repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
zfrenchee/pandas
pandas/tests/indexing/test_multiindex.py
1
50115
from warnings import catch_warnings import pytest import numpy as np import pandas as pd from pandas import (Panel, Series, MultiIndex, DataFrame, Timestamp, Index, date_range) from pandas.util import testing as tm from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.tests.indexing.common import _mklbl class TestMultiIndexBasic(object): def test_iloc_getitem_multiindex2(self): # TODO(wesm): fix this pytest.skip('this test was being suppressed, ' 'needs to be fixed') arr = np.random.randn(3, 3) df = DataFrame(arr, columns=[[2, 2, 4], [6, 8, 10]], index=[[4, 4, 8], [8, 10, 12]]) rs = df.iloc[2] xp = Series(arr[2], index=df.columns) tm.assert_series_equal(rs, xp) rs = df.iloc[:, 2] xp = Series(arr[:, 2], index=df.index) tm.assert_series_equal(rs, xp) rs = df.iloc[2, 2] xp = df.values[2, 2] assert rs == xp # for multiple items # GH 5528 rs = df.iloc[[0, 1]] xp = df.xs(4, drop_level=False) tm.assert_frame_equal(rs, xp) tup = zip(*[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) index = MultiIndex.from_tuples(tup) df = DataFrame(np.random.randn(4, 4), index=index) rs = df.iloc[[2, 3]] xp = df.xs('b', drop_level=False) tm.assert_frame_equal(rs, xp) def test_setitem_multiindex(self): with catch_warnings(record=True): for index_fn in ('ix', 'loc'): def assert_equal(a, b): assert a == b def check(target, indexers, value, compare_fn, expected=None): fn = getattr(target, index_fn) fn.__setitem__(indexers, value) result = fn.__getitem__(indexers) if expected is None: expected = value compare_fn(result, expected) # GH7190 index = MultiIndex.from_product([np.arange(0, 100), np.arange(0, 80)], names=['time', 'firm']) t, n = 0, 2 df = DataFrame(np.nan, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=0, compare_fn=assert_equal) df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=1, compare_fn=assert_equal) df = DataFrame(columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=2, compare_fn=assert_equal) # gh-7218: assigning with 0-dim arrays df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], index=index) check(target=df, indexers=((t, n), 'X'), value=np.array(3), compare_fn=assert_equal, expected=3, ) # GH5206 df = DataFrame(np.arange(25).reshape(5, 5), columns='A,B,C,D,E'.split(','), dtype=float) df['F'] = 99 row_selection = df['A'] % 2 == 0 col_selection = ['B', 'C'] with catch_warnings(record=True): df.ix[row_selection, col_selection] = df['F'] output = DataFrame(99., index=[0, 2, 4], columns=['B', 'C']) with catch_warnings(record=True): tm.assert_frame_equal(df.ix[row_selection, col_selection], output) check(target=df, indexers=(row_selection, col_selection), value=df['F'], compare_fn=tm.assert_frame_equal, expected=output, ) # GH11372 idx = MultiIndex.from_product([ ['A', 'B', 'C'], date_range('2015-01-01', '2015-04-01', freq='MS')]) cols = MultiIndex.from_product([ ['foo', 'bar'], date_range('2016-01-01', '2016-02-01', freq='MS')]) df = DataFrame(np.random.random((12, 4)), index=idx, columns=cols) subidx = MultiIndex.from_tuples( [('A', Timestamp('2015-01-01')), ('A', Timestamp('2015-02-01'))]) subcols = MultiIndex.from_tuples( [('foo', Timestamp('2016-01-01')), ('foo', Timestamp('2016-02-01'))]) vals = DataFrame(np.random.random((2, 2)), index=subidx, columns=subcols) check(target=df, indexers=(subidx, subcols), value=vals, compare_fn=tm.assert_frame_equal, ) # set all columns vals = DataFrame( np.random.random((2, 4)), index=subidx, columns=cols) check(target=df, indexers=(subidx, slice(None, None, None)), value=vals, compare_fn=tm.assert_frame_equal, ) # identity copy = df.copy() check(target=df, indexers=(df.index, df.columns), value=df, compare_fn=tm.assert_frame_equal, expected=copy) def test_loc_getitem_series(self): # GH14730 # passing a series as a key with a MultiIndex index = MultiIndex.from_product([[1, 2, 3], ['A', 'B', 'C']]) x = Series(index=index, data=range(9), dtype=np.float64) y = Series([1, 3]) expected = Series( data=[0, 1, 2, 6, 7, 8], index=MultiIndex.from_product([[1, 3], ['A', 'B', 'C']]), dtype=np.float64) result = x.loc[y] tm.assert_series_equal(result, expected) result = x.loc[[1, 3]] tm.assert_series_equal(result, expected) # GH15424 y1 = Series([1, 3], index=[1, 2]) result = x.loc[y1] tm.assert_series_equal(result, expected) empty = Series(data=[], dtype=np.float64) expected = Series([], index=MultiIndex( levels=index.levels, labels=[[], []], dtype=np.float64)) result = x.loc[empty] tm.assert_series_equal(result, expected) def test_loc_getitem_array(self): # GH15434 # passing an array as a key with a MultiIndex index = MultiIndex.from_product([[1, 2, 3], ['A', 'B', 'C']]) x = Series(index=index, data=range(9), dtype=np.float64) y = np.array([1, 3]) expected = Series( data=[0, 1, 2, 6, 7, 8], index=MultiIndex.from_product([[1, 3], ['A', 'B', 'C']]), dtype=np.float64) result = x.loc[y] tm.assert_series_equal(result, expected) # empty array: empty = np.array([]) expected = Series([], index=MultiIndex( levels=index.levels, labels=[[], []], dtype=np.float64)) result = x.loc[empty] tm.assert_series_equal(result, expected) # 0-dim array (scalar): scalar = np.int64(1) expected = Series( data=[0, 1, 2], index=['A', 'B', 'C'], dtype=np.float64) result = x.loc[scalar] tm.assert_series_equal(result, expected) def test_iloc_getitem_multiindex(self): mi_labels = DataFrame(np.random.randn(4, 3), columns=[['i', 'i', 'j'], ['A', 'A', 'B']], index=[['i', 'i', 'j', 'k'], ['X', 'X', 'Y', 'Y']]) mi_int = DataFrame(np.random.randn(3, 3), columns=[[2, 2, 4], [6, 8, 10]], index=[[4, 4, 8], [8, 10, 12]]) # the first row rs = mi_int.iloc[0] with catch_warnings(record=True): xp = mi_int.ix[4].ix[8] tm.assert_series_equal(rs, xp, check_names=False) assert rs.name == (4, 8) assert xp.name == 8 # 2nd (last) columns rs = mi_int.iloc[:, 2] with catch_warnings(record=True): xp = mi_int.ix[:, 2] tm.assert_series_equal(rs, xp) # corner column rs = mi_int.iloc[2, 2] with catch_warnings(record=True): xp = mi_int.ix[:, 2].ix[2] assert rs == xp # this is basically regular indexing rs = mi_labels.iloc[2, 2] with catch_warnings(record=True): xp = mi_labels.ix['j'].ix[:, 'j'].ix[0, 0] assert rs == xp def test_loc_multiindex(self): mi_labels = DataFrame(np.random.randn(3, 3), columns=[['i', 'i', 'j'], ['A', 'A', 'B']], index=[['i', 'i', 'j'], ['X', 'X', 'Y']]) mi_int = DataFrame(np.random.randn(3, 3), columns=[[2, 2, 4], [6, 8, 10]], index=[[4, 4, 8], [8, 10, 12]]) # the first row rs = mi_labels.loc['i'] with catch_warnings(record=True): xp = mi_labels.ix['i'] tm.assert_frame_equal(rs, xp) # 2nd (last) columns rs = mi_labels.loc[:, 'j'] with catch_warnings(record=True): xp = mi_labels.ix[:, 'j'] tm.assert_frame_equal(rs, xp) # corner column rs = mi_labels.loc['j'].loc[:, 'j'] with catch_warnings(record=True): xp = mi_labels.ix['j'].ix[:, 'j'] tm.assert_frame_equal(rs, xp) # with a tuple rs = mi_labels.loc[('i', 'X')] with catch_warnings(record=True): xp = mi_labels.ix[('i', 'X')] tm.assert_frame_equal(rs, xp) rs = mi_int.loc[4] with catch_warnings(record=True): xp = mi_int.ix[4] tm.assert_frame_equal(rs, xp) def test_getitem_partial_int(self): # GH 12416 # with single item l1 = [10, 20] l2 = ['a', 'b'] df = DataFrame(index=range(2), columns=MultiIndex.from_product([l1, l2])) expected = DataFrame(index=range(2), columns=l2) result = df[20] tm.assert_frame_equal(result, expected) # with list expected = DataFrame(index=range(2), columns=MultiIndex.from_product([l1[1:], l2])) result = df[[20]] tm.assert_frame_equal(result, expected) # missing item: with tm.assert_raises_regex(KeyError, '1'): df[1] with tm.assert_raises_regex(KeyError, r"'\[1\] not in index'"): df[[1]] def test_loc_multiindex_indexer_none(self): # GH6788 # multi-index indexer is None (meaning take all) attributes = ['Attribute' + str(i) for i in range(1)] attribute_values = ['Value' + str(i) for i in range(5)] index = MultiIndex.from_product([attributes, attribute_values]) df = 0.1 * np.random.randn(10, 1 * 5) + 0.5 df = DataFrame(df, columns=index) result = df[attributes] tm.assert_frame_equal(result, df) # GH 7349 # loc with a multi-index seems to be doing fallback df = DataFrame(np.arange(12).reshape(-1, 1), index=MultiIndex.from_product([[1, 2, 3, 4], [1, 2, 3]])) expected = df.loc[([1, 2], ), :] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) def test_loc_multiindex_incomplete(self): # GH 7399 # incomplete indexers s = Series(np.arange(15, dtype='int64'), MultiIndex.from_product([range(5), ['a', 'b', 'c']])) expected = s.loc[:, 'a':'c'] result = s.loc[0:4, 'a':'c'] tm.assert_series_equal(result, expected) tm.assert_series_equal(result, expected) result = s.loc[:4, 'a':'c'] tm.assert_series_equal(result, expected) tm.assert_series_equal(result, expected) result = s.loc[0:, 'a':'c'] tm.assert_series_equal(result, expected) tm.assert_series_equal(result, expected) # GH 7400 # multiindexer gettitem with list of indexers skips wrong element s = Series(np.arange(15, dtype='int64'), MultiIndex.from_product([range(5), ['a', 'b', 'c']])) expected = s.iloc[[6, 7, 8, 12, 13, 14]] result = s.loc[2:4:2, 'a':'c'] tm.assert_series_equal(result, expected) def test_multiindex_perf_warn(self): df = DataFrame({'jim': [0, 0, 1, 1], 'joe': ['x', 'x', 'z', 'y'], 'jolie': np.random.rand(4)}).set_index(['jim', 'joe']) with tm.assert_produces_warning(PerformanceWarning, clear=[pd.core.index]): df.loc[(1, 'z')] df = df.iloc[[2, 1, 3, 0]] with tm.assert_produces_warning(PerformanceWarning): df.loc[(0, )] def test_series_getitem_multiindex(self): # GH 6018 # series regression getitem with a multi-index s = Series([1, 2, 3]) s.index = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)]) result = s[:, 0] expected = Series([1], index=[0]) tm.assert_series_equal(result, expected) result = s.loc[:, 1] expected = Series([2, 3], index=[1, 2]) tm.assert_series_equal(result, expected) # xs result = s.xs(0, level=0) expected = Series([1], index=[0]) tm.assert_series_equal(result, expected) result = s.xs(1, level=1) expected = Series([2, 3], index=[1, 2]) tm.assert_series_equal(result, expected) # GH6258 dt = list(date_range('20130903', periods=3)) idx = MultiIndex.from_product([list('AB'), dt]) s = Series([1, 3, 4, 1, 3, 4], index=idx) result = s.xs('20130903', level=1) expected = Series([1, 1], index=list('AB')) tm.assert_series_equal(result, expected) # GH5684 idx = MultiIndex.from_tuples([('a', 'one'), ('a', 'two'), ('b', 'one'), ('b', 'two')]) s = Series([1, 2, 3, 4], index=idx) s.index.set_names(['L1', 'L2'], inplace=True) result = s.xs('one', level='L2') expected = Series([1, 3], index=['a', 'b']) expected.index.set_names(['L1'], inplace=True) tm.assert_series_equal(result, expected) def test_xs_multiindex(self): # GH2903 columns = MultiIndex.from_tuples( [('a', 'foo'), ('a', 'bar'), ('b', 'hello'), ('b', 'world')], names=['lvl0', 'lvl1']) df = DataFrame(np.random.randn(4, 4), columns=columns) df.sort_index(axis=1, inplace=True) result = df.xs('a', level='lvl0', axis=1) expected = df.iloc[:, 0:2].loc[:, 'a'] tm.assert_frame_equal(result, expected) result = df.xs('foo', level='lvl1', axis=1) expected = df.iloc[:, 1:2].copy() expected.columns = expected.columns.droplevel('lvl1') tm.assert_frame_equal(result, expected) def test_multiindex_setitem(self): # GH 3738 # setting with a multi-index right hand side arrays = [np.array(['bar', 'bar', 'baz', 'qux', 'qux', 'bar']), np.array(['one', 'two', 'one', 'one', 'two', 'one']), np.arange(0, 6, 1)] df_orig = DataFrame(np.random.randn(6, 3), index=arrays, columns=['A', 'B', 'C']).sort_index() expected = df_orig.loc[['bar']] * 2 df = df_orig.copy() df.loc[['bar']] *= 2 tm.assert_frame_equal(df.loc[['bar']], expected) # raise because these have differing levels def f(): df.loc['bar'] *= 2 pytest.raises(TypeError, f) # from SO # http://stackoverflow.com/questions/24572040/pandas-access-the-level-of-multiindex-for-inplace-operation df_orig = DataFrame.from_dict({'price': { ('DE', 'Coal', 'Stock'): 2, ('DE', 'Gas', 'Stock'): 4, ('DE', 'Elec', 'Demand'): 1, ('FR', 'Gas', 'Stock'): 5, ('FR', 'Solar', 'SupIm'): 0, ('FR', 'Wind', 'SupIm'): 0 }}) df_orig.index = MultiIndex.from_tuples(df_orig.index, names=['Sit', 'Com', 'Type']) expected = df_orig.copy() expected.iloc[[0, 2, 3]] *= 2 idx = pd.IndexSlice df = df_orig.copy() df.loc[idx[:, :, 'Stock'], :] *= 2 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[idx[:, :, 'Stock'], 'price'] *= 2 tm.assert_frame_equal(df, expected) def test_getitem_duplicates_multiindex(self): # GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise # the appropriate error, only in PY3 of course! index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) arr = np.random.randn(len(index), 1) df = DataFrame(arr, index=index, columns=['val']) result = df.val['D'] expected = Series(arr.ravel()[0:3], name='val', index=Index( [26, 37, 57], name='day')) tm.assert_series_equal(result, expected) def f(): df.val['A'] pytest.raises(KeyError, f) def f(): df.val['X'] pytest.raises(KeyError, f) # A is treated as a special Timestamp index = MultiIndex(levels=[['A', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) df = DataFrame(arr, index=index, columns=['val']) result = df.val['A'] expected = Series(arr.ravel()[0:3], name='val', index=Index( [26, 37, 57], name='day')) tm.assert_series_equal(result, expected) def f(): df.val['X'] pytest.raises(KeyError, f) # GH 7866 # multi-index slicing with missing indexers idx = MultiIndex.from_product([['A', 'B', 'C'], ['foo', 'bar', 'baz']], names=['one', 'two']) s = Series(np.arange(9, dtype='int64'), index=idx).sort_index() exp_idx = MultiIndex.from_product([['A'], ['foo', 'bar', 'baz']], names=['one', 'two']) expected = Series(np.arange(3, dtype='int64'), index=exp_idx).sort_index() result = s.loc[['A']] tm.assert_series_equal(result, expected) result = s.loc[['A', 'D']] tm.assert_series_equal(result, expected) # not any values found pytest.raises(KeyError, lambda: s.loc[['D']]) # empty ok result = s.loc[[]] expected = s.iloc[[]] tm.assert_series_equal(result, expected) idx = pd.IndexSlice expected = Series([0, 3, 6], index=MultiIndex.from_product( [['A', 'B', 'C'], ['foo']], names=['one', 'two'])).sort_index() result = s.loc[idx[:, ['foo']]] tm.assert_series_equal(result, expected) result = s.loc[idx[:, ['foo', 'bah']]] tm.assert_series_equal(result, expected) # GH 8737 # empty indexer multi_index = MultiIndex.from_product((['foo', 'bar', 'baz'], ['alpha', 'beta'])) df = DataFrame( np.random.randn(5, 6), index=range(5), columns=multi_index) df = df.sort_index(level=0, axis=1) expected = DataFrame(index=range(5), columns=multi_index.reindex([])[0]) result1 = df.loc[:, ([], slice(None))] result2 = df.loc[:, (['foo'], [])] tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) # regression from < 0.14.0 # GH 7914 df = DataFrame([[np.mean, np.median], ['mean', 'median']], columns=MultiIndex.from_tuples([('functs', 'mean'), ('functs', 'median')]), index=['function', 'name']) result = df.loc['function', ('functs', 'mean')] assert result == np.mean def test_multiindex_assignment(self): # GH3777 part 2 # mixed dtype df = DataFrame(np.random.randint(5, 10, size=9).reshape(3, 3), columns=list('abc'), index=[[4, 4, 8], [8, 10, 12]]) df['d'] = np.nan arr = np.array([0., 1.]) with catch_warnings(record=True): df.ix[4, 'd'] = arr tm.assert_series_equal(df.ix[4, 'd'], Series(arr, index=[8, 10], name='d')) # single dtype df = DataFrame(np.random.randint(5, 10, size=9).reshape(3, 3), columns=list('abc'), index=[[4, 4, 8], [8, 10, 12]]) with catch_warnings(record=True): df.ix[4, 'c'] = arr exp = Series(arr, index=[8, 10], name='c', dtype='float64') tm.assert_series_equal(df.ix[4, 'c'], exp) # scalar ok with catch_warnings(record=True): df.ix[4, 'c'] = 10 exp = Series(10, index=[8, 10], name='c', dtype='float64') tm.assert_series_equal(df.ix[4, 'c'], exp) # invalid assignments def f(): with catch_warnings(record=True): df.ix[4, 'c'] = [0, 1, 2, 3] pytest.raises(ValueError, f) def f(): with catch_warnings(record=True): df.ix[4, 'c'] = [0] pytest.raises(ValueError, f) # groupby example NUM_ROWS = 100 NUM_COLS = 10 col_names = ['A' + num for num in map(str, np.arange(NUM_COLS).tolist())] index_cols = col_names[:5] df = DataFrame(np.random.randint(5, size=(NUM_ROWS, NUM_COLS)), dtype=np.int64, columns=col_names) df = df.set_index(index_cols).sort_index() grp = df.groupby(level=index_cols[:4]) df['new_col'] = np.nan f_index = np.arange(5) def f(name, df2): return Series(np.arange(df2.shape[0]), name=df2.index.values[0]).reindex(f_index) # TODO(wesm): unused? # new_df = pd.concat([f(name, df2) for name, df2 in grp], axis=1).T # we are actually operating on a copy here # but in this case, that's ok for name, df2 in grp: new_vals = np.arange(df2.shape[0]) with catch_warnings(record=True): df.ix[name, 'new_col'] = new_vals def test_multiindex_label_slicing_with_negative_step(self): s = Series(np.arange(20), MultiIndex.from_product([list('abcde'), np.arange(4)])) SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) tm.assert_series_equal(s[l_slc], s.iloc[i_slc]) with catch_warnings(record=True): tm.assert_series_equal(s.ix[l_slc], s.iloc[i_slc]) assert_slices_equivalent(SLC[::-1], SLC[::-1]) assert_slices_equivalent(SLC['d'::-1], SLC[15::-1]) assert_slices_equivalent(SLC[('d', )::-1], SLC[15::-1]) assert_slices_equivalent(SLC[:'d':-1], SLC[:11:-1]) assert_slices_equivalent(SLC[:('d', ):-1], SLC[:11:-1]) assert_slices_equivalent(SLC['d':'b':-1], SLC[15:3:-1]) assert_slices_equivalent(SLC[('d', ):'b':-1], SLC[15:3:-1]) assert_slices_equivalent(SLC['d':('b', ):-1], SLC[15:3:-1]) assert_slices_equivalent(SLC[('d', ):('b', ):-1], SLC[15:3:-1]) assert_slices_equivalent(SLC['b':'d':-1], SLC[:0]) assert_slices_equivalent(SLC[('c', 2)::-1], SLC[10::-1]) assert_slices_equivalent(SLC[:('c', 2):-1], SLC[:9:-1]) assert_slices_equivalent(SLC[('e', 0):('c', 2):-1], SLC[16:9:-1]) def test_multiindex_slice_first_level(self): # GH 12697 freq = ['a', 'b', 'c', 'd'] idx = MultiIndex.from_product([freq, np.arange(500)]) df = DataFrame(list(range(2000)), index=idx, columns=['Test']) df_slice = df.loc[pd.IndexSlice[:, 30:70], :] result = df_slice.loc['a'] expected = DataFrame(list(range(30, 71)), columns=['Test'], index=range(30, 71)) tm.assert_frame_equal(result, expected) result = df_slice.loc['d'] expected = DataFrame(list(range(1530, 1571)), columns=['Test'], index=range(30, 71)) tm.assert_frame_equal(result, expected) def test_multiindex_symmetric_difference(self): # GH 13490 idx = MultiIndex.from_product([['a', 'b'], ['A', 'B']], names=['a', 'b']) result = idx ^ idx assert result.names == idx.names idx2 = idx.copy().rename(['A', 'B']) result = idx ^ idx2 assert result.names == [None, None] class TestMultiIndexSlicers(object): def test_per_axis_per_level_getitem(self): # GH6134 # example test case ix = MultiIndex.from_product([_mklbl('A', 5), _mklbl('B', 7), _mklbl( 'C', 4), _mklbl('D', 2)]) df = DataFrame(np.arange(len(ix.get_values())), index=ix) result = df.loc[(slice('A1', 'A3'), slice(None), ['C1', 'C3']), :] expected = df.loc[[tuple([a, b, c, d]) for a, b, c, d in df.index.values if (a == 'A1' or a == 'A2' or a == 'A3') and ( c == 'C1' or c == 'C3')]] tm.assert_frame_equal(result, expected) expected = df.loc[[tuple([a, b, c, d]) for a, b, c, d in df.index.values if (a == 'A1' or a == 'A2' or a == 'A3') and ( c == 'C1' or c == 'C2' or c == 'C3')]] result = df.loc[(slice('A1', 'A3'), slice(None), slice('C1', 'C3')), :] tm.assert_frame_equal(result, expected) # test multi-index slicing with per axis and per index controls index = MultiIndex.from_tuples([('A', 1), ('A', 2), ('A', 3), ('B', 1)], names=['one', 'two']) columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), ('b', 'foo'), ('b', 'bah')], names=['lvl0', 'lvl1']) df = DataFrame( np.arange(16, dtype='int64').reshape( 4, 4), index=index, columns=columns) df = df.sort_index(axis=0).sort_index(axis=1) # identity result = df.loc[(slice(None), slice(None)), :] tm.assert_frame_equal(result, df) result = df.loc[(slice(None), slice(None)), (slice(None), slice(None))] tm.assert_frame_equal(result, df) result = df.loc[:, (slice(None), slice(None))] tm.assert_frame_equal(result, df) # index result = df.loc[(slice(None), [1]), :] expected = df.iloc[[0, 3]] tm.assert_frame_equal(result, expected) result = df.loc[(slice(None), 1), :] expected = df.iloc[[0, 3]] tm.assert_frame_equal(result, expected) # columns result = df.loc[:, (slice(None), ['foo'])] expected = df.iloc[:, [1, 3]] tm.assert_frame_equal(result, expected) # both result = df.loc[(slice(None), 1), (slice(None), ['foo'])] expected = df.iloc[[0, 3], [1, 3]] tm.assert_frame_equal(result, expected) result = df.loc['A', 'a'] expected = DataFrame(dict(bar=[1, 5, 9], foo=[0, 4, 8]), index=Index([1, 2, 3], name='two'), columns=Index(['bar', 'foo'], name='lvl1')) tm.assert_frame_equal(result, expected) result = df.loc[(slice(None), [1, 2]), :] expected = df.iloc[[0, 1, 3]] tm.assert_frame_equal(result, expected) # multi-level series s = Series(np.arange(len(ix.get_values())), index=ix) result = s.loc['A1':'A3', :, ['C1', 'C3']] expected = s.loc[[tuple([a, b, c, d]) for a, b, c, d in s.index.values if (a == 'A1' or a == 'A2' or a == 'A3') and ( c == 'C1' or c == 'C3')]] tm.assert_series_equal(result, expected) # boolean indexers result = df.loc[(slice(None), df.loc[:, ('a', 'bar')] > 5), :] expected = df.iloc[[2, 3]] tm.assert_frame_equal(result, expected) def f(): df.loc[(slice(None), np.array([True, False])), :] pytest.raises(ValueError, f) # ambiguous cases # these can be multiply interpreted (e.g. in this case # as df.loc[slice(None),[1]] as well pytest.raises(KeyError, lambda: df.loc[slice(None), [1]]) result = df.loc[(slice(None), [1]), :] expected = df.iloc[[0, 3]] tm.assert_frame_equal(result, expected) # not lexsorted assert df.index.lexsort_depth == 2 df = df.sort_index(level=1, axis=0) assert df.index.lexsort_depth == 0 with tm.assert_raises_regex( UnsortedIndexError, 'MultiIndex slicing requires the index to be ' r'lexsorted: slicing on levels \[1\], lexsort depth 0'): df.loc[(slice(None), slice('bar')), :] # GH 16734: not sorted, but no real slicing result = df.loc[(slice(None), df.loc[:, ('a', 'bar')] > 5), :] tm.assert_frame_equal(result, df.iloc[[1, 3], :]) def test_multiindex_slicers_non_unique(self): # GH 7106 # non-unique mi index support df = (DataFrame(dict(A=['foo', 'foo', 'foo', 'foo'], B=['a', 'a', 'a', 'a'], C=[1, 2, 1, 3], D=[1, 2, 3, 4])) .set_index(['A', 'B', 'C']).sort_index()) assert not df.index.is_unique expected = (DataFrame(dict(A=['foo', 'foo'], B=['a', 'a'], C=[1, 1], D=[1, 3])) .set_index(['A', 'B', 'C']).sort_index()) result = df.loc[(slice(None), slice(None), 1), :] tm.assert_frame_equal(result, expected) # this is equivalent of an xs expression result = df.xs(1, level=2, drop_level=False) tm.assert_frame_equal(result, expected) df = (DataFrame(dict(A=['foo', 'foo', 'foo', 'foo'], B=['a', 'a', 'a', 'a'], C=[1, 2, 1, 2], D=[1, 2, 3, 4])) .set_index(['A', 'B', 'C']).sort_index()) assert not df.index.is_unique expected = (DataFrame(dict(A=['foo', 'foo'], B=['a', 'a'], C=[1, 1], D=[1, 3])) .set_index(['A', 'B', 'C']).sort_index()) result = df.loc[(slice(None), slice(None), 1), :] assert not result.index.is_unique tm.assert_frame_equal(result, expected) # GH12896 # numpy-implementation dependent bug ints = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 14, 16, 17, 18, 19, 200000, 200000] n = len(ints) idx = MultiIndex.from_arrays([['a'] * n, ints]) result = Series([1] * n, index=idx) result = result.sort_index() result = result.loc[(slice(None), slice(100000))] expected = Series([1] * (n - 2), index=idx[:-2]).sort_index() tm.assert_series_equal(result, expected) def test_multiindex_slicers_datetimelike(self): # GH 7429 # buggy/inconsistent behavior when slicing with datetime-like import datetime dates = [datetime.datetime(2012, 1, 1, 12, 12, 12) + datetime.timedelta(days=i) for i in range(6)] freq = [1, 2] index = MultiIndex.from_product( [dates, freq], names=['date', 'frequency']) df = DataFrame( np.arange(6 * 2 * 4, dtype='int64').reshape( -1, 4), index=index, columns=list('ABCD')) # multi-axis slicing idx = pd.IndexSlice expected = df.iloc[[0, 2, 4], [0, 1]] result = df.loc[(slice(Timestamp('2012-01-01 12:12:12'), Timestamp('2012-01-03 12:12:12')), slice(1, 1)), slice('A', 'B')] tm.assert_frame_equal(result, expected) result = df.loc[(idx[Timestamp('2012-01-01 12:12:12'):Timestamp( '2012-01-03 12:12:12')], idx[1:1]), slice('A', 'B')] tm.assert_frame_equal(result, expected) result = df.loc[(slice(Timestamp('2012-01-01 12:12:12'), Timestamp('2012-01-03 12:12:12')), 1), slice('A', 'B')] tm.assert_frame_equal(result, expected) # with strings result = df.loc[(slice('2012-01-01 12:12:12', '2012-01-03 12:12:12'), slice(1, 1)), slice('A', 'B')] tm.assert_frame_equal(result, expected) result = df.loc[(idx['2012-01-01 12:12:12':'2012-01-03 12:12:12'], 1), idx['A', 'B']] tm.assert_frame_equal(result, expected) def test_multiindex_slicers_edges(self): # GH 8132 # various edge cases df = DataFrame( {'A': ['A0'] * 5 + ['A1'] * 5 + ['A2'] * 5, 'B': ['B0', 'B0', 'B1', 'B1', 'B2'] * 3, 'DATE': ["2013-06-11", "2013-07-02", "2013-07-09", "2013-07-30", "2013-08-06", "2013-06-11", "2013-07-02", "2013-07-09", "2013-07-30", "2013-08-06", "2013-09-03", "2013-10-01", "2013-07-09", "2013-08-06", "2013-09-03"], 'VALUES': [22, 35, 14, 9, 4, 40, 18, 4, 2, 5, 1, 2, 3, 4, 2]}) df['DATE'] = pd.to_datetime(df['DATE']) df1 = df.set_index(['A', 'B', 'DATE']) df1 = df1.sort_index() # A1 - Get all values under "A0" and "A1" result = df1.loc[(slice('A1')), :] expected = df1.iloc[0:10] tm.assert_frame_equal(result, expected) # A2 - Get all values from the start to "A2" result = df1.loc[(slice('A2')), :] expected = df1 tm.assert_frame_equal(result, expected) # A3 - Get all values under "B1" or "B2" result = df1.loc[(slice(None), slice('B1', 'B2')), :] expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13, 14]] tm.assert_frame_equal(result, expected) # A4 - Get all values between 2013-07-02 and 2013-07-09 result = df1.loc[(slice(None), slice(None), slice('20130702', '20130709')), :] expected = df1.iloc[[1, 2, 6, 7, 12]] tm.assert_frame_equal(result, expected) # B1 - Get all values in B0 that are also under A0, A1 and A2 result = df1.loc[(slice('A2'), slice('B0')), :] expected = df1.iloc[[0, 1, 5, 6, 10, 11]] tm.assert_frame_equal(result, expected) # B2 - Get all values in B0, B1 and B2 (similar to what #2 is doing for # the As) result = df1.loc[(slice(None), slice('B2')), :] expected = df1 tm.assert_frame_equal(result, expected) # B3 - Get all values from B1 to B2 and up to 2013-08-06 result = df1.loc[(slice(None), slice('B1', 'B2'), slice('2013-08-06')), :] expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13]] tm.assert_frame_equal(result, expected) # B4 - Same as A4 but the start of the date slice is not a key. # shows indexing on a partial selection slice result = df1.loc[(slice(None), slice(None), slice('20130701', '20130709')), :] expected = df1.iloc[[1, 2, 6, 7, 12]] tm.assert_frame_equal(result, expected) def test_per_axis_per_level_doc_examples(self): # test index maker idx = pd.IndexSlice # from indexing.rst / advanced index = MultiIndex.from_product([_mklbl('A', 4), _mklbl('B', 2), _mklbl('C', 4), _mklbl('D', 2)]) columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), ('b', 'foo'), ('b', 'bah')], names=['lvl0', 'lvl1']) df = DataFrame(np.arange(len(index) * len(columns), dtype='int64') .reshape((len(index), len(columns))), index=index, columns=columns) result = df.loc[(slice('A1', 'A3'), slice(None), ['C1', 'C3']), :] expected = df.loc[[tuple([a, b, c, d]) for a, b, c, d in df.index.values if (a == 'A1' or a == 'A2' or a == 'A3') and ( c == 'C1' or c == 'C3')]] tm.assert_frame_equal(result, expected) result = df.loc[idx['A1':'A3', :, ['C1', 'C3']], :] tm.assert_frame_equal(result, expected) result = df.loc[(slice(None), slice(None), ['C1', 'C3']), :] expected = df.loc[[tuple([a, b, c, d]) for a, b, c, d in df.index.values if (c == 'C1' or c == 'C3')]] tm.assert_frame_equal(result, expected) result = df.loc[idx[:, :, ['C1', 'C3']], :] tm.assert_frame_equal(result, expected) # not sorted def f(): df.loc['A1', ('a', slice('foo'))] pytest.raises(UnsortedIndexError, f) # GH 16734: not sorted, but no real slicing tm.assert_frame_equal(df.loc['A1', (slice(None), 'foo')], df.loc['A1'].iloc[:, [0, 2]]) df = df.sort_index(axis=1) # slicing df.loc['A1', (slice(None), 'foo')] df.loc[(slice(None), slice(None), ['C1', 'C3']), (slice(None), 'foo')] # setitem df.loc(axis=0)[:, :, ['C1', 'C3']] = -10 def test_loc_axis_arguments(self): index = MultiIndex.from_product([_mklbl('A', 4), _mklbl('B', 2), _mklbl('C', 4), _mklbl('D', 2)]) columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), ('b', 'foo'), ('b', 'bah')], names=['lvl0', 'lvl1']) df = DataFrame(np.arange(len(index) * len(columns), dtype='int64') .reshape((len(index), len(columns))), index=index, columns=columns).sort_index().sort_index(axis=1) # axis 0 result = df.loc(axis=0)['A1':'A3', :, ['C1', 'C3']] expected = df.loc[[tuple([a, b, c, d]) for a, b, c, d in df.index.values if (a == 'A1' or a == 'A2' or a == 'A3') and ( c == 'C1' or c == 'C3')]] tm.assert_frame_equal(result, expected) result = df.loc(axis='index')[:, :, ['C1', 'C3']] expected = df.loc[[tuple([a, b, c, d]) for a, b, c, d in df.index.values if (c == 'C1' or c == 'C3')]] tm.assert_frame_equal(result, expected) # axis 1 result = df.loc(axis=1)[:, 'foo'] expected = df.loc[:, (slice(None), 'foo')] tm.assert_frame_equal(result, expected) result = df.loc(axis='columns')[:, 'foo'] expected = df.loc[:, (slice(None), 'foo')] tm.assert_frame_equal(result, expected) # invalid axis def f(): df.loc(axis=-1)[:, :, ['C1', 'C3']] pytest.raises(ValueError, f) def f(): df.loc(axis=2)[:, :, ['C1', 'C3']] pytest.raises(ValueError, f) def f(): df.loc(axis='foo')[:, :, ['C1', 'C3']] pytest.raises(ValueError, f) def test_per_axis_per_level_setitem(self): # test index maker idx = pd.IndexSlice # test multi-index slicing with per axis and per index controls index = MultiIndex.from_tuples([('A', 1), ('A', 2), ('A', 3), ('B', 1)], names=['one', 'two']) columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), ('b', 'foo'), ('b', 'bah')], names=['lvl0', 'lvl1']) df_orig = DataFrame( np.arange(16, dtype='int64').reshape( 4, 4), index=index, columns=columns) df_orig = df_orig.sort_index(axis=0).sort_index(axis=1) # identity df = df_orig.copy() df.loc[(slice(None), slice(None)), :] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc(axis=0)[:, :] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[(slice(None), slice(None)), (slice(None), slice(None))] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, (slice(None), slice(None))] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) # index df = df_orig.copy() df.loc[(slice(None), [1]), :] = 100 expected = df_orig.copy() expected.iloc[[0, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[(slice(None), 1), :] = 100 expected = df_orig.copy() expected.iloc[[0, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc(axis=0)[:, 1] = 100 expected = df_orig.copy() expected.iloc[[0, 3]] = 100 tm.assert_frame_equal(df, expected) # columns df = df_orig.copy() df.loc[:, (slice(None), ['foo'])] = 100 expected = df_orig.copy() expected.iloc[:, [1, 3]] = 100 tm.assert_frame_equal(df, expected) # both df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ['foo'])] = 100 expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[idx[:, 1], idx[:, ['foo']]] = 100 expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc['A', 'a'] = 100 expected = df_orig.copy() expected.iloc[0:3, 0:2] = 100 tm.assert_frame_equal(df, expected) # setting with a list-like df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ['foo'])] = np.array( [[100, 100], [100, 100]], dtype='int64') expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = 100 tm.assert_frame_equal(df, expected) # not enough values df = df_orig.copy() def f(): df.loc[(slice(None), 1), (slice(None), ['foo'])] = np.array( [[100], [100, 100]], dtype='int64') pytest.raises(ValueError, f) def f(): df.loc[(slice(None), 1), (slice(None), ['foo'])] = np.array( [100, 100, 100, 100], dtype='int64') pytest.raises(ValueError, f) # with an alignable rhs df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ['foo'])] = df.loc[(slice( None), 1), (slice(None), ['foo'])] * 5 expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = expected.iloc[[0, 3], [1, 3]] * 5 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ['foo'])] *= df.loc[(slice( None), 1), (slice(None), ['foo'])] expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] tm.assert_frame_equal(df, expected) rhs = df_orig.loc[(slice(None), 1), (slice(None), ['foo'])].copy() rhs.loc[:, ('c', 'bah')] = 10 df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ['foo'])] *= rhs expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] tm.assert_frame_equal(df, expected) class TestMultiIndexPanel(object): def test_iloc_getitem_panel_multiindex(self): with catch_warnings(record=True): # GH 7199 # Panel with multi-index multi_index = MultiIndex.from_tuples([('ONE', 'one'), ('TWO', 'two'), ('THREE', 'three')], names=['UPPER', 'lower']) simple_index = [x[0] for x in multi_index] wd1 = Panel(items=['First', 'Second'], major_axis=['a', 'b', 'c', 'd'], minor_axis=multi_index) wd2 = Panel(items=['First', 'Second'], major_axis=['a', 'b', 'c', 'd'], minor_axis=simple_index) expected1 = wd1['First'].iloc[[True, True, True, False], [0, 2]] result1 = wd1.iloc[0, [True, True, True, False], [0, 2]] # WRONG tm.assert_frame_equal(result1, expected1) expected2 = wd2['First'].iloc[[True, True, True, False], [0, 2]] result2 = wd2.iloc[0, [True, True, True, False], [0, 2]] tm.assert_frame_equal(result2, expected2) expected1 = DataFrame(index=['a'], columns=multi_index, dtype='float64') result1 = wd1.iloc[0, [0], [0, 1, 2]] tm.assert_frame_equal(result1, expected1) expected2 = DataFrame(index=['a'], columns=simple_index, dtype='float64') result2 = wd2.iloc[0, [0], [0, 1, 2]] tm.assert_frame_equal(result2, expected2) # GH 7516 mi = MultiIndex.from_tuples([(0, 'x'), (1, 'y'), (2, 'z')]) p = Panel(np.arange(3 * 3 * 3, dtype='int64').reshape(3, 3, 3), items=['a', 'b', 'c'], major_axis=mi, minor_axis=['u', 'v', 'w']) result = p.iloc[:, 1, 0] expected = Series([3, 12, 21], index=['a', 'b', 'c'], name='u') tm.assert_series_equal(result, expected) result = p.loc[:, (1, 'y'), 'u'] tm.assert_series_equal(result, expected) def test_panel_setitem_with_multiindex(self): with catch_warnings(record=True): # 10360 # failing with a multi-index arr = np.array([[[1, 2, 3], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]], dtype=np.float64) # reg index axes = dict(items=['A', 'B'], major_axis=[0, 1], minor_axis=['X', 'Y', 'Z']) p1 = Panel(0., **axes) p1.iloc[0, 0, :] = [1, 2, 3] expected = Panel(arr, **axes) tm.assert_panel_equal(p1, expected) # multi-indexes axes['items'] = MultiIndex.from_tuples( [('A', 'a'), ('B', 'b')]) p2 = Panel(0., **axes) p2.iloc[0, 0, :] = [1, 2, 3] expected = Panel(arr, **axes) tm.assert_panel_equal(p2, expected) axes['major_axis'] = MultiIndex.from_tuples( [('A', 1), ('A', 2)]) p3 = Panel(0., **axes) p3.iloc[0, 0, :] = [1, 2, 3] expected = Panel(arr, **axes) tm.assert_panel_equal(p3, expected) axes['minor_axis'] = MultiIndex.from_product( [['X'], range(3)]) p4 = Panel(0., **axes) p4.iloc[0, 0, :] = [1, 2, 3] expected = Panel(arr, **axes) tm.assert_panel_equal(p4, expected) arr = np.array( [[[1, 0, 0], [2, 0, 0]], [[0, 0, 0], [0, 0, 0]]], dtype=np.float64) p5 = Panel(0., **axes) p5.iloc[0, :, 0] = [1, 2] expected = Panel(arr, **axes) tm.assert_panel_equal(p5, expected)
bsd-3-clause
gagneurlab/concise
concise/utils/pwm.py
2
10205
import numpy as np import copy from concise.preprocessing.sequence import DNA, _get_vocab_dict from io import StringIO import gzip from concise.utils.plot import seqlogo, seqlogo_fig import matplotlib.pyplot as plt DEFAULT_LETTER_TO_INDEX = _get_vocab_dict(DNA) DEFAULT_INDEX_TO_LETTER = dict((DEFAULT_LETTER_TO_INDEX[x], x) for x in DEFAULT_LETTER_TO_INDEX) DEFAULT_BASE_BACKGROUND = {"A": .25, "C": .25, "G": .25, "T": .25} class PWM(object): """Class holding the position-weight matrix (PWM) # Arguments pwm: PWM matrix of shape `(seq_len, 4)`. All elements need to be larger or equal to 0. name: str, optional name argument # Attributes pwm: np.array of shape `(seq_len, 4)`. All rows sum to 1 name: PWM name # Methods - **plotPWM(figsize=(10, 2))** - Make a sequence logo plot from the pwm. Letter height corresponds to the probability. - **plotPWMInfo(figsize=(10, 2))** - Make the sequence logo plot with information content corresponding to the letter height. - **get_pssm(background_probs=DEFAULT_BASE_BACKGROUND)** - Get the position-specific scoring matrix (PSSM) cumputed as `np.log(pwm / b)`, where b are the background base probabilities.. - **plotPWMInfo(background_probs=DEFAULT_BASE_BACKGROUND, figsize=(10, 2))** - Make the sequence logo plot with letter height corresponding to the position-specific scoring matrix (PSSM). - **normalize()** - force all rows to sum to 1. - **get_consensus()** - returns the consensus sequence # Class methods - **from_consensus(consensus_seq, background_proportion=0.1, name=None)** - Construct PWM from a consensus sequence - **consensus_seq**: string representing the consensus sequence (ex: ACTGTAT) - **background_proportion**: Let's denote it with a. The row in the resulting PWM will be: `'C' -> [a/3, a/3, 1-a, a/3]` - **name** - PWM.name. - **from_background(length=9, name=None, probs=DEFAULT_BASE_BACKGROUND)** - Create a background PWM. """ letterToIndex = DEFAULT_LETTER_TO_INDEX indexToLetter = DEFAULT_INDEX_TO_LETTER def __init__(self, pwm, name=None): self.pwm = np.asarray(pwm) # needs to by np.array self.name = name # if type(pwm).__module__ != np.__name__: # raise Exception("pwm needs to by a numpy array") if self.pwm.shape[1] != 4 and len(self.pwm.shape) == 2: raise Exception("pwm needs to be n*4, n is pwm_lenght") if np.any(self.pwm < 0): raise Exception("All pwm elements need to be positive") if not np.all(np.sum(self.pwm, axis=1) > 0): raise Exception("All pwm rows need to have sum > 0") # all elements need to be >0 assert np.all(self.pwm >= 0) # normalize the pwm self.normalize() def normalize(self): rows = np.sum(self.pwm, axis=1) self.pwm = self.pwm / rows.reshape([-1, 1]) def get_consensus(self): max_idx = self.pwm.argmax(axis=1) return ''.join([self.indexToLetter[x] for x in max_idx]) def __repr__(self): return self.__str__() def __str__(self): return "PWM(name: {0}, consensus: {1})".format(self.name, self.get_consensus()) @classmethod def from_consensus(cls, consensus_seq, background_proportion=0.1, name=None): pwm = np.zeros((len(consensus_seq), 4)) pwm += background_proportion / 3 for (i, l) in enumerate(consensus_seq): b = cls.letterToIndex[l] pwm[i, b] = 1 - background_proportion return cls(pwm, name=name) @classmethod def _background_pwm(cls, length=9, probs=DEFAULT_BASE_BACKGROUND): barr = background_probs2array(probs, indexToLetter=cls.indexToLetter) pwm = np.array([barr for i in range(length)]) if length == 0: pwm = pwm.reshape([0, 4]) return pwm @classmethod def from_background(cls, length=9, name=None, probs=DEFAULT_BASE_BACKGROUND): return PWM(cls._background_pwm(length, probs), name=name) def _change_length(self, new_length, probs=DEFAULT_BASE_BACKGROUND): length = self.pwm.shape[0] len_diff = new_length - length if (len_diff < 0): # symmetrically remove remove_start = abs(len_diff) // 2 remove_end = abs(len_diff) // 2 + abs(len_diff) % 2 self.pwm = self.pwm[remove_start:(length - remove_end), :] if (len_diff > 0): add_start = len_diff // 2 + len_diff % 2 add_end = len_diff // 2 # concatenate two arrays pwm_start = self._background_pwm(add_start, probs=probs) pwm_end = self._background_pwm(add_end, probs=probs) self.pwm = np.concatenate([pwm_start, self.pwm, pwm_end], axis=0) self.normalize() return self def get_config(self): return {"pwm": self.pwm.tolist(), # convert numpyarray to list "name": self.name } @classmethod def from_config(cls, pwm_dict): return cls(**pwm_dict) def plotPWM(self, figsize=(10, 2)): pwm = self.pwm fig = seqlogo_fig(pwm, vocab="DNA", figsize=figsize) plt.ylabel("Probability") return fig def plotPWMInfo(self, figsize=(10, 2)): pwm = self.pwm info = _pwm2pwm_info(pwm) fig = seqlogo_fig(info, vocab="DNA", figsize=figsize) plt.ylabel("Bits") return fig def get_pssm(self, background_probs=DEFAULT_BASE_BACKGROUND): b = background_probs2array(background_probs) b = b.reshape([1, 4]) return np.log(self.pwm / b).astype(self.pwm.dtype) def plotPSSM(self, background_probs=DEFAULT_BASE_BACKGROUND, figsize=(10, 2)): pssm = self.get_pssm() return seqlogo_fig(pssm, vocab="DNA", figsize=figsize) def _pwm2pwm_info(pwm): # normalize pwm to sum 1, # otherwise pwm is not a valid distribution # then info has negative values col_sums = pwm.sum(1) pwm = pwm / col_sums[:, np.newaxis] H = - np.sum(pwm * np.log2(pwm), axis=1) R = np.log2(4) - H info = pwm * R[:, np.newaxis, ...] return info def _check_background_probs(background_probs): assert isinstance(background_probs, list) assert sum(background_probs) == 1.0 assert len(background_probs) == 4 for b in background_probs: assert b >= 0 assert b <= 1 def pwm_list2pwm_array(pwm_list, shape=(None, 4, None), dtype=None, background_probs=DEFAULT_BASE_BACKGROUND): # print("shape: ", shape) if shape[1] is not 4: raise ValueError("shape[1] has to be 4 and not {0}".format(shape[1])) # copy pwm_list pwm_list = copy.deepcopy(pwm_list) n_motifs = len(pwm_list) # set the default values shape = list(shape) if shape[0] is None: if len(pwm_list) == 0: raise ValueError("Max pwm length can't be inferred for empty pwm list") # max pwm length shape[0] = max([pwm.pwm.shape[0] for pwm in pwm_list]) if shape[2] is None: if len(pwm_list) == 0: raise ValueError("n_motifs can't be inferred for empty pwm list") shape[2] = n_motifs # (kernel_size, 4, filters) required_motif_len = shape[0] required_n_motifs = shape[2] # fix n_motifs if required_n_motifs > n_motifs: add_n_pwm = required_n_motifs - n_motifs pwm_list += [PWM.from_background(length=required_motif_len, probs=background_probs)] * add_n_pwm if required_n_motifs < n_motifs: print("Removing {0} pwm's from pwm_list".format(n_motifs - required_n_motifs)) pwm_list = pwm_list[:required_n_motifs] # fix motif_len pwm_list = [pwm._change_length(required_motif_len, probs=background_probs) for pwm in pwm_list] # stack the matrices along the last axis pwm_array = np.stack([pwm.pwm for pwm in pwm_list], axis=-1) pwm_array = pwm_array.astype(dtype) # change the axis order return pwm_array def background_probs2array(background_probs, indexToLetter=DEFAULT_INDEX_TO_LETTER): barr = [background_probs[indexToLetter[i]] for i in range(4)] _check_background_probs(barr) return np.asarray(barr) def pwm_array2pssm_array(arr, background_probs=DEFAULT_BASE_BACKGROUND): """Convert pwm array to pssm array """ b = background_probs2array(background_probs) b = b.reshape([1, 4, 1]) return np.log(arr / b).astype(arr.dtype) def pssm_array2pwm_array(arr, background_probs=DEFAULT_BASE_BACKGROUND): """Convert pssm array to pwm array """ b = background_probs2array(background_probs) b = b.reshape([1, 4, 1]) return (np.exp(arr) * b).astype(arr.dtype) def load_motif_db(filename, skipn_matrix=0): """Read the motif file in the following format ``` >motif_name <skip n>0.1<delim>0.2<delim>0.5<delim>0.6 ... >motif_name2 .... ``` Delim can be anything supported by np.loadtxt # Arguments filename: str, file path skipn_matrix: integer, number of characters to skip when reading the numeric matrix (for Encode = 2) # Returns Dictionary of numpy arrays """ # read-lines if filename.endswith(".gz"): f = gzip.open(filename, 'rt', encoding='utf-8') else: f = open(filename, 'r') lines = f.readlines() f.close() motifs_dict = {} motif_lines = "" motif_name = None def lines2matrix(lines): return np.loadtxt(StringIO(lines)) for line in lines: if line.startswith(">"): if motif_lines: # lines -> matrix motifs_dict[motif_name] = lines2matrix(motif_lines) motif_name = line[1:].strip() motif_lines = "" else: motif_lines += line[skipn_matrix:] if motif_lines and motif_name is not None: motifs_dict[motif_name] = lines2matrix(motif_lines) return motifs_dict
mit
ua-snap/downscale
snap_scripts/data_requests/extract_profiles_keith_dot_precip_cmip5.py
1
5812
# extraction for Keith Cunningham -- Glitter Gulch DOT def make_gdf(): df = pd.DataFrame({'name':['Long Lake','Glitter Gulch'], 'lat':[61.8,63.76],'lon':[-148.2,-148.9]}) df['geometry'] = df.apply(lambda x: Point(x.lon, x.lat), axis=1) shp = gpd.GeoDataFrame( df, crs={'init':'epsg:4326'}, geometry='geometry') return shp.to_crs( epsg=3338 ) def list_data( base_dir ): files = glob.glob( os.path.join( cur_path, '*.tif' ) ) df = pd.DataFrame([ os.path.basename(fn).split('.')[0].split('_')[-2:] for fn in files ], columns=['month','year']) df['fn'] = files return df.sort_values(['year','month']).reset_index(drop=True) def rasterize( shapes, coords, latitude='lat', longitude='lon', fill=None, **kwargs ): ''' Rasterize a list of (geometry, fill_value) tuples onto the given xarray coordinates. This only works for 1d latitude and longitude arrays. ARGUMENTS: ---------- shapes = [list] of tuples of (shapely.geom, fill_value) coords = [dict] of named 1d latitude and longitude arrays. latitude = [str] name of latitude key. default:'latitude' longitude = [str] name of longitude key. default:'longitude' fill = fill_value RETURNS: -------- xarray.DataArray ''' from rasterio import features import xarray as xr if fill == None: fill = np.nan transform = transform_from_latlon( coords[ latitude ], coords[ longitude ] ) out_shape = ( len( coords[ latitude ] ), len( coords[ longitude ] ) ) raster = features.rasterize( shapes, out_shape=out_shape, fill=fill, transform=transform, dtype=float, **kwargs ) # spatial_coords = {latitude: coords[latitude], longitude: coords[longitude]} # return xr.DataArray(raster, coords=spatial_coords, dims=(latitude, longitude)) return raster def make_mask( fn ): with rasterio.open(fn) as rst: meta = rst.meta.copy() arr = np.empty_like(rst.read(1)) # build the shape data we need in EPSG:3338 shp = make_gdf() pts = shp.geometry.tolist() pts = [ (i,count+1) for count,i in enumerate(pts) ] return rasterize( pts, fill=0, out=arr, transform=meta['transform'], all_touched=True, dtype='float32' ) def open_raster( fn, band=1 ): with rasterio.open(fn) as rst: arr = rst.read(band) return arr def extract_values( files, mask ): pool = mp.Pool(64) f = partial(open_raster, band=1) arr = np.array(pool.map( f, files )) pool.close() pool.join() pool = None; del pool mask_vals = np.unique(mask[mask > 0]) out = dict() for mask_val in mask_vals: ind = zip(*np.where(mask == mask_val)) for i,j in ind: out.update({ mask_val:arr[:,i,j] }) del arr return out if __name__ == '__main__': import os, glob, rasterio, itertools import pandas as pd import numpy as np import rasterio from rasterio.features import rasterize from shapely.geometry import Point import geopandas as gpd from functools import partial import multiprocessing as mp base_dir = '/workspace/Shared/Tech_Projects/DeltaDownscaling/project_data/downscaled' output_dir = '/workspace/Shared/Tech_Projects/DeltaDownscaling/project_data/project_data_delivery/Keith_DOT_extractions' template_fn = '/workspace/Shared/Tech_Projects/DeltaDownscaling/project_data/downscaled/5ModelAvg/historical/tasmin/tasmin_mean_C_ar5_5ModelAvg_historical_08_2004.tif' models = ['5ModelAvg', 'GFDL-CM3', 'GISS-E2-R', 'IPSL-CM5A-LR', 'MRI-CGCM3', 'NCAR-CCSM4'] scenarios = ['historical','rcp45','rcp60','rcp85'] variables = ['pr'] # make mask mask = make_mask( template_fn ) output_dict = dict() for model, scenario, variable in itertools.product(models, scenarios, variables): cur_path = os.path.join(base_dir,model,scenario,variable) files_df = list_data( cur_path ) # these are sorted decade_grouper = files_df.apply(lambda x:str(x.year)[:3], axis=1) file_groups = [ j.fn.tolist() for i,j in files_df.groupby( decade_grouper ) ] out = [ extract_values( files, mask ) for files in file_groups ] out_df = pd.concat([ pd.DataFrame(i) for i in out ]) # stack the file groups chronologically out_key = '{}_{}_{}'.format( model, scenario, variable ) output_dict[ out_key ] = out_df print( 'completed:{}'.format(out_key) ) # future index future_dates = pd.date_range('2006-01','2101-01',freq='M') future_dates = [ [str(i.year), str(i.month)] for i in future_dates ] future_dates = [ '-'.join([y,'0'+m]) if len(m) == 1 else '-'.join([y,m]) for y,m in future_dates ] # historical index -- data needs slicing... historical_dates = pd.date_range('1900-01','2006-01',freq='M') historical_dates = [[str(i.month), str(i.year)] for i in historical_dates ] historical_dates = [ '-'.join([y,'0'+m]) if len(m) == 1 else '-'.join([y,m]) for y,m in historical_dates ] # make data frames df1_future, df2_future = [pd.DataFrame({key:np.array(output_dict[key][i]) for key in output_dict if 'historical' not in key }, index=future_dates) for i in [1,2]] df1_historical, df2_historical = [pd.DataFrame({key:np.array(output_dict[key][i])[-len(historical_dates):] for key in output_dict if 'historical' in key }, index=historical_dates) for i in [1,2]] # dump them to disk naming_lookup = {1:'LongLake', 2:'GlitterGulch'} df1_future_fn = 'precipitation_cmip5_allmodels_allscenarios_futures_2006-2100_LongLake_AK.csv' df2_future_fn = 'precipitation_cmip5_allmodels_allscenarios_futures_2006-2100_GlitterGulch_AK.csv' df1_historical_fn = 'precipitation_cmip5_allmodels_allscenarios_historical_1900-2005_LongLake_AK.csv' df2_historical_fn = 'precipitation_cmip5_allmodels_allscenarios_historical_1900-2005_GlitterGulch_AK.csv' df1_future.to_csv( os.path.join( output_dir, df1_future_fn), sep=',' ) df2_future.to_csv( os.path.join( output_dir, df2_future_fn), sep=',' ) df1_historical.to_csv( os.path.join( output_dir, df1_historical_fn), sep=',' ) df2_historical.to_csv( os.path.join( output_dir, df2_historical_fn), sep=',' )
mit
gwtsa/gwtsa
pastas/recharge/recharge_func.py
1
2673
"""recharge_func module Author: R.A. Collenteur, University of Graz Contains the classes for the different models that are available to calculate the recharge from precipitation and evaporation data. Each Recharge class contains at least the following: Attributes ---------- nparam: int Number of parameters needed for this model. Functions --------- get_init_parameters(self, name) A function that returns a Pandas DataFrame of the parameters of the recharge function. Columns of the dataframe need to be ['value', 'pmin', 'pmax', 'vary']. Rows of the DataFrame have names of the parameters. Input name is used as a prefix. This function is called by a stressmodel object. simulate(self, evap, prec, p=None) A function that returns an array of the simulated recharge series. """ import numpy as np import pandas as pd class RechargeBase: """Base class for classes that calculate the recharge. """ def __init__(self): self.temp = False self.nparam = 0 @staticmethod def get_init_parameters(name="recharge"): """ Parameters ---------- name: str, optional String with the name that is used as prefix for the parameters. Returns ------- parameters: pandas.DataFrame Pandas DataFrame with the parameters. """ parameters = pd.DataFrame( columns=['initial', 'pmin', 'pmax', 'vary', 'name']) return parameters def simulate(self, prec, evap, p, temp=None): pass class Linear(RechargeBase): """Linear recharge model. The recharge to the groundwater is calculated as: R = P - f * E """ _name = "Linear" def __init__(self): RechargeBase.__init__(self) self.nparam = 1 def get_init_parameters(self, name="recharge"): parameters = pd.DataFrame( columns=['initial', 'pmin', 'pmax', 'vary', 'name']) parameters.loc[name + '_f'] = (-1.0, -2.0, 0.0, True, name) return parameters def simulate(self, prec, evap, p, **kwargs): """ Parameters ---------- prec, evap: array_like array with the precipitation and evaporation values. These arrays must be of the same length and at the same time steps. p: float parameter value used in recharge calculation. Returns ------- recharge: array_like array with the recharge series. """ return np.add(prec, np.multiply(evap, p))
mit
KDD-OpenSource/geox-young-academy
day-2/exercises/pytorch-exercise-solution.py
1
3635
import torch import torchvision import torchvision.transforms as transforms from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import matplotlib.pyplot as plt import numpy as np ### Task 1 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) ### Task 2 dataiter = iter(trainloader) images, labels = dataiter.next() def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # print labels print(' '.join('%5s' % classes[labels[j]] for j in range(4))) # show images imshow(torchvision.utils.make_grid(images)) ### Task 3 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() print(net) ### Task 4 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(10): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs inputs, labels = data # wrap them in Variable inputs, labels = Variable(inputs), Variable(labels) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.data[0] if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') ### Task 5 dataiter = iter(testloader) images, labels = dataiter.next() outputs = net(Variable(images)) _, predicted = torch.max(outputs.data, 1) print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4))) print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4))) imshow(torchvision.utils.make_grid(images)) ### Task 6 correct = 0 total = 0 for data in testloader: images, labels = data outputs = net(Variable(images)) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total))
mit
mortada/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/data_feeder.py
88
31139
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementations of different data feeders to provide data for TF trainer.""" # TODO(ipolosukhin): Replace this module with feed-dict queue runners & queues. from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import math import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.platform import tf_logging as logging # pylint: disable=g-multiple-import,g-bad-import-order from .pandas_io import HAS_PANDAS, extract_pandas_data, extract_pandas_matrix, extract_pandas_labels from .dask_io import HAS_DASK, extract_dask_data, extract_dask_labels # pylint: enable=g-multiple-import,g-bad-import-order def _get_in_out_shape(x_shape, y_shape, n_classes, batch_size=None): """Returns shape for input and output of the data feeder.""" x_is_dict, y_is_dict = isinstance( x_shape, dict), y_shape is not None and isinstance(y_shape, dict) if y_is_dict and n_classes is not None: assert (isinstance(n_classes, dict)) if batch_size is None: batch_size = list(x_shape.values())[0][0] if x_is_dict else x_shape[0] elif batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) if x_is_dict: input_shape = {} for k, v in list(x_shape.items()): input_shape[k] = [batch_size] + (list(v[1:]) if len(v) > 1 else [1]) else: x_shape = list(x_shape[1:]) if len(x_shape) > 1 else [1] input_shape = [batch_size] + x_shape if y_shape is None: return input_shape, None, batch_size def out_el_shape(out_shape, num_classes): out_shape = list(out_shape[1:]) if len(out_shape) > 1 else [] # Skip first dimension if it is 1. if out_shape and out_shape[0] == 1: out_shape = out_shape[1:] if num_classes is not None and num_classes > 1: return [batch_size] + out_shape + [num_classes] else: return [batch_size] + out_shape if not y_is_dict: output_shape = out_el_shape(y_shape, n_classes) else: output_shape = dict([ (k, out_el_shape(v, n_classes[k] if n_classes is not None and k in n_classes else None)) for k, v in list(y_shape.items()) ]) return input_shape, output_shape, batch_size def _data_type_filter(x, y): """Filter data types into acceptable format.""" if HAS_DASK: x = extract_dask_data(x) if y is not None: y = extract_dask_labels(y) if HAS_PANDAS: x = extract_pandas_data(x) if y is not None: y = extract_pandas_labels(y) return x, y def _is_iterable(x): return hasattr(x, 'next') or hasattr(x, '__next__') def setup_train_data_feeder(x, y, n_classes, batch_size=None, shuffle=True, epochs=None): """Create data feeder, to sample inputs from dataset. If `x` and `y` are iterators, use `StreamingDataFeeder`. Args: x: numpy, pandas or Dask matrix or dictionary of aforementioned. Also supports iterables. y: numpy, pandas or Dask array or dictionary of aforementioned. Also supports iterables. n_classes: number of classes. Must be None or same type as y. In case, `y` is `dict` (or iterable which returns dict) such that `n_classes[key] = n_classes for y[key]` batch_size: size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: DataFeeder object that returns training data. Raises: ValueError: if one of `x` and `y` is iterable and the other is not. """ x, y = _data_type_filter(x, y) if HAS_DASK: # pylint: disable=g-import-not-at-top import dask.dataframe as dd if (isinstance(x, (dd.Series, dd.DataFrame)) and (y is None or isinstance(y, (dd.Series, dd.DataFrame)))): data_feeder_cls = DaskDataFeeder else: data_feeder_cls = DataFeeder else: data_feeder_cls = DataFeeder if _is_iterable(x): if y is not None and not _is_iterable(y): raise ValueError('Both x and y should be iterators for ' 'streaming learning to work.') return StreamingDataFeeder(x, y, n_classes, batch_size) return data_feeder_cls( x, y, n_classes, batch_size, shuffle=shuffle, epochs=epochs) def _batch_data(x, batch_size=None): if (batch_size is not None) and (batch_size <= 0): raise ValueError('Invalid batch_size %d.' % batch_size) x_first_el = six.next(x) x = itertools.chain([x_first_el], x) chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False for data in x: if isinstance(data, dict): for k, v in list(data.items()): chunk[k].append(v) if (batch_size is not None) and (len(chunk[k]) >= batch_size): chunk[k] = np.matrix(chunk[k]) chunk_filled = True if chunk_filled: yield chunk chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False else: chunk.append(data) if (batch_size is not None) and (len(chunk) >= batch_size): yield np.matrix(chunk) chunk = [] if isinstance(x_first_el, dict): for k, v in list(data.items()): chunk[k] = np.matrix(chunk[k]) yield chunk else: yield np.matrix(chunk) def setup_predict_data_feeder(x, batch_size=None): """Returns an iterable for feeding into predict step. Args: x: numpy, pandas, Dask array or dictionary of aforementioned. Also supports iterable. batch_size: Size of batches to split data into. If `None`, returns one batch of full size. Returns: List or iterator (or dictionary thereof) of parts of data to predict on. Raises: ValueError: if `batch_size` <= 0. """ if HAS_DASK: x = extract_dask_data(x) if HAS_PANDAS: x = extract_pandas_data(x) if _is_iterable(x): return _batch_data(x, batch_size) if len(x.shape) == 1: x = np.reshape(x, (-1, 1)) if batch_size is not None: if batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) n_batches = int(math.ceil(float(len(x)) / batch_size)) return [x[i * batch_size:(i + 1) * batch_size] for i in xrange(n_batches)] return [x] def setup_processor_data_feeder(x): """Sets up processor iterable. Args: x: numpy, pandas or iterable. Returns: Iterable of data to process. """ if HAS_PANDAS: x = extract_pandas_matrix(x) return x def check_array(array, dtype): """Checks array on dtype and converts it if different. Args: array: Input array. dtype: Expected dtype. Returns: Original array or converted. """ # skip check if array is instance of other classes, e.g. h5py.Dataset # to avoid copying array and loading whole data into memory if isinstance(array, (np.ndarray, list)): array = np.array(array, dtype=dtype, order=None, copy=False) return array def _access(data, iloc): """Accesses an element from collection, using integer location based indexing. Args: data: array-like. The collection to access iloc: `int` or `list` of `int`s. Location(s) to access in `collection` Returns: The element of `a` found at location(s) `iloc`. """ if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if isinstance(data, pd.Series) or isinstance(data, pd.DataFrame): return data.iloc[iloc] return data[iloc] def _check_dtype(dtype): if dtypes.as_dtype(dtype) == dtypes.float64: logging.warn( 'float64 is not supported by many models, consider casting to float32.') return dtype class DataFeeder(object): """Data feeder is an example class to sample data for TF trainer.""" def __init__(self, x, y, n_classes, batch_size=None, shuffle=True, random_state=None, epochs=None): """Initializes a DataFeeder instance. Args: x: One feature sample which can either Nd numpy matrix of shape `[n_samples, n_features, ...]