EMG_radial_1)) time_data_special=np.linspace(0,len(EMG_special_1),num=len(EMG_special_1)) # plot graphs f,(ax1,ax2,ax3,ax4,ax5,ax6,ax7)=plt.subplots(7,sharex=True) ax1.set_title('Raw data, Force and EMG configuration 1') ax1.plot(time_data_force, Force_sensor,'r') ax1.set_ylim(-10,10) ax1.set_ylabel('Force(Kg)') #ax1.set_yticklabels([]) ax2.plot(time_data_radial, EMG_radial_1,) ax2.set_ylim(-0.1,0.1) ax2.set_yticklabels([]) ax2.set_ylabel('Ch1[mV]') ax3.plot(time_data_radial,EMG_radial_2) ax3.set_ylim(-0.5,0.5) ax3.set_yticklabels([]) ax3.set_ylabel('Ch2[mV]') ax4.plot(time_data_radial,EMG_radial_3) ax4.set_ylim(-0.5,0.5) ax4.set_yticklabels([]) ax4.set_ylabel('Ch3[mV]') ax5.plot(time_data_radial,EMG_radial_4) ax5.set_ylim(-0.5,0.5) ax5.set_yticklabels([]) ax5.set_ylabel('Ch4[mV]') ax6.plot(time_data_radial,EMG_radial_5) ax6.set_ylim(-1,1) ax6.set_yticklabels([]) ax6.set_ylabel('Ch5[mV]') ax7.plot(time_data_radial,EMG_radial_6) ax7.set_ylim(-1,1) ax7.set_yticklabels([]) ax7.set_ylabel('Ch6[mV]') ax7.set_xlabel('Time[ms]') plt.hold() f,(ax1,ax2,ax3,ax4,ax5)=plt.subplots(5,sharex=True) ax1.plot(time_data_force, Force_sensor,'r') ax1.set_ylim(-10,10) ax1.set_ylabel('Force(Kg)') #ax1.set_yticklabels([]) ax1.set_xticklabels([]) ax1.set_title('Raw data, Force and EMG configuration 2') ax2.plot(time_data_special, EMG_special_1,) ax2.set_ylim(-1,1) ax2.set_yticklabels([]) ax2.set_ylabel('Ch7[mV]') ax2.set_xticklabels([]) ax3.plot(time_data_special, EMG_special_2,) ax3.set_ylim(-1,1) ax3.set_yticklabels([]) ax3.set_ylabel('Ch8[mV]') ax4.plot(time_data_special, EMG_special_3,) ax4.set_ylim(-0.2,0.2) ax4.set_yticklabels([]) ax4.set_ylabel('Ch9[mV]') ax4.set_xticklabels([]) ax5.plot(time_data_special, EMG_special_4,) ax5.set_ylim(-0.2,0.2) ax5.set_yticklabels([]) ax5.set_ylabel('Ch10[mV]') ax5.set_xlabel('Time[ms]') plt.show()
gpl-3.0
nkhuyu/office-nfl-pool
transform.py
6
4239
""" transform ~~~~~~~~~ Helper functions for data manipulation using Pandas. """ import numpy as np import pandas as pd def from_byteam_to_bygame(df, augment=True, dont_mirror=[]): """Tranform data with one row per team to one row per game. In the 'byteam' format, there is one row per team -- one for the Home team and one for the Away team. In the 'bygame' format, there is one row per game, plus one row per team per bye week. If 'augment' is True, then prefix every column not in 'dont_mirror' with an 'A_' for 'Away' or an 'H_' for 'Home' to make separate columns for each team. """ common_cols = ['Season', 'Week', 'Home', 'Away'] home = df[df.AtHome] del home['AtHome'] if not augment: return home # Otherwise augment the stats so that each column in the # dataset is prefixed with an 'H' for the home team or 'A' for # the away team. away = df[df.AtHome == False] del away['AtHome'] new_home_colnames = [] new_away_colnames = [] for c in home.columns: if c in common_cols: new_home_colnames.append(c) new_away_colnames.append(c) elif c == 'Team': new_home_colnames.append('Home') new_away_colnames.append('Away') elif c == 'Opponent': new_home_colnames.append('Away') new_away_colnames.append('Home') elif c in dont_mirror: new_home_colnames.append(c) del away[c] else: new_home_colnames.append('H_' + c) new_away_colnames.append('A_' + c) home.columns = new_home_colnames away.columns = new_away_colnames # Left join because the 'bye' weeks are designated 'AtHome' return home.merge(away, on=common_cols, how='left') def add_derived_columns(df): """Add 'Spread', 'WinPct', and a flag 'LastWkBye' Make your own here if you like. """ # Spread df['Spread'] = df.Points - df.PointsAllowed # WinPct # Cumulative win percent to date in a season. df['WinPct'] = df.groupby(('Team','Season'))['Spread'].apply( lambda s: ( 0.5 * (s == 0).cumsum() + (s > 0).cumsum() ) / s.notnull().cumsum() ) # LastWkBye # True if last week's game was a Bye. # This requires grouping by Team and Season. # Be sure to sort first. df.sort(['Team', 'Season','Week'], inplace=True) df['LastWkBye'] = df.groupby(['Team','Season'])['Spread' ].shift(1).isnull().fillna(False) # The first week is null because it was shifted; make it False. df.ix[df.Week == 1, 'LastWkBye'] = False def add_rolling_mean(df, cols, prefix='m{window}wk_', window=5, min_periods=2): """Add a rolling mean to each column in 'cols'. Prefix the new columns with the stated prefix. Sort the data by Team, Season, and Week, and group by Team when calculating the moving averages, so the averages will cross over seasons. """ df.sort(['Team', 'Season', 'Week'], inplace=True) for c in cols: colname = prefix.format(window=window) + c df[colname] = df.groupby('Team')[c].apply( pd.rolling_mean, window=window, min_periods=min_periods) def add_ewma(df, cols, prefix='ewma{center}wk_', center=2): """Add an exponentially weighted moving average to columns in 'cols'. Prefix the new columns with the stated prefix. Sort the data by Team, Season, and Week, and group by Team when calculating the moving averages, so the averages will cross over seasons. """ df.sort(['Team', 'Season', 'Week'], inplace=True) for c in cols: colname = prefix.format(center=center) + c df[colname] = df.groupby('Team')[c].apply( pd.ewma, center) def add_lag(df, cols, prefix='lag{lag}_', lag=1): """Add the stated lag to each column in 'cols'. Prefix the new columns with the stated prefix. Sort the data by Team, Season, and Week, and group by Team, so the lags will cross over seasons. """ df.sort(['Team', 'Season', 'Week'], inplace=True) for c in cols: colname = prefix.format(lag=lag) + c df[colname] = df.groupby('Team')[c].shift(lag)
mit
dcc-ufrj/SimuQoS
classes/model/GraficoClass.py
1
25445
# -*- coding: utf-8 -*- ''' Created on 02/11/2012 @author: diogo ''' from MatematicaClass import MatematicaClass ''' from series import Series import cairo import cairoplot ''' import os import glob import matplotlib.pyplot as plt import numpy from pylab import * class GraficoClass(object): ''' Classe geradora de graficos ''' def __init__(self,caminhos=[os.path.join('..','resultado','aleatory'),os.path.join('..','resultado','sequential')], caminho = os.path.join('..','grafico')): ''' Inicializa classe geradora de graficos com arquivo que sera usado para gera-los ''' self.caminhos = caminhos; self.caminho = caminho; self.largura = 1440; self.altura = 1080; self.arquivos = [] self.getArquivos() def getArquivos(self): for caminho in self.caminhos: self.arquivos += glob.glob(os.path.join(caminho,"*.txt")); # def tempoDownload(self,nome='tempoxNdownload.svg'): ''' Organiza dados de tempo x numero de dwonloads efetivados x=[tempo1,tempo2, ...] y=[nDownload, nDownload, ...] total = {}; for arquivo in self.arquivos: self.aberto = open(arquivo,"r"); tempo,quantidade =[],[]; numero = 0 tempo.append('0'); for linha in self.aberto: linha = linha.rstrip(); lista = linha.split(','); if (lista[0] == 'T'): tempo.append(lista[1]); if lista[1] > 1: quantidade.append(numero); numero = 0 elif (lista[0] == 'D'): while '' in lista: lista.remove(''); if(len(lista) > 1): indice = 3; while(lista[indice]): if (lista[indice] == '100'): numero += 1; try: indice += 3; lista[indice] except: break quantidade.append(numero); self.aberto.close(); total[arquivo] = quantidade data = Series(total) cairoplot.dot_line_plot(os.path.join(self.caminho,nome),data,self.largura,self.altura,x_labels = tempo, axis = True, grid = True, x_title = "Tempo", y_title = "Nº de Downloads", series_legend=True); ''' def tempoDownloadAcumulado(self,nome='tempoxNdownloadacum.svg'): ''' Organiza dados de arquivo x numero de dwonloads efetivados x=[arquivo1,arquivo2, ...] y=[nDownload, nDownload, ...] ''' total = {}; dados = []; for arquivo in self.arquivos: self.aberto = open(arquivo,"r"); quantidade =[]; numero = 0 for linha in self.aberto: linha = linha.rstrip(); lista = linha.split(','); if (lista[0] == 'D'): while '' in lista: lista.remove(''); if(len(lista) > 1): indice = 3; while(lista[indice]): if (lista[indice] == '100'): numero += 1; try: indice += 3; lista[indice] except: break quantidade.append(numero); self.aberto.close(); dados.append(quantidade) total[arquivo] = quantidade mat = MatematicaClass(total) #montando novo organizados, N = mat.confianca() N = 4 fig = plt.figure() ax = fig.add_subplot(111) nomesProntos, mediasProntas, ercProntos, erbProntos = [],[0],[0],[0] cor, rects = [],[] cm = get_cmap('gist_rainbow') for i in range(N): cor.append(cm(1.*i/N)) # color will now be an RGBA tuple cor = iter(cor) dictItems = {'sequentialaleatory':[],'aleatorysequential':[],'sequentialsequential':[],'aleatoryaleatory':[]} for elementos in organizados.values(): for elemento in elementos: item = ItemClass(elemento) item.elemento = elementos[elemento] dictItems[item.tipoDownload+item.tipoConsumo].append(item) dictItems[item.tipoDownload+item.tipoConsumo].sort(key = lambda x: int(x.download)) for elementos in dictItems.values(): for elemento in elementos: strNome = str(elemento.tipoDownload) + " Download"+ ", "+ str(elemento.tipoConsumo)+" Consumption" if strNome not in nomesProntos: nomesProntos.append(strNome) media, (erc,erb) = elemento.elemento[-1]['confianca'][0] media, erc, erb mediasProntas.append(float("{0:.2f}".format(media))) ercProntos.append(media-erc) erbProntos.append(erb-media) legendasX = [0,10,30,50,70,100] rects.append(ax.errorbar(legendasX, mediasProntas, yerr=[erbProntos,ercProntos],color=cor.next(),fmt='--')) mediasProntas, ercProntos, erbProntos = [0],[0],[0] # algo mais ax.set_ylabel('Quantidade de Downloads Finalizados') ax.set_xlabel('Taxa de Download') ax.set_title('Download Acumulado') ax.grid(True) ax.set_xticks(legendasX) ax.set_xticklabels(legendasX) ax.set_ylim(bottom=-10,top=7000) #ax.set_yscale('log') leg = ax.legend(rects,nomesProntos,loc='upper center', bbox_to_anchor=(0.5,-0.1)) for t in leg.get_texts(): t.set_fontsize('small') plt.savefig(os.path.join(self.caminho,nome), bbox_extra_artists=(leg,), bbox_inches='tight') ax.set_yscale('log') plt.savefig(os.path.join(self.caminho,'log'+nome), bbox_extra_artists=(leg,), bbox_inches='tight') #fim da montagem #cairoplot.horizontal_bar_plot(os.path.join(self.caminho,nome),dados,self.largura,self.altura, y_labels = self.arquivos, # border = 20, display_values = True, rounded_corners = True, colors = [(0.5,0.2,0)]); # def tempoConsumo(self,nome='tempoxNconsumo.svg'): ''' Organiza dados de tempo x numero de consumos efetivados x=[tempo1,tempo2, ...] y=[nConsumo, nConsumo, ...] total = {}; for arquivo in self.arquivos: self.aberto = open(arquivo,"r"); tempo,quantidade =[],[]; numero = 0 tempo.append('0'); for linha in self.aberto: linha = linha.rstrip(); lista = linha.split(','); if (lista[0] == 'T'): tempo.append(lista[1]); if lista[1] > 1: quantidade.append(numero); numero = 0 elif (lista[0] == 'C'): while '' in lista: lista.remove(''); if(len(lista) > 1): indice = 3; while(lista[indice]): if (lista[indice] == '100'): numero += 1; try: indice += 3; lista[indice] except: break quantidade.append(numero); self.aberto.close(); total[arquivo] = quantidade data = Series(total) cairoplot.dot_line_plot(os.path.join(self.caminho,nome),data,self.largura,self.altura,x_labels = tempo, axis = True, grid = True, x_title = "Tempo", y_title = "Nº de Consumo", series_legend=True); ''' def tempoConsumoAcumulado(self,nome='tempoxNconsumoacum.svg'): ''' Organiza dados de arquivo x numero de consumos efetivados x=[arquivo1,arquivo2, ...] y=[nConsumo, nConsumo, ...] ''' total = {}; dados = []; for arquivo in self.arquivos: self.aberto = open(arquivo,"r"); quantidade =[]; numero = 0 for linha in self.aberto: linha = linha.rstrip(); lista = linha.split(','); if (lista[0] == 'C'): while '' in lista: lista.remove(''); if(len(lista) > 1): indice = 3; while(lista[indice]): if (lista[indice] == '100'): numero += 1; try: indice += 3; lista[indice] except: break quantidade.append(numero); self.aberto.close(); dados.append(quantidade) total[arquivo] = quantidade mat = MatematicaClass(total) organizados, N = mat.confianca() N = 4 fig = plt.figure() ax = fig.add_subplot(111) nomesProntos, mediasProntas, ercProntos, erbProntos = [],[0],[0],[0] cor, rects = [],[] cm = get_cmap('gist_rainbow') for i in range(N): cor.append(cm(1.*i/N)) # color will now be an RGBA tuple cor = iter(cor) dictItems = {'sequentialaleatory':[],'aleatorysequential':[],'sequentialsequential':[],'aleatoryaleatory':[]} for elementos in organizados.values(): for elemento in elementos: item = ItemClass(elemento) item.elemento = elementos[elemento] dictItems[item.tipoDownload+item.tipoConsumo].append(item) dictItems[item.tipoDownload+item.tipoConsumo].sort(key = lambda x: int(x.download)) for elementos in dictItems.values(): for elemento in elementos: strNome = str(elemento.tipoDownload) + " Download"+ ", "+ str(elemento.tipoConsumo)+" Consumption" if strNome not in nomesProntos: nomesProntos.append(strNome) media, (erc,erb) = elemento.elemento[-1]['confianca'][0] media, erc, erb mediasProntas.append(float("{0:.2f}".format(media))) ercProntos.append(media-erc) erbProntos.append(erb-media) legendasX = [0,10,30,50,70,100] rects.append(ax.errorbar(legendasX, mediasProntas, yerr=[erbProntos,ercProntos],color=cor.next(),fmt='--o')) mediasProntas, ercProntos, erbProntos = [0],[0],[0] # algo mais ax.set_ylabel(u'Quantidade de Conteúdo Consumido') ax.set_title('Consumo Acumulado ao Longo de 120 Timeslots') ax.set_xlabel('Taxa de Download') ax.grid(True) ax.set_xticks(legendasX) ax.set_xticklabels(legendasX) ax.set_ylim(bottom=-10,top=7000) #ax.set_yscale('log') leg = ax.legend(rects,nomesProntos,loc='upper center', bbox_to_anchor=(0.5,-0.1)) for t in leg.get_texts(): t.set_fontsize('small') plt.savefig(os.path.join(self.caminho,nome), bbox_extra_artists=(leg,), bbox_inches='tight') ax.set_yscale('log') plt.savefig(os.path.join(self.caminho,'log'+nome), bbox_extra_artists=(leg,), bbox_inches='tight') # cairoplot.horizontal_bar_plot(os.path.join(self.caminho,'2'+nome),dados,self.largura,self.altura, y_labels = self.arquivos, # border = 20, display_values = True, rounded_corners = True, colors = [(0.5,0.2,0)]); # def tempoPeersSemDownload(self,nome='tempoxNsemdownload.svg'): ''' Organiza dados de tempo x numero de peers sem fazer download naquele tempo x=[tempo1,tempo2, ...] y=[nPeers, nPeers, ...] total = {}; for arquivo in self.arquivos: self.aberto = open(arquivo,"r"); tempo,quantidade =[],[]; numero = 0 tempo.append('0'); for linha in self.aberto: linha = linha.rstrip(); lista = linha.split(','); if (lista[0] == 'T'): tempo.append(lista[1]); if lista[1] > 1: quantidade.append(numero); numero = 0 elif (lista[0] == 'W'): while '' in lista: lista.remove(''); if(lista[1] == '1'): numero += 1; quantidade.append(numero); self.aberto.close(); total[arquivo] = quantidade data = Series(total) cairoplot.dot_line_plot(os.path.join(self.caminho,nome),data,self.largura,self.altura,x_labels = tempo, axis = True, grid = True, x_title = "Tempo", y_title = "Nº de Peers com Download Parado", series_legend=True); ''' def tempoPeersSemDownloadAcumulado(self,nome='tempoxNsemdownloadacum.svg'): ''' Organiza dados de arquivo x numero de peers sem fazer download acumulado x=[arquivo1,arquivo2, ...] y=[nPeers, nPeers, ...] ''' total = {}; dados = []; for arquivo in self.arquivos: self.aberto = open(arquivo,"r"); quantidade =[]; numero = 0 for linha in self.aberto: linha = linha.rstrip(); lista = linha.split(','); if (lista[0] == 'W'): while '' in lista: lista.remove(''); if(lista[1] == '1'): numero += 1; quantidade.append(numero); self.aberto.close(); dados.append(quantidade) total[arquivo] = quantidade mat = MatematicaClass(total) organizados, N = mat.confianca() N = 4 fig = plt.figure() ax = fig.add_subplot(111) nomesProntos, mediasProntas, ercProntos, erbProntos = [],[0],[0],[0] cor, rects = [],[] cm = get_cmap('gist_rainbow') for i in range(N): cor.append(cm(1.*i/N)) # color will now be an RGBA tuple cor = iter(cor) dictItems = {'sequentialaleatory':[],'aleatorysequential':[],'sequentialsequential':[],'aleatoryaleatory':[]} for elementos in organizados.values(): for elemento in elementos: item = ItemClass(elemento) item.elemento = elementos[elemento] dictItems[item.tipoDownload+item.tipoConsumo].append(item) dictItems[item.tipoDownload+item.tipoConsumo].sort(key = lambda x: int(x.download)) for elementos in dictItems.values(): for elemento in elementos: strNome = str(elemento.tipoDownload) + " Download"+ ", "+ str(elemento.tipoConsumo)+" Consumption" if strNome not in nomesProntos: nomesProntos.append(strNome) media, (erc,erb) = elemento.elemento[-1]['confianca'][0] media, erc, erb mediasProntas.append(float("{0:.2f}".format(media))) ercProntos.append(media-erc) erbProntos.append(erb-media) legendasX = [0,10,30,50,70,100] rects.append(ax.errorbar(legendasX, mediasProntas, yerr=[erbProntos,ercProntos],color=cor.next(),fmt='--o')) mediasProntas, ercProntos, erbProntos = [0],[0],[0] # algo mais ax.set_ylabel('Tempo de Peers sem Download') ax.set_title('Tempo Acumulado sem Download') ax.set_xlabel('Taxa de Download') ax.grid(True) ax.set_xticks(legendasX) ax.set_xticklabels(legendasX) ax.set_ylim(bottom=-10,top=7000) #ax.set_yscale('log') leg = ax.legend(rects,nomesProntos,loc='upper center', bbox_to_anchor=(0.5,-0.1)) for t in leg.get_texts(): t.set_fontsize('small') plt.savefig(os.path.join(self.caminho,nome), bbox_extra_artists=(leg,), bbox_inches='tight') ax.set_yscale('log') plt.savefig(os.path.join(self.caminho,'log'+nome), bbox_extra_artists=(leg,), bbox_inches='tight') #cairoplot.horizontal_bar_plot(os.path.join(self.caminho,'2'+nome),dados,self.largura,self.altura, y_labels = self.arquivos, # border = 20, display_values = True, rounded_corners = True, colors = [(0.5,0.2,0)]); # def tempoPeersSemConsumo(self,nome='tempoxNsemconsumo.svg'): ''' Organiza dados de tempo x numero de peers sem fazer consumo naquele tempo x=[tempo1,tempo2, ...] y=[nPeers, nPeers, ...] total = {}; for arquivo in self.arquivos: self.aberto = open(arquivo,"r"); tempo,quantidade =[],[]; numero = 0 tempo.append('0'); for linha in self.aberto: linha = linha.rstrip(); lista = linha.split(','); if (lista[0] == 'T'): tempo.append(lista[1]); if lista[1] > 1: quantidade.append(numero); numero = 0 elif (lista[0] == 'S'): while '' in lista: lista.remove(''); if(lista[1] == '1'): numero += 1; quantidade.append(numero); self.aberto.close(); total[arquivo] = quantidade data = Series(total) cairoplot.dot_line_plot(os.path.join(self.caminho,nome),data,self.largura,self.altura,x_labels = tempo, axis = True, grid = True, x_title = "Tempo", y_title = "Nº de Peers com Consumo Parado", series_legend=True); ''' def tempoPeersSemConsumoAcumulado(self,nome='tempoxNsemconsumoacum.svg'): ''' Organiza dados de arquivo x numero de peers sem fazer download acumulado x=[arquivo1,arquivo2, ...] y=[nPeers, nPeers, ...] ''' total = {}; dados = []; for arquivo in self.arquivos: self.aberto = open(arquivo,"r"); quantidade =[]; numero = 0 for linha in self.aberto: linha = linha.rstrip(); lista = linha.split(','); if (lista[0] == 'S'): while '' in lista: lista.remove(''); if(lista[1] == '1'): numero += 1; quantidade.append(numero); self.aberto.close(); dados.append(quantidade) total[arquivo] = quantidade mat = MatematicaClass(total) organizados, N = mat.confianca() N = 4 fig = plt.figure() ax = fig.add_subplot(111) nomesProntos, mediasProntas, ercProntos, erbProntos = [],[0],[0],[0] cor, rects = [],[] cm = get_cmap('gist_rainbow') for i in range(N): cor.append(cm(1.*i/N)) # color will now be an RGBA tuple cor = iter(cor) dictItems = {'sequentialaleatory':[],'aleatorysequential':[],'sequentialsequential':[],'aleatoryaleatory':[]} for elementos in organizados.values(): for elemento in elementos: item = ItemClass(elemento) item.elemento = elementos[elemento] dictItems[item.tipoDownload+item.tipoConsumo].append(item) dictItems[item.tipoDownload+item.tipoConsumo].sort(key = lambda x: int(x.download)) for elementos in dictItems.values(): for elemento in elementos: strNome = str(elemento.tipoDownload) + " Download"+ ", "+ str(elemento.tipoConsumo)+" Consumption" if strNome not in nomesProntos: nomesProntos.append(strNome) nomesProntos = list(nomesProntos) media, (erc,erb) = elemento.elemento[-1]['confianca'][0] media, erc, erb mediasProntas.append(float("{0:.2f}".format(media))) ercProntos.append(media-erc) erbProntos.append(erb-media) legendasX = [0,10,30,50,70,100] rects.append(ax.errorbar(legendasX, mediasProntas, yerr=[erbProntos,ercProntos],color=cor.next(),fmt='--o')) mediasProntas, ercProntos, erbProntos = [0],[0],[0] # algo mais ax.set_ylabel('Tempo Bloqueado (Tempo de Peers sem Consumo)') ax.set_title('Tempo Acumulado sem Consumo ao Longo de 120 Timeslots') ax.set_xlabel('Taxa de Download') ax.grid(True) ax.set_xticks(legendasX) ax.set_xticklabels(legendasX) ax.set_ylim(bottom=-10,top=7000) #ax.set_yscale('log') leg = ax.legend(rects,nomesProntos,loc='upper center', bbox_to_anchor=(0.5,-0.1)) for t in leg.get_texts(): t.set_fontsize('small') plt.savefig(os.path.join(self.caminho,nome), bbox_extra_artists=(leg,), bbox_inches='tight') ax.set_yscale('log') plt.savefig(os.path.join(self.caminho,'log'+nome), bbox_extra_artists=(leg,), bbox_inches='tight') # cairoplot.horizontal_bar_plot(os.path.join(self.caminho,'2'+nome),dados,self.largura,self.altura, y_labels = self.arquivos, # border = 20, display_values = True, rounded_corners = True, colors = [(0.5,0.2,0)]); # def parcelaDownloadAcumulado(self,nome='parcelaxDownloadacum.svg'): ''' Organiza dados de situacao (pareamento com download ou nao) x numero vezes x=[situacao1,situacao2, ...] y=[nVezes, nVezes, ...] total = {}; for arquivo in self.arquivos: self.aberto = open(arquivo,"r"); quantidadeS,quantidadeC =[],[]; comPar,semPar = 0,0 for linha in self.aberto: linha = linha.rstrip(); lista = linha.split(','); if (lista[0] == 'W'): while '' in lista: lista.remove(''); if(lista[1] == '1'): comPar += 1; elif(lista[1] == '0'): semPar +=1; quantidadeS.append(semPar); quantidadeC.append(comPar); self.aberto.close(); total['SemPar'+arquivo] = quantidadeS total['ComPar'+arquivo] = quantidadeC data = Series(total) background = cairo.LinearGradient(300, 0, 300, 400) background.add_color_stop_rgb(0,0.4,0.4,0.4) background.add_color_stop_rgb(1.0,0.1,0.1,0.1) try: cairoplot.donut_plot(os.path.join(self.caminho,nome),data,self.largura,self.altura, background = background, gradient = True, shadow = True, inner_radius = 0.3); except: pass ''' class ItemClass(object): ''' Classe de item de grafico, aonde sao definidos os itens e seus atributos ''' def __init__(self,nomeArquivo): ''' Declara nome de arquivo para separar ''' self.nomeArquivo = nomeArquivo self.separaAtributos() def separaAtributos(self): ''' Metodo que separa atributos do arquivo ''' self.tipoDownload = self.nomeArquivo[0:self.nomeArquivo.find("_")] self.peers = self.nomeArquivo[self.nomeArquivo.find("_Q")+2:self.nomeArquivo.find("_",self.nomeArquivo.find("_Q")+2)] self.playlist = self.nomeArquivo[self.nomeArquivo.find("_P")+2:self.nomeArquivo.find("_",self.nomeArquivo.find("_P")+2)] self.lista = self.nomeArquivo[self.nomeArquivo.find("_L")+2:self.nomeArquivo.find("_",self.nomeArquivo.find("_L")+2)] self.listaTotal = self.nomeArquivo[self.nomeArquivo.find("_S")+2:self.nomeArquivo.find("_",self.nomeArquivo.find("_S")+2)] self.consumo = self.nomeArquivo[self.nomeArquivo.find("_R")+2:self.nomeArquivo.find("_",self.nomeArquivo.find("_R")+2)] self.timeslot = self.nomeArquivo[self.nomeArquivo.find("_V")+2:self.nomeArquivo.find("_",self.nomeArquivo.find("_V")+2)] self.tipoConsumo = self.nomeArquivo[self.nomeArquivo.find("_Y")+2:self.nomeArquivo.find("_",self.nomeArquivo.find("_Y")+2)] self.download = self.nomeArquivo[self.nomeArquivo.find("_X")+2:self.nomeArquivo.find("_",self.nomeArquivo.find("_X")+2)] self.delay = self.nomeArquivo[self.nomeArquivo.find("_D")+2:self.nomeArquivo.find(".txt")]
gpl-3.0
vermouthmjl/scikit-learn
sklearn/metrics/setup.py
299
1024
import os import os.path import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("metrics", parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension("pairwise_fast", sources=["pairwise_fast.c"], include_dirs=[os.path.join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
gxx/lettuce
tests/integration/django/dill/leaves/features/steps.py
17
1432
import json from django.core.management import call_command from leaves.models import * from lettuce import after, step from lettuce.django.steps.models import * from nose.tools import assert_equals after.each_scenario(clean_db) max_rego = 0 @creates_models(Harvester) def create_with_rego(step): data = hashes_data(step) for hash_ in data: hash_['rego'] = hash_['make'][:3].upper() + "001" create_models(Harvester, data) @checks_existence(Harvester) def check_with_rego(step): data = hashes_data(step) for hash_ in data: try: hash_['rego'] = hash_['rego'].upper() except KeyError: pass models_exist(Harvester, data) @step(r'The database dump is as follows') def database_dump(step): try: from cStringIO import StringIO except ImportError: from StringIO import StringIO output = StringIO() call_command('dumpdata', stdout=output, indent=2) output = output.getvalue() assert_equals(json.loads(output), json.loads(step.multiline)) @step(r'I have populated the database') def database_populated(step): pass @step(r'I count the harvesters') def count_harvesters(step): print "Harvester count: %d" % Harvester.objects.count() @creates_models(Panda) def create_pandas(step): data = hashes_data(step) if 'name' in data: data['name'] += ' Panda' return create_models(Panda, data)
gpl-3.0
mathemage/h2o-3
h2o-py/tests/testdir_misc/pyunit_pivot_medium.py
5
2462
#!/usr/bin/env python # -*- encoding: utf-8 -*- """Pyunit for h2o.pivot""" from __future__ import print_function import sys sys.path.insert(1,"../../") from builtins import range import h2o import pandas from tests import pyunit_utils def pivot(): df = h2o.create_frame(rows=1000000, cols=3, factors=10, categorical_fraction=1.0/3, time_fraction=1.0/3, real_fraction=1.0/3, real_range=100, missing_fraction=0.0, seed=123) # Pandas comparison pdf = df.as_data_frame() ppdf = pdf.pivot(values="C3",index="C1",columns="C2") ppdf = ppdf.fillna(0.0) ppdfh2o = h2o.H2OFrame(ppdf) pivoted = df.pivot(index="C1",column="C2",value="C3") pivoted.impute(values=[0]*11) assert abs((pivoted[:,1:11] - ppdfh2o).sum(return_frame=False)) < 1e-11, "Difference between Pandas pivot too high" print("Testing size: ") for s in [100,200,300,400,500,1000,2000,4211,100000]: print(str(s)) df1 = h2o.H2OFrame({"index":list(range(1,s+1)),"column":["a"]*s,"value":[1]*s}) df2 = h2o.H2OFrame({"index":list(range(1,s+1)),"column":["b"]*s,"value":[2]*s}) df3 = h2o.H2OFrame({"index":list(range(1,s+1)),"column":["c"]*s,"value":[3]*s}) dfall = df1.rbind(df2) dfall = dfall.rbind(df3) res = dfall.pivot(index="index", column="column", value="value") assert res["a"].sum()[0,0] == 1*s, "Wrong sum of 'a' column" assert res["b"].sum()[0,0] == 2*s, "Wrong sum of 'b' column" assert res["c"].sum()[0,0] == 3*s, "Wrong sum of 'c' column" # See if it can find the last label df = h2o.create_frame(rows=1000001,randomize=False,integer_fraction=0.0,categorical_fraction=0.0,time_fraction=0.0,cols=2,value=1.0,missing_fraction=0.0) df2 = h2o.create_frame(rows=1000000,integer_fraction=0.0,categorical_fraction=1.0,time_fraction=0.0,cols=1,factors=2,missing_fraction=0.0) df2b = df2.rbind(h2o.H2OFrame({"C1":"b"})) df2b.set_names(["C3"]) dft = df.cbind(df2b) p = dft.pivot(index="C1",value="C2",column="C3") assert len(p.columns) == 4, "Wrong number of columns for last label test" assert len(p) == 1, "Wrong number of rows for last label test" if __name__ == "__main__": pyunit_utils.standalone_test(pivot) else: pivot()
