repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
xavierwu/scikit-learn
examples/plot_multilabel.py
236
4157
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
khkaminska/scikit-learn
sklearn/cluster/dbscan_.py
92
12380
# -*- coding: utf-8 -*- """ DBSCAN: Density-Based Spatial Clustering of Applications with Noise """ # Author: Robert Layton <[email protected]> # Joel Nothman <[email protected]> # Lars Buitinck # # License: BSD 3 clause import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, ClusterMixin from ..metrics import pairwise_distances from ..utils import check_array, check_consistent_length from ..utils.fixes import astype from ..neighbors import NearestNeighbors from ._dbscan_inner import dbscan_inner def dbscan(X, eps=0.5, min_samples=5, metric='minkowski', algorithm='auto', leaf_size=30, p=2, sample_weight=None, random_state=None): """Perform DBSCAN clustering from vector array or distance matrix. Read more in the :ref:`User Guide <dbscan>`. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. eps : float, optional The maximum distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in which case only "nonzero" elements may be considered neighbors for DBSCAN. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p : float, optional The power of the Minkowski metric to be used to calculate distance between points. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. random_state: numpy.RandomState, optional Deprecated and ignored as of version 0.16, will be removed in version 0.18. DBSCAN does not use random initialization. Returns ------- core_samples : array [n_core_samples] Indices of core samples. labels : array [n_samples] Cluster labels for each point. Noisy samples are given the label -1. Notes ----- See examples/cluster/plot_dbscan.py for an example. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). Sparse neighborhoods can be precomputed using :func:`NearestNeighbors.radius_neighbors_graph <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with ``mode='distance'``. References ---------- Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996 """ if not eps > 0.0: raise ValueError("eps must be positive.") if random_state is not None: warnings.warn("The parameter random_state is deprecated in 0.16 " "and will be removed in version 0.18. " "DBSCAN is deterministic except for rare border cases.", category=DeprecationWarning) X = check_array(X, accept_sparse='csr') if sample_weight is not None: sample_weight = np.asarray(sample_weight) check_consistent_length(X, sample_weight) # Calculate neighborhood for all samples. This leaves the original point # in, which needs to be considered later (i.e. point i is in the # neighborhood of point i. While True, its useless information) if metric == 'precomputed' and sparse.issparse(X): neighborhoods = np.empty(X.shape[0], dtype=object) X.sum_duplicates() # XXX: modifies X's internals in-place X_mask = X.data <= eps masked_indices = astype(X.indices, np.intp, copy=False)[X_mask] masked_indptr = np.cumsum(X_mask)[X.indptr[1:] - 1] # insert the diagonal: a point is its own neighbor, but 0 distance # means absence from sparse matrix data masked_indices = np.insert(masked_indices, masked_indptr, np.arange(X.shape[0])) masked_indptr = masked_indptr[:-1] + np.arange(1, X.shape[0]) # split into rows neighborhoods[:] = np.split(masked_indices, masked_indptr) else: neighbors_model = NearestNeighbors(radius=eps, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p) neighbors_model.fit(X) # This has worst case O(n^2) memory complexity neighborhoods = neighbors_model.radius_neighbors(X, eps, return_distance=False) if sample_weight is None: n_neighbors = np.array([len(neighbors) for neighbors in neighborhoods]) else: n_neighbors = np.array([np.sum(sample_weight[neighbors]) for neighbors in neighborhoods]) # Initially, all samples are noise. labels = -np.ones(X.shape[0], dtype=np.intp) # A list of all core samples found. core_samples = np.asarray(n_neighbors >= min_samples, dtype=np.uint8) dbscan_inner(core_samples, neighborhoods, labels) return np.where(core_samples)[0], labels class DBSCAN(BaseEstimator, ClusterMixin): """Perform DBSCAN clustering from vector array or distance matrix. DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density and expands clusters from them. Good for data which contains clusters of similar density. Read more in the :ref:`User Guide <dbscan>`. Parameters ---------- eps : float, optional The maximum distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.calculate_distance for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in which case only "nonzero" elements may be considered neighbors for DBSCAN. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. random_state: numpy.RandomState, optional Deprecated and ignored as of version 0.16, will be removed in version 0.18. DBSCAN does not use random initialization. Attributes ---------- core_sample_indices_ : array, shape = [n_core_samples] Indices of core samples. components_ : array, shape = [n_core_samples, n_features] Copy of each core sample found by training. labels_ : array, shape = [n_samples] Cluster labels for each point in the dataset given to fit(). Noisy samples are given the label -1. Notes ----- See examples/cluster/plot_dbscan.py for an example. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). Sparse neighborhoods can be precomputed using :func:`NearestNeighbors.radius_neighbors_graph <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with ``mode='distance'``. References ---------- Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996 """ def __init__(self, eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None, random_state=None): self.eps = eps self.min_samples = min_samples self.metric = metric self.algorithm = algorithm self.leaf_size = leaf_size self.p = p self.random_state = random_state def fit(self, X, y=None, sample_weight=None): """Perform DBSCAN clustering from features or distance matrix. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. """ X = check_array(X, accept_sparse='csr') clust = dbscan(X, sample_weight=sample_weight, **self.get_params()) self.core_sample_indices_, self.labels_ = clust if len(self.core_sample_indices_): # fix for scipy sparse indexing issue self.components_ = X[self.core_sample_indices_].copy() else: # no core samples self.components_ = np.empty((0, X.shape[1])) return self def fit_predict(self, X, y=None, sample_weight=None): """Performs clustering on X and returns cluster labels. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. Returns ------- y : ndarray, shape (n_samples,) cluster labels """ self.fit(X, sample_weight=sample_weight) return self.labels_
bsd-3-clause
potash/scikit-learn
examples/calibration/plot_calibration_multiclass.py
95
6971
""" ================================================== Probability Calibration for 3-class classification ================================================== This example illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem. Illustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green: class 2, blue: class 3). The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800 training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical classifier, which was trained on 600 datapoints, with method='sigmoid' on the remaining 200 datapoints reduces the confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center. This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base estimators which would have resulted in a similar decrease in log-loss. """ print(__doc__) # Author: Jan Hendrik Metzen <[email protected]> # License: BSD Style. import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import log_loss np.random.seed(0) # Generate data X, y = make_blobs(n_samples=1000, n_features=2, random_state=42, cluster_std=5.0) X_train, y_train = X[:600], y[:600] X_valid, y_valid = X[600:800], y[600:800] X_train_valid, y_train_valid = X[:800], y[:800] X_test, y_test = X[800:], y[800:] # Train uncalibrated random forest classifier on whole train and validation # data and evaluate on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train_valid, y_train_valid) clf_probs = clf.predict_proba(X_test) score = log_loss(y_test, clf_probs) # Train random forest classifier, calibrate on validation data and evaluate # on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) sig_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit") sig_clf.fit(X_valid, y_valid) sig_clf_probs = sig_clf.predict_proba(X_test) sig_score = log_loss(y_test, sig_clf_probs) # Plot changes in predicted probabilities via arrows plt.figure(0) colors = ["r", "g", "b"] for i in range(clf_probs.shape[0]): plt.arrow(clf_probs[i, 0], clf_probs[i, 1], sig_clf_probs[i, 0] - clf_probs[i, 0], sig_clf_probs[i, 1] - clf_probs[i, 1], color=colors[y_test[i]], head_width=1e-2) # Plot perfect predictions plt.plot([1.0], [0.0], 'ro', ms=20, label="Class 1") plt.plot([0.0], [1.0], 'go', ms=20, label="Class 2") plt.plot([0.0], [0.0], 'bo', ms=20, label="Class 3") # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") # Annotate points on the simplex plt.annotate(r'($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)', xy=(1.0/3, 1.0/3), xytext=(1.0/3, .23), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.plot([1.0/3], [1.0/3], 'ko', ms=5) plt.annotate(r'($\frac{1}{2}$, $0$, $\frac{1}{2}$)', xy=(.5, .0), xytext=(.5, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $\frac{1}{2}$, $\frac{1}{2}$)', xy=(.0, .5), xytext=(.1, .5), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($\frac{1}{2}$, $\frac{1}{2}$, $0$)', xy=(.5, .5), xytext=(.6, .6), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $0$, $1$)', xy=(0, 0), xytext=(.1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($1$, $0$, $0$)', xy=(1, 0), xytext=(1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $1$, $0$)', xy=(0, 1), xytext=(.1, 1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') # Add grid plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Change of predicted probabilities after sigmoid calibration") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.legend(loc="best") print("Log-loss of") print(" * uncalibrated classifier trained on 800 datapoints: %.3f " % score) print(" * classifier trained on 600 datapoints and calibrated on " "200 datapoint: %.3f" % sig_score) # Illustrate calibrator plt.figure(1) # generate grid over 2-simplex p1d = np.linspace(0, 1, 20) p0, p1 = np.meshgrid(p1d, p1d) p2 = 1 - p0 - p1 p = np.c_[p0.ravel(), p1.ravel(), p2.ravel()] p = p[p[:, 2] >= 0] calibrated_classifier = sig_clf.calibrated_classifiers_[0] prediction = np.vstack([calibrator.predict(this_p) for calibrator, this_p in zip(calibrated_classifier.calibrators_, p.T)]).T prediction /= prediction.sum(axis=1)[:, None] # Plot modifications of calibrator for i in range(prediction.shape[0]): plt.arrow(p[i, 0], p[i, 1], prediction[i, 0] - p[i, 0], prediction[i, 1] - p[i, 1], head_width=1e-2, color=colors[np.argmax(p[i])]) # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Illustration of sigmoid calibrator") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.show()
bsd-3-clause
jangorecki/h2o-3
h2o-docs/src/booklets/v2_2015/source/python/python_randomized_grid_search.py
2
5102
In [57]: from sklearn.grid_search import RandomizedSearchCV In [58]: from h2o.cross_validation import H2OKFold In [59]: from h2o.model.regression import h2o_r2_score In [60]: from sklearn.metrics.scorer import make_scorer In [61]: from sklearn.metrics.scorer import make_scorer # Parameters to test In [62]: params = {"standardize__center": [True, False], ....: "standardize__scale": [True, False], ....: "pca__k": [2,3], ....: "gbm__ntrees": [10,20], ....: "gbm__max_depth": [1,2,3], ....: "gbm__learn_rate": [0.1,0.2]} In [63]: custom_cv = H2OKFold(iris_df, n_folds=5, seed=42) In [64]: pipeline = Pipeline([("standardize", H2OScaler()), ....: ("pca", H2OPCA(k=2)), ....: ("gbm", H2OGradientBoostingEstimator(distribution="gaussian"))]) In [65]: random_search = RandomizedSearchCV(pipeline, params, ....: n_iter=5, ....: scoring=make_scorer(h2o_r2_score), ....: cv=custom_cv, ....: random_state=42, ....: n_jobs=1) In [66]: random_search.fit(iris_df[1:], iris_df[0]) Out[66]: RandomizedSearchCV(cv=<h2o.cross_validation.H2OKFold instance at 0x10ba413d0>, error_score='raise', estimator=Pipeline(steps=[('standardize', <h2o.transforms.preprocessing.H2OScaler object at 0x10c0f18d0>), ('pca', ), ('gbm', )]), fit_params={}, iid=True, n_iter=5, n_jobs=1, param_distributions={'pca__k': [2, 3], 'gbm__ntrees': [10, 20], 'standardize__scale': [True, False], 'gbm__max_depth': [1, 2, 3], 'standardize__center': [True, False], 'gbm__learn_rate': [0.1, 0.2]}, pre_dispatch='2*n_jobs', random_state=42, refit=True, scoring=make_scorer(h2o_r2_score), verbose=0) In [67]: print random_search.best_estimator_ Model Details ============= H2OPCA : Principal Component Analysis Model Key: PCA_model_python_1446220160417_136 Importance of components: pc1 pc2 pc3 ---------------------- -------- ---------- ---------- Standard deviation 9.6974 0.091905 0.031356 Proportion of Variance 0.9999 8.98098e-05 1.04541e-05 Cumulative Proportion 0.9999 0.99999 1 ModelMetricsPCA: pca ** Reported on train data. ** MSE: NaN RMSE: NaN Model Details ============= H2OGradientBoostingEstimator : Gradient Boosting Machine Model Key: GBM_model_python_1446220160417_138 Model Summary: number_of_trees number_of_internal_trees model_size_in_bytes min_depth max_depth mean_depth min_leaves max_leaves mean_leaves -- ----------------- ------------------------- --------------------- ----------- ----------- ------------ ------------ ------------ ------------- 20 20 2958 3 3 3 5 8 6.85 ModelMetricsRegression: gbm ** Reported on train data. ** RMSE: 0.193906262445 MAE: 0.155086582663 RMSLE: NaN Mean Residual Deviance: 0.0375996386155 Scoring History: timestamp duration number_of_trees training_rmse training_mse training_deviance -- ------------------- ---------- ----------------- -------------- -------------- ------------------- 2016-08-25 13:58:15 0.000 sec 0.0 0.683404046309 0.569341466973 0.467041090512 2016-08-25 13:58:15 0.002 sec 1.0 0.571086656306 0.469106400643 0.326139969011 2016-08-25 13:58:15 0.003 sec 2.0 0.483508601652 0.395952082872 0.233780567872 2016-08-25 13:58:15 0.004 sec 3.0 0.414549015095 0.339981133963 0.171850885916 2016-08-25 13:58:15 0.005 sec 4.0 0.362852508373 0.298212416346 0.131661942833 --- --- --- --- --- --- --- 2016-08-25 13:58:15 0.017 sec 16.0 0.204549491682 0.164292158112 0.0418404945473 2016-08-25 13:58:15 0.018 sec 17.0 0.201762323368 0.162030458841 0.0407080351307 2016-08-25 13:58:15 0.019 sec 18.0 0.199709571992 0.160735480674 0.0398839131454 2016-08-25 13:58:15 0.019 sec 19.0 0.196739590066 0.158067452484 0.0387064662994 2016-08-25 13:58:15 0.020 sec 20.0 0.193906262445 0.155086582663 0.0375996386155 Variable Importances: variable relative_importance scaled_importance percentage ---------- --------------------- ------------------- ------------ PC1 160.092 1 0.894701 PC3 14.8175 0.0925562 0.08281 PC2 4.0241 0.0251361 0.0224893 Pipeline(steps=[('standardize', <h2o.transforms.preprocessing.H2OScaler object at 0x10c1679d0>), ('pca', ), ('gbm', )])
apache-2.0
robertwb/incubator-beam
sdks/python/apache_beam/dataframe/expressions.py
4
15055
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import random import threading from typing import Any from typing import Callable from typing import Generic from typing import Iterable from typing import Optional from typing import TypeVar from apache_beam.dataframe import partitionings class Session(object): """A session represents a mapping of expressions to concrete values. The bindings typically include required placeholders, but may be any intermediate expression as well. """ def __init__(self, bindings=None): self._bindings = dict(bindings or {}) def evaluate(self, expr): # type: (Expression) -> Any if expr not in self._bindings: self._bindings[expr] = expr.evaluate_at(self) return self._bindings[expr] def lookup(self, expr): # type: (Expression) -> Any return self._bindings[expr] class PartitioningSession(Session): """An extension of Session that enforces actual partitioning of inputs. Each expression is evaluated multiple times for various supported partitionings determined by its `requires_partition_by` specification. For each tested partitioning, the input is partitioned and the expression is evaluated on each partition separately, as if this were actually executed in a parallel manner. For each input partitioning, the results are verified to be partitioned appropriately according to the expression's `preserves_partition_by` specification. For testing only. """ def evaluate(self, expr): import pandas as pd import collections def is_scalar(expr): return not isinstance(expr.proxy(), pd.core.generic.NDFrame) if expr not in self._bindings: if is_scalar(expr) or not expr.args(): result = super(PartitioningSession, self).evaluate(expr) else: scaler_args = [arg for arg in expr.args() if is_scalar(arg)] def evaluate_with(input_partitioning): parts = collections.defaultdict( lambda: Session({arg: self.evaluate(arg) for arg in scaler_args})) for arg in expr.args(): if not is_scalar(arg): input = self.evaluate(arg) for key, part in input_partitioning.test_partition_fn(input): parts[key]._bindings[arg] = part if not parts: parts[None] # Create at least one entry. results = [] for session in parts.values(): if any(len(session.lookup(arg)) for arg in expr.args() if not is_scalar(arg)): results.append(session.evaluate(expr)) expected_output_partitioning = output_partitioning( expr, input_partitioning) if not expected_output_partitioning.check(results): raise AssertionError( f"""Expression does not preserve partitioning! Expression: {expr} Requires: {expr.requires_partition_by()} Preserves: {expr.preserves_partition_by()} Input partitioning: {input_partitioning} Expected output partitioning: {expected_output_partitioning} """) if results: return pd.concat(results) else: # Choose any single session. return next(iter(parts.values())).evaluate(expr) # Store random state so it can be re-used for each execution, in case # the expression is part of a test that relies on the random seed. random_state = random.getstate() result = None # Run with all supported partitionings s.t. the smallest subpartitioning # is used last. This way the final result is computed with the most # challenging partitioning. Avoids heisenbugs where sometimes the result # is computed trivially with Singleton partitioning and passes. for input_partitioning in sorted(set([expr.requires_partition_by(), partitionings.Arbitrary(), partitionings.Index(), partitionings.Singleton()])): if not expr.requires_partition_by().is_subpartitioning_of( input_partitioning): continue random.setstate(random_state) result = evaluate_with(input_partitioning) assert result is not None self._bindings[expr] = result return self._bindings[expr] # The return type of an Expression T = TypeVar('T') def output_partitioning(expr, input_partitioning): """ Return the expected output partitioning for `expr` when it's input is partitioned by `input_partitioning`. For internal use only; No backward compatibility guarantees """ assert expr.requires_partition_by().is_subpartitioning_of(input_partitioning) if expr.preserves_partition_by().is_subpartitioning_of(input_partitioning): return min(input_partitioning, expr.preserves_partition_by()) else: return partitionings.Arbitrary() class Expression(Generic[T]): """An expression is an operation bound to a set of arguments. An expression represents a deferred tree of operations, which can be evaluated at a specific bindings of root expressions to values. requires_partition_by indicates the upper bound of a set of partitionings that are acceptable inputs to this expression. The expression should be able to produce the correct result when given input(s) partitioned by its requires_partition_by attribute, or by any partitoning that is _not_ a subpartitioning of it. preserves_partition_by indicates the upper bound of a set of partitionings that can be preserved by this expression. When the input(s) to this expression are partitioned by preserves_partition_by, or by any partitioning that is _not_ a subpartitioning of it, this expression should produce output(s) partitioned by the same partitioning. However, if the partitioning of an expression's input is a subpartitioning of the partitioning that it preserves, the output is presumed to have no particular partitioning (i.e. Arbitrary()). For example, let's look at an "element-wise operation", that has no partitioning requirement, and preserves any partitioning given to it:: requires_partition_by = Arbitrary() -----------------------------+ | +-----------+-------------+---------- ... ----+---------| | | | | | Singleton() < Index([i]) < Index([i, j]) < ... < Index() < Arbitrary() | | | | | +-----------+-------------+---------- ... ----+---------| | preserves_partition_by = Arbitrary() ----------------------------+ As a more interesting example, consider this expression, which requires Index partitioning, and preserves just Singleton partitioning:: requires_partition_by = Index() -----------------------+ | +-----------+-------------+---------- ... ----| | | | | Singleton() < Index([i]) < Index([i, j]) < ... < Index() < Arbitrary() | | preserves_partition_by = Singleton() Note that any non-Arbitrary partitioning is an acceptable input for this expression. However, unless the inputs are Singleton-partitioned, the expression makes no guarantees about the partitioning of the output. """ def __init__(self, name: str, proxy: T, _id: Optional[str] = None): self._name = name self._proxy = proxy # Store for preservation through pickling. self._id = _id or '%s_%s_%s' % (name, type(proxy).__name__, id(self)) def proxy(self) -> T: return self._proxy def __hash__(self): return hash(self._id) def __eq__(self, other): return self._id == other._id def __repr__(self): return '%s[%s]' % (self.__class__.__name__, self._id) def placeholders(self): """Returns all the placeholders that self depends on.""" raise NotImplementedError(type(self)) def evaluate_at(self, session: Session) -> T: """Returns the result of self with the bindings given in session.""" raise NotImplementedError(type(self)) def requires_partition_by(self) -> partitionings.Partitioning: """Returns the partitioning, if any, require to evaluate this expression. Returns partitioning.Arbitrary() to require no partitioning is required. """ raise NotImplementedError(type(self)) def preserves_partition_by(self) -> partitionings.Partitioning: """Returns the partitioning, if any, preserved by this expression. This gives an upper bound on the partitioning of its ouput. The actual partitioning of the output may be less strict (e.g. if the input was less partitioned). """ raise NotImplementedError(type(self)) class PlaceholderExpression(Expression): """An expression whose value must be explicitly bound in the session.""" def __init__( self, # type: PlaceholderExpression proxy, # type: T reference=None, # type: Any ): """Initialize a placeholder expression. Args: proxy: A proxy object with the type expected to be bound to this expression. Used for type checking at pipeline construction time. """ super(PlaceholderExpression, self).__init__('placeholder', proxy) self._reference = reference def placeholders(self): return frozenset([self]) def args(self): return () def evaluate_at(self, session): return session.lookup(self) def requires_partition_by(self): return partitionings.Arbitrary() def preserves_partition_by(self): return partitionings.Index() class ConstantExpression(Expression): """An expression whose value is known at pipeline construction time.""" def __init__( self, # type: ConstantExpression value, # type: T proxy=None # type: Optional[T] ): """Initialize a constant expression. Args: value: The constant value to be produced by this expression. proxy: (Optional) a proxy object with same type as `value` to use for rapid type checking at pipeline construction time. If not provided, `value` will be used directly. """ if proxy is None: proxy = value super(ConstantExpression, self).__init__('constant', proxy) self._value = value def placeholders(self): return frozenset() def args(self): return () def evaluate_at(self, session): return self._value def requires_partition_by(self): return partitionings.Arbitrary() def preserves_partition_by(self): return partitionings.Arbitrary() class ComputedExpression(Expression): """An expression whose value must be computed at pipeline execution time.""" def __init__( self, # type: ComputedExpression name, # type: str func, # type: Callable[...,T] args, # type: Iterable[Expression] proxy=None, # type: Optional[T] _id=None, # type: Optional[str] requires_partition_by=partitionings.Index(), # type: partitionings.Partitioning preserves_partition_by=partitionings.Singleton(), # type: partitionings.Partitioning ): """Initialize a computed expression. Args: name: The name of this expression. func: The function that will be used to compute the value of this expression. Should accept arguments of the types returned when evaluating the `args` expressions. args: The list of expressions that will be used to produce inputs to `func`. proxy: (Optional) a proxy object with same type as the objects that this ComputedExpression will produce at execution time. If not provided, a proxy will be generated using `func` and the proxies of `args`. _id: (Optional) a string to uniquely identify this expression. requires_partition_by: The required (common) partitioning of the args. preserves_partition_by: The level of partitioning preserved. """ if (not _get_allow_non_parallel() and isinstance(requires_partition_by, partitionings.Singleton)): reason = requires_partition_by.reason or ( f"Encountered non-parallelizable form of {name!r}.") raise NonParallelOperation( f"{reason}\n" "Consider using an allow_non_parallel_operations block if you're " "sure you want to do this. See " "https://s.apache.org/dataframe-non-parallel-operations for more " "information.") args = tuple(args) if proxy is None: proxy = func(*(arg.proxy() for arg in args)) super(ComputedExpression, self).__init__(name, proxy, _id) self._func = func self._args = args self._requires_partition_by = requires_partition_by self._preserves_partition_by = preserves_partition_by def placeholders(self): return frozenset.union( frozenset(), *[arg.placeholders() for arg in self.args()]) def args(self): return self._args def evaluate_at(self, session): return self._func(*(session.evaluate(arg) for arg in self._args)) def requires_partition_by(self): return self._requires_partition_by def preserves_partition_by(self): return self._preserves_partition_by def elementwise_expression(name, func, args): return ComputedExpression( name, func, args, requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary()) _ALLOW_NON_PARALLEL = threading.local() _ALLOW_NON_PARALLEL.value = False def _get_allow_non_parallel(): return _ALLOW_NON_PARALLEL.value @contextlib.contextmanager def allow_non_parallel_operations(allow=True): if allow is None: yield else: old_value, _ALLOW_NON_PARALLEL.value = _ALLOW_NON_PARALLEL.value, allow yield _ALLOW_NON_PARALLEL.value = old_value class NonParallelOperation(Exception): def __init__(self, msg): super(NonParallelOperation, self).__init__(self, msg) self.msg = msg
apache-2.0
shiqiangli/tushare
test/storing_test.py
40
1729
# -*- coding:utf-8 -*- import os from sqlalchemy import create_engine from pandas.io.pytables import HDFStore import tushare as ts def csv(): df = ts.get_hist_data('000875') df.to_csv('c:/day/000875.csv',columns=['open','high','low','close']) def xls(): df = ts.get_hist_data('000875') #直接保存 df.to_excel('c:/day/000875.xlsx', startrow=2,startcol=5) def hdf(): df = ts.get_hist_data('000875') # df.to_hdf('c:/day/store.h5','table') store = HDFStore('c:/day/store.h5') store['000875'] = df store.close() def json(): df = ts.get_hist_data('000875') df.to_json('c:/day/000875.json',orient='records') #或者直接使用 print(df.to_json(orient='records')) def appends(): filename = 'c:/day/bigfile.csv' for code in ['000875', '600848', '000981']: df = ts.get_hist_data(code) if os.path.exists(filename): df.to_csv(filename, mode='a', header=None) else: df.to_csv(filename) def db(): df = ts.get_tick_data('600848',date='2014-12-22') engine = create_engine('mysql://root:[email protected]/mystock?charset=utf8') # db = MySQLdb.connect(host='127.0.0.1',user='root',passwd='jimmy1',db="mystock",charset="utf8") # df.to_sql('TICK_DATA',con=db,flavor='mysql') # db.close() df.to_sql('tick_data',engine,if_exists='append') def nosql(): import pymongo import json conn = pymongo.Connection('127.0.0.1', port=27017) df = ts.get_tick_data('600848',date='2014-12-22') print(df.to_json(orient='records')) conn.db.tickdata.insert(json.loads(df.to_json(orient='records'))) # print conn.db.tickdata.find() if __name__ == '__main__': nosql()
bsd-3-clause
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/sklearn/linear_model/sag.py
30
12959
"""Solvers for Ridge and LogisticRegression using SAG algorithm""" # Authors: Tom Dupre la Tour <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from .base import make_dataset from .sag_fast import sag from ..exceptions import ConvergenceWarning from ..utils import check_array from ..utils.extmath import row_norms def get_auto_step_size(max_squared_sum, alpha_scaled, loss, fit_intercept, n_samples=None, is_saga=False): """Compute automatic step size for SAG solver The step size is set to 1 / (alpha_scaled + L + fit_intercept) where L is the max sum of squares for over all samples. Parameters ---------- max_squared_sum : float Maximum squared sum of X over samples. alpha_scaled : float Constant that multiplies the regularization term, scaled by 1. / n_samples, the number of samples. loss : string, in {"log", "squared"} The loss function used in SAG solver. fit_intercept : bool Specifies if a constant (a.k.a. bias or intercept) will be added to the decision function. n_samples : int, optional Number of rows in X. Useful if is_saga=True. is_saga : boolean, optional Whether to return step size for the SAGA algorithm or the SAG algorithm. Returns ------- step_size : float Step size used in SAG solver. References ---------- Schmidt, M., Roux, N. L., & Bach, F. (2013). Minimizing finite sums with the stochastic average gradient https://hal.inria.fr/hal-00860051/document Defazio, A., Bach F. & Lacoste-Julien S. (2014). SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives https://arxiv.org/abs/1407.0202 """ if loss in ('log', 'multinomial'): L = (0.25 * (max_squared_sum + int(fit_intercept)) + alpha_scaled) elif loss == 'squared': # inverse Lipschitz constant for squared loss L = max_squared_sum + int(fit_intercept) + alpha_scaled else: raise ValueError("Unknown loss function for SAG solver, got %s " "instead of 'log' or 'squared'" % loss) if is_saga: # SAGA theoretical step size is 1/3L or 1 / (2 * (L + mu n)) # See Defazio et al. 2014 mun = min(2 * n_samples * alpha_scaled, L) step = 1. / (2 * L + mun) else: # SAG theoretical step size is 1/16L but it is recommended to use 1 / L # see http://www.birs.ca//workshops//2014/14w5003/files/schmidt.pdf, # slide 65 step = 1. / L return step def sag_solver(X, y, sample_weight=None, loss='log', alpha=1., beta=0., max_iter=1000, tol=0.001, verbose=0, random_state=None, check_input=True, max_squared_sum=None, warm_start_mem=None, is_saga=False): """SAG solver for Ridge and LogisticRegression SAG stands for Stochastic Average Gradient: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a constant learning rate. IMPORTANT NOTE: 'sag' solver converges faster on columns that are on the same scale. You can normalize the data by using sklearn.preprocessing.StandardScaler on your data before passing it to the fit method. This implementation works with data represented as dense numpy arrays or sparse scipy arrays of floating point values for the features. It will fit the data according to squared loss or log loss. The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using the squared euclidean norm L2. .. versionadded:: 0.17 Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values. With loss='multinomial', y must be label encoded (see preprocessing.LabelEncoder). sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). loss : 'log' | 'squared' | 'multinomial' Loss function that will be optimized: -'log' is the binary logistic loss, as used in LogisticRegression. -'squared' is the squared loss, as used in Ridge. -'multinomial' is the multinomial logistic loss, as used in LogisticRegression. .. versionadded:: 0.18 *loss='multinomial'* alpha : float, optional Constant that multiplies the regularization term. Defaults to 1. max_iter : int, optional The max number of passes over the training data if the stopping criteria is not reached. Defaults to 1000. tol : double, optional The stopping criteria for the weights. The iterations will stop when max(change in weights) / max(weights) < tol. Defaults to .001 verbose : integer, optional The verbosity level. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. check_input : bool, default True If False, the input arrays X and y will not be checked. max_squared_sum : float, default None Maximum squared sum of X over samples. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. warm_start_mem : dict, optional The initialization parameters used for warm starting. Warm starting is currently used in LogisticRegression but not in Ridge. It contains: - 'coef': the weight vector, with the intercept in last line if the intercept is fitted. - 'gradient_memory': the scalar gradient for all seen samples. - 'sum_gradient': the sum of gradient over all seen samples, for each feature. - 'intercept_sum_gradient': the sum of gradient over all seen samples, for the intercept. - 'seen': array of boolean describing the seen samples. - 'num_seen': the number of seen samples. is_saga : boolean, optional Whether to use the SAGA algorithm or the SAG algorithm. SAGA behaves better in the first epochs, and allow for l1 regularisation. Returns ------- coef_ : array, shape (n_features) Weight vector. n_iter_ : int The number of full pass on all samples. warm_start_mem : dict Contains a 'coef' key with the fitted result, and possibly the fitted intercept at the end of the array. Contains also other keys used for warm starting. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> X = np.random.randn(n_samples, n_features) >>> y = np.random.randn(n_samples) >>> clf = linear_model.Ridge(solver='sag') >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='sag', tol=0.001) >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> clf = linear_model.LogisticRegression(solver='sag') >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='sag', tol=0.0001, verbose=0, warm_start=False) References ---------- Schmidt, M., Roux, N. L., & Bach, F. (2013). Minimizing finite sums with the stochastic average gradient https://hal.inria.fr/hal-00860051/document Defazio, A., Bach F. & Lacoste-Julien S. (2014). SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives https://arxiv.org/abs/1407.0202 See also -------- Ridge, SGDRegressor, ElasticNet, Lasso, SVR, and LogisticRegression, SGDClassifier, LinearSVC, Perceptron """ if warm_start_mem is None: warm_start_mem = {} # Ridge default max_iter is None if max_iter is None: max_iter = 1000 if check_input: X = check_array(X, dtype=np.float64, accept_sparse='csr', order='C') y = check_array(y, dtype=np.float64, ensure_2d=False, order='C') n_samples, n_features = X.shape[0], X.shape[1] # As in SGD, the alpha is scaled by n_samples. alpha_scaled = float(alpha) / n_samples beta_scaled = float(beta) / n_samples # if loss == 'multinomial', y should be label encoded. n_classes = int(y.max()) + 1 if loss == 'multinomial' else 1 # initialization if sample_weight is None: sample_weight = np.ones(n_samples, dtype=np.float64, order='C') if 'coef' in warm_start_mem.keys(): coef_init = warm_start_mem['coef'] else: # assume fit_intercept is False coef_init = np.zeros((n_features, n_classes), dtype=np.float64, order='C') # coef_init contains possibly the intercept_init at the end. # Note that Ridge centers the data before fitting, so fit_intercept=False. fit_intercept = coef_init.shape[0] == (n_features + 1) if fit_intercept: intercept_init = coef_init[-1, :] coef_init = coef_init[:-1, :] else: intercept_init = np.zeros(n_classes, dtype=np.float64) if 'intercept_sum_gradient' in warm_start_mem.keys(): intercept_sum_gradient = warm_start_mem['intercept_sum_gradient'] else: intercept_sum_gradient = np.zeros(n_classes, dtype=np.float64) if 'gradient_memory' in warm_start_mem.keys(): gradient_memory_init = warm_start_mem['gradient_memory'] else: gradient_memory_init = np.zeros((n_samples, n_classes), dtype=np.float64, order='C') if 'sum_gradient' in warm_start_mem.keys(): sum_gradient_init = warm_start_mem['sum_gradient'] else: sum_gradient_init = np.zeros((n_features, n_classes), dtype=np.float64, order='C') if 'seen' in warm_start_mem.keys(): seen_init = warm_start_mem['seen'] else: seen_init = np.zeros(n_samples, dtype=np.int32, order='C') if 'num_seen' in warm_start_mem.keys(): num_seen_init = warm_start_mem['num_seen'] else: num_seen_init = 0 dataset, intercept_decay = make_dataset(X, y, sample_weight, random_state) if max_squared_sum is None: max_squared_sum = row_norms(X, squared=True).max() step_size = get_auto_step_size(max_squared_sum, alpha_scaled, loss, fit_intercept, n_samples=n_samples, is_saga=is_saga) if step_size * alpha_scaled == 1: raise ZeroDivisionError("Current sag implementation does not handle " "the case step_size * alpha_scaled == 1") num_seen, n_iter_ = sag(dataset, coef_init, intercept_init, n_samples, n_features, n_classes, tol, max_iter, loss, step_size, alpha_scaled, beta_scaled, sum_gradient_init, gradient_memory_init, seen_init, num_seen_init, fit_intercept, intercept_sum_gradient, intercept_decay, is_saga, verbose) if n_iter_ == max_iter: warnings.warn("The max_iter was reached which means " "the coef_ did not converge", ConvergenceWarning) if fit_intercept: coef_init = np.vstack((coef_init, intercept_init)) warm_start_mem = {'coef': coef_init, 'sum_gradient': sum_gradient_init, 'intercept_sum_gradient': intercept_sum_gradient, 'gradient_memory': gradient_memory_init, 'seen': seen_init, 'num_seen': num_seen} if loss == 'multinomial': coef_ = coef_init.T else: coef_ = coef_init[:, 0] return coef_, n_iter_, warm_start_mem
mit
mxlei01/healthcareai-py
healthcareai/common/randomized_search.py
4
2043
from sklearn.model_selection import RandomizedSearchCV def get_algorithm(estimator, scoring_metric, hyperparameter_grid, randomized_search, number_iteration_samples=10, **non_randomized_estimator_kwargs): """ Given an estimator and various params, initialize an algorithm with optional randomized search. Args: estimator (sklearn.base.BaseEstimator): a scikit-learn estimator (for example: KNeighborsClassifier) scoring_metric (str): The scoring metric to optimized for if using random search. See http://scikit-learn.org/stable/modules/model_evaluation.html hyperparameter_grid (dict): An object containing key value pairs of the specific hyperparameter space to search through. randomized_search (bool): Whether the method should return a randomized search estimator (as opposed to a simple algorithm). number_iteration_samples (int): If performing randomized search, this is the number of samples that are run in the hyperparameter space. Higher numbers will be slower, but end up with better results, since it is more likely that the true optimal hyperparameter is found. **non_randomized_estimator_kwargs: Keyword arguments that you can pass directly to the algorithm. Only used when radomized_search is False Returns: sklearn.base.BaseEstimator: a scikit learn algorithm ready to `.fit()` """ if randomized_search: algorithm = RandomizedSearchCV(estimator=estimator(), scoring=scoring_metric, param_distributions=hyperparameter_grid, n_iter=number_iteration_samples, verbose=0, n_jobs=1) else: algorithm = estimator(**non_randomized_estimator_kwargs) return algorithm
mit
habi/GlobalDiagnostiX
Demonstrator/detect_lines_in_checkerboard.py
1
2621
# -*- coding: utf-8 -*- """ Script to detect horizontal and vertical lines on a sliding window along images The script is based on the answers to [this Stack Overflow question](http://stackoverflow.com/q/7227074/323100) """ from __future__ import division import matplotlib import matplotlib.pylab as plt import os import cv2 import math BasePath = '/afs/psi.ch/project/EssentialMed/Images/DetectorElectronicsTests/' \ 'EssentialLab/Valerie' tcpIpPool = ['192.168.1.31', '192.168.1.32', '192.168.1.33', '192.168.1.34', '192.168.1.35', '192.168.1.36', '192.168.1.37', '192.168.1.38', '192.168.1.39', '192.168.1.40', '192.168.1.41', '192.168.1.42'] ImageName = tcpIpPool[0] + '.png' plt.figure(figsize=[16, 9]) InputImage = cv2.imread(os.path.join(BasePath, ImageName)) RegionWidth = 200 for i in range(0, InputImage.shape[1] - RegionWidth, RegionWidth): print i plt.clf() plt.suptitle(' '.join(['Region of size', str(RegionWidth), 'starting at px.', str(i)])) img = InputImage[:, i:i + RegionWidth, :] # img = cv2.GaussianBlur(img, (5, 5), 0) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 80, 120) lines = cv2.HoughLinesP(cv2.flip(edges, flipCode=0), 1, math.pi / 2, 2, None, 30, 1) for line in lines[0]: pt1 = (line[0], line[1]) pt2 = (line[2], line[3]) plt.subplot(141) plt.imshow(InputImage, interpolation='none') window = matplotlib.patches.Rectangle((i, 0), RegionWidth, InputImage.shape[0], color='blue', alpha=0.25) plt.gca().add_patch(window) plt.axvline(x=i) plt.axvline(x=i + RegionWidth) plt.title('Sliding window along image') plt.subplot(142) plt.imshow(gray, interpolation='none', cmap='gray') plt.title('Region') plt.subplot(143) plt.imshow(edges, interpolation='none', cmap='gray') plt.title('Detected Edges') plt.subplot(144) plt.imshow(cv2.flip(gray, flipCode=0), interpolation='none', cmap='gray') for coordinates in lines[0]: plt.plot([coordinates[0], coordinates[2]], [coordinates[1], coordinates[3]], color='y', linestyle='-', linewidth='5', alpha=0.5) plt.plot([coordinates[0], coordinates[2]], [coordinates[1], coordinates[3]], color='k', linestyle='-') plt.xlim([0, img.shape[1]]) plt.ylim([0, img.shape[0]]) plt.title('Detected horizontal\nand vertical lines') plt.pause(0.001) plt.show()
unlicense
ChellyD65/patchSorter
SortPatches.py
1
22884
#!/usr/bin/env python import sys, getopt, os from math import sqrt from PyQt4 import QtGui, QtCore from PyQt4.QtGui import * from PyQt4.QtCore import Qt, pyqtSlot, QMetaObject import numpy as np from matplotlib import image as mpimg from scipy import ndimage from scipy.misc import imsave import skimage.color import skimage.filters import skimage.morphology import skimage.feature import skimage.draw from skimage.util.shape import view_as_blocks def toQImage(im): result = QImage(im.ctypes.data, im.shape[1], im.shape[0], QImage.Format_RGB888) return result class ListEdit(QDialog): def setupUi(self, TestLayout): TestLayout.setObjectName("ListEdit") TestLayout.resize(440,240) self.centralwidget = QtGui.QWidget(TestLayout) self.centralwidget.setObjectName("centralwidget") self.horizontalLayout = QtGui.QHBoxLayout(self.centralwidget) self.horizontalLayout.setObjectName("horizontalLayout") self.verticalLayout = QtGui.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.editBox = QtGui.QLineEdit(self.centralwidget) self.editBox.setObjectName("editBox") self.verticalLayout.addWidget(self.editBox) self.listBox = QtGui.QListWidget(self.centralwidget) self.listBox.setObjectName("listBox") self.verticalLayout.addWidget(self.listBox) self.horizontalLayout.addLayout(self.verticalLayout) self.verticalLayout_2 = QtGui.QVBoxLayout() self.verticalLayout_2.setObjectName("verticalLayout_2") self.addButton = QtGui.QPushButton(self.centralwidget) self.addButton.setObjectName("addButton") self.addButton.setText("Add") self.verticalLayout_2.addWidget(self.addButton) self.removeButton = QtGui.QPushButton(self.centralwidget) self.removeButton.setObjectName("removeButton") self.removeButton.setText("Remove") self.verticalLayout_2.addWidget(self.removeButton) self.clearButton = QtGui.QPushButton(self.centralwidget) self.clearButton.setObjectName("clearButton") self.clearButton.setText("Clear") self.loadButton = QtGui.QPushButton(self.centralwidget) self.loadButton.setObjectName("clearButton") self.loadButton.setText("Load File") self.verticalLayout_2.addWidget(self.loadButton) self.verticalLayout_2.addWidget(self.clearButton) spacerItem = QtGui.QSpacerItem(20,40,QtGui.QSizePolicy.Minimum,QtGui.QSizePolicy.Expanding) self.verticalLayout_2.addItem(spacerItem) self.horizontalLayout_2 = QtGui.QHBoxLayout() self.okButton = QtGui.QPushButton(self.centralwidget) self.okButton.setText("OK") self.cancelButton = QtGui.QPushButton(self.centralwidget) self.cancelButton.setText("Cancel") self.horizontalLayout_2.addWidget(self.okButton) self.horizontalLayout_2.addWidget(self.cancelButton) self.verticalLayout_2.addLayout(self.horizontalLayout_2) self.horizontalLayout.addLayout(self.verticalLayout_2) QMetaObject.connectSlotsByName(TestLayout) # connect buttons self.connect(self.addButton, QtCore.SIGNAL("clicked()"), self.addToList) self.connect(self.removeButton, QtCore.SIGNAL("clicked()"), self.removeFromList) self.connect(self.clearButton, QtCore.SIGNAL("clicked()"), self.clearList) self.connect(self.loadButton, QtCore.SIGNAL("clicked()"), self.loadListFile) self.connect(self.okButton, QtCore.SIGNAL("clicked()"), self.ListUpdate) self.connect(self.cancelButton, QtCore.SIGNAL("clicked()"), self.cancelListUpdate) def addToList(self): self.listBox.addItem(self.editBox.text()) self.editBox.clear() def removeFromList(self): for item in self.listBox.selectedItems(): self.listBox.takeItem(self.listBox.row(item)) def clearList(self): self.listBox.clear() def ListUpdate(self): self.accept() def cancelListUpdate(self): self.close() def getList(self): return [str(i.text()) for i in self.listBox.findItems("", QtCore.Qt.MatchContains)] def setList(self, listEntries): for i in listEntries: self.listBox.addItem(i) def loadListFile(self): classfile = QFileDialog.getOpenFileName(self, 'Open file', os.path.curdir) if classfile: self.clearList() with open(classfile) as f: lines = f.read().splitlines() self.setList(lines) class patchSorter(QMainWindow): def __init__(self, inputfile, dims, outname): super(patchSorter, self).__init__() self.inputfile = inputfile self.setupPatches(dims) self.initUI(self.view,self.im,outname) def setupPatches(self, dims): self.dims = dims self.im = mpimg.imread(self.inputfile) self.block_shape = (self.dims[0], self.dims[1], self.im.shape[2]) #height, width margin=np.mod(self.im.shape,self.block_shape) self.im_crop = self.im[:(self.im.shape-margin)[0],:(self.im.shape-margin)[1],:(self.im.shape-margin)[2]] self.view = view_as_blocks(self.im_crop, self.block_shape) def initUI(self, view, mainimage, outname): self.view = view self.mainimage = mainimage self.outname = outname self.gui = mmdGUI(self) self.gui.setupImages(self.view, self.mainimage, self.outname) self.gui.setupInterface() self.gui.unrandomize() self.setCentralWidget(self.gui) openAction = QAction('Open', self) openAction.setShortcut('Ctrl+O') openAction.setStatusTip('Open an image file') openAction.triggered.connect(self.fileOpen) exitAction = QAction(QIcon('exit.png'), '&Exit', self) exitAction.setShortcut('Ctrl+Q') exitAction.setStatusTip('Exit application') exitAction.triggered.connect(qApp.quit) setclassAction = QAction('Set Classes', self) setclassAction.setShortcut('Ctrl+C') setclassAction.setStatusTip('Set the name of the Class Buttons') setclassAction.triggered.connect(self.setClasses) setpatchsizeAction = QAction('Set Patch Size', self) setpatchsizeAction.setShortcut('Ctrl+P') setpatchsizeAction.setStatusTip('Set the edge size of the square patches') setpatchsizeAction.triggered.connect(self.setPatchSize) randomizeAction = QAction('Randomize Order', self) randomizeAction.triggered.connect(self.gui.randomize) unrandomizeAction = QAction('Unrandomize Order', self) unrandomizeAction.triggered.connect(self.gui.unrandomize) menubar = self.menuBar() fileMenu = menubar.addMenu('&File') fileMenu.addAction(openAction) fileMenu.addAction(exitAction) editMenu = menubar.addMenu('&Edit') editMenu.addAction(setclassAction) editMenu.addAction(setpatchsizeAction) optionMenu = menubar.addMenu('&Options') optionMenu.addAction(randomizeAction) optionMenu.addAction(unrandomizeAction) self.setWindowTitle("Patch sorter") self.resize(1000,800) self.show() def fileOpen(self): reply = QMessageBox.question(self, "Open a new main image file?", "This will restart labeling. Continue?", QMessageBox.Yes | QMessageBox.No ) if reply == QMessageBox.Yes: newImageFile = QFileDialog.getOpenFileName(self, 'Open file', os.path.curdir) if newImageFile: self.inputfile = str(newImageFile) self.setupPatches(self.dims) self.gui.setupImages(self.view, self.im, self.outname) self.gui.labelPatchNum.setText("("+str(self.gui.i+1)+"/"+str(self.gui.viewlist.shape[0])+")") self.gui.patchsizeStatus.setText("Patch size: "+str(self.view.shape[3])+"x"+str(self.view.shape[4])) self.gui.outname = os.path.splitext(os.path.abspath(self.inputfile))[0] self.gui.updateClasses() self.gui.i = 0 self.gui.thispatch = np.copy(self.gui.viewlist[self.gui.idxl[self.gui.i],:,:,:]) pixmap = QPixmap.fromImage(toQImage(self.gui.thispatch)) self.gui.labelPatch.setPixmap(pixmap.scaled(100, 100, Qt.KeepAspectRatio,Qt.SmoothTransformation)) self.gui.labelPatchNum.setText("("+str(self.gui.i+1)+"/"+str(self.gui.viewlist.shape[0])+")") self.gui.showPatchLoc(self.gui.idxl[self.gui.i]) def setClasses(self): reply = QMessageBox.question(self, "Set the class names?", "This will set new classes and restart labeling, with output into new folders. Continue?", QMessageBox.Yes | QMessageBox.No ) if reply == QMessageBox.Yes: l = ListEdit() l.setupUi(l) l.setList(self.gui.classNames) if(l.exec_()): self.gui.classNames = l.getList() self.gui.updateClasses() else: return 0 def setPatchSize(self): reply = QMessageBox.question(self, "Set the patch size?", "This will set new edge lengths for the patched and restart labeling, with output into new folders. Continue?", QMessageBox.Yes | QMessageBox.No ) if reply == QMessageBox.Yes: text, ok = QInputDialog.getText(self, 'Patch Edge Length', 'Enter the Patch Edge Length in Pixels (it will be rounded to nearest multiple of 8):') if ok: if str(text).isdigit(): newPatchSize = int(str(text)) newPatchSize = int(np.ceil(newPatchSize/8.0) * 8) # must be multiple of 8 dims = [newPatchSize, newPatchSize] self.setupPatches(dims) self.gui.setupImages(self.view, self.im, self.outname) self.gui.i = 0 self.gui.showPatchLoc(self.gui.idxl[self.gui.i]) self.gui.labelPatchNum.setText("("+str(self.gui.i+1)+"/"+str(self.gui.viewlist.shape[0])+")") self.gui.patchsizeStatus.setText("Patch size: "+str(self.view.shape[3])+"x"+str(self.view.shape[4])) else: reply = QMessageBox.warning(self,"Invalid patch edge length","Value must be an integer.") class mmdGUI(QFrame): ### # Create GUI (requires Qt4) ### def __init__(self, parent): super(mmdGUI,self).__init__(parent) self.PatchCursorColor = np.array([0,255,0]) self.wholeImageW = 600 self.wholeImageH = 600 self.outdirsExist = False self.classNames = ("Interesting", "Boring", "Useless") # Create the button click actions @pyqtSlot() def on_click(self, classname): def calluser(): if not self.outdirsExist: self.makeoutdirs() f_out = os.path.join(self.outDirs[self.classNames.index(classname)], "patch_"+str(self.i)+".png") imsave(f_out, self.thispatch) self.i = self.i+1 if self.i <= self.idxl.shape[0]-1: self.showCurrentPatch() self.lastpickPatch.setText("Last: " + classname) else: msgBox = QMessageBox() msgBox.setText("All patches have been classified. You're Done!") msgBox.exec_() sys.exit() return calluser @pyqtSlot() def keyPressEvent(self, event): if str(event.text()).isdigit(): ind = int(str(event.text())) - 1 if ind < len(self.classNames): self.on_click(self.classNames[ind])() def onResize(self, event): winWidth = event.size().width() winHeight = event.size().height() self.wholeImageW = int(0.8*winWidth) self.wholeImageH = int(0.8*winHeight) self.showPatchLoc(self.idxl[self.i]) def showPatchLoc(self,patchNum): tmpwhole = np.copy(self.wholeim) m,n = np.unravel_index(patchNum,(self.view.shape[0],self.view.shape[1])) # Coordinates for rectangle rr1,cc1 = skimage.draw.line(m*self.view.shape[3],n*self.view.shape[4],m*self.view.shape[3],(n+1)*self.view.shape[4]-1) rr11,cc11 = skimage.draw.line(m*self.view.shape[3]+1,n*self.view.shape[4],m*self.view.shape[3]+1,(n+1)*self.view.shape[4]-1) rr12,cc12 = skimage.draw.line(m*self.view.shape[3]+2,n*self.view.shape[4],m*self.view.shape[3]+2,(n+1)*self.view.shape[4]-1) rr = np.concatenate((rr1,rr11,rr12)); cc = np.concatenate((cc1,cc11,cc12)) skimage.draw.set_color(tmpwhole,(rr,cc),self.PatchCursorColor) rr2,cc2 = skimage.draw.line(m*self.view.shape[3],n*self.view.shape[4],(m+1)*self.view.shape[3]-1,n*self.view.shape[4]) rr21,cc21 = skimage.draw.line(m*self.view.shape[3],n*self.view.shape[4]+1,(m+1)*self.view.shape[3]-1,n*self.view.shape[4]+1) rr22,cc22 = skimage.draw.line(m*self.view.shape[3],n*self.view.shape[4]+2,(m+1)*self.view.shape[3]-1,n*self.view.shape[4]+2) rr = np.concatenate((rr2,rr21,rr22)); cc = np.concatenate((cc2,cc21,cc22)) skimage.draw.set_color(tmpwhole,(rr,cc),self.PatchCursorColor) rr3,cc3 = skimage.draw.line((m+1)*self.view.shape[3]-1,(n+1)*self.view.shape[4]-1,m*self.view.shape[3],(n+1)*self.view.shape[4]-1) rr31,cc31 = skimage.draw.line((m+1)*self.view.shape[3]-1,(n+1)*self.view.shape[4]-2,m*self.view.shape[3],(n+1)*self.view.shape[4]-2) rr32,cc32 = skimage.draw.line((m+1)*self.view.shape[3]-1,(n+1)*self.view.shape[4]-3,m*self.view.shape[3],(n+1)*self.view.shape[4]-3) rr = np.concatenate((rr3,rr31,rr32)); cc = np.concatenate((cc3,cc31,cc32)) skimage.draw.set_color(tmpwhole,(rr,cc),self.PatchCursorColor) rr4,cc4 = skimage.draw.line((m+1)*self.view.shape[3]-1,(n+1)*self.view.shape[4]-1,(m+1)*self.view.shape[3]-1,n*self.view.shape[4]) rr41,cc41 = skimage.draw.line((m+1)*self.view.shape[3]-2,(n+1)*self.view.shape[4]-1,(m+1)*self.view.shape[3]-2,n*self.view.shape[4]) rr42,cc42 = skimage.draw.line((m+1)*self.view.shape[3]-3,(n+1)*self.view.shape[4]-1,(m+1)*self.view.shape[3]-3,n*self.view.shape[4]) rr = np.concatenate((rr4,rr41,rr42)); cc = np.concatenate((cc4,cc41,cc42)) skimage.draw.set_color(tmpwhole,(rr,cc),self.PatchCursorColor) pixmapWhole = QPixmap.fromImage(toQImage(tmpwhole)) self.labelWhole.setPixmap(pixmapWhole.scaled(self.wholeImageW, self.wholeImageH, Qt.KeepAspectRatio,Qt.SmoothTransformation)) def updateClasses(self): for button in self.buttonList: button.setParent(None) self.bottom_area.setParent(None) self.buttonList = [] buttoni = 1 for cname in self.classNames: this_button = QPushButton(cname+" ("+str(buttoni)+")", self) this_button.setFont(QFont("Arial",18, QFont.Bold)) this_button.resize(300,100) this_button.clicked.connect(self.on_click(cname)) self.buttonList.append(this_button) buttoni = buttoni+1 self.bottom_area = QHBoxLayout() self.bottom_area.addStretch(1) self.bottom_area.addWidget(self.labelPatch) for button in self.buttonList: self.bottom_area.addWidget(button) self.bottom_area.addStretch(1) if not isinstance(self.parent(), QMainWindow): self.bottom_area.addWidget(btnq) self.vbox.addLayout(self.bottom_area) self.i = 0 self.outdirsExist = False def makeoutdirs(self): # Make the output directory self.outDirs = [] for cname in self.classNames: self.outDirs.append(self.outname + "_" + "".join(x for x in cname if x.isalnum())) if not os.path.exists(self.outDirs[-1]): os.makedirs(self.outDirs[-1]) print("Using output dirs:\n" + "\n".join(self.outDirs)) self.outdirsExist = True def setupImages(self, view, wholeim, outname='patches_Output'): self.view = view self.wholeim = wholeim self.viewlist = view.reshape(view.shape[0]*view.shape[1]*view.shape[2],view.shape[3],view.shape[4],view.shape[5]) self.outname = outname self.idxl = np.random.permutation(range(0,self.viewlist.shape[0])) def showCurrentPatch(self): self.thispatch = np.copy(self.viewlist[self.idxl[self.i],:,:,:]) pixmap = QPixmap.fromImage(toQImage(self.thispatch)) self.labelPatch.setPixmap(pixmap.scaled(100, 100, Qt.KeepAspectRatio,Qt.SmoothTransformation)) self.labelPatchNum.setText("("+str(self.i+1)+"/"+str(self.viewlist.shape[0])+")") self.showPatchLoc(self.idxl[self.i]) def unrandomize(self): self.idxl = np.concatenate([self.idxl[0:self.i],np.sort(self.idxl[self.i:])]) self.showCurrentPatch() def randomize(self): self.idxl = np.concatenate([self.idxl[0:self.i],np.random.permutation(self.idxl[self.i:])]) self.showCurrentPatch() def setupInterface(self): self.w = self self.w.setWindowTitle("Patch sorter") self.resizeEvent = self.onResize self.resize(1170,1000) # Widget for showing the whole image, with location box self.labelWhole = QLabel(self) # Widget for showing the current patch self.labelPatch = QLabel(self.w) self.labelPatch.setFrameStyle(QFrame.Panel) # Create the label for showing the current patch number self.labelPatchNum = QLabel(self) self.labelPatchNum.resize(110,20) self.labelPatchNum.setAlignment(Qt.AlignRight) self.labelPatchNum.setText("(1/"+str(self.viewlist.shape[0])+")") self.labelPatchNum.setFont(QFont("Arial",14, QFont.Bold)) self.lastpickPatch = QLabel(self) self.lastpickPatch.resize(110,20) self.lastpickPatch.setAlignment(Qt.AlignRight) self.lastpickPatch.setText("Last: ") self.lastpickPatch.setFont(QFont("Arial",14, QFont.Bold)) self.patchsizeStatus = QLabel(self) self.patchsizeStatus.resize(110,20) self.patchsizeStatus.setAlignment(Qt.AlignRight) self.patchsizeStatus.setText("Patch size: "+str(self.view.shape[3])+"x"+str(self.view.shape[4])) self.patchsizeStatus.setFont(QFont("Arial",14, QFont.Bold)) # Display area for the current whole image self.i = 0 self.thispatch = self.viewlist[self.idxl[self.i],:,:,:] pixmap = QPixmap.fromImage(toQImage(self.thispatch)) self.labelPatch.setPixmap(pixmap.scaled(100, 100, Qt.KeepAspectRatio,Qt.SmoothTransformation)) self.showPatchLoc(self.idxl[self.i]) # Add buttons if not isinstance(self.parent(), QMainWindow): btnq = QPushButton('Quit', self) btnq.setToolTip('Click to quit!') btnq.clicked.connect(exit) btnq.resize(btnq.sizeHint()) self.buttonList = [] for cname in self.classNames: this_button = QPushButton(cname, self) this_button.setFont(QFont("Arial",18, QFont.Bold)) this_button.resize(300,100) this_button.clicked.connect(self.on_click(cname)) self.buttonList.append(this_button) # Set up the layout of the GUI top_area = QHBoxLayout() top_area.addStretch(1) top_area.addWidget(self.labelWhole) top_area.addStretch(1) middle_area = QHBoxLayout() middle_area.addStretch(1) if isinstance(self.parent(), QMainWindow): self.parent().statusBar().insertWidget(0,self.labelPatchNum) self.parent().statusBar().insertWidget(0,self.patchsizeStatus) self.parent().statusBar().insertPermanentWidget(1,self.lastpickPatch, stretch=200) else: middle_area.addWidget(self.labelPatchNum) self.bottom_area = QHBoxLayout() self.bottom_area.addStretch(1) self.bottom_area.addWidget(self.labelPatch) for button in self.buttonList: self.bottom_area.addWidget(button) self.bottom_area.addStretch(1) if not isinstance(self.parent(), QMainWindow): self.bottom_area.addWidget(btnq) self.vbox = QVBoxLayout() self.vbox.addLayout(top_area) self.vbox.addLayout(middle_area) self.vbox.addLayout(self.bottom_area) self.setLayout(self.vbox) # ---------------------------------------------------------------------------------------------------- # Main method if __name__ == "__main__": inputfile = "data/example.jpg" #default outputdir = None classfile = None dim1 = 256 # default patch size is a 256x256 square dim2 = 256 try: opts, args = getopt.getopt(sys.argv[1:],"hi:o:c:s:",["inputfile=","outputdir=","classfile=","size="]) except getopt.GetoptError: print 'python SortPatches.py -i <inputfile> -o <outputdir> -c <classfile> -s <patchheight>,<patchwidth>' sys.exit(2) for opt, arg in opts: if opt in ("-i", "--inputfile"): inputfile = arg if opt in ("-o", "--outputdir"): outputdir = arg if opt in ("-c", "--classfile"): classfile = arg if opt in ("-s", "--size"): serr = False aarg = arg.split(',') if len(aarg) == 2: dim1 = float(aarg[0]) dim2 = float(aarg[1]) if(dim1 > 0): dim1 = int(np.ceil(dim1/8.0) * 8) else: serr = True if(dim2 > 0): dim2 = int(np.ceil(dim2/8.0) * 8) else: serr = True else: serr = True if serr: print("Size argument (-s or --size) should be of the form m,n. Sizes must be >0 and are rounded to the nearest byte (multiple of 8).") sys.exit(2) if not outputdir: outputdir = os.path.splitext(os.path.abspath(inputfile))[0] app = QApplication([]) p = patchSorter(inputfile, [dim1, dim2], outname=outputdir) if classfile: with open(classfile) as f: lines = f.read().splitlines() p.gui.classNames = lines p.gui.updateClasses() sys.exit(app.exec_())
gpl-2.0
billy-inn/scikit-learn
examples/ensemble/plot_adaboost_hastie_10_2.py
355
3576
""" ============================= Discrete versus Real AdaBoost ============================= This example is based on Figure 10.2 from Hastie et al 2009 [1] and illustrates the difference in performance between the discrete SAMME [2] boosting algorithm and real SAMME.R boosting algorithm. Both algorithms are evaluated on a binary classification task where the target Y is a non-linear function of 10 input features. Discrete SAMME AdaBoost adapts based on errors in predicted class labels whereas real SAMME.R uses the predicted class probabilities. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]>, # Noel Dawe <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import zero_one_loss from sklearn.ensemble import AdaBoostClassifier n_estimators = 400 # A learning rate of 1. may not be optimal for both SAMME and SAMME.R learning_rate = 1. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_test, y_test = X[2000:], y[2000:] X_train, y_train = X[:2000], y[:2000] dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1) dt_stump.fit(X_train, y_train) dt_stump_err = 1.0 - dt_stump.score(X_test, y_test) dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1) dt.fit(X_train, y_train) dt_err = 1.0 - dt.score(X_test, y_test) ada_discrete = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME") ada_discrete.fit(X_train, y_train) ada_real = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME.R") ada_real.fit(X_train, y_train) fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-', label='Decision Stump Error') ax.plot([1, n_estimators], [dt_err] * 2, 'k--', label='Decision Tree Error') ada_discrete_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_test)): ada_discrete_err[i] = zero_one_loss(y_pred, y_test) ada_discrete_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_train)): ada_discrete_err_train[i] = zero_one_loss(y_pred, y_train) ada_real_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_test)): ada_real_err[i] = zero_one_loss(y_pred, y_test) ada_real_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_train)): ada_real_err_train[i] = zero_one_loss(y_pred, y_train) ax.plot(np.arange(n_estimators) + 1, ada_discrete_err, label='Discrete AdaBoost Test Error', color='red') ax.plot(np.arange(n_estimators) + 1, ada_discrete_err_train, label='Discrete AdaBoost Train Error', color='blue') ax.plot(np.arange(n_estimators) + 1, ada_real_err, label='Real AdaBoost Test Error', color='orange') ax.plot(np.arange(n_estimators) + 1, ada_real_err_train, label='Real AdaBoost Train Error', color='green') ax.set_ylim((0.0, 0.5)) ax.set_xlabel('n_estimators') ax.set_ylabel('error rate') leg = ax.legend(loc='upper right', fancybox=True) leg.get_frame().set_alpha(0.7) plt.show()
bsd-3-clause
BioMedIA/irtk-legacy
wrapping/cython/irtk/ext/chanvese.py
5
9929
# http://www.creatis.insa-lyon.fr/~bernard/creaseg/ # http://ascratchpad.blogspot.com/2011/03/image-segmentation-using-active.html #------------------------------------------------------------------------ # Region Based Active Contour Segmentation # # seg = region_seg(I,init_mask,max_its,alpha,display) # # Inputs: I 2D image # init_mask Initialization (1 = foreground, 0 = bg) # max_its Number of iterations to run segmentation for # alpha (optional) Weight of smoothing term # higer = smoother. default = 0.2 # display (optional) displays intermediate outputs # default = true # # Outputs: seg Final segmentation mask (1=fg, 0=bg) # # Description: This code implements the paper: "Active Contours Without # Edges" By Chan Vese. This is a nice way to segment images whose # foregrounds and backgrounds are statistically different and homogeneous. # # Example: # img = imread('tire.tif'); # m = zeros(size(img)); # m(33:33+117,44:44+128) = 1; # seg = region_seg(img,m,500); # # Coded by: Shawn Lankton (www.shawnlankton.com) #------------------------------------------------------------------------ import numpy as np import scipy.ndimage as nd import matplotlib.pyplot as plt eps = np.finfo(np.float).eps def chanvese(I,init_mask,max_its=200,alpha=0.2,thresh=0,color='r',display=False): I = I.astype('float') #-- Create a signed distance map (SDF) from mask phi = mask2phi(init_mask) if display: plt.ion() showCurveAndPhi(I, phi, color) plt.savefig('levelset_start.pdf',bbox_inches='tight') #--main loop its = 0 stop = False prev_mask = init_mask c = 0 while (its < max_its and not stop): # get the curve's narrow band idx = np.flatnonzero( np.logical_and( phi <= 1.2, phi >= -1.2) ) if len(idx) > 0: #-- intermediate output if display: if np.mod(its,50) == 0: #set(ud.txtInfo1,'string',sprintf('iteration: %d',its),'color',[1 1 0]); print 'iteration:', its showCurveAndPhi(I, phi, color) else: if np.mod(its,10) == 0: print 'iteration:', its #set(ud.txtInfo1,'string',sprintf('iteration: %d',its),'color',[1 1 0]); #drawnow; #-- find interior and exterior mean upts = np.flatnonzero(phi<=0) # interior points vpts = np.flatnonzero(phi>0) # exterior points u = np.sum(I.flat[upts])/(len(upts)+eps) # interior mean v = np.sum(I.flat[vpts])/(len(vpts)+eps) # exterior mean F = (I.flat[idx]-u)**2-(I.flat[idx]-v)**2 # force from image information curvature = get_curvature(phi,idx) # force from curvature penalty dphidt = F /np.max(np.abs(F)) + alpha*curvature # gradient descent to minimize energy #-- maintain the CFL condition dt = 0.45/(np.max(np.abs(dphidt))+eps) #-- evolve the curve phi.flat[idx] += dt*dphidt #-- Keep SDF smooth phi = sussman(phi, 0.5) new_mask = phi<=0 c = convergence(prev_mask,new_mask,thresh,c) if c <= 5: its = its + 1 prev_mask = new_mask else: stop = True else: break #-- final output if display: showCurveAndPhi(I, phi, color) #plt.savefig('levelset_end.pdf',bbox_inches='tight') time.sleep(10) #-- make mask from SDF seg = phi<=0 #-- Get mask from levelset return seg,phi,its #--------------------------------------------------------------------- #--------------------------------------------------------------------- #-- AUXILIARY FUNCTIONS ---------------------------------------------- #--------------------------------------------------------------------- #--------------------------------------------------------------------- def bwdist(a): """ this is an intermediary function, 'a' has only True, False vals, so we convert them into 0, 1 values -- in reverse. True is 0, False is 1, distance_transform_edt wants it that way. """ return nd.distance_transform_edt(a == 0) import time #-- Displays the image with curve superimposed def showCurveAndPhi(I, phi, color): # subplot(numRows, numCols, plotNum) #myplot = plt.subplot(121) #fig, axes = plt.subplots() #axes = myplot.axes #axes.get_xaxis().set_visible(False) #axes.get_yaxis().set_visible(False) plt.clf() plt.imshow(I, cmap='gray') #plt.hold(True) CS = plt.contour(phi, 0, colors=color) plt.draw() #plt.hold(False) # myplot = plt.subplot(122) # axes = myplot.axes # axes.get_xaxis().set_visible(False) # axes.get_yaxis().set_visible(False) # plt.imshow(phi) plt.draw() #time.sleep(1) def im2double(a): a = a.astype('float') a /= a.max() return a #-- converts a mask to a SDF def mask2phi(init_a): phi = bwdist(init_a)-bwdist(1-init_a)+im2double(init_a) -0.5 return phi #-- compute curvature along SDF def get_curvature(phi,idx): dimy, dimx = phi.shape yx = np.array([np.unravel_index(i, phi.shape)for i in idx]) # get subscripts y = yx[:,0] x = yx[:,1] #-- get subscripts of neighbors ym1 = y-1; xm1 = x-1; yp1 = y+1; xp1 = x+1; #-- bounds checking ym1[ym1<0] = 0; xm1[xm1<0] = 0; yp1[yp1>=dimy]=dimy - 1; xp1[xp1>=dimx] = dimx - 1; #-- get indexes for 8 neighbors idup = np.ravel_multi_index( (yp1,x),phi.shape) iddn = np.ravel_multi_index( (ym1,x),phi.shape) idlt = np.ravel_multi_index( (y,xm1),phi.shape) idrt = np.ravel_multi_index( (y,xp1),phi.shape) idul = np.ravel_multi_index( (yp1,xm1),phi.shape) idur = np.ravel_multi_index( (yp1,xp1),phi.shape) iddl = np.ravel_multi_index( (ym1,xm1),phi.shape) iddr = np.ravel_multi_index( (ym1,xp1),phi.shape) #-- get central derivatives of SDF at x,y phi_x = -phi.flat[idlt]+phi.flat[idrt] phi_y = -phi.flat[iddn]+phi.flat[idup] phi_xx = phi.flat[idlt]-2*phi.flat[idx]+phi.flat[idrt] phi_yy = phi.flat[iddn]-2*phi.flat[idx]+phi.flat[idup] phi_xy = (-0.25*phi.flat[iddl]-0.25*phi.flat[idur] +0.25*phi.flat[iddr]+0.25*phi.flat[idul]) phi_x2 = phi_x**2 phi_y2 = phi_y**2 #-- compute curvature (Kappa) curvature = ( ((phi_x2*phi_yy + phi_y2*phi_xx - 2*phi_x*phi_y*phi_xy) / (phi_x2 + phi_y2 +eps)**(3/2)) *(phi_x2 + phi_y2)**(1/2)) return curvature #-- level set re-initialization by the sussman method def sussman(D, dt): # forward/backward differences a = D - shiftR(D) # backward b = shiftL(D) - D # forward c = D - shiftD(D) # backward d = shiftU(D) - D # forward a_p = a.copy(); a_n = a.copy(); # a+ and a- b_p = b.copy(); b_n = b.copy(); c_p = c.copy(); c_n = c.copy(); d_p = d.copy(); d_n = d.copy(); a_p[a < 0] = 0 a_n[a > 0] = 0 b_p[b < 0] = 0 b_n[b > 0] = 0 c_p[c < 0] = 0 c_n[c > 0] = 0 d_p[d < 0] = 0 d_n[d > 0] = 0 dD = np.zeros(D.shape) D_neg_ind = np.flatnonzero(D < 0) D_pos_ind = np.flatnonzero(D > 0) dD.flat[D_pos_ind] = np.sqrt( np.max( np.concatenate( ([a_p.flat[D_pos_ind]**2], [b_n.flat[D_pos_ind]**2]) ), axis=0 ) + np.max( np.concatenate( ([c_p.flat[D_pos_ind]**2], [d_n.flat[D_pos_ind]**2])), axis=0 ) ) - 1 dD.flat[D_neg_ind] = np.sqrt( np.max( np.concatenate( ([a_n.flat[D_neg_ind]**2], [b_p.flat[D_neg_ind]**2])), axis=0 ) + np.max( np.concatenate( ([c_n.flat[D_neg_ind]**2], [d_p.flat[D_neg_ind]**2]) ), axis=0 ) ) - 1 D = D - dt * sussman_sign(D) * dD return D #-- whole matrix derivatives def shiftD(M): return shiftR(M.transpose()).transpose() def shiftL(M): #shift = np.concatenate( (M[:,1:], np.zeros((M.shape[1],1))), axis=1 ) #shift = np.concatenate( (M[:,1:], M[:,-1]), axis=1 ) shift = M[:,range(1,M.shape[1])+[M.shape[1]-1]] return shift def shiftR(M): #shift = np.concatenate( (np.zeros((M.shape[1],1)), M[:,:-1]), axis=1 ) #shift = np.concatenate( (M[:,0], M[:,:-1]), axis=1 ) shift = M[:,[0]+range(0,M.shape[1]-1)] return shift def shiftU(M): return shiftL(M.transpose()).transpose() def sussman_sign(D): return D / np.sqrt(D**2 + 1) # Convergence Test def convergence(p_mask,n_mask,thresh,c): diff = p_mask - n_mask n_diff = np.sum(np.abs(diff)) if n_diff < thresh: c = c + 1 else: c = 0 return c if __name__ == "__main__": import cv2 img = cv2.imread("/home/kevin/Imperial/PhD/DATASETS/Training/positive/246_cropped_c/8.png_0022_0115_0117_0132_0132_0.png",0) #img = nd.imread('sagittal8.png') mask = np.zeros(img.shape) mask[55:65,55:65] = 1 chanvese(img,mask,max_its=2000,display=True,alpha=0.1)
bsd-3-clause
EricSB/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/collections.py
69
39876
""" Classes for the efficient drawing of large collections of objects that share most properties, e.g. a large number of line segments or polygons. The classes are not meant to be as flexible as their single element counterparts (e.g. you may not be able to select all line styles) but they are meant to be fast for common use cases (e.g. a bunch of solid line segemnts) """ import copy, math, warnings import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.cbook as cbook import matplotlib.colors as _colors # avoid conflict with kwarg import matplotlib.cm as cm import matplotlib.transforms as transforms import matplotlib.artist as artist import matplotlib.backend_bases as backend_bases import matplotlib.path as mpath import matplotlib.mlab as mlab class Collection(artist.Artist, cm.ScalarMappable): """ Base class for Collections. Must be subclassed to be usable. All properties in a collection must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith element of the collection is:: prop[i % len(props)] Keyword arguments and default values: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets). If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (ie a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ _offsets = np.array([], np.float_) _transOffset = transforms.IdentityTransform() _transforms = [] zorder = 1 def __init__(self, edgecolors=None, facecolors=None, linewidths=None, linestyles='solid', antialiaseds = None, offsets = None, transOffset = None, norm = None, # optional for ScalarMappable cmap = None, # ditto pickradius = 5.0, urls = None, **kwargs ): """ Create a Collection %(Collection)s """ artist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) self.set_edgecolor(edgecolors) self.set_facecolor(facecolors) self.set_linewidth(linewidths) self.set_linestyle(linestyles) self.set_antialiased(antialiaseds) self.set_urls(urls) self._uniform_offsets = None self._offsets = np.array([], np.float_) if offsets is not None: offsets = np.asarray(offsets) if len(offsets.shape) == 1: offsets = offsets[np.newaxis,:] # Make it Nx2. if transOffset is not None: self._offsets = offsets self._transOffset = transOffset else: self._uniform_offsets = offsets self._pickradius = pickradius self.update(kwargs) def _get_value(self, val): try: return (float(val), ) except TypeError: if cbook.iterable(val) and len(val): try: float(val[0]) except TypeError: pass # raise below else: return val raise TypeError('val must be a float or nonzero sequence of floats') def _get_bool(self, val): try: return (bool(val), ) except TypeError: if cbook.iterable(val) and len(val): try: bool(val[0]) except TypeError: pass # raise below else: return val raise TypeError('val must be a bool or nonzero sequence of them') def get_paths(self): raise NotImplementedError def get_transforms(self): return self._transforms def get_datalim(self, transData): transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets paths = self.get_paths() if not transform.is_affine: paths = [transform.transform_path_non_affine(p) for p in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() offsets = np.asarray(offsets, np.float_) result = mpath.get_path_collection_extents( transform.frozen(), paths, self.get_transforms(), offsets, transOffset.frozen()) result = result.inverse_transformed(transData) return result def get_window_extent(self, renderer): bbox = self.get_datalim(transforms.IdentityTransform()) #TODO:check to ensure that this does not fail for #cases other than scatter plot legend return bbox def _prepare_points(self): """Point prep for drawing and hit testing""" transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets paths = self.get_paths() if self.have_units(): paths = [] for path in self.get_paths(): vertices = path.vertices xs, ys = vertices[:, 0], vertices[:, 1] xs = self.convert_xunits(xs) ys = self.convert_yunits(ys) paths.append(mpath.Path(zip(xs, ys), path.codes)) if len(self._offsets): xs = self.convert_xunits(self._offsets[:0]) ys = self.convert_yunits(self._offsets[:1]) offsets = zip(xs, ys) offsets = np.asarray(offsets, np.float_) if not transform.is_affine: paths = [transform.transform_path_non_affine(path) for path in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() return transform, transOffset, offsets, paths def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__) self.update_scalarmappable() clippath, clippath_trans = self.get_transformed_clip_path_and_affine() if clippath_trans is not None: clippath_trans = clippath_trans.frozen() transform, transOffset, offsets, paths = self._prepare_points() renderer.draw_path_collection( transform.frozen(), self.clipbox, clippath, clippath_trans, paths, self.get_transforms(), offsets, transOffset, self.get_facecolor(), self.get_edgecolor(), self._linewidths, self._linestyles, self._antialiaseds, self._urls) renderer.close_group(self.__class__.__name__) def contains(self, mouseevent): """ Test whether the mouse event occurred in the collection. Returns True | False, ``dict(ind=itemlist)``, where every item in itemlist contains the event. """ if callable(self._contains): return self._contains(self,mouseevent) if not self.get_visible(): return False,{} transform, transOffset, offsets, paths = self._prepare_points() ind = mpath.point_in_path_collection( mouseevent.x, mouseevent.y, self._pickradius, transform.frozen(), paths, self.get_transforms(), offsets, transOffset, len(self._facecolors)>0) return len(ind)>0,dict(ind=ind) def set_pickradius(self,pickradius): self.pickradius = 5 def get_pickradius(self): return self.pickradius def set_urls(self, urls): if urls is None: self._urls = [None,] else: self._urls = urls def get_urls(self): return self._urls def set_offsets(self, offsets): """ Set the offsets for the collection. *offsets* can be a scalar or a sequence. ACCEPTS: float or sequence of floats """ offsets = np.asarray(offsets, np.float_) if len(offsets.shape) == 1: offsets = offsets[np.newaxis,:] # Make it Nx2. #This decision is based on how they are initialized above if self._uniform_offsets is None: self._offsets = offsets else: self._uniform_offsets = offsets def get_offsets(self): """ Return the offsets for the collection. """ #This decision is based on how they are initialized above in __init__() if self._uniform_offsets is None: return self._offsets else: return self._uniform_offsets def set_linewidth(self, lw): """ Set the linewidth(s) for the collection. *lw* can be a scalar or a sequence; if it is a sequence the patches will cycle through the sequence ACCEPTS: float or sequence of floats """ if lw is None: lw = mpl.rcParams['patch.linewidth'] self._linewidths = self._get_value(lw) def set_linewidths(self, lw): """alias for set_linewidth""" return self.set_linewidth(lw) def set_lw(self, lw): """alias for set_linewidth""" return self.set_linewidth(lw) def set_linestyle(self, ls): """ Set the linestyle(s) for the collection. ACCEPTS: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ] """ try: dashd = backend_bases.GraphicsContextBase.dashd if cbook.is_string_like(ls): if ls in dashd: dashes = [dashd[ls]] elif ls in cbook.ls_mapper: dashes = [dashd[cbook.ls_mapper[ls]]] else: raise ValueError() elif cbook.iterable(ls): try: dashes = [] for x in ls: if cbook.is_string_like(x): if x in dashd: dashes.append(dashd[x]) elif x in cbook.ls_mapper: dashes.append(dashd[cbook.ls_mapper[x]]) else: raise ValueError() elif cbook.iterable(x) and len(x) == 2: dashes.append(x) else: raise ValueError() except ValueError: if len(ls)==2: dashes = ls else: raise ValueError() else: raise ValueError() except ValueError: raise ValueError('Do not know how to convert %s to dashes'%ls) self._linestyles = dashes def set_linestyles(self, ls): """alias for set_linestyle""" return self.set_linestyle(ls) def set_dashes(self, ls): """alias for set_linestyle""" return self.set_linestyle(ls) def set_antialiased(self, aa): """ Set the antialiasing state for rendering. ACCEPTS: Boolean or sequence of booleans """ if aa is None: aa = mpl.rcParams['patch.antialiased'] self._antialiaseds = self._get_bool(aa) def set_antialiaseds(self, aa): """alias for set_antialiased""" return self.set_antialiased(aa) def set_color(self, c): """ Set both the edgecolor and the facecolor. ACCEPTS: matplotlib color arg or sequence of rgba tuples .. seealso:: :meth:`set_facecolor`, :meth:`set_edgecolor` """ self.set_facecolor(c) self.set_edgecolor(c) def set_facecolor(self, c): """ Set the facecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ if c is None: c = mpl.rcParams['patch.facecolor'] self._facecolors_original = c self._facecolors = _colors.colorConverter.to_rgba_array(c, self._alpha) def set_facecolors(self, c): """alias for set_facecolor""" return self.set_facecolor(c) def get_facecolor(self): return self._facecolors get_facecolors = get_facecolor def get_edgecolor(self): if self._edgecolors == 'face': return self.get_facecolors() else: return self._edgecolors get_edgecolors = get_edgecolor def set_edgecolor(self, c): """ Set the edgecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence. If *c* is 'face', the edge color will always be the same as the face color. ACCEPTS: matplotlib color arg or sequence of rgba tuples """ if c == 'face': self._edgecolors = 'face' self._edgecolors_original = 'face' else: if c is None: c = mpl.rcParams['patch.edgecolor'] self._edgecolors_original = c self._edgecolors = _colors.colorConverter.to_rgba_array(c, self._alpha) def set_edgecolors(self, c): """alias for set_edgecolor""" return self.set_edgecolor(c) def set_alpha(self, alpha): """ Set the alpha tranparencies of the collection. *alpha* must be a float. ACCEPTS: float """ try: float(alpha) except TypeError: raise TypeError('alpha must be a float') else: artist.Artist.set_alpha(self, alpha) try: self._facecolors = _colors.colorConverter.to_rgba_array( self._facecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass try: if self._edgecolors_original != 'face': self._edgecolors = _colors.colorConverter.to_rgba_array( self._edgecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass def get_linewidths(self): return self._linewidths get_linewidth = get_linewidths def get_linestyles(self): return self._linestyles get_dashes = get_linestyle = get_linestyles def update_scalarmappable(self): """ If the scalar mappable array is not none, update colors from scalar data """ if self._A is None: return if self._A.ndim > 1: raise ValueError('Collections can only map rank 1 arrays') if len(self._facecolors): self._facecolors = self.to_rgba(self._A, self._alpha) else: self._edgecolors = self.to_rgba(self._A, self._alpha) def update_from(self, other): 'copy properties from other to self' artist.Artist.update_from(self, other) self._antialiaseds = other._antialiaseds self._edgecolors_original = other._edgecolors_original self._edgecolors = other._edgecolors self._facecolors_original = other._facecolors_original self._facecolors = other._facecolors self._linewidths = other._linewidths self._linestyles = other._linestyles self._pickradius = other._pickradius # these are not available for the object inspector until after the # class is built so we define an initial set here for the init # function and they will be overridden after object defn artist.kwdocd['Collection'] = """\ Valid Collection keyword arguments: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets) If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. """ class QuadMesh(Collection): """ Class for the efficient drawing of a quadrilateral mesh. A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (*meshWidth* + 1, *meshHeight* + 1). Each vertex in the mesh has a different set of "mesh coordinates" representing its position in the topology of the mesh. For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth* and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates (*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*) form one of the quadrilaterals in the mesh. There are thus (*meshWidth* * *meshHeight*) quadrilaterals in the mesh. The mesh need not be regular and the polygons need not be convex. A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) * (*meshHeight* + 1))) numpy array *coordinates*, where each row is the *x* and *y* coordinates of one of the vertices. To define the function that maps from a data point to its corresponding color, use the :meth:`set_cmap` method. Each of these arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates of the lower left vertex, in the case of the colors). For example, the first entry in *coordinates* is the coordinates of the vertex at mesh coordinates (0, 0), then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on. """ def __init__(self, meshWidth, meshHeight, coordinates, showedges, antialiased=True): Collection.__init__(self) self._meshWidth = meshWidth self._meshHeight = meshHeight self._coordinates = coordinates self._showedges = showedges self._antialiased = antialiased self._paths = None self._bbox = transforms.Bbox.unit() self._bbox.update_from_data_xy(coordinates.reshape( ((meshWidth + 1) * (meshHeight + 1), 2))) # By converting to floats now, we can avoid that on every draw. self._coordinates = self._coordinates.reshape((meshHeight + 1, meshWidth + 1, 2)) self._coordinates = np.array(self._coordinates, np.float_) def get_paths(self, dataTrans=None): if self._paths is None: self._paths = self.convert_mesh_to_paths( self._meshWidth, self._meshHeight, self._coordinates) return self._paths #@staticmethod def convert_mesh_to_paths(meshWidth, meshHeight, coordinates): """ Converts a given mesh into a sequence of :class:`matplotlib.path.Path` objects for easier rendering by backends that do not directly support quadmeshes. This function is primarily of use to backend implementers. """ Path = mpath.Path if ma.isMaskedArray(coordinates): c = coordinates.data else: c = coordinates points = np.concatenate(( c[0:-1, 0:-1], c[0:-1, 1: ], c[1: , 1: ], c[1: , 0:-1], c[0:-1, 0:-1] ), axis=2) points = points.reshape((meshWidth * meshHeight, 5, 2)) return [Path(x) for x in points] convert_mesh_to_paths = staticmethod(convert_mesh_to_paths) def get_datalim(self, transData): return self._bbox def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__) transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets if self.have_units(): if len(self._offsets): xs = self.convert_xunits(self._offsets[:0]) ys = self.convert_yunits(self._offsets[:1]) offsets = zip(xs, ys) offsets = np.asarray(offsets, np.float_) if self.check_update('array'): self.update_scalarmappable() clippath, clippath_trans = self.get_transformed_clip_path_and_affine() if clippath_trans is not None: clippath_trans = clippath_trans.frozen() if not transform.is_affine: coordinates = self._coordinates.reshape( (self._coordinates.shape[0] * self._coordinates.shape[1], 2)) coordinates = transform.transform(coordinates) coordinates = coordinates.reshape(self._coordinates.shape) transform = transforms.IdentityTransform() else: coordinates = self._coordinates if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() renderer.draw_quad_mesh( transform.frozen(), self.clipbox, clippath, clippath_trans, self._meshWidth, self._meshHeight, coordinates, offsets, transOffset, self.get_facecolor(), self._antialiased, self._showedges) renderer.close_group(self.__class__.__name__) class PolyCollection(Collection): def __init__(self, verts, sizes = None, closed = True, **kwargs): """ *verts* is a sequence of ( *verts0*, *verts1*, ...) where *verts_i* is a sequence of *xy* tuples of vertices, or an equivalent :mod:`numpy` array of shape (*nv*, 2). *sizes* is *None* (default) or a sequence of floats that scale the corresponding *verts_i*. The scaling is applied before the Artist master transform; if the latter is an identity transform, then the overall scaling is such that if *verts_i* specify a unit square, then *sizes_i* is the area of that square in points^2. If len(*sizes*) < *nv*, the additional values will be taken cyclically from the array. *closed*, when *True*, will explicitly close the polygon. %(Collection)s """ Collection.__init__(self,**kwargs) self._sizes = sizes self.set_verts(verts, closed) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def set_verts(self, verts, closed=True): '''This allows one to delay initialization of the vertices.''' if closed: self._paths = [] for xy in verts: if np.ma.isMaskedArray(xy): if len(xy) and (xy[0] != xy[-1]).any(): xy = np.ma.concatenate([xy, [xy[0]]]) else: xy = np.asarray(xy) if len(xy) and (xy[0] != xy[-1]).any(): xy = np.concatenate([xy, [xy[0]]]) self._paths.append(mpath.Path(xy)) else: self._paths = [mpath.Path(xy) for xy in verts] def get_paths(self): return self._paths def draw(self, renderer): if self._sizes is not None: self._transforms = [ transforms.Affine2D().scale( (np.sqrt(x) * self.figure.dpi / 72.0)) for x in self._sizes] return Collection.draw(self, renderer) class BrokenBarHCollection(PolyCollection): """ A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. """ def __init__(self, xranges, yrange, **kwargs): """ *xranges* sequence of (*xmin*, *xwidth*) *yrange* *ymin*, *ywidth* %(Collection)s """ ymin, ywidth = yrange ymax = ymin + ywidth verts = [ [(xmin, ymin), (xmin, ymax), (xmin+xwidth, ymax), (xmin+xwidth, ymin), (xmin, ymin)] for xmin, xwidth in xranges] PolyCollection.__init__(self, verts, **kwargs) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd @staticmethod def span_where(x, ymin, ymax, where, **kwargs): """ Create a BrokenBarHCollection to plot horizontal bars from over the regions in *x* where *where* is True. The bars range on the y-axis from *ymin* to *ymax* A :class:`BrokenBarHCollection` is returned. *kwargs* are passed on to the collection """ xranges = [] for ind0, ind1 in mlab.contiguous_regions(where): xslice = x[ind0:ind1] if not len(xslice): continue xranges.append((xslice[0], xslice[-1]-xslice[0])) collection = BrokenBarHCollection(xranges, [ymin, ymax-ymin], **kwargs) return collection class RegularPolyCollection(Collection): """Draw a collection of regular polygons with *numsides*.""" _path_generator = mpath.Path.unit_regular_polygon def __init__(self, numsides, rotation = 0 , sizes = (1,), **kwargs): """ *numsides* the number of sides of the polygon *rotation* the rotation of the polygon in radians *sizes* gives the area of the circle circumscribing the regular polygon in points^2 %(Collection)s Example: see :file:`examples/dynamic_collection.py` for complete example:: offsets = np.random.rand(20,2) facecolors = [cm.jet(x) for x in np.random.rand(20)] black = (0,0,0,1) collection = RegularPolyCollection( numsides=5, # a pentagon rotation=0, sizes=(50,), facecolors = facecolors, edgecolors = (black,), linewidths = (1,), offsets = offsets, transOffset = ax.transData, ) """ Collection.__init__(self,**kwargs) self._sizes = sizes self._numsides = numsides self._paths = [self._path_generator(numsides)] self._rotation = rotation self.set_transform(transforms.IdentityTransform()) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def draw(self, renderer): self._transforms = [ transforms.Affine2D().rotate(-self._rotation).scale( (np.sqrt(x) * self.figure.dpi / 72.0) / np.sqrt(np.pi)) for x in self._sizes] return Collection.draw(self, renderer) def get_paths(self): return self._paths def get_numsides(self): return self._numsides def get_rotation(self): return self._rotation def get_sizes(self): return self._sizes class StarPolygonCollection(RegularPolyCollection): """ Draw a collection of regular stars with *numsides* points.""" _path_generator = mpath.Path.unit_regular_star class AsteriskPolygonCollection(RegularPolyCollection): """ Draw a collection of regular asterisks with *numsides* points.""" _path_generator = mpath.Path.unit_regular_asterisk class LineCollection(Collection): """ All parameters must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith line segment is:: prop[i % len(props)] i.e., the properties cycle if the ``len`` of props is less than the number of segments. """ zorder = 2 def __init__(self, segments, # Can be None. linewidths = None, colors = None, antialiaseds = None, linestyles = 'solid', offsets = None, transOffset = None, norm = None, cmap = None, pickradius = 5, **kwargs ): """ *segments* a sequence of (*line0*, *line1*, *line2*), where:: linen = (x0, y0), (x1, y1), ... (xm, ym) or the equivalent numpy array with two columns. Each line can be a different length. *colors* must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed). *antialiaseds* must be a sequence of ones or zeros *linestyles* [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] a string or dash tuple. The dash tuple is:: (offset, onoffseq), where *onoffseq* is an even length tuple of on and off ink in points. If *linewidths*, *colors*, or *antialiaseds* is None, they default to their rcParams setting, in sequence form. If *offsets* and *transOffset* are not None, then *offsets* are transformed by *transOffset* and applied after the segments have been transformed to display coordinates. If *offsets* is not None but *transOffset* is None, then the *offsets* are added to the segments before any transformation. In this case, a single offset can be specified as:: offsets=(xo,yo) and this value will be added cumulatively to each successive segment, so as to produce a set of successively offset curves. *norm* None (optional for :class:`matplotlib.cm.ScalarMappable`) *cmap* None (optional for :class:`matplotlib.cm.ScalarMappable`) *pickradius* is the tolerance for mouse clicks picking a line. The default is 5 pt. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix :attr:`~matplotlib.cm.ScalarMappable._A` is not None (ie a call to :meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at draw time a call to scalar mappable will be made to set the colors. """ if colors is None: colors = mpl.rcParams['lines.color'] if linewidths is None: linewidths = (mpl.rcParams['lines.linewidth'],) if antialiaseds is None: antialiaseds = (mpl.rcParams['lines.antialiased'],) self.set_linestyles(linestyles) colors = _colors.colorConverter.to_rgba_array(colors) Collection.__init__( self, edgecolors=colors, linewidths=linewidths, linestyles=linestyles, antialiaseds=antialiaseds, offsets=offsets, transOffset=transOffset, norm=norm, cmap=cmap, pickradius=pickradius, **kwargs) self.set_facecolors([]) self.set_segments(segments) def get_paths(self): return self._paths def set_segments(self, segments): if segments is None: return _segments = [] for seg in segments: if not np.ma.isMaskedArray(seg): seg = np.asarray(seg, np.float_) _segments.append(seg) if self._uniform_offsets is not None: _segments = self._add_offsets(_segments) self._paths = [mpath.Path(seg) for seg in _segments] set_verts = set_segments # for compatibility with PolyCollection def _add_offsets(self, segs): offsets = self._uniform_offsets Nsegs = len(segs) Noffs = offsets.shape[0] if Noffs == 1: for i in range(Nsegs): segs[i] = segs[i] + i * offsets else: for i in range(Nsegs): io = i%Noffs segs[i] = segs[i] + offsets[io:io+1] return segs def set_color(self, c): """ Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ self._edgecolors = _colors.colorConverter.to_rgba_array(c) def color(self, c): """ Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ warnings.warn('LineCollection.color deprecated; use set_color instead') return self.set_color(c) def get_color(self): return self._edgecolors get_colors = get_color # for compatibility with old versions class CircleCollection(Collection): """ A collection of circles, drawn using splines. """ def __init__(self, sizes, **kwargs): """ *sizes* Gives the area of the circle in points^2 %(Collection)s """ Collection.__init__(self,**kwargs) self._sizes = sizes self.set_transform(transforms.IdentityTransform()) self._paths = [mpath.Path.unit_circle()] __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def draw(self, renderer): # sizes is the area of the circle circumscribing the polygon # in points^2 self._transforms = [ transforms.Affine2D().scale( (np.sqrt(x) * self.figure.dpi / 72.0) / np.sqrt(np.pi)) for x in self._sizes] return Collection.draw(self, renderer) def get_paths(self): return self._paths class EllipseCollection(Collection): """ A collection of ellipses, drawn using splines. """ def __init__(self, widths, heights, angles, units='points', **kwargs): """ *widths*: sequence half-lengths of first axes (e.g., semi-major axis lengths) *heights*: sequence half-lengths of second axes *angles*: sequence angles of first axes, degrees CCW from the X-axis *units*: ['points' | 'inches' | 'dots' | 'width' | 'height' | 'x' | 'y'] units in which majors and minors are given; 'width' and 'height' refer to the dimensions of the axes, while 'x' and 'y' refer to the *offsets* data units. Additional kwargs inherited from the base :class:`Collection`: %(Collection)s """ Collection.__init__(self,**kwargs) self._widths = np.asarray(widths).ravel() self._heights = np.asarray(heights).ravel() self._angles = np.asarray(angles).ravel() *(np.pi/180.0) self._units = units self.set_transform(transforms.IdentityTransform()) self._transforms = [] self._paths = [mpath.Path.unit_circle()] self._initialized = False __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def _init(self): def on_dpi_change(fig): self._transforms = [] self.figure.callbacks.connect('dpi_changed', on_dpi_change) self._initialized = True def set_transforms(self): if not self._initialized: self._init() self._transforms = [] ax = self.axes fig = self.figure if self._units in ('x', 'y'): if self._units == 'x': dx0 = ax.viewLim.width dx1 = ax.bbox.width else: dx0 = ax.viewLim.height dx1 = ax.bbox.height sc = dx1/dx0 else: if self._units == 'inches': sc = fig.dpi elif self._units == 'points': sc = fig.dpi / 72.0 elif self._units == 'width': sc = ax.bbox.width elif self._units == 'height': sc = ax.bbox.height elif self._units == 'dots': sc = 1.0 else: raise ValueError('unrecognized units: %s' % self._units) _affine = transforms.Affine2D for x, y, a in zip(self._widths, self._heights, self._angles): trans = _affine().scale(x * sc, y * sc).rotate(a) self._transforms.append(trans) def draw(self, renderer): if True: ###not self._transforms: self.set_transforms() return Collection.draw(self, renderer) def get_paths(self): return self._paths class PatchCollection(Collection): """ A generic collection of patches. This makes it easier to assign a color map to a heterogeneous collection of patches. This also may improve plotting speed, since PatchCollection will draw faster than a large number of patches. """ def __init__(self, patches, match_original=False, **kwargs): """ *patches* a sequence of Patch objects. This list may include a heterogeneous assortment of different patch types. *match_original* If True, use the colors and linewidths of the original patches. If False, new colors may be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths, norm or cmap. If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (ie a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ if match_original: def determine_facecolor(patch): if patch.fill: return patch.get_facecolor() return [0, 0, 0, 0] facecolors = [determine_facecolor(p) for p in patches] edgecolors = [p.get_edgecolor() for p in patches] linewidths = [p.get_linewidths() for p in patches] antialiaseds = [p.get_antialiased() for p in patches] Collection.__init__( self, edgecolors=edgecolors, facecolors=facecolors, linewidths=linewidths, linestyles='solid', antialiaseds = antialiaseds) else: Collection.__init__(self, **kwargs) paths = [p.get_transform().transform_path(p.get_path()) for p in patches] self._paths = paths def get_paths(self): return self._paths artist.kwdocd['Collection'] = patchstr = artist.kwdoc(Collection) for k in ('QuadMesh', 'PolyCollection', 'BrokenBarHCollection', 'RegularPolyCollection', 'StarPolygonCollection', 'PatchCollection', 'CircleCollection'): artist.kwdocd[k] = patchstr artist.kwdocd['LineCollection'] = artist.kwdoc(LineCollection)
agpl-3.0
jakevdp/mpld3
doc/sphinxext/plot_generator.py
2
10649
import sys import os import glob import token import tokenize import shutil import json import matplotlib matplotlib.use('Agg') # don't display plots import mpld3 from matplotlib import image from matplotlib.figure import Figure class disable_mpld3(object): """Context manager to temporarily disable mpld3.show() command""" def __enter__(self): self.show = mpld3.show mpld3.show = lambda *args, **kwargs: None return self def __exit__(self, type, value, traceback): mpld3.show = self.show RST_TEMPLATE = """ .. _{sphinx_tag}: {docstring} .. raw:: html {img_html} **Python source code:** :download:`[download source: {fname}]<{fname}>` .. literalinclude:: {fname} :lines: {end_line}- """ INDEX_TEMPLATE = """ .. raw:: html <style type="text/css"> .figure {{ float: left; margin: 10px; width: 180px; height: 200px; }} .figure img {{ display: inline; width: 170px; height: 170px; opacity:0.4; filter:alpha(opacity=40); /* For IE8 and earlier */ }} .figure img:hover {{ opacity:1.0; filter:alpha(opacity=100); /* For IE8 and earlier */ }} .figure .caption {{ width: 180px; text-align: center !important; }} </style> .. _{sphinx_tag}: Example Gallery =============== {toctree} {contents} .. raw:: html <div style="clear: both"></div> """ BANNER_JS_TEMPLATE = """ var banner_data = {banner_data}; banner_data.forEach(function(d, i) {{ d.i = i; }}); var height = 150, width = 900, imageHeight = 150, imageWidth = 150, zoomfactor = 0.1; var banner = d3.select(".example-banner"); banner.style("height", height + "px") .style("width", width + "px") .style("margin-left", "auto") .style("margin-right", "auto"); var svg = banner.append("svg") .attr("width", width + "px") .attr("height", height + "px"); var anchor = svg.append("g") .attr("class", "example-anchor") .selectAll("a") .data(banner_data.slice(0, 7)); anchor.exit().remove(); var anchor_elements = anchor.enter().append("a") .attr("xlink:href", function(d) {{ return d.url; }}) .attr("xlink:title", function(d) {{ return d.title; }}); anchor_elements.append("svg:image") .attr("width", (1 - zoomfactor) * imageWidth) .attr("height", (1 - zoomfactor) * imageHeight) .attr("xlink:href", function(d){{ return d.thumb; }}) .attr("xroot", function(d){{return d3.round(imageWidth * (d.i - 0.5));}}) .attr("x", function(d){{return d3.round(imageWidth * (d.i - 0.5));}}) .attr("y", d3.round(0.5 * zoomfactor * imageHeight)) .attr("i", function(d){{return d.i;}}) .on("mouseover", function() {{ var img = d3.select(this); img.transition() .attr("width", imageWidth) .attr("height", height) .attr("x", img.attr("xroot") - d3.round(0.5 * zoomfactor * imageWidth)) .attr("y", 0); }}) .on("mouseout", function() {{ var img = d3.select(this); img.transition() .attr("width", (1 - zoomfactor) * imageWidth) .attr("height", (1 - zoomfactor) * height) .attr("x", img.attr("xroot")) .attr("y", d3.round(0.5 * zoomfactor * imageHeight)); }}); """ def create_thumbnail(infile, thumbfile, width=300, height=300, cx=0.5, cy=0.6, border=4): # this doesn't really matter, it will cancel in the end, but we # need it for the mpl API dpi = 100 baseout, extout = os.path.splitext(thumbfile) im = image.imread(infile) rows, cols = im.shape[:2] x0 = int(cx * cols - 0.5 * width) y0 = int(cy * rows - 0.5 * height) thumb = im[y0: y0 + height, x0: x0 + width] thumb[:border, :, :3] = thumb[-border:, :, :3] = 0 thumb[:, :border, :3] = thumb[:, -border:, :3] = 0 extension = extout.lower() if extension == '.png': from matplotlib.backends.backend_agg \ import FigureCanvasAgg as FigureCanvas elif extension == '.pdf': from matplotlib.backends.backend_pdf \ import FigureCanvasPDF as FigureCanvas elif extension == '.svg': from matplotlib.backends.backend_svg \ import FigureCanvasSVG as FigureCanvas else: raise ValueError("Can only handle extensions 'png', 'svg' or 'pdf'") fig = Figure(figsize=(float(width) / dpi, float(height) / dpi), dpi=dpi) canvas = FigureCanvas(fig) ax = fig.add_axes([0, 0, 1, 1], aspect='auto', frameon=False, xticks=[], yticks=[]) ax.imshow(thumb, aspect='auto', resample=True, interpolation='bilinear') fig.savefig(thumbfile, dpi=dpi) return fig def indent(s, N=4): """indent a string""" return s.replace('\n', '\n' + N * ' ') class ExampleGenerator(object): """Tools for generating an example page from a file""" def __init__(self, filename, target_dir): self.filename = filename self.target_dir = target_dir self.extract_docstring() self.exec_file() @property def dirname(self): return os.path.split(self.filename)[0] @property def fname(self): return os.path.split(self.filename)[1] @property def modulename(self): return os.path.splitext(self.fname)[0] @property def pyfilename(self): return self.modulename + '.py' @property def rstfilename(self): return self.modulename + ".rst" @property def htmlfilename(self): return self.modulename + '.html' @property def pngfilename(self): return self.modulename + '.png' @property def thumbfilename(self): # TODO: don't hard-code image path return "_images/" + self.pngfilename @property def sphinxtag(self): return self.modulename @property def pagetitle(self): return self.docstring.strip().split('\n')[0].strip() def extract_docstring(self): """ Extract a module-level docstring """ lines = open(self.filename).readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' tokens = tokenize.generate_tokens(lines.pop) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, # extract the first one: paragraphs = '\n'.join(line.rstrip() for line in docstring.split('\n') ).split('\n\n') if len(paragraphs) > 0: first_par = paragraphs[0] break self.docstring = docstring self.short_desc = first_par self.end_line = erow + 1 + start_row def exec_file(self): print("running {0}".format(self.filename)) with disable_mpld3(): import matplotlib.pyplot as plt plt.close('all') my_globals = {'pl': plt, 'plt': plt} exec(compile(open(self.filename, "rb").read(), self.filename, 'exec'), my_globals) fig = plt.gcf() self.html = mpld3.fig_to_html(fig) thumbfile = os.path.join(self.target_dir, self.pngfilename) fig.savefig(thumbfile) create_thumbnail(thumbfile, thumbfile) def toctree_entry(self): return " ./%s\n\n" % os.path.splitext(self.htmlfilename)[0] def contents_entry(self): return (".. figure:: ./{0}\n" " :target: ./{1}\n" " :align: center\n\n" " :ref:`{2}`\n\n".format(self.pngfilename, self.htmlfilename, self.sphinxtag)) def main(app): static_dir = os.path.join(app.builder.srcdir, '_static') target_dir = os.path.join(app.builder.srcdir, 'examples') source_dir = os.path.abspath(os.path.join(app.builder.srcdir, '..', 'examples')) if not os.path.exists(static_dir): os.makedirs(static_dir) if not os.path.exists(target_dir): os.makedirs(target_dir) banner_data = [] toctree = ("\n\n" ".. toctree::\n" " :hidden:\n\n") contents = "\n\n" # Write individual example files for filename in glob.glob(os.path.join(source_dir, "*.py")): ex = ExampleGenerator(filename, target_dir) banner_data.append({"title": ex.pagetitle, "url": os.path.join('examples', ex.htmlfilename), "thumb": os.path.join(ex.thumbfilename)}) shutil.copyfile(filename, os.path.join(target_dir, ex.pyfilename)) output = RST_TEMPLATE.format(sphinx_tag=ex.sphinxtag, docstring=ex.docstring, end_line=ex.end_line, fname=ex.pyfilename, img_html=indent(ex.html, 4)) with open(os.path.join(target_dir, ex.rstfilename), 'w') as f: f.write(output) toctree += ex.toctree_entry() contents += ex.contents_entry() if len(banner_data) < 10: banner_data = (4 * banner_data)[:10] # write index file index_file = os.path.join(target_dir, 'index.rst') with open(index_file, 'w') as index: index.write(INDEX_TEMPLATE.format(sphinx_tag="example-gallery", toctree=toctree, contents=contents)) # write javascript include for front page js_file = os.path.join(static_dir, 'banner_data.js') with open(js_file, 'w') as js: js.write(BANNER_JS_TEMPLATE.format( banner_data=json.dumps(banner_data))) def setup(app): app.connect('builder-inited', main)
bsd-3-clause
teonlamont/mne-python
mne/preprocessing/ica.py
2
105797