` or dictionary of Nd numpy matrix. y: label vector, either floats for regression or class id for classification. If matrix, will consider as a sequence of labels. Can be `None` for unsupervised setting. Also supports dictionary of labels. n_classes: Number of classes, 0 and 1 are considered regression, `None` will pass through the input labels without one-hot conversion. Also, if `y` is `dict`, then `n_classes` must be `dict` such that `n_classes[key] = n_classes for label y[key]`, `None` otherwise. batch_size: Mini-batch size to accumulate samples in one mini batch. shuffle: Whether to shuffle `x`. random_state: Numpy `RandomState` object to reproduce sampling. epochs: Number of times to iterate over input data before raising `StopIteration` exception. Attributes: x: Input features (ndarray or dictionary of ndarrays). y: Input label (ndarray or dictionary of ndarrays). n_classes: Number of classes (if `None`, pass through indices without one-hot conversion). batch_size: Mini-batch size to accumulate. input_shape: Shape of the input (or dictionary of shapes). output_shape: Shape of the output (or dictionary of shapes). input_dtype: DType of input (or dictionary of shapes). output_dtype: DType of output (or dictionary of shapes. """ x_is_dict, y_is_dict = isinstance(x, dict), y is not None and isinstance( y, dict) if isinstance(y, list): y = np.array(y) self._x = dict([(k, check_array(v, v.dtype)) for k, v in list(x.items()) ]) if x_is_dict else check_array(x, x.dtype) self._y = None if y is None else \ dict([(k, check_array(v, v.dtype)) for k, v in list(y.items())]) if x_is_dict else check_array(y, y.dtype) # self.n_classes is not None means we're converting raw target indices to one-hot. if n_classes is not None: if not y_is_dict: y_dtype = (np.int64 if n_classes is not None and n_classes > 1 else np.float32) self._y = (None if y is None else check_array(y, dtype=y_dtype)) self.n_classes = n_classes self.max_epochs = epochs x_shape = dict([(k, v.shape) for k, v in list(self._x.items()) ]) if x_is_dict else self._x.shape y_shape = dict([(k, v.shape) for k, v in list(self._y.items()) ]) if y_is_dict else None if y is None else self._y.shape self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) # Input dtype matches dtype of x. self._input_dtype = dict([(k, _check_dtype(v.dtype)) for k, v in list(self._x.items())]) if x_is_dict \ else _check_dtype(self._x.dtype) # note: self._output_dtype = np.float32 when y is None self._output_dtype = dict([(k, _check_dtype(v.dtype)) for k, v in list(self._y.items())]) if y_is_dict \ else _check_dtype(self._y.dtype) if y is not None else np.float32 # self.n_classes is None means we're passing in raw target indices if n_classes is not None and y_is_dict: for key in list(n_classes.keys()): if key in self._output_dtype: self._output_dtype[key] = np.float32 self._shuffle = shuffle self.random_state = np.random.RandomState( 42) if random_state is None else random_state num_samples = list(self._x.values())[0].shape[ 0] if x_is_dict else self._x.shape[0] if self._shuffle: self.indices = self.random_state.permutation(num_samples) else: self.indices = np.array(range(num_samples)) self.offset = 0 self.epoch = 0 self._epoch_placeholder = None @property def x(self): return self._x @property def y(self): return self._y @property def shuffle(self): return self._shuffle @property def input_dtype(self): return self._input_dtype @property def output_dtype(self): return self._output_dtype @property def batch_size(self): return self._batch_size def make_epoch_variable(self): """Adds a placeholder variable for the epoch to the graph. Returns: The epoch placeholder. """ self._epoch_placeholder = array_ops.placeholder( dtypes.int32, [1], name='epoch') return self._epoch_placeholder def input_builder(self): """Builds inputs in the graph. Returns: Two placeholders for inputs and outputs. """ def get_placeholder(shape, dtype, name_prepend): if shape is None: return None if isinstance(shape, dict): placeholder = {} for key in list(shape.keys()): placeholder[key] = array_ops.placeholder( dtypes.as_dtype(dtype[key]), [None] + shape[key][1:], name=name_prepend + '_' + key) else: placeholder = array_ops.placeholder( dtypes.as_dtype(dtype), [None] + shape[1:], name=name_prepend) return placeholder self._input_placeholder = get_placeholder(self.input_shape, self._input_dtype, 'input') self._output_placeholder = get_placeholder(self.output_shape, self._output_dtype, 'output') return self._input_placeholder, self._output_placeholder def set_placeholders(self, input_placeholder, output_placeholder): """Sets placeholders for this data feeder. Args: input_placeholder: Placeholder for `x` variable. Should match shape of the examples in the x dataset. output_placeholder: Placeholder for `y` variable. Should match shape of the examples in the y dataset. Can be `None`. """ self._input_placeholder = input_placeholder self._output_placeholder = output_placeholder def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return { 'epoch': self.epoch, 'offset': self.offset, 'batch_size': self._batch_size } def get_feed_dict_fn(self): """Returns a function that samples data into given placeholders. Returns: A function that when called samples a random subset of batch size from `x` and `y`. """ x_is_dict, y_is_dict = isinstance( self._x, dict), self._y is not None and isinstance(self._y, dict) # Assign input features from random indices. def extract(data, indices): return (np.array(_access(data, indices)).reshape((indices.shape[0], 1)) if len(data.shape) == 1 else _access(data, indices)) # assign labels from random indices def assign_label(data, shape, dtype, n_classes, indices): shape[0] = indices.shape[0] out = np.zeros(shape, dtype=dtype) for i in xrange(out.shape[0]): sample = indices[i] # self.n_classes is None means we're passing in raw target indices if n_classes is None: out[i] = _access(data, sample) else: if n_classes > 1: if len(shape) == 2: out.itemset((i, int(_access(data, sample))), 1.0) else: for idx, value in enumerate(_access(data, sample)): out.itemset(tuple([i, idx, value]), 1.0) else: out[i] = _access(data, sample) return out def _feed_dict_fn(): """Function that samples data into given placeholders.""" if self.max_epochs is not None and self.epoch + 1 > self.max_epochs: raise StopIteration assert self._input_placeholder is not None feed_dict = {} if self._epoch_placeholder is not None: feed_dict[self._epoch_placeholder.name] = [self.epoch] # Take next batch of indices. x_len = list(self._x.values())[0].shape[ 0] if x_is_dict else self._x.shape[0] end = min(x_len, self.offset + self._batch_size) batch_indices = self.indices[self.offset:end] # adding input placeholder feed_dict.update( dict([(self._input_placeholder[k].name, extract(v, batch_indices)) for k, v in list(self._x.items())]) if x_is_dict else {self._input_placeholder.name: extract(self._x, batch_indices)}) # move offset and reset it if necessary self.offset += self._batch_size if self.offset >= x_len: self.indices = self.random_state.permutation( x_len) if self._shuffle else np.array(range(x_len)) self.offset = 0 self.epoch += 1 # return early if there are no labels if self._output_placeholder is None: return feed_dict # adding output placeholders if y_is_dict: for k, v in list(self._y.items()): n_classes = (self.n_classes[k] if k in self.n_classes else None) if self.n_classes is not None else None shape, dtype = self.output_shape[k], self._output_dtype[k] feed_dict.update({ self._output_placeholder[k].name: assign_label(v, shape, dtype, n_classes, batch_indices) }) else: shape, dtype, n_classes = self.output_shape, self._output_dtype, self.n_classes feed_dict.update({ self._output_placeholder.name: assign_label(self._y, shape, dtype, n_classes, batch_indices) }) return feed_dict return _feed_dict_fn class StreamingDataFeeder(DataFeeder): """Data feeder for TF trainer that reads data from iterator. Streaming data feeder allows to read data as it comes it from disk or somewhere else. It's custom to have this iterators rotate infinetly over the dataset, to allow control of how much to learn on the trainer side. """ def __init__(self, x, y, n_classes, batch_size): """Initializes a StreamingDataFeeder instance. Args: x: iterator each element of which returns one feature sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices. y: iterator each element of which returns one label sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices with 1 or many classes regression values. n_classes: indicator of how many classes the corresponding label sample has for the purposes of one-hot conversion of label. In case where `y` is a dictionary, `n_classes` must be dictionary (with same keys as `y`) of how many classes there are in each label in `y`. If key is present in `y` and missing in `n_classes`, the value is assumed `None` and no one-hot conversion will be applied to the label with that key. batch_size: Mini batch size to accumulate samples in one batch. If set `None`, then assumes that iterator to return already batched element. Attributes: x: input features (or dictionary of input features). y: input label (or dictionary of output features). n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input (can be dictionary depending on `x`). output_shape: shape of the output (can be dictionary depending on `y`). input_dtype: dtype of input (can be dictionary depending on `x`). output_dtype: dtype of output (can be dictionary depending on `y`). """ # pylint: disable=invalid-name,super-init-not-called x_first_el = six.next(x) self._x = itertools.chain([x_first_el], x) if y is not None: y_first_el = six.next(y) self._y = itertools.chain([y_first_el], y) else: y_first_el = None self._y = None self.n_classes = n_classes x_is_dict = isinstance(x_first_el, dict) y_is_dict = y is not None and isinstance(y_first_el, dict) if y_is_dict and n_classes is not None: assert isinstance(n_classes, dict) # extract shapes for first_elements if x_is_dict: x_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(x_first_el.items())]) else: x_first_el_shape = [1] + list(x_first_el.shape) if y_is_dict: y_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(y_first_el.items())]) elif y is None: y_first_el_shape = None else: y_first_el_shape = ([1] + list(y_first_el[0].shape if isinstance( y_first_el, list) else y_first_el.shape)) self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_first_el_shape, y_first_el_shape, n_classes, batch_size) # Input dtype of x_first_el. if x_is_dict: self._input_dtype = dict( [(k, _check_dtype(v.dtype)) for k, v in list(x_first_el.items())]) else: self._input_dtype = _check_dtype(x_first_el.dtype) # Output dtype of y_first_el. def check_y_dtype(el): if isinstance(el, np.ndarray): return el.dtype elif isinstance(el, list): return check_y_dtype(el[0]) else: return _check_dtype(np.dtype(type(el))) # Output types are floats, due to both softmaxes and regression req. if n_classes is not None and (y is None or not y_is_dict) and n_classes > 0: self._output_dtype = np.float32 elif y_is_dict: self._output_dtype = dict( [(k, check_y_dtype(v)) for k, v in list(y_first_el.items())]) elif y is None: self._output_dtype = None else: self._output_dtype = check_y_dtype(y_first_el) def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self): """Returns a function, that will sample data and provide it to placeholders. Returns: A function that when called samples a random subset of batch size from x and y. """ self.stopped = False def _feed_dict_fn(): """Samples data and provides it to placeholders. Returns: `dict` of input and output tensors. """ def init_array(shape, dtype): """Initialize array of given shape or dict of shapes and dtype.""" if shape is None: return None elif isinstance(shape, dict): return dict([(k, np.zeros(shape[k], dtype[k])) for k in list(shape.keys())]) else: return np.zeros(shape, dtype=dtype) def put_data_array(dest, index, source=None, n_classes=None): """Puts data array into container.""" if source is None: dest = dest[:index] elif n_classes is not None and n_classes > 1: if len(self.output_shape) == 2: dest.itemset((index, source), 1.0) else: for idx, value in enumerate(source): dest.itemset(tuple([index, idx, value]), 1.0) else: if len(dest.shape) > 1: dest[index, :] = source else: dest[index] = source[0] if isinstance(source, list) else source return dest def put_data_array_or_dict(holder, index, data=None, n_classes=None): """Puts data array or data dictionary into container.""" if holder is None: return None if isinstance(holder, dict): if data is None: data = {k: None for k in holder.keys()} assert isinstance(data, dict) for k in holder.keys(): num_classes = n_classes[k] if (n_classes is not None and k in n_classes) else None holder[k] = put_data_array(holder[k], index, data[k], num_classes) else: holder = put_data_array(holder, index, data, n_classes) return holder if self.stopped: raise StopIteration inp = init_array(self.input_shape, self._input_dtype) out = init_array(self.output_shape, self._output_dtype) for i in xrange(self._batch_size): # Add handling when queue ends. try: next_inp = six.next(self._x) inp = put_data_array_or_dict(inp, i, next_inp, None) except StopIteration: self.stopped = True if i == 0: raise inp = put_data_array_or_dict(inp, i, None, None) out = put_data_array_or_dict(out, i, None, None) break if self._y is not None: next_out = six.next(self._y) out = put_data_array_or_dict(out, i, next_out, self.n_classes) # creating feed_dict if isinstance(inp, dict): feed_dict = dict([(self._input_placeholder[k].name, inp[k]) for k in list(self._input_placeholder.keys())]) else: feed_dict = {self._input_placeholder.name: inp} if self._y is not None: if isinstance(out, dict): feed_dict.update( dict([(self._output_placeholder[k].name, out[k]) for k in list(self._output_placeholder.keys())])) else: feed_dict.update({self._output_placeholder.name: out}) return feed_dict return _feed_dict_fn class DaskDataFeeder(object): """Data feeder for that reads data from dask.Series and dask.DataFrame. Numpy arrays can be serialized to disk and it's possible to do random seeks into them. DaskDataFeeder will remove requirement to have full dataset in the memory and still do random seeks for sampling of batches. """ def __init__(self, x, y, n_classes, batch_size, shuffle=True, random_state=None, epochs=None): """Initializes a DaskDataFeeder instance. Args: x: iterator that returns for each element, returns features. y: iterator that returns for each element, returns 1 or many classes / regression values. n_classes: indicator of how many classes the label has. batch_size: Mini batch size to accumulate. shuffle: Whether to shuffle the inputs. random_state: random state for RNG. Note that it will mutate so use a int value for this if you want consistent sized batches. epochs: Number of epochs to run. Attributes: x: input features. y: input label. n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input. output_shape: shape of the output. input_dtype: dtype of input. output_dtype: dtype of output. Raises: ValueError: if `x` or `y` are `dict`, as they are not supported currently. """ if isinstance(x, dict) or isinstance(y, dict): raise ValueError( 'DaskDataFeeder does not support dictionaries at the moment.') # pylint: disable=invalid-name,super-init-not-called import dask.dataframe as dd # pylint: disable=g-import-not-at-top # TODO(terrytangyuan): check x and y dtypes in dask_io like pandas self._x = x self._y = y # save column names self._x_columns = list(x.columns) if isinstance(y.columns[0], str): self._y_columns = list(y.columns) else: # deal with cases where two DFs have overlapped default numeric colnames self._y_columns = len(self._x_columns) + 1 self._y = self._y.rename(columns={y.columns[0]: self._y_columns}) # TODO(terrytangyuan): deal with unsupervised cases # combine into a data frame self.df = dd.multi.concat([self._x, self._y], axis=1) self.n_classes = n_classes x_count = x.count().compute()[0] x_shape = (x_count, len(self._x.columns)) y_shape = (x_count, len(self._y.columns)) # TODO(terrytangyuan): Add support for shuffle and epochs. self._shuffle = shuffle self.epochs = epochs self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) self.sample_fraction = self._batch_size / float(x_count) self._input_dtype = _check_dtype(self._x.dtypes[0]) self._output_dtype = _check_dtype(self._y.dtypes[self._y_columns]) if random_state is None: self.random_state = 66 else: self.random_state = random_state def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self, input_placeholder, output_placeholder): """Returns a function, that will sample data and provide it to placeholders. Args: input_placeholder: tf.Placeholder for input features mini batch. output_placeholder: tf.Placeholder for output labels. Returns: A function that when called samples a random subset of batch size from x and y. """ def _feed_dict_fn(): """Samples data and provides it to placeholders.""" # TODO(ipolosukhin): option for with/without replacement (dev version of # dask) sample = self.df.random_split( [self.sample_fraction, 1 - self.sample_fraction], random_state=self.random_state) inp = extract_pandas_matrix(sample[0][self._x_columns].compute()).tolist() out = extract_pandas_matrix(sample[0][self._y_columns].compute()) # convert to correct dtype inp = np.array(inp, dtype=self._input_dtype) # one-hot encode out for each class for cross entropy loss if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if not isinstance(out, pd.Series): out = out.flatten() out_max = self._y.max().compute().values[0] encoded_out = np.zeros((out.size, out_max + 1), dtype=self._output_dtype) encoded_out[np.arange(out.size), out] = 1 return {input_placeholder.name: inp, output_placeholder.name: encoded_out} return _feed_dict_fn
apache-2.0
jpautom/scikit-learn
sklearn/setup.py
19
2994
import os from os.path import join import warnings def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration from numpy.distutils.system_info import get_info, BlasNotFoundError import numpy libraries = [] if os.name == 'posix': libraries.append('m') config = Configuration('sklearn', parent_package, top_path) config.add_subpackage('__check_build') config.add_subpackage('_build_utils') config.add_subpackage('svm') config.add_subpackage('datasets') config.add_subpackage('datasets/tests') config.add_subpackage('feature_extraction') config.add_subpackage('feature_extraction/tests') config.add_subpackage('cluster') config.add_subpackage('cluster/tests') config.add_subpackage('covariance') config.add_subpackage('covariance/tests') config.add_subpackage('cross_decomposition') config.add_subpackage('decomposition') config.add_subpackage('decomposition/tests') config.add_subpackage("ensemble") config.add_subpackage("ensemble/tests") config.add_subpackage('feature_selection') config.add_subpackage('feature_selection/tests') config.add_subpackage('utils') config.add_subpackage('utils/tests') config.add_subpackage('externals') config.add_subpackage('mixture') config.add_subpackage('mixture/tests') config.add_subpackage('gaussian_process') config.add_subpackage('gaussian_process/tests') config.add_subpackage('neighbors') config.add_subpackage('neural_network') config.add_subpackage('preprocessing') config.add_subpackage('manifold') config.add_subpackage('metrics') config.add_subpackage('semi_supervised') config.add_subpackage("tree") config.add_subpackage("tree/tests") config.add_subpackage('metrics/tests') config.add_subpackage('metrics/cluster') config.add_subpackage('metrics/cluster/tests') config.add_subpackage('model_selection') config.add_subpackage('model_selection/tests') # add cython extension module for isotonic regression config.add_extension( '_isotonic', sources=['_isotonic.c'], include_dirs=[numpy.get_include()], libraries=libraries, ) # some libs needs cblas, fortran-compiled BLAS will not be sufficient blas_info = get_info('blas_opt', 0) if (not blas_info) or ( ('NO_ATLAS_INFO', 1) in blas_info.get('define_macros', [])): config.add_library('cblas', sources=[join('src', 'cblas', '*.c')]) warnings.warn(BlasNotFoundError.__doc__) # the following packages depend on cblas, so they have to be build # after the above. config.add_subpackage('linear_model') config.add_subpackage('utils') # add the test directory config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
pnedunuri/scikit-learn
sklearn/preprocessing/tests/test_imputation.py
213
11911
import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.preprocessing.imputation import Imputer from sklearn.pipeline import Pipeline from sklearn import grid_search from sklearn import tree from sklearn.random_projection import sparse_random_matrix def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test: - along the two axes - with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, " \ "axis = {0}, sparse = {1}" % (strategy, missing_values) # Normal matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) X_trans = imputer.fit(X).transform(X.copy()) assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, False)) assert_array_equal(X_trans, X_true, err_msg.format(0, False)) # Normal matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(X.transpose()) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, X.copy().transpose()) else: X_trans = imputer.transform(X.copy().transpose()) assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, False)) # Sparse matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, True)) assert_array_equal(X_trans, X_true, err_msg.format(0, True)) # Sparse matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(sparse.csc_matrix(X.transpose())) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, sparse.csc_matrix(X.copy().transpose())) else: X_trans = imputer.transform(sparse.csc_matrix(X.copy().transpose())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, True)) def test_imputation_shape(): # Verify the shapes of the imputed matrix for different strategies. X = np.random.randn(10, 2) X[::2] = np.nan for strategy in ['mean', 'median', 'most_frequent']: imputer = Imputer(strategy=strategy) X_imputed = imputer.fit_transform(X) assert_equal(X_imputed.shape, (10, 2)) X_imputed = imputer.fit_transform(sparse.csr_matrix(X)) assert_equal(X_imputed.shape, (10, 2)) def test_imputation_mean_median_only_zero(): # Test imputation using the mean and median strategies, when # missing_values == 0. X = np.array([ [np.nan, 0, 0, 0, 5], [np.nan, 1, 0, np.nan, 3], [np.nan, 2, 0, 0, 0], [np.nan, 6, 0, 5, 13], ]) X_imputed_mean = np.array([ [3, 5], [1, 3], [2, 7], [6, 13], ]) statistics_mean = [np.nan, 3, np.nan, np.nan, 7] # Behaviour of median with NaN is undefined, e.g. different results in # np.median and np.ma.median X_for_median = X[:, [0, 1, 2, 4]] X_imputed_median = np.array([ [2, 5], [1, 3], [2, 5], [6, 13], ]) statistics_median = [np.nan, 2, np.nan, 5] _check_statistics(X, X_imputed_mean, "mean", statistics_mean, 0) _check_statistics(X_for_median, X_imputed_median, "median", statistics_median, 0) def test_imputation_mean_median(): # Test imputation using the mean and median strategies, when # missing_values != 0. rng = np.random.RandomState(0) dim = 10 dec = 10 shape = (dim * dim, dim + dec) zeros = np.zeros(shape[0]) values = np.arange(1, shape[0]+1) values[4::2] = - values[4::2] tests = [("mean", "NaN", lambda z, v, p: np.mean(np.hstack((z, v)))), ("mean", 0, lambda z, v, p: np.mean(v)), ("median", "NaN", lambda z, v, p: np.median(np.hstack((z, v)))), ("median", 0, lambda z, v, p: np.median(v))] for strategy, test_missing_values, true_value_fun in tests: X = np.empty(shape) X_true = np.empty(shape) true_statistics = np.empty(shape[1]) # Create a matrix X with columns # - with only zeros, # - with only missing values # - with zeros, missing values and values # And a matrix X_true containing all true values for j in range(shape[1]): nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1) nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0) nb_values = shape[0] - nb_zeros - nb_missing_values z = zeros[:nb_zeros] p = np.repeat(test_missing_values, nb_missing_values) v = values[rng.permutation(len(values))[:nb_values]] true_statistics[j] = true_value_fun(z, v, p) # Create the columns X[:, j] = np.hstack((v, z, p)) if 0 == test_missing_values: X_true[:, j] = np.hstack((v, np.repeat( true_statistics[j], nb_missing_values + nb_zeros))) else: X_true[:, j] = np.hstack((v, z, np.repeat(true_statistics[j], nb_missing_values))) # Shuffle them the same way np.random.RandomState(j).shuffle(X[:, j]) np.random.RandomState(j).shuffle(X_true[:, j]) # Mean doesn't support columns containing NaNs, median does if strategy == "median": cols_to_keep = ~np.isnan(X_true).any(axis=0) else: cols_to_keep = ~np.isnan(X_true).all(axis=0) X_true = X_true[:, cols_to_keep] _check_statistics(X, X_true, strategy, true_statistics, test_missing_values) def test_imputation_median_special_cases(): # Test median imputation with sparse boundary cases X = np.array([ [0, np.nan, np.nan], # odd: implicit zero [5, np.nan, np.nan], # odd: explicit nonzero [0, 0, np.nan], # even: average two zeros [-5, 0, np.nan], # even: avg zero and neg [0, 5, np.nan], # even: avg zero and pos [4, 5, np.nan], # even: avg nonzeros [-4, -5, np.nan], # even: avg negatives [-1, 2, np.nan], # even: crossing neg and pos ]).transpose() X_imputed_median = np.array([ [0, 0, 0], [5, 5, 5], [0, 0, 0], [-5, 0, -2.5], [0, 5, 2.5], [4, 5, 4.5], [-4, -5, -4.5], [-1, 2, .5], ]).transpose() statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, .5] _check_statistics(X, X_imputed_median, "median", statistics_median, 'NaN') def test_imputation_most_frequent(): # Test imputation using the most-frequent strategy. X = np.array([ [-1, -1, 0, 5], [-1, 2, -1, 3], [-1, 1, 3, -1], [-1, 2, 3, 7], ]) X_true = np.array([ [2, 0, 5], [2, 3, 3], [1, 3, 3], [2, 3, 7], ]) # scipy.stats.mode, used in Imputer, doesn't return the first most # frequent as promised in the doc but the lowest most frequent. When this # test will fail after an update of scipy, Imputer will need to be updated # to be consistent with the new (correct) behaviour _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1) def test_imputation_pipeline_grid_search(): # Test imputation within a pipeline + gridsearch. pipeline = Pipeline([('imputer', Imputer(missing_values=0)), ('tree', tree.DecisionTreeRegressor(random_state=0))]) parameters = { 'imputer__strategy': ["mean", "median", "most_frequent"], 'imputer__axis': [0, 1] } l = 100 X = sparse_random_matrix(l, l, density=0.10) Y = sparse_random_matrix(l, 1, density=0.10).toarray() gs = grid_search.GridSearchCV(pipeline, parameters) gs.fit(X, Y) def test_imputation_pickle(): # Test for pickling imputers. import pickle l = 100 X = sparse_random_matrix(l, l, density=0.10) for strategy in ["mean", "median", "most_frequent"]: imputer = Imputer(missing_values=0, strategy=strategy) imputer.fit(X) imputer_pickled = pickle.loads(pickle.dumps(imputer)) assert_array_equal(imputer.transform(X.copy()), imputer_pickled.transform(X.copy()), "Fail to transform the data after pickling " "(strategy = %s)" % (strategy)) def test_imputation_copy(): # Test imputation with copy X_orig = sparse_random_matrix(5, 5, density=0.75, random_state=0) # copy=True, dense => copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_false(np.all(X == Xt)) # copy=True, sparse csr => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, dense => no copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_true(np.all(X == Xt)) # copy=False, sparse csr, axis=1 => no copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=0 => no copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=1 => copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=1, missing_values=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=0, strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) assert_false(sparse.issparse(Xt)) # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is # made, even if copy=False.
bsd-3-clause
sdoran35/hate-to-hugs
venv/lib/python3.6/site-packages/nltk/parse/transitionparser.py
7
31342
# Natural Language Toolkit: Arc-Standard and Arc-eager Transition Based Parsers # # Author: Long Duong <[email protected]> # # Copyright (C) 2001-2017 NLTK Project # URL: <http://nltk.org/> # For license information, see LICENSE.TXT from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import pickle from os import remove from copy import deepcopy from operator import itemgetter try: from numpy import array from scipy import sparse from sklearn.datasets import load_svmlight_file from sklearn import svm except ImportError: pass from nltk.parse import ParserI, DependencyGraph, DependencyEvaluator class Configuration(object): """ Class for holding configuration which is the partial analysis of the input sentence. The transition based parser aims at finding set of operators that transfer the initial configuration to the terminal configuration. The configuration includes: - Stack: for storing partially proceeded words - Buffer: for storing remaining input words - Set of arcs: for storing partially built dependency tree This class also provides a method to represent a configuration as list of features. """ def __init__(self, dep_graph): """ :param dep_graph: the representation of an input in the form of dependency graph. :type dep_graph: DependencyGraph where the dependencies are not specified. """ # dep_graph.nodes contain list of token for a sentence self.stack = [0] # The root element self.buffer = list(range(1, len(dep_graph.nodes))) # The rest is in the buffer self.arcs = [] # empty set of arc self._tokens = dep_graph.nodes self._max_address = len(self.buffer) def __str__(self): return 'Stack : ' + \ str(self.stack) + ' Buffer : ' + str(self.buffer) + ' Arcs : ' + str(self.arcs) def _check_informative(self, feat, flag=False): """ Check whether a feature is informative The flag control whether "_" is informative or not """ if feat is None: return False if feat == '': return False if flag is False: if feat == '_': return False return True def extract_features(self): """ Extract the set of features for the current configuration. Implement standard features as describe in Table 3.2 (page 31) in Dependency Parsing book by Sandra Kubler, Ryan McDonal, Joakim Nivre. Please note that these features are very basic. :return: list(str) """ result = [] # Todo : can come up with more complicated features set for better # performance. if len(self.stack) > 0: # Stack 0 stack_idx0 = self.stack[len(self.stack) - 1] token = self._tokens[stack_idx0] if self._check_informative(token['word'], True): result.append('STK_0_FORM_' + token['word']) if 'lemma' in token and self._check_informative(token['lemma']): result.append('STK_0_LEMMA_' + token['lemma']) if self._check_informative(token['tag']): result.append('STK_0_POS_' + token['tag']) if 'feats' in token and self._check_informative(token['feats']): feats = token['feats'].split("|") for feat in feats: result.append('STK_0_FEATS_' + feat) # Stack 1 if len(self.stack) > 1: stack_idx1 = self.stack[len(self.stack) - 2] token = self._tokens[stack_idx1] if self._check_informative(token['tag']): result.append('STK_1_POS_' + token['tag']) # Left most, right most dependency of stack[0] left_most = 1000000 right_most = -1 dep_left_most = '' dep_right_most = '' for (wi, r, wj) in self.arcs: if wi == stack_idx0: if (wj > wi) and (wj > right_most): right_most = wj dep_right_most = r if (wj < wi) and (wj < left_most): left_most = wj dep_left_most = r if self._check_informative(dep_left_most): result.append('STK_0_LDEP_' + dep_left_most) if self._check_informative(dep_right_most): result.append('STK_0_RDEP_' + dep_right_most) # Check Buffered 0 if len(self.buffer) > 0: # Buffer 0 buffer_idx0 = self.buffer[0] token = self._tokens[buffer_idx0] if self._check_informative(token['word'], True): result.append('BUF_0_FORM_' + token['word']) if 'lemma' in token and self._check_informative(token['lemma']): result.append('BUF_0_LEMMA_' + token['lemma']) if self._check_informative(token['tag']): result.append('BUF_0_POS_' + token['tag']) if 'feats' in token and self._check_informative(token['feats']): feats = token['feats'].split("|") for feat in feats: result.append('BUF_0_FEATS_' + feat) # Buffer 1 if len(self.buffer) > 1: buffer_idx1 = self.buffer[1] token = self._tokens[buffer_idx1] if self._check_informative(token['word'], True): result.append('BUF_1_FORM_' + token['word']) if self._check_informative(token['tag']): result.append('BUF_1_POS_' + token['tag']) if len(self.buffer) > 2: buffer_idx2 = self.buffer[2] token = self._tokens[buffer_idx2] if self._check_informative(token['tag']): result.append('BUF_2_POS_' + token['tag']) if len(self.buffer) > 3: buffer_idx3 = self.buffer[3] token = self._tokens[buffer_idx3] if self._check_informative(token['tag']): result.append('BUF_3_POS_' + token['tag']) # Left most, right most dependency of stack[0] left_most = 1000000 right_most = -1 dep_left_most = '' dep_right_most = '' for (wi, r, wj) in self.arcs: if wi == buffer_idx0: if (wj > wi) and (wj > right_most): right_most = wj dep_right_most = r if (wj < wi) and (wj < left_most): left_most = wj dep_left_most = r if self._check_informative(dep_left_most): result.append('BUF_0_LDEP_' + dep_left_most) if self._check_informative(dep_right_most): result.append('BUF_0_RDEP_' + dep_right_most) return result class Transition(object): """ This class defines a set of transition which is applied to a configuration to get another configuration Note that for different parsing algorithm, the transition is different. """ # Define set of transitions LEFT_ARC = 'LEFTARC' RIGHT_ARC = 'RIGHTARC' SHIFT = 'SHIFT' REDUCE = 'REDUCE' def __init__(self, alg_option): """ :param alg_option: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm :type alg_option: str """ self._algo = alg_option if alg_option not in [ TransitionParser.ARC_STANDARD, TransitionParser.ARC_EAGER]: raise ValueError(" Currently we only support %s and %s " % (TransitionParser.ARC_STANDARD, TransitionParser.ARC_EAGER)) def left_arc(self, conf, relation): """ Note that the algorithm for left-arc is quite similar except for precondition for both arc-standard and arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0): return -1 if conf.buffer[0] == 0: # here is the Root element return -1 idx_wi = conf.stack[len(conf.stack) - 1] flag = True if self._algo == TransitionParser.ARC_EAGER: for (idx_parent, r, idx_child) in conf.arcs: if idx_child == idx_wi: flag = False if flag: conf.stack.pop() idx_wj = conf.buffer[0] conf.arcs.append((idx_wj, relation, idx_wi)) else: return -1 def right_arc(self, conf, relation): """ Note that the algorithm for right-arc is DIFFERENT for arc-standard and arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0): return -1 if self._algo == TransitionParser.ARC_STANDARD: idx_wi = conf.stack.pop() idx_wj = conf.buffer[0] conf.buffer[0] = idx_wi conf.arcs.append((idx_wi, relation, idx_wj)) else: # arc-eager idx_wi = conf.stack[len(conf.stack) - 1] idx_wj = conf.buffer.pop(0) conf.stack.append(idx_wj) conf.arcs.append((idx_wi, relation, idx_wj)) def reduce(self, conf): """ Note that the algorithm for reduce is only available for arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if self._algo != TransitionParser.ARC_EAGER: return -1 if len(conf.stack) <= 0: return -1 idx_wi = conf.stack[len(conf.stack) - 1] flag = False for (idx_parent, r, idx_child) in conf.arcs: if idx_child == idx_wi: flag = True if flag: conf.stack.pop() # reduce it else: return -1 def shift(self, conf): """ Note that the algorithm for shift is the SAME for arc-standard and arc-eager :param configuration: is the current configuration :return : A new configuration or -1 if the pre-condition is not satisfied """ if len(conf.buffer) <= 0: return -1 idx_wi = conf.buffer.pop(0) conf.stack.append(idx_wi) class TransitionParser(ParserI): """ Class for transition based parser. Implement 2 algorithms which are "arc-standard" and "arc-eager" """ ARC_STANDARD = 'arc-standard' ARC_EAGER = 'arc-eager' def __init__(self, algorithm): """ :param algorithm: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm :type algorithm: str """ if not(algorithm in [self.ARC_STANDARD, self.ARC_EAGER]): raise ValueError(" Currently we only support %s and %s " % (self.ARC_STANDARD, self.ARC_EAGER)) self._algorithm = algorithm self._dictionary = {} self._transition = {} self._match_transition = {} def _get_dep_relation(self, idx_parent, idx_child, depgraph): p_node = depgraph.nodes[idx_parent] c_node = depgraph.nodes[idx_child] if c_node['word'] is None: return None # Root word if c_node['head'] == p_node['address']: return c_node['rel'] else: return None def _convert_to_binary_features(self, features): """ :param features: list of feature string which is needed to convert to binary features :type features: list(str) :return : string of binary features in libsvm format which is 'featureID:value' pairs """ unsorted_result = [] for feature in features: self._dictionary.setdefault(feature, len(self._dictionary)) unsorted_result.append(self._dictionary[feature]) # Default value of each feature is 1.0 return ' '.join(str(featureID) + ':1.0' for featureID in sorted(unsorted_result)) def _is_projective(self, depgraph): arc_list = [] for key in depgraph.nodes: node = depgraph.nodes[key] if 'head' in node: childIdx = node['address'] parentIdx = node['head'] if parentIdx is not None: arc_list.append((parentIdx, childIdx)) for (parentIdx, childIdx) in arc_list: # Ensure that childIdx < parentIdx if childIdx > parentIdx: temp = childIdx childIdx = parentIdx parentIdx = temp for k in range(childIdx + 1, parentIdx): for m in range(len(depgraph.nodes)): if (m < childIdx) or (m > parentIdx): if (k, m) in arc_list: return False if (m, k) in arc_list: return False return True def _write_to_file(self, key, binary_features, input_file): """ write the binary features to input file and update the transition dictionary """ self._transition.setdefault(key, len(self._transition) + 1) self._match_transition[self._transition[key]] = key input_str = str(self._transition[key]) + ' ' + binary_features + '\n' input_file.write(input_str.encode('utf-8')) def _create_training_examples_arc_std(self, depgraphs, input_file): """ Create the training example in the libsvm format and write it to the input_file. Reference : Page 32, Chapter 3. Dependency Parsing by Sandra Kubler, Ryan McDonal and Joakim Nivre (2009) """ operation = Transition(self.ARC_STANDARD) count_proj = 0 training_seq = [] for depgraph in depgraphs: if not self._is_projective(depgraph): continue count_proj += 1 conf = Configuration(depgraph) while len(conf.buffer) > 0: b0 = conf.buffer[0] features = conf.extract_features() binary_features = self._convert_to_binary_features(features) if len(conf.stack) > 0: s0 = conf.stack[len(conf.stack) - 1] # Left-arc operation rel = self._get_dep_relation(b0, s0, depgraph) if rel is not None: key = Transition.LEFT_ARC + ':' + rel self._write_to_file(key, binary_features, input_file) operation.left_arc(conf, rel) training_seq.append(key) continue # Right-arc operation rel = self._get_dep_relation(s0, b0, depgraph) if rel is not None: precondition = True # Get the max-index of buffer maxID = conf._max_address for w in range(maxID + 1): if w != b0: relw = self._get_dep_relation(b0, w, depgraph) if relw is not None: if (b0, relw, w) not in conf.arcs: precondition = False if precondition: key = Transition.RIGHT_ARC + ':' + rel self._write_to_file( key, binary_features, input_file) operation.right_arc(conf, rel) training_seq.append(key) continue # Shift operation as the default key = Transition.SHIFT self._write_to_file(key, binary_features, input_file) operation.shift(conf) training_seq.append(key) print(" Number of training examples : " + str(len(depgraphs))) print(" Number of valid (projective) examples : " + str(count_proj)) return training_seq def _create_training_examples_arc_eager(self, depgraphs, input_file): """ Create the training example in the libsvm format and write it to the input_file. Reference : 'A Dynamic Oracle for Arc-Eager Dependency Parsing' by Joav Goldberg and Joakim Nivre """ operation = Transition(self.ARC_EAGER) countProj = 0 training_seq = [] for depgraph in depgraphs: if not self._is_projective(depgraph): continue countProj += 1 conf = Configuration(depgraph) while len(conf.buffer) > 0: b0 = conf.buffer[0] features = conf.extract_features() binary_features = self._convert_to_binary_features(features) if len(conf.stack) > 0: s0 = conf.stack[len(conf.stack) - 1] # Left-arc operation rel = self._get_dep_relation(b0, s0, depgraph) if rel is not None: key = Transition.LEFT_ARC + ':' + rel self._write_to_file(key, binary_features, input_file) operation.left_arc(conf, rel) training_seq.append(key) continue # Right-arc operation rel = self._get_dep_relation(s0, b0, depgraph) if rel is not None: key = Transition.RIGHT_ARC + ':' + rel self._write_to_file(key, binary_features, input_file) operation.right_arc(conf, rel) training_seq.append(key) continue # reduce operation flag = False for k in range(s0): if self._get_dep_relation(k, b0, depgraph) is not None: flag = True if self._get_dep_relation(b0, k, depgraph) is not None: flag = True if flag: key = Transition.REDUCE self._write_to_file(key, binary_features, input_file) operation.reduce(conf) training_seq.append(key) continue # Shift operation as the default key = Transition.SHIFT self._write_to_file(key, binary_features, input_file) operation.shift(conf) training_seq.append(key) print(" Number of training examples : " + str(len(depgraphs))) print(" Number of valid (projective) examples : " + str(countProj)) return training_seq def train(self, depgraphs, modelfile, verbose=True): """ :param depgraphs : list of DependencyGraph as the training data :type depgraphs : DependencyGraph :param modelfile : file name to save the trained model :type modelfile : str """ try: input_file = tempfile.NamedTemporaryFile( prefix='transition_parse.train', dir=tempfile.gettempdir(), delete=False) if self._algorithm == self.ARC_STANDARD: self._create_training_examples_arc_std(depgraphs, input_file) else: self._create_training_examples_arc_eager(depgraphs, input_file) input_file.close() # Using the temporary file to train the libsvm classifier x_train, y_train = load_svmlight_file(input_file.name) # The parameter is set according to the paper: # Algorithms for Deterministic Incremental Dependency Parsing by Joakim Nivre # Todo : because of probability = True => very slow due to # cross-validation. Need to improve the speed here model = svm.SVC( kernel='poly', degree=2, coef0=0, gamma=0.2, C=0.5, verbose=verbose, probability=True) model.fit(x_train, y_train) # Save the model to file name (as pickle) pickle.dump(model, open(modelfile, 'wb')) finally: remove(input_file.name) def parse(self, depgraphs, modelFile): """ :param depgraphs: the list of test sentence, each sentence is represented as a dependency graph where the 'head' information is dummy :type depgraphs: list(DependencyGraph) :param modelfile: the model file :type modelfile: str :return: list (DependencyGraph) with the 'head' and 'rel' information """ result = [] # First load the model model = pickle.load(open(modelFile, 'rb')) operation = Transition(self._algorithm) for depgraph in depgraphs: conf = Configuration(depgraph) while len(conf.buffer) > 0: features = conf.extract_features() col = [] row = [] data = [] for feature in features: if feature in self._dictionary: col.append(self._dictionary[feature]) row.append(0) data.append(1.0) np_col = array(sorted(col)) # NB : index must be sorted np_row = array(row) np_data = array(data) x_test = sparse.csr_matrix((np_data, (np_row, np_col)), shape=(1, len(self._dictionary))) # It's best to use decision function as follow BUT it's not supported yet for sparse SVM # Using decision funcion to build the votes array #dec_func = model.decision_function(x_test)[0] #votes = {} #k = 0 # for i in range(len(model.classes_)): # for j in range(i+1, len(model.classes_)): # #if dec_func[k] > 0: # votes.setdefault(i,0) # votes[i] +=1 # else: # votes.setdefault(j,0) # votes[j] +=1 # k +=1 # Sort votes according to the values #sorted_votes = sorted(votes.items(), key=itemgetter(1), reverse=True) # We will use predict_proba instead of decision_function prob_dict = {} pred_prob = model.predict_proba(x_test)[0] for i in range(len(pred_prob)): prob_dict[i] = pred_prob[i] sorted_Prob = sorted( prob_dict.items(), key=itemgetter(1), reverse=True) # Note that SHIFT is always a valid operation for (y_pred_idx, confidence) in sorted_Prob: #y_pred = model.predict(x_test)[0] # From the prediction match to the operation y_pred = model.classes_[y_pred_idx] if y_pred in self._match_transition: strTransition = self._match_transition[y_pred] baseTransition = strTransition.split(":")[0] if baseTransition == Transition.LEFT_ARC: if operation.left_arc(conf, strTransition.split(":")[1]) != -1: break elif baseTransition == Transition.RIGHT_ARC: if operation.right_arc(conf, strTransition.split(":")[1]) != -1: break elif baseTransition == Transition.REDUCE: if operation.reduce(conf) != -1: break elif baseTransition == Transition.SHIFT: if operation.shift(conf) != -1: break else: raise ValueError("The predicted transition is not recognized, expected errors") # Finish with operations build the dependency graph from Conf.arcs new_depgraph = deepcopy(depgraph) for key in new_depgraph.nodes: node = new_depgraph.nodes[key] node['rel'] = '' # With the default, all the token depend on the Root node['head'] = 0 for (head, rel, child) in conf.arcs: c_node = new_depgraph.nodes[child] c_node['head'] = head c_node['rel'] = rel result.append(new_depgraph) return result def demo(): """ >>> from nltk.parse import DependencyGraph, DependencyEvaluator >>> from nltk.parse.transitionparser import TransitionParser, Configuration, Transition >>> gold_sent = DependencyGraph(\""" ... Economic JJ 2 ATT ... news NN 3 SBJ ... has VBD 0 ROOT ... little JJ 5 ATT ... effect NN 3 OBJ ... on IN 5 ATT ... financial JJ 8 ATT ... markets NNS 6 PC ... . . 3 PU ... \""") >>> conf = Configuration(gold_sent) ###################### Check the Initial Feature ######################## >>> print(', '.join(conf.extract_features())) STK_0_POS_TOP, BUF_0_FORM_Economic, BUF_0_LEMMA_Economic, BUF_0_POS_JJ, BUF_1_FORM_news, BUF_1_POS_NN, BUF_2_POS_VBD, BUF_3_POS_JJ ###################### Check The Transition ####################### Check the Initialized Configuration >>> print(conf) Stack : [0] Buffer : [1, 2, 3, 4, 5, 6, 7, 8, 9] Arcs : [] A. Do some transition checks for ARC-STANDARD >>> operation = Transition('arc-standard') >>> operation.shift(conf) >>> operation.left_arc(conf, "ATT") >>> operation.shift(conf) >>> operation.left_arc(conf,"SBJ") >>> operation.shift(conf) >>> operation.shift(conf) >>> operation.left_arc(conf, "ATT") >>> operation.shift(conf) >>> operation.shift(conf) >>> operation.shift(conf) >>> operation.left_arc(conf, "ATT") Middle Configuration and Features Check >>> print(conf) Stack : [0, 3, 5, 6] Buffer : [8, 9] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7)] >>> print(', '.join(conf.extract_features())) STK_0_FORM_on, STK_0_LEMMA_on, STK_0_POS_IN, STK_1_POS_NN, BUF_0_FORM_markets, BUF_0_LEMMA_markets, BUF_0_POS_NNS, BUF_1_FORM_., BUF_1_POS_., BUF_0_LDEP_ATT >>> operation.right_arc(conf, "PC") >>> operation.right_arc(conf, "ATT") >>> operation.right_arc(conf, "OBJ") >>> operation.shift(conf) >>> operation.right_arc(conf, "PU") >>> operation.right_arc(conf, "ROOT") >>> operation.shift(conf) Terminated Configuration Check >>> print(conf) Stack : [0] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7), (6, 'PC', 8), (5, 'ATT', 6), (3, 'OBJ', 5), (3, 'PU', 9), (0, 'ROOT', 3)] B. Do some transition checks for ARC-EAGER >>> conf = Configuration(gold_sent) >>> operation = Transition('arc-eager') >>> operation.shift(conf) >>> operation.left_arc(conf,'ATT') >>> operation.shift(conf) >>> operation.left_arc(conf,'SBJ') >>> operation.right_arc(conf,'ROOT') >>> operation.shift(conf) >>> operation.left_arc(conf,'ATT') >>> operation.right_arc(conf,'OBJ') >>> operation.right_arc(conf,'ATT') >>> operation.shift(conf) >>> operation.left_arc(conf,'ATT') >>> operation.right_arc(conf,'PC') >>> operation.reduce(conf) >>> operation.reduce(conf) >>> operation.reduce(conf) >>> operation.right_arc(conf,'PU') >>> print(conf) Stack : [0, 3, 9] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (0, 'ROOT', 3), (5, 'ATT', 4), (3, 'OBJ', 5), (5, 'ATT', 6), (8, 'ATT', 7), (6, 'PC', 8), (3, 'PU', 9)] ###################### Check The Training Function ####################### A. Check the ARC-STANDARD training >>> import tempfile >>> import os >>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(), delete=False) >>> parser_std = TransitionParser('arc-standard') >>> print(', '.join(parser_std._create_training_examples_arc_std([gold_sent], input_file))) Number of training examples : 1 Number of valid (projective) examples : 1 SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, SHIFT, SHIFT, LEFTARC:ATT, SHIFT, SHIFT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, RIGHTARC:ATT, RIGHTARC:OBJ, SHIFT, RIGHTARC:PU, RIGHTARC:ROOT, SHIFT >>> parser_std.train([gold_sent],'temp.arcstd.model', verbose=False) Number of training examples : 1 Number of valid (projective) examples : 1 >>> remove(input_file.name) B. Check the ARC-EAGER training >>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(),delete=False) >>> parser_eager = TransitionParser('arc-eager') >>> print(', '.join(parser_eager._create_training_examples_arc_eager([gold_sent], input_file))) Number of training examples : 1 Number of valid (projective) examples : 1 SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, RIGHTARC:ROOT, SHIFT, LEFTARC:ATT, RIGHTARC:OBJ, RIGHTARC:ATT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, REDUCE, REDUCE, REDUCE, RIGHTARC:PU >>> parser_eager.train([gold_sent],'temp.arceager.model', verbose=False) Number of training examples : 1 Number of valid (projective) examples : 1 >>> remove(input_file.name) ###################### Check The Parsing Function ######################## A. Check the ARC-STANDARD parser >>> result = parser_std.parse([gold_sent], 'temp.arcstd.model') >>> de = DependencyEvaluator(result, [gold_sent]) >>> de.eval() >= (0, 0) True B. Check the ARC-EAGER parser >>> result = parser_eager.parse([gold_sent], 'temp.arceager.model') >>> de = DependencyEvaluator(result, [gold_sent]) >>> de.eval() >= (0, 0) True Remove test temporary files >>> remove('temp.arceager.model') >>> remove('temp.arcstd.model') Note that result is very poor because of only one training example. """
mit
vslavik/poedit
deps/boost/libs/numeric/odeint/performance/plot_result.py
43
2225
""" Copyright 2011-2014 Mario Mulansky Copyright 2011-2014 Karsten Ahnert Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) """ import numpy as np from matplotlib import pyplot as plt plt.rc("font", size=16) def get_runtime_from_file(filename): gcc_perf_file = open(filename, 'r') for line in gcc_perf_file: if "Minimal Runtime:" in line: return float(line.split(":")[-1]) t_gcc = [get_runtime_from_file("perf_workbook/odeint_rk4_array_gcc.perf"), get_runtime_from_file("perf_ariel/odeint_rk4_array_gcc.perf"), get_runtime_from_file("perf_lyra/odeint_rk4_array_gcc.perf")] t_intel = [get_runtime_from_file("perf_workbook/odeint_rk4_array_intel.perf"), get_runtime_from_file("perf_ariel/odeint_rk4_array_intel.perf"), get_runtime_from_file("perf_lyra/odeint_rk4_array_intel.perf")] t_gfort = [get_runtime_from_file("perf_workbook/rk4_gfort.perf"), get_runtime_from_file("perf_ariel/rk4_gfort.perf"), get_runtime_from_file("perf_lyra/rk4_gfort.perf")] t_c_intel = [get_runtime_from_file("perf_workbook/rk4_c_intel.perf"), get_runtime_from_file("perf_ariel/rk4_c_intel.perf"), get_runtime_from_file("perf_lyra/rk4_c_intel.perf")] print t_c_intel ind = np.arange(3) # the x locations for the groups width = 0.15 # the width of the bars fig = plt.figure() ax = fig.add_subplot(111) rects1 = ax.bar(ind, t_gcc, width, color='b', label="odeint gcc") rects2 = ax.bar(ind+width, t_intel, width, color='g', label="odeint intel") rects3 = ax.bar(ind+2*width, t_c_intel, width, color='y', label="C intel") rects4 = ax.bar(ind+3*width, t_gfort, width, color='c', label="gfort") ax.axis([-width, 2.0+5*width, 0.0, 0.85]) ax.set_ylabel('Runtime (s)') ax.set_title('Performance for integrating the Lorenz system') ax.set_xticks(ind + 1.5*width) ax.set_xticklabels(('Core i5-3210M\n3.1 GHz', 'Xeon E5-2690\n3.8 GHz', 'Opteron 8431\n 2.4 GHz')) ax.legend(loc='upper left', prop={'size': 16}) plt.savefig("perf.pdf") plt.savefig("perf.png", dpi=50) plt.show()
mit
Alex-Girard/D3MapOverlays
data/extract_food_inspections_data.py
1
1633
#!/usr/bin/env python import pandas as pd import numpy as np def getViolationsScore(): df = pd.read_csv('data/tmp/food/violations_plus.csv', encoding="windows-1252") df = df[['business_id','date','risk_category']].dropna() # drop invalid dates df = df[df['date'] < 20141231] latest = df['date'].max() oldest = df['date'].min() def computeViolationScore(row): if row['risk_category'] == 'Low Risk': risk = 1 elif row['risk_category'] == 'Moderate Risk': risk = 2 elif row['risk_category'] == 'High Risk': risk = 3 else: return 0 return risk * (row['date'] - oldest) * 100 / (3 * (latest - oldest)) df['violationScore'] = df.apply(computeViolationScore, axis=1) return df.groupby(['business_id'])['violationScore'].agg(np.mean) def getLatestInspections(): df = pd.read_csv('data/tmp/food/inspections.csv', encoding="windows-1252") df = df[['business_id','Score','date']].dropna() return df[df.groupby(['business_id'])['date'].transform(max) == df['date']] def getBusinessData(): df = pd.read_csv('data/tmp/food/businesses.csv', encoding="windows-1252") df = df[['business_id','name','latitude','longitude']].dropna() df = df[df.latitude > 36] df = df[df.longitude < -122.3] data = df.merge(getLatestInspections(), how='inner', on='business_id') data = data.join(getViolationsScore(), how='left', on='business_id') data['violationScore'].fillna(value=0, inplace=True) data['total'] = data['Score'] - data['violationScore'] # data = data[data['total'] > 99] return data df = getBusinessData() df.to_csv('data/tmp/food_inspection.csv', cols=['latitude','longitude','total'], index=False)
mit
softwaresaved/fat
lowfat/management/commands/fixgrant.py
2
1405
import pandas as pd from django.core.management.base import BaseCommand from lowfat.models import Fund class Command(BaseCommand): help = "Fix grant" def add_arguments(self, parser): parser.add_argument('csv', nargs='?', default='activities.csv') # pylint: disable=too-many-branches,too-many-locals def handle(self, *args, **options): data = pd.read_csv(options['csv']) for index, line in data.iterrows(): # pylint: disable=no-member,unused-variable try: funds = Fund.objects.filter( claimant__forenames=line["fornames"], claimant__surname=line["surname"], title=line["title"] ) for fund in funds: fund.grant = line["grant"] if line["grant_heading"] == "Fellowship": fund.grant_heading = "F" elif line["grant_heading"] == "Core": fund.grant_heading = "I" elif line["grant_heading"] == "Continuing": fund.grant_heading = "C" print("Changing {}...".format(fund)) fund.save() print("Changed {}...".format(fund)) except BaseException as exception: print("Error: {}\n\t{}".format(exception, line))
bsd-3-clause
giacomov/3ML
threeML/utils/photometry/filter_set.py
1
5715
from __future__ import division from builtins import zip from builtins import object from past.utils import old_div import speclite.filters as spec_filters import astropy.units as astro_units import numpy as np import astropy.constants as constants from threeML.utils.interval import IntervalSet class NotASpeclikeFilter(RuntimeError): pass class FilterSet(object): def __init__(self, filter, mask=None): """ This class handles the optical filter functionality. It is build around speclite: http://speclite.readthedocs.io/en/latest/ It accepts speclite fitlerresponse or sequences, allowing for full customization of the fitlers. :param filter: a speclite FitlerResponse or FilterSequence :param mask: an initial mask on the filters (bool array) that remains fixed """ # we explicitly violate duck typing here in order to have one routine # to return values from the filters (speclite appends 's' to the end of sequence calls) if isinstance(filter, spec_filters.FilterResponse): # we will make a sequence self._filters = spec_filters.FilterSequence([filter]) elif isinstance(filter, spec_filters.FilterSequence): self._filters = filter # type: spec_filters.FilterSequence else: raise NotASpeclikeFilter( "filter must be a speclite FilterResponse or FilterSequence" ) if mask is not None: tmp = [] for condition, response in zip(mask, self._filters): if condition: tmp.append(response) self._filters = spec_filters.FilterSequence(tmp) self._names = np.array([name.split("-")[1] for name in self._filters.names]) self._long_name = self._filters.names # haven't set a likelihood model yet self._model_set = False # calculate the FWHM self._calculate_fwhm() @property def wavelength_bounds(self): """ IntervalSet of FWHM bounds of the filters :return: """ return self._wavebounds def _calculate_fwhm(self): """ calculate the FWHM of the filters :return: """ wmin = [] wmax = [] # go through each filter # and find the non-gaussian FWHM bounds for filter in self._filters: response = filter.response max_response = response.max() idx_max = response.argmax() half_max = 0.5 * max_response idx1 = abs(response[:idx_max] - half_max).argmin() idx2 = abs(response[idx_max:] - half_max).argmin() + idx_max # have to grab the private member here # bc the library does not expose it! w1 = filter._wavelength[idx1] w2 = filter._wavelength[idx2] wmin.append(w1) wmax.append(w2) self._wavebounds = IntervalSet.from_starts_and_stops(wmin, wmax) def set_model(self, differential_flux): """ set the model of that will be used during the convolution. Not that speclite considers a differential flux to be in units of erg/s/cm2/lambda so we must convert astromodels into the proper units (using astropy units!) """ conversion_factor = (constants.c ** 2 * constants.h ** 2).to("keV2 * cm2") def wrapped_model(x): return old_div(differential_flux(x) * conversion_factor, x ** 3) self._wrapped_model = wrapped_model self._model_set = True def ab_magnitudes(self): """ return the effective stimulus of the model and filter for the given magnitude system :return: np.ndarray of ab magnitudes """ assert self._model_set, "no likelihood model has been set" # speclite has issues with unit conversion # so we will do the calculation manually here ratio = [] for filter in self._filters: # first get the flux and convert it to base units synthetic_flux = filter.convolve_with_function(self._wrapped_model).to( "1/(cm2 s)" ) # normalize it to the filter's AB magnitude ratio.append( (old_div(synthetic_flux, filter.ab_zeropoint.to("1/(cm2 s)"))).value ) ratio = np.array(ratio) return -2.5 * np.log10(ratio) # return self._filters.get_ab_magnitudes(self._wrapped_model).to_pandas().loc[0] def plot_filters(self): """ plot the filter/ transmission curves :return: fig """ spec_filters.plot_filters(self._filters) @property def n_bands(self): """ :return: the number of bands """ return len(self._filters.names) @property def filter_names(self): """ :return: the filter names """ return self._names @property def native_filter_names(self): """ the native filter names :return: """ return self._filters.names @property def speclite_filters(self): """ exposes the speclite fitlers for simulations :return: """ return self._filters @property def effective_wavelength(self): """ :return: the average wave length of the filters """ return self._filters.effective_wavelengths @property def waveunits(self): """ :return: the pysynphot wave units """ return astro_units.Angstrom
bsd-3-clause
mhdella/ThinkStats2
code/hinc.py
67
1494
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import numpy as np import pandas import thinkplot import thinkstats2 def Clean(s): """Converts dollar amounts to integers.""" try: return int(s.lstrip('$').replace(',', '')) except ValueError: if s == 'Under': return 0 elif s == 'over': return np.inf return None def ReadData(filename='hinc06.csv'): """Reads filename and returns populations in thousands filename: string returns: pandas Series of populations in thousands """ data = pandas.read_csv(filename, header=None, skiprows=9) cols = data[[0, 1]] res = [] for _, row in cols.iterrows(): label, freq = row.values freq = int(freq.replace(',', '')) t = label.split() low, high = Clean(t[0]), Clean(t[-1]) res.append((high, freq)) df = pandas.DataFrame(res) # correct the first range df[0][0] -= 1 # compute the cumulative sum of the freqs df[2] = df[1].cumsum() # normalize the cumulative freqs total = df[2][41] df[3] = df[2] / total # add column names df.columns = ['income', 'freq', 'cumsum', 'ps'] return df def main(): df = ReadData() print(df) if __name__ == "__main__": main()
gpl-3.0
Ktakuya332C/FERL
sim.py
1
1350
from __future__ import division import numpy as np from matplotlib import pylab as plt from tqdm import tqdm, trange from tools import * # Paramters n_hidden = 13 dim_state = 12 dim_action = 40 scale = 0.7 n_key_states = 13 n_train = 30000 n_sample = 100 start_learning_rate = 0.01 last_learning_rate = 0.01 learning_rate = start_learning_rate start_beta = 1 last_beta = 10 beta = start_beta ave_per = 1000 # Define MDP mdp = LargeActionTask(n_key_states, dim_state, dim_action) # RBM training rbm = RBM(n_hidden, dim_state, dim_action, scale) rewards = [] mean_rewards = [] print( "Training start" ) t = trange(1, n_train + 1) for i in t: # Learning rate adaptation learning_rate = start_learning_rate * ( last_learning_rate / start_learning_rate ) ** ( i / n_train ) beta = start_beta * ( last_beta / start_beta ) ** ( i / n_train ) # Training state = mdp.next_key_state() action = rbm.play(state, n_sample, beta) reward = mdp.reward(action) rbm.qlearn(state, action, reward, learning_rate) # Save reward t.set_description("Reward %d"%reward) rewards.append(reward) if i % ave_per == 0 and i > 0: mean_rewards.append( np.mean(rewards[i-ave_per:i]) ) # Plotting plt.plot(np.arange(1, 31), mean_rewards) plt.xlabel("1000s iterations") plt.ylabel("Average reward") plt.savefig("result.png")
mit
basilfx/RIOT
tests/pkg_cmsis-nn/generate_image.py
15
1140
#!/usr/bin/env python3 """Generate a binary file from a sample image of the CIFAR-10 dataset. Pixel of the sample are stored as uint8, images have size 32x32x3. """ import os import argparse import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.datasets import cifar10 SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) def main(args): _, (cifar10_test, _) = cifar10.load_data() data = cifar10_test[args.index] data = data.astype('uint8') output_path = os.path.join(SCRIPT_DIR, args.output) np.ndarray.tofile(data, output_path) if args.no_plot is False: plt.imshow(data) plt.show() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-i", "--index", type=int, default=0, help="Image index in CIFAR test dataset") parser.add_argument("-o", "--output", type=str, default='input', help="Output filename") parser.add_argument("--no-plot", default=False, action='store_true', help="Disable image display in matplotlib") main(parser.parse_args())
lgpl-2.1
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/examples/pylab_examples/colours.py
12
1320
#!/usr/bin/env python # -*- noplot -*- """ Some simple functions to generate colours. """ import numpy as np from matplotlib.colors import colorConverter def pastel(colour, weight=2.4): """ Convert colour into a nice pastel shade""" rgb = np.asarray(colorConverter.to_rgb(colour)) # scale colour maxc = max(rgb) if maxc < 1.0 and maxc > 0: # scale colour scale = 1.0 / maxc rgb = rgb * scale # now decrease saturation total = rgb.sum() slack = 0 for x in rgb: slack += 1.0 - x # want to increase weight from total to weight # pick x s.t. slack * x == weight - total # x = (weight - total) / slack x = (weight - total) / slack rgb = [c + (x * (1.0-c)) for c in rgb] return rgb def get_colours(n): """ Return n pastel colours. """ base = np.asarray([[1,0,0], [0,1,0], [0,0,1]]) if n <= 3: return base[0:n] # how many new colours to we need to insert between # red and green and between green and blue? needed = (((n - 3) + 1) / 2, (n - 3) / 2) colours = [] for start in (0, 1): for x in np.linspace(0, 1, needed[start]+2): colours.append((base[start] * (1.0 - x)) + (base[start+1] * x)) return [pastel(c) for c in colours[0:n]]
gpl-2.0
kingkarlaachen/TraitsMatplotlibWidget
DraggableResizableRectangle.py
2
18419