apache-2.0
ilo10/scikit-learn
sklearn/utils/tests/test_testing.py
144
4121
import warnings import unittest import sys from nose.tools import assert_raises from sklearn.utils.testing import ( _assert_less, _assert_greater, assert_less_equal, assert_greater_equal, assert_warns, assert_no_warnings, assert_equal, set_random_state, assert_raise_message) from sklearn.tree import DecisionTreeClassifier from sklearn.lda import LDA try: from nose.tools import assert_less def test_assert_less(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_less(0, 1) _assert_less(0, 1) assert_raises(AssertionError, assert_less, 1, 0) assert_raises(AssertionError, _assert_less, 1, 0) except ImportError: pass try: from nose.tools import assert_greater def test_assert_greater(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_greater(1, 0) _assert_greater(1, 0) assert_raises(AssertionError, assert_greater, 0, 1) assert_raises(AssertionError, _assert_greater, 0, 1) except ImportError: pass def test_assert_less_equal(): assert_less_equal(0, 1) assert_less_equal(1, 1) assert_raises(AssertionError, assert_less_equal, 1, 0) def test_assert_greater_equal(): assert_greater_equal(1, 0) assert_greater_equal(1, 1) assert_raises(AssertionError, assert_greater_equal, 0, 1) def test_set_random_state(): lda = LDA() tree = DecisionTreeClassifier() # LDA doesn't have random state: smoke test set_random_state(lda, 3) set_random_state(tree, 3) assert_equal(tree.random_state, 3) def test_assert_raise_message(): def _raise_ValueError(message): raise ValueError(message) def _no_raise(): pass assert_raise_message(ValueError, "test", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "something else", _raise_ValueError, "test") assert_raises(ValueError, assert_raise_message, TypeError, "something else", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "test", _no_raise) # multiple exceptions in a tuple assert_raises(AssertionError, assert_raise_message, (ValueError, AttributeError), "test", _no_raise) # This class is inspired from numpy 1.7 with an alteration to check # the reset warning filters after calls to assert_warns. # This assert_warns behavior is specific to scikit-learn because #`clean_warning_registry()` is called internally by assert_warns # and clears all previous filters. class TestWarns(unittest.TestCase): def test_warn(self): def f(): warnings.warn("yo") return 3 # Test that assert_warns is not impacted by externally set # filters and is reset internally. # This is because `clean_warning_registry()` is called internally by # assert_warns and clears all previous filters. warnings.simplefilter("ignore", UserWarning) assert_equal(assert_warns(UserWarning, f), 3) # Test that the warning registry is empty after assert_warns assert_equal(sys.modules['warnings'].filters, []) assert_raises(AssertionError, assert_no_warnings, f) assert_equal(assert_no_warnings(lambda x: x, 1), 1) def test_warn_wrong_warning(self): def f(): warnings.warn("yo", DeprecationWarning) failed = False filters = sys.modules['warnings'].filters[:] try: try: # Should raise an AssertionError assert_warns(UserWarning, f) failed = True except AssertionError: pass finally: sys.modules['warnings'].filters = filters if failed: raise AssertionError("wrong warning caught by assert_warn")
bsd-3-clause
leesavide/pythonista-docs
Documentation/matplotlib/mpl_examples/pie_and_polar_charts/pie_demo_features.py
3
1070
""" Demo of a basic pie chart plus a few additional features. In addition to the basic pie chart, this demo shows a few optional features: * slice labels * auto-labeling the percentage * offsetting a slice with "explode" * drop-shadow * custom start angle Note about the custom start angle: The default ``startangle`` is 0, which would start the "Frogs" slice on the positive x-axis. This example sets ``startangle = 90`` such that everything is rotated counter-clockwise by 90 degrees, and the frog slice starts on the positive y-axis. """ import matplotlib.pyplot as plt # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') plt.show()
apache-2.0
gargleblaster/trading-with-python
lib/functions.py
76
11627
# -*- coding: utf-8 -*- """ twp support functions @author: Jev Kuznetsov Licence: GPL v2 """ from scipy import polyfit, polyval import datetime as dt #from datetime import datetime, date from pandas import DataFrame, Index, Series import csv import matplotlib.pyplot as plt import numpy as np import pandas as pd def nans(shape, dtype=float): ''' create a nan numpy array ''' a = np.empty(shape, dtype) a.fill(np.nan) return a def plotCorrelationMatrix(price, thresh = None): ''' plot a correlation matrix as a heatmap image inputs: price: prices DataFrame thresh: correlation threshold to use for checking, default None ''' symbols = price.columns.tolist() R = price.pct_change() correlationMatrix = R.corr() if thresh is not None: correlationMatrix = correlationMatrix > thresh plt.imshow(abs(correlationMatrix.values),interpolation='none') plt.xticks(range(len(symbols)),symbols) plt.yticks(range(len(symbols)),symbols) plt.colorbar() plt.title('Correlation matrix') return correlationMatrix def pca(A): """ performs principal components analysis (PCA) on the n-by-p DataFrame A Rows of A correspond to observations, columns to variables. Returns : coeff : principal components, column-wise transform: A in principal component space latent : eigenvalues """ # computing eigenvalues and eigenvectors of covariance matrix M = (A - A.mean()).T # subtract the mean (along columns) [latent,coeff] = np.linalg.eig(np.cov(M)) # attention:not always sorted idx = np.argsort(latent) # sort eigenvalues idx = idx[::-1] # in ascending order coeff = coeff[:,idx] latent = latent[idx] score = np.dot(coeff.T,A.T) # projection of the data in the new space transform = DataFrame(index = A.index, data = score.T) return coeff,transform,latent def pos2pnl(price,position , ibTransactionCost=False ): """ calculate pnl based on price and position Inputs: --------- price: series or dataframe of price position: number of shares at each time. Column names must be same as in price ibTransactionCost: use bundled Interactive Brokers transaction cost of 0.005$/share Returns a portfolio DataFrame """ delta=position.diff() port = DataFrame(index=price.index) if isinstance(price,Series): # no need to sum along 1 for series port['cash'] = (-delta*price).cumsum() port['stock'] = (position*price) else: # dealing with DataFrame here port['cash'] = (-delta*price).sum(axis=1).cumsum() port['stock'] = (position*price).sum(axis=1) if ibTransactionCost: tc = -0.005*position.diff().abs() # basic transaction cost tc[(tc>-1) & (tc<0)] = -1 # everything under 1$ will be ceil'd to 1$ if isinstance(price,DataFrame): tc = tc.sum(axis=1) port['tc'] = tc.cumsum() else: port['tc'] = 0. port['total'] = port['stock']+port['cash']+port['tc'] return port def tradeBracket(price,entryBar,maxTradeLength,bracket): ''' trade a symmetrical bracket on price series, return price delta and exit bar # Input ------ price : series of price values entryBar: entry bar number maxTradeLength : max trade duration in bars bracket : allowed price deviation ''' lastBar = min(entryBar+maxTradeLength,len(price)-1) p = price[entryBar:lastBar]-price[entryBar] idxOutOfBound = np.nonzero(abs(p)>bracket) # find indices where price comes out of bracket if idxOutOfBound[0].any(): # found match priceDelta = p[idxOutOfBound[0][0]] exitBar = idxOutOfBound[0][0]+entryBar else: # all in bracket, exiting based on time priceDelta = p[-1] exitBar = lastBar return priceDelta, exitBar def estimateBeta(priceY,priceX,algo = 'standard'): ''' estimate stock Y vs stock X beta using iterative linear regression. Outliers outside 3 sigma boundary are filtered out Parameters -------- priceX : price series of x (usually market) priceY : price series of y (estimate beta of this price) Returns -------- beta : stockY beta relative to stock X ''' X = DataFrame({'x':priceX,'y':priceY}) if algo=='returns': ret = (X/X.shift(1)-1).dropna().values #print len(ret) x = ret[:,0] y = ret[:,1] # filter high values low = np.percentile(x,20) high = np.percentile(x,80) iValid = (x>low) & (x<high) x = x[iValid] y = y[iValid] iteration = 1 nrOutliers = 1 while iteration < 10 and nrOutliers > 0 : (a,b) = polyfit(x,y,1) yf = polyval([a,b],x) #plot(x,y,'x',x,yf,'r-') err = yf-y idxOutlier = abs(err) > 3*np.std(err) nrOutliers =sum(idxOutlier) beta = a #print 'Iteration: %i beta: %.2f outliers: %i' % (iteration,beta, nrOutliers) x = x[~idxOutlier] y = y[~idxOutlier] iteration += 1 elif algo=='log': x = np.log(X['x']) y = np.log(X['y']) (a,b) = polyfit(x,y,1) beta = a elif algo=='standard': ret =np.log(X).diff().dropna() beta = ret['x'].cov(ret['y'])/ret['x'].var() else: raise TypeError("unknown algorithm type, use 'standard', 'log' or 'returns'") return beta def estimateVolatility(ohlc, N=10, algo='YangZhang'): """ Volatility estimation Possible algorithms: ['YangZhang', 'CC'] """ cc = np.log(ohlc.close/ohlc.close.shift(1)) if algo == 'YangZhang': # Yang-zhang volatility ho = np.log(ohlc.high/ohlc.open) lo = np.log(ohlc.low/ohlc.open) co = np.log(ohlc.close/ohlc.open) oc = np.log(ohlc.open/ohlc.close.shift(1)) oc_sq = oc**2 cc_sq = cc**2 rs = ho*(ho-co)+lo*(lo-co) close_vol = pd.rolling_sum(cc_sq, window=N) * (1.0 / (N - 1.0)) open_vol = pd.rolling_sum(oc_sq, window=N) * (1.0 / (N - 1.0)) window_rs = pd.rolling_sum(rs, window=N) * (1.0 / (N - 1.0)) result = (open_vol + 0.164333 * close_vol + 0.835667 * window_rs).apply(np.sqrt) * np.sqrt(252) result[:N-1] = np.nan elif algo == 'CC': # standard close-close estimator result = np.sqrt(252)*np.sqrt(((pd.rolling_sum(cc**2,N))/N)) else: raise ValueError('Unknown algo type.') return result*100 def rank(current,past): ''' calculate a relative rank 0..1 for a value against series ''' return (current>past).sum()/float(past.count()) def returns(df): return (df/df.shift(1)-1) def logReturns(df): t = np.log(df) return t-t.shift(1) def dateTimeToDate(idx): ''' convert datetime index to date ''' dates = [] for dtm in idx: dates.append(dtm.date()) return dates def readBiggerScreener(fName): ''' import data from Bigger Capital screener ''' with open(fName,'rb') as f: reader = csv.reader(f) rows = [row for row in reader] header = rows[0] data = [[] for i in range(len(header))] for row in rows[1:]: for i,elm in enumerate(row): try: data[i].append(float(elm)) except Exception: data[i].append(str(elm)) return DataFrame(dict(zip(header,data)),index=Index(range(len(data[0]))))[header] def sharpe(pnl): return np.sqrt(250)*pnl.mean()/pnl.std() def drawdown(s): """ calculate max drawdown and duration Input: s, price or cumulative pnl curve $ Returns: drawdown : vector of drawdwon values duration : vector of drawdown duration """ # convert to array if got pandas series, 10x speedup if isinstance(s,pd.Series): idx = s.index s = s.values returnSeries = True else: returnSeries = False if s.min() < 0: # offset if signal minimum is less than zero s = s-s.min() highwatermark = np.zeros(len(s)) drawdown = np.zeros(len(s)) drawdowndur = np.zeros(len(s)) for t in range(1,len(s)): highwatermark[t] = max(highwatermark[t-1], s[t]) drawdown[t] = (highwatermark[t]-s[t]) drawdowndur[t]= (0 if drawdown[t] == 0 else drawdowndur[t-1]+1) if returnSeries: return pd.Series(index=idx,data=drawdown), pd.Series(index=idx,data=drawdowndur) else: return drawdown , drawdowndur def profitRatio(pnl): ''' calculate profit ratio as sum(pnl)/drawdown Input: pnl - daily pnl, Series or DataFrame ''' def processVector(pnl): # process a single column s = pnl.fillna(0) dd = drawdown(s)[0] p = s.sum()/dd.max() return p if isinstance(pnl,Series): return processVector(pnl) elif isinstance(pnl,DataFrame): p = Series(index = pnl.columns) for col in pnl.columns: p[col] = processVector(pnl[col]) return p else: raise TypeError("Input must be DataFrame or Series, not "+str(type(pnl))) def candlestick(df,width=0.5, colorup='b', colordown='r'): ''' plot a candlestick chart of a dataframe ''' O = df['open'].values H = df['high'].values L = df['low'].values C = df['close'].values fig = plt.gcf() ax = plt.axes() #ax.hold(True) X = df.index #plot high and low ax.bar(X,height=H-L,bottom=L,width=0.1,color='k') idxUp = C>O ax.bar(X[idxUp],height=(C-O)[idxUp],bottom=O[idxUp],width=width,color=colorup) idxDown = C<=O ax.bar(X[idxDown],height=(O-C)[idxDown],bottom=C[idxDown],width=width,color=colordown) try: fig.autofmt_xdate() except Exception: # pragma: no cover pass ax.grid(True) #ax.bar(x,height=H-L,bottom=L,width=0.01,color='k') def datetime2matlab(t): ''' convert datetime timestamp to matlab numeric timestamp ''' mdn = t + dt.timedelta(days = 366) frac = (t-dt.datetime(t.year,t.month,t.day,0,0,0)).seconds / (24.0 * 60.0 * 60.0) return mdn.toordinal() + frac def getDataSources(fName = None): ''' return data sources directories for this machine. directories are defined in datasources.ini or provided filepath''' import socket from ConfigParser import ConfigParser pcName = socket.gethostname() p = ConfigParser() p.optionxform = str if fName is None: fName = 'datasources.ini' p.read(fName) if pcName not in p.sections(): raise NameError('Host name section %s not found in file %s' %(pcName,fName)) dataSources = {} for option in p.options(pcName): dataSources[option] = p.get(pcName,option) return dataSources if __name__ == '__main__': df = DataFrame({'open':[1,2,3],'high':[5,6,7],'low':[-2,-1,0],'close':[2,1,4]}) plt.clf() candlestick(df)
bsd-3-clause
JanetMatsen/Machine_Learning_CSE_546
HW1/Q6_least_squares/ridge_regression.py
1
2679
import numpy as np import pandas as pd import scipy.sparse as sp import scipy.sparse.linalg as splin class Ridge: def __init__(self, X, y, lam): assert type(X) == sp.csc_matrix or type(X) == sp.csr_matrix assert type(lam*1.0) == float assert type(y) == sp.csr_matrix or type(y) == sp.csc_matrix self.X = X self.N = X.shape[0] self.y = y self.lam = lam self.w = None def solve(self): d = self.X.shape[1] # d = number of features/columns # find lambda*I_D + X^T*X piece_to_invert = sp.identity(d)*self.lam + self.X.T.dot(self.X) inverted_piece = splin.inv(piece_to_invert) solution = inverted_piece.dot(self.X.T) solution = solution.dot(self.y) self.w = solution def sse(self): # sse = RSS error_v = self.X.dot(self.w) - self.y return self.extract_scalar(error_v.T.dot(error_v)) def rmse(self): return(self.sse()/self.N)**0.5 @staticmethod def extract_scalar(m): assert(m.shape == (1, 1)) return m[0, 0] class RidgeRegularizationPath: def __init__(self, train_X, train_y, lam_max, frac_decrease, steps, val_X, val_y): self.train_X = train_X self.train_y = train_y self.train_N, self.train_d = train_X.shape self.lam_max = lam_max self.frac_decrease = frac_decrease self.steps = steps self.val_X = val_X self.val_y = val_y def train_with_lam(self, lam): rr = Ridge(self.train_X, self.train_y, lam=lam) rr.solve() sse_train = rr.sse() # replace the y values with the validation y and get the val sss rr.X = self.val_X rr.y = self.val_y sse_val = rr.sse() assert rr.w.shape == (self.train_d, 1) # check before we slice out return rr.w.toarray()[:,0], sse_train, sse_val def walk_path(self): # protect the first value of lambda. lam = self.lam_max/self.frac_decrease # initialize a dataframe to store results in results = pd.DataFrame() for c in range(0, self.steps): lam = lam*self.frac_decrease print("Loop {}: solving weights. Lambda = {}".format(c+1, lam)) w, sse_train, sse_val = self.train_with_lam(lam) one_val = pd.DataFrame({"lam":[lam], "weights":[w], "SSE (training)": [sse_train], "SSE (validaton)": [sse_val]}) results = pd.concat([results, one_val]) self.results_df = results
mit
antoinecarme/pyaf
tests/neuralnet/test_ozone_GPU.py
1
1962
def pickleModel(iModel): import pickle output = pickle.dumps(iModel) lReloadedObject = pickle.loads(output) output2 = pickle.dumps(lReloadedObject) assert(iModel.to_json() == lReloadedObject.to_json()) return lReloadedObject; def buildModel(iParallel = True): import pandas as pd import numpy as np import pyaf.ForecastEngine as autof import pyaf.Bench.TS_datasets as tsds import logging import logging.config # logging.config.fileConfig('logging.conf') logging.basicConfig(level=logging.INFO) # get_ipython().magic('matplotlib inline') b1 = tsds.load_ozone() df = b1.mPastData # df.tail(10) # df[:-10].tail() # df[:-10:-1] # df.describe() lEngine = autof.cForecastEngine() lEngine H = b1.mHorizon; # lEngine.mOptions.enable_slow_mode(); lEngine.mOptions.mDebugPerformance = True; lEngine.mOptions.mParallelMode = iParallel; lEngine.mOptions.set_active_autoregressions(['MLP' , 'LSTM']); lEngine.train(df , b1.mTimeVar , b1.mSignalVar, H); lEngine2 = pickleModel(lEngine) lEngine2.getModelInfo(); print(lEngine2.mSignalDecomposition.mTrPerfDetails.head()); lEngine2.mSignalDecomposition.mBestModel.mTimeInfo.mResolution lEngine2.standardPlots("outputs/my_rnn_ozone"); dfapp_in = df.copy(); dfapp_in.tail() # H = 12 dfapp_out = lEngine2.forecast(dfapp_in, H); # dfapp_out.to_csv("outputs/rnn_ozone_apply_out.csv") dfapp_out.tail(2 * H) print("Forecast Columns " , dfapp_out.columns); Forecast_DF = dfapp_out[[b1.mTimeVar , b1.mSignalVar, b1.mSignalVar + '_Forecast']] print(Forecast_DF.info()) print("Forecasts\n" , Forecast_DF.tail(H)); print("\n\n<ModelInfo>") print(lEngine2.to_json()); print("</ModelInfo>\n\n") print("\n\n<Forecast>") print(Forecast_DF.tail(2*H).to_json(date_format='iso')) print("</Forecast>\n\n")
bsd-3-clause
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/dask/dataframe/tseries/tests/test_resample.py
3
3327
from itertools import product import pandas as pd import pytest from dask.dataframe.utils import assert_eq import dask.dataframe as dd def resample(df, freq, how='mean', **kwargs): return getattr(df.resample(freq, **kwargs), how)() @pytest.mark.parametrize(['obj', 'method', 'npartitions', 'freq', 'closed', 'label'], list(product(['series', 'frame'], ['count', 'mean', 'ohlc'], [2, 5], ['30T', 'h', 'd', 'w', 'M'], ['right', 'left'], ['right', 'left']))) def test_series_resample(obj, method, npartitions, freq, closed, label): index = pd.date_range('1-1-2000', '2-15-2000', freq='h') index = index.union(pd.date_range('4-15-2000', '5-15-2000', freq='h')) if obj == 'series': ps = pd.Series(range(len(index)), index=index) elif obj == 'frame': ps = pd.DataFrame({'a':range(len(index))}, index=index) ds = dd.from_pandas(ps, npartitions=npartitions) # Series output result = resample(ds, freq, how=method, closed=closed, label=label) expected = resample(ps, freq, how=method, closed=closed, label=label) assert_eq(result, expected, check_dtype=False) divisions = result.divisions assert expected.index[0] == divisions[0] assert expected.index[-1] == divisions[-1] def test_resample_agg(): index = pd.date_range('2000-01-01', '2000-02-15', freq='h') ps = pd.Series(range(len(index)), index=index) ds = dd.from_pandas(ps, npartitions=2) assert_eq(ds.resample('10min').agg('mean'), ps.resample('10min').agg('mean')) assert_eq(ds.resample('10min').agg(['mean', 'min']), ps.resample('10min').agg(['mean', 'min'])) def test_resample_agg_passes_kwargs(): index = pd.date_range('2000-01-01', '2000-02-15', freq='h') ps = pd.Series(range(len(index)), index=index) ds = dd.from_pandas(ps, npartitions=2) def foo(series, bar=1, *args, **kwargs): return bar assert_eq(ds.resample('2h').agg(foo, bar=2), ps.resample('2h').agg(foo, bar=2)) assert (ds.resample('2h').agg(foo, bar=2) == 2).compute().all() def test_series_resample_not_implemented(): index = pd.date_range(start='2012-01-02', periods=100, freq='T') s = pd.Series(range(len(index)), index=index) ds = dd.from_pandas(s, npartitions=5) # Frequency doesn't evenly divide day pytest.raises(NotImplementedError, lambda: resample(ds, '57T')) def test_unknown_divisions_error(): df = pd.DataFrame({'x': [1, 2, 3]}) ddf = dd.from_pandas(df, npartitions=2, sort=False) try: ddf.x.resample('1m').mean() assert False except ValueError as e: assert 'divisions' in str(e) def test_resample_index_name(): import numpy as np from datetime import datetime, timedelta date_today = datetime.now() days = pd.date_range(date_today, date_today + timedelta(20), freq='D') data = np.random.randint(1, high=100, size=len(days)) df = pd.DataFrame({'date': days, 'values': data}) df = df.set_index('date') ddf = dd.from_pandas(df, npartitions=4) assert ddf.resample('D').mean().head().index.name == "date"
gpl-3.0
MartialD/hyperspy
hyperspy/samfire_utils/samfire_worker.py
4
11559
# Copyright 2007-2016 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import logging import os import time import sys from itertools import combinations, product from queue import Empty import dill import numpy as np import matplotlib matplotlib.rcParams['backend'] = 'Agg' from hyperspy.signal import BaseSignal from hyperspy.utils.model_selection import AICc _logger = logging.getLogger(__name__) class Worker: def __init__(self, identity, individual_queue=None, shared_queue=None, result_queue=None): self.identity = identity self.individual_queue = individual_queue self.shared_queue = shared_queue self.result_queue = result_queue self.timestep = 0.001 self.max_get_timeout = 3 self._AICc_fraction = 0.99 self.reset() self.last_time = 1 self.optional_names = set() self.model = None self.parameters = {} def create_model(self, signal_dict, model_letter): _logger.debug('Creating model in worker {}'.format(self.identity)) sig = BaseSignal(**signal_dict) sig._assign_subclass() self.model = sig.models[model_letter].restore() for component in self.model: component.active_is_multidimensional = False component.active = True for par in component.parameters: par.map = par.map.copy() if self.model.signal.metadata.has_item( 'Signal.Noise_properties.variance'): var = self.model.signal.metadata.Signal.Noise_properties.variance if isinstance(var, BaseSignal): var.data = var.data.copy() self._array_views_to_copies() def _array_views_to_copies(self): dct = self.model.__dict__ self.parameters = {} for k, v in dct.items(): if isinstance(v, BaseSignal): v.data = v.data.copy() if k not in ['signal', 'image', 'spectrum'] and not \ k.startswith('_'): self.parameters[k] = None if isinstance(v, np.ndarray): dct[k] = v.copy() def set_optional_names(self, optional_names): self.optional_names = optional_names _logger.debug('Setting optional names in worker {} to ' '{}'.format(self.identity, self.optional_names)) def set_parameter_boundaries(self, received): for rec, comp in zip(received, self.model): for (bmin, bmax), par in zip(rec, comp.parameters): par.bmin = bmin par.bmax = bmax def generate_values_iterator(self, turned_on_names): tmp = [] name_list = [] for _comp_n, _comp in self.value_dict.items(): for par_n, par in _comp.items(): if _comp_n not in turned_on_names: par = [None, ] if not isinstance(par, list): par = [par, ] tmp.append(par) name_list.append((_comp_n, par_n)) return name_list, product(*tmp) def set_values(self, name_list, iterator): for value_combination in iterator: for (comp_name, parameter_name), value in zip(name_list, value_combination): if value is None: self.model[comp_name].active = False else: self.model[comp_name].active = True try: getattr(self.model[comp_name], parameter_name).value = value except BaseException: e = sys.exc_info()[0] to_send = ('Error', (self.identity, 'Setting {}.{} value to {}. ' 'Caught:\n{}'.format(comp_name, parameter_name, value, e) ) ) if self.result_queue is None: return to_send else: self.result_queue.put() return yield def fit(self, component_comb): name_list, iterator = self.generate_values_iterator(component_comb) good_fit = False for _ in self.set_values(name_list, iterator): self.model.fit(**self.fitting_kwargs) good_fit = self.fit_test.test(self.model, (0,)) if good_fit: break return good_fit def generate_component_combinations(self): all_names = {component.name for component in self.model} names_to_skip_generators = [combinations(self.optional_names, howmany) for howmany in range(len(self.optional_names) + 1)] names_to_skip = [] for _gen in names_to_skip_generators: names_to_skip.extend(list(_gen)) for name_comb in names_to_skip: yield all_names - set(name_comb) def reset(self): self.best_AICc = np.inf self.best_values = [] self.best_dof = np.inf def run_pixel(self, ind, value_dict): self.reset() self.ind = ind self.value_dict = value_dict self.fitting_kwargs = self.value_dict.pop('fitting_kwargs', {}) if 'min_function' in self.fitting_kwargs: self.fitting_kwargs['min_function'] = dill.loads( self.fitting_kwargs['min_function']) if 'min_function_grad' in self.fitting_kwargs and isinstance( self.fitting_kwargs['min_function_grad'], bytes): self.fitting_kwargs['min_function_grad'] = dill.loads( self.fitting_kwargs['min_function_grad']) self.model.signal.data[:] = self.value_dict.pop('signal.data') if self.model.signal.metadata.has_item( 'Signal.Noise_properties.variance'): var = self.model.signal.metadata.Signal.Noise_properties.variance if isinstance(var, BaseSignal): var.data[:] = self.value_dict.pop('variance.data') if 'low_loss.data' in self.value_dict: self.model.low_loss.data[:] = self.value_dict.pop('low_loss.data') for component_comb in self.generate_component_combinations(): good_fit = self.fit(component_comb) if good_fit: if len(self.optional_names) == 0: return self.send_results(current=True) else: self.compare_models() return self.send_results() def _collect_values(self): result = {component.name: {parameter.name: parameter.map.copy() for parameter in component.parameters} for component in self.model if component.active} return result def compare_models(self): new_AICc = AICc(self.model) AICc_test = new_AICc < (self._AICc_fraction * self.best_AICc) AICc_absolute_test = np.abs(new_AICc - self.best_AICc) <= \ np.abs(self._AICc_fraction * self.best_AICc) dof_test = len(self.model.p0) < self.best_dof if AICc_test or AICc_absolute_test and dof_test: self.best_values = self._collect_values() self.best_AICc = new_AICc self.best_dof = len(self.model.p0) for k in self.parameters.keys(): self.parameters[k] = getattr(self.model, k).data[0] def send_results(self, current=False): if current: self.best_values = self._collect_values() for k in self.parameters.keys(): self.parameters[k] = getattr(self.model, k).data[0] if len(self.best_values): # i.e. we have a good result _logger.debug('we have a good result in worker ' '{}'.format(self.identity)) result = {k + '.data': np.array(v) for k, v in self.parameters.items()} result['components'] = self.best_values found_solution = True else: _logger.debug("we don't have a good result in worker " "{}".format(self.identity)) result = None found_solution = False to_send = ('result', (self.identity, self.ind, result, found_solution)) if self.individual_queue is None: return to_send self.result_queue.put(to_send) def setup_test(self, test_string): self.fit_test = dill.loads(test_string) def start_listening(self): self._listening = True self.listen() def stop_listening(self): self._listening = False def parse(self, result): function = result arguments = [] if isinstance(result, tuple): function, arguments = result getattr(self, function)(*arguments) def ping(self, message=None): to_send = ('pong', (self.identity, os.getpid(), time.time(), message)) if self.result_queue is None: return to_send self.result_queue.put(to_send) def sleep(self, howlong=None): if howlong is None: howlong = self.timestep self.last_time = time.time() time.sleep(howlong) def change_timestep(self, value): self.timestep = value def listen(self): while self._listening: queue = None found_what_to_do = False time_diff = time.time() - self.last_time if time_diff >= self.timestep: if not self.individual_queue.empty(): queue = self.individual_queue elif (self.shared_queue is not None and not self.shared_queue.empty()): queue = self.shared_queue if queue is not None: try: result = queue.get(block=True, timeout=self.max_get_timeout) found_what_to_do = True self.parse(result) except Empty: pass if not found_what_to_do: self.sleep() else: self.sleep() def create_worker(identity, individual_queue=None, shared_queue=None, result_queue=None): w = Worker(identity, individual_queue, shared_queue, result_queue) if individual_queue is None: return w w.start_listening() return 1
gpl-3.0