# -*- coding: utf-8 -*- # # Authors: Denis A. Engemann <[email protected]> # Alexandre Gramfort <[email protected]> # Juergen Dammers <[email protected]> # # License: BSD (3-clause) from inspect import isfunction from collections import namedtuple from copy import deepcopy from numbers import Integral from time import time import os import json import numpy as np from scipy import linalg from .ecg import (qrs_detector, _get_ecg_channel_index, _make_ecg, create_ecg_epochs) from .eog import _find_eog_events, _get_eog_channel_index from .infomax_ import infomax from ..cov import compute_whitener from .. import Covariance, Evoked from ..io.pick import (pick_types, pick_channels, pick_info, _pick_data_channels, _DATA_CH_TYPES_SPLIT) from ..io.write import (write_double_matrix, write_string, write_name_list, write_int, start_block, end_block) from ..io.tree import dir_tree_find from ..io.open import fiff_open from ..io.tag import read_tag from ..io.meas_info import write_meas_info, read_meas_info from ..io.constants import Bunch, FIFF from ..io.base import BaseRaw from ..epochs import BaseEpochs from ..viz import (plot_ica_components, plot_ica_scores, plot_ica_sources, plot_ica_overlay) from ..viz.ica import plot_ica_properties from ..viz.topomap import _plot_corrmap from ..channels.channels import _contains_ch_type, ContainsMixin from ..io.write import start_file, end_file, write_id from ..utils import (check_version, logger, check_fname, verbose, _reject_data_segments, check_random_state, compute_corr, _get_inst_data, _ensure_int, copy_function_doc_to_method_doc, _pl, warn, _check_preload, _check_compensation_grade) from ..fixes import _get_args from ..filter import filter_data from .bads import find_outliers from .ctps_ import ctps from ..externals.six import string_types, text_type from ..io.pick import channel_type __all__ = ('ICA', 'ica_find_ecg_events', 'ica_find_eog_events', 'get_score_funcs', 'read_ica', 'run_ica') def _make_xy_sfunc(func, ndim_output=False): """Aux function.""" if ndim_output: def sfunc(x, y): return np.array([func(a, y.ravel()) for a in x])[:, 0] else: def sfunc(x, y): return np.array([func(a, y.ravel()) for a in x]) sfunc.__name__ = '.'.join(['score_func', func.__module__, func.__name__]) sfunc.__doc__ = func.__doc__ return sfunc # makes score funcs attr accessible for users def get_score_funcs(): """Get the score functions.""" from scipy import stats from scipy.spatial import distance score_funcs = Bunch() xy_arg_dist_funcs = [(n, f) for n, f in vars(distance).items() if isfunction(f) and not n.startswith('_')] xy_arg_stats_funcs = [(n, f) for n, f in vars(stats).items() if isfunction(f) and not n.startswith('_')] score_funcs.update(dict((n, _make_xy_sfunc(f)) for n, f in xy_arg_dist_funcs if _get_args(f) == ['u', 'v'])) score_funcs.update(dict((n, _make_xy_sfunc(f, ndim_output=True)) for n, f in xy_arg_stats_funcs if _get_args(f) == ['x', 'y'])) return score_funcs def _check_for_unsupported_ica_channels(picks, info): """Check for channels in picks that are not considered valid channels. Accepted channels are the data channels ('seeg','ecog','eeg', 'hbo', 'hbr', 'mag', and 'grad') and 'eog'. This prevents the program from crashing without feedback when a bad channel is provided to ICA whitening. """ if picks is None: return elif len(picks) == 0: raise ValueError('No channels provided to ICA') types = _DATA_CH_TYPES_SPLIT + ['eog'] chs = list(set([channel_type(info, j) for j in picks])) check = all([ch in types for ch in chs]) if not check: raise ValueError('Invalid channel type(s) passed for ICA.\n' 'Only the following channels are supported {0}\n' 'Following types were passed {1}\n' .format(types, chs)) class ICA(ContainsMixin): u"""M/EEG signal decomposition using Independent Component Analysis (ICA). This object can be used to estimate ICA components and then remove some from Raw or Epochs for data exploration or artifact correction. Caveat! If supplying a noise covariance, keep track of the projections available in the cov or in the raw object. For example, if you are interested in EOG or ECG artifacts, EOG and ECG projections should be temporally removed before fitting ICA, for example:: >> projs, raw.info['projs'] = raw.info['projs'], [] >> ica.fit(raw) >> raw.info['projs'] = projs .. note:: Methods currently implemented are FastICA (default), Infomax, Extended Infomax, and Picard. Infomax can be quite sensitive to differences in floating point arithmetic. Extended Infomax seems to be more stable in this respect enhancing reproducibility and stability of results. .. warning:: ICA is sensitive to low-frequency drifts and therefore requires the data to be high-pass filtered prior to fitting. Typically, a cutoff frequency of 1 Hz is recommended. Parameters ---------- n_components : int | float | None The number of components used for ICA decomposition. If int, it must be smaller than `max_pca_components`. If None, all PCA components will be used. If float between 0 and 1, components will be selected by the cumulative percentage of explained variance. max_pca_components : int | None The number of components used for PCA decomposition. If None, no dimensionality reduction will be applied and `max_pca_components` will equal the number of channels supplied for decomposing data. n_pca_components : int | float The number of PCA components used after ICA recomposition. The ensuing attribute `n_components_` allows to balance noise reduction against potential loss of information due to dimensionality reduction. If greater than `n_components_`, the next `n_pca_components` minus `n_components_` PCA components will be added before restoring the sensor space data. If float, the number of components selected matches the number of components with a cumulative explained variance below `n_pca_components`. noise_cov : None | instance of mne.cov.Covariance Noise covariance used for pre-whitening. If None, channels are scaled to unit variance prior to whitening. random_state : None | int | instance of np.random.RandomState Random state to initialize ICA estimation for reproducible results. method : {'fastica', 'infomax', 'extended-infomax', 'picard'} The ICA method to use. Defaults to 'fastica'. For reference, see [1]_, [2]_, [3]_ and [4]_. fit_params : dict | None Additional parameters passed to the ICA estimator as specified by `method`. max_iter : int Maximum number of iterations during fit. verbose : bool | str | int | None If not None, override default verbosity level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`). Attributes ---------- current_fit : str Flag informing about which data type (raw or epochs) was used for the fit. ch_names : list-like Channel names resulting from initial picking. n_components_ : int If fit, the actual number of components used for ICA decomposition. pre_whitener_ : ndarray, shape (n_channels, 1) If fit, array used to pre-whiten the data prior to PCA. pca_components_ : ndarray, shape (`n_components_`, n_channels) If fit, the PCA components. pca_mean_ : ndarray, shape (n_channels,) If fit, the mean vector used to center the data before doing the PCA. pca_explained_variance_ : ndarray, shape (`n_components_`,) If fit, the variance explained by each PCA component mixing_matrix_ : ndarray, shape (`n_components_`, `n_components_`) If fit, the mixing matrix to restore observed data. unmixing_matrix_ : ndarray, shape (`n_components_`, `n_components_`) If fit, the matrix to unmix observed data. exclude : list List of sources indices to exclude, i.e. artifact components identified throughout the ICA solution. To scrap all marked components, you can set this attribute to an empty list. info : None | instance of Info The measurement info copied from the object fitted. n_samples_ : int The number of samples used on fit. labels_ : dict A dictionary of independent component indices, grouped by types of independent components. This attribute is set by some of the artifact detection functions. Notes ----- Reducing the tolerance speeds up estimation at the cost of consistency of the obtained results. It is difficult to directly compare tolerance levels between Infomax and Picard, but for Picard and FastICA a good rule of thumb is ``tol_fastica = tol_picard ** 2``. References ---------- .. [1] Hyvärinen, A., 1999. Fast and robust fixed-point algorithms for independent component analysis. IEEE transactions on Neural Networks, 10(3), pp.626-634. .. [2] Bell, A.J., Sejnowski, T.J., 1995. An information-maximization approach to blind separation and blind deconvolution. Neural computation, 7(6), pp.1129-1159. .. [3] Lee, T.W., Girolami, M., Sejnowski, T.J., 1999. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural computation, 11(2), pp.417-441. .. [4] Ablin, P., Cardoso, J.F., Gramfort, A., 2017. Faster Independent Component Analysis by preconditioning with Hessian approximations. arXiv:1706.08171 """ @verbose def __init__(self, n_components=None, max_pca_components=None, n_pca_components=None, noise_cov=None, random_state=None, method='fastica', fit_params=None, max_iter=200, verbose=None): # noqa: D102 methods = ('fastica', 'infomax', 'extended-infomax', 'picard') if method not in methods: raise ValueError('`method` must be "%s". You passed: "%s"' % ('" or "'.join(methods), method)) if not check_version('sklearn', '0.15'): raise RuntimeError('the scikit-learn package (version >= 0.15) ' 'is required for ICA') self.noise_cov = noise_cov if (n_components is not None and max_pca_components is not None and n_components > max_pca_components): raise ValueError('n_components must be smaller than ' 'max_pca_components') if isinstance(n_components, float) \ and not 0 < n_components <= 1: raise ValueError('Selecting ICA components by explained variance ' 'needs values between 0.0 and 1.0 ') self.current_fit = 'unfitted' self.verbose = verbose self.n_components = n_components self.max_pca_components = max_pca_components self.n_pca_components = n_pca_components self.ch_names = None self.random_state = random_state if fit_params is None: fit_params = {} fit_params = deepcopy(fit_params) # avoid side effects if "extended" in fit_params: raise ValueError("'extended' parameter provided. You should " "rather use method='extended-infomax'.") if method == 'fastica': update = {'algorithm': 'parallel', 'fun': 'logcosh', 'fun_args': None} fit_params.update(dict((k, v) for k, v in update.items() if k not in fit_params)) elif method == 'infomax': fit_params.update({'extended': False}) elif method == 'extended-infomax': fit_params.update({'extended': True}) elif method == 'picard': update = {'ortho': True, 'fun': 'tanh', 'tol': 1e-5} fit_params.update(dict((k, v) for k, v in update.items() if k not in fit_params)) if 'max_iter' not in fit_params: fit_params['max_iter'] = max_iter self.max_iter = max_iter self.fit_params = fit_params self.exclude = [] self.info = None self.method = method self.labels_ = dict() def __repr__(self): """ICA fit information.""" if self.current_fit == 'unfitted': s = 'no' elif self.current_fit == 'raw': s = 'raw data' else: s = 'epochs' s += ' decomposition, ' s += 'fit (%s): %s samples, ' % (self.method, str(getattr(self, 'n_samples_', ''))) s += ('%s components' % str(self.n_components_) if hasattr(self, 'n_components_') else 'no dimension reduction') if self.info is not None: ch_fit = ['"%s"' % c for c in _DATA_CH_TYPES_SPLIT if c in self] s += ', channels used: {0}'.format('; '.join(ch_fit)) if self.exclude: s += ', %i sources marked for exclusion' % len(self.exclude) return '<ICA | %s>' % s @verbose def fit(self, inst, picks=None, start=None, stop=None, decim=None, reject=None, flat=None, tstep=2.0, reject_by_annotation=True, verbose=None): """Run the ICA decomposition on raw data. Caveat! If supplying a noise covariance keep track of the projections available in the cov, the raw or the epochs object. For example, if you are interested in EOG or ECG artifacts, EOG and ECG projections should be temporally removed before fitting the ICA. Parameters ---------- inst : instance of Raw, Epochs or Evoked Raw measurements to be decomposed. picks : array-like of int Channels to be included. This selection remains throughout the initialized ICA solution. If None only good data channels are used. start : int | float | None First sample to include. If float, data will be interpreted as time in seconds. If None, data will be used from the first sample. stop : int | float | None Last sample to not include. If float, data will be interpreted as time in seconds. If None, data will be used to the last sample. decim : int | None Increment for selecting each nth time slice. If None, all samples within ``start`` and ``stop`` are used. reject : dict | None Rejection parameters based on peak-to-peak amplitude. Valid keys are 'grad', 'mag', 'eeg', 'seeg', 'ecog', 'eog', 'ecg', 'hbo', 'hbr'. If reject is None then no rejection is done. Example:: reject = dict(grad=4000e-13, # T / m (gradiometers) mag=4e-12, # T (magnetometers) eeg=40e-6, # V (EEG channels) eog=250e-6 # V (EOG channels) ) It only applies if `inst` is of type Raw. flat : dict | None Rejection parameters based on flatness of signal. Valid keys are 'grad', 'mag', 'eeg', 'seeg', 'ecog', 'eog', 'ecg', 'hbo', 'hbr'. Values are floats that set the minimum acceptable peak-to-peak amplitude. If flat is None then no rejection is done. It only applies if `inst` is of type Raw. tstep : float Length of data chunks for artifact rejection in seconds. It only applies if `inst` is of type Raw. reject_by_annotation : bool Whether to omit bad segments from the data before fitting. If True, annotated segments with a description that starts with 'bad' are omitted. Has no effect if ``inst`` is an Epochs or Evoked object. Defaults to True. .. versionadded:: 0.14.0 verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Defaults to self.verbose. Returns ------- self : instance of ICA Returns the modified instance. """ if isinstance(inst, (BaseRaw, BaseEpochs)): _check_for_unsupported_ica_channels(picks, inst.info) t_start = time() if isinstance(inst, BaseRaw): self._fit_raw(inst, picks, start, stop, decim, reject, flat, tstep, reject_by_annotation, verbose) elif isinstance(inst, BaseEpochs): self._fit_epochs(inst, picks, decim, verbose) else: raise ValueError('Data input must be of Raw or Epochs type') # sort ICA components by explained variance var = _ica_explained_variance(self, inst) var_ord = var.argsort()[::-1] _sort_components(self, var_ord, copy=False) t_stop = time() logger.info("Fitting ICA took {:.1f}s.".format(t_stop - t_start)) return self def _reset(self): """Aux method.""" del self.pre_whitener_ del self.unmixing_matrix_ del self.mixing_matrix_ del self.n_components_ del self.n_samples_ del self.pca_components_ del self.pca_explained_variance_ del self.pca_mean_ if hasattr(self, 'drop_inds_'): del self.drop_inds_ def _fit_raw(self, raw, picks, start, stop, decim, reject, flat, tstep, reject_by_annotation, verbose): """Aux method.""" if self.current_fit != 'unfitted': self._reset() if picks is None: # just use good data channels picks = _pick_data_channels(raw.info, exclude='bads', with_ref_meg=False) logger.info('Fitting ICA to data using %i channels ' '(please be patient, this may take a while)' % len(picks)) if self.max_pca_components is None: self.max_pca_components = len(picks) logger.info('Inferring max_pca_components from picks') info = raw.info.copy() if info['comps']: info['comps'] = [] self.info = pick_info(info, picks) self.ch_names = self.info['ch_names'] start, stop = _check_start_stop(raw, start, stop) reject_by_annotation = 'omit' if reject_by_annotation else None # this will be a copy data = raw.get_data(picks, start, stop, reject_by_annotation) # this will be a view if decim is not None: data = data[:, ::decim] # this will make a copy if (reject is not None) or (flat is not None): data, self.drop_inds_ = _reject_data_segments(data, reject, flat, decim, self.info, tstep) self.n_samples_ = data.shape[1] # this may operate inplace or make a copy data, self.pre_whitener_ = self._pre_whiten(data, info, picks) self._fit(data, self.max_pca_components, 'raw') return self def _fit_epochs(self, epochs, picks, decim, verbose): """Aux method.""" if self.current_fit != 'unfitted': self._reset() if picks is None: picks = _pick_data_channels(epochs.info, exclude='bads', with_ref_meg=False) logger.info('Fitting ICA to data using %i channels ' '(please be patient, this may take a while)' % len(picks)) # filter out all the channels the raw wouldn't have initialized info = epochs.info.copy() if info['comps']: info['comps'] = [] self.info = pick_info(info, picks) self.ch_names = self.info['ch_names'] if self.max_pca_components is None: self.max_pca_components = len(picks) logger.info('Inferring max_pca_components from picks') # this should be a copy (picks a list of int) data = epochs.get_data()[:, picks] # this will be a view if decim is not None: data = data[:, :, ::decim] self.n_samples_ = np.prod(data[:, 0, :].shape) # This will make at least one copy (one from hstack, maybe one # more from _pre_whiten) data, self.pre_whitener_ = \ self._pre_whiten(np.hstack(data), info, picks) self._fit(data, self.max_pca_components, 'epochs') return self def _pre_whiten(self, data, info, picks): """Aux function.""" has_pre_whitener = hasattr(self, 'pre_whitener_') if not has_pre_whitener and self.noise_cov is None: # use standardization as whitener # Scale (z-score) the data by channel type info = pick_info(info, picks) pre_whitener = np.empty([len(data), 1]) for ch_type in _DATA_CH_TYPES_SPLIT + ['eog']: if _contains_ch_type(info, ch_type): if ch_type == 'seeg': this_picks = pick_types(info, meg=False, seeg=True) elif ch_type == 'ecog': this_picks = pick_types(info, meg=False, ecog=True) elif ch_type == 'eeg': this_picks = pick_types(info, meg=False, eeg=True) elif ch_type in ('mag', 'grad'): this_picks = pick_types(info, meg=ch_type) elif ch_type == 'eog': this_picks = pick_types(info, meg=False, eog=True) elif ch_type in ('hbo', 'hbr'): this_picks = pick_types(info, meg=False, fnirs=ch_type) else: raise RuntimeError('Should not be reached.' 'Unsupported channel {0}' .format(ch_type)) pre_whitener[this_picks] = np.std(data[this_picks]) data /= pre_whitener elif not has_pre_whitener and self.noise_cov is not None: pre_whitener, _ = compute_whitener(self.noise_cov, info, picks) assert data.shape[0] == pre_whitener.shape[1] data = np.dot(pre_whitener, data) elif has_pre_whitener and self.noise_cov is None: data /= self.pre_whitener_ pre_whitener = self.pre_whitener_ else: data = np.dot(self.pre_whitener_, data) pre_whitener = self.pre_whitener_ return data, pre_whitener def _fit(self, data, max_pca_components, fit_type): """Aux function.""" random_state = check_random_state(self.random_state) from sklearn.decomposition import PCA if not check_version('sklearn', '0.18'): pca = PCA(n_components=max_pca_components, whiten=True, copy=True) else: pca = PCA(n_components=max_pca_components, whiten=True, copy=True, svd_solver='full') data = pca.fit_transform(data.T) if isinstance(self.n_components, float): n_components_ = np.sum(pca.explained_variance_ratio_.cumsum() <= self.n_components) if n_components_ < 1: raise RuntimeError('One PCA component captures most of the ' 'explained variance, your threshold resu' 'lts in 0 components. You should select ' 'a higher value.') logger.info('Selection by explained variance: %i components' % n_components_) sel = slice(n_components_) else: if self.n_components is not None: # normal n case sel = slice(self.n_components) logger.info('Selection by number: %i components' % self.n_components) else: # None case logger.info('Using all PCA components: %i' % len(pca.components_)) sel = slice(len(pca.components_)) # the things to store for PCA self.pca_mean_ = pca.mean_ self.pca_components_ = pca.components_ self.pca_explained_variance_ = exp_var = pca.explained_variance_ if not check_version('sklearn', '0.16'): # sklearn < 0.16 did not apply whitening to the components, so we # need to do this manually self.pca_components_ *= np.sqrt(exp_var[:, None]) del pca # update number of components self.n_components_ = sel.stop self._update_ica_names() if self.n_pca_components is not None: if self.n_pca_components > len(self.pca_components_): self.n_pca_components = len(self.pca_components_) # take care of ICA if self.method == 'fastica': from sklearn.decomposition import FastICA ica = FastICA(whiten=False, random_state=random_state, **self.fit_params) ica.fit(data[:, sel]) self.unmixing_matrix_ = ica.components_ elif self.method in ('infomax', 'extended-infomax'): self.unmixing_matrix_ = infomax(data[:, sel], random_state=random_state, **self.fit_params) elif self.method == 'picard': from picard import picard _, W, _ = picard(data[:, sel].T, whiten=False, random_state=random_state, **self.fit_params) del _ self.unmixing_matrix_ = W self.unmixing_matrix_ /= np.sqrt(exp_var[sel])[None, :] # whitening self.mixing_matrix_ = linalg.pinv(self.unmixing_matrix_) self.current_fit = fit_type def _update_ica_names(self): """Update ICA names when n_components_ is set.""" self._ica_names = ['ICA%03d' % ii for ii in range(self.n_components_)] def _transform(self, data): """Compute sources from data (operates inplace).""" if self.pca_mean_ is not None: data -= self.pca_mean_[:, None] # Apply first PCA pca_data = np.dot(self.pca_components_[:self.n_components_], data) # Apply unmixing to low dimension PCA sources = np.dot(self.unmixing_matrix_, pca_data) return sources def _transform_raw(self, raw, start, stop, reject_by_annotation=False): """Transform raw data.""" if not hasattr(self, 'mixing_matrix_'): raise RuntimeError('No fit available. Please fit ICA.') start, stop = _check_start_stop(raw, start, stop) picks = pick_types(raw.info, include=self.ch_names, exclude='bads', meg=False, ref_meg=False) if len(picks) != len(self.ch_names): raise RuntimeError('Raw doesn\'t match fitted data: %i channels ' 'fitted but %i channels supplied. \nPlease ' 'provide Raw compatible with ' 'ica.ch_names' % (len(self.ch_names), len(picks))) if reject_by_annotation: data = raw.get_data(picks, start, stop, 'omit') else: data = raw[picks, start:stop][0] # remove comp matrices info = raw.info.copy() if info['comps']: info['comps'] = [] data, _ = self._pre_whiten(data, info, picks) return self._transform(data) def _transform_epochs(self, epochs, concatenate): """Aux method.""" if not hasattr(self, 'mixing_matrix_'): raise RuntimeError('No fit available. Please fit ICA.') picks = pick_types(epochs.info, include=self.ch_names, exclude='bads', meg=False, ref_meg=False) # special case where epochs come picked but fit was 'unpicked'. if len(picks) != len(self.ch_names): raise RuntimeError('Epochs don\'t match fitted data: %i channels ' 'fitted but %i channels supplied. \nPlease ' 'provide Epochs compatible with ' 'ica.ch_names' % (len(self.ch_names), len(picks))) # remove comp matrices info = epochs.info.copy() if info['comps']: info['comps'] = [] data = np.hstack(epochs.get_data()[:, picks]) data, _ = self._pre_whiten(data, info, picks) sources = self._transform(data) if not concatenate: # Put the data back in 3D sources = np.array(np.split(sources, len(epochs.events), 1)) return sources def _transform_evoked(self, evoked): """Aux method.""" if not hasattr(self, 'mixing_matrix_'): raise RuntimeError('No fit available. Please fit ICA.') picks = pick_types(evoked.info, include=self.ch_names, exclude='bads', meg=False, ref_meg=False) if len(picks) != len(self.ch_names): raise RuntimeError('Evoked doesn\'t match fitted data: %i channels' ' fitted but %i channels supplied. \nPlease ' 'provide Evoked compatible with ' 'ica.ch_names' % (len(self.ch_names), len(picks))) # remove comp matrices info = evoked.info.copy() if info['comps']: info['comps'] = [] data, _ = self._pre_whiten(evoked.data[picks], info, picks) sources = self._transform(data) return sources def get_components(self): """Get ICA topomap for components as numpy arrays. Returns ------- components : array, shape (n_channels, n_components) The ICA components (maps). """ return np.dot(self.mixing_matrix_[:, :self.n_components_].T, self.pca_components_[:self.n_components_]).T def get_sources(self, inst, add_channels=None, start=None, stop=None): """Estimate sources given the unmixing matrix. This method will return the sources in the container format passed. Typical usecases: 1. pass Raw object to use `raw.plot` for ICA sources 2. pass Epochs object to compute trial-based statistics in ICA space 3. pass Evoked object to investigate time-locking in ICA space Parameters ---------- inst : instance of Raw, Epochs or Evoked Object to compute sources from and to represent sources in. add_channels : None | list of str Additional channels to be added. Useful to e.g. compare sources with some reference. Defaults to None start : int | float | None First sample to include. If float, data will be interpreted as time in seconds. If None, the entire data will be used. stop : int | float | None Last sample to not include. If float, data will be interpreted as time in seconds. If None, the entire data will be used. Returns ------- sources : instance of Raw, Epochs or Evoked The ICA sources time series. """ if isinstance(inst, BaseRaw): _check_compensation_grade(self, inst, 'ICA', 'Raw', ch_names=self.ch_names) sources = self._sources_as_raw(inst, add_channels, start, stop) elif isinstance(inst, BaseEpochs): _check_compensation_grade(self, inst, 'ICA', 'Epochs', ch_names=self.ch_names) sources = self._sources_as_epochs(inst, add_channels, False) elif isinstance(inst, Evoked): _check_compensation_grade(self, inst, 'ICA', 'Evoked', ch_names=self.ch_names) sources = self._sources_as_evoked(inst, add_channels) else: raise ValueError('Data input must be of Raw, Epochs or Evoked ' 'type') return sources def _sources_as_raw(self, raw, add_channels, start, stop): """Aux method.""" # merge copied instance and picked data with sources sources = self._transform_raw(raw, start=start, stop=stop) if raw.preload: # get data and temporarily delete data = raw._data del raw._data out = raw.copy() # copy and reappend if raw.preload: raw._data = data # populate copied raw. start, stop = _check_start_stop(raw, start, stop) if add_channels is not None: raw_picked = raw.copy().pick_channels(add_channels) data_, times_ = raw_picked[:, start:stop] data_ = np.r_[sources, data_] else: data_ = sources _, times_ = raw[0, start:stop] out._data = data_ out._times = times_ out._filenames = [None] out.preload = True # update first and last samples out._first_samps = np.array([raw.first_samp + (start if start else 0)]) out._last_samps = np.array([out.first_samp + stop if stop else raw.last_samp]) out._projector = None self._export_info(out.info, raw, add_channels) out._update_times() return out def _sources_as_epochs(self, epochs, add_channels, concatenate): """Aux method.""" out = epochs.copy() sources = self._transform_epochs(epochs, concatenate) if add_channels is not None: picks = [epochs.ch_names.index(k) for k in add_channels] else: picks = [] out._data = np.concatenate([sources, epochs.get_data()[:, picks]], axis=1) if len(picks) > 0 else sources self._export_info(out.info, epochs, add_channels) out.preload = True out._raw = None out._projector = None return out def _sources_as_evoked(self, evoked, add_channels): """Aux method.""" if add_channels is not None: picks = [evoked.ch_names.index(k) for k in add_channels] else: picks = [] sources = self._transform_evoked(evoked) if len(picks) > 1: data = np.r_[sources, evoked.data[picks]] else: data = sources out = evoked.copy() out.data = data self._export_info(out.info, evoked, add_channels) return out def _export_info(self, info, container, add_channels): """Aux method.""" # set channel names and info ch_names = [] ch_info = info['chs'] = [] for ii, name in enumerate(self._ica_names): ch_names.append(name) ch_info.append(dict( ch_name=name, cal=1, logno=ii + 1, coil_type=FIFF.FIFFV_COIL_NONE, kind=FIFF.FIFFV_MISC_CH, coord_Frame=FIFF.FIFFV_COORD_UNKNOWN, unit=FIFF.FIFF_UNIT_NONE, loc=np.array([0., 0., 0., 1.] * 3, dtype='f4'), range=1.0, scanno=ii + 1, unit_mul=0)) if add_channels is not None: # re-append additionally picked ch_names ch_names += add_channels # re-append additionally picked ch_info ch_info += [k for k in container.info['chs'] if k['ch_name'] in add_channels] info['bads'] = [ch_names[k] for k in self.exclude] info['projs'] = [] # make sure projections are removed. info._update_redundant() info._check_consistency() @verbose def score_sources(self, inst, target=None, score_func='pearsonr', start=None, stop=None, l_freq=None, h_freq=None, reject_by_annotation=True, verbose=None): """Assign score to components based on statistic or metric. Parameters ---------- inst : instance of Raw, Epochs or Evoked The object to reconstruct the sources from. target : array-like | ch_name | None Signal to which the sources shall be compared. It has to be of the same shape as the sources. If some string is supplied, a routine will try to find a matching channel. If None, a score function expecting only one input-array argument must be used, for instance, scipy.stats.skew (default). score_func : callable | str label Callable taking as arguments either two input arrays (e.g. Pearson correlation) or one input array (e. g. skewness) and returns a float. For convenience the most common score_funcs are available via string labels: Currently, all distance metrics from scipy.spatial and All functions from scipy.stats taking compatible input arguments are supported. These function have been modified to support iteration over the rows of a 2D array. start : int | float | None First sample to include. If float, data will be interpreted as time in seconds. If None, data will be used from the first sample. stop : int | float | None Last sample to not include. If float, data will be interpreted as time in seconds. If None, data will be used to the last sample. l_freq : float Low pass frequency. h_freq : float High pass frequency. reject_by_annotation : bool If True, data annotated as bad will be omitted. Defaults to True. .. versionadded:: 0.14.0 verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Defaults to self.verbose. Returns ------- scores : ndarray scores for each source as returned from score_func """ if isinstance(inst, BaseRaw): _check_compensation_grade(self, inst, 'ICA', 'Raw', ch_names=self.ch_names) sources = self._transform_raw(inst, start, stop, reject_by_annotation) elif isinstance(inst, BaseEpochs): _check_compensation_grade(self, inst, 'ICA', 'Epochs', ch_names=self.ch_names) sources = self._transform_epochs(inst, concatenate=True) elif isinstance(inst, Evoked): _check_compensation_grade(self, inst, 'ICA', 'Evoked', ch_names=self.ch_names) sources = self._transform_evoked(inst) else: raise ValueError('Data input must be of Raw, Epochs or Evoked ' 'type') if target is not None: # we can have univariate metrics without target target = self._check_target(target, inst, start, stop, reject_by_annotation) if sources.shape[-1] != target.shape[-1]: raise ValueError('Sources and target do not have the same' 'number of time slices.') # auto target selection if verbose is None: verbose = self.verbose if isinstance(inst, BaseRaw): sources, target = _band_pass_filter(self, sources, target, l_freq, h_freq, verbose) scores = _find_sources(sources, target, score_func) return scores def _check_target(self, target, inst, start, stop, reject_by_annotation=False): """Aux Method.""" if isinstance(inst, BaseRaw): reject_by_annotation = 'omit' if reject_by_annotation else None start, stop = _check_start_stop(inst, start, stop) if hasattr(target, 'ndim'): if target.ndim < 2: target = target.reshape(1, target.shape[-1]) if isinstance(target, string_types): pick = _get_target_ch(inst, target) target = inst.get_data(pick, start, stop, reject_by_annotation) elif isinstance(inst, BaseEpochs): if isinstance(target, string_types): pick = _get_target_ch(inst, target) target = inst.get_data()[:, pick] if hasattr(target, 'ndim'): if target.ndim == 3 and min(target.shape) == 1: target = target.ravel() elif isinstance(inst, Evoked): if isinstance(target, string_types): pick = _get_target_ch(inst, target) target = inst.data[pick] return target @verbose def find_bads_ecg(self, inst, ch_name=None, threshold=None, start=None, stop=None, l_freq=8, h_freq=16, method='ctps', reject_by_annotation=True, verbose=None): """Detect ECG related components using correlation. .. note:: If no ECG channel is available, routine attempts to create an artificial ECG based on cross-channel averaging. Parameters ---------- inst : instance of Raw, Epochs or Evoked Object to compute sources from. ch_name : str The name of the channel to use for ECG peak detection. The argument is mandatory if the dataset contains no ECG channels. threshold : float The value above which a feature is classified as outlier. If method is 'ctps', defaults to 0.25, else defaults to 3.0. start : int | float | None First sample to include. If float, data will be interpreted as time in seconds. If None, data will be used from the first sample. stop : int | float | None Last sample to not include. If float, data will be interpreted as time in seconds. If None, data will be used to the last sample. l_freq : float Low pass frequency. h_freq : float High pass frequency. method : {'ctps', 'correlation'} The method used for detection. If 'ctps', cross-trial phase statistics [1] are used to detect ECG related components. Thresholding is then based on the significance value of a Kuiper statistic. If 'correlation', detection is based on Pearson correlation between the filtered data and the filtered ECG channel. Thresholding is based on iterative z-scoring. The above threshold components will be masked and the z-score will be recomputed until no supra-threshold component remains. Defaults to 'ctps'. reject_by_annotation : bool If True, data annotated as bad will be omitted. Defaults to True. .. versionadded:: 0.14.0 verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Defaults to self.verbose. Returns ------- ecg_idx : list of int The indices of ECG related components. scores : np.ndarray of float, shape (``n_components_``) The correlation scores. See Also -------- find_bads_eog References ---------- [1] Dammers, J., Schiek, M., Boers, F., Silex, C., Zvyagintsev, M., Pietrzyk, U., Mathiak, K., 2008. Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings. Biomedical Engineering, IEEE Transactions on 55 (10), 2353-2362. """ if verbose is None: verbose = self.verbose idx_ecg = _get_ecg_channel_index(ch_name, inst) if idx_ecg is None: if verbose is not None: verbose = self.verbose ecg, times = _make_ecg(inst, start, stop, reject_by_annotation=reject_by_annotation, verbose=verbose) else: ecg = inst.ch_names[idx_ecg] if method == 'ctps': if threshold is None: threshold = 0.25 if isinstance(inst, BaseRaw): sources = self.get_sources(create_ecg_epochs( inst, ch_name, keep_ecg=False, reject_by_annotation=reject_by_annotation)).get_data() if sources.shape[0] == 0: warn('No ECG activity detected. Consider changing ' 'the input parameters.') elif isinstance(inst, BaseEpochs): sources = self.get_sources(inst).get_data() else: raise ValueError('With `ctps` only Raw and Epochs input is ' 'supported') _, p_vals, _ = ctps(sources) scores = p_vals.max(-1) ecg_idx = np.where(scores >= threshold)[0] elif method == 'correlation': if threshold is None: threshold = 3.0 scores = self.score_sources( inst, target=ecg, score_func='pearsonr', start=start, stop=stop, l_freq=l_freq, h_freq=h_freq, reject_by_annotation=reject_by_annotation, verbose=verbose) ecg_idx = find_outliers(scores, threshold=threshold) else: raise ValueError('Method "%s" not supported.' % method) # sort indices by scores ecg_idx = ecg_idx[np.abs(scores[ecg_idx]).argsort()[::-1]] self.labels_['ecg'] = list(ecg_idx) if ch_name is None: ch_name = 'ECG-MAG' self.labels_['ecg/%s' % ch_name] = list(ecg_idx) return self.labels_['ecg'], scores @verbose def find_bads_eog(self, inst, ch_name=None, threshold=3.0, start=None, stop=None, l_freq=1, h_freq=10, reject_by_annotation=True, verbose=None): """Detect EOG related components using correlation. Detection is based on Pearson correlation between the filtered data and the filtered EOG channel. Thresholding is based on adaptive z-scoring. The above threshold components will be masked and the z-score will be recomputed until no supra-threshold component remains. Parameters ---------- inst : instance of Raw, Epochs or Evoked Object to compute sources from. ch_name : str The name of the channel to use for EOG peak detection. The argument is mandatory if the dataset contains no EOG channels. threshold : int | float The value above which a feature is classified as outlier. start : int | float | None First sample to include. If float, data will be interpreted as time in seconds. If None, data will be used from the first sample. stop : int | float | None Last sample to not include. If float, data will be interpreted as time in seconds. If None, data will be used to the last sample. l_freq : float Low pass frequency. h_freq : float High pass frequency. reject_by_annotation : bool If True, data annotated as bad will be omitted. Defaults to True. .. versionadded:: 0.14.0 verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Defaults to self.verbose. Returns ------- eog_idx : list of int The indices of EOG related components, sorted by score. scores : np.ndarray of float, shape (``n_components_``) | list of array The correlation scores. See Also -------- find_bads_ecg """ if verbose is None: verbose = self.verbose eog_inds = _get_eog_channel_index(ch_name, inst) if len(eog_inds) > 2: eog_inds = eog_inds[:1] logger.info('Using EOG channel %s' % inst.ch_names[eog_inds[0]]) scores, eog_idx = [], [] eog_chs = [inst.ch_names[k] for k in eog_inds] # some magic we need inevitably ... # get targets before equalizing targets = [self._check_target(k, inst, start, stop, reject_by_annotation) for k in eog_chs] for ii, (eog_ch, target) in enumerate(zip(eog_chs, targets)): scores += [self.score_sources( inst, target=target, score_func='pearsonr', start=start, stop=stop, l_freq=l_freq, h_freq=h_freq, verbose=verbose, reject_by_annotation=reject_by_annotation)] # pick last scores this_idx = find_outliers(scores[-1], threshold=threshold) eog_idx += [this_idx] self.labels_[('eog/%i/' % ii) + eog_ch] = list(this_idx) # remove duplicates but keep order by score, even across multiple # EOG channels scores_ = np.concatenate([scores[ii][inds] for ii, inds in enumerate(eog_idx)]) eog_idx_ = np.concatenate(eog_idx)[np.abs(scores_).argsort()[::-1]] eog_idx_unique = list(np.unique(eog_idx_)) eog_idx = [] for i in eog_idx_: if i in eog_idx_unique: eog_idx.append(i) eog_idx_unique.remove(i) if len(scores) == 1: scores = scores[0] self.labels_['eog'] = list(eog_idx) return self.labels_['eog'], scores def apply(self, inst, include=None, exclude=None, n_pca_components=None, start=None, stop=None): """Remove selected components from the signal. Given the unmixing matrix, transform data, zero out components, and inverse transform the data. This procedure will reconstruct M/EEG signals from which the dynamics described by the excluded components is subtracted. The data is processed in place. Parameters ---------- inst : instance of Raw, Epochs or Evoked The data to be processed. The instance is modified inplace. include : array_like of int. The indices referring to columns in the ummixing matrix. The components to be kept. exclude : array_like of int. The indices referring to columns in the ummixing matrix. The components to be zeroed out. n_pca_components : int | float | None The number of PCA components to be kept, either absolute (int) or percentage of the explained variance (float). If None (default), all PCA components will be used. start : int | float | None First sample to include. If float, data will be interpreted as time in seconds. If None, data will be used from the first sample. stop : int | float | None Last sample to not include. If float, data will be interpreted as time in seconds. If None, data will be used to the last sample. Returns ------- out : instance of Raw, Epochs or Evoked The processed data. """ if isinstance(inst, BaseRaw): _check_compensation_grade(self, inst, 'ICA', 'Raw', ch_names=self.ch_names) out = self._apply_raw(raw=inst, include=include, exclude=exclude, n_pca_components=n_pca_components, start=start, stop=stop) elif isinstance(inst, BaseEpochs): _check_compensation_grade(self, inst, 'ICA', 'Epochs', ch_names=self.ch_names) out = self._apply_epochs(epochs=inst, include=include, exclude=exclude, n_pca_components=n_pca_components) elif isinstance(inst, Evoked): _check_compensation_grade(self, inst, 'ICA', 'Evoked', ch_names=self.ch_names) out = self._apply_evoked(evoked=inst, include=include, exclude=exclude, n_pca_components=n_pca_components) else: raise ValueError('Data input must be of Raw, Epochs or Evoked ' 'type') return out def _check_exclude(self, exclude): if exclude is None: return list(set(self.exclude)) else: return list(set(self.exclude + exclude)) def _apply_raw(self, raw, include, exclude, n_pca_components, start, stop): """Aux method.""" _check_preload(raw, "ica.apply") exclude = self._check_exclude(exclude) if n_pca_components is not None: self.n_pca_components = n_pca_components start, stop = _check_start_stop(raw, start, stop) picks = pick_types(raw.info, meg=False, include=self.ch_names, exclude='bads', ref_meg=False) data = raw[picks, start:stop][0] data, _ = self._pre_whiten(data, raw.info, picks) data = self._pick_sources(data, include, exclude) raw[picks, start:stop] = data return raw def _apply_epochs(self, epochs, include, exclude, n_pca_components): """Aux method.""" _check_preload(epochs, "ica.apply") exclude = self._check_exclude(exclude) picks = pick_types(epochs.info, meg=False, ref_meg=False, include=self.ch_names, exclude='bads') # special case where epochs come picked but fit was 'unpicked'. if len(picks) != len(self.ch_names): raise RuntimeError('Epochs don\'t match fitted data: %i channels ' 'fitted but %i channels supplied. \nPlease ' 'provide Epochs compatible with ' 'ica.ch_names' % (len(self.ch_names), len(picks))) if n_pca_components is not None: self.n_pca_components = n_pca_components data = np.hstack(epochs.get_data()[:, picks]) data, _ = self._pre_whiten(data, epochs.info, picks) data = self._pick_sources(data, include=include, exclude=exclude) # restore epochs, channels, tsl order epochs._data[:, picks] = np.array(np.split(data, len(epochs.events), 1)) epochs.preload = True return epochs def _apply_evoked(self, evoked, include, exclude, n_pca_components): """Aux method.""" exclude = self._check_exclude(exclude) picks = pick_types(evoked.info, meg=False, ref_meg=False, include=self.ch_names, exclude='bads') # special case where evoked come picked but fit was 'unpicked'. if len(picks) != len(self.ch_names): raise RuntimeError('Evoked does not match fitted data: %i channels' ' fitted but %i channels supplied. \nPlease ' 'provide an Evoked object that\'s compatible ' 'with ica.ch_names' % (len(self.ch_names), len(picks))) if n_pca_components is not None: self.n_pca_components = n_pca_components data = evoked.data[picks] data, _ = self._pre_whiten(data, evoked.info, picks) data = self._pick_sources(data, include=include, exclude=exclude) # restore evoked evoked.data[picks] = data return evoked def _pick_sources(self, data, include, exclude): """Aux function.""" if exclude is None: exclude = self.exclude else: exclude = list(set(self.exclude + list(exclude))) _n_pca_comp = self._check_n_pca_components(self.n_pca_components) if not(self.n_components_ <= _n_pca_comp <= self.max_pca_components): raise ValueError('n_pca_components must be >= ' 'n_components and <= max_pca_components.') n_components = self.n_components_ logger.info('Transforming to ICA space (%i components)' % n_components) # Apply first PCA if self.pca_mean_ is not None: data -= self.pca_mean_[:, None] sel_keep = np.arange(n_components) if include not in (None, []): sel_keep = np.unique(include) elif exclude not in (None, []): sel_keep = np.setdiff1d(np.arange(n_components), exclude) logger.info('Zeroing out %i ICA components' % (n_components - len(sel_keep))) unmixing = np.eye(_n_pca_comp) unmixing[:n_components, :n_components] = self.unmixing_matrix_ unmixing = np.dot(unmixing, self.pca_components_[:_n_pca_comp]) mixing = np.eye(_n_pca_comp) mixing[:n_components, :n_components] = self.mixing_matrix_ mixing = np.dot(self.pca_components_[:_n_pca_comp].T, mixing) if _n_pca_comp > n_components: sel_keep = np.concatenate( (sel_keep, range(n_components, _n_pca_comp))) proj_mat = np.dot(mixing[:, sel_keep], unmixing[sel_keep, :]) data = np.dot(proj_mat, data) if self.pca_mean_ is not None: data += self.pca_mean_[:, None] # restore scaling if self.noise_cov is None: # revert standardization data *= self.pre_whitener_ else: data = np.dot(linalg.pinv(self.pre_whitener_, cond=1e-14), data) return data @verbose def save(self, fname): """Store ICA solution into a fiff file. Parameters ---------- fname : str The absolute path of the file name to save the ICA solution into. The file name should end with -ica.fif or -ica.fif.gz. """ if self.current_fit == 'unfitted': raise RuntimeError('No fit available. Please first fit ICA') check_fname(fname, 'ICA', ('-ica.fif', '-ica.fif.gz', '_ica.fif', '_ica.fif.gz')) logger.info('Writing ICA solution to %s...' % fname) fid = start_file(fname) try: _write_ica(fid, self) end_file(fid) except Exception: end_file(fid) os.remove(fname) raise return self def copy(self): """Copy the ICA object. Returns ------- ica : instance of ICA The copied object. """ return deepcopy(self) @copy_function_doc_to_method_doc(plot_ica_components) def plot_components(self, picks=None, ch_type=None, res=64, layout=None, vmin=None, vmax=None, cmap='RdBu_r', sensors=True, colorbar=False, title=None, show=True, outlines='head', contours=6, image_interp='bilinear', head_pos=None, inst=None): return plot_ica_components(self, picks=picks, ch_type=ch_type, res=res, layout=layout, vmin=vmin, vmax=vmax, cmap=cmap, sensors=sensors, colorbar=colorbar, title=title, show=show, outlines=outlines, contours=contours, image_interp=image_interp, head_pos=head_pos, inst=inst) @copy_function_doc_to_method_doc(plot_ica_properties) def plot_properties(self, inst, picks=None, axes=None, dB=True, plot_std=True, topomap_args=None, image_args=None, psd_args=None, figsize=None, show=True): return plot_ica_properties(self, inst, picks=picks, axes=axes, dB=dB, plot_std=plot_std, topomap_args=topomap_args, image_args=image_args, psd_args=psd_args, figsize=figsize, show=show) @copy_function_doc_to_method_doc(plot_ica_sources) def plot_sources(self, inst, picks=None, exclude=None, start=None, stop=None, title=None, show=True, block=False, show_first_samp=False): return plot_ica_sources(self, inst=inst, picks=picks, exclude=exclude, start=start, stop=stop, title=title, show=show, block=block, show_first_samp=show_first_samp) @copy_function_doc_to_method_doc(plot_ica_scores) def plot_scores(self, scores, exclude=None, labels=None, axhline=None, title='ICA component scores', figsize=None, show=True): return plot_ica_scores( ica=self, scores=scores, exclude=exclude, labels=labels, axhline=axhline, title=title, figsize=figsize, show=show) @copy_function_doc_to_method_doc(plot_ica_overlay) def plot_overlay(self, inst, exclude=None, picks=None, start=None, stop=None, title=None, show=True): return plot_ica_overlay(self, inst=inst, exclude=exclude, picks=picks, start=start, stop=stop, title=title, show=show) def detect_artifacts(self, raw, start_find=None, stop_find=None, ecg_ch=None, ecg_score_func='pearsonr', ecg_criterion=0.1, eog_ch=None, eog_score_func='pearsonr', eog_criterion=0.1, skew_criterion=-1, kurt_criterion=-1, var_criterion=0, add_nodes=None): """Run ICA artifacts detection workflow. Note. This is still experimental and will most likely change. Over the next releases. For maximum control use the workflow exposed in the examples. Hints and caveats: - It is highly recommended to bandpass filter ECG and EOG data and pass them instead of the channel names as ecg_ch and eog_ch arguments. - please check your results. Detection by kurtosis and variance may be powerful but misclassification of brain signals as noise cannot be precluded. - Consider using shorter times for start_find and stop_find than for start and stop. It can save you much time. Example invocation (taking advantage of the defaults):: ica.detect_artifacts(ecg_channel='MEG 1531', eog_channel='EOG 061') Parameters ---------- raw : instance of Raw Raw object to draw sources from. start_find : int | float | None First sample to include for artifact search. If float, data will be interpreted as time in seconds. If None, data will be used from the first sample. stop_find : int | float | None Last sample to not include for artifact search. If float, data will be interpreted as time in seconds. If None, data will be used to the last sample. ecg_ch : str | ndarray | None The `target` argument passed to ica.find_sources_raw. Either the name of the ECG channel or the ECG time series. If None, this step will be skipped. ecg_score_func : str | callable The `score_func` argument passed to ica.find_sources_raw. Either the name of function supported by ICA or a custom function. ecg_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. eog_ch : list | str | ndarray | None The `target` argument or the list of target arguments subsequently passed to ica.find_sources_raw. Either the name of the vertical EOG channel or the corresponding EOG time series. If None, this step will be skipped. eog_score_func : str | callable The `score_func` argument passed to ica.find_sources_raw. Either the name of function supported by ICA or a custom function. eog_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. skew_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. kurt_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. var_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. add_nodes : list of ica_nodes Additional list if tuples carrying the following parameters: (name : str, target : str | array, score_func : callable, criterion : float | int | list-like | slice). This parameter is a generalization of the artifact specific parameters above and has the same structure. Example: add_nodes=('ECG phase lock', ECG 01', my_phase_lock_function, 0.5) Returns ------- self : instance of ICA The ICA object with the detected artifact indices marked for exclusion """ logger.info(' Searching for artifacts...') _detect_artifacts(self, raw=raw, start_find=start_find, stop_find=stop_find, ecg_ch=ecg_ch, ecg_score_func=ecg_score_func, ecg_criterion=ecg_criterion, eog_ch=eog_ch, eog_score_func=eog_score_func, eog_criterion=eog_criterion, skew_criterion=skew_criterion, kurt_criterion=kurt_criterion, var_criterion=var_criterion, add_nodes=add_nodes) return self @verbose def _check_n_pca_components(self, _n_pca_comp, verbose=None): """Aux function.""" if isinstance(_n_pca_comp, float): _n_pca_comp = ((self.pca_explained_variance_ / self.pca_explained_variance_.sum()).cumsum() <= _n_pca_comp).sum() logger.info('Selected %i PCA components by explained ' 'variance' % _n_pca_comp) elif _n_pca_comp is None: _n_pca_comp = self.max_pca_components elif _n_pca_comp < self.n_components_: _n_pca_comp = self.n_components_ return _n_pca_comp def _check_start_stop(raw, start, stop): """Aux function.""" out = list() for st in (start, stop): if st is None: out.append(st) else: try: out.append(_ensure_int(st)) except TypeError: # not int-like out.append(raw.time_as_index(st)[0]) return out @verbose def ica_find_ecg_events(raw, ecg_source, event_id=999, tstart=0.0, l_freq=5, h_freq=35, qrs_threshold='auto', verbose=None): """Find ECG peaks from one selected ICA source. Parameters ---------- raw : instance of Raw Raw object to draw sources from. ecg_source : ndarray ICA source resembling ECG to find peaks from. event_id : int The index to assign to found events. tstart : float Start detection after tstart seconds. Useful when beginning of run is noisy. l_freq : float Low pass frequency. h_freq : float High pass frequency. qrs_threshold : float | str Between 0 and 1. qrs detection threshold. Can also be "auto" to automatically choose the threshold that generates a reasonable number of heartbeats (40-160 beats / min). verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- ecg_events : array Events. ch_ECG : string Name of channel used. average_pulse : float. Estimated average pulse. """ logger.info('Using ICA source to identify heart beats') # detecting QRS and generating event file ecg_events = qrs_detector(raw.info['sfreq'], ecg_source.ravel(), tstart=tstart, thresh_value=qrs_threshold, l_freq=l_freq, h_freq=h_freq) n_events = len(ecg_events) ecg_events = np.c_[ecg_events + raw.first_samp, np.zeros(n_events), event_id * np.ones(n_events)] return ecg_events @verbose def ica_find_eog_events(raw, eog_source=None, event_id=998, l_freq=1, h_freq=10, verbose=None): """Locate EOG artifacts from one selected ICA source. Parameters ---------- raw : instance of Raw The raw data. eog_source : ndarray ICA source resembling EOG to find peaks from. event_id : int The index to assign to found events. l_freq : float Low cut-off frequency in Hz. h_freq : float High cut-off frequency in Hz. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- eog_events : array Events """ eog_events = _find_eog_events(eog_source[np.newaxis], event_id=event_id, l_freq=l_freq, h_freq=h_freq, sampling_rate=raw.info['sfreq'], first_samp=raw.first_samp) return eog_events def _get_target_ch(container, target): """Aux function.""" # auto target selection picks = pick_channels(container.ch_names, include=[target]) ref_picks = pick_types(container.info, meg=False, eeg=False, ref_meg=True) if len(ref_picks) > 0: picks = list(set(picks) - set(ref_picks)) if len(picks) == 0: raise ValueError('%s not in channel list (%s)' % (target, container.ch_names)) return picks def _find_sources(sources, target, score_func): """Aux function.""" if isinstance(score_func, string_types): score_func = get_score_funcs().get(score_func, score_func) if not callable(score_func): raise ValueError('%s is not a valid score_func.' % score_func) scores = (score_func(sources, target) if target is not None else score_func(sources, 1)) return scores def _ica_explained_variance(ica, inst, normalize=False): """Check variance accounted for by each component in supplied data. Parameters ---------- ica : ICA Instance of `mne.preprocessing.ICA`. inst : Raw | Epochs | Evoked Data to explain with ICA. Instance of Raw, Epochs or Evoked. normalize : bool Whether to normalize the variance. Returns ------- var : array Variance explained by each component. """ # check if ica is ICA and whether inst is Raw or Epochs if not isinstance(ica, ICA): raise TypeError('first argument must be an instance of ICA.') if not isinstance(inst, (BaseRaw, BaseEpochs, Evoked)): raise TypeError('second argument must an instance of either Raw, ' 'Epochs or Evoked.') source_data = _get_inst_data(ica.get_sources(inst)) # if epochs - reshape to channels x timesamples if isinstance(inst, BaseEpochs): n_epochs, n_chan, n_samp = source_data.shape source_data = source_data.transpose(1, 0, 2).reshape( (n_chan, n_epochs * n_samp)) n_chan, n_samp = source_data.shape var = np.sum(ica.mixing_matrix_ ** 2, axis=0) * np.sum( source_data ** 2, axis=1) / (n_chan * n_samp - 1) if normalize: var /= var.sum() return var def _sort_components(ica, order, copy=True): """Change the order of components in ica solution.""" assert ica.n_components_ == len(order) if copy: ica = ica.copy() # reorder components ica.mixing_matrix_ = ica.mixing_matrix_[:, order] ica.unmixing_matrix_ = ica.unmixing_matrix_[order, :] # reorder labels, excludes etc. if isinstance(order, np.ndarray): order = list(order) if ica.exclude: ica.exclude = [order.index(ic) for ic in ica.exclude] for k in ica.labels_.keys(): ica.labels_[k] = [order.index(ic) for ic in ica.labels_[k]] return ica def _serialize(dict_, outer_sep=';', inner_sep=':'): """Aux function.""" s = [] for key, value in dict_.items(): if callable(value): value = value.__name__ elif isinstance(value, Integral): value = int(value) elif isinstance(value, dict): # py35 json does not support numpy int64 for subkey, subvalue in value.items(): if isinstance(subvalue, list): if len(subvalue) > 0: if isinstance(subvalue[0], (int, np.integer)): value[subkey] = [int(i) for i in subvalue] for cls in (np.random.RandomState, Covariance): if isinstance(value, cls): value = cls.__name__ s.append(key + inner_sep + json.dumps(value)) return outer_sep.join(s) def _deserialize(str_, outer_sep=';', inner_sep=':'): """Aux Function.""" out = {} for mapping in str_.split(outer_sep): k, v = mapping.split(inner_sep, 1) vv = json.loads(v) out[k] = vv if not isinstance(vv, text_type) else str(vv) return out def _write_ica(fid, ica): """Write an ICA object. Parameters ---------- fid: file The file descriptor ica: The instance of ICA to write """ ica_init = dict(noise_cov=ica.noise_cov, n_components=ica.n_components, n_pca_components=ica.n_pca_components, max_pca_components=ica.max_pca_components, current_fit=ica.current_fit) if ica.info is not None: start_block(fid, FIFF.FIFFB_MEAS) write_id(fid, FIFF.FIFF_BLOCK_ID) if ica.info['meas_id'] is not None: write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, ica.info['meas_id']) # Write measurement info write_meas_info(fid, ica.info) end_block(fid, FIFF.FIFFB_MEAS) start_block(fid, FIFF.FIFFB_MNE_ICA) # ICA interface params write_string(fid, FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS, _serialize(ica_init)) # Channel names if ica.ch_names is not None: write_name_list(fid, FIFF.FIFF_MNE_ROW_NAMES, ica.ch_names) # samples on fit n_samples = getattr(ica, 'n_samples_', None) ica_misc = {'n_samples_': (None if n_samples is None else int(n_samples)), 'labels_': getattr(ica, 'labels_', None), 'method': getattr(ica, 'method', None)} write_string(fid, FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS, _serialize(ica_init)) # ICA misct params write_string(fid, FIFF.FIFF_MNE_ICA_MISC_PARAMS, _serialize(ica_misc)) # Whitener write_double_matrix(fid, FIFF.FIFF_MNE_ICA_WHITENER, ica.pre_whitener_) # PCA components_ write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_COMPONENTS, ica.pca_components_) # PCA mean_ write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_MEAN, ica.pca_mean_) # PCA explained_variance_ write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR, ica.pca_explained_variance_) # ICA unmixing write_double_matrix(fid, FIFF.FIFF_MNE_ICA_MATRIX, ica.unmixing_matrix_) # Write bad components write_int(fid, FIFF.FIFF_MNE_ICA_BADS, ica.exclude) # Done! end_block(fid, FIFF.FIFFB_MNE_ICA) @verbose def read_ica(fname, verbose=None): """Restore ICA solution from fif file. Parameters ---------- fname : str Absolute path to fif file containing ICA matrices. The file name should end with -ica.fif or -ica.fif.gz. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- ica : instance of ICA The ICA estimator. """ check_fname(fname, 'ICA', ('-ica.fif', '-ica.fif.gz', '_ica.fif', '_ica.fif.gz')) logger.info('Reading %s ...' % fname) fid, tree, _ = fiff_open(fname) try: # we used to store bads that weren't part of the info... info, meas = read_meas_info(fid, tree, clean_bads=True) except ValueError: logger.info('Could not find the measurement info. \n' 'Functionality requiring the info won\'t be' ' available.') info = None ica_data = dir_tree_find(tree, FIFF.FIFFB_MNE_ICA) if len(ica_data) == 0: ica_data = dir_tree_find(tree, 123) # Constant 123 Used before v 0.11 if len(ica_data) == 0: fid.close() raise ValueError('Could not find ICA data') my_ica_data = ica_data[0] for d in my_ica_data['directory']: kind = d.kind pos = d.pos if kind == FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS: tag = read_tag(fid, pos) ica_init = tag.data elif kind == FIFF.FIFF_MNE_ROW_NAMES: tag = read_tag(fid, pos) ch_names = tag.data elif kind == FIFF.FIFF_MNE_ICA_WHITENER: tag = read_tag(fid, pos) pre_whitener = tag.data elif kind == FIFF.FIFF_MNE_ICA_PCA_COMPONENTS: tag = read_tag(fid, pos) pca_components = tag.data elif kind == FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR: tag = read_tag(fid, pos) pca_explained_variance = tag.data elif kind == FIFF.FIFF_MNE_ICA_PCA_MEAN: tag = read_tag(fid, pos) pca_mean = tag.data elif kind == FIFF.FIFF_MNE_ICA_MATRIX: tag = read_tag(fid, pos) unmixing_matrix = tag.data elif kind == FIFF.FIFF_MNE_ICA_BADS: tag = read_tag(fid, pos) exclude = tag.data elif kind == FIFF.FIFF_MNE_ICA_MISC_PARAMS: tag = read_tag(fid, pos) ica_misc = tag.data fid.close() ica_init, ica_misc = [_deserialize(k) for k in (ica_init, ica_misc)] current_fit = ica_init.pop('current_fit') if ica_init['noise_cov'] == Covariance.__name__: logger.info('Reading whitener drawn from noise covariance ...') logger.info('Now restoring ICA solution ...') # make sure dtypes are np.float64 to satisfy fast_dot def f(x): return x.astype(np.float64) ica_init = dict((k, v) for k, v in ica_init.items() if k in _get_args(ICA.__init__)) ica = ICA(**ica_init) ica.current_fit = current_fit ica.ch_names = ch_names.split(':') ica.pre_whitener_ = f(pre_whitener) ica.pca_mean_ = f(pca_mean) ica.pca_components_ = f(pca_components) ica.n_components_ = unmixing_matrix.shape[0] ica._update_ica_names() ica.pca_explained_variance_ = f(pca_explained_variance) ica.unmixing_matrix_ = f(unmixing_matrix) ica.mixing_matrix_ = linalg.pinv(ica.unmixing_matrix_) ica.exclude = [] if exclude is None else list(exclude) ica.info = info if 'n_samples_' in ica_misc: ica.n_samples_ = ica_misc['n_samples_'] if 'labels_' in ica_misc: labels_ = ica_misc['labels_'] if labels_ is not None: ica.labels_ = labels_ if 'method' in ica_misc: ica.method = ica_misc['method'] logger.info('Ready.') return ica _ica_node = namedtuple('Node', 'name target score_func criterion') def _detect_artifacts(ica, raw, start_find, stop_find, ecg_ch, ecg_score_func, ecg_criterion, eog_ch, eog_score_func, eog_criterion, skew_criterion, kurt_criterion, var_criterion, add_nodes): """Aux Function.""" from scipy import stats nodes = [] if ecg_ch is not None: nodes += [_ica_node('ECG', ecg_ch, ecg_score_func, ecg_criterion)] if eog_ch not in [None, []]: if not isinstance(eog_ch, list): eog_ch = [eog_ch] for idx, ch in enumerate(eog_ch): nodes += [_ica_node('EOG %02d' % idx, ch, eog_score_func, eog_criterion)] if skew_criterion is not None: nodes += [_ica_node('skewness', None, stats.skew, skew_criterion)] if kurt_criterion is not None: nodes += [_ica_node('kurtosis', None, stats.kurtosis, kurt_criterion)] if var_criterion is not None: nodes += [_ica_node('variance', None, np.var, var_criterion)] if add_nodes is not None: nodes.extend(add_nodes) for node in nodes: scores = ica.score_sources(raw, start=start_find, stop=stop_find, target=node.target, score_func=node.score_func) if isinstance(node.criterion, float): found = list(np.where(np.abs(scores) > node.criterion)[0]) else: found = list(np.atleast_1d(abs(scores).argsort()[node.criterion])) case = (len(found), _pl(found), node.name) logger.info(' found %s artifact%s by %s' % case) ica.exclude += found logger.info('Artifact indices found:\n ' + str(ica.exclude).strip('[]')) if len(set(ica.exclude)) != len(ica.exclude): logger.info(' Removing duplicate indices...') ica.exclude = list(set(ica.exclude)) logger.info('Ready.') @verbose def run_ica(raw, n_components, max_pca_components=100, n_pca_components=64, noise_cov=None, random_state=None, picks=None, start=None, stop=None, start_find=None, stop_find=None, ecg_ch=None, ecg_score_func='pearsonr', ecg_criterion=0.1, eog_ch=None, eog_score_func='pearsonr', eog_criterion=0.1, skew_criterion=-1, kurt_criterion=-1, var_criterion=0, add_nodes=None, verbose=None, method='fastica'): """Run ICA decomposition on raw data and identify artifact sources. This function implements an automated artifact removal work flow. Hints and caveats: - It is highly recommended to bandpass filter ECG and EOG data and pass them instead of the channel names as ecg_ch and eog_ch arguments. - Please check your results. Detection by kurtosis and variance can be powerful but misclassification of brain signals as noise cannot be precluded. If you are not sure set those to None. - Consider using shorter times for start_find and stop_find than for start and stop. It can save you much time. Example invocation (taking advantage of defaults):: ica = run_ica(raw, n_components=.9, start_find=10000, stop_find=12000, ecg_ch='MEG 1531', eog_ch='EOG 061') Parameters ---------- raw : instance of Raw The raw data to decompose. n_components : int | float | None The number of components used for ICA decomposition. If int, it must be smaller then max_pca_components. If None, all PCA components will be used. If float between 0 and 1 components can will be selected by the cumulative percentage of explained variance. max_pca_components : int | None The number of components used for PCA decomposition. If None, no dimension reduction will be applied and max_pca_components will equal the number of channels supplied on decomposing data. n_pca_components The number of PCA components used after ICA recomposition. The ensuing attribute allows to balance noise reduction against potential loss of features due to dimensionality reduction. If greater than ``self.n_components_``, the next ``'n_pca_components'`` minus ``'n_components_'`` PCA components will be added before restoring the sensor space data. The attribute gets updated each time the according parameter for in .pick_sources_raw or .pick_sources_epochs is changed. noise_cov : None | instance of mne.cov.Covariance Noise covariance used for whitening. If None, channels are just z-scored. random_state : None | int | instance of np.random.RandomState np.random.RandomState to initialize the FastICA estimation. As the estimation is non-deterministic it can be useful to fix the seed to have reproducible results. picks : array-like of int Channels to be included. This selection remains throughout the initialized ICA solution. If None only good data channels are used. start : int | float | None First sample to include for decomposition. If float, data will be interpreted as time in seconds. If None, data will be used from the first sample. stop : int | float | None Last sample to not include for decomposition. If float, data will be interpreted as time in seconds. If None, data will be used to the last sample. start_find : int | float | None First sample to include for artifact search. If float, data will be interpreted as time in seconds. If None, data will be used from the first sample. stop_find : int | float | None Last sample to not include for artifact search. If float, data will be interpreted as time in seconds. If None, data will be used to the last sample. ecg_ch : str | ndarray | None The ``target`` argument passed to ica.find_sources_raw. Either the name of the ECG channel or the ECG time series. If None, this step will be skipped. ecg_score_func : str | callable The ``score_func`` argument passed to ica.find_sources_raw. Either the name of function supported by ICA or a custom function. ecg_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. eog_ch : list | str | ndarray | None The ``target`` argument or the list of target arguments subsequently passed to ica.find_sources_raw. Either the name of the vertical EOG channel or the corresponding EOG time series. If None, this step will be skipped. eog_score_func : str | callable The ``score_func`` argument passed to ica.find_sources_raw. Either the name of function supported by ICA or a custom function. eog_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. skew_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. kurt_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. var_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. add_nodes : list of ica_nodes Additional list if tuples carrying the following parameters: (name : str, target : str | array, score_func : callable, criterion : float | int | list-like | slice). This parameter is a generalization of the artifact specific parameters above and has the same structure. Example:: add_nodes=('ECG phase lock', ECG 01', my_phase_lock_function, 0.5) verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). method : {'fastica', 'picard'} The ICA method to use. Defaults to 'fastica'. Returns ------- ica : instance of ICA The ICA object with detected artifact sources marked for exclusion. """ ica = ICA(n_components=n_components, max_pca_components=max_pca_components, n_pca_components=n_pca_components, method=method, noise_cov=noise_cov, random_state=random_state, verbose=verbose) ica.fit(raw, start=start, stop=stop, picks=picks) logger.info('%s' % ica) logger.info(' Now searching for artifacts...') _detect_artifacts(ica=ica, raw=raw, start_find=start_find, stop_find=stop_find, ecg_ch=ecg_ch, ecg_score_func=ecg_score_func, ecg_criterion=ecg_criterion, eog_ch=eog_ch, eog_score_func=eog_score_func, eog_criterion=eog_criterion, skew_criterion=skew_criterion, kurt_criterion=kurt_criterion, var_criterion=var_criterion, add_nodes=add_nodes) return ica @verbose def _band_pass_filter(ica, sources, target, l_freq, h_freq, verbose=None): """Optionally band-pass filter the data.""" if l_freq is not None and h_freq is not None: logger.info('... filtering ICA sources') # use FIR here, steeper is better kw = dict(phase='zero-double', filter_length='10s', fir_window='hann', l_trans_bandwidth=0.5, h_trans_bandwidth=0.5, fir_design='firwin2') sources = filter_data(sources, ica.info['sfreq'], l_freq, h_freq, **kw) logger.info('... filtering target') target = filter_data(target, ica.info['sfreq'], l_freq, h_freq, **kw) elif l_freq is not None or h_freq is not None: raise ValueError('Must specify both pass bands') return sources, target # ############################################################################# # CORRMAP def _find_max_corrs(all_maps, target, threshold): """Compute correlations between template and target components.""" all_corrs = [compute_corr(target, subj.T) for subj in all_maps] abs_corrs = [np.abs(a) for a in all_corrs] corr_polarities = [np.sign(a) for a in all_corrs] if threshold <= 1: max_corrs = [list(np.nonzero(s_corr > threshold)[0]) for s_corr in abs_corrs] else: max_corrs = [list(find_outliers(s_corr, threshold=threshold)) for s_corr in abs_corrs] am = [l[i] for l, i_s in zip(abs_corrs, max_corrs) for i in i_s] median_corr_with_target = np.median(am) if len(am) > 0 else 0 polarities = [l[i] for l, i_s in zip(corr_polarities, max_corrs) for i in i_s] maxmaps = [l[i] for l, i_s in zip(all_maps, max_corrs) for i in i_s] if len(maxmaps) == 0: return [], 0, 0, [] newtarget = np.zeros(maxmaps[0].size) std_of_maps = np.std(np.asarray(maxmaps)) mean_of_maps = np.std(np.asarray(maxmaps)) for maxmap, polarity in zip(maxmaps, polarities): newtarget += (maxmap / std_of_maps - mean_of_maps) * polarity newtarget /= len(maxmaps) newtarget *= std_of_maps sim_i_o = np.abs(np.corrcoef(target, newtarget)[1, 0]) return newtarget, median_corr_with_target, sim_i_o, max_corrs @verbose def corrmap(icas, template, threshold="auto", label=None, ch_type="eeg", plot=True, show=True, verbose=None, outlines='head', layout=None, sensors=True, contours=6, cmap=None): """Find similar Independent Components across subjects by map similarity. Corrmap (Viola et al. 2009 Clin Neurophysiol) identifies the best group match to a supplied template. Typically, feed it a list of fitted ICAs and a template IC, for example, the blink for the first subject, to identify specific ICs across subjects. The specific procedure consists of two iterations. In a first step, the maps best correlating with the template are identified. In the next step, the analysis is repeated with the mean of the maps identified in the first stage. Run with `plot` and `show` set to `True` and `label=False` to find good parameters. Then, run with labelling enabled to apply the labelling in the IC objects. (Running with both `plot` and `labels` off does nothing.) Outputs a list of fitted ICAs with the indices of the marked ICs in a specified field. The original Corrmap website: www.debener.de/corrmap/corrmapplugin1.html Parameters ---------- icas : list of mne.preprocessing.ICA A list of fitted ICA objects. template : tuple | np.ndarray, shape (n_components,) Either a tuple with two elements (int, int) representing the list indices of the set from which the template should be chosen, and the template. E.g., if template=(1, 0), the first IC of the 2nd ICA object is used. Or a numpy array whose size corresponds to each IC map from the supplied maps, in which case this map is chosen as the template. threshold : "auto" | list of float | float Correlation threshold for identifying ICs If "auto", search for the best map by trying all correlations between 0.6 and 0.95. In the original proposal, lower values are considered, but this is not yet implemented. If list of floats, search for the best map in the specified range of correlation strengths. As correlation values, must be between 0 and 1 If float > 0, select ICs correlating better than this. If float > 1, use find_outliers to identify ICs within subjects (not in original Corrmap) Defaults to "auto". label : None | str If not None, categorised ICs are stored in a dictionary ``labels_`` under the given name. Preexisting entries will be appended to (excluding repeats), not overwritten. If None, a dry run is performed and the supplied ICs are not changed. ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' The channel type to plot. Defaults to 'eeg'. plot : bool Should constructed template and selected maps be plotted? Defaults to True. show : bool Show figures if True. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). outlines : 'head' | dict | None The outlines to be drawn. If 'head', a head scheme will be drawn. If dict, each key refers to a tuple of x and y positions. The values in 'mask_pos' will serve as image mask. If None, nothing will be drawn. Defaults to 'head'. If dict, the 'autoshrink' (bool) field will trigger automated shrinking of the positions due to points outside the outline. Moreover, a matplotlib patch object can be passed for advanced masking options, either directly or as a function that returns patches (required for multi-axis plots). layout : None | Layout | list of Layout Layout instance specifying sensor positions (does not need to be specified for Neuromag data). Or a list of Layout if projections are from different sensor types. sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True, a circle will be used (via .add_artist). Defaults to True. contours : int | array of float The number of contour lines to draw. If 0, no contours will be drawn. When an integer, matplotlib ticker locator is used to find suitable values for the contour thresholds (may sometimes be inaccurate, use array for accuracy). If an array, the values represent the levels for the contours. Defaults to 6. cmap : None | matplotlib colormap Colormap for the plot. If ``None``, defaults to 'Reds_r' for norm data, otherwise to 'RdBu_r'. Returns ------- template_fig : fig Figure showing the template. labelled_ics : fig Figure showing the labelled ICs in all ICA decompositions. """ if not isinstance(plot, bool): raise ValueError("`plot` must be of type `bool`") if threshold == 'auto': threshold = np.arange(60, 95, dtype=np.float64) / 100. all_maps = [ica.get_components().T for ica in icas] # check if template is an index to one IC in one ICA object, or an array if len(template) == 2: target = all_maps[template[0]][template[1]] is_subject = True elif template.ndim == 1 and len(template) == all_maps[0].shape[1]: target = template is_subject = False else: raise ValueError("`template` must be a length-2 tuple or an array the " "size of the ICA maps.") template_fig, labelled_ics = None, None if plot is True: if is_subject: # plotting from an ICA object ttl = 'Template from subj. {0}'.format(str(template[0])) template_fig = icas[template[0]].plot_components( picks=template[1], ch_type=ch_type, title=ttl, outlines=outlines, cmap=cmap, contours=contours, layout=layout, show=show) else: # plotting an array template_fig = _plot_corrmap([template], [0], [0], ch_type, icas[0].copy(), "Template", outlines=outlines, cmap=cmap, contours=contours, layout=layout, show=show, template=True) template_fig.subplots_adjust(top=0.8) template_fig.canvas.draw() # first run: use user-selected map if isinstance(threshold, (int, float)): if len(all_maps) == 0: logger.info('No component detected using find_outliers.' ' Consider using threshold="auto"') return icas nt, mt, s, mx = _find_max_corrs(all_maps, target, threshold) elif len(threshold) > 1: paths = [_find_max_corrs(all_maps, target, t) for t in threshold] # find iteration with highest avg correlation with target nt, mt, s, mx = paths[np.argmax([path[2] for path in paths])] # second run: use output from first run if isinstance(threshold, (int, float)): if len(all_maps) == 0 or len(nt) == 0: if threshold > 1: logger.info('No component detected using find_outliers. ' 'Consider using threshold="auto"') return icas nt, mt, s, mx = _find_max_corrs(all_maps, nt, threshold) elif len(threshold) > 1: paths = [_find_max_corrs(all_maps, nt, t) for t in threshold] # find iteration with highest avg correlation with target nt, mt, s, mx = paths[np.argmax([path[1] for path in paths])] allmaps, indices, subjs, nones = [list() for _ in range(4)] logger.info('Median correlation with constructed map: %0.3f' % mt) if plot is True: logger.info('Displaying selected ICs per subject.') for ii, (ica, max_corr) in enumerate(zip(icas, mx)): if len(max_corr) > 0: if isinstance(max_corr[0], np.ndarray): max_corr = max_corr[0] if label is not None: ica.labels_[label] = list(set(list(max_corr) + ica.labels_.get(label, list()))) if plot is True: allmaps.extend(ica.get_components()[:, max_corr].T) subjs.extend([ii] * len(max_corr)) indices.extend(max_corr) else: if (label is not None) and (label not in ica.labels_): ica.labels_[label] = list() nones.append(ii) if len(nones) == 0: logger.info('At least 1 IC detected for each subject.') else: logger.info('No maps selected for subject(s) ' + ', '.join([str(x) for x in nones]) + ', consider a more liberal threshold.') if plot is True: labelled_ics = _plot_corrmap(allmaps, subjs, indices, ch_type, ica, label, outlines=outlines, cmap=cmap, contours=contours, layout=layout, show=show) return template_fig, labelled_ics else: return None
bsd-3-clause
Karel-van-de-Plassche/bokeh
bokeh/core/json_encoder.py
2
7205
''' Provide a functions and classes to implement a custom JSON encoder for serializing objects for BokehJS. The primary interface is provided by the |serialize_json| function, which uses the custom |BokehJSONEncoder| to produce JSON output. In general, functions in this module convert values in the following way: * Datetime values (Python, Pandas, NumPy) are converted to floating point milliseconds since epoch. * TimeDelta values are converted to absolute floating point milliseconds. * RelativeDelta values are converted to dictionaries. * Decimal values are converted to floating point. * Sequences (Pandas Series, NumPy arrays, python sequences) that are passed though this interface are converted to lists. Note, however, that arrays in data sources inside Bokeh Documents are converted elsewhere, and by default use a binary encoded format. * Bokeh ``Model`` instances are usually serialized elsewhere in the context of an entire Bokeh Document. Models passed trough this interface are converted to references. * ``HasProps`` (that are not Bokeh models) are converted to key/value dicts or all their properties and values. * ``Color`` instances are converted to CSS color values. .. |serialize_json| replace:: :class:`~bokeh.core.json_encoder.serialize_json` .. |BokehJSONEncoder| replace:: :class:`~bokeh.core.json_encoder.BokehJSONEncoder` ''' from __future__ import absolute_import import logging log = logging.getLogger(__name__) import collections import decimal import json import numpy as np from ..settings import settings from ..util.dependencies import import_optional from ..util.serialization import convert_datetime_type, is_datetime_type, transform_series, transform_array pd = import_optional('pandas') rd = import_optional("dateutil.relativedelta") class BokehJSONEncoder(json.JSONEncoder): ''' A custom ``json.JSONEncoder`` subclass for encoding objects in accordance with the BokehJS protocol. ''' def transform_python_types(self, obj): ''' Handle special scalars such as (Python, NumPy, or Pandas) datetimes, or Decimal values. Args: obj (obj) : The object to encode. Anything not specifically handled in this method is passed on to the default system JSON encoder. ''' # date/time values that get serialized as milliseconds if is_datetime_type(obj): return convert_datetime_type(obj) # slice objects elif isinstance(obj, slice): return dict(start=obj.start, stop=obj.stop, step=obj.step) # NumPy scalars elif np.issubdtype(type(obj), np.floating): return float(obj) elif np.issubdtype(type(obj), np.integer): return int(obj) elif np.issubdtype(type(obj), np.bool_): return bool(obj) # Decimal values elif isinstance(obj, decimal.Decimal): return float(obj) # RelativeDelta gets serialized as a dict elif rd and isinstance(obj, rd.relativedelta): return dict(years=obj.years, months=obj.months, days=obj.days, hours=obj.hours, minutes=obj.minutes, seconds=obj.seconds, microseconds=obj.microseconds) else: return super(BokehJSONEncoder, self).default(obj) def default(self, obj): ''' The required ``default`` method for JSONEncoder subclasses. Args: obj (obj) : The object to encode. Anything not specifically handled in this method is passed on to the default system JSON encoder. ''' from ..model import Model from ..colors import Color from .has_props import HasProps # array types -- use force_list here, only binary # encoding CDS columns for now if pd and isinstance(obj, (pd.Series, pd.Index)): return transform_series(obj, force_list=True) elif isinstance(obj, np.ndarray): return transform_array(obj, force_list=True) elif isinstance(obj, collections.deque): return list(map(self.default, obj)) elif isinstance(obj, Model): return obj.ref elif isinstance(obj, HasProps): return obj.properties_with_values(include_defaults=False) elif isinstance(obj, Color): return obj.to_css() else: return self.transform_python_types(obj) def serialize_json(obj, pretty=None, indent=None, **kwargs): ''' Return a serialized JSON representation of objects, suitable to send to BokehJS. This function is typically used to serialize single python objects in the manner expected by BokehJS. In particular, many datetime values are automatically normalized to an expected format. Some Bokeh objects can also be passed, but note that Bokeh models are typically properly serialized in the context of an entire Bokeh document. The resulting JSON always has sorted keys. By default. the output is as compact as possible unless pretty output or indentation is requested. Args: obj (obj) : the object to serialize to JSON format pretty (bool, optional) : Whether to generate prettified output. If ``True``, spaces are added after added after separators, and indentation and newlines are applied. (default: False) Pretty output can also be enabled with the environment variable ``BOKEH_PRETTY``, which overrides this argument, if set. indent (int or None, optional) : Amount of indentation to use in generated JSON output. If ``None`` then no indentation is used, unless pretty output is enabled, in which case two spaces are used. (default: None) Any additional keyword arguments are passed to ``json.dumps``, except for some that are computed internally, and cannot be overridden: * allow_nan * indent * separators * sort_keys Examples: .. code-block:: python >>> data = dict(b=np.datetime64('2017-01-01'), a = np.arange(3)) >>>print(serialize_json(data)) {"a":[0,1,2],"b":1483228800000.0} >>> print(serialize_json(data, pretty=True)) { "a": [ 0, 1, 2 ], "b": 1483228800000.0 } ''' # these args to json.dumps are computed internally and should not be passed along for name in ['allow_nan', 'separators', 'sort_keys']: if name in kwargs: raise ValueError("The value of %r is computed internally, overriding is not permissable." % name) if pretty is None: pretty = settings.pretty(False) if pretty: separators=(",", ": ") else: separators=(",", ":") if pretty and indent is None: indent = 2 return json.dumps(obj, cls=BokehJSONEncoder, allow_nan=False, indent=indent, separators=separators, sort_keys=True, **kwargs)
bsd-3-clause
olologin/scikit-learn
examples/covariance/plot_mahalanobis_distances.py
348
6232
r""" ================================================================ Robust covariance estimation and Mahalanobis distances relevance ================================================================ An example to show covariance estimation with the Mahalanobis distances on Gaussian distributed data. For Gaussian distributed data, the distance of an observation :math:`x_i` to the mode of the distribution can be computed using its Mahalanobis distance: :math:`d_{(\mu,\Sigma)}(x_i)^2 = (x_i - \mu)'\Sigma^{-1}(x_i - \mu)` where :math:`\mu` and :math:`\Sigma` are the location and the covariance of the underlying Gaussian distribution. In practice, :math:`\mu` and :math:`\Sigma` are replaced by some estimates. The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set and therefor, the corresponding Mahalanobis distances are. One would better have to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set and that the associated Mahalanobis distances accurately reflect the true organisation of the observations. The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples}-n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples}+n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]. This example illustrates how the Mahalanobis distances are affected by outlying data: observations drawn from a contaminating distribution are not distinguishable from the observations coming from the real, Gaussian distribution that one may want to work with. Using MCD-based Mahalanobis distances, the two populations become distinguishable. Associated applications are outliers detection, observations ranking, clustering, ... For visualization purpose, the cubic root of the Mahalanobis distances are represented in the boxplot, as Wilson and Hilferty suggest [2] [1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984. [2] Wilson, E. B., & Hilferty, M. M. (1931). The distribution of chi-square. Proceedings of the National Academy of Sciences of the United States of America, 17, 684-688. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.covariance import EmpiricalCovariance, MinCovDet n_samples = 125 n_outliers = 25 n_features = 2 # generate data gen_cov = np.eye(n_features) gen_cov[0, 0] = 2. X = np.dot(np.random.randn(n_samples, n_features), gen_cov) # add some outliers outliers_cov = np.eye(n_features) outliers_cov[np.arange(1, n_features), np.arange(1, n_features)] = 7. X[-n_outliers:] = np.dot(np.random.randn(n_outliers, n_features), outliers_cov) # fit a Minimum Covariance Determinant (MCD) robust estimator to data robust_cov = MinCovDet().fit(X) # compare estimators learnt from the full data set with true parameters emp_cov = EmpiricalCovariance().fit(X) ############################################################################### # Display results fig = plt.figure() plt.subplots_adjust(hspace=-.1, wspace=.4, top=.95, bottom=.05) # Show data set subfig1 = plt.subplot(3, 1, 1) inlier_plot = subfig1.scatter(X[:, 0], X[:, 1], color='black', label='inliers') outlier_plot = subfig1.scatter(X[:, 0][-n_outliers:], X[:, 1][-n_outliers:], color='red', label='outliers') subfig1.set_xlim(subfig1.get_xlim()[0], 11.) subfig1.set_title("Mahalanobis distances of a contaminated data set:") # Show contours of the distance functions xx, yy = np.meshgrid(np.linspace(plt.xlim()[0], plt.xlim()[1], 100), np.linspace(plt.ylim()[0], plt.ylim()[1], 100)) zz = np.c_[xx.ravel(), yy.ravel()] mahal_emp_cov = emp_cov.mahalanobis(zz) mahal_emp_cov = mahal_emp_cov.reshape(xx.shape) emp_cov_contour = subfig1.contour(xx, yy, np.sqrt(mahal_emp_cov), cmap=plt.cm.PuBu_r, linestyles='dashed') mahal_robust_cov = robust_cov.mahalanobis(zz) mahal_robust_cov = mahal_robust_cov.reshape(xx.shape) robust_contour = subfig1.contour(xx, yy, np.sqrt(mahal_robust_cov), cmap=plt.cm.YlOrBr_r, linestyles='dotted') subfig1.legend([emp_cov_contour.collections[1], robust_contour.collections[1], inlier_plot, outlier_plot], ['MLE dist', 'robust dist', 'inliers', 'outliers'], loc="upper right", borderaxespad=0) plt.xticks(()) plt.yticks(()) # Plot the scores for each point emp_mahal = emp_cov.mahalanobis(X - np.mean(X, 0)) ** (0.33) subfig2 = plt.subplot(2, 2, 3) subfig2.boxplot([emp_mahal[:-n_outliers], emp_mahal[-n_outliers:]], widths=.25) subfig2.plot(1.26 * np.ones(n_samples - n_outliers), emp_mahal[:-n_outliers], '+k', markeredgewidth=1) subfig2.plot(2.26 * np.ones(n_outliers), emp_mahal[-n_outliers:], '+k', markeredgewidth=1) subfig2.axes.set_xticklabels(('inliers', 'outliers'), size=15) subfig2.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16) subfig2.set_title("1. from non-robust estimates\n(Maximum Likelihood)") plt.yticks(()) robust_mahal = robust_cov.mahalanobis(X - robust_cov.location_) ** (0.33) subfig3 = plt.subplot(2, 2, 4) subfig3.boxplot([robust_mahal[:-n_outliers], robust_mahal[-n_outliers:]], widths=.25) subfig3.plot(1.26 * np.ones(n_samples - n_outliers), robust_mahal[:-n_outliers], '+k', markeredgewidth=1) subfig3.plot(2.26 * np.ones(n_outliers), robust_mahal[-n_outliers:], '+k', markeredgewidth=1) subfig3.axes.set_xticklabels(('inliers', 'outliers'), size=15) subfig3.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16) subfig3.set_title("2. from robust estimates\n(Minimum Covariance Determinant)") plt.yticks(()) plt.show()
bsd-3-clause
Barmaley-exe/scikit-learn
examples/manifold/plot_lle_digits.py
181
8510
""" ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= An illustration of various embeddings on the digits dataset. The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-separable. t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting. It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization. """ # Authors: Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, lda, random_projection) digits = datasets.load_digits(n_class=6) X = digits.data y = digits.target n_samples, n_features = X.shape n_neighbors = 30 #---------------------------------------------------------------------- # Scale and visualize the embedding vectors def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(digits.data.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) #---------------------------------------------------------------------- # Plot images of the digits n_img_per_row = 20 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) plt.imshow(img, cmap=plt.cm.binary) plt.xticks([]) plt.yticks([]) plt.title('A selection from the 64-dimensional digits dataset') #---------------------------------------------------------------------- # Random 2D projection using a random unitary matrix print("Computing random projection") rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X) plot_embedding(X_projected, "Random Projection of the digits") #---------------------------------------------------------------------- # Projection on to the first 2 principal components print("Computing PCA projection") t0 = time() X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X) plot_embedding(X_pca, "Principal Components projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Projection on to the first 2 linear discriminant components print("Computing LDA projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible t0 = time() X_lda = lda.LDA(n_components=2).fit_transform(X2, y) plot_embedding(X_lda, "Linear Discriminant projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Isomap projection of the digits dataset print("Computing Isomap embedding") t0 = time() X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X) print("Done.") plot_embedding(X_iso, "Isomap projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Locally linear embedding of the digits dataset print("Computing LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='standard') t0 = time() X_lle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_lle, "Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Modified Locally linear embedding of the digits dataset print("Computing modified LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='modified') t0 = time() X_mlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_mlle, "Modified Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # HLLE embedding of the digits dataset print("Computing Hessian LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='hessian') t0 = time() X_hlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_hlle, "Hessian Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # LTSA embedding of the digits dataset print("Computing LTSA embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='ltsa') t0 = time() X_ltsa = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_ltsa, "Local Tangent Space Alignment of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # MDS embedding of the digits dataset print("Computing MDS embedding") clf = manifold.MDS(n_components=2, n_init=1, max_iter=100) t0 = time() X_mds = clf.fit_transform(X) print("Done. Stress: %f" % clf.stress_) plot_embedding(X_mds, "MDS embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Random Trees embedding of the digits dataset print("Computing Totally Random Trees embedding") hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) t0 = time() X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) plot_embedding(X_reduced, "Random forest embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Spectral embedding of the digits dataset print("Computing Spectral embedding") embedder = manifold.SpectralEmbedding(n_components=2, random_state=0, eigen_solver="arpack") t0 = time() X_se = embedder.fit_transform(X) plot_embedding(X_se, "Spectral embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # t-SNE embedding of the digits dataset print("Computing t-SNE embedding") tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) t0 = time() X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne, "t-SNE embedding of the digits (time %.2fs)" % (time() - t0)) plt.show()
bsd-3-clause
Caoimhinmg/PmagPy
programs/conversion_scripts2/jr6_jr6_magic2.py
1
11779
#!/usr/bin/env python from __future__ import print_function from builtins import str from builtins import range import pandas as pd import sys import numpy as np import pmagpy.pmag as pmag def main(command_line=True, **kwargs): """ NAME jr6_jr6_magic.py DESCRIPTION converts JR6 .jr6 format files to magic_measurements format files SYNTAX jr6_jr6_magic.py [command line options] OPTIONS -h: prints the help message and quits. -f FILE: specify input file, or -F FILE: specify output file, default is magic_measurements.txt -Fsa: specify er_samples format file for appending, default is new er_samples.txt (Not working yet) -spc NUM : specify number of characters to designate a specimen, default = 1 -loc LOCNAME : specify location/study name -A: don't average replicate measurements -ncn NCON: specify sample naming convention (6 and 7 not yet implemented) -mcd [SO-MAG,SO-SUN,SO-SIGHT...] supply how these samples were oriented -JR IODP samples measured on the JOIDES RESOLUTION -v NUM : specify the volume in cc of the sample, default 2.5^3cc Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail [email protected] for help. INPUT JR6 .jr6 format file """ # initialize some stuff noave=0 #volume=2.5**3 #default volume is a 2.5cm cube volume = 2.5 * 1e-6 #default volume is a 2.5 cm cube, translated to meters cubed inst="" samp_con,Z='1',"" missing=1 demag="N" er_location_name="unknown" citation='This study' args=sys.argv meth_code="LP-NO" specnum=1 version_num=pmag.get_version() Samps=[] # keeps track of sample orientations user="" mag_file="" dir_path='.' MagRecs=[] ErSamps=[] SampOuts=[] samp_file = 'er_samples.txt' meas_file = 'magic_measurements.txt' tmp_file= "fixed.jr6" meth_code,JR="",0 # # get command line arguments # if command_line: if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-ID' in sys.argv: ind = sys.argv.index('-ID') input_dir_path = sys.argv[ind+1] else: input_dir_path = dir_path output_dir_path = dir_path if "-h" in args: print(main.__doc__) return False if '-F' in args: ind=args.index("-F") meas_file = args[ind+1] if '-Fsa' in args: ind = args.index("-Fsa") samp_file = args[ind+1] #try: # open(samp_file,'r') # ErSamps,file_type=pmag.magic_read(samp_file) # print 'sample information will be appended to ', samp_file #except: # print samp_file,' not found: sample information will be stored in new er_samples.txt file' # samp_file = output_dir_path+'/er_samples.txt' if '-f' in args: ind = args.index("-f") mag_file= args[ind+1] if "-spc" in args: ind = args.index("-spc") specnum = int(args[ind+1]) if "-ncn" in args: ind=args.index("-ncn") samp_con=sys.argv[ind+1] if "-loc" in args: ind=args.index("-loc") er_location_name=args[ind+1] if "-A" in args: noave=1 if "-mcd" in args: ind=args.index("-mcd") meth_code=args[ind+1] if "-JR" in args: meth_code=meth_code+":FS-C-DRILL-IODP:SP-SS-C:SO-V" meth_code=meth_code.strip(":") JR=1 samp_con='5' if "-v" in args: ind=args.index("-v") volume=float(args[ind+1])*1e-6 # enter volume in cc, convert to m^3 if not command_line: dir_path = kwargs.get('dir_path', '.') input_dir_path = kwargs.get('input_dir_path', dir_path) output_dir_path = dir_path meas_file = kwargs.get('meas_file', 'magic_measurements.txt') mag_file = kwargs.get('mag_file') samp_file = kwargs.get('samp_file', 'er_samples.txt') specnum = kwargs.get('specnum', 1) samp_con = kwargs.get('samp_con', '1') er_location_name = kwargs.get('er_location_name', '') noave = kwargs.get('noave', 0) # default (0) means DO average meth_code = kwargs.get('meth_code', "LP-NO") volume = float(kwargs.get('volume', 0)) if not volume: volume = 2.5 * 1e-6 #default volume is a 2.5 cm cube, translated to meters cubed else: #convert cm^3 to m^3 volume *= 1e-6 JR = kwargs.get('JR', 0) if JR: if meth_code == "LP-NO": meth_code = "" meth_code=meth_code+":FS-C-DRILL-IODP:SP-SS-C:SO-V" meth_code=meth_code.strip(":") samp_con='5' # format variables mag_file = input_dir_path+"/" + mag_file meas_file = output_dir_path+"/" + meas_file samp_file = output_dir_path+"/" + samp_file tmp_file = output_dir_path+"/" + tmp_file if specnum!=0: specnum=-specnum if "4" in samp_con: if "-" not in samp_con: print("option [4] must be in form 4-Z where Z is an integer") return False, "option [4] must be in form 4-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="4" if "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") return False, "option [7] must be in form 7-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="7" ErSampRec,ErSiteRec={},{} # parse data # fix .jr6 file so that there are spaces between all the columns. pre_data=open(mag_file, 'r') tmp_data=open(tmp_file, 'w') line=pre_data.readline() while line !='': line=line.replace('-',' -') #print "line=", line tmp_data.write(line) line=pre_data.readline() tmp_data.close() pre_data.close() data=pd.read_csv(tmp_file, delim_whitespace=True,header=None) if JR==0: # data.columns=['er_specimen_name','step','x','y','z','expon','sample_azimuth','sample_dip', 'sample_bed_dip_direction','sample_bed_dip','bed_dip_dir2','bed_dip2','param1','param2','param3','param4','measurement_csd'] cart=np.array([data['x'],data['y'],data['z']]).transpose() else: # measured on the Joides Resolution JR6 data.columns=['er_specimen_name','step','negz','y','x','expon','sample_azimuth','sample_dip', 'sample_bed_dip_direction','sample_bed_dip','bed_dip_dir2','bed_dip2','param1','param2','param3','param4','measurement_csd'] cart=np.array([data['x'],data['y'],-data['negz']]).transpose() dir= pmag.cart2dir(cart).transpose() data['measurement_dec']=dir[0] data['measurement_inc']=dir[1] data['measurement_magn_moment']=dir[2]*(10.0**data['expon'])*volume # the data are in A/m - this converts to Am^2 data['measurement_magn_volume']=dir[2]*(10.0**data['expon']) # A/m - data in A/m data['sample_dip']=-data['sample_dip'] DGEOs,IGEOs=[],[] for ind in range(len(data)): dgeo,igeo=pmag.dogeo(data.ix[ind]['measurement_dec'],data.ix[ind]['measurement_inc'],data.ix[ind]['sample_azimuth'],data.ix[ind]['sample_dip']) DGEOs.append(dgeo) IGEOs.append(igeo) data['specimen_dec']=DGEOs data['specimen_inc']=IGEOs data['specimen_tilt']='1' if specnum!=0: data['er_sample_name']=data['er_specimen_name'][:specnum] else: data['er_sample_name']=data['er_specimen_name'] if int(samp_con) in [1, 2, 3, 4, 5, 7]: data['er_site_name']=pmag.parse_site(data['er_sample_name'],samp_con,Z) # else: # if 'er_site_name' in ErSampRec.keys():er_site_name=ErSampRec['er_site_name'] # if 'er_location_name' in ErSampRec.keys():er_location_name=ErSampRec['er_location_name'] # Configure the er_sample table for rowNum, row in data.iterrows(): sampleFlag=0 for sampRec in SampOuts: if sampRec['er_sample_name'] == row['er_sample_name']: sampleFlag=1 break if sampleFlag == 0: ErSampRec['er_sample_name']=row['er_sample_name'] ErSampRec['sample_azimuth']=str(row['sample_azimuth']) ErSampRec['sample_dip']=str(row['sample_dip']) ErSampRec['magic_method_codes']=meth_code ErSampRec['er_location_name']=er_location_name ErSampRec['er_site_name']=row['er_site_name'] ErSampRec['er_citation_names']='This study' SampOuts.append(ErSampRec.copy()) # Configure the magic_measurements table for rowNum, row in data.iterrows(): MagRec={} # MagRec['measurement_description']='Date: '+date MagRec["er_citation_names"]="This study" MagRec['er_location_name']=er_location_name MagRec['er_site_name']=row['er_site_name'] MagRec['er_sample_name']=row['er_sample_name'] MagRec['magic_software_packages']=version_num MagRec["treatment_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_flag"]='g' MagRec["measurement_standard"]='u' MagRec["measurement_number"]='1' MagRec["er_specimen_name"]=row['er_specimen_name'] MagRec["treatment_ac_field"]='0' if row['step'] == 'NRM': meas_type="LT-NO" elif row['step'][0:2] == 'AD': meas_type="LT-AF-Z" treat=float(row['step'][2:]) MagRec["treatment_ac_field"]='%8.3e' %(treat*1e-3) # convert from mT to tesla elif row['step'][0] == 'TD': meas_type="LT-T-Z" treat=float(row['step'][2:]) MagRec["treatment_temp"]='%8.3e' % (treat+273.) # temp in kelvin else: # need to add IRM, and ARM options print("measurement type unknown", row['step']) return False, "measurement type unknown" MagRec["measurement_magn_moment"]=str(row['measurement_magn_moment']) MagRec["measurement_magn_volume"]=str(row['measurement_magn_volume']) MagRec["measurement_dec"]=str(row['measurement_dec']) MagRec["measurement_inc"]=str(row['measurement_inc']) MagRec['magic_method_codes']=meas_type MagRecs.append(MagRec.copy()) pmag.magic_write(samp_file,SampOuts,'er_samples') print("sample orientations put in ",samp_file) MagOuts=pmag.measurements_methods(MagRecs,noave) pmag.magic_write(meas_file,MagOuts,'magic_measurements') print("results put in ",meas_file) print("exit!") return True, meas_file def do_help(): return main.__doc__ if __name__ == "__main__": main()
bsd-3-clause
3manuek/scikit-learn
sklearn/datasets/tests/test_lfw.py
230
7880
"""This test for the LFW require medium-size data dowloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_people_deprecation(): msg = ("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_people, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False) @raises(IOError) def test_load_empty_lfw_pairs(): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_pairs_deprecation(): msg = ("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_pairs, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
mikebenfield/scikit-learn
benchmarks/bench_plot_approximate_neighbors.py
244
6011
""" Benchmark for approximate nearest neighbor search using locality sensitive hashing forest. There are two types of benchmarks. First, accuracy of LSHForest queries are measured for various hyper-parameters and index sizes. Second, speed up of LSHForest queries compared to brute force method in exact nearest neighbors is measures for the aforementioned settings. In general, speed up is increasing as the index size grows. """ from __future__ import division import numpy as np from tempfile import gettempdir from time import time from sklearn.neighbors import NearestNeighbors from sklearn.neighbors.approximate import LSHForest from sklearn.datasets import make_blobs from sklearn.externals.joblib import Memory m = Memory(cachedir=gettempdir()) @m.cache() def make_data(n_samples, n_features, n_queries, random_state=0): """Create index and query data.""" print('Generating random blob-ish data') X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=100, shuffle=True, random_state=random_state) # Keep the last samples as held out query vectors: note since we used # shuffle=True we have ensured that index and query vectors are # samples from the same distribution (a mixture of 100 gaussians in this # case) return X[:n_samples], X[n_samples:] def calc_exact_neighbors(X, queries, n_queries, n_neighbors): """Measures average times for exact neighbor queries.""" print ('Building NearestNeighbors for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) average_time = 0 t0 = time() neighbors = nbrs.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time = (time() - t0) / n_queries return neighbors, average_time def calc_accuracy(X, queries, n_queries, n_neighbors, exact_neighbors, average_time_exact, **lshf_params): """Calculates accuracy and the speed up of LSHForest.""" print('Building LSHForest for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) lshf = LSHForest(**lshf_params) t0 = time() lshf.fit(X) lshf_build_time = time() - t0 print('Done in %0.3fs' % lshf_build_time) accuracy = 0 t0 = time() approx_neighbors = lshf.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time_approx = (time() - t0) / n_queries for i in range(len(queries)): accuracy += np.in1d(approx_neighbors[i], exact_neighbors[i]).mean() accuracy /= n_queries speed_up = average_time_exact / average_time_approx print('Average time for lshf neighbor queries: %0.3fs' % average_time_approx) print ('Average time for exact neighbor queries: %0.3fs' % average_time_exact) print ('Average Accuracy : %0.2f' % accuracy) print ('Speed up: %0.1fx' % speed_up) return speed_up, accuracy if __name__ == '__main__': import matplotlib.pyplot as plt # Initialize index sizes n_samples = [int(1e3), int(1e4), int(1e5), int(1e6)] n_features = int(1e2) n_queries = 100 n_neighbors = 10 X_index, X_query = make_data(np.max(n_samples), n_features, n_queries, random_state=0) params_list = [{'n_estimators': 3, 'n_candidates': 50}, {'n_estimators': 5, 'n_candidates': 70}, {'n_estimators': 10, 'n_candidates': 100}] accuracies = np.zeros((len(n_samples), len(params_list)), dtype=float) speed_ups = np.zeros((len(n_samples), len(params_list)), dtype=float) for i, sample_size in enumerate(n_samples): print ('==========================================================') print ('Sample size: %i' % sample_size) print ('------------------------') exact_neighbors, average_time_exact = calc_exact_neighbors( X_index[:sample_size], X_query, n_queries, n_neighbors) for j, params in enumerate(params_list): print ('LSHF parameters: n_estimators = %i, n_candidates = %i' % (params['n_estimators'], params['n_candidates'])) speed_ups[i, j], accuracies[i, j] = calc_accuracy( X_index[:sample_size], X_query, n_queries, n_neighbors, exact_neighbors, average_time_exact, random_state=0, **params) print ('') print ('==========================================================') # Set labels for LSHForest parameters colors = ['c', 'm', 'y'] legend_rects = [plt.Rectangle((0, 0), 0.1, 0.1, fc=color) for color in colors] legend_labels = ['n_estimators={n_estimators}, ' 'n_candidates={n_candidates}'.format(**p) for p in params_list] # Plot precision plt.figure() plt.legend(legend_rects, legend_labels, loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, accuracies[:, i], c=colors[i]) plt.plot(n_samples, accuracies[:, i], c=colors[i]) plt.ylim([0, 1.3]) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Precision@10") plt.xlabel("Index size") plt.grid(which='both') plt.title("Precision of first 10 neighbors with index size") # Plot speed up plt.figure() plt.legend(legend_rects, legend_labels, loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, speed_ups[:, i], c=colors[i]) plt.plot(n_samples, speed_ups[:, i], c=colors[i]) plt.ylim(0, np.max(speed_ups)) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Speed up") plt.xlabel("Index size") plt.grid(which='both') plt.title("Relationship between Speed up and index size") plt.show()
bsd-3-clause
loli/semisupervisedforests
examples/mixture/plot_gmm_pdf.py
284
1528
""" ============================================= Density Estimation for a mixture of Gaussians ============================================= Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from sklearn import mixture n_samples = 300 # generate random sample, two components np.random.seed(0) # generate spherical data centered on (20, 20) shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20]) # generate zero centered stretched Gaussian data C = np.array([[0., -0.7], [3.5, .7]]) stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C) # concatenate the two datasets into the final training set X_train = np.vstack([shifted_gaussian, stretched_gaussian]) # fit a Gaussian Mixture Model with two components clf = mixture.GMM(n_components=2, covariance_type='full') clf.fit(X_train) # display predicted scores by the model as a contour plot x = np.linspace(-20.0, 30.0) y = np.linspace(-20.0, 40.0) X, Y = np.meshgrid(x, y) XX = np.array([X.ravel(), Y.ravel()]).T Z = -clf.score_samples(XX)[0] Z = Z.reshape(X.shape) CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0), levels=np.logspace(0, 3, 10)) CB = plt.colorbar(CS, shrink=0.8, extend='both') plt.scatter(X_train[:, 0], X_train[:, 1], .8) plt.title('Negative log-likelihood predicted by a GMM') plt.axis('tight') plt.show()
bsd-3-clause
Sapphirine/Trading-Using-Nonparametric-Time-Series-Classification-Models
logistic.py
1
2116
# coding: utf-8 # In[1]: from numpy import genfromtxt import numpy as np import datetime as datatime my_data = genfromtxt("C:\\Users\\Yufan\\Google Drive\\Interviews\\Interviews Github\\BitCoinTotalReturnSwapStrategy\\bitfinexUSD.csv\\.bitfinexUSD.csv", delimiter =',') # In[2]: print my_data.shape my_data_cut = my_data # In[3]: import sklearn.linear_model as linear # In[7]: L = my_data.shape[0] n_training_sample_size = int(L*.9) - 11 print n_training_sample_size n_testing_sample_size = L - n_training_sample_size -11 n_testing_sample_size # In[12]: N = n_training_sample_size training_data = np.zeros((N,11)) print training_data.shape for i in xrange(N): for j in xrange(10): training_data[i,j] = my_data_cut[i-j+10,1]/my_data_cut[i-j+9,1] #from index 11 if (my_data_cut[i+11,1] > my_data_cut[i+10, 1]): training_data[i,10] = 1 N = n_testing_sample_size testing_target = np.zeros((N,1))-1 testing_data = np.zeros((N,10)) reset = n_training_sample_size print reset for i in xrange(N): for j in xrange(10): testing_data[i,j] = my_data_cut[reset+i-j+10,1]/my_data_cut[reset+i-j+9,1] if (my_data_cut[i+reset+11,1] > my_data_cut[i+reset+10, 1]): testing_target[i,0] = 1 else: testing_target[i,0] = 0 # In[9]: logistic_regression_model = linear.LogisticRegression() training_data.shape # In[10]: logistic_regression_model.fit(training_data[:,0:-1],training_data[:,10:11]) # In[16]: beta = logistic_regression_model.coef_ beta_0 = logistic_regression_model.intercept_ predicted_value = logistic_regression_model.predict_proba(testing_data) hit = 0 for i in xrange(len(predicted_value)): if predicted_value[i,1] > 0.5 and testing_target[i,0] == 1 or predicted_value[i,1] < 0.5 and testing_target[i,0] == 0: hit +=1 print hit print len(predicted_value) print len(testing_target) print beta print beta_ print predicted_value # In[15]: nd = my_data_cut print nd # In[17]: predicted_v = logistic_regression_model.score(testing_data,testing_target) # In[18]: predicted_v
apache-2.0
GuessWhoSamFoo/pandas
pandas/tests/reshape/merge/test_merge_asof.py
2
40511