import numpy as np from traits.api import HasTraits, Instance, Any, Str, on_trait_change, Int, Event import matplotlib.patches as mpatches import matplotlib def axes_boundery_check(pos_1,pos_2,dx,dy,xlim,ylim): ''' Checks whether the movement of the widget would result in a final position which is outside of the data range. If widget being outside of data range, it sets dx/ dy so that the widget is at the closest value inside the data. :param pos_1: Widget source point 1 :param pos_2: Widget source point 2 :param dx: shift of widget in x direction :param dy: shift of widget in y direction :param xlim: axes limits in x direction :param ylim: axes limits in y direction :return: Returns ''' x0, y0 = pos_1 x1, y1 = pos_2 if np.min([x0 + dx, x1 + dx]) < np.min(xlim): if x0 < x1: dx = np.min(xlim) - x0 else: dx = np.min(xlim) - x1 if np.max([x0 + dx, x1 + dx]) > np.max(xlim): if x0 > x1: dx = np.max(xlim) - x0 else: dx = np.max(xlim) - x1 if np.min([y0 + dy, y1 + dy]) < np.min(ylim): if y0 < y1: dy = np.min(ylim) - y0 else: dy = np.min(ylim) - y1 if np.max([y0 + dy, y1 + dy]) > np.max(ylim): if y0 > y1: dy = np.max(ylim) - y0 else: dy = np.max(ylim) - y1 return dx, dy class DraggableResizeableLine(HasTraits): """ Resizable Lines based on the DraggabelResizableRectangle. Draggable is yet not implemented Author: KingKarl, April 2017 """ lock = None # only one can be animated at a time updateXY = Int(0) updateText = Int(0) released = Int(0) axes_xlim = None axes_ylim = None def __init__(self, line, border_tol=0.15, allow_resize=True, fixed_aspect_ratio=False): super(DraggableResizeableLine,self).__init__() self.line = line self.border_tol = border_tol self.press = None if DraggableResizeableLine.axes_xlim is None: DraggableResizeableLine.axes_xlim = self.line.axes.get_xlim() if DraggableResizeableLine.axes_ylim is None: DraggableResizeableLine.axes_ylim = self.line.axes.get_ylim() @staticmethod def reset_borders(): DraggableResizeableLine.axes_xlim = None DraggableResizeableLine.axes_ylim = None print('Reset of DraggableResizableLines Border to None') def connect(self): 'connect to all the events we need' self.cidpress = self.line.figure.canvas.mpl_connect('button_press_event', self.on_press) self.cidrelease = self.line.figure.canvas.mpl_connect('button_release_event', self.on_release) self.cidmotion = self.line.figure.canvas.mpl_connect('motion_notify_event', self.on_motion) def on_press(self, event): 'on button press we will see if the mouse is over us and store some data' if self.line.figure.canvas.toolbar._active is not None: return if event.inaxes != self.line.axes: return if DraggableResizeableLine.lock is not None: return if np.abs(self.line.axes.get_xlim()[0]-self.line.axes.get_xlim()[1])>np.abs(DraggableResizeableLine.axes_xlim[0]-DraggableResizeableLine.axes_xlim[1]): DraggableResizeableLine.axes_xlim = self.line.axes.get_xlim() if np.abs(self.line.axes.get_ylim()[0]-self.line.axes.get_ylim()[1])>np.abs(DraggableResizeableLine.axes_ylim[0]-DraggableResizeableLine.axes_ylim[1]): DraggableResizeableLine.axes_ylim = self.line.axes.get_ylim() x,y = self.line.get_data() x0, x1 = x y0, y1 = y if not self.within_border_tol([x0, y0],[x1, y1],event): return DraggableResizeableLine.lock = self self.press = x0, y0, x1, y1, event.xdata, event.ydata canvas = self.line.figure.canvas axes = self.line.axes self.line.set_animated(True) canvas.draw() self.background = canvas.copy_from_bbox(self.line.axes.bbox) # now redraw just the rectangle axes.draw_artist(self.line) # and blit just the redrawn area canvas.blit(axes.bbox) def within_border_tol(self,pos_0, pos_1, event): x0, y0 = pos_0 x1, y1 = pos_1 xpress, ypress = event.xdata, event.ydata bt = self.border_tol * (abs(x0-x1)**2 + abs(y0-y1)**2)**0.5 if (abs(x0-xpress)**2+abs(y0-ypress)**2)**0.5<2**0.5*abs(bt) or (abs(x1-xpress)**2+abs(y1-ypress)**2)**0.5<2**0.5*abs(bt) or (abs((x0+x1)/2-xpress)**2+abs((y0+y1)/2-ypress)**2)**0.5<2**0.5*abs(bt): return True else: return False def on_motion(self, event): 'on motion we will move the rect if the mouse is over us' if DraggableResizeableLine.lock is not self: return if event.inaxes != self.line.axes: return x0, y0, x1, y1, xpress, ypress = self.press self.dx = event.xdata - xpress self.dy = event.ydata - ypress self.update_line() canvas = self.line.figure.canvas axes = self.line.axes # restore the background region canvas.restore_region(self.background) # redraw just the current line axes.draw_artist(self.line) # blit just the redrawn area canvas.blit(axes.bbox) self.updateXY += 1 def on_release(self, event): 'on release we reset the press data' if DraggableResizeableLine.lock is not self: return self.press = None DraggableResizeableLine.lock = None # turn off the rect animation property and reset the background self.line.set_animated(False) self.background = None self.updateText +=1 # redraw the full figure self.line.figure.canvas.draw() self.released += 1 def disconnect(self): 'disconnect all the stored connection ids' self.line.figure.canvas.mpl_disconnect(self.cidpress) self.line.figure.canvas.mpl_disconnect(self.cidrelease) self.line.figure.canvas.mpl_disconnect(self.cidmotion) def update_line(self): x0, y0, x1, y1, xpress, ypress = self.press bt = self.border_tol * (abs(x0-x1)**2 + abs(y0-y1)**2)**0.5 dx, dy = self.dx, self.dy dx, dy = axes_boundery_check([x0,y0],[x1,y1],dx,dy,DraggableResizeableLine.axes_xlim,DraggableResizeableLine.axes_ylim) if (abs(x0-xpress)**2+abs(y0-ypress)**2)**0.5<2**0.5*abs(bt): # Check for if mouse close to start (pos 0) of line self.line.set_data([x0+dx,x1],[y0+dy,y1]) elif (abs(x1-xpress)**2+abs(y1-ypress)**2)**0.5<2**0.5*abs(bt): # Check for if mouse close to start (pos 1) of line self.line.set_data([x0,x1+dx],[y0,y1+dy]) elif (abs((x0+x1)/2-xpress)**2+abs((y0+y1)/2-ypress)**2)**0.5<2**0.5*abs(bt): # Make line draggable at center self.line.set_data([x0+dx,x1+dx],[y0+dy,y1+dy]) class AnnotatedLine(HasTraits): axes = Instance(matplotlib.axes.Axes) annotext = Instance(matplotlib.text.Text) text = Str() drl = Instance(DraggableResizeableLine) lineUpdated = Int(0) lineReleased = Int(0) def __init__(self, axes, x0, y0, x1, y1,text, color = 'k'):#text, color='c', ecolor='k', alpha=0.7): print("View: Line created") super(AnnotatedLine, self).__init__() self.pos_0 = [x0,y0] self.pos_1 = [x1,y1] self.axes = axes self.text = text line_handle = self.axes.plot([x0,x1],[y0,y1],color = color)[0] self.line = line_handle self.drl = DraggableResizeableLine(line_handle) self.drl.connect() def disconnect(self): self.drl.disconnect() def connect(self): self.drl.connect() @on_trait_change('drl.updateText') def updateText(self): try: self.annotext.remove() except AttributeError: print("AnnotatedRectangle: Found no annotated text") x, y = self.line.get_data() self.pos_0 = np.array([x[0],y[0]]) self.pos_1 = np.array([x[1],y[1]]) self.annotext = self.axes.annotate(self.text, self.pos_1+(self.pos_0-self.pos_1)/2, color='w', weight='bold',fontsize=6, ha='center', va='center') @on_trait_change('drl.updateXY') def xyLineUpdated(self): self.lineUpdated += 1 @on_trait_change('drl.released') def released(self): print("AnnotatedRectangle: Rectangle released") x, y = self.line.get_data() self.pos_0 = np.array([x[0],y[0]]) self.pos_1 = np.array([x[1],y[1]]) self.lineReleased += 1 def get_pos(self): return self.pos_0, self.pos_1 def remove(self): self.disconnect() self.line.remove() self.annotext.remove() del self class DraggableResizeableRectangle(HasTraits): """ Draggable and resizeable rectangle with the animation blit techniques. Based on example code at http://matplotlib.sourceforge.net/users/event_handling.html If *allow_resize* is *True* the recatngle can be resized by dragging its lines. *border_tol* specifies how close the pointer has to be to a line for the drag to be considered a resize operation. Dragging is still possible by clicking the interior of the rectangle. *fixed_aspect_ratio* determines if the recatngle keeps its aspect ratio during resize operations. """ updateText = Int(0) updateXY = Int(0) released = Int(0) lock = None # only one can be animated at a time axes_xlim = None # Needed to allow widget to leave boundaries of zoomed in data. Might be unnecessary of matplotlib allows do get the unzoomed axes. axes_ylim = None @staticmethod def reset_borders(): DraggableResizeableRectangle.axes_xlim = None DraggableResizeableRectangle.axes_ylim = None print('Reset of DraggableResizableRectangle Border to None') def __init__(self, rect, border_tol=.15, allow_resize=True, fixed_aspect_ratio=False): self.rect = rect self.border_tol = border_tol self.allow_resize = allow_resize self.fixed_aspect_ratio = fixed_aspect_ratio self.press = None self.background = None if DraggableResizeableRectangle.axes_xlim is None: DraggableResizeableRectangle.axes_xlim = self.rect.axes.get_xlim() if DraggableResizeableRectangle.axes_ylim is None: DraggableResizeableRectangle.axes_ylim = self.rect.axes.get_ylim() def connect(self): 'connect to all the events we need' self.cidpress = self.rect.figure.canvas.mpl_connect( 'button_press_event', self.on_press) self.cidrelease = self.rect.figure.canvas.mpl_connect( 'button_release_event', self.on_release) self.cidmotion = self.rect.figure.canvas.mpl_connect( 'motion_notify_event', self.on_motion) def on_press(self, event): 'on button press we will see if the mouse is over us and store some data' if self.rect.figure.canvas.toolbar._active is not None: return if event.inaxes != self.rect.axes: return if DraggableResizeableRectangle.lock is not None: return contains, attrd = self.rect.contains(event) if not contains: return if np.abs(self.rect.axes.get_xlim()[0]-self.rect.axes.get_xlim()[1])>np.abs(DraggableResizeableRectangle.axes_xlim[0]-DraggableResizeableRectangle.axes_xlim[1]): DraggableResizeableRectangle.axes_xlim = self.rect.axes.get_xlim() if np.abs(self.rect.axes.get_ylim()[0]-self.rect.axes.get_ylim()[1])>np.abs(DraggableResizeableRectangle.axes_ylim[0]-DraggableResizeableRectangle.axes_ylim[1]): DraggableResizeableRectangle.axes_ylim = self.rect.axes.get_ylim() x0, y0 = self.rect.xy w0, h0 = self.rect.get_width(), self.rect.get_height() aspect_ratio = np.true_divide(w0, h0) self.press = x0, y0, w0, h0, aspect_ratio, event.xdata, event.ydata DraggableResizeableRectangle.lock = self # draw everything but the selected rectangle and store the pixel buffer canvas = self.rect.figure.canvas axes = self.rect.axes self.rect.set_animated(True) canvas.draw() self.background = canvas.copy_from_bbox(self.rect.axes.bbox) # now redraw just the rectangle axes.draw_artist(self.rect) # and blit just the redrawn area canvas.blit(axes.bbox) def on_motion(self, event): 'on motion we will move the rect if the mouse is over us' if DraggableResizeableRectangle.lock is not self: return if event.inaxes != self.rect.axes: return x0, y0, w0, h0, aspect_ratio, xpress, ypress = self.press self.dx = event.xdata - xpress self.dy = event.ydata - ypress self.update_rect() canvas = self.rect.figure.canvas axes = self.rect.axes # restore the background region canvas.restore_region(self.background) # redraw just the current rectangle axes.draw_artist(self.rect) # blit just the redrawn area canvas.blit(axes.bbox) self.updateXY += 1 def on_release(self, event): 'on release we reset the press data' if DraggableResizeableRectangle.lock is not self: return self.press = None DraggableResizeableRectangle.lock = None # turn off the rect animation property and reset the background self.rect.set_animated(False) self.background = None self.updateText += 1 # redraw the full figure self.rect.figure.canvas.draw() self.released += 1 def disconnect(self): 'disconnect all the stored connection ids' self.rect.figure.canvas.mpl_disconnect(self.cidpress) self.rect.figure.canvas.mpl_disconnect(self.cidrelease) self.rect.figure.canvas.mpl_disconnect(self.cidmotion) def update_rect(self): x0, y0, w0, h0, aspect_ratio, xpress, ypress = self.press dx, dy = self.dx, self.dy bt = self.border_tol fixed_ar = self.fixed_aspect_ratio dx, dy = axes_boundery_check([x0,y0],[x0+w0,y0+h0],dx,dy,self.rect.axes.get_xlim(),self.rect.axes.get_ylim()) if (not self.allow_resize or (abs(x0+np.true_divide(w0,2)-xpress)<np.true_divide(w0,2)-bt*w0 and abs(y0+np.true_divide(h0,2)-ypress)<np.true_divide(h0,2)-bt*h0)): self.rect.set_x(x0+dx) self.rect.set_y(y0+dy) elif abs(x0-xpress)<bt*w0: self.rect.set_x(x0+dx) self.rect.set_width(w0-dx) if fixed_ar: dy = np.true_divide(dx, aspect_ratio) self.rect.set_y(y0+dy) self.rect.set_height(h0-dy) elif abs(x0+w0-xpress)<bt*w0: self.rect.set_width(w0+dx) if fixed_ar: dy = np.true_divide(dx, aspect_ratio) self.rect.set_height(h0+dy) elif abs(y0-ypress)<bt*h0: self.rect.set_y(y0+dy) self.rect.set_height(h0-dy) if fixed_ar: dx = dy*aspect_ratio self.rect.set_x(x0+dx) self.rect.set_width(w0-dx) elif abs(y0+h0-ypress)<bt*h0: self.rect.set_height(h0+dy) if fixed_ar: dx = dy*aspect_ratio self.rect.set_width(w0+dx) class AnnotatedRectangle(HasTraits): rectangle = Instance(mpatches.Rectangle) axes = Instance(matplotlib.axes.Axes) annotext = Instance(matplotlib.text.Text) text = Str() drr = Instance(DraggableResizeableRectangle) rectUpdated = Int(0) rectReleased = Int(0) def __init__(self, axes, x1, y1, x2, y2, text, color='c', ecolor='k', alpha=0.7): print("View: AnnotatedRectangle created") super(AnnotatedRectangle, self).__init__() self.x1 = x1 self.x2 = x2 self.y1 = y1 self.y2 = y2 # Rectangle Workaround, because it's not draggable when selecting from top if x1 > x2: temp = x2 x2 = x1 x1 = temp if y1 > y2: temp = y2 y2 = y1 y1 = temp xto = x2 - x1 yto = y2 - y1 rectangle = mpatches.Rectangle((x1, y1), xto, yto, ec=ecolor, color=color, alpha=alpha) self.text = text self.axes = axes xtext = self.x1 + (self.x2 - self.x1) / 2. ytext = self.y1 + (self.y2 - self.y1) / 2. self.axes.add_patch(rectangle) self.drr = DraggableResizeableRectangle(rectangle) self.drr.connect() self.rectangle = self.drr.rect @on_trait_change('drr.updateText') def updateText(self): try: self.annotext.remove() except AttributeError: print("AnnotatedRectangle: Found no annotated text") x1, y1 = self.drr.rect.get_xy() x2 = x1 + self.drr.rect.get_width()/2.0 y2 = y1 + self.drr.rect.get_height()/2.0 self.annotext = self.axes.annotate(self.text, (x2, y2), color='w', weight='bold', fontsize=6, ha='center', va='center') @on_trait_change('drr.updateXY') def xyRectUpdated(self): self.rectUpdated += 1 @on_trait_change('drr.released') def released(self): print("AnnotatedRectangle: Rectangle released") self.x1, self.y1 = self.drr.rect.get_xy() self.x2 = self.x1+self.drr.rect.get_width() self.y2 = self.y1+self.drr.rect.get_width() self.rectReleased += 1 def remove(self): self.disconnect() self.rectangle.remove() self.annotext.remove() del self def get_rect_xy(self): return self.drr.rect.get_xy() def get_rect_width(self): return self.drr.rect.get_width() def get_rect_height(self): return self.drr.rect.get_height() def disconnect(self): self.drr.disconnect() def connect(self): self.drr.connect() if __name__ == '__main__': p = mpatches.Rectangle((0.5, 0.5), 0.2, 0.2, ec="k", color='c', alpha=0.7) d = DraggableResizeableRectangle(p) d.configure_traits()
mit
kayak/fireant
fireant/tests/widgets/test_pandas.py
2
30582
import copy from functools import partial from unittest import TestCase import numpy as np import pandas as pd import pandas.testing from pypika import Table from pypika.analytics import Sum from fireant import DataSet, DataType, Field, Rollup from fireant.tests.dataset.mocks import ( CumSum, ElectionOverElection, dimx0_metricx1_df, dimx0_metricx2_df, dimx1_date_df, dimx1_date_operation_df, dimx1_num_df, dimx1_str_df, dimx2_date_str_df, dimx2_date_str_ref_df, mock_dataset, no_index_df, test_database, ) from fireant.utils import alias_selector as f from fireant.widgets.pandas import Pandas def format_float(x, is_raw=False): if pd.isnull(x): return '' if x in [np.inf, -np.inf]: return 'Inf' return f'{x:.0f}' if is_raw else f'{x:,.0f}' format_float_raw = partial(format_float, is_raw=True) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) class PandasTransformerTests(TestCase): maxDiff = None def test_metricx1(self): result = Pandas(mock_dataset.fields.votes).transform(dimx0_metricx1_df, [], []) expected = dimx0_metricx1_df.copy()[[f('votes')]] expected.columns = ['Votes'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_metricx2(self): result = Pandas(mock_dataset.fields.votes, mock_dataset.fields.wins).transform(dimx0_metricx2_df, [], []) expected = dimx0_metricx2_df.copy()[[f('votes'), f('wins')]] expected.columns = ['Votes', 'Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_metricx2_reversed(self): result = Pandas(mock_dataset.fields.wins, mock_dataset.fields.votes).transform(dimx0_metricx2_df, [], []) expected = dimx0_metricx2_df.copy()[[f('wins'), f('votes')]] expected.columns = ['Wins', 'Votes'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_dimx1_date(self): result = Pandas(mock_dataset.fields.wins).transform(dimx1_date_df, [mock_dataset.fields.timestamp], []) expected = dimx1_date_df.copy()[[f('wins')]] expected.index.names = ['Timestamp'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_dimx1_date_with_operation(self): result = Pandas(CumSum(mock_dataset.fields.votes)).transform( dimx1_date_operation_df, [mock_dataset.fields.timestamp], [] ) expected = dimx1_date_operation_df.copy()[[f('cumsum(votes)')]] expected.index.names = ['Timestamp'] expected.columns = ['CumSum(Votes)'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_dimx1_str(self): result = Pandas(mock_dataset.fields.wins).transform(dimx1_str_df, [mock_dataset.fields.political_party], []) expected = dimx1_str_df.copy()[[f('wins')]] expected.index = pd.Index(['Democrat', 'Independent', 'Republican'], name='Party') expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_dimx1_int(self): result = Pandas(mock_dataset.fields.wins).transform(dimx1_num_df, [mock_dataset.fields['candidate-id']], []) expected = dimx1_num_df.copy()[[f('wins')]] expected.index.names = ['Candidate ID'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_dimx2_date_str(self): dimensions = [mock_dataset.fields.timestamp, mock_dataset.fields.political_party] result = Pandas(mock_dataset.fields.wins).transform(dimx2_date_str_df, dimensions, []) expected = dimx2_date_str_df.copy()[[f('wins')]] expected.index.names = ['Timestamp', 'Party'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_transpose_dimx2_str(self): result = Pandas(mock_dataset.fields.wins, transpose=True).transform( dimx1_str_df, [mock_dataset.fields.political_party], [] ) expected = dimx1_str_df.copy()[[f('wins')]] expected.index = pd.Index(['Democrat', 'Independent', 'Republican'], name='Party') expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.transpose() expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx1_str_transposes_data_frame(self): result = Pandas(mock_dataset.fields.wins, pivot=[mock_dataset.fields.political_party]).transform( dimx1_str_df, [mock_dataset.fields.political_party], [] ) expected = dimx1_str_df.copy()[[f('wins')]] expected.index = pd.Index(['Democrat', 'Independent', 'Republican'], name='Party') expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.transpose() expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx2_date_str(self): result = Pandas(mock_dataset.fields.wins, pivot=[mock_dataset.fields.political_party]).transform( dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], [] ) expected = dimx2_date_str_df.copy()[[f('wins')]] expected = expected.unstack(level=[1]) expected.index.names = ['Timestamp'] expected.columns = ['Democrat', 'Independent', 'Republican'] expected.columns.names = ['Party'] expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_hidden_dimx2_date_str(self): dimensions = [mock_dataset.fields.timestamp, mock_dataset.fields.political_party] result = Pandas(mock_dataset.fields.wins, hide=[mock_dataset.fields.political_party]).transform( dimx2_date_str_df, dimensions, [] ) expected = dimx2_date_str_df.copy()[[f('wins')]] expected.reset_index('$political_party', inplace=True, drop=True) expected.index.names = ['Timestamp'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_hidden_metric_dimx2_date_str(self): dimensions = [mock_dataset.fields.timestamp, mock_dataset.fields.political_party] references = [ElectionOverElection(mock_dataset.fields.timestamp)] result = Pandas(mock_dataset.fields.votes, hide=[mock_dataset.fields.votes]).transform( dimx2_date_str_ref_df, dimensions, references ) expected = dimx2_date_str_ref_df.copy()[[f('votes_eoe')]] expected.index.names = ['Timestamp', 'Party'] expected.columns = ['Votes EoE'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_hidden_ref_dimx2_date_str(self): dimensions = [mock_dataset.fields.timestamp, mock_dataset.fields.political_party] references = [ElectionOverElection(mock_dataset.fields.timestamp)] result = Pandas(mock_dataset.fields.votes, hide=['votes_eoe']).transform( dimx2_date_str_ref_df, dimensions, references ) expected = dimx2_date_str_ref_df.copy()[[f('votes')]] expected.index.names = ['Timestamp', 'Party'] expected.columns = ['Votes'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_fetch_only_dimx2_date_str(self): dimensions = [mock_dataset.fields.timestamp, mock_dataset.fields.political_party] dimensions[1].fetch_only = True result = Pandas(mock_dataset.fields.wins).transform(dimx2_date_str_df, dimensions, []) dimensions[1].fetch_only = False expected = dimx2_date_str_df.copy()[[f('wins')]] expected.reset_index('$political_party', inplace=True, drop=True) expected.index.names = ['Timestamp'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_time_series_ref(self): dimensions = [mock_dataset.fields.timestamp, mock_dataset.fields.political_party] references = [ElectionOverElection(mock_dataset.fields.timestamp)] result = Pandas(mock_dataset.fields.votes).transform(dimx2_date_str_ref_df, dimensions, references) expected = dimx2_date_str_ref_df.copy()[[f('votes'), f('votes_eoe')]] expected.index.names = ['Timestamp', 'Party'] expected.columns = ['Votes', 'Votes EoE'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_metric_format(self): import copy votes = copy.copy(mock_dataset.fields.votes) votes.prefix = '$' votes.suffix = '€' votes.precision = 2 # divide the data frame by 3 to get a repeating decimal so we can check precision result = Pandas(votes).transform(dimx1_date_df / 3, [mock_dataset.fields.timestamp], []) f_votes = f('votes') expected = dimx1_date_df.copy()[[f_votes]] expected[f_votes] = ['${0:,.2f}€'.format(x) for x in expected[f_votes] / 3] expected.index.names = ['Timestamp'] expected.columns = ['Votes'] expected.columns.name = 'Metrics' pandas.testing.assert_frame_equal(expected, result) def test_nan_in_metrics(self): cat_dim_df_with_nan = dimx1_str_df.copy() cat_dim_df_with_nan['$wins'] = cat_dim_df_with_nan['$wins'].apply(float) cat_dim_df_with_nan.iloc[2, 1] = np.nan result = Pandas(mock_dataset.fields.wins).transform( cat_dim_df_with_nan, [mock_dataset.fields.political_party], [] ) expected = cat_dim_df_with_nan.copy()[[f('wins')]] expected.index = pd.Index(['Democrat', 'Independent', 'Republican'], name='Party') expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_inf_in_metrics(self): cat_dim_df_with_nan = dimx1_str_df.copy() cat_dim_df_with_nan['$wins'] = cat_dim_df_with_nan['$wins'].apply(float) cat_dim_df_with_nan.iloc[2, 1] = np.inf result = Pandas(mock_dataset.fields.wins).transform( cat_dim_df_with_nan, [mock_dataset.fields.political_party], [] ) expected = cat_dim_df_with_nan.copy()[[f('wins')]] expected.index = pd.Index(['Democrat', 'Independent', 'Republican'], name='Party') expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_neginf_in_metrics(self): cat_dim_df_with_nan = dimx1_str_df.copy() cat_dim_df_with_nan['$wins'] = cat_dim_df_with_nan['$wins'].apply(float) cat_dim_df_with_nan.iloc[2, 1] = np.inf result = Pandas(mock_dataset.fields.wins).transform( cat_dim_df_with_nan, [mock_dataset.fields.political_party], [] ) expected = cat_dim_df_with_nan.copy()[[f('wins')]] expected.index = pd.Index(['Democrat', 'Independent', 'Republican'], name='Party') expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_inf_in_metrics_with_precision_zero(self): cat_dim_df_with_nan = dimx1_str_df.copy() cat_dim_df_with_nan['$wins'] = cat_dim_df_with_nan['$wins'].apply(float) cat_dim_df_with_nan.iloc[2, 1] = np.inf mock_modified_dataset = copy.deepcopy(mock_dataset) mock_modified_dataset.fields.wins.precision = 0 result = Pandas(mock_modified_dataset.fields.wins).transform( cat_dim_df_with_nan, [mock_modified_dataset.fields.political_party], [] ) expected = cat_dim_df_with_nan.copy()[[f('wins')]] expected.index = pd.Index(['Democrat', 'Independent', 'Republican'], name='Party') expected['$wins'] = ['6', '0', 'Inf'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' pandas.testing.assert_frame_equal(expected, result) class PandasTransformerSortTests(TestCase): def test_metricx2_sort_index_asc(self): result = Pandas(mock_dataset.fields.wins, sort=[0]).transform( dimx1_date_df, [mock_dataset.fields.timestamp], [] ) expected = dimx1_date_df.copy()[[f('wins')]] expected.index.names = ['Timestamp'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.sort_index() expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_metricx2_sort_index_desc(self): result = Pandas(mock_dataset.fields.wins, sort=[0], ascending=[False]).transform( dimx1_date_df, [mock_dataset.fields.timestamp], [] ) expected = dimx1_date_df.copy()[[f('wins')]] expected.index.names = ['Timestamp'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.sort_index(ascending=False) expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_metricx2_sort_value_asc(self): result = Pandas(mock_dataset.fields.wins, sort=[1]).transform( dimx1_date_df, [mock_dataset.fields.timestamp], [] ) expected = dimx1_date_df.copy()[[f('wins')]] expected.index.names = ['Timestamp'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.sort_values(['Wins']) expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_metricx2_sort_value_desc(self): result = Pandas(mock_dataset.fields.wins, sort=[1], ascending=[False]).transform( dimx1_date_df, [mock_dataset.fields.timestamp], [] ) expected = dimx1_date_df.copy()[[f('wins')]] expected.index.names = ['Timestamp'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.sort_values(['Wins'], ascending=False) expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_metricx2_sort_index_and_value(self): result = Pandas(mock_dataset.fields.wins, sort=[-0, 1]).transform( dimx1_date_df, [mock_dataset.fields.timestamp], [] ) expected = dimx1_date_df.copy()[[f('wins')]] expected.index.names = ['Timestamp'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = ( expected.reset_index().sort_values(['Timestamp', 'Wins'], ascending=[True, False]).set_index('Timestamp') ) expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx2_date_str_with_sort_index_asc(self): result = Pandas(mock_dataset.fields.votes, pivot=[mock_dataset.fields.political_party], sort=[0]).transform( dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], [] ) expected = dimx2_date_str_df.copy()[[f('votes')]] expected = expected.unstack(level=[1]) expected.index.names = ['Timestamp'] expected.columns = ['Democrat', 'Independent', 'Republican'] expected.columns.names = ['Party'] expected = expected.sort_index() expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx2_date_str_with_sort_index_desc(self): result = Pandas( mock_dataset.fields.votes, pivot=[mock_dataset.fields.political_party], sort=[0], ascending=[False] ).transform(dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], []) expected = dimx2_date_str_df.copy()[[f('votes')]] expected = expected.unstack(level=[1]) expected.index.names = ['Timestamp'] expected.columns = ['Democrat', 'Independent', 'Republican'] expected.columns.names = ['Party'] expected = expected.sort_index(ascending=False) expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx2_date_str_with_sort_first_metric_asc(self): result = Pandas(mock_dataset.fields.votes, pivot=[mock_dataset.fields.political_party], sort=[1]).transform( dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], [] ) expected = dimx2_date_str_df.copy()[[f('votes')]] expected = expected.unstack(level=[1]) expected.index.names = ['Timestamp'] expected.columns = ['Democrat', 'Independent', 'Republican'] expected.columns.names = ['Party'] expected = expected.reset_index().sort_values(['Democrat']).set_index('Timestamp') expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx2_date_str_with_sort_metric_desc(self): result = Pandas( mock_dataset.fields.votes, pivot=[mock_dataset.fields.political_party], sort=[1], ascending=[False] ).transform(dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], []) expected = dimx2_date_str_df.copy()[[f('votes')]] expected = expected.unstack(level=[1]) expected.index.names = ['Timestamp'] expected.columns = ['Democrat', 'Independent', 'Republican'] expected.columns.names = ['Party'] expected = expected.reset_index().sort_values(['Democrat'], ascending=False).set_index('Timestamp') expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx2_date_str_with_sort_metric_asc(self): result = Pandas(mock_dataset.fields.votes, pivot=[mock_dataset.fields.political_party], sort=[1]).transform( dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], [] ) expected = dimx2_date_str_df.copy()[[f('votes')]] expected = expected.unstack(level=[1]) expected.index.names = ['Timestamp'] expected.columns = ['Democrat', 'Independent', 'Republican'] expected.columns.names = ['Party'] expected = expected.reset_index().sort_values(['Democrat'], ascending=True).set_index('Timestamp') expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx1_metricx2(self): result = Pandas( mock_dataset.fields.votes, mock_dataset.fields.wins, pivot=[mock_dataset.fields.timestamp] ).transform(dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], []) expected = dimx2_date_str_df.copy()[[f('votes'), f('wins')]] expected = expected.unstack(level=0) expected.index.names = ['Party'] expected.columns = pd.MultiIndex.from_product( [ ['Votes', 'Wins'], pd.DatetimeIndex(['1996-01-01', '2000-01-01', '2004-01-01', '2008-01-01', '2012-01-01', '2016-01-01']), ], names=['Metrics', 'Timestamp'], ) expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx2_date_str_with_sort_second_metric_desc(self): result = Pandas( mock_dataset.fields.votes, pivot=[mock_dataset.fields.political_party], sort=1, ascending=False ).transform(dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], []) expected = dimx2_date_str_df.copy()[[f('votes')]] expected = expected.unstack(level=[1]) expected.index.names = ['Timestamp'] expected.columns = ['Democrat', 'Independent', 'Republican'] expected.columns.names = ['Party'] expected = expected.reset_index().sort_values(['Democrat'], ascending=False).set_index('Timestamp') expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx2_date_str_with_sort_index_and_columns(self): result = Pandas( mock_dataset.fields.votes, pivot=[mock_dataset.fields.political_party], sort=[0, 2], ascending=[True, False] ).transform(dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], []) expected = dimx2_date_str_df.copy()[[f('votes')]] expected = expected.unstack(level=[1]) expected.index.names = ['Timestamp'] expected.columns = ['Democrat', 'Independent', 'Republican'] expected.columns.names = ['Party'] expected = ( expected.reset_index() .sort_values(['Timestamp', 'Democrat'], ascending=[True, False]) .set_index('Timestamp') ) expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_use_first_value_for_ascending_when_arg_has_invalid_length(self): result = Pandas( mock_dataset.fields.votes, pivot=[mock_dataset.fields.political_party], sort=[0, 2], ascending=[True] ).transform(dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], []) expected = dimx2_date_str_df.copy()[[f('votes')]] expected = expected.unstack(level=[1]) expected.index.names = ['Timestamp'] expected.columns = ['Democrat', 'Independent', 'Republican'] expected.columns.names = ['Party'] expected = expected.reset_index().sort_values(['Timestamp', 'Democrat'], ascending=True).set_index('Timestamp') expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_use_pandas_default_for_ascending_when_arg_empty_list(self): result = Pandas( mock_dataset.fields.votes, pivot=[mock_dataset.fields.political_party], sort=[0, 2], ascending=[] ).transform(dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], []) expected = dimx2_date_str_df.copy()[[f('votes')]] expected = expected.unstack(level=[1]) expected.index.names = ['Timestamp'] expected.columns = ['Democrat', 'Independent', 'Republican'] expected.columns.names = ['Party'] expected = expected.reset_index().sort_values(['Timestamp', 'Democrat'], ascending=None).set_index('Timestamp') expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_dimx2_date_str_sort_index_level_0_default_ascending(self): result = Pandas(mock_dataset.fields.wins, sort=[0]).transform( dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], [] ) expected = dimx2_date_str_df.copy()[[f('wins')]] expected.index.names = ['Timestamp', 'Party'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.reset_index().sort_values(['Timestamp']).set_index(['Timestamp', 'Party']) expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_dimx2_date_str_sort_index_level_0_asc(self): result = Pandas(mock_dataset.fields.wins, sort=[0], ascending=True).transform( dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], [] ) expected = dimx2_date_str_df.copy()[[f('wins')]] expected.index.names = ['Timestamp', 'Party'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.reset_index().sort_values(['Timestamp'], ascending=True).set_index(['Timestamp', 'Party']) expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx2_date_str_sort_index_level_1_desc(self): result = Pandas(mock_dataset.fields.wins, sort=[1], ascending=[False]).transform( dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], [] ) expected = dimx2_date_str_df.copy()[[f('wins')]] expected.index.names = ['Timestamp', 'Party'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.reset_index().sort_values(['Party'], ascending=[False]).set_index(['Timestamp', 'Party']) expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_dimx2_date_str_sort_index_and_values(self): result = Pandas(mock_dataset.fields.wins, sort=[0, 2], ascending=[False, True]).transform( dimx2_date_str_df, [mock_dataset.fields.timestamp, mock_dataset.fields.political_party], [] ) expected = dimx2_date_str_df.copy()[[f('wins')]] expected.index.names = ['Timestamp', 'Party'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = ( expected.reset_index() .sort_values(['Timestamp', 'Wins'], ascending=[False, True]) .set_index(['Timestamp', 'Party']) ) expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_empty_sort_array_is_ignored(self): result = Pandas(mock_dataset.fields.wins, sort=[]).transform(dimx1_date_df, [mock_dataset.fields.timestamp], []) expected = dimx1_date_df.copy()[[f('wins')]] expected.index.names = ['Timestamp'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_sort_value_greater_than_number_of_columns_is_ignored(self): result = Pandas(mock_dataset.fields.wins, sort=[5]).transform( dimx1_date_df, [mock_dataset.fields.timestamp], [] ) expected = dimx1_date_df.copy()[[f('wins')]] expected.index.names = ['Timestamp'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_sort_with_no_index(self): result = Pandas(mock_dataset.fields.wins, sort=[0]).transform(no_index_df, [mock_dataset.fields.timestamp], []) expected = no_index_df.copy()[[f('wins')]] expected.index.names = ['Timestamp'] expected.columns = ['Wins'] expected.columns.name = 'Metrics' expected = expected.applymap(format_float) pandas.testing.assert_frame_equal(expected, result) def test_pivoted_df_transformation_formats_totals_correctly(self): test_table = Table('test') ds = DataSet( table=test_table, database=test_database, fields=[ Field('date', label='Date', definition=test_table.date, data_type=DataType.date), Field('locale', label='Locale', definition=test_table.locale, data_type=DataType.text), Field('company', label='Company', definition=test_table.text, data_type=DataType.text), Field('metric1', label='Metric1', definition=Sum(test_table.number), data_type=DataType.number), Field('metric2', label='Metric2', definition=Sum(test_table.number), data_type=DataType.number), ], ) df = pd.DataFrame.from_dict( { '$metric1': {('~~totals', '~~totals'): 3, ('za', '~~totals'): 3, ('za', 'C1'): 2, ('za', 'C2'): 1}, '$metric2': {('~~totals', '~~totals'): 4, ('za', '~~totals'): 4, ('za', 'C1'): 2, ('za', 'C2'): 2}, } ) df.index.names = [f(ds.fields.locale.alias), f(ds.fields.company.alias)] result = Pandas(ds.fields.metric1, ds.fields.metric2, pivot=[ds.fields.company]).transform( df, [Rollup(ds.fields.locale), Rollup(ds.fields.company)], [], use_raw_values=True ) self.assertEqual(['Metrics', 'Company'], list(result.columns.names)) self.assertEqual( [ ('Metric1', 'C1'), ('Metric1', 'C2'), ('Metric1', 'Totals'), ('Metric2', 'C1'), ('Metric2', 'C2'), ('Metric2', 'Totals'), ], result.columns.values.tolist(), ) self.assertEqual(['Locale'], list(result.index.names)) self.assertEqual(['za', 'Totals'], result.index.values.tolist()) self.assertEqual([['2', '1', '3', '2', '2', '4'], ['', '', '3', '', '', '4']], result.values.tolist())
apache-2.0
massmutual/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
256
2406
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
brguez/TEIBA
src/python/srcElements_activity_swarmplot.py
1
3500
#!/usr/bin/env python #coding: utf-8 #### FUNCTIONS #### def header(string): """ Display header """ timeInfo = time.strftime("%Y-%m-%d %H:%M") print '\n', timeInfo, "****", string, "****" def subHeader(string): """ Display subheader """ timeInfo = time.strftime("%Y-%m-%d %H:%M") print timeInfo, "**", string, "**" def info(string): """ Display basic information """ timeInfo = time.strftime("%Y-%m-%d %H:%M") print timeInfo, string #### MAIN #### ## Import modules ## import argparse import sys import os.path import formats import time import pandas as pd import numpy as np from matplotlib import pyplot as plt import seaborn as sns ## Graphic style ## sns.set_style("white") sns.set_style("ticks") ## Get user's input ## parser = argparse.ArgumentParser(description= """""") parser.add_argument('activity', help='') parser.add_argument('sortedSrc', help='') parser.add_argument('-o', '--outDir', default=os.getcwd(), dest='outDir', help='output directory. Default: current working directory.' ) args = parser.parse_args() activity = args.activity sortedSrc = args.sortedSrc outDir = args.outDir scriptName = os.path.basename(sys.argv[0]) ## Display configuration to standard output ## print print "***** ", scriptName, " configuration *****" print "activity: ", activity print "sortedSrc: ", sortedSrc print "outDir: ", outDir print print "***** Executing ", scriptName, ".... *****" print ## Start ##  #### 1. ########################## ## Generate dictionary with the following format: # - dict: key(sourceElementId) -> list[number_transductions_per_donor] # Do not consider 0 cases. nbTransductionsPerDonorDict = {} # Make donor Ids list activityFile = open(activity, 'r') donorIdList = activityFile.readline().rstrip().split("\t") donorIdList = donorIdList[1:] # remove first list element tupleList = [] for line in activityFile: nbTransductionsList = line.rstrip().split("\t") cytobandId = nbTransductionsList.pop(0) ## Initialize dictionary for source element ## For each donor source element activity for donorIndex, donorId in enumerate(donorIdList): nbTransductions = int(nbTransductionsList[donorIndex]) # Not consider donors in which the source element is not active if (nbTransductions != 0): Tuple = (cytobandId, nbTransductions) tupleList.append(Tuple) ## Convert into dataframe df = pd.DataFrame(tupleList) df.columns = ['cytobandId', 'nbTransductions'] #print dataframe ## Make source elements list sortedSrcFile = open(sortedSrc, 'r') sourceElementOrder = [] for line in sortedSrcFile: colList = line.rstrip().split("\t") cytobandId = colList[0] sourceElementOrder.append(cytobandId) ##### Make plot ################# fig = plt.figure(figsize=(25,5)) #ax = sns.swarmplot(x='cytobandId', y='nbTransductions', data=hotL1Df, size=3, edgecolor="gray", order=sourceElementOrder) ax = sns.swarmplot(x='cytobandId', y='nbTransductions', data=df, size=3, edgecolor="gray", order=sourceElementOrder) ### Axis labels ax.set_xlabel('') ax.set_ylabel('# transductions') # turn the axis labels for item in ax.get_yticklabels(): item.set_rotation(0) for item in ax.get_xticklabels(): item.set_rotation(90) ## Y ticks ax.set(yticks=np.arange(0,91,10)) ## Save figure fileName = outDir + "/test.pdf" plt.savefig(fileName) #### header("Finished")
gpl-3.0
lnls-sirius/dev-packages
siriuspy/siriuspy/machshift/utils.py
1
9933
"""Machine shift utils.""" import re as _re import copy as _copy from datetime import datetime as _datetime import numpy as _np from matplotlib import pyplot as _plt from .. import util as _util from .. import clientweb as _web class MacScheduleData: """Machine schedule data.""" _TAG_FORMAT_BEG = r'(\d+)h(\d+)-(\w)-(\d+\.\d)' _TAG_FORMAT_END = r'(\d+)h(\d+)-(\w)' _mac_schedule_sdata = dict() _mac_schedule_ndata_byshift = dict() _mac_schedule_ndata_byday = dict() _mac_schedule_ndata_inicurr = dict() @staticmethod def get_mac_schedule_data(year, formating='plain'): """Get machine schedule data for year.""" MacScheduleData._reload_mac_schedule_data(year) if formating == 'plain': data = MacScheduleData._mac_schedule_sdata[year] mac_schedule = _copy.deepcopy(data) elif formating == 'numeric_byshift': data = MacScheduleData._mac_schedule_ndata_byshift[year] mac_schedule = list(zip(*data)) elif formating == 'numeric_byday': data = MacScheduleData._mac_schedule_ndata_byday[year] mac_schedule = list(zip(*data)) else: raise NotImplementedError( "machine schedule for formating '{}' " "is not defined".format(formating)) return mac_schedule @staticmethod def get_users_shift_count(begin, end): """Get users shift count for a period.""" begin, end = MacScheduleData._handle_interval_data(begin, end) _, tags = MacScheduleData._get_numeric_data_for_interval( begin, end, dtype='macsched_byshift') return _np.sum(tags) if begin != end else 0 @staticmethod def get_users_shift_day_count(begin, end): """Get users shift day count for a period.""" begin, end = MacScheduleData._handle_interval_data(begin, end) _, tags = MacScheduleData._get_numeric_data_for_interval( begin, end, dtype='macsched_byday') return _np.sum(tags) if begin != end else 0 @staticmethod def is_user_shift_programmed( timestamp=None, datetime=None, year=None, month=None, day=None, hour=0, minute=0): """Return whether a day is a predefined user shift.""" timestamp, datetime, ret_uni = MacScheduleData._handle_timestamp_data( timestamp, datetime, year, month, day, hour, minute) times, tags = MacScheduleData._get_numeric_data_for_interval( datetime[0], datetime[-1], dtype='macsched_byshift') val = _interp1d_previous(times, tags, timestamp) return bool(val) if ret_uni else val @staticmethod def get_initial_current_programmed( timestamp=None, datetime=None, year=None, month=None, day=None, hour=0, minute=0): """Return initial current for shift.""" timestamp, datetime, ret_uni = MacScheduleData._handle_timestamp_data( timestamp, datetime, year, month, day, hour, minute) times, currs = MacScheduleData._get_numeric_data_for_interval( datetime[0], datetime[-1], dtype='initial_current') val = _interp1d_previous(times, currs, timestamp) return val[0] if ret_uni else val @staticmethod def plot_mac_schedule(year): """Get machine schedule data for year.""" MacScheduleData._reload_mac_schedule_data(year) times, tags = MacScheduleData.get_mac_schedule_data( year, formating='numeric_byshift') days_of_year = len(MacScheduleData._mac_schedule_sdata[year]) new_timestamp = _np.linspace(times[0], times[-1], days_of_year*24*60) new_datetimes = [_datetime.fromtimestamp(ts) for ts in new_timestamp] new_tags = _interp1d_previous(times, tags, new_timestamp) fig = _plt.figure() _plt.plot_date(new_datetimes, new_tags, '-') _plt.title('Machine Schedule - ' + str(year)) return fig # --- private methods --- @staticmethod def _reload_mac_schedule_data(year): if year in MacScheduleData._mac_schedule_sdata: return if not _web.server_online(): raise Exception('could not connect to web server') try: data, _ = _util.read_text_data(_web.mac_schedule_read(year)) except Exception: print('No data provided for year ' + str(year) + '. ' 'Getting template data.') data, _ = _util.read_text_data(_web.mac_schedule_read('template')) databyshift = list() databyday = list() datainicurr = list() for datum in data: if len(datum) < 2: raise Exception( 'there is a date ({0}) with problem in {1} ' 'machine schedule'.format(datum, year)) month, day = int(datum[0]), int(datum[1]) if len(datum) == 2: timestamp = _datetime(year, month, day, 0, 0).timestamp() databyshift.append((timestamp, 0)) databyday.append((timestamp, 0)) datainicurr.append((timestamp, 0.0)) else: timestamp = _datetime(year, month, day, 0, 0).timestamp() databyday.append((timestamp, 1)) for tag in datum[2:]: if 'B' in tag: hour, minute, flag, inicurr = _re.findall( MacScheduleData._TAG_FORMAT_BEG, tag)[0] inicurr = float(inicurr) else: hour, minute, flag = _re.findall( MacScheduleData._TAG_FORMAT_END, tag)[0] inicurr = 0.0 flag_bit = 0 if flag == 'E' else 1 hour, minute = int(hour), int(minute) timestamp = _datetime( year, month, day, hour, minute).timestamp() databyshift.append((timestamp, flag_bit)) datainicurr.append((timestamp, inicurr)) MacScheduleData._mac_schedule_sdata[year] = data MacScheduleData._mac_schedule_ndata_byshift[year] = databyshift MacScheduleData._mac_schedule_ndata_byday[year] = databyday MacScheduleData._mac_schedule_ndata_inicurr[year] = datainicurr @staticmethod def _handle_timestamp_data( timestamp=None, datetime=None, year=None, month=None, day=None, hour=0, minute=0): ret_uni = False if timestamp is not None: if not isinstance(timestamp, (list, tuple, _np.ndarray)): timestamp = [timestamp, ] ret_uni = True datetime = [_datetime.fromtimestamp(ts) for ts in timestamp] elif datetime is not None: if not isinstance(datetime, (list, tuple, _np.ndarray)): datetime = [datetime, ] ret_uni = True timestamp = [dt.timestamp() for dt in datetime] elif year is not None: ret_uni = True datetime = [_datetime(year, month, day, hour, minute), ] timestamp = [dt.timestamp() for dt in datetime] else: raise Exception( 'Enter timestamp, datetime or datetime items data.') return timestamp, datetime, ret_uni @staticmethod def _handle_interval_data(begin, end): if isinstance(begin, float): begin = _datetime.fromtimestamp(begin) end = _datetime.fromtimestamp(end) elif isinstance(begin, dict): begin = _datetime(**begin) end = _datetime(**end) return begin, end @staticmethod def _get_numeric_data_for_interval(begin, end, dtype='macsched_byshift'): times, tags = list(), list() for y2l in _np.arange(begin.year, end.year+1): MacScheduleData._reload_mac_schedule_data(y2l) if dtype == 'macsched_byshift': data = MacScheduleData._mac_schedule_ndata_byshift[y2l] elif dtype == 'macsched_byday': data = MacScheduleData._mac_schedule_ndata_byday[y2l] elif dtype == 'initial_current': data = MacScheduleData._mac_schedule_ndata_inicurr[y2l] ytim, ytag = list(zip(*data)) times.extend(ytim) tags.extend(ytag) times, tags = _np.array(times), _np.array(tags) if begin != end: idcs = _np.where(_np.logical_and( times >= begin.timestamp(), times <= end.timestamp()))[0] if not idcs.size: idcs = _np.searchsorted(times, [begin.timestamp(), ]) idcs = idcs-1 if idcs[0] != 0 else idcs elif idcs[0] != 0: idcs = _np.r_[idcs[0]-1, idcs] return times[idcs], tags[idcs] return times, tags # This solution is a simplified version of scipy.interpolate.interp1d for # interpolation of kind 'previous' with fill_value='extrapolate' option def _interp1d_previous(x_org, y_org, x_new): """interp1d to previous.""" x_new = _np.asarray(x_new) x_org = _np.asarray(x_org).ravel() y_org = _np.asarray(y_org) # Get index of left value x_new_indices = _np.searchsorted( _np.nextafter(x_org, -_np.inf), x_new, side='left') # Clip x_new_indices so that they are within the range of x_org indices. x_new_indices = x_new_indices.clip(1, len(x_org)).astype(_np.intp) # Calculate the actual value for each entry in x_new. y_new = y_org[x_new_indices-1] return y_new # Version using scipy.interpolate.interp1d # from scipy.interpolate import interp1d as _interp1d # def _interp1d_previous(x_org, y_org, x_new): # """interp1d to previous.""" # fun = _interp1d(x_org, y_org, 'previous', fill_value='extrapolate') # y_new = fun(x_new) # return y_new
gpl-3.0
dirkcgrunwald/RTLSDR-Scanner
src/dialogs_file.py
1
40613
# # rtlsdr_scan # # http://eartoearoak.com/software/rtlsdr-scanner # # Copyright 2012 - 2015 Al Brown # # A frequency scanning GUI for the OsmoSDR rtl-sdr library at # http://sdr.osmocom.org/trac/wiki/rtl-sdr # # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import Queue import cPickle import os from PIL import Image from matplotlib import mlab, patheffects import matplotlib from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.ticker import ScalarFormatter import numpy from wx import grid import wx from wx.grid import GridCellDateTimeRenderer from wx.lib.masked.numctrl import NumCtrl, EVT_NUM from constants import SAMPLE_RATE, TUNER from events import Event from file import export_image, File from misc import format_time from panels import PanelColourBar from plot_line import Plotter from spectrum import Extent, sort_spectrum, count_points from utils_mpl import get_colours, create_heatmap from utils_wx import ValidatorCoord from widgets import TickCellRenderer class DialogProperties(wx.Dialog): def __init__(self, parent, scanInfo): wx.Dialog.__init__(self, parent, title="Scan Properties") self.scanInfo = scanInfo box = wx.BoxSizer(wx.VERTICAL) grid = wx.GridBagSizer(0, 0) boxScan = wx.StaticBoxSizer(wx.StaticBox(self, wx.ID_ANY, "Scan"), wx.HORIZONTAL) gridScan = wx.GridBagSizer(0, 0) textDesc = wx.StaticText(self, label="Description") gridScan.Add(textDesc, (0, 0), (1, 1), wx.ALL, 5) self.textCtrlDesc = wx.TextCtrl(self, value=scanInfo.desc, style=wx.TE_MULTILINE) gridScan.Add(self.textCtrlDesc, (0, 1), (2, 2), wx.ALL | wx.EXPAND, 5) textStart = wx.StaticText(self, label="Start") gridScan.Add(textStart, (2, 0), (1, 1), wx.ALL, 5) textCtrlStart = wx.TextCtrl(self, value="Unknown", style=wx.TE_READONLY) if scanInfo.start is not None: textCtrlStart.SetValue(str(scanInfo.start)) gridScan.Add(textCtrlStart, (2, 1), (1, 1), wx.ALL, 5) textMHz1 = wx.StaticText(self, wx.ID_ANY, label="MHz") gridScan.Add(textMHz1, (2, 2), (1, 1), wx.ALL, 5) textStop = wx.StaticText(self, label="Stop") gridScan.Add(textStop, (3, 0), (1, 1), wx.ALL, 5) textCtrlStop = wx.TextCtrl(self, value="Unknown", style=wx.TE_READONLY) if scanInfo.stop is not None: textCtrlStop.SetValue(str(scanInfo.stop)) gridScan.Add(textCtrlStop, (3, 1), (1, 1), wx.ALL, 5) textMHz2 = wx.StaticText(self, label="MHz") gridScan.Add(textMHz2, (3, 2), (1, 1), wx.ALL, 5) textDwell = wx.StaticText(self, label="Dwell") gridScan.Add(textDwell, (4, 0), (1, 1), wx.ALL, 5) textCtrlDwell = wx.TextCtrl(self, value="Unknown", style=wx.TE_READONLY) if scanInfo.dwell is not None: textCtrlDwell.SetValue(str(scanInfo.dwell)) gridScan.Add(textCtrlDwell, (4, 1), (1, 1), wx.ALL, 5) textSeconds = wx.StaticText(self, label="seconds") gridScan.Add(textSeconds, (4, 2), (1, 1), wx.ALL, 5) textNfft = wx.StaticText(self, label="FFT Size") gridScan.Add(textNfft, (5, 0), (1, 1), wx.ALL, 5) textCtrlNfft = wx.TextCtrl(self, value="Unknown", style=wx.TE_READONLY) if scanInfo.nfft is not None: textCtrlNfft.SetValue(str(scanInfo.nfft)) gridScan.Add(textCtrlNfft, (5, 1), (1, 1), wx.ALL, 5) textRbw = wx.StaticText(self, label="RBW") gridScan.Add(textRbw, (6, 0), (1, 1), wx.ALL, 5) rbw = ((SAMPLE_RATE / scanInfo.nfft) / 1000.0) * 2.0 textCtrlStop = wx.TextCtrl(self, value="{0:.3f}".format(rbw), style=wx.TE_READONLY) gridScan.Add(textCtrlStop, (6, 1), (1, 1), wx.ALL, 5) textKHz = wx.StaticText(self, label="kHz") gridScan.Add(textKHz, (6, 2), (1, 1), wx.ALL, 5) textTime = wx.StaticText(self, label="First scan") gridScan.Add(textTime, (7, 0), (1, 1), wx.ALL, 5) textCtrlTime = wx.TextCtrl(self, value="Unknown", style=wx.TE_READONLY) if scanInfo.timeFirst is not None: textCtrlTime.SetValue(format_time(scanInfo.timeFirst, True)) gridScan.Add(textCtrlTime, (7, 1), (1, 1), wx.ALL, 5) textTime = wx.StaticText(self, label="Last scan") gridScan.Add(textTime, (8, 0), (1, 1), wx.ALL, 5) textCtrlTime = wx.TextCtrl(self, value="Unknown", style=wx.TE_READONLY) if scanInfo.timeLast is not None: textCtrlTime.SetValue(format_time(scanInfo.timeLast, True)) gridScan.Add(textCtrlTime, (8, 1), (1, 1), wx.ALL, 5) textLat = wx.StaticText(self, label="Latitude") gridScan.Add(textLat, (9, 0), (1, 1), wx.ALL, 5) self.textCtrlLat = wx.TextCtrl(self, value="Unknown") self.textCtrlLat.SetValidator(ValidatorCoord(True)) if scanInfo.lat is not None: self.textCtrlLat.SetValue(str(scanInfo.lat)) gridScan.Add(self.textCtrlLat, (9, 1), (1, 1), wx.ALL, 5) textLon = wx.StaticText(self, label="Longitude") gridScan.Add(textLon, (10, 0), (1, 1), wx.ALL, 5) self.textCtrlLon = wx.TextCtrl(self, value="Unknown") self.textCtrlLon.SetValidator(ValidatorCoord(False)) if scanInfo.lon is not None: self.textCtrlLon.SetValue(str(scanInfo.lon)) gridScan.Add(self.textCtrlLon, (10, 1), (1, 1), wx.ALL, 5) boxScan.Add(gridScan, 0, 0, 5) grid.Add(boxScan, (0, 0), (1, 1), wx.ALL | wx.EXPAND, 5) boxDevice = wx.StaticBoxSizer(wx.StaticBox(self, label="Device"), wx.VERTICAL) gridDevice = wx.GridBagSizer(0, 0) textName = wx.StaticText(self, label="Name") gridDevice.Add(textName, (0, 0), (1, 1), wx.ALL, 5) textCtrlName = wx.TextCtrl(self, value="Unknown", style=wx.TE_READONLY) if scanInfo.name is not None: textCtrlName.SetValue(scanInfo.name) gridDevice.Add(textCtrlName, (0, 1), (1, 2), wx.ALL | wx.EXPAND, 5) textTuner = wx.StaticText(self, label="Tuner") gridDevice.Add(textTuner, (1, 0), (1, 1), wx.ALL, 5) textCtrlTuner = wx.TextCtrl(self, value="Unknown", style=wx.TE_READONLY) if scanInfo.tuner != -1: textCtrlTuner.SetValue(TUNER[scanInfo.tuner]) gridDevice.Add(textCtrlTuner, (1, 1), (1, 2), wx.ALL | wx.EXPAND, 5) testGain = wx.StaticText(self, label="Gain") gridDevice.Add(testGain, (2, 0), (1, 1), wx.ALL, 5) textCtrlGain = wx.TextCtrl(self, value="Unknown", style=wx.TE_READONLY) if scanInfo.gain is not None: textCtrlGain.SetValue(str(scanInfo.gain)) gridDevice.Add(textCtrlGain, (2, 1), (1, 1), wx.ALL, 5) textDb = wx.StaticText(self, label="dB") gridDevice.Add(textDb, (2, 2), (1, 1), wx.ALL, 5) textLo = wx.StaticText(self, label="LO") gridDevice.Add(textLo, (3, 0), (1, 1), wx.ALL, 5) textCtrlLo = wx.TextCtrl(self, value="Unknown", style=wx.TE_READONLY) if scanInfo.lo is not None: textCtrlLo.SetValue(str(scanInfo.lo)) gridDevice.Add(textCtrlLo, (3, 1), (1, 1), wx.ALL, 5) textMHz3 = wx.StaticText(self, label="MHz") gridDevice.Add(textMHz3, (3, 2), (1, 1), wx.ALL, 5) textCal = wx.StaticText(self, label="Calibration") gridDevice.Add(textCal, (4, 0), (1, 1), wx.ALL, 5) textCtrlCal = wx.TextCtrl(self, value="Unknown", style=wx.TE_READONLY) if scanInfo.calibration is not None: textCtrlCal.SetValue(str(scanInfo.calibration)) gridDevice.Add(textCtrlCal, (4, 1), (1, 1), wx.ALL, 5) testPpm = wx.StaticText(self, label="ppm") gridDevice.Add(testPpm, (4, 2), (1, 1), wx.ALL, 5) boxDevice.Add(gridDevice, 1, wx.EXPAND, 5) grid.Add(boxDevice, (1, 0), (1, 1), wx.ALL | wx.EXPAND, 5) box.Add(grid, 1, wx.ALL | wx.EXPAND, 5) sizerButtons = wx.StdDialogButtonSizer() buttonOk = wx.Button(self, wx.ID_OK) buttonCancel = wx.Button(self, wx.ID_CANCEL) sizerButtons.AddButton(buttonOk) sizerButtons.AddButton(buttonCancel) sizerButtons.Realize() self.Bind(wx.EVT_BUTTON, self.__on_ok, buttonOk) box.Add(sizerButtons, 0, wx.ALIGN_RIGHT | wx.ALL, 5) self.SetSizerAndFit(box) def __on_ok(self, _event): self.scanInfo.desc = self.textCtrlDesc.GetValue() if self.Validate(): lat = self.textCtrlLat.GetValue() if len(lat) == 0 or lat == "-" or lat.lower() == "unknown": self.scanInfo.lat = None else: self.scanInfo.lat = float(lat) lon = self.textCtrlLon.GetValue() if len(lon) == 0 or lon == "-" or lon.lower() == "unknown": self.scanInfo.lon = None else: self.scanInfo.lon = float(lon) self.EndModal(wx.ID_CLOSE) class DialogImageSize(wx.Dialog): def __init__(self, parent, settings, onlyDpi=False): wx.Dialog.__init__(self, parent=parent, title='Image settings') self.settings = settings textWidth = wx.StaticText(self, label="Width (inches)") self.ctrlWidth = NumCtrl(self, integerWidth=2, fractionWidth=1) self.ctrlWidth.SetValue(settings.exportWidth) self.Bind(EVT_NUM, self.__update_size, self.ctrlWidth) textHeight = wx.StaticText(self, label="Height (inches)") self.ctrlHeight = NumCtrl(self, integerWidth=2, fractionWidth=1) self.ctrlHeight.SetValue(settings.exportHeight) self.Bind(EVT_NUM, self.__update_size, self.ctrlHeight) textDpi = wx.StaticText(self, label="Dots per inch") self.spinDpi = wx.SpinCtrl(self) self.spinDpi.SetRange(32, 3200) self.spinDpi.SetValue(settings.exportDpi) self.Bind(wx.EVT_SPINCTRL, self.__update_size, self.spinDpi) textSize = wx.StaticText(self, label='Size') self.textSize = wx.StaticText(self) self.__update_size(None) sizerButtons = wx.StdDialogButtonSizer() buttonOk = wx.Button(self, wx.ID_OK) buttonCancel = wx.Button(self, wx.ID_CANCEL) sizerButtons.AddButton(buttonOk) sizerButtons.AddButton(buttonCancel) sizerButtons.Realize() self.Bind(wx.EVT_BUTTON, self.__on_ok, buttonOk) sizer = wx.GridBagSizer(5, 5) sizer.Add(textWidth, pos=(0, 0), flag=wx.ALL, border=5) sizer.Add(self.ctrlWidth, pos=(0, 1), flag=wx.ALL, border=5) sizer.Add(textHeight, pos=(1, 0), flag=wx.ALL, border=5) sizer.Add(self.ctrlHeight, pos=(1, 1), flag=wx.ALL, border=5) sizer.Add(textDpi, pos=(2, 0), flag=wx.ALL, border=5) sizer.Add(self.spinDpi, pos=(2, 1), flag=wx.ALL, border=5) sizer.Add(textSize, pos=(3, 0), flag=wx.ALL, border=5) sizer.Add(self.textSize, pos=(3, 1), flag=wx.ALL, border=5) sizer.Add(sizerButtons, pos=(4, 0), span=(1, 2), flag=wx.ALL | wx.ALIGN_RIGHT, border=5) sizer.SetEmptyCellSize((0, 0)) if onlyDpi: textWidth.Hide() self.ctrlWidth.Hide() textHeight.Hide() self.ctrlHeight.Hide() textSize.Hide() self.textSize.Hide() self.SetSizerAndFit(sizer) def __update_size(self, _event): width = self.ctrlWidth.GetValue() height = self.ctrlHeight.GetValue() dpi = self.spinDpi.GetValue() self.textSize.SetLabel('{:.0f}px x {:.0f}px'.format(width * dpi, height * dpi)) def __on_ok(self, _event): self.settings.exportWidth = self.ctrlWidth.GetValue() self.settings.exportHeight = self.ctrlHeight.GetValue() self.settings.exportDpi = self.spinDpi.GetValue() self.EndModal(wx.ID_OK) class DialogExportSeq(wx.Dialog): POLL = 250 def __init__(self, parent, spectrum, settings): self.spectrum = spectrum self.settings = settings self.sweeps = None self.isExporting = False wx.Dialog.__init__(self, parent=parent, title='Export Plot Sequence') self.queue = Queue.Queue() self.timer = wx.Timer(self) self.Bind(wx.EVT_TIMER, self.__on_timer, self.timer) self.timer.Start(self.POLL) self.figure = matplotlib.figure.Figure(facecolor='white') self.canvas = FigureCanvas(self, -1, self.figure) self.plot = Plotter(self.queue, self.figure, settings) textPlot = wx.StaticText(self, label='Plot') self.checkAxes = wx.CheckBox(self, label='Axes') self.checkAxes.SetValue(True) self.Bind(wx.EVT_CHECKBOX, self.__on_axes, self.checkAxes) self.checkGrid = wx.CheckBox(self, label='Grid') self.checkGrid.SetValue(True) self.Bind(wx.EVT_CHECKBOX, self.__on_grid, self.checkGrid) self.checkBar = wx.CheckBox(self, label='Bar') self.checkBar.SetValue(True) self.Bind(wx.EVT_CHECKBOX, self.__on_bar, self.checkBar) sizerCheck = wx.BoxSizer(wx.HORIZONTAL) sizerCheck.Add(self.checkAxes, flag=wx.ALL, border=5) sizerCheck.Add(self.checkGrid, flag=wx.ALL, border=5) sizerCheck.Add(self.checkBar, flag=wx.ALL, border=5) textRange = wx.StaticText(self, label='Range') self.sweepTimeStamps = sorted([timeStamp for timeStamp in spectrum.keys()]) sweepChoices = [format_time(timeStamp, True) for timeStamp in self.sweepTimeStamps] textStart = wx.StaticText(self, label="Start") self.choiceStart = wx.Choice(self, choices=sweepChoices) self.choiceStart.SetSelection(0) self.Bind(wx.EVT_CHOICE, self.__on_choice, self.choiceStart) textEnd = wx.StaticText(self, label="End") self.choiceEnd = wx.Choice(self, choices=sweepChoices) self.choiceEnd.SetSelection(len(self.sweepTimeStamps) - 1) self.Bind(wx.EVT_CHOICE, self.__on_choice, self.choiceEnd) textSweeps = wx.StaticText(self, label='Sweeps') self.textSweeps = wx.StaticText(self, label="") textOutput = wx.StaticText(self, label='Output') self.textSize = wx.StaticText(self) buttonSize = wx.Button(self, label='Change...') buttonSize.SetToolTipString('Change exported image size') self.Bind(wx.EVT_BUTTON, self.__on_imagesize, buttonSize) self.__show_image_size() buttonBrowse = wx.Button(self, label='Browse...') self.Bind(wx.EVT_BUTTON, self.__on_browse, buttonBrowse) self.editDir = wx.TextCtrl(self) self.editDir.SetValue(settings.dirExport) font = textPlot.GetFont() fontSize = font.GetPointSize() font.SetPointSize(fontSize + 4) textPlot.SetFont(font) textRange.SetFont(font) textOutput.SetFont(font) sizerButtons = wx.StdDialogButtonSizer() buttonOk = wx.Button(self, wx.ID_OK) buttonCancel = wx.Button(self, wx.ID_CANCEL) sizerButtons.AddButton(buttonOk) sizerButtons.AddButton(buttonCancel) sizerButtons.Realize() self.Bind(wx.EVT_BUTTON, self.__on_ok, buttonOk) sizerGrid = wx.GridBagSizer(5, 5) sizerGrid.Add(self.canvas, pos=(0, 0), span=(10, 6), flag=wx.EXPAND | wx.ALL, border=5) sizerGrid.Add(textPlot, pos=(0, 7), flag=wx.TOP | wx.BOTTOM, border=5) sizerGrid.Add(sizerCheck, pos=(1, 7), span=(1, 2), flag=wx.ALL, border=5) sizerGrid.Add(textRange, pos=(2, 7), flag=wx.TOP | wx.BOTTOM, border=5) sizerGrid.Add(textStart, pos=(3, 7), flag=wx.ALIGN_CENTRE_VERTICAL | wx.ALL, border=5) sizerGrid.Add(self.choiceStart, pos=(3, 8), flag=wx.ALL, border=5) sizerGrid.Add(textEnd, pos=(4, 7), flag=wx.ALIGN_CENTRE_VERTICAL | wx.ALL, border=5) sizerGrid.Add(self.choiceEnd, pos=(4, 8), flag=wx.ALL, border=5) sizerGrid.Add(textSweeps, pos=(5, 7), flag=wx.ALIGN_CENTRE_VERTICAL | wx.ALL, border=5) sizerGrid.Add(self.textSweeps, pos=(5, 8), flag=wx.ALIGN_CENTRE_VERTICAL | wx.ALL, border=5) sizerGrid.Add(textOutput, pos=(6, 7), flag=wx.TOP | wx.BOTTOM, border=5) sizerGrid.Add(self.textSize, pos=(7, 7), flag=wx.ALIGN_CENTRE_VERTICAL | wx.ALL, border=5) sizerGrid.Add(buttonSize, pos=(7, 8), flag=wx.ALL, border=5) sizerGrid.Add(self.editDir, pos=(8, 7), span=(1, 2), flag=wx.ALL | wx.EXPAND, border=5) sizerGrid.Add(buttonBrowse, pos=(9, 7), flag=wx.ALL, border=5) sizerGrid.Add(sizerButtons, pos=(10, 7), span=(1, 2), flag=wx.ALIGN_RIGHT | wx.ALL, border=5) self.SetSizerAndFit(sizerGrid) self.__draw_plot() def __on_choice(self, event): start = self.choiceStart.GetSelection() end = self.choiceEnd.GetSelection() control = event.GetEventObject() if start > end: if control == self.choiceStart: self.choiceStart.SetSelection(end) else: self.choiceEnd.SetSelection(start) self.__draw_plot() def __on_axes(self, _event): self.plot.set_axes(self.checkAxes.GetValue()) self.__draw_plot() def __on_grid(self, _event): self.plot.set_grid(self.checkGrid.GetValue()) self.__draw_plot() def __on_bar(self, _event): self.plot.set_bar(self.checkBar.GetValue()) self.__draw_plot() def __on_imagesize(self, _event): dlg = DialogImageSize(self, self.settings) dlg.ShowModal() self.__show_image_size() def __on_browse(self, _event): directory = self.editDir.GetValue() dlg = wx.DirDialog(self, 'Output directory', directory) if dlg.ShowModal() == wx.ID_OK: directory = dlg.GetPath() self.editDir.SetValue(directory) def __on_timer(self, _event): self.timer.Stop() if not self.isExporting: while not self.queue.empty(): event = self.queue.get() status = event.data.get_status() if status == Event.DRAW: self.canvas.draw() self.timer.Start(self.POLL) def __on_ok(self, _event): self.isExporting = True extent = Extent(self.spectrum) dlgProgress = wx.ProgressDialog('Exporting', '', len(self.sweeps) - 1, style=wx.PD_AUTO_HIDE | wx.PD_CAN_ABORT | wx.PD_REMAINING_TIME) try: count = 1 for timeStamp, sweep in self.sweeps.items(): name = '{0:.0f}.png'.format(timeStamp) directory = self.editDir.GetValue() filename = os.path.join(directory, name) thread = self.plot.set_plot({timeStamp: sweep}, extent, False) thread.join() filename = os.path.join(directory, '{}.png'.format(timeStamp)) export_image(filename, File.ImageType.PNG, self.figure, self.settings) cont, _skip = dlgProgress.Update(count, name) if not cont: break count += 1 except IOError as error: wx.MessageBox(error.strerror, 'Error', wx.OK | wx.ICON_WARNING) finally: dlgProgress.Destroy() self.EndModal(wx.ID_OK) def __spectrum_range(self, start, end): sweeps = {} for timeStamp, sweep in self.spectrum.items(): if start <= timeStamp <= end: sweeps[timeStamp] = sweep self.sweeps = sort_spectrum(sweeps) def __draw_plot(self): start, end = self.__get_range() self.__spectrum_range(start, end) self.textSweeps.SetLabel(str(len(self.sweeps))) if len(self.sweeps) > 0: total = count_points(self.sweeps) if total > 0: extent = Extent(self.spectrum) self.plot.set_plot(self.sweeps, extent, False) else: self.plot.clear_plots() def __show_image_size(self): self.textSize.SetLabel('{}" x {}" @ {}dpi'.format(self.settings.exportWidth, self.settings.exportHeight, self.settings.exportDpi)) def __get_range(self): start = self.sweepTimeStamps[self.choiceStart.GetSelection()] end = self.sweepTimeStamps[self.choiceEnd.GetSelection()] return start, end class DialogExportGeo(wx.Dialog): IMAGE_SIZE = 500 def __init__(self, parent, spectrum, location, settings): self.spectrum = spectrum self.location = location self.settings = settings self.directory = settings.dirExport self.colourMap = settings.colourMap self.colourHeat = settings.colourMap self.canvas = None self.extent = None self.xyz = None self.plotAxes = False self.plotMesh = True self.plotCont = True self.plotPoint = False self.plotHeat = False self.plot = None wx.Dialog.__init__(self, parent=parent, title='Export Map') colours = get_colours() freqMin = min(spectrum[min(spectrum)]) * 1000 freqMax = max(spectrum[min(spectrum)]) * 1000 bw = freqMax - freqMin self.figure = matplotlib.figure.Figure(facecolor='white') self.figure.set_size_inches((6, 6)) self.canvas = FigureCanvas(self, -1, self.figure) self.axes = self.figure.add_subplot(111) if matplotlib.__version__ >= '1.2': self.figure.tight_layout() self.figure.subplots_adjust(left=0, right=1, top=1, bottom=0) textPlot = wx.StaticText(self, label='Plot') self.checkAxes = wx.CheckBox(self, label='Axes') self.checkAxes.SetValue(self.plotAxes) self.Bind(wx.EVT_CHECKBOX, self.__on_axes, self.checkAxes) self.checkCont = wx.CheckBox(self, label='Contour lines') self.checkCont.SetValue(self.plotCont) self.Bind(wx.EVT_CHECKBOX, self.__on_cont, self.checkCont) self.checkPoint = wx.CheckBox(self, label='Locations') self.checkPoint.SetValue(self.plotPoint) self.Bind(wx.EVT_CHECKBOX, self.__on_point, self.checkPoint) sizerPlotCheck = wx.BoxSizer(wx.HORIZONTAL) sizerPlotCheck.Add(self.checkAxes, flag=wx.ALL, border=5) sizerPlotCheck.Add(self.checkCont, flag=wx.ALL, border=5) sizerPlotCheck.Add(self.checkPoint, flag=wx.ALL, border=5) sizerPlot = wx.BoxSizer(wx.VERTICAL) sizerPlot.Add(textPlot, flag=wx.ALL, border=5) sizerPlot.Add(sizerPlotCheck, flag=wx.ALL, border=5) textMesh = wx.StaticText(self, label='Mesh') self.checkMesh = wx.CheckBox(self, label='On') self.checkMesh.SetToolTipString('Signal level mesh') self.checkMesh.SetValue(self.plotMesh) self.Bind(wx.EVT_CHECKBOX, self.__on_mesh, self.checkMesh) self.choiceMapMesh = wx.Choice(self, choices=colours) self.choiceMapMesh.SetSelection(colours.index(self.colourMap)) self.Bind(wx.EVT_CHOICE, self.__on_colour_mesh, self.choiceMapMesh) self.barMesh = PanelColourBar(self, self.colourMap) sizerMapMesh = wx.BoxSizer(wx.HORIZONTAL) sizerMapMesh.Add(self.choiceMapMesh, flag=wx.ALL, border=5) sizerMapMesh.Add(self.barMesh, flag=wx.ALL, border=5) sizerMesh = wx.BoxSizer(wx.VERTICAL) sizerMesh.Add(textMesh, flag=wx.ALL, border=5) sizerMesh.Add(self.checkMesh, flag=wx.ALL, border=5) sizerMesh.Add(sizerMapMesh, flag=wx.ALL, border=5) colours = get_colours() textHeat = wx.StaticText(self, label='Heat map') self.checkHeat = wx.CheckBox(self, label='On') self.checkHeat.SetToolTipString('GPS location heatmap') self.checkHeat.SetValue(self.plotHeat) self.Bind(wx.EVT_CHECKBOX, self.__on_heat, self.checkHeat) self.choiceMapHeat = wx.Choice(self, choices=colours) self.choiceMapHeat.SetSelection(colours.index(self.colourHeat)) self.Bind(wx.EVT_CHOICE, self.__on_colour_heat, self.choiceMapHeat) self.barHeat = PanelColourBar(self, self.colourHeat) sizerMapHeat = wx.BoxSizer(wx.HORIZONTAL) sizerMapHeat.Add(self.choiceMapHeat, flag=wx.ALL, border=5) sizerMapHeat.Add(self.barHeat, flag=wx.ALL, border=5) sizerHeat = wx.BoxSizer(wx.VERTICAL) sizerHeat.Add(textHeat, flag=wx.ALL, border=5) sizerHeat.Add(self.checkHeat, flag=wx.ALL, border=5) sizerHeat.Add(sizerMapHeat, flag=wx.ALL, border=5) textRange = wx.StaticText(self, label='Range') textCentre = wx.StaticText(self, label='Centre') self.spinCentre = wx.SpinCtrl(self) self.spinCentre.SetToolTipString('Centre frequency (kHz)') self.spinCentre.SetRange(freqMin, freqMax) self.spinCentre.SetValue(freqMin + bw / 2) sizerCentre = wx.BoxSizer(wx.HORIZONTAL) sizerCentre.Add(textCentre, flag=wx.ALL, border=5) sizerCentre.Add(self.spinCentre, flag=wx.ALL, border=5) textBw = wx.StaticText(self, label='Bandwidth') self.spinBw = wx.SpinCtrl(self) self.spinBw.SetToolTipString('Bandwidth (kHz)') self.spinBw.SetRange(1, bw) self.spinBw.SetValue(bw / 10) sizerBw = wx.BoxSizer(wx.HORIZONTAL) sizerBw.Add(textBw, flag=wx.ALL, border=5) sizerBw.Add(self.spinBw, flag=wx.ALL, border=5) buttonUpdate = wx.Button(self, label='Update') self.Bind(wx.EVT_BUTTON, self.__on_update, buttonUpdate) sizerRange = wx.BoxSizer(wx.VERTICAL) sizerRange.Add(textRange, flag=wx.ALL, border=5) sizerRange.Add(sizerCentre, flag=wx.ALL, border=5) sizerRange.Add(sizerBw, flag=wx.ALL, border=5) sizerRange.Add(buttonUpdate, flag=wx.ALL, border=5) textOutput = wx.StaticText(self, label='Output') self.textRes = wx.StaticText(self) buttonRes = wx.Button(self, label='Change...') buttonRes.SetToolTipString('Change output resolution') self.Bind(wx.EVT_BUTTON, self.__on_imageres, buttonRes) sizerRes = wx.BoxSizer(wx.HORIZONTAL) sizerRes.Add(self.textRes, flag=wx.ALL, border=5) sizerRes.Add(buttonRes, flag=wx.ALL, border=5) sizerOutput = wx.BoxSizer(wx.VERTICAL) sizerOutput.Add(textOutput, flag=wx.ALL, border=5) sizerOutput.Add(sizerRes, flag=wx.ALL, border=5) self.__show_image_res() font = textPlot.GetFont() fontSize = font.GetPointSize() font.SetPointSize(fontSize + 4) textPlot.SetFont(font) textMesh.SetFont(font) textHeat.SetFont(font) textRange.SetFont(font) textOutput.SetFont(font) sizerButtons = wx.StdDialogButtonSizer() buttonOk = wx.Button(self, wx.ID_OK) buttonCancel = wx.Button(self, wx.ID_CANCEL) sizerButtons.AddButton(buttonOk) sizerButtons.AddButton(buttonCancel) sizerButtons.Realize() self.Bind(wx.EVT_BUTTON, self.__on_ok, buttonOk) self.__setup_plot() sizerGrid = wx.GridBagSizer(5, 5) sizerGrid.Add(self.canvas, pos=(0, 0), span=(5, 6), flag=wx.EXPAND | wx.ALL, border=5) sizerGrid.Add(sizerPlot, pos=(0, 7), flag=wx.EXPAND | wx.ALL, border=5) sizerGrid.Add(sizerMesh, pos=(1, 7), flag=wx.EXPAND | wx.ALL, border=5) sizerGrid.Add(sizerHeat, pos=(2, 7), flag=wx.EXPAND | wx.ALL, border=5) sizerGrid.Add(sizerRange, pos=(3, 7), flag=wx.EXPAND | wx.ALL, border=5) sizerGrid.Add(sizerOutput, pos=(4, 7), flag=wx.EXPAND | wx.ALL, border=5) sizerGrid.Add(sizerButtons, pos=(5, 7), span=(1, 2), flag=wx.ALIGN_RIGHT | wx.ALL, border=5) self.SetSizerAndFit(sizerGrid) self.__draw_plot() def __setup_plot(self): self.axes.clear() self.choiceMapMesh.Enable(self.plotMesh) self.choiceMapHeat.Enable(self.plotHeat) self.axes.set_xlabel('Longitude ($^\circ$)') self.axes.set_ylabel('Latitude ($^\circ$)') self.axes.set_xlim(auto=True) self.axes.set_ylim(auto=True) formatter = ScalarFormatter(useOffset=False) self.axes.xaxis.set_major_formatter(formatter) self.axes.yaxis.set_major_formatter(formatter) def __draw_plot(self): x = [] y = [] z = [] freqCentre = self.spinCentre.GetValue() freqBw = self.spinBw.GetValue() freqMin = (freqCentre - freqBw) / 1000. freqMax = (freqCentre + freqBw) / 1000. for timeStamp in self.spectrum: spectrum = self.spectrum[timeStamp] sweep = [yv for xv, yv in spectrum.items() if freqMin <= xv <= freqMax] if len(sweep): peak = max(sweep) try: location = self.location[timeStamp] except KeyError: continue x.append(location[1]) y.append(location[0]) z.append(peak) if len(x) == 0: self.__draw_warning() return self.extent = (min(x), max(x), min(y), max(y)) self.xyz = (x, y, z) xi = numpy.linspace(min(x), max(x), self.IMAGE_SIZE) yi = numpy.linspace(min(y), max(y), self.IMAGE_SIZE) if self.plotMesh or self.plotCont: try: zi = mlab.griddata(x, y, z, xi, yi) except: self.__draw_warning() return if self.plotMesh: self.plot = self.axes.pcolormesh(xi, yi, zi, cmap=self.colourMap) self.plot.set_zorder(1) if self.plotCont: contours = self.axes.contour(xi, yi, zi, linewidths=0.5, colors='k') self.axes.clabel(contours, inline=1, fontsize='x-small', gid='clabel', zorder=3) if self.plotHeat: image = create_heatmap(x, y, self.IMAGE_SIZE, self.IMAGE_SIZE / 10, self.colourHeat) heatMap = self.axes.imshow(image, extent=self.extent) heatMap.set_zorder(2) if self.plotPoint: self.axes.plot(x, y, 'wo') for posX, posY, posZ in zip(x, y, z): points = self.axes.annotate('{0:.2f}dB'.format(posZ), xy=(posX, posY), xytext=(-5, 5), ha='right', textcoords='offset points') points.set_zorder(3) if matplotlib.__version__ >= '1.3': effect = patheffects.withStroke(linewidth=2, foreground="w", alpha=0.75) for child in self.axes.get_children(): child.set_path_effects([effect]) if self.plotAxes: self.axes.set_axis_on() else: self.axes.set_axis_off() self.canvas.draw() def __draw_warning(self): self.axes.text(0.5, 0.5, 'Insufficient GPS data', ha='center', va='center', transform=self.axes.transAxes) def __on_update(self, _event): self.__setup_plot() self.__draw_plot() def __on_imageres(self, _event): dlg = DialogImageSize(self, self.settings, True) dlg.ShowModal() self.__show_image_res() def __on_ok(self, _event): self.EndModal(wx.ID_OK) def __on_axes(self, _event): self.plotAxes = self.checkAxes.GetValue() if self.plotAxes: self.axes.set_axis_on() else: self.axes.set_axis_off() self.canvas.draw() def __on_mesh(self, _event): self.plotMesh = self.checkMesh.GetValue() self.__on_update(None) def __on_cont(self, _event): self.plotCont = self.checkCont.GetValue() self.__on_update(None) def __on_point(self, _event): self.plotPoint = self.checkPoint.GetValue() self.__on_update(None) def __on_heat(self, _event): self.plotHeat = self.checkHeat.GetValue() self.__on_update(None) def __on_colour_mesh(self, _event): self.colourMesh = self.choiceMapMesh.GetStringSelection() self.barMesh.set_map(self.colourMesh) if self.plot: self.plot.set_cmap(self.colourMesh) self.canvas.draw() def __on_colour_heat(self, _event): self.colourHeat = self.choiceMapHeat.GetStringSelection() self.barHeat.set_map(self.colourHeat) self.__on_update(None) def __show_image_res(self): self.textRes.SetLabel('{}dpi'.format(self.settings.exportDpi)) def get_filename(self): return self.filename def get_directory(self): return self.directory def get_extent(self): return self.extent def get_image(self): width = self.extent[1] - self.extent[0] height = self.extent[3] - self.extent[2] self.figure.set_size_inches((6, 6. * width / height)) self.figure.set_dpi(self.settings.exportDpi) self.figure.patch.set_alpha(0) self.axes.axesPatch.set_alpha(0) canvas = FigureCanvasAgg(self.figure) canvas.draw() renderer = canvas.get_renderer() if matplotlib.__version__ >= '1.2': buf = renderer.buffer_rgba() else: buf = renderer.buffer_rgba(0, 0) size = canvas.get_width_height() image = Image.frombuffer('RGBA', size, buf, 'raw', 'RGBA', 0, 1) return image def get_xyz(self): return self.xyz class DialogSaveWarn(wx.Dialog): def __init__(self, parent, warnType): self.code = -1 wx.Dialog.__init__(self, parent=parent, title="Warning") prompt = ["scanning again", "opening a file", "exiting", "clearing", "merging"][warnType] text = wx.StaticText(self, label="Save plot_line before {}?".format(prompt)) icon = wx.StaticBitmap(self, wx.ID_ANY, wx.ArtProvider.GetBitmap(wx.ART_INFORMATION, wx.ART_MESSAGE_BOX)) tbox = wx.BoxSizer(wx.HORIZONTAL) tbox.Add(text) hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add(icon, 0, wx.ALL, 5) hbox.Add(tbox, 0, wx.ALL, 5) buttonYes = wx.Button(self, wx.ID_YES, 'Yes') buttonNo = wx.Button(self, wx.ID_NO, 'No') buttonCancel = wx.Button(self, wx.ID_CANCEL, 'Cancel') buttonYes.Bind(wx.EVT_BUTTON, self.__on_close) buttonNo.Bind(wx.EVT_BUTTON, self.__on_close) buttons = wx.StdDialogButtonSizer() buttons.AddButton(buttonYes) buttons.AddButton(buttonNo) buttons.AddButton(buttonCancel) buttons.Realize() vbox = wx.BoxSizer(wx.VERTICAL) vbox.Add(hbox, 1, wx.ALL | wx.EXPAND, 10) vbox.Add(buttons, 1, wx.ALL | wx.EXPAND, 10) self.SetSizerAndFit(vbox) def __on_close(self, event): self.EndModal(event.GetId()) return def get_code(self): return self.code class DialogRestore(wx.Dialog): COL_SEL, COL_TIME, COL_SIZE = range(3) def __init__(self, parent, backups): self.selected = 0 self.backups = backups self.restored = None wx.Dialog.__init__(self, parent=parent, title='Restore backups') self.grid = grid.Grid(self) self.grid.CreateGrid(1, 3) self.grid.SetRowLabelSize(0) self.grid.SetColLabelValue(self.COL_SEL, 'Selected') self.grid.SetColLabelValue(self.COL_TIME, 'Time') self.grid.SetColLabelValue(self.COL_SIZE, 'Size (k)') self.grid.SetColFormatFloat(self.COL_SIZE, -1, 1) self.__set_grid() self.Bind(grid.EVT_GRID_CELL_LEFT_CLICK, self.__on_click) buttonRest = wx.Button(self, wx.ID_OPEN, 'Restore') buttonDel = wx.Button(self, wx.ID_DELETE, 'Delete') buttonCancel = wx.Button(self, wx.ID_CANCEL, 'Close') buttonRest.Bind(wx.EVT_BUTTON, self.__on_restore) buttonDel.Bind(wx.EVT_BUTTON, self.__on_delete) sizerButtons = wx.BoxSizer(wx.HORIZONTAL) sizerButtons.Add(buttonRest) sizerButtons.Add(buttonDel) sizerButtons.Add(buttonCancel) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(self.grid, flag=wx.ALL | wx.EXPAND, border=5) sizer.Add(sizerButtons, flag=wx.ALL, border=5) self.SetSizerAndFit(sizer) def __set_grid(self): self.grid.DeleteRows(0, self.grid.GetNumberRows()) self.grid.AppendRows(len(self.backups.backups)) i = 0 for backup in self.backups.backups: self.grid.SetCellRenderer(i, self.COL_SEL, TickCellRenderer()) self.grid.SetCellRenderer(i, self.COL_TIME, GridCellDateTimeRenderer()) self.grid.SetReadOnly(i, self.COL_TIME, True) self.grid.SetReadOnly(i, self.COL_SIZE, True) self.grid.SetCellValue(i, self.COL_TIME, str(backup[1].replace(microsecond=0))) self.grid.SetCellValue(i, self.COL_SIZE, str(backup[2])) i += 1 self.__select_row(0) self.grid.AutoSize() def __on_click(self, event): col = event.GetCol() if col == self.COL_SEL: row = event.GetRow() self.selected = row self.__select_row(row) def __on_restore(self, event): try: self.restored = self.backups.load(self.selected) except (cPickle.UnpicklingError, AttributeError, EOFError, ImportError, IndexError, ValueError): wx.MessageBox('The file could not be restored', 'Restore failed', wx.OK | wx.ICON_ERROR) return self.EndModal(event.GetId()) def __on_delete(self, _event): dlg = wx.MessageDialog(self, 'Delete the selected backup?', 'Delete backup', wx.OK | wx.CANCEL | wx.ICON_QUESTION) if dlg.ShowModal() == wx.ID_OK: self.backups.delete(self.selected) self.__set_grid() def __select_row(self, index): self.grid.ClearSelection() for i in range(0, self.grid.GetNumberRows()): tick = "0" if i == index: tick = "1" self.grid.SetCellValue(i, self.COL_SEL, tick) def get_restored(self): return self.restored if __name__ == '__main__': print 'Please run rtlsdr_scan.py' exit(1)
gpl-3.0