olologin/scikit-learn
examples/applications/plot_prediction_latency.py
85
11395
""" ================== Prediction Latency ================== This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode. The plots represent the distribution of the prediction latency as a boxplot. """ # Authors: Eustache Diemert <[email protected]> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import time import gc import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from scipy.stats import scoreatpercentile from sklearn.datasets.samples_generator import make_regression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.svm.classes import SVR from sklearn.utils import shuffle def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() def atomic_benchmark_estimator(estimator, X_test, verbose=False): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_instances, dtype=np.float) for i in range(n_instances): instance = X_test[[i], :] start = time.time() estimator.predict(instance) runtimes[i] = time.time() - start if verbose: print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose): """Measure runtime prediction of the whole input.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_bulk_repeats, dtype=np.float) for i in range(n_bulk_repeats): start = time.time() estimator.predict(X_test) runtimes[i] = time.time() - start runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes))) if verbose: print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False): """ Measure runtimes of prediction in both atomic and bulk mode. Parameters ---------- estimator : already trained estimator supporting `predict()` X_test : test input n_bulk_repeats : how many times to repeat when evaluating bulk mode Returns ------- atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the runtimes in seconds. """ atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose) bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose) return atomic_runtimes, bulk_runtimes def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False): """Generate a regression dataset with the given parameters.""" if verbose: print("generating dataset...") X, y, coef = make_regression(n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) random_seed = 13 X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=n_train, random_state=random_seed) X_train, y_train = shuffle(X_train, y_train, random_state=random_seed) X_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train) X_test = X_scaler.transform(X_test) y_scaler = StandardScaler() y_train = y_scaler.fit_transform(y_train[:, None])[:, 0] y_test = y_scaler.transform(y_test[:, None])[:, 0] gc.collect() if verbose: print("ok") return X_train, y_train, X_test, y_test def boxplot_runtimes(runtimes, pred_type, configuration): """ Plot a new `Figure` with boxplots of prediction runtimes. Parameters ---------- runtimes : list of `np.array` of latencies in micro-seconds cls_names : list of estimator class names that generated the runtimes pred_type : 'bulk' or 'atomic' """ fig, ax1 = plt.subplots(figsize=(10, 6)) bp = plt.boxplot(runtimes, ) cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] plt.setp(ax1, xticklabels=cls_infos) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Prediction Time per Instance - %s, %d feats.' % ( pred_type.capitalize(), configuration['n_features'])) ax1.set_ylabel('Prediction Time (us)') plt.show() def benchmark(configuration): """Run the whole benchmark.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) stats = {} for estimator_conf in configuration['estimators']: print("Benchmarking", estimator_conf['instance']) estimator_conf['instance'].fit(X_train, y_train) gc.collect() a, b = benchmark_estimator(estimator_conf['instance'], X_test) stats[estimator_conf['name']] = {'atomic': a, 'bulk': b} cls_names = [estimator_conf['name'] for estimator_conf in configuration[ 'estimators']] runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'atomic', configuration) runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'], configuration) def n_feature_influence(estimators, n_train, n_test, n_features, percentile): """ Estimate influence of the number of features on prediction time. Parameters ---------- estimators : dict of (name (str), estimator) to benchmark n_train : nber of training instances (int) n_test : nber of testing instances (int) n_features : list of feature-space dimensionality to test (int) percentile : percentile at which to measure the speed (int [0-100]) Returns: -------- percentiles : dict(estimator_name, dict(n_features, percentile_perf_in_us)) """ percentiles = defaultdict(defaultdict) for n in n_features: print("benchmarking with %d features" % n) X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n) for cls_name, estimator in estimators.items(): estimator.fit(X_train, y_train) gc.collect() runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False) percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes, percentile) return percentiles def plot_n_features_influence(percentiles, percentile): fig, ax1 = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] for i, cls_name in enumerate(percentiles.keys()): x = np.array(sorted([n for n in percentiles[cls_name].keys()])) y = np.array([percentiles[cls_name][n] for n in x]) plt.plot(x, y, color=colors[i], ) ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Evolution of Prediction Time with #Features') ax1.set_xlabel('#Features') ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile) plt.show() def benchmark_throughputs(configuration, duration_secs=0.1): """benchmark throughput for different estimators.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) throughputs = dict() for estimator_config in configuration['estimators']: estimator_config['instance'].fit(X_train, y_train) start_time = time.time() n_predictions = 0 while (time.time() - start_time) < duration_secs: estimator_config['instance'].predict(X_test[[0]]) n_predictions += 1 throughputs[estimator_config['name']] = n_predictions / duration_secs return throughputs def plot_benchmark_throughput(throughputs, configuration): fig, ax = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] cls_values = [throughputs[estimator_conf['name']] for estimator_conf in configuration['estimators']] plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors) ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs))) ax.set_xticklabels(cls_infos, fontsize=10) ymax = max(cls_values) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('Throughput (predictions/sec)') ax.set_title('Prediction Throughput for different estimators (%d ' 'features)' % configuration['n_features']) plt.show() ############################################################################### # main code start_time = time.time() # benchmark bulk/atomic prediction speed for various regressors configuration = { 'n_train': int(1e3), 'n_test': int(1e2), 'n_features': int(1e2), 'estimators': [ {'name': 'Linear Model', 'instance': SGDRegressor(penalty='elasticnet', alpha=0.01, l1_ratio=0.25, fit_intercept=True), 'complexity_label': 'non-zero coefficients', 'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)}, {'name': 'RandomForest', 'instance': RandomForestRegressor(), 'complexity_label': 'estimators', 'complexity_computer': lambda clf: clf.n_estimators}, {'name': 'SVR', 'instance': SVR(kernel='rbf'), 'complexity_label': 'support vectors', 'complexity_computer': lambda clf: len(clf.support_vectors_)}, ] } benchmark(configuration) # benchmark n_features influence on prediction speed percentile = 90 percentiles = n_feature_influence({'ridge': Ridge()}, configuration['n_train'], configuration['n_test'], [100, 250, 500], percentile) plot_n_features_influence(percentiles, percentile) # benchmark throughput throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) stop_time = time.time() print("example run in %.2fs" % (stop_time - start_time))
bsd-3-clause
tartavull/google-cloud-python
monitoring/tests/unit/test__dataframe.py
4
8271
# Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: import pandas except ImportError: HAVE_PANDAS = False else: HAVE_PANDAS = True # pragma: NO COVER import unittest PROJECT = 'my-project' INSTANCE_NAMES = ['instance-1', 'instance-2'] INSTANCE_ZONES = ['us-east1-a', 'us-east1-b'] INSTANCE_IDS = ['1234567890123456789', '9876543210987654321'] METRIC_TYPE = 'compute.googleapis.com/instance/cpu/utilization' METRIC_LABELS = list({'instance_name': name} for name in INSTANCE_NAMES) RESOURCE_TYPE = 'gce_instance' RESOURCE_LABELS = list({ 'project_id': PROJECT, 'zone': zone, 'instance_id': instance_id, } for zone, instance_id in zip(INSTANCE_ZONES, INSTANCE_IDS)) METRIC_KIND = 'GAUGE' VALUE_TYPE = 'DOUBLE' TIMESTAMPS = [ '2016-04-06T22:05:00.042Z', '2016-04-06T22:05:01.042Z', '2016-04-06T22:05:02.042Z', ] DIMENSIONS = len(TIMESTAMPS), len(INSTANCE_NAMES) VALUES = list(0.1 * i for i in range(DIMENSIONS[1])) ARRAY = [VALUES] * DIMENSIONS[0] def parse_timestamps(): # pragma: NO COVER import datetime from google.cloud._helpers import _RFC3339_MICROS return [datetime.datetime.strptime(t, _RFC3339_MICROS) for t in TIMESTAMPS] def generate_query_results(): # pragma: NO COVER from google.cloud.monitoring.metric import Metric from google.cloud.monitoring.resource import Resource from google.cloud.monitoring.timeseries import Point from google.cloud.monitoring.timeseries import TimeSeries def P(timestamp, value): return Point( start_time=timestamp, end_time=timestamp, value=value, ) for metric_labels, resource_labels, value in zip( METRIC_LABELS, RESOURCE_LABELS, VALUES): yield TimeSeries( metric=Metric(type=METRIC_TYPE, labels=metric_labels), resource=Resource(type=RESOURCE_TYPE, labels=resource_labels), metric_kind=METRIC_KIND, value_type=VALUE_TYPE, points=[P(t, value) for t in TIMESTAMPS], ) @unittest.skipUnless(HAVE_PANDAS, 'No pandas') class Test__build_dataframe(unittest.TestCase): # pragma: NO COVER def _call_fut(self, *args, **kwargs): from google.cloud.monitoring._dataframe import _build_dataframe return _build_dataframe(*args, **kwargs) def test_both_label_and_labels_illegal(self): with self.assertRaises(ValueError): self._call_fut([], label='instance_name', labels=['zone']) def test_empty_labels_illegal(self): with self.assertRaises(ValueError): self._call_fut([], labels=[]) def test_simple_label(self): iterable = generate_query_results() dataframe = self._call_fut(iterable, label='instance_name') self.assertEqual(dataframe.shape, DIMENSIONS) self.assertEqual(dataframe.values.tolist(), ARRAY) self.assertEqual(list(dataframe.columns), INSTANCE_NAMES) self.assertIsNone(dataframe.columns.name) self.assertEqual(list(dataframe.index), parse_timestamps()) self.assertIsNone(dataframe.index.name) def test_multiple_labels(self): NAMES = ['resource_type', 'instance_id'] iterable = generate_query_results() dataframe = self._call_fut(iterable, labels=NAMES) self.assertEqual(dataframe.shape, DIMENSIONS) self.assertEqual(dataframe.values.tolist(), ARRAY) expected_headers = [(RESOURCE_TYPE, instance_id) for instance_id in INSTANCE_IDS] self.assertEqual(list(dataframe.columns), expected_headers) self.assertEqual(dataframe.columns.names, NAMES) self.assertIsNone(dataframe.columns.name) self.assertEqual(list(dataframe.index), parse_timestamps()) self.assertIsNone(dataframe.index.name) def test_multiple_labels_with_just_one(self): NAME = 'instance_id' NAMES = [NAME] iterable = generate_query_results() dataframe = self._call_fut(iterable, labels=NAMES) self.assertEqual(dataframe.shape, DIMENSIONS) self.assertEqual(dataframe.values.tolist(), ARRAY) self.assertEqual(list(dataframe.columns), INSTANCE_IDS) self.assertEqual(dataframe.columns.names, NAMES) self.assertEqual(dataframe.columns.name, NAME) self.assertEqual(list(dataframe.index), parse_timestamps()) self.assertIsNone(dataframe.index.name) def test_smart_labels(self): NAMES = ['resource_type', 'project_id', 'zone', 'instance_id', 'instance_name'] iterable = generate_query_results() dataframe = self._call_fut(iterable) self.assertEqual(dataframe.shape, DIMENSIONS) self.assertEqual(dataframe.values.tolist(), ARRAY) expected_headers = [ (RESOURCE_TYPE, PROJECT, zone, instance_id, instance_name) for zone, instance_id, instance_name in zip(INSTANCE_ZONES, INSTANCE_IDS, INSTANCE_NAMES)] self.assertEqual(list(dataframe.columns), expected_headers) self.assertEqual(dataframe.columns.names, NAMES) self.assertIsNone(dataframe.columns.name) self.assertEqual(list(dataframe.index), parse_timestamps()) self.assertIsNone(dataframe.index.name) def test_empty_table_simple_label(self): dataframe = self._call_fut([], label='instance_name') self.assertEqual(dataframe.shape, (0, 0)) self.assertIsNone(dataframe.columns.name) self.assertIsNone(dataframe.index.name) self.assertIsInstance(dataframe.index, pandas.DatetimeIndex) def test_empty_table_multiple_labels(self): NAMES = ['resource_type', 'instance_id'] dataframe = self._call_fut([], labels=NAMES) self.assertEqual(dataframe.shape, (0, 0)) self.assertEqual(dataframe.columns.names, NAMES) self.assertIsNone(dataframe.columns.name) self.assertIsNone(dataframe.index.name) self.assertIsInstance(dataframe.index, pandas.DatetimeIndex) def test_empty_table_multiple_labels_with_just_one(self): NAME = 'instance_id' NAMES = [NAME] dataframe = self._call_fut([], labels=NAMES) self.assertEqual(dataframe.shape, (0, 0)) self.assertEqual(dataframe.columns.names, NAMES) self.assertEqual(dataframe.columns.name, NAME) self.assertIsNone(dataframe.index.name) self.assertIsInstance(dataframe.index, pandas.DatetimeIndex) def test_empty_table_smart_labels(self): NAME = 'resource_type' NAMES = [NAME] dataframe = self._call_fut([]) self.assertEqual(dataframe.shape, (0, 0)) self.assertEqual(dataframe.columns.names, NAMES) self.assertEqual(dataframe.columns.name, NAME) self.assertIsNone(dataframe.index.name) self.assertIsInstance(dataframe.index, pandas.DatetimeIndex) class Test__sorted_resource_labels(unittest.TestCase): def _call_fut(self, labels): from google.cloud.monitoring._dataframe import _sorted_resource_labels return _sorted_resource_labels(labels) def test_empty(self): self.assertEqual(self._call_fut([]), []) def test_sorted(self): from google.cloud.monitoring._dataframe import TOP_RESOURCE_LABELS EXPECTED = TOP_RESOURCE_LABELS + ('other-1', 'other-2') self.assertSequenceEqual(self._call_fut(EXPECTED), EXPECTED) def test_reversed(self): from google.cloud.monitoring._dataframe import TOP_RESOURCE_LABELS EXPECTED = TOP_RESOURCE_LABELS + ('other-1', 'other-2') INPUT = list(reversed(EXPECTED)) self.assertSequenceEqual(self._call_fut(INPUT), EXPECTED)
apache-2.0
fhqgfss/MoHa
moha/modelsystem/lattice.py
1
7577
'''Lattice for Model Hamiltonian''' import copy import numpy as np import matplotlib.pyplot as plt site_label_dir = {'0':'A','1':'B','2':'C','3':'D','4':'E'} site_color_dir = {'0':'b','1':'r','2':'g'} bond_label_dir = {'0':'a','1':'b','2':'c','3':'d','4':'e'} bond_color_dir = {'0':'b','1':'r','2':'g'} class LatticeSite(object): """Child class of LatticeSite""" def __init__(self,coordinate,label=None,color=None,markersize=80,marker='o'): """ Initialize of lattice site instance Parameters ---------- coordinate : list coordinate of the site label : str label of the site color : str color the the site in matplotlib marker : str type of marker in matplotlib markersize : int size of the marker in matplotlib """ self.coordinate = np.array(coordinate) self.label = label self.color = color self.marker = marker self.markersize = markersize class LatticeBond(object): """Bond of Lattice""" def __init__(self,cell1,site1,cell2,site2,color=None,label=None,linewidth=None,linetype=None): """ Initialize of lattice bond instance Parameters ---------- cell1 : list integer coordinate of first cell site1 : int index of first site cell2 : list integer coordinate of second cell site2 : int index of second site label : str label of the bond color : str color of the line in matplotlib linewidth : int integer to represent the width of line in matplotlib linetype : str str to represent the type of line in matplotlib """ self.cell1 = np.array(cell1) self.site1 = site1 self.cell2 = np.array(cell2) self.site2 = site2 coordinate1 = None coordinate2 = None self.color = color self.label = label self.linewidth = linewidth self.linetype = linetype class Cell(object): """Primitive cell of the lattice""" def __init__(self,dimension,a1,a2,a3): """ Initialize of cell instance Parameters ---------- dimension : int dimension of the cell, which can be 1, 2 or 3 a1 : list first component of primitive vector a2 : list second component of primitive vector a3 : list third component of primitive vector """ self.dimension = dimension self.a1 = np.array(a1) self.a2 = np.array(a2) self.a3 = np.array(a3) self.sites = [] self.bonds = [] self.Nsites = 0 self.Nbonds = 0 def add_site(self,site): """Add a lattice site instance to the cell Parameters ---------- site : LatticeXSite lattice site class """ if site.label==None: site.label = site_label_dir[str(self.Nsites)] if site.color==None: site.color = site_color_dir[str(self.Nsites)] self.sites.append(site) self.Nsites +=1 def add_bond(self,bond): """Add a lattice bond instance to the cell Parameters ---------- bond : LatticeBond lattice bond class """ if bond.label==None: bond.label = bond_label_dir[str(self.Nbonds)] if bond.color==None: bond.color = 'black' self.bonds.append(bond) self.Nbonds +=1 class Lattice(object): """Class for lattice""" def __init__(self, cell, shape): """Initialize of lattice instance Parameters ---------- cell : Cell Cell class shape : list a list of three integer dimension : int dimension of the lattice, which can be one two or three Nsites : int number of sites in the lattice sites : numpy array numpy array for element of site object bonds : list list of bond object """ self.cell = cell self.shape = shape self.dimension = cell.dimension self.Nsites = np.prod(shape) * self.cell.Nsites self.sites = np.zeros(self.shape+[self.cell.Nsites],dtype='object') self.bonds = [] self.build_sites() self.build_bonds() def build_sites(self): """Add all sites to the lattice.""" for i in range(self.shape[0]): for j in range(self.shape[1]): for k in range(self.shape[2]): for s,site in enumerate(self.cell.sites): newsite = copy.deepcopy(site) coordinate = self.cell.a1*i+\ self.cell.a2*j+\ self.cell.a3*k newsite.coordinate += coordinate self.sites[i,j,k,s] = newsite def build_bonds(self): """Add all bonds to the lattice.""" shape_prime = np.array([self.shape[0]-1,self.shape[1]-1,self.shape[2]-1]) zeros = np.array([0,0,0]) for i in range(self.shape[0]): for j in range(self.shape[1]): for k in range(self.shape[2]): for b,bond in enumerate(self.cell.bonds): newbond = copy.deepcopy(bond) newbond.cell1 += [i,j,k] newbond.cell2 += [i,j,k] #ToDo make a function to shorten those lines if np.prod(newbond.cell1 <= shape_prime) and np.prod(newbond.cell2<=shape_prime) and np.prod(zeros <=newbond.cell1) and np.prod(zeros <= newbond.cell2): newbond.coordinate1 = self.sites[newbond.cell1[0],newbond.cell1[1],newbond.cell1[2],newbond.site1].coordinate newbond.coordinate2 = self.sites[newbond.cell2[0],newbond.cell2[1],newbond.cell2[2],newbond.site2].coordinate self.bonds.append(newbond) def plotsite(self): """plot sites with matplotlib.""" if self.dimension==1 or self.dimension==2: for site in self.sites.flatten(): plt.scatter(site.coordinate[0],site.coordinate[1],marker=site.marker,s=site.markersize,c=site.color) elif self.dimension==3: from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = Axes3D(fig) for site in self.sites.flatten(): ax.scatter(site.coordinate[0],site.coordinate[1],site.coordinate[2],marker=site.marker,s=site.markersize,c=site.color) def plotbond(self): """plot bonds with matplotlib.""" if self.dimension==1 or self.dimension==2: for bond in self.bonds: x = [bond.coordinate1[0],bond.coordinate2[0]] y = [bond.coordinate1[1],bond.coordinate2[1]] plt.plot(x,y,c=bond.color) elif self.dimension==3: for bond in self.bonds: x = [bond.coordinate1[0],bond.coordinate2[0]] y = [bond.coordinate1[1],bond.coordinate2[1]] z = [bond.coordinate1[2],bond.coordinate2[2]] plt.plot(x,y,z,c=bond.color) def plot(self): """plot lattice and show it with matplotlib.""" self.plotsite() self.plotbond() plt.show()
mit
spallavolu/scikit-learn
sklearn/datasets/lfw.py
141
19372
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir from sklearn.utils import deprecated import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warning("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warning("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) # Checks if jpeg reading worked. Refer to issue #3594 for more # details. img = imread(file_path) if img.ndim is 0: raise RuntimeError("Failed to read the image file %s, " "Please make sure that libjpeg is installed" % file_path) face = np.asarray(img[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representaion face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # interating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828) Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47) Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_`` or resize parameters will change the shape of the output. target : numpy array of shape (13233,) Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) @deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
dkushner/zipline
tests/modelling/base.py
6
3402
""" Base class for FFC unit tests. """ from functools import wraps from unittest import TestCase from numpy import arange, prod from numpy.random import randn, seed as random_seed from pandas import date_range, Int64Index, DataFrame from six import iteritems from zipline.assets import AssetFinder from zipline.modelling.engine import SimpleFFCEngine from zipline.modelling.graph import TermGraph from zipline.utils.test_utils import make_simple_asset_info, ExplodingObject from zipline.utils.tradingcalendar import trading_day def with_defaults(**default_funcs): """ Decorator for providing dynamic default values for a method. Usages: @with_defaults(foo=lambda self: self.x + self.y) def func(self, foo): ... If a value is passed for `foo`, it will be used. Otherwise the function supplied to `with_defaults` will be called with `self` as an argument. """ def decorator(f): @wraps(f) def method(self, *args, **kwargs): for name, func in iteritems(default_funcs): if name not in kwargs: kwargs[name] = func(self) return f(self, *args, **kwargs) return method return decorator with_default_shape = with_defaults(shape=lambda self: self.default_shape) class BaseFFCTestCase(TestCase): def setUp(self): self.__calendar = date_range('2014', '2015', freq=trading_day) self.__assets = assets = Int64Index(arange(1, 20)) self.__finder = AssetFinder( make_simple_asset_info( assets, self.__calendar[0], self.__calendar[-1], ), db_path=':memory:', create_table=True, ) self.__mask = self.__finder.lifetimes(self.__calendar[-10:]) @property def default_shape(self): """Default shape for methods that build test data.""" return self.__mask.shape def run_terms(self, terms, initial_workspace, mask=None): """ Compute the given terms, seeding the workspace of our FFCEngine with `initial_workspace`. Parameters ---------- terms : dict Mapping from termname -> term object. Returns ------- results : dict Mapping from termname -> computed result. """ engine = SimpleFFCEngine( ExplodingObject(), self.__calendar, self.__finder, ) mask = mask if mask is not None else self.__mask return engine.compute_chunk(TermGraph(terms), mask, initial_workspace) def build_mask(self, array): ndates, nassets = array.shape return DataFrame( array, # Use the **last** N dates rather than the first N so that we have # space for lookbacks. index=self.__calendar[-ndates:], columns=self.__assets[:nassets], dtype=bool, ) @with_default_shape def arange_data(self, shape, dtype=float): """ Build a block of testing data from numpy.arange. """ return arange(prod(shape), dtype=dtype).reshape(shape) @with_default_shape def randn_data(self, seed, shape): """ Build a block of testing data from numpy.random.randn. """ random_seed(seed) return randn(*shape)
apache-2.0
ctk3b/mdtraj
mdtraj/core/topology.py
1
48926