import numpy as np import pytest import pytz import pandas as pd from pandas import Timedelta, merge_asof, read_csv, to_datetime from pandas.core.reshape.merge import MergeError from pandas.util.testing import assert_frame_equal class TestAsOfMerge(object): def read_data(self, datapath, name, dedupe=False): path = datapath('reshape', 'merge', 'data', name) x = read_csv(path) if dedupe: x = (x.drop_duplicates(['time', 'ticker'], keep='last') .reset_index(drop=True) ) x.time = to_datetime(x.time) return x @pytest.fixture(autouse=True) def setup_method(self, datapath): self.trades = self.read_data(datapath, 'trades.csv') self.quotes = self.read_data(datapath, 'quotes.csv', dedupe=True) self.asof = self.read_data(datapath, 'asof.csv') self.tolerance = self.read_data(datapath, 'tolerance.csv') self.allow_exact_matches = self.read_data(datapath, 'allow_exact_matches.csv') self.allow_exact_matches_and_tolerance = self.read_data( datapath, 'allow_exact_matches_and_tolerance.csv') def test_examples1(self): """ doc-string examples """ left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) right = pd.DataFrame({'a': [1, 2, 3, 6, 7], 'right_val': [1, 2, 3, 6, 7]}) expected = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c'], 'right_val': [1, 3, 7]}) result = pd.merge_asof(left, right, on='a') assert_frame_equal(result, expected) def test_examples2(self): """ doc-string examples """ trades = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.038', '20160525 13:30:00.048', '20160525 13:30:00.048', '20160525 13:30:00.048']), 'ticker': ['MSFT', 'MSFT', 'GOOG', 'GOOG', 'AAPL'], 'price': [51.95, 51.95, 720.77, 720.92, 98.00], 'quantity': [75, 155, 100, 100, 100]}, columns=['time', 'ticker', 'price', 'quantity']) quotes = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.023', '20160525 13:30:00.030', '20160525 13:30:00.041', '20160525 13:30:00.048', '20160525 13:30:00.049', '20160525 13:30:00.072', '20160525 13:30:00.075']), 'ticker': ['GOOG', 'MSFT', 'MSFT', 'MSFT', 'GOOG', 'AAPL', 'GOOG', 'MSFT'], 'bid': [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01], 'ask': [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03]}, columns=['time', 'ticker', 'bid', 'ask']) pd.merge_asof(trades, quotes, on='time', by='ticker') pd.merge_asof(trades, quotes, on='time', by='ticker', tolerance=pd.Timedelta('2ms')) expected = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.038', '20160525 13:30:00.048', '20160525 13:30:00.048', '20160525 13:30:00.048']), 'ticker': ['MSFT', 'MSFT', 'GOOG', 'GOOG', 'AAPL'], 'price': [51.95, 51.95, 720.77, 720.92, 98.00], 'quantity': [75, 155, 100, 100, 100], 'bid': [np.nan, 51.97, np.nan, np.nan, np.nan], 'ask': [np.nan, 51.98, np.nan, np.nan, np.nan]}, columns=['time', 'ticker', 'price', 'quantity', 'bid', 'ask']) result = pd.merge_asof(trades, quotes, on='time', by='ticker', tolerance=pd.Timedelta('10ms'), allow_exact_matches=False) assert_frame_equal(result, expected) def test_examples3(self): """ doc-string examples """ # GH14887 left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) right = pd.DataFrame({'a': [1, 2, 3, 6, 7], 'right_val': [1, 2, 3, 6, 7]}) expected = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c'], 'right_val': [1, 6, np.nan]}) result = pd.merge_asof(left, right, on='a', direction='forward') assert_frame_equal(result, expected) def test_examples4(self): """ doc-string examples """ # GH14887 left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) right = pd.DataFrame({'a': [1, 2, 3, 6, 7], 'right_val': [1, 2, 3, 6, 7]}) expected = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c'], 'right_val': [1, 6, 7]}) result = pd.merge_asof(left, right, on='a', direction='nearest') assert_frame_equal(result, expected) def test_basic(self): expected = self.asof trades = self.trades quotes = self.quotes result = merge_asof(trades, quotes, on='time', by='ticker') assert_frame_equal(result, expected) def test_basic_categorical(self): expected = self.asof trades = self.trades.copy() trades.ticker = trades.ticker.astype('category') quotes = self.quotes.copy() quotes.ticker = quotes.ticker.astype('category') expected.ticker = expected.ticker.astype('category') result = merge_asof(trades, quotes, on='time', by='ticker') assert_frame_equal(result, expected) def test_basic_left_index(self): # GH14253 expected = self.asof trades = self.trades.set_index('time') quotes = self.quotes result = merge_asof(trades, quotes, left_index=True, right_on='time', by='ticker') # left-only index uses right's index, oddly expected.index = result.index # time column appears after left's columns expected = expected[result.columns] assert_frame_equal(result, expected) def test_basic_right_index(self): expected = self.asof trades = self.trades quotes = self.quotes.set_index('time') result = merge_asof(trades, quotes, left_on='time', right_index=True, by='ticker') assert_frame_equal(result, expected) def test_basic_left_index_right_index(self): expected = self.asof.set_index('time') trades = self.trades.set_index('time') quotes = self.quotes.set_index('time') result = merge_asof(trades, quotes, left_index=True, right_index=True, by='ticker') assert_frame_equal(result, expected) def test_multi_index(self): # MultiIndex is prohibited trades = self.trades.set_index(['time', 'price']) quotes = self.quotes.set_index('time') with pytest.raises(MergeError): merge_asof(trades, quotes, left_index=True, right_index=True) trades = self.trades.set_index('time') quotes = self.quotes.set_index(['time', 'bid']) with pytest.raises(MergeError): merge_asof(trades, quotes, left_index=True, right_index=True) def test_on_and_index(self): # 'on' parameter and index together is prohibited trades = self.trades.set_index('time') quotes = self.quotes.set_index('time') with pytest.raises(MergeError): merge_asof(trades, quotes, left_on='price', left_index=True, right_index=True) trades = self.trades.set_index('time') quotes = self.quotes.set_index('time') with pytest.raises(MergeError): merge_asof(trades, quotes, right_on='bid', left_index=True, right_index=True) def test_basic_left_by_right_by(self): # GH14253 expected = self.asof trades = self.trades quotes = self.quotes result = merge_asof(trades, quotes, on='time', left_by='ticker', right_by='ticker') assert_frame_equal(result, expected) def test_missing_right_by(self): expected = self.asof trades = self.trades quotes = self.quotes q = quotes[quotes.ticker != 'MSFT'] result = merge_asof(trades, q, on='time', by='ticker') expected.loc[expected.ticker == 'MSFT', ['bid', 'ask']] = np.nan assert_frame_equal(result, expected) def test_multiby(self): # GH13936 trades = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.023', '20160525 13:30:00.046', '20160525 13:30:00.048', '20160525 13:30:00.050']), 'ticker': ['MSFT', 'MSFT', 'GOOG', 'GOOG', 'AAPL'], 'exch': ['ARCA', 'NSDQ', 'NSDQ', 'BATS', 'NSDQ'], 'price': [51.95, 51.95, 720.77, 720.92, 98.00], 'quantity': [75, 155, 100, 100, 100]}, columns=['time', 'ticker', 'exch', 'price', 'quantity']) quotes = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.023', '20160525 13:30:00.030', '20160525 13:30:00.041', '20160525 13:30:00.045', '20160525 13:30:00.049']), 'ticker': ['GOOG', 'MSFT', 'MSFT', 'MSFT', 'GOOG', 'AAPL'], 'exch': ['BATS', 'NSDQ', 'ARCA', 'ARCA', 'NSDQ', 'ARCA'], 'bid': [720.51, 51.95, 51.97, 51.99, 720.50, 97.99], 'ask': [720.92, 51.96, 51.98, 52.00, 720.93, 98.01]}, columns=['time', 'ticker', 'exch', 'bid', 'ask']) expected = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.023', '20160525 13:30:00.046', '20160525 13:30:00.048', '20160525 13:30:00.050']), 'ticker': ['MSFT', 'MSFT', 'GOOG', 'GOOG', 'AAPL'], 'exch': ['ARCA', 'NSDQ', 'NSDQ', 'BATS', 'NSDQ'], 'price': [51.95, 51.95, 720.77, 720.92, 98.00], 'quantity': [75, 155, 100, 100, 100], 'bid': [np.nan, 51.95, 720.50, 720.51, np.nan], 'ask': [np.nan, 51.96, 720.93, 720.92, np.nan]}, columns=['time', 'ticker', 'exch', 'price', 'quantity', 'bid', 'ask']) result = pd.merge_asof(trades, quotes, on='time', by=['ticker', 'exch']) assert_frame_equal(result, expected) def test_multiby_heterogeneous_types(self): # GH13936 trades = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.023', '20160525 13:30:00.046', '20160525 13:30:00.048', '20160525 13:30:00.050']), 'ticker': [0, 0, 1, 1, 2], 'exch': ['ARCA', 'NSDQ', 'NSDQ', 'BATS', 'NSDQ'], 'price': [51.95, 51.95, 720.77, 720.92, 98.00], 'quantity': [75, 155, 100, 100, 100]}, columns=['time', 'ticker', 'exch', 'price', 'quantity']) quotes = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.023', '20160525 13:30:00.030', '20160525 13:30:00.041', '20160525 13:30:00.045', '20160525 13:30:00.049']), 'ticker': [1, 0, 0, 0, 1, 2], 'exch': ['BATS', 'NSDQ', 'ARCA', 'ARCA', 'NSDQ', 'ARCA'], 'bid': [720.51, 51.95, 51.97, 51.99, 720.50, 97.99], 'ask': [720.92, 51.96, 51.98, 52.00, 720.93, 98.01]}, columns=['time', 'ticker', 'exch', 'bid', 'ask']) expected = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.023', '20160525 13:30:00.046', '20160525 13:30:00.048', '20160525 13:30:00.050']), 'ticker': [0, 0, 1, 1, 2], 'exch': ['ARCA', 'NSDQ', 'NSDQ', 'BATS', 'NSDQ'], 'price': [51.95, 51.95, 720.77, 720.92, 98.00], 'quantity': [75, 155, 100, 100, 100], 'bid': [np.nan, 51.95, 720.50, 720.51, np.nan], 'ask': [np.nan, 51.96, 720.93, 720.92, np.nan]}, columns=['time', 'ticker', 'exch', 'price', 'quantity', 'bid', 'ask']) result = pd.merge_asof(trades, quotes, on='time', by=['ticker', 'exch']) assert_frame_equal(result, expected) def test_multiby_indexed(self): # GH15676 left = pd.DataFrame([ [pd.to_datetime('20160602'), 1, 'a'], [pd.to_datetime('20160602'), 2, 'a'], [pd.to_datetime('20160603'), 1, 'b'], [pd.to_datetime('20160603'), 2, 'b']], columns=['time', 'k1', 'k2']).set_index('time') right = pd.DataFrame([ [pd.to_datetime('20160502'), 1, 'a', 1.0], [pd.to_datetime('20160502'), 2, 'a', 2.0], [pd.to_datetime('20160503'), 1, 'b', 3.0], [pd.to_datetime('20160503'), 2, 'b', 4.0]], columns=['time', 'k1', 'k2', 'value']).set_index('time') expected = pd.DataFrame([ [pd.to_datetime('20160602'), 1, 'a', 1.0], [pd.to_datetime('20160602'), 2, 'a', 2.0], [pd.to_datetime('20160603'), 1, 'b', 3.0], [pd.to_datetime('20160603'), 2, 'b', 4.0]], columns=['time', 'k1', 'k2', 'value']).set_index('time') result = pd.merge_asof(left, right, left_index=True, right_index=True, by=['k1', 'k2']) assert_frame_equal(expected, result) with pytest.raises(MergeError): pd.merge_asof(left, right, left_index=True, right_index=True, left_by=['k1', 'k2'], right_by=['k1']) def test_basic2(self, datapath): expected = self.read_data(datapath, 'asof2.csv') trades = self.read_data(datapath, 'trades2.csv') quotes = self.read_data(datapath, 'quotes2.csv', dedupe=True) result = merge_asof(trades, quotes, on='time', by='ticker') assert_frame_equal(result, expected) def test_basic_no_by(self): f = lambda x: x[x.ticker == 'MSFT'].drop('ticker', axis=1) \ .reset_index(drop=True) # just use a single ticker expected = f(self.asof) trades = f(self.trades) quotes = f(self.quotes) result = merge_asof(trades, quotes, on='time') assert_frame_equal(result, expected) def test_valid_join_keys(self): trades = self.trades quotes = self.quotes with pytest.raises(MergeError): merge_asof(trades, quotes, left_on='time', right_on='bid', by='ticker') with pytest.raises(MergeError): merge_asof(trades, quotes, on=['time', 'ticker'], by='ticker') with pytest.raises(MergeError): merge_asof(trades, quotes, by='ticker') def test_with_duplicates(self, datapath): q = pd.concat([self.quotes, self.quotes]).sort_values( ['time', 'ticker']).reset_index(drop=True) result = merge_asof(self.trades, q, on='time', by='ticker') expected = self.read_data(datapath, 'asof.csv') assert_frame_equal(result, expected) def test_with_duplicates_no_on(self): df1 = pd.DataFrame({'key': [1, 1, 3], 'left_val': [1, 2, 3]}) df2 = pd.DataFrame({'key': [1, 2, 2], 'right_val': [1, 2, 3]}) result = merge_asof(df1, df2, on='key') expected = pd.DataFrame({'key': [1, 1, 3], 'left_val': [1, 2, 3], 'right_val': [1, 1, 3]}) assert_frame_equal(result, expected) def test_valid_allow_exact_matches(self): trades = self.trades quotes = self.quotes with pytest.raises(MergeError): merge_asof(trades, quotes, on='time', by='ticker', allow_exact_matches='foo') def test_valid_tolerance(self): trades = self.trades quotes = self.quotes # dti merge_asof(trades, quotes, on='time', by='ticker', tolerance=Timedelta('1s')) # integer merge_asof(trades.reset_index(), quotes.reset_index(), on='index', by='ticker', tolerance=1) # incompat with pytest.raises(MergeError): merge_asof(trades, quotes, on='time', by='ticker', tolerance=1) # invalid with pytest.raises(MergeError): merge_asof(trades.reset_index(), quotes.reset_index(), on='index', by='ticker', tolerance=1.0) # invalid negative with pytest.raises(MergeError): merge_asof(trades, quotes, on='time', by='ticker', tolerance=-Timedelta('1s')) with pytest.raises(MergeError): merge_asof(trades.reset_index(), quotes.reset_index(), on='index', by='ticker', tolerance=-1) def test_non_sorted(self): trades = self.trades.sort_values('time', ascending=False) quotes = self.quotes.sort_values('time', ascending=False) # we require that we are already sorted on time & quotes assert not trades.time.is_monotonic assert not quotes.time.is_monotonic with pytest.raises(ValueError): merge_asof(trades, quotes, on='time', by='ticker') trades = self.trades.sort_values('time') assert trades.time.is_monotonic assert not quotes.time.is_monotonic with pytest.raises(ValueError): merge_asof(trades, quotes, on='time', by='ticker') quotes = self.quotes.sort_values('time') assert trades.time.is_monotonic assert quotes.time.is_monotonic # ok, though has dupes merge_asof(trades, self.quotes, on='time', by='ticker') def test_tolerance(self): trades = self.trades quotes = self.quotes result = merge_asof(trades, quotes, on='time', by='ticker', tolerance=Timedelta('1day')) expected = self.tolerance assert_frame_equal(result, expected) def test_tolerance_forward(self): # GH14887 left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) right = pd.DataFrame({'a': [1, 2, 3, 7, 11], 'right_val': [1, 2, 3, 7, 11]}) expected = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c'], 'right_val': [1, np.nan, 11]}) result = pd.merge_asof(left, right, on='a', direction='forward', tolerance=1) assert_frame_equal(result, expected) def test_tolerance_nearest(self): # GH14887 left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) right = pd.DataFrame({'a': [1, 2, 3, 7, 11], 'right_val': [1, 2, 3, 7, 11]}) expected = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c'], 'right_val': [1, np.nan, 11]}) result = pd.merge_asof(left, right, on='a', direction='nearest', tolerance=1) assert_frame_equal(result, expected) def test_tolerance_tz(self): # GH 14844 left = pd.DataFrame( {'date': pd.date_range(start=pd.to_datetime('2016-01-02'), freq='D', periods=5, tz=pytz.timezone('UTC')), 'value1': np.arange(5)}) right = pd.DataFrame( {'date': pd.date_range(start=pd.to_datetime('2016-01-01'), freq='D', periods=5, tz=pytz.timezone('UTC')), 'value2': list("ABCDE")}) result = pd.merge_asof(left, right, on='date', tolerance=pd.Timedelta('1 day')) expected = pd.DataFrame( {'date': pd.date_range(start=pd.to_datetime('2016-01-02'), freq='D', periods=5, tz=pytz.timezone('UTC')), 'value1': np.arange(5), 'value2': list("BCDEE")}) assert_frame_equal(result, expected) def test_tolerance_float(self): # GH22981 left = pd.DataFrame({'a': [1.1, 3.5, 10.9], 'left_val': ['a', 'b', 'c']}) right = pd.DataFrame({'a': [1.0, 2.5, 3.3, 7.5, 11.5], 'right_val': [1.0, 2.5, 3.3, 7.5, 11.5]}) expected = pd.DataFrame({'a': [1.1, 3.5, 10.9], 'left_val': ['a', 'b', 'c'], 'right_val': [1, 3.3, np.nan]}) result = pd.merge_asof(left, right, on='a', direction='nearest', tolerance=0.5) assert_frame_equal(result, expected) def test_index_tolerance(self): # GH 15135 expected = self.tolerance.set_index('time') trades = self.trades.set_index('time') quotes = self.quotes.set_index('time') result = pd.merge_asof(trades, quotes, left_index=True, right_index=True, by='ticker', tolerance=pd.Timedelta('1day')) assert_frame_equal(result, expected) def test_allow_exact_matches(self): result = merge_asof(self.trades, self.quotes, on='time', by='ticker', allow_exact_matches=False) expected = self.allow_exact_matches assert_frame_equal(result, expected) def test_allow_exact_matches_forward(self): # GH14887 left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) right = pd.DataFrame({'a': [1, 2, 3, 7, 11], 'right_val': [1, 2, 3, 7, 11]}) expected = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c'], 'right_val': [2, 7, 11]}) result = pd.merge_asof(left, right, on='a', direction='forward', allow_exact_matches=False) assert_frame_equal(result, expected) def test_allow_exact_matches_nearest(self): # GH14887 left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) right = pd.DataFrame({'a': [1, 2, 3, 7, 11], 'right_val': [1, 2, 3, 7, 11]}) expected = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c'], 'right_val': [2, 3, 11]}) result = pd.merge_asof(left, right, on='a', direction='nearest', allow_exact_matches=False) assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance(self): result = merge_asof(self.trades, self.quotes, on='time', by='ticker', tolerance=Timedelta('100ms'), allow_exact_matches=False) expected = self.allow_exact_matches_and_tolerance assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance2(self): # GH 13695 df1 = pd.DataFrame({ 'time': pd.to_datetime(['2016-07-15 13:30:00.030']), 'username': ['bob']}) df2 = pd.DataFrame({ 'time': pd.to_datetime(['2016-07-15 13:30:00.000', '2016-07-15 13:30:00.030']), 'version': [1, 2]}) result = pd.merge_asof(df1, df2, on='time') expected = pd.DataFrame({ 'time': pd.to_datetime(['2016-07-15 13:30:00.030']), 'username': ['bob'], 'version': [2]}) assert_frame_equal(result, expected) result = pd.merge_asof(df1, df2, on='time', allow_exact_matches=False) expected = pd.DataFrame({ 'time': pd.to_datetime(['2016-07-15 13:30:00.030']), 'username': ['bob'], 'version': [1]}) assert_frame_equal(result, expected) result = pd.merge_asof(df1, df2, on='time', allow_exact_matches=False, tolerance=pd.Timedelta('10ms')) expected = pd.DataFrame({ 'time': pd.to_datetime(['2016-07-15 13:30:00.030']), 'username': ['bob'], 'version': [np.nan]}) assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance3(self): # GH 13709 df1 = pd.DataFrame({ 'time': pd.to_datetime(['2016-07-15 13:30:00.030', '2016-07-15 13:30:00.030']), 'username': ['bob', 'charlie']}) df2 = pd.DataFrame({ 'time': pd.to_datetime(['2016-07-15 13:30:00.000', '2016-07-15 13:30:00.030']), 'version': [1, 2]}) result = pd.merge_asof(df1, df2, on='time', allow_exact_matches=False, tolerance=pd.Timedelta('10ms')) expected = pd.DataFrame({ 'time': pd.to_datetime(['2016-07-15 13:30:00.030', '2016-07-15 13:30:00.030']), 'username': ['bob', 'charlie'], 'version': [np.nan, np.nan]}) assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance_forward(self): # GH14887 left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) right = pd.DataFrame({'a': [1, 3, 4, 6, 11], 'right_val': [1, 3, 4, 6, 11]}) expected = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c'], 'right_val': [np.nan, 6, 11]}) result = pd.merge_asof(left, right, on='a', direction='forward', allow_exact_matches=False, tolerance=1) assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance_nearest(self): # GH14887 left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) right = pd.DataFrame({'a': [1, 3, 4, 6, 11], 'right_val': [1, 3, 4, 7, 11]}) expected = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c'], 'right_val': [np.nan, 4, 11]}) result = pd.merge_asof(left, right, on='a', direction='nearest', allow_exact_matches=False, tolerance=1) assert_frame_equal(result, expected) def test_forward_by(self): # GH14887 left = pd.DataFrame({'a': [1, 5, 10, 12, 15], 'b': ['X', 'X', 'Y', 'Z', 'Y'], 'left_val': ['a', 'b', 'c', 'd', 'e']}) right = pd.DataFrame({'a': [1, 6, 11, 15, 16], 'b': ['X', 'Z', 'Y', 'Z', 'Y'], 'right_val': [1, 6, 11, 15, 16]}) expected = pd.DataFrame({'a': [1, 5, 10, 12, 15], 'b': ['X', 'X', 'Y', 'Z', 'Y'], 'left_val': ['a', 'b', 'c', 'd', 'e'], 'right_val': [1, np.nan, 11, 15, 16]}) result = pd.merge_asof(left, right, on='a', by='b', direction='forward') assert_frame_equal(result, expected) def test_nearest_by(self): # GH14887 left = pd.DataFrame({'a': [1, 5, 10, 12, 15], 'b': ['X', 'X', 'Z', 'Z', 'Y'], 'left_val': ['a', 'b', 'c', 'd', 'e']}) right = pd.DataFrame({'a': [1, 6, 11, 15, 16], 'b': ['X', 'Z', 'Z', 'Z', 'Y'], 'right_val': [1, 6, 11, 15, 16]}) expected = pd.DataFrame({'a': [1, 5, 10, 12, 15], 'b': ['X', 'X', 'Z', 'Z', 'Y'], 'left_val': ['a', 'b', 'c', 'd', 'e'], 'right_val': [1, 1, 11, 11, 16]}) result = pd.merge_asof(left, right, on='a', by='b', direction='nearest') assert_frame_equal(result, expected) def test_by_int(self): # we specialize by type, so test that this is correct df1 = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.020', '20160525 13:30:00.030', '20160525 13:30:00.040', '20160525 13:30:00.050', '20160525 13:30:00.060']), 'key': [1, 2, 1, 3, 2], 'value1': [1.1, 1.2, 1.3, 1.4, 1.5]}, columns=['time', 'key', 'value1']) df2 = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.015', '20160525 13:30:00.020', '20160525 13:30:00.025', '20160525 13:30:00.035', '20160525 13:30:00.040', '20160525 13:30:00.055', '20160525 13:30:00.060', '20160525 13:30:00.065']), 'key': [2, 1, 1, 3, 2, 1, 2, 3], 'value2': [2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8]}, columns=['time', 'key', 'value2']) result = pd.merge_asof(df1, df2, on='time', by='key') expected = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.020', '20160525 13:30:00.030', '20160525 13:30:00.040', '20160525 13:30:00.050', '20160525 13:30:00.060']), 'key': [1, 2, 1, 3, 2], 'value1': [1.1, 1.2, 1.3, 1.4, 1.5], 'value2': [2.2, 2.1, 2.3, 2.4, 2.7]}, columns=['time', 'key', 'value1', 'value2']) assert_frame_equal(result, expected) def test_on_float(self): # mimics how to determine the minimum-price variation df1 = pd.DataFrame({ 'price': [5.01, 0.0023, 25.13, 340.05, 30.78, 1040.90, 0.0078], 'symbol': list("ABCDEFG")}, columns=['symbol', 'price']) df2 = pd.DataFrame({ 'price': [0.0, 1.0, 100.0], 'mpv': [0.0001, 0.01, 0.05]}, columns=['price', 'mpv']) df1 = df1.sort_values('price').reset_index(drop=True) result = pd.merge_asof(df1, df2, on='price') expected = pd.DataFrame({ 'symbol': list("BGACEDF"), 'price': [0.0023, 0.0078, 5.01, 25.13, 30.78, 340.05, 1040.90], 'mpv': [0.0001, 0.0001, 0.01, 0.01, 0.01, 0.05, 0.05]}, columns=['symbol', 'price', 'mpv']) assert_frame_equal(result, expected) def test_on_specialized_type(self, any_real_dtype): # see gh-13936 dtype = np.dtype(any_real_dtype).type df1 = pd.DataFrame({ "value": [5, 2, 25, 100, 78, 120, 79], "symbol": list("ABCDEFG")}, columns=["symbol", "value"]) df1.value = dtype(df1.value) df2 = pd.DataFrame({ "value": [0, 80, 120, 125], "result": list("xyzw")}, columns=["value", "result"]) df2.value = dtype(df2.value) df1 = df1.sort_values("value").reset_index(drop=True) result = pd.merge_asof(df1, df2, on="value") expected = pd.DataFrame( {"symbol": list("BACEGDF"), "value": [2, 5, 25, 78, 79, 100, 120], "result": list("xxxxxyz") }, columns=["symbol", "value", "result"]) expected.value = dtype(expected.value) assert_frame_equal(result, expected) def test_on_specialized_type_by_int(self, any_real_dtype): # see gh-13936 dtype = np.dtype(any_real_dtype).type df1 = pd.DataFrame({ "value": [5, 2, 25, 100, 78, 120, 79], "key": [1, 2, 3, 2, 3, 1, 2], "symbol": list("ABCDEFG")}, columns=["symbol", "key", "value"]) df1.value = dtype(df1.value) df2 = pd.DataFrame({ "value": [0, 80, 120, 125], "key": [1, 2, 2, 3], "result": list("xyzw")}, columns=["value", "key", "result"]) df2.value = dtype(df2.value) df1 = df1.sort_values("value").reset_index(drop=True) result = pd.merge_asof(df1, df2, on="value", by="key") expected = pd.DataFrame({ "symbol": list("BACEGDF"), "key": [2, 1, 3, 3, 2, 2, 1], "value": [2, 5, 25, 78, 79, 100, 120], "result": [np.nan, "x", np.nan, np.nan, np.nan, "y", "x"]}, columns=["symbol", "key", "value", "result"]) expected.value = dtype(expected.value) assert_frame_equal(result, expected) def test_on_float_by_int(self): # type specialize both "by" and "on" parameters df1 = pd.DataFrame({ 'symbol': list("AAABBBCCC"), 'exch': [1, 2, 3, 1, 2, 3, 1, 2, 3], 'price': [3.26, 3.2599, 3.2598, 12.58, 12.59, 12.5, 378.15, 378.2, 378.25]}, columns=['symbol', 'exch', 'price']) df2 = pd.DataFrame({ 'exch': [1, 1, 1, 2, 2, 2, 3, 3, 3], 'price': [0.0, 1.0, 100.0, 0.0, 5.0, 100.0, 0.0, 5.0, 1000.0], 'mpv': [0.0001, 0.01, 0.05, 0.0001, 0.01, 0.1, 0.0001, 0.25, 1.0]}, columns=['exch', 'price', 'mpv']) df1 = df1.sort_values('price').reset_index(drop=True) df2 = df2.sort_values('price').reset_index(drop=True) result = pd.merge_asof(df1, df2, on='price', by='exch') expected = pd.DataFrame({ 'symbol': list("AAABBBCCC"), 'exch': [3, 2, 1, 3, 1, 2, 1, 2, 3], 'price': [3.2598, 3.2599, 3.26, 12.5, 12.58, 12.59, 378.15, 378.2, 378.25], 'mpv': [0.0001, 0.0001, 0.01, 0.25, 0.01, 0.01, 0.05, 0.1, 0.25]}, columns=['symbol', 'exch', 'price', 'mpv']) assert_frame_equal(result, expected) def test_merge_datatype_error(self): """ Tests merge datatype mismatch error """ msg = r'merge keys \[0\] object and int64, must be the same type' left = pd.DataFrame({'left_val': [1, 5, 10], 'a': ['a', 'b', 'c']}) right = pd.DataFrame({'right_val': [1, 2, 3, 6, 7], 'a': [1, 2, 3, 6, 7]}) with pytest.raises(MergeError, match=msg): merge_asof(left, right, on='a') @pytest.mark.parametrize('func', [lambda x: x, lambda x: to_datetime(x)], ids=['numeric', 'datetime']) @pytest.mark.parametrize('side', ['left', 'right']) def test_merge_on_nans(self, func, side): # GH 23189 msg = "Merge keys contain null values on {} side".format(side) nulls = func([1.0, 5.0, np.nan]) non_nulls = func([1.0, 5.0, 10.]) df_null = pd.DataFrame({'a': nulls, 'left_val': ['a', 'b', 'c']}) df = pd.DataFrame({'a': non_nulls, 'right_val': [1, 6, 11]}) with pytest.raises(ValueError, match=msg): if side == 'left': merge_asof(df_null, df, on='a') else: merge_asof(df, df_null, on='a') def test_merge_by_col_tz_aware(self): # GH 21184 left = pd.DataFrame( {'by_col': pd.DatetimeIndex(['2018-01-01']).tz_localize('UTC'), 'on_col': [2], 'values': ['a']}) right = pd.DataFrame( {'by_col': pd.DatetimeIndex(['2018-01-01']).tz_localize('UTC'), 'on_col': [1], 'values': ['b']}) result = pd.merge_asof(left, right, by='by_col', on='on_col') expected = pd.DataFrame([ [pd.Timestamp('2018-01-01', tz='UTC'), 2, 'a', 'b'] ], columns=['by_col', 'on_col', 'values_x', 'values_y']) assert_frame_equal(result, expected)
bsd-3-clause
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/pandas/tests/test_join.py
4
6923
# -*- coding: utf-8 -*- import numpy as np from pandas import Index from pandas._libs import join as _join import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal class TestIndexer(object): def test_outer_join_indexer(self): typemap = [('int32', _join.outer_join_indexer_int32), ('int64', _join.outer_join_indexer_int64), ('float32', _join.outer_join_indexer_float32), ('float64', _join.outer_join_indexer_float64), ('object', _join.outer_join_indexer_object)] for dtype, indexer in typemap: left = np.arange(3, dtype=dtype) right = np.arange(2, 5, dtype=dtype) empty = np.array([], dtype=dtype) result, lindexer, rindexer = indexer(left, right) assert isinstance(result, np.ndarray) assert isinstance(lindexer, np.ndarray) assert isinstance(rindexer, np.ndarray) tm.assert_numpy_array_equal(result, np.arange(5, dtype=dtype)) exp = np.array([0, 1, 2, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([-1, -1, 0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) result, lindexer, rindexer = indexer(empty, right) tm.assert_numpy_array_equal(result, right) exp = np.array([-1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) result, lindexer, rindexer = indexer(left, empty) tm.assert_numpy_array_equal(result, left) exp = np.array([0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([-1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) def test_left_join_indexer_unique(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([2, 2, 3, 4, 4], dtype=np.int64) result = _join.left_join_indexer_unique_int64(b, a) expected = np.array([1, 1, 2, 3, 3], dtype=np.int64) assert (np.array_equal(result, expected)) def test_left_outer_join_bug(): left = np.array([0, 1, 0, 1, 1, 2, 3, 1, 0, 2, 1, 2, 0, 1, 1, 2, 3, 2, 3, 2, 1, 1, 3, 0, 3, 2, 3, 0, 0, 2, 3, 2, 0, 3, 1, 3, 0, 1, 3, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 1, 0, 2, 2, 2, 2, 2, 0, 3, 1, 2, 0, 0, 3, 1, 3, 2, 2, 0, 1, 3, 0, 2, 3, 2, 3, 3, 2, 3, 3, 1, 3, 2, 0, 0, 3, 1, 1, 1, 0, 2, 3, 3, 1, 2, 0, 3, 1, 2, 0, 2], dtype=np.int64) right = np.array([3, 1], dtype=np.int64) max_groups = 4 lidx, ridx = _join.left_outer_join(left, right, max_groups, sort=False) exp_lidx = np.arange(len(left)) exp_ridx = -np.ones(len(left)) exp_ridx[left == 1] = 1 exp_ridx[left == 3] = 0 assert (np.array_equal(lidx, exp_lidx)) assert (np.array_equal(ridx, exp_ridx)) def test_inner_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.inner_join_indexer_int64(a, b) index_exp = np.array([3, 5], dtype=np.int64) assert_almost_equal(index, index_exp) aexp = np.array([2, 4], dtype=np.int64) bexp = np.array([1, 2], dtype=np.int64) assert_almost_equal(ares, aexp) assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.inner_join_indexer_int64(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_outer_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.outer_join_indexer_int64(a, b) index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64) assert_almost_equal(index, index_exp) aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int64) bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4], dtype=np.int64) assert_almost_equal(ares, aexp) assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.outer_join_indexer_int64(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_left_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.left_join_indexer_int64(a, b) assert_almost_equal(index, a) aexp = np.array([0, 1, 2, 3, 4], dtype=np.int64) bexp = np.array([-1, -1, 1, -1, 2], dtype=np.int64) assert_almost_equal(ares, aexp) assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.left_join_indexer_int64(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_left_join_indexer2(): idx = Index([1, 1, 2, 5]) idx2 = Index([1, 2, 5, 7, 9]) res, lidx, ridx = _join.left_join_indexer_int64(idx2.values, idx.values) exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64) assert_almost_equal(res, exp_res) exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64) assert_almost_equal(lidx, exp_lidx) exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64) assert_almost_equal(ridx, exp_ridx) def test_outer_join_indexer2(): idx = Index([1, 1, 2, 5]) idx2 = Index([1, 2, 5, 7, 9]) res, lidx, ridx = _join.outer_join_indexer_int64(idx2.values, idx.values) exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64) assert_almost_equal(res, exp_res) exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64) assert_almost_equal(lidx, exp_lidx) exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64) assert_almost_equal(ridx, exp_ridx) def test_inner_join_indexer2(): idx = Index([1, 1, 2, 5]) idx2 = Index([1, 2, 5, 7, 9]) res, lidx, ridx = _join.inner_join_indexer_int64(idx2.values, idx.values) exp_res = np.array([1, 1, 2, 5], dtype=np.int64) assert_almost_equal(res, exp_res) exp_lidx = np.array([0, 0, 1, 2], dtype=np.int64) assert_almost_equal(lidx, exp_lidx) exp_ridx = np.array([0, 1, 2, 3], dtype=np.int64) assert_almost_equal(ridx, exp_ridx)
mit
gciteam6/xgboost
src/models/train_predict_stacking.py
1
5640
# Built-in modules from os import path, pardir import sys import logging import re # not used in this stub but often useful for finding various files PROJECT_ROOT_DIRPATH = path.join(path.dirname(__file__), pardir, pardir) sys.path.append(PROJECT_ROOT_DIRPATH) # Third-party modules import click from dotenv import find_dotenv, load_dotenv import numpy as np import pandas as pd from sklearn.cross_decomposition import PLSRegression from sklearn.model_selection import ParameterGrid # Hand-made modules from src.models.blending import MyBlender from src.models.stacking import MyStacker BLEND_MODEL_INSTANCE = PLSRegression() BLEND_MODEL_BASENAME = "layer1.PLSRegression" BLEND_MODEL_SEARCHING_PARAMS = {"n_components": np.arange(1, 4)} LOCATIONS = ( "ukishima", "ougishima", "yonekurayama" ) KWARGS_TO_CSV = { "sep": "\t" } def gen_params_grid(): return ParameterGrid(BLEND_MODEL_SEARCHING_PARAMS) def gen_param_string(param_dict): param_str = str() for (key, value) in param_dict.items(): param_str += "{k}_{v}.".format(k=key, v=value) return param_str[:-1] def gen_blender_list(predict_target, location): blend_model_param_list = gen_params_grid() blend_model_name_list = [ BLEND_MODEL_BASENAME + \ ".{p}.{t}.{l}".format(p=gen_param_string(blend_model_param), t=predict_target, l=location) \ for blend_model_param in blend_model_param_list ] blender_list = [ MyBlender(BLEND_MODEL_INSTANCE, blend_model_name, blend_model_param) \ for blend_model_name, blend_model_param in zip(blend_model_name_list, blend_model_param_list) ] return blender_list def remove_predict_target_and_location_suffix(target_string, predict_target): matcher = re.search(predict_target, target_string) return target_string[:matcher.start()-1] def run_blending(predict_target, location, blender, stacker): logger = logging.getLogger(__name__) logger.info('#0: train models') # retrieve train y y_true_as_train = pd.read_csv(stacker.gen_y_true_filepath(location), **stacker.KWARGS_READ_CSV) y_true_as_train.dropna(axis=0, inplace=True) logger.info('#1: get y_true as a train data @ {l} !'.format(l=location)) # retrieve train X df_pred_as_train = stacker.X_train_.loc[y_true_as_train.index, :].copy(deep=True) logger.info('#1: get y_pred as a train data @ {l} !'.format(l=location)) # # bifurcation # if predict_target == "crossval": # try cross-validation pd.DataFrame( blender.cross_val_predict(df_pred_as_train.as_matrix(), y_true_as_train.as_matrix()), index=df_pred_as_train.index, columns=[remove_predict_target_and_location_suffix(blender.model_name, predict_target), ] ).to_csv( blender.gen_abspath(blender.gen_serialize_filepath("predict", "tsv")), **KWARGS_TO_CSV ) logger.info('#2: estimate y_pred of train samples like cross-validation @ {l} !'.format(l=location)) elif predict_target == "test": # fit model with the whole samples blender.fit(df_pred_as_train.as_matrix(), y_true_as_train.as_matrix()) logger.info('#2: fit & serialized a model @ {l} !'.format(l=location)) # retrieve test X df_pred_as_test = stacker.get_concatenated_xgb_predict(predict_target, location) df_pred_as_test.to_csv( stacker.path.join(stacker.PROCESSED_DATA_BASEPATH, "dataset.predict_y.layer_0.{t}.{l}.tsv".format(t=predict_target, l=location)), **KWARGS_TO_CSV ) logger.info('#3: get y_pred as a test data @ {l} !'.format(l=location)) # predict pd.DataFrame( blender.predict(df_pred_as_test[df_pred_as_train.columns].as_matrix()), index=df_pred_as_test.index, columns=[remove_predict_target_and_location_suffix(blender.model_name, predict_target), ] ).to_csv( blender.gen_abspath( blender.gen_serialize_filepath("predict", "tsv")), **KWARGS_TO_CSV ) logger.info('#4: estimate & save y_pred of test samples @ {l} !'.format(l=location)) @click.command() @click.option("-t", "predict_target", flag_value="test", default=True) @click.option("-v", "predict_target", flag_value="crossval") @click.option("--location", "-l", type=str, default=None) def main(predict_target, location): if location is None: location_list = LOCATIONS else: location_list = [location, ] for place in location_list: # get blender and stacker blender_list = gen_blender_list(predict_target, place) stacker = MyStacker() # attatch train X to the stacker stacker.X_train_ = stacker.get_concatenated_xgb_predict("crossval", place) stacker.X_train_.to_csv( path.join(stacker.PROCESSED_DATA_BASEPATH, "dataset.predict_y.layer_0.crossval.{l}.tsv".format(l=place)), **KWARGS_TO_CSV ) stacker.X_train_ = stacker.X_train_.loc[:, ~stacker.X_train_.isnull().any()] for blender in blender_list: run_blending(predict_target, place, blender, stacker) if __name__ == '__main__': log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=log_fmt) # find .env automagically by walking up directories until it's found, then # load up the .env entries as environment variables load_dotenv(find_dotenv()) main()
mit
wwf5067/statsmodels
examples/python/regression_diagnostics.py
28
2876
## Regression diagnostics # This example file shows how to use a few of the ``statsmodels`` regression diagnostic tests in a real-life context. You can learn about more tests and find out more information abou the tests here on the [Regression Diagnostics page.](http://statsmodels.sourceforge.net/stable/diagnostic.html) # # Note that most of the tests described here only return a tuple of numbers, without any annotation. A full description of outputs is always included in the docstring and in the online ``statsmodels`` documentation. For presentation purposes, we use the ``zip(name,test)`` construct to pretty-print(short descriptions in the examples below. # ## Estimate a regression model from __future__ import print_function from statsmodels.compat import lzip import statsmodels import numpy as np import pandas as pd import statsmodels.formula.api as smf import statsmodels.stats.api as sms # Load data url = 'http://vincentarelbundock.github.io/Rdatasets/csv/HistData/Guerry.csv' dat = pd.read_csv(url) # Fit regression model (using the natural log of one of the regressaors) results = smf.ols('Lottery ~ Literacy + np.log(Pop1831)', data=dat).fit() # Inspect the results print(results.summary()) # ## Normality of the residuals # Jarque-Bera test: name = ['Jarque-Bera', 'Chi^2 two-tail prob.', 'Skew', 'Kurtosis'] test = sms.jarque_bera(results.resid) lzip(name, test) # Omni test: name = ['Chi^2', 'Two-tail probability'] test = sms.omni_normtest(results.resid) lzip(name, test) # ## Influence tests # # Once created, an object of class ``OLSInfluence`` holds attributes and methods that allow users to assess the influence of each observation. For example, we can compute and extract the first few rows of DFbetas by: from statsmodels.stats.outliers_influence import OLSInfluence test_class = OLSInfluence(results) test_class.dfbetas[:5,:] # Explore other options by typing ``dir(influence_test)`` # # Useful information on leverage can also be plotted: from statsmodels.graphics.regressionplots import plot_leverage_resid2 print(plot_leverage_resid2(results)) # Other plotting options can be found on the [Graphics page.](http://statsmodels.sourceforge.net/stable/graphics.html) # ## Multicollinearity # # Condition number: np.linalg.cond(results.model.exog) # ## Heteroskedasticity tests # # Breush-Pagan test: name = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value'] test = sms.het_breushpagan(results.resid, results.model.exog) lzip(name, test) # Goldfeld-Quandt test name = ['F statistic', 'p-value'] test = sms.het_goldfeldquandt(results.resid, results.model.exog) lzip(name, test) # ## Linearity # # Harvey-Collier multiplier test for Null hypothesis that the linear specification is correct: name = ['t value', 'p value'] test = sms.linear_harvey_collier(results) lzip(name, test)
bsd-3-clause
ajrichards/notebook
pymc3/multilevel-radon.py
2
3816
#!/usr/bin/env python """ multi-level example with GLM Gelman et al.s (2007) radon dataset is a classic for hierarchical modeling Radon gas is known to be the highest cause of lung cancer in non-smokers. Here welll investigate this differences and try to make predictions of radon levels predictions are for in different counties based on the county itself and the presence of a basement. radon_ic = b0 +b1*floor_ic + epison The radon level (i) in county (c) is a linear function of radon levels that considers multiple levels for the floor There are 85 counties in MN pooling - just run a regression on all data and assess """ import os import matplotlib.pyplot as plt import numpy as np import pymc3 as pm import pandas as pd data = pd.read_csv('radon.csv') county_names = data.county.unique() county_idx = data.county_code.values n_counties = len(data.county.unique()) print("total counties: %s"%(n_counties)) print data[['county', 'log_radon', 'floor']].head() ## unpooled ############################################################################ run_trace = False with pm.Model() as unpooled_model: # Independent parameters for each county a = pm.Normal('a', 0, sd=100, shape=n_counties) b = pm.Normal('b', 0, sd=100, shape=n_counties) # Model error eps = pm.HalfCauchy('eps', 5) # Model prediction of radon level # a[county_idx] translates to a[0, 0, 0, 1, 1, ...], # we thus link multiple household measures of a county # to its coefficients. radon_est = a[county_idx] + b[county_idx]*data.floor.values # Data likelihood y = pm.Normal('y', radon_est, sd=eps, observed=data.log_radon) with unpooled_model: trace_pickle = "traces/unpooled_radon.pkl" if run_trace or not os.path.exists(trace_pickle): tmp = open(trace_pickle,'w') unpooled_trace = pm.sample(niter, step, start,random_seed=123, progressbar=True) cPickle.dump(trace,tmp) tmp.close() else: print("...loading saved trace") tmp = open(trace_pickle,'r') unpooled_trace = cPickle.load(tmp) ############################################################################ run_trace = False with pm.Model() as hierarchical_model: # Hyperpriors for group nodes mu_a = pm.Normal('mu_a', mu=0., sd=100**2) sigma_a = pm.HalfCauchy('sigma_a', 5) mu_b = pm.Normal('mu_b', mu=0., sd=100**2) sigma_b = pm.HalfCauchy('sigma_b', 5) # Intercept for each county, distributed around group mean mu_a # Above we just set mu and sd to a fixed value while here we # plug in a common group distribution for all a and b (which are # vectors of length n_counties). a = pm.Normal('a', mu=mu_a, sd=sigma_a, shape=n_counties) # Intercept for each county, distributed around group mean mu_a b = pm.Normal('b', mu=mu_b, sd=sigma_b, shape=n_counties) # Model error eps = pm.HalfCauchy('eps', 5) radon_est = a[county_idx] + b[county_idx] * data.floor.values # Data likelihood radon_like = pm.Normal('radon_like', mu=radon_est, sd=eps, observed=data.log_radon) # Inference button (TM)! with hierarchical_model: trace_pickle = "traces/hierarchical_radon.pkl" if run_trace or not os.path.exists(trace_pickle): tmp = open(trace_pickle,'w') hierarchical_trace = pm.sample(niter, step, start,random_seed=123, progressbar=True) cPickle.dump(trace,tmp) tmp.close() else: print("...loading saved trace") tmp = open(trace_pickle,'r') hierarchical_trace = cPickle.load(tmp) # Plotting the hierarchical model trace -its found values- from 500 iterations onwards (right side plot) # and its accumulated marginal values (left side plot) pm.traceplot(hierarchical_trace[1000:]); plt.show()
bsd-3-clause
JulianPasc/Final-Project-Julien-Pascal
src/Calculate_Moments.py
1
41436
############################################### # Calculate the turnover moments from BLS Data ############################################## """ Julien Pascal Script that calculates the moments to match and that draws a lot of graphs using mainly data from the BLS """ import numpy as np import os import pandas as pd import matplotlib.pyplot as plt from more_itertools import unique_everseen import pylab import matplotlib.dates as mdates from math import exp, log import math from datetime import date, timedelta as td import statsmodels.api as sm import scipy from tabulate import tabulate import csv import statsmodels.formula.api as smm #OLS from arch import arch_model ################################# # PATHS # change "path_main" if necessary path = '/home/julien/Final-Project-Julien-Pascal/data' #path to the data path_figure = '/home/julien/Final-Project-Julien-Pascal/figures/' #where to save the figures path_table = '/home/julien/Final-Project-Julien-Pascal/tables/' #where to save the tables os.chdir(path) #locate in the folder with the data def estimated_autocorrelation(x): """ http://stackoverflow.com/q/14297012/190597 http://en.wikipedia.org/wiki/Autocorrelation#Estimation """ n = len(x) variance = x.var() x = x-x.mean() r = np.correlate(x, x, mode = 'full')[-n:] assert np.allclose(r, np.array([(x[:n-k]*x[-(n-k):]).sum() for k in range(n)])) result = r/(variance*(np.arange(n, 0, -1))) return result ################################################# # Select what date to begin with and when to stop starting_year = 1951 #first quarter 1951. starting point for the HWI starting_month = 1 starting_date = date(starting_year, starting_month, 1) stop_year = 2015 #third quarter 2010 stop_month = 7 stop_date = date(stop_year, stop_month, 1) df = pd.read_csv("LNS.csv") # Date on employment and unemployment # 1. Create a column with dates objects: df['Date'] = 0 for i in range(0,len(df['Series ID'])): df.ix[i,'Date'] = date(df.ix[i,'Year'], df.ix[i,'Period'], 1) #keep the selected time period: df = df.loc[df['Date'] <= stop_date] df = df.loc[df['Date'] >= starting_date] # 2. Create a vector with dates: Year = df.loc[df['Series ID'] == 'LNS12000000','Year'].values Month = df.loc[df['Series ID'] == 'LNS12000000','Period'].values #Remark: indexing start at 0 dateList = [] for i in range(0,len(Year)): dateList.append(date(Year[i], Month[i], 1)) ############################# # EMPLOYMENT AND UNEMPLOYMENT ############################# #Employed: LNS12000000 Employed = df.loc[df['Series ID'] == 'LNS12000000','Value'] #Unemployed: LNS13000000 Unemployed = df.loc[df['Series ID'] == 'LNS13000000','Value'] #Unemployed for less than 5 weeks : LNS13008396 U_5 = df.loc[df['Series ID'] == 'LNS13008396','Value'] #Unemployed for 5-14 Weeks: LNS13008756 U_15 = df.loc[df['Series ID'] == 'LNS13008756','Value'] #Unemployed for 27 Weeks and over: LNS13008636 U_27 = df.loc[df['Series ID'] == 'LNS13008636','Value'] # Unemployment rate: Unemployment_rate =[] Unemployment_rate =(Unemployed.values/(Unemployed.values+Employed.values))*100 # Plot Employed, Unemployed: : fig, ax1 = plt.subplots() ax1.plot(dateList, Employed, color='r') ax1.plot(dateList, Unemployed, color='g') # Make the y-axis label and tick labels match the line color. ax1.set_ylabel('Employed and unemployed in thousands', color='k') ax2 = ax1.twinx() #ax2.plot(dateList, Unemployment_rate, color='b') #ax2.plot(dateList, Participation_rate, color='K', ls ='--') ax2.set_ylabel('Unemployment rate', color='k' ) ax1.legend(['Employed', 'Unemployed'], loc='best', fancybox = True, framealpha=0.5) ax2.fill_between(dateList, 0, Unemployment_rate, color='b', alpha=0.2) ax2.legend(['Unemployment rate'], loc='best', fancybox = True, framealpha=0.5) plt.savefig(path_figure + 'Unemployment_1948_2016') plt.show() ############################################# # Labor Force Participation Rate Statistics: ############################################ # A. Participation rates: Participation_rate = df.loc[df['Series ID'] == 'LNS11300000','Value'] #LNS11300000: all sex, 16 and older Participation_men = df.loc[df['Series ID'] == 'LNS11300001','Value'] #LNS11300001: men, 16 and older Participation_women = df.loc[df['Series ID'] == 'LNS11300002','Value'] #LNS11300001: women, 16 and older Participation_16_19 = df.loc[df['Series ID'] == 'LNS11300012','Value'] #'LNS11300012: all sex, between 16 and 19 #B. Monthly recession data: 1 = month of recession #Source: https://research.stlouisfed.org/fred2/series/USREC recession_monthly = pd.read_csv("quarterly_recession_indicator.csv") #1 = recession # keep only the dates inside the good interval: # Create a column with dates objects: recession_monthly['Date'] = 0 for i in range(0,len(recession_monthly['observation_date'])): recession_monthly.ix[i,'Date'] = date(recession_monthly.ix[i,'Year'], recession_monthly.ix[i,'Month'], 1) #keep the selected time period: recession_monthly = recession_monthly.loc[recession_monthly['Date'] <= stop_date] recession_monthly = recession_monthly.loc[recession_monthly['Date'] >= starting_date] #keep only the dates for which recession = 1: recession_monthly = recession_monthly.loc[recession_monthly['USRECQ'] == 1] #create a vector of recession dates: recession_vector_monthly = recession_monthly['Date'].values # C. Data on discouraged workers from the OECD: df_OECD = pd.read_csv('Incidence_of_discouraged_workers_OECD.csv') # Keep series for women and men: df_OECD = df_OECD.loc[df_OECD['SEX'] == 'MW',] # Keep share of the population: df_OECD = df_OECD.loc[df_OECD['Series'] == 'Share of population',] Year_OECD = df_OECD['Time'].values # Create a column with dates objects: #df_OECD['Date'] = 0 dateListOECD = [] for i in range(0,len(Year_OECD)): #df_OECD.ix[i,'Date'] = date(Year_OECD[i], 1, 1) dateListOECD.append(date(Year_OECD[i], 1, 1)) #store the starting date of the discouraged workers series: start_date_OECD = dateListOECD[0] end_date_OECD = dateListOECD[len(Year_OECD)-1] #D. Data on discouraged workers from the CPS: # Stats on 1994 # LNU05026645: Monthly data; number in thousands number_discouraged = df.loc[(df['Series ID'] == 'LNU05026645'),'Value'] start_date_discouraged = date(1994, 1, 1) Unemployed_since_1994 = df.loc[(df['Series ID'] == 'LNS12000000') & (df['Date'] >= start_date_discouraged),'Value'] Employed_since_1994 = df.loc[(df['Series ID'] == 'LNS13000000') & (df['Date'] >= start_date_discouraged),'Value'] share_discouraged_workers = (number_discouraged.values/(Unemployed_since_1994.values+Employed_since_1994.values))*100 ################################################# # Plot Participation rate and discourage workers : ################################################# fig, ax1 = plt.subplots() ax1.plot(dateList, Participation_rate, color='b') ax1.plot(dateList, Participation_men, color='k') ax1.plot(dateList, Participation_women, color='r') ax1.plot(dateList, Participation_16_19, color='g') # Make the y-axis label and tick labels match the line color. ax1.set_ylabel('Participation rate', color='k') #add recession vertical lines: for i in range(0,len(recession_vector_monthly)): ax1.axvline(recession_vector_monthly[i], color='silver', linewidth = 2, zorder=0) #ax2 = ax1.twinx() ##ax2.plot(dateListOECD, df_OECD['Value'], color='teal') #ax2.set_ylabel('', color='teal' ) #ax2.fill_between(dateListOECD, 0, df_OECD['Value'], color='teal', alpha=0.3) ax1.legend(['All persons','Men','Women','All persons between 16 and 19'], loc='lower center' , fancybox = True, framealpha=0.5) #ax2.legend(['Share of discourage workers in the population'], loc='best' , fancybox = True, framealpha=0.5) plt.savefig(path_figure +'Participation_rates') plt.show() ######################################################## # Create plot showing the influence of discourage wokers # The series on discourage workers starts only in 1994: # Shorten the other series in consequence: ####################################################### Participation_rate_short = df.loc[(df['Series ID'] == 'LNS11300000')&(df['Date'] >= start_date_discouraged ),'Value'] #LNS11300000: all sex, 16 and older Participation_men_short = df.loc[(df['Series ID'] == 'LNS11300001') & (df['Date'] >= start_date_discouraged ),'Value'] #LNS11300001: men, 16 and older Participation_women_short = df.loc[(df['Series ID'] == 'LNS11300002') & (df['Date'] >= start_date_discouraged ),'Value'] #LNS11300001: women, 16 and older Participation_16_19_short = df.loc[(df['Series ID'] == 'LNS11300012') & (df['Date'] >= start_date_discouraged ),'Value'] #'LNS11300012: all sex, between 16 and 19 dateList_short = df.loc[(df['Series ID'] == 'LNS11300000')&(df['Date'] >= start_date_discouraged),'Date'] #keep only the dates for which recession = 1: recession_monthly_short = recession_monthly.loc[(recession_monthly['USRECQ'] == 1) & (recession_monthly['Date'] >= start_date_discouraged )] #create a vector of recession dates: recession_vector_monthly_short = recession_monthly_short['Date'].values fig, ax1 = plt.subplots() ax1.plot(dateList_short, Participation_rate_short, color='b') ax1.plot(dateList_short, Participation_men_short, color='k') ax1.plot(dateList_short, Participation_women_short, color='r') ax1.plot(dateList_short, Participation_16_19_short, color='g') # Make the y-axis label and tick labels match the line color. ax1.set_ylabel('Participation rate', color='k') #add recession vertical lines: for i in range(0,len(recession_vector_monthly_short)): ax1.axvline(recession_vector_monthly_short[i], color='silver', linewidth = 6, zorder=0,alpha=0.7) ax2 = ax1.twinx() ax2.plot(dateList_short, share_discouraged_workers, color='teal', linestyle = '--', alpha=0.8) ax2.set_ylabel('Discouraged workers share', color='teal') ax1.legend(['All persons','Men','Women','All persons between 16 and 19'], loc='lower left' , fancybox = True, framealpha=0.5) ax2.legend(['Discouraged workers share \n (in % of total labor force) '], loc='upper right' , fancybox = True, framealpha=0.5) plt.savefig(path_figure + 'Participation_and_discouragement') plt.show() # Plot unemployed by category: plt.plot(dateList, U_5, color = 'b') plt.plot(dateList, U_15, '--k') plt.plot(dateList, U_27, color = 'r') plt.title('Unemployed by duration in the US') plt.legend(['Unemployed for less than 5 weeks', 'Unemployed for 5-14 weeks', 'Unemployed for 27 Weeks and over'], loc='best', fancybox = True, framealpha=0.5) plt.savefig(path_figure + 'Unemployed_by_category') plt.show() ####################################### # Construct Exit Rate from Unemployment ####################################### F_BLS = [] dateList2 = [] for i in range(0,len(Year)-1): F_BLS.append(1 - (Unemployed.values[i+1] - U_5.values[i+1])/Unemployed.values[i]) dateList2.append(date(Year[i], Month[i], 1)) S_BLS = [] for i in range(0,len(Year)-1): S_BLS.append((U_5.values[i+1])/Employed.values[i]) plt.subplot(211) plt.plot(dateList2, F_BLS, color = 'navy') plt.fill_between(dateList2, 0, F_BLS, color='navy', alpha=0.2) #plt.yscale('') plt.title('Exit rate from unemployment') plt.subplot(212) plt.plot(dateList2, S_BLS, color = 'r') plt.fill_between(dateList2, 0, S_BLS, color='r', alpha=0.2) #plt.yscale('') plt.title('Job destruction rate') plt.savefig(path_figure + 'Turnover_rates_BLS') plt.show() ############################################################# # Construct Exit Rate from Unemployment for different workers: ############################################################# # Number of unemployed workers with duration greater than 5: U_5p = Unemployed.values - U_5.values # Number of unemployed workers with duration greater than 15: U_15p = Unemployed.values - U_5.values- U_15.values U_27p = U_27.values F_5 = [] F_15 = [] F_27 = [] for i in range(0,len(Year)): F_5.append(-4*log(U_5p[i]/Unemployed.values[i])/5) F_15.append(-4*log(U_15p[i]/Unemployed.values[i])/15) F_27.append(-4*log(U_27p[i]/Unemployed.values[i])/27) # Plot unemployed by duration: plt.plot(dateList, F_5, color = 'b') plt.plot(dateList, F_15, '--k') plt.plot(dateList, F_27, color = 'r') plt.title('Exit rate from unemployment by duration') plt.legend(['More than 5 weeks', 'More than 15 weeks ', 'More than 27 Weeks'], loc='best', fancybox = True, framealpha=0.5) plt.savefig(path_figure +'Exit_rate_by_duration') plt.show() # Unemploylent by diploma: # Less than a high school diploma LNS14027659 U1 = df.loc[df['Series ID'] == 'LNS14027659','Value']/100 #High school diploma: LNS14027660 U2 = df.loc[df['Series ID'] == 'LNS14027660','Value']/100 #(Seas) Unemployment Rate - Some College or Associate Degree, 25 yrs. & over: LNS14027689 U3 = df.loc[df['Series ID'] == 'LNS14027689','Value']/100 # Bachelor's degree and Higher: LNS14027662 U4 = df.loc[df['Series ID'] == 'LNS14027662','Value']/100 # Date for education dateListEdu = [] for i in range(0,len(U1)): dateListEdu.append(date(df.loc[df['Series ID'] == 'LNS14027659','Year'].values[i],df.loc[df['Series ID'] == 'LNS14027659','Period'].values[i], 1)) # Plot unemployed by education: plt.plot(dateListEdu, U1, color = 'b') plt.plot(dateListEdu, U2, '--k') plt.plot(dateListEdu, U3, color = 'r') plt.plot(dateListEdu, U4, color = 'g') #fill in between: plt.fill_between(dateListEdu, U2, U1, color='b', alpha=0.2) plt.fill_between(dateListEdu, U3, U2, color='k', alpha=0.2) plt.fill_between(dateListEdu, U4, U3, color='r', alpha=0.2) plt.fill_between(dateListEdu, 0, U4, color='g', alpha=0.2) #plt.title('Unemployment educational attainment') plt.legend(['Less than a High School Diploma', 'With a High School Diploma', 'Some College or Associate Degree','Bachelors Degree and Higher'], loc='best', fancybox = True, framealpha=0.5) plt.savefig(path_figure + 'Unemployment_rate_by_education') plt.show() #Compute standard deviation of unemployment rate by education: print(np.std(U1)) print(np.std(U2)) print(np.std(U3)) print(np.std(U4)) #Plot unemployment rate by education versus overall unemployment rate: #keep the same years: Unemployment_rate_selected_years = [] for i in range(0,len(Year)): if date(Year[i], Month[i], 1) >= dateListEdu[0]: #keep the matching dates only Unemployment_rate_selected_years.append(Unemployment_rate[i]/100) #divide by 100 to be consistent with the other series degree_line = [] for i in range(0,len(Unemployment_rate_selected_years)): degree_line.append(Unemployment_rate_selected_years[i]) plt.scatter(Unemployment_rate_selected_years, U1, color = 'b', alpha=0.5) plt.scatter(Unemployment_rate_selected_years, U2, color = 'k', alpha=0.5) plt.scatter(Unemployment_rate_selected_years, U3, color = 'r', alpha=0.5) plt.scatter(Unemployment_rate_selected_years, U4, color = 'g', alpha=0.5) #plt.scatter(Unemployment_rate_selected_years, degree_line, color = 'grey', alpha=0.2) plt.legend(['Less than a High School Diploma', 'With a High School Diploma', 'Some College or Associate Degree','Bachelors Degree and Higher'], loc='best', fancybox = True, framealpha=0.5) plt.xlabel('Overall unemployment rate') plt.ylabel('Group specific unemployment rate') plt.savefig(path_figure + 'Overall_vs_group_edu_u_rate') plt.show() #Calculate the variance of group specific unemployment levels #and create a latek table: table_std_group_unemployment = [['Std.', np.std(U1), np.std(U2), np.std( U3), np.std(U4)]] print(tabulate(table_std_group_unemployment, headers=['', 'Less High School', 'High School D.', 'Some College or A. Degree', 'B. Degree and Higher'], floatfmt=".3f", tablefmt="latex")) #save the table in a csv format: with open(path_table + 'table_std_group_unemployment.csv', 'w') as csvfile: writer = csv.writer(csvfile) [writer.writerow(r) for r in table_std_group_unemployment] ################################# #Data for productivity and wages: ################################# #Load the data: df2 = pd.read_csv("PRS.csv") #1. Create date objects: df2['Date'] = 0 #initialization for i in range(0,len(df2['Series ID'])): df2.ix[i,'Date'] = date(df2.ix[i,'Year'], df2.ix[i,'Month'], 1) #2.keep the selected time period: df2 = df2.loc[df2['Date'] <= stop_date] df2 = df2.loc[df2['Date'] >= starting_date] # 1. Seasonally adjusted real value added in the non farm business sector, Index 2009=100: PRS85006043 Real_output = df2.loc[df2['Series ID'] == 'PRS85006043','Value'].values # 2. Nonfarm Business Sector: Real Compensation Per Hour, Index 2009=100, Quarterly, Seasonally Adjusted Real_compensation_hour = df2.loc[df2['Series ID'] == 'COMPRNFB','Value'].values dateList3 = [] for i in range(0,len(Real_output)): dateList3.append(date(df2['Year'].values[i],df2['Month'].values[i], 1)) plt.plot(dateList3, Real_output , color = 'b') plt.plot(dateList3, Real_compensation_hour, color = 'r') plt.title('Real output and compensation in the non-farm business sector') plt.legend(['Real output per person', 'Real compensation per hour'], loc='best', fancybox = True, framealpha=0.5) plt.savefig(path_figure + 'Real_value_added_and_wages_raw_data') plt.show() ##################### # Data for vacancies ##################### # Merge the help wanted index and JOLTS on data vacancies # Based on the methodology from Lise and Robin (2014) ############################################### # A. Load the vacancies data and do simple plot ############################################### path_data = '/home/julien/Documents/COURS/5A/MASTER THESIS/Labor Market/Data/Data/' #Help Wanted Index 1951 #Source : The Conference Board #downloaded from http://www.econometricsociety.org/ecta/Supmat/9070_data and programs.zip. df_HWI = pd.read_stata(path_data + 'help_raw_m.dta') #Adjust the units: for i in range(0,len(df_HWI)): df_HWI.ix[i,'V'] = df_HWI.ix[i,'V']*100 #results in thousands vacancies #JOLTS: #source: http://data.bls.gov/ df_JOLTS = pd.read_csv(path_data + 'JOLTS.csv') df_JOLTS = df_JOLTS.loc[df_JOLTS['Series ID'] == 'JTS00000000JOL'] #Keep only data on vacancy creation in the non farm sectors in thousands #adjust the indexes: new_indexes = [] for i in range(0,len(df_JOLTS)): new_indexes.append(i) df_JOLTS = df_JOLTS.set_index([new_indexes]) #Create date objects for both series; df_JOLTS['Date'] = 0 for i in range(0,len(df_JOLTS['Series ID'])): df_JOLTS.ix[i,'Date'] = date(df_JOLTS.ix[i,'Year'], df_JOLTS.ix[i,'Month'], 1) df_HWI['Date'] = 0 for i in range(0,len(df_HWI)): df_HWI.ix[i,'Date'] = date(df_HWI.ix[i,'year'], df_HWI.ix[i,'month'], 1) dateList_HWI = [] Vacancies_HWI = [] for i in range(0,len(df_HWI)): dateList_HWI.append(date(df_HWI.ix[i, 'year'],df_HWI.ix[i, 'month'], 1)) Vacancies_HWI.append(df_HWI.ix[i,'V']) dateList_JOLTS = [] Vacancies_JOLTS = [] for i in range(0,len(df_JOLTS)): dateList_JOLTS.append(date(df_JOLTS .ix[i, 'Year'],df_JOLTS.ix[i, 'Month'], 1)) Vacancies_JOLTS.append(df_JOLTS.ix[i,'Value']) plt.plot(dateList_JOLTS, Vacancies_JOLTS, color = 'r') plt.plot(dateList_HWI, Vacancies_HWI, color = 'b') plt.legend(['JOLTS','HWI']) plt.show() ######################### # B. Merge the two series ######################### ############################################################### # A. Select the overlap period for both series: 12-2000, 7-2006 starting_year_overlap = 2000 #first quarter 1951 starting_month_overlap = 12 starting_date_overlap = date(starting_year_overlap, starting_month_overlap, 1) stop_year_overlap = 2006 #third quarter 2010 stop_month_overlap = 7 stop_date_overlap = date(stop_year_overlap, stop_month_overlap, 1) df_HWI_overlap = df_HWI.loc[(df_HWI['Date'] <= stop_date_overlap) & (df_HWI['Date'] >= starting_date_overlap)] df_JOLTS_overlap = df_JOLTS.loc[(df_JOLTS['Date'] <= stop_date_overlap) & (df_JOLTS['Date'] >= starting_date_overlap)] #should be of same length: len(df_JOLTS_overlap) == len(df_HWI_overlap) #Adjust indexes for both dataframes: new_indexes = [] for i in range(0,len(df_JOLTS_overlap)): new_indexes.append(i) df_JOLTS_overlap = df_JOLTS_overlap.set_index([new_indexes]) df_HWI_overlap = df_HWI_overlap .set_index([new_indexes]) #Merge both df_ovelap_merged = pd.merge(df_HWI_overlap , df_JOLTS_overlap, on='Date') plt.plot(df_JOLTS_overlap['Value'], color = 'r') plt.plot(df_HWI_overlap['V'], color = 'b') plt.legend(['JOLTS','HWI']) plt.show() ########################################## # B. Project the HWI into the JOLTS space: # 'V': HWI # 'Value': JOLTS result_projection = smm.ols(formula="V ~ Value", data=df_ovelap_merged).fit() #simple OLS print(result_projection.summary()) intercept = result_projection.params[0] beta = result_projection.params[1] #################################################### # C. Predict the HWI values based on observed JOLTS: #merge the complete HWI and JOLTS: df_total_merged = pd.merge(df_HWI, df_JOLTS, how = 'outer', on=['Date']) #Predict: for i in range(0,len(df_total_merged)): if df_total_merged.ix[i,'Date'] >= starting_date_overlap: #Start predicting only in 12-2000 df_total_merged.ix[i,'V'] = intercept + beta*df_total_merged.ix[i,'Value'] #Project on the JOLTS space df_total_merged.ix[i,'year'] = df_total_merged.ix[i,'Year'] df_total_merged.ix[i,'month'] = df_total_merged.ix[i,'Month_y'] # Plot predicted and actual values plt.plot(df_total_merged['Value'], color = 'r') plt.plot(df_total_merged['V'], color = 'b') plt.legend(['JOLTS','HWI predicted']) plt.show() #Visually check it makes sense # Plot with only the predicted #plt.plot(df_total_merged['V'], color = 'b') plt.fill_between(df_total_merged['Date'].values, 0, df_total_merged['V'].values, color='k', alpha=0.4) plt.legend(['Vacancies - thousands']) plt.savefig(path_figure + 'Number_vacancies_monthly') plt.show() ######################################## # Clean the merged dataframe and save it #Change column names df_total_merged=df_total_merged.rename(columns = {'V':'Vacancies_HWI_hat'}) #"hat" because starting in 2000, it was projected on the JOLTS space df_total_merged=df_total_merged.rename(columns = {'Value':'Vacancies_JOLTS'}) #actual data from JOLTS df_total_merged=df_total_merged.rename(columns = {'Month_x':'Month'}) #actual data from JOLTS #Drop some useless columns: df_total_merged = df_total_merged.drop('Series ID', 1) df_total_merged = df_total_merged.drop('Year', 1) df_total_merged = df_total_merged.drop('Period', 1) df_total_merged = df_total_merged.drop('Month_y', 1) df_total_merged = df_total_merged.drop('Description', 1) df_total_merged.to_csv(path_table +'HWI_JOLTS_merged.csv') # keep the same time frame as the other dataframes for coherence: df_total_merged = df_total_merged.loc[df_total_merged['Date'] <= stop_date] df_total_merged = df_total_merged.loc[df_total_merged['Date'] >= starting_date] ##################### # HP Filter the Data: ##################### ################################################ # 0. Construct quarterly series for monthly data: ################################################ # Unemployment rate: Unemployment_rate_quarterly = [] dateList4 = [] upper_index = math.floor(len(Unemployment_rate)/3) a = 0 for i in range(0,upper_index): #compute the mean for the quarter Unemployment_rate_quarterly.append((Unemployment_rate[a]+Unemployment_rate[a+1]+Unemployment_rate[a+2]+Unemployment_rate[a+3])/4) dateList4.append(dateList[a]) a = a + 3 #Plot monthly vers quarterly to visually check the results: #plt.plot(dateList, Unemployment_rate , color = 'b') #plt.plot(dateList4, Unemployment_rate_quarterly, color = 'r') #plt.show() # Vacancies (in thousands): Vacancies = [] for i in range(0,len(df_total_merged)): Vacancies.append(df_total_merged.ix[i,'Vacancies_HWI_hat']) #monthly vacancies in thousands Vacancies_quarterly = [] #initialize quarterly observations upper_indexV = math.floor(len(Vacancies)/3) a = 0 for i in range(0,upper_indexV): #compute the mean for the quarter Vacancies_quarterly.append((Vacancies[a]+Vacancies[a+1]+Vacancies[a+2]+Vacancies[a+3])/4) a = a + 3 #Plot monthly vers quarterly to visually check the results: plt.plot(dateList, Vacancies, color = 'b') plt.plot(dateList4, Vacancies_quarterly, color = 'r') plt.show() #Scatter plot quarterly vacancies unemployment ratio: plt.scatter(Unemployment_rate_quarterly, Vacancies_quarterly, color = 'b', alpha=0.5) plt.xlabel('Unemployment rate %') plt.ylabel('Vacancies in thousands') plt.show() ######################################################## # 1st approach: take monthly average, as in Shimer 2005: """ # Exit rate from unemployment F_BLS: F_BLS_quarterly = [] dateList5 = [] a = 0 for i in range(0,upper_index): #compute the mean for the quarter F_BLS_quarterly.append((F_BLS[a]+F_BLS[a+1]+F_BLS[a+2]+F_BLS[a+3])/4) dateList5.append(dateList2[a]) a = a + 3 # job destruction rate S_BLS: S_BLS_quarterly = [] a = 0 for i in range(0,upper_index): #compute the mean for the quarter S_BLS_quarterly.append((S_BLS[a]+S_BLS[a+1]+S_BLS[a+2]+S_BLS[a+3])/4) a = a + 3 """ ############################################################# # 2nd approach: see Robin 2011 # Iteration of the monthly series to construct quarterly ones: S_BLS_quarterly = [] F_BLS_quarterly = [] dateList5 = [] a = 0 for i in range(0,upper_index): F2_S = S_BLS[a+2] F2_F = F_BLS[a+2] F_S = S_BLS[a+1] F_F = F_BLS[a+1] S = S_BLS[a] F = F_BLS[a] # Quarterly job destruction rate S_BLS: S_BLS_quarterly.append(F2_S + (1 - F2_S - F2_F)*(F_S + (1 - F_S - F_F)*S)) #formula p1339 dateList5.append(dateList2[a]) #store date # Quarterly job finding rate: F_BLS_quarterly.append(1 - S_BLS_quarterly[i] - (1 - S - F)*(1 - F_S - F_F)*(1 - F2_S - F2_F)) #formula p1339 a = a + 3 # Plot this 2nd approach: plt.subplot(2, 1, 1) plt.plot(dateList5, F_BLS_quarterly, color = 'navy') plt.fill_between(dateList5, 0, F_BLS_quarterly, color='navy', alpha=0.2) plt.title('Quarterly job finding rate') plt.subplot(2, 1, 2) plt.plot(dateList5, S_BLS_quarterly, color = 'r') plt.fill_between(dateList5, 0, S_BLS_quarterly, color='R', alpha=0.2) plt.title('Quarterly job destruction rate') plt.savefig(path_figure + 'Quarterly_job_finding_and_job_destruction_rates') plt.show() ############################################# # 1. log transformation of the quarterly data: ############################################# log_Real_output = np.log(Real_output) log_Real_compensation_hour = np.log(Real_compensation_hour) log_Unemployment_rate = np.log(Unemployment_rate_quarterly) #Quarterly unemployment rate log_F_BLS = np.log(F_BLS_quarterly) log_S_BLS = np.log(S_BLS_quarterly) log_Vacancies = np.log(Vacancies_quarterly) #Quarterly vacancies in thousands ############### # 2. HP filter ############### # Choose the smoothing parameter: smoothing_parameter = 2.5*math.pow(10,5) #smoothing_parameter = 1*math.pow(10,5) # as in Shimer 2005 # a. Real value added: cycle_Real_output, trend_Real_output = sm.tsa.filters.hpfilter(log_Real_output , smoothing_parameter) # b. Real productivity per hour: cycle_Real_compensation_hour, trend_Real_compensation_hour = sm.tsa.filters.hpfilter(log_Real_compensation_hour, smoothing_parameter) # c. Unemployment rate: cycle_Unemployment_rate, trend_Unemployment_rate = sm.tsa.filters.hpfilter(log_Unemployment_rate, smoothing_parameter) # d. Job destruction rate S_BLS cycle_S_BLS, trend_S_BLS = sm.tsa.filters.hpfilter(log_S_BLS, smoothing_parameter) # e. Exit rate from unemployment F_BLS cycle_F_BLS, trend_F_BLS = sm.tsa.filters.hpfilter(log_F_BLS, smoothing_parameter) # f. Vacancies: cycle_Vacancies, trend_Vacancies = sm.tsa.filters.hpfilter(log_Vacancies , smoothing_parameter) ##################################### # 3. Exponentiate the detrended data: ##################################### exponentiated_cycle_Real_output = np.exp(cycle_Real_output) exponentiated_cycle_Real_compensation_hour = np.exp(cycle_Real_compensation_hour) exponentiated_cycle_Unemployment_rate = np.exp(cycle_Unemployment_rate) exponentiated_cycle_F_BLS = np.exp(cycle_F_BLS) exponentiated_cycle_S_BLS = np.exp(cycle_S_BLS) exponentiated_cycle_Vacancies = np.exp(cycle_Vacancies) ########################################## # 4.1 Plots the trend and cycle components: ########################################## ##################### # a. Real Output: plt.subplot(2, 2, 1) plt.plot(dateList3, log_Real_output, color="navy") plt.title("Log Real Output") plt.subplot(2, 2, 2) plt.plot(dateList3, trend_Real_output, color="r",) plt.title("Trend Component") plt.subplot(2, 2, 3) plt.plot(dateList3, cycle_Real_output, color="g") plt.title("Cycle Component") plt.subplot(2, 2, 4) plt.plot(dateList3, exponentiated_cycle_Real_output, color="k") plt.title("Exponentiated Cycle Component") plt.savefig(path_figure + 'Detrend_output') plt.show() ############################## #b. Real productivity per hour: plt.subplot(2, 2, 1) plt.plot(dateList3, log_Real_compensation_hour, color="navy") plt.title("Log Real Compensation per hour") plt.subplot(2, 2, 2) plt.plot(dateList3, trend_Real_compensation_hour, color="r",) plt.title("Trend Component") plt.subplot(2, 2, 3) plt.plot(dateList3, cycle_Real_compensation_hour, color="g") plt.title("Cycle Component") plt.subplot(2, 2, 4) plt.plot(dateList3, exponentiated_cycle_Real_compensation_hour, color="k") plt.title("Exponentiated Cycle Component") plt.show() ###################### #c. Unemployment rate: plt.subplot(2, 2, 1) plt.plot(dateList4, log_Unemployment_rate, color="navy") plt.title("Log Quarterly Unemployment rate") plt.subplot(2, 2, 2) plt.plot(dateList4, trend_Unemployment_rate, color="r",) plt.title("Trend Component") plt.subplot(2, 2, 3) plt.plot(dateList4, cycle_Unemployment_rate, color="g") plt.title("Cycle Component") plt.subplot(2, 2, 4) plt.plot(dateList4, exponentiated_cycle_Unemployment_rate, color="k") plt.title("Exponentiated Cycle Component") plt.show() ####################### # d. Job finding rate: plt.subplot(2, 2, 1) plt.plot(dateList5, log_F_BLS, color="navy") plt.title("Log Quarterly Job Finding Rate") plt.subplot(2, 2, 2) plt.plot(dateList5, trend_F_BLS, color="r",) plt.title("Trend Component") plt.subplot(2, 2, 3) plt.plot(dateList5, cycle_F_BLS, color="g") plt.title("Cycle Component") plt.subplot(2, 2, 4) plt.plot(dateList5, exponentiated_cycle_F_BLS, color="k") plt.title("Exponentiated Cycle Component") plt.show() ######################### # d. Job destruction rate: plt.subplot(2, 2, 1) plt.plot(dateList5, log_S_BLS, color="navy") plt.title("Log Quarterly Job Destruction Rate") plt.subplot(2, 2, 2) plt.plot(dateList5, trend_S_BLS, color="r",) plt.title("Trend Component") plt.subplot(2, 2, 3) plt.plot(dateList5, cycle_S_BLS, color="g") plt.title("Cycle Component") plt.subplot(2, 2, 4) plt.plot(dateList5, exponentiated_cycle_S_BLS, color="k") plt.title("Exponentiated Cycle Component") plt.show() ############### # e. Vacancies plt.subplot(2, 2, 1) plt.plot(dateList4, log_Vacancies, color="navy") plt.title("Log Number of Vacancies in Thousands") plt.subplot(2, 2, 2) plt.plot(dateList4, trend_Vacancies, color="r",) plt.title("Trend Component") plt.subplot(2, 2, 3) plt.plot(dateList4, cycle_Vacancies, color="g") plt.title("Cycle Component") plt.subplot(2, 2, 4) plt.plot(dateList4, exponentiated_cycle_Vacancies, color="k") plt.title("Exponentiated Cycle Component") plt.show() ########################################################################## #4.2 Plot the comovements of the Business cycle components with Real output ########################################################################## conv = np.vectorize(mdates.strpdate2num('%Y-%m-%d')) #used to for plotting vertical lines # load the quarterly recession data: # source: https://research.stlouisfed.org/fred2 # NBER based Recession Indicators for the United States from the Period following the Peak through the Trough, +1 or 0, Quarterly, Not Seasonally Adjusted recession = pd.read_csv("quarterly_recession_indicator.csv") #1 = recession # keep only the dates inside the good interval: # Create a column with dates objects: recession['Date'] = 0 for i in range(0,len(recession['observation_date'])): recession.ix[i,'Date'] = date(recession.ix[i,'Year'], recession.ix[i,'Month'], 1) #keep the selected time period: recession = recession.loc[recession['Date'] <= stop_date] recession = recession.loc[recession['Date'] >= starting_date] #keep only the dates for which recession = 1: recession = recession.loc[recession['USRECQ'] == 1] recession['Date'].values #create a vector of recession dates: recession_vector = recession['Date'].values ######### #a. Wage: plt.subplot(1, 1, 1) plt.plot(dateList3, exponentiated_cycle_Real_output, color = 'k', linestyle = '--') plt.plot(dateList3, exponentiated_cycle_Real_compensation_hour, color = 'navy') plt.fill_between(dateList3, 1, exponentiated_cycle_Real_output, color='k',alpha=0.4) plt.fill_between(dateList3, 1, exponentiated_cycle_Real_compensation_hour, color='navy', alpha=0.1) #add recession vertical lines: for i in range(0,len(recession_vector)): plt.axvline(recession_vector[i], color='silver', linewidth = 2, zorder=0) plt.legend(['Real output', 'Real compensation per hour'], loc='best', fancybox = True, framealpha=0.7) plt.savefig(path_figure + 'Cycle_wages_output') plt.show() ####################### #b. Unemployment rate: plt.subplot(1, 1, 1) plt.plot(dateList3, exponentiated_cycle_Real_output, color = 'k', linestyle = '--') plt.plot(dateList4, exponentiated_cycle_Unemployment_rate, color = 'navy') plt.fill_between(dateList3, 1, exponentiated_cycle_Real_output, color='k', alpha=0.4) plt.fill_between(dateList4, 1, exponentiated_cycle_Unemployment_rate, color='navy', alpha=0.1) #add recession vertical lines: for i in range(0,len(recession_vector)): plt.axvline(recession_vector[i], color='silver', linewidth = 2, zorder=0) plt.legend(['Real output', 'Unemployment rate'], loc='best', fancybox = True, framealpha=0.7) plt.savefig(path_figure + 'Cycle_unemployment_output') plt.show() ##################### #C. Job finding rate: plt.subplot(1, 1, 1) plt.plot(dateList3, exponentiated_cycle_Real_output, color = 'k', linestyle = '--') plt.plot(dateList5, exponentiated_cycle_F_BLS, color = 'navy') plt.fill_between(dateList3, 1, exponentiated_cycle_Real_output, color='k', alpha=0.4) plt.fill_between(dateList5, 1, exponentiated_cycle_F_BLS, color='navy', alpha=0.1) #add recession vertical lines: for i in range(0,len(recession_vector)): plt.axvline(recession_vector[i], color='silver', linewidth = 2, zorder=0) plt.legend(['Real output', 'Job finding rate'], loc='best', fancybox = True, framealpha=0.7) plt.savefig(path_figure + 'Cycle_job_finding_rate_output') plt.show() ######################### #D. Job destruction rate: plt.subplot(1, 1, 1) plt.plot(dateList3, exponentiated_cycle_Real_output, color = 'k', linestyle = '--') plt.plot(dateList5, exponentiated_cycle_S_BLS, color = 'navy') plt.fill_between(dateList3, 1, exponentiated_cycle_Real_output, color='k', alpha=0.4) plt.fill_between(dateList5, 1, exponentiated_cycle_S_BLS, color='navy', alpha=0.1) #add recession vertical lines: for i in range(0,len(recession_vector)): plt.axvline(recession_vector[i], color='silver', linewidth = 2, zorder=0) plt.legend(['Real output', 'Job destruction rate'], loc='best', fancybox = True, framealpha=0.7) plt.savefig(path_figure + 'Cycle_job_destruction_rate_output') plt.show() ############## # E. Vacancies plt.subplot(1, 1, 1) plt.plot(dateList3, exponentiated_cycle_Real_output, color = 'k', linestyle = '--') plt.plot(dateList4, exponentiated_cycle_Vacancies, color = 'navy') plt.fill_between(dateList3, 1, exponentiated_cycle_Real_output, color='k', alpha=0.4) plt.fill_between(dateList4, 1, exponentiated_cycle_Vacancies, color='navy', alpha=0.1) #add recession vertical lines: for i in range(0,len(recession_vector)): plt.axvline(recession_vector[i], color='silver', linewidth = 2, zorder=0) plt.legend(['Real output', 'Job destruction rate'], loc='best', fancybox = True, framealpha=0.7) plt.savefig(path_figure + 'Cycle_vacancies_output') plt.show() ################# # BEVERIDGE CURVE plt.scatter(cycle_Unemployment_rate, cycle_Vacancies, color = 'b', alpha=0.5) plt.xlabel('Unemployment') plt.ylabel('Vacancies') plt.savefig(path_figure + 'Beveridge_curve') plt.show() ####################### # 5. Compute some stats ####################### #Mean: mean_data = [] mean_data.append('') #productivity, normalized to 1 mean_data.append(np.mean(Unemployment_rate_quarterly)/100)#quarterly unemployment rate mean_data.append(np.mean(F_BLS_quarterly)) #quarterly exit rate from unemployment mean_data.append(np.mean(S_BLS_quarterly)) #quarterly job destruction rate mean_data.append('') #quarterly vacancies created - in thousands mean_data.append('') #wage, normalized to 1 #Standard deviation of quarterly observations: std_data = [] std_data.append(np.std(cycle_Real_output)) std_data.append(np.std(cycle_Unemployment_rate)) std_data.append(np.std(cycle_F_BLS)) std_data.append(np.std(cycle_S_BLS)) std_data.append(np.std(cycle_Vacancies)) std_data.append(np.std(cycle_Real_compensation_hour)) #Skewness: skew_data = [] skew_data.append(scipy.stats.skew(cycle_Real_output)) skew_data.append(scipy.stats.skew(cycle_Unemployment_rate)) skew_data.append(scipy.stats.skew(cycle_F_BLS)) skew_data.append(scipy.stats.skew(cycle_S_BLS)) skew_data.append(scipy.stats.skew(cycle_Vacancies)) skew_data.append(scipy.stats.skew(cycle_Real_compensation_hour)) #Kurtosis, Normal = 3 kurtosis_data = [] kurtosis_data.append(scipy.stats.kurtosis(cycle_Real_output, fisher=False)) kurtosis_data.append(scipy.stats.kurtosis(cycle_Unemployment_rate, fisher=False)) kurtosis_data.append(scipy.stats.kurtosis(cycle_F_BLS, fisher=False)) kurtosis_data.append(scipy.stats.kurtosis(cycle_S_BLS, fisher=False)) kurtosis_data.append(scipy.stats.kurtosis(cycle_Vacancies, fisher=False)) kurtosis_data.append(scipy.stats.kurtosis(cycle_Real_compensation_hour, fisher=False)) #Autocorrelation: autocorrelation_data = [] autocorrelation_data.append(estimated_autocorrelation(cycle_Real_output)[1]) autocorrelation_data.append(estimated_autocorrelation(cycle_Unemployment_rate)[1]) autocorrelation_data.append(estimated_autocorrelation(cycle_F_BLS)[1]) autocorrelation_data.append(estimated_autocorrelation(cycle_S_BLS)[1]) autocorrelation_data.append(estimated_autocorrelation(cycle_Vacancies)[1]) autocorrelation_data.append(estimated_autocorrelation(cycle_Real_compensation_hour)[1]) #Correlation with production: corr_prod_data = [] corr_prod_data.append(np.corrcoef(cycle_Real_output, cycle_Real_output)[0,1]) corr_prod_data.append(np.corrcoef(cycle_Unemployment_rate, cycle_Real_output[0:(len(cycle_Real_output)-1)])[0,1])#drop the last quarter for output so vectors have the same length corr_prod_data.append(np.corrcoef(cycle_F_BLS, cycle_Real_output[0:(len(cycle_Real_output)-1)])[0,1]) #drop the last quarter for output so vectors have the same length corr_prod_data.append(np.corrcoef(cycle_S_BLS, cycle_Real_output[0:(len(cycle_Real_output)-1)])[0,1]) #drop the last quarter for output so vectors have the same length corr_prod_data.append(np.corrcoef(cycle_Vacancies, cycle_Real_output[0:(len(cycle_Real_output)-1)])[0,1]) corr_prod_data.append(np.corrcoef(cycle_Real_compensation_hour, cycle_Real_output)[0,1]) #Correlation with unemployment: corr_unemployment_data = [] corr_unemployment_data.append(np.corrcoef(cycle_Real_output[0:(len(cycle_Real_output)-1)], cycle_Unemployment_rate)[0,1]) #drop the last quarter for output so vectors have the same length corr_unemployment_data.append(np.corrcoef(cycle_Unemployment_rate, cycle_Unemployment_rate)[0,1]) corr_unemployment_data.append(np.corrcoef(cycle_F_BLS, cycle_Unemployment_rate)[0,1]) corr_unemployment_data.append(np.corrcoef(cycle_S_BLS, cycle_Unemployment_rate)[0,1]) corr_unemployment_data.append(np.corrcoef(cycle_Vacancies, cycle_Unemployment_rate)[0,1]) corr_unemployment_data.append(np.corrcoef(cycle_Real_compensation_hour[0:(len(cycle_Real_compensation_hour)-1)], cycle_Unemployment_rate)[0,1]) # Create a table: table = [['Mean', mean_data[0], mean_data[1], mean_data[2], mean_data[3], mean_data[4], mean_data[5]], ['Std', std_data[0], std_data[1], std_data[2], std_data[3], std_data[4], std_data[5]], ['Skewness', skew_data[0], skew_data[1], skew_data[2], skew_data[3], skew_data[4], skew_data[5]], ['Kurtosis', kurtosis_data[0], kurtosis_data[1], kurtosis_data[2], kurtosis_data[3], kurtosis_data[4], kurtosis_data[5]], ['Autocorrelation', autocorrelation_data[0], autocorrelation_data[1], autocorrelation_data[2], autocorrelation_data[3], autocorrelation_data[4], autocorrelation_data[5]], ['Corr. with production', corr_prod_data[0], corr_prod_data[1], corr_prod_data[2], corr_prod_data[3], corr_prod_data[4], corr_prod_data[5]], ['Corr. with unemployment', corr_unemployment_data[0], corr_unemployment_data[1], corr_unemployment_data[2], corr_unemployment_data[3], corr_unemployment_data[4], corr_unemployment_data[5]]] #print the table print(tabulate(table, headers=['', 'Productivity', 'Unemployment rate', 'Exit rate from Un.', 'Job destruction rate', 'Vacancies', 'Wage'], floatfmt=".3f", tablefmt="latex")) #save the table in a csv format: with open(path_table + 'table_moments.csv', 'w') as csvfile: writer = csv.writer(csvfile) [writer.writerow(r) for r in table] ############################## # ARCH Model for productivity #am = arch_model(exponentiated_cycle_Real_output) #res = am.fit()
mit
shogun-toolbox/shogun
examples/undocumented/python/graphical/inverse_covariance_estimation_demo.py
1
2383
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt from pylab import show, imshow import shogun as sg def simulate_data (n,p): #create a random pxp covariance matrix cov = np.random.normal(size=(p,p)) #generate data set with multivariate Gaussian distribution mean = [0] * p data = np.random.multivariate_normal(mean, cov, n) return data def inverse_covariance (data,lc): sic = sg.SparseInverseCovariance() #by default cov() expects each row to represent a variable, with observations in the columns cov = np.cov(data.T) max_cov = cov.max() min_cov = cov.min() #compute inverse conariance matrix Si = sic.estimate(cov,lc) return Si def draw_graph(sic, subplot): import networkx as nx #create list of edges #an egde means there is a dependency between variables #0 value in sic matrix mean independent variables given all the other variables p = sic.shape[0] X, Y = np.meshgrid(range(p), range(p)) graph = np.array((X[sic != 0], Y[sic != 0])).T # extract nodes from graph nodes = set([n1 for n1, n2 in graph] + [n2 for n1, n2 in graph]) # create networkx graph G=nx.Graph() # add nodes for node in nodes: G.add_node(node) # add edges for edge in graph: G.add_edge(edge[0], edge[1]) # draw graph nx.draw(G, ax=subplot) # show graph return graph if __name__=='__main__': #edit here for your own simulation num_observations = 100 num_variables = 11 penalties = [0.00001, 0.05, 0.1, 0.5, 1, 2] columns = len(penalties) #plot the heat map and the graphs of dependency between variables #for different penaltiy values f, axarr = plt.subplots(2, columns) f.suptitle('Inverse Covariance Estimation\nfor ' +str(num_variables)+' variables and '+str(num_observations)+' observations', fontsize=20) data = simulate_data(num_observations, num_variables) print data.shape column = -1 for p in penalties: column = column + 1 sic = inverse_covariance (data,p) i = axarr[0, column].imshow(sic, cmap="hot", interpolation='nearest') axarr[0, column].set_title('penalty='+str(p), fontsize=10) graph = draw_graph(sic, plt.subplot(2, columns, column + columns + 1)) axarr[1, column].set_title(str((len(graph) - num_variables)/2) + ' depedences', fontsize=10) f.subplots_adjust(right=0.8) cbar_ax = f.add_axes([0.85, 0.15, 0.05, 0.7]) f.colorbar(i, cax=cbar_ax) show()
bsd-3-clause
marqh/cartopy
lib/cartopy/examples/tissot.py
1
1582
# (C) British Crown Copyright 2011 - 2012, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <http://www.gnu.org/licenses/>. """ This example demonstrates the way a box is warped when it is defined in a rotated space. XXX Keep the meaning, but re-word the following line: Notice that the box contains the north pole, adding extra complexity to the underlying transformation. """ # XXX Needs Geodetic functionality from Basemap to work. Consider using http://geographiclib.sourceforge.net import matplotlib.pyplot as plt import cartopy import numpy def main(): pc = cartopy.prj.PlateCarree() ax = plt.axes(projection=cartopy.prj.Mercator()) ax.coastlines() # g = ax.projection.as_geodetic() radius = 15 # degrees for lat in numpy.arange(-80, 90, 20): for lon in numpy.arange(-160, 180, 40): ax.geod_circle_meters(lon, lat, 500e3, facecolor='blue', alpha=0.7) plt.show() if __name__ == '__main__': main()
gpl-3.0
aljoscha/flink
flink-python/pyflink/fn_execution/beam/beam_coder_impl_slow.py
1
26845
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ import datetime import decimal import pickle import struct from typing import Any, Tuple from typing import List import pyarrow as pa from apache_beam.coders.coder_impl import StreamCoderImpl, create_InputStream, create_OutputStream from pyflink.fn_execution.ResettableIO import ResettableIO from pyflink.common import Row, RowKind from pyflink.table.utils import pandas_to_arrow, arrow_to_pandas ROW_KIND_BIT_SIZE = 2 class FlattenRowCoderImpl(StreamCoderImpl): def __init__(self, field_coders): self._field_coders = field_coders self._field_count = len(field_coders) # the row kind uses the first 2 bits of the bitmap, the remaining bits are used for null # mask, for more details refer to: # https://github.com/apache/flink/blob/master/flink-core/src/main/java/org/apache/flink/api/java/typeutils/runtime/RowSerializer.java self._leading_complete_bytes_num = (self._field_count + ROW_KIND_BIT_SIZE) // 8 self._remaining_bits_num = (self._field_count + ROW_KIND_BIT_SIZE) % 8 self.null_mask_search_table = self.generate_null_mask_search_table() self.null_byte_search_table = (0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01) self.row_kind_search_table = [0x00, 0x80, 0x40, 0xC0] self.data_out_stream = create_OutputStream() @staticmethod def generate_null_mask_search_table(): """ Each bit of one byte represents if the column at the corresponding position is None or not, e.g. 0x84 represents the first column and the sixth column are None. """ null_mask = [] for b in range(256): every_num_null_mask = [(b & 0x80) > 0, (b & 0x40) > 0, (b & 0x20) > 0, (b & 0x10) > 0, (b & 0x08) > 0, (b & 0x04) > 0, (b & 0x02) > 0, (b & 0x01) > 0] null_mask.append(tuple(every_num_null_mask)) return tuple(null_mask) def encode_to_stream(self, value, out_stream, nested): field_coders = self._field_coders data_out_stream = self.data_out_stream self._write_mask(value, data_out_stream) for i in range(self._field_count): item = value[i] if item is not None: field_coders[i].encode_to_stream(item, data_out_stream, nested) out_stream.write_var_int64(data_out_stream.size()) out_stream.write(data_out_stream.get()) data_out_stream._clear() def encode_nested(self, value: List): data_out_stream = self.data_out_stream self._encode_one_row_to_stream(value, data_out_stream, True) result = data_out_stream.get() data_out_stream._clear() return result def decode_from_stream(self, in_stream, nested): while in_stream.size() > 0: in_stream.read_var_int64() yield self._decode_one_row_from_stream(in_stream, nested)[1] def _encode_one_row_to_stream(self, value, out_stream, nested): field_coders = self._field_coders if isinstance(value, Row): self._write_mask(value, out_stream, value.get_row_kind().value) else: self._write_mask(value, out_stream) for i in range(self._field_count): item = value[i] if item is not None: field_coders[i].encode_to_stream(item, out_stream, nested) def _decode_one_row_from_stream( self, in_stream: create_InputStream, nested: bool) -> Tuple[int, List]: row_kind_and_null_mask = self._read_mask(in_stream) row_kind_value = 0 for i in range(ROW_KIND_BIT_SIZE): row_kind_value += int(row_kind_and_null_mask[i]) * 2 ** i return row_kind_value, [None if row_kind_and_null_mask[idx + ROW_KIND_BIT_SIZE] else self._field_coders[idx].decode_from_stream( in_stream, nested) for idx in range(0, self._field_count)] def _write_mask(self, value, out_stream, row_kind_value=0): field_pos = 0 null_byte_search_table = self.null_byte_search_table remaining_bits_num = self._remaining_bits_num # first byte contains the row kind bits b = self.row_kind_search_table[row_kind_value] for i in range(0, 8 - ROW_KIND_BIT_SIZE): if field_pos + i < len(value) and value[field_pos + i] is None: b |= null_byte_search_table[i + ROW_KIND_BIT_SIZE] field_pos += 8 - ROW_KIND_BIT_SIZE out_stream.write_byte(b) for _ in range(1, self._leading_complete_bytes_num): b = 0x00 for i in range(0, 8): if value[field_pos + i] is None: b |= null_byte_search_table[i] field_pos += 8 out_stream.write_byte(b) if self._leading_complete_bytes_num >= 1 and remaining_bits_num: b = 0x00 for i in range(remaining_bits_num): if value[field_pos + i] is None: b |= null_byte_search_table[i] out_stream.write_byte(b) def _read_mask(self, in_stream): mask = [] mask_search_table = self.null_mask_search_table remaining_bits_num = self._remaining_bits_num for _ in range(self._leading_complete_bytes_num): b = in_stream.read_byte() mask.extend(mask_search_table[b]) if remaining_bits_num: b = in_stream.read_byte() mask.extend(mask_search_table[b][0:remaining_bits_num]) return mask def __repr__(self): return 'FlattenRowCoderImpl[%s]' % ', '.join(str(c) for c in self._field_coders) class RowCoderImpl(FlattenRowCoderImpl): def __init__(self, field_coders, field_names): super(RowCoderImpl, self).__init__(field_coders) self.field_names = field_names def encode_to_stream(self, value: Row, out_stream, nested): self._encode_one_row_to_stream(value, out_stream, nested) def decode_from_stream(self, in_stream, nested): row_kind_value, fields = self._decode_one_row_from_stream(in_stream, nested) row = Row(*fields) row.set_field_names(self.field_names) row.set_row_kind(RowKind(row_kind_value)) return row def __repr__(self): return 'RowCoderImpl[%s]' % ', '.join(str(c) for c in self._field_coders) class TableFunctionRowCoderImpl(StreamCoderImpl): def __init__(self, flatten_row_coder): self._flatten_row_coder = flatten_row_coder self._field_count = flatten_row_coder._field_count def encode_to_stream(self, iter_value, out_stream, nested): is_row_or_tuple = False if iter_value: if isinstance(iter_value, (tuple, Row)): iter_value = [iter_value] is_row_or_tuple = True for value in iter_value: if self._field_count == 1 and not is_row_or_tuple: value = (value,) self._flatten_row_coder.encode_to_stream(value, out_stream, nested) out_stream.write_var_int64(1) out_stream.write_byte(0x00) def decode_from_stream(self, in_stream, nested): return self._flatten_row_coder.decode_from_stream(in_stream, nested) def __repr__(self): return 'TableFunctionRowCoderImpl[%s]' % repr(self._flatten_row_coder) class AggregateFunctionRowCoderImpl(StreamCoderImpl): """ The aggregate function row coder impl is similar to the table function row coder (one message may produce two more message, e.g. one INSERT message may produce one UPDATE_BEFORE message and one UPDATE_AFTER message). The difference is that this row coder will encode row kind information into the output row and is no need to encode the bytes which represent the end of output. """ def __init__(self, flatten_row_coder): self._flatten_row_coder = flatten_row_coder self._data_out_stream = create_OutputStream() def encode_to_stream(self, iter_value, out_stream, nested): data_out_stream = self._data_out_stream for value in iter_value: self._flatten_row_coder._encode_one_row_to_stream(value, data_out_stream, nested) out_stream.write_var_int64(data_out_stream.size()) out_stream.write(data_out_stream.get()) data_out_stream._clear() def decode_from_stream(self, in_stream, nested): return [[item for item in self._flatten_row_coder.decode_from_stream(in_stream, nested)]] def __repr__(self): return 'AggregateFunctionRowCoderImpl[%s]' % repr(self._flatten_row_coder) class BasicArrayCoderImpl(StreamCoderImpl): def __init__(self, elem_coder): self._elem_coder = elem_coder def encode_to_stream(self, value, out_stream, nested): out_stream.write_bigendian_int32(len(value)) for elem in value: if elem is None: out_stream.write_byte(False) else: out_stream.write_byte(True) self._elem_coder.encode_to_stream(elem, out_stream, nested) def decode_from_stream(self, in_stream, nested): size = in_stream.read_bigendian_int32() elements = [self._elem_coder.decode_from_stream(in_stream, nested) if in_stream.read_byte() else None for _ in range(size)] return elements def __repr__(self): return 'BasicArrayCoderImpl[%s]' % repr(self._elem_coder) class PrimitiveArrayCoderImpl(StreamCoderImpl): def __init__(self, elem_coder): self._elem_coder = elem_coder def encode_to_stream(self, value, out_stream, nested): out_stream.write_bigendian_int32(len(value)) for elem in value: self._elem_coder.encode_to_stream(elem, out_stream, nested) def decode_from_stream(self, in_stream, nested): size = in_stream.read_bigendian_int32() elements = [self._elem_coder.decode_from_stream(in_stream, nested) for _ in range(size)] return elements def __repr__(self): return 'PrimitiveArrayCoderImpl[%s]' % repr(self._elem_coder) class PickledBytesCoderImpl(StreamCoderImpl): def __init__(self): self.field_coder = BinaryCoderImpl() def encode_to_stream(self, value, out_stream, nested): coded_data = pickle.dumps(value) self.field_coder.encode_to_stream(coded_data, out_stream, nested) def decode_from_stream(self, in_stream, nested): return self._decode_one_value_from_stream(in_stream, nested) def _decode_one_value_from_stream(self, in_stream: create_InputStream, nested): real_data = self.field_coder.decode_from_stream(in_stream, nested) value = pickle.loads(real_data) return value def __repr__(self) -> str: return 'PickledBytesCoderImpl[%s]' % str(self.field_coder) class DataStreamMapCoderImpl(StreamCoderImpl): def __init__(self, field_coder): self._field_coder = field_coder self.data_out_stream = create_OutputStream() def encode_to_stream(self, value, stream, nested): # type: (Any, create_OutputStream, bool) -> None data_out_stream = self.data_out_stream self._field_coder.encode_to_stream(value, data_out_stream, nested) stream.write_var_int64(data_out_stream.size()) stream.write(data_out_stream.get()) data_out_stream._clear() def decode_from_stream(self, stream, nested): # type: (create_InputStream, bool) -> Any while stream.size() > 0: stream.read_var_int64() yield self._field_coder.decode_from_stream(stream, nested) def __repr__(self): return 'DataStreamMapCoderImpl[%s]' % repr(self._field_coder) class DataStreamFlatMapCoderImpl(StreamCoderImpl): def __init__(self, field_coder): self._field_coder = field_coder def encode_to_stream(self, iter_value, stream, nested): # type: (Any, create_OutputStream, bool) -> None if iter_value: for value in iter_value: self._field_coder.encode_to_stream(value, stream, nested) stream.write_var_int64(1) stream.write_byte(0x00) def decode_from_stream(self, stream, nested): return self._field_coder.decode_from_stream(stream, nested) def __str__(self) -> str: return 'DataStreamFlatMapCoderImpl[%s]' % repr(self._field_coder) class DataStreamCoFlatMapCoderImpl(StreamCoderImpl): def __init__(self, field_coder): self._field_coder = field_coder def encode_to_stream(self, iter_value, stream, nested): # type: (Any, create_OutputStream, bool) -> None for value in iter_value: self._field_coder.encode_to_stream(value, stream, nested) def decode_from_stream(self, stream, nested): return self._field_coder.decode_from_stream(stream, nested) def __str__(self) -> str: return 'DataStreamCoFlatMapCoderImpl[%s]' % repr(self._field_coder) class MapCoderImpl(StreamCoderImpl): def __init__(self, key_coder, value_coder): self._key_coder = key_coder self._value_coder = value_coder def encode_to_stream(self, map_value, out_stream, nested): out_stream.write_bigendian_int32(len(map_value)) for key in map_value: self._key_coder.encode_to_stream(key, out_stream, nested) value = map_value[key] if value is None: out_stream.write_byte(True) else: out_stream.write_byte(False) self._value_coder.encode_to_stream(map_value[key], out_stream, nested) def decode_from_stream(self, in_stream, nested): size = in_stream.read_bigendian_int32() map_value = {} for _ in range(size): key = self._key_coder.decode_from_stream(in_stream, nested) is_null = in_stream.read_byte() if is_null: map_value[key] = None else: value = self._value_coder.decode_from_stream(in_stream, nested) map_value[key] = value return map_value def __repr__(self): return 'MapCoderImpl[%s]' % ' : '.join([repr(self._key_coder), repr(self._value_coder)]) class BigIntCoderImpl(StreamCoderImpl): def encode_to_stream(self, value, out_stream, nested): out_stream.write_bigendian_int64(value) def decode_from_stream(self, in_stream, nested): return in_stream.read_bigendian_int64() class TinyIntCoderImpl(StreamCoderImpl): def encode_to_stream(self, value, out_stream, nested): out_stream.write(struct.pack('b', value)) def decode_from_stream(self, in_stream, nested): return struct.unpack('b', in_stream.read(1))[0] class SmallIntCoderImpl(StreamCoderImpl): def encode_to_stream(self, value, out_stream, nested): out_stream.write(struct.pack('>h', value)) def decode_from_stream(self, in_stream, nested): return struct.unpack('>h', in_stream.read(2))[0] class IntCoderImpl(StreamCoderImpl): def encode_to_stream(self, value, out_stream, nested): out_stream.write_bigendian_int32(value) def decode_from_stream(self, in_stream, nested): return in_stream.read_bigendian_int32() class BooleanCoderImpl(StreamCoderImpl): def encode_to_stream(self, value, out_stream, nested): out_stream.write_byte(value) def decode_from_stream(self, in_stream, nested): return not not in_stream.read_byte() class FloatCoderImpl(StreamCoderImpl): def encode_to_stream(self, value, out_stream, nested): out_stream.write(struct.pack('>f', value)) def decode_from_stream(self, in_stream, nested): return struct.unpack('>f', in_stream.read(4))[0] class DoubleCoderImpl(StreamCoderImpl): def encode_to_stream(self, value, out_stream, nested): out_stream.write_bigendian_double(value) def decode_from_stream(self, in_stream, nested): return in_stream.read_bigendian_double() class DecimalCoderImpl(StreamCoderImpl): def __init__(self, precision, scale): self.context = decimal.Context(prec=precision) self.scale_format = decimal.Decimal(10) ** -scale def encode_to_stream(self, value, out_stream, nested): user_context = decimal.getcontext() decimal.setcontext(self.context) value = value.quantize(self.scale_format) bytes_value = str(value).encode("utf-8") out_stream.write_bigendian_int32(len(bytes_value)) out_stream.write(bytes_value, False) decimal.setcontext(user_context) def decode_from_stream(self, in_stream, nested): user_context = decimal.getcontext() decimal.setcontext(self.context) size = in_stream.read_bigendian_int32() value = decimal.Decimal(in_stream.read(size).decode("utf-8")).quantize(self.scale_format) decimal.setcontext(user_context) return value class BigDecimalCoderImpl(StreamCoderImpl): def encode_to_stream(self, value, stream, nested): bytes_value = str(value).encode("utf-8") stream.write_bigendian_int32(len(bytes_value)) stream.write(bytes_value, False) def decode_from_stream(self, stream, nested): size = stream.read_bigendian_int32() value = decimal.Decimal(stream.read(size).decode("utf-8")) return value class TupleCoderImpl(StreamCoderImpl): def __init__(self, field_coders): self._field_coders = field_coders self._field_count = len(field_coders) def encode_to_stream(self, value, out_stream, nested): field_coders = self._field_coders for i in range(self._field_count): field_coders[i].encode_to_stream(value[i], out_stream, nested) def decode_from_stream(self, stream, nested): decoded_list = [field_coder.decode_from_stream(stream, nested) for field_coder in self._field_coders] return (*decoded_list,) def __repr__(self) -> str: return 'TupleCoderImpl[%s]' % ', '.join(str(c) for c in self._field_coders) class BinaryCoderImpl(StreamCoderImpl): def encode_to_stream(self, value, out_stream, nested): out_stream.write_bigendian_int32(len(value)) out_stream.write(value, False) def decode_from_stream(self, in_stream, nested): size = in_stream.read_bigendian_int32() return in_stream.read(size) class CharCoderImpl(StreamCoderImpl): def encode_to_stream(self, value, out_stream, nested): bytes_value = value.encode("utf-8") out_stream.write_bigendian_int32(len(bytes_value)) out_stream.write(bytes_value, False) def decode_from_stream(self, in_stream, nested): size = in_stream.read_bigendian_int32() return in_stream.read(size).decode("utf-8") class DateCoderImpl(StreamCoderImpl): EPOCH_ORDINAL = datetime.datetime(1970, 1, 1).toordinal() def encode_to_stream(self, value, out_stream, nested): out_stream.write_bigendian_int32(self.date_to_internal(value)) def decode_from_stream(self, in_stream, nested): value = in_stream.read_bigendian_int32() return self.internal_to_date(value) def date_to_internal(self, d): return d.toordinal() - self.EPOCH_ORDINAL def internal_to_date(self, v): return datetime.date.fromordinal(v + self.EPOCH_ORDINAL) class TimeCoderImpl(StreamCoderImpl): def encode_to_stream(self, value, out_stream, nested): out_stream.write_bigendian_int32(self.time_to_internal(value)) def decode_from_stream(self, in_stream, nested): value = in_stream.read_bigendian_int32() return self.internal_to_time(value) def time_to_internal(self, t): milliseconds = (t.hour * 3600000 + t.minute * 60000 + t.second * 1000 + t.microsecond // 1000) return milliseconds def internal_to_time(self, v): seconds, milliseconds = divmod(v, 1000) minutes, seconds = divmod(seconds, 60) hours, minutes = divmod(minutes, 60) return datetime.time(hours, minutes, seconds, milliseconds * 1000) class TimestampCoderImpl(StreamCoderImpl): def __init__(self, precision): self.precision = precision def is_compact(self): return self.precision <= 3 def encode_to_stream(self, value, out_stream, nested): milliseconds, nanoseconds = self.timestamp_to_internal(value) if self.is_compact(): assert nanoseconds == 0 out_stream.write_bigendian_int64(milliseconds) else: out_stream.write_bigendian_int64(milliseconds) out_stream.write_bigendian_int32(nanoseconds) def decode_from_stream(self, in_stream, nested): if self.is_compact(): milliseconds = in_stream.read_bigendian_int64() nanoseconds = 0 else: milliseconds = in_stream.read_bigendian_int64() nanoseconds = in_stream.read_bigendian_int32() return self.internal_to_timestamp(milliseconds, nanoseconds) def timestamp_to_internal(self, timestamp): seconds = int(timestamp.replace(tzinfo=datetime.timezone.utc).timestamp()) microseconds_of_second = timestamp.microsecond milliseconds = seconds * 1000 + microseconds_of_second // 1000 nanoseconds = microseconds_of_second % 1000 * 1000 return milliseconds, nanoseconds def internal_to_timestamp(self, milliseconds, nanoseconds): second, microsecond = (milliseconds // 1000, milliseconds % 1000 * 1000 + nanoseconds // 1000) return datetime.datetime.utcfromtimestamp(second).replace(microsecond=microsecond) class LocalZonedTimestampCoderImpl(TimestampCoderImpl): def __init__(self, precision, timezone): super(LocalZonedTimestampCoderImpl, self).__init__(precision) self.timezone = timezone def internal_to_timestamp(self, milliseconds, nanoseconds): return self.timezone.localize( super(LocalZonedTimestampCoderImpl, self).internal_to_timestamp( milliseconds, nanoseconds)) class ArrowCoderImpl(StreamCoderImpl): def __init__(self, schema, row_type, timezone): self._schema = schema self._field_types = row_type.field_types() self._timezone = timezone self._resettable_io = ResettableIO() self._batch_reader = ArrowCoderImpl._load_from_stream(self._resettable_io) self._batch_writer = pa.RecordBatchStreamWriter(self._resettable_io, self._schema) self.data_out_stream = create_OutputStream() self._resettable_io.set_output_stream(self.data_out_stream) def encode_to_stream(self, cols, out_stream, nested): data_out_stream = self.data_out_stream self._batch_writer.write_batch( pandas_to_arrow(self._schema, self._timezone, self._field_types, cols)) out_stream.write_var_int64(data_out_stream.size()) out_stream.write(data_out_stream.get()) data_out_stream._clear() def decode_from_stream(self, in_stream, nested): while in_stream.size() > 0: yield self._decode_one_batch_from_stream(in_stream, in_stream.read_var_int64()) @staticmethod def _load_from_stream(stream): reader = pa.ipc.open_stream(stream) for batch in reader: yield batch def _decode_one_batch_from_stream(self, in_stream: create_InputStream, size: int) -> List: self._resettable_io.set_input_bytes(in_stream.read(size)) # there is only one arrow batch in the underlying input stream return arrow_to_pandas(self._timezone, self._field_types, [next(self._batch_reader)]) def __repr__(self): return 'ArrowCoderImpl[%s]' % self._schema class OverWindowArrowCoderImpl(StreamCoderImpl): def __init__(self, arrow_coder): self._arrow_coder = arrow_coder self._int_coder = IntCoderImpl() def encode_to_stream(self, value, stream, nested): self._arrow_coder.encode_to_stream(value, stream, nested) def decode_from_stream(self, in_stream, nested): while in_stream.size(): remaining_size = in_stream.read_var_int64() window_num = self._int_coder.decode_from_stream(in_stream, nested) remaining_size -= 4 window_boundaries_and_arrow_data = [] for _ in range(window_num): window_size = self._int_coder.decode_from_stream(in_stream, nested) remaining_size -= 4 window_boundaries_and_arrow_data.append( [self._int_coder.decode_from_stream(in_stream, nested) for _ in range(window_size)]) remaining_size -= 4 * window_size window_boundaries_and_arrow_data.append( self._arrow_coder._decode_one_batch_from_stream(in_stream, remaining_size)) yield window_boundaries_and_arrow_data def __repr__(self): return 'OverWindowArrowCoderImpl[%s]' % self._arrow_coder class PassThroughLengthPrefixCoderImpl(StreamCoderImpl): def __init__(self, value_coder): self._value_coder = value_coder def encode_to_stream(self, value, out: create_OutputStream, nested: bool) -> Any: self._value_coder.encode_to_stream(value, out, nested) def decode_from_stream(self, in_stream: create_InputStream, nested: bool) -> Any: return self._value_coder.decode_from_stream(in_stream, nested) def get_estimated_size_and_observables(self, value: Any, nested=False): return 0, [] def __repr__(self): return 'PassThroughLengthPrefixCoderImpl[%s]' % self._value_coder
apache-2.0
petosegan/scikit-learn
examples/applications/plot_model_complexity_influence.py
323
6372
""" ========================== Model Complexity Influence ========================== Demonstrate how model complexity influences both prediction accuracy and computational performance. The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification). For each class of models we make the model complexity vary through the choice of relevant model parameters and measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss). """ print(__doc__) # Author: Eustache Diemert <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.parasite_axes import host_subplot from mpl_toolkits.axisartist.axislines import Axes from scipy.sparse.csr import csr_matrix from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.svm.classes import NuSVR from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.metrics import hamming_loss ############################################################################### # Routines # initialize random generator np.random.seed(0) def generate_data(case, sparse=False): """Generate regression/classification data.""" bunch = None if case == 'regression': bunch = datasets.load_boston() elif case == 'classification': bunch = datasets.fetch_20newsgroups_vectorized(subset='all') X, y = shuffle(bunch.data, bunch.target) offset = int(X.shape[0] * 0.8) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] if sparse: X_train = csr_matrix(X_train) X_test = csr_matrix(X_test) else: X_train = np.array(X_train) X_test = np.array(X_test) y_test = np.array(y_test) y_train = np.array(y_train) data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test} return data def benchmark_influence(conf): """ Benchmark influence of :changing_param: on both MSE and latency. """ prediction_times = [] prediction_powers = [] complexities = [] for param_value in conf['changing_param_values']: conf['tuned_params'][conf['changing_param']] = param_value estimator = conf['estimator'](**conf['tuned_params']) print("Benchmarking %s" % estimator) estimator.fit(conf['data']['X_train'], conf['data']['y_train']) conf['postfit_hook'](estimator) complexity = conf['complexity_computer'](estimator) complexities.append(complexity) start_time = time.time() for _ in range(conf['n_samples']): y_pred = estimator.predict(conf['data']['X_test']) elapsed_time = (time.time() - start_time) / float(conf['n_samples']) prediction_times.append(elapsed_time) pred_score = conf['prediction_performance_computer']( conf['data']['y_test'], y_pred) prediction_powers.append(pred_score) print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % ( complexity, conf['prediction_performance_label'], pred_score, elapsed_time)) return prediction_powers, prediction_times, complexities def plot_influence(conf, mse_values, prediction_times, complexities): """ Plot influence of model complexity on both accuracy and latency. """ plt.figure(figsize=(12, 6)) host = host_subplot(111, axes_class=Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() host.set_xlabel('Model Complexity (%s)' % conf['complexity_label']) y1_label = conf['prediction_performance_label'] y2_label = "Time (s)" host.set_ylabel(y1_label) par1.set_ylabel(y2_label) p1, = host.plot(complexities, mse_values, 'b-', label="prediction error") p2, = par1.plot(complexities, prediction_times, 'r-', label="latency") host.legend(loc='upper right') host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__) plt.show() def _count_nonzero_coefficients(estimator): a = estimator.coef_.toarray() return np.count_nonzero(a) ############################################################################### # main code regression_data = generate_data('regression') classification_data = generate_data('classification', sparse=True) configurations = [ {'estimator': SGDClassifier, 'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss': 'modified_huber', 'fit_intercept': True}, 'changing_param': 'l1_ratio', 'changing_param_values': [0.25, 0.5, 0.75, 0.9], 'complexity_label': 'non_zero coefficients', 'complexity_computer': _count_nonzero_coefficients, 'prediction_performance_computer': hamming_loss, 'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)', 'postfit_hook': lambda x: x.sparsify(), 'data': classification_data, 'n_samples': 30}, {'estimator': NuSVR, 'tuned_params': {'C': 1e3, 'gamma': 2 ** -15}, 'changing_param': 'nu', 'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9], 'complexity_label': 'n_support_vectors', 'complexity_computer': lambda x: len(x.support_vectors_), 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, {'estimator': GradientBoostingRegressor, 'tuned_params': {'loss': 'ls'}, 'changing_param': 'n_estimators', 'changing_param_values': [10, 50, 100, 200, 500], 'complexity_label': 'n_trees', 'complexity_computer': lambda x: x.n_estimators, 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, ] for conf in configurations: prediction_performances, prediction_times, complexities = \ benchmark_influence(conf) plot_influence(conf, prediction_performances, prediction_times, complexities)