kjung/scikit-learn
sklearn/linear_model/tests/test_perceptron.py
378
1815
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) X_csr.sort_indices() class MyPerceptron(object): def __init__(self, n_iter=1): self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): if self.predict(X[i])[0] != y[i]: self.w += y[i] * X[i] self.b += y[i] def project(self, X): return np.dot(X, self.w) + self.b def predict(self, X): X = np.atleast_2d(X) return np.sign(self.project(X)) def test_perceptron_accuracy(): for data in (X, X_csr): clf = Perceptron(n_iter=30, shuffle=False) clf.fit(data, y) score = clf.score(data, y) assert_true(score >= 0.7) def test_perceptron_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 clf1 = MyPerceptron(n_iter=2) clf1.fit(X, y_bin) clf2 = Perceptron(n_iter=2, shuffle=False) clf2.fit(X, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel()) def test_undefined_methods(): clf = Perceptron() for meth in ("predict_proba", "predict_log_proba"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
bsd-3-clause
SuLab/scheduled-bots
scheduled_bots/geneprotein/MicrobialChromosomeBot.py
1
7441
import subprocess from datetime import datetime import pandas as pd from scheduled_bots import get_default_core_props from scheduled_bots.geneprotein import PROPS from wikidataintegrator import wdi_core, wdi_helpers from wikidataintegrator.wdi_helpers import prop2qid core_props = get_default_core_props() class MicrobialChromosomeBot: chr_type_map = {'chromosome': 'Q37748', 'mitochondrion': 'Q18694495', 'chloroplast': 'Q22329079', 'plasmid': 'Q172778', 'circular': 'Q5121654'} def __init__(self): self.df = pd.DataFrame() def get_microbial_ref_genome_table(self): """ # Download and parse Microbial Reference and representative genomes table # https://www.ncbi.nlm.nih.gov/genome/browse/reference/ # but oh wait, it has no useful fields that we need (taxid, accession, chromosome) url = "https://www.ncbi.nlm.nih.gov/genomes/Genome2BE/genome2srv.cgi?action=refgenomes&download=on&type=reference" df_ref = pd.read_csv(url, sep="\t", dtype=object, header=0) """ # get the assembly accessions of the reference genomes url = "ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt" subprocess.check_output(['wget', '-N', url]) assdf = pd.read_csv("assembly_summary.txt", sep="\t", dtype=object, header=0, skiprows=1) assdf = assdf.query("refseq_category == 'reference genome'") accessions = set(assdf.gbrs_paired_asm) # adding Chlamydia muridarum str. Nigg accessions.add("GCA_000006685.1") accessions.add("GCA_000012685.1") # Download prokaryotes genome table # but oh wait, it has no ref genome column url = "ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/prokaryotes.txt" subprocess.check_output(['wget', '-N', url]) df = pd.read_csv("prokaryotes.txt", sep="\t", dtype=object, header=0, error_bad_lines=False) df = df[df['Assembly Accession'].isin(accessions)] df = df.rename(columns={df.columns[0]: df.columns[0][1:]}) # columns = ['Organism/Name', 'TaxID', 'BioProject Accession', 'BioProject ID', 'Group', 'SubGroup', 'Size (Mb)', # 'GC%', 'Replicons', 'WGS', 'Scaffolds', 'Genes', 'Proteins', 'Release Date', # 'Modify Date', 'Status', 'Center', 'BioSample Accession', 'Assembly Accession', 'Reference', # 'FTP Path', 'Pubmed ID', 'Strain'] print("Found {} reference genomes".format(len(df))) assert len(set(df.TaxID)) == len(df) assert 110 < len(df) < 140 self.df = df def get_chromosome_info(self, taxid): # replicons column looks like: # 'chromosome circular:NC_003062.2/AE007869.2; chromosome linear:NC_003063.2/AE007870.2; plasmid At:NC_003064.2/AE007872.2; plasmid Ti:NC_003065.3/AE007871.2' replicons = self.df.loc[self.df.TaxID == taxid, 'Replicons'].values[0] chroms = [{'name': x.split(":")[0].strip(), 'refseq': x.split(":")[1].split("/")[0].strip()} for x in replicons.split(";")] return chroms def get_or_create_chromosomes(self, taxid, login=None): # main function to use to get or create all of the chromosomes for a bacterial organism # returns dict with key = refseq ID, value = qid for chromosome item if self.df.empty: self.get_microbial_ref_genome_table() df = self.df taxid = str(taxid) entry = df[df.TaxID == taxid].to_dict("records")[0] organism_name = entry['Organism/Name'] organism_qid = prop2qid(PROPS['NCBI Taxonomy ID'], taxid) chroms = self.get_chromosome_info(taxid) chr_map = dict() chr_name_type = {'chromosome circular': 'circular', 'chromosome linear': 'chromosome', 'chromosome': 'chromosome'} for chrom in chroms: chrom_name = chrom['name'].lower() genome_id = chrom['refseq'] if chrom_name in chr_name_type: chr_type = chr_name_type[chrom_name] elif "plasmid" in chrom_name: chr_type = 'plasmid' else: raise ValueError("unknown chromosome type: {}".format(chrom['name'])) qid = self.create_chrom(organism_name, organism_qid, chrom_name, genome_id, chr_type, login=login) chr_map[chrom['refseq']] = qid return chr_map def create_chrom(self, organism_name, organism_qid, chrom_name, genome_id, chr_type, login): def make_ref(retrieved, genome_id): """ Create reference statement for chromosomes :param retrieved: datetime :type retrieved: datetime :param genome_id: refseq genome id :type genome_id: str :return: """ refs = [ wdi_core.WDItemID(value='Q20641742', prop_nr='P248', is_reference=True), # stated in ncbi gene wdi_core.WDString(value=genome_id, prop_nr='P2249', is_reference=True), # Link to Refseq Genome ID wdi_core.WDTime(retrieved.strftime('+%Y-%m-%dT00:00:00Z'), prop_nr='P813', is_reference=True) ] return refs item_name = '{} {}'.format(organism_name, chrom_name) item_description = 'bacterial {}'.format(chr_type) print(genome_id) retrieved = datetime.now() reference = make_ref(retrieved, genome_id) # instance of chr_type chr_type = chr_type.lower() if chr_type not in self.chr_type_map: raise ValueError("unknown chromosome type: {}".format(chr_type)) statements = [wdi_core.WDItemID(value=self.chr_type_map[chr_type], prop_nr='P31', references=[reference])] # found in taxon statements.append(wdi_core.WDItemID(value=organism_qid, prop_nr='P703', references=[reference])) # genome id statements.append(wdi_core.WDString(value=genome_id, prop_nr='P2249', references=[reference])) wd_item = wdi_core.WDItemEngine(data=statements, append_value=['P31'], fast_run=True, fast_run_base_filter={'P703': organism_qid, 'P2249': ''}, core_props=core_props) if wd_item.wd_item_id: return wd_item.wd_item_id if login is None: raise ValueError("Login is required to create item") wd_item.set_label(item_name) wd_item.set_description(item_description, lang='en') wdi_helpers.try_write(wd_item, genome_id, 'P2249', login) return wd_item.wd_item_id def get_all_taxids(self): if self.df.empty: self.get_microbial_ref_genome_table() return set(self.df.TaxID) def get_organism_info(self, taxid): taxid = str(taxid) if taxid not in self.get_all_taxids(): raise ValueError("taxid {} not found in microbe ref genomes".format(taxid)) entry = self.df[self.df.TaxID == taxid].to_dict("records")[0] qid = prop2qid(PROPS['NCBI Taxonomy ID'], taxid) return {'name': entry['Organism/Name'], 'type': "microbial", 'wdid': qid, 'qid': qid, 'taxid': taxid}
mit
anjalisood/spark-tk
regression-tests/sparktkregtests/testcases/frames/boxcox_test.py
12
5074
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Test frame.box_cox() and frame.reverse_box_cox()""" import unittest from sparktkregtests.lib import sparktk_test class BoxCoxTest(sparktk_test.SparkTKTestCase): def setUp(self): """Build test frame""" super(BoxCoxTest, self).setUp() dataset =\ [[5.8813080107727425], [8.9771372790941797], [8.9153072947470804], [8.1583747730768401], [0.35889585616853292]] schema = [("y", float)] self.frame = self.context.frame.create(dataset, schema=schema) def test_wt_default(self): """ Test behaviour for default params, lambda = 0 """ self.frame.box_cox("y") actual = self.frame.to_pandas()["y_lambda_0.0"].tolist() expected =\ [1.7717791879837133, 2.1946810429706676, 2.1877697201262163, 2.0990449791729704, -1.0247230268174008] self.assertItemsEqual(actual, expected) def test_lambda(self): """ Test wt for lambda = 0.3 """ self.frame.box_cox("y", 0.3) actual = self.frame.to_pandas()["y_lambda_0.3"].tolist() expected =\ [2.3384668540844573, 3.1056915770236082, 3.0923547540771801, 2.9235756971904037, -0.88218677941017198] self.assertItemsEqual(actual, expected) def test_reverse_default(self): """ Test reverse transform for default lambda = 0 """ self.frame.box_cox("y") self.frame.reverse_box_cox("y_lambda_0.0", reverse_box_cox_column_name="reverse") actual = self.frame.to_pandas()["reverse"].tolist() expected =\ [5.8813080107727425, 8.9771372790941815, 8.9153072947470804, 8.1583747730768401, 0.35889585616853298] self.assertItemsEqual(actual, expected) def test_reverse_lambda(self): """ Test reverse transform for lambda = 0.3 """ self.frame.box_cox("y", 0.3) self.frame.reverse_box_cox("y_lambda_0.3", 0.3, reverse_box_cox_column_name="reverse") actual = self.frame.to_pandas()["reverse"].tolist() expected =\ [5.8813080107727442, 8.9771372790941797, 8.9153072947470822, 8.1583747730768419, 0.35889585616853298] self.assertItemsEqual(actual, expected) @unittest.skip("req not clear") def test_lambda_negative(self): """ Test box cox for lambda -1 """ self.frame.box_cox("y", -1) actual = self.frame.to_pandas()["y_lambda_-1.0"].tolist() expected =\ [0.82996979614597488, 0.88860591423406388, 0.88783336715839256, 0.87742656744575354, -1.7863236167608822] self.assertItemsEqual(actual, expected) def test_existing_boxcox_column(self): """ Test behavior for existing boxcox column """ self.frame.box_cox("y", 0.3) with self.assertRaisesRegexp( Exception, "duplicate column name"): self.frame.box_cox("y", 0.3) def test_existing_reverse_column(self): """ Test behavior for existing reverse boxcox column """ self.frame.reverse_box_cox("y", 0.3) with self.assertRaisesRegexp( Exception, "duplicate column name"): self.frame.reverse_box_cox("y", 0.3) @unittest.skip("Req not clear") def test_negative_col_positive_lambda(self): """Test behaviour for negative input column and positive lambda""" frame = self.context.frame.create([[-1], [-2], [1]], [("y", float)]) frame.box_cox("y", 1) actual = frame.to_pandas()["y_lambda_1.0"].tolist() expected = [-2.0, -3.0, 0] self.assertItemsEqual(actual, expected) @unittest.skip("Req not clear") def test_negative_col_frational_lambda(self): """Test behaviour for negative input column and negative lambda""" frame = self.context.frame.create([[-1], [-2], [1]], [("y", float)]) with self.assertRaises(Exception): frame.box_cox("y", 0.1) @unittest.skip("Req not clear") def test_negative_col_zero_lambda(self): """Test behaviour for negative input column and positive lambda""" frame = self.context.frame.create([[-1], [-2], [1]], [("y", float)]) with self.assertRaises(Exception): frame.box_cox("y") if __name__ == "__main__": unittest.main()
apache-2.0
AnasGhrab/scikit-learn
sklearn/linear_model/tests/test_passive_aggressive.py
121
6117
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.base import ClassifierMixin from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import PassiveAggressiveRegressor iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) class MyPassiveAggressive(ClassifierMixin): def __init__(self, C=1.0, epsilon=0.01, loss="hinge", fit_intercept=True, n_iter=1, random_state=None): self.C = C self.epsilon = epsilon self.loss = loss self.fit_intercept = fit_intercept self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): p = self.project(X[i]) if self.loss in ("hinge", "squared_hinge"): loss = max(1 - y[i] * p, 0) else: loss = max(np.abs(p - y[i]) - self.epsilon, 0) sqnorm = np.dot(X[i], X[i]) if self.loss in ("hinge", "epsilon_insensitive"): step = min(self.C, loss / sqnorm) elif self.loss in ("squared_hinge", "squared_epsilon_insensitive"): step = loss / (sqnorm + 1.0 / (2 * self.C)) if self.loss in ("hinge", "squared_hinge"): step *= y[i] else: step *= np.sign(y[i] - p) self.w += step * X[i] if self.fit_intercept: self.b += step def project(self, X): return np.dot(X, self.w) + self.b def test_classifier_accuracy(): for data in (X, X_csr): for fit_intercept in (True, False): clf = PassiveAggressiveClassifier(C=1.0, n_iter=30, fit_intercept=fit_intercept, random_state=0) clf.fit(data, y) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_partial_fit(): classes = np.unique(y) for data in (X, X_csr): clf = PassiveAggressiveClassifier(C=1.0, fit_intercept=True, random_state=0) for t in range(30): clf.partial_fit(data, y, classes) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_refit(): # Classifier can be retrained on different labels and features. clf = PassiveAggressiveClassifier().fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) clf.fit(X[:, :-1], iris.target_names[y]) assert_array_equal(clf.classes_, iris.target_names) def test_classifier_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("hinge", "squared_hinge"): clf1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) clf1.fit(X, y_bin) for data in (X, X_csr): clf2 = PassiveAggressiveClassifier(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) clf2.fit(data, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2) def test_classifier_undefined_methods(): clf = PassiveAggressiveClassifier() for meth in ("predict_proba", "predict_log_proba", "transform"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth) def test_regressor_mse(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): for fit_intercept in (True, False): reg = PassiveAggressiveRegressor(C=1.0, n_iter=50, fit_intercept=fit_intercept, random_state=0) reg.fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_partial_fit(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): reg = PassiveAggressiveRegressor(C=1.0, fit_intercept=True, random_state=0) for t in range(50): reg.partial_fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("epsilon_insensitive", "squared_epsilon_insensitive"): reg1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) reg1.fit(X, y_bin) for data in (X, X_csr): reg2 = PassiveAggressiveRegressor(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) reg2.fit(data, y_bin) assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2) def test_regressor_undefined_methods(): reg = PassiveAggressiveRegressor() for meth in ("transform",): assert_raises(AttributeError, lambda x: getattr(reg, x), meth)
bsd-3-clause
ambikeshwar1991/sandhi-2
module/gr36/gr-controls/python/qa_dsim.py
7
1797
#!/usr/bin/env python # # Copyright 2013 <+YOU OR YOUR COMPANY+>. # # This is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # This software is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this software; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gr_unittest #import mymod_swig as mymod from dsim import dsim class qa_dsim (gr_unittest.TestCase): def setUp (self): self.tb = gr.top_block () def tearDown (self): self.tb = None def test_001_t (self): src_data = [0]*100 src_data1 = [1]*1000 src_data = tuple(src_data+src_data1) expected_result = (-2.0, 0.0, 5.0, 8.0, 9.0, 11.0, 14.0, 18.0) src0 = gr.vector_source_f(src_data) sqr = dsim() sqr.set_parameters(2,0.5,0.6,1,1, 0.1, 2, 1, 1100) #Preload sqr.input_config(1).preload_items = 1 dst = gr.vector_sink_f() self.tb.connect(src0, (sqr,0)) # src0(vector_source) -> sqr_input_0 self.tb.connect(sqr,dst) # sqr_output_0 -> dst (vector_source) self.tb.run() result_data = dst.data() import matplotlib.pyplot as plt plt.plot(result_data) plt.show() #self.assertFloatTuplesAlmostEqual(expected_result, result_data, 6) if __name__ == '__main__': gr_unittest.main() #gr_unittest.run(qa_dsim, "qa_dsim.xml")
gpl-3.0
pnedunuri/scikit-learn
sklearn/neighbors/tests/test_approximate.py
71
18815
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = LSHForest(n_candidates=n_candidates) lshf.fit(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = LSHForest(n_candidates=500, n_estimators=t) lshf.fit(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) lshf.fit(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features).reshape(1, -1) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) lshf.fit(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)].reshape(1, -1) # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)].reshape(1, -1) mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = LSHForest(min_hash_match=0, n_candidates=n_points).fit(X) # define a query aligned with the first axis query = [[1., 0.]] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slighltly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() lshf.fit(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators) lshf.fit(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consitent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = LSHForest() # Test unfitted estimator lshf.partial_fit(X) assert_array_equal(X, lshf._fit_X) lshf.fit(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) lshf.partial_fit(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) lshf.fit(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32).reshape(1, -1) # For zero candidates lshf = LSHForest(min_hash_match=32) lshf.fit(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = LSHForest(min_hash_match=31) lshf.fit(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) lshf.fit(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = LSHForest(radius=1, random_state=0).fit(X1) forest_dense = LSHForest(radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
nicproulx/mne-python
tutorials/plot_stats_cluster_1samp_test_time_frequency.py
9
4065
""" .. _tut_stats_cluster_sensor_1samp_tfr: =============================================================== Non-parametric 1 sample cluster statistic on single trial power =============================================================== This script shows how to estimate significant clusters in time-frequency power estimates. It uses a non-parametric statistical procedure based on permutations and cluster level statistics. The procedure consists in: - extracting epochs - compute single trial power estimates - baseline line correct the power estimates (power ratios) - compute stats to see if ratio deviates from 1. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.time_frequency import tfr_morlet from mne.stats import permutation_cluster_1samp_test from mne.datasets import sample print(__doc__) ############################################################################### # Set parameters # -------------- data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' tmin, tmax, event_id = -0.3, 0.6, 1 # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True, stim=False, include=include, exclude='bads') # Load condition 1 event_id = 1 epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, eog=150e-6)) # Take only one channel ch_name = 'MEG 1332' epochs.pick_channels([ch_name]) evoked = epochs.average() # Factor to down-sample the temporal dimension of the TFR computed by # tfr_morlet. Decimation occurs after frequency decomposition and can # be used to reduce memory usage (and possibly computational time of downstream # operations such as nonparametric statistics) if you don't need high # spectrotemporal resolution. decim = 5 frequencies = np.arange(8, 40, 2) # define frequencies of interest sfreq = raw.info['sfreq'] # sampling in Hz tfr_epochs = tfr_morlet(epochs, frequencies, n_cycles=4., decim=decim, average=False, return_itc=False, n_jobs=1) # Baseline power tfr_epochs.apply_baseline(mode='logratio', baseline=(-.100, 0)) # Crop in time to keep only what is between 0 and 400 ms evoked.crop(0., 0.4) tfr_epochs.crop(0., 0.4) epochs_power = tfr_epochs.data[:, 0, :, :] # take the 1 channel ############################################################################### # Compute statistic # ----------------- threshold = 2.5 T_obs, clusters, cluster_p_values, H0 = \ permutation_cluster_1samp_test(epochs_power, n_permutations=100, threshold=threshold, tail=0) ############################################################################### # View time-frequency plots # ------------------------- evoked_data = evoked.data times = 1e3 * evoked.times plt.figure() plt.subplots_adjust(0.12, 0.08, 0.96, 0.94, 0.2, 0.43) # Create new stats image with only significant clusters T_obs_plot = np.nan * np.ones_like(T_obs) for c, p_val in zip(clusters, cluster_p_values): if p_val <= 0.05: T_obs_plot[c] = T_obs[c] vmax = np.max(np.abs(T_obs)) vmin = -vmax plt.subplot(2, 1, 1) plt.imshow(T_obs, cmap=plt.cm.gray, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', vmin=vmin, vmax=vmax) plt.imshow(T_obs_plot, cmap=plt.cm.RdBu_r, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', vmin=vmin, vmax=vmax) plt.colorbar() plt.xlabel('Time (ms)') plt.ylabel('Frequency (Hz)') plt.title('Induced power (%s)' % ch_name) ax2 = plt.subplot(2, 1, 2) evoked.plot(axes=[ax2]) plt.show()
bsd-3-clause
jreback/pandas
pandas/tests/io/parser/test_read_fwf.py
1
21041
""" Tests the 'read_fwf' function in parsers.py. This test suite is independent of the others because the engine is set to 'python-fwf' internally. """ from datetime import datetime from io import BytesIO, StringIO from pathlib import Path import numpy as np import pytest import pandas as pd from pandas import DataFrame, DatetimeIndex import pandas._testing as tm from pandas.io.parsers import EmptyDataError, read_csv, read_fwf def test_basic(): data = """\ A B C D 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ result = read_fwf(StringIO(data)) expected = DataFrame( [ [201158, 360.242940, 149.910199, 11950.7], [201159, 444.953632, 166.985655, 11788.4], [201160, 364.136849, 183.628767, 11806.2], [201161, 413.836124, 184.375703, 11916.8], [201162, 502.953953, 173.237159, 12468.3], ], columns=["A", "B", "C", "D"], ) tm.assert_frame_equal(result, expected) def test_colspecs(): data = """\ A B C D E 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] result = read_fwf(StringIO(data), colspecs=colspecs) expected = DataFrame( [ [2011, 58, 360.242940, 149.910199, 11950.7], [2011, 59, 444.953632, 166.985655, 11788.4], [2011, 60, 364.136849, 183.628767, 11806.2], [2011, 61, 413.836124, 184.375703, 11916.8], [2011, 62, 502.953953, 173.237159, 12468.3], ], columns=["A", "B", "C", "D", "E"], ) tm.assert_frame_equal(result, expected) def test_widths(): data = """\ A B C D E 2011 58 360.242940 149.910199 11950.7 2011 59 444.953632 166.985655 11788.4 2011 60 364.136849 183.628767 11806.2 2011 61 413.836124 184.375703 11916.8 2011 62 502.953953 173.237159 12468.3 """ result = read_fwf(StringIO(data), widths=[5, 5, 13, 13, 7]) expected = DataFrame( [ [2011, 58, 360.242940, 149.910199, 11950.7], [2011, 59, 444.953632, 166.985655, 11788.4], [2011, 60, 364.136849, 183.628767, 11806.2], [2011, 61, 413.836124, 184.375703, 11916.8], [2011, 62, 502.953953, 173.237159, 12468.3], ], columns=["A", "B", "C", "D", "E"], ) tm.assert_frame_equal(result, expected) def test_non_space_filler(): # From Thomas Kluyver: # # Apparently, some non-space filler characters can be seen, this is # supported by specifying the 'delimiter' character: # # http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html data = """\ A~~~~B~~~~C~~~~~~~~~~~~D~~~~~~~~~~~~E 201158~~~~360.242940~~~149.910199~~~11950.7 201159~~~~444.953632~~~166.985655~~~11788.4 201160~~~~364.136849~~~183.628767~~~11806.2 201161~~~~413.836124~~~184.375703~~~11916.8 201162~~~~502.953953~~~173.237159~~~12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] result = read_fwf(StringIO(data), colspecs=colspecs, delimiter="~") expected = DataFrame( [ [2011, 58, 360.242940, 149.910199, 11950.7], [2011, 59, 444.953632, 166.985655, 11788.4], [2011, 60, 364.136849, 183.628767, 11806.2], [2011, 61, 413.836124, 184.375703, 11916.8], [2011, 62, 502.953953, 173.237159, 12468.3], ], columns=["A", "B", "C", "D", "E"], ) tm.assert_frame_equal(result, expected) def test_over_specified(): data = """\ A B C D E 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] with pytest.raises(ValueError, match="must specify only one of"): read_fwf(StringIO(data), colspecs=colspecs, widths=[6, 10, 10, 7]) def test_under_specified(): data = """\ A B C D E 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ with pytest.raises(ValueError, match="Must specify either"): read_fwf(StringIO(data), colspecs=None, widths=None) def test_read_csv_compat(): csv_data = """\ A,B,C,D,E 2011,58,360.242940,149.910199,11950.7 2011,59,444.953632,166.985655,11788.4 2011,60,364.136849,183.628767,11806.2 2011,61,413.836124,184.375703,11916.8 2011,62,502.953953,173.237159,12468.3 """ expected = read_csv(StringIO(csv_data), engine="python") fwf_data = """\ A B C D E 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] result = read_fwf(StringIO(fwf_data), colspecs=colspecs) tm.assert_frame_equal(result, expected) def test_bytes_io_input(): result = read_fwf(BytesIO("שלום\nשלום".encode()), widths=[2, 2], encoding="utf8") expected = DataFrame([["של", "ום"]], columns=["של", "ום"]) tm.assert_frame_equal(result, expected) def test_fwf_colspecs_is_list_or_tuple(): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ msg = "column specifications must be a list or tuple.+" with pytest.raises(TypeError, match=msg): read_fwf(StringIO(data), colspecs={"a": 1}, delimiter=",") def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples(): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ msg = "Each column specification must be.+" with pytest.raises(TypeError, match=msg): read_fwf(StringIO(data), [("a", 1)]) @pytest.mark.parametrize( "colspecs,exp_data", [ ([(0, 3), (3, None)], [[123, 456], [456, 789]]), ([(None, 3), (3, 6)], [[123, 456], [456, 789]]), ([(0, None), (3, None)], [[123456, 456], [456789, 789]]), ([(None, None), (3, 6)], [[123456, 456], [456789, 789]]), ], ) def test_fwf_colspecs_none(colspecs, exp_data): # see gh-7079 data = """\ 123456 456789 """ expected = DataFrame(exp_data) result = read_fwf(StringIO(data), colspecs=colspecs, header=None) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "infer_nrows,exp_data", [ # infer_nrows --> colspec == [(2, 3), (5, 6)] (1, [[1, 2], [3, 8]]), # infer_nrows > number of rows (10, [[1, 2], [123, 98]]), ], ) def test_fwf_colspecs_infer_nrows(infer_nrows, exp_data): # see gh-15138 data = """\ 1 2 123 98 """ expected = DataFrame(exp_data) result = read_fwf(StringIO(data), infer_nrows=infer_nrows, header=None) tm.assert_frame_equal(result, expected) def test_fwf_regression(): # see gh-3594 # # Turns out "T060" is parsable as a datetime slice! tz_list = [1, 10, 20, 30, 60, 80, 100] widths = [16] + [8] * len(tz_list) names = ["SST"] + [f"T{z:03d}" for z in tz_list[1:]] data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192 2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869 2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657 2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379 2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039 """ result = read_fwf( StringIO(data), index_col=0, header=None, names=names, widths=widths, parse_dates=True, date_parser=lambda s: datetime.strptime(s, "%Y%j%H%M%S"), ) expected = DataFrame( [ [9.5403, 9.4105, 8.6571, 7.8372, 6.0612, 5.8843, 5.5192], [9.5435, 9.2010, 8.6167, 7.8176, 6.0804, 5.8728, 5.4869], [9.5873, 9.1326, 8.4694, 7.5889, 6.0422, 5.8526, 5.4657], [9.5810, 9.0896, 8.4009, 7.4652, 6.0322, 5.8189, 5.4379], [9.6034, 9.0897, 8.3822, 7.4905, 6.0908, 5.7904, 5.4039], ], index=DatetimeIndex( [ "2009-06-13 20:20:00", "2009-06-13 20:30:00", "2009-06-13 20:40:00", "2009-06-13 20:50:00", "2009-06-13 21:00:00", ] ), columns=["SST", "T010", "T020", "T030", "T060", "T080", "T100"], ) tm.assert_frame_equal(result, expected) def test_fwf_for_uint8(): data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127 1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" # noqa df = read_fwf( StringIO(data), colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)], names=["time", "pri", "pgn", "dst", "src", "data"], converters={ "pgn": lambda x: int(x, 16), "src": lambda x: int(x, 16), "dst": lambda x: int(x, 16), "data": lambda x: len(x.split(" ")), }, ) expected = DataFrame( [ [1421302965.213420, 3, 61184, 23, 40, 8], [1421302964.226776, 6, 61442, None, 71, 8], ], columns=["time", "pri", "pgn", "dst", "src", "data"], ) expected["dst"] = expected["dst"].astype(object) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("comment", ["#", "~", "!"]) def test_fwf_comment(comment): data = """\ 1 2. 4 #hello world 5 NaN 10.0 """ data = data.replace("#", comment) colspecs = [(0, 3), (4, 9), (9, 25)] expected = DataFrame([[1, 2.0, 4], [5, np.nan, 10.0]]) result = read_fwf(StringIO(data), colspecs=colspecs, header=None, comment=comment) tm.assert_almost_equal(result, expected) def test_fwf_skip_blank_lines(): data = """ A B C D 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201162 502.953953 173.237159 12468.3 """ result = read_fwf(StringIO(data), skip_blank_lines=True) expected = DataFrame( [ [201158, 360.242940, 149.910199, 11950.7], [201159, 444.953632, 166.985655, 11788.4], [201162, 502.953953, 173.237159, 12468.3], ], columns=["A", "B", "C", "D"], ) tm.assert_frame_equal(result, expected) data = """\ A B C D 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201162 502.953953 173.237159 12468.3 """ result = read_fwf(StringIO(data), skip_blank_lines=False) expected = DataFrame( [ [201158, 360.242940, 149.910199, 11950.7], [201159, 444.953632, 166.985655, 11788.4], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [201162, 502.953953, 173.237159, 12468.3], ], columns=["A", "B", "C", "D"], ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("thousands", [",", "#", "~"]) def test_fwf_thousands(thousands): data = """\ 1 2,334.0 5 10 13 10. """ data = data.replace(",", thousands) colspecs = [(0, 3), (3, 11), (12, 16)] expected = DataFrame([[1, 2334.0, 5], [10, 13, 10.0]]) result = read_fwf( StringIO(data), header=None, colspecs=colspecs, thousands=thousands ) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("header", [True, False]) def test_bool_header_arg(header): # see gh-6114 data = """\ MyColumn a b a b""" msg = "Passing a bool to header is invalid" with pytest.raises(TypeError, match=msg): read_fwf(StringIO(data), header=header) def test_full_file(): # File with all values. test = """index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 2000-01-05T00:00:00 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0.487094399463 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 2000-01-11T00:00:00 0.157160753327 34 foo""" colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) result = read_fwf(StringIO(test)) tm.assert_frame_equal(result, expected) def test_full_file_with_missing(): # File with missing values. test = """index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 34""" colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) result = read_fwf(StringIO(test)) tm.assert_frame_equal(result, expected) def test_full_file_with_spaces(): # File with spaces in columns. test = """ Account Name Balance CreditLimit AccountCreated 101 Keanu Reeves 9315.45 10000.00 1/17/1998 312 Gerard Butler 90.00 1000.00 8/6/2003 868 Jennifer Love Hewitt 0 17000.00 5/25/1985 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 Bill Murray 789.65 5000.00 2/5/2007 """.strip( "\r\n" ) colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) result = read_fwf(StringIO(test)) tm.assert_frame_equal(result, expected) def test_full_file_with_spaces_and_missing(): # File with spaces and missing values in columns. test = """ Account Name Balance CreditLimit AccountCreated 101 10000.00 1/17/1998 312 Gerard Butler 90.00 1000.00 8/6/2003 868 5/25/1985 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 Bill Murray 789.65 """.strip( "\r\n" ) colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) result = read_fwf(StringIO(test)) tm.assert_frame_equal(result, expected) def test_messed_up_data(): # Completely messed up file. test = """ Account Name Balance Credit Limit Account Created 101 10000.00 1/17/1998 312 Gerard Butler 90.00 1000.00 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 Bill Murray 789.65 """.strip( "\r\n" ) colspecs = ((2, 10), (15, 33), (37, 45), (49, 61), (64, 79)) expected = read_fwf(StringIO(test), colspecs=colspecs) result = read_fwf(StringIO(test)) tm.assert_frame_equal(result, expected) def test_multiple_delimiters(): test = r""" col1~~~~~col2 col3++++++++++++++++++col4 ~~22.....11.0+++foo~~~~~~~~~~Keanu Reeves 33+++122.33\\\bar.........Gerard Butler ++44~~~~12.01 baz~~Jennifer Love Hewitt ~~55 11+++foo++++Jada Pinkett-Smith ..66++++++.03~~~bar Bill Murray """.strip( "\r\n" ) delimiter = " +~.\\" colspecs = ((0, 4), (7, 13), (15, 19), (21, 41)) expected = read_fwf(StringIO(test), colspecs=colspecs, delimiter=delimiter) result = read_fwf(StringIO(test), delimiter=delimiter) tm.assert_frame_equal(result, expected) def test_variable_width_unicode(): data = """ שלום שלום ום שלל של ום """.strip( "\r\n" ) encoding = "utf8" kwargs = {"header": None, "encoding": encoding} expected = read_fwf( BytesIO(data.encode(encoding)), colspecs=[(0, 4), (5, 9)], **kwargs ) result = read_fwf(BytesIO(data.encode(encoding)), **kwargs) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("dtype", [{}, {"a": "float64", "b": str, "c": "int32"}]) def test_dtype(dtype): data = """ a b c 1 2 3.2 3 4 5.2 """ colspecs = [(0, 5), (5, 10), (10, None)] result = read_fwf(StringIO(data), colspecs=colspecs, dtype=dtype) expected = DataFrame( {"a": [1, 3], "b": [2, 4], "c": [3.2, 5.2]}, columns=["a", "b", "c"] ) for col, dt in dtype.items(): expected[col] = expected[col].astype(dt) tm.assert_frame_equal(result, expected) def test_skiprows_inference(): # see gh-11256 data = """ Text contained in the file header DataCol1 DataCol2 0.0 1.0 101.6 956.1 """.strip() skiprows = 2 expected = read_csv(StringIO(data), skiprows=skiprows, delim_whitespace=True) result = read_fwf(StringIO(data), skiprows=skiprows) tm.assert_frame_equal(result, expected) def test_skiprows_by_index_inference(): data = """ To be skipped Not To Be Skipped Once more to be skipped 123 34 8 123 456 78 9 456 """.strip() skiprows = [0, 2] expected = read_csv(StringIO(data), skiprows=skiprows, delim_whitespace=True) result = read_fwf(StringIO(data), skiprows=skiprows) tm.assert_frame_equal(result, expected) def test_skiprows_inference_empty(): data = """ AA BBB C 12 345 6 78 901 2 """.strip() msg = "No rows from which to infer column width" with pytest.raises(EmptyDataError, match=msg): read_fwf(StringIO(data), skiprows=3) def test_whitespace_preservation(): # see gh-16772 header = None csv_data = """ a ,bbb cc,dd """ fwf_data = """ a bbb ccdd """ result = read_fwf( StringIO(fwf_data), widths=[3, 3], header=header, skiprows=[0], delimiter="\n\t" ) expected = read_csv(StringIO(csv_data), header=header) tm.assert_frame_equal(result, expected) def test_default_delimiter(): header = None csv_data = """ a,bbb cc,dd""" fwf_data = """ a \tbbb cc\tdd """ result = read_fwf(StringIO(fwf_data), widths=[3, 3], header=header, skiprows=[0]) expected = read_csv(StringIO(csv_data), header=header) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("infer", [True, False]) def test_fwf_compression(compression_only, infer): data = """1111111111 2222222222 3333333333""".strip() compression = compression_only extension = "gz" if compression == "gzip" else compression kwargs = {"widths": [5, 5], "names": ["one", "two"]} expected = read_fwf(StringIO(data), **kwargs) data = bytes(data, encoding="utf-8") with tm.ensure_clean(filename="tmp." + extension) as path: tm.write_to_compressed(compression, path, data) if infer is not None: kwargs["compression"] = "infer" if infer else compression result = read_fwf(path, **kwargs) tm.assert_frame_equal(result, expected) def test_binary_mode(): """ read_fwf supports opening files in binary mode. GH 18035. """ data = """aas aas aas bba bab b a""" df_reference = DataFrame( [["bba", "bab", "b a"]], columns=["aas", "aas.1", "aas.2"], index=[0] ) with tm.ensure_clean() as path: Path(path).write_text(data) with open(path, "rb") as file: df = pd.read_fwf(file) file.seek(0) tm.assert_frame_equal(df, df_reference) @pytest.mark.parametrize("memory_map", [True, False]) def test_encoding_mmap(memory_map): """ encoding should be working, even when using a memory-mapped file. GH 23254. """ encoding = "iso8859_1" data = BytesIO(" 1 A Ä 2\n".encode(encoding)) df = pd.read_fwf( data, header=None, widths=[2, 2, 2, 2], encoding=encoding, memory_map=memory_map, ) data.seek(0) df_reference = DataFrame([[1, "A", "Ä", 2]]) tm.assert_frame_equal(df, df_reference)
bsd-3-clause
massmutual/scikit-learn
sklearn/preprocessing/label.py
137
27165
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Joel Nothman <[email protected]> # Hamzeh Alsalhi <[email protected]> # License: BSD 3 clause from collections import defaultdict import itertools import array import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..utils.fixes import np_version from ..utils.fixes import sparse_min_max from ..utils.fixes import astype from ..utils.fixes import in1d from ..utils import column_or_1d from ..utils.validation import check_array from ..utils.validation import check_is_fitted from ..utils.validation import _num_samples from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..externals import six zip = six.moves.zip map = six.moves.map __all__ = [ 'label_binarize', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', ] def _check_numpy_unicode_bug(labels): """Check that user is not subject to an old numpy bug Fixed in master before 1.7.0: https://github.com/numpy/numpy/pull/243 """ if np_version[:3] < (1, 7, 0) and labels.dtype.kind == 'U': raise RuntimeError("NumPy < 1.7.0 does not implement searchsorted" " on unicode data correctly. Please upgrade" " NumPy to use LabelEncoder with unicode inputs.") class LabelEncoder(BaseEstimator, TransformerMixin): """Encode labels with value between 0 and n_classes-1. Read more in the :ref:`User Guide <preprocessing_targets>`. Attributes ---------- classes_ : array of shape (n_class,) Holds the label for each class. Examples -------- `LabelEncoder` can be used to normalize labels. >>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris'] """ def fit(self, y): """Fit label encoder Parameters ---------- y : array-like of shape (n_samples,) Target values. Returns ------- self : returns an instance of self. """ y = column_or_1d(y, warn=True) _check_numpy_unicode_bug(y) self.classes_ = np.unique(y) return self def fit_transform(self, y): """Fit label encoder and return encoded labels Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ y = column_or_1d(y, warn=True) _check_numpy_unicode_bug(y) self.classes_, y = np.unique(y, return_inverse=True) return y def transform(self, y): """Transform labels to normalized encoding. Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ check_is_fitted(self, 'classes_') classes = np.unique(y) _check_numpy_unicode_bug(classes) if len(np.intersect1d(classes, self.classes_)) < len(classes): diff = np.setdiff1d(classes, self.classes_) raise ValueError("y contains new labels: %s" % str(diff)) return np.searchsorted(self.classes_, y) def inverse_transform(self, y): """Transform labels back to original encoding. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- y : numpy array of shape [n_samples] """ check_is_fitted(self, 'classes_') diff = np.setdiff1d(y, np.arange(len(self.classes_))) if diff: raise ValueError("y contains new labels: %s" % str(diff)) y = np.asarray(y) return self.classes_[y] class LabelBinarizer(BaseEstimator, TransformerMixin): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method. At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method. Read more in the :ref:`User Guide <preprocessing_targets>`. Parameters ---------- neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False) True if the returned array from transform is desired to be in sparse CSR format. Attributes ---------- classes_ : array of shape [n_class] Holds the label for each class. y_type_ : str, Represents the type of the target data as evaluated by utils.multiclass.type_of_target. Possible type are 'continuous', 'continuous-multioutput', 'binary', 'multiclass', 'mutliclass-multioutput', 'multilabel-indicator', and 'unknown'. multilabel_ : boolean True if the transformer was fitted on a multilabel rather than a multiclass set of labels. The ``multilabel_`` attribute is deprecated and will be removed in 0.18 sparse_input_ : boolean, True if the input data to transform is given as a sparse matrix, False otherwise. indicator_matrix_ : str 'sparse' when the input data to tansform is a multilable-indicator and is sparse, None otherwise. The ``indicator_matrix_`` attribute is deprecated as of version 0.16 and will be removed in 0.18 Examples -------- >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) Binary targets transform to a column vector >>> lb = preprocessing.LabelBinarizer() >>> lb.fit_transform(['yes', 'no', 'no', 'yes']) array([[1], [0], [0], [1]]) Passing a 2D matrix for multilabel classification >>> import numpy as np >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]])) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([0, 1, 2]) >>> lb.transform([0, 1, 2, 1]) array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) See also -------- label_binarize : function to perform the transform operation of LabelBinarizer with fixed classes. """ def __init__(self, neg_label=0, pos_label=1, sparse_output=False): if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if sparse_output and (pos_label == 0 or neg_label != 0): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) self.neg_label = neg_label self.pos_label = pos_label self.sparse_output = sparse_output def fit(self, y): """Fit label binarizer Parameters ---------- y : numpy array of shape (n_samples,) or (n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Returns ------- self : returns an instance of self. """ self.y_type_ = type_of_target(y) if 'multioutput' in self.y_type_: raise ValueError("Multioutput target data is not supported with " "label binarization") if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) self.sparse_input_ = sp.issparse(y) self.classes_ = unique_labels(y) return self def transform(self, y): """Transform multi-class labels to binary labels The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme. Parameters ---------- y : numpy array or sparse matrix of shape (n_samples,) or (n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. """ check_is_fitted(self, 'classes_') y_is_multilabel = type_of_target(y).startswith('multilabel') if y_is_multilabel and not self.y_type_.startswith('multilabel'): raise ValueError("The object was not fitted with multilabel" " input.") return label_binarize(y, self.classes_, pos_label=self.pos_label, neg_label=self.neg_label, sparse_output=self.sparse_output) def inverse_transform(self, Y, threshold=None): """Transform binary labels back to multi-class labels Parameters ---------- Y : numpy array or sparse matrix with shape [n_samples, n_classes] Target values. All sparse matrices are converted to CSR before inverse transformation. threshold : float or None Threshold used in the binary and multi-label cases. Use 0 when: - Y contains the output of decision_function (classifier) Use 0.5 when: - Y contains the output of predict_proba If None, the threshold is assumed to be half way between neg_label and pos_label. Returns ------- y : numpy array or CSR matrix of shape [n_samples] Target values. Notes ----- In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with the greatest value. Typically, this allows to use the output of a linear model's decision_function method directly as the input of inverse_transform. """ check_is_fitted(self, 'classes_') if threshold is None: threshold = (self.pos_label + self.neg_label) / 2. if self.y_type_ == "multiclass": y_inv = _inverse_binarize_multiclass(Y, self.classes_) else: y_inv = _inverse_binarize_thresholding(Y, self.y_type_, self.classes_, threshold) if self.sparse_input_: y_inv = sp.csr_matrix(y_inv) elif sp.issparse(y_inv): y_inv = y_inv.toarray() return y_inv def label_binarize(y, classes, neg_label=0, pos_label=1, sparse_output=False): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. This function makes it possible to compute this transformation for a fixed set of class labels known ahead of time. Parameters ---------- y : array-like Sequence of integer labels or multilabel data to encode. classes : array-like of shape [n_classes] Uniquely holds the label for each class. neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. Examples -------- >>> from sklearn.preprocessing import label_binarize >>> label_binarize([1, 6], classes=[1, 2, 4, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) The class ordering is preserved: >>> label_binarize([1, 6], classes=[1, 6, 4, 2]) array([[1, 0, 0, 0], [0, 1, 0, 0]]) Binary targets transform to a column vector >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes']) array([[1], [0], [0], [1]]) See also -------- LabelBinarizer : class used to wrap the functionality of label_binarize and allow for fitting to classes independently of the transform operation """ if not isinstance(y, list): # XXX Workaround that will be removed when list of list format is # dropped y = check_array(y, accept_sparse='csr', ensure_2d=False, dtype=None) else: if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if (sparse_output and (pos_label == 0 or neg_label != 0)): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) # To account for pos_label == 0 in the dense case pos_switch = pos_label == 0 if pos_switch: pos_label = -neg_label y_type = type_of_target(y) if 'multioutput' in y_type: raise ValueError("Multioutput target data is not supported with label " "binarization") if y_type == 'unknown': raise ValueError("The type of target data is not known") n_samples = y.shape[0] if sp.issparse(y) else len(y) n_classes = len(classes) classes = np.asarray(classes) if y_type == "binary": if len(classes) == 1: Y = np.zeros((len(y), 1), dtype=np.int) Y += neg_label return Y elif len(classes) >= 3: y_type = "multiclass" sorted_class = np.sort(classes) if (y_type == "multilabel-indicator" and classes.size != y.shape[1]): raise ValueError("classes {0} missmatch with the labels {1}" "found in the data".format(classes, unique_labels(y))) if y_type in ("binary", "multiclass"): y = column_or_1d(y) # pick out the known labels from y y_in_classes = in1d(y, classes) y_seen = y[y_in_classes] indices = np.searchsorted(sorted_class, y_seen) indptr = np.hstack((0, np.cumsum(y_in_classes))) data = np.empty_like(indices) data.fill(pos_label) Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes)) elif y_type == "multilabel-indicator": Y = sp.csr_matrix(y) if pos_label != 1: data = np.empty_like(Y.data) data.fill(pos_label) Y.data = data else: raise ValueError("%s target data is not supported with label " "binarization" % y_type) if not sparse_output: Y = Y.toarray() Y = astype(Y, int, copy=False) if neg_label != 0: Y[Y == 0] = neg_label if pos_switch: Y[Y == pos_label] = 0 else: Y.data = astype(Y.data, int, copy=False) # preserve label ordering if np.any(classes != sorted_class): indices = np.searchsorted(sorted_class, classes) Y = Y[:, indices] if y_type == "binary": if sparse_output: Y = Y.getcol(-1) else: Y = Y[:, -1].reshape((-1, 1)) return Y def _inverse_binarize_multiclass(y, classes): """Inverse label binarization transformation for multiclass. Multiclass uses the maximal score instead of a threshold. """ classes = np.asarray(classes) if sp.issparse(y): # Find the argmax for each row in y where y is a CSR matrix y = y.tocsr() n_samples, n_outputs = y.shape outputs = np.arange(n_outputs) row_max = sparse_min_max(y, 1)[1] row_nnz = np.diff(y.indptr) y_data_repeated_max = np.repeat(row_max, row_nnz) # picks out all indices obtaining the maximum per row y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data) # For corner case where last row has a max of 0 if row_max[-1] == 0: y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)]) # Gets the index of the first argmax in each row from y_i_all_argmax index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1]) # first argmax of each row y_ind_ext = np.append(y.indices, [0]) y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]] # Handle rows of all 0 y_i_argmax[np.where(row_nnz == 0)[0]] = 0 # Handles rows with max of 0 that contain negative numbers samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)] for i in samples: ind = y.indices[y.indptr[i]:y.indptr[i + 1]] y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0] return classes[y_i_argmax] else: return classes.take(y.argmax(axis=1), mode="clip") def _inverse_binarize_thresholding(y, output_type, classes, threshold): """Inverse label binarization transformation using thresholding.""" if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2: raise ValueError("output_type='binary', but y.shape = {0}". format(y.shape)) if output_type != "binary" and y.shape[1] != len(classes): raise ValueError("The number of class is not equal to the number of " "dimension of y.") classes = np.asarray(classes) # Perform thresholding if sp.issparse(y): if threshold > 0: if y.format not in ('csr', 'csc'): y = y.tocsr() y.data = np.array(y.data > threshold, dtype=np.int) y.eliminate_zeros() else: y = np.array(y.toarray() > threshold, dtype=np.int) else: y = np.array(y > threshold, dtype=np.int) # Inverse transform data if output_type == "binary": if sp.issparse(y): y = y.toarray() if y.ndim == 2 and y.shape[1] == 2: return classes[y[:, 1]] else: if len(classes) == 1: y = np.empty(len(y), dtype=classes.dtype) y.fill(classes[0]) return y else: return classes[y.ravel()] elif output_type == "multilabel-indicator": return y else: raise ValueError("{0} format is not supported".format(output_type)) class MultiLabelBinarizer(BaseEstimator, TransformerMixin): """Transform between iterable of iterables and a multilabel format Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This transformer converts between this intuitive format and the supported multilabel format: a (samples x classes) binary matrix indicating the presence of a class label. Parameters ---------- classes : array-like of shape [n_classes] (optional) Indicates an ordering for the class labels sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Attributes ---------- classes_ : array of labels A copy of the `classes` parameter where provided, or otherwise, the sorted set of classes found when fitting. Examples -------- >>> mlb = MultiLabelBinarizer() >>> mlb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> mlb.classes_ array([1, 2, 3]) >>> mlb.fit_transform([set(['sci-fi', 'thriller']), set(['comedy'])]) array([[0, 1, 1], [1, 0, 0]]) >>> list(mlb.classes_) ['comedy', 'sci-fi', 'thriller'] """ def __init__(self, classes=None, sparse_output=False): self.classes = classes self.sparse_output = sparse_output def fit(self, y): """Fit the label sets binarizer, storing `classes_` Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- self : returns this MultiLabelBinarizer instance """ if self.classes is None: classes = sorted(set(itertools.chain.from_iterable(y))) else: classes = self.classes dtype = np.int if all(isinstance(c, int) for c in classes) else object self.classes_ = np.empty(len(classes), dtype=dtype) self.classes_[:] = classes return self def fit_transform(self, y): """Fit the label sets binarizer and transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ if self.classes is not None: return self.fit(y).transform(y) # Automatically increment on new class class_mapping = defaultdict(int) class_mapping.default_factory = class_mapping.__len__ yt = self._transform(y, class_mapping) # sort classes and reorder columns tmp = sorted(class_mapping, key=class_mapping.get) # (make safe for tuples) dtype = np.int if all(isinstance(c, int) for c in tmp) else object class_mapping = np.empty(len(tmp), dtype=dtype) class_mapping[:] = tmp self.classes_, inverse = np.unique(class_mapping, return_inverse=True) yt.indices = np.take(inverse, yt.indices) if not self.sparse_output: yt = yt.toarray() return yt def transform(self, y): """Transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ class_to_index = dict(zip(self.classes_, range(len(self.classes_)))) yt = self._transform(y, class_to_index) if not self.sparse_output: yt = yt.toarray() return yt def _transform(self, y, class_mapping): """Transforms the label sets with a given mapping Parameters ---------- y : iterable of iterables class_mapping : Mapping Maps from label to column index in label indicator matrix Returns ------- y_indicator : sparse CSR matrix, shape (n_samples, n_classes) Label indicator matrix """ indices = array.array('i') indptr = array.array('i', [0]) for labels in y: indices.extend(set(class_mapping[label] for label in labels)) indptr.append(len(indices)) data = np.ones(len(indices), dtype=int) return sp.csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping))) def inverse_transform(self, yt): """Transform the given indicator matrix into label sets Parameters ---------- yt : array or sparse matrix of shape (n_samples, n_classes) A matrix containing only 1s ands 0s. Returns ------- y : list of tuples The set of labels for each sample such that `y[i]` consists of `classes_[j]` for each `yt[i, j] == 1`. """ if yt.shape[1] != len(self.classes_): raise ValueError('Expected indicator for {0} classes, but got {1}' .format(len(self.classes_), yt.shape[1])) if sp.issparse(yt): yt = yt.tocsr() if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0: raise ValueError('Expected only 0s and 1s in label indicator.') return [tuple(self.classes_.take(yt.indices[start:end])) for start, end in zip(yt.indptr[:-1], yt.indptr[1:])] else: unexpected = np.setdiff1d(yt, [0, 1]) if len(unexpected) > 0: raise ValueError('Expected only 0s and 1s in label indicator. ' 'Also got {0}'.format(unexpected)) return [tuple(self.classes_.compress(indicators)) for indicators in yt]
bsd-3-clause
xzackli/isocurvature_2017
analysis/plot_derived_parameters/plot_function.py
1
3624