############################################################################## # MDTraj: A Python Library for Loading, Saving, and Manipulating # Molecular Dynamics Trajectories. # Copyright 2012-2014 Stanford University and the Authors # # Authors: Peter Eastman, Robert McGibbon # Contributors: Kyle A. Beauchamp, Matthew Harrigan, Carlos Xavier Hernandez # # MDTraj is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 2.1 # of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with MDTraj. If not, see <http://www.gnu.org/licenses/>. # # Portions of this code originate from the OpenMM molecular simulation # toolkit, copyright (c) 2012 Stanford University and Peter Eastman. Those # portions are distributed under the following terms: # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. ############################################################################## ############################################################################## # Imports ############################################################################## from __future__ import print_function, division import itertools import numpy as np import os import xml.etree.ElementTree as etree from mdtraj.core import element as elem from mdtraj.core.residue_names import (_PROTEIN_RESIDUES, _WATER_RESIDUES, _AMINO_ACID_CODES) from mdtraj.core.selection import parse_selection from mdtraj.utils import ilen, import_, ensure_type from mdtraj.utils.six import string_types ############################################################################## # Utilities ############################################################################## def _topology_from_subset(topology, atom_indices): """Create a new topology that only contains the supplied indices Note ---- This really should be a copy constructor (class method) on Topology. It used to work on OpenMM topologies, but we've diverged where that no longer works. Parameters ---------- topology : mdtraj.Topology The base topology atom_indices : array_like, dtype=int The indices of the atoms to keep """ newTopology = Topology() old_atom_to_new_atom = {} for chain in topology._chains: newChain = newTopology.add_chain() for residue in chain._residues: resSeq = getattr(residue, 'resSeq', None) or residue.index newResidue = newTopology.add_residue(residue.name, newChain, resSeq, residue.segment_id) for atom in residue._atoms: if atom.index in atom_indices: try: # OpenMM Topology objects don't have serial attributes, so we have to check first. serial = atom.serial except AttributeError: serial = None newAtom = newTopology.add_atom(atom.name, atom.element, newResidue, serial=serial) old_atom_to_new_atom[atom] = newAtom bondsiter = topology.bonds if not hasattr(bondsiter, '__iter__'): bondsiter = bondsiter() for atom1, atom2 in bondsiter: try: newTopology.add_bond(old_atom_to_new_atom[atom1], old_atom_to_new_atom[atom2]) except KeyError: pass # we only put bonds into the new topology if both of their partners # were indexed and thus HAVE a new atom # Delete empty residues newTopology._residues = [r for r in newTopology._residues if len(r._atoms) > 0] for chain in newTopology._chains: chain._residues = [r for r in chain._residues if len(r._atoms) > 0] # Delete empty chains newTopology._chains = [c for c in newTopology._chains if len(c._residues) > 0] # Re-set the numAtoms and numResidues newTopology._numAtoms = ilen(newTopology.atoms) newTopology._numResidues = ilen(newTopology.residues) return newTopology ############################################################################## # Classes ############################################################################## class Topology(object): """Topology stores the topological information about a system. The structure of a Topology object is similar to that of a PDB file. It consists of a set of Chains (often but not always corresponding to polymer chains). Each Chain contains a set of Residues, and each Residue contains a set of Atoms. In addition, the Topology stores a list of which atom pairs are bonded to each other. Atom and residue names should follow the PDB 3.0 nomenclature for all molecules for which one exists. Attributes ---------- chains : generator Iterator over all Chains in the Topology. residues : generator Iterator over all Residues in the Chain. atoms : generator Iterator over all Atoms in the Chain. Examples -------- >>> topology = md.load('example.pdb').topology >>> print(topology) <mdtraj.Topology with 1 chains, 3 residues, 22 atoms, 21 bonds at 0x105a98e90> >>> table, bonds = topology.to_dataframe() >>> print(table.head()) serial name element resSeq resName chainID 0 0 H1 H 1 CYS 0 1 1 CH3 C 1 CYS 0 2 2 H2 H 1 CYS 0 3 3 H3 H 1 CYS 0 4 4 C C 1 CYS 0 >>> # rename residue "CYS" to "CYSS" >>> table[table['residue'] == 'CYS']['residue'] = 'CYSS' >>> print(table.head()) serial name element resSeq resName chainID 0 0 H1 H 1 CYSS 0 1 1 CH3 C 1 CYSS 0 2 2 H2 H 1 CYSS 0 3 3 H3 H 1 CYSS 0 4 4 C C 1 CYSS 0 >>> t2 = md.Topology.from_dataframe(table, bonds) """ _standardBonds = {} def __init__(self): """Create a new Topology object""" self._chains = [] self._numResidues = 0 self._numAtoms = 0 self._bonds = [] self._atoms = [] self._residues = [] def __ne__(self, other): return not self.__eq__(other) def __str__(self): return "<%s>" % (self._string_summary_basic()) def __repr__(self): return "<%s at 0x%02x>" % (self._string_summary_basic(), id(self)) def _string_summary_basic(self): return ("mdtraj.Topology with %d chains, %d residues, " "%d atoms, %d bonds" % (self.n_chains, self.n_residues, self.n_atoms, len(self._bonds))) def copy(self): """Return a copy of the topology Returns ------- out : Topology A copy of this topology """ out = Topology() for chain in self.chains: c = out.add_chain() for residue in chain.residues: r = out.add_residue(residue.name, c, residue.resSeq, residue.segment_id) for atom in residue.atoms: out.add_atom(atom.name, atom.element, r, serial=atom.serial) for a1, a2 in self.bonds: out.add_bond(a1, a2) return out def __copy__(self, *args): return self.copy() def __deepcopy__(self, *args): return self.copy() def __hash__(self): hash_value = hash(tuple(self._chains)) hash_value ^= hash(tuple(self._atoms)) hash_value ^= hash(tuple(self._bonds)) hash_value ^= hash(tuple(self._residues)) return hash_value def join(self, other): """Join two topologies together Parameters ---------- other : Topology Another topology object Returns ------- out : Topology A joint topology, with all of the atoms/residues/chains/bonds in each of the individual topologies """ if not isinstance(other, Topology): raise ValueError('other must be an instance of Topology to join') out = self.copy() atom_mapping = {} for chain in other.chains: c = out.add_chain() for residue in chain.residues: r = out.add_residue(residue.name, c, residue.resSeq, residue.segment_id) for atom in residue.atoms: a = out.add_atom(atom.name, atom.element, r, serial=atom.serial) atom_mapping[atom] = a for a1, a2 in other.bonds: out.add_bond(atom_mapping[a1], atom_mapping[a2]) return out def to_fasta(self, chain=None): """Convert this topology into FASTA string Parameters ---------- chain : Integer, optional, default=None If specified, will return the FASTA string for this chain in the Topology. Returns ------- fasta : String or list of Strings A FASTA string for each chain specified. """ fasta = lambda c: "".join([res.code for res in c.residues if res.is_protein and res.code is not None]) if chain is not None: if not isinstance(chain, int): raise ValueError('chain must be an Integer.') return fasta(self._chains[chain]) else: return [fasta(c) for c in self._chains] def to_openmm(self, traj=None): """Convert this topology into OpenMM topology Parameters ---------- traj : MDTraj.Trajectory, optional, default=None If specified, use the first frame from this trajectory to set the unitcell information in the openmm topology. Returns ------- topology : simtk.openmm.app.Topology This topology, as an OpenMM topology """ app = import_('simtk.openmm.app') mm = import_('simtk.openmm') u = import_('simtk.unit') out = app.Topology() atom_mapping = {} for chain in self.chains: c = out.addChain() for residue in chain.residues: r = out.addResidue(residue.name, c) for atom in residue.atoms: if atom.element is elem.virtual: element = None else: element = app.Element.getBySymbol(atom.element.symbol) a = out.addAtom(atom.name, element, r) atom_mapping[atom] = a for a1, a2 in self.bonds: out.addBond(atom_mapping[a1], atom_mapping[a2]) if traj is not None: angles = traj.unitcell_angles[0] if np.linalg.norm(angles - 90.0) > 1E-4: raise(ValueError("Unitcell angles must be 90.0 to use " "in OpenMM topology.")) box_vectors = mm.Vec3(*traj.unitcell_lengths[0]) * u.nanometer out.setUnitCellDimensions(box_vectors) return out @classmethod def from_openmm(cls, value): """Create a mdtraj topology from an OpenMM topology Parameters ---------- value : simtk.openmm.app.Topology An OpenMM topology that you wish to convert to a mdtraj topology. """ app = import_('simtk.openmm.app') if not isinstance(value, app.Topology): raise TypeError('value must be an OpenMM Topology. ' 'You supplied a %s' % type(value)) out = cls() atom_mapping = {} for chain in value.chains(): c = out.add_chain() for residue in chain.residues(): r = out.add_residue(residue.name, c) for atom in residue.atoms(): if atom.element is None: element = elem.virtual else: element = elem.get_by_symbol(atom.element.symbol) a = out.add_atom(atom.name, element, r) atom_mapping[atom] = a for a1, a2 in value.bonds(): out.add_bond(atom_mapping[a1], atom_mapping[a2]) return out def to_dataframe(self): """Convert this topology into a pandas dataframe Returns ------- atoms : pandas.DataFrame The atoms in the topology, represented as a data frame. bonds : np.ndarray The bonds in this topology, represented as an n_bonds x 2 array of the indices of the atoms involved in each bond. """ pd = import_('pandas') data = [(atom.serial, atom.name, atom.element.symbol, atom.residue.resSeq, atom.residue.name, atom.residue.chain.index,atom.segment_id) for atom in self.atoms] atoms = pd.DataFrame(data, columns=["serial", "name", "element", "resSeq", "resName", "chainID","segmentID"]) bonds = np.array([(a.index, b.index) for (a, b) in self.bonds]) return atoms, bonds @classmethod def from_dataframe(cls, atoms, bonds=None): """Create a mdtraj topology from a pandas data frame Parameters ---------- atoms : pandas.DataFrame The atoms in the topology, represented as a data frame. This data frame should have columns "serial" (atom index), "name" (atom name), "element" (atom's element), "resSeq" (index of the residue) "resName" (name of the residue), "chainID" (index of the chain), and optionally "segmentID", following the same conventions as wwPDB 3.0 format. bonds : np.ndarray, shape=(n_bonds, 2), dtype=int, optional The bonds in the topology, represented as an n_bonds x 2 array of the indices of the atoms involved in each bond. Specifiying bonds here is optional. To create standard protein bonds, you can use `create_standard_bonds` to "fill in" the bonds on your newly created Topology object See Also -------- create_standard_bonds """ pd = import_('pandas') if bonds is None: bonds = np.zeros((0, 2)) for col in ["name", "element", "resSeq", "resName", "chainID", "serial"]: if col not in atoms.columns: raise ValueError('dataframe must have column %s' % col) if "segmentID" not in atoms.columns: atoms["segmentID"] = "" out = cls() if not isinstance(atoms, pd.DataFrame): raise TypeError('atoms must be an instance of pandas.DataFrame. ' 'You supplied a %s' % type(atoms)) if not isinstance(bonds, np.ndarray): raise TypeError('bonds must be an instance of numpy.ndarray. ' 'You supplied a %s' % type(bonds)) if not np.all(np.arange(len(atoms)) == atoms.index): raise ValueError('atoms must be uniquely numbered ' 'starting from zero.') out._atoms = [None for i in range(len(atoms))] for ci in np.unique(atoms['chainID']): chain_atoms = atoms[atoms['chainID'] == ci] c = out.add_chain() for ri in np.unique(chain_atoms['resSeq']): residue_atoms = chain_atoms[chain_atoms['resSeq'] == ri] rnames = residue_atoms['resName'] residue_name = np.array(rnames)[0] segids = residue_atoms['segmentID'] segment_id = np.array(segids)[0] if not np.all(rnames == residue_name): raise ValueError('All of the atoms with residue index %d ' 'do not share the same residue name' % ri) r = out.add_residue(residue_name, c, ri,segment_id) for atom_index, atom in residue_atoms.iterrows(): atom_index = int(atom_index) # Fixes bizarre hashing issue on Py3K. See #545 a = Atom(atom['name'], elem.get_by_symbol(atom['element']), atom_index, r, serial=atom['serial']) out._atoms[atom_index] = a r._atoms.append(a) for ai1, ai2 in bonds: out.add_bond(out.atom(ai1), out.atom(ai2)) out._numAtoms = out.n_atoms return out def to_bondgraph(self): """Create a NetworkX graph from the atoms and bonds in this topology Returns ------- g : nx.Graph A graph whose nodes are the Atoms in this topology, and whose edges are the bonds See Also -------- atoms bonds Notes ----- This method requires the NetworkX python package. """ nx = import_('networkx') g = nx.Graph() g.add_nodes_from(self.atoms) g.add_edges_from(self.bonds) return g def __eq__(self, other): """Are two topologies equal? Parameters ---------- other : object The object to compare to Returns ------- equality : bool Are the two topologies identical? """ if not isinstance(other, Topology): return False if self is other: return True if len(self._chains) != len(other._chains): return False for c1, c2 in zip(self.chains, other.chains): if c1.index != c2.index: return False if len(c1._residues) != len(c2._residues): return False for r1, r2 in zip(c1.residues, c2.residues): if (r1.index != r1.index) or (r1.name != r2.name): # or (r1.resSeq != r2.resSeq): return False if len(r1._atoms) != len(r2._atoms): return False for a1, a2 in zip(r1.atoms, r2.atoms): if (a1.index != a2.index) or (a1.name != a2.name): return False if a1.element is not a2.element: return False # for attr in ['atomic_number', 'name', 'symbol']: # if getattr(a1.element, attr) != getattr(a2.element, attr): # return False if len(self._bonds) != len(other._bonds): return False # the bond ordering is somewhat ambiguous, so try and fix it for comparison self_sorted_bonds = sorted([(a1.index, b1.index) for (a1, b1) in self.bonds]) other_sorted_bonds = sorted([(a2.index, b2.index) for (a2, b2) in other.bonds]) for i in range(len(self._bonds)): (a1, b1) = self_sorted_bonds[i] (a2, b2) = other_sorted_bonds[i] if (a1 != a2) or (b1 != b2): return False return True def add_chain(self): """Create a new Chain and add it to the Topology. Returns ------- chain : mdtraj.topology.Chain the newly created Chain """ chain = Chain(len(self._chains), self) self._chains.append(chain) return chain def add_residue(self, name, chain, resSeq=None, segment_id=""): """Create a new Residue and add it to the Topology. Parameters ---------- name : str The name of the residue to add chain : mdtraj.topology.Chain The Chain to add it to resSeq : int, optional Residue sequence number, such as from a PDB record. These sequence numbers are arbitrary, and do not necessarily start at 0 (or 1). If not supplied, the resSeq attribute will be set to the residue's sequential (0 based) index. segment_id : str, optional A label for the segment to which this residue belongs Returns ------- residue : mdtraj.topology.Residue The newly created Residue """ if resSeq is None: resSeq = self._numResidues residue = Residue(name, self._numResidues, chain, resSeq, segment_id) self._residues.append(residue) self._numResidues += 1 chain._residues.append(residue) return residue def add_atom(self, name, element, residue, serial=None): """Create a new Atom and add it to the Topology. Parameters ---------- name : str The name of the atom to add element : mdtraj.element.Element The element of the atom to add residue : mdtraj.topology.Residue The Residue to add it to serial : int Serial number associated with the atom. Returns ------- atom : mdtraj.topology.Atom the newly created Atom """ if element is None: element = elem.virtual atom = Atom(name, element, self._numAtoms, residue, serial=serial) self._atoms.append(atom) self._numAtoms += 1 residue._atoms.append(atom) return atom def add_bond(self, atom1, atom2): """Create a new bond and add it to the Topology. Parameters ---------- atom1 : mdtraj.topology.Atom The first Atom connected by the bond atom2 : mdtraj.topology.Atom The second Atom connected by the bond """ if atom1.index < atom2.index: self._bonds.append((atom1, atom2)) else: self._bonds.append((atom2, atom1)) def chain(self, index): """Get a specific chain by index. These indices start from zero. Parameters ---------- index : int The index of the chain to select. Returns ------- chain : Chain The `index`-th chain in the topology. """ return self._chains[index] @property def chains(self): """Iterator over all Chains in the Topology. Returns ------- chainiter : listiterator Iterator over all Chains in the Topology. """ return iter(self._chains) @property def n_chains(self): """Get the number of chains in the Topology""" return len(self._chains) def residue(self, index): """Get a specific residue by index. These indices start from zero. Parameters ---------- index : int The index of the residue to select. Returns ------- residue : Residue The `index`-th residue in the topology. """ return self._residues[index] @property def residues(self): """Iterator over all Residues in the Topology. Returns ------- residueiter : generator Iterator over all Residues in the Topology. """ for chain in self._chains: for residue in chain._residues: yield residue @property def n_residues(self): """Get the number of residues in the Topology. """ return len(self._residues) def atom(self, index): """Get a specific atom by index. These indices start from zero. Parameters ---------- index : int The index of the atom to select. Returns ------- atom : Atom The `index`-th atom in the topology. """ return self._atoms[index] @property def atoms(self): """Iterator over all Atoms in the Topology. Returns ------- atomiter : generator Iterator over all Atoms in the Topology. """ for chain in self._chains: for residue in chain._residues: for atom in residue._atoms: yield atom def atoms_by_name(self, name): """Iterator over all Atoms in the Topology with a specified name Parameters ---------- name : str The particular atom name of interest. Examples -------- >>> for atom in topology.atoms_by_name('CA'): ... print(atom) Returns ------- atomiter : generator """ for atom in self.atoms: if atom.name == name: yield atom @property def n_atoms(self): """Get the number of atoms in the Topology""" return len(self._atoms) @property def bonds(self): """Iterator over all bonds (each represented as a tuple of two Atoms) in the Topology. Returns ------- atomiter : generator Iterator over all tuple of Atoms in the Trajectory involved in a bond. """ return iter(self._bonds) @property def n_bonds(self): """Get the number of bonds in the Topology""" return len(self._bonds) def create_standard_bonds(self): """Create bonds based on the atom and residue names for all standard residue types. """ if len(Topology._standardBonds) == 0: # Load the standard bond defitions. tree = etree.parse(os.path.join(os.path.dirname(__file__), '..', 'formats', 'pdb', 'data', 'residues.xml')) for residue in tree.getroot().findall('Residue'): bonds = [] Topology._standardBonds[residue.attrib['name']] = bonds for bond in residue.findall('Bond'): bonds.append((bond.attrib['from'], bond.attrib['to'])) for chain in self._chains: # First build a map of atom names to atoms. atomMaps = [] for residue in chain._residues: atomMap = {} atomMaps.append(atomMap) for atom in residue._atoms: atomMap[atom.name] = atom # Loop over residues and construct bonds. for i in range(len(chain._residues)): name = chain._residues[i].name if name in Topology._standardBonds: for bond in Topology._standardBonds[name]: if bond[0].startswith('-') and i > 0: fromResidue = i-1 fromAtom = bond[0][1:] elif (bond[0].startswith('+') and i < len(chain._residues)): fromResidue = i+1 fromAtom = bond[0][1:] else: fromResidue = i fromAtom = bond[0] if bond[1].startswith('-') and i > 0: toResidue = i-1 toAtom = bond[1][1:] elif (bond[1].startswith('+') and i < len(chain._residues)): toResidue = i+1 toAtom = bond[1][1:] else: toResidue = i toAtom = bond[1] if (fromAtom in atomMaps[fromResidue] and toAtom in atomMaps[toResidue]): self.add_bond(atomMaps[fromResidue][fromAtom], atomMaps[toResidue][toAtom]) def create_disulfide_bonds(self, positions): """Identify disulfide bonds based on proximity and add them to the Topology. Parameters ---------- positions : list The list of atomic positions based on which to identify bonded atoms """ def isCyx(res): names = [atom.name for atom in res._atoms] return 'SG' in names and 'HG' not in names cyx = [res for res in self.residues if res.name == 'CYS' and isCyx(res)] atomNames = [[atom.name for atom in res._atoms] for res in cyx] for i in range(len(cyx)): sg1 = cyx[i]._atoms[atomNames[i].index('SG')] pos1 = positions[sg1.index] for j in range(i): sg2 = cyx[j]._atoms[atomNames[j].index('SG')] pos2 = positions[sg2.index] delta = [x-y for (x, y) in zip(pos1, pos2)] distance = np.sqrt( delta[0]*delta[0] + delta[1]*delta[1] + delta[2]*delta[2]) if distance < 0.3: # this is supposed to be nm. I think we're good self.add_bond(sg1, sg2) def subset(self, atom_indices): """Create a new Topology from a subset of the atoms in an existing topology. Notes ----- The existing topology will not be altered. Parameters ---------- atom_indices : array_like A list of the indices corresponding to the atoms in that you'd like to retain. """ return _topology_from_subset(self, atom_indices) def select_expression(self, selection_string): """Translate a atom selection expression into a pure python expression. Parameters ---------- selection_string : str An expression in the MDTraj atom selection DSL Examples -------- >>> topology.select_expression('name O and water') "[atom.index for atom in topology.atoms if ((atom.name == 'O') and atom.residue.is_water)]") Returns ------- python_string : str A string containing a pure python expression, equivalent to the selection expression. """ condition = parse_selection(selection_string).source fmt_string = "[atom.index for atom in topology.atoms if {condition}]" return fmt_string.format(condition=condition) def select(self, selection_string): """Execute a selection against the topology Parameters ---------- selection_string : str An expression in the MDTraj atom selection DSL Examples -------- >>> topology.select('name O and water') array([1, 3, 5, 10, ...]) Returns ------- indices : np.ndarray, dtype=int, ndim=1 Array of the indices of the atoms matching the selection expression. See Also -------- select_expression, mdtraj.core.selection.parse_selection """ filter_func = parse_selection(selection_string).expr indices = np.array([a.index for a in self.atoms if filter_func(a)]) return indices def select_atom_indices(self, selection='minimal'): """Get the indices of biologically-relevant groups by name. Parameters ---------- selection : {'all', 'alpha', 'minimal', 'heavy', 'water'} What types of atoms to select. ``all`` All atoms ``alpha`` Protein residue alpha carbons ``minimal`` Keep the atoms in protein residues with names in {CA, CB, C, N, O} ``heavy`` All non-hydrogen protein atoms. ``water`` Water oxygen atoms Returns ---------- indices : np.ndarray (N,) An array of the indices of the selected atoms. """ selection = selection.lower() options = ['all', 'alpha', 'minimal', 'heavy', 'water'] if selection == 'all': atom_indices = np.arange(self.n_atoms) elif selection == 'alpha': atom_indices = [a.index for a in self.atoms if a.name == 'CA' and a.residue.is_protein] elif selection == 'minimal': atom_indices = [a.index for a in self.atoms if a.name in ['CA', 'CB', 'C', 'N', 'O'] and a.residue.is_protein] elif selection == 'heavy': atom_indices = [a.index for a in self.atoms if a.element != elem.hydrogen and a.residue.is_protein] elif selection == 'water': atom_indices = [a.index for a in self.atoms if a.name in ['O', 'OW'] and a.residue.is_water] else: raise ValueError( '%s is not a valid option. Selection must be one of %s' % ( selection, ', '.join(options))) indices = np.array(atom_indices) return indices def select_pairs(self, selection1=None, selection2=None): """Generate unique pairs of atom indices. If a selecton is a string, it will be resolved using the atom selection DSL, otherwise it is expected to be an array of atom indices. Parameters ---------- selection1 : str or array-like, shape=(n_indices, ), dtype=int A selection for `select()` or an array of atom indices. selection2 : str or array-like, shape=(n_indices, ), dtype=int A selection for `select()` or an array of atom indices. Returns ------- pairs : array-like, shape=(n_pairs, 2), dtype=int Each row gives the indices of two atoms. """ # Resolve selections using the atom selection DSL... if isinstance(selection1, string_types): a_indices = self.select(selection1) else: # ...or use a provided array of indices. a_indices = ensure_type(selection1, dtype=np.int32, ndim=1, name='a_indices', warn_on_cast=False) if isinstance(selection2, string_types): b_indices = self.select(selection2) else: b_indices = ensure_type(selection2, dtype=np.int32, ndim=1, name='b_indices', warn_on_cast=False) a_indices.sort() b_indices.sort() # Create unique pairs from the indices. # In the cases where a_indices and b_indices are identical or mutually # exclusive, we can utilize a more efficient and memory friendly # approach by removing the intermediate set creation required in # the general case. if np.array_equal(a_indices, b_indices): pairs = self._unique_pairs_equal(a_indices) elif len(np.intersect1d(a_indices, b_indices)) == 0: pairs = self._unique_pairs_mutually_exclusive(a_indices, b_indices) else: pairs = self._unique_pairs(a_indices, b_indices) return pairs @classmethod def _unique_pairs(cls, a_indices, b_indices): return np.array(list(set( (a, b) if a > b else (b, a) for a, b in itertools.product(a_indices, b_indices) if a != b)), dtype=np.int32) @classmethod def _unique_pairs_mutually_exclusive(cls, a_indices, b_indices): pairs = np.fromiter(itertools.chain.from_iterable( itertools.product(a_indices, b_indices)), dtype=np.int32, count=len(a_indices) * len(b_indices) * 2) return np.vstack((pairs[::2], pairs[1::2])).T @classmethod def _unique_pairs_equal(cls, a_indices): pairs = np.fromiter(itertools.chain.from_iterable( itertools.combinations(a_indices, 2)), dtype=np.int32, count=len(a_indices) * (len(a_indices) - 1)) return np.vstack((pairs[::2], pairs[1::2])).T def find_molecules(self): """Identify molecules based on bonds. A molecule is defined as a set of atoms that are connected to each other by bonds. This method uses the list of bonds to divide up the Topology's atoms into molecules. Returns ------- molecules : list of sets Each entry represents one molecule, and is the set of all Atoms in that molecule """ if len(self._bonds) == 0 and any(res.n_atoms > 1 for res in self._residues): raise ValueError('Cannot identify molecules because this Topology does not include bonds') # Make a list of every other atom to which each atom is connected. num_atoms = self.n_atoms atom_bonds = [[] for i in range(num_atoms)] for atom1, atom2 in self.bonds: atom_bonds[atom1.index].append(atom2.index) atom_bonds[atom2.index].append(atom1.index) # This is essentially a recursive algorithm, but it is reformulated as a loop to avoid # stack overflows. It selects an atom, marks it as a new molecule, then recursively # marks every atom bonded to it as also being in that molecule. atom_molecule = [-1]*num_atoms num_molecules = 0 for i in range(num_atoms): if atom_molecule[i] == -1: # Start a new molecule. atom_stack = [i] neighbor_stack = [0] molecule = num_molecules num_molecules += 1 # Recursively tag all the bonded atoms. while len(atom_stack) > 0: atom = atom_stack[-1] atom_molecule[atom] = molecule while neighbor_stack[-1] < len(atom_bonds[atom]) and atom_molecule[atom_bonds[atom][neighbor_stack[-1]]] != -1: neighbor_stack[-1] += 1 if neighbor_stack[-1] < len(atom_bonds[atom]): atom_stack.append(atom_bonds[atom][neighbor_stack[-1]]) neighbor_stack.append(0) else: del atom_stack[-1] del neighbor_stack[-1] # Build the final output. molecules = [set() for i in range(num_molecules)] for atom in self.atoms: molecules[atom_molecule[atom.index]].add(atom) return molecules class Chain(object): """A Chain object represents a chain within a Topology. Attributes ---------- index : int The index of the Chain within its Topology topology : mdtraj.Topology The Topology this Chain belongs to residues : generator Iterator over all Residues in the Chain. atoms : generator Iterator over all Atoms in the Chain. """ def __init__(self, index, topology): """Construct a new Chain. You should call add_chain() on the Topology instead of calling this directly.""" # The index of the Chain within its Topology self.index = index # The Topology this Chain belongs to self.topology = topology self._residues = [] @property def residues(self): """Iterator over all Residues in the Chain. Returns ------- residueiter : listiterator Iterator over all Residues in the Topology. """ return iter(self._residues) def residue(self, index): """Get a specific residue in this Chain. Parameters ---------- index : int The index of the residue to select. Returns ------- residue : Residue """ return self._residues[index] @property def n_residues(self): """Get the number of residues in this Chain. """ return len(self._residues) @property def atoms(self): """Iterator over all Atoms in the Chain. Returns ------- atomiter : generator Iterator over all Atoms in the Chain. """ for residue in self._residues: for atom in residue._atoms: yield atom def atoms_by_name(self, name): """Iterator over all Atoms in the Chain with a specified name. Parameters ---------- name : str The particular atom name of interest. Examples -------- >>> for atom in chain.atoms_by_name('CA'): ... print(atom) Returns ------- atomiter : generator """ for atom in self.atoms: if atom.name == name: yield atom def atom(self, index): """Get a specific atom in this Chain. Parameters ---------- index : int The index of the atom to select. Returns ------- atom : Atom """ # this could be made faster by caching the list # of atoms internally if necessary return next(itertools.islice(self.atoms, index, index + 1)) @property def n_atoms(self): """Get the number of atoms in this Chain""" return sum(r.n_atoms for r in self._residues) class Residue(object): """A Residue object represents a residue within a Topology. Attributes ---------- name : str The name of the Residue index : int The index of the Residue within its Topology chain : mdtraj.topology.Chain The chain within which this residue belongs resSeq : int The residue sequence number segment_id : str, optional A label for the segment to which this residue belongs """ def __init__(self, name, index, chain, resSeq, segment_id=''): """Construct a new Residue. You should call add_residue() on the Topology instead of calling this directly.""" self.name = name self.index = index self.chain = chain self.resSeq = resSeq self.segment_id = segment_id self._atoms = [] @property def atoms(self): """Iterator over all Atoms in the Residue. Returns ------- atomiter : listiterator Iterator over all Atoms in the Residue. """ return iter(self._atoms) def atoms_by_name(self, name): """Iterator over all Atoms in the Residue with a specified name Parameters ---------- name : str The particular atom name of interest. Examples -------- >>> for atom in residue.atoms_by_name('CA'): ... print(atom) Returns ------- atomiter : generator """ for atom in self.atoms: if atom.name == name: yield atom def atom(self, index_or_name): """Get a specific atom in this Residue. Parameters ---------- index_or_name : {int, str} Either a (zero-based) index, or the name of the atom. If a string is passed in, the first atom -- in index order -- with a matching name wil be returned. Returns ------- atom : Atom """ try: return self._atoms[index_or_name] except TypeError: try: return next(self.atoms_by_name(index_or_name)) except StopIteration: raise KeyError('no matching atom found') @property def n_atoms(self): """Get the number of atoms in this Residue""" return len(self._atoms) @property def is_protein(self): """Whether the residue is one found in proteins.""" return self.name in _PROTEIN_RESIDUES @property def code(self): """Get the one letter code for this Residue""" if self.is_protein: return _AMINO_ACID_CODES[self.name] else: return None @property def is_water(self): """Whether the residue is water. Residue names according to VMD References ---------- http://www.ks.uiuc.edu/Research/vmd/vmd-1.3/ug/node133.html """ return self.name in _WATER_RESIDUES @property def is_nucleic(self): """Whether the residue is one found in nucleic acids.""" raise NotImplementedError def __str__(self): return '%s%s' % (self.name, self.resSeq) def __repr__(self): return str(self) class Atom(object): """An Atom object represents a residue within a Topology. Attributes ---------- name : str The name of the Atom element : mdtraj.element.Element The element of the Atoms index : int The index of the Atom within its Topology residue : mdtraj.topology.Residue The Residue this Atom belongs to serial : int The serial number from the PDB specification. Unlike index, this may not be contiguous or 0-indexed. """ def __init__(self, name, element, index, residue, serial=None): """Construct a new Atom. You should call add_atom() on the Topology instead of calling this directly.""" # The name of the Atom self.name = name # That Atom's element self.element = element # The index of the Atom within its Topology self.index = index # The Residue this Atom belongs to self.residue = residue # The not-necessarily-contiguous "serial" number from the PDB spec self.serial = serial @property def n_bonds(self): """Number of bonds in which the atom participates.""" # TODO: this info could be cached. return ilen(bond for bond in self.residue.chain.topology.bonds if self in bond) @property def is_backbone(self): """Whether the atom is in the backbone of a protein residue""" return (self.name in set(['C', 'CA', 'N', 'O']) and self.residue.is_protein) @property def is_sidechain(self): """Whether the atom is in the sidechain of a protein residue""" return (self.name not in set(['C', 'CA', 'N', 'O']) and self.residue.is_protein) @property def segment_id(self): """User specified segment_id of the residue to which this atom belongs""" return self.residue.segment_id def __eq__(self, other): """ Check whether two Atom objects are equal. """ if self.name != other.name: return False if self.index != other.index: return False if self.element.name != other.element.name: return False if self.residue.name != other.residue.name: return False if self.residue.index != other.residue.index: return False if self.residue.chain.index != other.residue.chain.index: return False return True def __hash__(self): """A quick comparison. """ return self.index def __str__(self): return '%s-%s' % (self.residue, self.name) def __repr__(self): return str(self)
lgpl-2.1
jeffery-do/Vizdoombot
doom/lib/python3.5/site-packages/matplotlib/sankey.py
8
40828
#!/usr/bin/env python """ Module for creating Sankey diagrams using matplotlib """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from matplotlib.externals.six.moves import zip # Original version by Yannick Copin ([email protected]) 10/2/2010, available # at: # http://matplotlib.org/examples/api/sankey_demo_old.html # Modifications by Kevin Davies ([email protected]) 6/3/2011: # --Used arcs for the curves (so that the widths of the paths are uniform) # --Converted the function to a class and created methods to join multiple # simple Sankey diagrams # --Provided handling for cases where the total of the inputs isn't 100 # Now, the default layout is based on the assumption that the inputs sum to # 1. A scaling parameter can be used in other cases. # --The call structure was changed to be more explicit about layout, # including the length of the trunk, length of the paths, gap between the # paths, and the margin around the diagram. # --Allowed the lengths of paths to be adjusted individually, with an option # to automatically justify them # --The call structure was changed to make the specification of path # orientation more flexible. Flows are passed through one array, with # inputs being positive and outputs being negative. An orientation # argument specifies the direction of the arrows. The "main" # inputs/outputs are now specified via an orientation of 0, and there may # be several of each. # --Changed assertions to ValueError to catch common calling errors (by # Francesco Montesano, [email protected]) # --Added the physical unit as a string argument to be used in the labels, so # that the values of the flows can usually be applied automatically # --Added an argument for a minimum magnitude below which flows are not shown # --Added a tapered trunk in the case that the flows do not sum to 0 # --Allowed the diagram to be rotated import numpy as np from matplotlib.cbook import iterable, Bunch from matplotlib.path import Path from matplotlib.patches import PathPatch from matplotlib.transforms import Affine2D from matplotlib import verbose from matplotlib import docstring __author__ = "Kevin L. Davies" __credits__ = ["Yannick Copin"] __license__ = "BSD" __version__ = "2011/09/16" # Angles [deg/90] RIGHT = 0 UP = 1 # LEFT = 2 DOWN = 3 class Sankey(object): """ Sankey diagram in matplotlib Sankey diagrams are a specific type of flow diagram, in which the width of the arrows is shown proportionally to the flow quantity. They are typically used to visualize energy or material or cost transfers between processes. `Wikipedia (6/1/2011) <http://en.wikipedia.org/wiki/Sankey_diagram>`_ """ def __init__(self, ax=None, scale=1.0, unit='', format='%G', gap=0.25, radius=0.1, shoulder=0.03, offset=0.15, head_angle=100, margin=0.4, tolerance=1e-6, **kwargs): """ Create a new Sankey instance. Optional keyword arguments: =============== =================================================== Field Description =============== =================================================== *ax* axes onto which the data should be plotted If *ax* isn't provided, new axes will be created. *scale* scaling factor for the flows *scale* sizes the width of the paths in order to maintain proper layout. The same scale is applied to all subdiagrams. The value should be chosen such that the product of the scale and the sum of the inputs is approximately 1.0 (and the product of the scale and the sum of the outputs is approximately -1.0). *unit* string representing the physical unit associated with the flow quantities If *unit* is None, then none of the quantities are labeled. *format* a Python number formatting string to be used in labeling the flow as a quantity (i.e., a number times a unit, where the unit is given) *gap* space between paths that break in/break away to/from the top or bottom *radius* inner radius of the vertical paths *shoulder* size of the shoulders of output arrowS *offset* text offset (from the dip or tip of the arrow) *head_angle* angle of the arrow heads (and negative of the angle of the tails) [deg] *margin* minimum space between Sankey outlines and the edge of the plot area *tolerance* acceptable maximum of the magnitude of the sum of flows The magnitude of the sum of connected flows cannot be greater than *tolerance*. =============== =================================================== The optional arguments listed above are applied to all subdiagrams so that there is consistent alignment and formatting. If :class:`Sankey` is instantiated with any keyword arguments other than those explicitly listed above (``**kwargs``), they will be passed to :meth:`add`, which will create the first subdiagram. In order to draw a complex Sankey diagram, create an instance of :class:`Sankey` by calling it without any kwargs:: sankey = Sankey() Then add simple Sankey sub-diagrams:: sankey.add() # 1 sankey.add() # 2 #... sankey.add() # n Finally, create the full diagram:: sankey.finish() Or, instead, simply daisy-chain those calls:: Sankey().add().add... .add().finish() .. seealso:: :meth:`add` :meth:`finish` **Examples:** .. plot:: mpl_examples/api/sankey_demo_basics.py """ # Check the arguments. if gap < 0: raise ValueError( "The gap is negative.\nThis isn't allowed because it " "would cause the paths to overlap.") if radius > gap: raise ValueError( "The inner radius is greater than the path spacing.\n" "This isn't allowed because it would cause the paths to overlap.") if head_angle < 0: raise ValueError( "The angle is negative.\nThis isn't allowed " "because it would cause inputs to look like " "outputs and vice versa.") if tolerance < 0: raise ValueError( "The tolerance is negative.\nIt must be a magnitude.") # Create axes if necessary. if ax is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[]) self.diagrams = [] # Store the inputs. self.ax = ax self.unit = unit self.format = format self.scale = scale self.gap = gap self.radius = radius self.shoulder = shoulder self.offset = offset self.margin = margin self.pitch = np.tan(np.pi * (1 - head_angle / 180.0) / 2.0) self.tolerance = tolerance # Initialize the vertices of tight box around the diagram(s). self.extent = np.array((np.inf, -np.inf, np.inf, -np.inf)) # If there are any kwargs, create the first subdiagram. if len(kwargs): self.add(**kwargs) def _arc(self, quadrant=0, cw=True, radius=1, center=(0, 0)): """ Return the codes and vertices for a rotated, scaled, and translated 90 degree arc. Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *quadrant* uses 0-based indexing (0, 1, 2, or 3) *cw* if True, clockwise *center* (x, y) tuple of the arc's center =============== ========================================== """ # Note: It would be possible to use matplotlib's transforms to rotate, # scale, and translate the arc, but since the angles are discrete, # it's just as easy and maybe more efficient to do it here. ARC_CODES = [Path.LINETO, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4] # Vertices of a cubic Bezier curve approximating a 90 deg arc # These can be determined by Path.arc(0,90). ARC_VERTICES = np.array([[1.00000000e+00, 0.00000000e+00], [1.00000000e+00, 2.65114773e-01], [8.94571235e-01, 5.19642327e-01], [7.07106781e-01, 7.07106781e-01], [5.19642327e-01, 8.94571235e-01], [2.65114773e-01, 1.00000000e+00], # Insignificant # [6.12303177e-17, 1.00000000e+00]]) [0.00000000e+00, 1.00000000e+00]]) if quadrant == 0 or quadrant == 2: if cw: vertices = ARC_VERTICES else: vertices = ARC_VERTICES[:, ::-1] # Swap x and y. elif quadrant == 1 or quadrant == 3: # Negate x. if cw: # Swap x and y. vertices = np.column_stack((-ARC_VERTICES[:, 1], ARC_VERTICES[:, 0])) else: vertices = np.column_stack((-ARC_VERTICES[:, 0], ARC_VERTICES[:, 1])) if quadrant > 1: radius = -radius # Rotate 180 deg. return list(zip(ARC_CODES, radius * vertices + np.tile(center, (ARC_VERTICES.shape[0], 1)))) def _add_input(self, path, angle, flow, length): """ Add an input to a path and return its tip and label locations. """ if angle is None: return [0, 0], [0, 0] else: x, y = path[-1][1] # Use the last point as a reference. dipdepth = (flow / 2) * self.pitch if angle == RIGHT: x -= length dip = [x + dipdepth, y + flow / 2.0] path.extend([(Path.LINETO, [x, y]), (Path.LINETO, dip), (Path.LINETO, [x, y + flow]), (Path.LINETO, [x + self.gap, y + flow])]) label_location = [dip[0] - self.offset, dip[1]] else: # Vertical x -= self.gap if angle == UP: sign = 1 else: sign = -1 dip = [x - flow / 2, y - sign * (length - dipdepth)] if angle == DOWN: quadrant = 2 else: quadrant = 1 # Inner arc isn't needed if inner radius is zero if self.radius: path.extend(self._arc(quadrant=quadrant, cw=angle == UP, radius=self.radius, center=(x + self.radius, y - sign * self.radius))) else: path.append((Path.LINETO, [x, y])) path.extend([(Path.LINETO, [x, y - sign * length]), (Path.LINETO, dip), (Path.LINETO, [x - flow, y - sign * length])]) path.extend(self._arc(quadrant=quadrant, cw=angle == DOWN, radius=flow + self.radius, center=(x + self.radius, y - sign * self.radius))) path.append((Path.LINETO, [x - flow, y + sign * flow])) label_location = [dip[0], dip[1] - sign * self.offset] return dip, label_location def _add_output(self, path, angle, flow, length): """ Append an output to a path and return its tip and label locations. .. note:: *flow* is negative for an output. """ if angle is None: return [0, 0], [0, 0] else: x, y = path[-1][1] # Use the last point as a reference. tipheight = (self.shoulder - flow / 2) * self.pitch if angle == RIGHT: x += length tip = [x + tipheight, y + flow / 2.0] path.extend([(Path.LINETO, [x, y]), (Path.LINETO, [x, y + self.shoulder]), (Path.LINETO, tip), (Path.LINETO, [x, y - self.shoulder + flow]), (Path.LINETO, [x, y + flow]), (Path.LINETO, [x - self.gap, y + flow])]) label_location = [tip[0] + self.offset, tip[1]] else: # Vertical x += self.gap if angle == UP: sign = 1 else: sign = -1 tip = [x - flow / 2.0, y + sign * (length + tipheight)] if angle == UP: quadrant = 3 else: quadrant = 0 # Inner arc isn't needed if inner radius is zero if self.radius: path.extend(self._arc(quadrant=quadrant, cw=angle == UP, radius=self.radius, center=(x - self.radius, y + sign * self.radius))) else: path.append((Path.LINETO, [x, y])) path.extend([(Path.LINETO, [x, y + sign * length]), (Path.LINETO, [x - self.shoulder, y + sign * length]), (Path.LINETO, tip), (Path.LINETO, [x + self.shoulder - flow, y + sign * length]), (Path.LINETO, [x - flow, y + sign * length])]) path.extend(self._arc(quadrant=quadrant, cw=angle == DOWN, radius=self.radius - flow, center=(x - self.radius, y + sign * self.radius))) path.append((Path.LINETO, [x - flow, y + sign * flow])) label_location = [tip[0], tip[1] + sign * self.offset] return tip, label_location def _revert(self, path, first_action=Path.LINETO): """ A path is not simply revertable by path[::-1] since the code specifies an action to take from the **previous** point. """ reverse_path = [] next_code = first_action for code, position in path[::-1]: reverse_path.append((next_code, position)) next_code = code return reverse_path # This might be more efficient, but it fails because 'tuple' object # doesn't support item assignment: # path[1] = path[1][-1:0:-1] # path[1][0] = first_action # path[2] = path[2][::-1] # return path @docstring.dedent_interpd def add(self, patchlabel='', flows=None, orientations=None, labels='', trunklength=1.0, pathlengths=0.25, prior=None, connect=(0, 0), rotation=0, **kwargs): """ Add a simple Sankey diagram with flows at the same hierarchical level. Return value is the instance of :class:`Sankey`. Optional keyword arguments: =============== =================================================== Keyword Description =============== =================================================== *patchlabel* label to be placed at the center of the diagram Note: *label* (not *patchlabel*) will be passed to the patch through ``**kwargs`` and can be used to create an entry in the legend. *flows* array of flow values By convention, inputs are positive and outputs are negative. *orientations* list of orientations of the paths Valid values are 1 (from/to the top), 0 (from/to the left or right), or -1 (from/to the bottom). If *orientations* == 0, inputs will break in from the left and outputs will break away to the right. *labels* list of specifications of the labels for the flows Each value may be *None* (no labels), '' (just label the quantities), or a labeling string. If a single value is provided, it will be applied to all flows. If an entry is a non-empty string, then the quantity for the corresponding flow will be shown below the string. However, if the *unit* of the main diagram is None, then quantities are never shown, regardless of the value of this argument. *trunklength* length between the bases of the input and output groups *pathlengths* list of lengths of the arrows before break-in or after break-away If a single value is given, then it will be applied to the first (inside) paths on the top and bottom, and the length of all other arrows will be justified accordingly. The *pathlengths* are not applied to the horizontal inputs and outputs. *prior* index of the prior diagram to which this diagram should be connected *connect* a (prior, this) tuple indexing the flow of the prior diagram and the flow of this diagram which should be connected If this is the first diagram or *prior* is *None*, *connect* will be ignored. *rotation* angle of rotation of the diagram [deg] *rotation* is ignored if this diagram is connected to an existing one (using *prior* and *connect*). The interpretation of the *orientations* argument will be rotated accordingly (e.g., if *rotation* == 90, an *orientations* entry of 1 means to/from the left). =============== =================================================== Valid kwargs are :meth:`matplotlib.patches.PathPatch` arguments: %(Patch)s As examples, ``fill=False`` and ``label='A legend entry'``. By default, ``facecolor='#bfd1d4'`` (light blue) and ``linewidth=0.5``. The indexing parameters (*prior* and *connect*) are zero-based. The flows are placed along the top of the diagram from the inside out in order of their index within the *flows* list or array. They are placed along the sides of the diagram from the top down and along the bottom from the outside in. If the sum of the inputs and outputs is nonzero, the discrepancy will appear as a cubic Bezier curve along the top and bottom edges of the trunk. .. seealso:: :meth:`finish` """ # Check and preprocess the arguments. if flows is None: flows = np.array([1.0, -1.0]) else: flows = np.array(flows) n = flows.shape[0] # Number of flows if rotation is None: rotation = 0 else: # In the code below, angles are expressed in deg/90. rotation /= 90.0 if orientations is None: orientations = [0, 0] if len(orientations) != n: raise ValueError( "orientations and flows must have the same length.\n" "orientations has length %d, but flows has length %d." % (len(orientations), n)) if labels != '' and getattr(labels, '__iter__', False): # iterable() isn't used because it would give True if labels is a # string if len(labels) != n: raise ValueError( "If labels is a list, then labels and flows must have the " "same length.\nlabels has length %d, but flows has length %d." % (len(labels), n)) else: labels = [labels] * n if trunklength < 0: raise ValueError( "trunklength is negative.\nThis isn't allowed, because it would " "cause poor layout.") if np.absolute(np.sum(flows)) > self.tolerance: verbose.report( "The sum of the flows is nonzero (%f).\nIs the " "system not at steady state?" % np.sum(flows), 'helpful') scaled_flows = self.scale * flows gain = sum(max(flow, 0) for flow in scaled_flows) loss = sum(min(flow, 0) for flow in scaled_flows) if not (0.5 <= gain <= 2.0): verbose.report( "The scaled sum of the inputs is %f.\nThis may " "cause poor layout.\nConsider changing the scale so" " that the scaled sum is approximately 1.0." % gain, 'helpful') if not (-2.0 <= loss <= -0.5): verbose.report( "The scaled sum of the outputs is %f.\nThis may " "cause poor layout.\nConsider changing the scale so" " that the scaled sum is approximately 1.0." % gain, 'helpful') if prior is not None: if prior < 0: raise ValueError("The index of the prior diagram is negative.") if min(connect) < 0: raise ValueError( "At least one of the connection indices is negative.") if prior >= len(self.diagrams): raise ValueError( "The index of the prior diagram is %d, but there are " "only %d other diagrams.\nThe index is zero-based." % (prior, len(self.diagrams))) if connect[0] >= len(self.diagrams[prior].flows): raise ValueError( "The connection index to the source diagram is %d, but " "that diagram has only %d flows.\nThe index is zero-based." % (connect[0], len(self.diagrams[prior].flows))) if connect[1] >= n: raise ValueError( "The connection index to this diagram is %d, but this diagram" "has only %d flows.\n The index is zero-based." % (connect[1], n)) if self.diagrams[prior].angles[connect[0]] is None: raise ValueError( "The connection cannot be made. Check that the magnitude " "of flow %d of diagram %d is greater than or equal to the " "specified tolerance." % (connect[0], prior)) flow_error = (self.diagrams[prior].flows[connect[0]] + flows[connect[1]]) if abs(flow_error) >= self.tolerance: raise ValueError( "The scaled sum of the connected flows is %f, which is not " "within the tolerance (%f)." % (flow_error, self.tolerance)) # Determine if the flows are inputs. are_inputs = [None] * n for i, flow in enumerate(flows): if flow >= self.tolerance: are_inputs[i] = True elif flow <= -self.tolerance: are_inputs[i] = False else: verbose.report( "The magnitude of flow %d (%f) is below the " "tolerance (%f).\nIt will not be shown, and it " "cannot be used in a connection." % (i, flow, self.tolerance), 'helpful') # Determine the angles of the arrows (before rotation). angles = [None] * n for i, (orient, is_input) in enumerate(zip(orientations, are_inputs)): if orient == 1: if is_input: angles[i] = DOWN elif not is_input: # Be specific since is_input can be None. angles[i] = UP elif orient == 0: if is_input is not None: angles[i] = RIGHT else: if orient != -1: raise ValueError( "The value of orientations[%d] is %d, " "but it must be [ -1 | 0 | 1 ]." % (i, orient)) if is_input: angles[i] = UP elif not is_input: angles[i] = DOWN # Justify the lengths of the paths. if iterable(pathlengths): if len(pathlengths) != n: raise ValueError( "If pathlengths is a list, then pathlengths and flows must " "have the same length.