bsd-3-clause
GuessWhoSamFoo/pandas
pandas/tests/sparse/frame/test_frame.py
1
53954
# pylint: disable-msg=E1101,W0612 import operator import numpy as np from numpy import nan import pytest from pandas._libs.sparse import BlockIndex, IntIndex from pandas.compat import lrange from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Panel, Series, bdate_range, compat from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.sparse import frame as spf from pandas.core.sparse.api import ( SparseArray, SparseDataFrame, SparseDtype, SparseSeries) from pandas.tests.frame.test_api import SharedWithSparse from pandas.util import testing as tm from pandas.tseries.offsets import BDay class TestSparseDataFrame(SharedWithSparse): klass = SparseDataFrame # SharedWithSparse tests use generic, klass-agnostic assertion _assert_frame_equal = staticmethod(tm.assert_sp_frame_equal) _assert_series_equal = staticmethod(tm.assert_sp_series_equal) def test_iterrows(self, float_frame, float_string_frame): # Same as parent, but we don't ensure the sparse kind is the same. for k, v in float_frame.iterrows(): exp = float_frame.loc[k] tm.assert_sp_series_equal(v, exp, check_kind=False) for k, v in float_string_frame.iterrows(): exp = float_string_frame.loc[k] tm.assert_sp_series_equal(v, exp, check_kind=False) def test_itertuples(self, float_frame): for i, tup in enumerate(float_frame.itertuples()): s = self.klass._constructor_sliced(tup[1:]) s.name = tup[0] expected = float_frame.iloc[i, :].reset_index(drop=True) tm.assert_sp_series_equal(s, expected, check_kind=False) def test_fill_value_when_combine_const(self): # GH12723 dat = np.array([0, 1, np.nan, 3, 4, 5], dtype='float') df = SparseDataFrame({'foo': dat}, index=range(6)) exp = df.fillna(0).add(2) res = df.add(2, fill_value=0) tm.assert_sp_frame_equal(res, exp) def test_values(self, empty_frame, float_frame): empty = empty_frame.values assert empty.shape == (0, 0) no_cols = SparseDataFrame(index=np.arange(10)) mat = no_cols.values assert mat.shape == (10, 0) no_index = SparseDataFrame(columns=np.arange(10)) mat = no_index.values assert mat.shape == (0, 10) def test_copy(self, float_frame): cp = float_frame.copy() assert isinstance(cp, SparseDataFrame) tm.assert_sp_frame_equal(cp, float_frame) # as of v0.15.0 # this is now identical (but not is_a ) assert cp.index.identical(float_frame.index) def test_constructor(self, float_frame, float_frame_int_kind, float_frame_fill0): for col, series in compat.iteritems(float_frame): assert isinstance(series, SparseSeries) assert isinstance(float_frame_int_kind['A'].sp_index, IntIndex) # constructed zframe from matrix above assert float_frame_fill0['A'].fill_value == 0 # XXX: changed asarray expected = pd.SparseArray([0, 0, 0, 0, 1., 2., 3., 4., 5., 6.], fill_value=0, kind='block') tm.assert_sp_array_equal(expected, float_frame_fill0['A'].values) tm.assert_numpy_array_equal(np.array([0., 0., 0., 0., 1., 2., 3., 4., 5., 6.]), float_frame_fill0['A'].to_dense().values) # construct no data sdf = SparseDataFrame(columns=np.arange(10), index=np.arange(10)) for col, series in compat.iteritems(sdf): assert isinstance(series, SparseSeries) # construct from nested dict data = {c: s.to_dict() for c, s in compat.iteritems(float_frame)} sdf = SparseDataFrame(data) tm.assert_sp_frame_equal(sdf, float_frame) # TODO: test data is copied from inputs # init dict with different index idx = float_frame.index[:5] cons = SparseDataFrame( float_frame, index=idx, columns=float_frame.columns, default_fill_value=float_frame.default_fill_value, default_kind=float_frame.default_kind, copy=True) reindexed = float_frame.reindex(idx) tm.assert_sp_frame_equal(cons, reindexed, exact_indices=False) # assert level parameter breaks reindex with pytest.raises(TypeError): float_frame.reindex(idx, level=0) repr(float_frame) def test_constructor_dict_order(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6, else # order by value d = {'b': [2, 3], 'a': [0, 1]} frame = SparseDataFrame(data=d) if compat.PY36: expected = SparseDataFrame(data=d, columns=list('ba')) else: expected = SparseDataFrame(data=d, columns=list('ab')) tm.assert_sp_frame_equal(frame, expected) def test_constructor_ndarray(self, float_frame): # no index or columns sp = SparseDataFrame(float_frame.values) # 1d sp = SparseDataFrame(float_frame['A'].values, index=float_frame.index, columns=['A']) tm.assert_sp_frame_equal(sp, float_frame.reindex(columns=['A'])) # raise on level argument pytest.raises(TypeError, float_frame.reindex, columns=['A'], level=1) # wrong length index / columns with pytest.raises(ValueError, match="^Index length"): SparseDataFrame(float_frame.values, index=float_frame.index[:-1]) with pytest.raises(ValueError, match="^Column length"): SparseDataFrame(float_frame.values, columns=float_frame.columns[:-1]) # GH 9272 def test_constructor_empty(self): sp = SparseDataFrame() assert len(sp.index) == 0 assert len(sp.columns) == 0 def test_constructor_dataframe(self, float_frame): dense = float_frame.to_dense() sp = SparseDataFrame(dense) tm.assert_sp_frame_equal(sp, float_frame) def test_constructor_convert_index_once(self): arr = np.array([1.5, 2.5, 3.5]) sdf = SparseDataFrame(columns=lrange(4), index=arr) assert sdf[0].index is sdf[1].index def test_constructor_from_series(self): # GH 2873 x = Series(np.random.randn(10000), name='a') x = x.to_sparse(fill_value=0) assert isinstance(x, SparseSeries) df = SparseDataFrame(x) assert isinstance(df, SparseDataFrame) x = Series(np.random.randn(10000), name='a') y = Series(np.random.randn(10000), name='b') x2 = x.astype(float) x2.loc[:9998] = np.NaN # TODO: x_sparse is unused...fix x_sparse = x2.to_sparse(fill_value=np.NaN) # noqa # Currently fails too with weird ufunc error # df1 = SparseDataFrame([x_sparse, y]) y.loc[:9998] = 0 # TODO: y_sparse is unsused...fix y_sparse = y.to_sparse(fill_value=0) # noqa # without sparse value raises error # df2 = SparseDataFrame([x2_sparse, y]) def test_constructor_from_dense_series(self): # GH 19393 # series with name x = Series(np.random.randn(10000), name='a') result = SparseDataFrame(x) expected = x.to_frame().to_sparse() tm.assert_sp_frame_equal(result, expected) # series with no name x = Series(np.random.randn(10000)) result = SparseDataFrame(x) expected = x.to_frame().to_sparse() tm.assert_sp_frame_equal(result, expected) def test_constructor_from_unknown_type(self): # GH 19393 class Unknown(object): pass with pytest.raises(TypeError, match=('SparseDataFrame called with unknown type ' '"Unknown" for data argument')): SparseDataFrame(Unknown()) def test_constructor_preserve_attr(self): # GH 13866 arr = pd.SparseArray([1, 0, 3, 0], dtype=np.int64, fill_value=0) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 df = pd.SparseDataFrame({'x': arr}) assert df['x'].dtype == SparseDtype(np.int64) assert df['x'].fill_value == 0 s = pd.SparseSeries(arr, name='x') assert s.dtype == SparseDtype(np.int64) assert s.fill_value == 0 df = pd.SparseDataFrame(s) assert df['x'].dtype == SparseDtype(np.int64) assert df['x'].fill_value == 0 df = pd.SparseDataFrame({'x': s}) assert df['x'].dtype == SparseDtype(np.int64) assert df['x'].fill_value == 0 def test_constructor_nan_dataframe(self): # GH 10079 trains = np.arange(100) thresholds = [10, 20, 30, 40, 50, 60] tuples = [(i, j) for i in trains for j in thresholds] index = pd.MultiIndex.from_tuples(tuples, names=['trains', 'thresholds']) matrix = np.empty((len(index), len(trains))) matrix.fill(np.nan) df = pd.DataFrame(matrix, index=index, columns=trains, dtype=float) result = df.to_sparse() expected = pd.SparseDataFrame(matrix, index=index, columns=trains, dtype=float) tm.assert_sp_frame_equal(result, expected) def test_type_coercion_at_construction(self): # GH 15682 result = pd.SparseDataFrame( {'a': [1, 0, 0], 'b': [0, 1, 0], 'c': [0, 0, 1]}, dtype='uint8', default_fill_value=0) expected = pd.SparseDataFrame( {'a': pd.SparseSeries([1, 0, 0], dtype='uint8'), 'b': pd.SparseSeries([0, 1, 0], dtype='uint8'), 'c': pd.SparseSeries([0, 0, 1], dtype='uint8')}, default_fill_value=0) tm.assert_sp_frame_equal(result, expected) def test_dtypes(self): df = DataFrame(np.random.randn(10000, 4)) df.loc[:9998] = np.nan sdf = df.to_sparse() result = sdf.get_dtype_counts() expected = Series({'Sparse[float64, nan]': 4}) tm.assert_series_equal(result, expected) def test_shape(self, float_frame, float_frame_int_kind, float_frame_fill0, float_frame_fill2): # see gh-10452 assert float_frame.shape == (10, 4) assert float_frame_int_kind.shape == (10, 4) assert float_frame_fill0.shape == (10, 4) assert float_frame_fill2.shape == (10, 4) def test_str(self): df = DataFrame(np.random.randn(10000, 4)) df.loc[:9998] = np.nan sdf = df.to_sparse() str(sdf) def test_array_interface(self, float_frame): res = np.sqrt(float_frame) dres = np.sqrt(float_frame.to_dense()) tm.assert_frame_equal(res.to_dense(), dres) def test_pickle(self, float_frame, float_frame_int_kind, float_frame_dense, float_frame_fill0, float_frame_fill0_dense, float_frame_fill2, float_frame_fill2_dense): def _test_roundtrip(frame, orig): result = tm.round_trip_pickle(frame) tm.assert_sp_frame_equal(frame, result) tm.assert_frame_equal(result.to_dense(), orig, check_dtype=False) _test_roundtrip(SparseDataFrame(), DataFrame()) _test_roundtrip(float_frame, float_frame_dense) _test_roundtrip(float_frame_int_kind, float_frame_dense) _test_roundtrip(float_frame_fill0, float_frame_fill0_dense) _test_roundtrip(float_frame_fill2, float_frame_fill2_dense) def test_dense_to_sparse(self): df = DataFrame({'A': [nan, nan, nan, 1, 2], 'B': [1, 2, nan, nan, nan]}) sdf = df.to_sparse() assert isinstance(sdf, SparseDataFrame) assert np.isnan(sdf.default_fill_value) assert isinstance(sdf['A'].sp_index, BlockIndex) tm.assert_frame_equal(sdf.to_dense(), df) sdf = df.to_sparse(kind='integer') assert isinstance(sdf['A'].sp_index, IntIndex) df = DataFrame({'A': [0, 0, 0, 1, 2], 'B': [1, 2, 0, 0, 0]}, dtype=float) sdf = df.to_sparse(fill_value=0) assert sdf.default_fill_value == 0 tm.assert_frame_equal(sdf.to_dense(), df) def test_density(self): df = SparseSeries([nan, nan, nan, 0, 1, 2, 3, 4, 5, 6]) assert df.density == 0.7 df = SparseDataFrame({'A': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6], 'B': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6], 'C': np.arange(10), 'D': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]}) assert df.density == 0.75 def test_sparse_to_dense(self): pass def test_sparse_series_ops(self, float_frame): self._check_frame_ops(float_frame) def test_sparse_series_ops_i(self, float_frame_int_kind): self._check_frame_ops(float_frame_int_kind) def test_sparse_series_ops_z(self, float_frame_fill0): self._check_frame_ops(float_frame_fill0) def test_sparse_series_ops_fill(self, float_frame_fill2): self._check_frame_ops(float_frame_fill2) def _check_frame_ops(self, frame): def _compare_to_dense(a, b, da, db, op): sparse_result = op(a, b) dense_result = op(da, db) fill = sparse_result.default_fill_value dense_result = dense_result.to_sparse(fill_value=fill) tm.assert_sp_frame_equal(sparse_result, dense_result, exact_indices=False) if isinstance(a, DataFrame) and isinstance(db, DataFrame): mixed_result = op(a, db) assert isinstance(mixed_result, SparseDataFrame) tm.assert_sp_frame_equal(mixed_result, sparse_result, exact_indices=False) opnames = ['add', 'sub', 'mul', 'truediv', 'floordiv'] ops = [getattr(operator, name) for name in opnames] fidx = frame.index # time series operations series = [frame['A'], frame['B'], frame['C'], frame['D'], frame['A'].reindex(fidx[:7]), frame['A'].reindex(fidx[::2]), SparseSeries( [], index=[])] for op in opnames: _compare_to_dense(frame, frame[::2], frame.to_dense(), frame[::2].to_dense(), getattr(operator, op)) # 2304, no auto-broadcasting for i, s in enumerate(series): f = lambda a, b: getattr(a, op)(b, axis='index') _compare_to_dense(frame, s, frame.to_dense(), s.to_dense(), f) # rops are not implemented # _compare_to_dense(s, frame, s.to_dense(), # frame.to_dense(), f) # cross-sectional operations series = [frame.xs(fidx[0]), frame.xs(fidx[3]), frame.xs(fidx[5]), frame.xs(fidx[7]), frame.xs(fidx[5])[:2]] for op in ops: for s in series: _compare_to_dense(frame, s, frame.to_dense(), s, op) _compare_to_dense(s, frame, s, frame.to_dense(), op) # it works! result = frame + frame.loc[:, ['A', 'B']] # noqa def test_op_corners(self, float_frame, empty_frame): empty = empty_frame + empty_frame assert empty.empty foo = float_frame + empty_frame assert isinstance(foo.index, DatetimeIndex) tm.assert_frame_equal(foo, float_frame * np.nan) foo = empty_frame + float_frame tm.assert_frame_equal(foo, float_frame * np.nan) def test_scalar_ops(self): pass def test_getitem(self): # 1585 select multiple columns sdf = SparseDataFrame(index=[0, 1, 2], columns=['a', 'b', 'c']) result = sdf[['a', 'b']] exp = sdf.reindex(columns=['a', 'b']) tm.assert_sp_frame_equal(result, exp) pytest.raises(Exception, sdf.__getitem__, ['a', 'd']) def test_iloc(self, float_frame): # GH 2227 result = float_frame.iloc[:, 0] assert isinstance(result, SparseSeries) tm.assert_sp_series_equal(result, float_frame['A']) # preserve sparse index type. #2251 data = {'A': [0, 1]} iframe = SparseDataFrame(data, default_kind='integer') tm.assert_class_equal(iframe['A'].sp_index, iframe.iloc[:, 0].sp_index) def test_set_value(self, float_frame): # ok, as the index gets converted to object frame = float_frame.copy() with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): res = frame.set_value('foobar', 'B', 1.5) assert res.index.dtype == 'object' res = float_frame res.index = res.index.astype(object) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): res = float_frame.set_value('foobar', 'B', 1.5) assert res is not float_frame assert res.index[-1] == 'foobar' with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert res.get_value('foobar', 'B') == 1.5 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): res2 = res.set_value('foobar', 'qux', 1.5) assert res2 is not res tm.assert_index_equal(res2.columns, pd.Index(list(float_frame.columns) + ['qux'])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert res2.get_value('foobar', 'qux') == 1.5 def test_fancy_index_misc(self, float_frame): # axis = 0 sliced = float_frame.iloc[-2:, :] expected = float_frame.reindex(index=float_frame.index[-2:]) tm.assert_sp_frame_equal(sliced, expected) # axis = 1 sliced = float_frame.iloc[:, -2:] expected = float_frame.reindex(columns=float_frame.columns[-2:]) tm.assert_sp_frame_equal(sliced, expected) def test_getitem_overload(self, float_frame): # slicing sl = float_frame[:20] tm.assert_sp_frame_equal(sl, float_frame.reindex(float_frame.index[:20])) # boolean indexing d = float_frame.index[5] indexer = float_frame.index > d subindex = float_frame.index[indexer] subframe = float_frame[indexer] tm.assert_index_equal(subindex, subframe.index) pytest.raises(Exception, float_frame.__getitem__, indexer[:-1]) def test_setitem(self, float_frame, float_frame_int_kind, float_frame_dense, float_frame_fill0, float_frame_fill0_dense, float_frame_fill2, float_frame_fill2_dense): def _check_frame(frame, orig): N = len(frame) # insert SparseSeries frame['E'] = frame['A'] assert isinstance(frame['E'], SparseSeries) tm.assert_sp_series_equal(frame['E'], frame['A'], check_names=False) # insert SparseSeries differently-indexed to_insert = frame['A'][::2] frame['E'] = to_insert expected = to_insert.to_dense().reindex(frame.index) result = frame['E'].to_dense() tm.assert_series_equal(result, expected, check_names=False) assert result.name == 'E' # insert Series frame['F'] = frame['A'].to_dense() assert isinstance(frame['F'], SparseSeries) tm.assert_sp_series_equal(frame['F'], frame['A'], check_names=False) # insert Series differently-indexed to_insert = frame['A'].to_dense()[::2] frame['G'] = to_insert expected = to_insert.reindex(frame.index) expected.name = 'G' tm.assert_series_equal(frame['G'].to_dense(), expected) # insert ndarray frame['H'] = np.random.randn(N) assert isinstance(frame['H'], SparseSeries) to_sparsify = np.random.randn(N) to_sparsify[N // 2:] = frame.default_fill_value frame['I'] = to_sparsify assert len(frame['I'].sp_values) == N // 2 # insert ndarray wrong size pytest.raises(Exception, frame.__setitem__, 'foo', np.random.randn(N - 1)) # scalar value frame['J'] = 5 assert len(frame['J'].sp_values) == N assert (frame['J'].sp_values == 5).all() frame['K'] = frame.default_fill_value assert len(frame['K'].sp_values) == 0 _check_frame(float_frame, float_frame_dense) _check_frame(float_frame_int_kind, float_frame_dense) _check_frame(float_frame_fill0, float_frame_fill0_dense) _check_frame(float_frame_fill2, float_frame_fill2_dense) @pytest.mark.parametrize('values', [ [True, False], [0, 1], [1, None], ['a', 'b'], [pd.Timestamp('2017'), pd.NaT], [pd.Timedelta('10s'), pd.NaT], ]) def test_setitem_more(self, values): df = pd.DataFrame({"A": values}) df['A'] = pd.SparseArray(values) expected = pd.DataFrame({'A': pd.SparseArray(values)}) tm.assert_frame_equal(df, expected) def test_setitem_corner(self, float_frame): float_frame['a'] = float_frame['B'] tm.assert_sp_series_equal(float_frame['a'], float_frame['B'], check_names=False) def test_setitem_array(self, float_frame): arr = float_frame['B'] float_frame['E'] = arr tm.assert_sp_series_equal(float_frame['E'], float_frame['B'], check_names=False) float_frame['F'] = arr[:-1] index = float_frame.index[:-1] tm.assert_sp_series_equal(float_frame['E'].reindex(index), float_frame['F'].reindex(index), check_names=False) def test_setitem_chained_no_consolidate(self): # https://github.com/pandas-dev/pandas/pull/19268 # issuecomment-361696418 # chained setitem used to cause consolidation sdf = pd.SparseDataFrame([[np.nan, 1], [2, np.nan]]) with pd.option_context('mode.chained_assignment', None): sdf[0][1] = 2 assert len(sdf._data.blocks) == 2 def test_delitem(self, float_frame): A = float_frame['A'] C = float_frame['C'] del float_frame['B'] assert 'B' not in float_frame tm.assert_sp_series_equal(float_frame['A'], A) tm.assert_sp_series_equal(float_frame['C'], C) del float_frame['D'] assert 'D' not in float_frame del float_frame['A'] assert 'A' not in float_frame def test_set_columns(self, float_frame): float_frame.columns = float_frame.columns pytest.raises(Exception, setattr, float_frame, 'columns', float_frame.columns[:-1]) def test_set_index(self, float_frame): float_frame.index = float_frame.index pytest.raises(Exception, setattr, float_frame, 'index', float_frame.index[:-1]) def test_ctor_reindex(self): idx = pd.Index([0, 1, 2, 3]) with pytest.raises(ValueError, match=''): pd.SparseDataFrame({"A": [1, 2]}, index=idx) def test_append(self, float_frame): a = float_frame[:5] b = float_frame[5:] appended = a.append(b) tm.assert_sp_frame_equal(appended, float_frame, exact_indices=False) a = float_frame.iloc[:5, :3] b = float_frame.iloc[5:] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Stacklevel is set for pd.concat, not append appended = a.append(b) tm.assert_sp_frame_equal(appended.iloc[:, :3], float_frame.iloc[:, :3], exact_indices=False) a = a[['B', 'C', 'A']].head(2) b = b.head(2) expected = pd.SparseDataFrame({ "B": [0., 1, None, 3], "C": [0., 1, 5, 6], "A": [None, None, 2, 3], "D": [None, None, 5, None], }, index=a.index | b.index, columns=['B', 'C', 'A', 'D']) with tm.assert_produces_warning(None): appended = a.append(b, sort=False) tm.assert_frame_equal(appended, expected) with tm.assert_produces_warning(None): appended = a.append(b, sort=True) tm.assert_sp_frame_equal(appended, expected[['A', 'B', 'C', 'D']], consolidate_block_indices=True, check_kind=False) def test_astype(self): sparse = pd.SparseDataFrame({'A': SparseArray([1, 2, 3, 4], dtype=np.int64), 'B': SparseArray([4, 5, 6, 7], dtype=np.int64)}) assert sparse['A'].dtype == SparseDtype(np.int64) assert sparse['B'].dtype == SparseDtype(np.int64) # retain fill_value res = sparse.astype(np.float64) exp = pd.SparseDataFrame({'A': SparseArray([1., 2., 3., 4.], fill_value=0, kind='integer'), 'B': SparseArray([4., 5., 6., 7.], fill_value=0, kind='integer')}, default_fill_value=np.nan) tm.assert_sp_frame_equal(res, exp) assert res['A'].dtype == SparseDtype(np.float64, 0) assert res['B'].dtype == SparseDtype(np.float64, 0) # update fill_value res = sparse.astype(SparseDtype(np.float64, np.nan)) exp = pd.SparseDataFrame({'A': SparseArray([1., 2., 3., 4.], fill_value=np.nan, kind='integer'), 'B': SparseArray([4., 5., 6., 7.], fill_value=np.nan, kind='integer')}, default_fill_value=np.nan) tm.assert_sp_frame_equal(res, exp) assert res['A'].dtype == SparseDtype(np.float64, np.nan) assert res['B'].dtype == SparseDtype(np.float64, np.nan) def test_astype_bool(self): sparse = pd.SparseDataFrame({'A': SparseArray([0, 2, 0, 4], fill_value=0, dtype=np.int64), 'B': SparseArray([0, 5, 0, 7], fill_value=0, dtype=np.int64)}, default_fill_value=0) assert sparse['A'].dtype == SparseDtype(np.int64) assert sparse['B'].dtype == SparseDtype(np.int64) res = sparse.astype(SparseDtype(bool, False)) exp = pd.SparseDataFrame({'A': SparseArray([False, True, False, True], dtype=np.bool, fill_value=False, kind='integer'), 'B': SparseArray([False, True, False, True], dtype=np.bool, fill_value=False, kind='integer')}, default_fill_value=False) tm.assert_sp_frame_equal(res, exp) assert res['A'].dtype == SparseDtype(np.bool) assert res['B'].dtype == SparseDtype(np.bool) def test_astype_object(self): # This may change in GH-23125 df = pd.DataFrame({"A": SparseArray([0, 1]), "B": SparseArray([0, 1])}) result = df.astype(object) dtype = SparseDtype(object, 0) expected = pd.DataFrame({"A": SparseArray([0, 1], dtype=dtype), "B": SparseArray([0, 1], dtype=dtype)}) tm.assert_frame_equal(result, expected) def test_fillna(self, float_frame_fill0, float_frame_fill0_dense): df = float_frame_fill0.reindex(lrange(5)) dense = float_frame_fill0_dense.reindex(lrange(5)) result = df.fillna(0) expected = dense.fillna(0) tm.assert_sp_frame_equal(result, expected.to_sparse(fill_value=0), exact_indices=False) tm.assert_frame_equal(result.to_dense(), expected) result = df.copy() result.fillna(0, inplace=True) expected = dense.fillna(0) tm.assert_sp_frame_equal(result, expected.to_sparse(fill_value=0), exact_indices=False) tm.assert_frame_equal(result.to_dense(), expected) result = df.copy() result = df['A'] result.fillna(0, inplace=True) expected = dense['A'].fillna(0) # this changes internal SparseArray repr # tm.assert_sp_series_equal(result, expected.to_sparse(fill_value=0)) tm.assert_series_equal(result.to_dense(), expected) def test_fillna_fill_value(self): df = pd.DataFrame({'A': [1, 0, 0], 'B': [np.nan, np.nan, 4]}) sparse = pd.SparseDataFrame(df) tm.assert_frame_equal(sparse.fillna(-1).to_dense(), df.fillna(-1), check_dtype=False) sparse = pd.SparseDataFrame(df, default_fill_value=0) tm.assert_frame_equal(sparse.fillna(-1).to_dense(), df.fillna(-1), check_dtype=False) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) with tm.assert_produces_warning(PerformanceWarning): expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) with tm.assert_produces_warning(PerformanceWarning): expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) with tm.assert_produces_warning(PerformanceWarning): result = result.fillna(method='pad', limit=5) with tm.assert_produces_warning(PerformanceWarning): expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) with tm.assert_produces_warning(PerformanceWarning): result = result.fillna(method='backfill', limit=5) with tm.assert_produces_warning(PerformanceWarning): expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_rename(self, float_frame): result = float_frame.rename(index=str) expected = SparseDataFrame(float_frame.values, index=float_frame.index.strftime( "%Y-%m-%d %H:%M:%S"), columns=list('ABCD')) tm.assert_sp_frame_equal(result, expected) result = float_frame.rename(columns=lambda x: '%s%d' % (x, 1)) data = {'A1': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6], 'B1': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6], 'C1': np.arange(10, dtype=np.float64), 'D1': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]} expected = SparseDataFrame(data, index=float_frame.index) tm.assert_sp_frame_equal(result, expected) def test_corr(self, float_frame): res = float_frame.corr() # XXX: this stays sparse tm.assert_frame_equal(res, float_frame.to_dense().corr().to_sparse()) def test_describe(self, float_frame): float_frame['foo'] = np.nan float_frame.get_dtype_counts() str(float_frame) desc = float_frame.describe() # noqa def test_join(self, float_frame): left = float_frame.loc[:, ['A', 'B']] right = float_frame.loc[:, ['C', 'D']] joined = left.join(right) tm.assert_sp_frame_equal(joined, float_frame, exact_indices=False) right = float_frame.loc[:, ['B', 'D']] pytest.raises(Exception, left.join, right) with pytest.raises(ValueError, match='Other Series must have a name'): float_frame.join(Series( np.random.randn(len(float_frame)), index=float_frame.index)) def test_reindex(self, float_frame, float_frame_int_kind, float_frame_fill0, float_frame_fill2): def _check_frame(frame): index = frame.index sidx = index[::2] sidx2 = index[:5] # noqa sparse_result = frame.reindex(sidx) dense_result = frame.to_dense().reindex(sidx) tm.assert_frame_equal(sparse_result.to_dense(), dense_result) tm.assert_frame_equal(frame.reindex(list(sidx)).to_dense(), dense_result) sparse_result2 = sparse_result.reindex(index) dense_result2 = dense_result.reindex(index) tm.assert_frame_equal(sparse_result2.to_dense(), dense_result2) # propagate CORRECT fill value tm.assert_almost_equal(sparse_result.default_fill_value, frame.default_fill_value) tm.assert_almost_equal(sparse_result['A'].fill_value, frame['A'].fill_value) # length zero length_zero = frame.reindex([]) assert len(length_zero) == 0 assert len(length_zero.columns) == len(frame.columns) assert len(length_zero['A']) == 0 # frame being reindexed has length zero length_n = length_zero.reindex(index) assert len(length_n) == len(frame) assert len(length_n.columns) == len(frame.columns) assert len(length_n['A']) == len(frame) # reindex columns reindexed = frame.reindex(columns=['A', 'B', 'Z']) assert len(reindexed.columns) == 3 tm.assert_almost_equal(reindexed['Z'].fill_value, frame.default_fill_value) assert np.isnan(reindexed['Z'].sp_values).all() _check_frame(float_frame) _check_frame(float_frame_int_kind) _check_frame(float_frame_fill0) _check_frame(float_frame_fill2) # with copy=False reindexed = float_frame.reindex(float_frame.index, copy=False) reindexed['F'] = reindexed['A'] assert 'F' in float_frame reindexed = float_frame.reindex(float_frame.index) reindexed['G'] = reindexed['A'] assert 'G' not in float_frame def test_reindex_fill_value(self, float_frame_fill0, float_frame_fill0_dense): rng = bdate_range('20110110', periods=20) result = float_frame_fill0.reindex(rng, fill_value=0) exp = float_frame_fill0_dense.reindex(rng, fill_value=0) exp = exp.to_sparse(float_frame_fill0.default_fill_value) tm.assert_sp_frame_equal(result, exp) def test_reindex_method(self): sparse = SparseDataFrame(data=[[11., 12., 14.], [21., 22., 24.], [41., 42., 44.]], index=[1, 2, 4], columns=[1, 2, 4], dtype=float) # Over indices # default method result = sparse.reindex(index=range(6)) expected = SparseDataFrame(data=[[nan, nan, nan], [11., 12., 14.], [21., 22., 24.], [nan, nan, nan], [41., 42., 44.], [nan, nan, nan]], index=range(6), columns=[1, 2, 4], dtype=float) tm.assert_sp_frame_equal(result, expected) # method='bfill' result = sparse.reindex(index=range(6), method='bfill') expected = SparseDataFrame(data=[[11., 12., 14.], [11., 12., 14.], [21., 22., 24.], [41., 42., 44.], [41., 42., 44.], [nan, nan, nan]], index=range(6), columns=[1, 2, 4], dtype=float) tm.assert_sp_frame_equal(result, expected) # method='ffill' result = sparse.reindex(index=range(6), method='ffill') expected = SparseDataFrame(data=[[nan, nan, nan], [11., 12., 14.], [21., 22., 24.], [21., 22., 24.], [41., 42., 44.], [41., 42., 44.]], index=range(6), columns=[1, 2, 4], dtype=float) tm.assert_sp_frame_equal(result, expected) # Over columns # default method result = sparse.reindex(columns=range(6)) expected = SparseDataFrame(data=[[nan, 11., 12., nan, 14., nan], [nan, 21., 22., nan, 24., nan], [nan, 41., 42., nan, 44., nan]], index=[1, 2, 4], columns=range(6), dtype=float) tm.assert_sp_frame_equal(result, expected) # method='bfill' with pytest.raises(NotImplementedError): sparse.reindex(columns=range(6), method='bfill') # method='ffill' with pytest.raises(NotImplementedError): sparse.reindex(columns=range(6), method='ffill') def test_take(self, float_frame): result = float_frame.take([1, 0, 2], axis=1) expected = float_frame.reindex(columns=['B', 'A', 'C']) tm.assert_sp_frame_equal(result, expected) def test_to_dense(self, float_frame, float_frame_int_kind, float_frame_dense, float_frame_fill0, float_frame_fill0_dense, float_frame_fill2, float_frame_fill2_dense): def _check(frame, orig): dense_dm = frame.to_dense() # Sparse[float] != float tm.assert_frame_equal(frame, dense_dm, check_dtype=False) tm.assert_frame_equal(dense_dm, orig, check_dtype=False) _check(float_frame, float_frame_dense) _check(float_frame_int_kind, float_frame_dense) _check(float_frame_fill0, float_frame_fill0_dense) _check(float_frame_fill2, float_frame_fill2_dense) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_stack_sparse_frame(self, float_frame, float_frame_int_kind, float_frame_fill0, float_frame_fill2): def _check(frame): dense_frame = frame.to_dense() # noqa wp = Panel.from_dict({'foo': frame}) from_dense_lp = wp.to_frame() from_sparse_lp = spf.stack_sparse_frame(frame) tm.assert_numpy_array_equal(from_dense_lp.values, from_sparse_lp.values) _check(float_frame) _check(float_frame_int_kind) # for now pytest.raises(Exception, _check, float_frame_fill0) pytest.raises(Exception, _check, float_frame_fill2) def test_transpose(self, float_frame, float_frame_int_kind, float_frame_dense, float_frame_fill0, float_frame_fill0_dense, float_frame_fill2, float_frame_fill2_dense): def _check(frame, orig): transposed = frame.T untransposed = transposed.T tm.assert_sp_frame_equal(frame, untransposed) tm.assert_frame_equal(frame.T.to_dense(), orig.T) tm.assert_frame_equal(frame.T.T.to_dense(), orig.T.T) tm.assert_sp_frame_equal(frame, frame.T.T, exact_indices=False) _check(float_frame, float_frame_dense) _check(float_frame_int_kind, float_frame_dense) _check(float_frame_fill0, float_frame_fill0_dense) _check(float_frame_fill2, float_frame_fill2_dense) def test_shift(self, float_frame, float_frame_int_kind, float_frame_dense, float_frame_fill0, float_frame_fill0_dense, float_frame_fill2, float_frame_fill2_dense): def _check(frame, orig): shifted = frame.shift(0) exp = orig.shift(0) tm.assert_frame_equal(shifted.to_dense(), exp) shifted = frame.shift(1) exp = orig.shift(1) tm.assert_frame_equal(shifted.to_dense(), exp) shifted = frame.shift(-2) exp = orig.shift(-2) tm.assert_frame_equal(shifted.to_dense(), exp) shifted = frame.shift(2, freq='B') exp = orig.shift(2, freq='B') exp = exp.to_sparse(frame.default_fill_value, kind=frame.default_kind) tm.assert_frame_equal(shifted, exp) shifted = frame.shift(2, freq=BDay()) exp = orig.shift(2, freq=BDay()) exp = exp.to_sparse(frame.default_fill_value, kind=frame.default_kind) tm.assert_frame_equal(shifted, exp) _check(float_frame, float_frame_dense) _check(float_frame_int_kind, float_frame_dense) _check(float_frame_fill0, float_frame_fill0_dense) _check(float_frame_fill2, float_frame_fill2_dense) def test_count(self, float_frame): dense_result = float_frame.to_dense().count() result = float_frame.count() tm.assert_series_equal(result.to_dense(), dense_result) result = float_frame.count(axis=None) tm.assert_series_equal(result.to_dense(), dense_result) result = float_frame.count(axis=0) tm.assert_series_equal(result.to_dense(), dense_result) result = float_frame.count(axis=1) dense_result = float_frame.to_dense().count(axis=1) # win32 don't check dtype tm.assert_series_equal(result, dense_result, check_dtype=False) def test_numpy_transpose(self): sdf = SparseDataFrame([1, 2, 3], index=[1, 2, 3], columns=['a']) result = np.transpose(np.transpose(sdf)) tm.assert_sp_frame_equal(result, sdf) msg = "the 'axes' parameter is not supported" with pytest.raises(ValueError, match=msg): np.transpose(sdf, axes=1) def test_combine_first(self, float_frame): df = float_frame result = df[::2].combine_first(df) expected = df[::2].to_dense().combine_first(df.to_dense()) expected = expected.to_sparse(fill_value=df.default_fill_value) tm.assert_sp_frame_equal(result, expected) @pytest.mark.xfail(reason="No longer supported.") def test_combine_first_with_dense(self): # We could support this if we allow # pd.core.dtypes.cast.find_common_type to special case SparseDtype # but I don't think that's worth it. df = self.frame result = df[::2].combine_first(df.to_dense()) expected = df[::2].to_dense().combine_first(df.to_dense()) expected = expected.to_sparse(fill_value=df.default_fill_value) tm.assert_sp_frame_equal(result, expected) def test_combine_add(self, float_frame): df = float_frame.to_dense() df2 = df.copy() df2['C'][:3] = np.nan df['A'][:3] = 5.7 result = df.to_sparse().add(df2.to_sparse(), fill_value=0) expected = df.add(df2, fill_value=0).to_sparse() tm.assert_sp_frame_equal(result, expected) def test_isin(self): sparse_df = DataFrame({'flag': [1., 0., 1.]}).to_sparse(fill_value=0.) xp = sparse_df[sparse_df.flag == 1.] rs = sparse_df[sparse_df.flag.isin([1.])] tm.assert_frame_equal(xp, rs) def test_sparse_pow_issue(self): # 2220 df = SparseDataFrame({'A': [1.1, 3.3], 'B': [2.5, -3.9]}) # note : no error without nan df = SparseDataFrame({'A': [nan, 0, 1]}) # note that 2 ** df works fine, also df ** 1 result = 1 ** df r1 = result.take([0], 1)['A'] r2 = result['A'] assert len(r2.sp_values) == len(r1.sp_values) def test_as_blocks(self): df = SparseDataFrame({'A': [1.1, 3.3], 'B': [nan, -3.9]}, dtype='float64') # deprecated 0.21.0 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): df_blocks = df.blocks assert list(df_blocks.keys()) == ['Sparse[float64, nan]'] tm.assert_frame_equal(df_blocks['Sparse[float64, nan]'], df) @pytest.mark.xfail(reason='nan column names in _init_dict problematic ' '(GH#16894)') def test_nan_columnname(self): # GH 8822 nan_colname = DataFrame(Series(1.0, index=[0]), columns=[nan]) nan_colname_sparse = nan_colname.to_sparse() assert np.isnan(nan_colname_sparse.columns[0]) def test_isna(self): # GH 8276 df = pd.SparseDataFrame({'A': [np.nan, np.nan, 1, 2, np.nan], 'B': [0, np.nan, np.nan, 2, np.nan]}) res = df.isna() exp = pd.SparseDataFrame({'A': [True, True, False, False, True], 'B': [False, True, True, False, True]}, default_fill_value=True) exp._default_fill_value = np.nan tm.assert_sp_frame_equal(res, exp) # if fill_value is not nan, True can be included in sp_values df = pd.SparseDataFrame({'A': [0, 0, 1, 2, np.nan], 'B': [0, np.nan, 0, 2, np.nan]}, default_fill_value=0.) res = df.isna() assert isinstance(res, pd.SparseDataFrame) exp = pd.DataFrame({'A': [False, False, False, False, True], 'B': [False, True, False, False, True]}) tm.assert_frame_equal(res.to_dense(), exp) def test_notna(self): # GH 8276 df = pd.SparseDataFrame({'A': [np.nan, np.nan, 1, 2, np.nan], 'B': [0, np.nan, np.nan, 2, np.nan]}) res = df.notna() exp = pd.SparseDataFrame({'A': [False, False, True, True, False], 'B': [True, False, False, True, False]}, default_fill_value=False) exp._default_fill_value = np.nan tm.assert_sp_frame_equal(res, exp) # if fill_value is not nan, True can be included in sp_values df = pd.SparseDataFrame({'A': [0, 0, 1, 2, np.nan], 'B': [0, np.nan, 0, 2, np.nan]}, default_fill_value=0.) res = df.notna() assert isinstance(res, pd.SparseDataFrame) exp = pd.DataFrame({'A': [True, True, True, True, False], 'B': [True, False, True, True, False]}) tm.assert_frame_equal(res.to_dense(), exp) class TestSparseDataFrameArithmetic(object): def test_numeric_op_scalar(self): df = pd.DataFrame({'A': [nan, nan, 0, 1, ], 'B': [0, 1, 2, nan], 'C': [1., 2., 3., 4.], 'D': [nan, nan, nan, nan]}) sparse = df.to_sparse() tm.assert_sp_frame_equal(sparse + 1, (df + 1).to_sparse()) def test_comparison_op_scalar(self): # GH 13001 df = pd.DataFrame({'A': [nan, nan, 0, 1, ], 'B': [0, 1, 2, nan], 'C': [1., 2., 3., 4.], 'D': [nan, nan, nan, nan]}) sparse = df.to_sparse() # comparison changes internal repr, compare with dense res = sparse > 1 assert isinstance(res, pd.SparseDataFrame) tm.assert_frame_equal(res.to_dense(), df > 1) res = sparse != 0 assert isinstance(res, pd.SparseDataFrame) tm.assert_frame_equal(res.to_dense(), df != 0) class TestSparseDataFrameAnalytics(object): def test_cumsum(self, float_frame): expected = SparseDataFrame(float_frame.to_dense().cumsum()) result = float_frame.cumsum() tm.assert_sp_frame_equal(result, expected) result = float_frame.cumsum(axis=None) tm.assert_sp_frame_equal(result, expected) result = float_frame.cumsum(axis=0) tm.assert_sp_frame_equal(result, expected) def test_numpy_cumsum(self, float_frame): result = np.cumsum(float_frame) expected = SparseDataFrame(float_frame.to_dense().cumsum()) tm.assert_sp_frame_equal(result, expected) msg = "the 'dtype' parameter is not supported" with pytest.raises(ValueError, match=msg): np.cumsum(float_frame, dtype=np.int64) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.cumsum(float_frame, out=result) def test_numpy_func_call(self, float_frame): # no exception should be raised even though # numpy passes in 'axis=None' or `axis=-1' funcs = ['sum', 'cumsum', 'var', 'mean', 'prod', 'cumprod', 'std', 'min', 'max'] for func in funcs: getattr(np, func)(float_frame) @pytest.mark.xfail(reason='Wrong SparseBlock initialization (GH 17386)') def test_quantile(self): # GH 17386 data = [[1, 1], [2, 10], [3, 100], [nan, nan]] q = 0.1 sparse_df = SparseDataFrame(data) result = sparse_df.quantile(q) dense_df = DataFrame(data) dense_expected = dense_df.quantile(q) sparse_expected = SparseSeries(dense_expected) tm.assert_series_equal(result, dense_expected) tm.assert_sp_series_equal(result, sparse_expected) @pytest.mark.xfail(reason='Wrong SparseBlock initialization (GH 17386)') def test_quantile_multi(self): # GH 17386 data = [[1, 1], [2, 10], [3, 100], [nan, nan]] q = [0.1, 0.5] sparse_df = SparseDataFrame(data) result = sparse_df.quantile(q) dense_df = DataFrame(data) dense_expected = dense_df.quantile(q) sparse_expected = SparseDataFrame(dense_expected) tm.assert_frame_equal(result, dense_expected) tm.assert_sp_frame_equal(result, sparse_expected) def test_assign_with_sparse_frame(self): # GH 19163 df = pd.DataFrame({"a": [1, 2, 3]}) res = df.to_sparse(fill_value=False).assign(newcol=False) exp = df.assign(newcol=False).to_sparse(fill_value=False) tm.assert_sp_frame_equal(res, exp) for column in res.columns: assert type(res[column]) is SparseSeries @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("how", ["all", "any"]) def test_dropna(self, inplace, how): # Tests regression #21172. expected = pd.SparseDataFrame({"F2": [0, 1]}) input_df = pd.SparseDataFrame( {"F1": [float('nan'), float('nan')], "F2": [0, 1]} ) result_df = input_df.dropna(axis=1, inplace=inplace, how=how) if inplace: result_df = input_df tm.assert_sp_frame_equal(expected, result_df)
bsd-3-clause
nuclear-wizard/moose
modules/porous_flow/examples/thm_example/compare_2D.py
12
9121
#!/usr/bin/env python3 #* This file is part of the MOOSE framework #* https://www.mooseframework.org #* #* All rights reserved, see COPYRIGHT for full restrictions #* https://github.com/idaholab/moose/blob/master/COPYRIGHT #* #* Licensed under LGPL 2.1, please see LICENSE for details #* https://www.gnu.org/licenses/lgpl-2.1.html # This script generates pictures that demonstrate the agreement between the analytic LaForce solutions and MOOSE import os import sys import numpy as np import matplotlib.pyplot as plt def tara_read(fn, scaling = 1): try: f = open(os.path.join("gold", fn)) data = f.readlines() data = [map(float, d.strip().split(",")) for d in data] data = ([d[0] for d in data], [d[1] * scaling for d in data]) f.close() except: sys.stderr.write("Cannot read " + fn + ", or it contains erroneous data\n") sys.exit(1) return data def moose(fn): try: f = open(os.path.join("gold", fn)) data = f.readlines()[1:-1] data = [map(float, d.strip().split(",")) for d in data] log10_max_val = np.log10(len(data) - 1) num_pts_displayed = 70 subsample = [np.power(10, log10_max_val * i / float(num_pts_displayed - 1)) for i in range(num_pts_displayed)] # 1 to max_val in logarithmic progression subsample = sorted(list(set([0] + [int(np.round(s)) for s in subsample]))) # 0 to len(data)-1 in log progression data = [data[i] for i in subsample] data = ([d[0] for d in data], [d[4] for d in data], [d[5] for d in data], [d[6] for d in data], [d[7] for d in data], [d[8] for d in data], [d[9] for d in data]) f.close() except: sys.stderr.write("Cannot read " + fn + ", or it contains erroneous data\n") sys.exit(1) return data result_file_names = ["pp_one_hour.csv", "pp_one_day.csv", "pp_one_month.csv", "pp_five_years.csv"] tara_pp = [tara_read(fn, scaling = 1E-6) for fn in result_file_names] result_file_names = ["tt_one_hour.csv", "tt_one_day.csv", "tt_one_month.csv", "tt_five_years.csv"] tara_tt = [tara_read(fn, scaling = 1) for fn in result_file_names] result_file_names = ["sg_one_hour.csv", "sg_one_day.csv", "sg_one_month.csv", "sg_five_years.csv"] tara_sg = [tara_read(fn, scaling = 1) for fn in result_file_names] result_file_names = ["u_one_hour.csv", "u_one_day.csv", "u_one_month.csv", "u_five_years.csv"] tara_u = [tara_read(fn, scaling = 1) for fn in result_file_names] result_file_names = ["seff_rr_one_hour.csv", "seff_rr_one_day.csv", "seff_rr_one_month.csv", "seff_rr_five_years.csv"] tara_seff_rr = [tara_read(fn, scaling = 1) for fn in result_file_names] result_file_names = ["seff_tt_one_hour.csv", "seff_tt_one_day.csv", "seff_tt_one_month.csv", "seff_tt_five_years.csv"] tara_seff_tt = [tara_read(fn, scaling = 1) for fn in result_file_names] moose_timesteps = ["0062", "0098", "0135", "0180"] moose_timesteps = ["0078", "0198", "0412", "0704"] moosePTSUSS = [moose("2D_csv_ptsuss_" + ts + ".csv") for ts in moose_timesteps] plt.figure() plt.semilogx(moosePTSUSS[0][0], [(p - 18.3E6)/1E6 for p in moosePTSUSS[0][1]], 'b*', markersize=4, label = 'MOOSE (1 hour)') plt.semilogx(tara_pp[0][0], tara_pp[0][1], 'b-', label = 'LaForce (1 hour)') plt.semilogx(moosePTSUSS[1][0], [(p - 18.3E6)/1E6 for p in moosePTSUSS[1][1]], 'rs', markersize=4, label = 'MOOSE (1 day)') plt.semilogx(tara_pp[1][0], tara_pp[1][1], 'r-', label = 'LaForce (1 day)') plt.semilogx(moosePTSUSS[2][0], [(p - 18.3E6)/1E6 for p in moosePTSUSS[2][1]], 'g^', markersize=4, label = 'MOOSE (1 month)') plt.semilogx(tara_pp[2][0], tara_pp[2][1], 'g-', label = 'LaForce (1 month)') plt.semilogx(moosePTSUSS[3][0], [(p - 18.3E6)/1E6 for p in moosePTSUSS[3][1]], 'ko', markersize=4, label = 'MOOSE (5 years)') plt.semilogx(tara_pp[3][0], tara_pp[3][1], 'k-', label = 'LaForce (5 years)') plt.legend(loc = 'best', prop = {'size': 10}) plt.xlim([0.1, 5000]) plt.xlabel("r (m)") plt.ylabel("Porepressure increase (MPa)") plt.title("Porepressure") plt.savefig("../../doc/content/media/porous_flow/2D_thm_compare_porepressure_fig.png") plt.figure() plt.semilogx(moosePTSUSS[0][0], moosePTSUSS[0][2], 'b*', markersize=4, label = 'MOOSE (1 hour)') plt.semilogx(tara_tt[0][0], tara_tt[0][1], 'b-', label = 'LaForce (1 hour)') plt.semilogx(moosePTSUSS[1][0], moosePTSUSS[1][2], 'rs', markersize=4, label = 'MOOSE (1 day)') plt.semilogx(tara_tt[1][0], tara_tt[1][1], 'r-', label = 'LaForce (1 day)') plt.semilogx(moosePTSUSS[2][0], moosePTSUSS[2][2], 'g^', markersize=4, label = 'MOOSE (1 month)') plt.semilogx(tara_tt[2][0], tara_tt[2][1], 'g-', label = 'LaForce (1 month)') plt.semilogx(moosePTSUSS[3][0], moosePTSUSS[3][2], 'ko', markersize=4, label = 'MOOSE (5 years)') plt.semilogx(tara_tt[3][0], tara_tt[3][1], 'k-', label = 'LaForce (5 years)') plt.legend(loc = 'best', prop = {'size': 10}) plt.xlim([0.1, 5000]) plt.xlabel("r (m)") plt.ylabel("Temperature (K)") plt.title("Temperature") plt.savefig("../../doc/content/media/porous_flow/2D_thm_compare_temperature_fig.png") plt.figure() plt.semilogx(moosePTSUSS[0][0], [u * 1000 for u in moosePTSUSS[0][4]], 'b*', markersize=4, label = 'MOOSE (1 hour)') plt.semilogx(tara_u[0][0], tara_u[0][1], 'b-', label = 'LaForce (1 hour)') plt.semilogx(moosePTSUSS[1][0], [u * 1000 for u in moosePTSUSS[1][4]], 'rs', markersize=4, label = 'MOOSE (1 day)') plt.semilogx(tara_u[1][0], tara_u[1][1], 'r-', label = 'LaForce (1 day)') plt.semilogx(moosePTSUSS[2][0], [u * 1000 for u in moosePTSUSS[2][4]], 'g^', markersize=4, label = 'MOOSE (1 month)') plt.semilogx(tara_u[2][0], tara_u[2][1], 'g-', label = 'LaForce (1 month)') plt.semilogx(moosePTSUSS[3][0], [u * 1000 for u in moosePTSUSS[3][4]], 'ko', markersize=4, label = 'MOOSE (5 years)') plt.semilogx(tara_u[3][0], tara_u[3][1], 'k-', label = 'LaForce (5 years)') plt.legend(loc = 'best', prop = {'size': 10}) plt.xlim([0.1, 5000]) plt.xlabel("r (m)") plt.ylabel("Displacement (mm)") plt.title("Radial displacement") plt.savefig("../../doc/content/media/porous_flow/2D_thm_compare_displacement_fig.png") plt.figure() plt.semilogx(moosePTSUSS[0][0], moosePTSUSS[0][3], 'b*', markersize=4, label = 'MOOSE (1 hour)') plt.semilogx(tara_sg[0][0], tara_sg[0][1], 'b-', label = 'LaForce (1 hour)') plt.semilogx(moosePTSUSS[1][0], moosePTSUSS[1][3], 'rs', markersize=4, label = 'MOOSE (1 day)') plt.semilogx(tara_sg[1][0], tara_sg[1][1], 'r-', label = 'LaForce (1 day)') plt.semilogx(moosePTSUSS[2][0], moosePTSUSS[2][3], 'g^', markersize=4, label = 'MOOSE (1 month)') plt.semilogx(tara_sg[2][0], tara_sg[2][1], 'g-', label = 'LaForce (1 month)') plt.semilogx(moosePTSUSS[3][0], moosePTSUSS[3][3], 'ko', markersize=4, label = 'MOOSE (5 years)') plt.semilogx(tara_sg[3][0], tara_sg[3][1], 'k-', label = 'LaForce (5 years)') plt.legend(loc = 'best', prop = {'size': 10}) plt.xlim([0.1, 5000]) plt.xlabel("r (m)") plt.ylabel("Saturation") plt.title("CO2 saturation") plt.savefig("../../doc/content/media/porous_flow/2D_thm_compare_sg_fig.png") plt.figure() plt.semilogx(moosePTSUSS[0][0], [s/1E6 for s in moosePTSUSS[0][5]], 'b*', markersize=4, label = 'MOOSE (1 hour)') plt.semilogx(tara_seff_rr[0][0], tara_seff_rr[0][1], 'b-', label = 'LaForce (1 hour)') plt.semilogx(moosePTSUSS[1][0], [s/1E6 for s in moosePTSUSS[1][5]], 'rs', markersize=4, label = 'MOOSE (1 day)') plt.semilogx(tara_seff_rr[1][0], tara_seff_rr[1][1], 'r-', label = 'LaForce (1 day)') plt.semilogx(moosePTSUSS[2][0], [s/1E6 for s in moosePTSUSS[2][5]], 'g^', markersize=4, label = 'MOOSE (1 month)') plt.semilogx(tara_seff_rr[2][0], tara_seff_rr[2][1], 'g-', label = 'LaForce (1 month)') plt.semilogx(moosePTSUSS[3][0], [s/1E6 for s in moosePTSUSS[3][5]], 'ko', markersize=4, label = 'MOOSE (5 years)') plt.semilogx(tara_seff_rr[3][0], tara_seff_rr[3][1], 'k-', label = 'LaForce (5 years)') plt.legend(loc = 'best', prop = {'size': 10}) plt.xlim([0.1, 5000]) plt.xlabel("r (m)") plt.ylabel("Stress (MPa)") plt.title("Effective radial stress") plt.savefig("../../doc/content/media/porous_flow/2D_thm_compare_seff_rr_fig.png") plt.figure() plt.semilogx(moosePTSUSS[0][0], [s/1E6 for s in moosePTSUSS[0][6]], 'b*', markersize=4, label = 'MOOSE (1 hour)') plt.semilogx(tara_seff_tt[0][0], tara_seff_tt[0][1], 'b-', label = 'LaForce (1 hour)') plt.semilogx(moosePTSUSS[1][0], [s/1E6 for s in moosePTSUSS[1][6]], 'rs', markersize=4, label = 'MOOSE (1 day)') plt.semilogx(tara_seff_tt[1][0], tara_seff_tt[1][1], 'r-', label = 'LaForce (1 day)') plt.semilogx(moosePTSUSS[2][0], [s/1E6 for s in moosePTSUSS[2][6]], 'g^', markersize=4, label = 'MOOSE (1 month)') plt.semilogx(tara_seff_tt[2][0], tara_seff_tt[2][1], 'g-', label = 'LaForce (1 month)') plt.semilogx(moosePTSUSS[3][0], [s/1E6 for s in moosePTSUSS[3][6]], 'ko', markersize=4, label = 'MOOSE (5 years)') plt.semilogx(tara_seff_tt[3][0], tara_seff_tt[3][1], 'k-', label = 'LaForce (5 years)') plt.legend(loc = 'best', prop = {'size': 10}) plt.xlim([0.1, 5000]) plt.xlabel("r (m)") plt.ylabel("Stress (MPa)") plt.title("Effective hoop stress") plt.savefig("../../doc/content/media/porous_flow/2D_thm_compare_seff_tt_fig.png") sys.exit(0)
lgpl-2.1
samirma/deep-learning
weight-initialization/helper.py
153
3649
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf def hist_dist(title, distribution_tensor, hist_range=(-4, 4)): """ Display histogram of a TF distribution """ with tf.Session() as sess: values = sess.run(distribution_tensor) plt.title(title) plt.hist(values, np.linspace(*hist_range, num=len(values)/2)) plt.show() def _get_loss_acc(dataset, weights): """ Get losses and validation accuracy of example neural network """ batch_size = 128 epochs = 2 learning_rate = 0.001 features = tf.placeholder(tf.float32) labels = tf.placeholder(tf.float32) learn_rate = tf.placeholder(tf.float32) biases = [ tf.Variable(tf.zeros([256])), tf.Variable(tf.zeros([128])), tf.Variable(tf.zeros([dataset.train.labels.shape[1]])) ] # Layers layer_1 = tf.nn.relu(tf.matmul(features, weights[0]) + biases[0]) layer_2 = tf.nn.relu(tf.matmul(layer_1, weights[1]) + biases[1]) logits = tf.matmul(layer_2, weights[2]) + biases[2] # Training loss loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)) # Optimizer optimizer = tf.train.AdamOptimizer(learn_rate).minimize(loss) # Accuracy correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Measurements use for graphing loss loss_batch = [] with tf.Session() as session: session.run(tf.global_variables_initializer()) batch_count = int((dataset.train.num_examples / batch_size)) # The training cycle for epoch_i in range(epochs): for batch_i in range(batch_count): batch_features, batch_labels = dataset.train.next_batch(batch_size) # Run optimizer and get loss session.run( optimizer, feed_dict={features: batch_features, labels: batch_labels, learn_rate: learning_rate}) l = session.run( loss, feed_dict={features: batch_features, labels: batch_labels, learn_rate: learning_rate}) loss_batch.append(l) valid_acc = session.run( accuracy, feed_dict={features: dataset.validation.images, labels: dataset.validation.labels, learn_rate: 1.0}) # Hack to Reset batches dataset.train._index_in_epoch = 0 dataset.train._epochs_completed = 0 return loss_batch, valid_acc def compare_init_weights( dataset, title, weight_init_list, plot_n_batches=100): """ Plot loss and print stats of weights using an example neural network """ colors = ['r', 'b', 'g', 'c', 'y', 'k'] label_accs = [] label_loss = [] assert len(weight_init_list) <= len(colors), 'Too many inital weights to plot' for i, (weights, label) in enumerate(weight_init_list): loss, val_acc = _get_loss_acc(dataset, weights) plt.plot(loss[:plot_n_batches], colors[i], label=label) label_accs.append((label, val_acc)) label_loss.append((label, loss[-1])) plt.title(title) plt.xlabel('Batches') plt.ylabel('Loss') plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() print('After 858 Batches (2 Epochs):') print('Validation Accuracy') for label, val_acc in label_accs: print(' {:7.3f}% -- {}'.format(val_acc*100, label)) print('Loss') for label, loss in label_loss: print(' {:7.3f} -- {}'.format(loss, label))
mit
LucasGandel/TubeTK
Base/Python/pyfsa/mapcl.py
8
3869
"""mapcl.py Demonstrate how to evaluate a maximum a-posteriori graph classifier using N-fold cross-validation. """ __license__ = "Apache License, Version 2.0 (see TubeTK)" __author__ = "Roland Kwitt, Kitware Inc., 2013" __email__ = "E-Mail: [email protected]" __status__ = "Development" # Graph handling import networkx as nx # Machine learning from sklearn.metrics import accuracy_score from sklearn.cross_validation import KFold from sklearn.cross_validation import ShuffleSplit from sklearn.linear_model import LogisticRegression from sklearn.grid_search import GridSearchCV from sklearn import preprocessing from sklearn import svm # Misc. from optparse import OptionParser import logging import numpy as np import scipy.sparse import time import sys import os # Fine-structure analysis import core.fsa as fsa import core.utils as utils def main(argv=None): if argv is None: argv = sys.argv # Setup vanilla CLI parsing and add custom arg(s). parser = utils.setup_cli_parsing() parser.add_option("", "--mixComp", help="number of GMM components.", default=3, type="int") (options, args) = parser.parse_args() # Setup logging utils.setup_logging(options) logger = logging.getLogger() # Read graph file list and label file list graph_file_list = utils.read_graph_file_list(options) label_file_list = utils.read_label_file_list(options, graph_file_list) # Read class info and grouping info class_info = utils.read_class_info(options) group_info = utils.read_group_info(options) assert (group_info.shape[0] == len(class_info) == len(graph_file_list) == len(label_file_list)) # Zip lists together data = zip(graph_file_list, label_file_list, class_info) # Run fine-structure analysis fsa_res = fsa.run_fsa(data, options.radii, options.recompute, options.writeAs, options.skip, options.omitDegenerate) data_mat = fsa_res['data_mat'] data_idx = fsa_res['data_idx'] # Create cross-validation folds (20% testing) n_graphs = len(class_info) cv = ShuffleSplit(n_graphs, n_iter=options.cvRuns, test_size=0.2, random_state=0) # Our unique class labels label_set = np.unique(class_info) if options.normalize: logger.info("Running feature normalization ...") scaler = preprocessing.StandardScaler(copy=False) scaler.fit_transform(fsa_res['data_mat']) scores = [] for cv_id, (trn, tst) in enumerate(cv): models = [] for l in label_set: l_idx = np.where(class_info == l)[0] l_idx = np.asarray(l_idx).ravel() l_trn = np.intersect1d(l_idx, trn) pos = [] for i in l_trn: tmp = np.where(fsa_res['data_idx']==i)[0] pos.extend(list(tmp)) np_pos = np.asarray(pos) gmm_model = fsa.estimate_gm(data_mat[np_pos,:], options.mixComp) models.append(gmm_model) predict = [] for i in tst: pos = np.where(data_idx==i)[0] map_idx = fsa.pp_gmm(data_mat[pos,:], models, argmax=True) predict.append(label_set[map_idx]) # Score the MAP classifier truth = [class_info[i] for i in tst] score = accuracy_score(truth, predict) print "yhat :", predict print "gold :", truth logger.info("Score (%.2d): %.2f" % (cv_id, 100*score)) scores.append(score) utils.show_summary(scores) if __name__ == "__main__": main()
apache-2.0
hsiaoyi0504/scikit-learn
sklearn/feature_selection/tests/test_feature_select.py
143
22295
""" Todo: cross-check the F-value with stats model """ from __future__ import division import itertools import warnings import numpy as np from scipy import stats, sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils import safe_mask from sklearn.datasets.samples_generator import (make_classification, make_regression) from sklearn.feature_selection import (chi2, f_classif, f_oneway, f_regression, SelectPercentile, SelectKBest, SelectFpr, SelectFdr, SelectFwe, GenericUnivariateSelect) ############################################################################## # Test the score functions def test_f_oneway_vs_scipy_stats(): # Test that our f_oneway gives the same result as scipy.stats rng = np.random.RandomState(0) X1 = rng.randn(10, 3) X2 = 1 + rng.randn(10, 3) f, pv = stats.f_oneway(X1, X2) f2, pv2 = f_oneway(X1, X2) assert_true(np.allclose(f, f2)) assert_true(np.allclose(pv, pv2)) def test_f_oneway_ints(): # Smoke test f_oneway on integers: that it does raise casting errors # with recent numpys rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 10)) y = np.arange(10) fint, pint = f_oneway(X, y) # test that is gives the same result as with float f, p = f_oneway(X.astype(np.float), y) assert_array_almost_equal(f, fint, decimal=4) assert_array_almost_equal(p, pint, decimal=4) def test_f_classif(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) F_sparse, pv_sparse = f_classif(sparse.csr_matrix(X), y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression(): # Test whether the F test yields meaningful results # on a simple simulated regression problem X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) F, pv = f_regression(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) # again without centering, compare with sparse F, pv = f_regression(X, y, center=False) F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=False) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression_input_dtype(): # Test whether f_regression returns the same value # for any numeric data_type rng = np.random.RandomState(0) X = rng.rand(10, 20) y = np.arange(10).astype(np.int) F1, pv1 = f_regression(X, y) F2, pv2 = f_regression(X, y.astype(np.float)) assert_array_almost_equal(F1, F2, 5) assert_array_almost_equal(pv1, pv2, 5) def test_f_regression_center(): # Test whether f_regression preserves dof according to 'center' argument # We use two centered variates so we have a simple relationship between # F-score with variates centering and F-score without variates centering. # Create toy example X = np.arange(-5, 6).reshape(-1, 1) # X has zero mean n_samples = X.size Y = np.ones(n_samples) Y[::2] *= -1. Y[0] = 0. # have Y mean being null F1, _ = f_regression(X, Y, center=True) F2, _ = f_regression(X, Y, center=False) assert_array_almost_equal(F1 * (n_samples - 1.) / (n_samples - 2.), F2) assert_almost_equal(F2[0], 0.232558139) # value from statsmodels OLS def test_f_classif_multi_class(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) def test_select_percentile_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_percentile_classif_sparse(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) X = sparse.csr_matrix(X) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r.toarray(), X_r2.toarray()) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_r2inv = univariate_filter.inverse_transform(X_r2) assert_true(sparse.issparse(X_r2inv)) support_mask = safe_mask(X_r2inv, support) assert_equal(X_r2inv.shape, X.shape) assert_array_equal(X_r2inv[:, support_mask].toarray(), X_r.toarray()) # Check other columns are empty assert_equal(X_r2inv.getnnz(), X_r.getnnz()) ############################################################################## # Test univariate selection in classification settings def test_select_kbest_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the k best heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=5) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_classif, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_kbest_all(): # Test whether k="all" correctly returns all features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k='all') X_r = univariate_filter.fit(X, y).transform(X) assert_array_equal(X, X_r) def test_select_kbest_zero(): # Test whether k=0 correctly returns no features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=0) univariate_filter.fit(X, y) support = univariate_filter.get_support() gtruth = np.zeros(10, dtype=bool) assert_array_equal(support, gtruth) X_selected = assert_warns_message(UserWarning, 'No features were selected', univariate_filter.transform, X) assert_equal(X_selected.shape, (20, 0)) def test_select_heuristics_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the fdr, fwe and fpr heuristics X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_classif, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_classif, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_almost_equal(support, gtruth) ############################################################################## # Test univariate selection in regression settings def assert_best_scores_kept(score_filter): scores = score_filter.scores_ support = score_filter.get_support() assert_array_equal(np.sort(scores[support]), np.sort(scores)[-support.sum():]) def test_select_percentile_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the percentile heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_2 = X.copy() X_2[:, np.logical_not(support)] = 0 assert_array_equal(X_2, univariate_filter.inverse_transform(X_r)) # Check inverse_transform respects dtype assert_array_equal(X_2.astype(bool), univariate_filter.inverse_transform(X_r.astype(bool))) def test_select_percentile_regression_full(): # Test whether the relative univariate feature selection # selects all features when '100%' is asked. X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=100) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=100).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.ones(20) assert_array_equal(support, gtruth) def test_invalid_percentile(): X, y = make_regression(n_samples=10, n_features=20, n_informative=2, shuffle=False, random_state=0) assert_raises(ValueError, SelectPercentile(percentile=-1).fit, X, y) assert_raises(ValueError, SelectPercentile(percentile=101).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=101).fit, X, y) def test_select_kbest_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the k best heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectKBest(f_regression, k=5) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_heuristics_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fpr, fdr or fwe heuristics X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectFpr(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_regression, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 3) def test_select_fdr_regression(): # Test that fdr heuristic actually has low FDR. def single_fdr(alpha, n_informative, random_state): X, y = make_regression(n_samples=150, n_features=20, n_informative=n_informative, shuffle=False, random_state=random_state, noise=10) with warnings.catch_warnings(record=True): # Warnings can be raised when no features are selected # (low alpha or very noisy data) univariate_filter = SelectFdr(f_regression, alpha=alpha) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fdr', param=alpha).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() num_false_positives = np.sum(support[n_informative:] == 1) num_true_positives = np.sum(support[:n_informative] == 1) if num_false_positives == 0: return 0. false_discovery_rate = (num_false_positives / (num_true_positives + num_false_positives)) return false_discovery_rate for alpha in [0.001, 0.01, 0.1]: for n_informative in [1, 5, 10]: # As per Benjamini-Hochberg, the expected false discovery rate # should be lower than alpha: # FDR = E(FP / (TP + FP)) <= alpha false_discovery_rate = np.mean([single_fdr(alpha, n_informative, random_state) for random_state in range(30)]) assert_greater_equal(alpha, false_discovery_rate) # Make sure that the empirical false discovery rate increases # with alpha: if false_discovery_rate != 0: assert_greater(false_discovery_rate, alpha / 10) def test_select_fwe_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fwe heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fwe', param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 2) def test_selectkbest_tiebreaking(): # Test whether SelectKBest actually selects k features in case of ties. # Prior to 0.11, SelectKBest would return more features than requested. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectKBest(dummy_score, k=1) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectKBest(dummy_score, k=2) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_selectpercentile_tiebreaking(): # Test if SelectPercentile selects the right n_features in case of ties. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectPercentile(dummy_score, percentile=34) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectPercentile(dummy_score, percentile=67) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_tied_pvalues(): # Test whether k-best and percentiles work with tied pvalues from chi2. # chi2 will return the same p-values for the following features, but it # will return different scores. X0 = np.array([[10000, 9999, 9998], [1, 1, 1]]) y = [0, 1] for perm in itertools.permutations((0, 1, 2)): X = X0[:, perm] Xt = SelectKBest(chi2, k=2).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) def test_tied_scores(): # Test for stable sorting in k-best with tied scores. X_train = np.array([[0, 0, 0], [1, 1, 1]]) y_train = [0, 1] for n_features in [1, 2, 3]: sel = SelectKBest(chi2, k=n_features).fit(X_train, y_train) X_test = sel.transform([0, 1, 2]) assert_array_equal(X_test[0], np.arange(3)[-n_features:]) def test_nans(): # Assert that SelectKBest and SelectPercentile can handle NaNs. # First feature has zero variance to confuse f_classif (ANOVA) and # make it return a NaN. X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for select in (SelectKBest(f_classif, 2), SelectPercentile(f_classif, percentile=67)): ignore_warnings(select.fit)(X, y) assert_array_equal(select.get_support(indices=True), np.array([1, 2])) def test_score_func_error(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for SelectFeatures in [SelectKBest, SelectPercentile, SelectFwe, SelectFdr, SelectFpr, GenericUnivariateSelect]: assert_raises(TypeError, SelectFeatures(score_func=10).fit, X, y) def test_invalid_k(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] assert_raises(ValueError, SelectKBest(k=-1).fit, X, y) assert_raises(ValueError, SelectKBest(k=4).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=4).fit, X, y) def test_f_classif_constant_feature(): # Test that f_classif warns if a feature is constant throughout. X, y = make_classification(n_samples=10, n_features=5) X[:, 0] = 2.0 assert_warns(UserWarning, f_classif, X, y) def test_no_feature_selected(): rng = np.random.RandomState(0) # Generate random uncorrelated data: a strict univariate test should # rejects all the features X = rng.rand(40, 10) y = rng.randint(0, 4, size=40) strict_selectors = [ SelectFwe(alpha=0.01).fit(X, y), SelectFdr(alpha=0.01).fit(X, y), SelectFpr(alpha=0.01).fit(X, y), SelectPercentile(percentile=0).fit(X, y), SelectKBest(k=0).fit(X, y), ] for selector in strict_selectors: assert_array_equal(selector.get_support(), np.zeros(10)) X_selected = assert_warns_message( UserWarning, 'No features were selected', selector.transform, X) assert_equal(X_selected.shape, (40, 0))
bsd-3-clause
maxim5/time-series-machine-learning
util/data_util.py
1
2901
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'maxim' import datetime import numpy as np import pandas as pd from .data_set import DataSet from .logging import vlog pd.set_option('display.expand_frame_repr', False) def read_df(file_name): df = pd.read_csv(file_name) df.date = pd.to_datetime(df.date * 1000, unit='ms') return df def to_changes(raw): if raw.date.dtype == np.int64: raw.date = pd.to_datetime(raw.date * 1000, unit='ms') return pd.DataFrame({ 'date': raw.date, 'time': raw.date.astype(datetime.datetime).apply(lambda val: seconds(val) / (60*60*24)), 'high': raw.high.pct_change(), 'low': raw.low.pct_change(), 'open': raw.open.pct_change(), 'close': raw.close.pct_change(), 'vol': raw.volume.replace({0: 1e-5}).pct_change(), 'avg': raw.weightedAverage.pct_change(), }, columns=['date', 'time', 'high', 'low', 'open', 'close', 'vol', 'avg']) def seconds(datetime_): return (datetime_ - datetime_.replace(hour=0, minute=0, second=0, microsecond=0)).total_seconds() def to_dataset(df, k, target_column, with_bias): df = df[1:].reset_index(drop=True) df = df.drop(['date'], axis=1) target = df[target_column] n, cols = df.shape windows_num = n - k # effective window size, including the label, is k + 1 x = np.empty([windows_num, k * cols + int(with_bias)]) y = np.empty([windows_num]) for i in range(windows_num): window = df[i:i+k] row = window.as_matrix().reshape((-1,)) if with_bias: row = np.insert(row, 0, 1) x[i] = row y[i] = target[i+k] vlog('Data set: x=%s y=%s' % (x.shape, y.shape)) return DataSet(x, y) def to_dataset_for_prediction(df, k, with_bias): df = df[1:].reset_index(drop=True) df = df.drop(['date'], axis=1) n, cols = df.shape windows_num = n - k + 1 x = np.empty([windows_num, k * cols + int(with_bias)]) for i in range(windows_num): window = df[i:i+k] row = window.as_matrix().reshape((-1,)) if with_bias: row = np.insert(row, 0, 1) x[i] = row vlog('Data set for prediction:', x.shape) return x def split_dataset(dataset, ratio=None): size = dataset.size if ratio is None: ratio = _choose_optimal_train_ratio(size) mask = np.zeros(size, dtype=np.bool_) train_size = int(size * ratio) mask[:train_size] = True np.random.shuffle(mask) train_x = dataset.x[mask, :] train_y = dataset.y[mask] mask = np.invert(mask) test_x = dataset.x[mask, :] test_y = dataset.y[mask] return DataSet(train_x, train_y), DataSet(test_x, test_y) def _choose_optimal_train_ratio(size): if size > 100000: return 0.95 if size > 50000: return 0.9 if size > 20000: return 0.875 if size > 10000: return 0.85 if size > 7500: return 0.825 if size > 5000: return 0.8 if size > 3000: return 0.775 if size > 2000: return 0.75 if size > 1000: return 0.7 return 0.7
apache-2.0
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/pandas/tests/indexes/timedeltas/test_indexing.py
13
4622
import pytest from datetime import timedelta import pandas.util.testing as tm from pandas import TimedeltaIndex, timedelta_range, compat, Index, Timedelta class TestTimedeltaIndex(object): _multiprocess_can_split_ = True def test_insert(self): idx = TimedeltaIndex(['4day', '1day', '2day'], name='idx') result = idx.insert(2, timedelta(days=5)) exp = TimedeltaIndex(['4day', '1day', '5day', '2day'], name='idx') tm.assert_index_equal(result, exp) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([Timedelta('4day'), 'inserted', Timedelta('1day'), Timedelta('2day')], name='idx') assert not isinstance(result, TimedeltaIndex) tm.assert_index_equal(result, expected) assert result.name == expected.name idx = timedelta_range('1day 00:00:01', periods=3, freq='s', name='idx') # preserve freq expected_0 = TimedeltaIndex(['1day', '1day 00:00:01', '1day 00:00:02', '1day 00:00:03'], name='idx', freq='s') expected_3 = TimedeltaIndex(['1day 00:00:01', '1day 00:00:02', '1day 00:00:03', '1day 00:00:04'], name='idx', freq='s') # reset freq to None expected_1_nofreq = TimedeltaIndex(['1day 00:00:01', '1day 00:00:01', '1day 00:00:02', '1day 00:00:03'], name='idx', freq=None) expected_3_nofreq = TimedeltaIndex(['1day 00:00:01', '1day 00:00:02', '1day 00:00:03', '1day 00:00:05'], name='idx', freq=None) cases = [(0, Timedelta('1day'), expected_0), (-3, Timedelta('1day'), expected_0), (3, Timedelta('1day 00:00:04'), expected_3), (1, Timedelta('1day 00:00:01'), expected_1_nofreq), (3, Timedelta('1day 00:00:05'), expected_3_nofreq)] for n, d, expected in cases: result = idx.insert(n, d) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq def test_delete(self): idx = timedelta_range(start='1 Days', periods=5, freq='D', name='idx') # prserve freq expected_0 = timedelta_range(start='2 Days', periods=4, freq='D', name='idx') expected_4 = timedelta_range(start='1 Days', periods=4, freq='D', name='idx') # reset freq to None expected_1 = TimedeltaIndex( ['1 day', '3 day', '4 day', '5 day'], freq=None, name='idx') cases = {0: expected_0, -5: expected_0, -1: expected_4, 4: expected_4, 1: expected_1} for n, expected in compat.iteritems(cases): result = idx.delete(n) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq with pytest.raises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_delete_slice(self): idx = timedelta_range(start='1 days', periods=10, freq='D', name='idx') # prserve freq expected_0_2 = timedelta_range(start='4 days', periods=7, freq='D', name='idx') expected_7_9 = timedelta_range(start='1 days', periods=7, freq='D', name='idx') # reset freq to None expected_3_5 = TimedeltaIndex(['1 d', '2 d', '3 d', '7 d', '8 d', '9 d', '10d'], freq=None, name='idx') cases = {(0, 1, 2): expected_0_2, (7, 8, 9): expected_7_9, (3, 4, 5): expected_3_5} for n, expected in compat.iteritems(cases): result = idx.delete(n) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq result = idx.delete(slice(n[0], n[-1] + 1)) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq
mit
JeffHeard/terrapyn
geocms/views/rest_data.py
1
13526
from tempfile import NamedTemporaryFile import json from django.contrib.gis.geos import GEOSGeometry import pandas from django.http import HttpResponse from django.shortcuts import get_object_or_404 from django.utils.decorators import method_decorator from django.views.decorators.csrf import csrf_exempt from django.views.generic import View from django.contrib.auth.models import User from mezzanine.pages.models import Page from tastypie.models import ApiKey from terrapyn.geocms.drivers.spatialite import SpatialiteDriver from terrapyn.geocms.models import DataResource from terrapyn.geocms import dispatch from terrapyn.geocms.utils import authorize, get_data_page_for_user, json_or_jsonp def get_user(request): if 'api_key' in request.REQUEST: api_key = ApiKey.objects.get(key=request.REQUEST['api_key']) return api_key.user elif request.user.is_authenticated(): return User.objects.get(pk=request.user.pk) else: return request.user def geojson_transform(request, data): if request.REQUEST.get('format','wkt') == 'geojsonreal': if isinstance(data, list): return { 'type' : 'FeatureCollection', 'features' : [{ 'type' : 'Feature', 'geometry' : feature['GEOMETRY'], 'properties' : feature } for feature in data] } else: return { 'type' : 'Feature', 'properties' : data, 'geometry' : data['GEOMETRY'] } else: return data def create_dataset(request): user = authorize(request) title = request.REQUEST.get('title','Untitled dataset') srid = int(request.REQUEST.get('srid', 4326)) geometry_type=request.REQUEST.get('geometry_type', 'GEOMETRY') columns_definitions=json.loads(request.REQUEST.get('columns_definitions', "{}")) columns_definitions=((key, value) for key, value in columns_definitions.items()) if 'parent' in request.REQUEST: parent = Page.objects.get(slug=request.REQUEST['parent']) authorize(request, parent, add=True) else: parent = get_data_page_for_user(request.user) ds = SpatialiteDriver.create_dataset( title=title, parent=parent, srid=srid, geometry_type=geometry_type, columns_definitions=columns_definitions, owner=request.user ) dispatch.api_accessed.send(sender=DataResource, instance=ds, user=user) dispatch.dataset_created.send(sender=DataResource, instance=ds, user=user) return json_or_jsonp(request, {'path' : ds.slug }, code=201) def derive_dataset(request, slug): user = authorize(request) title = request.REQUEST.get('title', 'Untitled dataset') parent_dataresource=slug if 'parent_page' in request.REQUEST: parent_page = Page.objects.get(slug=request.REQUEST['parent_page']) authorize(request, parent_page, add=True) else: parent_page = get_data_page_for_user(request.user) parent_dataresource = DataResource.objects.get(slug=parent_dataresource) authorize(request, parent_dataresource, view=True) ds = SpatialiteDriver.derive_dataset( title=title, parent_page=parent_page, parent_dataresource=parent_dataresource, owner=request.user ) dispatch.api_accessed.send(sender=DataResource, instance=ds, user=user) dispatch.dataset_created.send(sender=DataResource, instance=ds, user=user) return json_or_jsonp(request, {'path': ds.slug}, code=201) def create_dataset_with_parent_geometry(request, slug): user = authorize(request) title = request.REQUEST.get('title', 'Untitled dataset') parent_dataresource = slug srid = int(request.REQUEST.get('srid', 4326)) geometry_type = request.REQUEST.get('geometry_type', 'GEOMETRY') columns_definitions = json.loads(request.REQUEST.get('columns_definitions', "{}")) columns_definitions = ((key, value) for key, value in columns_definitions.items()) parent_key = request.REQUEST.get('parent_key', None) child_key = request.REQUEST.get('child_key', None) csv = None if len(request.FILES.keys()) > 0: csvfile = NamedTemporaryFile(suffix='csv') csvfile.write(request.FILES[request.FILES.keys().next()].read()) csvfile.flush() csv = pandas.DataFrame.from_csv(csvfile.name) if 'parent_page' in request.REQUEST: parent_page = Page.objects.get(slug=request.REQUEST['parent_page']) authorize(request, parent_page, add=True) else: parent_page = get_data_page_for_user(request.user) parent_dataresource = DataResource.objects.get(slug=parent_dataresource) authorize(request, parent_page, view=True) if csv: ds = SpatialiteDriver.join_data_with_existing_geometry( title=title, parent=parent_page, new_data=csv, join_field_in_existing_data=parent_key, join_field_in_new_data=child_key, parent_dataresource=parent_dataresource, srid=srid, geometry_type=geometry_type, owner=request.user ) else: ds = SpatialiteDriver.create_dataset_with_parent_geometry( title=title, parent=parent_page, parent_dataresource=parent_dataresource, srid=srid, columns_definitions=columns_definitions, geometry_type=geometry_type, owner=request.user ) dispatch.api_accessed.send(sender=DataResource, instance=ds, user=user) dispatch.dataset_created.send(sender=ds, user=user) return json_or_jsonp(request, {'path': ds.slug}, code=201) def schema(request, slug=None, *args, **kwargs): s = get_object_or_404(DataResource, slug=slug) user = authorize(request, s, view=True) r = [{'name': n} for n in s.driver_instance.schema()] dispatch.api_accessed.send(sender=DataResource, instance=s, user=user) return json_or_jsonp(request, r) def full_schema(request, slug=None, *args, **kwargs): s = get_object_or_404(DataResource, slug=slug) user = authorize(request, s, view=True) r = [{'name': n, 'kind' : t} for n, t in s.driver_instance.full_schema().items()] dispatch.api_accessed.send(sender=DataResource, instance=s, user=user) return json_or_jsonp(request, r) @csrf_exempt def add_column(request, slug=None, *args, **kwargs): field_name = request.REQUEST['name'] field_type = request.REQUEST.get('type', 'text') ds = get_object_or_404(DataResource, slug=slug) user = authorize(request, ds, edit=True) ds.driver_instance.add_column(field_name, field_type) dispatch.api_accessed.send(sender=DataResource, instance=ds, user=user) dispatch.dataset_column_added.send(sender=DataResource, instance=ds, user=user) return HttpResponse(status=201) @csrf_exempt def add_row(request, slug=None, *args, **kwargs): ds = get_object_or_404(DataResource, slug=slug) user = authorize(request, ds, edit=True) schema = {k for k in ds.driver_instance.schema()} row = {k: v for k, v in request.REQUEST.items() if k in schema} try: payload = json.loads(request.body) for k in [x for x in payload if x in schema]: row[k] = payload[k] except: pass # just in case there's JSON in the payuload new_rec = ds.driver_instance.add_row(**row) bbox = GEOSGeometry(row['GEOMETRY']).envelope dispatch.api_accessed.send(sender=DataResource, instance=ds, user=user) dispatch.features_created.send(sender=DataResource, instance=ds, user=user, count=1, bbox=bbox) return json_or_jsonp(request, new_rec, code=201) @csrf_exempt def update_row(request, slug=None, ogc_fid=None, *args, **kwargs): ds = get_object_or_404(DataResource, slug=slug) user = authorize(request, ds, edit=True) schema = {k for k in ds.driver_instance.schema()} row = { k : v for k, v in request.REQUEST.items() if k in schema } try: payload = json.loads(request.body) for k in [x for x in payload if x in schema]: row[k] = payload[k] except: pass # just in case there's JSON in the payuload if ogc_fid is None: ogc_fid = row['OGC_FID'] bbox = GEOSGeometry(ds.driver_instance.get_row(int(ogc_fid), geometry_format='wkt')['GEOMETRY']).envelope result = ds.driver_instance.update_row(int(ogc_fid), **row) dispatch.api_accessed.send(sender=DataResource, instance=ds, user=user) dispatch.features_updated.send(sender=DataResource, instance=ds, user=user, count=1, fid=ogc_fid, bbox=bbox) return json_or_jsonp(request, result) @csrf_exempt def delete_row(request, slug=None, ogc_fid=None, *args, **kwargs): ds = get_object_or_404(DataResource, slug=slug) bbox = GEOSGeometry(ds.driver_instance.get_row(int(ogc_fid), geometry_format='wkt')['GEOMETRY']).envelope ds.driver_instance.delete_row(int(ogc_fid)) user = authorize(request, ds, edit=True) dispatch.api_accessed.send(sender=DataResource, instance=ds, user=user) dispatch.features_deleted.send(sender=DataResource, instance=ds, user=user, count=1, fid=ogc_fid, bbox=bbox) return HttpResponse() def get_row(request, slug=None, ogc_fid=None, *args, **kwargs): ds = get_object_or_404(DataResource, slug=slug) ds.driver_instance.ready_data_resource() user = authorize(request, ds, view=True) format = request.REQUEST.get('format', 'wkt') try: row = ds.driver_instance.get_row(int(ogc_fid), geometry_format=format if format != 'geojsonreal' else 'geojson') except: row = None dispatch.api_accessed.send(sender=DataResource, instance=ds, user=user) dispatch.features_retrieved.send(sender=DataResource, instance=ds, user=user, count=1, fid=ogc_fid) return json_or_jsonp(request, geojson_transform(request, row)) def get_rows(request, slug=None, ogc_fid_start=None, ogc_fid_end=None, limit=None, *args, **kwargs): ds = get_object_or_404(DataResource, slug=slug) user = authorize(request, ds, view=True) ds.driver_instance.ready_data_resource() format = request.REQUEST.get('format', 'wkt') if ogc_fid_end: rows = ds.driver_instance.get_rows(int(ogc_fid_start), int(ogc_fid_end), geometry_format=format if format != 'geojsonreal' else 'geojson') elif limit: rows = ds.driver_instance.get_rows(int(ogc_fid_start), limit=int(limit), geometry_format=format if format != 'geojsonreal' else 'geojson') else: rows = ds.driver_instance.get_rows(int(ogc_fid_start), geometry_format=format if format != 'geojsonreal' else 'geojson') dispatch.api_accessed.send(sender=DataResource, instance=ds, user=user) dispatch.features_retrieved.send(sender=DataResource, instance=ds, user=user, count=len(rows)) return json_or_jsonp(request, geojson_transform(request, rows)) def query(request, slug=None, **kwargs): ds = get_object_or_404(DataResource, slug=slug) user = authorize(request, ds, view=True) ds.driver_instance.ready_data_resource() maybeint = lambda x: int(x) if x else None geometry_mbr = [float(kwargs[k]) for k in ['x1', 'y1', 'x2', 'y2']] if 'x1' in kwargs else None srid = kwargs['srid'] if 'srid' in kwargs else None geometry = request.REQUEST.get('g', None) geometry_format = request.REQUEST.get('format', 'geojson') geometry_operator = request.REQUEST.get('op', 'intersects') limit = maybeint(request.REQUEST.get('limit', None)) start = maybeint(request.REQUEST.get('start', None)) end = maybeint(request.REQUEST.get('end', None)) only = request.REQUEST.get('only', None) if only: only = only.split(',') rest = {k: v for k, v in request.REQUEST.items() if k not in {'limit', 'start', 'end', 'only', 'g', 'op', 'format', 'api_key','callback','jsonp', '_'}} rows = ds.driver_instance.query( query_mbr=geometry_mbr, query_geometry=geometry, geometry_format=geometry_format if geometry_format != 'geojsonreal' else 'geojson', geometry_operator=geometry_operator, query_geometry_srid=srid, limit=limit, start=start, end=end, only=only, **rest ) dispatch.api_accessed.send(sender=DataResource, instance=ds, user=user) dispatch.features_retrieved.send(sender=DataResource, instance=ds, user=user, count=len(rows)) return json_or_jsonp(request, geojson_transform(request, rows)) class CRUDView(View): @method_decorator(csrf_exempt) def dispatch(self, *args, **kwargs): return super(CRUDView, self).dispatch(*args, **kwargs) def get(self, request, *args, **kwargs): if 'ogc_fid' in kwargs: return get_row(request, slug=kwargs['slug'], ogc_fid=kwargs['ogc_fid']) elif 'ogc_fid_start' in kwargs: return get_rows( request, slug=kwargs['slug'], ogc_fid_start=kwargs['ogc_fid_start'], ogc_fid_end=kwargs.get('ogc_fid_end', None), limit=kwargs.get('limit', None), ) else: return query( request, slug=kwargs['slug'], **request.GET ) def post(self, request, *args, **kwargs): return add_row(request, kwargs['slug']) def put(self, request, *args, **kwargs): return update_row(request, kwargs['slug'], kwargs.get('ogc_fid', None)) def delete(self, request, *args, **kwargs): return delete_row(request, kwargs['slug'], kwargs.get('ogc_fid', None))
apache-2.0
mitenjain/signalAlign
scripts/variantCallingLib.py
2
11885
#!/usr/bin/env python """Library for calling variants """ from __future__ import print_function import sys import os import glob import pandas as pd import numpy as np from random import shuffle from signalAlignLib import SignalAlignment from alignmentAnalysisLib import CallMethylation from multiprocessing import Process, Queue, current_process, Manager from serviceCourse.parsers import read_fasta from serviceCourse.sequenceTools import reverse_complement def randomly_select_alignments(path_to_alignments, max_alignments_to_use): alignments = [x for x in glob.glob(path_to_alignments) if os.stat(x).st_size != 0] if len(alignments) == 0: print("[error] Didn't find any alignment files here {}".format(path_to_alignments)) sys.exit(1) shuffle(alignments) if len(alignments) < max_alignments_to_use: return alignments else: return alignments[:max_alignments_to_use] def get_forward_mask(list_of_alignments, suffix): mask = [] for alignment in list_of_alignments: if alignment.endswith(".backward.tsv{}".format(suffix)): mask.append(False) else: mask.append(True) return mask def get_alignments_labels_and_mask(path_to_alignments, max, suffix=""): alignments = randomly_select_alignments(path_to_alignments, max) mask = get_forward_mask(alignments, suffix) return alignments, mask def get_reference_sequence(path_to_fasta): seqs = [] for header, comment, sequence in read_fasta(path_to_fasta): seqs.append(sequence) assert len(seqs) > 0, "Didn't find any sequences in the reference file" if len(seqs) > 1: print("[NOTICE] Found more than one sequence in the reference file, using the first one") return seqs[0] def make_degenerate_reference(input_sequence, positions, forward_sequence_path, backward_sequence_path, block_size=1): """ input_sequence: string, input nucleotide sequence out_path: string, path to directory to put new sequences with substituted degenerate characters block_size: not implemented, will be the size of the Ns to add (eg. NN = block_size 2) :return (subbed sequence, complement subbed sequence) """ complement_sequence = reverse_complement(dna=input_sequence, reverse=False, complement=True) if positions is not None: t_seq = list(input_sequence) c_seq = list(complement_sequence) for position in positions: t_seq[position] = "X" c_seq[position] = "X" t_seq = ''.join(t_seq) c_seq = ''.join(c_seq) else: t_seq = input_sequence c_seq = complement_sequence with open(forward_sequence_path, 'w') as f: f.write("{seq}".format(seq=t_seq)) with open(backward_sequence_path, 'w') as f: f.write("{seq}".format(seq=c_seq)) return True def load_variant_call_data(file_path): data = pd.read_table(file_path, usecols=(0, 1, 2, 3, 4, 5, 6), names=['site', 'strand', 'pA', 'pC', 'pG', 'pT', 'read'], dtype={'site': np.int64, 'strand': np.str, 'pC': np.float64, 'pmC': np.float64, 'phmC': np.float64, 'read': np.str, }) return data def symbol_to_base(symbol): return ["A", "C", "G", "T"][symbol] def rc_probs(probs): return [probs[3], probs[2], probs[1], probs[0]] def call_sites_with_marginal_probs(data, reference_sequence_string, min_depth=0, get_sites=False): d = load_variant_call_data(data) reference_sequence_list = list(reference_sequence_string) candidate_sites = [] add_to_candidates = candidate_sites.append for g, x in d.groupby("site"): marginal_forward_p = pd.Series(0, ['pA', 'pC', 'pG', 'pT']) marginal_backward_p = pd.Series(0, ['pA', 'pC', 'pG', 'pT']) assert(len(x['site'].unique()) == 1) site = x['site'].unique()[0] if len(x['read']) < min_depth: continue for i, read in x.iterrows(): if ((read['read'].endswith(".forward.tsv") and read['strand'] == 't') or (read['read'].endswith(".backward.tsv") and read['strand'] == 'c')): direction = True else: direction = False if direction: marginal_forward_p += read[['pA', 'pC', 'pG', 'pT']] else: marginal_backward_p += read[['pA', 'pC', 'pG', 'pT']] marginal_prob = marginal_forward_p + rc_probs(marginal_backward_p) normed_marginal_probs = marginal_prob.map(lambda y: y / sum(marginal_prob)) called_base = normed_marginal_probs.argmax()[1] if called_base != reference_sequence_list[site]: if get_sites is False: print("Changing {orig} to {new} at {site} depth {depth}" "".format(orig=reference_sequence_list[site], new=called_base, site=site, depth=len(x['read']))) reference_sequence_list[site] = called_base else: print("Proposing edit at {site} from {orig} to {new}, \n{probs}" "".format(orig=reference_sequence_list[site], new=called_base, site=site, probs=normed_marginal_probs)) difference = normed_marginal_probs.max() - normed_marginal_probs["p" + reference_sequence_list[site]] print(difference) add_to_candidates((site, difference)) if get_sites is True: return candidate_sites else: return ''.join(reference_sequence_list) def aligner(work_queue, done_queue): try: for f in iter(work_queue.get, 'STOP'): alignment = SignalAlignment(**f) alignment.run() except Exception, e: done_queue.put("%s failed with %s" % (current_process().name, e.message)) def variant_caller(work_queue, done_queue): try: for f in iter(work_queue.get, 'STOP'): c = CallMethylation(**f) c.write() except Exception, e: done_queue.put("%s failed with %s" % (current_process().name, e.message)) def run_service(service, service_iterable, service_arguments, workers, iterable_argument): # setup workers for multiprocessing work_queue = Manager().Queue() done_queue = Manager().Queue() jobs = [] for x in service_iterable: args = dict({iterable_argument: x}, **service_arguments) work_queue.put(args) for w in xrange(workers): p = Process(target=service, args=(work_queue, done_queue)) p.start() jobs.append(p) work_queue.put('STOP') for p in jobs: p.join() done_queue.put('STOP') def make_reference_files_and_alignment_args(working_folder, reference_sequence_string, alignment_args, n_positions=None): # make paths for working txt files that contain this STEPs Ns forward_reference = working_folder.add_file_path("forward_reference.txt") backward_reference = working_folder.add_file_path("backward_reference.txt") # make N-ed reference sequence for this iteration, writes the strings to files check = make_degenerate_reference(reference_sequence_string, n_positions, forward_reference, backward_reference) assert check, "Problem making degenerate reference" # perform alignment for this step alignment_args["forward_reference"] = forward_reference alignment_args["backward_reference"] = backward_reference return True def scan_for_proposals(working_folder, step, reference_sequence_string, list_of_fast5s, alignment_args, workers): reference_sequence_length = len(reference_sequence_string) assert reference_sequence_length > 0, "Got empty string for reference sequence." # proposals will contain the sites that we're going to change to N proposals = [] for s in xrange(step): scan_positions = range(s, reference_sequence_length, step) check = make_reference_files_and_alignment_args(working_folder, reference_sequence_string, alignment_args, n_positions=scan_positions) assert check, "Problem making degenerate reference for step {step}".format(step=s) run_service(aligner, list_of_fast5s, alignment_args, workers, "in_fast5") # alignments is the list of alignments to gather proposals from alignments = [x for x in glob.glob(working_folder.path + "*.tsv") if os.stat(x).st_size != 0] if len(alignments) == 0: print("[error] Didn't find any alignment files here {}".format(working_folder.path)) sys.exit(1) marginal_probability_file = working_folder.add_file_path("marginals.{step}.calls".format(step=s)) proposal_args = { "sequence": None, "out_file": marginal_probability_file, "positions": {"forward": scan_positions, "backward": scan_positions}, "degenerate_type": alignment_args["degenerate"] } #for alignment in alignments: # a = dict({"alignment_file": alignment}, **proposal_args) # c = CallMethylation(**a) # c.write() run_service(variant_caller, alignments, proposal_args, workers, "alignment_file") # get proposal sites proposals += call_sites_with_marginal_probs(marginal_probability_file, reference_sequence_string, min_depth=0, get_sites=True) # remove old alignments for f in glob.glob(working_folder.path + "*.tsv"): os.remove(f) # proposals is a list of lists containing (position, delta_prob) where position in the position in the # reference sequence that is being proposed to be edited, and delta_prob is the difference in probability # of the reference base to the proposed base return proposals def update_reference_with_marginal_probs(working_folder, proposals, reference_sequence_string, list_of_fast5s, alignment_args, workers): check = make_reference_files_and_alignment_args(working_folder, reference_sequence_string, alignment_args, n_positions=proposals) assert check, "[update_reference_with_marginal_probs]: problem making reference files and args dict" run_service(aligner, list_of_fast5s, alignment_args, workers, "in_fast5") alignments = [x for x in glob.glob(working_folder.path + "*.tsv") if os.stat(x).st_size != 0] marginal_probability_file = working_folder.add_file_path("proposals.calls") proposal_args = { "sequence": None, "out_file": marginal_probability_file, "positions": {"forward": proposals, "backward": proposals}, "degenerate_type": alignment_args["degenerate"] } #for alignment in alignments: # a = dict({"alignment_file": alignment}, **proposal_args) # c = CallMethylation(**a) # c.write() run_service(variant_caller, alignments, proposal_args, workers, "alignment_file") # get proposal sites updated_reference_sequence = call_sites_with_marginal_probs(marginal_probability_file, reference_sequence_string, min_depth=0, get_sites=True) # clean up working_folder.remove_file(marginal_probability_file) # remove old alignments for f in glob.glob(working_folder.path + "*.tsv"): os.remove(f) return updated_reference_sequence
mit
ocefpaf/system-test
Theme_2_Extreme_Events/Scenario_2A/Extremes_Currents/Extreme_Currents.py
3
17130
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <codecell> import time start_runtime = time.time() # <markdowncell> # ># IOOS System Test: [Extreme Events Theme:](https://github.com/ioos/system-test/wiki/Development-of-Test-Themes#theme-2-extreme-events) Coastal Inundation # <markdowncell> # ### Can we obtain observed current data at stations located within a bounding box? # This notebook is based on IOOS System Test: Inundation # <markdowncell> # Methodology: # * Define temporal and spatial bounds of interest, as well as # parameters of interest # * Search for available service endpoints in the NGDC CSW catalog # meeting search criteria # * Search for available OPeNDAP data endpoints # * Obtain observation data sets from stations within the spatial # boundaries (from CO-OPS and NDBC) # * Extract time series for identified stations # * Plot time series data, current rose, annual max values per station # * Plot observation stations on a map # <markdowncell> # #### import required libraries # <codecell> import os import os.path from datetime import datetime, timedelta import uuid import folium import matplotlib.pyplot as plt from owslib.csw import CatalogueServiceWeb from owslib import fes import numpy as np from pandas import read_csv from pyoos.collectors.ndbc.ndbc_sos import NdbcSos from pyoos.collectors.coops.coops_sos import CoopsSos from utilities import (fes_date_filter, service_urls, get_coordinates, inline_map, css_styles, processStationInfo, get_ncfiles_catalog, new_axes, set_legend) css_styles() # <markdowncell> # <div class="warning"><strong>Temporal Bounds</strong> - # Anything longer than one year kills the CO-OPS service</div> # <codecell> bounding_box_type = "box" # Bounding Box [lon_min, lat_min, lon_max, lat_max] area = {'Hawaii': [-160.0, 18.0, -154., 23.0], 'Gulf of Maine': [-72.0, 41.0, -69.0, 43.0], 'New York harbor region': [-75., 39., -71., 41.5], 'Puerto Rico': [-71, 14, -60, 24], 'East Coast': [-77, 34, -70, 40], 'North West': [-130, 38, -121, 50]} bounding_box = area['North West'] # Temporal range. jd_now = datetime.utcnow() jd_start, jd_stop = jd_now - timedelta(days=(365*10)), jd_now start_date = jd_start.strftime('%Y-%m-%d %H:00') stop_date = jd_stop.strftime('%Y-%m-%d %H:00') jd_start = datetime.strptime(start_date, '%Y-%m-%d %H:%M') jd_stop = datetime.strptime(stop_date, '%Y-%m-%d %H:%M') print('%s to %s ' % (start_date, stop_date)) # <codecell> # Put the names in a dict for ease of access. data_dict = {} sos_name = 'Currents' data_dict['currents'] = {"names": ['currents', 'surface_eastward_sea_water_velocity', '*surface_eastward_sea_water_velocity*'], "sos_name": ['currents']} # <markdowncell> # CSW Search # <codecell> endpoint = 'http://www.ngdc.noaa.gov/geoportal/csw' # NGDC Geoportal. csw = CatalogueServiceWeb(endpoint, timeout=60) # <markdowncell> # Search # <codecell> # Convert User Input into FES filters. start, stop = fes_date_filter(start_date, stop_date) bbox = fes.BBox(bounding_box) # Use the search name to create search filter. kw = dict(propertyname='apiso:AnyText', escapeChar='\\', wildCard='*', singleChar='?') or_filt = fes.Or([fes.PropertyIsLike(literal=('*%s*' % val), **kw) for val in data_dict['currents']['names']]) val = 'Averages' not_filt = fes.Not([fes.PropertyIsLike(literal=('*%s*' % val), **kw)]) filter_list = [fes.And([bbox, start, stop, or_filt, not_filt])] # Connect to CSW, explore it's properties # try request using multiple filters "and" syntax: [[filter1, filter2]] csw.getrecords2(constraints=filter_list, maxrecords=1000, esn='full') print("%s csw records found" % len(csw.records)) for rec, item in csw.records.items(): print(item.title) # <markdowncell> # DAP # <codecell> dap_urls = service_urls(csw.records) # Remove duplicates and organize. dap_urls = sorted(set(dap_urls)) print("Total DAP: %s" % len(dap_urls)) # Print the first 5: print("\n".join(dap_urls[:])) # <markdowncell> # Get SOS links, NDBC is not available so add it... # <codecell> sos_urls = service_urls(csw.records, service='sos:url') # Remove duplicates and organize. sos_urls = sorted(set(sos_urls)) print("Total SOS: %s" % len(sos_urls)) print("\n".join(sos_urls)) # <markdowncell> # #### Update SOS time-date # <codecell> start_time = datetime.strptime(start_date, '%Y-%m-%d %H:%M') end_time = datetime.strptime(stop_date, '%Y-%m-%d %H:%M') iso_start = start_time.strftime('%Y-%m-%dT%H:%M:%SZ') iso_end = end_time.strftime('%Y-%m-%dT%H:%M:%SZ') # <markdowncell> # <div class="success"><strong>Get list of stations</strong> # - we get a list of the available stations from NOAA and COOPS</div> # <markdowncell> # #### Initialize Station Data List # <codecell> st_list = {} # <markdowncell> # #### Get CO-OPS Station Data # <codecell> coops_collector = CoopsSos() coops_collector.start_time = start_time coops_collector.end_time = end_time coops_collector.variables = data_dict["currents"]["sos_name"] coops_collector.server.identification.title ofrs = coops_collector.server.offerings print("%s:%s" % (coops_collector.start_time, coops_collector.end_time)) print(len(ofrs)) # <markdowncell> # #### gets a list of the active stations from coops # <codecell> box_str = ','.join(str(e) for e in bounding_box) url = (('http://opendap.co-ops.nos.noaa.gov/ioos-dif-sos/SOS?' 'service=SOS&request=GetObservation&version=1.0.0&' 'observedProperty=%s&bin=1&' 'offering=urn:ioos:network:NOAA.NOS.CO-OPS:CurrentsActive&' 'featureOfInterest=BBOX:%s&responseFormat=text/csv') % (sos_name, box_str)) obs_loc_df = read_csv(url) print(url) print("Date: %s to %s" % (iso_start, iso_end)) print("Lat/Lon Box: %s" % box_str) # <markdowncell> # #### COOPS Station Information # <codecell> st_list = processStationInfo(obs_loc_df, st_list, "coops") # <codecell> st_list # <markdowncell> # #### Get NDBC Station Data # <codecell> ndbc_collector = NdbcSos() ndbc_collector.start_time = start_time ndbc_collector.end_time = end_time ndbc_collector.variables = data_dict["currents"]["sos_name"] ndbc_collector.server.identification.title print("%s:%s" % (ndbc_collector.start_time, ndbc_collector.end_time)) ofrs = ndbc_collector.server.offerings print(len(ofrs)) # <codecell> print("Date: %s to %s" % (iso_start, iso_end)) box_str = ','.join(str(e) for e in bounding_box) print("Lat/Lon Box: %s" % box_str) url = (('http://sdf.ndbc.noaa.gov/sos/server.php?' 'request=GetObservation&service=SOS&' 'version=1.0.0&' 'offering=urn:ioos:network:noaa.nws.ndbc:all&' 'featureofinterest=BBOX:%s&' 'observedproperty=%s&' 'responseformat=text/csv&') % (box_str, sos_name)) print(url) obs_loc_df = read_csv(url) # <markdowncell> # #### NDBC Station information # <codecell> st_list = processStationInfo(obs_loc_df, st_list, "ndbc") st_list # <codecell> print(st_list[st_list.keys()[0]]['lat']) print(st_list[st_list.keys()[0]]['lon']) # <markdowncell> # #### The function only support who date time differences # <markdowncell> # <div class="error"> # <strong>Large Temporal Requests Need To Be Broken Down</strong> - # When requesting a large temporal range outside the SOS limit, the sos # request needs to be broken down. See issues in # [ioos](https://github.com/ioos/system-test/issues/81), # [ioos](https://github.com/ioos/system-test/issues/101), # [ioos](https://github.com/ioos/system-test/issues/116) # and # [pyoos](https://github.com/ioos/pyoos/issues/35). Unfortunately currents # is not available via DAP # ([ioos](https://github.com/ioos/system-test/issues/116))</div> # <markdowncell> # <div class="error"> # <strong>Large Temporal Requests Need To Be Broken Down</strong> - # Obtaining long time series from COOPS via SOS is not ideal and the opendap # links are not available, so we use the tides and currents api to get the # currents in json format. The api response provides in default bin, unless a # bin is specified (i.e bin=1)</div> # <markdowncell> # <div class="warning"><strong>Pyoos</strong> - # Should be able to use the collector, but does not work?</div> # <markdowncell> # <div class="info"> # <strong>Use NDBC DAP endpoints to get time-series data</strong> - # The DAP server for currents is available for NDBC data, we use that # to get long time series data.</div> # <markdowncell> # <div class="info"><strong>Progress Information For Large Requests</strong> - # Shows the user a progress bar for each stations as its processed. Click # [here]('http://www.tidesandcurrents.noaa.gov/cdata/StationList?type=Current+Data&filter=active') # to show more information on the CO-OPS locations</div> # <markdowncell> # <div class="error"><strong>Processing long time series</strong> - # The CO-OPS Server responds really slow (> 30 secs, for what should be # a 5 sec request) to multiple requests, so getting long time series # data is almost impossible.</div> # <markdowncell> # #### get CO-OPS station data # <codecell> # Used to define the number of days allowable by the service. coops_point_max_days = ndbc_point_max_days = 30 print("start & end dates: %s, %s\n" % (jd_start, jd_stop)) for station_index in st_list.keys(): # Set it so we can use it later. st = station_index.split(":")[-1] print('[%s]: %s' % (st_list[station_index]['source'], station_index)) divid = str(uuid.uuid4()) if st_list[station_index]['source'] == 'coops': # Coops fails for large requests. master_df = [] elif st_list[station_index]['source'] == 'ndbc': # Use the dap catalog to get the data. master_df = get_ncfiles_catalog(station_index, jd_start, jd_stop) if len(master_df) > 0: st_list[station_index]['hasObsData'] = True st_list[station_index]['obsData'] = master_df # <codecell> # Check theres data in there. st_list[st_list.keys()[2]] # <markdowncell> # ### Plot the pandas data frames for the stations # <markdowncell> # <div class="error"><strong>Station Data Plot</strong> - # There might be an issue with some of the NDBC station data...</div> # <codecell> for station_index in st_list.keys(): df = st_list[station_index]['obsData'] if len(df) > 1: st_list[station_index]['hasObsData'] = True print("num rows: %s" % len(df)) fig = plt.figure(figsize=(18, 3)) plt.scatter(df.index, df['sea_water_speed (cm/s)']) fig.suptitle('Station:'+station_index, fontsize=20) plt.xlabel('Date', fontsize=18) plt.ylabel('sea_water_speed (cm/s)', fontsize=16) else: st_list[station_index]['hasObsData'] = False # <markdowncell> # #### Find the min and max data values # <markdowncell> # <div class="warning"><strong>Station Data Plot</strong> - # Some stations might not plot due to the data.</div> # <codecell> # Build current roses. filelist = [f for f in os.listdir("./images") if f.endswith(".png")] for f in filelist: os.remove("./images/{}".format(f)) station_min_max = {} for station_index in st_list.keys(): all_spd_data = {} all_dir_data = {} all_time_spd = [] all_time_dir = [] df = st_list[station_index]['obsData'] if len(df) > 1: try: spd_data = df['sea_water_speed (cm/s)'].values spd_data = np.array(spd_data) dir_data = df['direction_of_sea_water_velocity (degree)'].values dir_data = np.array(dir_data) time_data = df.index.tolist() time_data = np.array(time_data) # NOTE: This data cleanup can a vectorized function. for idx in range(0, len(spd_data)): if spd_data[idx] > 998: continue elif np.isnan(spd_data[idx]): continue elif dir_data[idx] == 0: continue else: dt_year = time_data[idx].year dt_year = str(dt_year) if dt_year not in all_spd_data.keys(): all_spd_data[dt_year] = [] all_dir_data[dt_year] = [] # Convert to knots. knot_val = (spd_data[idx] * 0.0194384449) knot_val = "%.4f" % knot_val knot_val = float(knot_val) all_spd_data[dt_year].append(knot_val) all_dir_data[dt_year].append(dir_data[idx]) all_time_spd.append(knot_val) all_time_dir.append(dir_data[idx]) all_time_spd = np.array(all_time_spd, dtype=np.float) all_time_dir = np.array(all_time_dir, dtype=np.float) station_min_max[station_index] = {} for year in all_spd_data.keys(): year_spd = np.array(all_spd_data[year]) year_dir = np.array(all_dir_data[year]) station_min_max[station_index][year] = {} station_min_max[station_index][year]['pts'] = len(year_spd) min_spd, max_spd = np.min(year_spd), np.max(year_spd) station_min_max[station_index][year]['spd_min'] = min_spd station_min_max[station_index][year]['spd_max'] = max_spd dir_min, dir_max = np.argmin(year_spd), np.argmax(year_spd) yr_dir_min, yr_dir_max = year_dir[dir_min], year_dir[dir_max] station_min_max[station_index][year]['dir_at_min'] = yr_dir_min station_min_max[station_index][year]['dir_at_max'] = yr_dir_max try: # A stacked histogram with normed # (displayed in percent) results. ax = new_axes() ax.set_title(station_index.split(":")[-1] + " stacked histogram with normed (displayed in %)" "\nresults (spd in knots), All Time.") ax.bar(all_time_dir, all_time_spd, normed=True, opening=0.8, edgecolor='white') set_legend(ax) fig = plt.gcf() fig.set_size_inches(8, 8) fname = './images/%s.png' % station_index.split(":")[-1] fig.savefig(fname, dpi=100) except Exception as e: print("Error when plotting %s" % e) pass except Exception as e: # Be specific here! print("Error: %s" % e) pass # <codecell> # Plot the min and max from each station. fields = ['spd_'] for idx in range(0, len(fields)): d_field = fields[idx] fig, ax = plt.subplots(1, 1, figsize=(18, 5)) for st in station_min_max: x, y_min, y_max = [], [], [] for year in station_min_max[st]: x.append(year) y_max.append(station_min_max[st][year][d_field+'max']) marker_size = station_min_max[st][year]['pts'] / 80 marker_size += 20 station_label = st.split(":")[-1] ax.scatter(np.array(x), np.array(y_max), label=station_label, s=marker_size, c=np.random.rand(3, 1), marker="o") ax.set_xlim([2000, 2015]) ax.set_title("Yearly Max Speed Per Station, Marker Scaled Per " "Annual Pts (bigger = more pts per year)") ax.set_ylabel("speed (knots)") ax.set_xlabel("Year") ax.legend(loc='upper left') # <markdowncell> # #### Produce Interactive Map # <codecell> station = st_list[st_list.keys()[0]] m = folium.Map(location=[station["lat"], station["lon"]], zoom_start=4) m.line(get_coordinates(bounding_box, bounding_box_type), line_color='#FF0000', line_weight=5) # Plot the obs station. for st in st_list: hasObs = st_list[st]['hasObsData'] if hasObs: fname = './images/%s.png' % st.split(":")[-1] if os.path.isfile(fname): popup = ('Obs Location:<br>%s<br><img border=120 src="' './images/%s.png" width="242" height="242">' % (st, st.split(":")[-1])) m.simple_marker([st_list[st]["lat"], st_list[st]["lon"]], popup=popup, marker_color="green", marker_icon="ok") else: popup = 'Obs Location:<br>%s' % st m.simple_marker([st_list[st]["lat"], st_list[st]["lon"]], popup=popup, marker_color="green", marker_icon="ok") else: popup = 'Obs Location:<br>%s' % st m.simple_marker([st_list[st]["lat"], st_list[st]["lon"]], popup=popup, marker_color="red", marker_icon="remove") inline_map(m) # <codecell> elapsed = time.time() - start_runtime print('{:.2f} minutes'.format(elapsed / 60.))