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as manimation from scipy.stats import gaussian_kde from pprint import pprint import sys import os from astropy.io import ascii from astropy.table import vstack # THIS FILE: UTILITY FUNCTIONS FOR PLOTTING! def loadChainFolder(chainfolder): for filename in os.listdir(chainfolder): if '.paramnames' in filename: paramfile = os.path.join(chainfolder, filename) # print(paramfile) params = np.array(ascii.read(paramfile,delimiter="\t", format="no_header"))['col1'] # print(params) data_all = None # print(chainfolder) for filename in os.listdir(chainfolder): if filename.endswith(".txt"): chainfile = os.path.join(chainfolder, filename) # print(chainfile) data = (ascii.read(chainfile, delimiter="\s"))[100:] # set up column names (read in from param file) data['col1'].name = 'acceptance' data['col2'].name = 'likelihood' for i in range(3,len(params)+3): data['col' + str(i)].name = params[i-3] if data_all == None: data_all = data else: data_all = vstack( [data_all, data] ) # print(len(data), len(data_all)) return data_all def repeatRows(data, acceptance): newData = data[:] # for each row in data, add rows based on acceptance number for row, acc in zip(data, acceptance): for i in range(acc-1): newData.append( row ) return newData def denplot( list_data, ax, acc, name="data", \ lower=0.0, upper=0.25, nbins=20, extend=False, \ extent=0.1, cov=0.2, fmt="k-", mylabel="label" ): # print("repeating") # list_data = np.array(list_data).tolist() # list_data = repeatRows(list_data, acc) # list_data = np.array(list_data) x = np.linspace(lower, upper, 300) # new_weights = data['acceptance'] if extend: new_list_data = np.hstack( (list_data,-list_data) ) density = gaussian_kde(new_list_data) else: density = gaussian_kde( list_data ) density.covariance_factor = lambda : cov density._compute_covariance() ax.plot( x, density(x) / np.max(density(x)), fmt, label=mylabel ) # counts, bins = np.histogram( list_data, bins=x, weights=new_weights, density=True ) #ax.plot( x[:-1], counts, "r." ) ax.get_yaxis().set_ticks([]) # ax.set_ylim( 0.0, counts.max() ) ax.set_xlim( lower, upper ) ax.set_xlabel( name ) def plotRow(data, ax1, ax2, ax3, ax4, c, mylabel): prr1 = data['P_{RR}^1']; pii1 = data['P_{II}^1']; pri1 = data['P_{RI}^1']; prr2 = data['P_{RR}^2']; pii2 = data['P_{II}^2']; pri2 = pri1 * np.sqrt(pii2 * prr2 / (pii1 * prr1)) # make density plot # sc(x,y) beta_iso1 = pii1 / (prr1 + pii1) beta_iso2 = pii2 / (prr2 + pii2) alpha = pri1 / np.sqrt( pii1 * prr1 ) # \frac{\log( P_{AB}^2 / P_{AB}^1 )}{\log ( k_2 / k_1 ) k1 = 0.002 # Mpc^{-1} k2 = 0.1 # Mpc^{-1} nRR = np.log(prr2/prr1) / np.log(k2/k1) nRI = np.log(pri2/pri1) / np.log(k2/k1) nII = np.log(pii2/pii1) / np.log(k2/k1) denplot( beta_iso1, ax1, data['acceptance'], r"$\beta_{iso}(k_{low})$", 0.0, 0.1, extend=True, fmt=c ) denplot( beta_iso2, ax2, data['acceptance'], r"$\beta_{iso}(k_{high})$", 0.0, 0.8, extend=True, fmt=c) denplot( alpha, ax3, data['acceptance'], r"$\cos \Delta$", -0.5, 0.5, fmt=c) denplot( nII, ax4, data['acceptance'], r"$n_{II}$", -1.0, 2.8, fmt=c, mylabel=mylabel ) ax4.legend()
mit
jasonzliang/kick_classifier
visualize_localization_error.py
1
5914
#!/usr/bin/python ''' Created on Feb 26, 2014 @author: jason ''' import numpy as np from scipy import stats import matplotlib.pyplot as plt import matplotlib import glob import random import networkx as nx np.set_printoptions(suppress=True, formatter={'all':lambda x: str(x) + ','}, linewidth=150) colors=('k','y','m','c','b','g','r','#aaaaaa') linestyles=('-','--','-.',':') styles=[(color,linestyle) for linestyle in linestyles for color in colors] numPlots = 6 def parseFile(name, mode=0): f = open(name) x = np.zeros(40) y = np.zeros(60) loc = [] std = [] counter = 0 for i, line in enumerate(f): if i == 0: key = line.rstrip() continue counter +=1 rawdata = line.rstrip().split() # print rawdata locError, angleError, avgStd = float(rawdata[4]), float(rawdata[7]), float(rawdata[9]) loc.append(locError) std.append(avgStd) if int(locError/0.25) < 40: x[int(locError/0.25)] += 1 if int(angleError) < 60: y[int(angleError)] += 1 x = x/counter y = y/counter if mode == 0: return x,y,key else: return np.array(loc), np.array(std) def drawHistogram(data, keys, prefix=""): matplotlib.rcParams.update({'font.size': 18}) plt.figure(figsize=(8, 7)) plt.title('Localization Error Performance') plt.ylabel('CDF') plt.xlabel('Accuracy in Meters') x = np.arange(40)*0.25 for num, data in enumerate(zip(data, keys)): datum,key = data if key != 'noplot': plt.plot(x, np.cumsum(datum), label=key, linewidth=1, color=styles[num][0],ls=styles[num][1]) plt.legend(loc=4) plt.grid() plt.savefig(prefix + "locError.png", bbox_inches='tight', dpi=300) plt.clf() def drawHistogram2(data, keys, prefix=""): matplotlib.rcParams.update({'font.size': 18}) plt.figure(figsize=(8, 7)) plt.title('Yaw Error Performance') plt.ylabel('CDF') plt.xlabel('Accuracy in Degrees') x = np.arange(60) for num,data in enumerate(zip(data, keys)): datum,key = data if key != 'noplot': plt.plot(x, np.cumsum(datum), label=key, linewidth=1, color=styles[num][0],ls=styles[num][1]) plt.legend(loc=4) plt.grid() plt.savefig(prefix + "angleError.png", bbox_inches='tight', dpi=300) plt.clf() def main(): data = []; keys = []; data2 = [] for i in xrange(numPlots): name = "l" + str(i+1) + '.txt' x,y,k = parseFile(name) data.append(x); keys.append(k); data2.append(y) drawHistogram(data, keys) drawHistogram2(data2, keys) def parseFile2(filename, keys=None, data1=None, data2=None, counter=0): if keys == None: keys = []; data1 = []; data2 = [] for i in xrange(numPlots): data1.append(np.zeros(40)) data2.append(np.zeros(60)) f = open(filename) lines = f.readlines() counter += len(lines) - 1 locData = np.zeros((len(lines) - 1, numPlots)) angleData = np.zeros((len(lines) - 1, numPlots)) for i, line in enumerate(lines): if i == 0: keys = line.rstrip()[:-1].split(';') continue rawdata = line.rstrip()[:-1].split(';') for j in xrange(0, numPlots*2, 2): locError, angError = float(rawdata[j]), float(rawdata[j+1]) if np.isnan(locError) or np.isnan(angError): continue locData[i-1, j/2] = locError angleData[i-1, j/2] = angError if int(locError/0.25) < 40: x = data1[j/2] x[int(locError/0.25)] += 1.0 if int(angError) < 60: y = data2[j/2] y[int(angError)] += 1.0 return keys, data1, data2, counter, np.mean(locData,axis=0), np.mean(angleData,axis=0) def multFiles(basedir="old/results_4_5-3"): listoffiles = glob.glob(basedir+"/*.txt") locAvgErrors = np.zeros((len(listoffiles), numPlots)) t_test = np.zeros((numPlots, numPlots)) ks_test = np.zeros((numPlots, numPlots)) keys = []; data1 = []; data2 = []; counter = 0 for i in xrange(numPlots): data1.append(np.zeros(40)) data2.append(np.zeros(60)) for i, name in enumerate(listoffiles): print "parsing file #" + str(i) + ":" + name keys, data1, data2, counter, avgError, avgAngleError = parseFile2(name, keys, data1, data2, counter) locAvgErrors[i, :] = avgError for i in xrange(numPlots): data1[i] = data1[i]/counter data2[i] = data2[i]/counter for i in xrange(numPlots): for j in xrange(numPlots): t_test[i,j] = stats.ttest_rel(locAvgErrors[:,i], locAvgErrors[:,j])[1] ks_test[i,j] = stats.ks_2samp(data1[i], data1[j])[1] #hack override # keys = ["p-1000,l-11","p-500,l-11","p-200,l-11","p-1000,l-3","p-500,l-3","p-200,l-3"] # keys =['p1000,l3', 'p1000,l2', 'p1000,l1', 'p500,l3', 'p500,l2', 'p500,l1'] # keys = ['p500,l3,ns', 'p500,l2,ns', 'p500,l1,ns','p500,l3,s2', 'p500,l2,s2', 'p500,l1,s2'] keys = ['noplot', 'noplot', 'no line info', '3 lines', '2 lines', '1 line'] # keys = ['original', 'p1000,l1,s1', 'p500,l11,s2', 'p500,l3,s2', 'p500,l2,s2', 'p500,l1,s2', 'p500,l11,s1', 'p1000,l11,s2'] compare = [(0,3), (1,2), (4,5), (0,1)] for a,b in compare: print keys[a] + " <-> " + keys[b], t_test[a,b], ks_test[a,b] drawHistogram(data1, keys, prefix=basedir) drawHistogram2(data2, keys, prefix=basedir) def singleFile(): keys, data1, data2, counter, avgError, avgAngleError = parseFile2("localizationError.txt") print "total measurements: " + str(counter) print keys for i in xrange(numPlots): data1[i] = data1[i]/counter data2[i] = data2[i]/counter drawHistogram(data1, keys) drawHistogram2(data2, keys) def drawAvgStdvsLocError(name='localizationError.txt'): loc,std = parseFile(name,mode=1) plt.title('LocError vs avgStd Scatter') plt.xlabel('avgStd') plt.ylabel('LocError') plt.scatter(std, loc) plt.grid() plt.savefig("scatter.png") if __name__ == '__main__': import sys if len(sys.argv) > 1: multFiles(sys.argv[1]) else: multFiles()
mit
asche1/LongHCPulse
LongHCPulse.py
1
54775
# Code to extract heat capacity from a long pulse in PPMS measurement # Allen Scheie # August, 2016 import numpy as np import matplotlib.colors import matplotlib.pyplot as plt import matplotlib.lines as mlines import sys from scipy.interpolate import interp1d from scipy.interpolate import CubicSpline import copy import pickle cc = matplotlib.colors.ColorConverter() class LongHCPulse: """For importing long pulse heat capacity data""" def __init__(self,datafile,calfile=None,sampmass=None,molarmass=1,scaleshortpulse=1, AdiabaticCriterion=0.1): # If only rawfile is specified, it assumes that you're feeding it a pickle object print('**************** LongHCPulse v 1.3.3 *****************\n'+\ ' please cite https://doi.org/10.1007/s10909-018-2042-9\n'+\ '******************************************************') if ((calfile == None and sampmass == None) and datafile.endswith('.pickle')): with open(datafile, 'rb') as pf: pickdict = pickle.load(pf) self._importPickle(**pickdict) else: self._importData(datafile,calfile,sampmass,molarmass,scaleshortpulse, AdiabaticCriterion) def _importPickle(self, **entries): '''file must have been saved with savefile function''' self.__dict__.update(entries) def _importData(self,rawfile,calfile,sampmass,molarmass,scaleshortpulse, AdiabaticCriterion): # Import thermal conductivity and thermometer resistivity values from calibration file print(" - Importing data...") self.importCalibration(calfile) # Get the number of points per heating/cooling curve, and the number of curves in the file numpts, numcurves = self._countpoints(rawfile) DataHeader = False DataLines = False #index for keeping track of when data begins in file i = 0 # Index for keeping track of data points j = 0-1 # Index for keeping track of heating curves self.rawdata = np.empty((numcurves,3,numpts,2))*np.nan # Array which holds all raw data in file # First index: pulse number # Second index: data type (Time, Sample Temperature, Heater Power) # Third index: actual data points # Fourth index: 0 = heating curve, 1 = cooling curve self.Tb = np.empty((numcurves))*np.nan # Array of system temperatures self.Tsamp = np.empty((numcurves))*np.nan # Array of average sample temperatures self.Tstart = np.empty((numcurves))*np.nan self.Bfield = np.empty((numcurves))*np.nan # Array for holding magnetic field self.ShortPulse = np.zeros((numcurves)) # gives HC if pulse is a short pulse, zero if long pulse self.AddendaHC = np.zeros((2,numcurves)) # Subtracted from HC at the very end. self.ThermCondWire = np.zeros((2,numcurves)) # Used to compare ##self.ThermCondWire = [] # Import data for line in open(rawfile): if DataLines==True: d = line.strip('\n').split(",") if d[1] == '': #only accept lines for which there are no comments if d[4] == '0': kk = 1 # If heater power is zero, it's a cooling curve. self.rawdata[j,0,i,kk] = d[0] #time (s) #self.rawdata[j,1,i,kk] = d[3] #Temp (K) BAD!! UNCORRECTED!! self.rawdata[j,2,i,kk] = d[4] #Heater Power (W) self.rawdata[j,1,i,kk] = self._resisToTemp(float(d[2]), self.Bfield[j]) i+=1 else: kk = 0 # heating curve. self.rawdata[j,0,ii,kk] = d[0] #time (s) #self.rawdata[j,1,ii,kk] = d[3] #Temp (K) BAD!! UNCORRECTED!! self.rawdata[j,2,ii,kk] = d[4] #Heater Power (W) self.rawdata[j,1,ii,kk] = self._resisToTemp(float(d[2]), self.Bfield[j]) # Attempt to correct heating pulses for improper power values. Didn't work. # Assumes that voltage is measured across heater startT = self.rawdata[j,1,0,0] #self.rawdata[j,2,ii,kk] *= self._HeaterRes(startT) /\ # self._HeaterRes(self.rawdata[j,1,ii,kk]) ii +=1 # find the information needed to compute heat capacity if DataLines==False: if "SystemTemp=" in line: self.Tb[j] = float(line.strip('\n').split(',')[1][11:]) # Note that the log files typically show this to be constant over each pulse #if "StableStartTemperature=" in line: # self.Tb[j] = float(line.split(',')[1][len("StableStartTemperature="):-2]) if "TempMinMidMax=" in line: self.Tstart[j] = float(line.strip('\n').split(',')[1][len("TempMinMidMax="):].split('|')[0]) if "Field=" in line: self.Bfield[j] = round(float(line.strip('\n').split(',')[1][6:]),0) if "SampHC=" in line: SampHC = float(line.strip('\n').split(',')[1][7:]) # determine if it's long pulse or short pulse if "SampleTemp=" in line: self.Tsamp[j] = float(line.strip('\n').split(',')[1][11:]) if "TempRise=" in line: TempRise = float(line.strip('\n').split(',')[1][9:]) Tratio = TempRise / self.Tsamp[j] # CRITERION FOR ADIABATIC PULSE: Trise/Tsamp < AdiabaticCriterion # If this is true, then save the sample heat capacity. If not, value = 0 if ("SampHC=" in line and Tratio < AdiabaticCriterion): self.ShortPulse[j] = float(line.strip('\n').split(',')[1][7:]) if "AddendaHC=" in line: self.AddendaHC[1,j] = float(line.strip('\n').split(',')[1][10:]) # microJ/K self.AddendaHC[0,j] = self.Tsamp[j] # Convert to J/K from microJ/K self.AddendaHC[1,j] *= 1e-6 if "ThermCondWire=" in line: #and Tratio < AdiabaticCriterion): self.ThermCondWire[1,j] = float(line.strip('\n').split(',')[1][len("ThermCondWire="):]) self.ThermCondWire[0,j] = self.Tsamp[j] #self.ThermCondWire.append( [ self.Tsamp[j], # float(line.split(',')[1][len("ThermCondWire="):-2]) ]) # These two statements check for data lines if "END:PULSE:PARAMS" in line: DataLines=True # prepare to take data i=0 ii=0 if "BEGIN:PULSE:PARAMS" in line: j+=1 DataLines=False # Print progress sys.stdout.write('\r %d%% ' % (100*j/numcurves)) sys.stdout.flush() # important for printing progress print("\r 100%") # Smooth data self._smooth(n=5) self.sampmass = sampmass self.molarmass = molarmass # Set all "zero-field values" to zero self.Bfield[np.where(np.around(self.Bfield,0) == 0)] = 0 # Round all Bfield values to nearest 10 Oe self.Bfield = np.around(self.Bfield,-1) # Scale short pulse by user-provided factor (depends on how the measurement # was taken). self.ShortPulse *=scaleshortpulse self.shortPulseAverage() # Set scaled Bfield to be Bfield (this is changed if a demagnetization factor # is applied.) self.ScaledBfield = copy.deepcopy(self.Bfield) #Define label array for later self.labels = [] self.shortpulselabels = [] self.Bflag = [] self.shortpulseBflag = [] self.Blabels = [] def _countpoints(self, infile): numberpoints = 0 numberpulses = 0 for line in open(infile): if "NBinsOn" in line: pointson = int(line.strip('\n').split(",")[1][8:]) numberpulses += 1 if "NBinsOff" in line: pointsoff = int(line.strip('\n').split(",")[1][9:]) if (pointson) > numberpoints: numberpoints = pointson return numberpoints, numberpulses def _smooth(self, n): '''Take moving average of heating and cooling pulses''' self.smoothedData = np.zeros((len(self.rawdata[:,1,:,:]),3,len(self.rawdata[0,1,:,:]),2)) for i in range(len(self.rawdata[:,1,:,:])): self.smoothedData[i,1,:,0] = self._movingaverage(self.rawdata[i,1,:,0],n) self.smoothedData[i,1,:,1] = self._movingaverage(self.rawdata[i,1,:,1],n) self.smoothedData[i,0,:,:] = self.rawdata[i,0,:,:] def heatcapacity(self, smoothlevel=0, StaticOffset = 0.1): print(" - Computing Heat Capacity...") # Initialize arrays lenSD = len(self.smoothedData) self.HC = np.zeros((lenSD, len(self.smoothedData[0,0]),2)) self.T = np.zeros((lenSD, len(self.smoothedData[0,0]),2)) self.HC_uncertainty = np.zeros((lenSD, len(self.smoothedData[0,0]),2)) # Sort the addenda heat capacity curve (so it can be interpolated) self.AddendaHC = self.AddendaHC[:,self.AddendaHC[0].argsort()] self.ThermCondWire = self.ThermCondWire[:,self.ThermCondWire[0].argsort()] SData = self.smoothedData #create convenient shorthand for smoothed data # Loop through all curves and compute heat capacity for i in range(lenSD): maxT = self.rawdata[i,1,-1,0] #maximum temperature reached in heating pulse for k in range(2): for j in range(1,len(self.smoothedData[i,0,:,0])-2): Ts = self.smoothedData[i,1,j,k] Ph = self.rawdata[i,2,j,k] # Let thermal conductivity be the integral of conductivity w.r.t. temperature # plus a static offset parameter (as defined by eq. 4.7b in the PPMS manual) KwIntegral = self._WireCondIntegral(self.Tb[i], Ts) KwdT = KwIntegral + self._WireCond(self.Tb[i])*(Ts- self.Tb[i])*StaticOffset # compute dT/dt using 2nd order central finite difference dTdt = (8.*(SData[i,1,j+1,k]- SData[i,1,j-1,k]) - (SData[i,1,j+2,k]- SData[i,1,j-2,k]) )/\ (12.*(SData[i,0,j,k]-SData[i,0,j-1,k])) # compute dT/dt using 1st order central finite difference #dTdt = (SData[i,1,j+1,k]- SData[i,1,j-1,k])/\ # (2*(SData[i,0,j,k]-SData[i,0,j-1,k])) # compute heat capacity ################################################# SData[i,2,j,k] = (-KwdT + Ph)/dTdt ################################################# # subtract addenda SData[i,2,j,k] -= self._addenda(Ts) ############################### # Compute uncertainty ############################### deltaTb = 0.0001 deltaTs = 0.00003 if k == 0 : deltaP = 0.1e-12 # typically negligible else: deltaP = 0 # We approximate deltaKw from the spread of any short pulse data that exists. try: deltaKw = np.interp(Ts, self.avgThermCondWire[0], self.avgThermCondWire[2]) except AttributeError: deltaKw = 4e-10 # <-- Dominant term deltaS = StaticOffset*0.1 ####################################### self.HC_uncertainty[i,j,k] = 1/dTdt * np.sqrt( ((1-StaticOffset)*self._WireCond(self.Tb[i])* deltaTb)**2 +\ ((1+StaticOffset)*(Ts - self.Tb[i])* deltaKw)**2 +\ deltaP**2 +\ (self._WireCond(self.Tb[i])*(Ts - self.Tb[i])*deltaS)**2 +\ ((self._WireCond(Ts)+StaticOffset*self._WireCond(self.Tb[i]))**2 +\ (65*SData[i,2,j,k]**2)/ (72*(SData[i,0,j,k]-SData[i,0,j-1,k])**2)) * deltaTs**2 ) #################################################### #Eliminate values too close to max T or min T if (((Ts - self.Tb[i])/self.Tb[i] < 0.1) or ((Ts - self.Tb[i]) < 0.025)): SData[i,2,j,k] = np.nan if k == 1: #Eliminate values too close to max T on heating if (maxT - Ts)/(maxT-self.Tb[i]) < 0.15: SData[i,2,j,k] = np.nan elif k == 0: #Eliminate values to close to min T on cooling if (maxT - Ts)/(maxT-self.Tb[i]) < 0.16: SData[i,2,j,k] = np.nan # first two and last two data points can't have value: no n-1 term SData[i,2,0,k] = np.nan SData[i,2,1,k] = np.nan SData[i,2,-1,k] = np.nan SData[i,2,-2,k] = np.nan SData[i,2,-3,k] = np.nan # eliminate the first few points from a heating pulse (never reliable) if k ==0: SData[i,2,2:5,k] *= np.nan # Apply this same elimination to uncertainty self.HC_uncertainty[i,np.argwhere(np.isnan(SData[i,2,:,k])),k] *= np.nan # Take moving average of data self.T[i,:,k] = SData[i,1,:,k] self.HC[i,:,k] =SData[i,2,:,k] #self.HC[i,:,k] = self._movingaverage( SData[i,2,:,k], smoothlevel) #Print progress sys.stdout.write('\r %d%% ' % (100*i/lenSD)) sys.stdout.flush() # important # Convert to J/K/mol from J/K self.HC *= self.molarmass/(self.sampmass*1e-3) self.HC_uncertainty *= self.molarmass/(self.sampmass*1e-3) print("\r 100%") def shortPulseAverage(self): """Combine short pulse data points taken at the same temperatures. Threshold is defined in terms of percent change. Adjust this as necessary.""" threshold = 0.01 avgSpHc = [[]] avgSpT = [[]] avgTCW = [] Bindex = 0 # Initialize the first values: firstnonzero = next((i for i, x in enumerate(self.ShortPulse) if x), None) if firstnonzero is None: self.avgSpHc = [] self.avgSpT = [[]] self.avgSpB = [[]] self.ScaledavgSpB = [[]] return 0 Bprev = self.Bfield[firstnonzero] avgSpB = [Bprev] Tprev = round(self.Tsamp[firstnonzero],3) Tavg = [self.Tsamp[firstnonzero]] Cavg = [self.ShortPulse[firstnonzero]] KWavg = [self.ThermCondWire[1,firstnonzero]] for i, sp in enumerate(self.ShortPulse): if sp != 0: if self.Bfield[i] not in avgSpB: avgSpHc[Bindex].append(np.mean(Cavg)) avgSpT[Bindex].append(np.mean(Tavg)) avgTCW.append([np.mean(Tavg), np.mean(KWavg), np.std(KWavg), len(Tavg)]) Tavg = [self.Tsamp[i]] Cavg = [sp] KWavg = [self.ThermCondWire[1,i]] # start new data set Tprev = np.mean(Tavg) avgSpB.append(self.Bfield[i]) avgSpHc.append([]) avgSpT.append([]) Bindex = np.where(avgSpB == self.Bfield[i])[0][0] else: if np.abs((self.Tsamp[i] - Tprev)/Tprev) < threshold: Tavg.append(self.Tsamp[i]) Cavg.append(sp) KWavg.append(self.ThermCondWire[1,i]) else: avgSpHc[Bindex].append(np.mean(Cavg)) avgSpT[Bindex].append(np.mean(Tavg)) avgTCW.append([np.mean(Tavg), np.mean(KWavg), np.std(KWavg), len(Tavg)]) Tavg = [self.Tsamp[i]] Cavg = [sp] KWavg = [self.ThermCondWire[1,i]] Tprev = np.mean(Tavg) #Bprev = self.Bfield[i] #Tprev = round(self.Tsamp[i],3) avgSpHc[Bindex].append(np.mean(Cavg)) avgSpT[Bindex].append(np.mean(Tavg)) avgTCW.append([np.mean(Tavg), np.mean(KWavg), np.std(KWavg), len(Tavg)]) self.avgSpHc = np.array(avgSpHc) self.avgSpT = avgSpT self.avgSpB = avgSpB self.ScaledavgSpB = copy.deepcopy(self.avgSpB) self.avgThermCondWire = np.array(avgTCW) #sort the thermal conductivity Tarrinds = self.avgThermCondWire[:,0].argsort() self.avgThermCondWire = self.avgThermCondWire[Tarrinds].T #self.avgThermCondWire[1] = self._movingaverage(self.avgThermCondWire[1], 2) #self.avgThermCondWire[2] = self._movingaverage(self.avgThermCondWire[2], 2) def importCalibration(self,calfile): """Imports thermal conductivity, heater resistivity, and thermometer resistance from calibration file""" lines = open(calfile,'r').readlines() for ll in range(len(lines)): line = lines[ll] if "[Temp_Cond]" in line: self.Kw = np.array(self._recordCalData(lines, ll)).T elif "[Temp_HtrRes]" in line: self.HtrRes = np.array(self._recordCalData(lines, ll)).T # Import thermometer resistance at various fields (rest of function) elif "[CalibrationFields]" in line: self.CalFields = {'f0':0.0} FieldNames = ['f0'] # there's always zero field numfields = int(lines[ll+1].split('=')[1]) for i in range(numfields): cf = lines[ll+2+i].split('=') self.CalFields[cf[0]] = float(cf[1]) FieldNames.append(cf[0]) ThRes = {fn: [] for fn in FieldNames} elif "[Temp_ThRes" in line: if any([x in line for x in FieldNames[1:]]): CalField = [x for x in FieldNames if x in line][0] newdata = self._recordCalData(lines, ll) ThRes[CalField].extend(newdata) # Import zero field data elif "f" not in line: newdata = self._recordCalData(lines, ll) ThRes['f0'].extend(newdata) for f in FieldNames: # convert to sorted numpy array ThRes[f] = np.array(ThRes[f]) ThRes[f] = ThRes[f][ThRes[f][:,0].argsort()].T # Combine close repeated values in thermometer resistance self.AvgThRes = {fn: [[],[]] for fn in FieldNames} AvgThTemp = {fn: [[],[]] for fn in FieldNames} threshold = 0.005 #(K) for f in FieldNames: Tavg = [] Ravg = [] Tprev = ThRes[f][0,0] for i, Tem in enumerate(ThRes[f][0]): if (np.abs(Tem-Tprev) <= threshold) | (np.abs(Tem-Tprev)/Tem <= threshold): Tavg.append(Tem) Ravg.append(ThRes[f][1,i]) else: self.AvgThRes[f][0].append(np.mean(Tavg)) self.AvgThRes[f][1].append(np.mean(Ravg)) Tavg = [Tem] Ravg = [ThRes[f][1,i]] Tprev = Tem # Add a few extra points at the end so the cubic spline doesn't get messed up # atr = self.AvgThRes[f] # beginslope = (atr[1][0] - atr[1][1])/\ # (atr[0][0] - atr[0][1]) # xbeg1 = atr[0][0] - (atr[0][1] - atr[0][0]) # xbeg2 = (atr[0][0] + xbeg1)/2. # xbeg3 = (xbeg1 + xbeg2)/2. # xbeg4 = (xbeg1 + xbeg3)/2. # for x in [xbeg2, xbeg3, xbeg4, xbeg1]: # ynew = beginslope*(x-atr[0][0]) + atr[1][0] # self.AvgThRes[f][0].insert(0,x) # self.AvgThRes[f][1].insert(0,ynew) # endslope = (atr[1][-1] - atr[1][-2])/\ # (atr[0][-1] - atr[0][-2]) # xend1 = atr[0][-1] + (atr[0][-1] - atr[0][-2]) # xend2 = (atr[0][-1] + xend1)/2. # xend3 = (xend2 + xend1)/2. # xend4 = (xend2 + xend3)/2. # for x in [xend4, xend2, xend3, xend1]: # ynew = endslope*(x-atr[0][-1]) + atr[1][-1] # self.AvgThRes[f][0].append(x) # self.AvgThRes[f][1].append(ynew) # Prepare functions for interpolation self.ResTempFunc = {} for f in FieldNames: self.AvgThRes[f] = np.array(self.AvgThRes[f]) # Used for "_tempToResis" # Smooth data (unhelpful) #self.AvgThRes[f][0] = self._movingaverage( self.AvgThRes[f][0], 3) AvgThTemp[f] = self.AvgThRes[f][:,self.AvgThRes[f][1].argsort()] # Used for "_resisToTemp" # self.ResTempFunc[f] = interp1d(AvgThTemp[f][1], AvgThTemp[f][0], kind='cubic', # bounds_error = False) self.ResTempFunc[f] = CubicSpline(AvgThTemp[f][1], AvgThTemp[f][0], bc_type = 'natural',extrapolate=True) # plt.figure() # plt.plot(AvgThTemp[FieldNames[0]][1], 1/AvgThTemp[FieldNames[0]][0], '.') # xdat = np.linspace(AvgThTemp[FieldNames[0]][1][0],AvgThTemp[FieldNames[0]][1][-1], 1000) # plt.plot(xdat, 1/self.ResTempFunc[FieldNames[0]](xdat)) def _recordCalData(self,datalines,start): """Used with the importCalibration function""" count = int(datalines[start + 6].split('=')[1]) data = [] for i in range(start+7, start+7+count): data.append([float(d) for d in datalines[i].strip('\n').strip(',').split(',')]) return data def _movingaverage(self, datay, n): """Computes moving average of the y data set""" if not (n & 0x1): n+=1 # Force the average number to be odd (to keep x values accurate) newdatay = np.convolve(datay, np.ones((n,))/n, mode='same') for i in range(int((n-1)/2)): newdatay[i] = np.average(datay[:(2*i)+1]) newdatay[-i-1] = np.average(datay[-(2*i)-1:]) return newdatay def _movingaverage_xspacing(self, datax, datay, smooth, xSpacing): """Computes moving average of the y data set, but limited only to data points under xSpacing distance.""" length = len(datay) newy = np.zeros(length) for i in range(length): if (i-smooth) < 0: llim = 0 ulim = 2*i elif (i+smooth) >= length: llim = 2*i - length ulim = length-1 else: llim = i-smooth ulim = i+smooth indexrange = np.arange(llim, ulim+1) xspacerange = np.where((datax < datax[i]+xSpacing) & (datax > datax[i]-xSpacing))[0] indices = np.intersect1d(indexrange, xspacerange) #TODO: Force range to be symmetric about i lowind, highind = indices[0], indices[-1] if i-lowind < highind-i: highind = i + (i-lowind) elif i-lowind > highind-i: lowind = i - (highind-i) #print i, indexrange, xspacerange, lowind, highind #print np.array(datay)[indices] newy[i]= np.average(datay[lowind:highind+1]) return newy def _WireCond(self,temp): """Returns the wire conductivity for a given temperature (must run 'importCalibration' first)""" tcw= self.Kw return np.interp(temp, tcw[0], tcw[1]) # #atcw = self.avgThermCondWire # if np.logical_and(temp < tcw[0,-1], temp>tcw[0,0]): # return np.interp(temp, tcw[0], tcw[1]) # #If temp is not in range of avgThermCondWire, extrapolate last two points. # elif temp < atcw[0,0]: # x1, y1, x2, y2 = tcw[0,0], tcw[1,0], tcw[0,1], tcw[1,1] # AA = (y2-y1)/(x2-x1) # BB = y1-AA*x1 # return AA*temp + BB # elif temp > atcw[0,-1]: # x1, y1, x2, y2 = tcw[0,-2], tcw[1,-2], tcw[0,-1], tcw[1,-1] # AA = (y2-y1)/(x2-x1) # BB = y1-AA*x1 # return AA*temp + BB # #return np.interp(temp, self.ThermCondWire[0], self.ThermCondWire[1]) def _WireCondIntegral(self, temp1, temp2): """Used for computing heat capacity""" tcw = self.Kw startK = self._WireCond(temp1) endK = self._WireCond(temp2) intermediate = np.where(np.logical_and(tcw[0]>temp1, tcw[0]<temp2))[0] if len(intermediate) == 0: Kint = 0.5*(endK + startK)*(temp2-temp1) else: interT = tcw[0][intermediate] interK = tcw[1][intermediate] # Integrate with the trapezoid rule Kint = 0.5*(startK + interK[0])*(interT[0]-temp1) for i in range(len(intermediate)-1): Kint += 0.5*(interK[i] + interK[i+1])*(interT[i+1]-interT[i]) Kint += 0.5*(endK + interK[-1])*(temp2-interT[-1]) return Kint def _HeaterRes(self,temp): """Returns the heater resistance for a given temperature (must run 'importCalibration' first)""" return np.interp(temp, self.HtrRes[0], self.HtrRes[1]) def _tempToResis(self, Temp, Field): """Returns the thermometer resistance for a given temperature""" ## Interpolate temperatures FieldArray = np.array(list(self.CalFields.values())) IntrpTRes = np.zeros(len(FieldArray)) for i,f in enumerate(FieldArray): IntrpTRes[i] = np.interp(Temp, self.AvgThRes['f'+str(i)][0], self.AvgThRes['f'+str(i)][1]) ## Interpolate resistance between two closest fields return np.interp(Field, FieldArray, IntrpTRes) def _resisToTemp(self, Resis, Field): """Used to compute temperature from thermometer resistance. For long pulses, the PPMS calculates temperature incorrectly.""" ## Interpolate temperatures FieldArray = np.array(list(self.CalFields.values())) IntrpTTemp = np.zeros(len(FieldArray)) for i,f in enumerate(FieldArray): IntrpTTemp[i] = self.ResTempFunc['f'+str(i)](Resis) ## Interpolate resistance between two closest fields return np.interp(Field, FieldArray, IntrpTTemp) def _addenda(self,temp): """Returns the addenda Hc (in J/K) for a given temperature (also works for an array of temperatures)""" return np.interp(temp, self.AddendaHC[0], self.AddendaHC[1]) def _combineTraces(self,smooth, FieldBinSize=10, useHeatPulses=False, onlyHeatPulses=False): """Combines all heat capacity traces into a single line. Used for lineplotCombine and Entropy calculations. FieldBinSize in in Oe, default setting is to only use cooling pulses.""" Barray = np.sort(list(set(self.Bfield))) self.CombB = Barray ScaledBarray = np.zeros(len(Barray)) for ii in range(len(Barray)): B = Barray[ii] Bindex = np.where(self.Bfield==B)[0][0] ScaledBarray[ii] = self.ScaledBfield[Bindex] #ScaledBarray = np.sort(list(set(np.around(self.ScaledBfield,1)))) self.ScaledCombB = ScaledBarray if len(ScaledBarray) != len(Barray): raise IndexError("ScaledBarray != Barray") HCtoComb = [] TtoComb = [] self.CombHC = [] self.CombT = [] #plt.figure() # Find where the short pulses are LongPindices = np.where(self.ShortPulse==0)[0] # loop through fields and combine traces for jj in range(len(Barray)): B = Barray[jj] # find all indices where the magnetic field is of the specified value Bindices = np.where(np.abs(self.Bfield - B)<FieldBinSize)[0] # Take intersection of long pulses and field to eliminate short pulse data Bindices = np.intersect1d(Bindices, LongPindices) if len(Bindices) == 0: continue # Skip if no data exists for this field combinedHc = [] combinedT = [] # Average the points which overlap with another curve for bi in Bindices: if onlyHeatPulses: # Combine all heating pulses into a single trace nonnan = np.where(~np.isnan(np.array(self.HC[bi][:,0]))) overlapdataHC = self.HC[bi][nonnan,0].flatten() for bj in Bindices[np.where(Bindices != bi)]: overlapdataHC = np.vstack((overlapdataHC, np.interp(self.T[bi][nonnan,0].flatten(), self.T[bj][:,0], self.HC[bj][:,0], right = np.nan, left = np.nan))) combinedHc.extend(np.nanmean(np.array(overlapdataHC), axis=0)) combinedT.extend(self.T[bi][nonnan,0].flatten()) else: #Combine all cooling pulses into a single trace nonnan = np.where(~np.isnan(np.array(self.HC[bi][:,1]))) overlapdataHC = self.HC[bi][nonnan,1].flatten() for bj in Bindices[np.where(Bindices != bi)]: overlapdataHC = np.vstack((overlapdataHC, np.interp(self.T[bi][nonnan,1].flatten(), self.T[bj][:,1][::-1], self.HC[bj][:,1][::-1], right = np.nan, left = np.nan))) if useHeatPulses: # include heating pulses overlapdataHC = np.vstack((overlapdataHC, np.interp(self.T[bi][nonnan,1].flatten(), self.T[bj][:,0], self.HC[bj][:,0], right = np.nan, left = np.nan))) if useHeatPulses: # Compute overlap with same index heating pulse overlapdataHC = np.vstack((overlapdataHC, np.interp(self.T[bi][nonnan,1].flatten(), self.T[bi][:,0], self.HC[bi][:,0], right = np.nan, left = np.nan))) # Concatenate data to array, to be sorted later combinedHc.extend(np.nanmean(np.array(overlapdataHC), axis=0)) combinedT.extend(self.T[bi][nonnan,1].flatten()) if useHeatPulses: # Compute overlap with same index heating pulse overlapdataHC = np.vstack((overlapdataHC, np.interp(self.T[bi][nonnan,1].flatten(), self.T[bi][:,0], self.HC[bi][:,0], right = np.nan, left = np.nan))) # Now repeat, but computing overlap with heating pulse nonnan = np.where(~np.isnan(np.array(self.HC[bi][:,0]))) overlapdataHC = self.HC[bi][nonnan,0].flatten() for bj in Bindices[np.where(Bindices != bi)]: overlapdataHC = np.vstack((overlapdataHC, np.interp(self.T[bi][nonnan,0].flatten(), self.T[bj][:,1][::-1], self.HC[bj][:,1][::-1], right = np.nan, left = np.nan))) overlapdataHC = np.vstack((overlapdataHC, np.interp(self.T[bi][nonnan,0].flatten(), self.T[bj][:,0], self.HC[bj][:,0], right = np.nan, left = np.nan))) # Concatenate data to array, to be sorted later combinedHc.extend(np.nanmean(np.array(overlapdataHC), axis=0)) combinedT.extend(self.T[bi][nonnan,0].flatten()) combinedHc = np.array(combinedHc) combinedT = np.array(combinedT) # Sort data by temperature Tarrinds = combinedT.argsort() combinedHc = combinedHc[Tarrinds] combinedT = combinedT[Tarrinds] AvgCombHc= [] AvgCombT = [] # Combine close repeated values threshold = 0.002 #(K) Tprev = combinedT[0] HCprev = combinedHc[0] i=1 while i < len(combinedT): Tem = combinedT[i] HCap = combinedHc[i] if np.abs(Tem-Tprev) <= threshold: AvgCombT.append(0.5*(Tem + Tprev)) AvgCombHc.append(0.5*(HCap + HCprev)) HCprev = combinedHc[i] Tprev = combinedT[i] i+=1 else: AvgCombT.append(Tprev) AvgCombHc.append(HCprev) HCprev = combinedHc[i] Tprev = combinedT[i] i+=1 # Smooth data AvgCombHc = self._movingaverage_xspacing(AvgCombT,AvgCombHc, smooth, 0.01) # Append to object list self.CombHC.append(AvgCombHc) self.CombT.append(AvgCombT) def _combineTracesOld(self,smooth, FieldBinSize=10): """Combines all heat capacity traces into a single line. Used for lineplotCombine and Entropy calculations. FieldBinSize in in Oe""" Barray = np.sort(list(set(self.Bfield))) self.CombB = Barray ScaledBarray = np.zeros(len(Barray)) for ii in range(len(Barray)): B = Barray[ii] Bindex = np.where(self.Bfield==B)[0][0] ScaledBarray[ii] = self.ScaledBfield[Bindex] #ScaledBarray = np.sort(list(set(np.around(self.ScaledBfield,1)))) self.ScaledCombB = ScaledBarray if len(ScaledBarray) != len(Barray): raise IndexError("ScaledBarray != Barray") self.CombHC = [] self.CombT = [] # Find where the short pulses are LongPindices = np.where(self.ShortPulse==0)[0] # loop through fields and combine traces for jj in range(len(Barray)): B = Barray[jj] # find all indices where the magnetic field is of the specified value Bindices = np.where(np.abs(self.Bfield - B)<FieldBinSize)[0] # Take intersection of long pulses and field to eliminate short pulse data Bindices = np.intersect1d(Bindices, LongPindices) if len(Bindices) == 0: continue # Skip if no data exists for this field # Concatenate data combinedHc = self.HC[Bindices[0]][:,1] combinedT = self.T[Bindices[0]][:,1] for bb in Bindices[1:]: combinedHc = np.hstack((combinedHc,self.HC[bb][:,1])) combinedT = np.hstack((combinedT,self.T[bb][:,1])) # Eliminate nan values nonnan = np.where(~np.isnan(combinedHc)) combinedHc = combinedHc[nonnan] combinedT = combinedT[nonnan] # Sort data by temperature Tarrinds = combinedT.argsort() combinedHc = combinedHc[Tarrinds] combinedT = combinedT[Tarrinds] AvgCombHc= [] AvgCombT = [] # Combine close repeated values threshold = 0.005 #(K) Tprev = combinedT[0] HCprev = combinedHc[0] i=1 while i < len(combinedT): Tem = combinedT[i] HCap = combinedHc[i] if np.abs(Tem-Tprev) <= threshold: AvgCombT.append(0.5*(Tem + Tprev)) AvgCombHc.append(0.5*(HCap + HCprev)) HCprev = combinedHc[i] Tprev = combinedT[i] i+=1 else: AvgCombT.append(Tprev) AvgCombHc.append(HCprev) HCprev = combinedHc[i] Tprev = combinedT[i] i+=1 # Smooth data AvgCombHc = self._movingaverage_xspacing(AvgCombT,AvgCombHc, smooth, 0.01) # Append to object list self.CombHC.append(AvgCombHc) self.CombT.append(AvgCombT) # Functions called by user: def plotHC(self,axes,index,heatingcolor=None,coolingcolor=None,shortpulsecolor=None, Blabels=False, demag=True, marker = 'o', PlotUncertainty=False, **kwargs): """If the pulse is a long pulse, plot it. If it is a short pulse, plot a single point. If you don't want to plot a curve, leave the color value as blank.""" ShortHC = self.ShortPulse[index] if ShortHC == 0: if heatingcolor is not None: if 'color' in kwargs: axes.plot(self.T[index][:,0], self.HC[index][:,0],**kwargs) else: axes.plot(self.T[index][:,0], self.HC[index][:,0],color=heatingcolor, **kwargs) if PlotUncertainty == True: axes.fill_between(self.T[index][:,0], self.HC[index][:,0]+ self.HC_uncertainty[index][:,0], self.HC[index][:,0]- self.HC_uncertainty[index][:,0], facecolor=[(2*i+0.5)/3. for i in cc.to_rgba(heatingcolor, alpha=0.5)], edgecolor='none', interpolate=True) if coolingcolor is not None: if 'color' in kwargs: axes.plot(self.T[index][:,1], self.HC[index][:,1], **kwargs) else: axes.plot(self.T[index][:,1], self.HC[index][:,1],color=coolingcolor, **kwargs) if PlotUncertainty == True: axes.fill_between(self.T[index][:,1], self.HC[index][:,1]+ self.HC_uncertainty[index][:,1], self.HC[index][:,1]- self.HC_uncertainty[index][:,1], facecolor=[(2*i+0.5)/3. for i in cc.to_rgba(coolingcolor, alpha=0.5)], edgecolor='none', alpha=0.3, interpolate=True) else: if shortpulsecolor is not None: axes.plot(self.Tsamp[index],self.ShortPulse[index], marker=marker, markeredgecolor=shortpulsecolor, markerfacecolor='none') # Create labels for a data legend if Blabels == False: heating_curve = mlines.Line2D([], [], color=heatingcolor, label='Heating Curve', **kwargs) cooling_curve = mlines.Line2D([], [], color=coolingcolor, label='Cooling Curve', **kwargs) short_pulses = mlines.Line2D([], [], color=shortpulsecolor, marker=marker, markeredgecolor=shortpulsecolor, markerfacecolor='none', label='Adiabatic Pulses', linestyle="None") self.labels = [] if heatingcolor is not None: self.labels.append(heating_curve) if coolingcolor is not None: self.labels.append(cooling_curve) if (shortpulsecolor is not None) and (ShortHC != 0): self.labels.append(short_pulses) if Blabels == True: if demag == True: Bvalue = self.ScaledBfield[index] else: Bvalue = self.Bfield[index] if len(self.labels) == 0: self.Bflag = [] # This means labels has been reset if Bvalue not in self.Bflag: # Right now, it uses the cooling curve color for the label. labl = str(abs(Bvalue)/10000)+' T' #Blab = mlines.Line2D([], [], color=coolingcolor, label=labl) self.Bflag.append(Bvalue) if (coolingcolor is not None) and (heatingcolor is not None): self.labels.append(mlines.Line2D([], [], color=coolingcolor, label=labl + ' (cooling)')) self.labels.append(mlines.Line2D([], [], color=heatingcolor, label=labl+ ' (heating)')) self.Bflag.append(Bvalue) elif coolingcolor is not None: self.labels.append(mlines.Line2D([], [], color=coolingcolor, label=labl)) elif heatingcolor is not None: self.labels.append(mlines.Line2D([], [], color=heatingcolor, label=labl)) else: self.labels.append(mlines.Line2D([], [], color=shortpulsecolor, label=labl)) #Sort Bflags, and make into array of labels self.labels = [x for (y,x) in sorted(zip(self.Bflag,self.labels), key=lambda pair: pair[0])] self.Bflag = sorted(self.Bflag) if (Bvalue not in self.shortpulseBflag and ShortHC != 0): labl = str(Bvalue/10000)+' T' self.shortpulseBflag.append(Bvalue) if shortpulsecolor is not None: self.shortpulselabels.append(mlines.Line2D([], [], color=shortpulsecolor, marker='o', linestyle="None", markeredgecolor=shortpulsecolor, markerfacecolor='none', label=labl)) self.shortpulselabels = [x for (y,x) in sorted(zip(self.shortpulseBflag, self.shortpulselabels), key=lambda pair: pair[0])] self.shortpulseBflag = sorted(self.shortpulseBflag) def plotHCT(self,axes,index,heatingcolor=None,coolingcolor=None,shortpulsecolor=None, Blabels=False, demag=True, marker = 'o', PlotUncertainty=False, **kwargs): """If the pulse is a long pulse, plot it. If it is a short pulse, plot a single point. If you don't want to plot a curve, leave the color value as blank.""" ShortHC = self.ShortPulse[index] if ShortHC == 0: if heatingcolor is not None: if 'color' in kwargs: axes.plot(self.T[index][:,0], self.HC[index][:,0]/self.T[index][:,0], **kwargs) else: axes.plot(self.T[index][:,0], self.HC[index][:,0]/self.T[index][:,0],color=heatingcolor, **kwargs) if PlotUncertainty == True: axes.fill_between(self.T[index][:,0], (self.HC[index][:,0]+ self.HC_uncertainty[index][:,0])/self.T[index][:,0], (self.HC[index][:,0]- self.HC_uncertainty[index][:,0])/self.T[index][:,0], facecolor=[(2*i+0.5)/3. for i in cc.to_rgba(heatingcolor, alpha=0.5)], edgecolor='none', interpolate=True) if coolingcolor is not None: if 'color' in kwargs: axes.plot(self.T[index][:,1], self.HC[index][:,1]/self.T[index][:,1], **kwargs) else: axes.plot(self.T[index][:,1], self.HC[index][:,1]/self.T[index][:,1],color=coolingcolor, **kwargs) if PlotUncertainty == True: axes.fill_between(self.T[index][:,1], (self.HC[index][:,1]+ self.HC_uncertainty[index][:,1])/self.T[index][:,1], (self.HC[index][:,1]- self.HC_uncertainty[index][:,1])/self.T[index][:,1], facecolor=[(2*i+0.5)/3. for i in cc.to_rgba(coolingcolor, alpha=0.5)], edgecolor='none', alpha=0.3, interpolate=True) else: if shortpulsecolor is not None: axes.plot(self.Tsamp[index],self.ShortPulse[index]/self.Tsamp[index], marker=marker, markeredgecolor=shortpulsecolor, markerfacecolor='none') # Create labels for a data legend if Blabels == False: heating_curve = mlines.Line2D([], [], color=heatingcolor, label='Heating Curve', **kwargs) cooling_curve = mlines.Line2D([], [], color=coolingcolor, label='Cooling Curve', **kwargs) short_pulses = mlines.Line2D([], [], color=shortpulsecolor, marker=marker, markeredgecolor=shortpulsecolor, markerfacecolor='none', label='Adiabatic Pulses', linestyle="None") self.labels = [] if heatingcolor is not None: self.labels.append(heating_curve) if coolingcolor is not None: self.labels.append(cooling_curve) if (shortpulsecolor is not None) and (ShortHC != 0): self.labels.append(short_pulses) if Blabels == True: if demag == True: Bvalue = self.ScaledBfield[index] else: Bvalue = self.Bfield[index] if len(self.labels) == 0: self.Bflag = [] # This means labels has been reset if Bvalue not in self.Bflag: # Right now, it uses the cooling curve color for the label. labl = str(abs(Bvalue)/10000)+' T' #Blab = mlines.Line2D([], [], color=coolingcolor, label=labl) self.Bflag.append(Bvalue) if (coolingcolor is not None) and (heatingcolor is not None): self.labels.append(mlines.Line2D([], [], color=coolingcolor, label=labl + ' (cooling)')) self.labels.append(mlines.Line2D([], [], color=heatingcolor, label=labl+ ' (heating)')) self.Bflag.append(Bvalue) elif coolingcolor is not None: self.labels.append(mlines.Line2D([], [], color=coolingcolor, label=labl)) elif heatingcolor is not None: self.labels.append(mlines.Line2D([], [], color=heatingcolor, label=labl)) else: self.labels.append(mlines.Line2D([], [], color=shortpulsecolor, label=labl)) #Sort Bflags, and make into array of labels self.labels = [x for (y,x) in sorted(zip(self.Bflag,self.labels), key=lambda pair: pair[0])] self.Bflag = sorted(self.Bflag) if (Bvalue not in self.shortpulseBflag and ShortHC != 0): labl = str(Bvalue/10000)+' T' self.shortpulseBflag.append(Bvalue) if shortpulsecolor is not None: self.shortpulselabels.append(mlines.Line2D([], [], color=shortpulsecolor, marker='o', linestyle="None", markeredgecolor=shortpulsecolor, markerfacecolor='none', label=labl)) self.shortpulselabels = [x for (y,x) in sorted(zip(self.shortpulseBflag, self.shortpulselabels), key=lambda pair: pair[0])] self.shortpulseBflag = sorted(self.shortpulseBflag) def lineplot(self,axes,Barray, plotHeatPulses=False, markers = ['s','^','o','x'], **kwargs): """ Plots all the traces of long-pulse heat capacity and points of short-pulse Currently uses 'gist_rainbow' colormap. If you don't like it, change it.""" if (Barray == 'All' or Barray == 'all'): Barray = np.sort(list(set(self.Bfield))) else: Barray = np.array(Barray) # determine the color map #colormap = plt.cm.hsv((Barray*1.0)/Barray[-1]) * 0.6 #based on field colormap = plt.cm.hsv(np.arange(len(Barray))*1.0/len(Barray))* 0.75 #based on index colors = dict(zip(Barray, colormap)) for jj in range(len(self.Bfield)): B = self.Bfield[jj] for b in Barray: if B == b: self.plotHC(axes=axes,index=jj,coolingcolor=colors[B],Blabels=True, **kwargs) if plotHeatPulses == True: heatpulsecolor = colors[B]*0.6 heatpulsecolor[-1] = 0.9 self.plotHC(axes=axes,index=jj,heatingcolor=heatpulsecolor,Blabels=True, **kwargs) # Plot short pulse data if np.count_nonzero(self.ShortPulse) == 0: return for jj, b in enumerate(Barray): for i in range(len(self.avgSpB)): spB = self.avgSpB[i] if spB == b: axes.plot(self.avgSpT[i], self.avgSpHc[i],color=colors[spB], marker=markers[i%len(markers)], markeredgecolor=colors[spB], markerfacecolor='none', label='Adiabatic Pulses', linestyle="None") try: if demag == True: labl = str(abs(self.ScaledavgSpB[i])/10000.)+' T' else: labl = str(round(self.avgSpB[i],1)/10000.)+' T' except NameError: labl = str(round(self.avgSpB[i],1)/10000)+' T' self.shortpulselabels.append(mlines.Line2D([], [], color=colors[spB], marker=markers[i%len(markers)], linestyle="None", markeredgecolor=colors[spB], markerfacecolor='none', label=labl)) def lineplotCombine(self,axes,Barray,smooth, demag=True, plotShortPulse=True, markers = ['s','^','o','x'], FieldBinSize = 10, onlyHeatPulses=False, useHeatPulses=False, **kwargs): """Combines all the heat capacity traces in a given field so that there is only one line plotted""" self.labels = [] if Barray in ['All', 'all']: Barray = np.sort(list(set(self.Bfield))) else: Barray = np.array(Barray) # determine the color map colormap = plt.cm.hsv(np.arange(len(Barray))*1.0/len(Barray))* 0.75 #based on index colors = dict(zip(Barray, colormap)) # Combine traces into single line self._combineTraces(smooth, FieldBinSize, useHeatPulses, onlyHeatPulses) # plot the long pulse data for jj in range(len(Barray)): B = Barray[jj] if B == 0: B=0.0 # get rid of negative sign which may be there # find all indices where the magnetic field is of the specified value try: Bindex = np.where(self.CombB==B)[0][0] except IndexError: continue # Plot if demag == True: fieldval = round(self.ScaledCombB[Bindex]/10000 , 3) if fieldval == 0: fieldval = 0.0 labl = str(fieldval)+' T' else: labl = str(Barray[jj]/10000.)+' T' if ('color' in kwargs) or ('c' in kwargs) : axes.plot(self.CombT[Bindex], self.CombHC[Bindex], **kwargs) else: axes.plot(self.CombT[Bindex], self.CombHC[Bindex], color=colors[B], **kwargs) self.labels.append(mlines.Line2D([], [], color=colors[B], label=labl)) #Plot short pulse data if np.count_nonzero(self.ShortPulse) == 0: return if plotShortPulse == True: edgewidth = 0.8 for jj, b in enumerate(Barray): for i in range(len(self.avgSpB)): spB = self.avgSpB[i] if spB == b: axes.plot(self.avgSpT[i], self.avgSpHc[i],color=colors[spB], marker=markers[i%len(markers)], markeredgewidth = edgewidth, markeredgecolor=colors[spB], markerfacecolor='none', label='Adiabatic Pulses', linestyle="None") if demag == True: labl = str(round(abs(self.ScaledavgSpB[i])/10000 , 3))+' T' else: labl = str(round(self.avgSpB[i],1)/10000)+' T' self.shortpulselabels.append(mlines.Line2D([], [], color=colors[spB], marker=markers[i%len(markers)], linestyle="None", markeredgewidth = edgewidth, markeredgecolor=colors[spB], markerfacecolor='none', label=labl)) def _computeEntropy(self,smooth): '''computes entropy for all field values''' Barray = np.sort(list(set(self.Bfield))) #Combine traces into single line (if not done already) try: self.CombHC except AttributeError: print(" combining traces...") self._combineTraces(smooth) self.Entropy = np.zeros_like(self.CombT) # loop through magnetic fields for jj in range(len(Barray)): B = Barray[jj] if B == 0: B=0.0 # get rid of negative sign which may be there # find all indices where the magnetic field is of the specified value try: Bindex = np.where(self.CombB==B)[0][0] except IndexError: continue # Skip if no data exists for this field # Compute Entropy T = self.CombT[Bindex] C = self.CombHC[Bindex] entropy = np.zeros(C.size) en = (T[0])*0.5*(C[0]/T[0]) entropy[0] = en for i in range(0,C.size-1): ds = (T[i+1]-T[i])*0.5*(C[i]/T[i]+C[i+1]/T[i+1]) en = en + ds entropy[i+1] = en self.Entropy[Bindex]=entropy def plotEntropy(self, axes,Barray,smooth): """Plots entropy vs. T for various magnetic fields""" self.entropylabels = [] if (Barray == 'All' or Barray == 'all'): Barray = np.sort(list(set(self.Bfield))) else: Barray = np.array(Barray) # determine the color map colormap = plt.cm.hsv(np.arange(len(Barray))*1.0/len(Barray))* 0.85 #based on index colors = dict(zip(Barray, colormap)) #Compute entropy (if not done already) try: self.Entropy except AttributeError: print(" computing entropy...") self._computeEntropy(smooth) # loop through magnetic fields for jj in range(len(Barray)): B = Barray[jj] if B == 0: B=0.0 # get rid of negative sign which may be there # find all indices where the magnetic field is of the specified value try: Bindex = np.where(self.CombB==B)[0][0] except IndexError: continue # Skip if no data exists for this field # Plot fieldval = round(self.ScaledCombB[Bindex]/10000 , 3) if fieldval == 0: fieldval = 0.0 labl = str(fieldval)+' T' axes.plot(self.CombT[Bindex], self.Entropy[Bindex], color=colors[B]) self.entropylabels.append(mlines.Line2D([], [], color=colors[B], label=labl)) def meshgrid(self,Tarray,Barray, useHeatPulses=False): """Tarray is the array of x values to be binned to Barray is the array of magnetic fields to loop through Set Barray to 'all' if you want to plot all the fields.""" if (Barray == 'All' or Barray == 'all'): Barray = np.sort(list(set(self.Bfield))) # Create array of scaledB: ScaledBarray = np.zeros(len(Barray)) for ii in range(len(Barray)): B = Barray[ii] Bindex = np.where(self.Bfield==B)[0][0] ScaledBarray[ii] = np.around(self.ScaledBfield[Bindex],1) Intensity = np.empty((len(Tarray)-1,len(Barray)))*np.nan for ii in range(len(Barray)): B = Barray[ii] # find all indices where the magnetic field is of the specified value Bindices = np.where(self.Bfield==B)[0] if len(Bindices) == 0: continue # Skip if no data exists for this field # Concatenate data into single array binnedhc = self.binAndInterpolate(Tarray, self.T[Bindices[0]][:,1], self.HC[Bindices[0]][:,1]) for bb in Bindices: if self.ShortPulse[bb] != 0: continue # skip this value if it is a short pulse newbinnd = self.binAndInterpolate(Tarray, self.T[bb][:,1] , self.HC[bb][:,1]) binnedhc = np.vstack((binnedhc,newbinnd)) if useHeatPulses: newbinnd = self.binAndInterpolate(Tarray, self.T[bb][:,0] , self.HC[bb][:,0]) binnedhc = np.vstack((binnedhc,newbinnd)) # Take average along given axis AvgBinnedHc = np.nanmean(binnedhc, axis=0) # Bin into x array Intensity[:,ii] = AvgBinnedHc #define edges of magnetic field bins d = np.diff(Barray)/2. Bedges = np.hstack([Barray[0]-d[0],Barray[0:-1]+d,Barray[-1]+d[-1]]) d = np.diff(ScaledBarray)/2. Bedges = np.hstack([ScaledBarray[0]-d[0],ScaledBarray[0:-1]+d,ScaledBarray[-1]+d[-1]]) # Mask all the zero elements Intensity = np.ma.masked_where(np.isnan(Intensity), Intensity) return Intensity.T, Bedges #transpose def binAndInterpolate(self, x_new, x_old, y_old): ###BIN edges = np.array(x_new) centers = edges[:-1] + (edges[1:]-edges[:-1])/2. # check that values in x_old fall into the range of edges # discard any that are outside the range if x_old[0] > x_old[-1]: # reverse order so that low temperature comes first x_old = x_old[::-1] y_old = y_old[::-1] if x_old[-1] > edges[-1]: # check if x_old goes higher than edges high_idx = np.nonzero(x_old > edges[-1])[0][0] x_old = x_old[:high_idx] y_old = y_old[0:high_idx] if len(x_old) == 0: # return a masked array if no data falls in range y_new = np.zeros(np.size(x_new)-1) return np.ma.masked_where(y_new==0 , y_new) if x_old[0] < edges[0]: low_idx = np.nonzero(x_old <= edges[0])[0][-1] x_old = x_old[low_idx:] y_old = y_old[low_idx:] if len(x_old) == 0: y_new = np.zeros(np.size(x_new)-1) return np.ma.masked_where(y_new==0 , y_new) bin_idx = np.digitize(x_old,edges) bin_count, b = np.histogram(x_old, edges) y_new = np.zeros(np.size(x_new)-1) mask_idx = bin_count < 1. mask_ct = np.ma.array(bin_count,mask = mask_idx) for ii, idx in enumerate(bin_idx): #print ii, idx, x_new[idx-1], x_old[ii] y_new[idx-1] += y_old[ii] # mask zeros then divide by bin_counts y_new = np.ma.masked_where(y_new==0 , y_new)/mask_ct ###INTERPOLATE # remove masked elements of array unmaskedindices = np.where(np.logical_not(y_new.mask))[0] y_unmasked = np.ma.compressed(y_new) x_unmasked = centers[unmaskedindices] if len(y_unmasked) ==0: return np.zeros(len(centers))*np.nan #print y_unmasked, x_unmasked #interpolate y_interp = np.interp(centers, x_unmasked, y_unmasked, left =np.nan, right =np.nan) return y_interp def scale(self, factor): """scale the heat capacity data by a constant. Useful for going between per FU and per ion""" self.HC = self.HC/factor self.HC_uncertainty = self.HC_uncertainty/factor self.ShortPulse = self.ShortPulse/factor for i, lst in enumerate(self.avgSpHc): for j, val in enumerate(lst): self.avgSpHc[i][j] = val/factor def scaleDemagFactor(self, demagFac, magvsfield): """Scale the magnetic field values by a demagnetization factor. magvsfield should be a numpy array giving M as a function of INTERNAL field. Note that this correction must be done numerically: H_int = H_0 - mu0*(D)*M(H_int) We use the bisection method here.""" mu0 = 4*np.pi*1e-7 def H0DM(field): """Computes H + mu0*(D)*M(H)""" return field + mu0*demagFac*np.interp(field, magvsfield[0], magvsfield[1])*10000 #mu_B / F.U. print("Scaling demagnetization...") self.ScaledBfield = np.zeros(len(self.Bfield)) self.ScaledavgSpB = np.zeros(len(self.avgSpB)) for i, H0 in enumerate(self.Bfield): if H0 == 0.0: self.ScaledBfield[i] = 0.0 continue # First, obtain two H values that bound the problem. H1 = H0*1.0 mag1 = H0DM(H0) if mag1 < H0: while mag1 < H0: H1 += 0.1*H0 mag1 = H0DM(H1) H2 = H1*1.0 H1 = H2 - 0.1*H0 elif mag1 > H0: while mag1 > H0: H1 -= 0.1*H0 mag1 = H0DM(H1) #mu_B / F.U. H2 = H1 + 0.1*H0 else: H2 = H0 #print H0DM(H1)-H0, H0DM(H2)-H0 # Next, use the bisection method to determine the value Hint = H1 Hintold = H0*1.0 while np.abs((Hint - Hintold)/H0) > 0.00001: Hintold = Hint*1.0 Hint = 0.5*(H1+H2) mag1 = H0DM(H1) mag2 = H0DM(H2) magbi = H0DM(Hint) if magbi < H0: H1 = Hint else: H2 = Hint self.ScaledBfield[i] = Hint # Do the same thing, but for the short pulse field values for i, H0 in enumerate(self.avgSpB): if H0 == 0.0: self.ScaledBfield[i] = 0.0 continue # First, obtain two H values that bound the problem. H1 = H0*1.0 mag1 = H0DM(H0) if mag1 < H0: while mag1 < H0: H1 += 0.1*H0 mag1 = H0DM(H1) H2 = H1*1.0 H1 = H2 - 0.1*H0 elif mag1 > H0: while mag1 > H0: H1 -= 0.1*H0 mag1 = H0DM(H1) #mu_B / F.U. H2 = H1 + 0.1*H0 else: H2 = H0 #print H0DM(H1)-H0, H0DM(H2)-H0 # Next, use the bisection method to determine the value Hint = H1 Hintold = H0*1.0 while np.abs((Hint - Hintold)/H0) > 0.00001: Hintold = Hint*1.0 Hint = 0.5*(H1+H2) mag1 = H0DM(H1) mag2 = H0DM(H2) magbi = H0DM(Hint) if magbi < H0: H1 = Hint else: H2 = Hint self.ScaledavgSpB[i] = Hint try: # Do the same thing, but for the combined traces (if they exist) for i, H0 in enumerate(self.CombB): if H0 == 0.0: self.ScaledCombB[i] = 0.0 continue # First, obtain two H values that bound the problem. H1 = H0*1.0 mag1 = H0DM(H0) if mag1 < H0: while mag1 < H0: H1 += 0.1*H0 mag1 = H0DM(H1) H2 = H1*1.0 H1 = H2 - 0.1*H0 elif mag1 > H0: while mag1 > H0: H1 -= 0.1*H0 mag1 = H0DM(H1) #mu_B / F.U. H2 = H1 + 0.1*H0 else: H2 = H0 #print H0DM(H1)-H0, H0DM(H2)-H0 # Next, use the bisection method to determine the value Hint = H1 Hintold = H0*1.0 while np.abs((Hint - Hintold)/H0) > 0.00001: Hintold = Hint*1.0 Hint = 0.5*(H1+H2) mag1 = H0DM(H1) mag2 = H0DM(H2) magbi = H0DM(Hint) if magbi < H0: H1 = Hint else: H2 = Hint self.ScaledCombB[i] = Hint except AttributeError: pass def savetrace(self, index, outfile): heatarray = np.vstack((self.T[index][:,0],self.HC[index][:,0])).T np.savetxt(outfile+'_heating.txt',heatarray, fmt='%.9f', header = 'Temp(K)\tHC(J/[K mol-ion])', delimiter=', ') coolarray = np.vstack((self.T[index][:,1],self.HC[index][:,1])).T np.savetxt(outfile+'_cooling.txt',coolarray, fmt='%.9f', header = 'Temp(K)\tHC(J/[K mol-ion])', delimiter=', ') rawarray = np.vstack((np.hstack((self.rawdata[index][0,:,0],self.rawdata[index][0,:,1])), np.hstack((self.rawdata[index][1,:,0],self.rawdata[index][1,:,1])) )) np.savetxt(outfile+'_raw-pulse.txt',rawarray.T, fmt='%.6f', header = 'time(s)\tTemp(K)', delimiter=', ') def savetraces(self, outfile, Barray = 'all'): if (Barray == 'All' or Barray == 'all'): Barray = np.sort(list(set(self.Bfield))) else: Barray = np.array(Barray) f = open(outfile, 'w') f.write('# Heat Capacity data from LongHCPulse\n') f.write('# Temp_heating (K),\t C_heating,\t Temp_cooling (K),\t C_cooling\n') for jj in range(len(self.Bfield)): B = self.Bfield[jj] for b in Barray: if (B == b) and (self.ShortPulse[jj] == 0): f.write('\n# B='+str(B)+'K, curve number = '+str(jj)+'\n') for ii in range(len(self.T[jj][:,0])): f.write(str(self.T[jj][ii,0]) +',\t'+ str(self.HC[jj][ii,0])+',\t'+ str(self.T[jj][ii,1]) +',\t'+ str(self.HC[jj][ii,1])+'\n') f.close() def saveData(self, outfile): #Combine traces into single line (if not done already) try: self.CombHC except AttributeError: print(" combining traces...") self._combineTraces(1) #so we don't save anything that hasn't been created members = [attr for attr in dir(self) if not callable(getattr(self, attr)) and not attr.startswith("__")] membersToBeSaved = ['rawdata','smoothedData','Bfield', 'Blabels', 'CombB', 'CombHC', 'CombT', 'HC', 'ScaledBfield', 'ThermCondWire', 'avgThermCondWire', 'Kw', 'AddendaHC', 'ScaledCombB', 'ScaledavgSpB', 'ShortPulse', 'T', 'Tsamp', 'avgSpB', 'avgSpHc', 'avgSpT', 'molarmass', 'sampmass', 'shortpulseBflag', 'shortpulselabels', 'entropylabels', 'Entropy','labels'] membersToBeSaved = list(set(members).intersection(membersToBeSaved)) # Make list of data to be saved dataList =eval('[self.'+ ', self.'.join(membersToBeSaved)+']') dataToSave = dict(zip(membersToBeSaved, dataList)) # Edit outfile so it has the extension .pickle try: periodindex = outfile.index('.') outfile = outfile[:periodindex] + '.pickle' except ValueError: outfile = outfile + '.pickle' # Save data with pickle with open(outfile, 'w') as f: pickle.dump(dataToSave, f)
gpl-3.0
mphe/dotfiles
ipython/profile_default/ipython_config.py
1
23356