\npathlengths has length %d, but flows " "has length %d." % (len(pathlengths), n)) else: # Make pathlengths into a list. urlength = pathlengths ullength = pathlengths lrlength = pathlengths lllength = pathlengths d = dict(RIGHT=pathlengths) pathlengths = [d.get(angle, 0) for angle in angles] # Determine the lengths of the top-side arrows # from the middle outwards. for i, (angle, is_input, flow) in enumerate(zip(angles, are_inputs, scaled_flows)): if angle == DOWN and is_input: pathlengths[i] = ullength ullength += flow elif angle == UP and not is_input: pathlengths[i] = urlength urlength -= flow # Flow is negative for outputs. # Determine the lengths of the bottom-side arrows # from the middle outwards. for i, (angle, is_input, flow) in enumerate(reversed(list(zip( angles, are_inputs, scaled_flows)))): if angle == UP and is_input: pathlengths[n - i - 1] = lllength lllength += flow elif angle == DOWN and not is_input: pathlengths[n - i - 1] = lrlength lrlength -= flow # Determine the lengths of the left-side arrows # from the bottom upwards. has_left_input = False for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, zip(scaled_flows, pathlengths))))): if angle == RIGHT: if is_input: if has_left_input: pathlengths[n - i - 1] = 0 else: has_left_input = True # Determine the lengths of the right-side arrows # from the top downwards. has_right_output = False for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == RIGHT: if not is_input: if has_right_output: pathlengths[i] = 0 else: has_right_output = True # Begin the subpaths, and smooth the transition if the sum of the flows # is nonzero. urpath = [(Path.MOVETO, [(self.gap - trunklength / 2.0), # Upper right gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0, gain / 2.0]), (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0, gain / 2.0]), (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0, -loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0, -loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap), -loss / 2.0])] llpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap), # Lower left loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0, loss / 2.0]), (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0, loss / 2.0]), (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0, -gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0, -gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0), -gain / 2.0])] lrpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap), # Lower right loss / 2.0])] ulpath = [(Path.LINETO, [self.gap - trunklength / 2.0, # Upper left gain / 2.0])] # Add the subpaths and assign the locations of the tips and labels. tips = np.zeros((n, 2)) label_locations = np.zeros((n, 2)) # Add the top-side inputs and outputs from the middle outwards. for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == DOWN and is_input: tips[i, :], label_locations[i, :] = self._add_input( ulpath, angle, *spec) elif angle == UP and not is_input: tips[i, :], label_locations[i, :] = self._add_output( urpath, angle, *spec) # Add the bottom-side inputs and outputs from the middle outwards. for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))))): if angle == UP and is_input: tip, label_location = self._add_input(llpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location elif angle == DOWN and not is_input: tip, label_location = self._add_output(lrpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location # Add the left-side inputs from the bottom upwards. has_left_input = False for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))))): if angle == RIGHT and is_input: if not has_left_input: # Make sure the lower path extends # at least as far as the upper one. if llpath[-1][1][0] > ulpath[-1][1][0]: llpath.append((Path.LINETO, [ulpath[-1][1][0], llpath[-1][1][1]])) has_left_input = True tip, label_location = self._add_input(llpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location # Add the right-side outputs from the top downwards. has_right_output = False for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == RIGHT and not is_input: if not has_right_output: # Make sure the upper path extends # at least as far as the lower one. if urpath[-1][1][0] < lrpath[-1][1][0]: urpath.append((Path.LINETO, [lrpath[-1][1][0], urpath[-1][1][1]])) has_right_output = True tips[i, :], label_locations[i, :] = self._add_output( urpath, angle, *spec) # Trim any hanging vertices. if not has_left_input: ulpath.pop() llpath.pop() if not has_right_output: lrpath.pop() urpath.pop() # Concatenate the subpaths in the correct order (clockwise from top). path = (urpath + self._revert(lrpath) + llpath + self._revert(ulpath) + [(Path.CLOSEPOLY, urpath[0][1])]) # Create a patch with the Sankey outline. codes, vertices = list(zip(*path)) vertices = np.array(vertices) def _get_angle(a, r): if a is None: return None else: return a + r if prior is None: if rotation != 0: # By default, none of this is needed. angles = [_get_angle(angle, rotation) for angle in angles] rotate = Affine2D().rotate_deg(rotation * 90).transform_affine tips = rotate(tips) label_locations = rotate(label_locations) vertices = rotate(vertices) text = self.ax.text(0, 0, s=patchlabel, ha='center', va='center') else: rotation = (self.diagrams[prior].angles[connect[0]] - angles[connect[1]]) angles = [_get_angle(angle, rotation) for angle in angles] rotate = Affine2D().rotate_deg(rotation * 90).transform_affine tips = rotate(tips) offset = self.diagrams[prior].tips[connect[0]] - tips[connect[1]] translate = Affine2D().translate(*offset).transform_affine tips = translate(tips) label_locations = translate(rotate(label_locations)) vertices = translate(rotate(vertices)) kwds = dict(s=patchlabel, ha='center', va='center') text = self.ax.text(*offset, **kwds) if False: # Debug print("llpath\n", llpath) print("ulpath\n", self._revert(ulpath)) print("urpath\n", urpath) print("lrpath\n", self._revert(lrpath)) xs, ys = list(zip(*vertices)) self.ax.plot(xs, ys, 'go-') patch = PathPatch(Path(vertices, codes), fc=kwargs.pop('fc', kwargs.pop('facecolor', '#bfd1d4')), # Custom defaults lw=kwargs.pop('lw', kwargs.pop('linewidth', 0.5)), **kwargs) self.ax.add_patch(patch) # Add the path labels. texts = [] for number, angle, label, location in zip(flows, angles, labels, label_locations): if label is None or angle is None: label = '' elif self.unit is not None: quantity = self.format % abs(number) + self.unit if label != '': label += "\n" label += quantity texts.append(self.ax.text(x=location[0], y=location[1], s=label, ha='center', va='center')) # Text objects are placed even they are empty (as long as the magnitude # of the corresponding flow is larger than the tolerance) in case the # user wants to provide labels later. # Expand the size of the diagram if necessary. self.extent = (min(np.min(vertices[:, 0]), np.min(label_locations[:, 0]), self.extent[0]), max(np.max(vertices[:, 0]), np.max(label_locations[:, 0]), self.extent[1]), min(np.min(vertices[:, 1]), np.min(label_locations[:, 1]), self.extent[2]), max(np.max(vertices[:, 1]), np.max(label_locations[:, 1]), self.extent[3])) # Include both vertices _and_ label locations in the extents; there are # where either could determine the margins (e.g., arrow shoulders). # Add this diagram as a subdiagram. self.diagrams.append(Bunch(patch=patch, flows=flows, angles=angles, tips=tips, text=text, texts=texts)) # Allow a daisy-chained call structure (see docstring for the class). return self def finish(self): """ Adjust the axes and return a list of information about the Sankey subdiagram(s). Return value is a list of subdiagrams represented with the following fields: =============== =================================================== Field Description =============== =================================================== *patch* Sankey outline (an instance of :class:`~maplotlib.patches.PathPatch`) *flows* values of the flows (positive for input, negative for output) *angles* list of angles of the arrows [deg/90] For example, if the diagram has not been rotated, an input to the top side will have an angle of 3 (DOWN), and an output from the top side will have an angle of 1 (UP). If a flow has been skipped (because its magnitude is less than *tolerance*), then its angle will be *None*. *tips* array in which each row is an [x, y] pair indicating the positions of the tips (or "dips") of the flow paths If the magnitude of a flow is less the *tolerance* for the instance of :class:`Sankey`, the flow is skipped and its tip will be at the center of the diagram. *text* :class:`~matplotlib.text.Text` instance for the label of the diagram *texts* list of :class:`~matplotlib.text.Text` instances for the labels of flows =============== =================================================== .. seealso:: :meth:`add` """ self.ax.axis([self.extent[0] - self.margin, self.extent[1] + self.margin, self.extent[2] - self.margin, self.extent[3] + self.margin]) self.ax.set_aspect('equal', adjustable='datalim') return self.diagrams
mit
RPGOne/Skynet
scikit-learn-c604ac39ad0e5b066d964df3e8f31ba7ebda1e0e/benchmarks/bench_tree.py
297
3617
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import pylab as pl import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) pl.figure('scikit-learn tree benchmark results') pl.subplot(211) pl.title('Learning with varying number of samples') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) pl.subplot(212) pl.title('Learning in high dimensional spaces') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of dimensions') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
USGSDenverPychron/pychron
pychron/processing/utils/flux_visualizer.py
1
13319
# =============================================================================== # Copyright 2013 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== from traits.etsconfig.etsconfig import ETSConfig ETSConfig.toolkit = 'qt4' # ============= enthought library imports ======================= import csv from pylab import show, meshgrid, zeros, \ contourf, array, linspace, scatter, cm, xlabel, ylabel, \ colorbar, rc, gcf import math # from itertools import groupby import matplotlib.pyplot as plt from pychron.core.regression.ols_regressor import MultipleLinearRegressor from pychron.core.regression.flux_regressor import PlaneFluxRegressor # ============= standard library imports ======================== # ============= local library imports ========================== def load_holder(holder): holes = [] with open(holder, 'r') as rfile: reader = csv.reader(rfile, delimiter=',') reader.next() # pop header for i, line in enumerate(reader): try: x, y = map(float, line) v = math.atan2(y, x) # print i + 1, v, x, y, math.degrees(v) holes.append((x, y, v)) except Exception: pass return holes def pt_factory(line, holes): ''' return theta, r for each line theta is calculated from corresponding x,y r is flux ''' try: hole, j, sample = line # if sample == 'FC-2': x, y, theta = holes[int(hole) - 1] # print hole, theta return x, y, theta, float(j) except Exception, e: print 'exception', e def get_column_idx(names, header): if not isinstance(names, (list, tuple)): names = (names,) for attr in names: for ai in (attr, attr.lower(), attr.upper(), attr.capitalize()): if ai in header: return header.index(ai) def load_flux_xls(p, holes, header_offset=1): import xlrd wb = xlrd.open_workbook(p) sheet = wb.sheet_by_index(0) header = sheet.row_values(0) hole_idx = get_column_idx('hole', header) j_idx = get_column_idx('j', header) j_err_idx = get_column_idx(('j_error', 'j err'), header) data = [] hole_ids = [] for ri in range(sheet.nrows - header_offset): ri += header_offset # if ri % 2 == 0: # continue hole = sheet.cell_value(ri, hole_idx) if hole: hole = int(hole) - 1 j = sheet.cell_value(ri, j_idx) je = sheet.cell_value(ri, j_err_idx) j, je = float(j), float(je) x, y, v = holes[hole] hole_ids.append(hole) data.append((x, y, j, je)) data = array(data) return data.T, hole_ids def flux_contour2d(xx, yy, z, ze, holes, hole_ids, fit_dev=False, age_space=0): x, y = zip(*[(x, y) for i, (x, y, v) in enumerate(holes) if not i in hole_ids]) n = z.shape[0] r = max(xx) XX, YY = make_grid(r, n) m = model_flux(n, xx, yy, XX, YY, z) if fit_dev: k = model_flux(n, xx[:22], yy[:22], XX, YY, z[:22], klass=MultipleLinearRegressor) zi = m - k else: zi = m if age_space: zi *= age_space r = max(xx) xi = linspace(-r, r, n) yi = linspace(-r, r, n) contourf(xi, yi, zi, 50, cmap=cm.jet) cb = colorbar() label = 'Delta-Age @28.02 (ka)' if age_space else 'J %' cb.set_label(label) scatter(x, y, marker='o', c='black', s=200, alpha=0.1 ) scatter(xx, yy, marker='o', cmap=cm.jet, # lw=0, # facecolor='None', c='black', # c=z, s=200, alpha=0.5 # s=300 ) # draw_border(1) # draw_circular_grid(r, rings) f = gcf() f.set_size_inches((8, 8)) plt.axes().set_aspect('equal') xlabel('X (mm)') ylabel('Y (mm)') rc('font', **{'size': 24}) def model_flux(n, xx, yy, XX, YY, z, klass=PlaneFluxRegressor): nz = zeros((n, n)) xy = zip(xx, yy) reg = klass(xs=xy, ys=z) for i in xrange(n): for j in xrange(n): pt = (XX[i, j], YY[i, j]) v = reg.predict([pt])[0] nz[i, j] = v return nz def flux_contour3d(xx, yy, z, ze): fig = plt.figure() ax = fig.gca(projection='3d') ax.scatter(xx, yy , z, c=z, s=100, lw=0, cmap=cm.jet ) # plot error bars for xj, yj, zj, ej in zip(xx, yy, z, ze): ax.plot([xj, xj], [yj, yj], [zj - ej, zj + ej], c='black') # ax.plot([xj, xj], [yj, yj], [zj, zj - ej]) # print X.shape # contourf(xi, yi, zi, 25, cmap=cm.jet) # ax.contourf(XX, YY, zi, # 20, # cmap=cm.jet) n = z.shape[0] r = max(xx) XX, YY = make_grid(r, n) ZZ = model_flux(n, xx, yy, XX, YY, z) p = ax.plot_surface(XX, YY, ZZ, cmap=cm.jet, rstride=2, cstride=2, linewidth=0, antialiased=False, alpha=0.5 ) ZZ = model_flux(n, xx[:22], yy[:22], XX, YY, z[:22], klass=MultipleLinearRegressor) p = ax.plot_surface(XX, YY, ZZ, cmap=cm.jet, rstride=2, cstride=2, linewidth=0, antialiased=False, alpha=0.5 ) cb = fig.colorbar(p) cb.set_label('Delta-J %') def visualize_flux_contour(p, holder, delim=','): # from traits.etsconfig.etsconfig import ETSConfig # ETSConfig.toolkit = 'qt4' # from pychron.core.regression.ols_regressor import MultipleLinearRegressor use_2d = True #use_2d = False fit_dev = False # calc_dev = True # calc_dev = False # age_space = 280.2 # age_space = 0 holes = load_holder(holder) (xx, yy, z, ze), hole_ids = load_flux_xls(p, holes) ze = (ze / z) * 100 mz = min(z) z = z - mz z /= mz z *= 100 # n = z.shape[0] # r = max(xx) # xi = linspace(-r, r, n) # yi = linspace(-r, r, n) # X = xi[None, :] # Y = yi[:, None] # zi = griddata((xx, yy), z, (X, Y), # # method='linear', # method='cubic', # # fill_value=min(z) # ) # XX, YY = meshgrid(xi, yi) if use_2d: flux_contour2d(xx, yy, z, ze, holes, hole_ids, fit_dev=fit_dev) else: flux_contour3d(xx, yy, z, ze,) show() def interpolate_flux(pholes, p, holder, delim=','): holes = load_holder(holder) (xx, yy, z, ze), hole_ids = load_flux_xls(p, holes) xy = zip(xx, yy) reg = PlaneFluxRegressor(xs=xy, ys=z, yserr=ze, error_calc_type='SEM') reg.calculate() output = [] for hi in pholes: x, y, t = holes[hi - 1] j, je = 0, 0 pt = [(x, y)] j = reg.predict(pt)[0] je = reg.predict_error([pt])[0] print hi, j, je #output.append((j,je)) #n = z.shape[0] #r = max(xx) #XX, YY = make_grid(r, n) #ZZ = model_flux(n, xx, yy, XX, YY, z) def make_grid(r, n): xi = linspace(-r, r, n) yi = linspace(-r, r, n) return meshgrid(xi, yi) if __name__ == '__main__': # p = '/Users/ross/Sandbox/flux_visualizer/J_data_for_nm-258_tray_G_radial.txt' p = '/Users/ross/Sandbox/flux_visualizer/J_data_for_nm-258_tray_G2.txt' p = '/Users/ross/Sandbox/flux_visualizer/J_data_for_nm-258_tray_G3.txt' p = '/Users/ross/Sandbox/flux_visualizer/J_nm-258_tray_G.xls' p = '/Users/ross/Sandbox/flux_visualizer/J_nm-258_tray_G2.xls' p = '/Users/ross/Sandbox/flux_visualizer/J_NM-259A.xls' # p = '/Users/ross/Sandbox/flux_visualizer/J_NM-259A2.xls' # p = '/Users/ross/Sandbox/flux_visualizer/Tray_I_NM-261.xls' # p = '/Users/ross/Sandbox/flux_visualizer/runid_contour.txt' # p = '/Users/ross/Sandbox/flux_visualizer/J_data_for_nm-258_tray_G.txt' holder = '/Users/ross/Sandbox/flux_visualizer/irradiation_tray_maps/1_75mm_3level' # visualize_flux(p, holder) # visualize_flux_contour(p, holder) # visualize_flux_contour(p, holder, delim='\t') holes = [45, 47, 49, 51, 53] interpolate_flux(holes, p, holder, delim='\t') # ============= EOF ============================================= # def load_flux_csv(p, holes, delim): # with open(p, 'U') as fp: # reader = csv.reader(fp, delimiter=delim) # reader.next() # # mi = Inf # ma = -Inf # xy = [] # z = [] # ze = [] # # rs = [] # hole_ids = [] # for line in reader: # if not line: # continue # hole = int(line[0]) # hole_ids.append(hole - 1) # j = float(line[1]) # je = float(line[2]) # x, y, v = holes[hole - 1] # xy.append((x, y)) # z.append(j) # z.append(je) # # rs.append(round(((x ** 2 + y ** 2) ** 0.5) * 100)) # # mi = min(mi, j) # ma = max(ma, j) # # xy = array(xy) # xx, yy = xy.T # z = array(z) # # return (xx, yy, z, ze), hole_ids # def draw_border(d): # r = d / 2. # xs = linspace(-r, r, 200) # y = (r ** 2 - xs ** 2) ** 0.5 # plot(xs, y, c='black') # plot(xs, -y, c='black') # def draw_circular_grid(r, rings): # for ray in range(0, 360, 10): # # m = -math.radians(ray) # x = r * math.cos(m) # y = r * math.sin(m) # plot([0, x], [0, y], ls='-.', color='black') # # for ring in rings: # ring /= 100. # x = linspace(-ring, ring, 100) # y = (ring ** 2 - x ** 2) ** 0.5 # # plot(x, -y, ls='-.', color='black') # x = linspace(-ring, ring, 100) # y = (ring ** 2 - x ** 2) ** 0.5 # plot(x, y, ls='-.', color='black') # def visualize_flux(p, holder, use_polar=False): # ''' # load the x,y points for irrad holder # load the flux file # # schema: # hole,j # # ''' # holes = load_holder(holder) # # x, y, holes = zip(*holes) # # with open(p, 'U') as fp: # reader = csv.reader(fp) # # holes = [] # # js = [] # reader.next() # groups = [] # group = [] # for line in reader: # if not line: # groups.append(group) # group = [] # else: # group.append(pt_factory(line, holes)) # groups.append(group) # mi = Inf # ma = -Inf # # # fig = Figure() # if not use_polar: # fig = plt.figure() # ax = fig.add_subplot(111, # projection='3d' # ) # # ax = fig.gca(projection='3d') # mi_rings = [] # ma_rings = [] # for args in groups: # # print args # # theta, r = zip(*args) # if use_polar: # x, y, theta, r = zip(*[ai for ai in args if ai]) # # polar(theta, r) # mi = min(min(r), mi) # ma = max(max(r), ma) # # else: # x, y, theta, j = zip(*[ai for ai in args if ai]) # x = array(x) # y = array(y) # r = (x ** 2 + y ** 2) ** 0.5 # # m, b = polyfit(x, y, 1) # # # xs = linspace(0, 0.5) # # mf, bf = polyfit(x, j, 1) # # fj = polyval((mf, bf), xs) # # ax.plot(xs, polyval((m, b), xs), fj,) # ax.plot(x, y, j, color='blue' # # label='{}'.format(int(math.degrees(mean(theta)))) # ) # # ax.plot(x, y) # midx = argmin(j) # madx = argmax(j) # # mi_rings.append((x[midx], y[midx], j[midx])) # ma_rings.append((x[madx], y[madx], j[madx])) # # if not use_polar: # x, y, j = zip(*ma_rings) # ax.plot(x, y, j, color='black') # x, y, j = zip(*mi_rings) # ax.plot(x, y, j, color='black') # else: # ylim(mi * 0.95, ma) # # ax.set_xlim(-1, 1) # # ax.set_ylim(-1, 1) # # print r # # lines = [pt_factory(line, holes) for line in reader] # # theta, r = zip(*[args for args in lines if args]) # legend() # show()
apache-2.0
CELMA-project/dissertation
fig/figCreators/laplaceBC.py
1
3256
#!/usr/bin/env python from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt """ Makes a parametric plot of the boundary condition of the laplace invertor for different modes. """ def plotLaplaceBCOnCylinder(mode = 5 ,\ lineThroughPointNr = 45 ,\ showPlot = False,\ extension ="png" ): """ Plots the laplace inversion boundary condition on a cylinder Parameters ---------- mode : int Mode number lineThroughPointNr : int What point should the red line go diametrically opposite from showPlot: bool Whether or not to show the plot extension : str Extension of the plot to save Return ------ fileName : str The name of the saved file """ fig = plt.figure(figsize=(18,12)) ax = fig.gca(projection='3d') ax.set_axis_off() n = 128 # NOTE: The parametric curve has the coordinates (x(z), y(z), z) # I. e. for each z, there is a corresponding x,y pair zero = np.zeros(n) # +1 as we are making this periodically theta = np.linspace(0, 2*np.pi, n+1) # Until last point (periodic point not counted twice) theta = theta[:-1] x = np.sin(theta) y = np.cos(theta) # Make the sine sine = zero + np.sin(mode*theta) # Make x spine (actually not a spine, just a line) xSpine = np.linspace(-1.5, 1.5, n) # Make y spine (actually not a spine, just a line) ySpine = xSpine ax.plot(xSpine, zero, zero, "k--", linewidth = 1.5) ax.plot(zero, ySpine, zero, "k--", linewidth = 1.5) ax.plot(x, y, zero, "-go", linewidth = 3.0) ax.plot(x, y, sine, "-bo", linewidth = 3.0) # Making vertical bars for i in range(len(sine)): pointX = (x[i], x[i] ) pointY = (y[i], y[i] ) pointZ = (0 , sine[i]) ax.plot(pointX, pointY, pointZ, "k", linewidth=1.0) # Making the red line diametricallyOpposite = lineThroughPointNr + int(n/2) redX = (x[lineThroughPointNr] , x[diametricallyOpposite]) redY = (y[lineThroughPointNr] , y[diametricallyOpposite]) redZ = (sine[lineThroughPointNr], sine[diametricallyOpposite]) # NOTE: If we wanted the red line to be behind everything, we would # have set zorder=0 ax.plot(redX, redY, redZ, "r", linewidth=2.0) # Set view ax.view_init(elev=55, azim=-52) # Zoom in a bit to aviod white space ax.dist = 6.5 fig.tight_layout(pad=0.0) fileName = "../mode_{}.{}".format(mode, extension) fig.savefig(fileName, transparent=True) if showPlot: plt.show() return fileName if __name__ == "__main__": from subprocess import Popen # Plot the odd mode fileName =\ plotLaplaceBCOnCylinder(mode=5, lineThroughPointNr=57, extension="pdf") # Crop with pdfCrop Popen("pdfcrop {0} {0}".format(fileName), shell=True).wait() # Plot the even mode fileName =\ plotLaplaceBCOnCylinder(mode=4, lineThroughPointNr=40, extension="pdf") # Crop with pdfCrop Popen("pdfcrop {0} {0}".format(fileName), shell=True).wait()
gpl-3.0
airanmehr/cssvm
python/eval.py
1
9388
from numpy import array, arange, sum, append from operator import itemgetter from matplotlib import pyplot def get_perror(deci, label, Pn, Pp): neg, pos, neg_err, pos_err = 0., 0., 0., 0. for (f,y) in zip(deci,label): if y>0: pos+=1 if f* y <= 0: pos_err+=1 else: neg+=1 if f* y <= 0: neg_err+=1 print "Pn: {0} neg: {1} neg_err: {2}".format(Pn, neg, neg_err) print "Pp: {0} pos: {1} pos_err: {2}".format(Pp, pos, pos_err) return Pn*neg_err/neg + Pp*pos_err/pos def get_error(deci, label): err= 0. for (f,y) in zip(deci,label): if f* y <= 0: err+=1 return err/len(label) def get_acc(deci, label): correct= 0. for (f,y) in zip(deci,label): if f* y > 0: correct+=1 return 100*correct/len(label) def get_income(deci, label, costs): income= 0. for (f,y,c) in zip(deci,label, costs): if f > 0 and y > 0: income += c if f > 0 and y < 0: income -= c return income def get_risk(deci, label, Pn, Pp, Cn=1, Cp=1, doPlot=False, isTesting=False, param=None): """ Computes Risk for a given Decision Values, Label, Costs and Probabilities and Plots ROC Curve with denoting the ROC Operating points with 1) No thresholding (FPR and FNR associated with the Decision values) 2) Best thresholding (Finds best operating point in ROC curve for given arguments) 3) TH Thresholding (if the argument th is not None (probably computed by CV), its value is added to the decision values and operating point and its risk is computed and shown in the plot ) In CV, i.e. when th parameter is None, the threshold of the point with the best risk is returned, to be used in the test phase """ db,pos,neg, n=sort_deci(deci,label) tp, fp, min_risk = 0., 0., 1 x, y = array([0]), array([1]) # x,y are coordinates in ROC space w = [Cn * Pn , Cp * Pp ] w = [w[0]/sum(w), w[1]/sum(w)]# Normalizing costs (for comparing risks of different costs) for i in range(1, n + 1): if db[i - 1][1] > 0: tp += 1. else: fp += 1. fpr = fp / neg fnr = (pos - tp) / pos risk = w[0] * fpr + w[1] * fnr if min_risk >= risk: min_risk = risk best_op = i #Best Operating Point index in the sorted list x, y= append(x, fpr), append(y, fnr) ROCPoint_NoTH = get_Risk_for_TH(deci, label, w, pos, neg, 0) if isTesting: ROCPoint_TH = get_Risk_for_TH(deci, label, w, pos, neg, param['cv_th']) test_th=get_TH_for_Risk(db, best_op) if param['verb']>2: print "Best Threshold in: CV= {0} Test= {1}".format(param['cv_th'], test_th) else: cv_th=get_TH_for_Risk(db, best_op) ROCPoint_TH = None if doPlot: plot_ROC_Risk(w, x, y, best_op, min_risk,get_figure_fname(param), get_figure_title(param), ROCPoint_TH, ROCPoint_NoTH) if isTesting: return ROCPoint_TH['risk'], test_th # in Test phase, returns the risk of the point with CV_threshold and the best threshold in all operating points else: return min_risk, cv_th # in Training phase, returns the risk of the point with minimum risk and its threshold def sort_deci(deci,label): db = [] pos, neg, n = 0., 0., len(label) for i in range(n): if label[i] > 0: pos += 1 else: neg += 1 db.append([deci[i], label[i]]) db = sorted(db, key=itemgetter(0), reverse=True) # Sort in descenting order return db, pos, neg, n def get_TH_for_Risk(db, best_op): return -(db[best_op][0]+db[best_op+1][0])/2 def get_Risk_for_TH(deci, label, w, pos,neg, th): ROCPoint={'fpr': 0., 'fnr': 0.} for (f,Y) in zip(deci,label): if (f+th)*Y <=0: if Y<=0: ROCPoint['fpr'] +=1 else: ROCPoint['fnr'] +=1 ROCPoint['fpr']/=neg ROCPoint['fnr']/=pos ROCPoint['risk']= w[0] * ROCPoint['fpr'] + w[1] * ROCPoint['fnr'] return ROCPoint def get_figure_fname(param): # print param return '/home/arya/{0}.{1}.png'.format(param['dataset_name'],param['alg']) def get_figure_title(param): return '{0} on {1}'.format(param['alg'], param['dataset_name']) def get_auc(deci, label, param): """ Computes AUC for param['hit'] > t, By default it computes AUC for TP > 0.9 """ db, xy_arr = [], [] pos, neg, tp, fp, auc, err = 0, 0, 0, 0, 0., 0. n = len(label) for i in range(n): if label[i] > 0: if deci[i]<0: err+=1 pos += 1 else: if deci[i]>0: err+=1 neg += 1 db.append([deci[i], label[i]]) db = sorted(db, key=itemgetter(0), reverse=True) for i in range( n): if db[i - 1][1] > 0: tp += 1. else: fp += 1. fpr = fp / neg fn = pos - tp fnr = fn / pos xy_arr.append([fpr, fnr]) xy_arr.append([1,0]) if param['hit']=='TN': #TN prev_x = 0 for x,y in xy_arr: if x > param['t'] : break if x != prev_x: auc += (x - prev_x) * y prev_x = x auc+=(param['t']-prev_x)*y else: #TP prev_y = 0 for x,y in reversed( xy_arr): if y> param['t']: break if y != prev_y: auc += (y - prev_y) * x prev_y = y auc+=(param['t']-prev_y)*x auc= auc/(1-param['t']) if param['do_plot']: plot_ROC_tAUC(x, y) return auc def get_auc(deci, label, param): if param['measure']=='TP': Fix_Detection=True elif param['measure']=='TN': Fix_Detection=False else: print 'The measure should be determined either TP or TN.' exit() t=1-param['t'] db = [] auc = 0. pos, neg, tp, fp= 0, 0, 0, 0 n = len(label) err=0. for i in range(n): if label[i] > 0: if deci[i]<0: err+=1 pos += 1 else: if deci[i]>0: err+=1 neg += 1 db.append([deci[i], label[i]]) db = sorted(db, key=itemgetter(0), reverse=True) xy_arr = [] for i in range( n): if db[i - 1][1] > 0: tp += 1. else: fp += 1. fpr = fp / neg fn = pos - tp fnr = fn / pos xy_arr.append([fpr, fnr]) xy_arr.append([1,0]) if not Fix_Detection: #TN prev_x = 0 for x,y in xy_arr: if x > t : break if x != prev_x: auc += (x - prev_x) * y prev_x = x auc+=(t-prev_x)*y else: #TP prev_y = 0 for x,y in reversed( xy_arr): if y> t: break if y != prev_y: auc += (y - prev_y) * x prev_y = y auc+=(t-prev_y)*x auc= auc/t # print "AUC:{3} Error: {0} ({1} out of {2})".format(err/n,err,n,auc) return auc def plot_ROC_Risk(w,x,y,best_operating_point,risk,fname,title, TH=None, NoTH=None): from matplotlib import rc from numpy import ones import pylab rc('font', family='serif', size=20) fig = pylab.figure(1, figsize=(8, 8), dpi=100, facecolor='w') ax = fig.add_subplot(111) fig.hold(True) m = w[0] / w[1] line_x = arange(0, 1, 0.001) line_y = ones(1000) - m * line_x pylab.fill_between(x , ones(len(y)), y, facecolor='#D0D0D0') pylab.plot(x, y, 'r', linewidth=3) best=[x[best_operating_point], y[best_operating_point]] pylab.plot(best[0], best[1], '*k', markersize=20, label='Risk$^*$ ={0:.3f}'.format(risk)) pylab.plot(line_x, line_y, 'k', linewidth=3) midline=len(line_x)/2 arrow_x, arrow_y=line_x[midline], line_y[midline] pylab.arrow(arrow_x, arrow_y, -w[0] * 0.15 , -w[1] * 0.15, head_length=.02, head_width=.02, linewidth=2, color='black') pylab.axis([-0.005, 1.001, -0.005, 1.001]) pylab.xlabel('$FPR$') pylab.ylabel('$FNR$') pylab.title(title) if TH!=None: pylab.plot(TH['fpr'], TH['fnr'], 'ob', markersize=12, label='TH Risk={0:.3f}'.format(TH['risk'])) if NoTH!=None: pylab.plot(NoTH['fpr'], NoTH['fnr'], 'sc', markersize=12, label='BM Risk={0:.3f}'.format(NoTH['risk'])) pyplot.legend(numpoints=1, prop={'size':16}) pylab.savefig(fname) pylab.grid() ax.set_aspect('equal') pylab.show() pylab.close() def plot_ROC_tAUC(x,y): from matplotlib import rc rc('text', usetex=True) rc('font', family='serif', size=24) import pylab fig = pylab.figure(1, figsize=(8, 7), dpi=100, facecolor='w') fig.hold(True) from numpy import ones pylab.fill_between(x , ones(len(y)), y, facecolor='#D0D0D0') pylab.plot(x, y, 'r', linewidth=3) # pylab.plot(-1,-1,'ob',markersize=10,label='Nayman Pearson') pylab.axis([-0.005, 1.001, -0.005, 1.001]) pylab.xlabel('$P_{FP}$', fontsize=30) pylab.ylabel('$P_{FN}$', fontsize=30) pylab.grid() pylab.show() pylab.close()
mit
jor-/scipy
doc/source/tutorial/stats/plots/kde_plot3.py
132
1229
import numpy as np import matplotlib.pyplot as plt from scipy import stats np.random.seed(12456) x1 = np.random.normal(size=200) # random data, normal distribution xs = np.linspace(x1.min()-1, x1.max()+1, 200) kde1 = stats.gaussian_kde(x1) kde2 = stats.gaussian_kde(x1, bw_method='silverman') fig = plt.figure(figsize=(8, 6)) ax1 = fig.add_subplot(211) ax1.plot(x1, np.zeros(x1.shape), 'b+', ms=12) # rug plot ax1.plot(xs, kde1(xs), 'k-', label="Scott's Rule") ax1.plot(xs, kde2(xs), 'b-', label="Silverman's Rule") ax1.plot(xs, stats.norm.pdf(xs), 'r--', label="True PDF") ax1.set_xlabel('x') ax1.set_ylabel('Density') ax1.set_title("Normal (top) and Student's T$_{df=5}$ (bottom) distributions") ax1.legend(loc=1) x2 = stats.t.rvs(5, size=200) # random data, T distribution xs = np.linspace(x2.min() - 1, x2.max() + 1, 200) kde3 = stats.gaussian_kde(x2) kde4 = stats.gaussian_kde(x2, bw_method='silverman') ax2 = fig.add_subplot(212) ax2.plot(x2, np.zeros(x2.shape), 'b+', ms=12) # rug plot ax2.plot(xs, kde3(xs), 'k-', label="Scott's Rule") ax2.plot(xs, kde4(xs), 'b-', label="Silverman's Rule") ax2.plot(xs, stats.t.pdf(xs, 5), 'r--', label="True PDF") ax2.set_xlabel('x') ax2.set_ylabel('Density') plt.show()
bsd-3-clause
zaxtax/scikit-learn
sklearn/gaussian_process/kernels.py
18
66251