unlicense
nan86150/ImageFusion
lib/python2.7/site-packages/matplotlib/backends/backend_macosx.py
11
15754
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os import numpy from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase, NavigationToolbar2, TimerBase from matplotlib.backend_bases import ShowBase from matplotlib.cbook import maxdict from matplotlib.figure import Figure from matplotlib.path import Path from matplotlib.mathtext import MathTextParser from matplotlib.colors import colorConverter from matplotlib import rcParams from matplotlib.widgets import SubplotTool import matplotlib from matplotlib.backends import _macosx class Show(ShowBase): def mainloop(self): _macosx.show() show = Show() class RendererMac(RendererBase): """ The renderer handles drawing/rendering operations. Most of the renderer's methods forward the command to the renderer's graphics context. The renderer does not wrap a C object and is written in pure Python. """ texd = maxdict(50) # a cache of tex image rasters def __init__(self, dpi, width, height): RendererBase.__init__(self) self.dpi = dpi self.width = width self.height = height self.gc = GraphicsContextMac() self.gc.set_dpi(self.dpi) self.mathtext_parser = MathTextParser('MacOSX') def set_width_height (self, width, height): self.width, self.height = width, height def draw_path(self, gc, path, transform, rgbFace=None): if rgbFace is not None: rgbFace = tuple(rgbFace) linewidth = gc.get_linewidth() gc.draw_path(path, transform, linewidth, rgbFace) def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): if rgbFace is not None: rgbFace = tuple(rgbFace) linewidth = gc.get_linewidth() gc.draw_markers(marker_path, marker_trans, path, trans, linewidth, rgbFace) def draw_path_collection(self, gc, master_transform, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): if offset_position=='data': offset_position = True else: offset_position = False path_ids = [] for path, transform in self._iter_collection_raw_paths( master_transform, paths, all_transforms): path_ids.append((path, transform)) master_transform = master_transform.get_matrix() offsetTrans = offsetTrans.get_matrix() gc.draw_path_collection(master_transform, path_ids, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, offset_position) def draw_quad_mesh(self, gc, master_transform, meshWidth, meshHeight, coordinates, offsets, offsetTrans, facecolors, antialiased, edgecolors): gc.draw_quad_mesh(master_transform.get_matrix(), meshWidth, meshHeight, coordinates, offsets, offsetTrans.get_matrix(), facecolors, antialiased, edgecolors) def new_gc(self): self.gc.save() self.gc.set_hatch(None) self.gc._alpha = 1.0 self.gc._forced_alpha = False # if True, _alpha overrides A from RGBA return self.gc def draw_gouraud_triangle(self, gc, points, colors, transform): points = transform.transform(points) gc.draw_gouraud_triangle(points, colors) def get_image_magnification(self): return self.gc.get_image_magnification() def draw_image(self, gc, x, y, im): im.flipud_out() nrows, ncols, data = im.as_rgba_str() gc.draw_image(x, y, nrows, ncols, data) im.flipud_out() def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!', mtext=None): # todo, handle props, angle, origins scale = self.gc.get_image_magnification() size = prop.get_size_in_points() texmanager = self.get_texmanager() key = s, size, self.dpi, angle, texmanager.get_font_config() im = self.texd.get(key) # Not sure what this does; just copied from backend_agg.py if im is None: Z = texmanager.get_grey(s, size, self.dpi*scale) Z = numpy.array(255.0 - Z * 255.0, numpy.uint8) gc.draw_mathtext(x, y, angle, Z) def _draw_mathtext(self, gc, x, y, s, prop, angle): scale = self.gc.get_image_magnification() ox, oy, width, height, descent, image, used_characters = \ self.mathtext_parser.parse(s, self.dpi*scale, prop) gc.draw_mathtext(x, y, angle, 255 - image.as_array()) def draw_text(self, gc, x, y, s, prop, angle, ismath=False, mtext=None): if ismath: self._draw_mathtext(gc, x, y, s, prop, angle) else: family = prop.get_family() weight = prop.get_weight() style = prop.get_style() points = prop.get_size_in_points() size = self.points_to_pixels(points) gc.draw_text(x, y, six.text_type(s), family, size, weight, style, angle) def get_text_width_height_descent(self, s, prop, ismath): if ismath=='TeX': # todo: handle props texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() w, h, d = texmanager.get_text_width_height_descent(s, fontsize, renderer=self) return w, h, d if ismath: ox, oy, width, height, descent, fonts, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) return width, height, descent family = prop.get_family() weight = prop.get_weight() style = prop.get_style() points = prop.get_size_in_points() size = self.points_to_pixels(points) width, height, descent = self.gc.get_text_width_height_descent( six.text_type(s), family, size, weight, style) return width, height, 0.0*descent def flipy(self): return False def points_to_pixels(self, points): return points/72.0 * self.dpi def option_image_nocomposite(self): return True class GraphicsContextMac(_macosx.GraphicsContext, GraphicsContextBase): """ The GraphicsContext wraps a Quartz graphics context. All methods are implemented at the C-level in macosx.GraphicsContext. These methods set drawing properties such as the line style, fill color, etc. The actual drawing is done by the Renderer, which draws into the GraphicsContext. """ def __init__(self): GraphicsContextBase.__init__(self) _macosx.GraphicsContext.__init__(self) def set_alpha(self, alpha): GraphicsContextBase.set_alpha(self, alpha) _alpha = self.get_alpha() _macosx.GraphicsContext.set_alpha(self, _alpha, self.get_forced_alpha()) rgb = self.get_rgb() _macosx.GraphicsContext.set_foreground(self, rgb) def set_foreground(self, fg, isRGBA=False): GraphicsContextBase.set_foreground(self, fg, isRGBA) rgb = self.get_rgb() _macosx.GraphicsContext.set_foreground(self, rgb) def set_graylevel(self, fg): GraphicsContextBase.set_graylevel(self, fg) _macosx.GraphicsContext.set_graylevel(self, fg) def set_clip_rectangle(self, box): GraphicsContextBase.set_clip_rectangle(self, box) if not box: return _macosx.GraphicsContext.set_clip_rectangle(self, box.bounds) def set_clip_path(self, path): GraphicsContextBase.set_clip_path(self, path) if not path: return path = path.get_fully_transformed_path() _macosx.GraphicsContext.set_clip_path(self, path) ######################################################################## # # The following functions and classes are for pylab and implement # window/figure managers, etc... # ######################################################################## def draw_if_interactive(): """ For performance reasons, we don't want to redraw the figure after each draw command. Instead, we mark the figure as invalid, so that it will be redrawn as soon as the event loop resumes via PyOS_InputHook. This function should be called after each draw event, even if matplotlib is not running interactively. """ if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.canvas.invalidate() def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) figure = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, figure) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasMac(figure) manager = FigureManagerMac(canvas, num) return manager class TimerMac(_macosx.Timer, TimerBase): ''' Subclass of :class:`backend_bases.TimerBase` that uses CoreFoundation run loops for timer events. Attributes: * interval: The time between timer events in milliseconds. Default is 1000 ms. * single_shot: Boolean flag indicating whether this timer should operate as single shot (run once and then stop). Defaults to False. * callbacks: Stores list of (func, args) tuples that will be called upon timer events. This list can be manipulated directly, or the functions add_callback and remove_callback can be used. ''' # completely implemented at the C-level (in _macosx.Timer) class FigureCanvasMac(_macosx.FigureCanvas, FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance Events such as button presses, mouse movements, and key presses are handled in the C code and the base class methods button_press_event, button_release_event, motion_notify_event, key_press_event, and key_release_event are called from there. """ filetypes = FigureCanvasBase.filetypes.copy() filetypes['bmp'] = 'Windows bitmap' filetypes['jpeg'] = 'JPEG' filetypes['jpg'] = 'JPEG' filetypes['gif'] = 'Graphics Interchange Format' filetypes['tif'] = 'Tagged Image Format File' filetypes['tiff'] = 'Tagged Image Format File' def __init__(self, figure): FigureCanvasBase.__init__(self, figure) width, height = self.get_width_height() self.renderer = RendererMac(figure.dpi, width, height) _macosx.FigureCanvas.__init__(self, width, height) def resize(self, width, height): self.renderer.set_width_height(width, height) dpi = self.figure.dpi width /= dpi height /= dpi self.figure.set_size_inches(width, height) def _print_bitmap(self, filename, *args, **kwargs): # In backend_bases.py, print_figure changes the dpi of the figure. # But since we are essentially redrawing the picture, we need the # original dpi. Pick it up from the renderer. dpi = kwargs['dpi'] old_dpi = self.figure.dpi self.figure.dpi = self.renderer.dpi width, height = self.figure.get_size_inches() width, height = width*dpi, height*dpi filename = six.text_type(filename) self.write_bitmap(filename, width, height, dpi) self.figure.dpi = old_dpi def print_bmp(self, filename, *args, **kwargs): self._print_bitmap(filename, *args, **kwargs) def print_jpg(self, filename, *args, **kwargs): self._print_bitmap(filename, *args, **kwargs) def print_jpeg(self, filename, *args, **kwargs): self._print_bitmap(filename, *args, **kwargs) def print_tif(self, filename, *args, **kwargs): self._print_bitmap(filename, *args, **kwargs) def print_tiff(self, filename, *args, **kwargs): self._print_bitmap(filename, *args, **kwargs) def print_gif(self, filename, *args, **kwargs): self._print_bitmap(filename, *args, **kwargs) def new_timer(self, *args, **kwargs): """ Creates a new backend-specific subclass of :class:`backend_bases.Timer`. This is useful for getting periodic events through the backend's native event loop. Implemented only for backends with GUIs. optional arguments: *interval* Timer interval in milliseconds *callbacks* Sequence of (func, args, kwargs) where func(*args, **kwargs) will be executed by the timer every *interval*. """ return TimerMac(*args, **kwargs) class FigureManagerMac(_macosx.FigureManager, FigureManagerBase): """ Wrap everything up into a window for the pylab interface """ def __init__(self, canvas, num): FigureManagerBase.__init__(self, canvas, num) title = "Figure %d" % num _macosx.FigureManager.__init__(self, canvas, title) if rcParams['toolbar']=='toolbar2': self.toolbar = NavigationToolbar2Mac(canvas) else: self.toolbar = None if self.toolbar is not None: self.toolbar.update() def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) if matplotlib.is_interactive(): self.show() def close(self): Gcf.destroy(self.num) class NavigationToolbar2Mac(_macosx.NavigationToolbar2, NavigationToolbar2): def __init__(self, canvas): NavigationToolbar2.__init__(self, canvas) def _init_toolbar(self): basedir = os.path.join(rcParams['datapath'], "images") _macosx.NavigationToolbar2.__init__(self, basedir) def draw_rubberband(self, event, x0, y0, x1, y1): self.canvas.set_rubberband(int(x0), int(y0), int(x1), int(y1)) def release(self, event): self.canvas.remove_rubberband() def set_cursor(self, cursor): _macosx.set_cursor(cursor) def save_figure(self, *args): filename = _macosx.choose_save_file('Save the figure', self.canvas.get_default_filename()) if filename is None: # Cancel return self.canvas.print_figure(filename) def prepare_configure_subplots(self): toolfig = Figure(figsize=(6,3)) canvas = FigureCanvasMac(toolfig) toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) return canvas def set_message(self, message): _macosx.NavigationToolbar2.set_message(self, message.encode('utf-8')) def dynamic_update(self): self.canvas.draw_idle() ######################################################################## # # Now just provide the standard names that backend.__init__ is expecting # ######################################################################## FigureCanvas = FigureCanvasMac FigureManager = FigureManagerMac
mit
alivecor/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_test.py
31
60315
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { embedding_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) model_ops = dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') wire_var = dnn_linear_combined._get_embedding_variable( embedding_wire, 'dnn', 'dnn/input_from_feature_columns') for _ in range(2): _, language_value, wire_value = sess.run( [model_ops.train_op, language_var, wire_var]) initial_value = np.full_like(language_value, 0.1) self.assertTrue(np.all(np.isclose(language_value, initial_value))) self.assertFalse(np.all(np.isclose(wire_value, initial_value))) class ActivationFunctionTest(test.TestCase): def _getModelForActivation(self, activation_fn): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'feature_columns': [embedding_language], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], 'activation_fn': activation_fn, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) return dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testValidActivation(self): _ = self._getModelForActivation('relu') def testRaisesOnBadActivationName(self): with self.assertRaisesRegexp(ValueError, 'Activation name should be one of'): self._getModelForActivation('max_pool') class DNNEstimatorTest(test.TestCase): def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNEstimator) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels dnn_estimator = dnn.DNNEstimator( head=head_lib.multi_class_head(2, weight_column_name='w'), feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) dnn_estimator.fit(input_fn=_input_fn_train, steps=5) scores = dnn_estimator.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) class DNNClassifierTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNClassifier) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn.DNNClassifier( feature_columns=[embedding_language], hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertEqual(1, classifier.params['input_layer_min_slice_size']) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn classifier.fit(input_fn=input_fn, steps=5) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=5) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def _assertBinaryPredictions(self, expected_len, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, (0, 1)) def _assertProbabilities(self, expected_batch_size, expected_n_classes, probabilities): self.assertEqual(expected_batch_size, len(probabilities)) for b in range(expected_batch_size): self.assertEqual(expected_n_classes, len(probabilities[b])) for i in range(expected_n_classes): self._assertInRange(0.0, 1.0, probabilities[b][i]) def testEstimatorWithCoreFeatureColumns(self): def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = fc_core.categorical_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ fc_core.embedding_column(language_column, dimension=1), fc_core.numeric_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes(input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_TensorData(self): """Tests binary classification using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_FloatLabel(self): """Tests binary classification with float labels.""" def _input_fn_float_label(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[50], [20], [10]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_float_label, steps=50) predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predictions_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self._assertProbabilities(3, 2, predictions_proba) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=200) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but label shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=200) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[10, 10], label_keys=label_keys, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn.DNNClassifier( n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testPredict_AsIterableFalse(self): """Tests predict and predict_prob methods with as_iterable=False.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] n_classes = 3 classifier = dnn.DNNClassifier( n_classes=n_classes, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predicted_classes = classifier.predict_classes( input_fn=_input_fn, as_iterable=False) self._assertBinaryPredictions(3, predicted_classes) predictions = classifier.predict(input_fn=_input_fn, as_iterable=False) self.assertAllEqual(predicted_classes, predictions) probabilities = classifier.predict_proba( input_fn=_input_fn, as_iterable=False) self._assertProbabilities(3, n_classes, probabilities) def testPredict_AsIterable(self): """Tests predict and predict_prob methods with as_iterable=True.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertListEqual(predicted_classes, [1, 0, 0]) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predicted_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose( predicted_proba, [[0., 1., 0.], [1., 0., 0.], [1., 0., 0.]], atol=0.3) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) labels = math_ops.cast(labels, predictions.dtype) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn.DNNClassifier( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] model_dir = tempfile.mkdtemp() classifier = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions1 = classifier.predict_classes(input_fn=predict_input_fn) del classifier classifier2 = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = classifier2.predict_classes(input_fn=predict_input_fn) self.assertEqual(list(predictions1), list(predictions2)) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) feature_columns = [ feature_column.real_valued_column('age'), feature_column.embedding_column( language, dimension=1) ] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=5) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertIn('dnn/multi_class_head/centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) class DNNRegressorTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNRegressor( feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn regressor.fit(input_fn=input_fn, steps=200) scores = regressor.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores) def testRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(x=train_x, y=train_y, steps=200) scores = regressor.evaluate(x=train_x, y=train_y, steps=1) self.assertIn('loss', scores) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self.assertAllClose(labels, predicted_scores, atol=0.2) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(labels, predicted_scores, atol=0.2) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics that use MetricSpec.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertIn('dnn/regression_head/centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertNotIn('centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = dnn.DNNRegressor(feature_columns=feature_columns, hidden_units=[3, 3]) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
apache-2.0
rsivapr/scikit-learn
sklearn/cluster/tests/test_k_means.py
3
22974
"""Testing for K-means""" import sys import warnings import numpy as np from scipy import sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.fixes import unique from sklearn.metrics.cluster import v_measure_score from sklearn.cluster import KMeans, k_means from sklearn.cluster import MiniBatchKMeans from sklearn.cluster.k_means_ import _labels_inertia from sklearn.cluster.k_means_ import _mini_batch_step from sklearn.cluster._k_means import csr_row_norm_l2 from sklearn.datasets.samples_generator import make_blobs from sklearn.externals.six.moves import cStringIO as StringIO # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [1.0, 1.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 100 n_clusters, n_features = centers.shape X, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) X_csr = sp.csr_matrix(X) def test_square_norms(): x_squared_norms = (X ** 2).sum(axis=1) x_squared_norms_from_csr = csr_row_norm_l2(X_csr) assert_array_almost_equal(x_squared_norms, x_squared_norms_from_csr, 5) def test_kmeans_dtype(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) X = (X * 10).astype(np.uint8) km = KMeans(n_init=1).fit(X) with warnings.catch_warnings(record=True) as w: assert_array_equal(km.labels_, km.predict(X)) assert_equal(len(w), 1) def test_labels_assignment_and_inertia(): # pure numpy implementation as easily auditable reference gold # implementation rng = np.random.RandomState(42) noisy_centers = centers + rng.normal(size=centers.shape) labels_gold = - np.ones(n_samples, dtype=np.int) mindist = np.empty(n_samples) mindist.fill(np.infty) for center_id in range(n_clusters): dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1) labels_gold[dist < mindist] = center_id mindist = np.minimum(dist, mindist) inertia_gold = mindist.sum() assert_true((mindist >= 0.0).all()) assert_true((labels_gold != -1).all()) # perform label assignment using the dense array input x_squared_norms = (X ** 2).sum(axis=1) labels_array, inertia_array = _labels_inertia( X, x_squared_norms, noisy_centers) assert_array_almost_equal(inertia_array, inertia_gold) assert_array_equal(labels_array, labels_gold) # perform label assignment using the sparse CSR input x_squared_norms_from_csr = csr_row_norm_l2(X_csr) labels_csr, inertia_csr = _labels_inertia( X_csr, x_squared_norms_from_csr, noisy_centers) assert_array_almost_equal(inertia_csr, inertia_gold) assert_array_equal(labels_csr, labels_gold) def test_minibatch_update_consistency(): """Check that dense and sparse minibatch update give the same results""" rng = np.random.RandomState(42) old_centers = centers + rng.normal(size=centers.shape) new_centers = old_centers.copy() new_centers_csr = old_centers.copy() counts = np.zeros(new_centers.shape[0], dtype=np.int32) counts_csr = np.zeros(new_centers.shape[0], dtype=np.int32) x_squared_norms = (X ** 2).sum(axis=1) x_squared_norms_csr = csr_row_norm_l2(X_csr, squared=True) buffer = np.zeros(centers.shape[1], dtype=np.double) buffer_csr = np.zeros(centers.shape[1], dtype=np.double) # extract a small minibatch X_mb = X[:10] X_mb_csr = X_csr[:10] x_mb_squared_norms = x_squared_norms[:10] x_mb_squared_norms_csr = x_squared_norms_csr[:10] # step 1: compute the dense minibatch update old_inertia, incremental_diff = _mini_batch_step( X_mb, x_mb_squared_norms, new_centers, counts, buffer, 1, None, random_reassign=False) assert_greater(old_inertia, 0.0) # compute the new inertia on the same batch to check that it decreased labels, new_inertia = _labels_inertia( X_mb, x_mb_squared_norms, new_centers) assert_greater(new_inertia, 0.0) assert_less(new_inertia, old_inertia) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers - old_centers) ** 2) assert_almost_equal(incremental_diff, effective_diff) # step 2: compute the sparse minibatch update old_inertia_csr, incremental_diff_csr = _mini_batch_step( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr, counts_csr, buffer_csr, 1, None, random_reassign=False) assert_greater(old_inertia_csr, 0.0) # compute the new inertia on the same batch to check that it decreased labels_csr, new_inertia_csr = _labels_inertia( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr) assert_greater(new_inertia_csr, 0.0) assert_less(new_inertia_csr, old_inertia_csr) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers_csr - old_centers) ** 2) assert_almost_equal(incremental_diff_csr, effective_diff) # step 3: check that sparse and dense updates lead to the same results assert_array_equal(labels, labels_csr) assert_array_almost_equal(new_centers, new_centers_csr) assert_almost_equal(incremental_diff, incremental_diff_csr) assert_almost_equal(old_inertia, old_inertia_csr) assert_almost_equal(new_inertia, new_inertia_csr) def _check_fitted_model(km): # check that the number of clusters centers and distinct labels match # the expectation centers = km.cluster_centers_ assert_equal(centers.shape, (n_clusters, n_features)) labels = km.labels_ assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(km.inertia_, 0.0) # check error on dataset being too small assert_raises(ValueError, km.fit, [[0., 1.]]) def test_k_means_plus_plus_init(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_check_fitted(): km = KMeans(n_clusters=n_clusters, random_state=42) assert_raises(AttributeError, km._check_fitted) def test_k_means_new_centers(): # Explore the part of the code where a new center is reassigned X = np.array([[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]]) labels = [0, 1, 2, 1, 1, 2] bad_centers = np.array([[+0, 1, 0, 0], [.2, 0, .2, .2], [+0, 0, 0, 0]]) km = KMeans(n_clusters=3, init=bad_centers, n_init=1, max_iter=10, random_state=1) for this_X in (X, sp.coo_matrix(X)): km.fit(this_X) this_labels = km.labels_ # Reorder the labels so that the first instance is in cluster 0, # the second in cluster 1, ... this_labels = unique(this_labels, return_index=True)[1][this_labels] np.testing.assert_array_equal(this_labels, labels) def _is_mac_os_version(version): """Returns True iff Mac OS X and newer than specified version.""" import platform mac_version, _, _ = platform.mac_ver() return mac_version.split('.')[:2] == version.split('.')[:2] def _has_blas_lib(libname): from numpy.distutils.system_info import get_info return libname in get_info('blas_opt').get('libraries', []) def test_k_means_plus_plus_init_2_jobs(): if _is_mac_os_version('10.7'): raise SkipTest('Multi-process bug in Mac OS X Lion (see issue #636)') if _has_blas_lib('openblas'): raise SkipTest('Multi-process bug with OpenBLAS (see issue #636)') km = KMeans(init="k-means++", n_clusters=n_clusters, n_jobs=2, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_plus_plus_init_sparse(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_random_init(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X) _check_fitted_model(km) def test_k_means_random_init_sparse(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_plus_plus_init_not_precomputed(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_random_init_not_precomputed(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_perfect_init(): km = KMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1) km.fit(X) _check_fitted_model(km) def test_mb_k_means_plus_plus_init_dense_array(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X) _check_fitted_model(mb_k_means) def test_mb_kmeans_verbose(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: mb_k_means.fit(X) finally: sys.stdout = old_stdout def test_mb_k_means_plus_plus_init_sparse_matrix(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_init_with_large_k(): mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, n_clusters=20) # Check that a warning is raised, as the number clusters is larger # than the init_size with warnings.catch_warnings(record=True) as warn_queue: mb_k_means.fit(X) assert_equal(len(warn_queue), 1) def test_minibatch_k_means_random_init_dense_array(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_random_init_sparse_csr(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_k_means_perfect_init_dense_array(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_perfect_init_sparse_csr(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_reassign(): # Give a perfect initialization, but a large reassignment_ratio, # as a result all the centers should be reassigned and the model # should not longer be good for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=1, random_state=42) mb_k_means.fit(this_X) centers_before = mb_k_means.cluster_centers_.copy() try: old_stdout = sys.stdout sys.stdout = StringIO() # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(n_clusters), random_reassign=True, random_state=42, reassignment_ratio=1, verbose=True) finally: sys.stdout = old_stdout centers_after = mb_k_means.cluster_centers_.copy() # Check that all the centers have moved assert_greater(((centers_before - centers_after)**2).sum(axis=1).min(), .2) # Give a perfect initialization, with a small reassignment_ratio, # no center should be reassigned for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=1, init=centers.copy(), random_state=42) mb_k_means.fit(this_X) centers_before = mb_k_means.cluster_centers_.copy() # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(n_clusters), random_reassign=True, random_state=42, reassignment_ratio=1e-15) def test_sparse_mb_k_means_callable_init(): def test_init(X, k, random_state): return centers # Small test to check that giving the wrong number of centers # raises a meaningful error assert_raises(ValueError, MiniBatchKMeans(init=test_init, random_state=42).fit, X_csr) # Now check that the fit actually works mb_k_means = MiniBatchKMeans(n_clusters=3, init=test_init, random_state=42).fit(X_csr) _check_fitted_model(mb_k_means) def test_mini_batch_k_means_random_init_partial_fit(): km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42) # use the partial_fit API for online learning for X_minibatch in np.array_split(X, 10): km.partial_fit(X_minibatch) # compute the labeling on the complete dataset labels = km.predict(X) assert_equal(v_measure_score(true_labels, labels), 1.0) def test_minibatch_default_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, batch_size=10, random_state=42).fit(X) assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size) _check_fitted_model(mb_k_means) def test_minibatch_tol(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=10, random_state=42, tol=.01).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_set_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, init_size=666, random_state=42).fit(X) assert_equal(mb_k_means.init_size, 666) assert_equal(mb_k_means.init_size_, n_samples) _check_fitted_model(mb_k_means) def test_k_means_invalid_init(): km = KMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_mini_match_k_means_invalid_init(): km = MiniBatchKMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_k_means_copyx(): """Check if copy_x=False returns nearly equal X after de-centering.""" my_X = X.copy() km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42) km.fit(my_X) _check_fitted_model(km) # check if my_X is centered assert_array_almost_equal(my_X, X) def test_k_means_non_collapsed(): """Check k_means with a bad initialization does not yield a singleton Starting with bad centers that are quickly ignored should not result in a repositioning of the centers to the center of mass that would lead to collapsed centers which in turns make the clustering dependent of the numerical unstabilities. """ my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]]) array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]]) km = KMeans(init=array_init, n_clusters=3, random_state=42, n_init=1) km.fit(my_X) # centers must not been collapsed assert_equal(len(np.unique(km.labels_)), 3) centers = km.cluster_centers_ assert_true(np.linalg.norm(centers[0] - centers[1]) >= 0.1) assert_true(np.linalg.norm(centers[0] - centers[2]) >= 0.1) assert_true(np.linalg.norm(centers[1] - centers[2]) >= 0.1) def test_predict(): km = KMeans(n_clusters=n_clusters, random_state=42) km.fit(X) # sanity check: predict centroid labels pred = km.predict(km.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = km.predict(X) assert_array_equal(pred, km.labels_) # re-predict labels for training set using fit_predict pred = km.fit_predict(X) assert_array_equal(pred, km.labels_) def test_score(): km1 = KMeans(n_clusters=n_clusters, max_iter=1, random_state=42) s1 = km1.fit(X).score(X) km2 = KMeans(n_clusters=n_clusters, max_iter=10, random_state=42) s2 = km2.fit(X).score(X) assert_greater(s2, s1) def test_predict_minibatch_dense_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, random_state=40).fit(X) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = mb_k_means.predict(X) assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_kmeanspp_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='k-means++', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_random_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_input_dtypes(): X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]] X_int = np.array(X_list, dtype=np.int32) X_int_csr = sp.csr_matrix(X_int) init_int = X_int[:2] fitted_models = [ KMeans(n_clusters=2).fit(X_list), KMeans(n_clusters=2).fit(X_int), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_list), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int), # mini batch kmeans is very unstable on such a small dataset hence # we use many inits MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_list), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int_csr), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int).fit(X_list), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int).fit(X_int), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int).fit(X_int_csr), ] expected_labels = [0, 1, 1, 0, 0, 1] scores = np.array([v_measure_score(expected_labels, km.labels_) for km in fitted_models]) assert_array_equal(scores, np.ones(scores.shape[0])) def test_transform(): km = KMeans(n_clusters=n_clusters) km.fit(X) X_new = km.transform(km.cluster_centers_) for c in range(n_clusters): assert_equal(X_new[c, c], 0) for c2 in range(n_clusters): if c != c2: assert_greater(X_new[c, c2], 0) def test_fit_transform(): X1 = KMeans(n_clusters=3, random_state=51).fit(X).transform(X) X2 = KMeans(n_clusters=3, random_state=51).fit_transform(X) assert_array_equal(X1, X2) def test_n_init(): """Check that increasing the number of init increases the quality""" n_runs = 5 n_init_range = [1, 5, 10] inertia = np.zeros((len(n_init_range), n_runs)) for i, n_init in enumerate(n_init_range): for j in range(n_runs): km = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, random_state=j).fit(X) inertia[i, j] = km.inertia_ inertia = inertia.mean(axis=1) failure_msg = ("Inertia %r should be decreasing" " when n_init is increasing.") % list(inertia) for i in range(len(n_init_range) - 1): assert_true(inertia[i] >= inertia[i + 1], failure_msg) def test_k_means_function(): # test calling the k_means function directly # catch output old_stdout = sys.stdout sys.stdout = StringIO() try: cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters, verbose=True) finally: sys.stdout = old_stdout centers = cluster_centers assert_equal(centers.shape, (n_clusters, n_features)) labels = labels assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(inertia, 0.0) # check warning when centers are passed with warnings.catch_warnings(record=True) as w: k_means(X, n_clusters=n_clusters, init=centers) assert_equal(len(w), 1) # to many clusters desired assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1)
bsd-3-clause
ghdk/networkx
examples/graph/knuth_miles.py
50
2994
#!/usr/bin/env python """ An example using networkx.Graph(). miles_graph() returns an undirected graph over the 128 US cities from the datafile miles_dat.txt. The cities each have location and population data. The edges are labeled with the distance betwen the two cities. This example is described in Section 1.1 in Knuth's book [1,2]. References. ----------- [1] Donald E. Knuth, "The Stanford GraphBase: A Platform for Combinatorial Computing", ACM Press, New York, 1993. [2] http://www-cs-faculty.stanford.edu/~knuth/sgb.html """ __author__ = """Aric Hagberg ([email protected])""" # Copyright (C) 2004-2015 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import networkx as nx def miles_graph(): """ Return the cites example graph in miles_dat.txt from the Stanford GraphBase. """ # open file miles_dat.txt.gz (or miles_dat.txt) import gzip fh = gzip.open('knuth_miles.txt.gz','r') G=nx.Graph() G.position={} G.population={} cities=[] for line in fh.readlines(): line = line.decode() if line.startswith("*"): # skip comments continue numfind=re.compile("^\d+") if numfind.match(line): # this line is distances dist=line.split() for d in dist: G.add_edge(city,cities[i],weight=int(d)) i=i+1 else: # this line is a city, position, population i=1 (city,coordpop)=line.split("[") cities.insert(0,city) (coord,pop)=coordpop.split("]") (y,x)=coord.split(",") G.add_node(city) # assign position - flip x axis for matplotlib, shift origin G.position[city]=(-int(x)+7500,int(y)-3000) G.population[city]=float(pop)/1000.0 return G if __name__ == '__main__': import networkx as nx import re import sys G=miles_graph() print("Loaded miles_dat.txt containing 128 cities.") print("digraph has %d nodes with %d edges"\ %(nx.number_of_nodes(G),nx.number_of_edges(G))) # make new graph of cites, edge if less then 300 miles between them H=nx.Graph() for v in G: H.add_node(v) for (u,v,d) in G.edges(data=True): if d['weight'] < 300: H.add_edge(u,v) # draw with matplotlib/pylab try: import matplotlib.pyplot as plt plt.figure(figsize=(8,8)) # with nodes colored by degree sized by population node_color=[float(H.degree(v)) for v in H] nx.draw(H,G.position, node_size=[G.population[v] for v in H], node_color=node_color, with_labels=False) # scale the axes equally plt.xlim(-5000,500) plt.ylim(-2000,3500) plt.savefig("knuth_miles.png") except: pass
bsd-3-clause
gkunter/coquery
coquery/installer/coq_install_coha.py
1
8120
# -*- coding: utf-8 -*- """ coq_install_coha.py is part of Coquery. Copyright (c) 2016, 2017 Gero Kunter ([email protected]) Coquery is released under the terms of the GNU General Public License (v3). For details, see the file LICENSE that you should have received along with Coquery. If not, see <http://www.gnu.org/licenses/>. """ from __future__ import unicode_literals import pandas as pd import logging import os from coquery.corpusbuilder import BaseCorpusBuilder from coquery.tables import Column, Identifier, Link from coquery.defines import SQL_MYSQL from coquery import options class BuilderClass(BaseCorpusBuilder): file_filter = "????.txt" file_table = "Files" file_id = "FileId" file_name = "Filename" file_path = "Path" file_columns = [ Identifier(file_id, "SMALLINT(3) UNSIGNED NOT NULL"), Column(file_name, "CHAR(8) NOT NULL"), Column(file_path, "TINYTEXT NOT NULL")] word_table = "Lexicon" word_id = "WordId" word_label = "Word" word_labelcs = "WordCS" word_lemma = "Lemma" word_pos = "POS" word_columns = [ Identifier(word_id, "MEDIUMINT(7) UNSIGNED NOT NULL"), Column(word_label, "VARCHAR(26) NOT NULL"), Column(word_labelcs, "VARCHAR(48) NOT NULL"), Column(word_lemma, "VARCHAR(24) NOT NULL"), Column(word_pos, "VARCHAR(24) NOT NULL")] source_table = "Sources" source_id = "SourceId" source_label = "Title" source_author = "Author" source_year = "Year" source_genre = "Genre" source_words = "Words" source_publisher = "Publisher" source_columns = [ Identifier(source_id, "MEDIUMINT(7) UNSIGNED NOT NULL"), Column(source_words, "MEDIUMINT(6) UNSIGNED NOT NULL"), Column(source_genre, "ENUM('FIC','MAG','NEWS','NF') NOT NULL"), Column(source_year, "SMALLINT(4) NOT NULL"), Column(source_label, "VARCHAR(150) NOT NULL"), Column(source_author, "VARCHAR(100) NOT NULL"), Column(source_publisher, "VARCHAR(114) NOT NULL")] corpus_table = "Corpus" corpus_id = "ID" corpus_word_id = "WordId" corpus_source_id = "SourceId" corpus_columns = [ Identifier(corpus_id, "INT(9) UNSIGNED NOT NULL"), Link(corpus_word_id, word_table), Link(corpus_source_id, source_table)] auto_create = ["file", "word", "source", "corpus"] expected_files = ["sources_coha.xlsx", "lexicon.txt", "1810.txt", "1820.txt", "1830.txt", "1840.txt", "1850.txt", "1860.txt", "1870.txt", "1880.txt", "1890.txt", "1900.txt", "1910.txt", "1920.txt", "1930.txt", "1940.txt", "1950.txt", "1960.txt", "1970.txt", "1980.txt", "1990.txt", "2000.txt"] def __init__(self, gui=False, *args): # all corpus builders have to call the inherited __init__ function: super(BuilderClass, self).__init__(gui, *args) self.add_time_feature(self.source_year) @staticmethod def get_name(): return "COHA" @staticmethod def get_db_name(): return "coq_coha" @staticmethod def get_language(): return "English" @staticmethod def get_language_code(): return "en-US" @staticmethod def get_title(): return "Corpus of Historical American English" @staticmethod def get_description(): return [ "The Corpus of Historical American English (COHA) is the largest " "structured corpus of historical English. The corpus was created " "by Mark Davies of Brigham Young University, with funding from " "the US National Endowment for the Humanities.", "COHA allows you search more than 400 million words of text of " "American English from 1810 to 2009."] @staticmethod def get_references(): return ["Davies, Mark. (2010-) <i>The Corpus of Historical American " "English: 400 million words, 1810-2009</i>. Available online " "at http://corpus.byu.edu/coha/."] @staticmethod def get_url(): return "http://corpus.byu.edu/coha/" @staticmethod def get_license(): return "COHA is available under the terms of a commercial license." @staticmethod def get_installation_note(): db_type = options.cfg.current_connection.db_type() if db_type == SQL_MYSQL: return """ <p><b>MySQL installation note</b><p> <p>The COHA installer uses a special feature of MySQL servers which allows to load large chunks of data into the database in a single step.</p> <p>This feature notably speeds up the installation of the COHA corpus. However, it may be disabled on your MySQL servers. In that case, the installation will fail with an error message similar to the following: </p> <p><code>The used command is not allowed with this MySQL version </code></p> <p>Should the installation fail, please ask your MySQL server administrator to enable loading of local in-files by setting the option <code>local-infile</code> in the MySQL configuration file. </p> """ else: return None def build_load_files(self): files = sorted(self.get_file_list(self.arguments.path, self.file_filter)) self._widget.progressSet.emit(len(files), "") for count, file_name in enumerate(files): if self.interrupted: return base_name = os.path.basename(file_name) s = "Reading '{}' (file %v out of %m)".format(base_name) self._widget.labelSet.emit(s) logging.info("Reading {}".format(file_name)) # set up default arguments for the load_file() method: kwargs = {"sep": "\t", "quoting": 3, "encoding": "latin-1"} # handle the different files: if base_name == "sources_coha.xlsx": # load the sources from an excel file names = [self.source_id, self.source_words, self.source_genre, self.source_year, self.source_label, self.source_author, self.source_publisher] df = pd.read_excel(file_name, skiprows=0, names=names, engine=None) for col in (self.source_label, self.source_author, self.source_publisher): df[col] = df[col].fillna("") self.DB.load_dataframe( df, self.source_table, index_label=None) elif base_name == "lexicon.txt": # load the lexicon file names = (self.word_id, self.word_labelcs, self.word_label, self.word_lemma, self.word_pos) self.DB.load_file( file_name=file_name, table=self.word_table, index=None, skiprows=2, header=None, names=names, error_bad_lines=False, na_filter=False, drop_duplicate=self.word_id, **kwargs) else: # load a corpus file names = (self.corpus_source_id, self.corpus_id, self.corpus_word_id) lines = self.DB.load_file( file_name=file_name, table=self.corpus_table, index=None, header=None, names=names, **kwargs) self._corpus_id += lines self.store_filename(base_name) self._widget.progressUpdate.emit(count + 1) if __name__ == "__main__": BuilderClass().build()
gpl-3.0
oduwa/Pic-Numero
PicNumero/tqdm/_tqdm_pandas.py
2
2118
# future division is important to divide integers and get as # a result precise floating numbers (instead of truncated int) from __future__ import absolute_import from __future__ import division __author__ = "github.com/casperdcl" __all__ = ['tqdm_pandas'] def tqdm_pandas(t): """ Registers the given `tqdm` instance with `pandas.core.groupby.DataFrameGroupBy.progress_apply`. It will even close() the `tqdm` instance upon completion. Examples -------- >>> import pandas as pd >>> import numpy as np >>> from tqdm import tqdm, tqdm_pandas >>> >>> df = pd.DataFrame(np.random.randint(0, 100, (100000, 6))) >>> tqdm_pandas(tqdm()) # can use tqdm_gui, optional kwargs, etc >>> # Now you can use `progress_apply` instead of `apply` >>> df.groupby(0).progress_apply(lambda x: x**2) References ---------- https://stackoverflow.com/questions/18603270/ progress-indicator-during-pandas-operations-python """ from pandas.core.frame import DataFrame from pandas.core.series import Series from pandas.core.groupby import DataFrameGroupBy, SeriesGroupBy def inner(df, func, *args, **kwargs): """ Parameters ---------- df : DataFrame[GroupBy] Data (may be grouped). func : function To be applied on the (grouped) data. *args and *kwargs are transmitted to DataFrameGroupBy.apply() """ t.total = getattr(df, 'ngroups', None) if t.total is None: # not grouped t.total = len(df) if isinstance(df, Series) \ else df.size // len(df) else: t.total += 1 # pandas calls update once too many def wrapper(*args, **kwargs): t.update() return func(*args, **kwargs) result = df.apply(wrapper, *args, **kwargs) t.close() return result # Enable custom tqdm progress in pandas! DataFrame.progress_apply = inner DataFrameGroupBy.progress_apply = inner Series.progress_apply = inner SeriesGroupBy.progress_apply = inner
mit
justincassidy/scikit-learn
sklearn/tree/tree.py
113
34767
""" This module gathers tree-based methods, including decision, regression and randomized trees. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # Licence: BSD 3 clause from __future__ import division import numbers from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from ..base import BaseEstimator, ClassifierMixin, RegressorMixin from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_array, check_random_state, compute_sample_weight from ..utils.validation import NotFittedError from ._tree import Criterion from ._tree import Splitter from ._tree import DepthFirstTreeBuilder, BestFirstTreeBuilder from ._tree import Tree from . import _tree __all__ = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] # ============================================================================= # Types and constants # ============================================================================= DTYPE = _tree.DTYPE DOUBLE = _tree.DOUBLE CRITERIA_CLF = {"gini": _tree.Gini, "entropy": _tree.Entropy} CRITERIA_REG = {"mse": _tree.MSE, "friedman_mse": _tree.FriedmanMSE} DENSE_SPLITTERS = {"best": _tree.BestSplitter, "presort-best": _tree.PresortBestSplitter, "random": _tree.RandomSplitter} SPARSE_SPLITTERS = {"best": _tree.BestSparseSplitter, "random": _tree.RandomSparseSplitter} # ============================================================================= # Base decision tree # ============================================================================= class BaseDecisionTree(six.with_metaclass(ABCMeta, BaseEstimator, _LearntSelectorMixin)): """Base class for decision trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, criterion, splitter, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, random_state, class_weight=None): self.criterion = criterion self.splitter = splitter self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.random_state = random_state self.max_leaf_nodes = max_leaf_nodes self.class_weight = class_weight self.n_features_ = None self.n_outputs_ = None self.classes_ = None self.n_classes_ = None self.tree_ = None self.max_features_ = None def fit(self, X, y, sample_weight=None, check_input=True): """Build a decision tree from the training set (X, y). Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). In the regression case, use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : object Returns self. """ random_state = check_random_state(self.random_state) if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csc") if issparse(X): X.sort_indices() if X.indices.dtype != np.intc or X.indptr.dtype != np.intc: raise ValueError("No support for np.int64 index based " "sparse matrices") # Determine output settings n_samples, self.n_features_ = X.shape is_classification = isinstance(self, ClassifierMixin) y = np.atleast_1d(y) expanded_class_weight = None if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] if is_classification: y = np.copy(y) self.classes_ = [] self.n_classes_ = [] if self.class_weight is not None: y_original = np.copy(y) y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: expanded_class_weight = compute_sample_weight( self.class_weight, y_original) else: self.classes_ = [None] * self.n_outputs_ self.n_classes_ = [1] * self.n_outputs_ self.n_classes_ = np.array(self.n_classes_, dtype=np.intp) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) # Check parameters max_depth = ((2 ** 31) - 1 if self.max_depth is None else self.max_depth) max_leaf_nodes = (-1 if self.max_leaf_nodes is None else self.max_leaf_nodes) if isinstance(self.max_features, six.string_types): if self.max_features == "auto": if is_classification: max_features = max(1, int(np.sqrt(self.n_features_))) else: max_features = self.n_features_ elif self.max_features == "sqrt": max_features = max(1, int(np.sqrt(self.n_features_))) elif self.max_features == "log2": max_features = max(1, int(np.log2(self.n_features_))) else: raise ValueError( 'Invalid value for max_features. Allowed string ' 'values are "auto", "sqrt" or "log2".') elif self.max_features is None: max_features = self.n_features_ elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features else: # float if self.max_features > 0.0: max_features = max(1, int(self.max_features * self.n_features_)) else: max_features = 0 self.max_features_ = max_features if len(y) != n_samples: raise ValueError("Number of labels=%d does not match " "number of samples=%d" % (len(y), n_samples)) if self.min_samples_split <= 0: raise ValueError("min_samples_split must be greater than zero.") if self.min_samples_leaf <= 0: raise ValueError("min_samples_leaf must be greater than zero.") if not 0 <= self.min_weight_fraction_leaf <= 0.5: raise ValueError("min_weight_fraction_leaf must in [0, 0.5]") if max_depth <= 0: raise ValueError("max_depth must be greater than zero. ") if not (0 < max_features <= self.n_features_): raise ValueError("max_features must be in (0, n_features]") if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)): raise ValueError("max_leaf_nodes must be integral number but was " "%r" % max_leaf_nodes) if -1 < max_leaf_nodes < 2: raise ValueError(("max_leaf_nodes {0} must be either smaller than " "0 or larger than 1").format(max_leaf_nodes)) if sample_weight is not None: if (getattr(sample_weight, "dtype", None) != DOUBLE or not sample_weight.flags.contiguous): sample_weight = np.ascontiguousarray( sample_weight, dtype=DOUBLE) if len(sample_weight.shape) > 1: raise ValueError("Sample weights array has more " "than one dimension: %d" % len(sample_weight.shape)) if len(sample_weight) != n_samples: raise ValueError("Number of weights=%d does not match " "number of samples=%d" % (len(sample_weight), n_samples)) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Set min_weight_leaf from min_weight_fraction_leaf if self.min_weight_fraction_leaf != 0. and sample_weight is not None: min_weight_leaf = (self.min_weight_fraction_leaf * np.sum(sample_weight)) else: min_weight_leaf = 0. # Set min_samples_split sensibly min_samples_split = max(self.min_samples_split, 2 * self.min_samples_leaf) # Build tree criterion = self.criterion if not isinstance(criterion, Criterion): if is_classification: criterion = CRITERIA_CLF[self.criterion](self.n_outputs_, self.n_classes_) else: criterion = CRITERIA_REG[self.criterion](self.n_outputs_) SPLITTERS = SPARSE_SPLITTERS if issparse(X) else DENSE_SPLITTERS splitter = self.splitter if not isinstance(self.splitter, Splitter): splitter = SPLITTERS[self.splitter](criterion, self.max_features_, self.min_samples_leaf, min_weight_leaf, random_state) self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_) # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise if max_leaf_nodes < 0: builder = DepthFirstTreeBuilder(splitter, min_samples_split, self.min_samples_leaf, min_weight_leaf, max_depth) else: builder = BestFirstTreeBuilder(splitter, min_samples_split, self.min_samples_leaf, min_weight_leaf, max_depth, max_leaf_nodes) builder.build(self.tree_, X, y, sample_weight) if self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self def _validate_X_predict(self, X, check_input): """Validate X whenever one tries to predict, apply, predict_proba""" if self.tree_ is None: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csr") if issparse(X) and (X.indices.dtype != np.intc or X.indptr.dtype != np.intc): raise ValueError("No support for np.int64 index based " "sparse matrices") n_features = X.shape[1] if self.n_features_ != n_features: raise ValueError("Number of features of the model must " " match the input. Model n_features is %s and " " input n_features is %s " % (self.n_features_, n_features)) return X def predict(self, X, check_input=True): """Predict class or regression value for X. For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes, or the predict values. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) n_samples = X.shape[0] # Classification if isinstance(self, ClassifierMixin): if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take( np.argmax(proba[:, k], axis=1), axis=0) return predictions # Regression else: if self.n_outputs_ == 1: return proba[:, 0] else: return proba[:, :, 0] def apply(self, X, check_input=True): """ Returns the index of the leaf that each sample is predicted as. Parameters ---------- X : array_like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- X_leaves : array_like, shape = [n_samples,] For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered within ``[0; self.tree_.node_count)``, possibly with gaps in the numbering. """ X = self._validate_X_predict(X, check_input) return self.tree_.apply(X) @property def feature_importances_(self): """Return the feature importances. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance. Returns ------- feature_importances_ : array, shape = [n_features] """ if self.tree_ is None: raise NotFittedError("Estimator not fitted, call `fit` before" " `feature_importances_`.") return self.tree_.compute_feature_importances() # ============================================================================= # Public estimators # ============================================================================= class DecisionTreeClassifier(BaseDecisionTree, ClassifierMixin): """A decision tree classifier. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. class_weight : dict, list of dicts, "balanced" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_classes_ : int or list The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeRegressor References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.cross_validation import cross_val_score >>> from sklearn.tree import DecisionTreeClassifier >>> clf = DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> cross_val_score(clf, iris.data, iris.target, cv=10) ... # doctest: +SKIP ... array([ 1. , 0.93..., 0.86..., 0.93..., 0.93..., 0.93..., 0.93..., 1. , 0.93..., 1. ]) """ def __init__(self, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, class_weight=None): super(DecisionTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state) def predict_proba(self, X, check_input=True): """Predict class probabilities of the input samples X. The predicted class probability is the fraction of samples of the same class in a leaf. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) if self.n_outputs_ == 1: proba = proba[:, :self.n_classes_] normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba else: all_proba = [] for k in range(self.n_outputs_): proba_k = proba[:, k, :self.n_classes_[k]] normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer all_proba.append(proba_k) return all_proba def predict_log_proba(self, X): """Predict class log-probabilities of the input samples X. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin): """A decision tree regressor. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeClassifier References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_boston >>> from sklearn.cross_validation import cross_val_score >>> from sklearn.tree import DecisionTreeRegressor >>> boston = load_boston() >>> regressor = DecisionTreeRegressor(random_state=0) >>> cross_val_score(regressor, boston.data, boston.target, cv=10) ... # doctest: +SKIP ... array([ 0.61..., 0.57..., -0.34..., 0.41..., 0.75..., 0.07..., 0.29..., 0.33..., -1.42..., -1.77...]) """ def __init__(self, criterion="mse", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None): super(DecisionTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state) class ExtraTreeClassifier(DecisionTreeClassifier): """An extremely randomized tree classifier. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeRegressor, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="gini", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None, class_weight=None): super(ExtraTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state) class ExtraTreeRegressor(DecisionTreeRegressor): """An extremely randomized tree regressor. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeClassifier, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="mse", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None): super(ExtraTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state)
bsd-3-clause
performancecopilot/pcp2pdf
src/pcp2pdf/stats.py
1
37113
# pcp2pdf.stats - pcp(1) report graphing utility # Copyright (C) 2014 Michele Baldessari # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. import bisect import datetime import hashlib import itertools import multiprocessing import os import re import resource import shutil import sys import tempfile import time from reportlab.platypus.paragraph import Paragraph from reportlab.platypus import Image from reportlab.platypus import PageBreak from reportlab.platypus import Spacer from reportlab.platypus import Table import reportlab.lib.colors from reportlab.lib.pagesizes import A4 from reportlab.lib.pagesizes import landscape from reportlab.lib.units import inch import matplotlib import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.colors as colors import matplotlib.cm as cm from matplotlib.patches import Rectangle import cpmapi as c_api from pcp2pdf.style import PcpDocTemplate from pcp2pdf.archive import PcpArchive from pcp2pdf.archive import PcpHelp # When showing a rectangle gap when the interval is > than the average frequency we # first multiply by FREQUNCY ERROR in order to avoid spurious rectangles FREQUENCY_ERROR = 1.1 # Threshold above which the legend is placed on the bottom # of the page LEGEND_THRESHOLD = 50 progress_counter = multiprocessing.Value('i', 0) progress_lock = multiprocessing.Lock() progress_total = 0 def ellipsize(text, limit=20): '''Truncates a string in a nice-formatted way.''' if len(text) < limit: return text limit = limit - 2 # '..' a = int(limit / 2) b = int(limit / 2 + (limit % 2)) ret = text[:a] + '..' + text[len(text) - b:] return ret def date_string(dt): '''Prints a datetime string in format '2014-10-21 23:24:10'.''' return dt.strftime('%Y-%m-%d %H:%M:%S') def parse_progress_callback(ts, start, finish): percentage = round(((ts - start) / (finish - start)) * 100.0, 1) sys.stdout.write('\rParsing archive: [%s %s%%]' % ('#' * (int(percentage/10)), percentage)) sys.stdout.flush() def graph_progress_callback(pcpobj): percentage = round((progress_counter.value / progress_total) * 100.0, 1) sys.stdout.write('\rCreating graphs: [%s %s%%]' % ('#' * (int(percentage/10)), percentage)) sys.stdout.flush() def split_chunks(list_to_split, chunksize): """Split the list l in chunks of at most n in size.""" ret = [list_to_split[i:i + chunksize] for i in range(0, len(list_to_split), chunksize)] return ret def graph_wrapper(zip_obj): """Wrapper due to pool.map() single argument limit. zip_obj = zip(itertools.repeat(self), self.all_graphs) where self is a PcpStats object. Each CPU will get a slice of the self.all_graphs list """ (pcpstats_obj, data) = list(zip_obj) (label, fname, metrics, text, indom_regexes, histogram) = data if histogram: ret = pcpstats_obj.create_histogram(fname, label, metrics, indom_regexes) else: ret = pcpstats_obj.create_graph(fname, label, metrics, indom_regexes) with progress_lock: progress_counter.value += 1 graph_progress_callback(pcpstats_obj) return ((label, fname, metrics, text, indom_regexes, histogram), ret) def print_mem_usage(data): usage = resource.getrusage(resource.RUSAGE_SELF) print("Graphing: {0} usertime={1} systime={2} mem={3} MB" .format(data, usage[0], usage[1], (usage[2] / 1024.0))) def match_res(patterns, string, flags=0): if type(string) != str: string = str(string) for pattern in patterns: ret = re.match(pattern, string, flags) if ret is not None: return ret return None class PcpStats(object): story = [] def __init__(self, args, opts): self.args = args self.opts = opts self.configparser = opts.configparser self.doc = PcpDocTemplate(opts.output_file, self.configparser, pagesize=landscape(A4)) self.pcphelp = PcpHelp() self.pcparchive = PcpArchive(args, opts) if self.opts.dpi is not None and self.opts.dpi > 0: self.DPI = self.opts.dpi else: self.DPI = self.configparser.getint('main', 'dpi') self.logo = self.configparser.get('main', 'logo') # Allow to be run from the current dir for unit-testing purposes if not os.path.isfile(self.logo): self.logo = os.path.join(os.getcwd(), "src", "pcplogo.png") # Using /var/tmp as /tmp is ram-mounted these days self.tempdir = tempfile.mkdtemp(prefix='pcpstats', dir='/var/tmp') # This will contain all the metrics found in the archive file self.all_data = {} # Verify which set of metrics are to be used self.metrics = [] if not opts.include and not opts.exclude: self.metrics = sorted(self.pcparchive.get_metrics()) elif opts.include and not opts.exclude: # Only specified filters metrics = sorted(self.pcparchive.get_metrics()) for i in opts.include: try: matched = filter(lambda x: re.match(i, x), metrics) except Exception: print("Failed to parse: {0}".format(i)) sys.exit(-1) self.metrics.extend(matched) elif not opts.include and opts.exclude: # Exclude specified filter metrics = sorted(self.pcparchive.get_metrics()) matched = [] for i in opts.exclude: try: matched.extend(filter(lambda x: re.match(i, x), metrics)) except Exception: print("Failed to parse: {0}".format(i)) sys.exit(-1) self.metrics = sorted(list(set(metrics) - set(matched))) else: all_metrics = sorted(self.pcparchive.get_metrics()) matched = [] for i in opts.exclude: try: matched.extend(filter(lambda x: re.match(i, x), all_metrics)) except Exception: print("Failed to parse: {0}".format(i)) sys.exit(-1) delta_metrics = sorted(list(set(all_metrics) - set(matched))) metrics = sorted(self.pcparchive.get_metrics()) for i in opts.include: try: matched = filter(lambda x: re.match(i, x), metrics) except Exception: print("Failed to parse: {0}".format(i)) sys.exit(-1) delta_metrics.extend(matched) self.metrics = delta_metrics self.custom_graphs = [] # Verify if there are any custom graphs. They can be defined like # the following : # "foo:network.interface.out.bytes:eth0,network.tcp..*:.*" for graph in opts.custom_graphs: try: x = graph.find(':') label = graph[0:x] line = graph[x + 1:] elements = line.split(',') except Exception: print("Failed to parse label: {0}".format(graph)) sys.exit(-1) if label in self.metrics: print("Cannot use label {0}. It is an existing metric".format(label)) sys.exit(-1) all_metrics = sorted(self.pcparchive.get_metrics()) indom_regexes = {} metrics = [] for element in elements: try: (metric_str, indom_str) = element.split(':') except Exception: print("Failed to parse: {0}".format(element)) sys.exit(-1) try: tmp_metrics = filter(lambda x: re.match(metric_str, x), all_metrics) metrics.extend(tmp_metrics) except Exception: print("Failed to parse: {0}".format(metric_str)) sys.exit(-1) for metric in tmp_metrics: if metric in indom_regexes: indom_regexes[metric].append(indom_str) else: indom_regexes[metric] = [indom_str] # Try to compile the indom_res to make sure they are valid errors = [] for pattern in indom_regexes: try: re.compile(pattern) except Exception: errors.append(pattern) pass if errors: print("Invalid regular expressions: {0}".format( " ".join(errors))) sys.exit(-1) # We expanded all the metrics here. We cannot do the same for # indoms as those are not yet available. We just pass the regexes # and do it at custom graph creation time self.custom_graphs.append(("Custom.%s" % label, metrics, indom_regexes)) try: # Not all matplotlib versions have this key matplotlib.rcParams['figure.max_open_warning'] = 100 except KeyError: pass def _graph_filename(self, metrics, extension='.png', histogram=False): '''Creates a unique constant file name given a list of metrics.''' # We're on python 2.6o .jpg even though graph quality is affected, # because the underlying imaging lib bails out on a few graphs from # time to time pyver = sys.version_info if pyver[0] == 2 and pyver[1] <= 6: extension = '.jpg' if isinstance(metrics, list): temp = '' for i in metrics: temp += i else: temp = "_".join(metrics) if histogram: temp = 'h' + temp fname = os.path.join(self.tempdir, temp + extension) return fname def _do_heading(self, text, sty): if isinstance(text, list): text = "_".join(text) # create bookmarkname bn = hashlib.sha1(text.encode('utf-8') + sty.name.encode('utf-8')).hexdigest() # modify paragraph text to include an anchor point with name bn # store the bookmark name on the flowable so afterFlowable can see this h = Paragraph(text + '<a name="%s"/>' % bn, sty) h._bookmarkName = bn self.story.append(h) def rate_convert(self, timestamps, values): '''Do a rate conversion Given a list of timestamps and a list of values it will return the following: [[t1,..,tN], [(v1-v0)/(t1-t0),(v2-v1)/(t2-t1),..,(vN-vN-1)/(tN -tN-1)] ''' if len(timestamps) != len(values): raise Exception('Len of timestamps must be equal to len of values') new_timestamps = [] new_values = [] for t in range(1, len(timestamps)): delta = timestamps[t] - timestamps[t - 1] new_timestamps.append(delta) for v in range(1, len(values)): seconds = new_timestamps[v - 1].total_seconds() try: delta = (values[v] - values[v - 1]) / seconds except ZeroDivisionError: # If we have a zero interval but the values difference is zero # return 0 anyway if values[v] - values[v - 1] == 0: delta = 0 pass else: # if the delta between the values is not zero try to use # the previous calculated delta if v > 1: delta = new_values[v - 2] else: # In all other cases just set the delta to 0 delta = 0 pass new_values.append(delta) # Add previous datetime to the time delta for t in range(len(new_timestamps)): ts = new_timestamps[t] new_timestamps[t] = ts + timestamps[t] return (new_timestamps, new_values) def find_max(self, timestamp, metrics): '''Find maximum value given timestamp and metrics Given data as returned by pcparchive.get_values a timestamp and a set of metrics, find the maximum y value. If the given timestamp does not exist in the data we do a linear interpolation. ''' max_value = -sys.maxint for metric in metrics: for indom in self.all_data[metric]: timestamps = self.all_data[metric][indom][0] y_values = self.all_data[metric][indom][1] try: x = timestamps.index(timestamp) y = y_values[timestamp] except ValueError: time_key_right = bisect.bisect_right(timestamps, timestamp) # If the custom label's timestamp falls outside the # data we have we skip this if time_key_right >= len(timestamps): continue time_key_left = time_key_right - 1 x1 = mdates.date2num(timestamps[time_key_left]) x2 = mdates.date2num(timestamps[time_key_right]) y1 = y_values[time_key_left] y2 = y_values[time_key_right] if x1 == x2 or y1 == y2: # No need to do any interpolation y = y1 else: m = (y2 - y1) / (x2 - x1) x = mdates.date2num(timestamp) - x1 y = m * x + y1 if y > max_value: max_value = y return max_value def get_frequency(self, data): # First we calculate the observed frequency (in seconds) of the # observed measurements total = 0.0 counter = 0 for metric in data: for indom in data[metric]: timestamps = data[metric][indom][0] last = None for timestamp in timestamps: if not last: last = timestamp continue delta = (timestamp - last).total_seconds() total += delta counter += 1 last = timestamp frequency = total / counter return frequency def find_data_gaps(self, data): '''Find data gaps given a dataset Returns a dictionary with tuples containing the start and end of the large intervals as tuples. The value of the dictionary is a list of tuples where this interval has been observed (metric, indom). Returns: {(gap1start, gap1end): [(metric, indom), (m2, indom2), ...], {gap2start, gap2end): [(metric, indom), (m2, indom2), ...]} ''' frequency = self.get_frequency(data) ret = {} for metric in data: for indom in data[metric]: timestamps = data[metric][indom][0] last = None for timestamp in timestamps: if not last: last = timestamp continue delta = (timestamp - last).total_seconds() if delta > frequency * FREQUENCY_ERROR: key = (last, timestamp) if key not in ret: ret[key] = [(metric, indom)] else: ret[key].append((metric, indom)) last = timestamp return ret def parse(self): '''Parse the archive and store all the metrics in self.all_data It returns a dictionary containing the metrics which have been rate converted ''' start_time = time.time() (all_data, self.skipped_graphs) = self.pcparchive.get_values(progress=parse_progress_callback) tdelta = time.time() - start_time sys.stdout.write('\rParsing archive: [########## 100.0%%] - %.2fs' % tdelta) sys.stdout.flush() print() rate_converted = {} # Prune all the sets of values where all values are zero as it makes # no sense to show those for metric in all_data: rate_converted[metric] = False tmp = {} # FIXME: Once python 2.6 dep is dropped we can use the following # tmp = {key: value for key, value in all_data[metric].items() # if not all([ v == 0 for v in value[1]])} data = all_data[metric].items() for key, value in data: if not all([v == 0 for v in value[1]]): tmp[key] = value if tmp: self.all_data[metric] = tmp if self.opts.raw: # User explicitely asked to not rate convert any metrics return rate_converted # Rate convert all the PM_SEM_COUNTER metrics for metric in self.all_data: (mtype, msem, munits, dtype, desc_units, desc_type) = self.pcparchive.get_metric_info(metric) if msem != c_api.PM_SEM_COUNTER: continue for indom in self.all_data[metric]: data = self.all_data[metric][indom] (ts, val) = self.rate_convert(data[0], data[1]) self.all_data[metric][indom] = [ts, val] if not rate_converted[metric]: rate_converted[metric] = {} rate_converted[metric][indom] = True return rate_converted def get_category(self, label, metrics): '''Return the category given one or a list of metric strings.''' if isinstance(metrics, str): if label.startswith('Custom'): return 'Custom' return metrics.split('.')[0] elif isinstance(metrics, list): if label.startswith('Custom'): return 'Custom' category = None for metric in metrics: prefix = metric.split('.')[0] if category is None and prefix != category: category = prefix elif category is not None and prefix != category: raise Exception('Multiple categories in %s' % metrics) return category.title() else: raise Exception('Cannot find category for %s' % metrics) def is_string_metric(self, metric): '''Given a metric returns True if values' types are strings.''' data = self.all_data[metric] isstring = False for indom in data: values = data[indom][1] if all([isinstance(v, bytes) for v in values]): isstring = True break return isstring def get_colormap(self, metrics, indom_regexes): '''Return the colormap used to plot the different graphs''' # First we calculate the maximum number of colors needed max_values_len = 0 for metric in metrics: values = self.all_data[metric] count = 0 for indom in values: if indom_regexes is not None and metric in indom_regexes: if match_res(indom_regexes[metric], indom) is None: continue count += 1 if count > max_values_len: max_values_len = count # We need at most number of max(indoms) * metrics colors vmax_color = max_values_len * len(metrics) color_norm = colors.Normalize(vmin=0, vmax=vmax_color) scalar_map = cm.ScalarMappable(norm=color_norm, cmap=plt.get_cmap('Set1')) return scalar_map def create_histogram(self, fname, title, metrics, indom_regexes): '''Creates a histogram image Take a filename, a title, a list of metrics and an indom_regex to create an image of the graph ''' # reportlab has a 72 dpi by default fig = plt.figure(figsize=(self.doc.graph_size[0], self.doc.graph_size[1])) axes = fig.add_subplot(111) # Set Axis metadata axes.set_xlabel('Values') axes.set_title('{0}'.format(title, fontsize=self.doc.fonts['axes'].fontSize)) axes.set_ylabel('%s frequency' % title) y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes.yaxis.set_major_formatter(y_formatter) axes.yaxis.get_major_formatter().set_scientific(False) axes.grid(True) found = False indoms = 0 counter = 0 scalar_map = self.get_colormap(metrics, indom_regexes) # Then we walk the metrics and plot for metric in metrics: values = self.all_data[metric] for indom in sorted(values): # If the indom_regexes is not None we use the indom only if the re string # matches if indom_regexes is not None and metric in indom_regexes: if match_res(indom_regexes[metric], indom) is None: continue (timestamps, dataset) = values[indom] # Currently if there is only one (timestamp,value) like with filesys.blocksize # we just do not graph the thing if len(timestamps) <= 1: continue if len(metrics) > 1: if indom == 0: lbl = metric else: lbl = "%s %s" % (metric, indom) else: if indom == 0: lbl = title else: lbl = indom lbl = ellipsize(lbl, 30) found = True try: axes.hist(dataset, cumulative=False, label=lbl, color=scalar_map.to_rgba(counter)) except Exception: import traceback print("Metric: {0}".format(metric)) print(traceback.format_exc()) sys.exit(-1) indoms += 1 counter += 1 if not found: return False # Add legend only when there is more than one instance lgd = False if indoms > 1: fontproperties = matplotlib.font_manager.FontProperties(size='xx-small') if indoms > LEGEND_THRESHOLD: # Draw legend on the bottom only when instances are more than # LEGEND_THRESHOLD lgd = axes.legend(loc=9, ncol=int(indoms ** 0.6), bbox_to_anchor=(0.5, -0.29), shadow=True, prop=fontproperties) else: # Draw legend on the right when instances are more than # LEGEND_THRESHOLD lgd = axes.legend(loc=1, ncol=int(indoms ** 0.5), shadow=True, prop=fontproperties) if lgd: plt.savefig(fname, bbox_extra_artists=(lgd,), bbox_inches='tight', dpi=self.DPI) else: plt.savefig(fname, bbox_inches='tight', dpi=self.DPI) plt.cla() plt.clf() plt.close('all') return True def create_graph(self, fname, title, metrics, indom_regexes): '''Creates a graph image Take a filename, a title, a list of metrics and an indom_regex to create an image of the graph ''' # reportlab has a 72 dpi by default fig = plt.figure(figsize=(self.doc.graph_size[0], self.doc.graph_size[1])) axes = fig.add_subplot(111) # Set X Axis metadata axes.set_xlabel('Time') axes.set_title('{0}'.format(title, fontsize=self.doc.fonts['axes'].fontSize)) axes.xaxis.set_major_formatter(mdates.DateFormatter('%m-%d %H:%M')) axes.xaxis.set_minor_locator(mdates.MinuteLocator(interval=20)) fig.autofmt_xdate() # Set Y Axis metadata axes.set_ylabel(title) y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes.yaxis.set_major_formatter(y_formatter) axes.yaxis.get_major_formatter().set_scientific(False) axes.grid(True) found = False indoms = 0 counter = 0 scalar_map = self.get_colormap(metrics, indom_regexes) # Then we walk the metrics and plot for metric in metrics: values = self.all_data[metric] for indom in sorted(values): # If the indom_regexes is not None we use the indom only if the re string # matches if indom_regexes is not None and metric in indom_regexes: if match_res(indom_regexes[metric], indom) is None: continue (timestamps, dataset) = values[indom] # Currently if there is only one (timestamp,value) like with filesys.blocksize # we just do not graph the thing if len(timestamps) <= 1: continue if len(metrics) > 1: if indom == 0: lbl = metric else: lbl = "%s %s" % (metric, indom) else: if indom == 0: lbl = title else: lbl = indom lbl = ellipsize(lbl, 30) found = True try: axes.plot(timestamps, dataset, 'o:', label=lbl, color=scalar_map.to_rgba(counter)) except Exception: import traceback print("Metric: {0}".format(metric)) print(traceback.format_exc()) sys.exit(-1) # Have the Y axis always start from 0 axes.set_ylim(ymin=0) indoms += 1 counter += 1 if not found: return False # Show any data collection gaps in the graph gaps = self.find_data_gaps(self.all_data).keys() if gaps: for i in gaps: (g1, g2) = i x1 = mdates.date2num(g1) x2 = mdates.date2num(g2) (ymin, ymax) = plt.ylim() axes.add_patch(Rectangle((x1, ymin), x2 - x1, ymax - ymin, facecolor="lightgrey")) # Draw self.labels if non empty if self.opts.labels: for label in self.opts.labels: max_value = self.find_max(self.opts.labels[label], metrics) # should we not find a max_value at all (due to empty timestamps) if max_value == -sys.maxint: max_value = 0 axes.annotate(label, xy=(mdates.date2num(self.opts.labels[label]), max_value), xycoords='data', xytext=(30, 30), textcoords='offset points', arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) # Add legend only when there is more than one instance lgd = False if indoms > 1: fontproperties = matplotlib.font_manager.FontProperties(size='xx-small') if indoms > LEGEND_THRESHOLD: # Draw legend on the bottom only when instances are more than # LEGEND_THRESHOLD lgd = axes.legend(loc=9, ncol=int(indoms ** 0.6), bbox_to_anchor=(0.5, -0.29), shadow=True, prop=fontproperties) else: # Draw legend on the right when instances are more than # LEGEND_THRESHOLD lgd = axes.legend(loc=1, ncol=int(indoms ** 0.5), shadow=True, prop=fontproperties) if lgd: plt.savefig(fname, bbox_extra_artists=(lgd,), bbox_inches='tight', dpi=self.DPI) else: plt.savefig(fname, bbox_inches='tight', dpi=self.DPI) plt.cla() plt.clf() plt.close('all') return True def get_all_graphs(self): '''Returns all the graphs that need to be plotted Prepare the full list of graphs that will be drawn Start with any custom graphs if they exist and proceed with the remaining ones. Split the metrics that have string values into a separate array all_graphs = [(label, fname, (m0, m1, .., mN), text), ...]. ''' all_graphs = [] string_metrics = [] indom_res = [] for graph in self.custom_graphs: (label, metrics, indom_res) = graph fname = self._graph_filename(label) text = None custom_metrics = [] for metric in metrics: # verify custom graph's metrics existance if metric in self.all_data: custom_metrics.append(metric) if not custom_metrics: break if isinstance(metrics, str) and metrics in self.pcphelp.help_text: text = '<strong>%s</strong>: %s' % (metrics, self.pcphelp.help_text[metrics]) all_graphs.append((label, fname, custom_metrics, text, indom_res, False)) if self.opts.histogram: fname = self._graph_filename(label, histogram=True) all_graphs.append(('%s histogram' % label, fname, custom_metrics, text, indom_res, True)) for metric in sorted(self.all_data): # Make sure that we plot only the metrics that the # user has specified if metric not in self.metrics: continue if self.is_string_metric(metric): string_metrics.append(metric) continue fname = self._graph_filename([metric]) units_str = self.pcparchive.get_metric_info(metric)[4] type_str = self.pcparchive.get_metric_info(metric)[5] if isinstance(metric, str) and metric in self.pcphelp.help_text: help_text = self.pcphelp.help_text[metric] else: help_text = '...' text = '<strong>%s</strong>: %s (%s - %s)' % (metric, help_text, units_str, type_str) if self.rate_converted[metric]: text = text + ' - <em>%s</em>' % 'rate converted' all_graphs.append((metric, fname, [metric], text, None, False)) if self.opts.histogram: fname = self._graph_filename([metric], histogram=True) all_graphs.append(('%s histogram' % metric, fname, [metric], text, None, True)) return (all_graphs, string_metrics) def output(self): # FIXME: Split this function in smaller pieces. This is unreadable self.rate_converted = self.parse() (self.all_graphs, string_metrics) = self.get_all_graphs() if not self.all_graphs: print('No usable non-zero graphs found.') sys.exit(0) width = self.doc.pagesize[0] hostname = self.pcparchive.get_hostname() self._do_heading('Report', self.doc.fonts["heading1_invisible"]) self.story.append(Paragraph('%s' % hostname, self.doc.fonts["front_title"])) self.story.append(Spacer(1, 1.5 * inch)) self.story.append(Image(self.logo)) self.story.append(Spacer(1, 0.5 * inch)) data = [['PCP Archive', '%s' % (" ".join(self.args))], ['Start', '%s' % date_string(datetime.datetime.fromtimestamp(self.pcparchive.start))], ['End', '%s' % date_string(datetime.datetime.fromtimestamp(self.pcparchive.end))], ['Created', '%s' % date_string(datetime.datetime.now())], ] rows = 4 if self.pcparchive.interval: data.append(['Interval', '%s seconds' % self.pcparchive.interval]) rows = 5 style = [('GRID', (0, 0), (-1, -1), 1, reportlab.lib.colors.black), ('ALIGN', (0, 0), (-1, -1), "LEFT"), ('FONTSIZE', (0, 0), (-1, -1), 14), ('FONTNAME', (0, 0), (-1, -1), "Helvetica"), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ('INNERGRID', (0, 0), (-1, -1), 0.44, reportlab.lib.colors.black), ] table = Table(data, 2 * [3.5 * inch], rows * [0.4 * inch]) table.setStyle(style) self.story.append(table) self.story.append(PageBreak()) start_time = time.time() done_metrics = [] global progress_total progress_total = len(self.all_graphs) # Set this to False to disable multiprocessing if True: pool = multiprocessing.Pool(None) l = zip(itertools.repeat(self), self.all_graphs) metrics_rets = pool.map(graph_wrapper, l) (metrics, rets) = zip(*metrics_rets) done_metrics = [metric for (metric, ret) in metrics_rets if ret] else: # This is just to debug in non multi-threaded mode for graph in self.all_graphs: (label, fname, metrics, text, indom_regexes, histogram) = graph if histogram: if self.create_histogram(fname, label, metrics, indom_regexes): done_metrics.append(graph) progress_counter.value += 1 else: if self.create_graph(fname, label, metrics, indom_regexes): done_metrics.append(graph) progress_counter.value += 1 graph_progress_callback(self) tdelta = time.time() - start_time sys.stdout.write('\rCreating graphs: [########## 100.0%%] - %.2fs' % tdelta) sys.stdout.flush() print() # Build the string metrics table. It only prints # a value if it changed over time data = [('Metric', 'Timestamp', 'Value')] for metric in string_metrics: last_value = None for indom in self.all_data[metric]: timestamps = self.all_data[metric][indom][0] values = self.all_data[metric][indom][1] for (ts, v) in zip(timestamps, values): if last_value != v: text = ellipsize(v, 100) ts = date_string(ts) data.append((metric, '%s' % ts, text)) last_value = v if len(data) > 1: self._do_heading('String Metrics', self.doc.fonts["heading1"]) self.story.append(Spacer(1, 0.2 * inch)) table = Table(data, colWidths=(0.17 * width, 0.12 * width, 0.56 * width)) table.setStyle(self.doc.tablestyle) self.story.append(table) self.story.append(PageBreak()) # At this point all images are created let's build the pdf print("Building pdf: ", end='') sys.stdout.flush() start_time = time.time() # Add the graphs to the pdf last_category = '' for graph in done_metrics: (label, fname, metrics, text, indom_res, histogram) = graph category = self.get_category(label, metrics) if last_category != category: self._do_heading(category, self.doc.fonts["heading1"]) last_category = category self._do_heading(label, self.doc.fonts["heading2_invisible"]) self.story.append(Image(fname, width=self.doc.graph_size[0] * inch, height=self.doc.graph_size[1] * inch)) if text: self.story.append(Paragraph(text, self.doc.fonts["normal"])) self.story.append(PageBreak()) self.doc.multiBuild(self.story) tdelta = time.time() - start_time print("{0} - {1:.2f}s".format(self.opts.output_file, tdelta)) shutil.rmtree(self.tempdir)
gpl-2.0
hsuantien/scikit-learn
examples/linear_model/plot_sparse_recovery.py
243
7461
""" ============================================================ Sparse recovery: feature selection for sparse linear models ============================================================ Given a small number of observations, we want to recover which features of X are relevant to explain y. For this :ref:`sparse linear models <l1_feature_selection>` can outperform standard statistical tests if the true model is sparse, i.e. if a small fraction of the features are relevant. As detailed in :ref:`the compressive sensing notes <compressive_sensing>`, the ability of L1-based approach to identify the relevant variables depends on the sparsity of the ground truth, the number of samples, the number of features, the conditioning of the design matrix on the signal subspace, the amount of noise, and the absolute value of the smallest non-zero coefficient [Wainwright2006] (http://statistics.berkeley.edu/tech-reports/709.pdf). Here we keep all parameters constant and vary the conditioning of the design matrix. For a well-conditioned design matrix (small mutual incoherence) we are exactly in compressive sensing conditions (i.i.d Gaussian sensing matrix), and L1-recovery with the Lasso performs very well. For an ill-conditioned matrix (high mutual incoherence), regressors are very correlated, and the Lasso randomly selects one. However, randomized-Lasso can recover the ground truth well. In each situation, we first vary the alpha parameter setting the sparsity of the estimated model and look at the stability scores of the randomized Lasso. This analysis, knowing the ground truth, shows an optimal regime in which relevant features stand out from the irrelevant ones. If alpha is chosen too small, non-relevant variables enter the model. On the opposite, if alpha is selected too large, the Lasso is equivalent to stepwise regression, and thus brings no advantage over a univariate F-test. In a second time, we set alpha and compare the performance of different feature selection methods, using the area under curve (AUC) of the precision-recall. """ print(__doc__) # Author: Alexandre Gramfort and Gael Varoquaux # License: BSD 3 clause import warnings import matplotlib.pyplot as plt import numpy as np from scipy import linalg from sklearn.linear_model import (RandomizedLasso, lasso_stability_path, LassoLarsCV) from sklearn.feature_selection import f_regression from sklearn.preprocessing import StandardScaler from sklearn.metrics import auc, precision_recall_curve from sklearn.ensemble import ExtraTreesRegressor from sklearn.utils.extmath import pinvh from sklearn.utils import ConvergenceWarning def mutual_incoherence(X_relevant, X_irelevant): """Mutual incoherence, as defined by formula (26a) of [Wainwright2006]. """ projector = np.dot(np.dot(X_irelevant.T, X_relevant), pinvh(np.dot(X_relevant.T, X_relevant))) return np.max(np.abs(projector).sum(axis=1)) for conditioning in (1, 1e-4): ########################################################################### # Simulate regression data with a correlated design n_features = 501 n_relevant_features = 3 noise_level = .2 coef_min = .2 # The Donoho-Tanner phase transition is around n_samples=25: below we # will completely fail to recover in the well-conditioned case n_samples = 25 block_size = n_relevant_features rng = np.random.RandomState(42) # The coefficients of our model coef = np.zeros(n_features) coef[:n_relevant_features] = coef_min + rng.rand(n_relevant_features) # The correlation of our design: variables correlated by blocs of 3 corr = np.zeros((n_features, n_features)) for i in range(0, n_features, block_size): corr[i:i + block_size, i:i + block_size] = 1 - conditioning corr.flat[::n_features + 1] = 1 corr = linalg.cholesky(corr) # Our design X = rng.normal(size=(n_samples, n_features)) X = np.dot(X, corr) # Keep [Wainwright2006] (26c) constant X[:n_relevant_features] /= np.abs( linalg.svdvals(X[:n_relevant_features])).max() X = StandardScaler().fit_transform(X.copy()) # The output variable y = np.dot(X, coef) y /= np.std(y) # We scale the added noise as a function of the average correlation # between the design and the output variable y += noise_level * rng.normal(size=n_samples) mi = mutual_incoherence(X[:, :n_relevant_features], X[:, n_relevant_features:]) ########################################################################### # Plot stability selection path, using a high eps for early stopping # of the path, to save computation time alpha_grid, scores_path = lasso_stability_path(X, y, random_state=42, eps=0.05) plt.figure() # We plot the path as a function of alpha/alpha_max to the power 1/3: the # power 1/3 scales the path less brutally than the log, and enables to # see the progression along the path hg = plt.plot(alpha_grid[1:] ** .333, scores_path[coef != 0].T[1:], 'r') hb = plt.plot(alpha_grid[1:] ** .333, scores_path[coef == 0].T[1:], 'k') ymin, ymax = plt.ylim() plt.xlabel(r'$(\alpha / \alpha_{max})^{1/3}$') plt.ylabel('Stability score: proportion of times selected') plt.title('Stability Scores Path - Mutual incoherence: %.1f' % mi) plt.axis('tight') plt.legend((hg[0], hb[0]), ('relevant features', 'irrelevant features'), loc='best') ########################################################################### # Plot the estimated stability scores for a given alpha # Use 6-fold cross-validation rather than the default 3-fold: it leads to # a better choice of alpha: # Stop the user warnings outputs- they are not necessary for the example # as it is specifically set up to be challenging. with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) warnings.simplefilter('ignore', ConvergenceWarning) lars_cv = LassoLarsCV(cv=6).fit(X, y) # Run the RandomizedLasso: we use a paths going down to .1*alpha_max # to avoid exploring the regime in which very noisy variables enter # the model alphas = np.linspace(lars_cv.alphas_[0], .1 * lars_cv.alphas_[0], 6) clf = RandomizedLasso(alpha=alphas, random_state=42).fit(X, y) trees = ExtraTreesRegressor(100).fit(X, y) # Compare with F-score F, _ = f_regression(X, y) plt.figure() for name, score in [('F-test', F), ('Stability selection', clf.scores_), ('Lasso coefs', np.abs(lars_cv.coef_)), ('Trees', trees.feature_importances_), ]: precision, recall, thresholds = precision_recall_curve(coef != 0, score) plt.semilogy(np.maximum(score / np.max(score), 1e-4), label="%s. AUC: %.3f" % (name, auc(recall, precision))) plt.plot(np.where(coef != 0)[0], [2e-4] * n_relevant_features, 'mo', label="Ground truth") plt.xlabel("Features") plt.ylabel("Score") # Plot only the 100 first coefficients plt.xlim(0, 100) plt.legend(loc='best') plt.title('Feature selection scores - Mutual incoherence: %.1f' % mi) plt.show()
bsd-3-clause
wbap/Hackathon2015
Nakamura/Multimodal Deep Learning/imgread.py
2
1134
#coding:utf-8 from PIL import Image import numpy as np import csv import pandas as pd #from pylab import * all_person = [] for p in range(1,13,1): #person all_digit = [] for d in range(0,10,1): #digit all_frames = [] for f in range(0,15,1): #frame filename = str(d) + "-" + str(f) + ".gif" path = "/Users/kazeto/Desktop/data/Video/" dilectory = path + str(p) + "/all/" + filename img = np.array( Image.open(dilectory) ) #arrary declear all_img = [] img_array = [] for k in range(len(img)): img_array = np.r_[img_array , img[k]] all_frames.append(img_array) img_array = [] all_digit.append(all_frames) all_frames = [] all_person.append(all_digit) all_digit = [] print '1:{} 2:{} 3:{} 4:{}'.format(len(all_person),len(all_person[0]),len(all_person[0][0]),len(all_person[0][0][0])) # print all_img with open('/Users/kazeto/Desktop/data/img.csv','wb') as f: writer = csv.writer(f) writer.writerows(all_person)
apache-2.0
soylentdeen/grillduino
guiHandler.py
1
6204
import numpy import Tkinter import time import threading import serial import random import Queue import matplotlib.pyplot as pyplot import matplotlib from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg import tweetHandler class GuiPart: def __init__(self, master, queue, endCommand): self.queue = queue out = open('calibration.dat', 'w') out.close() self.startTime = time.time() # Set up the GUI DoneButton = Tkinter.Button(master, text='Done', command=endCommand) DoneButton.pack() RefreshButton = Tkinter.Button(master, text='Refresh', command=self.refresh) RefreshButton.pack() self.TempEntry = Tkinter.Entry(master) self.TempEntry.bind('<Return>', self.addTemp) self.TempEntry.pack() self.R1 = 1000.0 self.R2 = 1000.0 self.V1 = numpy.array([]) self.V2 = numpy.array([]) self.V3 = numpy.array([]) self.R3 = numpy.array([]) self.T3 = numpy.array([]) self.Vtime = numpy.array([]) self.meattemp = [numpy.array([]), numpy.array([])] figure = pyplot.figure(figsize=(5, 4), dpi=100) axis = figure.add_axes([0.1, 0.1, 0.8, 0.8]) self.V1line, = axis.plot(self.Vtime, self.V1, marker='o') self.V2line, = axis.plot(self.Vtime, self.V2, marker='o') self.V3line, = axis.plot(self.Vtime, self.V3, marker='o') self.meatline, = axis.plot(self.meattemp[0], self.meattemp[1]) self.canvas = FigureCanvasTkAgg(figure, master) self.canvas.show() self.canvas._tkcanvas.pack(side=Tkinter.TOP,fill=Tkinter.BOTH, expand=1) # Add more GUI stuff here def calculateTemp(self): #I = numpy.mean((self.V1[-1]-self.V2[-1])/self.R1, # (self.V2[-1]-self.V3[-1])/self.R2) print self.V2[-1], self.V3[-1], self.R2 I = (self.V2[-1]-self.V3[-1])/self.R2 print I, self.V3[-1], self.V3[-1]/I self.R3 = numpy.append(self.R3, self.V3[-1]/I) #self.T3.append(self.R3*self.slope + self.yint) def refresh(self): self.V1line.set_data(self.Vtime, self.V1) self.V2line.set_data(self.Vtime, self.V2) self.V3line.set_data(self.Vtime, self.V3) self.calculateTemp() out = open('calibration.dat', 'a') out.write(str(self.Vtime[-1])+" "+str(self.R3[-1])+'\n') out.close() self.meatline.set_data(self.meattemp[0], self.meattemp[1]) ax = self.canvas.figure.axes[0] print 'update: ', self.R3[-1] try: ax.set_xlim(min(self.Vtime), max(self.Vtime)+1.0) ax.set_ylim(0.0, 5.5) except: pass self.canvas.draw() def addTemp(self, event): try: temp = float(self.TempEntry.get()) t = time.time()-self.startTime self.temp[0] = numpy.append(self.temp[0], t) self.temp[1] = numpy.append(self.temp[1], temp) except: print "Error!" def processIncoming(self): """ Handle all the messages currently in the queue (if any). """ while self.queue.qsize(): try: msg = self.queue.get(0) # As a test, we simply print it #print msg self.V1 = numpy.append(self.V1, msg[0]) self.V2 = numpy.append(self.V2, msg[1]) self.V3 = numpy.append(self.V3, msg[2]) self.Vtime = numpy.append(self.Vtime, msg[3]-self.startTime) self.refresh() except Queue.Empty: pass class ThreadedClient: """ Launch the main part of the GUI and the worker thread. periodicCall and endApplication could reside in the GUI part, but putting them here means that you have all the thread controls in a single place. """ def __init__(self, master): """ Start the GUI and the asynchronous threads. We are in the main (original) thread of the application, which will later be used by the GUI. We spawn a new thread for the worker. """ self.master = master self.Bird = tweetHandler.Tweety() # Create the queue self.queue = Queue.Queue() # Set up the GUI part self.gui = GuiPart(master, self.queue, self.endApplication) # Set up the thread to do asynchronous I/O # More can be made if necessary self.running = 1 self.thread1 = threading.Thread(target=self.workerThread1) self.thread1.start() self.thread2 = threading.Thread(target=self.tweeterThread) self.thread2.start() # Start the periodic call in the GUI to check if the queue contains # anything self.periodicCall() def periodicCall(self): """ Check every 100 ms if there is something new in the queue. """ self.gui.processIncoming() if not self.running: # This is the brutal stop of the system. You may want to do # some cleanup before actually shutting it down. import sys sys.exit(1) self.master.after(1000, self.periodicCall) def workerThread1(self): """ This is where we handle the asynchronous I/O. For example, it may be a 'select()'. One important thing to remember is that the thread has to yield control. """ self.serial = serial.Serial(port='/dev/ttyUSB0') while self.running: #print self.serial.inWaiting() if self.serial.inWaiting() != 0: arduino_data = numpy.array(self.serial.readline().split(), dtype=float) msg = arduino_data.tolist() msg.append(time.time()) self.queue.put(msg) else: #print("Waiting") time.sleep(5) def tweeterThread(self): """ This is where the tweeting is handled. """ self. def endApplication(self): self.running = 0 self.serial.close()
gpl-2.0
bert9bert/statsmodels
examples/incomplete/dates.py
5
1262
""" Using dates with timeseries models """ import statsmodels.api as sm import pandas as pd # Getting started # --------------- data = sm.datasets.sunspots.load() # Right now an annual date series must be datetimes at the end of the year. dates = sm.tsa.datetools.dates_from_range('1700', length=len(data.endog)) # Using Pandas # ------------ # Make a pandas Series or DataFrame with DatetimeIndex endog = pd.Series(data.endog, index=dates) # and instantiate the model ar_model = sm.tsa.AR(endog, freq='A') pandas_ar_res = ar_model.fit(maxlag=9, method='mle', disp=-1) # Let's do some out-of-sample prediction pred = pandas_ar_res.predict(start='2005', end='2015') print(pred) # Using explicit dates # -------------------- ar_model = sm.tsa.AR(data.endog, dates=dates, freq='A') ar_res = ar_model.fit(maxlag=9, method='mle', disp=-1) pred = ar_res.predict(start='2005', end='2015') print(pred) # This just returns a regular array, but since the model has date information # attached, you can get the prediction dates in a roundabout way. print(ar_res.data.predict_dates) # This attribute only exists if predict has been called. It holds the dates # associated with the last call to predict. #..TODO: should this be attached to the results instance?