# Configuration file for ipython. #------------------------------------------------------------------------------ # Configurable configuration #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # InteractiveShellApp configuration #------------------------------------------------------------------------------ # A Mixin for applications that start InteractiveShell instances. # # Provides configurables for loading extensions and executing files as part of # configuring a Shell environment. # # The following methods should be called by the :meth:`initialize` method of the # subclass: # # - :meth:`init_path` # - :meth:`init_shell` (to be implemented by the subclass) # - :meth:`init_gui_pylab` # - :meth:`init_extensions` # - :meth:`init_code` # Execute the given command string. # c.InteractiveShellApp.code_to_run = '' # Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. # c.InteractiveShellApp.exec_PYTHONSTARTUP = True # List of files to run at IPython startup. # c.InteractiveShellApp.exec_files = [] # lines of code to run at IPython startup. # c.InteractiveShellApp.exec_lines = [] # A list of dotted module names of IPython extensions to load. # c.InteractiveShellApp.extensions = [] # dotted module name of an IPython extension to load. # c.InteractiveShellApp.extra_extension = '' # A file to be run # c.InteractiveShellApp.file_to_run = '' # Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk3', 'osx', # 'pyglet', 'qt', 'qt5', 'tk', 'wx'). # c.InteractiveShellApp.gui = None # Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? # c.InteractiveShellApp.hide_initial_ns = True # Configure matplotlib for interactive use with the default matplotlib backend. # c.InteractiveShellApp.matplotlib = None # Run the module as a script. # c.InteractiveShellApp.module_to_run = '' # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.InteractiveShellApp.pylab = None # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.InteractiveShellApp.pylab_import_all = True # Reraise exceptions encountered loading IPython extensions? # c.InteractiveShellApp.reraise_ipython_extension_failures = False #------------------------------------------------------------------------------ # LoggingConfigurable configuration #------------------------------------------------------------------------------ # A parent class for Configurables that log. # # Subclasses have a log trait, and the default behavior is to get the logger # from the currently running Application. #------------------------------------------------------------------------------ # SingletonConfigurable configuration #------------------------------------------------------------------------------ # A configurable that only allows one instance. # # This class is for classes that should only have one instance of itself or # *any* subclass. To create and retrieve such a class use the # :meth:`SingletonConfigurable.instance` method. #------------------------------------------------------------------------------ # Application configuration #------------------------------------------------------------------------------ # This is an application. # The date format used by logging formatters for %(asctime)s # c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S' # The Logging format template # c.Application.log_format = '[%(name)s]%(highlevel)s %(message)s' # Set the log level by value or name. # c.Application.log_level = 30 #------------------------------------------------------------------------------ # BaseIPythonApplication configuration #------------------------------------------------------------------------------ # IPython: an enhanced interactive Python shell. # Whether to create profile dir if it doesn't exist # c.BaseIPythonApplication.auto_create = False # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.BaseIPythonApplication.copy_config_files = False # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.BaseIPythonApplication.extra_config_file = u'' # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This option can also be specified through the environment # variable IPYTHONDIR. # c.BaseIPythonApplication.ipython_dir = u'' # Whether to overwrite existing config files when copying # c.BaseIPythonApplication.overwrite = False # The IPython profile to use. # c.BaseIPythonApplication.profile = u'default' # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.BaseIPythonApplication.verbose_crash = False #------------------------------------------------------------------------------ # TerminalIPythonApp configuration #------------------------------------------------------------------------------ # Whether to display a banner upon starting IPython. # c.TerminalIPythonApp.display_banner = True # If a command or file is given via the command-line, e.g. 'ipython foo.py', # start an interactive shell after executing the file or command. # c.TerminalIPythonApp.force_interact = False # Start IPython quickly by skipping the loading of config files. # c.TerminalIPythonApp.quick = False #------------------------------------------------------------------------------ # InteractiveShell configuration #------------------------------------------------------------------------------ # An enhanced, interactive shell for Python. # 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). # c.InteractiveShell.ast_node_interactivity = 'last_expr' # A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. # c.InteractiveShell.ast_transformers = [] # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). # c.InteractiveShell.autocall = 0 # Autoindent IPython code entered interactively. # c.InteractiveShell.autoindent = True # Enable magic commands to be called without the leading %. # c.InteractiveShell.automagic = True # The part of the banner to be printed before the profile # c.InteractiveShell.banner1 = 'Python 2.7.12 (default, Jun 28 2016, 08:31:05) \nType "copyright", "credits" or "license" for more information.\n\nIPython 5.0.0 -- An enhanced Interactive Python.\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' # The part of the banner to be printed after the profile # c.InteractiveShell.banner2 = '' # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.InteractiveShell.cache_size = 1000 # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.InteractiveShell.color_info = True # Set the color scheme (NoColor, Neutral, Linux, or LightBG). # c.InteractiveShell.colors = 'Neutral' # # c.InteractiveShell.debug = False # **Deprecated** # # Will be removed in IPython 6.0 # # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). `deep_reload` # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.InteractiveShell.deep_reload = False # Don't call post-execute functions that have failed in the past. # c.InteractiveShell.disable_failing_post_execute = False # If True, anything that would be passed to the pager will be displayed as # regular output instead. # c.InteractiveShell.display_page = False # (Provisional API) enables html representation in mime bundles sent to pagers. # c.InteractiveShell.enable_html_pager = False # Total length of command history # c.InteractiveShell.history_length = 10000 # The number of saved history entries to be loaded into the history buffer at # startup. # c.InteractiveShell.history_load_length = 1000 # # c.InteractiveShell.ipython_dir = '' # Start logging to the given file in append mode. Use `logfile` to specify a log # file to **overwrite** logs to. # c.InteractiveShell.logappend = '' # The name of the logfile to use. # c.InteractiveShell.logfile = '' # Start logging to the default log file in overwrite mode. Use `logappend` to # specify a log file to **append** logs to. # c.InteractiveShell.logstart = False # # c.InteractiveShell.object_info_string_level = 0 # Automatically call the pdb debugger after every exception. # c.InteractiveShell.pdb = False # Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. # c.InteractiveShell.prompt_in1 = 'In [\\#]: ' # Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. # c.InteractiveShell.prompt_in2 = ' .\\D.: ' # Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. # c.InteractiveShell.prompt_out = 'Out[\\#]: ' # Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. # c.InteractiveShell.prompts_pad_left = True # # c.InteractiveShell.quiet = False # # c.InteractiveShell.separate_in = '\n' # # c.InteractiveShell.separate_out = '' # # c.InteractiveShell.separate_out2 = '' # Show rewritten input, e.g. for autocall. # c.InteractiveShell.show_rewritten_input = True # Enables rich html representation of docstrings. (This requires the docrepr # module). # c.InteractiveShell.sphinxify_docstring = False # # c.InteractiveShell.wildcards_case_sensitive = True # # c.InteractiveShell.xmode = 'Context' #------------------------------------------------------------------------------ # TerminalInteractiveShell configuration #------------------------------------------------------------------------------ # Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, # Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a # direct exit without any confirmation. # c.TerminalInteractiveShell.confirm_exit = True # c.TerminalInteractiveShell.display_completions = 'readlinelike' # DEPRECATED # c.TerminalInteractiveShell.display_completions_in_columns = None # Shortcut style to use at the prompt. 'vi' or 'emacs'. c.TerminalInteractiveShell.editing_mode = 'vi' # Set the editor used by IPython (default to $EDITOR/vi/notepad). # c.TerminalInteractiveShell.editor = u'vim' # Highlight matching brackets . # c.TerminalInteractiveShell.highlight_matching_brackets = True # The name of a Pygments style to use for syntax highlighting: manni, igor, # lovelace, xcode, vim, autumn, vs, rrt, native, perldoc, borland, tango, emacs, # friendly, monokai, paraiso-dark, colorful, murphy, bw, pastie, algol_nu, # paraiso-light, trac, default, algol, fruity # c.TerminalInteractiveShell.highlighting_style = 'legacy' # Override highlighting format for specific tokens # c.TerminalInteractiveShell.highlighting_style_overrides = {} # Enable mouse support in the prompt # c.TerminalInteractiveShell.mouse_support = False # Class used to generate Prompt token for prompt_toolkit # c.TerminalInteractiveShell.prompts_class = 'IPython.terminal.prompts.Prompts' # Use `raw_input` for the REPL, without completion, multiline input, and prompt # colors. # # Useful when controlling IPython as a subprocess, and piping STDIN/OUT/ERR. # Known usage are: IPython own testing machinery, and emacs inferior-shell # integration through elpy. # # This mode default to `True` if the `IPY_TEST_SIMPLE_PROMPT` environment # variable is set, or the current terminal is not a tty. # c.TerminalInteractiveShell.simple_prompt = False # Number of line at the bottom of the screen to reserve for the completion menu # c.TerminalInteractiveShell.space_for_menu = 6 # Automatically set the terminal title # c.TerminalInteractiveShell.term_title = True #------------------------------------------------------------------------------ # HistoryAccessorBase configuration #------------------------------------------------------------------------------ # An abstract class for History Accessors #------------------------------------------------------------------------------ # HistoryAccessor configuration #------------------------------------------------------------------------------ # Access the history database without adding to it. # # This is intended for use by standalone history tools. IPython shells use # HistoryManager, below, which is a subclass of this. # Options for configuring the SQLite connection # # These options are passed as keyword args to sqlite3.connect when establishing # database conenctions. # c.HistoryAccessor.connection_options = {} # enable the SQLite history # # set enabled=False to disable the SQLite history, in which case there will be # no stored history, no SQLite connection, and no background saving thread. # This may be necessary in some threaded environments where IPython is embedded. # c.HistoryAccessor.enabled = True # Path to file to use for SQLite history database. # # By default, IPython will put the history database in the IPython profile # directory. If you would rather share one history among profiles, you can set # this value in each, so that they are consistent. # # Due to an issue with fcntl, SQLite is known to misbehave on some NFS mounts. # If you see IPython hanging, try setting this to something on a local disk, # e.g:: # # ipython --HistoryManager.hist_file=/tmp/ipython_hist.sqlite # # you can also use the specific value `:memory:` (including the colon at both # end but not the back ticks), to avoid creating an history file. # c.HistoryAccessor.hist_file = u'' #------------------------------------------------------------------------------ # HistoryManager configuration #------------------------------------------------------------------------------ # A class to organize all history-related functionality in one place. # Write to database every x commands (higher values save disk access & power). # Values of 1 or less effectively disable caching. # c.HistoryManager.db_cache_size = 0 # Should the history database include output? (default: no) # c.HistoryManager.db_log_output = False #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = u'' #------------------------------------------------------------------------------ # BaseFormatter configuration #------------------------------------------------------------------------------ # A base formatter class that is configurable. # # This formatter should usually be used as the base class of all formatters. It # is a traited :class:`Configurable` class and includes an extensible API for # users to determine how their objects are formatted. The following logic is # used to find a function to format an given object. # # 1. The object is introspected to see if it has a method with the name # :attr:`print_method`. If is does, that object is passed to that method # for formatting. # 2. If no print method is found, three internal dictionaries are consulted # to find print method: :attr:`singleton_printers`, :attr:`type_printers` # and :attr:`deferred_printers`. # # Users should use these dictionaries to register functions that will be used to # compute the format data for their objects (if those objects don't have the # special print methods). The easiest way of using these dictionaries is through # the :meth:`for_type` and :meth:`for_type_by_name` methods. # # If no function/callable is found to compute the format data, ``None`` is # returned and this format type is not used. # # c.BaseFormatter.deferred_printers = {} # # c.BaseFormatter.enabled = True # # c.BaseFormatter.singleton_printers = {} # # c.BaseFormatter.type_printers = {} #------------------------------------------------------------------------------ # PlainTextFormatter configuration #------------------------------------------------------------------------------ # The default pretty-printer. # # This uses :mod:`IPython.lib.pretty` to compute the format data of the object. # If the object cannot be pretty printed, :func:`repr` is used. See the # documentation of :mod:`IPython.lib.pretty` for details on how to write pretty # printers. Here is a simple example:: # # def dtype_pprinter(obj, p, cycle): # if cycle: # return p.text('dtype(...)') # if hasattr(obj, 'fields'): # if obj.fields is None: # p.text(repr(obj)) # else: # p.begin_group(7, 'dtype([') # for i, field in enumerate(obj.descr): # if i > 0: # p.text(',') # p.breakable() # p.pretty(field) # p.end_group(7, '])') # # c.PlainTextFormatter.float_precision = '' # Truncate large collections (lists, dicts, tuples, sets) to this size. # # Set to 0 to disable truncation. # c.PlainTextFormatter.max_seq_length = 1000 # # c.PlainTextFormatter.max_width = 79 # # c.PlainTextFormatter.newline = '\n' # # c.PlainTextFormatter.pprint = True # # c.PlainTextFormatter.verbose = False #------------------------------------------------------------------------------ # Completer configuration #------------------------------------------------------------------------------ # Activate greedy completion PENDING DEPRECTION. this is now mostly taken care # of with Jedi. # # This will enable completion on elements of lists, results of function calls, # etc., but can be unsafe because the code is actually evaluated on TAB. # c.Completer.greedy = False #------------------------------------------------------------------------------ # IPCompleter configuration #------------------------------------------------------------------------------ # Extension of the completer class with IPython-specific features # DEPRECATED as of version 5.0. # # Instruct the completer to use __all__ for the completion # # Specifically, when completing on ``object.<tab>``. # # When True: only those names in obj.__all__ will be included. # # When False [default]: the __all__ attribute is ignored # c.IPCompleter.limit_to__all__ = False # Whether to merge completion results into a single list # # If False, only the completion results from the first non-empty completer will # be returned. # c.IPCompleter.merge_completions = True # Instruct the completer to omit private method names # # Specifically, when completing on ``object.<tab>``. # # When 2 [default]: all names that start with '_' will be excluded. # # When 1: all 'magic' names (``__foo__``) will be excluded. # # When 0: nothing will be excluded. # c.IPCompleter.omit__names = 2 #------------------------------------------------------------------------------ # Magics configuration #------------------------------------------------------------------------------ # Base class for implementing magic functions. # # Shell functions which can be reached as %function_name. All magic functions # should accept a string, which they can parse for their own needs. This can # make some functions easier to type, eg `%cd ../` vs. `%cd("../")` # # Classes providing magic functions need to subclass this class, and they MUST: # # - Use the method decorators `@line_magic` and `@cell_magic` to decorate # individual methods as magic functions, AND # # - Use the class decorator `@magics_class` to ensure that the magic # methods are properly registered at the instance level upon instance # initialization. # # See :mod:`magic_functions` for examples of actual implementation classes. #------------------------------------------------------------------------------ # ScriptMagics configuration #------------------------------------------------------------------------------ # Magics for talking to scripts # # This defines a base `%%script` cell magic for running a cell with a program in # a subprocess, and registers a few top-level magics that call %%script with # common interpreters. # Extra script cell magics to define # # This generates simple wrappers of `%%script foo` as `%%foo`. # # If you want to add script magics that aren't on your path, specify them in # script_paths # c.ScriptMagics.script_magics = [] # Dict mapping short 'ruby' names to full paths, such as '/opt/secret/bin/ruby' # # Only necessary for items in script_magics where the default path will not find # the right interpreter. # c.ScriptMagics.script_paths = {} #------------------------------------------------------------------------------ # StoreMagics configuration #------------------------------------------------------------------------------ # Lightweight persistence for python variables. # # Provides the %store magic. # If True, any %store-d variables will be automatically restored when IPython # starts. # c.StoreMagics.autorestore = False
mit
anewmark/galaxy_dark_matter
not currently in use/lumprof.py
1
4175
print('This program should make plots of aperture size v aperture maginosity') indir='/Users/amandanewmark/repositories/galaxy_dark_matter/GAH/' import numpy as np import math import matplotlib.pyplot as plt import matplotlib.text as txt from astropy.io import fits import astropy.table as table import matplotlib.patches as mpatches from sympy import * import os, sys datatab = table.Table.read(indir+ 'LOWZ_HSCGAMA15_apmgs.fits') #datatab=fits.open(indir+ 'LOWZ_HSCGAMA15_apmgs.fits') <-- probably better to use table #hdulist=fits.open(indir+ 'LOWZ_HSCGAMA15_apmgs.fits') #hdulist.info() #print(datatab['Z']) #datatab['imag_aperture00'] gives first aperture maginosity in band i # aperture=[3.0*0.168,4.5*0.168,6.0*0.168,9.0*0.168,12.0*0.168,17.0*0.168,25.0*0.168,35.0*0.168,50.0*0.168,70.0*0.168] pi=math.pi Naps=len(aperture) N=len(datatab) band= ['r','i','g', 'z', 'y'] band=band[0] no_flag=0 no_sat=0 no_edge=1 if no_flag: flag=('No Flag', 'no_flag') num=len(datatab) Nnew=num num=str(num) if no_sat: datatab_flag = datatab[(datatab[band+'flags_pixel_saturated_center']==False) & (datatab[band+'mag_aperture00']<50)& (datatab[band+'mag_aperture01']<50)& (datatab[band+'mag_aperture02']<50) & (datatab[band+'mag_aperture03']<50) & (datatab[band+'mag_aperture04']<50) & (datatab[band+'mag_aperture05']<50) & (datatab[band+'mag_aperture06']<50) & (datatab[band+'mag_aperture07']<50) & (datatab[band+'mag_aperture08']<50) & (datatab[band+'mag_aperture09']<50)] datatab=datatab_flag num=len(datatab) Nnew=num num=str(num) flag=('No Saturated Centers', 'no_satcen') if no_edge: datatab_flag = datatab[(datatab[band+'flags_pixel_edge']==False) & (datatab[band+'mag_aperture00']<50)& (datatab[band+'mag_aperture01']<50)& (datatab[band+'mag_aperture02']<50) & (datatab[band+'mag_aperture03']<50) & (datatab[band+'mag_aperture04']<50) & (datatab[band+'mag_aperture05']<50) & (datatab[band+'mag_aperture06']<50) & (datatab[band+'mag_aperture07']<50) & (datatab[band+'mag_aperture08']<50) & (datatab[band+'mag_aperture09']<50)] #this should hopefully get rid of random bad pixels datatab=datatab_flag num=len(datatab) Nnew=num num=str(num) flag=('No Edge Galaxies', 'no_edge') outdir='/Users/amandanewmark/repositories/galaxy_dark_matter/lumprofplots/single_plot/' if not os.path.exists(outdir): os.mkdir(outdir) for i in range(0,Nnew): #this goes through every galaxy objID=datatab['object_id'] name=objID[i] name=str(name) print(Nnew, N) print(name) magap=[] SB=[] magerr=[] SBerr=[] for j in range(0,Naps): #this goes through every aperture for maginosity j=str(j) mag=datatab[band+'mag_aperture0'+j][i] merr=datatab[band+'mag_aperture0'+j+'_err'][i] magap.append(mag) magerr.append(merr) for j in range(0,Naps): #this goes through every aperture for Sb js=str(j) mag=datatab[band+'mag_aperture0'+js][i] merr=datatab[band+'mag_aperture0'+js+'_err'][i] sb=mag+2.5*math.log10(4*pi*aperture[j]**2) sberr=diff(sb) #F=math.pow(10, -mag/2.5) #sb=-2.5*math.log10(F/(4*pi*aperture[j]**2)) #Ferr=math.pow(10, -merr/2.5) #sberr=-2.5*math.log10(Ferr/(4*pi*aperture[j]**2)) SB.append(sb) SBerr.append(sberr) fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True) ax0.scatter(aperture, magap, c='k', marker='^') ax0.errorbar(aperture, magap, yerr=magerr, marker='', mfc='red', mec='green', ms=5, mew=1) ax0.invert_yaxis() ax0.set_xlabel('Aperture Radius (arcseconds)', fontsize=9) ax0.set_ylabel('Aperture Magnitude', fontsize=9) ax0.set_title("Luminosity Profiles vs. Aperture Radius in "+band+" ("+name+')', fontsize=11) ax0.set_xlim(xmin=0, xmax=max(aperture)) plt.plot(0,0,label=flag[0]+'('+num+')', marker='', c='k') plt.legend(loc=4,prop={'size':4}) ax1.scatter(aperture, SB, c='k', marker='^') ax1.errorbar(aperture, SB, yerr=SBerr, marker='', mfc='red', mec='green', ms=5, mew=1) ax1.invert_yaxis() ax1.set_xlabel('Aperture Radius (arcseconds)', fontsize=9) ax1.set_ylabel('Surface Brightness(mag/arcsec^2)', fontsize=9) ax1.set_title("Surface Brightness vs. Aperture Radius in "+band+" ("+name+')', fontsize=11) #plt.show() fig.savefig(outdir+flag[1]+'_'+band+name+'_lumprof.pdf') #break
mit
dagss/numpy_svn
numpy/lib/polynomial.py
58
35930
""" Functions to operate on polynomials. """ __all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd', 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d', 'polyfit', 'RankWarning'] import re import warnings import numpy.core.numeric as NX from numpy.core import isscalar, abs, finfo, atleast_1d, hstack from numpy.lib.twodim_base import diag, vander from numpy.lib.function_base import trim_zeros, sort_complex from numpy.lib.type_check import iscomplex, real, imag from numpy.linalg import eigvals, lstsq class RankWarning(UserWarning): """ Issued by `polyfit` when the Vandermonde matrix is rank deficient. For more information, a way to suppress the warning, and an example of `RankWarning` being issued, see `polyfit`. """ pass def poly(seq_of_zeros): """ Find the coefficients of a polynomial with the given sequence of roots. Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros (multiple roots must be included in the sequence as many times as their multiplicity; see Examples). A square matrix (or array, which will be treated as a matrix) can also be given, in which case the coefficients of the characteristic polynomial of the matrix are returned. Parameters ---------- seq_of_zeros : array_like, shape (N,) or (N, N) A sequence of polynomial roots, or a square array or matrix object. Returns ------- c : ndarray 1D array of polynomial coefficients from highest to lowest degree: ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]`` where c[0] always equals 1. Raises ------ ValueError If input is the wrong shape (the input must be a 1-D or square 2-D array). See Also -------- polyval : Evaluate a polynomial at a point. roots : Return the roots of a polynomial. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined leading coefficient. [1]_ In the case of this function, that coefficient - the first one in the returned array - is always taken as one. (If for some reason you have one other point, the only automatic way presently to leverage that information is to use ``polyfit``.) The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n` matrix **A** is given by :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`, where **I** is the `n`-by-`n` identity matrix. [2]_ References ---------- .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trignometry, Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996. .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition," Academic Press, pg. 182, 1980. Examples -------- Given a sequence of a polynomial's zeros: >>> np.poly((0, 0, 0)) # Multiple root example array([1, 0, 0, 0]) The line above represents z**3 + 0*z**2 + 0*z + 0. >>> np.poly((-1./2, 0, 1./2)) array([ 1. , 0. , -0.25, 0. ]) The line above represents z**3 - z/4 >>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0])) array([ 1. , -0.77086955, 0.08618131, 0. ]) #random Given a square array object: >>> P = np.array([[0, 1./3], [-1./2, 0]]) >>> np.poly(P) array([ 1. , 0. , 0.16666667]) Or a square matrix object: >>> np.poly(np.matrix(P)) array([ 1. , 0. , 0.16666667]) Note how in all cases the leading coefficient is always 1. """ seq_of_zeros = atleast_1d(seq_of_zeros) sh = seq_of_zeros.shape if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0: seq_of_zeros = eigvals(seq_of_zeros) elif len(sh) == 1: pass else: raise ValueError, "input must be 1d or square 2d array." if len(seq_of_zeros) == 0: return 1.0 a = [1] for k in range(len(seq_of_zeros)): a = NX.convolve(a, [1, -seq_of_zeros[k]], mode='full') if issubclass(a.dtype.type, NX.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = NX.asarray(seq_of_zeros, complex) pos_roots = sort_complex(NX.compress(roots.imag > 0, roots)) neg_roots = NX.conjugate(sort_complex( NX.compress(roots.imag < 0,roots))) if (len(pos_roots) == len(neg_roots) and NX.alltrue(neg_roots == pos_roots)): a = a.real.copy() return a def roots(p): """ Return the roots of a polynomial with coefficients given in p. The values in the rank-1 array `p` are coefficients of a polynomial. If the length of `p` is n+1 then the polynomial is described by p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] Parameters ---------- p : array_like of shape(M,) Rank-1 array of polynomial co-efficients. Returns ------- out : ndarray An array containing the complex roots of the polynomial. Raises ------ ValueError: When `p` cannot be converted to a rank-1 array. See also -------- poly : Find the coefficients of a polynomial with a given sequence of roots. polyval : Evaluate a polynomial at a point. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- The algorithm relies on computing the eigenvalues of the companion matrix [1]_. References ---------- .. [1] Wikipedia, "Companion matrix", http://en.wikipedia.org/wiki/Companion_matrix Examples -------- >>> coeff = [3.2, 2, 1] >>> np.roots(coeff) array([-0.3125+0.46351241j, -0.3125-0.46351241j]) """ # If input is scalar, this makes it an array p = atleast_1d(p) if len(p.shape) != 1: raise ValueError,"Input must be a rank-1 array." # find non-zero array entries non_zero = NX.nonzero(NX.ravel(p))[0] # Return an empty array if polynomial is all zeros if len(non_zero) == 0: return NX.array([]) # find the number of trailing zeros -- this is the number of roots at 0. trailing_zeros = len(p) - non_zero[-1] - 1 # strip leading and trailing zeros p = p[int(non_zero[0]):int(non_zero[-1])+1] # casting: if incoming array isn't floating point, make it floating point. if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): p = p.astype(float) N = len(p) if N > 1: # build companion matrix and find its eigenvalues (the roots) A = diag(NX.ones((N-2,), p.dtype), -1) A[0, :] = -p[1:] / p[0] roots = eigvals(A) else: roots = NX.array([]) # tack any zeros onto the back of the array roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) return roots def polyint(p, m=1, k=None): """ Return an antiderivative (indefinite integral) of a polynomial. The returned order `m` antiderivative `P` of polynomial `p` satisfies :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1` integration constants `k`. The constants determine the low-order polynomial part .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1} of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`. Parameters ---------- p : {array_like, poly1d} Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of the antiderivative. (Default: 1) k : {None, list of `m` scalars, scalar}, optional Integration constants. They are given in the order of integration: those corresponding to highest-order terms come first. If ``None`` (default), all constants are assumed to be zero. If `m = 1`, a single scalar can be given instead of a list. See Also -------- polyder : derivative of a polynomial poly1d.integ : equivalent method Examples -------- The defining property of the antiderivative: >>> p = np.poly1d([1,1,1]) >>> P = np.polyint(p) >>> P poly1d([ 0.33333333, 0.5 , 1. , 0. ]) >>> np.polyder(P) == p True The integration constants default to zero, but can be specified: >>> P = np.polyint(p, 3) >>> P(0) 0.0 >>> np.polyder(P)(0) 0.0 >>> np.polyder(P, 2)(0) 0.0 >>> P = np.polyint(p, 3, k=[6,5,3]) >>> P poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order polynomial term comes first: >>> np.polyder(P, 2)(0) 6.0 >>> np.polyder(P, 1)(0) 5.0 >>> P(0) 3.0 """ m = int(m) if m < 0: raise ValueError, "Order of integral must be positive (see polyder)" if k is None: k = NX.zeros(m, float) k = atleast_1d(k) if len(k) == 1 and m > 1: k = k[0]*NX.ones(m, float) if len(k) < m: raise ValueError, \ "k must be a scalar or a rank-1 array of length 1 or >m." truepoly = isinstance(p, poly1d) p = NX.asarray(p) if m == 0: if truepoly: return poly1d(p) return p else: # Note: this must work also with object and integer arrays y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]])) val = polyint(y, m - 1, k=k[1:]) if truepoly: return poly1d(val) return val def polyder(p, m=1): """ Return the derivative of the specified order of a polynomial. Parameters ---------- p : poly1d or sequence Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of differentiation (default: 1) Returns ------- der : poly1d A new polynomial representing the derivative. See Also -------- polyint : Anti-derivative of a polynomial. poly1d : Class for one-dimensional polynomials. Examples -------- The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: >>> p = np.poly1d([1,1,1,1]) >>> p2 = np.polyder(p) >>> p2 poly1d([3, 2, 1]) which evaluates to: >>> p2(2.) 17.0 We can verify this, approximating the derivative with ``(f(x + h) - f(x))/h``: >>> (p(2. + 0.001) - p(2.)) / 0.001 17.007000999997857 The fourth-order derivative of a 3rd-order polynomial is zero: >>> np.polyder(p, 2) poly1d([6, 2]) >>> np.polyder(p, 3) poly1d([6]) >>> np.polyder(p, 4) poly1d([ 0.]) """ m = int(m) if m < 0: raise ValueError, "Order of derivative must be positive (see polyint)" truepoly = isinstance(p, poly1d) p = NX.asarray(p) n = len(p) - 1 y = p[:-1] * NX.arange(n, 0, -1) if m == 0: val = p else: val = polyder(y, m - 1) if truepoly: val = poly1d(val) return val def polyfit(x, y, deg, rcond=None, full=False): """ Least squares polynomial fit. Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` to points `(x, y)`. Returns a vector of coefficients `p` that minimises the squared error. Parameters ---------- x : array_like, shape (M,) x-coordinates of the M sample points ``(x[i], y[i])``. y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int Degree of the fitting polynomial rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. Returns ------- p : ndarray, shape (M,) or (M, K) Polynomial coefficients, highest power first. If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``. residuals, rank, singular_values, rcond : present only if `full` = True Residuals of the least-squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular values, and the specified value of `rcond`. For more details, see `linalg.lstsq`. Warns ----- RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised if `full` = False. The warnings can be turned off by >>> import warnings >>> warnings.simplefilter('ignore', np.RankWarning) See Also -------- polyval : Computes polynomial values. linalg.lstsq : Computes a least-squares fit. scipy.interpolate.UnivariateSpline : Computes spline fits. Notes ----- The solution minimizes the squared error .. math :: E = \\sum_{j=0}^k |p(x_j) - y_j|^2 in the equations:: x[0]**n * p[n] + ... + x[0] * p[1] + p[0] = y[0] x[1]**n * p[n] + ... + x[1] * p[1] + p[0] = y[1] ... x[k]**n * p[n] + ... + x[k] * p[1] + p[0] = y[k] The coefficient matrix of the coefficients `p` is a Vandermonde matrix. `polyfit` issues a `RankWarning` when the least-squares fit is badly conditioned. This implies that the best fit is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious: including contributions from the small singular values can add numerical noise to the result. Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases. When polynomial fits are not satisfactory, splines may be a good alternative. References ---------- .. [1] Wikipedia, "Curve fitting", http://en.wikipedia.org/wiki/Curve_fitting .. [2] Wikipedia, "Polynomial interpolation", http://en.wikipedia.org/wiki/Polynomial_interpolation Examples -------- >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) >>> z = np.polyfit(x, y, 3) >>> z array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) It is convenient to use `poly1d` objects for dealing with polynomials: >>> p = np.poly1d(z) >>> p(0.5) 0.6143849206349179 >>> p(3.5) -0.34732142857143039 >>> p(10) 22.579365079365115 High-order polynomials may oscillate wildly: >>> p30 = np.poly1d(np.polyfit(x, y, 30)) /... RankWarning: Polyfit may be poorly conditioned... >>> p30(4) -0.80000000000000204 >>> p30(5) -0.99999999999999445 >>> p30(4.5) -0.10547061179440398 Illustration: >>> import matplotlib.pyplot as plt >>> xp = np.linspace(-2, 6, 100) >>> plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim(-2,2) (-2, 2) >>> plt.show() """ order = int(deg) + 1 x = NX.asarray(x) + 0.0 y = NX.asarray(y) + 0.0 # check arguments. if deg < 0 : raise ValueError, "expected deg >= 0" if x.ndim != 1: raise TypeError, "expected 1D vector for x" if x.size == 0: raise TypeError, "expected non-empty vector for x" if y.ndim < 1 or y.ndim > 2 : raise TypeError, "expected 1D or 2D array for y" if x.shape[0] != y.shape[0] : raise TypeError, "expected x and y to have same length" # set rcond if rcond is None : rcond = len(x)*finfo(x.dtype).eps # scale x to improve condition number scale = abs(x).max() if scale != 0 : x /= scale # solve least squares equation for powers of x v = vander(x, order) c, resids, rank, s = lstsq(v, y, rcond) # warn on rank reduction, which indicates an ill conditioned matrix if rank != order and not full: msg = "Polyfit may be poorly conditioned" warnings.warn(msg, RankWarning) # scale returned coefficients if scale != 0 : if c.ndim == 1 : c /= vander([scale], order)[0] else : c /= vander([scale], order).T if full : return c, resids, rank, s, rcond else : return c def polyval(p, x): """ Evaluate a polynomial at specific values. If `p` is of length N, this function returns the value: ``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]`` If `x` is a sequence, then `p(x)` is returned for each element of `x`. If `x` is another polynomial then the composite polynomial `p(x(t))` is returned. Parameters ---------- p : array_like or poly1d object 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term, or an instance of poly1d. x : array_like or poly1d object A number, a 1D array of numbers, or an instance of poly1d, "at" which to evaluate `p`. Returns ------- values : ndarray or poly1d If `x` is a poly1d instance, the result is the composition of the two polynomials, i.e., `x` is "substituted" in `p` and the simplified result is returned. In addition, the type of `x` - array_like or poly1d - governs the type of the output: `x` array_like => `values` array_like, `x` a poly1d object => `values` is also. See Also -------- poly1d: A polynomial class. Notes ----- Horner's scheme [1]_ is used to evaluate the polynomial. Even so, for polynomials of high degree the values may be inaccurate due to rounding errors. Use carefully. References ---------- .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand Reinhold Co., 1985, pg. 720. Examples -------- >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 76 >>> np.polyval([3,0,1], np.poly1d(5)) poly1d([ 76.]) >>> np.polyval(np.poly1d([3,0,1]), 5) 76 >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5)) poly1d([ 76.]) """ p = NX.asarray(p) if isinstance(x, poly1d): y = 0 else: x = NX.asarray(x) y = NX.zeros_like(x) for i in range(len(p)): y = x * y + p[i] return y def polyadd(a1, a2): """ Find the sum of two polynomials. Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The sum of the inputs. If either input is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polyadd([1, 2], [9, 5, 4]) array([9, 6, 6]) Using poly1d objects: >>> p1 = np.poly1d([1, 2]) >>> p2 = np.poly1d([9, 5, 4]) >>> print p1 1 x + 2 >>> print p2 2 9 x + 5 x + 4 >>> print np.polyadd(p1, p2) 2 9 x + 6 x + 6 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 + a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) + a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 + NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polysub(a1, a2): """ Difference (subtraction) of two polynomials. Given two polynomials `a1` and `a2`, returns ``a1 - a2``. `a1` and `a2` can be either array_like sequences of the polynomials' coefficients (including coefficients equal to zero), or `poly1d` objects. Parameters ---------- a1, a2 : array_like or poly1d Minuend and subtrahend polynomials, respectively. Returns ------- out : ndarray or poly1d Array or `poly1d` object of the difference polynomial's coefficients. See Also -------- polyval, polydiv, polymul, polyadd Examples -------- .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2) >>> np.polysub([2, 10, -2], [3, 10, -4]) array([-1, 0, 2]) """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 - a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) - a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 - NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polymul(a1, a2): """ Find the product of two polynomials. Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The polynomial resulting from the multiplication of the inputs. If either inputs is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polymul([1, 2, 3], [9, 5, 1]) array([ 9, 23, 38, 17, 3]) Using poly1d objects: >>> p1 = np.poly1d([1, 2, 3]) >>> p2 = np.poly1d([9, 5, 1]) >>> print p1 2 1 x + 2 x + 3 >>> print p2 2 9 x + 5 x + 1 >>> print np.polymul(p1, p2) 4 3 2 9 x + 23 x + 38 x + 17 x + 3 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1,a2 = poly1d(a1),poly1d(a2) val = NX.convolve(a1, a2) if truepoly: val = poly1d(val) return val def polydiv(u, v): """ Returns the quotient and remainder of polynomial division. The input arrays are the coefficients (including any coefficients equal to zero) of the "numerator" (dividend) and "denominator" (divisor) polynomials, respectively. Parameters ---------- u : array_like or poly1d Dividend polynomial's coefficients. v : array_like or poly1d Divisor polynomial's coefficients. Returns ------- q : ndarray Coefficients, including those equal to zero, of the quotient. r : ndarray Coefficients, including those equal to zero, of the remainder. See Also -------- poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub, polyval Notes ----- Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need not equal `v.ndim`. In other words, all four possible combinations - ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``, ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work. Examples -------- .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25 >>> x = np.array([3.0, 5.0, 2.0]) >>> y = np.array([2.0, 1.0]) >>> np.polydiv(x, y) (array([ 1.5 , 1.75]), array([ 0.25])) """ truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d)) u = atleast_1d(u) + 0.0 v = atleast_1d(v) + 0.0 # w has the common type w = u[0] + v[0] m = len(u) - 1 n = len(v) - 1 scale = 1. / v[0] q = NX.zeros((max(m - n + 1, 1),), w.dtype) r = u.copy() for k in range(0, m-n+1): d = scale * r[k] q[k] = d r[k:k+n+1] -= d*v while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1): r = r[1:] if truepoly: return poly1d(q), poly1d(r) return q, r _poly_mat = re.compile(r"[*][*]([0-9]*)") def _raise_power(astr, wrap=70): n = 0 line1 = '' line2 = '' output = ' ' while 1: mat = _poly_mat.search(astr, n) if mat is None: break span = mat.span() power = mat.groups()[0] partstr = astr[n:span[0]] n = span[1] toadd2 = partstr + ' '*(len(power)-1) toadd1 = ' '*(len(partstr)-1) + power if ((len(line2)+len(toadd2) > wrap) or \ (len(line1)+len(toadd1) > wrap)): output += line1 + "\n" + line2 + "\n " line1 = toadd1 line2 = toadd2 else: line2 += partstr + ' '*(len(power)-1) line1 += ' '*(len(partstr)-1) + power output += line1 + "\n" + line2 return output + astr[n:] class poly1d(object): """ A one-dimensional polynomial class. A convenience class, used to encapsulate "natural" operations on polynomials so that said operations may take on their customary form in code (see Examples). Parameters ---------- c_or_r : array_like The polynomial's coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial's roots (values where the polynomial evaluates to 0). For example, ``poly1d([1, 2, 3])`` returns an object that represents :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. r : bool, optional If True, `c_or_r` specifies the polynomial's roots; the default is False. variable : str, optional Changes the variable used when printing `p` from `x` to `variable` (see Examples). Examples -------- Construct the polynomial :math:`x^2 + 2x + 3`: >>> p = np.poly1d([1, 2, 3]) >>> print np.poly1d(p) 2 1 x + 2 x + 3 Evaluate the polynomial at :math:`x = 0.5`: >>> p(0.5) 4.25 Find the roots: >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) These numbers in the previous line represent (0, 0) to machine precision Show the coefficients: >>> p.c array([1, 2, 3]) Display the order (the leading zero-coefficients are removed): >>> p.order 2 Show the coefficient of the k-th power in the polynomial (which is equivalent to ``p.c[-(i+1)]``): >>> p[1] 2 Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): >>> p * p poly1d([ 1, 4, 10, 12, 9]) >>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.])) ``asarray(p)`` gives the coefficient array, so polynomials can be used in all functions that accept arrays: >>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9]) >>> np.square(p) # square of individual coefficients array([1, 4, 9]) The variable used in the string representation of `p` can be modified, using the `variable` parameter: >>> p = np.poly1d([1,2,3], variable='z') >>> print p 2 1 z + 2 z + 3 Construct a polynomial from its roots: >>> np.poly1d([1, 2], True) poly1d([ 1, -3, 2]) This is the same polynomial as obtained by: >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2]) """ coeffs = None order = None variable = None def __init__(self, c_or_r, r=0, variable=None): if isinstance(c_or_r, poly1d): for key in c_or_r.__dict__.keys(): self.__dict__[key] = c_or_r.__dict__[key] if variable is not None: self.__dict__['variable'] = variable return if r: c_or_r = poly(c_or_r) c_or_r = atleast_1d(c_or_r) if len(c_or_r.shape) > 1: raise ValueError, "Polynomial must be 1d only." c_or_r = trim_zeros(c_or_r, trim='f') if len(c_or_r) == 0: c_or_r = NX.array([0.]) self.__dict__['coeffs'] = c_or_r self.__dict__['order'] = len(c_or_r) - 1 if variable is None: variable = 'x' self.__dict__['variable'] = variable def __array__(self, t=None): if t: return NX.asarray(self.coeffs, t) else: return NX.asarray(self.coeffs) def __repr__(self): vals = repr(self.coeffs) vals = vals[6:-1] return "poly1d(%s)" % vals def __len__(self): return self.order def __str__(self): thestr = "0" var = self.variable # Remove leading zeros coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)] N = len(coeffs)-1 def fmt_float(q): s = '%.4g' % q if s.endswith('.0000'): s = s[:-5] return s for k in range(len(coeffs)): if not iscomplex(coeffs[k]): coefstr = fmt_float(real(coeffs[k])) elif real(coeffs[k]) == 0: coefstr = '%sj' % fmt_float(imag(coeffs[k])) else: coefstr = '(%s + %sj)' % (fmt_float(real(coeffs[k])), fmt_float(imag(coeffs[k]))) power = (N-k) if power == 0: if coefstr != '0': newstr = '%s' % (coefstr,) else: if k == 0: newstr = '0' else: newstr = '' elif power == 1: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = var else: newstr = '%s %s' % (coefstr, var) else: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = '%s**%d' % (var, power,) else: newstr = '%s %s**%d' % (coefstr, var, power) if k > 0: if newstr != '': if newstr.startswith('-'): thestr = "%s - %s" % (thestr, newstr[1:]) else: thestr = "%s + %s" % (thestr, newstr) else: thestr = newstr return _raise_power(thestr) def __call__(self, val): return polyval(self.coeffs, val) def __neg__(self): return poly1d(-self.coeffs) def __pos__(self): return self def __mul__(self, other): if isscalar(other): return poly1d(self.coeffs * other) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __rmul__(self, other): if isscalar(other): return poly1d(other * self.coeffs) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __add__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __radd__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __pow__(self, val): if not isscalar(val) or int(val) != val or val < 0: raise ValueError, "Power to non-negative integers only." res = [1] for _ in range(val): res = polymul(self.coeffs, res) return poly1d(res) def __sub__(self, other): other = poly1d(other) return poly1d(polysub(self.coeffs, other.coeffs)) def __rsub__(self, other): other = poly1d(other) return poly1d(polysub(other.coeffs, self.coeffs)) def __div__(self, other): if isscalar(other): return poly1d(self.coeffs/other) else: other = poly1d(other) return polydiv(self, other) __truediv__ = __div__ def __rdiv__(self, other): if isscalar(other): return poly1d(other/self.coeffs) else: other = poly1d(other) return polydiv(other, self) __rtruediv__ = __rdiv__ def __eq__(self, other): return NX.alltrue(self.coeffs == other.coeffs) def __ne__(self, other): return NX.any(self.coeffs != other.coeffs) def __setattr__(self, key, val): raise ValueError, "Attributes cannot be changed this way." def __getattr__(self, key): if key in ['r', 'roots']: return roots(self.coeffs) elif key in ['c','coef','coefficients']: return self.coeffs elif key in ['o']: return self.order else: try: return self.__dict__[key] except KeyError: raise AttributeError("'%s' has no attribute '%s'" % (self.__class__, key)) def __getitem__(self, val): ind = self.order - val if val > self.order: return 0 if val < 0: return 0 return self.coeffs[ind] def __setitem__(self, key, val): ind = self.order - key if key < 0: raise ValueError, "Does not support negative powers." if key > self.order: zr = NX.zeros(key-self.order, self.coeffs.dtype) self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs)) self.__dict__['order'] = key ind = 0 self.__dict__['coeffs'][ind] = val return def __iter__(self): return iter(self.coeffs) def integ(self, m=1, k=0): """ Return an antiderivative (indefinite integral) of this polynomial. Refer to `polyint` for full documentation. See Also -------- polyint : equivalent function """ return poly1d(polyint(self.coeffs, m=m, k=k)) def deriv(self, m=1): """ Return a derivative of this polynomial. Refer to `polyder` for full documentation. See Also -------- polyder : equivalent function """ return poly1d(polyder(self.coeffs, m=m)) # Stuff to do on module import warnings.simplefilter('always',RankWarning)
bsd-3-clause
laosiaudi/tensorflow
tensorflow/contrib/learn/python/learn/estimators/classifier_test.py
16
5175
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Classifier.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np import tensorflow as tf from tensorflow.contrib import learn from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.session_bundle import manifest_pb2 def iris_input_fn(num_epochs=None): iris = tf.contrib.learn.datasets.load_iris() features = tf.train.limit_epochs( tf.reshape(tf.constant(iris.data), [-1, 4]), num_epochs=num_epochs) labels = tf.reshape(tf.constant(iris.target), [-1]) return features, labels def logistic_model_fn(features, labels, unused_mode): labels = tf.one_hot(labels, 3, 1, 0) prediction, loss = tf.contrib.learn.models.logistic_regression_zero_init( features, labels) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def logistic_model_params_fn(features, labels, unused_mode, params): labels = tf.one_hot(labels, 3, 1, 0) prediction, loss = tf.contrib.learn.models.logistic_regression_zero_init( features, labels) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op class ClassifierTest(tf.test.TestCase): def testIrisAll(self): est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) self._runIrisAll(est) def testIrisAllWithParams(self): est = tf.contrib.learn.Classifier(model_fn=logistic_model_params_fn, n_classes=3, params={'learning_rate': 0.01}) self._runIrisAll(est) def testIrisInputFn(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) est.fit(input_fn=iris_input_fn, steps=100) est.evaluate(input_fn=iris_input_fn, steps=1, name='eval') predict_input_fn = functools.partial(iris_input_fn, num_epochs=1) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertEqual(len(predictions), iris.target.shape[0]) def _runIrisAll(self, est): iris = tf.contrib.learn.datasets.load_iris() est.fit(iris.data, iris.target, steps=100) scores = est.evaluate(x=iris.data, y=iris.target, name='eval') predictions = list(est.predict(x=iris.data)) predictions_proba = list(est.predict_proba(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) self.assertAllEqual(predictions, np.argmax(predictions_proba, axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions) self.assertAllClose(other_score, scores['accuracy']) def _get_default_signature(self, export_meta_filename): """Gets the default signature from the export.meta file.""" with tf.Session(): save = tf.train.import_meta_graph(export_meta_filename) meta_graph_def = save.export_meta_graph() collection_def = meta_graph_def.collection_def signatures_any = collection_def['serving_signatures'].any_list.value self.assertEquals(len(signatures_any), 1) signatures = manifest_pb2.Signatures() signatures_any[0].Unpack(signatures) default_signature = signatures.default_signature return default_signature # Disable this test case until b/31032996 is fixed. def _testExportMonitorRegressionSignature(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) export_dir = tempfile.mkdtemp() + 'export/' export_monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=export_dir, exports_to_keep=1, signature_fn=tf.contrib.learn.classifier.classification_signature_fn) est.fit(iris.data, iris.target, steps=2, monitors=[export_monitor]) self.assertTrue(tf.gfile.Exists(export_dir)) self.assertFalse(tf.gfile.Exists(export_dir + '00000000/export')) self.assertTrue(tf.gfile.Exists(export_dir + '00000002/export')) # Validate the signature signature = self._get_default_signature(export_dir + '00000002/export.meta') self.assertTrue(signature.HasField('classification_signature')) if __name__ == '__main__': tf.test.main()
apache-2.0
iemejia/beam
sdks/python/apache_beam/dataframe/partitionings.py
4
5797
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from typing import Any from typing import Iterable from typing import Tuple from typing import TypeVar import numpy as np import pandas as pd Frame = TypeVar('Frame', bound=pd.core.generic.NDFrame) class Partitioning(object): """A class representing a (consistent) partitioning of dataframe objects. """ def __repr__(self): return self.__class__.__name__ def is_subpartitioning_of(self, other): # type: (Partitioning) -> bool """Returns whether self is a sub-partition of other. Specifically, returns whether something partitioned by self is necissarily also partitioned by other. """ raise NotImplementedError def __lt__(self, other): return self != other and self <= other def __le__(self, other): return not self.is_subpartitioning_of(other) def partition_fn(self, df, num_partitions): # type: (Frame, int) -> Iterable[Tuple[Any, Frame]] """A callable that actually performs the partitioning of a Frame df. This will be invoked via a FlatMap in conjunction with a GroupKey to achieve the desired partitioning. """ raise NotImplementedError def test_partition_fn(self, df): return self.partition_fn(df, 5) class Index(Partitioning): """A partitioning by index (either fully or partially). If the set of "levels" of the index to consider is not specified, the entire index is used. These form a partial order, given by Singleton() < Index([i]) < Index([i, j]) < ... < Index() < Arbitrary() The ordering is implemented via the is_subpartitioning_of method, where the examples on the right are subpartitionings of the examples on the left above. """ def __init__(self, levels=None): self._levels = levels def __repr__(self): if self._levels: return 'Index%s' % self._levels else: return 'Index' def __eq__(self, other): return type(self) == type(other) and self._levels == other._levels def __hash__(self): if self._levels: return hash(tuple(sorted(self._levels))) else: return hash(type(self)) def is_subpartitioning_of(self, other): if isinstance(other, Singleton): return True elif isinstance(other, Index): if self._levels is None: return True elif other._levels is None: return False else: return all(level in self._levels for level in other._levels) elif isinstance(other, Arbitrary): return False else: raise ValueError(f"Encountered unknown type {other!r}") def _hash_index(self, df): if self._levels is None: levels = list(range(df.index.nlevels)) else: levels = self._levels return sum( pd.util.hash_array(np.asarray(df.index.get_level_values(level))) for level in levels) def partition_fn(self, df, num_partitions): hashes = self._hash_index(df) for key in range(num_partitions): yield key, df[hashes % num_partitions == key] def check(self, dfs): # Drop empty DataFrames dfs = [df for df in dfs if len(df)] if not len(dfs): return True def apply_consistent_order(dfs): # Apply consistent order between dataframes by using sum of the index's # hash. # Apply consistent order within dataframe with sort_index() # Also drops any empty dataframes. return sorted((df.sort_index() for df in dfs if len(df)), key=lambda df: sum(self._hash_index(df))) dfs = apply_consistent_order(dfs) repartitioned_dfs = apply_consistent_order( df for _, df in self.test_partition_fn(pd.concat(dfs))) # Assert that each index is identical for df, repartitioned_df in zip(dfs, repartitioned_dfs): if not df.index.equals(repartitioned_df.index): return False return True class Singleton(Partitioning): """A partitioning of all the data into a single partition. """ def __init__(self, reason=None): self._reason = reason @property def reason(self): return self._reason def __eq__(self, other): return type(self) == type(other) def __hash__(self): return hash(type(self)) def is_subpartitioning_of(self, other): return isinstance(other, Singleton) def partition_fn(self, df, num_partitions): yield None, df def check(self, dfs): return len(dfs) <= 1 class Arbitrary(Partitioning): """A partitioning imposing no constraints on the actual partitioning. """ def __eq__(self, other): return type(self) == type(other) def __hash__(self): return hash(type(self)) def is_subpartitioning_of(self, other): return True def test_partition_fn(self, df): num_partitions = 10 def shuffled(seq): seq = list(seq) random.shuffle(seq) return seq # pylint: disable=range-builtin-not-iterating part = pd.Series(shuffled(range(len(df))), index=df.index) % num_partitions for k in range(num_partitions): yield k, df[part == k] def check(self, dfs): return True
apache-2.0
Nyker510/scikit-learn
examples/manifold/plot_lle_digits.py
181
8510
""" ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= An illustration of various embeddings on the digits dataset. The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-separable. t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting. It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization. """ # Authors: Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, lda, random_projection) digits = datasets.load_digits(n_class=6) X = digits.data y = digits.target n_samples, n_features = X.shape n_neighbors = 30 #---------------------------------------------------------------------- # Scale and visualize the embedding vectors def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(digits.data.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) #---------------------------------------------------------------------- # Plot images of the digits n_img_per_row = 20 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) plt.imshow(img, cmap=plt.cm.binary) plt.xticks([]) plt.yticks([]) plt.title('A selection from the 64-dimensional digits dataset') #---------------------------------------------------------------------- # Random 2D projection using a random unitary matrix print("Computing random projection") rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X) plot_embedding(X_projected, "Random Projection of the digits") #---------------------------------------------------------------------- # Projection on to the first 2 principal components print("Computing PCA projection") t0 = time() X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X) plot_embedding(X_pca, "Principal Components projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Projection on to the first 2 linear discriminant components print("Computing LDA projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible t0 = time() X_lda = lda.LDA(n_components=2).fit_transform(X2, y) plot_embedding(X_lda, "Linear Discriminant projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Isomap projection of the digits dataset print("Computing Isomap embedding") t0 = time() X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X) print("Done.") plot_embedding(X_iso, "Isomap projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Locally linear embedding of the digits dataset print("Computing LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='standard') t0 = time() X_lle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_lle, "Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Modified Locally linear embedding of the digits dataset print("Computing modified LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='modified') t0 = time() X_mlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_mlle, "Modified Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # HLLE embedding of the digits dataset print("Computing Hessian LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='hessian') t0 = time() X_hlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_hlle, "Hessian Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # LTSA embedding of the digits dataset print("Computing LTSA embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='ltsa') t0 = time() X_ltsa = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_ltsa, "Local Tangent Space Alignment of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # MDS embedding of the digits dataset print("Computing MDS embedding") clf = manifold.MDS(n_components=2, n_init=1, max_iter=100) t0 = time() X_mds = clf.fit_transform(X) print("Done. Stress: %f" % clf.stress_) plot_embedding(X_mds, "MDS embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Random Trees embedding of the digits dataset print("Computing Totally Random Trees embedding") hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) t0 = time() X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) plot_embedding(X_reduced, "Random forest embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Spectral embedding of the digits dataset print("Computing Spectral embedding") embedder = manifold.SpectralEmbedding(n_components=2, random_state=0, eigen_solver="arpack") t0 = time() X_se = embedder.fit_transform(X) plot_embedding(X_se, "Spectral embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # t-SNE embedding of the digits dataset print("Computing t-SNE embedding") tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) t0 = time() X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne, "t-SNE embedding of the digits (time %.2fs)" % (time() - t0)) plt.show()
bsd-3-clause
krafczyk/spack
var/spack/repos/builtin/packages/julia/package.py
2
9890
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * import os import sys class Julia(Package): """The Julia Language: A fresh approach to technical computing""" homepage = "http://julialang.org" url = "https://github.com/JuliaLang/julia/releases/download/v0.4.3/julia-0.4.3-full.tar.gz" git = "https://github.com/JuliaLang/julia.git" version('master', branch='master') version('0.6.2', '255d80bc8d56d5f059fe18f0798e32f6') version('release-0.5', branch='release-0.5') version('0.5.2', '8c3fff150a6f96cf0536fb3b4eaa5cbb') version('0.5.1', 'bce119b98f274e0f07ce01498c463ad5') version('0.5.0', 'b61385671ba74767ab452363c43131fb') version('release-0.4', branch='release-0.4') version('0.4.7', '75a7a7dd882b7840829d8f165e9b9078') version('0.4.6', 'd88db18c579049c23ab8ef427ccedf5d') version('0.4.5', '69141ff5aa6cee7c0ec8c85a34aa49a6') version('0.4.3', '8a4a59fd335b05090dd1ebefbbe5aaac') # TODO: Split these out into jl-hdf5, jl-mpi packages etc. variant("cxx", default=False, description="Prepare for Julia Cxx package") variant("hdf5", default=False, description="Install Julia HDF5 package") variant("mpi", default=True, description="Install Julia MPI package") variant("plot", default=False, description="Install Julia plotting packages") variant("python", default=False, description="Install Julia Python package") variant("simd", default=False, description="Install Julia SIMD package") patch('gc.patch', when='@0.4:0.4.5') patch('openblas.patch', when='@0.4:0.4.5') variant('binutils', default=sys.platform != 'darwin', description="Build via binutils") # Build-time dependencies: # depends_on("awk") depends_on("m4", type="build") # depends_on("pkgconfig") # Combined build-time and run-time dependencies: # (Yes, these are run-time dependencies used by Julia's package manager.) depends_on("binutils", when='+binutils') depends_on("cmake @2.8:") depends_on("curl") depends_on("git", when='@:0.4') depends_on("git", when='@release-0.4') depends_on("openssl") depends_on("[email protected]:2.8") # Run-time dependencies: # depends_on("arpack") # depends_on("fftw +float") # depends_on("gmp") # depends_on("libgit") # depends_on("mpfr") # depends_on("openblas") # depends_on("pcre2") # ARPACK: Requires BLAS and LAPACK; needs to use the same version # as Julia. # BLAS and LAPACK: Julia prefers 64-bit versions on 64-bit # systems. OpenBLAS has an option for this; make it available as # variant. # FFTW: Something doesn't work when using a pre-installed FFTW # library; need to investigate. # GMP, MPFR: Something doesn't work when using a pre-installed # FFTW library; need to investigate. # LLVM: Julia works only with specific versions, and might require # patches. Thus we let Julia install its own LLVM. # Other possible dependencies: # USE_SYSTEM_OPENLIBM=0 # USE_SYSTEM_OPENSPECFUN=0 # USE_SYSTEM_DSFMT=0 # USE_SYSTEM_SUITESPARSE=0 # USE_SYSTEM_UTF8PROC=0 # USE_SYSTEM_LIBGIT2=0 # Run-time dependencies for Julia packages: depends_on("hdf5", when="+hdf5", type="run") depends_on("mpi", when="+mpi", type="run") depends_on("py-matplotlib", when="+plot", type="run") def install(self, spec, prefix): # Julia needs git tags if os.path.isfile(".git/shallow"): git = which("git") git("fetch", "--unshallow") # Explicitly setting CC, CXX, or FC breaks building libuv, one # of Julia's dependencies. This might be a Darwin-specific # problem. Given how Spack sets up compilers, Julia should # still use Spack's compilers, even if we don't specify them # explicitly. options = [ # "CC=cc", # "CXX=c++", # "FC=fc", # "USE_SYSTEM_ARPACK=1", "override USE_SYSTEM_CURL=1", # "USE_SYSTEM_FFTW=1", # "USE_SYSTEM_GMP=1", # "USE_SYSTEM_MPFR=1", # "USE_SYSTEM_PCRE=1", "prefix=%s" % prefix] if "+cxx" in spec: if "@master" not in spec: raise InstallError( "Variant +cxx requires the @master version of Julia") options += [ "BUILD_LLVM_CLANG=1", "LLVM_ASSERTIONS=1", "USE_LLVM_SHLIB=1"] with open('Make.user', 'w') as f: f.write('\n'.join(options) + '\n') make() make("install") # Julia's package manager needs a certificate cacert_dir = join_path(prefix, "etc", "curl") mkdirp(cacert_dir) cacert_file = join_path(cacert_dir, "cacert.pem") curl = which("curl") curl("--create-dirs", "--output", cacert_file, "https://curl.haxx.se/ca/cacert.pem") # Put Julia's compiler cache into a private directory cachedir = join_path(prefix, "var", "julia", "cache") mkdirp(cachedir) # Store Julia packages in a private directory pkgdir = join_path(prefix, "var", "julia", "pkg") mkdirp(pkgdir) # Configure Julia with open(join_path(prefix, "etc", "julia", "juliarc.jl"), "a") as juliarc: if "@master" in spec or "@release-0.5" in spec or "@0.5:" in spec: # This is required for versions @0.5: juliarc.write( '# Point package manager to working certificates\n') juliarc.write('LibGit2.set_ssl_cert_locations("%s")\n' % cacert_file) juliarc.write('\n') juliarc.write('# Put compiler cache into a private directory\n') juliarc.write('empty!(Base.LOAD_CACHE_PATH)\n') juliarc.write('unshift!(Base.LOAD_CACHE_PATH, "%s")\n' % cachedir) juliarc.write('\n') juliarc.write('# Put Julia packages into a private directory\n') juliarc.write('ENV["JULIA_PKGDIR"] = "%s"\n' % pkgdir) juliarc.write('\n') # Install some commonly used packages julia = spec['julia'].command julia("-e", 'Pkg.init(); Pkg.update()') # Install HDF5 if "+hdf5" in spec: with open(join_path(prefix, "etc", "julia", "juliarc.jl"), "a") as juliarc: juliarc.write('# HDF5\n') juliarc.write('push!(Libdl.DL_LOAD_PATH, "%s")\n' % spec["hdf5"].prefix.lib) juliarc.write('\n') julia("-e", 'Pkg.add("HDF5"); using HDF5') julia("-e", 'Pkg.add("JLD"); using JLD') # Install MPI if "+mpi" in spec: with open(join_path(prefix, "etc", "julia", "juliarc.jl"), "a") as juliarc: juliarc.write('# MPI\n') juliarc.write('ENV["JULIA_MPI_C_COMPILER"] = "%s"\n' % join_path(spec["mpi"].prefix.bin, "mpicc")) juliarc.write('ENV["JULIA_MPI_Fortran_COMPILER"] = "%s"\n' % join_path(spec["mpi"].prefix.bin, "mpifort")) juliarc.write('\n') julia("-e", 'Pkg.add("MPI"); using MPI') # Install Python if "+python" in spec or "+plot" in spec: with open(join_path(prefix, "etc", "julia", "juliarc.jl"), "a") as juliarc: juliarc.write('# Python\n') juliarc.write('ENV["PYTHON"] = "%s"\n' % spec["python"].home) juliarc.write('\n') # Python's OpenSSL package installer complains: # Error: PREFIX too long: 166 characters, but only 128 allowed # Error: post-link failed for: openssl-1.0.2g-0 julia("-e", 'Pkg.add("PyCall"); using PyCall') if "+plot" in spec: julia("-e", 'Pkg.add("PyPlot"); using PyPlot') julia("-e", 'Pkg.add("Colors"); using Colors') # These require maybe gtk and image-magick julia("-e", 'Pkg.add("Plots"); using Plots') julia("-e", 'Pkg.add("PlotRecipes"); using PlotRecipes') julia("-e", 'Pkg.add("UnicodePlots"); using UnicodePlots') julia("-e", """\ using Plots using UnicodePlots unicodeplots() plot(x->sin(x)*cos(x), linspace(0, 2pi)) """) # Install SIMD if "+simd" in spec: julia("-e", 'Pkg.add("SIMD"); using SIMD') julia("-e", 'Pkg.status()')
lgpl-2.1
JacekPierzchlewski/RxCS
examples/signals/vect_sparse_ex0.py
1
2944
""" This script is an example of how to use the random sparse vector generator module. |br| In this example 5 random sparse vectors are generated. |br| After the generation, the generated sparse vectors are plotted. |br| *Author*: Jacek Pierzchlewski, Aalborg University, Denmark. <[email protected]> *Version*: 1.0 | 22-JAN-2015 : * Version 1.0 released. |br| 2.0 | 15-JUL-2015 : * Version 2.0 released. |br| *License*: BSD 2-Clause """ from __future__ import division import rxcs import numpy as np import matplotlib.pyplot as plt def _vect_sparse_ex0(): # SETTINGS: iN = 20 # Size of the vectors iS = 0.2 # Sparsity parameter (0.2 * 20 = 4 non-zero elements) iNVects = 5 # The number of vectors # Things on the table: sparseVector = rxcs.sig.sparseVector() # Sparse vectors generator # Configure the generator... sparseVector.iVectSiz = iN # Size of the vectors sparseVector.iS = iS # Sparsity parameter sparseVector.iNVect = iNVects # The number of vectors sparseVector.run() # ... and run it! mVecs = sparseVector.mVects # take the generated vectors # ----------------------------------------------------------------- # Plot the sparse vectors hFig1 = plt.figure(1) hSubPlot1 = hFig1.add_subplot(511) hSubPlot1.grid(True) hSubPlot1.set_title('Vector #1') hSubPlot1.stem(np.arange(iN), mVecs[0, :], linefmt='b-', markerfmt='bo', basefmt='r-') hSubPlot1.set_xlim(-1, iN + 1) hSubPlot1.set_ylim(-0.1, 1.1) hSubPlot1 = hFig1.add_subplot(512) hSubPlot1.grid(True) hSubPlot1.set_title('Vector #2') hSubPlot1.stem(np.arange(iN), mVecs[1, :], linefmt='b-', markerfmt='bo', basefmt='r-') hSubPlot1.set_xlim(-1, iN + 1) hSubPlot1.set_ylim(-0.1, 1.1) hSubPlot1 = hFig1.add_subplot(513) hSubPlot1.grid(True) hSubPlot1.set_title('Vector #3') hSubPlot1.stem(np.arange(iN), mVecs[2, :], linefmt='b-', markerfmt='bo', basefmt='r-') hSubPlot1.set_xlim(-1, iN + 1) hSubPlot1.set_ylim(-0.1, 1.1) hSubPlot1 = hFig1.add_subplot(514) hSubPlot1.grid(True) hSubPlot1.set_title('Vector #4') hSubPlot1.stem(np.arange(iN), mVecs[3, :], linefmt='b-', markerfmt='bo', basefmt='r-') hSubPlot1.set_xlim(-1, iN + 1) hSubPlot1.set_ylim(-0.1, 1.1) hSubPlot1 = hFig1.add_subplot(515) hSubPlot1.grid(True) hSubPlot1.set_title('Vector #5') hSubPlot1.stem(np.arange(iN), mVecs[4, :], linefmt='b-', markerfmt='bo', basefmt='r-') hSubPlot1.set_xlim(-1, iN + 1) hSubPlot1.set_ylim(-0.1, 1.1) # ----------------------------------------------------------------- plt.show(block=True) # ===================================================================== # Trigger when start as a script # ===================================================================== if __name__ == '__main__': _vect_sparse_ex0()
bsd-2-clause
walterreade/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
87
3903
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.externals.joblib import Memory from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_.reshape(1, -1)) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
mojosaurus/netflix-project
com/demimojo/netflix/matrix/preprocessing.py
1
4272