"""Kernels for Gaussian process regression and classification. The kernels in this module allow kernel-engineering, i.e., they can be combined via the "+" and "*" operators or be exponentiated with a scalar via "**". These sum and product expressions can also contain scalar values, which are automatically converted to a constant kernel. All kernels allow (analytic) gradient-based hyperparameter optimization. The space of hyperparameters can be specified by giving lower und upper boundaries for the value of each hyperparameter (the search space is thus rectangular). Instead of specifying bounds, hyperparameters can also be declared to be "fixed", which causes these hyperparameters to be excluded from optimization. """ # Author: Jan Hendrik Metzen <[email protected]> # Licence: BSD 3 clause # Note: this module is strongly inspired by the kernel module of the george # package. from abc import ABCMeta, abstractmethod from collections import namedtuple import math import numpy as np from scipy.special import kv, gamma from scipy.spatial.distance import pdist, cdist, squareform from ..metrics.pairwise import pairwise_kernels from ..externals import six from ..base import clone from sklearn.externals.funcsigs import signature class Hyperparameter(namedtuple('Hyperparameter', ('name', 'value_type', 'bounds', 'n_elements', 'fixed'))): """A kernel hyperparameter's specification in form of a namedtuple. Attributes ---------- name : string The name of the hyperparameter. Note that a kernel using a hyperparameter with name "x" must have the attributes self.x and self.x_bounds value_type : string The type of the hyperparameter. Currently, only "numeric" hyperparameters are supported. bounds : pair of floats >= 0 or "fixed" The lower and upper bound on the parameter. If n_elements>1, a pair of 1d array with n_elements each may be given alternatively. If the string "fixed" is passed as bounds, the hyperparameter's value cannot be changed. n_elements : int, default=1 The number of elements of the hyperparameter value. Defaults to 1, which corresponds to a scalar hyperparameter. n_elements > 1 corresponds to a hyperparameter which is vector-valued, such as, e.g., anisotropic length-scales. fixed : bool, default: None Whether the value of this hyperparameter is fixed, i.e., cannot be changed during hyperparameter tuning. If None is passed, the "fixed" is derived based on the given bounds. """ # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __init__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __new__(cls, name, value_type, bounds, n_elements=1, fixed=None): if bounds != "fixed": bounds = np.atleast_2d(bounds) if n_elements > 1: # vector-valued parameter if bounds.shape[0] == 1: bounds = np.repeat(bounds, n_elements, 0) elif bounds.shape[0] != n_elements: raise ValueError("Bounds on %s should have either 1 or " "%d dimensions. Given are %d" % (name, n_elements, bounds.shape[0])) if fixed is None: fixed = (bounds == "fixed") return super(Hyperparameter, cls).__new__( cls, name, value_type, bounds, n_elements, fixed) class Kernel(six.with_metaclass(ABCMeta)): """Base class for all kernels.""" def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict() # introspect the constructor arguments to find the model parameters # to represent cls = self.__class__ init = getattr(cls.__init__, 'deprecated_original', cls.__init__) init_sign = signature(init) args, varargs = [], [] for parameter in init_sign.parameters.values(): if (parameter.kind != parameter.VAR_KEYWORD and parameter.name != 'self'): args.append(parameter.name) if parameter.kind == parameter.VAR_POSITIONAL: varargs.append(parameter.name) if len(varargs) != 0: raise RuntimeError("scikit-learn kernels should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s doesn't follow this convention." % (cls, )) for arg in args: params[arg] = getattr(self, arg, None) return params def set_params(self, **params): """Set the parameters of this kernel. The method works on simple kernels as well as on nested kernels. The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Returns ------- self """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for kernel %s. ' 'Check the list of available parameters ' 'with `kernel.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for kernel %s. ' 'Check the list of available parameters ' 'with `kernel.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def clone_with_theta(self, theta): """Returns a clone of self with given hyperparameters theta. """ cloned = clone(self) cloned.theta = theta return cloned @property def n_dims(self): """Returns the number of non-fixed hyperparameters of the kernel.""" return self.theta.shape[0] @property def hyperparameters(self): """Returns a list of all hyperparameter specifications.""" r = [] for attr, value in sorted(self.__dict__.items()): if attr.startswith("hyperparameter_"): r.append(value) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ theta = [] for hyperparameter in self.hyperparameters: if not hyperparameter.fixed: theta.append(getattr(self, hyperparameter.name)) if len(theta) > 0: return np.log(np.hstack(theta)) else: return np.array([]) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ i = 0 for hyperparameter in self.hyperparameters: if hyperparameter.fixed: continue if hyperparameter.n_elements > 1: # vector-valued parameter setattr(self, hyperparameter.name, np.exp(theta[i:i + hyperparameter.n_elements])) i += hyperparameter.n_elements else: setattr(self, hyperparameter.name, np.exp(theta[i])) i += 1 if i != len(theta): raise ValueError("theta has not the correct number of entries." " Should be %d; given are %d" % (i, len(theta))) @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ bounds = [] for hyperparameter in self.hyperparameters: if not hyperparameter.fixed: bounds.append(hyperparameter.bounds) if len(bounds) > 0: return np.log(np.vstack(bounds)) else: return np.array([]) def __add__(self, b): if not isinstance(b, Kernel): return Sum(self, ConstantKernel(b)) return Sum(self, b) def __radd__(self, b): if not isinstance(b, Kernel): return Sum(ConstantKernel(b), self) return Sum(b, self) def __mul__(self, b): if not isinstance(b, Kernel): return Product(self, ConstantKernel(b)) return Product(self, b) def __rmul__(self, b): if not isinstance(b, Kernel): return Product(ConstantKernel(b), self) return Product(b, self) def __pow__(self, b): return Exponentiation(self, b) def __eq__(self, b): if type(self) != type(b): return False params_a = self.get_params() params_b = b.get_params() for key in set(list(params_a.keys()) + list(params_b.keys())): if np.any(params_a.get(key, None) != params_b.get(key, None)): return False return True def __repr__(self): return "{0}({1})".format(self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.theta))) @abstractmethod def __call__(self, X, Y=None, eval_gradient=False): """Evaluate the kernel.""" @abstractmethod def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ @abstractmethod def is_stationary(self): """Returns whether the kernel is stationary. """ class NormalizedKernelMixin(object): """Mixin for kernels which are normalized: k(X, X)=1.""" def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return np.ones(X.shape[0]) class StationaryKernelMixin(object): """Mixin for kernels which are stationary: k(X, Y)= f(X-Y).""" def is_stationary(self): """Returns whether the kernel is stationary. """ return True class CompoundKernel(Kernel): """Kernel which is composed of a set of other kernels.""" def __init__(self, kernels): self.kernels = kernels def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ return dict(kernels=self.kernels) @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return np.hstack([kernel.theta for kernel in self.kernels]) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ k_dims = self.k1.n_dims for i, kernel in enumerate(self.kernels): kernel.theta = theta[i * k_dims:(i + 1) * k_dims] @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ return np.vstack([kernel.bounds for kernel in self.kernels]) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Note that this compound kernel returns the results of all simple kernel stacked along an additional axis. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y, n_kernels) Kernel k(X, Y) K_gradient : array, shape (n_samples_X, n_samples_X, n_dims, n_kernels) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K = [] K_grad = [] for kernel in self.kernels: K_single, K_grad_single = kernel(X, Y, eval_gradient) K.append(K_single) K_grad.append(K_grad_single[..., np.newaxis]) return np.dstack(K), np.concatenate(K_grad, 3) else: return np.dstack([kernel(X, Y, eval_gradient) for kernel in self.kernels]) def __eq__(self, b): if type(self) != type(b) or len(self.kernels) != len(b.kernels): return False return np.all([self.kernels[i] == b.kernels[i] for i in range(len(self.kernels))]) def is_stationary(self): """Returns whether the kernel is stationary. """ return np.all([kernel.is_stationary() for kernel in self.kernels]) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X, n_kernels) Diagonal of kernel k(X, X) """ return np.vstack([kernel.diag(X) for kernel in self.kernels]).T class KernelOperator(Kernel): """Base class for all kernel operators. """ def __init__(self, k1, k2): self.k1 = k1 self.k2 = k2 def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict(k1=self.k1, k2=self.k2) if deep: deep_items = self.k1.get_params().items() params.update(('k1__' + k, val) for k, val in deep_items) deep_items = self.k2.get_params().items() params.update(('k2__' + k, val) for k, val in deep_items) return params @property def hyperparameters(self): """Returns a list of all hyperparameter.""" r = [] for hyperparameter in self.k1.hyperparameters: r.append(Hyperparameter("k1__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) for hyperparameter in self.k2.hyperparameters: r.append(Hyperparameter("k2__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return np.append(self.k1.theta, self.k2.theta) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ k1_dims = self.k1.n_dims self.k1.theta = theta[:k1_dims] self.k2.theta = theta[k1_dims:] @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ if self.k1.bounds.size == 0: return self.k2.bounds if self.k2.bounds.size == 0: return self.k1.bounds return np.vstack((self.k1.bounds, self.k2.bounds)) def __eq__(self, b): if type(self) != type(b): return False return (self.k1 == b.k1 and self.k2 == b.k2) \ or (self.k1 == b.k2 and self.k2 == b.k1) def is_stationary(self): """Returns whether the kernel is stationary. """ return self.k1.is_stationary() and self.k2.is_stationary() class Sum(KernelOperator): """Sum-kernel k1 + k2 of two kernels k1 and k2. The resulting kernel is defined as k_sum(X, Y) = k1(X, Y) + k2(X, Y) Parameters ---------- k1 : Kernel object The first base-kernel of the sum-kernel k2 : Kernel object The second base-kernel of the sum-kernel """ def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True) K2, K2_gradient = self.k2(X, Y, eval_gradient=True) return K1 + K2, np.dstack((K1_gradient, K2_gradient)) else: return self.k1(X, Y) + self.k2(X, Y) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.k1.diag(X) + self.k2.diag(X) def __repr__(self): return "{0} + {1}".format(self.k1, self.k2) class Product(KernelOperator): """Product-kernel k1 * k2 of two kernels k1 and k2. The resulting kernel is defined as k_prod(X, Y) = k1(X, Y) * k2(X, Y) Parameters ---------- k1 : Kernel object The first base-kernel of the product-kernel k2 : Kernel object The second base-kernel of the product-kernel """ def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True) K2, K2_gradient = self.k2(X, Y, eval_gradient=True) return K1 * K2, np.dstack((K1_gradient * K2[:, :, np.newaxis], K2_gradient * K1[:, :, np.newaxis])) else: return self.k1(X, Y) * self.k2(X, Y) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.k1.diag(X) * self.k2.diag(X) def __repr__(self): return "{0} * {1}".format(self.k1, self.k2) class Exponentiation(Kernel): """Exponentiate kernel by given exponent. The resulting kernel is defined as k_exp(X, Y) = k(X, Y) ** exponent Parameters ---------- kernel : Kernel object The base kernel exponent : float The exponent for the base kernel """ def __init__(self, kernel, exponent): self.kernel = kernel self.exponent = exponent def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict(kernel=self.kernel, exponent=self.exponent) if deep: deep_items = self.kernel.get_params().items() params.update(('kernel__' + k, val) for k, val in deep_items) return params @property def hyperparameters(self): """Returns a list of all hyperparameter.""" r = [] for hyperparameter in self.kernel.hyperparameters: r.append(Hyperparameter("kernel__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return self.kernel.theta @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ self.kernel.theta = theta @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ return self.kernel.bounds def __eq__(self, b): if type(self) != type(b): return False return (self.kernel == b.kernel and self.exponent == b.exponent) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K, K_gradient = self.kernel(X, Y, eval_gradient=True) K_gradient *= \ self.exponent * K[:, :, np.newaxis] ** (self.exponent - 1) return K ** self.exponent, K_gradient else: K = self.kernel(X, Y, eval_gradient=False) return K ** self.exponent def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.kernel.diag(X) ** self.exponent def __repr__(self): return "{0} ** {1}".format(self.kernel, self.exponent) def is_stationary(self): """Returns whether the kernel is stationary. """ return self.kernel.is_stationary() class ConstantKernel(StationaryKernelMixin, Kernel): """Constant kernel. Can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as part of a sum-kernel, where it modifies the mean of the Gaussian process. k(x_1, x_2) = constant_value for all x_1, x_2 Parameters ---------- constant_value : float, default: 1.0 The constant value which defines the covariance: k(x_1, x_2) = constant_value constant_value_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on constant_value """ def __init__(self, constant_value=1.0, constant_value_bounds=(1e-5, 1e5)): self.constant_value = constant_value self.constant_value_bounds = constant_value_bounds self.hyperparameter_constant_value = \ Hyperparameter("constant_value", "numeric", constant_value_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: Y = X elif eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") K = self.constant_value * np.ones((X.shape[0], Y.shape[0])) if eval_gradient: if not self.hyperparameter_constant_value.fixed: return (K, self.constant_value * np.ones((X.shape[0], X.shape[0], 1))) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.constant_value * np.ones(X.shape[0]) def __repr__(self): return "{0:.3g}**2".format(np.sqrt(self.constant_value)) class WhiteKernel(StationaryKernelMixin, Kernel): """White kernel. The main use-case of this kernel is as part of a sum-kernel where it explains the noise-component of the signal. Tuning its parameter corresponds to estimating the noise-level. k(x_1, x_2) = noise_level if x_1 == x_2 else 0 Parameters ---------- noise_level : float, default: 1.0 Parameter controlling the noise level noise_level_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on noise_level """ def __init__(self, noise_level=1.0, noise_level_bounds=(1e-5, 1e5)): self.noise_level = noise_level self.noise_level_bounds = noise_level_bounds self.hyperparameter_noise_level = \ Hyperparameter("noise_level", "numeric", noise_level_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is not None and eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") if Y is None: K = self.noise_level * np.eye(X.shape[0]) if eval_gradient: if not self.hyperparameter_noise_level.fixed: return (K, self.noise_level * np.eye(X.shape[0])[:, :, np.newaxis]) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K else: return np.zeros((X.shape[0], Y.shape[0])) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.noise_level * np.ones(X.shape[0]) def __repr__(self): return "{0}(noise_level={1:.3g})".format(self.__class__.__name__, self.noise_level) class RBF(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Radial-basis function kernel (aka squared-exponential kernel). The RBF kernel is a stationary kernel. It is also known as the "squared exponential" kernel. It is parameterized by a length-scale parameter length_scale>0, which can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs X (anisotropic variant of the kernel). The kernel is given by: k(x_i, x_j) = exp(-1 / 2 d(x_i / length_scale, x_j / length_scale)^2) This kernel is infinitely differentiable, which implies that GPs with this kernel as covariance function have mean square derivatives of all orders, and are thus very smooth. Parameters ----------- length_scale : float or array with shape (n_features,), default: 1.0 The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where each dimension of l defines the length-scale of the respective feature dimension. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale """ def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5)): if np.iterable(length_scale): if len(length_scale) > 1: self.anisotropic = True self.length_scale = np.asarray(length_scale, dtype=np.float) else: self.anisotropic = False self.length_scale = float(length_scale[0]) else: self.anisotropic = False self.length_scale = float(length_scale) self.length_scale_bounds = length_scale_bounds if self.anisotropic: # anisotropic length_scale self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds, len(length_scale)) else: self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if self.anisotropic and X.shape[1] != self.length_scale.shape[0]: raise Exception("Anisotropic kernel must have the same number of " "dimensions as data (%d!=%d)" % (self.length_scale.shape[0], X.shape[1])) if Y is None: dists = pdist(X / self.length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X / self.length_scale, Y / self.length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed return K, np.empty((X.shape[0], X.shape[0], 0)) elif not self.anisotropic or self.length_scale.shape[0] == 1: K_gradient = \ (K * squareform(dists))[:, :, np.newaxis] return K, K_gradient elif self.anisotropic: # We need to recompute the pairwise dimension-wise distances K_gradient = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 \ / (self.length_scale ** 2) K_gradient *= K[..., np.newaxis] return K, K_gradient else: raise Exception("Anisotropic kernels require that the number " "of length scales and features match.") else: return K def __repr__(self): if self.anisotropic: return "{0}(length_scale=[{1}])".format( self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.length_scale))) else: # isotropic return "{0}(length_scale={1:.3g})".format( self.__class__.__name__, self.length_scale) class Matern(RBF): """ Matern kernel. The class of Matern kernels is a generalization of the RBF and the absolute exponential kernel parameterized by an additional parameter nu. The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel becomes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important intermediate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable functions). See Rasmussen and Williams 2006, pp84 for details regarding the different variants of the Matern kernel. Parameters ----------- length_scale : float or array with shape (n_features,), default: 1.0 The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where each dimension of l defines the length-scale of the respective feature dimension. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale nu: float, default: 1.5 The parameter nu controlling the smoothness of the learned function. The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel becomes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important intermediate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable functions). Note that values of nu not in [0.5, 1.5, 2.5, inf] incur a considerably higher computational cost (appr. 10 times higher) since they require to evaluate the modified Bessel function. Furthermore, in contrast to l, nu is kept fixed to its initial value and not optimized. """ def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5), nu=1.5): super(Matern, self).__init__(length_scale, length_scale_bounds) self.nu = nu def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if self.anisotropic and X.shape[1] != self.length_scale.shape[0]: raise Exception("Anisotropic kernel must have the same number of " "dimensions as data (%d!=%d)" % (self.length_scale.shape[0], X.shape[1])) if Y is None: dists = pdist(X / self.length_scale, metric='euclidean') else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X / self.length_scale, Y / self.length_scale, metric='euclidean') if self.nu == 0.5: K = np.exp(-dists) elif self.nu == 1.5: K = dists * math.sqrt(3) K = (1. + K) * np.exp(-K) elif self.nu == 2.5: K = dists * math.sqrt(5) K = (1. + K + K ** 2 / 3.0) * np.exp(-K) else: # general case; expensive to evaluate K = dists K[K == 0.0] += np.finfo(float).eps # strict zeros result in nan tmp = (math.sqrt(2 * self.nu) * K) K.fill((2 ** (1. - self.nu)) / gamma(self.nu)) K *= tmp ** self.nu K *= kv(self.nu, tmp) if Y is None: # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed K_gradient = np.empty((X.shape[0], X.shape[0], 0)) return K, K_gradient # We need to recompute the pairwise dimension-wise distances if self.anisotropic: D = (X[:, np.newaxis, :] - X[np.newaxis, :, :])**2 \ / (self.length_scale ** 2) else: D = squareform(dists**2)[:, :, np.newaxis] if self.nu == 0.5: K_gradient = K[..., np.newaxis] * D \ / np.sqrt(D.sum(2))[:, :, np.newaxis] K_gradient[~np.isfinite(K_gradient)] = 0 elif self.nu == 1.5: K_gradient = \ 3 * D * np.exp(-np.sqrt(3 * D.sum(-1)))[..., np.newaxis] elif self.nu == 2.5: tmp = np.sqrt(5 * D.sum(-1))[..., np.newaxis] K_gradient = 5.0 / 3.0 * D * (tmp + 1) * np.exp(-tmp) else: # approximate gradient numerically def f(theta): # helper function return self.clone_with_theta(theta)(X, Y) return K, _approx_fprime(self.theta, f, 1e-10) if not self.anisotropic: return K, K_gradient[:, :].sum(-1)[:, :, np.newaxis] else: return K, K_gradient else: return K def __repr__(self): if self.anisotropic: return "{0}(length_scale=[{1}], nu={2:.3g})".format( self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.length_scale)), self.nu) else: # isotropic return "{0}(length_scale={1:.3g}, nu={2:.3g})".format( self.__class__.__name__, self.length_scale, self.nu) class RationalQuadratic(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Rational Quadratic kernel. The RationalQuadratic kernel can be seen as a scale mixture (an infinite sum) of RBF kernels with different characteristic length-scales. It is parameterized by a length-scale parameter length_scale>0 and a scale mixture parameter alpha>0. Only the isotropic variant where length_scale is a scalar is supported at the moment. The kernel given by: k(x_i, x_j) = (1 + d(x_i, x_j)^2 / (2*alpha * length_scale^2))^-alpha Parameters ---------- length_scale : float > 0, default: 1.0 The length scale of the kernel. alpha : float > 0, default: 1.0 Scale mixture parameter length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale alpha_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on alpha """ def __init__(self, length_scale=1.0, alpha=1.0, length_scale_bounds=(1e-5, 1e5), alpha_bounds=(1e-5, 1e5)): self.length_scale = length_scale self.alpha = alpha self.length_scale_bounds = length_scale_bounds self.alpha_bounds = alpha_bounds self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) self.hyperparameter_alpha = \ Hyperparameter("alpha", "numeric", alpha_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: dists = squareform(pdist(X, metric='sqeuclidean')) tmp = dists / (2 * self.alpha * self.length_scale ** 2) base = (1 + tmp) K = base ** -self.alpha np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='sqeuclidean') K = (1 + dists / (2 * self.alpha * self.length_scale ** 2)) \ ** -self.alpha if eval_gradient: # gradient with respect to length_scale if not self.hyperparameter_length_scale.fixed: length_scale_gradient = \ dists * K / (self.length_scale ** 2 * base) length_scale_gradient = length_scale_gradient[:, :, np.newaxis] else: # l is kept fixed length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0)) # gradient with respect to alpha if not self.hyperparameter_alpha.fixed: alpha_gradient = \ K * (-self.alpha * np.log(base) + dists / (2 * self.length_scale ** 2 * base)) alpha_gradient = alpha_gradient[:, :, np.newaxis] else: # alpha is kept fixed alpha_gradient = np.empty((K.shape[0], K.shape[1], 0)) return K, np.dstack((alpha_gradient, length_scale_gradient)) else: return K def __repr__(self): return "{0}(alpha={1:.3g}, length_scale={2:.3g})".format( self.__class__.__name__, self.alpha, self.length_scale) class ExpSineSquared(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Exp-Sine-Squared kernel. The ExpSineSquared kernel allows modeling periodic functions. It is parameterized by a length-scale parameter length_scale>0 and a periodicity parameter periodicity>0. Only the isotropic variant where l is a scalar is supported at the moment. The kernel given by: k(x_i, x_j) = exp(-2 sin(\pi / periodicity * d(x_i, x_j)) / length_scale)^2 Parameters ---------- length_scale : float > 0, default: 1.0 The length scale of the kernel. periodicity : float > 0, default: 1.0 The periodicity of the kernel. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale periodicity_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on periodicity """ def __init__(self, length_scale=1.0, periodicity=1.0, length_scale_bounds=(1e-5, 1e5), periodicity_bounds=(1e-5, 1e5)): self.length_scale = length_scale self.periodicity = periodicity self.length_scale_bounds = length_scale_bounds self.periodicity_bounds = periodicity_bounds self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) self.hyperparameter_periodicity = \ Hyperparameter("periodicity", "numeric", periodicity_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: dists = squareform(pdist(X, metric='euclidean')) arg = np.pi * dists / self.periodicity sin_of_arg = np.sin(arg) K = np.exp(- 2 * (sin_of_arg / self.length_scale) ** 2) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='euclidean') K = np.exp(- 2 * (np.sin(np.pi / self.periodicity * dists) / self.length_scale) ** 2) if eval_gradient: cos_of_arg = np.cos(arg) # gradient with respect to length_scale if not self.hyperparameter_length_scale.fixed: length_scale_gradient = \ 4 / self.length_scale**2 * sin_of_arg**2 * K length_scale_gradient = length_scale_gradient[:, :, np.newaxis] else: # length_scale is kept fixed length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0)) # gradient with respect to p if not self.hyperparameter_periodicity.fixed: periodicity_gradient = \ 4 * arg / self.length_scale**2 * cos_of_arg \ * sin_of_arg * K periodicity_gradient = periodicity_gradient[:, :, np.newaxis] else: # p is kept fixed periodicity_gradient = np.empty((K.shape[0], K.shape[1], 0)) return K, np.dstack((length_scale_gradient, periodicity_gradient)) else: return K def __repr__(self): return "{0}(length_scale={1:.3g}, periodicity={2:.3g})".format( self.__class__.__name__, self.length_scale, self.periodicity) class DotProduct(Kernel): """Dot-Product kernel. The DotProduct kernel is non-stationary and can be obtained from linear regression by putting N(0, 1) priors on the coefficients of x_d (d = 1, . . . , D) and a prior of N(0, \sigma_0^2) on the bias. The DotProduct kernel is invariant to a rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter sigma_0^2. For sigma_0^2 =0, the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by k(x_i, x_j) = sigma_0 ^ 2 + x_i \cdot x_j The DotProduct kernel is commonly combined with exponentiation. Parameters ---------- sigma_0 : float >= 0, default: 1.0 Parameter controlling the inhomogenity of the kernel. If sigma_0=0, the kernel is homogenous. sigma_0_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on l """ def __init__(self, sigma_0=1.0, sigma_0_bounds=(1e-5, 1e5)): self.sigma_0 = sigma_0 self.sigma_0_bounds = sigma_0_bounds self.hyperparameter_sigma_0 = \ Hyperparameter("sigma_0", "numeric", sigma_0_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: K = np.inner(X, X) + self.sigma_0 ** 2 else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") K = np.inner(X, Y) + self.sigma_0 ** 2 if eval_gradient: if not self.hyperparameter_sigma_0.fixed: K_gradient = np.empty((K.shape[0], K.shape[1], 1)) K_gradient[..., 0] = 2 * self.sigma_0 ** 2 return K, K_gradient else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return np.einsum('ij,ij->i', X, X) + self.sigma_0 ** 2 def is_stationary(self): """Returns whether the kernel is stationary. """ return False def __repr__(self): return "{0}(sigma_0={1:.3g})".format( self.__class__.__name__, self.sigma_0) # adapted from scipy/optimize/optimize.py for functions with 2d output def _approx_fprime(xk, f, epsilon, args=()): f0 = f(*((xk,) + args)) grad = np.zeros((f0.shape[0], f0.shape[1], len(xk)), float) ei = np.zeros((len(xk), ), float) for k in range(len(xk)): ei[k] = 1.0 d = epsilon * ei grad[:, :, k] = (f(*((xk + d,) + args)) - f0) / d[k] ei[k] = 0.0 return grad class PairwiseKernel(Kernel): """Wrapper for kernels in sklearn.metrics.pairwise. A thin wrapper around the functionality of the kernels in sklearn.metrics.pairwise. Note: Evaluation of eval_gradient is not analytic but numeric and all kernels support only isotropic distances. The parameter gamma is considered to be a hyperparameter and may be optimized. The other kernel parameters are set directly at initialization and are kept fixed. Parameters ---------- gamma: float >= 0, default: 1.0 Parameter gamma of the pairwise kernel specified by metric gamma_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on gamma metric : string, or callable, default: "linear" The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. pairwise_kernels_kwargs : dict, default: None All entries of this dict (if any) are passed as keyword arguments to the pairwise kernel function. """ def __init__(self, gamma=1.0, gamma_bounds=(1e-5, 1e5), metric="linear", pairwise_kernels_kwargs=None): self.gamma = gamma self.gamma_bounds = gamma_bounds self.hyperparameter_gamma = \ Hyperparameter("gamma", "numeric", gamma_bounds) self.metric = metric if pairwise_kernels_kwargs is not None: self.pairwise_kernels_kwargs = pairwise_kernels_kwargs else: self.pairwise_kernels_kwargs = {} def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) K = pairwise_kernels(X, Y, metric=self.metric, gamma=self.gamma, filter_params=True, **self.pairwise_kernels_kwargs) if eval_gradient: if self.hyperparameter_gamma.fixed: return K, np.empty((X.shape[0], X.shape[0], 0)) else: # approximate gradient numerically def f(gamma): # helper function return pairwise_kernels( X, Y, metric=self.metric, gamma=np.exp(gamma), filter_params=True, **self.pairwise_kernels_kwargs) return K, _approx_fprime(self.theta, f, 1e-10) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ # We have to fall back to slow way of computing diagonal return np.apply_along_axis(self, 1, X)[:, 0] def is_stationary(self): """Returns whether the kernel is stationary. """ return self.metric in ["rbf"] def __repr__(self): return "{0}(gamma={1}, metric={2})".format( self.__class__.__name__, self.gamma, self.metric)