bsd-3-clause
annahs/atmos_research
LEO_nonincand_calib_FF.py
1
8737
#this script is used to fit the full SP2 scattering signal of real particles #when run for non-incandescent reals this gives a set of data that can be used to set the fixed LEO fit parameters (width and centre position) over time import sys import os import datetime import pickle import numpy as np import matplotlib.pyplot as plt from pprint import pprint from scipy.optimize import curve_fit from scipy import stats from SP2_particle_record_UTC import ParticleRecord from struct import * import hk_new import hk_new_no_ts_LEO from scipy import linspace, polyval, polyfit, sqrt, stats import math import mysql.connector from datetime import datetime #setup data_dir = 'F:/Alert/2012/SP2B_files/' start_analysis_at = datetime(2012,4,5) end_analysis_at = datetime(2012,4,6) show_full_fit = True SP2_number = 44 zeroX_evap_threshold = 40 record_size_bytes = 1658 #size of a single particle record in bytes(UBC_SP2 = 1498, EC_SP2 in 2009 and 2010 = 2458, Alert SP2 #44 and #58 = 1658 #17 =1498) hk_dict = { 'yag_min':4, 'yag_max':7, 'sample_flow_min':118.5, 'sample_flow_max':121.5, 'sheath_flow_min':990, 'sheath_flow_max':1010, } #database connection cnx = mysql.connector.connect(user='root', password='Suresh15', host='localhost', database='black_carbon') cursor = cnx.cursor() #**********parameters dictionary********** parameters = { 'acq_rate': 2500000, #5000000, } def make_plot(record): x_vals = record.getAcqPoints() y_vals = record.getScatteringSignal() fit_result = record.FF_results fig = plt.figure() ax1 = fig.add_subplot(111) ax1.plot(x_vals,y_vals,'o', markerfacecolor='None') ax1.plot(x_vals,fit_result, 'b') ax1.plot(record.LF_x_vals_to_use,record.LF_y_vals_to_use, color = 'black',linewidth=3) #ax1.plot(record.getAcqPoints(), record.getSplitDetectorSignal(), 'o', color ='green') plt.axvline(x=record.zeroCrossingPos, ymin=0, ymax=1) plt.axvline(x=record.beam_center_pos, ymin=0, ymax=1, color='red') plt.show() def find_nearest(array,value): #get index of value in array closest to value idx = (np.abs(array-value)).argmin() return idx def gaussFullFit(file,parameters_dict,particle_record_size,show_fit,file_interval,number_of_records,evap_threshold,hk_dictionary,instr_number): #pararmeters used to reject invalid particle records based on scattering peak attributes min_peakheight = 10 max_peakheight = 3600 min_peakpos = 20 max_peakpos = 160 max_incand = 10 type_particle = 'nonincand' f = open(file, 'rb') record_index = 0 multiple_records = [] i=1 while record_index < number_of_records: record = f.read(particle_record_size) if record_index == 0 or record_index%file_interval == 0: try: particle_record = ParticleRecord(record, parameters_dict['acq_rate']) except: print 'corrupt particle record',record_index raw_input("Press Enter to continue...") record_index+=1 continue event_time = particle_record.timestamp #UTC ###### FITTING AND ANALYSIS ######## ##Check DB here for bad HK parameters and skip event_minute = int(event_time-event_time%60) cursor.execute(('SELECT sample_flow, sheath_flow, yag_power FROM alert_hk_data WHERE SP2_ID =%s AND UNIX_UTC_ts = %s'),(instr_number,event_minute)) hk_data = cursor.fetchall() if hk_data != []: sample_flow = hk_data[0][0] sheath_flow = hk_data[0][1] yag_power = hk_data[0][2] if (hk_dictionary['sample_flow_min'] < sample_flow < hk_dictionary['sample_flow_max']) and (hk_dictionary['sheath_flow_min'] < sheath_flow < hk_dictionary['sheath_flow_max']) and (hk_dictionary['yag_min'] < yag_power < hk_dictionary['yag_max']): #run the scatteringPeakInfo method to retrieve various peak attributes particle_record.scatteringPeakInfo() actual_scat_signal = particle_record.getScatteringSignal() scattering_baseline = particle_record.scatteringBaseline actual_max_value = particle_record.scatteringMax actual_max_pos = particle_record.scatteringMaxPos #run the incandPeakInfo method to retrieve peak height particle_record.incandPeakInfo() incand_max = particle_record.incandMax #check to see if incandescence is negligible, scattering signal is over threshold, is in a reasonable position, and no double peaks if incand_max < max_incand and actual_max_value > min_peakheight and actual_max_value < max_peakheight and actual_max_pos > min_peakpos and actual_max_pos < max_peakpos: #check zero crossing posn #note: zero-crossing calc will depend on the slope of the zero-crossing from the split detector try: zero_crossing_pt = particle_record.zeroCrossingNegSlope(evap_threshold) except: continue if zero_crossing_pt > 0: #check for a double peak try: particle_record.isSingleParticle() except: print record_index print actual_max_value if particle_record.doublePeak==False: particle_record.fullGaussFit() fit_peak_pos = particle_record.FF_peak_pos fit_width = particle_record.FF_width fit_scattering_amp = particle_record.FF_scattering_amp zero_cross_to_peak = (zero_crossing_pt - fit_peak_pos) #### add_data = ('INSERT INTO alert_leo_params_from_nonincands' '(UNIX_UTC_ts, sp2b_file, file_index, instrument_ID, particle_type, actual_scat_amp,FF_scat_amp,FF_peak_posn,FF_gauss_width,actual_zero_x_posn)' 'VALUES (%(UNIX_UTC_ts)s,%(sp2b_file)s,%(file_index)s,%(instrument_ID)s,%(particle_type)s,%(actual_scat_amp)s,%(FF_scat_amp)s,%(FF_peak_posn)s,%(FF_gauss_width)s,%(actual_zero_x_posn)s)') if np.isnan(np.sum([actual_max_value,fit_scattering_amp,fit_peak_pos,fit_width,zero_crossing_pt])) == False: #chekc for nans single_record ={ 'UNIX_UTC_ts' :event_time, 'sp2b_file' : file, 'file_index' : record_index, 'instrument_ID' :instr_number, 'particle_type' :type_particle, 'actual_scat_amp' : float(actual_max_value), 'FF_scat_amp' : float(fit_scattering_amp), 'FF_peak_posn' : float(fit_peak_pos), 'FF_gauss_width': float(fit_width), 'actual_zero_x_posn': float(zero_crossing_pt), } multiple_records.append((single_record)) #bulk insert to db table if i%4000 == 0: #cursor.executemany(add_data, multiple_records) #cnx.commit() multiple_records = [] ##increment count of detectible incandescent particles i+= 1 #plot particle fit if desired if show_full_fit == True: print record_index, fit_width, zero_cross_to_peak #print data['actual_scat_amp'],fit_scattering_amp, fit_peak_pos print '\n' make_plot(particle_record) # else: # print 'double_peak' # print '\n' # #make_plot(particle_record) # else: # print 'zero-x ', zero_crossing_pt # print '\n' # #make_plot(particle_record) # else: # print record_index, 'incand ', incand_max, 'scat_max ', actual_max_value, 'scat_pos ', actual_max_pos # print '\n' # #make_plot(particle_record) record_index+=1 #bulk insert of remaining records to db #if multiple_records != []: # cursor.executemany(add_data, multiple_records) # cnx.commit() f.close() os.chdir(data_dir) for directory in os.listdir(data_dir): if os.path.isdir(directory) == True and directory.startswith('20'): parameters['folder']= directory folder_date = datetime.strptime(directory, '%Y%m%d') if folder_date >= start_analysis_at and folder_date < end_analysis_at: parameters['directory']=os.path.abspath(directory) os.chdir(parameters['directory']) number_of_sp2b_files = len([name for name in os.listdir('.') if (name.endswith('.sp2b') and name.endswith('gnd.sp2b') == False)]) file_interval = number_of_sp2b_files*1 print file_interval for file in os.listdir('.'): if file.endswith('.sp2b') and (file.endswith('gnd.sp2b')==False): print file path = parameters['directory'] + '/' + str(file) file_bytes = os.path.getsize(path) #size of entire file in bytes record_size = record_size_bytes number_of_records = (file_bytes/record_size)-1 gaussFullFit(file,parameters,record_size,show_full_fit,file_interval,number_of_records,zeroX_evap_threshold,hk_dict,SP2_number) os.chdir(data_dir) cnx.close()
mit
bvacaliuc/pyrasdr
plugins/pyLMS7002M/examples/VNA/calculateVNA.py
2
4932
import numpy import os, sys if len(sys.argv)!=2 and len(sys.argv)!=3: print("Usage: python calculateVNA.py measurementName [plotFigures]") print("plotFigures is optional and can have values plot for plotting figures or save to plot and save the figures") exit(1) startFreq = 2.3e9 endFreq = 2.6e9 nPoints = 101 measName = sys.argv[1] saveFig = False plotFig = False if len(sys.argv)==3: if sys.argv[2]=="plot": plotFig = True if sys.argv[2]=="save": plotFig = True saveFig = True if plotFig: from matplotlib.pyplot import * import smithplot from smithplot.smithaxes import update_scParams import warnings warnings.filterwarnings("ignore", module="matplotlib") fMin=startFreq fMax=endFreq ############################################################################# # Auxiliary functions def readFile(fileName, fMin=0, fMax=1e20): inFile = open(fileName, 'r') res = [ [], [], [] ] for line in inFile: if line[0]=="#": continue line = line.strip() if line=="": continue tmp = line.split() if float(tmp[0])<fMin or float(tmp[0])>fMax: continue res[0].append( float(tmp[0]) ) res[1].append( float(tmp[1]) ) res[2].append( float(tmp[2]) ) inFile.close() return [ numpy.array(res[0]), numpy.array(res[1]), numpy.array(res[2]) ] def filterData(f, data, fMin=0, fMax=1e20): res = [] for i in range(0, len(f)): if f[i]>fMin and f[i]<fMax: res.append(data[i]) return numpy.array(res) def unwrap(phase): # Unwrap the phase phase_unwrap = [] intAng = 0 for i in range(0,len(phase)-1): phase_unwrap.append(phase[i]+intAng) dph = phase[i+1]-phase[i] if abs(dph)>150: if dph>0: intAng += -180 else: intAng += 180 phase_unwrap.append(phase[-1]+intAng) phase_unwrap=numpy.array(phase_unwrap) # Second pass phase_unwrap2 = [] intAng = 0 for i in range(0,len(phase_unwrap)-1): phase_unwrap2.append(phase_unwrap[i]+intAng) dph = phase_unwrap[i+1]-phase_unwrap[i] if dph<-150: phase_unwrap[i+1] += 180 if dph>10 and dph<45: intAng += -45 if dph>45 and dph<135: intAng += -90 if dph>135 and dph<180: intAng += -180 if dph>180: intAng += -360 phase_unwrap2.append(phase_unwrap[-1]+intAng) phase_unwrap2=numpy.array(phase_unwrap2) return phase_unwrap2 ############################################################################# # Read the measurement resutls dutFileName = 'vna_'+measName+'_DUT_'+str(startFreq)+'_'+str(endFreq)+'_'+str(nPoints)+'.txt' shortFileName = 'vna_'+measName+'_short_'+str(startFreq)+'_'+str(endFreq)+'_'+str(nPoints)+'.txt' dutData = readFile(dutFileName) shortData = readFile(shortFileName) freq = dutData[0] f = freq dutPhase = unwrap(dutData[2]) * numpy.pi/180 shortPhase = unwrap(shortData[2]) * numpy.pi/180 if plotFig: plot(numpy.array(f)/1e9,shortPhase) xlabel('f [GHz]') ylabel('Short Phase') grid() show() plot(numpy.array(f)/1e9,dutPhase, linewidth=1.5, aa=True) xlabel('f [GHz]') ylabel('DUT Phase') grid() show() dutData[1] = 20.0*numpy.log10(dutData[1]) shortData[1] = 20.0*numpy.log10(shortData[1]) measGammaDut = numpy.power(10.0, dutData[1]/20) * numpy.exp(1j * dutPhase)#/2) measGammaShort = numpy.power(10.0, shortData[1]/20) * numpy.exp(1j * shortPhase)#/2) GammaShort = numpy.array([-1.0] * len(f)) # assume ideal short returnLoss = dutData[1] - shortData[1] vswr = (10**(-returnLoss/20)+1)/(10**(-returnLoss/20)-1) if plotFig: plot(numpy.array(f)/1e9,vswr) title('VSWR') xlabel('f [GHz]') ylabel('VSWR') grid() show() gammaMag = numpy.power(10.0, returnLoss/20.0) dutPhase = dutPhase - shortPhase + numpy.pi GammaDut = gammaMag * numpy.exp(1j * dutPhase) ZDut = (1.0 + GammaDut)/(1.0 - GammaDut) if plotFig: plot(numpy.array(f)/1e9, 20*numpy.log10( numpy.abs(GammaDut)), color='b', linewidth=1.5, aa=True) xlabel('f [GHz]') ylabel('S11 [dB]') grid() if saveFig: savefig(measName+'_s11.png') show() figure(figsize=(24, 16)) subplot(1, 1, 1, projection='smith',grid_major_fancy=True, grid_minor_fancy=True, plot_hacklines=True) ZDutPlot = filterData(freq, ZDut, fMin, fMax) plot(ZDutPlot, markevery=1, label="S11", color='b', linewidth=1.5, aa=True) if saveFig: savefig(measName+'_smith.png') show() outFileName = measName + '.s1p' outFile = open(outFileName, 'w') outFile.write('# Hz S RI R 50\n') for i in range(0, len(GammaDut)): outFile.write(str(f[i])+"\t"+str(numpy.real(GammaDut[i]))+"\t"+str(numpy.imag(GammaDut[i]))+"\n") outFile.close()
gpl-3.0
aewhatley/scikit-learn
examples/linear_model/plot_sgd_weighted_samples.py
344
1458
""" ===================== SGD: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] y = [1] * 10 + [-1] * 10 sample_weight = 100 * np.abs(np.random.randn(20)) # and assign a bigger weight to the last 10 samples sample_weight[:10] *= 10 # plot the weighted data points xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9, cmap=plt.cm.bone) ## fit the unweighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) no_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['solid']) ## fit the weighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y, sample_weight=sample_weight) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) samples_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['dashed']) plt.legend([no_weights.collections[0], samples_weights.collections[0]], ["no weights", "with weights"], loc="lower left") plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
rbiswas4/simlib
opsimsummary/simlib.py
1
28868
#!/usr/bin/env python """ Module with functionality to represent SNANA simlib data. """ from __future__ import division, print_function, unicode_literals __all__ = ['SimlibMixin', 'Simlibs'] import os import numpy as np import subprocess from io import StringIO, BytesIO from collections import OrderedDict import pandas as pd from .summarize_opsim import SynOpSim class SimlibField(object): def __init__(self, fieldID=None, ra=None, dec=None, opsimtable=None, mwebv=0.0): self.fieldID = fieldID self.ra = ra self.dec = dec self.mwebv = mwebv self.opsimtable = opsimtable def setfields(self, fieldID, ra, dec, opsimtable, mwebv=None): if mwebv is None: mwebv = mwebv self.fieldID = fieldID self.ra = ra self.dec = dec self.opsimtable = opsimtable class SimlibMixin(object): """ Mixin for `SummaryOpsim` to provide the following additional functionality geared towards creating simlibs for SNANA. - Calculate additional columns for simlib either on a complete `OpSimOutput.summary` dataframe, or for a dataframe for a particular `patch` of sky (LIBID in the SNANA language). - Calculate variables required for SNANA simlib outside the Opsim data The parent class must have the following attributes: - subset (must be a valid string) The following attributes cannot be set by the user and are set by `simlibVars` - user (default can be None) - host (default can be None) - telescope - survey - pixelSize In order to be able to write out the simlibs to disk, it should also have a method to provide a sequence (may be a generator) of fields, and `opsimtables`. The fields are instances of a class which has the following information `fieldID` `ra` `dec` `mwebv` (which may be set to a default value). The responsibility of selection of such fields and sorting out the correct requirements is of the parent class. """ # Bad patch pixelSize = 0.2 @property def simlibVars(self): """ Collection of Attributes provided by the static method `self.get_simlibVars` as an ordered dict with the following keys (`user`, `host`, `pixelSize`, `survey`, `telescope`). Calling this. also sets class variables for each of these keys. """ simlibVars = self.get_simlibVars(user=self.user, host=self.host, pixelSize=self.pixelSize, telescope=self.telescope, survey=self.survey) self.user = simlibVars['user'] self.host = simlibVars['host'] self.pixelSize = simlibVars['pixelSize'] self.telescope = simlibVars['telescope'] self.survey = simlibVars['survey'] return simlibVars @staticmethod def get_simlibVars(user=None, host=None, pixelSize=0.2, telescope='LSST', survey='LSST'): """ Computes quantities only necessary for SNANA Simlib Calculation Parameters ---------- user: string, optional, defaults to None user running the program, used in writing out SNANA simlibs only if None, the login name of the user is used. host: string, optional, defaults to None name of host machine, used only in writing out SNANA simlibs default of None assigns the output of `hostname` to this variable. pixelSize: float, optional, defaults to 0.2 size of the pixel in arcseconds, defaults to 0.2 as appropriate for LSST survey: string, optional, defaults to 'LSST' name of survey, required only for writing out SNANA simlibs telescope: string, optional, defaults to 'LSST' name of survey, required only for writing out SNANA simlibs """ # report a user name, either from a constructor parameter, or login name if user is None: user = os.getlogin() # report a host on which the calculations are done. either from # constructor parameters or from the system hostname utility if host is None: proc = subprocess.Popen('hostname', stdout=subprocess.PIPE) host, err = proc.communicate() x = (('user', user), ('host', host), ('pixelSize', pixelSize), ('survey', survey), ('telescope', telescope)) return OrderedDict(x) def _capitalizeY(self, x): """private helper method """ # SNANA has y filter deonoted as Y. Can change in input files to SNANA # but more bothersome. if 'y' in x: return u'Y' else: return x def preprocess_lib(self, opsimtable): """ preprocess the dataframe with data for a single SNANA simlib field (ie. data corresponding to a single libid) if necessary. Parameters ---------- opsimtable : `pd.DataFrame` with required data from OpSim corresponding to a single field. """ # reasonable guess that columns have not been added if 'simLibSkySig' not in opsimtable.columns: df = self.add_simlibCols(opsimtable, pixelSize=self.pixelSize) df['filter'] = list(map(self._capitalizeY, opsimtable['filter'])) else: df = opsimtable return df @staticmethod def add_simlibCols(opsimtable, pixelSize=0.2): """ Parameters ---------- opsimtable: `~pandas.DataFrame` object, mandatory containing an opsim Output of version X. The main requirements here are that the columns 'finSeeing', 'fiveSigmaDepth', and 'filtSkyBrightness' are defined. If the opsim output has differently named variables or transformed variables, these should be changed to meet the criteria. pixelSize: float, units of arc sec, defaults to LSST value of 0.2 pixel Size Returns ------- DataFrame with additional columns of 'simLibPsf', 'simLibZPTAVG', and 'simLibSkySig' .. note :: This was written from a piece of f77 code by David Cinabro sent by email on May 26, 2015. """ if 'finSeeing' in opsimtable.columns: psfwidth = 'finSeeing' else: psfwidth = 'FWHMeff' opsim_seeing = opsimtable[psfwidth] # unit of arc sec sq # magsky is in units of mag/arcsec^2 # opsim_maglim is in units of mag opsim_maglim = opsimtable['fiveSigmaDepth'] opsim_magsky = opsimtable['filtSkyBrightness'] # Calculate two variables that come up in consistent units: # term1 = 2.0 * opsim_maglim - opsim_magsky # Area of pixel in arcsec squared pixArea = pixelSize * pixelSize term1 = 2.0 * opsim_maglim - opsim_magsky # * pixArea # term2 = opsim_maglim - opsim_magsky term2 = - (opsim_maglim - opsim_magsky) # * pixArea # Calculate SIMLIB PSF VALUE opsimtable['simLibPsf'] = opsim_seeing /2.35 /pixelSize # 4 \pi (\sigma_PSF / 2.35 )^2 area = (1.51 * opsim_seeing)**2. opsim_snr = 5. arg = area * opsim_snr * opsim_snr # Background dominated limit assuming counts with system transmission only # is approximately equal to counts with total transmission zpt_approx = term1 + 2.5 * np.log10(arg) # zpt_approx = 2.0 * opsim_maglim - opsim_magsky + 2.5 * np.log10(arg) # ARG again in David Cinabro's code val = -0.4 * term2 # val = -0.4 * (opsim_magsky - opsim_maglim) tmp = 10.0 ** val # Additional term to account for photons from the source, again assuming # that counts with system transmission approximately equal counts with total # transmission. zpt_cor = 2.5 * np.log10(1.0 + 1.0 / (area * tmp)) simlib_zptavg = zpt_approx + zpt_cor # ZERO PT CALCULATION opsimtable['simLibZPTAVG'] = simlib_zptavg # SKYSIG Calculation npix_asec = 1. / pixelSize**2. opsimtable['simLibSkySig'] = np.sqrt((1.0 / npix_asec) \ * 10.0 **(-0.4 * (opsim_magsky - simlib_zptavg))) return opsimtable def fieldheader(self, fieldID, ra, dec, opsimtable, mwebv=0.0, fieldtype=None): """ Parameters ---------- fieldID : int integer for the unique field ID ra : float, degrees ra of the field location dec : float, degrees dec of the field location opsimtable : `np.array` of `pd.DataFrame` sequence of OpSim observations in above format to find number of observations. mwebv : float, defaults to 0.0 milky way E(B-v) value. This is usually recomputed in SNANA depending on flags, and hence can be left as 0.0 fieldtype : string, defaults to None string used to construct `Field: fieldtype` line, if None this line is left out. """ nobs = len(opsimtable) # String formatting s = '# --------------------------------------------' +'\n' s += 'LIBID: {0:10d}'.format(fieldID) +'\n' if fieldtype is not None: s += 'Field: {}\n'.format(fieldtype) tmp = 'RA: {0:+10.6f} DECL: {1:+10.6f} NOBS: {2:10d} MWEBV: {3:5.2f}' tmp += ' PIXSIZE: {4:5.3f}' s += tmp.format(ra, dec, nobs, mwebv, self.pixelSize) + '\n' # s += 'LIBID: {0:10d}'.format(fieldID) + '\n' s += '# CCD CCD PSF1 PSF2 PSF2/1' +'\n' s += '# MJD ID*NEXPOSE FLT GAIN NOISE SKYSIG (pixels) RATIO ZPTAVG ZPTERR MAG' + '\n' return s @staticmethod def fieldfooter(fieldID): s = 'END_LIBID: {0:10d}'.format(fieldID) s += '\n' return s def formatSimLibField(self, fieldID, opsimtable, sep=' '): opsimtable = self.preprocess_lib(opsimtable) y = '' for row in opsimtable.iterrows(): data = row[1] # skip the index lst = ['S:', "{0:5.4f}".format(data.expMJD), "{0:10d}*2".format(data.obsHistID), data['filter'], "{0:5.2f}".format(1.), # CCD Gain "{0:5.2f}".format(0.25), # CCD Noise "{0:6.2f}".format(data.simLibSkySig), # SKYSIG "{0:4.2f}".format(data.simLibPsf), # PSF1 "{0:4.2f}".format(0.), # PSF2 "{0:4.3f}".format(0.), # PSFRatio "{0:6.2f}".format(data.simLibZPTAVG), # ZPTAVG "{0:6.3f}".format(0.005), # ZPTNoise "{0:+7.3f}".format(-99.)] # MAG s = sep.join(lst) y += s + '\n' return y def simlibFieldasString(self, fh, fieldID, ra, dec, opsimtable, mwebv=0.0, fieldtype=None): opsimtable = opsimtable.reset_index() #raise NotImplementedError("Has not been checked") # Write out the header for each field s = self.fieldheader(fieldID, ra, dec, opsimtable, mwebv=mwebv, fieldtype=fieldtype) # Write out the actual field s += self.formatSimLibField(fieldID, opsimtable, sep=' ') # Write out the footer for each field s += self.fieldfooter(fieldID) return s def simLibheader(self, numLibId=None, saturation_flag=1024, comments='\n'): """ return a string that is the header of the simlib file Parameters ---------- numLibId : int, defaults to None number of libids in simlib saturation_flag : int, defaults to 1024 value desired as saturation flag comments: string, defaults to `\n` comments passed on to `simlib` output """ sv = self.simlibVars user = sv['user'] host = sv['host'].splitlines()[0] # The decode lines below do the correct thing in py3 # However the isinstance line does not, needs fixing # if isinstance(host, unicode): # host = host.decode('utf-8') telescope = sv['telescope'] survey = sv['survey'] # comment: I would like to generalize ugrizY to a sort but am not sure # of the logic for other filter names. so ducking for now s = 'SURVEY: {0:} FILTERS: ugrizY TELESCOPE: {1:}\n'.format(survey, telescope) s += 'USER: {0:} HOST: {1}\n'.format(user, host) if numLibId is not None: s += 'NLIBID: {}\n'.format(numLibId) s += 'NPE_PIXEL_SATURATE: 100000\n' s += 'PHOTFLAG_SATURATE: {0}\n'.format(saturation_flag) s += comments + '\n' s += 'BEGIN LIBGEN\n' return s def simLibFooter(self, numFields): """ """ s = 'END_OF_SIMLIB: {0:10d} ENTRIES'.format(numFields) return s def writeSimlib(self, filename, fields, comments='\n', fieldtype=None, mwebv=0., numLibId=None): num_fields = 0 with open(filename, 'w') as fh: # Write out the header to the simlib file simlib_header = self.simLibheader(numLibId=numLibId, comments=comments) fh.write(simlib_header) # Now write the actual simlib data to file for field in fields: # obtain the set of field dependent parameters from `SynOpSim` fieldID = field.fieldID ra = field.ra dec = field.dec mwebv = field.mwebv opsimtable = field.opsimtable fh.write(self.simlibFieldasString(self, num_fields, ra, dec, opsimtable, mwebv=mwebv, fieldtype=fieldtype)) # Write out the header for each field # fh.write(self.fieldheader(num_fields, ra, dec, opsimtable, # mwebv=mwebv)) # fh.write(self.formatSimLibField(fieldID, opsimtable)) # Write out the footer for each field # fh.write(self.fieldfooter(fieldID)) num_fields += 1 # Now write out the footer to the entire simlib file simlib_footer = self.simLibFooter(num_fields) fh.write(simlib_footer) return num_fields class Simlibs(SynOpSim, SimlibMixin): """A class to write out simlibs to disk """ pixelSize = 0.2 host = None user = None telescope = 'LSST' survey = 'LSST' def simlibs_for_fields(self, surveyPix, mwebv=0.): """Generator for simlib fields for a sequence of fields defined in a dataFrame called `surveyPix`. The dataFrame `surveyPix` must have the following columns `simlibId`, `ra`, `dec` and must be sorted in increasing order of `simlibId`. Parameters ---------- surveyPix : `pd.dataFrame` with the following columns `simlibId`, `ra`, `dec` mwebv : `np.float` defaults to 0. A default value for the MW extinction Returns ------- a generator of fields for the simlib file """ surveyPix = surveyPix.reset_index().query('simlibId > -1').set_index('simlibId') ra = surveyPix.ra.values dec = surveyPix.dec.values pts = self.pointingsEnclosing(ra, dec, circRadius=0., pointingRadius=1.75, usePointingTree=True) field = SimlibField() for i, fieldID in enumerate(surveyPix.reset_index().simlibId.values): field.setfields(fieldID, ra[i], dec[i], next(pts).sort_values(by='expMJD'), mwebv=mwebv) yield field def get_surveyPix(self, surveydf, numFields=15, rng=np.random.RandomState(0)): """ Get a random selection of survey pixels observed that have numbers of visits in between the min and max visits. Parameters ---------- surveydf : `pd.DataFrame` a pandas dataframe with a collection of selected fields with at least the the following columns a unique index `hid` for each field, an `ra`, and a `dec` numFields : integer, defaults to 15 number of samples of fields desired. rng : instance of `np.random.RandomState`, defualts to using 0 as seed a random state. Returns ------- a dataframe with at least `hid` the original index for each field, `ra`, `dec`, and `simlibID` sorted by `simlibId`. This dataframe contains a mapping from the new index `simlibId` to the old index `hid` """ surveydf['simlibId'] = -1 if numFields <= len(surveydf): surveydf = surveydf.sample(n=numFields, replace=False, random_state=rng) # hids = rng.choice(surveydf.reset_index()['hid'].values, size=numFields, # replace=False) else: surveydf = surveydf.sample(size=numFields, replace=True, random_state=rng) print("Warning: You have asked for more samples than the original number of fields") print('Printing original number of fields instead') hids = surveydf.reset_index()['hid'].values surveydf.reset_index().set_index('hid') surveydf.loc[hids, 'simlibId'] = np.arange(len(hids)) return surveydf def randomSimlibs(self, numFields=50, fname='test.simlib', rng=np.random.RandomState(1), outfile=None, mapping_outfile='mapping.csv', mwebv=0., fieldtype=None, minVisits=1): if fieldtype is None: fieldtype = self.subset.upper() if outfile is None: outfile = fname + '.hdf' fields = self.sampleRegion(numFields=numFields, rng=rng, outfile=outfile, subset=self.subset, minVisits=minVisits, nside=256, mwebv=mwebv) num_fields = self.writeSimlib(fname, fields, fieldtype=fieldtype, mwebv=mwebv) fields = self.sampleRegion(numFields=numFields, rng=rng, outfile=outfile, subset=self.subset) df = pd.DataFrame(dict(SNANAID=np.arange(num_fields), healpixID=list(field.fieldID for field in fields ))) df.to_csv(mapping_outfile) class Simlib(object): def __init__(self, simlibDict, simlibMetaData=None): self.simlibDict = simlibDict self.fieldIDs = self.simlibDict.keys() if simlibMetaData is not None: self.meta = simlibMetaData @classmethod def fromSimlibFile(cls, simlibFileName): ''' Constructor for class using an ASCII Parameters ---------- simlibFileName: string, mandatory absolute path to SNANA simlib file Returns ------- dictionary with LIBIDs (fieldIDs) of type int as keys, and the corresponding FieldSimlib objects as values Examples -------- >>> sl = Simlib.fromSimlibFile(simlibFileName) ''' file_header, file_data, file_footer = cls.read_simlibFile(simlibFileName) mydict = cls.getSimlibs(file_data) meta = cls.simlibMetaData(file_header) cls = cls(simlibDict=mydict, simlibMetaData=meta) cls.validate(file_footer) return cls def validate(self, file_footer): ''' ''' numberlist = list(filter(lambda x: x.isdigit(), file_footer.split())) if len(numberlist) !=1: raise ValueError('There should only be one integer in the footer') numLibId = int(numberlist[0]) if numLibId != len(self.fieldIDs): raise ValueError('The number of fieldIDs is in the simlib does not match the number stated in footer') return @staticmethod def simlibMetaData(simlibHeader): ''' parse the string corresponding to the header of a SNANA simlib file to get the simlib MetaData, stored in the form of a string valued dictionary with the following keys: 'SURVEY', 'FILTERS', 'HOST', 'USER', 'COMMENT' Parameters ---------- simlibHeader: string corresponding the header of an SNANA simlib file as parsed by cls.read_simlibFile. Returns ------- dictionary of keys above and values. ''' comments = [] fields = [] lines = simlibHeader.split('\n') for line in lines: if line.startswith('COMMENT') or line.startswith('#'): comments.append(line) else: fields.append(line) ss = ' '.join(fields) words = ss.split() keys = list(map(lambda x: x[:-1], words[0::2])) vals = words[1::2] if len(keys) != len(vals): raise ValueError('the numberof fields in dict should match vals') meta = dict(zip(keys, vals)) meta['COMMENTS'] = '\n'.join(comments) return meta def simlibData(self, fieldID): return self.simlibDict[fieldID].data @classmethod def getSimlibs(cls, file_data): # def getSimlibs(cls, simlibFile): # file_header, file_data, file_footer = cls.read_simlibFile(simlibFile) simlibStrings = cls.split_simlibStrings(file_data) mydict = dict() for strings in simlibStrings: s = FieldSimlib.fromSimlibString(strings) mydict[s.fieldID] = s return mydict @staticmethod def read_simlibFile(simlibfile): # slurp into a string with open(simlibfile) as f: ss = f.read() # split into header, footer and data fullfile = ss.split('BEGIN LIBGEN') file_header = fullfile[0] if 'END_OF_SIMLIB' in ss: data, footer = fullfile[1].split('END_OF_SIMLIB') else: data = fullfile[1] footer = '' return file_header, data, footer @staticmethod def split_simlibStrings(simlibStrings): simlibs = simlibStrings.split('\nLIBID')[1:] simlibs = map(lambda x: 'LIBID' + x.split('# -')[0], simlibs) return simlibs class FieldSimlib(object): """ Class to hold data corresponding to a particular fieldID (LIBID) of a SNANA SIMLIB file and methods. The fieldSimlib class for a particular field has the following attributes, and may be instantiated by supplying these, or can be conveniently constructed from the string corresponding to the description of this data in an SNANA simlib file using the constructor fromSimlibString: Parameters ---------- simlibdata : a pandas dataFrame simlib_meta : a dictionary Attributes ---------- fieldID : int a unique integer identifying the field of view. Different pointings of the same field at different times (but possibly with dithers) are associated with the same fieldID meta : dict metadata associated with the field, which has at least the following keys: LIBID, RA, DECL, MWEBV, NOBS, PIXSIZE data : `~pd.DataFrame` object with the observations and having at least the following columns: 'MJD', 'IDEXPT', 'FLT', 'GAIN', 'NOISE', 'SKYSIG', 'PSF1', 'PSF2', 'PSFRatio', 'ZPTAVG', 'ZPTERR', 'MAG']. The meanings of these columns are discussed in the SNANA manual in the sub-section 'The 'SIMLIB' Observing file (4.7) """ def __init__(self, simlibdata, simlib_meta): """ Instantiate the class from the basic data """ self.data = simlibdata self.meta = simlib_meta self.fieldID = self.meta['LIBID'] @classmethod def fromSimlibString(cls, simlibstring): ''' Basic constructor method to take a string corresponding to a field simlib data corresponding to a single LIBID and parse it to metadata containing the properties of the field, a `~pandas.DataFrame` containing the data, and the string after the data Parameters ---------- simlibstring : string, mandatory ''' # split into three parts header, data, footer = cls.split_simlibString(simlibstring) # create the DataFrame clsdata = cls.simlibdata(data) # parse header to get header metadata and header fields header_metadata, header_fields = cls.split_header(header) clsmeta = cls.libid_metadata(header_metadata) # Instantiate the class and make sure it works myclass = cls(simlibdata=clsdata, simlib_meta=clsmeta) myclass.validate(footer) return myclass def validate(self, validate_string): """ Validate the interpretation of the field simlib data from a field simlib string by checking 1. the LIBID at the end of the string matches the one at the beginnin (ie. somehow multiple fields have not been read in) 2. the number of rows of the data for this field simlib matches the number of observations recorded in the metadata as NOBS Parameters ---------- validate_string : string, mandatory footer obtained by splitting the simlib corresponding to the field usually of the form """ val = eval(validate_string.split()[-1]) if int(self.meta['LIBID']) != val: print('LIBID value at beginning: ', self.meta['LIBID']) print('LIBID value at the end', val) raise ValueError('the LIBID values do not match') if len(self.data) != self.meta['NOBS']: print('NOBS :', self.meta['NOBS']) print('len(data) :', len(self.data)) raise ValueError('the number of observations recorded does not' 'match size of data') @staticmethod def split_simlibString(simlibString): ''' split the string corresponding to a simlib file into header, footer, and data pieces Parameters ---------- simlibString : string ''' lst = simlibString.split('MAG') header = lst[0] data, val = lst[1].split('END_LIBID') index = data.index('\n') return header, data[index+1:], val @staticmethod def simlibdata(data): ''' manipulate string in the simlibstring to form pandas DataFrame object Parameters ---------- data : data ''' fhandle = StringIO(data) df = pd.read_csv(fhandle, delimiter="\s+", names=['trash', 'MJD', 'IDEXPT', 'FLT', 'GAIN', 'NOISE', 'SKYSIG', 'PSF1', 'PSF2', 'PSFRatio', 'ZPTAVG', 'ZPTERR', 'MAG']) del df['trash'] return df @staticmethod def split_header(header): ''' split header string into metadata and field names Parameters ---------- header : header ''' lines = header.split('\n') header_metadata = [] header_fields = [] for line in lines: if line.startswith('#'): header_fields.append(line[1:]) else: header_metadata += line.split() return header_metadata, header_fields @staticmethod def libid_metadata(header_metadata): ''' parse header metadata string into a dictionary Parameters ---------- header_metadata : header ''' # Even index values 0, 2, 4 are keys # remove ':' char at end keys = list(map(lambda x: x[:-1], header_metadata[0::2])) # odd index values are floats or ints vals = list(map(eval, header_metadata[1::2])) return dict(zip(keys, vals))
mit
ningchi/scikit-learn
examples/applications/plot_species_distribution_modeling.py
254
7434
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
bsipocz/statsmodels
statsmodels/tsa/arima_process.py
26
30878
'''ARMA process and estimation with scipy.signal.lfilter 2009-09-06: copied from try_signal.py reparameterized same as signal.lfilter (positive coefficients) Notes ----- * pretty fast * checked with Monte Carlo and cross comparison with statsmodels yule_walker for AR numbers are close but not identical to yule_walker not compared to other statistics packages, no degrees of freedom correction * ARMA(2,2) estimation (in Monte Carlo) requires longer time series to estimate parameters without large variance. There might be different ARMA parameters with similar impulse response function that cannot be well distinguished with small samples (e.g. 100 observations) * good for one time calculations for entire time series, not for recursive prediction * class structure not very clean yet * many one-liners with scipy.signal, but takes time to figure out usage * missing result statistics, e.g. t-values, but standard errors in examples * no criteria for choice of number of lags * no constant term in ARMA process * no integration, differencing for ARIMA * written without textbook, works but not sure about everything briefly checked and it looks to be standard least squares, see below * theoretical autocorrelation function of general ARMA Done, relatively easy to guess solution, time consuming to get theoretical test cases, example file contains explicit formulas for acovf of MA(1), MA(2) and ARMA(1,1) * two names for lag polynomials ar = rhoy, ma = rhoe ? Properties: Judge, ... (1985): The Theory and Practise of Econometrics BigJudge p. 237ff: If the time series process is a stationary ARMA(p,q), then minimizing the sum of squares is asymptoticaly (as T-> inf) equivalent to the exact Maximum Likelihood Estimator Because Least Squares conditional on the initial information does not use all information, in small samples exact MLE can be better. Without the normality assumption, the least squares estimator is still consistent under suitable conditions, however not efficient Author: josefpktd License: BSD ''' from __future__ import print_function from statsmodels.compat.python import range import numpy as np from scipy import signal, optimize, linalg def arma_generate_sample(ar, ma, nsample, sigma=1, distrvs=np.random.randn, burnin=0): """ Generate a random sample of an ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nsample : int length of simulated time series sigma : float standard deviation of noise distrvs : function, random number generator function that generates the random numbers, and takes sample size as argument default: np.random.randn TODO: change to size argument burnin : integer (default: 0) to reduce the effect of initial conditions, burnin observations at the beginning of the sample are dropped Returns ------- sample : array sample of ARMA process given by ar, ma of length nsample Notes ----- As mentioned above, both the AR and MA components should include the coefficient on the zero-lag. This is typically 1. Further, due to the conventions used in signal processing used in signal.lfilter vs. conventions in statistics for ARMA processes, the AR paramters should have the opposite sign of what you might expect. See the examples below. Examples -------- >>> import numpy as np >>> np.random.seed(12345) >>> arparams = np.array([.75, -.25]) >>> maparams = np.array([.65, .35]) >>> ar = np.r_[1, -arparams] # add zero-lag and negate >>> ma = np.r_[1, maparams] # add zero-lag >>> y = sm.tsa.arma_generate_sample(ar, ma, 250) >>> model = sm.tsa.ARMA(y, (2, 2)).fit(trend='nc', disp=0) >>> model.params array([ 0.79044189, -0.23140636, 0.70072904, 0.40608028]) """ #TODO: unify with ArmaProcess method eta = sigma * distrvs(nsample+burnin) return signal.lfilter(ma, ar, eta)[burnin:] def arma_acovf(ar, ma, nobs=10): '''theoretical autocovariance function of ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nobs : int number of terms (lags plus zero lag) to include in returned acovf Returns ------- acovf : array autocovariance of ARMA process given by ar, ma See Also -------- arma_acf acovf Notes ----- Tries to do some crude numerical speed improvements for cases with high persistance. However, this algorithm is slow if the process is highly persistent and only a few autocovariances are desired. ''' #increase length of impulse response for AR closer to 1 #maybe cheap/fast enough to always keep nobs for ir large if np.abs(np.sum(ar)-1) > 0.9: nobs_ir = max(1000, 2 * nobs) # no idea right now how large is needed else: nobs_ir = max(100, 2 * nobs) # no idea right now ir = arma_impulse_response(ar, ma, nobs=nobs_ir) #better save than sorry (?), I have no idea about the required precision #only checked for AR(1) while ir[-1] > 5*1e-5: nobs_ir *= 10 ir = arma_impulse_response(ar, ma, nobs=nobs_ir) #again no idea where the speed break points are: if nobs_ir > 50000 and nobs < 1001: acovf = np.array([np.dot(ir[:nobs-t], ir[t:nobs]) for t in range(nobs)]) else: acovf = np.correlate(ir, ir, 'full')[len(ir)-1:] return acovf[:nobs] def arma_acf(ar, ma, nobs=10): '''theoretical autocorrelation function of an ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nobs : int number of terms (lags plus zero lag) to include in returned acf Returns ------- acf : array autocorrelation of ARMA process given by ar, ma See Also -------- arma_acovf acf acovf ''' acovf = arma_acovf(ar, ma, nobs) return acovf/acovf[0] def arma_pacf(ar, ma, nobs=10): '''partial autocorrelation function of an ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nobs : int number of terms (lags plus zero lag) to include in returned pacf Returns ------- pacf : array partial autocorrelation of ARMA process given by ar, ma Notes ----- solves yule-walker equation for each lag order up to nobs lags not tested/checked yet ''' apacf = np.zeros(nobs) acov = arma_acf(ar, ma, nobs=nobs+1) apacf[0] = 1. for k in range(2, nobs+1): r = acov[:k] apacf[k-1] = linalg.solve(linalg.toeplitz(r[:-1]), r[1:])[-1] return apacf def arma_periodogram(ar, ma, worN=None, whole=0): '''periodogram for ARMA process given by lag-polynomials ar and ma Parameters ---------- ar : array_like autoregressive lag-polynomial with leading 1 and lhs sign ma : array_like moving average lag-polynomial with leading 1 worN : {None, int}, optional option for scipy.signal.freqz (read "w or N") If None, then compute at 512 frequencies around the unit circle. If a single integer, the compute at that many frequencies. Otherwise, compute the response at frequencies given in worN whole : {0,1}, optional options for scipy.signal.freqz Normally, frequencies are computed from 0 to pi (upper-half of unit-circle. If whole is non-zero compute frequencies from 0 to 2*pi. Returns ------- w : array frequencies sd : array periodogram, spectral density Notes ----- Normalization ? This uses signal.freqz, which does not use fft. There is a fft version somewhere. ''' w, h = signal.freqz(ma, ar, worN=worN, whole=whole) sd = np.abs(h)**2/np.sqrt(2*np.pi) if np.sum(np.isnan(h)) > 0: # this happens with unit root or seasonal unit root' print('Warning: nan in frequency response h, maybe a unit root') return w, sd def arma_impulse_response(ar, ma, nobs=100): '''get the impulse response function (MA representation) for ARMA process Parameters ---------- ma : array_like, 1d moving average lag polynomial ar : array_like, 1d auto regressive lag polynomial nobs : int number of observations to calculate Returns ------- ir : array, 1d impulse response function with nobs elements Notes ----- This is the same as finding the MA representation of an ARMA(p,q). By reversing the role of ar and ma in the function arguments, the returned result is the AR representation of an ARMA(p,q), i.e ma_representation = arma_impulse_response(ar, ma, nobs=100) ar_representation = arma_impulse_response(ma, ar, nobs=100) fully tested against matlab Examples -------- AR(1) >>> arma_impulse_response([1.0, -0.8], [1.], nobs=10) array([ 1. , 0.8 , 0.64 , 0.512 , 0.4096 , 0.32768 , 0.262144 , 0.2097152 , 0.16777216, 0.13421773]) this is the same as >>> 0.8**np.arange(10) array([ 1. , 0.8 , 0.64 , 0.512 , 0.4096 , 0.32768 , 0.262144 , 0.2097152 , 0.16777216, 0.13421773]) MA(2) >>> arma_impulse_response([1.0], [1., 0.5, 0.2], nobs=10) array([ 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. , 0. ]) ARMA(1,2) >>> arma_impulse_response([1.0, -0.8], [1., 0.5, 0.2], nobs=10) array([ 1. , 1.3 , 1.24 , 0.992 , 0.7936 , 0.63488 , 0.507904 , 0.4063232 , 0.32505856, 0.26004685]) ''' impulse = np.zeros(nobs) impulse[0] = 1. return signal.lfilter(ma, ar, impulse) #alias, easier to remember arma2ma = arma_impulse_response #alias, easier to remember def arma2ar(ar, ma, nobs=100): '''get the AR representation of an ARMA process Parameters ---------- ar : array_like, 1d auto regressive lag polynomial ma : array_like, 1d moving average lag polynomial nobs : int number of observations to calculate Returns ------- ar : array, 1d coefficients of AR lag polynomial with nobs elements ` Notes ----- This is just an alias for ``ar_representation = arma_impulse_response(ma, ar, nobs=100)`` fully tested against matlab Examples -------- ''' return arma_impulse_response(ma, ar, nobs=nobs) #moved from sandbox.tsa.try_fi def ar2arma(ar_des, p, q, n=20, mse='ar', start=None): '''find arma approximation to ar process This finds the ARMA(p,q) coefficients that minimize the integrated squared difference between the impulse_response functions (MA representation) of the AR and the ARMA process. This does currently not check whether the MA lagpolynomial of the ARMA process is invertible, neither does it check the roots of the AR lagpolynomial. Parameters ---------- ar_des : array_like coefficients of original AR lag polynomial, including lag zero p, q : int length of desired ARMA lag polynomials n : int number of terms of the impuls_response function to include in the objective function for the approximation mse : string, 'ar' not used yet, Returns ------- ar_app, ma_app : arrays coefficients of the AR and MA lag polynomials of the approximation res : tuple result of optimize.leastsq Notes ----- Extension is possible if we want to match autocovariance instead of impulse response function. TODO: convert MA lag polynomial, ma_app, to be invertible, by mirroring roots outside the unit intervall to ones that are inside. How do we do this? ''' #p,q = pq def msear_err(arma, ar_des): ar, ma = np.r_[1, arma[:p-1]], np.r_[1, arma[p-1:]] ar_approx = arma_impulse_response(ma, ar, n) ## print(ar,ma) ## print(ar_des.shape, ar_approx.shape) ## print(ar_des) ## print(ar_approx) return (ar_des - ar_approx) # ((ar - ar_approx)**2).sum() if start is None: arma0 = np.r_[-0.9 * np.ones(p-1), np.zeros(q-1)] else: arma0 = start res = optimize.leastsq(msear_err, arma0, ar_des, maxfev=5000) #print(res) arma_app = np.atleast_1d(res[0]) ar_app = np.r_[1, arma_app[:p-1]], ma_app = np.r_[1, arma_app[p-1:]] return ar_app, ma_app, res def lpol2index(ar): '''remove zeros from lagpolynomial, squeezed representation with index Parameters ---------- ar : array_like coefficients of lag polynomial Returns ------- coeffs : array non-zero coefficients of lag polynomial index : array index (lags) of lagpolynomial with non-zero elements ''' ar = np.asarray(ar) index = np.nonzero(ar)[0] coeffs = ar[index] return coeffs, index def index2lpol(coeffs, index): '''expand coefficients to lag poly Parameters ---------- coeffs : array non-zero coefficients of lag polynomial index : array index (lags) of lagpolynomial with non-zero elements ar : array_like coefficients of lag polynomial Returns ------- ar : array_like coefficients of lag polynomial ''' n = max(index) ar = np.zeros(n) ar[index] = coeffs return ar #moved from sandbox.tsa.try_fi def lpol_fima(d, n=20): '''MA representation of fractional integration .. math:: (1-L)^{-d} for |d|<0.5 or |d|<1 (?) Parameters ---------- d : float fractional power n : int number of terms to calculate, including lag zero Returns ------- ma : array coefficients of lag polynomial ''' #hide import inside function until we use this heavily from scipy.special import gammaln j = np.arange(n) return np.exp(gammaln(d+j) - gammaln(j+1) - gammaln(d)) #moved from sandbox.tsa.try_fi def lpol_fiar(d, n=20): '''AR representation of fractional integration .. math:: (1-L)^{d} for |d|<0.5 or |d|<1 (?) Parameters ---------- d : float fractional power n : int number of terms to calculate, including lag zero Returns ------- ar : array coefficients of lag polynomial Notes: first coefficient is 1, negative signs except for first term, ar(L)*x_t ''' #hide import inside function until we use this heavily from scipy.special import gammaln j = np.arange(n) ar = - np.exp(gammaln(-d+j) - gammaln(j+1) - gammaln(-d)) ar[0] = 1 return ar #moved from sandbox.tsa.try_fi def lpol_sdiff(s): '''return coefficients for seasonal difference (1-L^s) just a trivial convenience function Parameters ---------- s : int number of periods in season Returns ------- sdiff : list, length s+1 ''' return [1] + [0]*(s-1) + [-1] def deconvolve(num, den, n=None): """Deconvolves divisor out of signal, division of polynomials for n terms calculates den^{-1} * num Parameters ---------- num : array_like signal or lag polynomial denom : array_like coefficients of lag polynomial (linear filter) n : None or int number of terms of quotient Returns ------- quot : array quotient or filtered series rem : array remainder Notes ----- If num is a time series, then this applies the linear filter den^{-1}. If both num and den are both lagpolynomials, then this calculates the quotient polynomial for n terms and also returns the remainder. This is copied from scipy.signal.signaltools and added n as optional parameter. """ num = np.atleast_1d(num) den = np.atleast_1d(den) N = len(num) D = len(den) if D > N and n is None: quot = [] rem = num else: if n is None: n = N-D+1 input = np.zeros(n, float) input[0] = 1 quot = signal.lfilter(num, den, input) num_approx = signal.convolve(den, quot, mode='full') if len(num) < len(num_approx): # 1d only ? num = np.concatenate((num, np.zeros(len(num_approx)-len(num)))) rem = num - num_approx return quot, rem class ArmaProcess(object): """ Represent an ARMA process for given lag-polynomials This is a class to bring together properties of the process. It does not do any estimation or statistical analysis. Parameters ---------- ar : array_like, 1d Coefficient for autoregressive lag polynomial, including zero lag. See the notes for some information about the sign. ma : array_like, 1d Coefficient for moving-average lag polynomial, including zero lag nobs : int, optional Length of simulated time series. Used, for example, if a sample is generated. See example. Notes ----- As mentioned above, both the AR and MA components should include the coefficient on the zero-lag. This is typically 1. Further, due to the conventions used in signal processing used in signal.lfilter vs. conventions in statistics for ARMA processes, the AR paramters should have the opposite sign of what you might expect. See the examples below. Examples -------- >>> import numpy as np >>> np.random.seed(12345) >>> arparams = np.array([.75, -.25]) >>> maparams = np.array([.65, .35]) >>> ar = np.r_[1, -ar] # add zero-lag and negate >>> ma = np.r_[1, ma] # add zero-lag >>> arma_process = sm.tsa.ArmaProcess(ar, ma) >>> arma_process.isstationary True >>> arma_process.isinvertible True >>> y = arma_process.generate_sample(250) >>> model = sm.tsa.ARMA(y, (2, 2)).fit(trend='nc', disp=0) >>> model.params array([ 0.79044189, -0.23140636, 0.70072904, 0.40608028]) """ # maybe needs special handling for unit roots def __init__(self, ar, ma, nobs=100): self.ar = np.asarray(ar) self.ma = np.asarray(ma) self.arcoefs = -self.ar[1:] self.macoefs = self.ma[1:] self.arpoly = np.polynomial.Polynomial(self.ar) self.mapoly = np.polynomial.Polynomial(self.ma) self.nobs = nobs @classmethod def from_coeffs(cls, arcoefs, macoefs, nobs=100): """ Create ArmaProcess instance from coefficients of the lag-polynomials Parameters ---------- arcoefs : array-like Coefficient for autoregressive lag polynomial, not including zero lag. The sign is inverted to conform to the usual time series representation of an ARMA process in statistics. See the class docstring for more information. macoefs : array-like Coefficient for moving-average lag polynomial, including zero lag nobs : int, optional Length of simulated time series. Used, for example, if a sample is generated. """ return cls(np.r_[1, -arcoefs], np.r_[1, macoefs], nobs=nobs) @classmethod def from_estimation(cls, model_results, nobs=None): """ Create ArmaProcess instance from ARMA estimation results Parameters ---------- model_results : ARMAResults instance A fitted model nobs : int, optional If None, nobs is taken from the results """ arcoefs = model_results.arparams macoefs = model_results.maparams nobs = nobs or model_results.nobs return cls(np.r_[1, -arcoefs], np.r_[1, macoefs], nobs=nobs) def __mul__(self, oth): if isinstance(oth, self.__class__): ar = (self.arpoly * oth.arpoly).coef ma = (self.mapoly * oth.mapoly).coef else: try: aroth, maoth = oth arpolyoth = np.polynomial.Polynomial(aroth) mapolyoth = np.polynomial.Polynomial(maoth) ar = (self.arpoly * arpolyoth).coef ma = (self.mapoly * mapolyoth).coef except: print('other is not a valid type') raise return self.__class__(ar, ma, nobs=self.nobs) def __repr__(self): return 'ArmaProcess(%r, %r, nobs=%d)' % (self.ar.tolist(), self.ma.tolist(), self.nobs) def __str__(self): return 'ArmaProcess\nAR: %r\nMA: %r' % (self.ar.tolist(), self.ma.tolist()) def acovf(self, nobs=None): nobs = nobs or self.nobs return arma_acovf(self.ar, self.ma, nobs=nobs) acovf.__doc__ = arma_acovf.__doc__ def acf(self, nobs=None): nobs = nobs or self.nobs return arma_acf(self.ar, self.ma, nobs=nobs) acf.__doc__ = arma_acf.__doc__ def pacf(self, nobs=None): nobs = nobs or self.nobs return arma_pacf(self.ar, self.ma, nobs=nobs) pacf.__doc__ = arma_pacf.__doc__ def periodogram(self, nobs=None): nobs = nobs or self.nobs return arma_periodogram(self.ar, self.ma, worN=nobs) periodogram.__doc__ = arma_periodogram.__doc__ def impulse_response(self, nobs=None): nobs = nobs or self.nobs return arma_impulse_response(self.ar, self.ma, worN=nobs) impulse_response.__doc__ = arma_impulse_response.__doc__ def arma2ma(self, nobs=None): nobs = nobs or self.nobs return arma2ma(self.ar, self.ma, nobs=nobs) arma2ma.__doc__ = arma2ma.__doc__ def arma2ar(self, nobs=None): nobs = nobs or self.nobs return arma2ar(self.ar, self.ma, nobs=nobs) arma2ar.__doc__ = arma2ar.__doc__ @property def arroots(self): """ Roots of autoregressive lag-polynomial """ return self.arpoly.roots() @property def maroots(self): """ Roots of moving average lag-polynomial """ return self.mapoly.roots() @property def isstationary(self): '''Arma process is stationary if AR roots are outside unit circle Returns ------- isstationary : boolean True if autoregressive roots are outside unit circle ''' if np.all(np.abs(self.arroots) > 1): return True else: return False @property def isinvertible(self): '''Arma process is invertible if MA roots are outside unit circle Returns ------- isinvertible : boolean True if moving average roots are outside unit circle ''' if np.all(np.abs(self.maroots) > 1): return True else: return False def invertroots(self, retnew=False): '''make MA polynomial invertible by inverting roots inside unit circle Parameters ---------- retnew : boolean If False (default), then return the lag-polynomial as array. If True, then return a new instance with invertible MA-polynomial Returns ------- manew : array new invertible MA lag-polynomial, returned if retnew is false. wasinvertible : boolean True if the MA lag-polynomial was already invertible, returned if retnew is false. armaprocess : new instance of class If retnew is true, then return a new instance with invertible MA-polynomial ''' #TODO: variable returns like this? pr = self.ma_roots() insideroots = np.abs(pr) < 1 if insideroots.any(): pr[np.abs(pr) < 1] = 1./pr[np.abs(pr) < 1] pnew = np.polynomial.Polynomial.fromroots(pr) mainv = pnew.coef/pnew.coef[0] wasinvertible = False else: mainv = self.ma wasinvertible = True if retnew: return self.__class__(self.ar, mainv, nobs=self.nobs) else: return mainv, wasinvertible def generate_sample(self, nsample=100, scale=1., distrvs=None, axis=0, burnin=0): '''generate ARMA samples Parameters ---------- nsample : int or tuple of ints If nsample is an integer, then this creates a 1d timeseries of length size. If nsample is a tuple, then the timeseries is along axis. All other axis have independent arma samples. scale : float standard deviation of noise distrvs : function, random number generator function that generates the random numbers, and takes sample size as argument default: np.random.randn TODO: change to size argument burnin : integer (default: 0) to reduce the effect of initial conditions, burnin observations at the beginning of the sample are dropped axis : int See nsample. Returns ------- rvs : ndarray random sample(s) of arma process Notes ----- Should work for n-dimensional with time series along axis, but not tested yet. Processes are sampled independently. ''' if distrvs is None: distrvs = np.random.normal if np.ndim(nsample) == 0: nsample = [nsample] if burnin: #handle burin time for nd arrays #maybe there is a better trick in scipy.fft code newsize = list(nsample) newsize[axis] += burnin newsize = tuple(newsize) fslice = [slice(None)]*len(newsize) fslice[axis] = slice(burnin, None, None) fslice = tuple(fslice) else: newsize = tuple(nsample) fslice = tuple([slice(None)]*np.ndim(newsize)) eta = scale * distrvs(size=newsize) return signal.lfilter(self.ma, self.ar, eta, axis=axis)[fslice] __all__ = ['arma_acf', 'arma_acovf', 'arma_generate_sample', 'arma_impulse_response', 'arma2ar', 'arma2ma', 'deconvolve', 'lpol2index', 'index2lpol'] if __name__ == '__main__': # Simulate AR(1) #-------------- # ar * y = ma * eta ar = [1, -0.8] ma = [1.0] # generate AR data eta = 0.1 * np.random.randn(1000) yar1 = signal.lfilter(ar, ma, eta) print("\nExample 0") arest = ARIMAProcess(yar1) rhohat, cov_x, infodict, mesg, ier = arest.fit((1,0,1)) print(rhohat) print(cov_x) print("\nExample 1") ar = [1.0, -0.8] ma = [1.0, 0.5] y1 = arest.generate_sample(ar,ma,1000,0.1) arest = ARIMAProcess(y1) rhohat1, cov_x1, infodict, mesg, ier = arest.fit((1,0,1)) print(rhohat1) print(cov_x1) err1 = arest.errfn(x=y1) print(np.var(err1)) import statsmodels.api as sm print(sm.regression.yule_walker(y1, order=2, inv=True)) print("\nExample 2") nsample = 1000 ar = [1.0, -0.6, -0.1] ma = [1.0, 0.3, 0.2] y2 = ARIMA.generate_sample(ar,ma,nsample,0.1) arest2 = ARIMAProcess(y2) rhohat2, cov_x2, infodict, mesg, ier = arest2.fit((1,0,2)) print(rhohat2) print(cov_x2) err2 = arest.errfn(x=y2) print(np.var(err2)) print(arest2.rhoy) print(arest2.rhoe) print("true") print(ar) print(ma) rhohat2a, cov_x2a, infodict, mesg, ier = arest2.fit((2,0,2)) print(rhohat2a) print(cov_x2a) err2a = arest.errfn(x=y2) print(np.var(err2a)) print(arest2.rhoy) print(arest2.rhoe) print("true") print(ar) print(ma) print(sm.regression.yule_walker(y2, order=2, inv=True)) print("\nExample 20") nsample = 1000 ar = [1.0]#, -0.8, -0.4] ma = [1.0, 0.5, 0.2] y3 = ARIMA.generate_sample(ar,ma,nsample,0.01) arest20 = ARIMAProcess(y3) rhohat3, cov_x3, infodict, mesg, ier = arest20.fit((2,0,0)) print(rhohat3) print(cov_x3) err3 = arest20.errfn(x=y3) print(np.var(err3)) print(np.sqrt(np.dot(err3,err3)/nsample)) print(arest20.rhoy) print(arest20.rhoe) print("true") print(ar) print(ma) rhohat3a, cov_x3a, infodict, mesg, ier = arest20.fit((0,0,2)) print(rhohat3a) print(cov_x3a) err3a = arest20.errfn(x=y3) print(np.var(err3a)) print(np.sqrt(np.dot(err3a,err3a)/nsample)) print(arest20.rhoy) print(arest20.rhoe) print("true") print(ar) print(ma) print(sm.regression.yule_walker(y3, order=2, inv=True)) print("\nExample 02") nsample = 1000 ar = [1.0, -0.8, 0.4] #-0.8, -0.4] ma = [1.0]#, 0.8, 0.4] y4 = ARIMA.generate_sample(ar,ma,nsample) arest02 = ARIMAProcess(y4) rhohat4, cov_x4, infodict, mesg, ier = arest02.fit((2,0,0)) print(rhohat4) print(cov_x4) err4 = arest02.errfn(x=y4) print(np.var(err4)) sige = np.sqrt(np.dot(err4,err4)/nsample) print(sige) print(sige * np.sqrt(np.diag(cov_x4))) print(np.sqrt(np.diag(cov_x4))) print(arest02.rhoy) print(arest02.rhoe) print("true") print(ar) print(ma) rhohat4a, cov_x4a, infodict, mesg, ier = arest02.fit((0,0,2)) print(rhohat4a) print(cov_x4a) err4a = arest02.errfn(x=y4) print(np.var(err4a)) sige = np.sqrt(np.dot(err4a,err4a)/nsample) print(sige) print(sige * np.sqrt(np.diag(cov_x4a))) print(np.sqrt(np.diag(cov_x4a))) print(arest02.rhoy) print(arest02.rhoe) print("true") print(ar) print(ma) import statsmodels.api as sm print(sm.regression.yule_walker(y4, order=2, method='mle', inv=True)) import matplotlib.pyplot as plt plt.plot(arest2.forecast()[-100:]) #plt.show() ar1, ar2 = ([1, -0.4], [1, 0.5]) ar2 = [1, -1] lagpolyproduct = np.convolve(ar1, ar2) print(deconvolve(lagpolyproduct, ar2, n=None)) print(signal.deconvolve(lagpolyproduct, ar2)) print(deconvolve(lagpolyproduct, ar2, n=10))
bsd-3-clause
scollis/SHARPpy
sharppy/viz/map.py
6
25946
import numpy as np import sharppy from PySide import QtGui, QtCore import sys, os import re import urllib2 class Mapper(object): data_dir = os.path.join(os.path.dirname(sharppy.__file__), 'databases', 'shapefiles') min_lat = {'npstere':0., 'merc':-30., 'spstere':-90.} max_lat = {'npstere':90., 'merc':30., 'spstere':0.} def __init__(self, lambda_0, phi_0, proj='npstere'): self.proj = proj self.lambda_0 = lambda_0 self.phi_0 = phi_0 if proj == 'spstere': self.phi_0 = -np.abs(self.phi_0) self.m = 6.6667e-7 self.rad_earth = 6.371e8 self._bnds = {} def getLambda0(self): return self.lambda_0 def setLambda0(self, lambda_0): self.lambda_0 = lambda_0 def getPhi0(self): return self.phi_0 def setProjection(self, proj): if proj not in ['npstere', 'spstere', 'merc']: raise ValueError("Projection must be one of 'npstere', 'spstere', or 'merc'; got '%s'." % proj) self.proj = proj if proj == 'spstere': self.phi_0 = -np.abs(self.phi_0) elif proj == 'npstere': self.phi_0 = np.abs(self.phi_0) def getProjection(self): return self.proj def getCoordPaths(self): path = QtGui.QPainterPath() lb_lat, ub_lat = Mapper.min_lat[self.proj], Mapper.max_lat[self.proj] if self.proj == 'npstere': for lon in xrange(0, 360, 20): lats = np.linspace(lb_lat, ub_lat, 2) lx, ly = self(lats, lon) path.moveTo(lx[0], ly[0]) for x, y in zip(lx, ly)[1:]: path.lineTo(x, y) for lat in xrange(int(lb_lat), int(ub_lat), 15): lons = np.arange(self.getLambda0(), self.getLambda0() + 360, 90) rx, ry = self(lat, lons) x_min, x_max = rx.min(), rx.max() y_min, y_max = ry.min(), ry.max() path.addEllipse(x_min, y_min, x_max - x_min, y_max - y_min) elif self.proj == 'merc': for lon in xrange(-180, 180 + 20, 20): lats = np.linspace(lb_lat, ub_lat, 2) lx, ly = self(lats, lon) path.moveTo(lx[0], ly[0]) for x, y in zip(lx, ly)[1:]: path.lineTo(x, y) for lat in xrange(int(lb_lat), int(ub_lat) + 10, 10): lons = np.linspace(-180, 180, 2) lx, ly = self(lat, lons) path.moveTo(lx[0], ly[0]) for x, y in zip(lx, ly)[1:]: path.lineTo(x, y) elif self.proj == 'spstere': for lon in xrange(0, 360, 20): lats = np.linspace(lb_lat, ub_lat, 2) lx, ly = self(lats, lon) path.moveTo(lx[0], ly[0]) for x, y in zip(lx, ly)[1:]: path.lineTo(x, y) for lat in xrange(int(ub_lat), int(lb_lat), -15): lons = np.arange(self.getLambda0(), self.getLambda0() + 360, 90) rx, ry = self(lat, lons) x_min, x_max = rx.min(), rx.max() y_min, y_max = ry.min(), ry.max() path.addEllipse(x_min, y_min, x_max - x_min, y_max - y_min) return path def getLatBounds(self): return Mapper.min_lat[self.proj], Mapper.max_lat[self.proj] def __call__(self, coord1, coord2, inverse=False): if inverse: if self.proj in ['npstere', 'spstere']: return self._xytoll_stere(coord1, coord2, self.lambda_0, self.phi_0, self.m, self.rad_earth) elif self.proj in ['merc']: return self._xytoll_merc(coord1, coord2, self.lambda_0, self.m, self.rad_earth) else: if self.proj in ['npstere', 'spstere']: return self._lltoxy_stere(coord1, coord2, self.lambda_0, self.phi_0, self.m, self.rad_earth) elif self.proj in ['merc']: return self._lltoxy_merc(coord1, coord2, self.lambda_0, self.m, self.rad_earth) # Functions to perform the map transformation to North Pole Stereographic # Equations from the SoM OBAN 2014 class # Functions adapted for either hemisphere and inverse transformations added by Tim Supinie, April 2015 def _get_sigma(self, phi_0, lats, south_hemis=False): sign = -1 if south_hemis else 1 sigma = (1. + np.sin(np.radians(sign * phi_0))) / (1. + np.sin(np.radians(sign * lats))) return sigma def _get_shifted_lon(self, lambda_0, lons, south_hemis=False): sign = -1 if south_hemis else 1 return sign * (lambda_0 - lons) def _lltoxy_stere(self, lats, lons, lambda_0, phi_0, m, rad_earth): sigma = self._get_sigma(phi_0, lats, south_hemis=(phi_0 < 0)) lambdas = np.radians(self._get_shifted_lon(lambda_0 + 90, lons, south_hemis=(phi_0 < 0))) x = m * sigma * rad_earth * np.cos(np.radians(lats)) * np.cos(lambdas) y = m * sigma * rad_earth * np.cos(np.radians(lats)) * np.sin(lambdas) return x, y def _xytoll_stere(self, xs, ys, lambda_0, phi_0, m, rad_earth): sign = -1 if (phi_0 < 0) else 1 lon = (lambda_0 + 90 - sign * np.degrees(np.arctan2(ys, xs))) lat = sign * np.degrees(2 * np.arctan(rad_earth * m * (1 + sign * np.sin(np.radians(phi_0))) / np.hypot(xs, ys)) - np.pi / 2) if lon < -180: lon += 360 elif lon > 180: lon -= 360 return lat, lon # Function to perform map transformation to and from Mercator projection def _lltoxy_merc(self, lats, lons, lambda_0, m, rad_earth): x = m * rad_earth * (np.radians(lons) - np.radians(lambda_0)) y = -m * rad_earth * np.log(np.tan(np.pi / 4 + np.radians(lats) / 2)) if type(x) in [ np.ndarray ] or type(y) in [ np.ndarray ]: if type(x) not in [ np.ndarray ]: x = x * np.ones(y.shape) if type(y) not in [ np.ndarray ]: y = y * np.ones(x.shape) return x, y def _xytoll_merc(self, xs, ys, lambda_0, m, rad_earth): lon = np.degrees(np.radians(lambda_0) + xs / (m * rad_earth)) lat = -np.degrees(2 * np.arctan(np.exp(ys / (m * rad_earth))) - np.pi / 2) return lat, lon def _loadDat(self, name, res): """ Code shamelessly lifted from Basemap's data file parser by Jeff Whitaker. http://matplotlib.org/basemap/ """ def segmentPath(b, lb_lat, ub_lat): paths = [] if b[:, 1].max() <= lb_lat or b[:, 1].min() >= ub_lat: return paths idxs = np.where((b[:, 1] >= lb_lat) & (b[:, 1] <= ub_lat))[0] if len(idxs) < 2: return paths segs = (np.diff(idxs) == 1) try: breaks = np.where(segs == 0)[0] + 1 except IndexError: breaks = [] breaks = [ 0 ] + list(breaks) + [ -1 ] for idx in xrange(len(breaks) - 1): if breaks[idx + 1] == -1: seg_idxs = idxs[breaks[idx]:] else: seg_idxs = idxs[breaks[idx]:breaks[idx + 1]] if len(seg_idxs) >= 2: paths.append(b[seg_idxs, ::-1]) return paths bdatfile = open(os.path.join(Mapper.data_dir, name + '_' + res + '.dat'), 'rb') bdatmetafile = open(os.path.join(Mapper.data_dir, name + 'meta_' + res + '.dat'), 'r') projs = ['npstere', 'merc', 'spstere'] paths = dict( (p, []) for p in projs ) # old_proj = self.proj for line in bdatmetafile: lats, lons = [], [] linesplit = line.split() area = float(linesplit[1]) south = float(linesplit[3]) north = float(linesplit[4]) if area < 0: area = 1e30 if area > 1500.: typ = int(linesplit[0]) npts = int(linesplit[2]) offsetbytes = int(linesplit[5]) bytecount = int(linesplit[6]) bdatfile.seek(offsetbytes,0) # read in binary string convert into an npts by 2 # numpy array (first column is lons, second is lats). polystring = bdatfile.read(bytecount) # binary data is little endian. b = np.array(np.fromstring(polystring,dtype='<f4'),'f8') b.shape = (npts, 2) if np.any(b[:, 0] > 180): b[:, 0] -= 360 for proj in projs: lb_lat, ub_lat = Mapper.min_lat[proj], Mapper.max_lat[proj] path = segmentPath(b, lb_lat, ub_lat) paths[proj].extend(path) return paths def getBoundary(self, name): if name == 'coastlines': name = 'gshhs' if name == 'states': res = 'h' elif name == 'uscounties': res = 'f' else: res = 'i' if name not in self._bnds: self._bnds[name] = self._loadDat(name, res) paths = [] for bnd in self._bnds[name][self.proj]: path = QtGui.QPainterPath() path_lats, path_lons = zip(*bnd) path_x, path_y = self(np.array(path_lats), np.array(path_lons)) path.moveTo(path_x[0], path_y[0]) for px, py in zip(path_x, path_y)[1:]: path.lineTo(px, py) paths.append(path) return paths class MapWidget(QtGui.QWidget): clicked = QtCore.Signal(dict) def __init__(self, data_source, init_time, async, **kwargs): config = kwargs.get('cfg', None) del kwargs['cfg'] super(MapWidget, self).__init__(**kwargs) self.trans_x, self.trans_y = 0., 0. self.center_x, self.center_y = 0., 0. self.init_drag_x, self.init_drag_y = None, None self.dragging = False self.map_rot = 0.0 self.setMouseTracking(True) self.has_internet = True self.init_scale = 0.6 if config is None or not config.has_section('map'): self.scale = self.init_scale self.map_center_x, self.map_center_y = 0., 0. std_lon = -97.5 proj = 'npstere' init_from_config = False else: proj = config.get('map', 'proj') std_lon = float(config.get('map', 'std_lon')) self.scale = float(config.get('map', 'scale')) self.map_center_x = float(config.get('map', 'center_x')) self.map_center_y = float(config.get('map', 'center_y')) init_from_config = True self.mapper = Mapper(std_lon, 60., proj=proj) self.stn_lats = np.array([]) self.stn_lons = np.array([]) self.stn_ids = [] self.stn_names = [] self.default_width, self.default_height = self.width(), self.height() self.setMinimumSize(self.width(), self.height()) self.clicked_stn = None self.stn_readout = QtGui.QLabel(parent=self) self.stn_readout.setStyleSheet("QLabel { background-color:#000000; border-width: 0px; font-size: 16px; color: #FFFFFF; }") self.stn_readout.setText("") self.stn_readout.show() self.stn_readout.move(self.width(), self.height()) self.load_readout = QtGui.QLabel(parent=self) self.load_readout.setStyleSheet("QLabel { background-color:#000000; border-width: 0px; font-size: 18px; color: #FFFFFF; }") self.load_readout.setText("Loading ...") self.load_readout.setFixedWidth(100) self.load_readout.show() self.load_readout.move(self.width(), self.height()) self.latlon_readout = QtGui.QLabel(parent=self) self.latlon_readout.setStyleSheet("QLabel { background-color:#000000; border-width: 0px; font-size: 18px; color: #FFFFFF; }") self.latlon_readout.setText("") self.latlon_readout.setFixedWidth(150) self.latlon_readout.show() self.latlon_readout.move(10, 10) self.no_internet = QtGui.QLabel(parent=self) self.no_internet.setStyleSheet("QLabel { background-color:#000000; border-width: 0px; font-size: 32px; color: #FFFFFF; }") self.no_internet.setText("No Internet Connection") self.no_internet.show() txt_width = self.no_internet.fontMetrics().width(self.no_internet.text()) self.no_internet.setFixedWidth(txt_width) self.no_internet.move(self.width(), self.height()) self.async = async self.setDataSource(data_source, init_time, init=True) self.setWindowTitle('SHARPpy') if not init_from_config: self.resetViewport() self.saveProjection(config) self.initMap() self.initUI() def initUI(self): self.center_x, self.center_y = self.width() / 2, self.height() / 2 self.plotBitMap = QtGui.QPixmap(self.width(), self.height()) self.drawMap() def initMap(self): self._coast_path = self.mapper.getBoundary('coastlines') self._country_path = self.mapper.getBoundary('countries') self._state_path = self.mapper.getBoundary('states') self._county_path = self.mapper.getBoundary('uscounties') self._grid_path = self.mapper.getCoordPaths() def setDataSource(self, data_source, data_time, init=False): self.cur_source = data_source self.setCurrentTime(data_time, init=init) def setCurrentTime(self, data_time, init=False): self.current_time = data_time self.clicked_stn = None self.clicked.emit(None) self._showLoading() getPoints = lambda: self.cur_source.getAvailableAtTime(self.current_time) def update(points): self.points = points[0] self.stn_lats = np.array([ p['lat'] for p in self.points ]) self.stn_lons = np.array([ p['lon'] for p in self.points ]) self.stn_ids = [ p['srcid'] for p in self.points ] self.stn_names = [] for p in self.points: if p['icao'] != "": id_str = " (%s)" % p['icao'] else: id_str = "" if p['state'] != "": pol_str = ", %s" % p['state'] elif p['country'] != "": pol_str = ", %s" % p['country'] else: pol_str = "" nm = p['name'] if id_str == "" and pol_str == "": nm = nm.upper() name = "%s%s%s" % (nm, pol_str, id_str) self.stn_names.append(name) self._hideLoading() if not init: self.drawMap() self.update() if init: points = getPoints() update([ points ]) else: self.async.post(getPoints, update) def setProjection(self, proj): self.mapper.setProjection(proj) self.resetViewport() self._showLoading() def update(args): self.resetViewport() self.drawMap() self._hideLoading() self.update() return self.async.post(self.initMap, update) def resetViewport(self, ctr_lat=None, ctr_lon=None): self.map_center_x = self.width() / 2 if ctr_lat is not None and ctr_lon is not None: center_x, center_y = self.mapper(ctr_lat, ctr_lon) self.map_center_y = -center_y + self.height() / 2 self.map_center_y = self.center_y - (self.center_y - self.map_center_y) / self.scale else: self.scale = self.init_scale proj = self.mapper.getProjection() if proj == 'npstere': self.map_center_y = -13 * self.height() / 10 + self.height() / 2 elif proj == 'merc': self.map_center_y = self.height() / 2 elif proj == 'spstere': self.map_center_y = 13 * self.height() / 10 + self.height() / 2 def drawMap(self): qp = QtGui.QPainter() qp.begin(self.plotBitMap) # qp.rotate(self.map_rot) self.plotBitMap.fill(QtCore.Qt.black) map_center_x = self.map_center_x + self.trans_x map_center_y = self.map_center_y + self.trans_y qp.translate(map_center_x, map_center_y) qp.scale(1. / self.scale, 1. / self.scale) self.transform = qp.transform() window_rect = QtCore.QRect(0, 0, self.width(), self.height()) qp.setPen(QtGui.QPen(QtGui.QColor('#333333'))) #, self.scale, QtCore.Qt.DashLine qp.drawPath(self._grid_path) # Modify the scale thresholds according to the ratio of the area of the plot to the default area default_area = self.default_width * self.default_height actual_area = self.width() * self.height() scaled_area = np.sqrt(default_area / float(actual_area)) if self.scale < 0.15 * scaled_area: max_comp = 102 full_scale = 0.10 * scaled_area zero_scale = 0.15 * scaled_area comp = max_comp * min(max((zero_scale - self.scale) / (zero_scale - full_scale), 0), 1) color = '#' + ("{0:02x}".format(int(round(comp)))) * 3 qp.setPen(QtGui.QPen(QtGui.QColor(color))) for cp in self._county_path: if self.transform.mapRect(cp.boundingRect()).intersects(window_rect): qp.drawPath(cp) qp.setPen(QtGui.QPen(QtGui.QColor('#999999'))) for sp in self._state_path: if self.transform.mapRect(sp.boundingRect()).intersects(window_rect): qp.drawPath(sp) qp.setPen(QtGui.QPen(QtCore.Qt.white)) for cp in self._coast_path: if self.transform.mapRect(cp.boundingRect()).intersects(window_rect): qp.drawPath(cp) for cp in self._country_path: if self.transform.mapRect(cp.boundingRect()).intersects(window_rect): qp.drawPath(cp) self.drawStations(qp) qp.end() def drawStations(self, qp): stn_xs, stn_ys = self.mapper(self.stn_lats, self.stn_lons) lb_lat, ub_lat = self.mapper.getLatBounds() size = 3 * self.scale unselected_color = QtCore.Qt.red selected_color = QtCore.Qt.green window_rect = QtCore.QRect(0, 0, self.width(), self.height()) clicked_x, clicked_y, clicked_lat, clicked_id = None, None, None, None color = unselected_color for stn_x, stn_y, stn_lat, stn_id in zip(stn_xs, stn_ys, self.stn_lats, self.stn_ids): if self.clicked_stn == stn_id: clicked_x = stn_x clicked_y = stn_y clicked_lat = stn_lat clicked_id = stn_id else: if lb_lat <= stn_lat and stn_lat <= ub_lat and window_rect.contains(*self.transform.map(stn_x, stn_y)): qp.setPen(QtGui.QPen(color)) qp.setBrush(QtGui.QBrush(color)) qp.drawEllipse(QtCore.QPointF(stn_x, stn_y), size, size) color = selected_color if lb_lat <= clicked_lat and clicked_lat <= ub_lat and window_rect.contains(*self.transform.map(clicked_x, clicked_y)): qp.setPen(QtGui.QPen(color)) qp.setBrush(QtGui.QBrush(color)) qp.drawEllipse(QtCore.QPointF(clicked_x, clicked_y), size, size) def paintEvent(self, e): qp = QtGui.QPainter() qp.begin(self) qp.drawPixmap(0, 0, self.plotBitMap) qp.end() def resizeEvent(self, e): old_size = e.oldSize() new_size = e.size() if old_size.width() == -1 and old_size.height() == -1: old_size = self.size() self.map_center_x += (new_size.width() - old_size.width()) / 2. self.map_center_y += (new_size.height() - old_size.height()) / 2. self._hideLoading() self.hasInternet(self.has_internet) self.initUI() def mousePressEvent(self, e): self.init_drag_x, self.init_drag_y = e.x(), e.y() def mouseMoveEvent(self, e): if self.init_drag_x is not None and self.init_drag_y is not None: self.dragging = True self.trans_x = e.x() - self.init_drag_x self.trans_y = e.y() - self.init_drag_y self.drawMap() self.update() self._checkStations(e) trans_inv, is_invertible = self.transform.inverted() mouse_x, mouse_y = trans_inv.map(e.x(), e.y()) lat, lon = self.mapper(mouse_x, mouse_y, inverse=True) self.latlon_readout.setText("%.3f; %.3f" % (lat, lon)) def mouseReleaseEvent(self, e): self.init_drag_x, self.init_drag_y = None, None self.map_center_x += self.trans_x self.map_center_y += self.trans_y self.trans_x, self.trans_y = 0, 0 if not self.dragging and len(self.stn_lats) > 0: stn_xs, stn_ys = self.mapper(self.stn_lats, self.stn_lons) stn_xs, stn_ys = zip(*[ self.transform.map(sx, sy) for sx, sy in zip(stn_xs, stn_ys) ]) stn_xs = np.array(stn_xs) stn_ys = np.array(stn_ys) dists = np.hypot(stn_xs - e.x(), stn_ys - e.y()) stn_idx = np.argmin(dists) if dists[stn_idx] <= 5: self.clicked_stn = self.stn_ids[stn_idx] self.clicked.emit(self.points[stn_idx]) self.drawMap() self.update() self.dragging = False def mouseDoubleClickEvent(self, e): trans_inv, is_invertible = self.transform.inverted() mouse_x, mouse_y = trans_inv.map(e.x(), e.y()) lat, lon = self.mapper(mouse_x, mouse_y, inverse=True) self.mapper.setLambda0(lon) self._showLoading() def update(args): self.resetViewport(ctr_lat=lat, ctr_lon=lon) self.drawMap() self._hideLoading() self.update() return self.async.post(self.initMap, update) def wheelEvent(self, e): max_speed = 75 delta = max(min(-e.delta(), max_speed), -max_speed) scale_fac = 10 ** (delta / 1000.) scaled_size = float(min(self.default_width, self.default_height)) / min(self.width(), self.height()) if self.scale * scale_fac > 2.5 * scaled_size: scale_fac = 2.5 * scaled_size / self.scale self.scale *= scale_fac self.map_center_x = self.center_x - (self.center_x - self.map_center_x) / scale_fac self.map_center_y = self.center_y - (self.center_y - self.map_center_y) / scale_fac self.drawMap() self._checkStations(e) self.update() def saveProjection(self, config): map_center_x = self.map_center_x + (self.default_width - self.width() ) / 2. map_center_y = self.map_center_y + (self.default_height - self.height()) / 2. if not config.has_section('map'): config.add_section('map') config.set('map', 'proj', self.mapper.getProjection()) config.set('map', 'std_lon', self.mapper.getLambda0()) config.set('map', 'scale', self.scale) config.set('map', 'center_x', map_center_x) config.set('map', 'center_y', map_center_y) def hasInternet(self, has_connection): self.has_internet = has_connection if has_connection: self.no_internet.move(self.width(), self.height()) else: met = self.no_internet.fontMetrics() txt_width = met.width(self.no_internet.text()) txt_height = met.height() self.no_internet.move((self.width() - txt_width) / 2, (self.height() - txt_height) / 2) def _showLoading(self): self.load_readout.move(10, self.height() - 25) def _hideLoading(self): self.load_readout.move(self.width(), self.height()) def _checkStations(self, e): stn_xs, stn_ys = self.mapper(self.stn_lats, self.stn_lons) if len(stn_xs) == 0 or len(stn_ys) == 0: return stn_xs, stn_ys = zip(*[ self.transform.map(sx, sy) for sx, sy in zip(stn_xs, stn_ys) ]) stn_xs = np.array(stn_xs) stn_ys = np.array(stn_ys) dists = np.hypot(stn_xs - e.x(), stn_ys - e.y()) stn_idx = np.argmin(dists) if dists[stn_idx] <= 5: stn_x, stn_y = stn_xs[stn_idx], stn_ys[stn_idx] fm = QtGui.QFontMetrics(QtGui.QFont(self.font().rawName(), 16)) label_offset = 5 align = 0 if stn_x > self.width() / 2: sgn_x = -1 label_x = stn_x - fm.width(self.stn_names[stn_idx]) align |= QtCore.Qt.AlignRight else: sgn_x = 1 label_x = stn_x align |= QtCore.Qt.AlignLeft if stn_y > self.height() / 2: sgn_y = -1 label_y = stn_y - fm.height() align |= QtCore.Qt.AlignBottom else: sgn_y = 1 label_y = stn_y align |= QtCore.Qt.AlignTop self.stn_readout.setText(self.stn_names[stn_idx]) self.stn_readout.move(label_x + sgn_x * label_offset, label_y + sgn_y * label_offset) self.stn_readout.setFixedWidth(fm.width(self.stn_names[stn_idx])) self.stn_readout.setAlignment(align) self.setCursor(QtCore.Qt.PointingHandCursor) else: self.stn_readout.setText("") self.stn_readout.setFixedWidth(0) self.stn_readout.move(self.width(), self.height()) self.stn_readout.setAlignment(QtCore.Qt.AlignLeft) self.unsetCursor()
bsd-3-clause
UpSea/midProjects
01_aat-ebook-full-source-code-20160430/chapter4/bayes-binomial-mcmc.py
1
1675
import matplotlib.pyplot as plt import numpy as np import pymc3 import scipy.stats as stats plt.style.use("ggplot") # Parameter values for prior and analytic posterior n = 50 z = 10 alpha = 12 beta = 12 alpha_post = 22 beta_post = 52 # How many samples to carry out for MCMC iterations = 100000 # Use PyMC3 to construct a model context basic_model = pymc3.Model() with basic_model: # Define our prior belief about the fairness # of the coin using a Beta distribution theta = pymc3.Beta("theta", alpha=alpha, beta=beta) # Define the Bernoulli likelihood function y = pymc3.Binomial("y", n=n, p=theta, observed=z) # Carry out the MCMC analysis using the Metropolis algorithm # Use Maximum A Posteriori (MAP) optimisation as initial value for MCMC start = pymc3.find_MAP() # Use the Metropolis algorithm (as opposed to NUTS or HMC, etc.) step = pymc3.Metropolis() # Calculate the trace trace = pymc3.sample(iterations, step, start, random_seed=1, progressbar=True) # Plot the posterior histogram from MCMC analysis bins=50 plt.hist( trace["theta"], bins, histtype="step", normed=True, label="Posterior (MCMC)", color="red" ) # Plot the analytic prior and posterior beta distributions x = np.linspace(0, 1, 100) plt.plot( x, stats.beta.pdf(x, alpha, beta), "--", label="Prior", color="blue" ) plt.plot( x, stats.beta.pdf(x, alpha_post, beta_post), label='Posterior (Analytic)', color="green" ) # Update the graph labels plt.legend(title="Parameters", loc="best") plt.xlabel("$\\theta$, Fairness") plt.ylabel("Density") plt.show() # Show the trace plot pymc3.traceplot(trace) plt.show()
mit
depet/scikit-learn
examples/linear_model/plot_logistic_l1_l2_sparsity.py
8
2588
""" ============================================== L1 Penalty and Sparsity in Logistic Regression ============================================== Comparison of the sparsity (percentage of zero coefficients) of solutions when L1 and L2 penalty are used for different values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C constrain the model more. In the L1 penalty case, this leads to sparser solutions. We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models for varying C. """ print(__doc__) # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Andreas Mueller <[email protected]> # License: BSD 3 clause import numpy as np import pylab as pl from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.preprocessing import StandardScaler digits = datasets.load_digits() X, y = digits.data, digits.target X = StandardScaler().fit_transform(X) # classify small against large digits y = (y > 4).astype(np.int) # Set regularization parameter for i, C in enumerate(10. ** np.arange(1, 4)): # turn down tolerance for short training time clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01) clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01) clf_l1_LR.fit(X, y) clf_l2_LR.fit(X, y) coef_l1_LR = clf_l1_LR.coef_.ravel() coef_l2_LR = clf_l2_LR.coef_.ravel() # coef_l1_LR contains zeros due to the # L1 sparsity inducing norm sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100 sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100 print("C=%d" % C) print("Sparsity with L1 penalty: %.2f%%" % sparsity_l1_LR) print("score with L1 penalty: %.4f" % clf_l1_LR.score(X, y)) print("Sparsity with L2 penalty: %.2f%%" % sparsity_l2_LR) print("score with L2 penalty: %.4f" % clf_l2_LR.score(X, y)) l1_plot = pl.subplot(3, 2, 2 * i + 1) l2_plot = pl.subplot(3, 2, 2 * (i + 1)) if i == 0: l1_plot.set_title("L1 penalty") l2_plot.set_title("L2 penalty") l1_plot.imshow(np.abs(coef_l1_LR.reshape(8, 8)), interpolation='nearest', cmap='binary', vmax=1, vmin=0) l2_plot.imshow(np.abs(coef_l2_LR.reshape(8, 8)), interpolation='nearest', cmap='binary', vmax=1, vmin=0) pl.text(-8, 3, "C = %d" % C) l1_plot.set_xticks(()) l1_plot.set_yticks(()) l2_plot.set_xticks(()) l2_plot.set_yticks(()) pl.show()
bsd-3-clause
anntzer/scikit-learn
sklearn/compose/_column_transformer.py
2
33357
""" The :mod:`sklearn.compose._column_transformer` module implements utilities to work with heterogeneous data and to apply different transformers to different columns. """ # Author: Andreas Mueller # Joris Van den Bossche # License: BSD from itertools import chain import numpy as np from scipy import sparse from joblib import Parallel from ..base import clone, TransformerMixin from ..utils._estimator_html_repr import _VisualBlock from ..pipeline import _fit_transform_one, _transform_one, _name_estimators from ..preprocessing import FunctionTransformer from ..utils import Bunch from ..utils import _safe_indexing from ..utils import _get_column_indices from ..utils.metaestimators import _BaseComposition from ..utils.validation import check_array, check_is_fitted from ..utils.validation import _deprecate_positional_args from ..utils.fixes import delayed __all__ = [ 'ColumnTransformer', 'make_column_transformer', 'make_column_selector' ] _ERR_MSG_1DCOLUMN = ("1D data passed to a transformer that expects 2D data. " "Try to specify the column selection as a list of one " "item instead of a scalar.") class ColumnTransformer(TransformerMixin, _BaseComposition): """Applies transformers to columns of an array or pandas DataFrame. This estimator allows different columns or column subsets of the input to be transformed separately and the features generated by each transformer will be concatenated to form a single feature space. This is useful for heterogeneous or columnar data, to combine several feature extraction mechanisms or transformations into a single transformer. Read more in the :ref:`User Guide <column_transformer>`. .. versionadded:: 0.20 Parameters ---------- transformers : list of tuples List of (name, transformer, columns) tuples specifying the transformer objects to be applied to subsets of the data. name : str Like in Pipeline and FeatureUnion, this allows the transformer and its parameters to be set using ``set_params`` and searched in grid search. transformer : {'drop', 'passthrough'} or estimator Estimator must support :term:`fit` and :term:`transform`. Special-cased strings 'drop' and 'passthrough' are accepted as well, to indicate to drop the columns or to pass them through untransformed, respectively. columns : str, array-like of str, int, array-like of int, \ array-like of bool, slice or callable Indexes the data on its second axis. Integers are interpreted as positional columns, while strings can reference DataFrame columns by name. A scalar string or int should be used where ``transformer`` expects X to be a 1d array-like (vector), otherwise a 2d array will be passed to the transformer. A callable is passed the input data `X` and can return any of the above. To select multiple columns by name or dtype, you can use :obj:`make_column_selector`. remainder : {'drop', 'passthrough'} or estimator, default='drop' By default, only the specified columns in `transformers` are transformed and combined in the output, and the non-specified columns are dropped. (default of ``'drop'``). By specifying ``remainder='passthrough'``, all remaining columns that were not specified in `transformers` will be automatically passed through. This subset of columns is concatenated with the output of the transformers. By setting ``remainder`` to be an estimator, the remaining non-specified columns will use the ``remainder`` estimator. The estimator must support :term:`fit` and :term:`transform`. Note that using this feature requires that the DataFrame columns input at :term:`fit` and :term:`transform` have identical order. sparse_threshold : float, default=0.3 If the output of the different transformers contains sparse matrices, these will be stacked as a sparse matrix if the overall density is lower than this value. Use ``sparse_threshold=0`` to always return dense. When the transformed output consists of all dense data, the stacked result will be dense, and this keyword will be ignored. n_jobs : int, default=None Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. transformer_weights : dict, default=None Multiplicative weights for features per transformer. The output of the transformer is multiplied by these weights. Keys are transformer names, values the weights. verbose : bool, default=False If True, the time elapsed while fitting each transformer will be printed as it is completed. Attributes ---------- transformers_ : list The collection of fitted transformers as tuples of (name, fitted_transformer, column). `fitted_transformer` can be an estimator, 'drop', or 'passthrough'. In case there were no columns selected, this will be the unfitted transformer. If there are remaining columns, the final element is a tuple of the form: ('remainder', transformer, remaining_columns) corresponding to the ``remainder`` parameter. If there are remaining columns, then ``len(transformers_)==len(transformers)+1``, otherwise ``len(transformers_)==len(transformers)``. named_transformers_ : :class:`~sklearn.utils.Bunch` Read-only attribute to access any transformer by given name. Keys are transformer names and values are the fitted transformer objects. sparse_output_ : bool Boolean flag indicating whether the output of ``transform`` is a sparse matrix or a dense numpy array, which depends on the output of the individual transformers and the `sparse_threshold` keyword. Notes ----- The order of the columns in the transformed feature matrix follows the order of how the columns are specified in the `transformers` list. Columns of the original feature matrix that are not specified are dropped from the resulting transformed feature matrix, unless specified in the `passthrough` keyword. Those columns specified with `passthrough` are added at the right to the output of the transformers. See Also -------- make_column_transformer : Convenience function for combining the outputs of multiple transformer objects applied to column subsets of the original feature space. make_column_selector : Convenience function for selecting columns based on datatype or the columns name with a regex pattern. Examples -------- >>> import numpy as np >>> from sklearn.compose import ColumnTransformer >>> from sklearn.preprocessing import Normalizer >>> ct = ColumnTransformer( ... [("norm1", Normalizer(norm='l1'), [0, 1]), ... ("norm2", Normalizer(norm='l1'), slice(2, 4))]) >>> X = np.array([[0., 1., 2., 2.], ... [1., 1., 0., 1.]]) >>> # Normalizer scales each row of X to unit norm. A separate scaling >>> # is applied for the two first and two last elements of each >>> # row independently. >>> ct.fit_transform(X) array([[0. , 1. , 0.5, 0.5], [0.5, 0.5, 0. , 1. ]]) """ _required_parameters = ['transformers'] @_deprecate_positional_args def __init__(self, transformers, *, remainder='drop', sparse_threshold=0.3, n_jobs=None, transformer_weights=None, verbose=False): self.transformers = transformers self.remainder = remainder self.sparse_threshold = sparse_threshold self.n_jobs = n_jobs self.transformer_weights = transformer_weights self.verbose = verbose @property def _transformers(self): """ Internal list of transformer only containing the name and transformers, dropping the columns. This is for the implementation of get_params via BaseComposition._get_params which expects lists of tuples of len 2. """ return [(name, trans) for name, trans, _ in self.transformers] @_transformers.setter def _transformers(self, value): self.transformers = [ (name, trans, col) for ((name, trans), (_, _, col)) in zip(value, self.transformers)] def get_params(self, deep=True): """Get parameters for this estimator. Returns the parameters given in the constructor as well as the estimators contained within the `transformers` of the `ColumnTransformer`. Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : dict Parameter names mapped to their values. """ return self._get_params('_transformers', deep=deep) def set_params(self, **kwargs): """Set the parameters of this estimator. Valid parameter keys can be listed with ``get_params()``. Note that you can directly set the parameters of the estimators contained in `transformers` of `ColumnTransformer`. Returns ------- self """ self._set_params('_transformers', **kwargs) return self def _iter(self, fitted=False, replace_strings=False): """ Generate (name, trans, column, weight) tuples. If fitted=True, use the fitted transformers, else use the user specified transformers updated with converted column names and potentially appended with transformer for remainder. """ if fitted: transformers = self.transformers_ else: # interleave the validated column specifiers transformers = [ (name, trans, column) for (name, trans, _), column in zip(self.transformers, self._columns) ] # add transformer tuple for remainder if self._remainder[2] is not None: transformers = chain(transformers, [self._remainder]) get_weight = (self.transformer_weights or {}).get for name, trans, column in transformers: if replace_strings: # replace 'passthrough' with identity transformer and # skip in case of 'drop' if trans == 'passthrough': trans = FunctionTransformer( accept_sparse=True, check_inverse=False ) elif trans == 'drop': continue elif _is_empty_column_selection(column): continue yield (name, trans, column, get_weight(name)) def _validate_transformers(self): if not self.transformers: return names, transformers, _ = zip(*self.transformers) # validate names self._validate_names(names) # validate estimators for t in transformers: if t in ('drop', 'passthrough'): continue if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(t, "transform")): raise TypeError("All estimators should implement fit and " "transform, or can be 'drop' or 'passthrough' " "specifiers. '%s' (type %s) doesn't." % (t, type(t))) def _validate_column_callables(self, X): """ Converts callable column specifications. """ columns = [] for _, _, column in self.transformers: if callable(column): column = column(X) columns.append(column) self._columns = columns def _validate_remainder(self, X): """ Validates ``remainder`` and defines ``_remainder`` targeting the remaining columns. """ is_transformer = ((hasattr(self.remainder, "fit") or hasattr(self.remainder, "fit_transform")) and hasattr(self.remainder, "transform")) if (self.remainder not in ('drop', 'passthrough') and not is_transformer): raise ValueError( "The remainder keyword needs to be one of 'drop', " "'passthrough', or estimator. '%s' was passed instead" % self.remainder) self._n_features = X.shape[1] cols = [] for columns in self._columns: cols.extend(_get_column_indices(X, columns)) remaining_idx = sorted(set(range(self._n_features)) - set(cols)) self._remainder = ('remainder', self.remainder, remaining_idx or None) @property def named_transformers_(self): """Access the fitted transformer by name. Read-only attribute to access any transformer by given name. Keys are transformer names and values are the fitted transformer objects. """ # Use Bunch object to improve autocomplete return Bunch(**{name: trans for name, trans, _ in self.transformers_}) def get_feature_names(self): """Get feature names from all transformers. Returns ------- feature_names : list of strings Names of the features produced by transform. """ check_is_fitted(self) feature_names = [] for name, trans, column, _ in self._iter(fitted=True): if trans == 'drop' or _is_empty_column_selection(column): continue if trans == 'passthrough': if self._feature_names_in is not None: if ((not isinstance(column, slice)) and all(isinstance(col, str) for col in column)): feature_names.extend(column) else: feature_names.extend(self._feature_names_in[column]) else: indices = np.arange(self._n_features) feature_names.extend(['x%d' % i for i in indices[column]]) continue if not hasattr(trans, 'get_feature_names'): raise AttributeError("Transformer %s (type %s) does not " "provide get_feature_names." % (str(name), type(trans).__name__)) feature_names.extend([name + "__" + f for f in trans.get_feature_names()]) return feature_names def _update_fitted_transformers(self, transformers): # transformers are fitted; excludes 'drop' cases fitted_transformers = iter(transformers) transformers_ = [] for name, old, column, _ in self._iter(): if old == 'drop': trans = 'drop' elif old == 'passthrough': # FunctionTransformer is present in list of transformers, # so get next transformer, but save original string next(fitted_transformers) trans = 'passthrough' elif _is_empty_column_selection(column): trans = old else: trans = next(fitted_transformers) transformers_.append((name, trans, column)) # sanity check that transformers is exhausted assert not list(fitted_transformers) self.transformers_ = transformers_ def _validate_output(self, result): """ Ensure that the output of each transformer is 2D. Otherwise hstack can raise an error or produce incorrect results. """ names = [name for name, _, _, _ in self._iter(fitted=True, replace_strings=True)] for Xs, name in zip(result, names): if not getattr(Xs, 'ndim', 0) == 2: raise ValueError( "The output of the '{0}' transformer should be 2D (scipy " "matrix, array, or pandas DataFrame).".format(name)) def _log_message(self, name, idx, total): if not self.verbose: return None return '(%d of %d) Processing %s' % (idx, total, name) def _fit_transform(self, X, y, func, fitted=False): """ Private function to fit and/or transform on demand. Return value (transformers and/or transformed X data) depends on the passed function. ``fitted=True`` ensures the fitted transformers are used. """ transformers = list( self._iter(fitted=fitted, replace_strings=True)) try: return Parallel(n_jobs=self.n_jobs)( delayed(func)( transformer=clone(trans) if not fitted else trans, X=_safe_indexing(X, column, axis=1), y=y, weight=weight, message_clsname='ColumnTransformer', message=self._log_message(name, idx, len(transformers))) for idx, (name, trans, column, weight) in enumerate( transformers, 1)) except ValueError as e: if "Expected 2D array, got 1D array instead" in str(e): raise ValueError(_ERR_MSG_1DCOLUMN) from e else: raise def fit(self, X, y=None): """Fit all transformers using X. Parameters ---------- X : {array-like, dataframe} of shape (n_samples, n_features) Input data, of which specified subsets are used to fit the transformers. y : array-like of shape (n_samples,...), default=None Targets for supervised learning. Returns ------- self : ColumnTransformer This estimator """ # we use fit_transform to make sure to set sparse_output_ (for which we # need the transformed data) to have consistent output type in predict self.fit_transform(X, y=y) return self def fit_transform(self, X, y=None): """Fit all transformers, transform the data and concatenate results. Parameters ---------- X : {array-like, dataframe} of shape (n_samples, n_features) Input data, of which specified subsets are used to fit the transformers. y : array-like of shape (n_samples,), default=None Targets for supervised learning. Returns ------- X_t : {array-like, sparse matrix} of \ shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. If any result is a sparse matrix, everything will be converted to sparse matrices. """ # TODO: this should be `feature_names_in_` when we start having it if hasattr(X, "columns"): self._feature_names_in = np.asarray(X.columns) else: self._feature_names_in = None X = _check_X(X) # set n_features_in_ attribute self._check_n_features(X, reset=True) self._validate_transformers() self._validate_column_callables(X) self._validate_remainder(X) result = self._fit_transform(X, y, _fit_transform_one) if not result: self._update_fitted_transformers([]) # All transformers are None return np.zeros((X.shape[0], 0)) Xs, transformers = zip(*result) # determine if concatenated output will be sparse or not if any(sparse.issparse(X) for X in Xs): nnz = sum(X.nnz if sparse.issparse(X) else X.size for X in Xs) total = sum(X.shape[0] * X.shape[1] if sparse.issparse(X) else X.size for X in Xs) density = nnz / total self.sparse_output_ = density < self.sparse_threshold else: self.sparse_output_ = False self._update_fitted_transformers(transformers) self._validate_output(Xs) return self._hstack(list(Xs)) def transform(self, X): """Transform X separately by each transformer, concatenate results. Parameters ---------- X : {array-like, dataframe} of shape (n_samples, n_features) The data to be transformed by subset. Returns ------- X_t : {array-like, sparse matrix} of \ shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. If any result is a sparse matrix, everything will be converted to sparse matrices. """ check_is_fitted(self) X = _check_X(X) if hasattr(X, "columns"): X_feature_names = np.asarray(X.columns) else: X_feature_names = None self._check_n_features(X, reset=False) if (self._feature_names_in is not None and X_feature_names is not None and np.any(self._feature_names_in != X_feature_names)): raise RuntimeError( "Given feature/column names do not match the ones for the " "data given during fit." ) Xs = self._fit_transform(X, None, _transform_one, fitted=True) self._validate_output(Xs) if not Xs: # All transformers are None return np.zeros((X.shape[0], 0)) return self._hstack(list(Xs)) def _hstack(self, Xs): """Stacks Xs horizontally. This allows subclasses to control the stacking behavior, while reusing everything else from ColumnTransformer. Parameters ---------- Xs : list of {array-like, sparse matrix, dataframe} """ if self.sparse_output_: try: # since all columns should be numeric before stacking them # in a sparse matrix, `check_array` is used for the # dtype conversion if necessary. converted_Xs = [check_array(X, accept_sparse=True, force_all_finite=False) for X in Xs] except ValueError as e: raise ValueError( "For a sparse output, all columns should " "be a numeric or convertible to a numeric." ) from e return sparse.hstack(converted_Xs).tocsr() else: Xs = [f.toarray() if sparse.issparse(f) else f for f in Xs] return np.hstack(Xs) def _sk_visual_block_(self): if isinstance(self.remainder, str) and self.remainder == 'drop': transformers = self.transformers elif hasattr(self, "_remainder"): remainder_columns = self._remainder[2] if self._feature_names_in is not None: remainder_columns = ( self._feature_names_in[remainder_columns].tolist() ) transformers = chain(self.transformers, [('remainder', self.remainder, remainder_columns)]) else: transformers = chain(self.transformers, [('remainder', self.remainder, '')]) names, transformers, name_details = zip(*transformers) return _VisualBlock('parallel', transformers, names=names, name_details=name_details) def _check_X(X): """Use check_array only on lists and other non-array-likes / sparse""" if hasattr(X, '__array__') or sparse.issparse(X): return X return check_array(X, force_all_finite='allow-nan', dtype=object) def _is_empty_column_selection(column): """ Return True if the column selection is empty (empty list or all-False boolean array). """ if hasattr(column, 'dtype') and np.issubdtype(column.dtype, np.bool_): return not column.any() elif hasattr(column, '__len__'): return (len(column) == 0 or all(isinstance(col, bool) for col in column) and not any(column)) else: return False def _get_transformer_list(estimators): """ Construct (name, trans, column) tuples from list """ transformers, columns = zip(*estimators) names, _ = zip(*_name_estimators(transformers)) transformer_list = list(zip(names, transformers, columns)) return transformer_list def make_column_transformer(*transformers, remainder='drop', sparse_threshold=0.3, n_jobs=None, verbose=False): """Construct a ColumnTransformer from the given transformers. This is a shorthand for the ColumnTransformer constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting with ``transformer_weights``. Read more in the :ref:`User Guide <make_column_transformer>`. Parameters ---------- *transformers : tuples Tuples of the form (transformer, columns) specifying the transformer objects to be applied to subsets of the data. transformer : {'drop', 'passthrough'} or estimator Estimator must support :term:`fit` and :term:`transform`. Special-cased strings 'drop' and 'passthrough' are accepted as well, to indicate to drop the columns or to pass them through untransformed, respectively. columns : str, array-like of str, int, array-like of int, slice, \ array-like of bool or callable Indexes the data on its second axis. Integers are interpreted as positional columns, while strings can reference DataFrame columns by name. A scalar string or int should be used where ``transformer`` expects X to be a 1d array-like (vector), otherwise a 2d array will be passed to the transformer. A callable is passed the input data `X` and can return any of the above. To select multiple columns by name or dtype, you can use :obj:`make_column_selector`. remainder : {'drop', 'passthrough'} or estimator, default='drop' By default, only the specified columns in `transformers` are transformed and combined in the output, and the non-specified columns are dropped. (default of ``'drop'``). By specifying ``remainder='passthrough'``, all remaining columns that were not specified in `transformers` will be automatically passed through. This subset of columns is concatenated with the output of the transformers. By setting ``remainder`` to be an estimator, the remaining non-specified columns will use the ``remainder`` estimator. The estimator must support :term:`fit` and :term:`transform`. sparse_threshold : float, default=0.3 If the transformed output consists of a mix of sparse and dense data, it will be stacked as a sparse matrix if the density is lower than this value. Use ``sparse_threshold=0`` to always return dense. When the transformed output consists of all sparse or all dense data, the stacked result will be sparse or dense, respectively, and this keyword will be ignored. n_jobs : int, default=None Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. verbose : bool, default=False If True, the time elapsed while fitting each transformer will be printed as it is completed. Returns ------- ct : ColumnTransformer See Also -------- ColumnTransformer : Class that allows combining the outputs of multiple transformer objects used on column subsets of the data into a single feature space. Examples -------- >>> from sklearn.preprocessing import StandardScaler, OneHotEncoder >>> from sklearn.compose import make_column_transformer >>> make_column_transformer( ... (StandardScaler(), ['numerical_column']), ... (OneHotEncoder(), ['categorical_column'])) ColumnTransformer(transformers=[('standardscaler', StandardScaler(...), ['numerical_column']), ('onehotencoder', OneHotEncoder(...), ['categorical_column'])]) """ # transformer_weights keyword is not passed through because the user # would need to know the automatically generated names of the transformers transformer_list = _get_transformer_list(transformers) return ColumnTransformer(transformer_list, n_jobs=n_jobs, remainder=remainder, sparse_threshold=sparse_threshold, verbose=verbose) class make_column_selector: """Create a callable to select columns to be used with :class:`ColumnTransformer`. :func:`make_column_selector` can select columns based on datatype or the columns name with a regex. When using multiple selection criteria, **all** criteria must match for a column to be selected. Parameters ---------- pattern : str, default=None Name of columns containing this regex pattern will be included. If None, column selection will not be selected based on pattern. dtype_include : column dtype or list of column dtypes, default=None A selection of dtypes to include. For more details, see :meth:`pandas.DataFrame.select_dtypes`. dtype_exclude : column dtype or list of column dtypes, default=None A selection of dtypes to exclude. For more details, see :meth:`pandas.DataFrame.select_dtypes`. Returns ------- selector : callable Callable for column selection to be used by a :class:`ColumnTransformer`. See Also -------- ColumnTransformer : Class that allows combining the outputs of multiple transformer objects used on column subsets of the data into a single feature space. Examples -------- >>> from sklearn.preprocessing import StandardScaler, OneHotEncoder >>> from sklearn.compose import make_column_transformer >>> from sklearn.compose import make_column_selector >>> import pandas as pd # doctest: +SKIP >>> X = pd.DataFrame({'city': ['London', 'London', 'Paris', 'Sallisaw'], ... 'rating': [5, 3, 4, 5]}) # doctest: +SKIP >>> ct = make_column_transformer( ... (StandardScaler(), ... make_column_selector(dtype_include=np.number)), # rating ... (OneHotEncoder(), ... make_column_selector(dtype_include=object))) # city >>> ct.fit_transform(X) # doctest: +SKIP array([[ 0.90453403, 1. , 0. , 0. ], [-1.50755672, 1. , 0. , 0. ], [-0.30151134, 0. , 1. , 0. ], [ 0.90453403, 0. , 0. , 1. ]]) """ @_deprecate_positional_args def __init__(self, pattern=None, *, dtype_include=None, dtype_exclude=None): self.pattern = pattern self.dtype_include = dtype_include self.dtype_exclude = dtype_exclude def __call__(self, df): """Callable for column selection to be used by a :class:`ColumnTransformer`. Parameters ---------- df : dataframe of shape (n_features, n_samples) DataFrame to select columns from. """ if not hasattr(df, 'iloc'): raise ValueError("make_column_selector can only be applied to " "pandas dataframes") df_row = df.iloc[:1] if self.dtype_include is not None or self.dtype_exclude is not None: df_row = df_row.select_dtypes(include=self.dtype_include, exclude=self.dtype_exclude) cols = df_row.columns if self.pattern is not None: cols = cols[cols.str.contains(self.pattern, regex=True)] return cols.tolist()