__author__ = 'mojosaurus' import sys from com.demimojo.netflix.loader import Constants from sklearn.preprocessing import normalize import csv from com import logger import glob from scipy.sparse import lil_matrix import numpy as np class PreProcess(): def __init__(self): logger.info("Starting pre-procesing") def process(self): self.__initDataStructures() self.__constructUberMatrix() self.__normalizeMatrix() def getNormalizedMatrix(self): return self.normalizedMatrix def getRating(self, row, col): return self.uberMatrix[row, col] def getNormalizedRating(self, row, col): return self.normalizedMatrix[row, col] def getAverageUserRating(self, userId): return self.userAvg[userId] def getAverageMovieRating(self, movieId): return self.movieAvg[movieId] def getNumUserRating(self, userId): return self.userCnt[userId] def getNumMovieRating(self, movieId): logger.info("Getting rating count got movie %d " % movieId) return self.movieCnt[movieId] def __initDataStructures(self): logger.info("Initialising the sparse matrices - uber and normalized") self.uberMatrix = lil_matrix((2649430, 17770), dtype=np.float64) self.normalizedMatrix = lil_matrix((2649430, 17770), dtype=np.float64) logger.info("Initialising associated arrays") self.userAvg = [0 for i in range(0, 2649430)] self.userCnt = [0 for i in range(0, 2649430)] self.movieAvg = [0 for i in range(0, 17771)] self.movieCnt = [0 for i in range(0, 17771)] logger.info("Arrays initialized") def __constructUberMatrix(self): logger.info("Constructing the uber matrix") files = sorted(glob.glob(Constants.DATA_DIR + "training_set/*.txt")) for file in files: with open(file, 'r') as f: elements = [line.split(',', 2) for line in f] for element in elements: if len(element) == 1: movieId = int(element[0].replace(':', '').rstrip()) logger.info("Starting movie %d " % movieId) else: userId = int(element[0]) rating = float(element[1]) self.uberMatrix[userId, movieId] = float(rating) # Now, calculate the average for the movie and the user. self.userAvg[userId] = (self.userAvg[userId] + rating) / 2 if self.userAvg[userId] != 0 else rating self.userCnt[userId] += 1 self.movieAvg[movieId] = (self.movieAvg[movieId] + rating) / 2 if self.movieAvg[movieId] != 0 else rating self.movieCnt[movieId] += 1 logger.info("Movie id %d ended " % movieId) f.close() logger.info("Uber matrix constructed") def __writerFiles(self): logger.info("Writing file user_average.csv") with open(Constants.DATA_DIR+'user_average.csv', 'w') as fh: writer = csv.writer(fh, delimiter=',') for i in range(1, len(self.userAvg)): writer.writerow([i, self.userCnt[i], self.userAvg[i]]) fh.close() logger.info("Writing file movie_average.csv") with open(Constants.DATA_DIR+'movie_average.csv', 'w') as fh: writer = csv.writer(fh, delimiter=',') for i in range(1, len(self.movieAvg)): writer.writerow([i, self.movieCnt[i], self.movieAvg[i]]) fh.close() def __normalizeMatrix(self): # Now, onto normalising the matrix. logger.info("Intializing the normalized matrix") rows, cols = self.uberMatrix.nonzero() for i in range(0, len(rows)): row = rows[i] col = cols[i] val = self.uberMatrix[row, col] normalizedValue = self.userAvg[row] - val self.normalizedMatrix[row, col] = normalizedValue # Delete the object to free up memory. We will need it soon. logger.info("Matrix normalized") # # process = PreProcess() # process.process() # # print process.getNormalizedScore(2643247, 30)
apache-2.0
cybernet14/scikit-learn
sklearn/linear_model/least_angle.py
61
54324
""" Least Angle Regression algorithm. See the documentation on the Generalized Linear Model for a complete discussion. """ from __future__ import print_function # Author: Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Gael Varoquaux # # License: BSD 3 clause from math import log import sys import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg, interpolate from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel from ..base import RegressorMixin from ..utils import arrayfuncs, as_float_array, check_X_y from ..cross_validation import check_cv from ..utils import ConvergenceWarning from ..externals.joblib import Parallel, delayed from ..externals.six.moves import xrange import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): solve_triangular_args = {'check_finite': False} def lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=np.finfo(np.float).eps, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False, positive=False): """Compute Least Angle Regression or Lasso path using LARS algorithm [1] The optimization objective for the case method='lasso' is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 in the case of method='lars', the objective function is only known in the form of an implicit equation (see discussion in [1]) Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ----------- X : array, shape: (n_samples, n_features) Input data. y : array, shape: (n_samples) Input targets. positive : boolean (default=False) Restrict coefficients to be >= 0. When using this option together with method 'lasso' the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha (neither will they when using method 'lar' ..). Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent lasso_path function. max_iter : integer, optional (default=500) Maximum number of iterations to perform, set to infinity for no limit. Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features. alpha_min : float, optional (default=0) Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. method : {'lar', 'lasso'}, optional (default='lar') Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. eps : float, optional (default=``np.finfo(np.float).eps``) The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : bool, optional (default=True) If ``False``, ``X`` is overwritten. copy_Gram : bool, optional (default=True) If ``False``, ``Gram`` is overwritten. verbose : int (default=0) Controls output verbosity. return_path : bool, optional (default=True) If ``return_path==True`` returns the entire path, else returns only the last point of the path. return_n_iter : bool, optional (default=False) Whether to return the number of iterations. Returns -------- alphas : array, shape: [n_alphas + 1] Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. active : array, shape [n_alphas] Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas + 1) Coefficients along the path n_iter : int Number of iterations run. Returned only if return_n_iter is set to True. See also -------- lasso_path LassoLars Lars LassoLarsCV LarsCV sklearn.decomposition.sparse_encode References ---------- .. [1] "Least Angle Regression", Effron et al. http://www-stat.stanford.edu/~tibs/ftp/lars.pdf .. [2] `Wikipedia entry on the Least-angle regression <http://en.wikipedia.org/wiki/Least-angle_regression>`_ .. [3] `Wikipedia entry on the Lasso <http://en.wikipedia.org/wiki/Lasso_(statistics)#Lasso_method>`_ """ n_features = X.shape[1] n_samples = y.size max_features = min(max_iter, n_features) if return_path: coefs = np.zeros((max_features + 1, n_features)) alphas = np.zeros(max_features + 1) else: coef, prev_coef = np.zeros(n_features), np.zeros(n_features) alpha, prev_alpha = np.array([0.]), np.array([0.]) # better ideas? n_iter, n_active = 0, 0 active, indices = list(), np.arange(n_features) # holds the sign of covariance sign_active = np.empty(max_features, dtype=np.int8) drop = False # will hold the cholesky factorization. Only lower part is # referenced. # We are initializing this to "zeros" and not empty, because # it is passed to scipy linalg functions and thus if it has NaNs, # even if they are in the upper part that it not used, we # get errors raised. # Once we support only scipy > 0.12 we can use check_finite=False and # go back to "empty" L = np.zeros((max_features, max_features), dtype=X.dtype) swap, nrm2 = linalg.get_blas_funcs(('swap', 'nrm2'), (X,)) solve_cholesky, = get_lapack_funcs(('potrs',), (X,)) if Gram is None: if copy_X: # force copy. setting the array to be fortran-ordered # speeds up the calculation of the (partial) Gram matrix # and allows to easily swap columns X = X.copy('F') elif Gram == 'auto': Gram = None if X.shape[0] > X.shape[1]: Gram = np.dot(X.T, X) elif copy_Gram: Gram = Gram.copy() if Xy is None: Cov = np.dot(X.T, y) else: Cov = Xy.copy() if verbose: if verbose > 1: print("Step\t\tAdded\t\tDropped\t\tActive set size\t\tC") else: sys.stdout.write('.') sys.stdout.flush() tiny = np.finfo(np.float).tiny # to avoid division by 0 warning tiny32 = np.finfo(np.float32).tiny # to avoid division by 0 warning equality_tolerance = np.finfo(np.float32).eps while True: if Cov.size: if positive: C_idx = np.argmax(Cov) else: C_idx = np.argmax(np.abs(Cov)) C_ = Cov[C_idx] if positive: C = C_ else: C = np.fabs(C_) else: C = 0. if return_path: alpha = alphas[n_iter, np.newaxis] coef = coefs[n_iter] prev_alpha = alphas[n_iter - 1, np.newaxis] prev_coef = coefs[n_iter - 1] alpha[0] = C / n_samples if alpha[0] <= alpha_min + equality_tolerance: # early stopping if abs(alpha[0] - alpha_min) > equality_tolerance: # interpolation factor 0 <= ss < 1 if n_iter > 0: # In the first iteration, all alphas are zero, the formula # below would make ss a NaN ss = ((prev_alpha[0] - alpha_min) / (prev_alpha[0] - alpha[0])) coef[:] = prev_coef + ss * (coef - prev_coef) alpha[0] = alpha_min if return_path: coefs[n_iter] = coef break if n_iter >= max_iter or n_active >= n_features: break if not drop: ########################################################## # Append x_j to the Cholesky factorization of (Xa * Xa') # # # # ( L 0 ) # # L -> ( ) , where L * w = Xa' x_j # # ( w z ) and z = ||x_j|| # # # ########################################################## if positive: sign_active[n_active] = np.ones_like(C_) else: sign_active[n_active] = np.sign(C_) m, n = n_active, C_idx + n_active Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) indices[n], indices[m] = indices[m], indices[n] Cov_not_shortened = Cov Cov = Cov[1:] # remove Cov[0] if Gram is None: X.T[n], X.T[m] = swap(X.T[n], X.T[m]) c = nrm2(X.T[n_active]) ** 2 L[n_active, :n_active] = \ np.dot(X.T[n_active], X.T[:n_active].T) else: # swap does only work inplace if matrix is fortran # contiguous ... Gram[m], Gram[n] = swap(Gram[m], Gram[n]) Gram[:, m], Gram[:, n] = swap(Gram[:, m], Gram[:, n]) c = Gram[n_active, n_active] L[n_active, :n_active] = Gram[n_active, :n_active] # Update the cholesky decomposition for the Gram matrix if n_active: linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = np.dot(L[n_active, :n_active], L[n_active, :n_active]) diag = max(np.sqrt(np.abs(c - v)), eps) L[n_active, n_active] = diag if diag < 1e-7: # The system is becoming too ill-conditioned. # We have degenerate vectors in our active set. # We'll 'drop for good' the last regressor added. # Note: this case is very rare. It is no longer triggered by the # test suite. The `equality_tolerance` margin added in 0.16.0 to # get early stopping to work consistently on all versions of # Python including 32 bit Python under Windows seems to make it # very difficult to trigger the 'drop for good' strategy. warnings.warn('Regressors in active set degenerate. ' 'Dropping a regressor, after %i iterations, ' 'i.e. alpha=%.3e, ' 'with an active set of %i regressors, and ' 'the smallest cholesky pivot element being %.3e' % (n_iter, alpha, n_active, diag), ConvergenceWarning) # XXX: need to figure a 'drop for good' way Cov = Cov_not_shortened Cov[0] = 0 Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) continue active.append(indices[n_active]) n_active += 1 if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, active[-1], '', n_active, C)) if method == 'lasso' and n_iter > 0 and prev_alpha[0] < alpha[0]: # alpha is increasing. This is because the updates of Cov are # bringing in too much numerical error that is greater than # than the remaining correlation with the # regressors. Time to bail out warnings.warn('Early stopping the lars path, as the residues ' 'are small and the current value of alpha is no ' 'longer well controlled. %i iterations, alpha=%.3e, ' 'previous alpha=%.3e, with an active set of %i ' 'regressors.' % (n_iter, alpha, prev_alpha, n_active), ConvergenceWarning) break # least squares solution least_squares, info = solve_cholesky(L[:n_active, :n_active], sign_active[:n_active], lower=True) if least_squares.size == 1 and least_squares == 0: # This happens because sign_active[:n_active] = 0 least_squares[...] = 1 AA = 1. else: # is this really needed ? AA = 1. / np.sqrt(np.sum(least_squares * sign_active[:n_active])) if not np.isfinite(AA): # L is too ill-conditioned i = 0 L_ = L[:n_active, :n_active].copy() while not np.isfinite(AA): L_.flat[::n_active + 1] += (2 ** i) * eps least_squares, info = solve_cholesky( L_, sign_active[:n_active], lower=True) tmp = max(np.sum(least_squares * sign_active[:n_active]), eps) AA = 1. / np.sqrt(tmp) i += 1 least_squares *= AA if Gram is None: # equiangular direction of variables in the active set eq_dir = np.dot(X.T[:n_active].T, least_squares) # correlation between each unactive variables and # eqiangular vector corr_eq_dir = np.dot(X.T[n_active:], eq_dir) else: # if huge number of features, this takes 50% of time, I # think could be avoided if we just update it using an # orthogonal (QR) decomposition of X corr_eq_dir = np.dot(Gram[:n_active, n_active:].T, least_squares) g1 = arrayfuncs.min_pos((C - Cov) / (AA - corr_eq_dir + tiny)) if positive: gamma_ = min(g1, C / AA) else: g2 = arrayfuncs.min_pos((C + Cov) / (AA + corr_eq_dir + tiny)) gamma_ = min(g1, g2, C / AA) # TODO: better names for these variables: z drop = False z = -coef[active] / (least_squares + tiny32) z_pos = arrayfuncs.min_pos(z) if z_pos < gamma_: # some coefficients have changed sign idx = np.where(z == z_pos)[0][::-1] # update the sign, important for LAR sign_active[idx] = -sign_active[idx] if method == 'lasso': gamma_ = z_pos drop = True n_iter += 1 if return_path: if n_iter >= coefs.shape[0]: del coef, alpha, prev_alpha, prev_coef # resize the coefs and alphas array add_features = 2 * max(1, (max_features - n_active)) coefs = np.resize(coefs, (n_iter + add_features, n_features)) alphas = np.resize(alphas, n_iter + add_features) coef = coefs[n_iter] prev_coef = coefs[n_iter - 1] alpha = alphas[n_iter, np.newaxis] prev_alpha = alphas[n_iter - 1, np.newaxis] else: # mimic the effect of incrementing n_iter on the array references prev_coef = coef prev_alpha[0] = alpha[0] coef = np.zeros_like(coef) coef[active] = prev_coef[active] + gamma_ * least_squares # update correlations Cov -= gamma_ * corr_eq_dir # See if any coefficient has changed sign if drop and method == 'lasso': # handle the case when idx is not length of 1 [arrayfuncs.cholesky_delete(L[:n_active, :n_active], ii) for ii in idx] n_active -= 1 m, n = idx, n_active # handle the case when idx is not length of 1 drop_idx = [active.pop(ii) for ii in idx] if Gram is None: # propagate dropped variable for ii in idx: for i in range(ii, n_active): X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1]) # yeah this is stupid indices[i], indices[i + 1] = indices[i + 1], indices[i] # TODO: this could be updated residual = y - np.dot(X[:, :n_active], coef[active]) temp = np.dot(X.T[n_active], residual) Cov = np.r_[temp, Cov] else: for ii in idx: for i in range(ii, n_active): indices[i], indices[i + 1] = indices[i + 1], indices[i] Gram[i], Gram[i + 1] = swap(Gram[i], Gram[i + 1]) Gram[:, i], Gram[:, i + 1] = swap(Gram[:, i], Gram[:, i + 1]) # Cov_n = Cov_j + x_j * X + increment(betas) TODO: # will this still work with multiple drops ? # recompute covariance. Probably could be done better # wrong as Xy is not swapped with the rest of variables # TODO: this could be updated residual = y - np.dot(X, coef) temp = np.dot(X.T[drop_idx], residual) Cov = np.r_[temp, Cov] sign_active = np.delete(sign_active, idx) sign_active = np.append(sign_active, 0.) # just to maintain size if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, '', drop_idx, n_active, abs(temp))) if return_path: # resize coefs in case of early stop alphas = alphas[:n_iter + 1] coefs = coefs[:n_iter + 1] if return_n_iter: return alphas, active, coefs.T, n_iter else: return alphas, active, coefs.T else: if return_n_iter: return alpha, active, coef, n_iter else: return alpha, active, coef ############################################################################### # Estimator classes class Lars(LinearModel, RegressorMixin): """Least Angle Regression model a.k.a. LAR Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- n_nonzero_coefs : int, optional Target number of non-zero coefficients. Use ``np.inf`` for no limit. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If True the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``n_nonzero_coefs`` or ``n_features``, \ whichever is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) \ | list of n_targets such arrays The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lars(n_nonzero_coefs=1) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True, n_nonzero_coefs=1, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] See also -------- lars_path, LarsCV sklearn.decomposition.sparse_encode """ def __init__(self, fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True, positive=False): self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.method = 'lar' self.precompute = precompute self.n_nonzero_coefs = n_nonzero_coefs self.positive = positive self.eps = eps self.copy_X = copy_X self.fit_path = fit_path def _get_gram(self): # precompute if n_samples > n_features precompute = self.precompute if hasattr(precompute, '__array__'): Gram = precompute elif precompute == 'auto': Gram = 'auto' else: Gram = None return Gram def fit(self, X, y, Xy=None): """Fit the model using X, y as training data. parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Xy : array-like, shape (n_samples,) or (n_samples, n_targets), \ optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True, multi_output=True) n_features = X.shape[1] X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize, self.copy_X) if y.ndim == 1: y = y[:, np.newaxis] n_targets = y.shape[1] alpha = getattr(self, 'alpha', 0.) if hasattr(self, 'n_nonzero_coefs'): alpha = 0. # n_nonzero_coefs parametrization takes priority max_iter = self.n_nonzero_coefs else: max_iter = self.max_iter precompute = self.precompute if not hasattr(precompute, '__array__') and ( precompute is True or (precompute == 'auto' and X.shape[0] > X.shape[1]) or (precompute == 'auto' and y.shape[1] > 1)): Gram = np.dot(X.T, X) else: Gram = self._get_gram() self.alphas_ = [] self.n_iter_ = [] if self.fit_path: self.coef_ = [] self.active_ = [] self.coef_path_ = [] for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, active, coef_path, n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=True, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.active_.append(active) self.n_iter_.append(n_iter_) self.coef_path_.append(coef_path) self.coef_.append(coef_path[:, -1]) if n_targets == 1: self.alphas_, self.active_, self.coef_path_, self.coef_ = [ a[0] for a in (self.alphas_, self.active_, self.coef_path_, self.coef_)] self.n_iter_ = self.n_iter_[0] else: self.coef_ = np.empty((n_targets, n_features)) for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, _, self.coef_[k], n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=False, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.n_iter_.append(n_iter_) if n_targets == 1: self.alphas_ = self.alphas_[0] self.n_iter_ = self.n_iter_[0] self._set_intercept(X_mean, y_mean, X_std) return self class LassoLars(Lars): """Lasso model fit with Least Angle Regression a.k.a. Lars It is a Linear Model trained with an L1 prior as regularizer. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- alpha : float Constant that multiplies the penalty term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by :class:`LinearRegression`. For numerical reasons, using ``alpha = 0`` with the LassoLars object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If ``True`` the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``max_iter``, ``n_features``, or the number of \ nodes in the path with correlation greater than ``alpha``, whichever \ is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) or list If a list is passed it's expected to be one of n_targets such arrays. The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int. The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLars(alpha=0.01) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True, fit_path=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -0.963257...] See also -------- lars_path lasso_path Lasso LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ def __init__(self, alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True, positive=False): self.alpha = alpha self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.method = 'lasso' self.positive = positive self.precompute = precompute self.copy_X = copy_X self.eps = eps self.fit_path = fit_path ############################################################################### # Cross-validated estimator classes def _check_copy_and_writeable(array, copy=False): if copy or not array.flags.writeable: return array.copy() return array def _lars_path_residues(X_train, y_train, X_test, y_test, Gram=None, copy=True, method='lars', verbose=False, fit_intercept=True, normalize=True, max_iter=500, eps=np.finfo(np.float).eps, positive=False): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied; if False, they may be overwritten. method : 'lar' | 'lasso' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. verbose : integer, optional Sets the amount of verbosity fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. See reservations for using this option in combination with method 'lasso' for expected small values of alpha in the doc of LassoLarsCV and LassoLarsIC. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Returns -------- alphas : array, shape (n_alphas,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter`` or ``n_features``, whichever is smaller. active : list Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas) Coefficients along the path residues : array, shape (n_alphas, n_samples) Residues of the prediction on the test data """ X_train = _check_copy_and_writeable(X_train, copy) y_train = _check_copy_and_writeable(y_train, copy) X_test = _check_copy_and_writeable(X_test, copy) y_test = _check_copy_and_writeable(y_test, copy) if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] alphas, active, coefs = lars_path( X_train, y_train, Gram=Gram, copy_X=False, copy_Gram=False, method=method, verbose=max(0, verbose - 1), max_iter=max_iter, eps=eps, positive=positive) if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] residues = np.dot(X_test, coefs) - y_test[:, np.newaxis] return alphas, active, coefs, residues.T class LarsCV(Lars): """Cross-validated Least Angle Regression model Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter: integer, optional Maximum number of iterations to perform. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. See also -------- lars_path, LassoLars, LassoLarsCV """ method = 'lar' def __init__(self, fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=np.finfo(np.float).eps, copy_X=True, positive=False): self.fit_intercept = fit_intercept self.positive = positive self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.copy_X = copy_X self.cv = cv self.max_n_alphas = max_n_alphas self.n_jobs = n_jobs self.eps = eps def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) # init cross-validation generator cv = check_cv(self.cv, X, y, classifier=False) Gram = 'auto' if self.precompute else None cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_lars_path_residues)( X[train], y[train], X[test], y[test], Gram=Gram, copy=False, method=self.method, verbose=max(0, self.verbose - 1), normalize=self.normalize, fit_intercept=self.fit_intercept, max_iter=self.max_iter, eps=self.eps, positive=self.positive) for train, test in cv) all_alphas = np.concatenate(list(zip(*cv_paths))[0]) # Unique also sorts all_alphas = np.unique(all_alphas) # Take at most max_n_alphas values stride = int(max(1, int(len(all_alphas) / float(self.max_n_alphas)))) all_alphas = all_alphas[::stride] mse_path = np.empty((len(all_alphas), len(cv_paths))) for index, (alphas, active, coefs, residues) in enumerate(cv_paths): alphas = alphas[::-1] residues = residues[::-1] if alphas[0] != 0: alphas = np.r_[0, alphas] residues = np.r_[residues[0, np.newaxis], residues] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] residues = np.r_[residues, residues[-1, np.newaxis]] this_residues = interpolate.interp1d(alphas, residues, axis=0)(all_alphas) this_residues **= 2 mse_path[:, index] = np.mean(this_residues, axis=-1) mask = np.all(np.isfinite(mse_path), axis=-1) all_alphas = all_alphas[mask] mse_path = mse_path[mask] # Select the alpha that minimizes left-out error i_best_alpha = np.argmin(mse_path.mean(axis=-1)) best_alpha = all_alphas[i_best_alpha] # Store our parameters self.alpha_ = best_alpha self.cv_alphas_ = all_alphas self.cv_mse_path_ = mse_path # Now compute the full model # it will call a lasso internally when self if LassoLarsCV # as self.method == 'lasso' Lars.fit(self, X, y) return self @property def alpha(self): # impedance matching for the above Lars.fit (should not be documented) return self.alpha_ class LassoLarsCV(LarsCV): """Cross-validated Lasso, using the LARS algorithm The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsCV only makes sense for problems where a sparse solution is expected and/or reached. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. Notes ----- The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to heavily multicollinear datasets. It is more efficient than the LassoCV if only a small number of features are selected compared to the total number, for instance if there are very few samples compared to the number of features. See also -------- lars_path, LassoLars, LarsCV, LassoCV """ method = 'lasso' class LassoLarsIC(LassoLars): """Lasso model fit with Lars using BIC or AIC for model selection The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple. Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- criterion : 'bic' | 'aic' The type of criterion to use. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsIC only makes sense for problems where a sparse solution is expected and/or reached. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. Can be used for early stopping. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. alpha_ : float the alpha parameter chosen by the information criterion n_iter_ : int number of iterations run by lars_path to find the grid of alphas. criterion_ : array, shape (n_alphas,) The value of the information criteria ('aic', 'bic') across all alphas. The alpha which has the smallest information criteria is chosen. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLarsIC(criterion='bic') >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] Notes ----- The estimation of the number of degrees of freedom is given by: "On the degrees of freedom of the lasso" Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192. http://en.wikipedia.org/wiki/Akaike_information_criterion http://en.wikipedia.org/wiki/Bayesian_information_criterion See also -------- lars_path, LassoLars, LassoLarsCV """ def __init__(self, criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, positive=False): self.criterion = criterion self.fit_intercept = fit_intercept self.positive = positive self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.copy_X = copy_X self.precompute = precompute self.eps = eps def fit(self, X, y, copy_X=True): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) training data. y : array-like, shape (n_samples,) target values. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) X, y, Xmean, ymean, Xstd = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) max_iter = self.max_iter Gram = self._get_gram() alphas_, active_, coef_path_, self.n_iter_ = lars_path( X, y, Gram=Gram, copy_X=copy_X, copy_Gram=True, alpha_min=0.0, method='lasso', verbose=self.verbose, max_iter=max_iter, eps=self.eps, return_n_iter=True, positive=self.positive) n_samples = X.shape[0] if self.criterion == 'aic': K = 2 # AIC elif self.criterion == 'bic': K = log(n_samples) # BIC else: raise ValueError('criterion should be either bic or aic') R = y[:, np.newaxis] - np.dot(X, coef_path_) # residuals mean_squared_error = np.mean(R ** 2, axis=0) df = np.zeros(coef_path_.shape[1], dtype=np.int) # Degrees of freedom for k, coef in enumerate(coef_path_.T): mask = np.abs(coef) > np.finfo(coef.dtype).eps if not np.any(mask): continue # get the number of degrees of freedom equal to: # Xc = X[:, mask] # Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs df[k] = np.sum(mask) self.alphas_ = alphas_ with np.errstate(divide='ignore'): self.criterion_ = n_samples * np.log(mean_squared_error) + K * df n_best = np.argmin(self.criterion_) self.alpha_ = alphas_[n_best] self.coef_ = coef_path_[:, n_best] self._set_intercept(Xmean, ymean, Xstd) return self
bsd-3-clause
ryfeus/lambda-packs
Sklearn_scipy_numpy/source/sklearn/cluster/tests/test_affinity_propagation.py
341
2620
""" Testing for Clustering methods """ import numpy as np from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.cluster.affinity_propagation_ import AffinityPropagation from sklearn.cluster.affinity_propagation_ import affinity_propagation from sklearn.datasets.samples_generator import make_blobs from sklearn.metrics import euclidean_distances n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=60, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=0) def test_affinity_propagation(): # Affinity Propagation algorithm # Compute similarities S = -euclidean_distances(X, squared=True) preference = np.median(S) * 10 # Compute Affinity Propagation cluster_centers_indices, labels = affinity_propagation( S, preference=preference) n_clusters_ = len(cluster_centers_indices) assert_equal(n_clusters, n_clusters_) af = AffinityPropagation(preference=preference, affinity="precomputed") labels_precomputed = af.fit(S).labels_ af = AffinityPropagation(preference=preference, verbose=True) labels = af.fit(X).labels_ assert_array_equal(labels, labels_precomputed) cluster_centers_indices = af.cluster_centers_indices_ n_clusters_ = len(cluster_centers_indices) assert_equal(np.unique(labels).size, n_clusters_) assert_equal(n_clusters, n_clusters_) # Test also with no copy _, labels_no_copy = affinity_propagation(S, preference=preference, copy=False) assert_array_equal(labels, labels_no_copy) # Test input validation assert_raises(ValueError, affinity_propagation, S[:, :-1]) assert_raises(ValueError, affinity_propagation, S, damping=0) af = AffinityPropagation(affinity="unknown") assert_raises(ValueError, af.fit, X) def test_affinity_propagation_predict(): # Test AffinityPropagation.predict af = AffinityPropagation(affinity="euclidean") labels = af.fit_predict(X) labels2 = af.predict(X) assert_array_equal(labels, labels2) def test_affinity_propagation_predict_error(): # Test exception in AffinityPropagation.predict # Not fitted. af = AffinityPropagation(affinity="euclidean") assert_raises(ValueError, af.predict, X) # Predict not supported when affinity="precomputed". S = np.dot(X, X.T) af = AffinityPropagation(affinity="precomputed") af.fit(S) assert_raises(ValueError, af.predict, X)
mit
deepmind/deepmind-research
geomancer/train.py
1
6748
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run GEOMANCER on products of synthetic manifolds.""" import re from absl import app from absl import flags from absl import logging import geomancer from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np from scipy.stats import special_ortho_group from tqdm import tqdm SPECIFICATION = flags.DEFINE_list( name='specification', default=['S^2', 'S^2'], help='List of submanifolds') NPTS = flags.DEFINE_integer( name='npts', default=1000, help='Number of data points') ROTATE = flags.DEFINE_boolean( name='rotate', default=False, help='Apply random rotation to the data') PLOT = flags.DEFINE_boolean( name='plot', default=True, help='Whether to enable plotting') def make_so_tangent(q): """Given an n x n orthonormal matrix, return a basis for its tangent space.""" n = q.shape[0] assert np.allclose(q.T @ q, np.eye(n), atol=1e-4, rtol=1e-4) a = np.zeros((n, n)) ii = 0 dq = np.zeros((n, n, n*(n-1)//2)) for i in range(n): for j in range(i+1, n): a[i, j] = 1 a[j, i] = -1 dq[..., ii] = a @ q # tangent vectors are skew-symmetric matrix times Q a[i, j] = 0 a[j, i] = 0 ii += 1 # reshape and orthonormalize the result return np.linalg.qr(np.reshape(dq, (n**2, n*(n-1)//2)))[0] def make_sphere_tangent(x): _, _, v = np.linalg.svd(x[None, :]) return v[:, 1:] def make_true_tangents(spec, data): """Return a set of orthonormal bases, one for each submanifold.""" for i in range(spec.shape[1]): assert spec[0, i] == 0 or spec[1, i] == 0 so_dim = sum(dim ** 2 for dim in spec[0]) sphere_dim = sum(dim+1 if dim > 0 else 0 for dim in spec[1]) assert so_dim + sphere_dim == data.shape[0] ii = 0 tangents = [] for i in range(spec.shape[1]): if spec[0, i] != 0: dim = spec[0, i] tangents.append(make_so_tangent(np.reshape(data[ii:ii+dim**2], (dim, dim)))) ii += dim ** 2 else: dim = spec[1, i] tangents.append(make_sphere_tangent(data[ii:ii+dim+1])) ii += dim + 1 tangents2 = [] for i in range(len(tangents)): size1 = sum(x.shape[0] for x in tangents[:i]) size2 = sum(x.shape[0] for x in tangents[i+1:]) tangents2.append(np.concatenate( (np.zeros((size1, tangents[i].shape[1])), tangents[i], np.zeros((size2, tangents[i].shape[1]))), axis=0)) return tangents2 def make_product_manifold(specification, npts): """Generate data from a product of manifolds with the given specification.""" data = [] tangents = [] latent_dim = 0 spec_array = np.zeros((2, len(specification)), dtype=np.int32) for i, spec in enumerate(specification): so_spec = re.search(r'SO\(([0-9]+)\)', spec) # matches "SO(<numbers>)" sphere_spec = re.search(r'S\^([0-9]+)', spec) # matches "S^<numbers>" if sphere_spec is not None: dim = int(sphere_spec.group(1)) spec_array[1, i] = dim latent_dim += dim dat = np.random.randn(npts, dim+1) dat /= np.tile(np.sqrt(np.sum(dat**2, axis=1)[..., None]), [1, dim+1]) elif so_spec is not None: dim = int(so_spec.group(1)) spec_array[0, i] = dim latent_dim += dim * (dim - 1) // 2 dat = [np.ndarray.flatten(special_ortho_group.rvs(dim), order='C') for _ in range(npts)] dat = np.stack(dat) else: raise ValueError(f'Unrecognized manifold: {spec}') data.append(dat) data = np.concatenate(data, axis=1) for i in range(spec_array.shape[1]): if spec_array[0, i] != 0: dim = spec_array[0, i] tangents.append(np.zeros((npts, data.shape[1], dim * (dim - 1) // 2))) elif spec_array[1, i] != 0: dim = spec_array[1, i] tangents.append(np.zeros((npts, data.shape[1], dim))) for i in tqdm(range(npts)): true_tangent = make_true_tangents(spec_array, data[i]) for j in range(len(specification)): tangents[j][i] = true_tangent[j] logging.info('Constructed data and true tangents for %s', ' x '.join(specification)) return data, latent_dim, tangents def main(_): # Generate data and run GEOMANCER data, dim, tangents = make_product_manifold(SPECIFICATION.value, NPTS.value) if ROTATE.value: rot, _ = np.linalg.qr(np.random.randn(data.shape[1], data.shape[1])) data_rot = data @ rot.T components, spectrum = geomancer.fit(data_rot, dim) errors = geomancer.eval_unaligned(data_rot, components, data, tangents) else: components, spectrum = geomancer.fit(data, dim) errors = geomancer.eval_aligned(components, tangents) logging.info('Error between subspaces: %.2f +/- %.2f radians', np.mean(errors), np.std(errors)) if PLOT.value: # Plot spectrum plt.figure(figsize=(8, 6)) plt.scatter(np.arange(len(spectrum)), spectrum, s=100) largest_gap = np.argmax(spectrum[1:]-spectrum[:-1]) + 1 plt.axvline(largest_gap, linewidth=2, c='r') plt.xticks([]) plt.yticks(fontsize=18) plt.xlabel('Index', fontsize=24) plt.ylabel('Eigenvalue', fontsize=24) plt.title('GeoManCEr Eigenvalue Spectrum', fontsize=24) # Plot subspace bases fig = plt.figure(figsize=(8, 6)) bases = components[0] gs = gridspec.GridSpec(1, len(bases), width_ratios=[b.shape[1] for b in bases]) for i in range(len(bases)): ax = plt.subplot(gs[i]) ax.imshow(bases[i]) ax.set_xticks([]) ax.set_yticks([]) ax.set_title(r'$T_{\mathbf{x}_1}\mathcal{M}_%d$' % (i+1), fontsize=18) fig.canvas.set_window_title('GeoManCEr Results') # Plot ground truth fig = plt.figure(figsize=(8, 6)) gs = gridspec.GridSpec(1, len(tangents), width_ratios=[b.shape[2] for b in tangents]) for i, spec in enumerate(SPECIFICATION.value): ax = plt.subplot(gs[i]) ax.imshow(tangents[i][0]) ax.set_xticks([]) ax.set_yticks([]) ax.set_title(r'$T_{\mathbf{x}_1}%s$' % spec, fontsize=18) fig.canvas.set_window_title('Ground Truth') plt.show() if __name__ == '__main__': app.run(main)
apache-2.0
BonexGu/Blik2D-SDK
Blik2D/addon/tensorflow-1.2.1_for_blik/tensorflow/python/client/notebook.py
109
4791
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Notebook front-end to TensorFlow. When you run this binary, you'll see something like below, which indicates the serving URL of the notebook: The IPython Notebook is running at: http://127.0.0.1:8888/ Press "Shift+Enter" to execute a cell Press "Enter" on a cell to go into edit mode. Press "Escape" to go back into command mode and use arrow keys to navigate. Press "a" in command mode to insert cell above or "b" to insert cell below. Your root notebooks directory is FLAGS.notebook_dir """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import socket import sys from tensorflow.python.platform import app # pylint: disable=g-import-not-at-top # Official recommended way of turning on fast protocol buffers as of 10/21/14 os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "cpp" os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION_VERSION"] = "2" FLAGS = None ORIG_ARGV = sys.argv # Main notebook process calls itself with argv[1]="kernel" to start kernel # subprocesses. IS_KERNEL = len(sys.argv) > 1 and sys.argv[1] == "kernel" def main(unused_argv): sys.argv = ORIG_ARGV if not IS_KERNEL: # Drop all flags. sys.argv = [sys.argv[0]] # NOTE(sadovsky): For some reason, putting this import at the top level # breaks inline plotting. It's probably a bug in the stone-age version of # matplotlib. from IPython.html.notebookapp import NotebookApp # pylint: disable=g-import-not-at-top notebookapp = NotebookApp.instance() notebookapp.open_browser = True # password functionality adopted from quality/ranklab/main/tools/notebook.py # add options to run with "password" if FLAGS.password: from IPython.lib import passwd # pylint: disable=g-import-not-at-top notebookapp.ip = "0.0.0.0" notebookapp.password = passwd(FLAGS.password) else: print ("\nNo password specified; Notebook server will only be available" " on the local machine.\n") notebookapp.initialize(argv=["--notebook-dir", FLAGS.notebook_dir]) if notebookapp.ip == "0.0.0.0": proto = "https" if notebookapp.certfile else "http" url = "%s://%s:%d%s" % (proto, socket.gethostname(), notebookapp.port, notebookapp.base_project_url) print("\nNotebook server will be publicly available at: %s\n" % url) notebookapp.start() return # Drop the --flagfile flag so that notebook doesn't complain about an # "unrecognized alias" when parsing sys.argv. sys.argv = ([sys.argv[0]] + [z for z in sys.argv[1:] if not z.startswith("--flagfile")]) from IPython.kernel.zmq.kernelapp import IPKernelApp # pylint: disable=g-import-not-at-top kernelapp = IPKernelApp.instance() kernelapp.initialize() # Enable inline plotting. Equivalent to running "%matplotlib inline". ipshell = kernelapp.shell ipshell.enable_matplotlib("inline") kernelapp.start() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--password", type=str, default=None, help="""\ Password to require. If set, the server will allow public access. Only used if notebook config file does not exist.\ """) parser.add_argument( "--notebook_dir", type=str, default="experimental/brain/notebooks", help="root location where to store notebooks") # When the user starts the main notebook process, we don't touch sys.argv. # When the main process launches kernel subprocesses, it writes all flags # to a tmpfile and sets --flagfile to that tmpfile, so for kernel # subprocesses here we drop all flags *except* --flagfile, then call # app.run(), and then (in main) restore all flags before starting the # kernel app. if IS_KERNEL: # Drop everything except --flagfile. sys.argv = ([sys.argv[0]] + [x for x in sys.argv[1:] if x.startswith("--flagfile")]) FLAGS, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed)
mit
nguyenti/213-twitter-trend-cloud
cloud_maker.py
1
1480
import matplotlib.pyplot as plt from wordcloud import WordCloud from time import sleep fn = "output/clouds.txt" if __name__ == '__main__': # map of the form trend : map of word:counts trend_clouds = {} with open(fn, "r") as fp: trend = fp.readline() while(trend): # read correlated words and weights pairs, ignore the last one word_counts = fp.readline() word_counts = word_counts.split(',')[:-1] tuples = [(x.split(':')[0], int(x.split(':')[1])) for x in word_counts] if trend in trend_clouds: for k,v in tuples: if k in trend_clouds[trend]: trend_clouds[trend][k] = trend_clouds[trend][k] + v else: trend_clouds[trend][k] = v else: # add new entry for this trend trend_clouds[trend] = dict(tuples) trend = fp.readline() # display word clouds plt.ion() #plt.figure() for trend in trend_clouds.iterkeys(): if len(trend_clouds[trend]) < 1: continue wc = WordCloud().generate_from_frequencies(trend_clouds[trend].items()) fig = plt.figure() fig.canvas.set_window_title(trend) plt.imshow(wc) plt.axis("off") plt.pause(2.0) # delay for 2 seconds # infinite loop so images stay alive while True: plt.pause(.05)
lgpl-3.0
musically-ut/statsmodels
statsmodels/examples/ex_generic_mle.py
32
16462
from __future__ import print_function import numpy as np from scipy import stats import statsmodels.api as sm from statsmodels.base.model import GenericLikelihoodModel data = sm.datasets.spector.load() data.exog = sm.add_constant(data.exog, prepend=False) # in this dir probit_mod = sm.Probit(data.endog, data.exog) probit_res = probit_mod.fit() loglike = probit_mod.loglike score = probit_mod.score mod = GenericLikelihoodModel(data.endog, data.exog*2, loglike, score) res = mod.fit(method="nm", maxiter = 500) def probitloglike(params, endog, exog): """ Log likelihood for the probit """ q = 2*endog - 1 X = exog return np.add.reduce(stats.norm.logcdf(q*np.dot(X,params))) mod = GenericLikelihoodModel(data.endog, data.exog, loglike=probitloglike) res = mod.fit(method="nm", fargs=(data.endog,data.exog), maxiter=500) print(res) #np.allclose(res.params, probit_res.params) print(res.params, probit_res.params) #datal = sm.datasets.longley.load() datal = sm.datasets.ccard.load() datal.exog = sm.add_constant(datal.exog, prepend=False) # Instance of GenericLikelihood model doesn't work directly, because loglike # cannot get access to data in self.endog, self.exog nobs = 5000 rvs = np.random.randn(nobs,6) datal.exog = rvs[:,:-1] datal.exog = sm.add_constant(datal.exog, prepend=False) datal.endog = 1 + rvs.sum(1) show_error = False show_error2 = 1#False if show_error: def loglike_norm_xb(self, params): beta = params[:-1] sigma = params[-1] xb = np.dot(self.exog, beta) return stats.norm.logpdf(self.endog, loc=xb, scale=sigma) mod_norm = GenericLikelihoodModel(datal.endog, datal.exog, loglike_norm_xb) res_norm = mod_norm.fit(method="nm", maxiter = 500) print(res_norm.params) if show_error2: def loglike_norm_xb(params, endog, exog): beta = params[:-1] sigma = params[-1] #print exog.shape, beta.shape xb = np.dot(exog, beta) #print xb.shape, stats.norm.logpdf(endog, loc=xb, scale=sigma).shape return stats.norm.logpdf(endog, loc=xb, scale=sigma).sum() mod_norm = GenericLikelihoodModel(datal.endog, datal.exog, loglike_norm_xb) res_norm = mod_norm.fit(start_params=np.ones(datal.exog.shape[1]+1), method="nm", maxiter = 5000, fargs=(datal.endog, datal.exog)) print(res_norm.params) class MygMLE(GenericLikelihoodModel): # just for testing def loglike(self, params): beta = params[:-1] sigma = params[-1] xb = np.dot(self.exog, beta) return stats.norm.logpdf(self.endog, loc=xb, scale=sigma).sum() def loglikeobs(self, params): beta = params[:-1] sigma = params[-1] xb = np.dot(self.exog, beta) return stats.norm.logpdf(self.endog, loc=xb, scale=sigma) mod_norm2 = MygMLE(datal.endog, datal.exog) #res_norm = mod_norm.fit(start_params=np.ones(datal.exog.shape[1]+1), method="nm", maxiter = 500) res_norm2 = mod_norm2.fit(start_params=[1.]*datal.exog.shape[1]+[1], method="nm", maxiter = 500) print(res_norm2.params) res2 = sm.OLS(datal.endog, datal.exog).fit() start_params = np.hstack((res2.params, np.sqrt(res2.mse_resid))) res_norm3 = mod_norm2.fit(start_params=start_params, method="nm", maxiter = 500, retall=0) print(start_params) print(res_norm3.params) print(res2.bse) #print res_norm3.bse # not available print('llf', res2.llf, res_norm3.llf) bse = np.sqrt(np.diag(np.linalg.inv(res_norm3.model.hessian(res_norm3.params)))) res_norm3.model.score(res_norm3.params) #fprime in fit option cannot be overwritten, set to None, when score is defined # exception is fixed, but I don't think score was supposed to be called ''' >>> mod_norm2.fit(start_params=start_params, method="bfgs", fprime=None, maxiter Traceback (most recent call last): File "<stdin>", line 1, in <module> File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\s tatsmodels\model.py", line 316, in fit disp=disp, retall=retall, callback=callback) File "C:\Josef\_progs\Subversion\scipy-trunk_after\trunk\dist\scipy-0.9.0.dev6 579.win32\Programs\Python25\Lib\site-packages\scipy\optimize\optimize.py", line 710, in fmin_bfgs gfk = myfprime(x0) File "C:\Josef\_progs\Subversion\scipy-trunk_after\trunk\dist\scipy-0.9.0.dev6 579.win32\Programs\Python25\Lib\site-packages\scipy\optimize\optimize.py", line 103, in function_wrapper return function(x, *args) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\s tatsmodels\model.py", line 240, in <lambda> score = lambda params: -self.score(params) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\s tatsmodels\model.py", line 480, in score return approx_fprime1(params, self.nloglike) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\s tatsmodels\sandbox\regression\numdiff.py", line 81, in approx_fprime1 nobs = np.size(f0) #len(f0) TypeError: object of type 'numpy.float64' has no len() ''' res_bfgs = mod_norm2.fit(start_params=start_params, method="bfgs", fprime=None, maxiter = 500, retall=0) from statsmodels.tools.numdiff import approx_fprime, approx_hess hb=-approx_hess(res_norm3.params, mod_norm2.loglike, epsilon=-1e-4) hf=-approx_hess(res_norm3.params, mod_norm2.loglike, epsilon=1e-4) hh = (hf+hb)/2. print(np.linalg.eigh(hh)) grad = -approx_fprime(res_norm3.params, mod_norm2.loglike, epsilon=-1e-4) print(grad) gradb = -approx_fprime(res_norm3.params, mod_norm2.loglike, epsilon=-1e-4) gradf = -approx_fprime(res_norm3.params, mod_norm2.loglike, epsilon=1e-4) print((gradb+gradf)/2.) print(res_norm3.model.score(res_norm3.params)) print(res_norm3.model.score(start_params)) mod_norm2.loglike(start_params/2.) print(np.linalg.inv(-1*mod_norm2.hessian(res_norm3.params))) print(np.sqrt(np.diag(res_bfgs.cov_params()))) print(res_norm3.bse) print("MLE - OLS parameter estimates") print(res_norm3.params[:-1] - res2.params) print("bse diff in percent") print((res_norm3.bse[:-1] / res2.bse)*100. - 100) ''' C:\Programs\Python25\lib\site-packages\matplotlib-0.99.1-py2.5-win32.egg\matplotlib\rcsetup.py:117: UserWarning: rcParams key "numerix" is obsolete and has no effect; please delete it from your matplotlibrc file warnings.warn('rcParams key "numerix" is obsolete and has no effect;\n' Optimization terminated successfully. Current function value: 12.818804 Iterations 6 Optimization terminated successfully. Current function value: 12.818804 Iterations: 439 Function evaluations: 735 Optimization terminated successfully. Current function value: 12.818804 Iterations: 439 Function evaluations: 735 <statsmodels.model.LikelihoodModelResults object at 0x02131290> [ 1.6258006 0.05172931 1.42632252 -7.45229732] [ 1.62581004 0.05172895 1.42633234 -7.45231965] Warning: Maximum number of function evaluations has been exceeded. [ -1.18109149 246.94438535 -16.21235536 24.05282629 -324.80867176 274.07378453] Warning: Maximum number of iterations has been exceeded [ 17.57107 -149.87528787 19.89079376 -72.49810777 -50.06067953 306.14170418] Optimization terminated successfully. Current function value: 506.488765 Iterations: 339 Function evaluations: 550 [ -3.08181404 234.34702702 -14.99684418 27.94090839 -237.1465136 284.75079529] [ -3.08181304 234.34701361 -14.99684381 27.94088692 -237.14649571 274.6857294 ] [ 5.51471653 80.36595035 7.46933695 82.92232357 199.35166485] llf -506.488764864 -506.488764864 Optimization terminated successfully. Current function value: 506.488765 Iterations: 9 Function evaluations: 13 Gradient evaluations: 13 (array([ 2.41772580e-05, 1.62492628e-04, 2.79438138e-04, 1.90996240e-03, 2.07117946e-01, 1.28747174e+00]), array([[ 1.52225754e-02, 2.01838216e-02, 6.90127235e-02, -2.57002471e-04, -5.25941060e-01, -8.47339404e-01], [ 2.39797491e-01, -2.32325602e-01, -9.36235262e-01, 3.02434938e-03, 3.95614029e-02, -1.02035585e-01], [ -2.11381471e-02, 3.01074776e-02, 7.97208277e-02, -2.94955832e-04, 8.49402362e-01, -5.20391053e-01], [ -1.55821981e-01, -9.66926643e-01, 2.01517298e-01, 1.52397702e-03, 4.13805882e-03, -1.19878714e-02], [ -9.57881586e-01, 9.87911166e-02, -2.67819451e-01, 1.55192932e-03, -1.78717579e-02, -2.55757014e-02], [ -9.96486655e-04, -2.03697290e-03, -2.98130314e-03, -9.99992985e-01, -1.71500426e-05, 4.70854949e-06]])) [[ -4.91007768e-05 -7.28732630e-07 -2.51941401e-05 -2.50111043e-08 -4.77484718e-08 -9.72022463e-08]] [[ -1.64845915e-08 -2.87059265e-08 -2.88764568e-07 -6.82121026e-09 2.84217094e-10 -1.70530257e-09]] [ -4.90678076e-05 -6.71320777e-07 -2.46166110e-05 -1.13686838e-08 -4.83169060e-08 -9.37916411e-08] [ -4.56753924e-05 -6.50857146e-07 -2.31756303e-05 -1.70530257e-08 -4.43378667e-08 -1.75592936e-02] [[ 2.99386348e+01 -1.24442928e+02 9.67254672e+00 -1.58968536e+02 -5.91960010e+02 -2.48738183e+00] [ -1.24442928e+02 5.62972166e+03 -5.00079203e+02 -7.13057475e+02 -7.82440674e+03 -1.05126925e+01] [ 9.67254672e+00 -5.00079203e+02 4.87472259e+01 3.37373299e+00 6.96960872e+02 7.69866589e-01] [ -1.58968536e+02 -7.13057475e+02 3.37373299e+00 6.82417837e+03 4.84485862e+03 3.21440021e+01] [ -5.91960010e+02 -7.82440674e+03 6.96960872e+02 4.84485862e+03 3.43753691e+04 9.37524459e+01] [ -2.48738183e+00 -1.05126925e+01 7.69866589e-01 3.21440021e+01 9.37524459e+01 5.23915258e+02]] >>> res_norm3.bse array([ 5.47162086, 75.03147114, 6.98192136, 82.60858536, 185.40595756, 22.88919522]) >>> print res_norm3.model.score(res_norm3.params) [ -4.90678076e-05 -6.71320777e-07 -2.46166110e-05 -1.13686838e-08 -4.83169060e-08 -9.37916411e-08] >>> print res_norm3.model.score(start_params) [ -4.56753924e-05 -6.50857146e-07 -2.31756303e-05 -1.70530257e-08 -4.43378667e-08 -1.75592936e-02] >>> mod_norm2.loglike(start_params/2.) -598.56178102781314 >>> print np.linalg.inv(-1*mod_norm2.hessian(res_norm3.params)) [[ 2.99386348e+01 -1.24442928e+02 9.67254672e+00 -1.58968536e+02 -5.91960010e+02 -2.48738183e+00] [ -1.24442928e+02 5.62972166e+03 -5.00079203e+02 -7.13057475e+02 -7.82440674e+03 -1.05126925e+01] [ 9.67254672e+00 -5.00079203e+02 4.87472259e+01 3.37373299e+00 6.96960872e+02 7.69866589e-01] [ -1.58968536e+02 -7.13057475e+02 3.37373299e+00 6.82417837e+03 4.84485862e+03 3.21440021e+01] [ -5.91960010e+02 -7.82440674e+03 6.96960872e+02 4.84485862e+03 3.43753691e+04 9.37524459e+01] [ -2.48738183e+00 -1.05126925e+01 7.69866589e-01 3.21440021e+01 9.37524459e+01 5.23915258e+02]] >>> print np.sqrt(np.diag(res_bfgs.cov_params())) [ 5.10032831 74.34988912 6.96522122 76.7091604 169.8117832 22.91695494] >>> print res_norm3.bse [ 5.47162086 75.03147114 6.98192136 82.60858536 185.40595756 22.88919522] >>> res_norm3.conf_int <bound method LikelihoodModelResults.conf_int of <statsmodels.model.LikelihoodModelResults object at 0x021317F0>> >>> res_norm3.conf_int() Traceback (most recent call last): File "<stdin>", line 1, in <module> File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\model.py", line 993, in conf_int lower = self.params - dist.ppf(1-alpha/2,self.model.df_resid) *\ AttributeError: 'MygMLE' object has no attribute 'df_resid' >>> res_norm3.params array([ -3.08181304, 234.34701361, -14.99684381, 27.94088692, -237.14649571, 274.6857294 ]) >>> res2.params array([ -3.08181404, 234.34702702, -14.99684418, 27.94090839, -237.1465136 ]) >>> >>> res_norm3.params - res2.params Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: shape mismatch: objects cannot be broadcast to a single shape >>> res_norm3.params[:-1] - res2.params array([ 9.96859735e-07, -1.34122981e-05, 3.72278400e-07, -2.14645839e-05, 1.78919019e-05]) >>> >>> res_norm3.bse[:-1] - res2.bse array([ -0.04309567, -5.33447922, -0.48741559, -0.31373822, -13.94570729]) >>> (res_norm3.bse[:-1] / res2.bse) - 1 array([-0.00781467, -0.06637735, -0.06525554, -0.00378352, -0.06995531]) >>> (res_norm3.bse[:-1] / res2.bse)*100. - 100 array([-0.7814667 , -6.6377355 , -6.52555369, -0.37835193, -6.99553089]) >>> np.sqrt(np.diag(np.linalg.inv(res_norm3.model.hessian(res_bfgs.params)))) array([ NaN, NaN, NaN, NaN, NaN, NaN]) >>> np.sqrt(np.diag(np.linalg.inv(-res_norm3.model.hessian(res_bfgs.params)))) array([ 5.10032831, 74.34988912, 6.96522122, 76.7091604 , 169.8117832 , 22.91695494]) >>> res_norm3.bse array([ 5.47162086, 75.03147114, 6.98192136, 82.60858536, 185.40595756, 22.88919522]) >>> res2.bse array([ 5.51471653, 80.36595035, 7.46933695, 82.92232357, 199.35166485]) >>> >>> bse_bfgs = np.sqrt(np.diag(np.linalg.inv(-res_norm3.model.hessian(res_bfgs.params)))) >>> (bse_bfgs[:-1] / res2.bse)*100. - 100 array([ -7.51422527, -7.4858335 , -6.74913633, -7.49275094, -14.8179759 ]) >>> hb=-approx_hess(res_bfgs.params, mod_norm2.loglike, epsilon=-1e-4) >>> hf=-approx_hess(res_bfgs.params, mod_norm2.loglike, epsilon=1e-4) >>> hh = (hf+hb)/2. >>> bse_bfgs = np.sqrt(np.diag(np.linalg.inv(-hh))) >>> bse_bfgs array([ NaN, NaN, NaN, NaN, NaN, NaN]) >>> bse_bfgs = np.sqrt(np.diag(np.linalg.inv(hh))) >>> np.diag(hh) array([ 9.81680159e-01, 1.39920076e-02, 4.98101826e-01, 3.60955710e-04, 9.57811608e-04, 1.90709670e-03]) >>> np.diag(np.inv(hh)) Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'module' object has no attribute 'inv' >>> np.diag(np.linalg.inv(hh)) array([ 2.64875153e+01, 5.91578496e+03, 5.13279911e+01, 6.11533345e+03, 3.33775960e+04, 5.24357391e+02]) >>> res2.bse**2 array([ 3.04120984e+01, 6.45868598e+03, 5.57909945e+01, 6.87611175e+03, 3.97410863e+04]) >>> bse_bfgs array([ 5.14660231, 76.91414015, 7.1643556 , 78.20059751, 182.69536402, 22.89885131]) >>> bse_bfgs - res_norm3.bse array([-0.32501855, 1.88266901, 0.18243424, -4.40798785, -2.71059354, 0.00965609]) >>> (bse_bfgs[:-1] / res2.bse)*100. - 100 array([-6.67512508, -4.29511526, -4.0831115 , -5.69415552, -8.35523538]) >>> (res_norm3.bse[:-1] / res2.bse)*100. - 100 array([-0.7814667 , -6.6377355 , -6.52555369, -0.37835193, -6.99553089]) >>> (bse_bfgs / res_norm3.bse)*100. - 100 array([-5.94007812, 2.50917247, 2.61295176, -5.33599242, -1.46197759, 0.04218624]) >>> bse_bfgs array([ 5.14660231, 76.91414015, 7.1643556 , 78.20059751, 182.69536402, 22.89885131]) >>> res_norm3.bse array([ 5.47162086, 75.03147114, 6.98192136, 82.60858536, 185.40595756, 22.88919522]) >>> res2.bse array([ 5.51471653, 80.36595035, 7.46933695, 82.92232357, 199.35166485]) >>> dir(res_bfgs) ['__class__', '__delattr__', '__dict__', '__doc__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__str__', '__weakref__', 'bse', 'conf_int', 'cov_params', 'f_test', 'initialize', 'llf', 'mle_retvals', 'mle_settings', 'model', 'normalized_cov_params', 'params', 'scale', 't', 't_test'] >>> res_bfgs.scale 1.0 >>> res2.scale 81083.015420213851 >>> res2.mse_resid 81083.015420213851 >>> print np.sqrt(np.diag(np.linalg.inv(-1*mod_norm2.hessian(res_bfgs.params)))) [ 5.10032831 74.34988912 6.96522122 76.7091604 169.8117832 22.91695494] >>> print np.sqrt(np.diag(np.linalg.inv(-1*res_bfgs.model.hessian(res_bfgs.params)))) [ 5.10032831 74.34988912 6.96522122 76.7091604 169.8117832 22.91695494] Is scale a misnomer, actually scale squared, i.e. variance of error term ? ''' print(res_norm3.model.score_obs(res_norm3.params).shape) jac = res_norm3.model.score_obs(res_norm3.params) print(np.sqrt(np.diag(np.dot(jac.T, jac)))/start_params) jac2 = res_norm3.model.score_obs(res_norm3.params, centered=True) print(np.sqrt(np.diag(np.linalg.inv(np.dot(jac.T, jac))))) print(res_norm3.bse) print(res2.bse)
bsd-3-clause
oew1v07/scikit-image
doc/examples/plot_canny.py
11
1633
""" =================== Canny edge detector =================== The Canny filter is a multi-stage edge detector. It uses a filter based on the derivative of a Gaussian in order to compute the intensity of the gradients.The Gaussian reduces the effect of noise present in the image. Then, potential edges are thinned down to 1-pixel curves by removing non-maximum pixels of the gradient magnitude. Finally, edge pixels are kept or removed using hysteresis thresholding on the gradient magnitude. The Canny has three adjustable parameters: the width of the Gaussian (the noisier the image, the greater the width), and the low and high threshold for the hysteresis thresholding. """ import numpy as np import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import feature # Generate noisy image of a square im = np.zeros((128, 128)) im[32:-32, 32:-32] = 1 im = ndi.rotate(im, 15, mode='constant') im = ndi.gaussian_filter(im, 4) im += 0.2 * np.random.random(im.shape) # Compute the Canny filter for two values of sigma edges1 = feature.canny(im) edges2 = feature.canny(im, sigma=3) # display results fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(8, 3)) ax1.imshow(im, cmap=plt.cm.jet) ax1.axis('off') ax1.set_title('noisy image', fontsize=20) ax2.imshow(edges1, cmap=plt.cm.gray) ax2.axis('off') ax2.set_title('Canny filter, $\sigma=1$', fontsize=20) ax3.imshow(edges2, cmap=plt.cm.gray) ax3.axis('off') ax3.set_title('Canny filter, $\sigma=3$', fontsize=20) fig.subplots_adjust(wspace=0.02, hspace=0.02, top=0.9, bottom=0.02, left=0.02, right=0.98) plt.show()
bsd-3-clause
chrisburr/scikit-learn
sklearn/model_selection/tests/test_search.py
20
30855
"""Test the search module""" from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.fixes import sp_version from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import LeaveOneLabelOut from sklearn.model_selection import LeavePLabelOut from sklearn.model_selection import LabelKFold from sklearn.model_selection import LabelShuffleSplit from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ParameterGrid from sklearn.model_selection import ParameterSampler # TODO Import from sklearn.exceptions once merged. from sklearn.base import ChangedBehaviorWarning from sklearn.model_selection._validation import FitFailedWarning from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the parameter search algorithms""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_warns(ChangedBehaviorWarning, search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_warns(ChangedBehaviorWarning, search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_grid_search_labels(): # Check if ValueError (when labels is None) propagates to GridSearchCV # And also check if labels is correctly passed to the cv object rng = np.random.RandomState(0) X, y = make_classification(n_samples=15, n_classes=2, random_state=0) labels = rng.randint(0, 3, 15) clf = LinearSVC(random_state=0) grid = {'C': [1]} label_cvs = [LeaveOneLabelOut(), LeavePLabelOut(2), LabelKFold(), LabelShuffleSplit()] for cv in label_cvs: gs = GridSearchCV(clf, grid, cv=cv) assert_raise_message(ValueError, "The labels parameter should not be None", gs.fit, X, y) gs.fit(X, y, labels) non_label_cvs = [StratifiedKFold(), StratifiedShuffleSplit()] for cv in non_label_cvs: print(cv) gs = GridSearchCV(clf, grid, cv=cv) # Should not raise an error gs.fit(X, y) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) @ignore_warnings def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) # test that repeated calls yield identical parameters param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=3, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) if sp_version >= (0, 16): param_distributions = {"C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv.split(X, y): clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(return_indicator=True, random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7)
bsd-3-clause
CallaJun/hackprince
indico/matplotlib/backends/backend_qt4agg.py
11
3003
""" Render to qt from agg """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os # not used import sys import ctypes import warnings import matplotlib from matplotlib.figure import Figure from .backend_qt5agg import NavigationToolbar2QTAgg from .backend_qt5agg import FigureCanvasQTAggBase from .backend_agg import FigureCanvasAgg from .backend_qt4 import QtCore from .backend_qt4 import FigureManagerQT from .backend_qt4 import FigureCanvasQT from .backend_qt4 import NavigationToolbar2QT ##### not used from .backend_qt4 import show from .backend_qt4 import draw_if_interactive from .backend_qt4 import backend_version ###### from matplotlib.cbook import mplDeprecation DEBUG = False _decref = ctypes.pythonapi.Py_DecRef _decref.argtypes = [ctypes.py_object] _decref.restype = None def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if DEBUG: print('backend_qt4agg.new_figure_manager') FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasQTAgg(figure) return FigureManagerQT(canvas, num) class FigureCanvasQTAgg(FigureCanvasQTAggBase, FigureCanvasQT, FigureCanvasAgg): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance """ def __init__(self, figure): if DEBUG: print('FigureCanvasQtAgg: ', figure) FigureCanvasQT.__init__(self, figure) FigureCanvasAgg.__init__(self, figure) self._drawRect = None self.blitbox = None self.setAttribute(QtCore.Qt.WA_OpaquePaintEvent) # it has been reported that Qt is semi-broken in a windows # environment. If `self.draw()` uses `update` to trigger a # system-level window repaint (as is explicitly advised in the # Qt documentation) the figure responds very slowly to mouse # input. The work around is to directly use `repaint` # (against the advice of the Qt documentation). The # difference between `update` and repaint is that `update` # schedules a `repaint` for the next time the system is idle, # where as `repaint` repaints the window immediately. The # risk is if `self.draw` gets called with in another `repaint` # method there will be an infinite recursion. Thus, we only # expose windows users to this risk. if sys.platform.startswith('win'): self._priv_update = self.repaint else: self._priv_update = self.update FigureCanvas = FigureCanvasQTAgg FigureManager = FigureManagerQT
lgpl-3.0
OpenDA-Association/OpenDA
course/exercise_double_pendulum_part2/all_runs.py
1
3168
#! /usr/bin/python # -*- coding: utf-8 -*- """ Script that will produce the figures of exercise 2 @author: verlaanm """ #load numpy and matplotlib if needed import numpy as np import matplotlib.pyplot as plt import simulation_truth_results as truth import simulation_initial_results as initial import simulation_enkf_results as enkf plt.figure() plt.clf() plt.subplot(2,1,1) plt.plot(initial.model_time,initial.x[:,0],'g') plt.plot(truth.model_time,truth.x[:,0],'k') plt.plot(enkf.analysis_time,enkf.x_f_central[:,0],'b'); plt.legend(('initial','truth','EnKF')) plt.ylabel(r'$\theta_1$') plt.subplot(2,1,2) plt.plot(initial.model_time,initial.x[:,1],'g') plt.plot(truth.model_time,truth.x[:,1],'k') plt.plot(enkf.analysis_time,enkf.x_f_central[:,1],'b'); plt.ylabel(r'$\theta_2$') plt.xlabel(r'$t$') plt.savefig('fig_series_enkf.png') plt.show() import simulation_enkf_results_seed31415 as enkf2 plt.figure() plt.clf() plt.subplot(2,1,1) plt.plot(initial.model_time,initial.x[:,0],'g') plt.plot(truth.model_time,truth.x[:,0],'k') plt.plot(enkf.analysis_time,enkf.x_f_central[:,0],'b'); plt.plot(enkf2.analysis_time,enkf2.x_f_central[:,0],'r'); plt.legend(('initial','truth','EnKF seed=21','EnKF seed=31415')) plt.ylabel(r'$\theta_1$') plt.subplot(2,1,2) plt.plot(initial.model_time,initial.x[:,1],'g') plt.plot(truth.model_time,truth.x[:,1],'k') plt.plot(enkf.analysis_time,enkf.x_f_central[:,1],'b'); plt.plot(enkf2.analysis_time,enkf2.x_f_central[:,1],'r'); plt.ylabel(r'$\theta_2$') plt.xlabel(r'$t$') plt.savefig('fig_series_enkf_seed31415.png') plt.show() import simulation_enkf_results_stdobs2 as enkf2 plt.figure() plt.clf() plt.subplot(2,1,1) plt.plot(initial.model_time,initial.x[:,0],'g') plt.plot(truth.model_time,truth.x[:,0],'k') plt.plot(enkf.analysis_time,enkf.x_f_central[:,0],'b'); plt.plot(enkf2.analysis_time,enkf2.x_f_central[:,0],'r'); plt.legend(('initial','truth','EnKF $\sigma_0=0.2$','EnKF $\sigma_o=2.0$')) plt.ylabel(r'$\theta_1$') plt.subplot(2,1,2) plt.plot(initial.model_time,initial.x[:,1],'g') plt.plot(truth.model_time,truth.x[:,1],'k') plt.plot(enkf.analysis_time,enkf.x_f_central[:,1],'b'); plt.plot(enkf2.analysis_time,enkf2.x_f_central[:,1],'r'); plt.ylabel(r'$\theta_2$') plt.xlabel(r'$t$') plt.savefig('fig_series_enkf_std2.png') plt.show() import simulation_enkf_results_ens6 as enkf3 import simulation_enkf_results_ens10 as enkf4 plt.figure() plt.clf() plt.subplot(2,1,1) plt.plot(initial.model_time,initial.x[:,0],'g') plt.plot(truth.model_time,truth.x[:,0],'k') plt.plot(enkf.analysis_time,enkf.x_f_central[:,0],'b'); plt.plot(enkf3.analysis_time,enkf3.x_f_central[:,0],'r'); plt.plot(enkf4.analysis_time,enkf4.x_f_central[:,0],'m'); plt.legend(('initial','truth','EnKF n=50','EnKF n=6','Enkf n=10')) plt.ylabel(r'$\theta_1$') plt.subplot(2,1,2) plt.plot(initial.model_time,initial.x[:,1],'g') plt.plot(truth.model_time,truth.x[:,1],'k') plt.plot(enkf.analysis_time,enkf.x_f_central[:,1],'b'); plt.plot(enkf3.analysis_time,enkf3.x_f_central[:,1],'r'); plt.plot(enkf4.analysis_time,enkf4.x_f_central[:,1],'m'); plt.ylabel(r'$\theta_2$') plt.xlabel(r'$t$') plt.savefig('fig_series_enkf_ens_size.png') plt.show()
lgpl-3.0
NICTA/linearizedGP
experiments/uspsbclass.py
1
4452