bsd-3-clause
iismd17/scikit-learn
sklearn/neighbors/approximate.py
71
22357
"""Approximate nearest neighbor search""" # Author: Maheshakya Wijewardena <[email protected]> # Joel Nothman <[email protected]> import numpy as np import warnings from scipy import sparse from .base import KNeighborsMixin, RadiusNeighborsMixin from ..base import BaseEstimator from ..utils.validation import check_array from ..utils import check_random_state from ..metrics.pairwise import pairwise_distances from ..random_projection import GaussianRandomProjection __all__ = ["LSHForest"] HASH_DTYPE = '>u4' MAX_HASH_SIZE = np.dtype(HASH_DTYPE).itemsize * 8 def _find_matching_indices(tree, bin_X, left_mask, right_mask): """Finds indices in sorted array of integers. Most significant h bits in the binary representations of the integers are matched with the items' most significant h bits. """ left_index = np.searchsorted(tree, bin_X & left_mask) right_index = np.searchsorted(tree, bin_X | right_mask, side='right') return left_index, right_index def _find_longest_prefix_match(tree, bin_X, hash_size, left_masks, right_masks): """Find the longest prefix match in tree for each query in bin_X Most significant bits are considered as the prefix. """ hi = np.empty_like(bin_X, dtype=np.intp) hi.fill(hash_size) lo = np.zeros_like(bin_X, dtype=np.intp) res = np.empty_like(bin_X, dtype=np.intp) left_idx, right_idx = _find_matching_indices(tree, bin_X, left_masks[hi], right_masks[hi]) found = right_idx > left_idx res[found] = lo[found] = hash_size r = np.arange(bin_X.shape[0]) kept = r[lo < hi] # indices remaining in bin_X mask while kept.shape[0]: mid = (lo.take(kept) + hi.take(kept)) // 2 left_idx, right_idx = _find_matching_indices(tree, bin_X.take(kept), left_masks[mid], right_masks[mid]) found = right_idx > left_idx mid_found = mid[found] lo[kept[found]] = mid_found + 1 res[kept[found]] = mid_found hi[kept[~found]] = mid[~found] kept = r[lo < hi] return res class ProjectionToHashMixin(object): """Turn a transformed real-valued array into a hash""" @staticmethod def _to_hash(projected): if projected.shape[1] % 8 != 0: raise ValueError('Require reduced dimensionality to be a multiple ' 'of 8 for hashing') # XXX: perhaps non-copying operation better out = np.packbits((projected > 0).astype(int)).view(dtype=HASH_DTYPE) return out.reshape(projected.shape[0], -1) def fit_transform(self, X, y=None): self.fit(X) return self.transform(X) def transform(self, X, y=None): return self._to_hash(super(ProjectionToHashMixin, self).transform(X)) class GaussianRandomProjectionHash(ProjectionToHashMixin, GaussianRandomProjection): """Use GaussianRandomProjection to produce a cosine LSH fingerprint""" def __init__(self, n_components=8, random_state=None): super(GaussianRandomProjectionHash, self).__init__( n_components=n_components, random_state=random_state) def _array_of_arrays(list_of_arrays): """Creates an array of array from list of arrays.""" out = np.empty(len(list_of_arrays), dtype=object) out[:] = list_of_arrays return out class LSHForest(BaseEstimator, KNeighborsMixin, RadiusNeighborsMixin): """Performs approximate nearest neighbor search using LSH forest. LSH Forest: Locality Sensitive Hashing forest [1] is an alternative method for vanilla approximate nearest neighbor search methods. LSH forest data structure has been implemented using sorted arrays and binary search and 32 bit fixed-length hashes. Random projection is used as the hash family which approximates cosine distance. The cosine distance is defined as ``1 - cosine_similarity``: the lowest value is 0 (identical point) but it is bounded above by 2 for the farthest points. Its value does not depend on the norm of the vector points but only on their relative angles. Read more in the :ref:`User Guide <approximate_nearest_neighbors>`. Parameters ---------- n_estimators : int (default = 10) Number of trees in the LSH Forest. min_hash_match : int (default = 4) lowest hash length to be searched when candidate selection is performed for nearest neighbors. n_candidates : int (default = 10) Minimum number of candidates evaluated per estimator, assuming enough items meet the `min_hash_match` constraint. n_neighbors : int (default = 5) Number of neighbors to be returned from query function when it is not provided to the :meth:`kneighbors` method. radius : float, optinal (default = 1.0) Radius from the data point to its neighbors. This is the parameter space to use by default for the :meth`radius_neighbors` queries. radius_cutoff_ratio : float, optional (default = 0.9) A value ranges from 0 to 1. Radius neighbors will be searched until the ratio between total neighbors within the radius and the total candidates becomes less than this value unless it is terminated by hash length reaching `min_hash_match`. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- hash_functions_ : list of GaussianRandomProjectionHash objects Hash function g(p,x) for a tree is an array of 32 randomly generated float arrays with the same dimenstion as the data set. This array is stored in GaussianRandomProjectionHash object and can be obtained from ``components_`` attribute. trees_ : array, shape (n_estimators, n_samples) Each tree (corresponding to a hash function) contains an array of sorted hashed values. The array representation may change in future versions. original_indices_ : array, shape (n_estimators, n_samples) Original indices of sorted hashed values in the fitted index. References ---------- .. [1] M. Bawa, T. Condie and P. Ganesan, "LSH Forest: Self-Tuning Indexes for Similarity Search", WWW '05 Proceedings of the 14th international conference on World Wide Web, 651-660, 2005. Examples -------- >>> from sklearn.neighbors import LSHForest >>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]] >>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]] >>> lshf = LSHForest() >>> lshf.fit(X_train) # doctest: +NORMALIZE_WHITESPACE LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10, n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9, random_state=None) >>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2) >>> distances # doctest: +ELLIPSIS array([[ 0.069..., 0.149...], [ 0.229..., 0.481...], [ 0.004..., 0.014...]]) >>> indices array([[1, 2], [2, 0], [4, 0]]) """ def __init__(self, n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=.9, random_state=None): self.n_estimators = n_estimators self.radius = radius self.random_state = random_state self.n_candidates = n_candidates self.n_neighbors = n_neighbors self.min_hash_match = min_hash_match self.radius_cutoff_ratio = radius_cutoff_ratio def _compute_distances(self, query, candidates): """Computes the cosine distance. Distance is from the query to points in the candidates array. Returns argsort of distances in the candidates array and sorted distances. """ if candidates.shape == (0,): # needed since _fit_X[np.array([])] doesn't work if _fit_X sparse return np.empty(0, dtype=np.int), np.empty(0, dtype=float) if sparse.issparse(self._fit_X): candidate_X = self._fit_X[candidates] else: candidate_X = self._fit_X.take(candidates, axis=0, mode='clip') distances = pairwise_distances(query, candidate_X, metric='cosine')[0] distance_positions = np.argsort(distances) distances = distances.take(distance_positions, mode='clip', axis=0) return distance_positions, distances def _generate_masks(self): """Creates left and right masks for all hash lengths.""" tri_size = MAX_HASH_SIZE + 1 # Called once on fitting, output is independent of hashes left_mask = np.tril(np.ones((tri_size, tri_size), dtype=int))[:, 1:] right_mask = left_mask[::-1, ::-1] self._left_mask = np.packbits(left_mask).view(dtype=HASH_DTYPE) self._right_mask = np.packbits(right_mask).view(dtype=HASH_DTYPE) def _get_candidates(self, query, max_depth, bin_queries, n_neighbors): """Performs the Synchronous ascending phase. Returns an array of candidates, their distance ranks and distances. """ index_size = self._fit_X.shape[0] # Number of candidates considered including duplicates # XXX: not sure whether this is being calculated correctly wrt # duplicates from different iterations through a single tree n_candidates = 0 candidate_set = set() min_candidates = self.n_candidates * self.n_estimators while (max_depth > self.min_hash_match and (n_candidates < min_candidates or len(candidate_set) < n_neighbors)): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) n_candidates += stop - start candidate_set.update( self.original_indices_[i][start:stop].tolist()) max_depth -= 1 candidates = np.fromiter(candidate_set, count=len(candidate_set), dtype=np.intp) # For insufficient candidates, candidates are filled. # Candidates are filled from unselected indices uniformly. if candidates.shape[0] < n_neighbors: warnings.warn( "Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (n_neighbors, self.min_hash_match)) remaining = np.setdiff1d(np.arange(0, index_size), candidates) to_fill = n_neighbors - candidates.shape[0] candidates = np.concatenate((candidates, remaining[:to_fill])) ranks, distances = self._compute_distances(query, candidates.astype(int)) return (candidates[ranks[:n_neighbors]], distances[:n_neighbors]) def _get_radius_neighbors(self, query, max_depth, bin_queries, radius): """Finds radius neighbors from the candidates obtained. Their distances from query are smaller than radius. Returns radius neighbors and distances. """ ratio_within_radius = 1 threshold = 1 - self.radius_cutoff_ratio total_candidates = np.array([], dtype=int) total_neighbors = np.array([], dtype=int) total_distances = np.array([], dtype=float) while (max_depth > self.min_hash_match and ratio_within_radius > threshold): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] candidates = [] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) candidates.extend( self.original_indices_[i][start:stop].tolist()) candidates = np.setdiff1d(candidates, total_candidates) total_candidates = np.append(total_candidates, candidates) ranks, distances = self._compute_distances(query, candidates) m = np.searchsorted(distances, radius, side='right') positions = np.searchsorted(total_distances, distances[:m]) total_neighbors = np.insert(total_neighbors, positions, candidates[ranks[:m]]) total_distances = np.insert(total_distances, positions, distances[:m]) ratio_within_radius = (total_neighbors.shape[0] / float(total_candidates.shape[0])) max_depth = max_depth - 1 return total_neighbors, total_distances def fit(self, X, y=None): """Fit the LSH forest on the data. This creates binary hashes of input data points by getting the dot product of input points and hash_function then transforming the projection into a binary string array based on the sign (positive/negative) of the projection. A sorted array of binary hashes is created. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self : object Returns self. """ self._fit_X = check_array(X, accept_sparse='csr') # Creates a g(p,x) for each tree self.hash_functions_ = [] self.trees_ = [] self.original_indices_ = [] rng = check_random_state(self.random_state) int_max = np.iinfo(np.int32).max for i in range(self.n_estimators): # This is g(p,x) for a particular tree. # Builds a single tree. Hashing is done on an array of data points. # `GaussianRandomProjection` is used for hashing. # `n_components=hash size and n_features=n_dim. hasher = GaussianRandomProjectionHash(MAX_HASH_SIZE, rng.randint(0, int_max)) hashes = hasher.fit_transform(self._fit_X)[:, 0] original_index = np.argsort(hashes) bin_hashes = hashes[original_index] self.original_indices_.append(original_index) self.trees_.append(bin_hashes) self.hash_functions_.append(hasher) self._generate_masks() return self def _query(self, X): """Performs descending phase to find maximum depth.""" # Calculate hashes of shape (n_samples, n_estimators, [hash_size]) bin_queries = np.asarray([hasher.transform(X)[:, 0] for hasher in self.hash_functions_]) bin_queries = np.rollaxis(bin_queries, 1) # descend phase depths = [_find_longest_prefix_match(tree, tree_queries, MAX_HASH_SIZE, self._left_mask, self._right_mask) for tree, tree_queries in zip(self.trees_, np.rollaxis(bin_queries, 1))] return bin_queries, np.max(depths, axis=0) def kneighbors(self, X, n_neighbors=None, return_distance=True): """Returns n_neighbors of approximate nearest neighbors. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. n_neighbors : int, opitonal (default = None) Number of neighbors required. If not provided, this will return the number specified at the initialization. return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples, n_neighbors) Array representing the cosine distances to each point, only present if return_distance=True. ind : array, shape (n_samples, n_neighbors) Indices of the approximate nearest points in the population matrix. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if n_neighbors is None: n_neighbors = self.n_neighbors X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_candidates(X[[i]], max_depth[i], bin_queries[i], n_neighbors) neighbors.append(neighs) distances.append(dists) if return_distance: return np.array(distances), np.array(neighbors) else: return np.array(neighbors) def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of some points from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. LSH Forest being an approximate method, some true neighbors from the indexed dataset might be missing from the results. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples,) of arrays Each element is an array representing the cosine distances to some points found within ``radius`` of the respective query. Only present if ``return_distance=True``. ind : array, shape (n_samples,) of arrays Each element is an array of indices for neighbors within ``radius`` of the respective query. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if radius is None: radius = self.radius X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_radius_neighbors(X[[i]], max_depth[i], bin_queries[i], radius) neighbors.append(neighs) distances.append(dists) if return_distance: return _array_of_arrays(distances), _array_of_arrays(neighbors) else: return _array_of_arrays(neighbors) def partial_fit(self, X, y=None): """ Inserts new data into the already fitted LSH Forest. Cost is proportional to new total size, so additions should be batched. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) New data point to be inserted into the LSH Forest. """ X = check_array(X, accept_sparse='csr') if not hasattr(self, 'hash_functions_'): return self.fit(X) if X.shape[1] != self._fit_X.shape[1]: raise ValueError("Number of features in X and" " fitted array does not match.") n_samples = X.shape[0] n_indexed = self._fit_X.shape[0] for i in range(self.n_estimators): bin_X = self.hash_functions_[i].transform(X)[:, 0] # gets the position to be added in the tree. positions = self.trees_[i].searchsorted(bin_X) # adds the hashed value into the tree. self.trees_[i] = np.insert(self.trees_[i], positions, bin_X) # add the entry into the original_indices_. self.original_indices_[i] = np.insert(self.original_indices_[i], positions, np.arange(n_indexed, n_indexed + n_samples)) # adds the entry into the input_array. if sparse.issparse(X) or sparse.issparse(self._fit_X): self._fit_X = sparse.vstack((self._fit_X, X)) else: self._fit_X = np.row_stack((self._fit_X, X)) return self
bsd-3-clause
alfeinsod/xastropy
xastropy/xguis/utils.py
3
2167
""" #;+ #; NAME: #; utils #; Version 1.0 #; #; PURPOSE: #; Module for Simple Guis with QT #; 27-Dec-2014 by JXP #;- #;------------------------------------------------------------------------------ """ from __future__ import print_function, absolute_import, division, unicode_literals # Import libraries import numpy as np import os, sys import matplotlib.pyplot as plt import glob from PyQt4 import QtGui from PyQt4 import QtCore from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar # Matplotlib Figure object from matplotlib.figure import Figure from xastropy.xutils import xdebug as xdb # ################################## # GUI for velocity plot class WarningWidg(QtGui.QDialog): ''' GUI to warn user about coming action and solicit response 24-Dec-2014 by JXP ''' def __init__(self, message, parent=None): ''' message = str Message to display ''' super(WarningWidg, self).__init__(parent) # Initialize # Grab the pieces and tie together z_label = QtGui.QLabel('Warning: {:s}'.format(message)) # Quit nbtn = QtGui.QPushButton('No', self) nbtn.clicked.connect(self.touch_no) ybtn = QtGui.QPushButton('Yes', self) ybtn.clicked.connect(self.touch_yes) # Layout vbox = QtGui.QVBoxLayout() vbox.addWidget(z_label) vbox.addWidget(nbtn) vbox.addWidget(ybtn) self.setLayout(vbox) def touch_yes(self): self.ans = True self.done(0) def touch_no(self): self.ans = False self.done(0) # ################ # TESTING if __name__ == "__main__": flg_fig = 0 flg_fig += 2**0 # Warning if (flg_fig % 2) == 1: app = QtGui.QApplication(sys.argv) app.setApplicationName('Warning') main = WarningWidg('Will remove all lines. \n Continue??') main.show() app.exec_() if main.ans: print('You answered yes!') else: print('You answered no!')
bsd-3-clause
timnon/pyschedule
src/pyschedule/plotters/matplotlib.py
1
5819
from __future__ import absolute_import as _absolute_import import operator #! /usr/bin/env python ''' Copyright 2015 Tim Nonner Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' def plot(scenario,img_filename=None,resource_height=1.0,show_task_labels=True, color_prec_groups=False,hide_tasks=[],hide_resources=[],task_colors=dict(),fig_size=(15,5), vertical_text=False) : """ Plot the given solved scenario using matplotlib Args: scenario: scenario to plot msg: 0 means no feedback (default) during computation, 1 means feedback """ try : import matplotlib if img_filename is not None: matplotlib.use('Agg') import matplotlib.patches as patches, matplotlib.pyplot as plt except : raise Exception('ERROR: matplotlib is not installed') import random S = scenario # trivial connected components implementation to avoid # having to import other packages just for that def get_connected_components(edges) : comps = dict() for v,u in edges : if v not in comps and u not in comps : comps[v] = v comps[u] = v elif v in comps and u not in comps : comps[u] = comps[v] elif v not in comps and u in comps : comps[v] = comps[u] elif v in comps and u in comps and comps[v] != comps[u] : old_comp = comps[u] for w in comps : if comps[w] == old_comp : comps[w] = comps[v] # replace component identifiers by integers startting with 0 values = list(comps.values()) comps = { T : values.index(comps[T]) for T in comps } return comps tasks = [ T for T in S.tasks() if T not in hide_tasks ] # get connected components dict for coloring # each task is mapping to an integer number which corresponds # to its connected component edges = [ (T,T) for T in tasks ] if color_prec_groups : edges += [ (T,T_) for P in set(S.precs_lax()) | set(S.precs_tight()) \ for T in P.tasks() for T_ in P.tasks() \ if T in tasks and T_ in tasks ] comps = get_connected_components(edges) # color map colors = ['#7EA7D8','#A1D372','#EB4845','#7BCDC8','#FFF79A'] #pastel colors #colors = ['red','green','blue','yellow','orange','black','purple'] #basic colors colors += [ [ random.random() for i in range(3) ] for x in range(len(S.tasks())) ] #random colors color_map = { T : colors[comps[T]] for T in comps } # replace colors with fixed task colors for T in task_colors : color_map[T] = task_colors[T] hide_tasks_str = [ T for T in hide_tasks ] for T in scenario.tasks(): if hasattr(T,'plot_color'): if T['plot_color'] is not None: color_map[T] = T['plot_color'] else: hide_tasks_str.append(T) solution = S.solution() solution = [ (T,R,x,y) for (T,R,x,y) in solution if T not in hide_tasks_str ] #tasks of zero length are not plotted fig, ax = plt.subplots(1, 1, figsize=fig_size) resource_sizes_count = 0 visible_resources = [ R for R in S.resources() if R not in hide_resources ] if not visible_resources: raise Exception('ERROR: no resources to plot') total_resource_sizes = sum([ R.size for R in visible_resources ]) R_ticks = list() for R in visible_resources : if R.size is not None : resource_size = R.size else : resource_size = 1.0 R_ticks += [str(R.name)]*int(resource_size) # compute the levels of the tasks on one resource task_levels = dict() # get solution on resource sorted according to start time R_solution = [ (T,R_,x,y) for (T,R_,x,y) in solution if R_ == R ] R_solution = sorted(R_solution, key=lambda x : x[2]) # iteratively fill all levels on resource, start with empty fill level_fill = { i : 0 for i in range(int(resource_size)) } for T,R_,x,y in R_solution : sorted_levels = sorted(level_fill.items(), key = operator.itemgetter(1, 0)) # get the maximum resource requirement coeff = max([ RA[R] for RA in T.resources_req if R_ in RA ]) min_levels = [ level for level,fill in sorted_levels[:coeff] ] task_levels[T] = min_levels for level in min_levels : level_fill[level] += T.length # plot solution for (T,R,x,x_) in R_solution : for level in task_levels[T] : y = (total_resource_sizes-1-(resource_sizes_count+level))*resource_height ax.add_patch( patches.Rectangle( (x, y), # (x,y) max(x_-x,0.5), # width resource_height, # height color = color_map[T], alpha=0.6 ) ) if show_task_labels : if vertical_text: text_rotation = 90 y_ = y+0.9*resource_height else: text_rotation = 0 y_ = y+0.1*resource_height plt.text(x,y_,str(T.name),fontsize=14,color='black',rotation=text_rotation) resource_sizes_count += resource_size # format graph plt.title(str(S.name)) plt.yticks([ resource_height*x + resource_height/2.0 for x in range(len(R_ticks)) ],R_ticks[::-1]) plt.ylim(0,resource_sizes_count*resource_height)#resource_height*len(resources)) plt.xlim(0,max([ x_ for (I,R,x,x_) in solution if R in visible_resources ])) if img_filename is not None: fig.figsize=(1,1) plt.savefig(img_filename,dpi=200,bbox_inches='tight') else : plt.show()
apache-2.0
mistercrunch/panoramix
superset/examples/random_time_series.py
3
2925
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pandas as pd from sqlalchemy import DateTime, String from superset import db from superset.models.slice import Slice from superset.utils import core as utils from .helpers import config, get_example_data, get_slice_json, merge_slice, TBL def load_random_time_series_data( only_metadata: bool = False, force: bool = False ) -> None: """Loading random time series data from a zip file in the repo""" tbl_name = "random_time_series" database = utils.get_example_database() table_exists = database.has_table_by_name(tbl_name) if not only_metadata and (not table_exists or force): data = get_example_data("random_time_series.json.gz") pdf = pd.read_json(data) if database.backend == "presto": pdf.ds = pd.to_datetime(pdf.ds, unit="s") pdf.ds = pdf.ds.dt.strftime("%Y-%m-%d %H:%M%:%S") else: pdf.ds = pd.to_datetime(pdf.ds, unit="s") pdf.to_sql( tbl_name, database.get_sqla_engine(), if_exists="replace", chunksize=500, dtype={"ds": DateTime if database.backend != "presto" else String(255)}, index=False, ) print("Done loading table!") print("-" * 80) print(f"Creating table [{tbl_name}] reference") obj = db.session.query(TBL).filter_by(table_name=tbl_name).first() if not obj: obj = TBL(table_name=tbl_name) obj.main_dttm_col = "ds" obj.database = database db.session.merge(obj) db.session.commit() obj.fetch_metadata() tbl = obj slice_data = { "granularity_sqla": "day", "row_limit": config["ROW_LIMIT"], "since": "2019-01-01", "until": "2019-02-01", "metric": "count", "viz_type": "cal_heatmap", "domain_granularity": "month", "subdomain_granularity": "day", } print("Creating a slice") slc = Slice( slice_name="Calendar Heatmap", viz_type="cal_heatmap", datasource_type="table", datasource_id=tbl.id, params=get_slice_json(slice_data), ) merge_slice(slc)
apache-2.0