bsd-3-clause
cainiaocome/scikit-learn
sklearn/covariance/graph_lasso_.py
127
25626
"""GraphLasso: sparse inverse covariance estimation with an l1-penalized estimator. """ # Author: Gael Varoquaux <[email protected]> # License: BSD 3 clause # Copyright: INRIA import warnings import operator import sys import time import numpy as np from scipy import linalg from .empirical_covariance_ import (empirical_covariance, EmpiricalCovariance, log_likelihood) from ..utils import ConvergenceWarning from ..utils.extmath import pinvh from ..utils.validation import check_random_state, check_array from ..linear_model import lars_path from ..linear_model import cd_fast from ..cross_validation import check_cv, cross_val_score from ..externals.joblib import Parallel, delayed import collections # Helper functions to compute the objective and dual objective functions # of the l1-penalized estimator def _objective(mle, precision_, alpha): """Evaluation of the graph-lasso objective function the objective function is made of a shifted scaled version of the normalized log-likelihood (i.e. its empirical mean over the samples) and a penalisation term to promote sparsity """ p = precision_.shape[0] cost = - 2. * log_likelihood(mle, precision_) + p * np.log(2 * np.pi) cost += alpha * (np.abs(precision_).sum() - np.abs(np.diag(precision_)).sum()) return cost def _dual_gap(emp_cov, precision_, alpha): """Expression of the dual gap convergence criterion The specific definition is given in Duchi "Projected Subgradient Methods for Learning Sparse Gaussians". """ gap = np.sum(emp_cov * precision_) gap -= precision_.shape[0] gap += alpha * (np.abs(precision_).sum() - np.abs(np.diag(precision_)).sum()) return gap def alpha_max(emp_cov): """Find the maximum alpha for which there are some non-zeros off-diagonal. Parameters ---------- emp_cov : 2D array, (n_features, n_features) The sample covariance matrix Notes ----- This results from the bound for the all the Lasso that are solved in GraphLasso: each time, the row of cov corresponds to Xy. As the bound for alpha is given by `max(abs(Xy))`, the result follows. """ A = np.copy(emp_cov) A.flat[::A.shape[0] + 1] = 0 return np.max(np.abs(A)) # The g-lasso algorithm def graph_lasso(emp_cov, alpha, cov_init=None, mode='cd', tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False, return_costs=False, eps=np.finfo(np.float64).eps, return_n_iter=False): """l1-penalized covariance estimator Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- emp_cov : 2D ndarray, shape (n_features, n_features) Empirical covariance from which to compute the covariance estimate. alpha : positive float The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance. cov_init : 2D array (n_features, n_features), optional The initial guess for the covariance. mode : {'cd', 'lars'} The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. tol : positive float, optional The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter : integer, optional The maximum number of iterations. verbose : boolean, optional If verbose is True, the objective function and dual gap are printed at each iteration. return_costs : boolean, optional If return_costs is True, the objective function and dual gap at each iteration are returned. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. return_n_iter : bool, optional Whether or not to return the number of iterations. Returns ------- covariance : 2D ndarray, shape (n_features, n_features) The estimated covariance matrix. precision : 2D ndarray, shape (n_features, n_features) The estimated (sparse) precision matrix. costs : list of (objective, dual_gap) pairs The list of values of the objective function and the dual gap at each iteration. Returned only if return_costs is True. n_iter : int Number of iterations. Returned only if `return_n_iter` is set to True. See Also -------- GraphLasso, GraphLassoCV Notes ----- The algorithm employed to solve this problem is the GLasso algorithm, from the Friedman 2008 Biostatistics paper. It is the same algorithm as in the R `glasso` package. One possible difference with the `glasso` R package is that the diagonal coefficients are not penalized. """ _, n_features = emp_cov.shape if alpha == 0: if return_costs: precision_ = linalg.inv(emp_cov) cost = - 2. * log_likelihood(emp_cov, precision_) cost += n_features * np.log(2 * np.pi) d_gap = np.sum(emp_cov * precision_) - n_features if return_n_iter: return emp_cov, precision_, (cost, d_gap), 0 else: return emp_cov, precision_, (cost, d_gap) else: if return_n_iter: return emp_cov, linalg.inv(emp_cov), 0 else: return emp_cov, linalg.inv(emp_cov) if cov_init is None: covariance_ = emp_cov.copy() else: covariance_ = cov_init.copy() # As a trivial regularization (Tikhonov like), we scale down the # off-diagonal coefficients of our starting point: This is needed, as # in the cross-validation the cov_init can easily be # ill-conditioned, and the CV loop blows. Beside, this takes # conservative stand-point on the initial conditions, and it tends to # make the convergence go faster. covariance_ *= 0.95 diagonal = emp_cov.flat[::n_features + 1] covariance_.flat[::n_features + 1] = diagonal precision_ = pinvh(covariance_) indices = np.arange(n_features) costs = list() # The different l1 regression solver have different numerical errors if mode == 'cd': errors = dict(over='raise', invalid='ignore') else: errors = dict(invalid='raise') try: # be robust to the max_iter=0 edge case, see: # https://github.com/scikit-learn/scikit-learn/issues/4134 d_gap = np.inf for i in range(max_iter): for idx in range(n_features): sub_covariance = covariance_[indices != idx].T[indices != idx] row = emp_cov[idx, indices != idx] with np.errstate(**errors): if mode == 'cd': # Use coordinate descent coefs = -(precision_[indices != idx, idx] / (precision_[idx, idx] + 1000 * eps)) coefs, _, _, _ = cd_fast.enet_coordinate_descent_gram( coefs, alpha, 0, sub_covariance, row, row, max_iter, enet_tol, check_random_state(None), False) else: # Use LARS _, _, coefs = lars_path( sub_covariance, row, Xy=row, Gram=sub_covariance, alpha_min=alpha / (n_features - 1), copy_Gram=True, method='lars', return_path=False) # Update the precision matrix precision_[idx, idx] = ( 1. / (covariance_[idx, idx] - np.dot(covariance_[indices != idx, idx], coefs))) precision_[indices != idx, idx] = (- precision_[idx, idx] * coefs) precision_[idx, indices != idx] = (- precision_[idx, idx] * coefs) coefs = np.dot(sub_covariance, coefs) covariance_[idx, indices != idx] = coefs covariance_[indices != idx, idx] = coefs d_gap = _dual_gap(emp_cov, precision_, alpha) cost = _objective(emp_cov, precision_, alpha) if verbose: print( '[graph_lasso] Iteration % 3i, cost % 3.2e, dual gap %.3e' % (i, cost, d_gap)) if return_costs: costs.append((cost, d_gap)) if np.abs(d_gap) < tol: break if not np.isfinite(cost) and i > 0: raise FloatingPointError('Non SPD result: the system is ' 'too ill-conditioned for this solver') else: warnings.warn('graph_lasso: did not converge after %i iteration:' ' dual gap: %.3e' % (max_iter, d_gap), ConvergenceWarning) except FloatingPointError as e: e.args = (e.args[0] + '. The system is too ill-conditioned for this solver',) raise e if return_costs: if return_n_iter: return covariance_, precision_, costs, i + 1 else: return covariance_, precision_, costs else: if return_n_iter: return covariance_, precision_, i + 1 else: return covariance_, precision_ class GraphLasso(EmpiricalCovariance): """Sparse inverse covariance estimation with an l1-penalized estimator. Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- alpha : positive float, default 0.01 The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance. mode : {'cd', 'lars'}, default 'cd' The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. tol : positive float, default 1e-4 The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter : integer, default 100 The maximum number of iterations. verbose : boolean, default False If verbose is True, the objective function and dual gap are plotted at each iteration. assume_centered : boolean, default False If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation. Attributes ---------- covariance_ : array-like, shape (n_features, n_features) Estimated covariance matrix precision_ : array-like, shape (n_features, n_features) Estimated pseudo inverse matrix. n_iter_ : int Number of iterations run. See Also -------- graph_lasso, GraphLassoCV """ def __init__(self, alpha=.01, mode='cd', tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False, assume_centered=False): self.alpha = alpha self.mode = mode self.tol = tol self.enet_tol = enet_tol self.max_iter = max_iter self.verbose = verbose self.assume_centered = assume_centered # The base class needs this for the score method self.store_precision = True def fit(self, X, y=None): X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) emp_cov = empirical_covariance( X, assume_centered=self.assume_centered) self.covariance_, self.precision_, self.n_iter_ = graph_lasso( emp_cov, alpha=self.alpha, mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=self.max_iter, verbose=self.verbose, return_n_iter=True) return self # Cross-validation with GraphLasso def graph_lasso_path(X, alphas, cov_init=None, X_test=None, mode='cd', tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False): """l1-penalized covariance estimator along a path of decreasing alphas Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- X : 2D ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate. alphas : list of positive floats The list of regularization parameters, decreasing order. X_test : 2D array, shape (n_test_samples, n_features), optional Optional test matrix to measure generalisation error. mode : {'cd', 'lars'} The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. tol : positive float, optional The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter : integer, optional The maximum number of iterations. verbose : integer, optional The higher the verbosity flag, the more information is printed during the fitting. Returns ------- covariances_ : List of 2D ndarray, shape (n_features, n_features) The estimated covariance matrices. precisions_ : List of 2D ndarray, shape (n_features, n_features) The estimated (sparse) precision matrices. scores_ : List of float The generalisation error (log-likelihood) on the test data. Returned only if test data is passed. """ inner_verbose = max(0, verbose - 1) emp_cov = empirical_covariance(X) if cov_init is None: covariance_ = emp_cov.copy() else: covariance_ = cov_init covariances_ = list() precisions_ = list() scores_ = list() if X_test is not None: test_emp_cov = empirical_covariance(X_test) for alpha in alphas: try: # Capture the errors, and move on covariance_, precision_ = graph_lasso( emp_cov, alpha=alpha, cov_init=covariance_, mode=mode, tol=tol, enet_tol=enet_tol, max_iter=max_iter, verbose=inner_verbose) covariances_.append(covariance_) precisions_.append(precision_) if X_test is not None: this_score = log_likelihood(test_emp_cov, precision_) except FloatingPointError: this_score = -np.inf covariances_.append(np.nan) precisions_.append(np.nan) if X_test is not None: if not np.isfinite(this_score): this_score = -np.inf scores_.append(this_score) if verbose == 1: sys.stderr.write('.') elif verbose > 1: if X_test is not None: print('[graph_lasso_path] alpha: %.2e, score: %.2e' % (alpha, this_score)) else: print('[graph_lasso_path] alpha: %.2e' % alpha) if X_test is not None: return covariances_, precisions_, scores_ return covariances_, precisions_ class GraphLassoCV(GraphLasso): """Sparse inverse covariance w/ cross-validated choice of the l1 penalty Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- alphas : integer, or list positive float, optional If an integer is given, it fixes the number of points on the grids of alpha to be used. If a list is given, it gives the grid to be used. See the notes in the class docstring for more details. n_refinements: strictly positive integer The number of times the grid is refined. Not used if explicit values of alphas are passed. cv : cross-validation generator, optional see sklearn.cross_validation module. If None is passed, defaults to a 3-fold strategy tol: positive float, optional The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter: integer, optional Maximum number of iterations. mode: {'cd', 'lars'} The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where number of features is greater than number of samples. Elsewhere prefer cd which is more numerically stable. n_jobs: int, optional number of jobs to run in parallel (default 1). verbose: boolean, optional If verbose is True, the objective function and duality gap are printed at each iteration. assume_centered : Boolean If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation. Attributes ---------- covariance_ : numpy.ndarray, shape (n_features, n_features) Estimated covariance matrix. precision_ : numpy.ndarray, shape (n_features, n_features) Estimated precision matrix (inverse covariance). alpha_ : float Penalization parameter selected. cv_alphas_ : list of float All penalization parameters explored. `grid_scores`: 2D numpy.ndarray (n_alphas, n_folds) Log-likelihood score on left-out data across folds. n_iter_ : int Number of iterations run for the optimal alpha. See Also -------- graph_lasso, GraphLasso Notes ----- The search for the optimal penalization parameter (alpha) is done on an iteratively refined grid: first the cross-validated scores on a grid are computed, then a new refined grid is centered around the maximum, and so on. One of the challenges which is faced here is that the solvers can fail to converge to a well-conditioned estimate. The corresponding values of alpha then come out as missing values, but the optimum may be close to these missing values. """ def __init__(self, alphas=4, n_refinements=4, cv=None, tol=1e-4, enet_tol=1e-4, max_iter=100, mode='cd', n_jobs=1, verbose=False, assume_centered=False): self.alphas = alphas self.n_refinements = n_refinements self.mode = mode self.tol = tol self.enet_tol = enet_tol self.max_iter = max_iter self.verbose = verbose self.cv = cv self.n_jobs = n_jobs self.assume_centered = assume_centered # The base class needs this for the score method self.store_precision = True def fit(self, X, y=None): """Fits the GraphLasso covariance model to X. Parameters ---------- X : ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate """ X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) emp_cov = empirical_covariance( X, assume_centered=self.assume_centered) cv = check_cv(self.cv, X, y, classifier=False) # List of (alpha, scores, covs) path = list() n_alphas = self.alphas inner_verbose = max(0, self.verbose - 1) if isinstance(n_alphas, collections.Sequence): alphas = self.alphas n_refinements = 1 else: n_refinements = self.n_refinements alpha_1 = alpha_max(emp_cov) alpha_0 = 1e-2 * alpha_1 alphas = np.logspace(np.log10(alpha_0), np.log10(alpha_1), n_alphas)[::-1] t0 = time.time() for i in range(n_refinements): with warnings.catch_warnings(): # No need to see the convergence warnings on this grid: # they will always be points that will not converge # during the cross-validation warnings.simplefilter('ignore', ConvergenceWarning) # Compute the cross-validated loss on the current grid # NOTE: Warm-restarting graph_lasso_path has been tried, and # this did not allow to gain anything (same execution time with # or without). this_path = Parallel( n_jobs=self.n_jobs, verbose=self.verbose )( delayed(graph_lasso_path)( X[train], alphas=alphas, X_test=X[test], mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=int(.1 * self.max_iter), verbose=inner_verbose) for train, test in cv) # Little danse to transform the list in what we need covs, _, scores = zip(*this_path) covs = zip(*covs) scores = zip(*scores) path.extend(zip(alphas, scores, covs)) path = sorted(path, key=operator.itemgetter(0), reverse=True) # Find the maximum (avoid using built in 'max' function to # have a fully-reproducible selection of the smallest alpha # in case of equality) best_score = -np.inf last_finite_idx = 0 for index, (alpha, scores, _) in enumerate(path): this_score = np.mean(scores) if this_score >= .1 / np.finfo(np.float64).eps: this_score = np.nan if np.isfinite(this_score): last_finite_idx = index if this_score >= best_score: best_score = this_score best_index = index # Refine the grid if best_index == 0: # We do not need to go back: we have chosen # the highest value of alpha for which there are # non-zero coefficients alpha_1 = path[0][0] alpha_0 = path[1][0] elif (best_index == last_finite_idx and not best_index == len(path) - 1): # We have non-converged models on the upper bound of the # grid, we need to refine the grid there alpha_1 = path[best_index][0] alpha_0 = path[best_index + 1][0] elif best_index == len(path) - 1: alpha_1 = path[best_index][0] alpha_0 = 0.01 * path[best_index][0] else: alpha_1 = path[best_index - 1][0] alpha_0 = path[best_index + 1][0] if not isinstance(n_alphas, collections.Sequence): alphas = np.logspace(np.log10(alpha_1), np.log10(alpha_0), n_alphas + 2) alphas = alphas[1:-1] if self.verbose and n_refinements > 1: print('[GraphLassoCV] Done refinement % 2i out of %i: % 3is' % (i + 1, n_refinements, time.time() - t0)) path = list(zip(*path)) grid_scores = list(path[1]) alphas = list(path[0]) # Finally, compute the score with alpha = 0 alphas.append(0) grid_scores.append(cross_val_score(EmpiricalCovariance(), X, cv=cv, n_jobs=self.n_jobs, verbose=inner_verbose)) self.grid_scores = np.array(grid_scores) best_alpha = alphas[best_index] self.alpha_ = best_alpha self.cv_alphas_ = alphas # Finally fit the model with the selected alpha self.covariance_, self.precision_, self.n_iter_ = graph_lasso( emp_cov, alpha=best_alpha, mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=self.max_iter, verbose=inner_verbose, return_n_iter=True) return self
bsd-3-clause
amal029/kaggle
modi.py
1
2782
#!/usr/bin/env python3 import pandas as pd import string import nltk from nltk.sentiment.vader import SentimentIntensityAnalyzer from nltk.corpus import stopwords def get_newline_index(s): j = 0 for i, c in enumerate(s): if (c == '\n') or (c == '\r'): j = i break return ''.join([i for i in s[j:] if i in string.printable]) def sentiment_analysis(speech): # Do sentiment analysis for Modi's speeches over time sid = SentimentIntensityAnalyzer() sentences = speech.split('.') pos, neg, neu = 0, 0, 0 for s in sentences: ss = sid.polarity_scores(s) if ss['pos'] >= 0.5: pos += 1 elif ss['neg'] >= 0.5: neg += 1 elif ss['neu'] >= 0.5: neu += 1 return (pos, neg, neu) def main(fileName): df = pd.read_csv(fileName, encoding='iso-8859-1') # Column names are Speech_text, month, year df['Speech_text'] = [get_newline_index(t) for t in df['Speech_text']] # Tokenize words speeches = df['Speech_text'] # Series of speeches speeches_time = [] sentiment_time = [] for speech in speeches: speech_tokens = nltk.word_tokenize(speech) # Now remove the stopwords speech_tokens = [w.lower() for w in speech_tokens if w.lower() not in stopwords.words('english')] speech_tokens = nltk.pos_tag(speech_tokens) speech_tokens = [w for w, t in speech_tokens if t == 'NN' or t == 'NNS'] # Now make a Histogram of the most used words in each speech speech_dist = nltk.FreqDist(speech_tokens) # put words in order across all speeches # print(speech_dist.most_common(5)) speeches_time.append(speech_dist.most_common(10)) # Add the sentiment scores to the list sentiment_time.append(sentiment_analysis(speech)) df['pos_sentimement'], df['neg_sentimement'], df['neu_sentimement'] \ = zip(*sentiment_time) # Flattened speeches_time = [j for i in speeches_time for j in i] # Now count the number of words across time series final_dict = {k: 0 for k in set([i for i, j in speeches_time])} for k in final_dict.keys(): final_dict[k] = sum([c for w, c in speeches_time if w == k]) most_talked = (sorted(list(final_dict.items()), key=lambda v: v[1], reverse=True))[:10] # Modi talks most about these 10 things over time print('most talked about nouns: ', most_talked) # Write out the csv df.to_csv('/tmp/modi_result.csv') if __name__ == '__main__': main('./mann-ki-baat-speech-corpus.zip')
mit
tudo-astroparticlephysics/pydisteval
disteval/visualization/comparison_plotter/functions/plot_funcs.py
1
11371
from __future__ import unicode_literals import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ColorConverter import matplotlib.transforms as transforms from colorsys import rgb_to_hls, hls_to_rgb from .calc_funcs import map_aggarwal_ratio, rescale_limit from . import legend_entries as le MAIN_ZORDER = 4 def modify_color(color, d_saturation=0., d_lightness=0.): conv = ColorConverter() if not isinstance(color, tuple): rgb_color = conv.to_rgb(color) else: rgb_color = color hls_color = rgb_to_hls(*rgb_color) new_l = max(0, min(0.9, hls_color[1] + d_lightness)) new_s = max(0, min(1, hls_color[2] + d_saturation)) return hls_to_rgb(hls_color[0], new_l, new_s) def plot_inf_marker(fig, ax, binning, place_marker, markeredgecolor='k', markerfacecolor='none', bot=True, alpha=1., rel_marker_size=0.007): # compute marker size pixel_width, pixel_height = fig.canvas.get_width_height() markersize = pixel_height * rel_marker_size # get coordinate transformation trans = transforms.blended_transform_factory( ax.transData, fig.transFigure) bbox = ax.get_position() if bot: y0 = bbox.y0 + rel_marker_size marker = 'v' else: y0 = bbox.y1 - rel_marker_size marker = '^' bin_center = (binning[1:] + binning[:-1]) / 2 for bin_i, place in zip(bin_center, place_marker): if place: ax.plot([bin_i, ], [y0, ], transform=trans, marker=marker, markerfacecolor=markerfacecolor, markeredgecolor=markeredgecolor, markersize=markersize, figure=fig, linewidth=1., zorder=MAIN_ZORDER + 1, alpha=alpha) def plot_finite_marker(ax, x, y, facecolor, edgecolor, alpha): ax.plot(x, y, ls='', mew=1., marker='o', markeredgecolor=edgecolor, markerfacecolor=facecolor, alpha=alpha, ms='5', zorder=MAIN_ZORDER + 1) def plot_data_style(fig, ax, bin_edges, y, facecolor, edgecolor, alpha, ms='5'): zero_mask = y > 0 bin_mids = (bin_edges[1:] + bin_edges[:-1]) / 2. plot_finite_marker(ax, x=bin_mids[zero_mask], y=y[zero_mask], facecolor=facecolor, edgecolor=edgecolor, alpha=alpha) plot_inf_marker(fig, ax, bin_edges, ~zero_mask, markerfacecolor=facecolor, markeredgecolor=edgecolor, alpha=alpha) return le.DataObject(facecolor, edgecolor, facecolor, edgecolor) def plot_uncertainties(ax, bin_edges, uncert, color, cmap): n_alpha = uncert.shape[1] cmap = plt.get_cmap(cmap) colors = cmap(np.linspace(0.1, 0.9, n_alpha)) legend_entries = [] legend_entries.append(le.UncertObject(colors, color)) for i, c in enumerate(colors[::-1]): j = n_alpha - i - 1 lower_limit = uncert[:, j, 0] upper_limit = uncert[:, j, 1] mask = np.isfinite(lower_limit) lower_limit[~mask] = 0. mask = np.isfinite(upper_limit) upper_limit[~mask] = 0. plot_band(ax, bin_edges, lower_limit, upper_limit, c, alpha=1., borders=False, brighten=False, zorder=MAIN_ZORDER) for i, c in enumerate(colors): legend_entries.append(le.UncertObject_single(c)) return legend_entries def plot_band(ax, bin_edges, y_err_low, y_err_high, color, alpha=0.5, borders=1., brighten=True, zorder=None): if isinstance(borders, bool): if borders: border_lw = 0.3 plot_borders = True else: plot_borders = False elif isinstance(borders, float): border_lw = borders plot_borders = True else: plot_borders = False if zorder is None: zorder = MAIN_ZORDER - 1 if brighten: band_color = modify_color(color, 0, 0.4) else: band_color = color alpha = min(1., max(0., alpha)) ax.fill_between(bin_edges, np.append(y_err_low[0], y_err_low), np.append(y_err_high[0], y_err_high), step='pre', color=band_color, edgecolor=band_color, linewidth=0.0, alpha=alpha, zorder=zorder - 1) if plot_borders: if brighten: band_color = modify_color(color, 0, 0.2) else: band_color = color plot_hist(ax, bin_edges, y_err_low, color, lw=border_lw, alpha=1.0, zorder=zorder) plot_hist(ax, bin_edges, y_err_high, color, lw=border_lw, alpha=1.0, zorder=zorder) # legend_obj = le. legend_obj = None return legend_obj def plot_hist(ax, bin_edges, y, color, yerr=None, lw=1.6, alpha=1.0, zorder=None): if zorder is None: zorder = MAIN_ZORDER alpha = min(1., max(0., alpha)) bin_mids = (bin_edges[1:] + bin_edges[:-1]) / 2. nan_mask = np.isfinite(y) bin_mids_masked = bin_mids[nan_mask] y_masked = y[nan_mask] xerr_masked = (np.diff(bin_edges) / 2)[nan_mask] if yerr is not None: yerr_masked = yerr[nan_mask] else: yerr_masked = None errorbar = ax.errorbar(x=bin_mids_masked, y=y_masked, ls='', xerr=xerr_masked, yerr=yerr_masked, color=color, markersize=0, capsize=0, lw=lw, zorder=zorder, label='Test') return errorbar def plot_line(ax, bin_edges, y, color, lw=1.6, alpha=1.0, zorder=None): if zorder is None: zorder = MAIN_ZORDER alpha = min(1., max(0., alpha)) obj, = ax.plot(bin_edges, np.append(y[0], y), drawstyle='steps-pre', lw=lw, c=color, label='test', alpha=alpha, zorder=zorder) return obj def plot_test_ratio_mapped(fig, ax, bin_edges, ratio, is_above, facecolor, edgecolor, alpha): bin_mids = (bin_edges[1:] + bin_edges[:-1]) / 2. is_finite = np.isfinite(ratio) finite_mask_upper = np.logical_and(is_finite, is_above) finite_mask_lower = np.logical_and(is_finite, ~is_above) plot_finite_marker(ax, x=bin_mids[finite_mask_upper], y=ratio[finite_mask_upper], facecolor=facecolor, edgecolor=edgecolor, alpha=alpha) plot_finite_marker(ax, x=bin_mids[finite_mask_lower], y=ratio[finite_mask_lower], facecolor=facecolor, edgecolor=edgecolor, alpha=alpha) oor_mask_upper = np.logical_and(is_above, np.isposinf(ratio)) no_ratio_mask_upper = np.logical_and(is_above, np.isneginf(ratio)) plot_inf_marker(fig, ax, bin_edges, oor_mask_upper, markerfacecolor=facecolor, markeredgecolor=edgecolor, bot=False) plot_inf_marker(fig, ax, bin_edges, no_ratio_mask_upper, markerfacecolor=facecolor, markeredgecolor=edgecolor, bot=False, alpha=0.5) oor_mask_lower = np.logical_and(~is_above, np.isposinf(ratio)) no_ratio_mask_lower = np.logical_and(~is_above, np.isneginf(ratio)) plot_inf_marker(fig, ax, bin_edges, oor_mask_lower, markerfacecolor=facecolor, markeredgecolor=edgecolor, bot=True) plot_inf_marker(fig, ax, bin_edges, no_ratio_mask_lower, markerfacecolor=facecolor, markeredgecolor=edgecolor, bot=True, alpha=0.5) def generate_ticks_for_aggarwal_ratio(y_0, y_min, max_ticks_per_side=5): y_min_floored = np.floor(y_min) y_0_log = np.log10(y_0) tick_pos = [] n_ticks = 1 tick_pos.append(y_0_log) if y_0_log != np.floor(y_0_log): tick_pos.append(np.floor(y_0_log)) n_ticks += 2 while tick_pos[-1] > y_min_floored: tick_pos.append(tick_pos[-1] - 1) n_ticks += 2 n_ticks_per_side = (n_ticks - 1) / 2 mayor_step_size = np.ceil(n_ticks_per_side / max_ticks_per_side) tick_pos_mapped, y_min_ticks = map_aggarwal_ratio(np.power(10, tick_pos), y_0=1.) tick_pos_mapped = rescale_limit(tick_pos_mapped, y_min_ticks, y_min) mayor_ticks = [] mayor_ticks_labels = [] minor_ticks = [] minor_ticks_labels = [] mayor_tick_counter = 0 for i, [p, l] in enumerate(zip(tick_pos_mapped, tick_pos)): lab = 10**l lab = r'$10^{{\mathrm{{{:.0f}}}}}$'.format(l) if i == 0: mayor_ticks_labels.append(lab) mayor_ticks.append(0) else: if mayor_tick_counter == mayor_step_size: mayor_ticks.extend([p * -1, p]) mayor_ticks_labels.extend([lab, lab]) mayor_tick_counter = 0 else: minor_ticks.extend([p * -1, p]) minor_ticks_labels.extend([lab, lab]) mayor_tick_counter += 1 return mayor_ticks_labels, mayor_ticks, minor_ticks_labels, minor_ticks
mit
ElDeveloper/scikit-learn
sklearn/cluster/dbscan_.py
7
11611
# -*- coding: utf-8 -*- """ DBSCAN: Density-Based Spatial Clustering of Applications with Noise """ # Author: Robert Layton <[email protected]> # Joel Nothman <[email protected]> # Lars Buitinck # # License: BSD 3 clause import numpy as np from scipy import sparse from ..base import BaseEstimator, ClusterMixin from ..metrics import pairwise_distances from ..utils import check_array, check_consistent_length from ..utils.fixes import astype from ..neighbors import NearestNeighbors from ._dbscan_inner import dbscan_inner def dbscan(X, eps=0.5, min_samples=5, metric='minkowski', algorithm='auto', leaf_size=30, p=2, sample_weight=None): """Perform DBSCAN clustering from vector array or distance matrix. Read more in the :ref:`User Guide <dbscan>`. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. eps : float, optional The maximum distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in which case only "nonzero" elements may be considered neighbors for DBSCAN. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p : float, optional The power of the Minkowski metric to be used to calculate distance between points. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. Returns ------- core_samples : array [n_core_samples] Indices of core samples. labels : array [n_samples] Cluster labels for each point. Noisy samples are given the label -1. Notes ----- See examples/cluster/plot_dbscan.py for an example. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). Sparse neighborhoods can be precomputed using :func:`NearestNeighbors.radius_neighbors_graph <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with ``mode='distance'``. References ---------- Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996 """ if not eps > 0.0: raise ValueError("eps must be positive.") X = check_array(X, accept_sparse='csr') if sample_weight is not None: sample_weight = np.asarray(sample_weight) check_consistent_length(X, sample_weight) # Calculate neighborhood for all samples. This leaves the original point # in, which needs to be considered later (i.e. point i is in the # neighborhood of point i. While True, its useless information) if metric == 'precomputed' and sparse.issparse(X): neighborhoods = np.empty(X.shape[0], dtype=object) X.sum_duplicates() # XXX: modifies X's internals in-place X_mask = X.data <= eps masked_indices = astype(X.indices, np.intp, copy=False)[X_mask] masked_indptr = np.cumsum(X_mask)[X.indptr[1:] - 1] # insert the diagonal: a point is its own neighbor, but 0 distance # means absence from sparse matrix data masked_indices = np.insert(masked_indices, masked_indptr, np.arange(X.shape[0])) masked_indptr = masked_indptr[:-1] + np.arange(1, X.shape[0]) # split into rows neighborhoods[:] = np.split(masked_indices, masked_indptr) else: neighbors_model = NearestNeighbors(radius=eps, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p) neighbors_model.fit(X) # This has worst case O(n^2) memory complexity neighborhoods = neighbors_model.radius_neighbors(X, eps, return_distance=False) if sample_weight is None: n_neighbors = np.array([len(neighbors) for neighbors in neighborhoods]) else: n_neighbors = np.array([np.sum(sample_weight[neighbors]) for neighbors in neighborhoods]) # Initially, all samples are noise. labels = -np.ones(X.shape[0], dtype=np.intp) # A list of all core samples found. core_samples = np.asarray(n_neighbors >= min_samples, dtype=np.uint8) dbscan_inner(core_samples, neighborhoods, labels) return np.where(core_samples)[0], labels class DBSCAN(BaseEstimator, ClusterMixin): """Perform DBSCAN clustering from vector array or distance matrix. DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density and expands clusters from them. Good for data which contains clusters of similar density. Read more in the :ref:`User Guide <dbscan>`. Parameters ---------- eps : float, optional The maximum distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.calculate_distance for its metric parameter. If metric is "precomputed", X is assumed to be a distance matrix and must be square. X may be a sparse matrix, in which case only "nonzero" elements may be considered neighbors for DBSCAN. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. Attributes ---------- core_sample_indices_ : array, shape = [n_core_samples] Indices of core samples. components_ : array, shape = [n_core_samples, n_features] Copy of each core sample found by training. labels_ : array, shape = [n_samples] Cluster labels for each point in the dataset given to fit(). Noisy samples are given the label -1. Notes ----- See examples/cluster/plot_dbscan.py for an example. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). Sparse neighborhoods can be precomputed using :func:`NearestNeighbors.radius_neighbors_graph <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with ``mode='distance'``. References ---------- Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996 """ def __init__(self, eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None): self.eps = eps self.min_samples = min_samples self.metric = metric self.algorithm = algorithm self.leaf_size = leaf_size self.p = p def fit(self, X, y=None, sample_weight=None): """Perform DBSCAN clustering from features or distance matrix. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. """ X = check_array(X, accept_sparse='csr') clust = dbscan(X, sample_weight=sample_weight, **self.get_params()) self.core_sample_indices_, self.labels_ = clust if len(self.core_sample_indices_): # fix for scipy sparse indexing issue self.components_ = X[self.core_sample_indices_].copy() else: # no core samples self.components_ = np.empty((0, X.shape[1])) return self def fit_predict(self, X, y=None, sample_weight=None): """Performs clustering on X and returns cluster labels. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \ array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. Returns ------- y : ndarray, shape (n_samples,) cluster labels """ self.fit(X, sample_weight=sample_weight) return self.labels_
bsd-3-clause
lpryszcz/HiCembler
.dna-triangulation/orienting.py
1
9214
# Main script for orienting # Modules in orienting_mods.py which could be moved to triangulation.py later # Example: # python orienting.py -in Dixon12_hESC-AllpathsLGcontigs.tab -out results -pos contigs_pos.tab -real_ori contig_orientations.tab ######################################################################################################################## import orienting_mods import triangulation import numpy as np import sys import argparse import matplotlib.pyplot as plt def main(): parser = argparse.ArgumentParser(description = 'Orient contigs within chromosome given interaction matrix.', formatter_class = argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-in', help = 'interaction frequency matrix file', dest = 'in_file', type = str, required = True) parser.add_argument('-out', help = 'out file prefix', dest = 'out_file', type = str, required = True) parser.add_argument('-pos', help = 'file with contig positions. "contig\tstart\tend"', dest = 'pos_file', type = str, required = True) parser.add_argument('-real_ori', help = 'file with real orientations. "contig\tsign"', dest = 'real_ori_file', type = str, default = None) args = parser.parse_args() in_file = args.in_file out_file = args.out_file pos_file = args.pos_file real_ori_file = args.real_ori_file # Read contig interacion file d, bin_chr, bin_position = triangulation.load_data_txt(in_file, remove_nans = True) # Read contig pos file into dictionary ID_col = 0 start_col = 1 end_col = 2 IDs = [] starts = [] ends = [] pos_fh = open(pos_file, 'r') for line in pos_fh: contig_line = line.split() IDs.append(contig_line[ID_col]) starts.append(float(contig_line[start_col])) ends.append(float(contig_line[end_col])) pos_fh.close() # Create position dictionary for downstream analysis pos_dic = orienting_mods.make_pos_dic(IDs, starts, ends) # Sort contigs by their positions sorted_contigs_extra = orienting_mods.sort_by_pos(IDs, starts) # Use only contigs that are in interaction matrix sorted_contigs = [] for contig in sorted_contigs_extra: if contig in bin_chr: sorted_contigs.append(contig) # Calculate bin centers bin_center = np.mean(bin_position, axis = 1) # Calculate the 4 orientation scores (edge wights) between each pair of contigs # Return the weighted directed acyclic graph object WDAG = orienting_mods.make_WDAG(d, bin_chr, bin_position, bin_center, sorted_contigs) # Create sorted node list for input into shortest_path function node_list = orienting_mods.sorted_nodes(sorted_contigs) # Find shortest path through WDAG orientation_results = orienting_mods.shortest_path(WDAG, node_list) # Create output file for predicted orientations OUT = open(out_file + '_pred_ori.txt', 'w+') # Remove start and end node from orientation result list orientation_results.remove("start") orientation_results.remove("end") # Format output results (Note contigs with single-bins default to forward) for contig in orientation_results: contig_ID = contig[:-3] orientation = contig[-2:] if orientation == "fw": orientation = "+" elif orientation == "rc": orientation = "-" else: print "Error in formatting output!" OUT.write(contig_ID + "\t" + orientation + "\n") OUT.close() if real_ori_file != None: # Open true orientation data to test results against true_fh = open(real_ori_file, 'r') ID_col = 0 orient_col = 1 true_dic = {} for line in true_fh: contig_line = line.split() contig_ID = contig_line[ID_col] orientation = contig_line[orient_col] true_dic[contig_ID] = orientation true_fh.close() # Record accuracy of prediction at different confidence thesholds # Get max confidence max_conf = orienting_mods.get_max_conf(WDAG, sorted_contigs) thresholds = np.arange(0.0, max_conf, max_conf/200.0) accuracy_list = [] # Record percent of contigs removed percent_removed = [] for threshold in thresholds: poor_conf = orienting_mods.poor_confidence(WDAG, sorted_contigs, threshold) percent_removed.append(float(len(poor_conf))/float(len(sorted_contigs))) # Calculate sensitivity, specificity, and accuracy such that fw is (+) and rc is (-) # Accuracy will be percent of orientations correctly predicted out of total contig orientations # Create prediction dictionary for orientation results pred_dic = orienting_mods.make_pred_dic(orientation_results, poor_conf) # Need to remove all contigs from true dictionary that are not in our prediction dictionary adj_true_dic = orienting_mods.adjust_true_dic(true_dic, pred_dic) # Calculate stats P, N, TP, TN, accuracy = orienting_mods.calc_stats(adj_true_dic, pred_dic) accuracy_list.append(accuracy) # Plot results y_bottom = min(accuracy_list + percent_removed) fig, ax1 = plt.subplots() ax1.plot(thresholds, accuracy_list) ax1.set_xlabel("Confidence threshold") ax1.set_title("Accuracy vs Confidence") ax1.set_ylim(y_bottom-0.1, 1.0) ax1.set_ylabel("Accuracy", color = 'b') for t1 in ax1.get_yticklabels(): t1.set_color('b') ax2 = ax1.twinx() ax2.plot(thresholds, percent_removed, 'r-') ax2.set_ylabel("Percent contigs removed", color = 'r') ax2.ticklabel_format(style = 'sci', axis = 'x', scilimits = (0, 0)) ax2.set_ylim(y_bottom-0.1, 1.0) for t1 in ax2.get_yticklabels(): t1.set_color('r') plt.savefig(out_file + '_acc_conf_plot.png') # Record accuracy of prediction at different contig size thresholds # Get max contig length of all contigs with positions max_length = orienting_mods.get_max_length(bin_chr, bin_position, sorted_contigs) contig_lengths = np.arange(0.0, max_length, max_length/200.0) accuracy_list = [] percent_removed = [] for contig_length in contig_lengths: # Get all contigs with length < = length of threshold small_contigs = orienting_mods.get_small_contigs(bin_chr, bin_position, sorted_contigs, contig_length) # Add all single bin/score zero contigs to list of contigs to be removed score_zeros = orienting_mods.poor_confidence(WDAG, sorted_contigs, 0.0) remove_contigs = list(set(small_contigs).union(set(score_zeros))) percent_removed.append(float(len(remove_contigs))/float(len(sorted_contigs))) pred_dic = orienting_mods.make_pred_dic(orientation_results, remove_contigs) # Need to remove all contigs from true dictionary that are not in our prediction dictionary adj_true_dic = orienting_mods.adjust_true_dic(true_dic, pred_dic) # Calculate stats P, N, TP, TN, accuracy = orienting_mods.calc_stats(adj_true_dic, pred_dic) accuracy_list.append(accuracy) # Plot results y_bottom = min(accuracy_list + percent_removed) fig, ax1 = plt.subplots() ax1.plot(contig_lengths, accuracy_list) ax1.set_xlabel("Contig length threshold") ax1.set_title("Accuracy vs Contig Length") ax1.set_ylim(y_bottom-0.1, 1.0) ax1.set_ylabel("Accuracy", color = 'b') for t1 in ax1.get_yticklabels(): t1.set_color('b') ax2 = ax1.twinx() ax2.plot(contig_lengths, percent_removed, 'r-') ax2.set_ylabel("Percent contigs removed", color = 'r') ax2.ticklabel_format(style = 'sci', axis = 'x', scilimits = (0, 0)) ax2.set_ylim(y_bottom-0.1, 1.0) for t1 in ax2.get_yticklabels(): t1.set_color('r') plt.savefig(out_file + '_acc_size_plot.png') # Record accuracy of prediction at different gap size thresholds # Get max gap size between all contigs and min gap size between all contigs max_gap, min_gap = orienting_mods.get_max_min_gap(sorted_contigs, pos_dic) gap_lengths = np.arange(max_gap, min_gap, -max_gap/200.0) accuracy_list = [] percent_removed = [] for gap_length in gap_lengths: # Get all contigs with gap size > = gap of threshold big_gaps = orienting_mods.get_big_gaps(pos_dic, sorted_contigs, gap_length) remove_contigs = list(set(big_gaps).union(set(score_zeros))) percent_removed.append(float(len(remove_contigs))/float(len(sorted_contigs))) pred_dic = orienting_mods.make_pred_dic(orientation_results, remove_contigs) adj_true_dic = orienting_mods.adjust_true_dic(true_dic, pred_dic) # Calculate stats P, N, TP, TN, accuracy = orienting_mods.calc_stats(adj_true_dic, pred_dic) accuracy_list.append(accuracy) # Plot results y_bottom = min(accuracy_list + percent_removed) fig, ax1 = plt.subplots() ax1.plot(gap_lengths, accuracy_list) ax1.set_xlabel("Gap length threshold") ax1.set_title("Accuracy vs Gap Length") ax1.set_ylim(y_bottom-0.1, 1.0) ax1.set_ylabel("Accuracy", color = 'b') for t1 in ax1.get_yticklabels(): t1.set_color('b') ax2 = ax1.twinx() ax2.plot(gap_lengths, percent_removed, 'r-') ax2.set_ylabel("Percent contigs removed", color = 'r') ax2.ticklabel_format(style = 'sci', axis = 'x', scilimits = (0, 0)) ax2.set_ylim(y_bottom-0.1, 1.0) ax2.invert_xaxis() for t1 in ax2.get_yticklabels(): t1.set_color('r') plt.savefig(out_file + '_acc_gaps_plot.png') if __name__ == "__main__": main()
gpl-3.0
lnhubbell/tweetTrack
streamScript/domain/create_classifier.py
1
6595
import numpy as np from sklearn.feature_extraction.text import CountVectorizer as CV from sklearn.naive_bayes import MultinomialNB as MNB from sklearn.cross_validation import cross_val_score from streamScript.domain.query_db import query_all_db, query_all_db_Tweet200 from streamScript.domain.query_db import read_in_bb_file import picklers u"""You should interact with this file through the 'if name == main' block. Edit the kwargs you want in order to create an pickle a classifier. This classifier will be used to make your predictions.""" def check_city_locations(location_lat, location_lng): u"""Takes in lati""" bb_dict = read_in_bb_file() for city, values in bb_dict.items(): lats = values[0] lngs = values[1] if (float(lats[0]) < float(location_lat) < float(lats[1])) and \ (float(lngs[0]) < float(location_lng) < float(lngs[1])): return city def get_most_common_city(user_city): u"""Takes in a dictionary of city names; returns the most frequently occurring city in the dict.""" top = None top_num = 0 for city, count in user_city.items(): if count > top_num: top_num = count top = city return top def build_test_matrix(history, vocab, testing): u"""Takes in a list of lists, with each list containing tuples representing tweets from a single user, and a vocab list. Returns an X matrix of the test user features, a list of the user names, and a Y array of the labels.""" matrix = [] user_string = "" user_city = {} user_name = history[0][0] for tweet in history: if history[0][0] == user_name: user_string += tweet[1].lower() if history[0][2] and history[0][3] and not testing: actual = check_city_locations(history[0][2], history[0][3]) if actual in user_city: user_city[actual] += 1 else: user_city[actual] = 1 matrix.append(user_string) if user_city: ret_user_city = get_most_common_city(user_city) else: ret_user_city = history[0][5] vec = CV( analyzer='word', vocabulary=vocab ) print "Building test X, Y..." X = vec.fit_transform(matrix, vocab).toarray() return X, user_name, ret_user_city def vectorize(user_matrix, user_array, n): stopwords = open('text/stopwords.txt').read().lower().split() vec = CV( analyzer='word', stop_words=stopwords, max_features=n, ) print "Building X, Y..." X = vec.fit_transform(user_matrix).toarray() Y = np.array(user_array) return X, Y, vec.get_feature_names() def build_matrix(data, n=10000): u"""Uses blocks of tweets from multiple users per city. Takes in a raw dataset and an optional parameter to limit the feature set to n. Defaults to 10000. Returns a tuple containing a matrix of n features, a vector of labels, and a vocabulary list of the features examined.""" user_matrix = [] user_array = [] tweet_count = 0 for key, val in data.items(): for tweet in val: if not tweet_count % 200: user_array.append(key) user_matrix.append(" ") user_matrix[-1] += tweet[2].lower() tweet_count += 1 return user_matrix, user_array, n def build_matrix_per_user(data, n=10000): u""" Uses blocks of tweets from single users per city. Takes in a raw dataset and an optional parameter to limit the feature set to n. Defaults to 10000. Returns a tuple containing a matrix of n features, a vector of labels, and a vocabulary list of the features examined.""" user_matrix = [] user_array = [] for key, val in data.items(): user_list = [] count = 0 user_count = 0 # print key # print len(val) for tweet in val: if user_count >= 100: continue if count == 0: this_user = tweet[1] our_string = "" if (tweet[1] == this_user) and (count < 200): our_string += tweet[2].lower() count += 1 elif (tweet[1] != this_user): count = 0 user_count += 1 user_matrix.append(our_string) user_array.append(key) user_list.append(this_user) return user_matrix, user_array, n def fit_classifier(X, y): u"""Takes in an X matrix and a Y array of labels. Fits classifier""" mnb = MNB() return mnb.fit(X, y) def check_alphas(X, y): u"""Takes in an X matrix and a Y array of labels. Checks five possible alpha values; returns the classifier with the highest cross-validated score.""" best = None best_score = None alphas = [1E-4, 1E-3, 1E-2, 1E-1, 1] for alpha in alphas: mnb = MNB(alpha) score = np.mean( cross_val_score(mnb, X, y, cv=10) ) print "alpha: ", alpha, "score: ", score if not best: best = mnb best_score = score best_alpha = alpha elif score > best_score: best_score = score best = mnb best_alpha = alpha best.fit(X, y) print "our best score and our best alpha:" print best_score, best_alpha return best def get_raw_classifier( make_new_pickles=False, read_pickles=True, useTweet200=False ): u"""Takes in keyword arguments to determine source of data. Returns a trained classifier.""" if read_pickles: X = picklers.load_pickle('matrix_pickle') y = picklers.load_pickle('labels_pickle') else: if useTweet200: data = query_all_db_Tweet200() user_matrix, user_array, n = build_matrix_per_user(data) else: data = query_all_db(limit=True) user_matrix, user_array, n = build_matrix(data) X, y, vocab = vectorize(user_matrix, user_array, n) mnb = check_alphas(X, y) #mnb = fit_classifier(X, y) picklers.write_pickle(mnb, 'classifier_pickle') picklers.write_pickle(vocab, 'vocab_pickle') if make_new_pickles: picklers.write_pickle(data, 'pickle') picklers.write_pickle(X, 'matrix_pickle') picklers.write_pickle(y, 'labels_pickle') print "returning mnb" return mnb if __name__ == "__main__": print get_raw_classifier( make_new_pickles=True, read_pickles=False, useTweet200=True )
mit
GuessWhoSamFoo/pandas
pandas/tests/indexes/multi/test_get_set.py
1
15757
# -*- coding: utf-8 -*- import numpy as np import pytest from pandas.compat import range import pandas as pd from pandas import CategoricalIndex, Index, MultiIndex import pandas.util.testing as tm def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) def test_get_level_number_integer(idx): idx.names = [1, 0] assert idx._get_level_number(1) == 0 assert idx._get_level_number(0) == 1 pytest.raises(IndexError, idx._get_level_number, 2) with pytest.raises(KeyError, match='Level fourth not found'): idx._get_level_number('fourth') def test_get_level_values(idx): result = idx.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = idx.get_level_values('first') expected = idx.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], codes=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_value_duplicates(): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_level_values_all_na(): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_int_with_na(): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_set_name_methods(idx, index_names): # so long as these are synonyms, we don't need to test set_names assert idx.rename == idx.set_names new_names = [name + "SUFFIX" for name in index_names] ind = idx.set_names(new_names) assert idx.names == index_names assert ind.names == new_names with pytest.raises(ValueError, match="^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = idx.set_names(new_names[0], level=0) assert idx.names == index_names assert ind.names == [new_names[0], index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], index_names[1]] # set names for multiple levels ind = idx.set_names(new_names, level=[0, 1]) assert idx.names == index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 def test_set_levels_codes_directly(idx): # setting levels/codes directly raises AttributeError levels = idx.levels new_levels = [[lev + 'a' for lev in level] for level in levels] codes = idx.codes major_codes, minor_codes = codes major_codes = [(x + 1) % 3 for x in major_codes] minor_codes = [(x + 1) % 1 for x in minor_codes] new_codes = [major_codes, minor_codes] with pytest.raises(AttributeError): idx.levels = new_levels with pytest.raises(AttributeError): idx.codes = new_codes def test_set_levels(idx): # side note - you probably wouldn't want to use levels and codes # directly like this - but it is possible. levels = idx.levels new_levels = [[lev + 'a' for lev in level] for level in levels] # level changing [w/o mutation] ind2 = idx.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(idx.levels, levels) # level changing [w/ mutation] ind2 = idx.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = idx.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(idx.levels, levels) ind2 = idx.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(idx.levels, levels) # level changing multiple levels [w/o mutation] ind2 = idx.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(idx.levels, levels) # level changing specific level [w/ mutation] ind2 = idx.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(idx.levels, levels) ind2 = idx.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(idx.levels, levels) # level changing multiple levels [w/ mutation] ind2 = idx.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(idx.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = idx.copy() for inplace in [True, False]: with pytest.raises(ValueError, match="^On"): idx.set_levels(['c'], level=0, inplace=inplace) assert_matching(idx.levels, original_index.levels, check_dtype=True) with pytest.raises(ValueError, match="^On"): idx.set_codes([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(idx.codes, original_index.codes, check_dtype=True) with pytest.raises(TypeError, match="^Levels"): idx.set_levels('c', level=0, inplace=inplace) assert_matching(idx.levels, original_index.levels, check_dtype=True) with pytest.raises(TypeError, match="^Codes"): idx.set_codes(1, level=0, inplace=inplace) assert_matching(idx.codes, original_index.codes, check_dtype=True) def test_set_codes(idx): # side note - you probably wouldn't want to use levels and codes # directly like this - but it is possible. codes = idx.codes major_codes, minor_codes = codes major_codes = [(x + 1) % 3 for x in major_codes] minor_codes = [(x + 1) % 1 for x in minor_codes] new_codes = [major_codes, minor_codes] # changing codes w/o mutation ind2 = idx.set_codes(new_codes) assert_matching(ind2.codes, new_codes) assert_matching(idx.codes, codes) # changing label w/ mutation ind2 = idx.copy() inplace_return = ind2.set_codes(new_codes, inplace=True) assert inplace_return is None assert_matching(ind2.codes, new_codes) # codes changing specific level w/o mutation ind2 = idx.set_codes(new_codes[0], level=0) assert_matching(ind2.codes, [new_codes[0], codes[1]]) assert_matching(idx.codes, codes) ind2 = idx.set_codes(new_codes[1], level=1) assert_matching(ind2.codes, [codes[0], new_codes[1]]) assert_matching(idx.codes, codes) # codes changing multiple levels w/o mutation ind2 = idx.set_codes(new_codes, level=[0, 1]) assert_matching(ind2.codes, new_codes) assert_matching(idx.codes, codes) # label changing specific level w/ mutation ind2 = idx.copy() inplace_return = ind2.set_codes(new_codes[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.codes, [new_codes[0], codes[1]]) assert_matching(idx.codes, codes) ind2 = idx.copy() inplace_return = ind2.set_codes(new_codes[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.codes, [codes[0], new_codes[1]]) assert_matching(idx.codes, codes) # codes changing multiple levels [w/ mutation] ind2 = idx.copy() inplace_return = ind2.set_codes(new_codes, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.codes, new_codes) assert_matching(idx.codes, codes) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_codes = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_codes]) # [w/o mutation] result = ind.set_codes(codes=new_codes, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_codes(codes=new_codes, level=1, inplace=True) assert result.equals(expected) with tm.assert_produces_warning(FutureWarning): ind.set_codes(labels=new_codes, level=1) def test_set_labels_deprecated(): # GH23752 ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] with tm.assert_produces_warning(FutureWarning): result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() with tm.assert_produces_warning(FutureWarning): result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_codes_names_bad_input(idx): levels, codes = idx.levels, idx.codes names = idx.names with pytest.raises(ValueError, match='Length of levels'): idx.set_levels([levels[0]]) with pytest.raises(ValueError, match='Length of codes'): idx.set_codes([codes[0]]) with pytest.raises(ValueError, match='Length of names'): idx.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with pytest.raises(TypeError, match='list of lists-like'): idx.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with pytest.raises(TypeError, match='list of lists-like'): idx.set_codes(codes[0]) # shouldn't scalar data error, instead should demand list-like with pytest.raises(TypeError, match='list-like'): idx.set_names(names[0]) # should have equal lengths with pytest.raises(TypeError, match='list of lists-like'): idx.set_levels(levels[0], level=[0, 1]) with pytest.raises(TypeError, match='list-like'): idx.set_levels(levels, level=0) # should have equal lengths with pytest.raises(TypeError, match='list of lists-like'): idx.set_codes(codes[0], level=[0, 1]) with pytest.raises(TypeError, match='list-like'): idx.set_codes(codes, level=0) # should have equal lengths with pytest.raises(ValueError, match='Length of names'): idx.set_names(names[0], level=[0, 1]) with pytest.raises(TypeError, match='Names must be a'): idx.set_names(names, level=0) @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], codes=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) @pytest.mark.parametrize('ordered', [True, False]) def test_set_levels_categorical(ordered): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], codes=index.codes) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_set_value_keeps_names(): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_set_levels_with_iterable(): # GH23273 sizes = [1, 2, 3] colors = ['black'] * 3 index = pd.MultiIndex.from_arrays([sizes, colors], names=['size', 'color']) result = index.set_levels(map(int, ['3', '2', '1']), level='size') expected_sizes = [3, 2, 1] expected = pd.MultiIndex.from_arrays([expected_sizes, colors], names=['size', 'color']) tm.assert_index_equal(result, expected)
bsd-3-clause
nmartensen/pandas
pandas/plotting/_compat.py
11
1602
# being a bit too dynamic # pylint: disable=E1101 from __future__ import division from distutils.version import LooseVersion def _mpl_le_1_2_1(): try: import matplotlib as mpl return (str(mpl.__version__) <= LooseVersion('1.2.1') and str(mpl.__version__)[0] != '0') except ImportError: return False def _mpl_ge_1_3_1(): try: import matplotlib # The or v[0] == '0' is because their versioneer is # messed up on dev return (matplotlib.__version__ >= LooseVersion('1.3.1') or matplotlib.__version__[0] == '0') except ImportError: return False def _mpl_ge_1_4_0(): try: import matplotlib return (matplotlib.__version__ >= LooseVersion('1.4') or matplotlib.__version__[0] == '0') except ImportError: return False def _mpl_ge_1_5_0(): try: import matplotlib return (matplotlib.__version__ >= LooseVersion('1.5') or matplotlib.__version__[0] == '0') except ImportError: return False def _mpl_ge_2_0_0(): try: import matplotlib return matplotlib.__version__ >= LooseVersion('2.0') except ImportError: return False def _mpl_le_2_0_0(): try: import matplotlib return matplotlib.compare_versions('2.0.0', matplotlib.__version__) except ImportError: return False def _mpl_ge_2_0_1(): try: import matplotlib return matplotlib.__version__ >= LooseVersion('2.0.1') except ImportError: return False
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/doc/mpl_examples/pylab_examples/psd_demo_complex.py
12
1166
#This is a ported version of a MATLAB example from the signal processing #toolbox that showed some difference at one time between Matplotlib's and #MATLAB's scaling of the PSD. This differs from psd_demo3.py in that #this uses a complex signal, so we can see that complex PSD's work properly import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab fs = 1000 t = np.linspace(0, 0.3, 301) A = np.array([2, 8]).reshape(-1, 1) f = np.array([150, 140]).reshape(-1, 1) xn = (A * np.exp(2j * np.pi * f * t)).sum(axis=0) + 5 * np.random.randn(*t.shape) yticks = np.arange(-50, 30, 10) xticks = np.arange(-500,550,100) plt.subplots_adjust(hspace=0.45, wspace=0.3) ax = plt.subplot(1, 2, 1) plt.psd(xn, NFFT=301, Fs=fs, window=mlab.window_none, pad_to=1024, scale_by_freq=True) plt.title('Periodogram') plt.yticks(yticks) plt.xticks(xticks) plt.grid(True) plt.xlim(-500, 500) plt.subplot(1, 2, 2, sharex=ax, sharey=ax) plt.psd(xn, NFFT=150, Fs=fs, window=mlab.window_none, noverlap=75, pad_to=512, scale_by_freq=True) plt.title('Welch') plt.xticks(xticks) plt.yticks(yticks) plt.ylabel('') plt.grid(True) plt.xlim(-500, 500) plt.show()
gpl-2.0
restudToolbox/package
respy/tests/test_versions.py
1
9657
from pandas.util.testing import assert_frame_equal import numpy as np import pandas as pd import pytest from codes.auxiliary import write_interpolation_grid from codes.random_init import generate_random_dict from codes.auxiliary import compare_est_log from codes.random_init import generate_init from codes.auxiliary import write_draws from respy.python.solve.solve_auxiliary import pyth_create_state_space from respy.python.shared.shared_constants import TEST_RESOURCES_DIR from respy.python.shared.shared_auxiliary import print_init_dict from respy.python.shared.shared_constants import IS_FORTRAN from respy import estimate from respy import simulate from respy import RespyCls @pytest.mark.skipif(not IS_FORTRAN, reason='No FORTRAN available') @pytest.mark.usefixtures('fresh_directory', 'set_seed') class TestClass(object): """ This class groups together some tests. """ def test_1(self): """ Testing the equality of an evaluation of the criterion function for a random request. """ # Run evaluation for multiple random requests. is_deterministic = np.random.choice([True, False], p=[0.10, 0.9]) is_interpolated = np.random.choice([True, False], p=[0.10, 0.9]) is_myopic = np.random.choice([True, False], p=[0.10, 0.9]) max_draws = np.random.randint(10, 100) # Generate random initialization file constr = dict() constr['is_deterministic'] = is_deterministic constr['flag_parallelism'] = False constr['is_myopic'] = is_myopic constr['max_draws'] = max_draws constr['maxfun'] = 0 init_dict = generate_random_dict(constr) # The use of the interpolation routines is a another special case. # Constructing a request that actually involves the use of the # interpolation routine is a little involved as the number of # interpolation points needs to be lower than the actual number of # states. And to know the number of states each period, I need to # construct the whole state space. if is_interpolated: # Extract from future initialization file the information # required to construct the state space. The number of periods # needs to be at least three in order to provide enough state # points. num_periods = np.random.randint(3, 6) edu_start = init_dict['EDUCATION']['start'] edu_max = init_dict['EDUCATION']['max'] min_idx = min(num_periods, (edu_max - edu_start + 1)) max_states_period = pyth_create_state_space(num_periods, edu_start, edu_max, min_idx)[3] # Updates to initialization dictionary that trigger a use of the # interpolation code. init_dict['BASICS']['periods'] = num_periods init_dict['INTERPOLATION']['flag'] = True init_dict['INTERPOLATION']['points'] = \ np.random.randint(10, max_states_period) # Print out the relevant initialization file. print_init_dict(init_dict) # Write out random components and interpolation grid to align the # three implementations. num_periods = init_dict['BASICS']['periods'] write_draws(num_periods, max_draws) write_interpolation_grid('test.respy.ini') # Clean evaluations based on interpolation grid, base_val, base_data = None, None for version in ['PYTHON', 'FORTRAN']: respy_obj = RespyCls('test.respy.ini') # Modify the version of the program for the different requests. respy_obj.unlock() respy_obj.set_attr('version', version) respy_obj.lock() # Solve the model respy_obj = simulate(respy_obj) # This parts checks the equality of simulated dataset for the # different versions of the code. data_frame = pd.read_csv('data.respy.dat', delim_whitespace=True) if base_data is None: base_data = data_frame.copy() assert_frame_equal(base_data, data_frame) # This part checks the equality of an evaluation of the # criterion function. _, crit_val = estimate(respy_obj) if base_val is None: base_val = crit_val np.testing.assert_allclose(base_val, crit_val, rtol=1e-05, atol=1e-06) # We know even more for the deterministic case. if constr['is_deterministic']: assert (crit_val in [-1.0, 0.0]) def test_2(self): """ This test ensures that the evaluation of the criterion function at the starting value is identical between the different versions. """ max_draws = np.random.randint(10, 100) # Generate random initialization file constr = dict() constr['flag_parallelism'] = False constr['max_draws'] = max_draws constr['flag_interpolation'] = False constr['maxfun'] = 0 # Generate random initialization file init_dict = generate_init(constr) # Perform toolbox actions respy_obj = RespyCls('test.respy.ini') # Simulate a dataset simulate(respy_obj) # Iterate over alternative implementations base_x, base_val = None, None num_periods = init_dict['BASICS']['periods'] write_draws(num_periods, max_draws) for version in ['FORTRAN', 'PYTHON']: respy_obj.unlock() respy_obj.set_attr('version', version) respy_obj.lock() x, val = estimate(respy_obj) # Check for the returned parameters. if base_x is None: base_x = x np.testing.assert_allclose(base_x, x) # Check for the value of the criterion function. if base_val is None: base_val = val np.testing.assert_allclose(base_val, val) def test_3(self): """ Test the solution of deterministic model with ambiguity and interpolation. This test has the same result as in the absence of random variation in payoffs, it does not matter whether the environment is ambiguous or not. """ # Solve specified economy for version in ['FORTRAN', 'PYTHON']: respy_obj = RespyCls(TEST_RESOURCES_DIR + '/test_fifth.respy.ini') respy_obj.unlock() respy_obj.set_attr('version', version) respy_obj.lock() respy_obj = simulate(respy_obj) # Assess expected future value val = respy_obj.get_attr('periods_emax')[0, :1] np.testing.assert_allclose(val, 88750) # Assess evaluation _, val = estimate(respy_obj) np.testing.assert_allclose(val, -1.0) def test_4(self): """ Test the solution of deterministic model without ambiguity, but with interpolation. As a deterministic model is requested, all versions should yield the same result without any additional effort. """ # Solve specified economy for version in ['FORTRAN', 'PYTHON']: respy_obj = RespyCls(TEST_RESOURCES_DIR + '/test_fifth.respy.ini') respy_obj.unlock() respy_obj.set_attr('version', version) respy_obj.lock() respy_obj = simulate(respy_obj) # Assess expected future value val = respy_obj.get_attr('periods_emax')[0, :1] np.testing.assert_allclose(val, 88750) # Assess evaluation _, val = estimate(respy_obj) np.testing.assert_allclose(val, -1.0) def test_5(self): """ This test ensures that the logging looks exactly the same for the different versions. """ max_draws = np.random.randint(10, 300) # Generate random initialization file constr = dict() constr['flag_parallelism'] = False constr['max_draws'] = max_draws constr['flag_interpolation'] = False constr['maxfun'] = 0 # Generate random initialization file init_dict = generate_init(constr) # Perform toolbox actions respy_obj = RespyCls('test.respy.ini') # Iterate over alternative implementations base_sol_log, base_est_info_log, base_est_log = None, None, None base_sim_log = None num_periods = init_dict['BASICS']['periods'] write_draws(num_periods, max_draws) for version in ['FORTRAN', 'PYTHON']: respy_obj.unlock() respy_obj.set_attr('version', version) respy_obj.lock() simulate(respy_obj) estimate(respy_obj) # Check for identical logging if base_sol_log is None: base_sol_log = open('sol.respy.log', 'r').read() assert open('sol.respy.log', 'r').read() == base_sol_log # Check for identical logging if base_sim_log is None: base_sim_log = open('sim.respy.log', 'r').read() assert open('sim.respy.log', 'r').read() == base_sim_log if base_est_info_log is None: base_est_info_log = open('est.respy.info', 'r').read() assert open('est.respy.info', 'r').read() == base_est_info_log if base_est_log is None: base_est_log = open('est.respy.log', 'r').readlines() compare_est_log(base_est_log)
mit
jcrudy/py-earth
pyearth/export.py
3
8244
def export_python_function(earth_model): """ Exports model as a pure python function, with no numpy/scipy/sklearn dependencies. :param earth_model: Trained pyearth model :return: A function that accepts an iterator over examples, and returns an iterator over transformed examples """ i = 0 accessors = [] for bf in earth_model.basis_: if not bf.is_pruned(): accessors.append(bf.func_factory(earth_model.coef_[0, i])) i += 1 def func(example_iterator): return [sum(accessor(row) for accessor in accessors) for row in example_iterator] return func def export_python_string(earth_model, function_name="model"): """ Exports model as a string that evaluates as python code, with no numpy/scipy/sklearn dependencies. :param earth_model: Trained pyearth model :param function_name: string, optional, will be the name of the function in the returned string :return: string, when executed (either by writing to a file, or using `exec`, will define a python function that accepts an iterator over examples, and returns an iterator over transformed examples """ i = 0 accessors = [] for bf in earth_model.basis_: if not bf.is_pruned(): accessors.append(bf.func_string_factory(earth_model.coef_[0, i])) i += 1 return """def {:s}(example_iterator): accessors = [{:s}] for x in example_iterator: yield sum(accessor(x) for accessor in accessors) """.format(function_name, ",\n\t\t".join(accessors)) def export_sympy_term_expressions(earth_model): """ Construct a list of sympy expressions for all non-pruned terms in the model. :param earth_model: Trained pyearth model :return: a list of sympy expressions representing terms in the model. These expressions are the symbolic equivalent of the Earth.transform method. """ from sympy import Symbol, Add, Mul, Max, RealNumber, Piecewise, Pow, And, nan, Function, Not from ._basis import LinearBasisFunction, HingeBasisFunction, SmoothedHingeBasisFunction, \ MissingnessBasisFunction, ConstantBasisFunction, VariableBasisFunction Missing = Function('Missing') NaNProtect = Function('NaNProtect') def linear_bf_to_factor(bf, bf_var): return bf_var def smoothed_hinge_bf_to_factor(bf, bf_var): knot = RealNumber(bf.get_knot()) knot_minus = RealNumber(bf.get_knot_minus()) knot_plus = RealNumber(bf.get_knot_plus()) r = RealNumber(bf.get_r()) p = RealNumber(bf.get_p()) if bf.get_reverse(): lower_p = (-(bf_var - knot)), (bf_var <= knot_minus) upper_p = (0, bf_var >= knot_plus) left_exp = Mul(p, Pow((bf_var - knot_plus), 2)) right_exp = Mul(r, Pow((bf_var - knot_plus), 3)) middle_b = And(knot_minus < bf_var, bf_var < knot_plus) middle_exp = (Add(left_exp, right_exp), middle_b) piecewise = Piecewise(lower_p, upper_p, middle_exp) factor = piecewise else: lower_p = (0, bf_var <= knot_minus) upper_p = (bf_var - knot, bf_var >= knot_plus) left_exp = Mul(p, Pow((bf_var - knot_minus), 2)) right_exp = Mul(r, Pow((bf_var - knot_minus), 3)) middle_b = And(knot_minus < bf_var, bf_var < knot_plus) middle_exp = (Add(left_exp, right_exp), middle_b) piecewise = Piecewise(lower_p, upper_p, middle_exp) factor = piecewise return factor def hinge_bf_to_factor(bf, bf_var): knot = bf.get_knot() if bf.get_reverse(): factor = Max(0, RealNumber(knot) - bf_var) else: factor = Max(0, bf_var - RealNumber(knot)) return factor def missingness_bf_to_factor(bf, bf_var): # This is the error that should be raised when a user attempts to use functionality # that has not yet been implemented. if bf.complement: return Not(Missing(bf_var)) else: return Missing(bf_var) def constant_bf_to_factor(bf, bf_var): return RealNumber(1) def protect_from_nan(label, missables): return NaNProtect(Symbol(label)) if label in missables else Symbol(label) def dont_protect_from_nan(label, missables): return Symbol(label) bf_to_factor_dispatcher = {LinearBasisFunction: linear_bf_to_factor, SmoothedHingeBasisFunction: smoothed_hinge_bf_to_factor, HingeBasisFunction: hinge_bf_to_factor, MissingnessBasisFunction: missingness_bf_to_factor, ConstantBasisFunction: constant_bf_to_factor} nan_protect_dispatch = {LinearBasisFunction: protect_from_nan, SmoothedHingeBasisFunction: protect_from_nan, HingeBasisFunction: protect_from_nan, MissingnessBasisFunction: dont_protect_from_nan, ConstantBasisFunction: protect_from_nan} def bf_to_factor(bf, missables): ''' Convert a BasisFunction to a factor of a term. ''' if isinstance(bf, VariableBasisFunction): bf_var = nan_protect_dispatch[bf.__class__](bf.label, missables) else: bf_var = None return bf_to_factor_dispatcher[bf.__class__](bf, bf_var) def missingness_bf_get_missables(bf): bf_var = bf.label return set([bf_var]) def non_missable(bf): return set() bf_get_missables_dispatcher = {LinearBasisFunction: non_missable, SmoothedHingeBasisFunction: non_missable, HingeBasisFunction: non_missable, MissingnessBasisFunction: missingness_bf_get_missables, ConstantBasisFunction: non_missable} def get_missables(bf): missables = bf_get_missables_dispatcher[bf.__class__](bf) parent = bf.get_parent() if parent is None: return missables else: missables.update(get_missables(parent)) return missables def bf_to_term(bf, missables): ''' Convert a BasisFunction to a term (without coefficient). ''' term = bf_to_factor(bf, missables) parent = bf.get_parent() if parent is None: return term else: return Mul(term, bf_to_term(parent, missables)) return [bf_to_term(bf, get_missables(bf)) for bf in earth_model.basis_.piter()] def export_sympy(earth_model, columns=None): """ Constructs a sympy expression or list of sympy expressions from of a trained earth model. :param earth_model: Trained pyearth model :param columns: The index or indices of the output columns for which expressions are to be constructed. If an integer is used, a sympy expression is returned. If indices are given then a list of sympy expressions is returned. If columns is None, it is treated as if columns=0 for models with only one output column or as columns=slice(None) for more than one output column. :return: a sympy expression or list of sympy expressions equivalent to the Earth.predict method for the selected output columns. """ # Set a sane default for columns if columns is None: if earth_model.coef_.shape[0] == 1: columns = 0 else: columns = slice(None) # Get basis function terms terms = export_sympy_term_expressions(earth_model) # Handle column choice coefs = earth_model.coef_[columns] if len(coefs.shape) == 1: unwrap = True coefs = [coefs] n_cols = 1 else: unwrap = False n_cols = coefs.shape[0] # Combine coefficients with terms for each output column result = [sum([coefs[i][j] * term for j, term in enumerate(terms)]) for i in range(n_cols)] if unwrap: # Result should be an expression rather than a list of expressions. result = result[0] return result
bsd-3-clause
msbeta/apollo
modules/tools/prediction/learning_algorithms/utilities/train_utils.py
1
6620
############################################################################### # Copyright 2019 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import logging import math import numpy as np import sklearn from sklearn.model_selection import train_test_split from sklearn.utils import class_weight import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader, sampler def cuda(x): #return x if isinstance(x, (list, tuple)): return [cuda(y) for y in x] return x.cuda() if torch.cuda.is_available() else x def train_vanilla(train_X, train_y, model, loss, optimizer, epoch, batch_preprocess, batch_size=1024, print_period=100): model.train() loss_history = [] logging.info('Epoch: {}:'.format(epoch)) print('Epoch: {}:'.format(epoch)) num_of_data = train_X.shape[0] num_of_batch = math.ceil(num_of_data / batch_size) pred_y = [] for i in range(num_of_batch): optimizer.zero_grad() X = train_X[i*batch_size: min(num_of_data, (i+1)*batch_size), ] y = train_y[i*batch_size: min(num_of_data, (i+1)*batch_size), ] X, y = batch_preprocess(X, y) pred = model(X) train_loss = loss.loss_fn(pred, y) loss_history.append(train_loss.item()) train_loss.backward() optimizer.step() pred = pred.detach().cpu().numpy() pred_y.append(pred) if (i > 0) and (i % print_period == 0): logging.info(' Step: {}, training loss: {}'.format( i, np.mean(loss_history[-print_period:]))) print (' Step: {}, training loss: {}'.format( i, np.mean(loss_history[-print_period:]))) train_loss = np.mean(loss_history) logging.info('Training loss: {}'.format(train_loss)) print('Training Loss: {}'.format(train_loss)) loss.loss_info(pred_y, train_y) def valid_vanilla(valid_X, valid_y, model, loss, batch_preprocess, batch_size=1024): model.eval() loss_history = [] num_of_data = valid_X.shape[0] num_of_batch = math.ceil(num_of_data / batch_size) pred_y = [] for i in range(num_of_batch): X = valid_X[i*batch_size: min(num_of_data, (i+1)*batch_size), ] y = valid_y[i*batch_size: min(num_of_data, (i+1)*batch_size), ] X, y = batch_preprocess(X, y) pred = model(X) valid_loss = loss.loss_fn(pred, y) loss_history.append(valid_loss.item()) pred = pred.detach().cpu().numpy() pred_y.append(pred) valid_loss = np.mean(loss_history) logging.info('Validation loss: {}.'.format(valid_loss)) print ('Validation loss: {}.'.format(valid_loss)) loss.loss_info(pred_y, valid_y) return valid_loss def train_valid_vanilla(train_X, train_y, valid_X, valid_y, model, loss, optimizer, scheduler, epochs, save_name, batch_preprocess, train_batch=1024, print_period=100, valid_batch=1024): best_valid_loss = float('+inf') for epoch in range(1, epochs+1): train_vanilla(train_X, train_y, model, loss, optimizer, epoch, batch_preprocess, train_batch, print_period) valid_loss = valid_vanilla(valid_X, valid_y, model, loss, batch_preprocess, valid_batch) scheduler.step(valid_loss) # TODO(jiacheng): add early stopping mechanism if valid_loss < best_valid_loss: best_valid_loss = valid_loss # save_checkpoint() return model def train_dataloader(train_loader, model, loss, optimizer, epoch, print_period=100): with torch.autograd.set_detect_anomaly(True): model.train() loss_history = [] logging.info('Epoch: {}:'.format(epoch)) print('Epoch: {}:'.format(epoch)) for i, (X, y) in enumerate(train_loader): optimizer.zero_grad() X, y = cuda(X), cuda(y) pred = model(X) train_loss = loss.loss_fn(pred, y) loss_history.append(train_loss.item()) train_loss.backward() optimizer.step() if (i > 0) and (i % print_period == 0): logging.info(' Step: {}, training loss: {}'.format( i, np.mean(loss_history[-print_period:]))) print (' Step: {}, training loss: {}'.format( i, np.mean(loss_history[-print_period:]))) train_loss = np.mean(loss_history) logging.info('Training loss: {}'.format(train_loss)) print('Training Loss: {}'.format(train_loss)) def valid_dataloader(valid_loader, model, loss): model.eval() loss_history = [] for i, (X, y) in enumerate(valid_loader): X, y = cuda(X), cuda(y) pred = model(X) valid_loss = loss.loss_fn(pred, y) loss_history.append(valid_loss.item()) valid_loss_info = loss.loss_info(pred, y).item() print (valid_loss_info) logging.info('Validation avg displacement = {}'.format(valid_loss_info)) valid_loss = np.mean(loss_history) logging.info('Validation loss: {}.'.format(valid_loss)) print ('Validation loss: {}.'.format(valid_loss)) return valid_loss def train_valid_dataloader(train_loader, valid_loader, model, loss, optimizer, scheduler, epochs, save_name, print_period=100): best_valid_loss = float('+inf') for epoch in range(1, epochs+1): train_dataloader(train_loader, model, loss, optimizer, epoch, print_period) valid_loss = valid_dataloader(valid_loader, model, loss) scheduler.step(valid_loss) # TODO(jiacheng): add early stopping mechanism if valid_loss < best_valid_loss: best_valid_loss = valid_loss # save_checkpoint() return model # TODO(jiacheng): implement this def save_checkpoint(): return
apache-2.0
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/lib/matplotlib/backends/backend_gtk3cairo.py
6
1874
import backend_gtk3 import backend_cairo from matplotlib.figure import Figure class RendererGTK3Cairo(backend_cairo.RendererCairo): def set_context(self, ctx): self.gc.ctx = ctx class FigureCanvasGTK3Cairo(backend_gtk3.FigureCanvasGTK3, backend_cairo.FigureCanvasCairo): def __init__(self, figure): backend_gtk3.FigureCanvasGTK3.__init__(self, figure) def _renderer_init(self): """use cairo renderer""" self._renderer = RendererGTK3Cairo(self.figure.dpi) def _render_figure(self, width, height): self._renderer.set_width_height (width, height) self.figure.draw (self._renderer) def on_draw_event(self, widget, ctx): """ GtkDrawable draw event, like expose_event in GTK 2.X """ # the _need_redraw flag doesnt work. it sometimes prevents # the rendering and leaving the canvas blank #if self._need_redraw: self._renderer.set_context(ctx) allocation = self.get_allocation() x, y, w, h = allocation.x, allocation.y, allocation.width, allocation.height self._render_figure(w, h) #self._need_redraw = False return False # finish event propagation? class FigureManagerGTK3Cairo(backend_gtk3.FigureManagerGTK3): pass def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasGTK3Cairo(figure) manager = FigureManagerGTK3Cairo(canvas, num) return manager FigureManager = FigureManagerGTK3Cairo show = backend_gtk3.show
mit
spatchcock/monetary_economics_python
scripts/9_simple_model_of_boom_and_bust.py
1
10415
# -*- coding: utf-8 -*- # This script describes the iteration of a simple economic model examining changing # private sector spending behaviour. It is described in the accompanying iPython # Notebook and at # # http://misunderheard.org/monetary_economics/2017/07/29/simple-model-of-boom-and-bust/ # #%% Include libraries import matplotlib.pyplot as plt import numpy as np # number of time steps N = 100 # exogeneous variables G = 20 # government spending theta = 0.2 # tax rate alpha_H = 0.2 # propensity to spend out of saved wealth # endogeneous variables Y = np.zeros(N) # income T = np.zeros(N) # tax revenue C = np.zeros(N) # consumption H_h = np.zeros(N) # private savings H_g = np.zeros(N) # government balance #%% define propensity to consume time series alpha_Y = np.zeros(N) alpha_Y[0:10] = 0.9 # set the first 10 elements alpha_Y[10:N] = 0.8 # set the remainder of the elements print(alpha_Y[0:15]) #%% set initial conditions Y[0] = 100 C[0] = 80 T[0] = 20 H_h[0] = 40 H_g[0] = -40 #%% run model for t in range(1, N): # calculate total income for this time step (equation 1) Y[t] = (G + alpha_H*H_h[t-1])/(1 - alpha_Y[t]*(1-theta)) # calculate the tax paid on income for this time step (3) T[t] = theta * Y[t] # calculate the consumption spending for this time step (4) C[t] = alpha_Y[t]*(1 - theta)*Y[t] + alpha_H*H_h[t-1] # calculate the new level of private savings for this time step (5) H_h[t] = H_h[t-1] + Y[t] - T[t] - C[t] # calculate the new level of government money balance (6) H_g[t] = H_g[t-1] + T[t]- G #%% plot aggregates # initialise plot figure fig = plt.figure(figsize=(12, 4)) # plot government spending (G) through time gov_plot = fig.add_subplot(131, xlim=(0, N), ylim=(0, 120)) # set axis limits gov_plot.plot(range(N), np.repeat(G,N), lw=3) # plot constant G versus time gov_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('government spending') # label y axis # plot consumption spending (C) through time consumption_plot = fig.add_subplot(132, xlim=(0, N), ylim=(0, 120)) # set axis limits consumption_plot.plot(range(N), C, lw=3) # plot C versus time consumption_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('consumption') # label y axis # plot aggregate income (Y) through time income_plot = fig.add_subplot(133, xlim=(0, N), ylim=(0, 120)) # set axis limits income_plot.plot(range(N), Y, lw=3) # plot Y versus time income_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('income') # label y axis plt.tight_layout() # space subplots neatly #%% plot government # initialise plot figure fig = plt.figure(figsize=(8, 4)) gov_plot = fig.add_subplot(121, xlim=(0, N), ylim=(0, np.max(G)*1.5)) # set axis limits gov_plot.plot(range(N), np.repeat(G,N), lw=3) # plot constant G versus time gov_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('government spending') # label y axis tax_plot = fig.add_subplot(122, xlim=(0, N), ylim=(0, np.max(G)*1.5)) # set axis limits tax_plot.plot(range(N), T, lw=3) # plot tax revenue versus time tax_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('tax revenue') # label y axis plt.tight_layout() # space subplots neatly #%% plot sectoral balances # initialise plot figure fig = plt.figure(figsize=(8, 4)) budget_plot = fig.add_subplot(121, xlim=(0, N), ylim=(-10, 10)) # set axis limits budget_plot.plot(range(N), T-np.repeat(G,N), lw=3, label='Government') # plot gov budget versus time budget_plot.plot(range(N), Y-T-C, lw=3, label='Private sector') # plot private budget versus time budget_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('budget position') # label y axis plt.legend(loc='upper right') balance_plot = fig.add_subplot(122, xlim=(0, N), ylim=(np.min(H_g), np.max(H_h))) # set axis limits balance_plot.plot(range(N), H_g, lw=3, label='Government') # plot gov balance versus time balance_plot.plot(range(N), H_h, lw=3, label='Private sector') # plot private balance versus time balance_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('money balance') # label y axis plt.legend(loc='center right') plt.tight_layout() # space subplots neatly #%% reset propensity to consum time series alpha_Y[0:10] = 0.9 alpha_Y[10:50] = 0.8 alpha_Y[50:N] = 0.9 #%% run model for t in range(1, N): # calculate total income for this time step (equation 1) Y[t] = (G + alpha_H*H_h[t-1])/(1 - alpha_Y[t]*(1-theta)) # calculate the tax paid on income for this time step (3) T[t] = theta * Y[t] # calculate the consumption spending for this time step (4) C[t] = alpha_Y[t]*(1 - theta)*Y[t] + alpha_H*H_h[t-1] # calculate the new level of private savings for this time step (5) H_h[t] = H_h[t-1] + Y[t] - T[t] - C[t] # calculate the new level of government money balance (6) H_g[t] = H_g[t-1] + T[t]- G #%% plot aggregates # initialise plot figure fig = plt.figure(figsize=(12, 4)) # plot government spending (G) through time gov_plot = fig.add_subplot(131, xlim=(0, N), ylim=(0, 130)) # set axis limits gov_plot.plot(range(N), np.repeat(G,N), lw=3) # plot constant G versus time gov_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('government spending') # label y axis # plot consumption spending (C) through time consumption_plot = fig.add_subplot(132, xlim=(0, N), ylim=(0, 130)) # set axis limits consumption_plot.plot(range(N), C, lw=3) # plot C versus time consumption_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('consumption') # label y axis # plot aggregate income (Y) through time income_plot = fig.add_subplot(133, xlim=(0, N), ylim=(0, 130)) # set axis limits income_plot.plot(range(N), Y, lw=3) # plot Y versus time income_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('income') # label y axis plt.tight_layout() # space subplots neatly #%% plot government # initialise plot figure fig = plt.figure(figsize=(8, 4)) gov_plot = fig.add_subplot(121, xlim=(0, N), ylim=(0, np.max(G)*1.5)) # set axis limits gov_plot.plot(range(N), np.repeat(G,N), lw=3) # plot constant G versus time gov_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('government spending') # label y axis tax_plot = fig.add_subplot(122, xlim=(0, N), ylim=(0, np.max(G)*1.5)) # set axis limits tax_plot.plot(range(N), T, lw=3) # plot tax revenue versus time tax_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('tax revenue') # label y axis plt.tight_layout() # space subplots neatly #%% plot sectoral balances # initialise plot figure fig = plt.figure(figsize=(8, 4)) budget_plot = fig.add_subplot(121, xlim=(0, N), ylim=(-10, 10)) # set axis limits budget_plot.plot(range(N), T-np.repeat(G,N), lw=3, label='Government') # plot gov budget versus time budget_plot.plot(range(N), Y-T-C, lw=3, label='Private sector') # plot private budget versus time budget_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('budget position') # label y axis plt.legend(loc='upper right') balance_plot = fig.add_subplot(122, xlim=(0, N), ylim=(np.min(H_g), np.max(H_h))) # set axis limits balance_plot.plot(range(N), H_g, lw=3, label='Government') # plot gov balance versus time balance_plot.plot(range(N), H_h, lw=3, label='Private sector') # plot private balance versus time balance_plot.grid() # add gridlines plt.xlabel('time') # label x axis plt.ylabel('money balance') # label y axis plt.legend(loc='center right') plt.tight_layout() # space subplots neatly #%%
mit
JosmanPS/scikit-learn
sklearn/neighbors/tests/test_dist_metrics.py
230
5234
import itertools import pickle import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from nose import SkipTest def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) # Check if both callable metric and predefined metric initialized # DistanceMetric object is picklable euclidean_pkl = pickle.loads(pickle.dumps(euclidean)) pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc)) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) D1_pkl = euclidean_pkl.pairwise(X) D2_pkl = pyfunc_pkl.pairwise(X) assert_array_almost_equal(D1, D2) assert_array_almost_equal(D1_pkl, D2_pkl)
bsd-3-clause
pramodh-bn/learn-data-edx
Week 7/a8.py
1
5521
import numpy as np import matplotlib.pyplot as plt from matplotlib import lines as mpl_lines def getRandomLine(): return zip(np.random.uniform(-1,1.00,2),np.random.uniform(-1,1.00,2)) def getPoints(numberOfPoints): pointList = zip(np.random.uniform(-1,1.00,numberOfPoints),np.random.uniform(-1,1.00,numberOfPoints)) return pointList def isLeft(a, b, c): return 1 if ((b[0] - a[0])*(c[1] - a[1]) - (b[1] - a[1])*(c[0] - a[0])) > 0 else -1; def sign(x): return 1 if x > 0 else -1 def sign1(x): return -1 if x > 0 else 1 def doPLA(sample): w = np.array([0,0,0]) iteration = 0 it = 0 while True:#(it < 10): iteration = iteration + 1 it = it + 1 mismatch = list() for i in sample: #print("point in question ", i , " weight ", w) yy = w[0] + w[1] * i[0] + w[2] * i[1] #print("this is after applying weight to a point ",yy) point = [i[0], i[1], sign(yy)] if any(np.equal(sample, point).all(1)): #print "point not in sample" if(point[2] == -1): mismatch.append((1, (i[0]), (i[1]))) else: mismatch.append((-1, -(i[0]), -(i[1]))) #print " length ", len(mismatch), " mismatch list ",mismatch if(len(mismatch) > 0): #find a random point and update w choiceIndex = np.random.randint(0, len(mismatch)) choice = mismatch[choiceIndex] #print("choice ", choice) w = w + choice #print "new weight ", w else: break #print("this is the iteration ", iteration) #print("this is the weight ", w) #montelist = [monetcarlo((x1,y1),(x2,y2),w,10000) for i in range(5)] #print("Montelist " , montelist) #monteavg = sum([i for i in montelist])/10 return w, iteration def getMisMatches1(data, weights): #print data list1 = np.empty(len(data)) list1.fill(weights[0]) results = list1+ weights[1]*data[:,0]+weights[2]*data[:,1] print results return float(len(data) - np.sum(np.sign(results) == np.sign(data[:,2])))/len(data) def getMisMatches(data, weights): #print data list1 = np.empty(len(data)) list1.fill(weights[0]) results = list1+ weights[1]*data[:,0]+weights[2]*data[:,1] results = -1 * results return float(len(data) - np.sum(np.sign(results) == np.sign(data[:,2])))/len(data) def doMonteCarloNP(pointa, pointb, weights, nopoint): #print "weights ", weight points = [(np.random.uniform(-1,1), np.random.uniform(-1,1)) for i in range(nopoint)] #print points dataset_Monte = np.array([(i[0],i[1], isLeft(pointa,pointb,i)) for i in points]) #print dataset_Monte return getMisMatches(dataset_Monte, weights) def doMonteCarlo(pointa, pointb, weight, nopoint): #print "weights ", weight points = [(np.random.uniform(-1,1), np.random.uniform(-1,1)) for i in range(nopoint)] dataset_D = [(i[0],i[1], isLeft(pointa,pointb,i)) for i in points] dataset = np.array(dataset_D) mismatches = 0 datasetList = [] for i in dataset_D: yy = weight[0] + weight[1] * i[0] + weight[2] * i[1] datasetList.append((i[0],i[1], sign1(yy))) if(sign1(yy) != i[2]): mismatches = mismatches + 1 #print("mismatches ", mismatches) #plotMonteData(datasetList, ax) #xpos = [(i[0], i[1]) for i in dataset_D if i[2] == 1] #xneg = [(i[0], i[1]) for i in dataset_D if i[2] == -1] xpos = dataset[dataset[:,2] == 1] xpos1 = np.array([(i[0], i[1], 1) for i in dataset if i[2] == 1]) print len(xpos), len(xpos1) xneg = dataset[dataset[:,2] == -1] #plt.gca().plot(zip(*xpos)[0], zip(*xpos)[1], "+") #plt.gca().plot(zip(*xneg)[0], zip(*xneg)[1], "*") #plt.plot(xpos[:,0], xpos[:,1], "+") #plt.plot(xneg[:,0], xneg[:,1], "*") #plt.show() return float(mismatches)/nopoint def plotData(sample, line, w): xpos = sample[sample[:,2] == 1] xneg = sample[sample[:,2] == -1] plt.plot(xpos[:,0], xpos[:,1], "x") plt.plot(xneg[:,0], xneg[:,1], "o") slope = (line[1][1] - line[0][1])/(line[1][0] - line[0][0]) intercept = line[0][1] - slope*line[0][0] # update the points to be on the axes limits x = plt.gca().get_xlim() #y = plt.gca().get_ylim() data_y = [x[0]*slope+intercept, x[1]*slope+intercept] line = mpl_lines.Line2D(x, data_y, color='red') plaPoint1 = (0.1,-((w[1]/w[2])*0.1) + (-(w[0]/w[2]))) plaPoint2 = (0.8, -((w[1]/w[2])*0.8) + (-(w[0]/w[2]))) slopePLA = (plaPoint2[1] - plaPoint1[1])/(plaPoint2[0] - plaPoint1[0]) interceptPLA = plaPoint1[1] - slope*plaPoint1[0] xPLA = plt.gca().get_xlim() data_yPLA = [xPLA[0]*slopePLA+interceptPLA, xPLA[1]*slopePLA+interceptPLA] linePLA = mpl_lines.Line2D(xPLA, data_yPLA, color='blue') plt.gca().add_line(line) plt.gca().add_line(linePLA) #plt.show() if __name__ == "__main__": avgofavgiters = list() avgofavgprob = list() nopoints = 300 montel = list() iteravg = list() for k in range(100): cluster = getPoints(nopoints) line = getRandomLine() sample = np.array([(i[0], i[1], isLeft(line[0], line[1], i)) for i in cluster]) #plotData(sample, line) w, it = doPLA(sample) #print(getMisMatches(sample, w)) #plotData(sample, line, w) montelist = [ doMonteCarloNP(line[0], line[1], w, 100) for i in range(100)] #print sum(montelist)/len(montelist) montel.append(sum(montelist)/len(montelist)) iteravg.append(it) print sum(montel)/len(montel), sum(iteravg)/len(iteravg)
unlicense
lbdreyer/iris
docs/iris/gallery_code/meteorology/plot_COP_1d.py
4
3953
""" Global Average Annual Temperature Plot ====================================== Produces a time-series plot of North American temperature forecasts for 2 different emission scenarios. Constraining data to a limited spatial area also features in this example. The data used comes from the HadGEM2-AO model simulations for the A1B and E1 scenarios, both of which were derived using the IMAGE Integrated Assessment Model (Johns et al. 2011; Lowe et al. 2009). References ---------- Johns T.C., et al. (2011) Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment. Climate Dynamics, Vol 37, No. 9-10, doi:10.1007/s00382-011-1005-5. Lowe J.A., C.D. Hewitt, D.P. Van Vuuren, T.C. Johns, E. Stehfest, J-F. Royer, and P. van der Linden, 2009. New Study For Climate Modeling, Analyses, and Scenarios. Eos Trans. AGU, Vol 90, No. 21, doi:10.1029/2009EO210001. .. seealso:: Further details on the aggregation functionality being used in this example can be found in :ref:`cube-statistics`. """ import matplotlib.pyplot as plt import numpy as np import iris import iris.analysis.cartography import iris.plot as iplt import iris.quickplot as qplt def main(): # Load data into three Cubes, one for each set of NetCDF files. e1 = iris.load_cube(iris.sample_data_path("E1_north_america.nc")) a1b = iris.load_cube(iris.sample_data_path("A1B_north_america.nc")) # load in the global pre-industrial mean temperature, and limit the domain # to the same North American region that e1 and a1b are at. north_america = iris.Constraint( longitude=lambda v: 225 <= v <= 315, latitude=lambda v: 15 <= v <= 60 ) pre_industrial = iris.load_cube( iris.sample_data_path("pre-industrial.pp"), north_america ) # Generate area-weights array. As e1 and a1b are on the same grid we can # do this just once and re-use. This method requires bounds on lat/lon # coords, so let's add some in sensible locations using the "guess_bounds" # method. e1.coord("latitude").guess_bounds() e1.coord("longitude").guess_bounds() e1_grid_areas = iris.analysis.cartography.area_weights(e1) pre_industrial.coord("latitude").guess_bounds() pre_industrial.coord("longitude").guess_bounds() pre_grid_areas = iris.analysis.cartography.area_weights(pre_industrial) # Perform the area-weighted mean for each of the datasets using the # computed grid-box areas. pre_industrial_mean = pre_industrial.collapsed( ["latitude", "longitude"], iris.analysis.MEAN, weights=pre_grid_areas ) e1_mean = e1.collapsed( ["latitude", "longitude"], iris.analysis.MEAN, weights=e1_grid_areas ) a1b_mean = a1b.collapsed( ["latitude", "longitude"], iris.analysis.MEAN, weights=e1_grid_areas ) # Plot the datasets qplt.plot(e1_mean, label="E1 scenario", lw=1.5, color="blue") qplt.plot(a1b_mean, label="A1B-Image scenario", lw=1.5, color="red") # Draw a horizontal line showing the pre-industrial mean plt.axhline( y=pre_industrial_mean.data, color="gray", linestyle="dashed", label="pre-industrial", lw=1.5, ) # Constrain the period 1860-1999 and extract the observed data from a1b constraint = iris.Constraint( time=lambda cell: 1860 <= cell.point.year <= 1999 ) observed = a1b_mean.extract(constraint) # Assert that this data set is the same as the e1 scenario: # they share data up to the 1999 cut off. assert np.all(np.isclose(observed.data, e1_mean.extract(constraint).data)) # Plot the observed data qplt.plot(observed, label="observed", color="black", lw=1.5) # Add a legend and title plt.legend(loc="upper left") plt.title("North American mean air temperature", fontsize=18) plt.xlabel("Time / year") plt.grid() iplt.show() if __name__ == "__main__": main()
lgpl-3.0
hainm/scikit-learn
examples/model_selection/plot_roc_crossval.py
247
3253
""" ============================================================= Receiver Operating Characteristic (ROC) with cross validation ============================================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality using cross-validation. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these curves, it is possible to calculate the mean area under curve, and see the variance of the curve when the training set is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data, and how different the splits generated by K-fold cross-validation are from one another. .. note:: See also :func:`sklearn.metrics.auc_score`, :func:`sklearn.cross_validation.cross_val_score`, :ref:`example_model_selection_plot_roc.py`, """ print(__doc__) import numpy as np from scipy import interp import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import StratifiedKFold ############################################################################### # Data IO and generation # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target X, y = X[y != 2], y[y != 2] n_samples, n_features = X.shape # Add noisy features random_state = np.random.RandomState(0) X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] ############################################################################### # Classification and ROC analysis # Run classifier with cross-validation and plot ROC curves cv = StratifiedKFold(y, n_folds=6) classifier = svm.SVC(kernel='linear', probability=True, random_state=random_state) mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) all_tpr = [] for i, (train, test) in enumerate(cv): probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck') mean_tpr /= len(cv) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, 'k--', label='Mean ROC (area = %0.2f)' % mean_auc, lw=2) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show()
bsd-3-clause
thorwhalen/ut
stats/classification/bin/iterpol.py
1
2902
__author__ = 'thor' from numpy import * import numpy as np import time import sklearn as sk import scipy.interpolate as interpolate from ut.stats.classification.bin.base import BinaryClassifierBase2D from ut.stats.util import binomial_probs_to_multinomial_probs class BinaryClassificationByInterpolatedProbabilities(BinaryClassifierBase2D): """ This is a BinaryClassifierBase2D that estimates probabilities by interpolation. The fit function finds n_clusters clusters of the x data and assigns to each cluster center the mean of the ys of the n_neighbors nearest neighbors of the center. The ys of every other point of the x space are then estimated by interpolating over these clusters centers. """ def __init__(self, n_clusters=500, n_neighbors=3000, interpolator='cubic', **kwargs): super(BinaryClassificationByInterpolatedProbabilities, self).__init__(**kwargs) self.n_clusters = n_clusters self.n_neighbors = n_neighbors self.interpolator = interpolator self.clus = [] self.cluster_x = None self.cluster_y = None self.iterpol = None self.nnb_iterpol = None def fit(self, x, y): t0 = time.time() assert set(y.flatten()) == set([0, 1]), "y data (target data) needs to have only 0s and 1s" # determine the clusters self.clus = sk.cluster.MiniBatchKMeans(n_clusters=self.n_clusters) self.clus.fit(x) # determine the nearest neighbor for each data point nns = sk.neighbors.NearestNeighbors(n_neighbors=self.n_neighbors) nns.fit(x) neighbor_dist, neighbor_idx = nns.kneighbors(self.clus.cluster_centers_, n_neighbors=self.n_neighbors) # compute the cluster means self.cluster_x = self.clus.cluster_centers_ self.cluster_y = array([nanmean(y[neighbor_idx[i, :]]) for i in range(shape(self.cluster_x)[0])]) # make the interpolator if self.interpolator == 'linear': self.iterpol = interpolate.LinearNDInterpolator(self.cluster_x, self.cluster_y, fill_value=nan) else: self.iterpol = interpolate.CloughTocher2DInterpolator(self.cluster_x, self.cluster_y, fill_value=nan) self.nnb_iterpol = interpolate.NearestNDInterpolator(self.cluster_x, self.cluster_y) print("fit elapsed time: %.02f minutes" % ((time.time() - t0) / 60.)) def predict_proba(self, x): iterpolations = self.iterpol(x) lidx = np.isnan(iterpolations) iterpolations[lidx] = self.nnb_iterpol(x)[lidx] iterpolations[iterpolations < 0] = 0.0 # cubic interpolation might create negatives, so we set these to 0 return binomial_probs_to_multinomial_probs(iterpolations) # if only_event_probs: # return iterpolations # else: # return binomial_probs_to_multinomial_probs(iterpolations)
mit
xuewei4d/scikit-learn
sklearn/neighbors/_nca.py
10
20696
# coding: utf-8 """ Neighborhood Component Analysis """ # Authors: William de Vazelhes <[email protected]> # John Chiotellis <[email protected]> # License: BSD 3 clause from __future__ import print_function from warnings import warn import numpy as np import sys import time import numbers from scipy.optimize import minimize from ..utils.extmath import softmax from ..metrics import pairwise_distances from ..base import BaseEstimator, TransformerMixin from ..preprocessing import LabelEncoder from ..decomposition import PCA from ..utils.multiclass import check_classification_targets from ..utils.random import check_random_state from ..utils.validation import check_is_fitted, check_array, check_scalar from ..utils.validation import _deprecate_positional_args from ..exceptions import ConvergenceWarning class NeighborhoodComponentsAnalysis(TransformerMixin, BaseEstimator): """Neighborhood Components Analysis Neighborhood Component Analysis (NCA) is a machine learning algorithm for metric learning. It learns a linear transformation in a supervised fashion to improve the classification accuracy of a stochastic nearest neighbors rule in the transformed space. Read more in the :ref:`User Guide <nca>`. Parameters ---------- n_components : int, default=None Preferred dimensionality of the projected space. If None it will be set to ``n_features``. init : {'auto', 'pca', 'lda', 'identity', 'random'} or ndarray of shape \ (n_features_a, n_features_b), default='auto' Initialization of the linear transformation. Possible options are 'auto', 'pca', 'lda', 'identity', 'random', and a numpy array of shape (n_features_a, n_features_b). 'auto' Depending on ``n_components``, the most reasonable initialization will be chosen. If ``n_components <= n_classes`` we use 'lda', as it uses labels information. If not, but ``n_components < min(n_features, n_samples)``, we use 'pca', as it projects data in meaningful directions (those of higher variance). Otherwise, we just use 'identity'. 'pca' ``n_components`` principal components of the inputs passed to :meth:`fit` will be used to initialize the transformation. (See :class:`~sklearn.decomposition.PCA`) 'lda' ``min(n_components, n_classes)`` most discriminative components of the inputs passed to :meth:`fit` will be used to initialize the transformation. (If ``n_components > n_classes``, the rest of the components will be zero.) (See :class:`~sklearn.discriminant_analysis.LinearDiscriminantAnalysis`) 'identity' If ``n_components`` is strictly smaller than the dimensionality of the inputs passed to :meth:`fit`, the identity matrix will be truncated to the first ``n_components`` rows. 'random' The initial transformation will be a random array of shape `(n_components, n_features)`. Each value is sampled from the standard normal distribution. numpy array n_features_b must match the dimensionality of the inputs passed to :meth:`fit` and n_features_a must be less than or equal to that. If ``n_components`` is not None, n_features_a must match it. warm_start : bool, default=False If True and :meth:`fit` has been called before, the solution of the previous call to :meth:`fit` is used as the initial linear transformation (``n_components`` and ``init`` will be ignored). max_iter : int, default=50 Maximum number of iterations in the optimization. tol : float, default=1e-5 Convergence tolerance for the optimization. callback : callable, default=None If not None, this function is called after every iteration of the optimizer, taking as arguments the current solution (flattened transformation matrix) and the number of iterations. This might be useful in case one wants to examine or store the transformation found after each iteration. verbose : int, default=0 If 0, no progress messages will be printed. If 1, progress messages will be printed to stdout. If > 1, progress messages will be printed and the ``disp`` parameter of :func:`scipy.optimize.minimize` will be set to ``verbose - 2``. random_state : int or numpy.RandomState, default=None A pseudo random number generator object or a seed for it if int. If ``init='random'``, ``random_state`` is used to initialize the random transformation. If ``init='pca'``, ``random_state`` is passed as an argument to PCA when initializing the transformation. Pass an int for reproducible results across multiple function calls. See :term: `Glossary <random_state>`. Attributes ---------- components_ : ndarray of shape (n_components, n_features) The linear transformation learned during fitting. n_iter_ : int Counts the number of iterations performed by the optimizer. random_state_ : numpy.RandomState Pseudo random number generator object used during initialization. Examples -------- >>> from sklearn.neighbors import NeighborhoodComponentsAnalysis >>> from sklearn.neighbors import KNeighborsClassifier >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import train_test_split >>> X, y = load_iris(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... stratify=y, test_size=0.7, random_state=42) >>> nca = NeighborhoodComponentsAnalysis(random_state=42) >>> nca.fit(X_train, y_train) NeighborhoodComponentsAnalysis(...) >>> knn = KNeighborsClassifier(n_neighbors=3) >>> knn.fit(X_train, y_train) KNeighborsClassifier(...) >>> print(knn.score(X_test, y_test)) 0.933333... >>> knn.fit(nca.transform(X_train), y_train) KNeighborsClassifier(...) >>> print(knn.score(nca.transform(X_test), y_test)) 0.961904... References ---------- .. [1] J. Goldberger, G. Hinton, S. Roweis, R. Salakhutdinov. "Neighbourhood Components Analysis". Advances in Neural Information Processing Systems. 17, 513-520, 2005. http://www.cs.nyu.edu/~roweis/papers/ncanips.pdf .. [2] Wikipedia entry on Neighborhood Components Analysis https://en.wikipedia.org/wiki/Neighbourhood_components_analysis """ @_deprecate_positional_args def __init__(self, n_components=None, *, init='auto', warm_start=False, max_iter=50, tol=1e-5, callback=None, verbose=0, random_state=None): self.n_components = n_components self.init = init self.warm_start = warm_start self.max_iter = max_iter self.tol = tol self.callback = callback self.verbose = verbose self.random_state = random_state def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : array-like of shape (n_samples, n_features) The training samples. y : array-like of shape (n_samples,) The corresponding training labels. Returns ------- self : object returns a trained NeighborhoodComponentsAnalysis model. """ # Verify inputs X and y and NCA parameters, and transform a copy if # needed X, y, init = self._validate_params(X, y) # Initialize the random generator self.random_state_ = check_random_state(self.random_state) # Measure the total training time t_train = time.time() # Compute a mask that stays fixed during optimization: same_class_mask = y[:, np.newaxis] == y[np.newaxis, :] # (n_samples, n_samples) # Initialize the transformation transformation = self._initialize(X, y, init) # Create a dictionary of parameters to be passed to the optimizer disp = self.verbose - 2 if self.verbose > 1 else -1 optimizer_params = {'method': 'L-BFGS-B', 'fun': self._loss_grad_lbfgs, 'args': (X, same_class_mask, -1.0), 'jac': True, 'x0': transformation, 'tol': self.tol, 'options': dict(maxiter=self.max_iter, disp=disp), 'callback': self._callback } # Call the optimizer self.n_iter_ = 0 opt_result = minimize(**optimizer_params) # Reshape the solution found by the optimizer self.components_ = opt_result.x.reshape(-1, X.shape[1]) # Stop timer t_train = time.time() - t_train if self.verbose: cls_name = self.__class__.__name__ # Warn the user if the algorithm did not converge if not opt_result.success: warn('[{}] NCA did not converge: {}'.format( cls_name, opt_result.message), ConvergenceWarning) print('[{}] Training took {:8.2f}s.'.format(cls_name, t_train)) return self def transform(self, X): """Applies the learned transformation to the given data. Parameters ---------- X : array-like of shape (n_samples, n_features) Data samples. Returns ------- X_embedded: ndarray of shape (n_samples, n_components) The data samples transformed. Raises ------ NotFittedError If :meth:`fit` has not been called before. """ check_is_fitted(self) X = check_array(X) return np.dot(X, self.components_.T) def _validate_params(self, X, y): """Validate parameters as soon as :meth:`fit` is called. Parameters ---------- X : array-like of shape (n_samples, n_features) The training samples. y : array-like of shape (n_samples,) The corresponding training labels. Returns ------- X : ndarray of shape (n_samples, n_features) The validated training samples. y : ndarray of shape (n_samples,) The validated training labels, encoded to be integers in the range(0, n_classes). init : str or ndarray of shape (n_features_a, n_features_b) The validated initialization of the linear transformation. Raises ------- TypeError If a parameter is not an instance of the desired type. ValueError If a parameter's value violates its legal value range or if the combination of two or more given parameters is incompatible. """ # Validate the inputs X and y, and converts y to numerical classes. X, y = self._validate_data(X, y, ensure_min_samples=2) check_classification_targets(y) y = LabelEncoder().fit_transform(y) # Check the preferred dimensionality of the projected space if self.n_components is not None: check_scalar( self.n_components, 'n_components', numbers.Integral, min_val=1) if self.n_components > X.shape[1]: raise ValueError('The preferred dimensionality of the ' 'projected space `n_components` ({}) cannot ' 'be greater than the given data ' 'dimensionality ({})!' .format(self.n_components, X.shape[1])) # If warm_start is enabled, check that the inputs are consistent check_scalar(self.warm_start, 'warm_start', bool) if self.warm_start and hasattr(self, 'components_'): if self.components_.shape[1] != X.shape[1]: raise ValueError('The new inputs dimensionality ({}) does not ' 'match the input dimensionality of the ' 'previously learned transformation ({}).' .format(X.shape[1], self.components_.shape[1])) check_scalar(self.max_iter, 'max_iter', numbers.Integral, min_val=1) check_scalar(self.tol, 'tol', numbers.Real, min_val=0.) check_scalar(self.verbose, 'verbose', numbers.Integral, min_val=0) if self.callback is not None: if not callable(self.callback): raise ValueError('`callback` is not callable.') # Check how the linear transformation should be initialized init = self.init if isinstance(init, np.ndarray): init = check_array(init) # Assert that init.shape[1] = X.shape[1] if init.shape[1] != X.shape[1]: raise ValueError( 'The input dimensionality ({}) of the given ' 'linear transformation `init` must match the ' 'dimensionality of the given inputs `X` ({}).' .format(init.shape[1], X.shape[1])) # Assert that init.shape[0] <= init.shape[1] if init.shape[0] > init.shape[1]: raise ValueError( 'The output dimensionality ({}) of the given ' 'linear transformation `init` cannot be ' 'greater than its input dimensionality ({}).' .format(init.shape[0], init.shape[1])) if self.n_components is not None: # Assert that self.n_components = init.shape[0] if self.n_components != init.shape[0]: raise ValueError('The preferred dimensionality of the ' 'projected space `n_components` ({}) does' ' not match the output dimensionality of ' 'the given linear transformation ' '`init` ({})!' .format(self.n_components, init.shape[0])) elif init in ['auto', 'pca', 'lda', 'identity', 'random']: pass else: raise ValueError( "`init` must be 'auto', 'pca', 'lda', 'identity', 'random' " "or a numpy array of shape (n_components, n_features).") return X, y, init def _initialize(self, X, y, init): """Initialize the transformation. Parameters ---------- X : array-like of shape (n_samples, n_features) The training samples. y : array-like of shape (n_samples,) The training labels. init : str or ndarray of shape (n_features_a, n_features_b) The validated initialization of the linear transformation. Returns ------- transformation : ndarray of shape (n_components, n_features) The initialized linear transformation. """ transformation = init if self.warm_start and hasattr(self, 'components_'): transformation = self.components_ elif isinstance(init, np.ndarray): pass else: n_samples, n_features = X.shape n_components = self.n_components or n_features if init == 'auto': n_classes = len(np.unique(y)) if n_components <= min(n_features, n_classes - 1): init = 'lda' elif n_components < min(n_features, n_samples): init = 'pca' else: init = 'identity' if init == 'identity': transformation = np.eye(n_components, X.shape[1]) elif init == 'random': transformation = self.random_state_.randn(n_components, X.shape[1]) elif init in {'pca', 'lda'}: init_time = time.time() if init == 'pca': pca = PCA(n_components=n_components, random_state=self.random_state_) if self.verbose: print('Finding principal components... ', end='') sys.stdout.flush() pca.fit(X) transformation = pca.components_ elif init == 'lda': from ..discriminant_analysis import ( LinearDiscriminantAnalysis) lda = LinearDiscriminantAnalysis(n_components=n_components) if self.verbose: print('Finding most discriminative components... ', end='') sys.stdout.flush() lda.fit(X, y) transformation = lda.scalings_.T[:n_components] if self.verbose: print('done in {:5.2f}s'.format(time.time() - init_time)) return transformation def _callback(self, transformation): """Called after each iteration of the optimizer. Parameters ---------- transformation : ndarray of shape (n_components * n_features,) The solution computed by the optimizer in this iteration. """ if self.callback is not None: self.callback(transformation, self.n_iter_) self.n_iter_ += 1 def _loss_grad_lbfgs(self, transformation, X, same_class_mask, sign=1.0): """Compute the loss and the loss gradient w.r.t. ``transformation``. Parameters ---------- transformation : ndarray of shape (n_components * n_features,) The raveled linear transformation on which to compute loss and evaluate gradient. X : ndarray of shape (n_samples, n_features) The training samples. same_class_mask : ndarray of shape (n_samples, n_samples) A mask where ``mask[i, j] == 1`` if ``X[i]`` and ``X[j]`` belong to the same class, and ``0`` otherwise. Returns ------- loss : float The loss computed for the given transformation. gradient : ndarray of shape (n_components * n_features,) The new (flattened) gradient of the loss. """ if self.n_iter_ == 0: self.n_iter_ += 1 if self.verbose: header_fields = ['Iteration', 'Objective Value', 'Time(s)'] header_fmt = '{:>10} {:>20} {:>10}' header = header_fmt.format(*header_fields) cls_name = self.__class__.__name__ print('[{}]'.format(cls_name)) print('[{}] {}\n[{}] {}'.format(cls_name, header, cls_name, '-' * len(header))) t_funcall = time.time() transformation = transformation.reshape(-1, X.shape[1]) X_embedded = np.dot(X, transformation.T) # (n_samples, n_components) # Compute softmax distances p_ij = pairwise_distances(X_embedded, squared=True) np.fill_diagonal(p_ij, np.inf) p_ij = softmax(-p_ij) # (n_samples, n_samples) # Compute loss masked_p_ij = p_ij * same_class_mask p = np.sum(masked_p_ij, axis=1, keepdims=True) # (n_samples, 1) loss = np.sum(p) # Compute gradient of loss w.r.t. `transform` weighted_p_ij = masked_p_ij - p_ij * p weighted_p_ij_sym = weighted_p_ij + weighted_p_ij.T np.fill_diagonal(weighted_p_ij_sym, -weighted_p_ij.sum(axis=0)) gradient = 2 * X_embedded.T.dot(weighted_p_ij_sym).dot(X) # time complexity of the gradient: O(n_components x n_samples x ( # n_samples + n_features)) if self.verbose: t_funcall = time.time() - t_funcall values_fmt = '[{}] {:>10} {:>20.6e} {:>10.2f}' print(values_fmt.format(self.__class__.__name__, self.n_iter_, loss, t_funcall)) sys.stdout.flush() return sign * loss, sign * gradient.ravel() def _more_tags(self): return {'requires_y': True}
bsd-3-clause
ajdawson/eofs
doc/conf.py
1
9234
# -*- coding: utf-8 -*- # # eofs documentation build configuration file, created by # sphinx-quickstart on Thu Jul 5 15:47:55 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os import time # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.append(os.path.abspath('sphinxext')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.extlinks', 'matplotlib.sphinxext.plot_directive',] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'eofs' copyright = '2013-{} Andrew Dawson'.format(time.localtime().tm_year) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import eofs version = eofs.__version__ # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' highlight_language = 'python' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- extlinks configuration ---------------------------------------------------- # Allow e.g. :issue:`42` and :pr:`42` roles: extlinks = {'issue': ('https://github.com/ajdawson/eofs/issues/%s', '#'), 'pr': ('https://github.com/ajdawson/eofs/pull/%s', '#')} # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx13' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['_themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = {'**': ['sidebar_toc.html', 'relations.html', 'sourcelink.html', 'searchbox.html']} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {'index': 'index.html'} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'eofsdoc' # Options for intersphinx. intersphinx_mapping = { 'eof2': ('http://ajdawson.github.com/eof2', None), 'iris': ('http://scitools.org.uk/iris/docs/latest', None), 'numpy': ('http://docs.scipy.org/doc/numpy', None), 'xarray': ('http://xarray.pydata.org/en/stable', None), 'dask': ('https://docs.dask.org/en/latest', None), } # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). 'pointsize': '11pt', # Additional stuff for the LaTeX preamble. 'preamble': """\\usepackage{amssymb} \\usepackage{amsmath}""", } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('userguide/index', 'userguide.tex', 'eofs User Guide', 'Andrew Dawson', 'manual'), ('examples/index', 'examples.tex', 'eofs Examples', 'Andrew Dawson', 'manual'), ('api/index', 'api.tex', 'eofs API Reference', 'Andrew Dawson', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'eofs', 'eofs Documentation', ['Andrew Dawson'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'eofs', 'eofs Documentation', 'Andrew Dawson', 'eofs', 'EOF analysis in Python.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # -- Autodoc settings -- # autoclass_content = 'both' autodoc_member_order = 'bysource' autodoc_docstring_signature = True autosummary_generate = True
gpl-3.0
4thgen/DCGAN-CIFAR10
utils.py
1
7693
""" Most codes from https://github.com/carpedm20/DCGAN-tensorflow """ from __future__ import division import math import random import pprint import scipy.misc import numpy as np from time import gmtime, strftime from six.moves import xrange import os, gzip import _pickle import tensorflow as tf import tensorflow.contrib.slim as slim import matplotlib.pyplot as plt def unpickle(relpath): print(relpath) with open(relpath, 'rb') as fp: d = _pickle.load(fp,encoding='bytes') return d def prepare_input(data=None, labels=None): image_height = 32 image_width = 32 image_depth = 3 assert(data.shape[1] == image_height * image_width * image_depth) assert(data.shape[0] == labels.shape[0]) #do mean normaization across all samples mu = np.mean(data, axis=0) mu = mu.reshape(1,-1) sigma = np.std(data, axis=0) sigma = sigma.reshape(1, -1) data = data - mu data = data / sigma is_nan = np.isnan(data) is_inf = np.isinf(data) if np.any(is_nan) or np.any(is_inf): print('data is not well-formed : is_nan {n}, is_inf: {i}'.format(n= np.any(is_nan), i=np.any(is_inf))) #data is transformed from (no_of_samples, 3072) to (no_of_samples , image_height, image_width, image_depth) #make sure the type of the data is no.float32 data = data.reshape([-1,image_depth, image_height, image_width]) data = data.transpose([0, 2, 3, 1]) data = data.astype(np.float32) #print("prepare_input: ",len(data),len(labels)) return data, labels def read_cifar10(filename): # queue one element class CIFAR10Record(object): pass result = CIFAR10Record() label_bytes = 1 # 2 for CIFAR-100 result.height = 32 result.width = 32 result.depth = 3 data = unpickle(filename) #print(data.keys()) #value = np.asarray(data[b'data']).astype(np.float32) #labels = np.asarray(data[b'labels']).astype(np.int32) value = np.asarray(data[b'data']).astype(np.float32) labels = np.asarray(data[b'labels']).astype(np.int32) #print("read_cifar10: ",len(value),len(labels)) return prepare_input(value,labels) #return prepare_input(value.astype(np.float32),labels.astype(np.int32)) def load_cifar10(): data_dir = "\\TensorflowData\\cifar-10-batches-py" filenames = [os.path.join(data_dir, 'data_batch_%d' % i) for i in xrange(1, 6)] #filenames = ['data_batch_%d.bin' % i for i in xrange(1, 6)] filenames.append(os.path.join(data_dir, 'test_batch')) for idx , filename in enumerate(filenames): temp_X, temp_y = read_cifar10(filename) print("load_cifar10 for temp shape:",temp_X.shape,temp_y.shape) if idx == 0: dataX = temp_X labely = temp_y else: dataX = np.append(dataX,temp_X) labely = np.append(labely,temp_y) dataX = dataX.reshape([-1,32, 32, 3]) print("load_cifar10 for len:",len(dataX),len(labely)) print("load_cifar10 for shape:",dataX.shape,labely.shape) seed = 547 np.random.seed(seed) np.random.shuffle(dataX) np.random.seed(seed) np.random.shuffle(labely) y_vec = np.zeros((len(labely), 10), dtype=np.float) for i, label in enumerate(labely): y_vec[i, labely[i]] = 1.0 return dataX / 255., y_vec def load_mnist(dataset_name): data_dir = os.path.join("\\TensorflowData\\", dataset_name) # customizing edit def extract_data(filename, num_data, head_size, data_size): with gzip.open(filename) as bytestream: bytestream.read(head_size) buf = bytestream.read(data_size * num_data) data = np.frombuffer(buf, dtype=np.uint8).astype(np.float) return data data = extract_data(data_dir + '\\train-images-idx3-ubyte.gz', 60000, 16, 28 * 28) trX = data.reshape((60000, 28, 28, 1)) data = extract_data(data_dir + '\\train-labels-idx1-ubyte.gz', 60000, 8, 1) trY = data.reshape((60000)) data = extract_data(data_dir + '\\t10k-images-idx3-ubyte.gz', 10000, 16, 28 * 28) teX = data.reshape((10000, 28, 28, 1)) data = extract_data(data_dir + '\\t10k-labels-idx1-ubyte.gz', 10000, 8, 1) teY = data.reshape((10000)) trY = np.asarray(trY) teY = np.asarray(teY) X = np.concatenate((trX, teX), axis=0) y = np.concatenate((trY, teY), axis=0).astype(np.int) seed = 547 np.random.seed(seed) np.random.shuffle(X) np.random.seed(seed) np.random.shuffle(y) y_vec = np.zeros((len(y), 10), dtype=np.float) for i, label in enumerate(y): y_vec[i, y[i]] = 1.0 return X / 255., y_vec def show_all_variables(): model_vars = tf.trainable_variables() slim.model_analyzer.analyze_vars(model_vars, print_info=True) def get_image(image_path, input_height, input_width, resize_height=64, resize_width=64, crop=True, grayscale=False): image = imread(image_path, grayscale) return transform(image, input_height, input_width, resize_height, resize_width, crop) def save_images(images, size, image_path): return imsave(inverse_transform(images), size, image_path) def imread(path, grayscale = False): if (grayscale): return scipy.misc.imread(path, flatten = True).astype(np.float) else: return scipy.misc.imread(path).astype(np.float) def merge_images(images, size): return inverse_transform(images) def merge(images, size): h, w = images.shape[1], images.shape[2] if (images.shape[3] in (3,4)): c = images.shape[3] img = np.zeros((h * size[0], w * size[1], c)) # 28 * 8, 28 * 8, c for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w, :] = image return img elif images.shape[3]==1: img = np.zeros((h * size[0], w * size[1])) # 28 * 8, 28 * 8 for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w] = image[:,:,0] return img else: raise ValueError('in merge(images,size) images parameter ''must have dimensions: HxW or HxWx3 or HxWx4') def imsave(images, size, path): image = np.squeeze(merge(images, size)) return scipy.misc.imsave(path, image) def center_crop(x, crop_h, crop_w, resize_h=64, resize_w=64): if crop_w is None: crop_w = crop_h h, w = x.shape[:2] j = int(round((h - crop_h)/2.)) i = int(round((w - crop_w)/2.)) return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w], [resize_h, resize_w]) def transform(image, input_height, input_width, resize_height=64, resize_width=64, crop=True): if crop: cropped_image = center_crop(image, input_height, input_width, resize_height, resize_width) else: cropped_image = scipy.misc.imresize(image, [resize_height, resize_width]) return np.array(cropped_image)/127.5 - 1. def inverse_transform(images): return (images+1.)/2. def save_matplot_img(images, size, image_path): # revice image data // M*N*3 // RGB float32 : value must set between 0. with 1. for idx in range(64): vMin = np.amin(images[idx]) vMax = np.amax(images[idx]) img_arr = images[idx].reshape(32*32*3,1) # flatten for i, v in enumerate(img_arr): img_arr[i] = (v-vMin)/(vMax-vMin) img_arr = img_arr.reshape(32,32,3) # M*N*3 # matplot display plt.subplot(8,8,idx+1),plt.imshow(img_arr, interpolation='nearest') #plt.title("pred.:{}".format(np.argmax(self.data_y[0]),fontsize=10)) plt.axis("off") plt.savefig(image_path) #plt.show()
apache-2.0
arnavd96/Cinemiezer
myvenv/lib/python3.4/site-packages/tqdm/_tqdm.py
3
36089
""" Customisable progressbar decorator for iterators. Includes a default (x)range iterator printing to stderr. Usage: >>> from tqdm import trange[, tqdm] >>> for i in trange(10): #same as: for i in tqdm(xrange(10)) ... ... """ from __future__ import absolute_import # future division is important to divide integers and get as # a result precise floating numbers (instead of truncated int) from __future__ import division # import compatibility functions and utilities from ._utils import _supports_unicode, _environ_cols_wrapper, _range, _unich, \ _term_move_up, _unicode, WeakSet import sys from time import time __author__ = {"github.com/": ["noamraph", "obiwanus", "kmike", "hadim", "casperdcl", "lrq3000"]} __all__ = ['tqdm', 'trange', 'TqdmTypeError', 'TqdmKeyError', 'TqdmDeprecationWarning'] class TqdmTypeError(TypeError): pass class TqdmKeyError(KeyError): pass class TqdmDeprecationWarning(Exception): # not suppressed if raised def __init__(self, msg, fp_write=None, *a, **k): if fp_write is not None: fp_write("\nTqdmDeprecationWarning: " + str(msg).rstrip() + '\n') else: super(TqdmDeprecationWarning, self).__init__(msg, *a, **k) class tqdm(object): """ Decorate an iterable object, returning an iterator which acts exactly like the original iterable, but prints a dynamically updating progressbar every time a value is requested. """ @staticmethod def format_sizeof(num, suffix=''): """ Formats a number (greater than unity) with SI Order of Magnitude prefixes. Parameters ---------- num : float Number ( >= 1) to format. suffix : str, optional Post-postfix [default: '']. Returns ------- out : str Number with Order of Magnitude SI unit postfix. """ for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']: if abs(num) < 999.95: if abs(num) < 99.95: if abs(num) < 9.995: return '{0:1.2f}'.format(num) + unit + suffix return '{0:2.1f}'.format(num) + unit + suffix return '{0:3.0f}'.format(num) + unit + suffix num /= 1000.0 return '{0:3.1f}Y'.format(num) + suffix @staticmethod def format_interval(t): """ Formats a number of seconds as a clock time, [H:]MM:SS Parameters ---------- t : int Number of seconds. Returns ------- out : str [H:]MM:SS """ mins, s = divmod(int(t), 60) h, m = divmod(mins, 60) if h: return '{0:d}:{1:02d}:{2:02d}'.format(h, m, s) else: return '{0:02d}:{1:02d}'.format(m, s) @staticmethod def status_printer(file): """ Manage the printing and in-place updating of a line of characters. Note that if the string is longer than a line, then in-place updating may not work (it will print a new line at each refresh). """ fp = file fp_flush = getattr(fp, 'flush', lambda: None) # pragma: no cover def fp_write(s): fp.write(_unicode(s)) fp_flush() last_len = [0] def print_status(s): len_s = len(s) fp_write('\r' + s + (' ' * max(last_len[0] - len_s, 0))) last_len[0] = len_s return print_status @staticmethod def format_meter(n, total, elapsed, ncols=None, prefix='', ascii=False, unit='it', unit_scale=False, rate=None, bar_format=None): """ Return a string-based progress bar given some parameters Parameters ---------- n : int Number of finished iterations. total : int The expected total number of iterations. If meaningless (), only basic progress statistics are displayed (no ETA). elapsed : float Number of seconds passed since start. ncols : int, optional The width of the entire output message. If specified, dynamically resizes the progress meter to stay within this bound [default: None]. The fallback meter width is 10 for the progress bar + no limit for the iterations counter and statistics. If 0, will not print any meter (only stats). prefix : str, optional Prefix message (included in total width) [default: '']. ascii : bool, optional If not set, use unicode (smooth blocks) to fill the meter [default: False]. The fallback is to use ASCII characters (1-9 #). unit : str, optional The iteration unit [default: 'it']. unit_scale : bool, optional If set, the number of iterations will printed with an appropriate SI metric prefix (K = 10^3, M = 10^6, etc.) [default: False]. rate : float, optional Manual override for iteration rate. If [default: None], uses n/elapsed. bar_format : str, optional Specify a custom bar string formatting. May impact performance. [default: '{l_bar}{bar}{r_bar}'], where l_bar is '{desc}{percentage:3.0f}%|' and r_bar is '| {n_fmt}/{total_fmt} [{elapsed_str}<{remaining_str}, {rate_fmt}]' Possible vars: bar, n, n_fmt, total, total_fmt, percentage, rate, rate_fmt, elapsed, remaining, l_bar, r_bar, desc. Returns ------- out : Formatted meter and stats, ready to display. """ # sanity check: total if total and n > total: total = None format_interval = tqdm.format_interval elapsed_str = format_interval(elapsed) # if unspecified, attempt to use rate = average speed # (we allow manual override since predicting time is an arcane art) if rate is None and elapsed: rate = n / elapsed inv_rate = 1 / rate if (rate and (rate < 1)) else None format_sizeof = tqdm.format_sizeof rate_fmt = ((format_sizeof(inv_rate if inv_rate else rate) if unit_scale else '{0:5.2f}'.format(inv_rate if inv_rate else rate)) if rate else '?') \ + ('s' if inv_rate else unit) + '/' + (unit if inv_rate else 's') if unit_scale: n_fmt = format_sizeof(n) total_fmt = format_sizeof(total) if total else None else: n_fmt = str(n) total_fmt = str(total) # total is known: we can predict some stats if total: # fractional and percentage progress frac = n / total percentage = frac * 100 remaining_str = format_interval((total - n) / rate) \ if rate else '?' # format the stats displayed to the left and right sides of the bar l_bar = (prefix if prefix else '') + \ '{0:3.0f}%|'.format(percentage) r_bar = '| {0}/{1} [{2}<{3}, {4}]'.format( n_fmt, total_fmt, elapsed_str, remaining_str, rate_fmt) if ncols == 0: return l_bar[:-1] + r_bar[1:] if bar_format: # Custom bar formatting # Populate a dict with all available progress indicators bar_args = {'n': n, 'n_fmt': n_fmt, 'total': total, 'total_fmt': total_fmt, 'percentage': percentage, 'rate': rate if inv_rate is None else inv_rate, 'rate_noinv': rate, 'rate_noinv_fmt': ((format_sizeof(rate) if unit_scale else '{0:5.2f}'.format(rate)) if rate else '?') + unit + '/s', 'rate_fmt': rate_fmt, 'elapsed': elapsed_str, 'remaining': remaining_str, 'l_bar': l_bar, 'r_bar': r_bar, 'desc': prefix if prefix else '', # 'bar': full_bar # replaced by procedure below } # Interpolate supplied bar format with the dict if '{bar}' in bar_format: # Format left/right sides of the bar, and format the bar # later in the remaining space (avoid breaking display) l_bar_user, r_bar_user = bar_format.split('{bar}') l_bar = l_bar_user.format(**bar_args) r_bar = r_bar_user.format(**bar_args) else: # Else no progress bar, we can just format and return return bar_format.format(**bar_args) # Formatting progress bar # space available for bar's display N_BARS = max(1, ncols - len(l_bar) - len(r_bar)) if ncols \ else 10 # format bar depending on availability of unicode/ascii chars if ascii: bar_length, frac_bar_length = divmod( int(frac * N_BARS * 10), 10) bar = '#' * bar_length frac_bar = chr(48 + frac_bar_length) if frac_bar_length \ else ' ' else: bar_length, frac_bar_length = divmod(int(frac * N_BARS * 8), 8) bar = _unich(0x2588) * bar_length frac_bar = _unich(0x2590 - frac_bar_length) \ if frac_bar_length else ' ' # whitespace padding if bar_length < N_BARS: full_bar = bar + frac_bar + \ ' ' * max(N_BARS - bar_length - 1, 0) else: full_bar = bar + \ ' ' * max(N_BARS - bar_length, 0) # Piece together the bar parts return l_bar + full_bar + r_bar # no total: no progressbar, ETA, just progress stats else: return (prefix if prefix else '') + '{0}{1} [{2}, {3}]'.format( n_fmt, unit, elapsed_str, rate_fmt) def __new__(cls, *args, **kwargs): # Create a new instance instance = object.__new__(cls) # Add to the list of instances if "_instances" not in cls.__dict__: cls._instances = WeakSet() cls._instances.add(instance) # Return the instance return instance @classmethod def _get_free_pos(cls, instance=None): """ Skips specified instance """ try: return max(inst.pos for inst in cls._instances if inst is not instance) + 1 except ValueError as e: if "arg is an empty sequence" in str(e): return 0 raise # pragma: no cover @classmethod def _decr_instances(cls, instance): """ Remove from list and reposition other bars so that newer bars won't overlap previous bars """ try: # in case instance was explicitly positioned, it won't be in set cls._instances.remove(instance) for inst in cls._instances: if inst.pos > instance.pos: inst.pos -= 1 except KeyError: pass @classmethod def write(cls, s, file=sys.stdout, end="\n"): """ Print a message via tqdm (without overlap with bars) """ fp = file # Clear all bars inst_cleared = [] for inst in getattr(cls, '_instances', []): # Clear instance if in the target output file # or if write output + tqdm output are both either # sys.stdout or sys.stderr (because both are mixed in terminal) if inst.fp == fp or all(f in (sys.stdout, sys.stderr) for f in (fp, inst.fp)): inst.clear() inst_cleared.append(inst) # Write the message fp.write(s) fp.write(end) # Force refresh display of bars we cleared for inst in inst_cleared: inst.refresh() # TODO: make list of all instances incl. absolutely positioned ones? @classmethod def pandas(tclass, *targs, **tkwargs): """ Registers the given `tqdm` class with pandas.core. ( frame.DataFrame | series.Series | groupby.DataFrameGroupBy | groupby.SeriesGroupBy ).progress_apply A new instance will be create every time `progress_apply` is called, and each instance will automatically close() upon completion. Parameters ---------- targs, tkwargs : arguments for the tqdm instance Examples -------- >>> import pandas as pd >>> import numpy as np >>> from tqdm import tqdm, tqdm_gui >>> >>> df = pd.DataFrame(np.random.randint(0, 100, (100000, 6))) >>> tqdm.pandas(ncols=50) # can use tqdm_gui, optional kwargs, etc >>> # Now you can use `progress_apply` instead of `apply` >>> df.groupby(0).progress_apply(lambda x: x**2) References ---------- https://stackoverflow.com/questions/18603270/ progress-indicator-during-pandas-operations-python """ from pandas.core.frame import DataFrame from pandas.core.series import Series from pandas.core.groupby import DataFrameGroupBy from pandas.core.groupby import SeriesGroupBy from pandas.core.groupby import GroupBy from pandas.core.groupby import PanelGroupBy from pandas import Panel deprecated_t = [tkwargs.pop('deprecated_t', None)] def inner_generator(df_function='apply'): def inner(df, func, *args, **kwargs): """ Parameters ---------- df : (DataFrame|Series)[GroupBy] Data (may be grouped). func : function To be applied on the (grouped) data. *args, *kwargs : optional Transmitted to `df.apply()`. """ # Precompute total iterations total = getattr(df, 'ngroups', None) if total is None: # not grouped total = len(df) if isinstance(df, Series) \ else df.size // len(df) else: total += 1 # pandas calls update once too many # Init bar if deprecated_t[0] is not None: t = deprecated_t[0] deprecated_t[0] = None else: t = tclass(*targs, total=total, **tkwargs) # Define bar updating wrapper def wrapper(*args, **kwargs): t.update() return func(*args, **kwargs) # Apply the provided function (in *args and **kwargs) # on the df using our wrapper (which provides bar updating) result = getattr(df, df_function)(wrapper, *args, **kwargs) # Close bar and return pandas calculation result t.close() return result return inner # Monkeypatch pandas to provide easy methods # Enable custom tqdm progress in pandas! Series.progress_apply = inner_generator() SeriesGroupBy.progress_apply = inner_generator() Series.progress_map = inner_generator('map') SeriesGroupBy.progress_map = inner_generator('map') DataFrame.progress_apply = inner_generator() DataFrameGroupBy.progress_apply = inner_generator() DataFrame.progress_applymap = inner_generator('applymap') Panel.progress_apply = inner_generator() PanelGroupBy.progress_apply = inner_generator() GroupBy.progress_apply = inner_generator() GroupBy.progress_aggregate = inner_generator('aggregate') GroupBy.progress_transform = inner_generator('transform') def __init__(self, iterable=None, desc=None, total=None, leave=True, file=sys.stderr, ncols=None, mininterval=0.1, maxinterval=10.0, miniters=None, ascii=None, disable=False, unit='it', unit_scale=False, dynamic_ncols=False, smoothing=0.3, bar_format=None, initial=0, position=None, gui=False, **kwargs): """ Parameters ---------- iterable : iterable, optional Iterable to decorate with a progressbar. Leave blank to manually manage the updates. desc : str, optional Prefix for the progressbar. total : int, optional The number of expected iterations. If unspecified, len(iterable) is used if possible. As a last resort, only basic progress statistics are displayed (no ETA, no progressbar). If `gui` is True and this parameter needs subsequent updating, specify an initial arbitrary large positive integer, e.g. int(9e9). leave : bool, optional If [default: True], keeps all traces of the progressbar upon termination of iteration. file : `io.TextIOWrapper` or `io.StringIO`, optional Specifies where to output the progress messages [default: sys.stderr]. Uses `file.write(str)` and `file.flush()` methods. ncols : int, optional The width of the entire output message. If specified, dynamically resizes the progressbar to stay within this bound. If unspecified, attempts to use environment width. The fallback is a meter width of 10 and no limit for the counter and statistics. If 0, will not print any meter (only stats). mininterval : float, optional Minimum progress update interval, in seconds [default: 0.1]. maxinterval : float, optional Maximum progress update interval, in seconds [default: 10.0]. miniters : int, optional Minimum progress update interval, in iterations. If specified, will set `mininterval` to 0. ascii : bool, optional If unspecified or False, use unicode (smooth blocks) to fill the meter. The fallback is to use ASCII characters `1-9 #`. disable : bool, optional Whether to disable the entire progressbar wrapper [default: False]. unit : str, optional String that will be used to define the unit of each iteration [default: it]. unit_scale : bool, optional If set, the number of iterations will be reduced/scaled automatically and a metric prefix following the International System of Units standard will be added (kilo, mega, etc.) [default: False]. dynamic_ncols : bool, optional If set, constantly alters `ncols` to the environment (allowing for window resizes) [default: False]. smoothing : float, optional Exponential moving average smoothing factor for speed estimates (ignored in GUI mode). Ranges from 0 (average speed) to 1 (current/instantaneous speed) [default: 0.3]. bar_format : str, optional Specify a custom bar string formatting. May impact performance. If unspecified, will use '{l_bar}{bar}{r_bar}', where l_bar is '{desc}{percentage:3.0f}%|' and r_bar is '| {n_fmt}/{total_fmt} [{elapsed_str}<{remaining_str}, {rate_fmt}]' Possible vars: bar, n, n_fmt, total, total_fmt, percentage, rate, rate_fmt, elapsed, remaining, l_bar, r_bar, desc. initial : int, optional The initial counter value. Useful when restarting a progress bar [default: 0]. position : int, optional Specify the line offset to print this bar (starting from 0) Automatic if unspecified. Useful to manage multiple bars at once (eg, from threads). gui : bool, optional WARNING: internal parameter - do not use. Use tqdm_gui(...) instead. If set, will attempt to use matplotlib animations for a graphical output [default: False]. Returns ------- out : decorated iterator. """ if disable: self.iterable = iterable self.disable = disable self.pos = self._get_free_pos(self) self._instances.remove(self) return if kwargs: self.disable = True self.pos = self._get_free_pos(self) self._instances.remove(self) raise (TqdmDeprecationWarning("""\ `nested` is deprecated and automated. Use position instead for manual control. """, fp_write=getattr(file, 'write', sys.stderr.write)) if "nested" in kwargs else TqdmKeyError("Unknown argument(s): " + str(kwargs))) # Preprocess the arguments if total is None and iterable is not None: try: total = len(iterable) except (TypeError, AttributeError): total = None if ((ncols is None) and (file in (sys.stderr, sys.stdout))) or \ dynamic_ncols: # pragma: no cover if dynamic_ncols: dynamic_ncols = _environ_cols_wrapper() ncols = dynamic_ncols(file) else: ncols = _environ_cols_wrapper()(file) if miniters is None: miniters = 0 dynamic_miniters = True else: dynamic_miniters = False if mininterval is None: mininterval = 0 if maxinterval is None: maxinterval = 0 if ascii is None: ascii = not _supports_unicode(file) if bar_format and not ascii: # Convert bar format into unicode since terminal uses unicode bar_format = _unicode(bar_format) if smoothing is None: smoothing = 0 # Store the arguments self.iterable = iterable self.desc = desc + ': ' if desc else '' self.total = total self.leave = leave self.fp = file self.ncols = ncols self.mininterval = mininterval self.maxinterval = maxinterval self.miniters = miniters self.dynamic_miniters = dynamic_miniters self.ascii = ascii self.disable = disable self.unit = unit self.unit_scale = unit_scale self.gui = gui self.dynamic_ncols = dynamic_ncols self.smoothing = smoothing self.avg_time = None self._time = time self.bar_format = bar_format # Init the iterations counters self.last_print_n = initial self.n = initial # if nested, at initial sp() call we replace '\r' by '\n' to # not overwrite the outer progress bar self.pos = self._get_free_pos(self) if position is None else position if not gui: # Initialize the screen printer self.sp = self.status_printer(self.fp) if self.pos: self.moveto(self.pos) self.sp(self.format_meter(self.n, total, 0, (dynamic_ncols(file) if dynamic_ncols else ncols), self.desc, ascii, unit, unit_scale, None, bar_format)) if self.pos: self.moveto(-self.pos) # Init the time counter self.start_t = self.last_print_t = self._time() def __len__(self): return (self.iterable.shape[0] if hasattr(self.iterable, 'shape') else len(self.iterable)) if self.iterable is not None \ else self.total def __enter__(self): return self def __exit__(self, *exc): self.close() return False def __del__(self): self.close() def __repr__(self): return self.format_meter(self.n, self.total, time() - self.last_print_t, self.ncols, self.desc, self.ascii, self.unit, self.unit_scale, 1 / self.avg_time if self.avg_time else None, self.bar_format) def __lt__(self, other): return self.pos < other.pos def __le__(self, other): return (self < other) or (self == other) def __eq__(self, other): return self.pos == other.pos def __ne__(self, other): return not (self == other) def __gt__(self, other): return not (self <= other) def __ge__(self, other): return not (self < other) def __hash__(self): return id(self) def __iter__(self): ''' Backward-compatibility to use: for x in tqdm(iterable) ''' # Inlining instance variables as locals (speed optimisation) iterable = self.iterable # If the bar is disabled, then just walk the iterable # (note: keep this check outside the loop for performance) if self.disable: for obj in iterable: yield obj else: ncols = self.ncols mininterval = self.mininterval maxinterval = self.maxinterval miniters = self.miniters dynamic_miniters = self.dynamic_miniters unit = self.unit unit_scale = self.unit_scale ascii = self.ascii start_t = self.start_t last_print_t = self.last_print_t last_print_n = self.last_print_n n = self.n dynamic_ncols = self.dynamic_ncols smoothing = self.smoothing avg_time = self.avg_time bar_format = self.bar_format _time = self._time format_meter = self.format_meter try: sp = self.sp except AttributeError: raise TqdmDeprecationWarning("""\ Please use `tqdm_gui(...)` instead of `tqdm(..., gui=True)` """, fp_write=getattr(self.fp, 'write', sys.stderr.write)) for obj in iterable: yield obj # Update and print the progressbar. # Note: does not call self.update(1) for speed optimisation. n += 1 # check the counter first (avoid calls to time()) if n - last_print_n >= miniters: delta_t = _time() - last_print_t if delta_t >= mininterval: cur_t = _time() delta_it = n - last_print_n elapsed = cur_t - start_t # EMA (not just overall average) if smoothing and delta_t: avg_time = delta_t / delta_it \ if avg_time is None \ else smoothing * delta_t / delta_it + \ (1 - smoothing) * avg_time if self.pos: self.moveto(self.pos) # Printing the bar's update sp(format_meter( n, self.total, elapsed, (dynamic_ncols(self.fp) if dynamic_ncols else ncols), self.desc, ascii, unit, unit_scale, 1 / avg_time if avg_time else None, bar_format)) if self.pos: self.moveto(-self.pos) # If no `miniters` was specified, adjust automatically # to the maximum iteration rate seen so far. if dynamic_miniters: if maxinterval and delta_t > maxinterval: # Set miniters to correspond to maxinterval miniters = delta_it * maxinterval / delta_t elif mininterval and delta_t: # EMA-weight miniters to converge # towards the timeframe of mininterval miniters = smoothing * delta_it * mininterval \ / delta_t + (1 - smoothing) * miniters else: miniters = smoothing * delta_it + \ (1 - smoothing) * miniters # Store old values for next call self.n = self.last_print_n = last_print_n = n self.last_print_t = last_print_t = cur_t # Closing the progress bar. # Update some internal variables for close(). self.last_print_n = last_print_n self.n = n self.close() def update(self, n=1): """ Manually update the progress bar, useful for streams such as reading files. E.g.: >>> t = tqdm(total=filesize) # Initialise >>> for current_buffer in stream: ... ... ... t.update(len(current_buffer)) >>> t.close() The last line is highly recommended, but possibly not necessary if `t.update()` will be called in such a way that `filesize` will be exactly reached and printed. Parameters ---------- n : int Increment to add to the internal counter of iterations [default: 1]. """ if self.disable: return if n < 0: raise ValueError("n ({0}) cannot be negative".format(n)) self.n += n if self.n - self.last_print_n >= self.miniters: # We check the counter first, to reduce the overhead of time() delta_t = self._time() - self.last_print_t if delta_t >= self.mininterval: cur_t = self._time() delta_it = self.n - self.last_print_n # should be n? elapsed = cur_t - self.start_t # EMA (not just overall average) if self.smoothing and delta_t: self.avg_time = delta_t / delta_it \ if self.avg_time is None \ else self.smoothing * delta_t / delta_it + \ (1 - self.smoothing) * self.avg_time if not hasattr(self, "sp"): raise TqdmDeprecationWarning("""\ Please use `tqdm_gui(...)` instead of `tqdm(..., gui=True)` """, fp_write=getattr(self.fp, 'write', sys.stderr.write)) if self.pos: self.moveto(self.pos) # Print bar's update self.sp(self.format_meter( self.n, self.total, elapsed, (self.dynamic_ncols(self.fp) if self.dynamic_ncols else self.ncols), self.desc, self.ascii, self.unit, self.unit_scale, 1 / self.avg_time if self.avg_time else None, self.bar_format)) if self.pos: self.moveto(-self.pos) # If no `miniters` was specified, adjust automatically to the # maximum iteration rate seen so far. # e.g.: After running `tqdm.update(5)`, subsequent # calls to `tqdm.update()` will only cause an update after # at least 5 more iterations. if self.dynamic_miniters: if self.maxinterval and delta_t > self.maxinterval: self.miniters = self.miniters * self.maxinterval \ / delta_t elif self.mininterval and delta_t: self.miniters = self.smoothing * delta_it \ * self.mininterval / delta_t + \ (1 - self.smoothing) * self.miniters else: self.miniters = self.smoothing * delta_it + \ (1 - self.smoothing) * self.miniters # Store old values for next call self.last_print_n = self.n self.last_print_t = cur_t def close(self): """ Cleanup and (if leave=False) close the progressbar. """ if self.disable: return # Prevent multiple closures self.disable = True # decrement instance pos and remove from internal set pos = self.pos self._decr_instances(self) # GUI mode if not hasattr(self, "sp"): return # annoyingly, _supports_unicode isn't good enough def fp_write(s): self.fp.write(_unicode(s)) try: fp_write('') except ValueError as e: if 'closed' in str(e): return raise # pragma: no cover if pos: self.moveto(pos) if self.leave: if self.last_print_n < self.n: cur_t = self._time() # stats for overall rate (no weighted average) self.sp(self.format_meter( self.n, self.total, cur_t - self.start_t, (self.dynamic_ncols(self.fp) if self.dynamic_ncols else self.ncols), self.desc, self.ascii, self.unit, self.unit_scale, None, self.bar_format)) if pos: self.moveto(-pos) else: fp_write('\n') else: self.sp('') # clear up last bar if pos: self.moveto(-pos) else: fp_write('\r') def unpause(self): """ Restart tqdm timer from last print time. """ cur_t = self._time() self.start_t += cur_t - self.last_print_t self.last_print_t = cur_t def set_description(self, desc=None): """ Set/modify description of the progress bar. """ self.desc = desc + ': ' if desc else '' def moveto(self, n): self.fp.write(_unicode('\n' * n + _term_move_up() * -n)) def clear(self, nomove=False): """ Clear current bar display """ if not nomove: self.moveto(self.pos) # clear up the bar (can't rely on sp('')) self.fp.write('\r') self.fp.write(' ' * (self.ncols if self.ncols else 10)) self.fp.write('\r') # place cursor back at the beginning of line if not nomove: self.moveto(-self.pos) def refresh(self): """ Force refresh the display of this bar """ self.moveto(self.pos) # clear up this line's content (whatever there was) self.clear(nomove=True) # Print current/last bar state self.fp.write(self.__repr__()) self.moveto(-self.pos) def trange(*args, **kwargs): """ A shortcut for tqdm(xrange(*args), **kwargs). On Python3+ range is used instead of xrange. """ return tqdm(_range(*args), **kwargs)
mit
jseabold/scikit-learn
sklearn/decomposition/tests/test_online_lda.py
22
13165
import numpy as np from scipy.linalg import block_diag from scipy.sparse import csr_matrix from scipy.special import psi from sklearn.decomposition import LatentDirichletAllocation from sklearn.decomposition._online_lda import (_dirichlet_expectation_1d, _dirichlet_expectation_2d) from sklearn.utils.testing import assert_allclose from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.exceptions import NotFittedError from sklearn.externals.six.moves import xrange def _build_sparse_mtx(): # Create 3 topics and each topic has 3 disticnt words. # (Each word only belongs to a single topic.) n_topics = 3 block = n_topics * np.ones((3, 3)) blocks = [block] * n_topics X = block_diag(*blocks) X = csr_matrix(X) return (n_topics, X) def test_lda_default_prior_params(): # default prior parameter should be `1 / topics` # and verbose params should not affect result n_topics, X = _build_sparse_mtx() prior = 1. / n_topics lda_1 = LatentDirichletAllocation(n_topics=n_topics, doc_topic_prior=prior, topic_word_prior=prior, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, random_state=0) topic_distr_1 = lda_1.fit_transform(X) topic_distr_2 = lda_2.fit_transform(X) assert_almost_equal(topic_distr_1, topic_distr_2) def test_lda_fit_batch(): # Test LDA batch learning_offset (`fit` method with 'batch' learning) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, evaluate_every=1, learning_method='batch', random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_fit_online(): # Test LDA online learning (`fit` method with 'online' learning) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=10., evaluate_every=1, learning_method='online', random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_partial_fit(): # Test LDA online learning (`partial_fit` method) # (same as test_lda_batch) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=10., total_samples=100, random_state=rng) for i in xrange(3): lda.partial_fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_dense_input(): # Test LDA with dense input. rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_method='batch', random_state=rng) lda.fit(X.toarray()) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_transform(): # Test LDA transform. # Transform result cannot be negative rng = np.random.RandomState(0) X = rng.randint(5, size=(20, 10)) n_topics = 3 lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng) X_trans = lda.fit_transform(X) assert_true((X_trans > 0.0).any()) def test_lda_fit_transform(): # Test LDA fit_transform & transform # fit_transform and transform result should be the same for method in ('online', 'batch'): rng = np.random.RandomState(0) X = rng.randint(10, size=(50, 20)) lda = LatentDirichletAllocation(n_topics=5, learning_method=method, random_state=rng) X_fit = lda.fit_transform(X) X_trans = lda.transform(X) assert_array_almost_equal(X_fit, X_trans, 4) def test_lda_partial_fit_dim_mismatch(): # test `n_features` mismatch in `partial_fit` rng = np.random.RandomState(0) n_topics = rng.randint(3, 6) n_col = rng.randint(6, 10) X_1 = np.random.randint(4, size=(10, n_col)) X_2 = np.random.randint(4, size=(10, n_col + 1)) lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5., total_samples=20, random_state=rng) lda.partial_fit(X_1) assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2) def test_invalid_params(): # test `_check_params` method X = np.ones((5, 10)) invalid_models = ( ('n_topics', LatentDirichletAllocation(n_topics=0)), ('learning_method', LatentDirichletAllocation(learning_method='unknown')), ('total_samples', LatentDirichletAllocation(total_samples=0)), ('learning_offset', LatentDirichletAllocation(learning_offset=-1)), ) for param, model in invalid_models: regex = r"^Invalid %r parameter" % param assert_raises_regexp(ValueError, regex, model.fit, X) def test_lda_negative_input(): # test pass dense matrix with sparse negative input. X = -np.ones((5, 10)) lda = LatentDirichletAllocation() regex = r"^Negative values in data passed" assert_raises_regexp(ValueError, regex, lda.fit, X) def test_lda_no_component_error(): # test `transform` and `perplexity` before `fit` rng = np.random.RandomState(0) X = rng.randint(4, size=(20, 10)) lda = LatentDirichletAllocation() regex = r"^no 'components_' attribute" assert_raises_regexp(NotFittedError, regex, lda.transform, X) assert_raises_regexp(NotFittedError, regex, lda.perplexity, X) def test_lda_transform_mismatch(): # test `n_features` mismatch in partial_fit and transform rng = np.random.RandomState(0) X = rng.randint(4, size=(20, 10)) X_2 = rng.randint(4, size=(10, 8)) n_topics = rng.randint(3, 6) lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng) lda.partial_fit(X) assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2) @if_safe_multiprocessing_with_blas def test_lda_multi_jobs(): n_topics, X = _build_sparse_mtx() # Test LDA batch training with multi CPU for method in ('online', 'batch'): rng = np.random.RandomState(0) lda = LatentDirichletAllocation(n_topics=n_topics, n_jobs=2, learning_method=method, random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) @if_safe_multiprocessing_with_blas def test_lda_partial_fit_multi_jobs(): # Test LDA online training with multi CPU rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, n_jobs=2, learning_offset=5., total_samples=30, random_state=rng) for i in range(2): lda.partial_fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_preplexity_mismatch(): # test dimension mismatch in `perplexity` method rng = np.random.RandomState(0) n_topics = rng.randint(3, 6) n_samples = rng.randint(6, 10) X = np.random.randint(4, size=(n_samples, 10)) lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5., total_samples=20, random_state=rng) lda.fit(X) # invalid samples invalid_n_samples = rng.randint(4, size=(n_samples + 1, n_topics)) assert_raises_regexp(ValueError, r'Number of samples', lda.perplexity, X, invalid_n_samples) # invalid topic number invalid_n_topics = rng.randint(4, size=(n_samples, n_topics + 1)) assert_raises_regexp(ValueError, r'Number of topics', lda.perplexity, X, invalid_n_topics) def test_lda_perplexity(): # Test LDA perplexity for batch training # perplexity should be lower after each iteration n_topics, X = _build_sparse_mtx() for method in ('online', 'batch'): lda_1 = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method=method, total_samples=100, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, learning_method=method, total_samples=100, random_state=0) distr_1 = lda_1.fit_transform(X) perp_1 = lda_1.perplexity(X, distr_1, sub_sampling=False) distr_2 = lda_2.fit_transform(X) perp_2 = lda_2.perplexity(X, distr_2, sub_sampling=False) assert_greater_equal(perp_1, perp_2) perp_1_subsampling = lda_1.perplexity(X, distr_1, sub_sampling=True) perp_2_subsampling = lda_2.perplexity(X, distr_2, sub_sampling=True) assert_greater_equal(perp_1_subsampling, perp_2_subsampling) def test_lda_score(): # Test LDA score for batch training # score should be higher after each iteration n_topics, X = _build_sparse_mtx() for method in ('online', 'batch'): lda_1 = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method=method, total_samples=100, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, learning_method=method, total_samples=100, random_state=0) lda_1.fit_transform(X) score_1 = lda_1.score(X) lda_2.fit_transform(X) score_2 = lda_2.score(X) assert_greater_equal(score_2, score_1) def test_perplexity_input_format(): # Test LDA perplexity for sparse and dense input # score should be the same for both dense and sparse input n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method='batch', total_samples=100, random_state=0) distr = lda.fit_transform(X) perp_1 = lda.perplexity(X) perp_2 = lda.perplexity(X, distr) perp_3 = lda.perplexity(X.toarray(), distr) assert_almost_equal(perp_1, perp_2) assert_almost_equal(perp_1, perp_3) def test_lda_score_perplexity(): # Test the relationship between LDA score and perplexity n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, random_state=0) distr = lda.fit_transform(X) perplexity_1 = lda.perplexity(X, distr, sub_sampling=False) score = lda.score(X) perplexity_2 = np.exp(-1. * (score / np.sum(X.data))) assert_almost_equal(perplexity_1, perplexity_2) def test_lda_empty_docs(): """Test LDA on empty document (all-zero rows).""" Z = np.zeros((5, 4)) for X in [Z, csr_matrix(Z)]: lda = LatentDirichletAllocation(max_iter=750).fit(X) assert_almost_equal(lda.components_.sum(axis=0), np.ones(lda.components_.shape[1])) def test_dirichlet_expectation(): """Test Cython version of Dirichlet expectation calculation.""" x = np.logspace(-100, 10, 10000) expectation = np.empty_like(x) _dirichlet_expectation_1d(x, 0, expectation) assert_allclose(expectation, np.exp(psi(x) - psi(np.sum(x))), atol=1e-19) x = x.reshape(100, 100) assert_allclose(_dirichlet_expectation_2d(x), psi(x) - psi(np.sum(x, axis=1)[:, np.newaxis]), rtol=1e-11, atol=3e-9)
bsd-3-clause
schoolie/bokeh
bokeh/charts/attributes.py
3
14573
''' ''' from __future__ import absolute_import from copy import copy from itertools import cycle import pandas as pd from bokeh.core.enums import DashPattern from bokeh.core.has_props import HasProps from bokeh.core.properties import Any, Bool, Dict, Either, Instance, List, Override, String from bokeh.models.sources import ColumnDataSource from . import DEFAULT_PALETTE from .data_source import ChartDataSource from .properties import ColumnLabel from .utils import marker_types from .stats import Bins class AttrSpec(HasProps): """A container for assigning attributes to values and retrieving them as needed. A special function this provides is automatically handling cases where the provided iterator is too short compared to the distinct values provided. Once created as attr_spec, you can do attr_spec[data_label], where data_label must be a one dimensional tuple of values, representing the unique group in the data. See the :meth:`AttrSpec.setup` method for the primary way to provide an existing AttrSpec with data and column values and update all derived property values. """ data = Instance(ColumnDataSource) iterable = List(Any, default=None) attrname = String(help='Name of the attribute the spec provides.') columns = Either(ColumnLabel, List(ColumnLabel), help=""" The label or list of column labels that correspond to the columns that will be used to find all distinct values (single column) or combination of values ( multiple columns) to then assign a unique attribute to. If not enough unique attribute values are found, then the attribute values will be cycled. """) default = Any(default=None, help=""" The default value for the attribute, which is used if no column is assigned to the attribute for plotting. If the default value is not provided, the first value in the `iterable` property is used. """) attr_map = Dict(Any, Any, help=""" Created by the attribute specification when `iterable` and `data` are available. The `attr_map` will include a mapping between the distinct value(s) found in `columns` and the attribute value that has been assigned. """) items = Any(default=None, help=""" The attribute specification calculates this list of distinct values that are found in `columns` of `data`. """) sort = Bool(default=True, help=""" A boolean flag to tell the attribute specification to sort `items`, when it is calculated. This affects which value of `iterable` is assigned to each distinct value in `items`. """) ascending = Bool(default=True, help=""" A boolean flag to tell the attribute specification how to sort `items` if the `sort` property is set to `True`. The default setting for `ascending` is `True`. """) bins = Instance(Bins, help=""" If an attribute spec is binning data, so that we can map one value in the `iterable` to one value in `items`, then this attribute will contain an instance of the Bins stat. This is used to create unique labels for each bin, which is then used for `items` instead of the actual unique values in `columns`. """) def __init__(self, columns=None, df=None, iterable=None, default=None, items=None, **properties): """Create a lazy evaluated attribute specification. Args: columns: a list of column labels df(:class:`~pandas.DataFrame`): the data source for the attribute spec. iterable: an iterable of distinct attribute values default: a value to use as the default attribute when no columns are passed items: the distinct values in columns. If items is provided as input, then the values provided are used instead of being calculated. This can be used to force a specific order for assignment. **properties: other properties to pass to parent :class:`HasProps` """ properties['columns'] = self._ensure_list(columns) if df is not None: properties['data'] = ColumnDataSource(df) if default is None and iterable is not None: default_iter = copy(iterable) properties['default'] = next(iter(default_iter)) elif default is not None: properties['default'] = default if iterable is not None: properties['iterable'] = iterable if items is not None: properties['items'] = items super(AttrSpec, self).__init__(**properties) if self.default is None and self.iterable is not None: self.default = next(iter(copy(self.iterable))) if self.data is not None and self.columns is not None: if df is None: df = self.data.to_df() self._generate_items(df, columns=self.columns) if self.items is not None and self.iterable is not None: self.attr_map = self._create_attr_map() @staticmethod def _ensure_list(attr): """Always returns a list with the provided value. Returns the value if a list.""" if isinstance(attr, str): return [attr] elif isinstance(attr, tuple): return list(attr) else: return attr @staticmethod def _ensure_tuple(attr): """Return tuple with the provided value. Returns the value if a tuple.""" if not isinstance(attr, tuple): return (attr,) else: return attr def _setup_default(self): """Stores the first value of iterable into `default` property.""" self.default = next(self._setup_iterable()) def _setup_iterable(self): """Default behavior is to copy and cycle the provided iterable.""" return cycle(copy(self.iterable)) def _generate_items(self, df, columns): """Produce list of unique tuples that identify each item.""" if self.sort: # TODO (fpliger): this handles pandas API change so users do not experience # the related annoying deprecation warning. This is probably worth # removing when pandas deprecated version (0.16) is "old" enough try: df = df.sort_values(by=columns, ascending=self.ascending) except AttributeError: df = df.sort(columns=columns, ascending=self.ascending) items = df[columns].drop_duplicates() self.items = [tuple(x) for x in items.to_records(index=False)] def _create_attr_map(self, df=None, columns=None): """Creates map between unique values and available attributes.""" if df is not None and columns is not None: self._generate_items(df, columns) iterable = self._setup_iterable() return {item: next(iterable) for item in self._item_tuples()} def _item_tuples(self): return [self._ensure_tuple(item) for item in self.items] def set_columns(self, columns): """Set columns property and update derived properties as needed.""" columns = self._ensure_list(columns) if all([col in self.data.column_names for col in columns]): self.columns = columns else: # we have input values other than columns # assume this is now the iterable at this point self.iterable = columns self._setup_default() def setup(self, data=None, columns=None): """Set the data and update derived properties as needed.""" if data is not None: self.data = data if columns is not None and self.data is not None: self.set_columns(columns) if self.columns is not None and self.data is not None: self.attr_map = self._create_attr_map(self.data.to_df(), self.columns) def update_data(self, data): self.setup(data=data, columns=self.columns) def __getitem__(self, item): """Lookup the attribute to use for the given unique group label.""" if not self.attr_map: return self.default elif self._ensure_tuple(item) not in self.attr_map.keys(): # make sure we have attr map self.setup() return self.attr_map[self._ensure_tuple(item)] @property def series(self): if not self.attr_map: return pd.Series() else: index = pd.MultiIndex.from_tuples(self._item_tuples(), names=self.columns) return pd.Series(list(self.attr_map.values()), index=index) class ColorAttr(AttrSpec): """An attribute specification for mapping unique data values to colors. .. note:: Should be expanded to support more complex coloring options. """ attrname = Override(default='color') iterable = Override(default=DEFAULT_PALETTE) bin = Bool(default=False) def __init__(self, **kwargs): iterable = kwargs.pop('palette', None) if iterable is not None: kwargs['iterable'] = iterable super(ColorAttr, self).__init__(**kwargs) def _generate_items(self, df, columns): """Produce list of unique tuples that identify each item.""" if not self.bin: super(ColorAttr, self)._generate_items(df, columns) else: if len(columns) == 1 and ChartDataSource.is_number(df[columns[0]]): self.bins = Bins(source=ColumnDataSource(df), column=columns[0], bins=len(self.iterable), aggregate=False) if self.sort: self.bins.sort(ascending=self.ascending) self.items = [bin.label[0] for bin in self.bins] else: raise ValueError('Binned colors can only be created for one column of \ numerical data.') def add_bin_labels(self, data): col = self.columns[0] # save original values into new column data._data[col + '_values'] = data._data[col] for bin in self.bins: # set all rows associated to each bin to the bin label being mapped to colors data._data.ix[data._data[col + '_values'].isin(bin.values), col] = bin.label[0] data._data[col] = pd.Categorical(data._data[col], categories=list(self.items), ordered=self.sort) class MarkerAttr(AttrSpec): """An attribute specification for mapping unique data values to markers.""" attrname = Override(default='marker') iterable = Override(default=list(marker_types.keys())) def __init__(self, **kwargs): iterable = kwargs.pop('markers', None) if iterable is not None: kwargs['iterable'] = iterable super(MarkerAttr, self).__init__(**kwargs) dashes = DashPattern._values class DashAttr(AttrSpec): """An attribute specification for mapping unique data values to line dashes.""" attrname = Override(default='dash') iterable = Override(default=dashes) def __init__(self, **kwargs): iterable = kwargs.pop('dash', None) if iterable is not None: kwargs['iterable'] = iterable super(DashAttr, self).__init__(**kwargs) class IdAttr(AttrSpec): """An attribute specification for mapping unique data values to line dashes.""" attrname = Override(default='id') def _setup_iterable(self): return iter(range(0, len(self.items))) class CatAttr(AttrSpec): """An attribute specification for mapping unique data values to labels. .. note:: this is a special attribute specification, which is used for defining which labels are used for one aspect of a chart (grouping) vs another (stacking or legend) """ attrname = Override(default='nest') def __init__(self, **kwargs): super(CatAttr, self).__init__(**kwargs) def _setup_iterable(self): return iter(self.items) def get_levels(self, columns): """Provides a list of levels the attribute represents.""" if self.columns is not None: levels = [columns.index(col) for col in self.columns] return levels else: return [] """ Attribute Spec Functions Convenient functions for producing attribute specifications. These would be the interface used by end users when providing attribute specs as inputs to the Chart. """ def color(columns=None, palette=None, bin=False, **kwargs): """Produces a ColorAttr specification for coloring groups of data based on columns. Args: columns (str or list(str), optional): a column or list of columns for coloring palette (list(str), optional): a list of colors to use for assigning to unique values in `columns`. **kwargs: any keyword, arg supported by :class:`AttrSpec` Returns: a `ColorAttr` object """ if palette is not None: kwargs['palette'] = palette kwargs['columns'] = columns kwargs['bin'] = bin return ColorAttr(**kwargs) def marker(columns=None, markers=None, **kwargs): """ Specifies detailed configuration for a marker attribute. Args: columns (list or str): markers (list(str) or str): a custom list of markers. Must exist within :data:`marker_types`. **kwargs: any keyword, arg supported by :class:`AttrSpec` Returns: a `MarkerAttr` object """ if markers is not None: kwargs['markers'] = markers kwargs['columns'] = columns return MarkerAttr(**kwargs) def cat(columns=None, cats=None, sort=True, ascending=True, **kwargs): """ Specifies detailed configuration for a chart attribute that uses categoricals. Args: columns (list or str): the columns used to generate the categorical variable cats (list, optional): overrides the values derived from columns sort (bool, optional): whether to sort the categorical values (default=True) ascending (bool, optional): whether to sort the categorical values (default=True) **kwargs: any keyword, arg supported by :class:`AttrSpec` Returns: a `CatAttr` object """ if cats is not None: kwargs['cats'] = cats kwargs['columns'] = columns kwargs['sort'] = sort kwargs['ascending'] = ascending return CatAttr(**kwargs)
bsd-3-clause
slipguru/ignet
icing/externals/neighbors.py
2
6293
"""Portion of file taken from sklearn.neighbors.base.""" import numpy as np from scipy.sparse import csr_matrix, issparse import multiprocessing as mp import itertools from sklearn.metrics import pairwise_distances from sklearn.utils import check_array def _func(X, Y): # Only calculate metric for upper triangle out = np.zeros((X.shape[0], Y.shape[0]), dtype='int') iterator = itertools.product(range(X.shape[0]), range(Y.shape[0])) for i, j in iterator: out[i, j] = int(len(set(X[i].getVGene('set')) & set(Y[j].getVGene('set'))) > 0 or len(set(X[i].getJGene('set')) & set(Y[j].getJGene('set'))) > 0) return out def radius_neighbors(X=None, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of each point from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. Parameters ---------- X : array-like, (n_samples, n_features), optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array, shape (n_samples,) of arrays Array representing the distances to each point, only present if return_distance=True. The distance values are computed according to the ``metric`` constructor parameter. ind : array, shape (n_samples,) of arrays An array of arrays of indices of the approximate nearest points from the population matrix that lie within a ball of size ``radius`` around the query points. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1, 1, 1]: >>> import numpy as np >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> rng = neigh.radius_neighbors([[1., 1., 1.]]) >>> print(np.asarray(rng[0][0])) # doctest: +ELLIPSIS [ 1.5 0.5] >>> print(np.asarray(rng[1][0])) # doctest: +ELLIPSIS [1 2] The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time. Notes ----- Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, `radius_neighbors` returns arrays of objects, where each object is a 1D array of indices or distances. """ n_samples = X.shape[0] from joblib import delayed, Parallel from sklearn.utils import gen_even_slices n_jobs = max(mp.cpu_count(), n_samples) print(gen_even_slices(X.shape[0], n_jobs)) fd = delayed(_func) dist = Parallel(n_jobs=n_jobs, verbose=0)( fd(X, X[s]) for s in gen_even_slices(X.shape[0], n_jobs)) neigh_ind_list = [np.where(d > 0)[0] for d in np.hstack(dist)] # print(neigh_ind_list) # See https://github.com/numpy/numpy/issues/5456 # if you want to understand why this is initialized this way. neigh_ind = np.empty(n_samples, dtype='object') neigh_ind[:] = neigh_ind_list return neigh_ind def radius_neighbors_graph(X=None, radius=None, mode='connectivity'): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features], optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.radius_neighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ # construct CSR matrix representation of the NN graph if mode == 'connectivity': A_ind = radius_neighbors(X, radius, return_distance=False) A_data = None else: raise ValueError( 'Unsupported mode, must be "connectivity" ' 'but got %s instead' % mode) n_samples1 = A_ind.shape[0] n_neighbors = np.array([len(a) for a in A_ind]) A_ind = np.concatenate(list(A_ind)) if A_data is None: A_data = np.ones(len(A_ind)) A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors))) sparse = csr_matrix((A_data, A_ind, A_indptr), shape=(n_samples1, n_samples1)) import scipy return sparse + sparse.T + scipy.sparse.eye(sparse.shape[0])
bsd-2-clause
numenta-ci/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/texmanager.py
69
16818
""" This module supports embedded TeX expressions in matplotlib via dvipng and dvips for the raster and postscript backends. The tex and dvipng/dvips information is cached in ~/.matplotlib/tex.cache for reuse between sessions Requirements: * latex * \*Agg backends: dvipng * PS backend: latex w/ psfrag, dvips, and Ghostscript 8.51 (older versions do not work properly) Backends: * \*Agg * PS * PDF For raster output, you can get RGBA numpy arrays from TeX expressions as follows:: texmanager = TexManager() s = '\\TeX\\ is Number $\\displaystyle\\sum_{n=1}^\\infty\\frac{-e^{i\pi}}{2^n}$!' Z = self.texmanager.get_rgba(s, size=12, dpi=80, rgb=(1,0,0)) To enable tex rendering of all text in your matplotlib figure, set text.usetex in your matplotlibrc file (http://matplotlib.sf.net/matplotlibrc) or include these two lines in your script:: from matplotlib import rc rc('text', usetex=True) """ import copy, glob, os, shutil, sys, warnings try: from hashlib import md5 except ImportError: from md5 import md5 #Deprecated in 2.5 import distutils.version import numpy as np import matplotlib as mpl from matplotlib import rcParams from matplotlib._png import read_png DEBUG = False if sys.platform.startswith('win'): cmd_split = '&' else: cmd_split = ';' def dvipng_hack_alpha(): stdin, stdout = os.popen4('dvipng -version') for line in stdout: if line.startswith('dvipng '): version = line.split()[-1] mpl.verbose.report('Found dvipng version %s'% version, 'helpful') version = distutils.version.LooseVersion(version) return version < distutils.version.LooseVersion('1.6') raise RuntimeError('Could not obtain dvipng version') class TexManager: """ Convert strings to dvi files using TeX, caching the results to a working dir """ oldpath = mpl.get_home() if oldpath is None: oldpath = mpl.get_data_path() oldcache = os.path.join(oldpath, '.tex.cache') configdir = mpl.get_configdir() texcache = os.path.join(configdir, 'tex.cache') if os.path.exists(oldcache): print >> sys.stderr, """\ WARNING: found a TeX cache dir in the deprecated location "%s". Moving it to the new default location "%s"."""%(oldcache, texcache) shutil.move(oldcache, texcache) if not os.path.exists(texcache): os.mkdir(texcache) _dvipng_hack_alpha = dvipng_hack_alpha() # mappable cache of rgba_arrayd = {} grey_arrayd = {} postscriptd = {} pscnt = 0 serif = ('cmr', '') sans_serif = ('cmss', '') monospace = ('cmtt', '') cursive = ('pzc', r'\usepackage{chancery}') font_family = 'serif' font_families = ('serif', 'sans-serif', 'cursive', 'monospace') font_info = {'new century schoolbook': ('pnc', r'\renewcommand{\rmdefault}{pnc}'), 'bookman': ('pbk', r'\renewcommand{\rmdefault}{pbk}'), 'times': ('ptm', r'\usepackage{mathptmx}'), 'palatino': ('ppl', r'\usepackage{mathpazo}'), 'zapf chancery': ('pzc', r'\usepackage{chancery}'), 'cursive': ('pzc', r'\usepackage{chancery}'), 'charter': ('pch', r'\usepackage{charter}'), 'serif': ('cmr', ''), 'sans-serif': ('cmss', ''), 'helvetica': ('phv', r'\usepackage{helvet}'), 'avant garde': ('pag', r'\usepackage{avant}'), 'courier': ('pcr', r'\usepackage{courier}'), 'monospace': ('cmtt', ''), 'computer modern roman': ('cmr', ''), 'computer modern sans serif': ('cmss', ''), 'computer modern typewriter': ('cmtt', '')} _rc_cache = None _rc_cache_keys = ('text.latex.preamble', )\ + tuple(['font.'+n for n in ('family', ) + font_families]) def __init__(self): if not os.path.isdir(self.texcache): os.mkdir(self.texcache) ff = rcParams['font.family'].lower() if ff in self.font_families: self.font_family = ff else: mpl.verbose.report('The %s font family is not compatible with LaTeX. serif will be used by default.' % ff, 'helpful') self.font_family = 'serif' fontconfig = [self.font_family] for font_family, font_family_attr in \ [(ff, ff.replace('-', '_')) for ff in self.font_families]: for font in rcParams['font.'+font_family]: if font.lower() in self.font_info: found_font = self.font_info[font.lower()] setattr(self, font_family_attr, self.font_info[font.lower()]) if DEBUG: print 'family: %s, font: %s, info: %s'%(font_family, font, self.font_info[font.lower()]) break else: if DEBUG: print '$s font is not compatible with usetex' else: mpl.verbose.report('No LaTeX-compatible font found for the %s font family in rcParams. Using default.' % ff, 'helpful') setattr(self, font_family_attr, self.font_info[font_family]) fontconfig.append(getattr(self, font_family_attr)[0]) self._fontconfig = ''.join(fontconfig) # The following packages and commands need to be included in the latex # file's preamble: cmd = [self.serif[1], self.sans_serif[1], self.monospace[1]] if self.font_family == 'cursive': cmd.append(self.cursive[1]) while r'\usepackage{type1cm}' in cmd: cmd.remove(r'\usepackage{type1cm}') cmd = '\n'.join(cmd) self._font_preamble = '\n'.join([r'\usepackage{type1cm}', cmd, r'\usepackage{textcomp}']) def get_basefile(self, tex, fontsize, dpi=None): """ returns a filename based on a hash of the string, fontsize, and dpi """ s = ''.join([tex, self.get_font_config(), '%f'%fontsize, self.get_custom_preamble(), str(dpi or '')]) # make sure hash is consistent for all strings, regardless of encoding: bytes = unicode(s).encode('utf-8') return os.path.join(self.texcache, md5(bytes).hexdigest()) def get_font_config(self): """Reinitializes self if relevant rcParams on have changed.""" if self._rc_cache is None: self._rc_cache = dict([(k,None) for k in self._rc_cache_keys]) changed = [par for par in self._rc_cache_keys if rcParams[par] != \ self._rc_cache[par]] if changed: if DEBUG: print 'DEBUG following keys changed:', changed for k in changed: if DEBUG: print 'DEBUG %-20s: %-10s -> %-10s' % \ (k, self._rc_cache[k], rcParams[k]) # deepcopy may not be necessary, but feels more future-proof self._rc_cache[k] = copy.deepcopy(rcParams[k]) if DEBUG: print 'DEBUG RE-INIT\nold fontconfig:', self._fontconfig self.__init__() if DEBUG: print 'DEBUG fontconfig:', self._fontconfig return self._fontconfig def get_font_preamble(self): """ returns a string containing font configuration for the tex preamble """ return self._font_preamble def get_custom_preamble(self): """returns a string containing user additions to the tex preamble""" return '\n'.join(rcParams['text.latex.preamble']) def _get_shell_cmd(self, *args): """ On windows, changing directories can be complicated by the presence of multiple drives. get_shell_cmd deals with this issue. """ if sys.platform == 'win32': command = ['%s'% os.path.splitdrive(self.texcache)[0]] else: command = [] command.extend(args) return ' && '.join(command) def make_tex(self, tex, fontsize): """ Generate a tex file to render the tex string at a specific font size returns the file name """ basefile = self.get_basefile(tex, fontsize) texfile = '%s.tex'%basefile fh = file(texfile, 'w') custom_preamble = self.get_custom_preamble() fontcmd = {'sans-serif' : r'{\sffamily %s}', 'monospace' : r'{\ttfamily %s}'}.get(self.font_family, r'{\rmfamily %s}') tex = fontcmd % tex if rcParams['text.latex.unicode']: unicode_preamble = """\usepackage{ucs} \usepackage[utf8x]{inputenc}""" else: unicode_preamble = '' s = r"""\documentclass{article} %s %s %s \usepackage[papersize={72in,72in}, body={70in,70in}, margin={1in,1in}]{geometry} \pagestyle{empty} \begin{document} \fontsize{%f}{%f}%s \end{document} """ % (self._font_preamble, unicode_preamble, custom_preamble, fontsize, fontsize*1.25, tex) if rcParams['text.latex.unicode']: fh.write(s.encode('utf8')) else: try: fh.write(s) except UnicodeEncodeError, err: mpl.verbose.report("You are using unicode and latex, but have " "not enabled the matplotlib 'text.latex.unicode' " "rcParam.", 'helpful') raise fh.close() return texfile def make_dvi(self, tex, fontsize): """ generates a dvi file containing latex's layout of tex string returns the file name """ basefile = self.get_basefile(tex, fontsize) dvifile = '%s.dvi'% basefile if DEBUG or not os.path.exists(dvifile): texfile = self.make_tex(tex, fontsize) outfile = basefile+'.output' command = self._get_shell_cmd('cd "%s"'% self.texcache, 'latex -interaction=nonstopmode %s > "%s"'\ %(os.path.split(texfile)[-1], outfile)) mpl.verbose.report(command, 'debug') exit_status = os.system(command) try: fh = file(outfile) report = fh.read() fh.close() except IOError: report = 'No latex error report available.' if exit_status: raise RuntimeError(('LaTeX was not able to process the following \ string:\n%s\nHere is the full report generated by LaTeX: \n\n'% repr(tex)) + report) else: mpl.verbose.report(report, 'debug') for fname in glob.glob(basefile+'*'): if fname.endswith('dvi'): pass elif fname.endswith('tex'): pass else: try: os.remove(fname) except OSError: pass return dvifile def make_png(self, tex, fontsize, dpi): """ generates a png file containing latex's rendering of tex string returns the filename """ basefile = self.get_basefile(tex, fontsize, dpi) pngfile = '%s.png'% basefile # see get_rgba for a discussion of the background if DEBUG or not os.path.exists(pngfile): dvifile = self.make_dvi(tex, fontsize) outfile = basefile+'.output' command = self._get_shell_cmd('cd "%s"' % self.texcache, 'dvipng -bg Transparent -D %s -T tight -o \ "%s" "%s" > "%s"'%(dpi, os.path.split(pngfile)[-1], os.path.split(dvifile)[-1], outfile)) mpl.verbose.report(command, 'debug') exit_status = os.system(command) try: fh = file(outfile) report = fh.read() fh.close() except IOError: report = 'No dvipng error report available.' if exit_status: raise RuntimeError('dvipng was not able to \ process the flowing file:\n%s\nHere is the full report generated by dvipng: \ \n\n'% dvifile + report) else: mpl.verbose.report(report, 'debug') try: os.remove(outfile) except OSError: pass return pngfile def make_ps(self, tex, fontsize): """ generates a postscript file containing latex's rendering of tex string returns the file name """ basefile = self.get_basefile(tex, fontsize) psfile = '%s.epsf'% basefile if DEBUG or not os.path.exists(psfile): dvifile = self.make_dvi(tex, fontsize) outfile = basefile+'.output' command = self._get_shell_cmd('cd "%s"'% self.texcache, 'dvips -q -E -o "%s" "%s" > "%s"'\ %(os.path.split(psfile)[-1], os.path.split(dvifile)[-1], outfile)) mpl.verbose.report(command, 'debug') exit_status = os.system(command) fh = file(outfile) if exit_status: raise RuntimeError('dvipng was not able to \ process the flowing file:\n%s\nHere is the full report generated by dvipng: \ \n\n'% dvifile + fh.read()) else: mpl.verbose.report(fh.read(), 'debug') fh.close() os.remove(outfile) return psfile def get_ps_bbox(self, tex, fontsize): """ returns a list containing the postscript bounding box for latex's rendering of the tex string """ psfile = self.make_ps(tex, fontsize) ps = file(psfile) for line in ps: if line.startswith('%%BoundingBox:'): return [int(val) for val in line.split()[1:]] raise RuntimeError('Could not parse %s'%psfile) def get_grey(self, tex, fontsize=None, dpi=None): """returns the alpha channel""" key = tex, self.get_font_config(), fontsize, dpi alpha = self.grey_arrayd.get(key) if alpha is None: pngfile = self.make_png(tex, fontsize, dpi) X = read_png(os.path.join(self.texcache, pngfile)) if rcParams['text.dvipnghack'] is not None: hack = rcParams['text.dvipnghack'] else: hack = self._dvipng_hack_alpha if hack: # hack the alpha channel # dvipng assumed a constant background, whereas we want to # overlay these rasters with antialiasing over arbitrary # backgrounds that may have other figure elements under them. # When you set dvipng -bg Transparent, it actually makes the # alpha channel 1 and does the background compositing and # antialiasing itself and puts the blended data in the rgb # channels. So what we do is extract the alpha information # from the red channel, which is a blend of the default dvipng # background (white) and foreground (black). So the amount of # red (or green or blue for that matter since white and black # blend to a grayscale) is the alpha intensity. Once we # extract the correct alpha information, we assign it to the # alpha channel properly and let the users pick their rgb. In # this way, we can overlay tex strings on arbitrary # backgrounds with antialiasing # # red = alpha*red_foreground + (1-alpha)*red_background # # Since the foreground is black (0) and the background is # white (1) this reduces to red = 1-alpha or alpha = 1-red #alpha = npy.sqrt(1-X[:,:,0]) # should this be sqrt here? alpha = 1-X[:,:,0] else: alpha = X[:,:,-1] self.grey_arrayd[key] = alpha return alpha def get_rgba(self, tex, fontsize=None, dpi=None, rgb=(0,0,0)): """ Returns latex's rendering of the tex string as an rgba array """ if not fontsize: fontsize = rcParams['font.size'] if not dpi: dpi = rcParams['savefig.dpi'] r,g,b = rgb key = tex, self.get_font_config(), fontsize, dpi, tuple(rgb) Z = self.rgba_arrayd.get(key) if Z is None: alpha = self.get_grey(tex, fontsize, dpi) Z = np.zeros((alpha.shape[0], alpha.shape[1], 4), np.float) Z[:,:,0] = r Z[:,:,1] = g Z[:,:,2] = b Z[:,:,3] = alpha self.rgba_arrayd[key] = Z return Z
agpl-3.0
skrueger111/zazzie
src/scripts/cluster_ensemble.py
2
4622
# $Id: cluster_ensemble.py 3078 2016-04-06 19:46:43Z schowell $ import numpy import time import os import sasmol.sasmol as sasmol import sassie.calculate.convergence_test as convergence_test try: dummy = os.environ["DISPLAY"] except: # allows for creating plots without an xserver import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def com_clustering(pdb_file_name, dcd_file_names, output_prefix=None, voxel_size=5.0, show=False, create=False): ''' Clustering routine for identifying grouping structures within an ensemble. Uses the center of mass of the entire structure to differentiate one from another. This may be improved by using the center of mass of a certain region. ''' if output_prefix: output_prefix += '_%dA' % int(voxel_size) else: output_prefix = '%s_cluster_%dA' % (pdb_file_name[:-4], int(voxel_size)) mol = sasmol.SasMol(0) mol.read_pdb(pdb_file_name) com_coors = [] new_voxels = [] occupied_voxels = [] number_occupied_voxels = 0 voxel_set = set([]) tic = time.time() if create: subset_mol = sasmol.SasMol(0) subset_mol.read_pdb(pdb_file_name) output_dcd = subset_mol.open_dcd_write(output_prefix + '.dcd') i = 0 for (i_dcd, dcd_file_name) in enumerate(dcd_file_names): print 'processing dcd: %s\n' % dcd_file_name input_dcd = mol.open_dcd_read(dcd_file_name) number_of_frames = input_dcd[2] for frame in xrange(number_of_frames): mol.read_dcd_step(input_dcd, frame) com_coors.append(mol.calccom(0)) mol.close_dcd_read(input_dcd[0]) this_dcd_new_voxels = convergence_test.count_new_spatial_voxels( com_coors, voxel_set, voxel_size) number_occupied_voxels += this_dcd_new_voxels new_voxels.append(this_dcd_new_voxels) occupied_voxels.append(number_occupied_voxels) # select out the dcd_frames and save them to a new dcd file if create: voxel_list = list(voxel_set) voxel_number = numpy.array(com_coors)/voxel_size dcd_frames = [] for voxel in voxel_list: v_diff = voxel_number-voxel i_min = numpy.argmin(numpy.sqrt(v_diff[:,0]**2 + v_diff[:,1]**2 + v_diff[:,2]**2)) dcd_frames.append(i_min) dcd_frames_file = dcd_file_name.replace('.dcd', '_cluster_%dA.dat' % voxel_size) numpy.savetxt(dcd_frames_file, dcd_frames, fmt='%d') input_dcd = subset_mol.open_dcd_read(dcd_file_name) number_of_frames = input_dcd[2] for frame in xrange(number_of_frames): subset_mol.read_dcd_step(input_dcd, frame) if frame in dcd_frames: i += 1 subset_mol.write_dcd_step(output_dcd, 0, i) subset_mol.close_dcd_read(input_dcd[0]) if create: subset_mol.close_dcd_write(output_dcd) toc = time.time() - tic print "\ntime used: ", toc # convergence_test.plot_convergence(new_voxels, dcd_file_names, # occupied_voxels, output_prefix) return number_occupied_voxels def voxel_scan(pdb_file_name, dcd_file_names, voxel_range, output_prefix=None, show=False, create=False): if not output_prefix: output_prefix = '%s_cluster' % pdb_file_name[:-4] occupied_voxels = numpy.zeros((len(voxel_range), 2), dtype='int64') for (i, voxel_size) in enumerate(voxel_range): occupied_voxels[i, 0] = voxel_size occupied_voxels[i, 1] = com_clustering(pdb_file_name, dcd_file_names, output_prefix=output_prefix, voxel_size=voxel_size, show=show, create=create) output_prefix = os.path.join(os.getcwd(), output_prefix) out_name = output_prefix + '.dat' numpy.savetxt(out_name, occupied_voxels, fmt='%d') ax = plt.subplot(111) plt.plot(occupied_voxels[:,0], occupied_voxels[:,1]) ax.set_yscale('log') plt.xlabel(r'voxel size ($\AA$)') plt.ylabel('occupied voxels') plot_name = output_prefix plt.savefig(plot_name + '.eps', dpi=400, bbox_inches='tight') plt.savefig(plot_name + '.png', dpi=400, bbox_inches='tight') if show: plt.show()
gpl-3.0
gpospelov/BornAgain
Examples/fit55_SpecularIntro/FitSpecularBasics.py
1
3752
""" Example demonstrates how to fit specular data. Our sample represents twenty interchanging layers of Ti and Ni. We will fit thicknesses of all Ti layers, assuming them being equal. Reference data was generated with GENX for ti layers' thicknesses equal to 3 nm """ import numpy as np import bornagain as ba from bornagain import ba_fitmonitor from matplotlib import pyplot as plt from os import path def get_sample(params): """ Creates a sample and returns it :param params: a dictionary of optimization parameters :return: the sample defined """ # substrate (Si) si_sld_real = 2.0704e-06 # \AA^{-2} density_si = 0.0499/ba.angstrom**3 # Si atomic number density # layers' parameters n_repetitions = 10 # Ni ni_sld_real = 9.4245e-06 # \AA^{-2} ni_thickness = 70*ba.angstrom # Ti ti_sld_real = -1.9493e-06 # \AA^{-2} ti_thickness = params["ti_thickness"] # defining materials m_vacuum = ba.MaterialBySLD() m_ni = ba.MaterialBySLD("Ni", ni_sld_real, 0.0) m_ti = ba.MaterialBySLD("Ti", ti_sld_real, 0.0) m_substrate = ba.MaterialBySLD("SiSubstrate", si_sld_real, 0.0) # vacuum layer and substrate form multi layer vacuum_layer = ba.Layer(m_vacuum) ni_layer = ba.Layer(m_ni, ni_thickness) ti_layer = ba.Layer(m_ti, ti_thickness) substrate_layer = ba.Layer(m_substrate) multi_layer = ba.MultiLayer() multi_layer.addLayer(vacuum_layer) for i in range(n_repetitions): multi_layer.addLayer(ti_layer) multi_layer.addLayer(ni_layer) multi_layer.addLayer(substrate_layer) return multi_layer def get_real_data(): """ Loading data from genx_interchanging_layers.dat Returns a Nx2 array (N - the number of experimental data entries) with first column being coordinates, second one being values. """ if not hasattr(get_real_data, "data"): filename = "genx_interchanging_layers.dat.gz" filepath = path.join(path.dirname(path.realpath(__file__)), filename) real_data = np.loadtxt(filepath, usecols=(0, 1), skiprows=3) # translating axis values from double incident angle (degs) # to incident angle (radians) real_data[:, 0] *= np.pi/360 get_real_data.data = real_data return get_real_data.data.copy() def get_real_data_axis(): """ Get axis coordinates of the experimental data :return: 1D array with axis coordinates """ return get_real_data()[:, 0] def get_real_data_values(): """ Get experimental data values as a 1D array :return: 1D array with experimental data values """ return get_real_data()[:, 1] def get_simulation(params): """ Create and return specular simulation with its instrument defined """ wavelength = 1.54*ba.angstrom # beam wavelength simulation = ba.SpecularSimulation() scan = ba.AngularSpecScan(wavelength, get_real_data_axis()) simulation.setScan(scan) simulation.setSample(get_sample(params)) return simulation def run_fitting(): """ Setup simulation and fit """ real_data = get_real_data_values() fit_objective = ba.FitObjective() fit_objective.addSimulationAndData(get_simulation, real_data, 1.0) plot_observer = ba_fitmonitor.PlotterSpecular() fit_objective.initPrint(10) fit_objective.initPlot(10, plot_observer) params = ba.Parameters() params.add("ti_thickness", 50*ba.angstrom, min=10*ba.angstrom, max=60*ba.angstrom) minimizer = ba.Minimizer() result = minimizer.minimize(fit_objective.evaluate, params) fit_objective.finalize(result) if __name__ == '__main__': run_fitting() plt.show()
gpl-3.0
meteorcloudy/tensorflow
tensorflow/python/estimator/inputs/pandas_io_test.py
7
8390
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for pandas_io.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.estimator.inputs import pandas_io from tensorflow.python.framework import errors from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False class PandasIoTest(test.TestCase): def makeTestDataFrame(self): index = np.arange(100, 104) a = np.arange(4) b = np.arange(32, 36) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -28), index=index) return x, y def callInputFnOnce(self, input_fn, session): results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) result_values = session.run(results) coord.request_stop() coord.join(threads) return result_values def testPandasInputFn_IndexMismatch(self): if not HAS_PANDAS: return x, _ = self.makeTestDataFrame() y_noindex = pd.Series(np.arange(-32, -28)) with self.assertRaises(ValueError): pandas_io.pandas_input_fn( x, y_noindex, batch_size=2, shuffle=False, num_epochs=1) def testPandasInputFn_NonBoolShuffle(self): if not HAS_PANDAS: return x, _ = self.makeTestDataFrame() y_noindex = pd.Series(np.arange(-32, -28)) with self.assertRaisesRegexp(ValueError, 'shuffle must be provided and explicitly ' 'set as boolean'): # Default shuffle is None pandas_io.pandas_input_fn(x, y_noindex) def testPandasInputFn_ProducesExpectedOutputs(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, target = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) def testPandasInputFn_ProducesOutputsForLargeBatchAndMultipleEpochs(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 102) a = np.arange(2) b = np.arange(32, 34) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -30), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=128, shuffle=False, num_epochs=2) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1, 0, 1]) self.assertAllEqual(features['b'], [32, 33, 32, 33]) self.assertAllEqual(target, [-32, -31, -32, -31]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_ProducesOutputsWhenDataSizeNotDividedByBatchSize(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 105) a = np.arange(5) b = np.arange(32, 37) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -27), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) features, target = session.run(results) self.assertAllEqual(features['a'], [2, 3]) self.assertAllEqual(features['b'], [34, 35]) self.assertAllEqual(target, [-30, -29]) features, target = session.run(results) self.assertAllEqual(features['a'], [4]) self.assertAllEqual(features['b'], [36]) self.assertAllEqual(target, [-28]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_OnlyX(self): if not HAS_PANDAS: return with self.test_session() as session: x, _ = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y=None, batch_size=2, shuffle=False, num_epochs=1) features = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) def testPandasInputFn_ExcludesIndex(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, _ = self.callInputFnOnce(input_fn, session) self.assertFalse('index' in features) def assertInputsCallableNTimes(self, input_fn, session, n): inputs = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) for _ in range(n): session.run(inputs) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def testPandasInputFn_RespectsEpoch_NoShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=False, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=True, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffleAutosize(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, queue_capacity=None, num_epochs=2) self.assertInputsCallableNTimes(input_fn, session, 4) def testPandasInputFn_RespectsEpochUnevenBatches(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() with self.test_session() as session: input_fn = pandas_io.pandas_input_fn( x, y, batch_size=3, shuffle=False, num_epochs=1) # Before the last batch, only one element of the epoch should remain. self.assertInputsCallableNTimes(input_fn, session, 2) def testPandasInputFn_Idempotent(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1)() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, num_epochs=1)() if __name__ == '__main__': test.main()
apache-2.0
tawsifkhan/scikit-learn
sklearn/cluster/tests/test_dbscan.py
176
12155
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from scipy.spatial import distance from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.neighbors import NearestNeighbors from sklearn.cluster.dbscan_ import DBSCAN from sklearn.cluster.dbscan_ import dbscan from sklearn.cluster.tests.common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): # Tests the DBSCAN algorithm with a similarity array. # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): # Tests the DBSCAN algorithm with a feature vector array. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_sparse(): core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8, min_samples=10) core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10) assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_sparse_precomputed(): D = pairwise_distances(X) nn = NearestNeighbors(radius=.9).fit(X) D_sparse = nn.radius_neighbors_graph(mode='distance') # Ensure it is sparse not merely on diagonals: assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1) core_sparse, labels_sparse = dbscan(D_sparse, eps=.8, min_samples=10, metric='precomputed') core_dense, labels_dense = dbscan(D, eps=.8, min_samples=10, metric='precomputed') assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_no_core_samples(): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 for X_ in [X, sparse.csr_matrix(X)]: db = DBSCAN(min_samples=6).fit(X_) assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) assert_array_equal(db.labels_, -1) assert_equal(db.core_sample_indices_.shape, (0,)) def test_dbscan_callable(): # Tests the DBSCAN algorithm with a callable metric. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_balltree(): # Tests the DBSCAN algorithm with balltree for neighbor calculation. eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_3, n_clusters) db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_4, n_clusters) db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_5, n_clusters) def test_input_validation(): # DBSCAN.fit should accept a list of lists. X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception def test_dbscan_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, dbscan, X, eps=-1.0) assert_raises(ValueError, dbscan, X, algorithm='blah') assert_raises(ValueError, dbscan, X, metric='blah') assert_raises(ValueError, dbscan, X, leaf_size=-1) assert_raises(ValueError, dbscan, X, p=-1) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__) def test_boundaries(): # ensure min_samples is inclusive of core point core, _ = dbscan([[0], [1]], eps=2, min_samples=2) assert_in(0, core) # ensure eps is inclusive of circumference core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) assert_in(0, core) core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2) assert_not_in(0, core) def test_weighted_dbscan(): # ensure sample_weight is validated assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2]) assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4]) # ensure sample_weight has an effect assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]) # points within eps of each other: assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]) # and effect of non-positive and non-integer sample_weight: assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]) # for non-negative sample_weight, cores should be identical to repetition rng = np.random.RandomState(42) sample_weight = rng.randint(0, 5, X.shape[0]) core1, label1 = dbscan(X, sample_weight=sample_weight) assert_equal(len(label1), len(X)) X_repeated = np.repeat(X, sample_weight, axis=0) core_repeated, label_repeated = dbscan(X_repeated) core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) core_repeated_mask[core_repeated] = True core_mask = np.zeros(X.shape[0], dtype=bool) core_mask[core1] = True assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) # sample_weight should work with precomputed distance matrix D = pairwise_distances(X) core3, label3 = dbscan(D, sample_weight=sample_weight, metric='precomputed') assert_array_equal(core1, core3) assert_array_equal(label1, label3) # sample_weight should work with estimator est = DBSCAN().fit(X, sample_weight=sample_weight) core4 = est.core_sample_indices_ label4 = est.labels_ assert_array_equal(core1, core4) assert_array_equal(label1, label4) est = DBSCAN() label5 = est.fit_predict(X, sample_weight=sample_weight) core5 = est.core_sample_indices_ assert_array_equal(core1, core5) assert_array_equal(label1, label5) assert_array_equal(label1, est.labels_) def test_dbscan_core_samples_toy(): X = [[0], [2], [3], [4], [6], [8], [10]] n_samples = len(X) for algorithm in ['brute', 'kd_tree', 'ball_tree']: # Degenerate case: every sample is a core sample, either with its own # cluster or including other close core samples. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) assert_array_equal(core_samples, np.arange(n_samples)) assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) # With eps=1 and min_samples=2 only the 3 samples from the denser area # are core samples. All other points are isolated and considered noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) assert_array_equal(core_samples, [1, 2, 3]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # Only the sample in the middle of the dense area is core. Its two # neighbors are edge samples. Remaining samples are noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) assert_array_equal(core_samples, [2]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # It's no longer possible to extract core samples with eps=1: # everything is noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) assert_array_equal(core_samples, []) assert_array_equal(labels, -np.ones(n_samples)) def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): # see https://github.com/scikit-learn/scikit-learn/issues/4641 for # more details X = np.eye(10) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1) X = np.zeros((10, 10)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1)
bsd-3-clause
SuLab/fiSSEA
pandasVCF/src/multi_sample/Vcf_metadata.py
1
1096
import os,sys,gzip import pandas as pd class Vcf_metadata(object): ''' This class parses a VCF header into a pandas dataframe object. It recognizes gzip and uncompressed file formats. This function assumes the header does not extent past 5000 lines ''' def __init__(self, filename): if filename.endswith('.gz'): self.compression = 'gzip' if filename+'.tbi' in os.listdir(os.path.split(filename)[0]): header_lines = os.popen('tabix -H ' + filename).readlines() self.header = [l.replace('#CHROM','CHROM') for l in header_lines if l.startswith('#')] os.system('tabix -p vcf ' + filename) header_lines = os.popen('tabix -H ' + filename).readlines() self.header = [l for l in header_lines if l.startswith('#')] else: self.compression = '' header_lines = os.popen('head -5000 ' + filename).readlines() self.header = [l for l in header_lines if l.startswith('#')]
apache-2.0
lxneng/incubator-airflow
airflow/contrib/hooks/pinot_hook.py
21
3483
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import six from pinotdb import connect from airflow.hooks.dbapi_hook import DbApiHook class PinotDbApiHook(DbApiHook): """ Connect to pinot db(https://github.com/linkedin/pinot) to issue pql """ conn_name_attr = 'pinot_broker_conn_id' default_conn_name = 'pinot_broker_default' supports_autocommit = False def __init__(self, *args, **kwargs): super(PinotDbApiHook, self).__init__(*args, **kwargs) def get_conn(self): """ Establish a connection to pinot broker through pinot dbqpi. """ conn = self.get_connection(self.pinot_broker_conn_id) pinot_broker_conn = connect( host=conn.host, port=conn.port, path=conn.extra_dejson.get('endpoint', '/pql'), scheme=conn.extra_dejson.get('schema', 'http') ) self.log.info('Get the connection to pinot ' 'broker on {host}'.format(host=conn.host)) return pinot_broker_conn def get_uri(self): """ Get the connection uri for pinot broker. e.g: http://localhost:9000/pql """ conn = self.get_connection(getattr(self, self.conn_name_attr)) host = conn.host if conn.port is not None: host += ':{port}'.format(port=conn.port) conn_type = 'http' if not conn.conn_type else conn.conn_type endpoint = conn.extra_dejson.get('endpoint', 'pql') return '{conn_type}://{host}/{endpoint}'.format( conn_type=conn_type, host=host, endpoint=endpoint) def get_records(self, sql): """ Executes the sql and returns a set of records. :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str """ if six.PY2: sql = sql.encode('utf-8') with self.get_conn() as cur: cur.execute(sql) return cur.fetchall() def get_first(self, sql): """ Executes the sql and returns the first resulting row. :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list """ if six.PY2: sql = sql.encode('utf-8') with self.get_conn() as cur: cur.execute(sql) return cur.fetchone() def set_autocommit(self, conn, autocommit): raise NotImplementedError() def get_pandas_df(self, sql, parameters=None): raise NotImplementedError() def insert_rows(self, table, rows, target_fields=None, commit_every=1000): raise NotImplementedError()
apache-2.0
phdowling/scikit-learn
sklearn/linear_model/__init__.py
270
3096
""" The :mod:`sklearn.linear_model` module implements generalized linear models. It includes Ridge regression, Bayesian Regression, Lasso and Elastic Net estimators computed with Least Angle Regression and coordinate descent. It also implements Stochastic Gradient Descent related algorithms. """ # See http://scikit-learn.sourceforge.net/modules/sgd.html and # http://scikit-learn.sourceforge.net/modules/linear_model.html for # complete documentation. from .base import LinearRegression from .bayes import BayesianRidge, ARDRegression from .least_angle import (Lars, LassoLars, lars_path, LarsCV, LassoLarsCV, LassoLarsIC) from .coordinate_descent import (Lasso, ElasticNet, LassoCV, ElasticNetCV, lasso_path, enet_path, MultiTaskLasso, MultiTaskElasticNet, MultiTaskElasticNetCV, MultiTaskLassoCV) from .sgd_fast import Hinge, Log, ModifiedHuber, SquaredLoss, Huber from .stochastic_gradient import SGDClassifier, SGDRegressor from .ridge import (Ridge, RidgeCV, RidgeClassifier, RidgeClassifierCV, ridge_regression) from .logistic import (LogisticRegression, LogisticRegressionCV, logistic_regression_path) from .omp import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV) from .passive_aggressive import PassiveAggressiveClassifier from .passive_aggressive import PassiveAggressiveRegressor from .perceptron import Perceptron from .randomized_l1 import (RandomizedLasso, RandomizedLogisticRegression, lasso_stability_path) from .ransac import RANSACRegressor from .theil_sen import TheilSenRegressor __all__ = ['ARDRegression', 'BayesianRidge', 'ElasticNet', 'ElasticNetCV', 'Hinge', 'Huber', 'Lars', 'LarsCV', 'Lasso', 'LassoCV', 'LassoLars', 'LassoLarsCV', 'LassoLarsIC', 'LinearRegression', 'Log', 'LogisticRegression', 'LogisticRegressionCV', 'ModifiedHuber', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'OrthogonalMatchingPursuitCV', 'PassiveAggressiveClassifier', 'PassiveAggressiveRegressor', 'Perceptron', 'RandomizedLasso', 'RandomizedLogisticRegression', 'Ridge', 'RidgeCV', 'RidgeClassifier', 'RidgeClassifierCV', 'SGDClassifier', 'SGDRegressor', 'SquaredLoss', 'TheilSenRegressor', 'enet_path', 'lars_path', 'lasso_path', 'lasso_stability_path', 'logistic_regression_path', 'orthogonal_mp', 'orthogonal_mp_gram', 'ridge_regression', 'RANSACRegressor']
bsd-3-clause
sinhrks/scikit-learn
sklearn/gaussian_process/tests/test_gpc.py
28
6061
"""Testing for Gaussian process classification """ # Author: Jan Hendrik Metzen <[email protected]> # Licence: BSD 3 clause import numpy as np from scipy.optimize import approx_fprime from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C from sklearn.utils.testing import (assert_true, assert_greater, assert_equal, assert_almost_equal, assert_array_equal) def f(x): return np.sin(x) X = np.atleast_2d(np.linspace(0, 10, 30)).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = np.array(f(X).ravel() > 0, dtype=int) fX = f(X).ravel() y_mc = np.empty(y.shape, dtype=int) # multi-class y_mc[fX < -0.35] = 0 y_mc[(fX >= -0.35) & (fX < 0.35)] = 1 y_mc[fX > 0.35] = 2 fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed") kernels = [RBF(length_scale=0.1), fixed_kernel, RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3))] def test_predict_consistent(): """ Check binary predict decision has also predicted probability above 0.5. """ for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5) def test_lml_improving(): """ Test that hyperparameter-tuning improves log-marginal likelihood. """ for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_greater(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(kernel.theta)) def test_lml_precomputed(): """ Test that lml of optimized kernel is stored correctly. """ for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_almost_equal(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(), 7) def test_converged_to_local_maximum(): """ Test that we are in local maximum after hyperparameter-optimization.""" for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) lml, lml_gradient = \ gpc.log_marginal_likelihood(gpc.kernel_.theta, True) assert_true(np.all((np.abs(lml_gradient) < 1e-4) | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 0]) | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 1]))) def test_lml_gradient(): """ Compare analytic and numeric gradient of log marginal likelihood. """ for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) lml, lml_gradient = gpc.log_marginal_likelihood(kernel.theta, True) lml_gradient_approx = \ approx_fprime(kernel.theta, lambda theta: gpc.log_marginal_likelihood(theta, False), 1e-10) assert_almost_equal(lml_gradient, lml_gradient_approx, 3) def test_random_starts(): """ Test that an increasing number of random-starts of GP fitting only increases the log marginal likelihood of the chosen theta. """ n_samples, n_features = 25, 3 np.random.seed(0) rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0 kernel = C(1.0, (1e-2, 1e2)) \ * RBF(length_scale=[1e-3] * n_features, length_scale_bounds=[(1e-4, 1e+2)] * n_features) last_lml = -np.inf for n_restarts_optimizer in range(9): gp = GaussianProcessClassifier( kernel=kernel, n_restarts_optimizer=n_restarts_optimizer, random_state=0).fit(X, y) lml = gp.log_marginal_likelihood(gp.kernel_.theta) assert_greater(lml, last_lml - np.finfo(np.float32).eps) last_lml = lml def test_custom_optimizer(): """ Test that GPC can use externally defined optimizers. """ # Define a dummy optimizer that simply tests 1000 random hyperparameters def optimizer(obj_func, initial_theta, bounds): rng = np.random.RandomState(0) theta_opt, func_min = \ initial_theta, obj_func(initial_theta, eval_gradient=False) for _ in range(1000): theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))) f = obj_func(theta, eval_gradient=False) if f < func_min: theta_opt, func_min = theta, f return theta_opt, func_min for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer) gpc.fit(X, y_mc) # Checks that optimizer improved marginal likelihood assert_greater(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(kernel.theta)) def test_multi_class(): """ Test GPC for multi-class classification problems. """ for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel) gpc.fit(X, y_mc) y_prob = gpc.predict_proba(X2) assert_almost_equal(y_prob.sum(1), 1) y_pred = gpc.predict(X2) assert_array_equal(np.argmax(y_prob, 1), y_pred) def test_multi_class_n_jobs(): """ Test that multi-class GPC produces identical results with n_jobs>1. """ for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel) gpc.fit(X, y_mc) gpc_2 = GaussianProcessClassifier(kernel=kernel, n_jobs=2) gpc_2.fit(X, y_mc) y_prob = gpc.predict_proba(X2) y_prob_2 = gpc_2.predict_proba(X2) assert_almost_equal(y_prob, y_prob_2)
bsd-3-clause