#! /usr/bin/env python # linearizedGP -- Implementation of extended and unscented Gaussian processes. # Copyright (C) 2014 National ICT Australia (NICTA) # # This file is part of linearizedGP. # # linearizedGP is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) any # later version. # # linearizedGP is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with linearizedGP. If not, see <http://www.gnu.org/licenses/>. """ Run the USPS handwritten digits experiment from our NIPS 2014 paper. Also see uspsbclass.m for the octave/matlab algorithms. You'll need scikit learn for this. Author: Daniel Steinberg ([email protected]) Institute: NICTA Date: 4 Sep 2014 """ import numpy as np from linearizedGP import unscentedGP from linearizedGP import extendedGP from linearizedGP import kernels import scipy.io as sio from sklearn.cross_validation import StratifiedKFold from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression # Settings -------------------------------------------------------------------- # Data location datapath = "data/USPS_3_5_data.mat" # Classification properties kbounds = (0.1, 0.1) kinit = (1.0, 1.0) nbound = 1e-7 ninit = 1e-7 # Sigmoid functions lgsig = lambda f: 1.0 / (1 + np.exp(-f)) dlgsig = lambda f: lgsig(f) * lgsig(-f) # kernel functions kfunc = kernels.kern_selog # Data ------------------------------------------------------------------------ USPSdata = sio.loadmat(datapath, squeeze_me=True) x = USPSdata['x'].T xs = USPSdata['xx'].T y = USPSdata['y'] ys = USPSdata['yy'] y[y == -1] = 0 ys[ys == -1] = 0 # Train the non-GP classifiers ------------------------------------------------ print("\nLearning the support vector classifier") C_range = 10.0 ** np.arange(-2, 9) gamma_range = 10.0 ** np.arange(-5, 4) param_grid = dict(gamma=gamma_range, C=C_range) cv = StratifiedKFold(y=y, n_folds=3) grid = GridSearchCV(SVC(kernel='rbf', probability=True), param_grid=param_grid, cv=cv, verbose=1) grid.fit(x.T, y) svc = grid.best_estimator_ print("\nLearning the logistic regression classifier") lreg = LogisticRegression(penalty='l2') lreg.fit(x.T, y) # Train the GPs --------------------------------------------------------------- # Statistical linearisation print("\nLearning statistically linearised classifier") sgp = unscentedGP.unscentedGP(nlfunc=lgsig, kfunc=kfunc) sgp.learnLB(np.log(kbounds), ynoise=nbound) lml = sgp.learn(x, y, np.log(kinit), ynoise=ninit, verbose=True) print("Log marginal likelihood = {0}".format(lml)) print("Hyper-parameters = {0}, noise = {1}".format(sgp.kparams, sgp.ynoise)) # Taylor linearisation print("\nLearning Taylor series linearised classifier") tgp = extendedGP.extendedGP(nlfunc=lgsig, dnlfunc=dlgsig, kfunc=kfunc) tgp.learnLB(np.log(kbounds), ynoise=nbound) lml = tgp.learn(x, y, np.log(kinit), ynoise=ninit, verbose=True) print("Log marginal likelihood = {0}".format(lml)) print("Hyper-parameters = {0}, noise = {1}".format(tgp.kparams, tgp.ynoise)) # Prediction ------------------------------------------------------------------ def bernloglike(pys): return -(ys * np.log(pys) + (1 - ys) * np.log(1 - pys)).mean() def errrate(pys): return float((ys != (pys >= 0.5)).sum()) / ys.shape[0] print("\n\nResults: \n----------------") # Statlin pys_s, epys_s, Ems_s, Vms_s = sgp.quadpredict(xs) print("Stat lin: av nll = {:.6f}, Error rate = {:.6f}" .format(bernloglike(pys_s), errrate(pys_s))) # Taylorlin pys_t, epys_t, Ems_t, Vms_t = tgp.predict(xs) print("Tayl lin: av nll = {:.6f}, Error rate = {:.6f}" .format(bernloglike(pys_t), errrate(pys_t))) # SVM pys_v = svc.predict_proba(xs.T)[:, 1] print("SVM: av nll = {:.6f}, Error rate = {:.6f}" .format(bernloglike(pys_v), errrate(pys_v))) # Logistic Regression pys_r = lreg.predict_proba(xs.T)[:, 1] print("Logistic: av nll = {:.6f}, error rate = {:.6f}" .format(bernloglike(pys_r), errrate(pys_r)))
gpl-3.0
macks22/scikit-learn
benchmarks/bench_plot_svd.py
325
2899
"""Benchmarks of Singular Value Decomposition (Exact and Approximate) The data is mostly low rank but is a fat infinite tail. """ import gc from time import time import numpy as np from collections import defaultdict from scipy.linalg import svd from sklearn.utils.extmath import randomized_svd from sklearn.datasets.samples_generator import make_low_rank_matrix def compute_bench(samples_range, features_range, n_iter=3, rank=50): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') X = make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2) gc.collect() print("benchmarking scipy svd: ") tstart = time() svd(X, full_matrices=False) results['scipy svd'].append(time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=0") tstart = time() randomized_svd(X, rank, n_iter=0) results['scikit-learn randomized_svd (n_iter=0)'].append( time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=%d " % n_iter) tstart = time() randomized_svd(X, rank, n_iter=n_iter) results['scikit-learn randomized_svd (n_iter=%d)' % n_iter].append(time() - tstart) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(2, 1000, 4).astype(np.int) features_range = np.linspace(2, 1000, 4).astype(np.int) results = compute_bench(samples_range, features_range) label = 'scikit-learn singular value decomposition benchmark results' fig = plt.figure(label) ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbg', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.legend() plt.show()
bsd-3-clause
exeex/midi-visualization
roll.py
1
9636
import mido import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.colors import colorConverter # inherit the origin mido class class MidiFile(mido.MidiFile): def __init__(self, filename): mido.MidiFile.__init__(self, filename) self.sr = 10 self.meta = {} self.events = self.get_events() def get_events(self): mid = self print(mid) # There is > 16 channel in midi.tracks. However there is only 16 channel related to "music" events. # We store music events of 16 channel in the list "events" with form [[ch1],[ch2]....[ch16]] # Lyrics and meta data used a extra channel which is not include in "events" events = [[] for x in range(16)] # Iterate all event in the midi and extract to 16 channel form for track in mid.tracks: for msg in track: try: channel = msg.channel events[channel].append(msg) except AttributeError: try: if type(msg) != type(mido.UnknownMetaMessage): self.meta[msg.type] = msg.dict() else: pass except: print("error",type(msg)) return events def get_roll(self): events = self.get_events() # Identify events, then translate to piano roll # choose a sample ratio(sr) to down-sample through time axis sr = self.sr # compute total length in tick unit length = self.get_total_ticks() # allocate memory to numpy array roll = np.zeros((16, 128, length // sr), dtype="int8") # use a register array to save the state(no/off) for each key note_register = [int(-1) for x in range(128)] # use a register array to save the state(program_change) for each channel timbre_register = [1 for x in range(16)] for idx, channel in enumerate(events): time_counter = 0 volume = 100 # Volume would change by control change event (cc) cc7 & cc11 # Volume 0-100 is mapped to 0-127 print("channel", idx, "start") for msg in channel: if msg.type == "control_change": if msg.control == 7: volume = msg.value # directly assign volume if msg.control == 11: volume = volume * msg.value // 127 # change volume by percentage # print("cc", msg.control, msg.value, "duration", msg.time) if msg.type == "program_change": timbre_register[idx] = msg.program print("channel", idx, "pc", msg.program, "time", time_counter, "duration", msg.time) if msg.type == "note_on": print("on ", msg.note, "time", time_counter, "duration", msg.time, "velocity", msg.velocity) note_on_start_time = time_counter // sr note_on_end_time = (time_counter + msg.time) // sr intensity = volume * msg.velocity // 127 # When a note_on event *ends* the note start to be play # Record end time of note_on event if there is no value in register # When note_off event happens, we fill in the color if note_register[msg.note] == -1: note_register[msg.note] = (note_on_end_time,intensity) else: # When note_on event happens again, we also fill in the color old_end_time = note_register[msg.note][0] old_intensity = note_register[msg.note][1] roll[idx, msg.note, old_end_time: note_on_end_time] = old_intensity note_register[msg.note] = (note_on_end_time,intensity) if msg.type == "note_off": print("off", msg.note, "time", time_counter, "duration", msg.time, "velocity", msg.velocity) note_off_start_time = time_counter // sr note_off_end_time = (time_counter + msg.time) // sr note_on_end_time = note_register[msg.note][0] intensity = note_register[msg.note][1] # fill in color roll[idx, msg.note, note_on_end_time:note_off_end_time] = intensity note_register[msg.note] = -1 # reinitialize register time_counter += msg.time # TODO : velocity -> done, but not verified # TODO: Pitch wheel # TODO: Channel - > Program Changed / Timbre catagory # TODO: real time scale of roll # if there is a note not closed at the end of a channel, close it for key, data in enumerate(note_register): if data != -1: note_on_end_time = data[0] intensity = data[1] # print(key, note_on_end_time) note_off_start_time = time_counter // sr roll[idx, key, note_on_end_time:] = intensity note_register[idx] = -1 return roll def get_roll_image(self): roll = self.get_roll() plt.ioff() K = 16 transparent = colorConverter.to_rgba('black') colors = [mpl.colors.to_rgba(mpl.colors.hsv_to_rgb((i / K, 1, 1)), alpha=1) for i in range(K)] cmaps = [mpl.colors.LinearSegmentedColormap.from_list('my_cmap', [transparent, colors[i]], 128) for i in range(K)] for i in range(K): cmaps[i]._init() # create the _lut array, with rgba values # create your alpha array and fill the colormap with them. # here it is progressive, but you can create whathever you want alphas = np.linspace(0, 1, cmaps[i].N + 3) cmaps[i]._lut[:, -1] = alphas fig = plt.figure(figsize=(4, 3)) a1 = fig.add_subplot(111) a1.axis("equal") a1.set_facecolor("black") array = [] for i in range(K): try: img = a1.imshow(roll[i], interpolation='nearest', cmap=cmaps[i], aspect='auto') array.append(img.get_array()) except IndexError: pass return array def draw_roll(self): roll = self.get_roll() # build and set fig obj plt.ioff() fig = plt.figure(figsize=(4, 3)) a1 = fig.add_subplot(111) a1.axis("equal") a1.set_facecolor("black") # change unit of time axis from tick to second tick = self.get_total_ticks() second = mido.tick2second(tick, self.ticks_per_beat, self.get_tempo()) print(second) if second > 10: x_label_period_sec = second // 10 else: x_label_period_sec = second / 10 # ms print(x_label_period_sec) x_label_interval = mido.second2tick(x_label_period_sec, self.ticks_per_beat, self.get_tempo()) / self.sr print(x_label_interval) plt.xticks([int(x * x_label_interval) for x in range(20)], [round(x * x_label_period_sec, 2) for x in range(20)]) # change scale and label of y axis plt.yticks([y*16 for y in range(8)], [y*16 for y in range(8)]) # build colors channel_nb = 16 transparent = colorConverter.to_rgba('black') colors = [mpl.colors.to_rgba(mpl.colors.hsv_to_rgb((i / channel_nb, 1, 1)), alpha=1) for i in range(channel_nb)] cmaps = [mpl.colors.LinearSegmentedColormap.from_list('my_cmap', [transparent, colors[i]], 128) for i in range(channel_nb)] # build color maps for i in range(channel_nb): cmaps[i]._init() # create your alpha array and fill the colormap with them. alphas = np.linspace(0, 1, cmaps[i].N + 3) # create the _lut array, with rgba values cmaps[i]._lut[:, -1] = alphas # draw piano roll and stack image on a1 for i in range(channel_nb): try: a1.imshow(roll[i], origin="lower", interpolation='nearest', cmap=cmaps[i], aspect='auto') except IndexError: pass # draw color bar colors = [mpl.colors.hsv_to_rgb((i / channel_nb, 1, 1)) for i in range(channel_nb)] cmap = mpl.colors.LinearSegmentedColormap.from_list('my_cmap', colors, 16) a2 = fig.add_axes([0.05, 0.80, 0.9, 0.15]) cbar = mpl.colorbar.ColorbarBase(a2, cmap=cmap, orientation='horizontal', ticks=list(range(16))) # show piano roll plt.draw() plt.ion() plt.show(block=True) def get_tempo(self): try: return self.meta["set_tempo"]["tempo"] except: return 500000 def get_total_ticks(self): max_ticks = 0 for channel in range(16): ticks = sum(msg.time for msg in self.events[channel]) if ticks > max_ticks: max_ticks = ticks return max_ticks if __name__ == "__main__": mid = MidiFile("test_file/1.mid") # get the list of all events # events = mid.get_events() # get the np array of piano roll image roll = mid.get_roll() # draw piano roll by pyplot mid.draw_roll()
mit
lunyang/Data-Science-45min-Intros
choosing-k-in-kmeans/3d-example.py
25
2925
#!/usr/bin/env python # -*- coding: UTF-8 -*- __author__="Josh Montague" __license__="MIT License" """ This script is designed to run inline (%run 3d-example.py) in the corresponding IPython notebook. It generates a 3d scatter plot using scikit-learn data generation and with a number of samples and clusters determined by the variables near the top. """ import argparse import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.datasets import make_blobs import seaborn as sns from gap_stats import gap_statistics from gap_stats import plot_gap_statistics def make_example_plot(args): """ Create artificial data (blobs) and color them according to the appropriate blob center. """ # read args samples = args.samples clusters = args.clusters # create some data X, y = make_blobs(n_samples=samples, centers=clusters, n_features=3, # increase variance for illustration cluster_std=1.5, # fix random_state if you believe in determinism #random_state=42 ) # seaborn display settings sns.set(style='whitegrid', palette=sns.color_palette("Set2", clusters)) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for i in range(clusters): # for each center, add data to the figure w/ appropriate label ax.plot(X[y==i,0], X[y==i,1], X[y==i,2], 'o', alpha=0.6, label='cluster {}'.format(i) ) ax.set_title('{} labeled clusters (ground truth)'.format(clusters)) ax.legend(loc='upper left') # seaborn settings - no, really set these things this time, please sns.set(style='whitegrid', palette=sns.color_palette("Set2", clusters)) #plt.show() # potentially return the data for later use data = None if args.gap: data = (X, y) return data if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-s","--samples" , dest="samples" , type=int , default=100 ) parser.add_argument("-c","--clusters" , dest="clusters" , type=int , default=5 ) parser.add_argument("-g","--gap" , dest="gap" , type=bool , default=False ) args = parser.parse_args() data = make_example_plot(args) if args.gap: # i just really prefer the dark theme sns.set(style='darkgrid', palette='deep') # unpack X, y = data # run the gap statistic algorithm gaps, errs, difs = gap_statistics(X, ks=range(1, args.clusters+5)) # plot (intended for %matplotlib inline) plot_gap_statistics(gaps, errs, difs)
unlicense
fzalkow/scikit-learn
sklearn/datasets/tests/test_lfw.py
230
7880
"""This test for the LFW require medium-size data dowloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_people_deprecation(): msg = ("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_people, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False) @raises(IOError) def test_load_empty_lfw_pairs(): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_pairs_deprecation(): msg = ("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_pairs, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
almarklein/bokeh
bokeh/tests/test_sources.py
1
3183
import unittest from unittest import skipIf import warnings try: import pandas as pd is_pandas = True except ImportError as e: is_pandas = False from bokeh.models.sources import DataSource, ColumnDataSource, ServerDataSource class TestColumnDataSourcs(unittest.TestCase): def test_basic(self): ds = ColumnDataSource() self.assertTrue(isinstance(ds, DataSource)) def test_init_dict_arg(self): data = dict(a=[1], b=[2]) ds = ColumnDataSource(data) self.assertEquals(ds.data, data) self.assertEquals(set(ds.column_names), set(data.keys())) def test_init_dict_data_kwarg(self): data = dict(a=[1], b=[2]) ds = ColumnDataSource(data=data) self.assertEquals(ds.data, data) self.assertEquals(set(ds.column_names), set(data.keys())) @skipIf(not is_pandas, "pandas not installed") def test_init_pandas_arg(self): data = dict(a=[1, 2], b=[2, 3]) df = pd.DataFrame(data) ds = ColumnDataSource(df) self.assertTrue(set(df.columns).issubset(set(ds.column_names))) for key in data.keys(): self.assertEquals(list(df[key]), data[key]) self.assertEqual(set(ds.column_names) - set(df.columns), set(["index"])) @skipIf(not is_pandas, "pandas not installed") def test_init_pandas_data_kwarg(self): data = dict(a=[1, 2], b=[2, 3]) df = pd.DataFrame(data) ds = ColumnDataSource(data=df) self.assertTrue(set(df.columns).issubset(set(ds.column_names))) for key in data.keys(): self.assertEquals(list(df[key]), data[key]) self.assertEqual(set(ds.column_names) - set(df.columns), set(["index"])) def test_add_with_name(self): ds = ColumnDataSource() name = ds.add([1,2,3], name="foo") self.assertEquals(name, "foo") name = ds.add([4,5,6], name="bar") self.assertEquals(name, "bar") def test_add_without_name(self): ds = ColumnDataSource() name = ds.add([1,2,3]) self.assertEquals(name, "Series 0") name = ds.add([4,5,6]) self.assertEquals(name, "Series 1") def test_add_with_and_without_name(self): ds = ColumnDataSource() name = ds.add([1,2,3], "foo") self.assertEquals(name, "foo") name = ds.add([4,5,6]) self.assertEquals(name, "Series 1") def test_remove_exists(self): ds = ColumnDataSource() name = ds.add([1,2,3], "foo") ds.remove("foo") self.assertEquals(ds.column_names, []) def test_remove_exists(self): with warnings.catch_warnings(record=True) as w: ds = ColumnDataSource() ds.remove("foo") self.assertEquals(ds.column_names, []) self.assertEquals(len(w), 1) self.assertEquals(w[0].category, UserWarning) self.assertEquals(str(w[0].message), "Unable to find column 'foo' in data source") class TestServerDataSourcs(unittest.TestCase): def test_basic(self): ds = ServerDataSource() self.assertTrue(isinstance(ds, DataSource)) if __name__ == "__main__": unittest.main()
bsd-3-clause
sandeepgupta2k4/tensorflow
tensorflow/examples/tutorials/word2vec/word2vec_basic.py
28
9485
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Basic word2vec example.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import math import os import random import zipfile import numpy as np from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf # Step 1: Download the data. url = 'http://mattmahoney.net/dc/' def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" if not os.path.exists(filename): filename, _ = urllib.request.urlretrieve(url + filename, filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print('Found and verified', filename) else: print(statinfo.st_size) raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename filename = maybe_download('text8.zip', 31344016) # Read the data into a list of strings. def read_data(filename): """Extract the first file enclosed in a zip file as a list of words.""" with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return data vocabulary = read_data(filename) print('Data size', len(vocabulary)) # Step 2: Build the dictionary and replace rare words with UNK token. vocabulary_size = 50000 def build_dataset(words, n_words): """Process raw inputs into a dataset.""" count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(n_words - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reversed_dictionary data, count, dictionary, reverse_dictionary = build_dataset(vocabulary, vocabulary_size) del vocabulary # Hint to reduce memory. print('Most common words (+UNK)', count[:5]) print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]]) data_index = 0 # Step 3: Function to generate a training batch for the skip-gram model. def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) # Backtrack a little bit to avoid skipping words in the end of a batch data_index = (data_index + len(data) - span) % len(data) return batch, labels batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0], reverse_dictionary[labels[i, 0]]) # Step 4: Build and train a skip-gram model. batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. # We pick a random validation set to sample nearest neighbors. Here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.random.choice(valid_window, valid_size, replace=False) num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data. train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device('/cpu:0'): # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # Construct the SGD optimizer using a learning rate of 1.0. optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer. init = tf.global_variables_initializer() # Step 5: Begin training. num_steps = 100001 with tf.Session(graph=graph) as session: # We must initialize all variables before we use them. init.run() print('Initialized') average_loss = 0 for step in xrange(num_steps): batch_inputs, batch_labels = generate_batch( batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += loss_val if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. print('Average loss at step ', step, ': ', average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = 'Nearest to %s:' % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = '%s %s,' % (log_str, close_word) print(log_str) final_embeddings = normalized_embeddings.eval() # Step 6: Visualize the embeddings. def plot_with_labels(low_dim_embs, labels, filename='tsne.png'): assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings' plt.figure(figsize=(18, 18)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.savefig(filename) try: # pylint: disable=g-import-not-at-top from sklearn.manifold import TSNE import matplotlib.pyplot as plt tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) plot_only = 500 low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels) except ImportError: print('Please install sklearn, matplotlib, and scipy to show embeddings.')
apache-2.0
jmmease/pandas
asv_bench/benchmarks/io_sql.py
7
4120
import sqlalchemy from .pandas_vb_common import * import sqlite3 from sqlalchemy import create_engine #------------------------------------------------------------------------------- # to_sql class WriteSQL(object): goal_time = 0.2 def setup(self): self.engine = create_engine('sqlite:///:memory:') self.con = sqlite3.connect(':memory:') self.index = tm.makeStringIndex(10000) self.df = DataFrame({'float1': randn(10000), 'float2': randn(10000), 'string1': (['foo'] * 10000), 'bool1': ([True] * 10000), 'int1': np.random.randint(0, 100000, size=10000), }, index=self.index) def time_fallback(self): self.df.to_sql('test1', self.con, if_exists='replace') def time_sqlalchemy(self): self.df.to_sql('test1', self.engine, if_exists='replace') #------------------------------------------------------------------------------- # read_sql class ReadSQL(object): goal_time = 0.2 def setup(self): self.engine = create_engine('sqlite:///:memory:') self.con = sqlite3.connect(':memory:') self.index = tm.makeStringIndex(10000) self.df = DataFrame({'float1': randn(10000), 'float2': randn(10000), 'string1': (['foo'] * 10000), 'bool1': ([True] * 10000), 'int1': np.random.randint(0, 100000, size=10000), }, index=self.index) self.df.to_sql('test2', self.engine, if_exists='replace') self.df.to_sql('test2', self.con, if_exists='replace') def time_read_query_fallback(self): read_sql_query('SELECT * FROM test2', self.con) def time_read_query_sqlalchemy(self): read_sql_query('SELECT * FROM test2', self.engine) def time_read_table_sqlalchemy(self): read_sql_table('test2', self.engine) #------------------------------------------------------------------------------- # type specific write class WriteSQLTypes(object): goal_time = 0.2 def setup(self): self.engine = create_engine('sqlite:///:memory:') self.con = sqlite3.connect(':memory:') self.df = DataFrame({'float': randn(10000), 'string': (['foo'] * 10000), 'bool': ([True] * 10000), 'datetime': date_range('2000-01-01', periods=10000, freq='s'), }) self.df.loc[1000:3000, 'float'] = np.nan def time_string_fallback(self): self.df[['string']].to_sql('test_string', self.con, if_exists='replace') def time_string_sqlalchemy(self): self.df[['string']].to_sql('test_string', self.engine, if_exists='replace') def time_float_fallback(self): self.df[['float']].to_sql('test_float', self.con, if_exists='replace') def time_float_sqlalchemy(self): self.df[['float']].to_sql('test_float', self.engine, if_exists='replace') def time_datetime_sqlalchemy(self): self.df[['datetime']].to_sql('test_datetime', self.engine, if_exists='replace') #------------------------------------------------------------------------------- # type specific read class ReadSQLTypes(object): goal_time = 0.2 def setup(self): self.engine = create_engine('sqlite:///:memory:') self.con = sqlite3.connect(':memory:') self.df = DataFrame({'float': randn(10000), 'datetime': date_range('2000-01-01', periods=10000, freq='s'), }) self.df['datetime_string'] = self.df['datetime'].map(str) self.df.to_sql('test_type', self.engine, if_exists='replace') self.df[['float', 'datetime_string']].to_sql('test_type', self.con, if_exists='replace') def time_datetime_read_and_parse_sqlalchemy(self): read_sql_table('test_type', self.engine, columns=['datetime_string'], parse_dates=['datetime_string']) def time_datetime_read_as_native_sqlalchemy(self): read_sql_table('test_type', self.engine, columns=['datetime']) def time_float_read_query_fallback(self): read_sql_query('SELECT float FROM test_type', self.con) def time_float_read_query_sqlalchemy(self): read_sql_query('SELECT float FROM test_type', self.engine) def time_float_read_table_sqlalchemy(self): read_sql_table('test_type', self.engine, columns=['float'])
bsd-3-clause
aminert/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
wanggang3333/scikit-learn
examples/cluster/plot_color_quantization.py
297
3443
# -*- coding: utf-8 -*- """ ================================== Color Quantization using K-Means ================================== Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality. In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file format, for example, uses such a palette. For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown. """ # Authors: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin from sklearn.datasets import load_sample_image from sklearn.utils import shuffle from time import time n_colors = 64 # Load the Summer Palace photo china = load_sample_image("china.jpg") # Convert to floats instead of the default 8 bits integer coding. Dividing by # 255 is important so that plt.imshow behaves works well on float data (need to # be in the range [0-1] china = np.array(china, dtype=np.float64) / 255 # Load Image and transform to a 2D numpy array. w, h, d = original_shape = tuple(china.shape) assert d == 3 image_array = np.reshape(china, (w * h, d)) print("Fitting model on a small sub-sample of the data") t0 = time() image_array_sample = shuffle(image_array, random_state=0)[:1000] kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample) print("done in %0.3fs." % (time() - t0)) # Get labels for all points print("Predicting color indices on the full image (k-means)") t0 = time() labels = kmeans.predict(image_array) print("done in %0.3fs." % (time() - t0)) codebook_random = shuffle(image_array, random_state=0)[:n_colors + 1] print("Predicting color indices on the full image (random)") t0 = time() labels_random = pairwise_distances_argmin(codebook_random, image_array, axis=0) print("done in %0.3fs." % (time() - t0)) def recreate_image(codebook, labels, w, h): """Recreate the (compressed) image from the code book & labels""" d = codebook.shape[1] image = np.zeros((w, h, d)) label_idx = 0 for i in range(w): for j in range(h): image[i][j] = codebook[labels[label_idx]] label_idx += 1 return image # Display all results, alongside original image plt.figure(1) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Original image (96,615 colors)') plt.imshow(china) plt.figure(2) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, K-Means)') plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h)) plt.figure(3) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, Random)') plt.imshow(recreate_image(codebook_random, labels_random, w, h)) plt.show()
bsd-3-clause
lyoshiwo/resume_job_matching
Step7_basal_classifier_with_parameter_search.py
1
13815
# encoding=utf8 from sklearn import cross_validation, grid_search import pandas as pd import os import time import util from matplotlib import pyplot as plt print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) tree_test = False xgb_test = False cnn_test = False rf_test = False lstm_test = False # max_depth=12 0.433092948718 # rn>200,rh=21 0.537 to 0.541; rh=21,rn=400; 0.542 CV_FLAG = 1 param = {} param['objective'] = 'multi:softmax' param['eta'] = 0.03 param['max_depth'] = 6 param['eval_metric'] = 'merror' param['silent'] = 1 param['min_child_weight'] = 10 param['subsample'] = 0.7 param['colsample_bytree'] = 0.2 param['nthread'] = 4 param['num_class'] = -1 def get_all_by_name(name): import numpy as np if os.path.exists(util.features_prefix + name + "_XY.pkl") is False: print name + 'file does not exist' exit() if os.path.exists(util.features_prefix + name + '_XXXYYY.pkl') is False: [train_X, train_Y] = pd.read_pickle(util.features_prefix + name + '_XY.pkl') X_train, X_test, y_train, y_test = cross_validation.train_test_split(train_X, train_Y, test_size=0.33, random_state=0) X_train, X_validate, y_train, y_validate = cross_validation.train_test_split(X_train, y_train, test_size=0.33, random_state=0) X_train = np.array(X_train) y_train = np.array(y_train) y_test = np.array(y_test) X_test = np.array(X_test) X_validate = np.array(X_validate) y_validate = np.array(y_validate) pd.to_pickle([X_train, X_validate, X_test, y_train, y_validate, y_test], util.features_prefix + name + '_XXXYYY.pkl') if os.path.exists(util.features_prefix + name + '_XXXYYY.pkl'): print name from sklearn.ensemble import RandomForestClassifier if rf_test is False: [train_X, train_Y] = pd.read_pickle(util.features_prefix + name + '_XY.pkl') [X_train, X_validate, X_test, y_train, y_validate, y_test] = pd.read_pickle( util.features_prefix + name + '_XXXYYY.pkl') x = np.concatenate([X_train, X_validate], axis=0) y = np.concatenate([y_train, y_validate], axis=0) print 'rf' n_estimator = range(100, 301, 100) max_depth = range(5, 26, 1) clf = RandomForestClassifier(n_jobs=4) parameters = {'n_estimators': n_estimator, 'max_depth': max_depth} grid_clf = grid_search.GridSearchCV(clf, parameters) grid_clf.fit(np.array(train_X), np.array(train_Y)) score = grid_clf.grid_scores_ l1 = [1 - x[1] for x in score if x[0]['n_estimators'] == n_estimator[0]] l2 = [1 - x[1] for x in score if x[0]['n_estimators'] == n_estimator[1]] l3 = [1 - x[1] for x in score if x[0]['n_estimators'] == n_estimator[2]] plt.plot(range(5, 26, 1), l1, 'b--') plt.plot(range(5, 26, 1), l2, 'r.--') plt.plot(range(5, 26, 1), l3, 'g') plt.legend((str(n_estimator[0]) + ' estimators', str(n_estimator[1]) + ' estimators', str(n_estimator[2]) + ' estimators'), loc=0, shadow=True) plt.xlabel('max depth of RandomForest') plt.ylabel('average error rate of 3-fold cross-validation') plt.grid(True) plt.show() exit() print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) if xgb_test is False: [train_X, train_Y] = pd.read_pickle(util.features_prefix + name + '_XY.pkl') print 'xg' import xgboost as xgb print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) set_y = set(train_Y) param["num_class"] = len(set_y) dtrain = xgb.DMatrix(train_X, label=train_Y) xgb.cv(param, dtrain, 4, nfold=3, show_progress=True) if cnn_test is False: [train_X, train_Y] = pd.read_pickle(util.features_prefix + name + '_XY.pkl') print 'cnn' import copy import numpy as np from sklearn.preprocessing import LabelEncoder from keras.utils import np_utils from keras.layers.convolutional import Convolution1D label_dict = LabelEncoder().fit(train_Y) label_num = len(label_dict.classes_) x = train_X y = train_Y train_Y = np_utils.to_categorical(y, label_num) # x = np.concatenate([X_train, X_validate], axis=0) X_train = x X_semantic = np.array(copy.deepcopy(X_train[:, range(95, 475)])) X_manual = np.array(copy.deepcopy(X_train[:, range(0, 95)])) X_cluster = np.array(copy.deepcopy(X_train[:, range(475, 545)])) X_document = np.array(copy.deepcopy(X_train[:, range(545, 547)])) X_document[:, [0]] = X_document[:, [0]] + train_X[:, [-1]].max() dic_num_cluster = X_cluster.max() dic_num_manual = train_X.max() dic_num_document = X_document[:, [0]].max() from keras.models import Sequential from keras.layers.embeddings import Embedding from keras.layers.core import Merge from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.recurrent import LSTM X_semantic = X_semantic.reshape(X_semantic.shape[0], 10, -1) X_semantic_1 = np.zeros((X_semantic.shape[0], X_semantic.shape[2], X_semantic.shape[1])) for i in range(int(X_semantic.shape[0])): X_semantic_1[i] = np.transpose(X_semantic[i]) model_semantic = Sequential() model_lstm = Sequential() model_lstm.add(LSTM(output_dim=30, input_shape=X_semantic_1.shape[1:], go_backwards=True)) model_semantic.add(Convolution1D(nb_filter=32, filter_length=2, border_mode='valid', activation='relu', input_shape=X_semantic_1.shape[1:])) # model_semantic.add(MaxPooling1D(pool_length=2)) model_semantic.add(Convolution1D(nb_filter=8, filter_length=2, border_mode='valid', activation='relu')) # model_semantic.add(MaxPooling1D(pool_length=2)) model_semantic.add(Flatten()) # we use standard max pooling (halving the output of the previous layer): model_manual = Sequential() model_manual.add(Embedding(input_dim=dic_num_manual + 1, output_dim=20, input_length=X_manual.shape[1])) # model_manual.add(Convolution1D(nb_filter=2, # filter_length=2, # border_mode='valid', # activation='relu')) # model_manual.add(MaxPooling1D(pool_length=2)) # model_manual.add(Convolution1D(nb_filter=8, # filter_length=2, # border_mode='valid', # activation='relu')) # model_manual.add(MaxPooling1D(pool_length=2)) model_manual.add(Flatten()) model_document = Sequential() model_document.add( Embedding(input_dim=dic_num_document + 1, output_dim=2, input_length=X_document.shape[1])) model_document.add(Flatten()) model_cluster = Sequential() model_cluster.add(Embedding(input_dim=dic_num_cluster + 1, output_dim=5, input_length=X_cluster.shape[1])) model_cluster.add(Flatten()) model = Sequential() # model = model_cluster model.add(Merge([model_document, model_cluster, model_manual, model_semantic], mode='concat', concat_axis=1)) model.add(Dense(512)) model.add(Dropout(0.5)) model.add(Activation('relu')) model.add(Dense(128)) model.add(Dropout(0.5)) model.add(Activation('relu')) # We project onto a single unit output layer, and squash it with a sigmoid: model.add(Dense(label_num)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) # model.fit(X_cluster_1, train_Ymetrics=['accuracy'], batch_size=100, # nb_epoch=100, validation_split=0.33, verbose=1) model.fit([X_document, X_cluster, X_manual, X_semantic_1], train_Y, batch_size=100, nb_epoch=15, validation_split=0.33) print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) if lstm_test is False: import numpy as np [train_X, train_Y] = pd.read_pickle(util.features_prefix + name + '_XY.pkl') print 'lstm' import copy import numpy as np from sklearn.preprocessing import LabelEncoder from keras.utils import np_utils from keras.layers.convolutional import Convolution1D label_dict = LabelEncoder().fit(train_Y) label_num = len(label_dict.classes_) train_Y = np_utils.to_categorical(train_Y, label_num) # x = np.concatenate([X_train, X_validate], axis=0) X_train = train_X X_semantic = np.array(copy.deepcopy(X_train[:, range(95, 475)])) X_manual = np.array(copy.deepcopy(X_train[:, range(0, 95)])) X_cluster = np.array(copy.deepcopy(X_train[:, range(475, 545)])) X_document = np.array(copy.deepcopy(X_train[:, range(545, 547)])) X_document[:, [0]] = X_document[:, [0]] + train_X[:, [-1]].max() dic_num_cluster = X_cluster.max() dic_num_manual = train_X.max() dic_num_document = X_document[:, [0]].max() from keras.models import Sequential from keras.layers.embeddings import Embedding from keras.layers.core import Merge from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.recurrent import LSTM X_semantic = X_semantic.reshape(X_semantic.shape[0], 10, -1) X_semantic_1 = np.zeros((X_semantic.shape[0], X_semantic.shape[2], X_semantic.shape[1])) for i in range(int(X_semantic.shape[0])): X_semantic_1[i] = np.transpose(X_semantic[i]) model_semantic = Sequential() model_lstm = Sequential() model_lstm.add(LSTM(output_dim=30, input_shape=X_semantic_1.shape[1:], go_backwards=True)) model_semantic.add(Convolution1D(nb_filter=32, filter_length=2, border_mode='valid', activation='relu', input_shape=X_semantic_1.shape[1:])) # model_semantic.add(MaxPooling1D(pool_length=2)) model_semantic.add(Convolution1D(nb_filter=8, filter_length=2, border_mode='valid', activation='relu')) # model_semantic.add(MaxPooling1D(pool_length=2)) model_semantic.add(Flatten()) # we use standard max pooling (halving the output of the previous layer): model_manual = Sequential() model_manual.add(Embedding(input_dim=dic_num_manual + 1, output_dim=20, input_length=X_manual.shape[1])) model_manual.add(Flatten()) model_document = Sequential() model_document.add( Embedding(input_dim=dic_num_document + 1, output_dim=2, input_length=X_document.shape[1])) model_document.add(Flatten()) model_cluster = Sequential() model_cluster.add(Embedding(input_dim=dic_num_cluster + 1, output_dim=5, input_length=X_cluster.shape[1])) model_cluster.add(Flatten()) model = Sequential() # model = model_cluster model.add(Merge([model_document, model_cluster, model_manual, model_lstm], mode='concat', concat_axis=1)) model.add(Dense(512)) model.add(Dropout(0.5)) model.add(Activation('relu')) model.add(Dense(128)) model.add(Dropout(0.5)) model.add(Activation('relu')) # We project onto a single unit output layer, and squash it with a sigmoid: model.add(Dense(label_num)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) # model.fit(X_cluster_1, train_Y, batch_size=100, # nb_epoch=100, validation_split=0.33, verbose=1) model.fit([X_document, X_cluster, X_manual, X_semantic_1], train_Y, batch_size=100, nb_epoch=15, validation_split=0.33) print time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) if __name__ == "__main__": for name in ['degree', 'salary', 'size', 'position']: get_all_by_name(name)
apache-2.0
alexsavio/scikit-learn
examples/ensemble/plot_gradient_boosting_regularization.py
355
2843
""" ================================ Gradient Boosting regularization ================================ Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009. The loss function used is binomial deviance. Regularization via shrinkage (``learning_rate < 1.0``) improves performance considerably. In combination with shrinkage, stochastic gradient boosting (``subsample < 1.0``) can produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in Random Forests (via the ``max_features`` parameter). .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X = X.astype(np.float32) # map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] original_params = {'n_estimators': 1000, 'max_leaf_nodes': 4, 'max_depth': None, 'random_state': 2, 'min_samples_split': 5} plt.figure() for label, color, setting in [('No shrinkage', 'orange', {'learning_rate': 1.0, 'subsample': 1.0}), ('learning_rate=0.1', 'turquoise', {'learning_rate': 0.1, 'subsample': 1.0}), ('subsample=0.5', 'blue', {'learning_rate': 1.0, 'subsample': 0.5}), ('learning_rate=0.1, subsample=0.5', 'gray', {'learning_rate': 0.1, 'subsample': 0.5}), ('learning_rate=0.1, max_features=2', 'magenta', {'learning_rate': 0.1, 'max_features': 2})]: params = dict(original_params) params.update(setting) clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) # compute test set deviance test_deviance = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): # clf.loss_ assumes that y_test[i] in {0, 1} test_deviance[i] = clf.loss_(y_test, y_pred) plt.plot((np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5], '-', color=color, label=label) plt.legend(loc='upper left') plt.xlabel('Boosting Iterations') plt.ylabel('Test Set Deviance') plt.show()
bsd-3-clause
TomAugspurger/pandas
pandas/tests/io/test_orc.py
6
6482
""" test orc compat """ import datetime import os import numpy as np import pytest import pandas as pd from pandas import read_orc import pandas._testing as tm pytest.importorskip("pyarrow", minversion="0.13.0") pytest.importorskip("pyarrow.orc") pytestmark = pytest.mark.filterwarnings( "ignore:RangeIndex.* is deprecated:DeprecationWarning" ) @pytest.fixture def dirpath(datapath): return datapath("io", "data", "orc") def test_orc_reader_empty(dirpath): columns = [ "boolean1", "byte1", "short1", "int1", "long1", "float1", "double1", "bytes1", "string1", ] dtypes = [ "bool", "int8", "int16", "int32", "int64", "float32", "float64", "object", "object", ] expected = pd.DataFrame(index=pd.RangeIndex(0)) for colname, dtype in zip(columns, dtypes): expected[colname] = pd.Series(dtype=dtype) inputfile = os.path.join(dirpath, "TestOrcFile.emptyFile.orc") got = read_orc(inputfile, columns=columns) tm.assert_equal(expected, got) def test_orc_reader_basic(dirpath): data = { "boolean1": np.array([False, True], dtype="bool"), "byte1": np.array([1, 100], dtype="int8"), "short1": np.array([1024, 2048], dtype="int16"), "int1": np.array([65536, 65536], dtype="int32"), "long1": np.array([9223372036854775807, 9223372036854775807], dtype="int64"), "float1": np.array([1.0, 2.0], dtype="float32"), "double1": np.array([-15.0, -5.0], dtype="float64"), "bytes1": np.array([b"\x00\x01\x02\x03\x04", b""], dtype="object"), "string1": np.array(["hi", "bye"], dtype="object"), } expected = pd.DataFrame.from_dict(data) inputfile = os.path.join(dirpath, "TestOrcFile.test1.orc") got = read_orc(inputfile, columns=data.keys()) tm.assert_equal(expected, got) def test_orc_reader_decimal(dirpath): from decimal import Decimal # Only testing the first 10 rows of data data = { "_col0": np.array( [ Decimal("-1000.50000"), Decimal("-999.60000"), Decimal("-998.70000"), Decimal("-997.80000"), Decimal("-996.90000"), Decimal("-995.10000"), Decimal("-994.11000"), Decimal("-993.12000"), Decimal("-992.13000"), Decimal("-991.14000"), ], dtype="object", ) } expected = pd.DataFrame.from_dict(data) inputfile = os.path.join(dirpath, "TestOrcFile.decimal.orc") got = read_orc(inputfile).iloc[:10] tm.assert_equal(expected, got) def test_orc_reader_date_low(dirpath): data = { "time": np.array( [ "1900-05-05 12:34:56.100000", "1900-05-05 12:34:56.100100", "1900-05-05 12:34:56.100200", "1900-05-05 12:34:56.100300", "1900-05-05 12:34:56.100400", "1900-05-05 12:34:56.100500", "1900-05-05 12:34:56.100600", "1900-05-05 12:34:56.100700", "1900-05-05 12:34:56.100800", "1900-05-05 12:34:56.100900", ], dtype="datetime64[ns]", ), "date": np.array( [ datetime.date(1900, 12, 25), datetime.date(1900, 12, 25), datetime.date(1900, 12, 25), datetime.date(1900, 12, 25), datetime.date(1900, 12, 25), datetime.date(1900, 12, 25), datetime.date(1900, 12, 25), datetime.date(1900, 12, 25), datetime.date(1900, 12, 25), datetime.date(1900, 12, 25), ], dtype="object", ), } expected = pd.DataFrame.from_dict(data) inputfile = os.path.join(dirpath, "TestOrcFile.testDate1900.orc") got = read_orc(inputfile).iloc[:10] tm.assert_equal(expected, got) def test_orc_reader_date_high(dirpath): data = { "time": np.array( [ "2038-05-05 12:34:56.100000", "2038-05-05 12:34:56.100100", "2038-05-05 12:34:56.100200", "2038-05-05 12:34:56.100300", "2038-05-05 12:34:56.100400", "2038-05-05 12:34:56.100500", "2038-05-05 12:34:56.100600", "2038-05-05 12:34:56.100700", "2038-05-05 12:34:56.100800", "2038-05-05 12:34:56.100900", ], dtype="datetime64[ns]", ), "date": np.array( [ datetime.date(2038, 12, 25), datetime.date(2038, 12, 25), datetime.date(2038, 12, 25), datetime.date(2038, 12, 25), datetime.date(2038, 12, 25), datetime.date(2038, 12, 25), datetime.date(2038, 12, 25), datetime.date(2038, 12, 25), datetime.date(2038, 12, 25), datetime.date(2038, 12, 25), ], dtype="object", ), } expected = pd.DataFrame.from_dict(data) inputfile = os.path.join(dirpath, "TestOrcFile.testDate2038.orc") got = read_orc(inputfile).iloc[:10] tm.assert_equal(expected, got) def test_orc_reader_snappy_compressed(dirpath): data = { "int1": np.array( [ -1160101563, 1181413113, 2065821249, -267157795, 172111193, 1752363137, 1406072123, 1911809390, -1308542224, -467100286, ], dtype="int32", ), "string1": np.array( [ "f50dcb8", "382fdaaa", "90758c6", "9e8caf3f", "ee97332b", "d634da1", "2bea4396", "d67d89e8", "ad71007e", "e8c82066", ], dtype="object", ), } expected = pd.DataFrame.from_dict(data) inputfile = os.path.join(dirpath, "TestOrcFile.testSnappy.orc") got = read_orc(inputfile).iloc[:10] tm.assert_equal(expected, got)
bsd-3-clause
Transkribus/TranskribusDU
TranskribusDU/graph/Transformer_Logit.py
1
8399
# -*- coding: utf-8 -*- """ Node and edge feature transformers to extract features for PageXml based on Logit classifiers Copyright Xerox(C) 2016 JL. Meunier Developed for the EU project READ. The READ project has received funding from the European Union�s Horizon 2020 research and innovation programme under grant agreement No 674943. """ import numpy as np from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.multiclass import OneVsRestClassifier #for multilabel classif from sklearn.model_selection import GridSearchCV #0.18.1 REQUIRES NUMPY 1.12.1 or more recent from common.trace import traceln from .Transformer import Transformer from .Transformer_PageXml import NodeTransformerTextEnclosed dGridSearch_CONF = {'C':[0.1, 0.5, 1.0, 2.0] } #Grid search parameters for Logit training dGridSearch_CONF = {'C':[0.01, 0.1, 1.0, 2.0] } #Grid search parameters for Logit training DEBUG=0 #------------------------------------------------------------------------------------------------------ class NodeTransformerLogit(Transformer): """ we will get a list of blocks belonging to N classes. we train a logit classifier for those classes, as well as a multilabel classifier for the neighor of those classes the built feature vector is 2*N long """ dGridSearch_LR_conf = dGridSearch_CONF def __init__(self, nbClass=None, n_feat_node=1000, t_ngrams_node=(2,4), b_node_lc=False, n_jobs=1): """ input: - number of classes - number of ngram - ngram min/max size - lowercase or not - njobs when fitting the logit using grid search if n_feat_node is negative, or 0, or None, we use all possible ngrams """ Transformer.__init__(self) self.nbClass = nbClass self.n_feat_node, self.t_ngrams_node, self.b_node_lc = n_feat_node, t_ngrams_node, b_node_lc self.n_jobs = n_jobs self.text_pipeline = None # feature extractor self.mdl_main = None # the main model predicting among the nbClass classes self.mdl_neighbor = None # the neighborhood model predicting zero to many of the classes def fit(self, X, y=None): """ This tranformer needs the graphs to be fitted properly - see fitByGraph """ return self def fitByGraph(self, lGraph, lAllNode=None): """ we need to train 2 Logit: one to predict the node class, another to predict the class of the neighborhhod """ self.text_pipeline = Pipeline([ ('selector' , NodeTransformerTextEnclosed()) , ('tf' , TfidfVectorizer(lowercase=self.b_node_lc #, max_features=10000 , analyzer = 'char' , ngram_range=self.t_ngrams_node)) #(2,6)), #we can use it separately from the pipleline once fitted # , ('word_selector' , SelectKBest(chi2, k=self.n_feat_node)) ]) # the y if lAllNode==None: lAllNode = [nd for g in lGraph for nd in g.lNode] y = np.array([nd.cls for nd in lAllNode], dtype=np.int) if self.nbClass != len(np.unique(y)): traceln("Classes seen are: %s"%np.unique(y).tolist()) traceln(self.nbClass) raise ValueError("ERROR: some class is not represented in the training set") #fitting the textual feature extractor self.text_pipeline.fit(lAllNode, y) #extracting textual features x = self.text_pipeline.transform(lAllNode) #creating and training the main logit model lr = LogisticRegression(class_weight='balanced') self.mdl_main = GridSearchCV(lr , self.dGridSearch_LR_conf, refit=True, n_jobs=self.n_jobs) self.mdl_main.fit(x, y) del y if DEBUG: print(self.mdl_main) #now fit a multiclass multilabel logit to predict if a node is neighbor with at least one node of a certain class, for each class #Shape = (nb_tot_nodes x nb_tot_labels) y = np.vstack([g.getNeighborClassMask() for g in lGraph]) #we get this from the graph object. assert y.shape[0] == len(lAllNode) lr = LogisticRegression(class_weight='balanced') gslr = GridSearchCV(lr , self.dGridSearch_LR_conf, refit=True, n_jobs=self.n_jobs) self.mdl_neighbor = OneVsRestClassifier(gslr, n_jobs=self.n_jobs) self.mdl_neighbor.fit(x, y) del x, y if DEBUG: print(self.mdl_neighbor) return self def transform(self, lNode): """ return the 2 logit scores """ a = np.zeros( ( len(lNode), 3*self.nbClass ), dtype=np.float64) #for each class: is_of_class? is_neighbor_of_class on same page or accross page? x = self.text_pipeline.transform(lNode) a[...,0:self.nbClass] = self.mdl_main .predict_proba(x) a[..., self.nbClass:3*self.nbClass] = self.mdl_neighbor .predict_proba(x) # for i, nd in enumerate(lNode): # print i, nd, a[i] if DEBUG: print(a) return a # def testEco(self,lX, lY): # """ # we test 2 Logit: one to predict the node class, another to predict the class of the neighborhood # and return a list of TestReport objects # [ ClassPredictor_Test_Report # , SamePageNeighborClassPredictor_Test_Report for each class # , CrossPageNeighborClassPredictor_Test_Report for each class # ] # """ # loTstRpt = [] # ZZZZZ # #extracting textual features # X = self.text_pipeline.transform(lAllNode) # # # the Y # Y = np.array([nd.cls for nd in lAllNode], dtype=np.int) # Y_pred = self.mdl_main.predict(X) # oTstRptMain = TestReportConfusion.newFromYYpred("TransformerLogit_main", Y_pred, Y, map(str, range(self.nbClass))) # loTstRpt.append(oTstRptMain) # # #the Y for neighboring # Y = np.vstack([g.getNeighborClassMask() for g in lGraph]) #we get this from the graph object. # Y_pred = self.mdl_neighbor.predict(X) # nbCol = Y_pred.shape[1] # lsClassName = lGraph[0].getNeighborClassNameList() # assert nbCol == len(lsClassName) # for i, sClassName in enumerate(lsClassName): # oTstRpt = TestReportConfusion.newFromYYpred(sClassName, Y_pred[:,i], Y[:,i], ["no", "yes"]) # loTstRpt.append(oTstRpt) # # return loTstRpt #------------------------------------------------------------------------------------------------------ class EdgeTransformerLogit(Transformer): """ we will get a list of edges belonging to N classes. we train a logit classifier for those classes, as well as a multilabel classifier for the neighor of those classes the built feature vector is 2*N long """ dGridSearch_LR_conf = dGridSearch_CONF def __init__(self, nbClass, ndTrnsfLogit): """ input: - number of classes - number of ngram - ngram min/max size - lowercase or not - njobs when fitting the logit using grid search if n_feat_edge is negative, or 0, or None, we use all possible ngrams """ Transformer.__init__(self) self.nbClass = nbClass self.transfNodeLogit = ndTrnsfLogit #fitted node transformer def transform(self, lEdge, bMirrorPage=True): """ return the 2 logit scores """ aA = self.transfNodeLogit.transform( [edge.A for edge in lEdge] ) aB = self.transfNodeLogit.transform( [edge.B for edge in lEdge] ) a = np.hstack([aA, aB]) del aA, aB assert a.shape == (len(lEdge), 2 * 3 * self.nbClass) #src / target nodes, same_page/cross_page_neighbors/class return a
bsd-3-clause
jenhantao/nuclearReceptorOverlap
makeSummaryPlots.py
1
6388
# given a group stats file, produce simple plots demonstrating the distribution of scores across all nodes # inputs: group stats file, output file name # outputs: plots visualizing the group stats import sys import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) import collections import scipy from scipy import stats def createPeakSummaryPlots(inputPath,outPath): # read in inputs with open(inputPath) as f: data = f.readlines() factorFrequencyHash = {} # key - each factor; value: number of times each factor appears in a peak groupPeaksHash = {}# key - each group name, value: number of merged regions that appear in the peak groupComponentsHash = {} for line in data[2:]: if "###" in line: break tokens = line.strip().split("\t") group = tokens[0] #groupPeaksHash[group] = int(tokens[2]) groupPeaksHash[group] = int(tokens[3]) # use total instead of peaks unique to the group groupTokens = set(group[1:-1].split(", ")) groupComponentsHash[group] = groupTokens # add in individual factors for token in groupTokens: if token in factorFrequencyHash: factorFrequencyHash[token] += 1 else: factorFrequencyHash[token] = 1 factorIndexHash = {} counter = 1 for factor in sorted(list(factorFrequencyHash.keys())): factorIndexHash[factor] = str(counter) counter += 1 # plot the log number of peaks per group/factor #plt.hist(groupPeaksHash.values()) # fit a normal distribution sortedValues = sorted(map(math.log,groupPeaksHash.values())) fit = stats.norm.pdf(sortedValues, np.mean(sortedValues), np.std(sortedValues)) plt.plot(sortedValues,fit,'-o') plt.hist(map(math.log, map(float,groupPeaksHash.values())),normed=True) plt.xlabel("Number of Peaks (ln)") plt.ylabel("Frequency") plt.title("All Factors/Groups VS Peaks") plt.savefig(outPath+"/allFactorsGroups_vs_mergedRegions_log.png") plt.close() # plot the number of peaks per group/factor from scipy import cluster sortedValues = sorted(groupPeaksHash.values()) centroid = sorted(cluster.vq.kmeans(np.array(sortedValues), 3)[0])[1] std = np.std(sortedValues) mean = np.mean(sortedValues) sortedValues = [x for x in sortedValues if abs(x-centroid)<=std/2.0] # fit a poisson distribution param = np.mean(sortedValues) fit = stats.poisson.pmf(sortedValues, param) plt.plot(sortedValues,fit,'-o') plt.hist(sortedValues, normed=True, bins=10) plt.xlabel("Number of Peaks") plt.ylabel("Frequency") plt.title("All Factors/Groups VS Peaks") plt.savefig(outPath+"/allFactorsGroups_vs_mergedRegions.png") plt.close() # plot the number of times a factor appears in a group factorList = [] for factor in factorFrequencyHash: factorList.append((factor, factorFrequencyHash[factor])) factorList.sort(key=lambda x: (x[1],x[0])) factorLabels = [x[0] for x in factorList] factorFrequencies = [x[1] for x in factorList] plt.bar(range(len(factorFrequencies)),factorFrequencies) plt.ylabel("Number of Groups") plt.xlabel("Factor") plt.xticks(range(len(factorLabels)), factorLabels, rotation=90,fontsize=8) plt.title("Factors vs Number of Ocurrences in a Group") plt.savefig(outPath+"/factors_vs_groupOcurrence.png") plt.close() # plot the size of a group vs the number of merged regions groupList = [] for group in groupPeaksHash: groupList.append((group, len(groupComponentsHash[group]), groupPeaksHash[group])) sizes = [x[1] for x in groupList] numPeaks = [x[2] for x in groupList] numPeaks = map(math.log,map(float,numPeaks)) plt.scatter(sizes,numPeaks) plt.xlabel("Number of Factors in Group") plt.ylabel("Number of Peaks (ln)") plt.title("Number of Factors in Group VS Number of Peaks") plt.savefig(outPath+"/numFactors_vs_numPeaks.png") plt.close() def createMotifSummaryPlots(inputPath, outputPath): # read in input with open(inputPath) as f: data = f.readlines() factorFrequencyHash = {} # key - each factor; value: number of times each factor appears in a peak groupPeaksHash = {}# key - each group name, value: number of merged regions that appear in the peak groupComponentsHash = {} start = 3 for line in data[1:]: if not "###" in line: start += 1 else: break targetFracs = [] backgroundFracs = [] p_vals = [] std_targetFracs = [] std_backgroundFracs = [] std_p_vals = [] numMotifs = [] groupNumbers = [] for line in data[start:]: tokens = line.strip().split("\t") groupNumbers.append(tokens[0]) targetFracs.append(float(tokens[1])) backgroundFracs.append(float(tokens[2])) p_vals.append(float(tokens[3])) std_targetFracs.append(float(tokens[4])) std_backgroundFracs.append(float(tokens[5])) std_p_vals.append(float(tokens[6])) numMotifs.append(int(tokens[7])) # plot the average target fractions per group plt.bar(range(len(targetFracs)),targetFracs) plt.hlines(float(math.fsum(targetFracs))/float(len(targetFracs)),0,len(targetFracs)) plt.xlabel("Group") plt.ylabel("Target Fraction") plt.title("Average Motif Target Fraction per Group") plt.savefig(outputPath+"averageMotifTargetFraction.png") plt.close() # plot the average background fractions per group plt.bar(range(len(backgroundFracs)),backgroundFracs) plt.hlines(float(math.fsum(backgroundFracs))/float(len(backgroundFracs)),0, len(backgroundFracs)) plt.xlabel("Group") plt.ylabel("Background Fraction") plt.title("Average Motif Background Fraction per Group") plt.savefig(outputPath+"averageMotifBackgroundFraction.png") plt.close() # plot the average p-value per group plt.bar(range(len(p_vals)),p_vals) plt.hlines(float(math.fsum(p_vals))/float(len(p_vals)),0, len(p_vals)) plt.xlabel("Group") plt.ylabel("P-value") plt.title("Average Motif p-value per Group") plt.savefig(outputPath+"averageMotifPVals.png") plt.close() # plot the average number of motifs per group plt.bar(range(len(numMotifs)),numMotifs) plt.hlines(float(math.fsum(numMotifs))/float(len(numMotifs)),0, len(numMotifs)) plt.xlabel("Group") plt.ylabel("Number of Motifs") plt.title("Average Number of Motifs per Group") plt.savefig(outputPath+"averageNumberofMotifs.png") plt.close() if __name__ == "__main__": createPeakSummaryPlots(sys.argv[1],sys.argv[2]) #createMotifSummaryPlots(sys.argv[1],sys.argv[2])
mit
temasek/android_external_chromium_org
chrome/test/nacl_test_injection/buildbot_nacl_integration.py
61
2538
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import subprocess import sys def Main(args): pwd = os.environ.get('PWD', '') is_integration_bot = 'nacl-chrome' in pwd # This environment variable check mimics what # buildbot_chrome_nacl_stage.py does. is_win64 = (sys.platform in ('win32', 'cygwin') and ('64' in os.environ.get('PROCESSOR_ARCHITECTURE', '') or '64' in os.environ.get('PROCESSOR_ARCHITEW6432', ''))) # On the main Chrome waterfall, we may need to control where the tests are # run. # If there is serious skew in the PPAPI interface that causes all of # the NaCl integration tests to fail, you can uncomment the # following block. (Make sure you comment it out when the issues # are resolved.) *However*, it is much preferred to add tests to # the 'tests_to_disable' list below. #if not is_integration_bot: # return tests_to_disable = [] # In general, you should disable tests inside this conditional. This turns # them off on the main Chrome waterfall, but not on NaCl's integration bots. # This makes it easier to see when things have been fixed NaCl side. if not is_integration_bot: # http://code.google.com/p/nativeclient/issues/detail?id=2511 tests_to_disable.append('run_ppapi_ppb_image_data_browser_test') if sys.platform == 'darwin': # TODO(mseaborn) fix # http://code.google.com/p/nativeclient/issues/detail?id=1835 tests_to_disable.append('run_ppapi_crash_browser_test') if sys.platform in ('win32', 'cygwin'): # This one is only failing for nacl_glibc on x64 Windows # but it is not clear how to disable only that limited case. # See http://crbug.com/132395 tests_to_disable.append('run_inbrowser_test_runner') script_dir = os.path.dirname(os.path.abspath(__file__)) nacl_integration_script = os.path.join(script_dir, 'buildbot_chrome_nacl_stage.py') cmd = [sys.executable, nacl_integration_script, # TODO(ncbray) re-enable. # https://code.google.com/p/chromium/issues/detail?id=133568 '--disable_glibc', '--disable_tests=%s' % ','.join(tests_to_disable)] cmd += args sys.stdout.write('Running %s\n' % ' '.join(cmd)) sys.stdout.flush() return subprocess.call(cmd) if __name__ == '__main__': sys.exit(Main(sys.argv[1:]))
bsd-3-clause
jeffery-do/Vizdoombot
doom/lib/python3.5/site-packages/matplotlib/tests/test_contour.py
6
8038
from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import datetime import numpy as np from matplotlib import mlab from matplotlib.testing.decorators import cleanup, image_comparison from matplotlib import pyplot as plt from nose.tools import assert_equal, assert_raises import warnings import re @cleanup def test_contour_shape_1d_valid(): x = np.arange(10) y = np.arange(9) z = np.random.random((9, 10)) fig = plt.figure() ax = fig.add_subplot(111) ax.contour(x, y, z) @cleanup def test_contour_shape_2d_valid(): x = np.arange(10) y = np.arange(9) xg, yg = np.meshgrid(x, y) z = np.random.random((9, 10)) fig = plt.figure() ax = fig.add_subplot(111) ax.contour(xg, yg, z) @cleanup def test_contour_shape_mismatch_1(): x = np.arange(9) y = np.arange(9) z = np.random.random((9, 10)) fig = plt.figure() ax = fig.add_subplot(111) try: ax.contour(x, y, z) except TypeError as exc: assert exc.args[0] == 'Length of x must be number of columns in z.' @cleanup def test_contour_shape_mismatch_2(): x = np.arange(10) y = np.arange(10) z = np.random.random((9, 10)) fig = plt.figure() ax = fig.add_subplot(111) try: ax.contour(x, y, z) except TypeError as exc: assert exc.args[0] == 'Length of y must be number of rows in z.' @cleanup def test_contour_shape_mismatch_3(): x = np.arange(10) y = np.arange(10) xg, yg = np.meshgrid(x, y) z = np.random.random((9, 10)) fig = plt.figure() ax = fig.add_subplot(111) try: ax.contour(xg, y, z) except TypeError as exc: assert exc.args[0] == 'Number of dimensions of x and y should match.' try: ax.contour(x, yg, z) except TypeError as exc: assert exc.args[0] == 'Number of dimensions of x and y should match.' @cleanup def test_contour_shape_mismatch_4(): g = np.random.random((9, 10)) b = np.random.random((9, 9)) z = np.random.random((9, 10)) fig = plt.figure() ax = fig.add_subplot(111) try: ax.contour(b, g, z) except TypeError as exc: print(exc.args[0]) assert re.match( r'Shape of x does not match that of z: ' + r'found \(9L?, 9L?\) instead of \(9L?, 10L?\)\.', exc.args[0]) is not None try: ax.contour(g, b, z) except TypeError as exc: assert re.match( r'Shape of y does not match that of z: ' + r'found \(9L?, 9L?\) instead of \(9L?, 10L?\)\.', exc.args[0]) is not None @cleanup def test_contour_shape_invalid_1(): x = np.random.random((3, 3, 3)) y = np.random.random((3, 3, 3)) z = np.random.random((9, 10)) fig = plt.figure() ax = fig.add_subplot(111) try: ax.contour(x, y, z) except TypeError as exc: assert exc.args[0] == 'Inputs x and y must be 1D or 2D.' @cleanup def test_contour_shape_invalid_2(): x = np.random.random((3, 3, 3)) y = np.random.random((3, 3, 3)) z = np.random.random((3, 3, 3)) fig = plt.figure() ax = fig.add_subplot(111) try: ax.contour(x, y, z) except TypeError as exc: assert exc.args[0] == 'Input z must be a 2D array.' @image_comparison(baseline_images=['contour_manual_labels']) def test_contour_manual_labels(): x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10)) z = np.max(np.dstack([abs(x), abs(y)]), 2) plt.figure(figsize=(6, 2)) cs = plt.contour(x, y, z) pts = np.array([(1.5, 3.0), (1.5, 4.4), (1.5, 6.0)]) plt.clabel(cs, manual=pts) @image_comparison(baseline_images=['contour_labels_size_color'], extensions=['png'], remove_text=True) def test_contour_manual_labels(): x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10)) z = np.max(np.dstack([abs(x), abs(y)]), 2) plt.figure(figsize=(6, 2)) cs = plt.contour(x, y, z) pts = np.array([(1.5, 3.0), (1.5, 4.4), (1.5, 6.0)]) plt.clabel(cs, manual=pts, fontsize='small', colors=('r', 'g')) @image_comparison(baseline_images=['contour_manual_colors_and_levels'], extensions=['png'], remove_text=True) def test_given_colors_levels_and_extends(): _, axes = plt.subplots(2, 4) data = np.arange(12).reshape(3, 4) colors = ['red', 'yellow', 'pink', 'blue', 'black'] levels = [2, 4, 8, 10] for i, ax in enumerate(axes.flatten()): plt.sca(ax) filled = i % 2 == 0. extend = ['neither', 'min', 'max', 'both'][i // 2] if filled: last_color = -1 if extend in ['min', 'max'] else None plt.contourf(data, colors=colors[:last_color], levels=levels, extend=extend) else: last_level = -1 if extend == 'both' else None plt.contour(data, colors=colors, levels=levels[:last_level], extend=extend) plt.colorbar() @image_comparison(baseline_images=['contour_datetime_axis'], extensions=['png'], remove_text=False) def test_contour_datetime_axis(): fig = plt.figure() fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15) base = datetime.datetime(2013, 1, 1) x = np.array([base + datetime.timedelta(days=d) for d in range(20)]) y = np.arange(20) z1, z2 = np.meshgrid(np.arange(20), np.arange(20)) z = z1 * z2 plt.subplot(221) plt.contour(x, y, z) plt.subplot(222) plt.contourf(x, y, z) x = np.repeat(x[np.newaxis], 20, axis=0) y = np.repeat(y[:, np.newaxis], 20, axis=1) plt.subplot(223) plt.contour(x, y, z) plt.subplot(224) plt.contourf(x, y, z) for ax in fig.get_axes(): for label in ax.get_xticklabels(): label.set_ha('right') label.set_rotation(30) @image_comparison(baseline_images=['contour_test_label_transforms'], extensions=['png'], remove_text=True) def test_labels(): # Adapted from pylab_examples example code: contour_demo.py # see issues #2475, #2843, and #2818 for explanation delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) # difference of Gaussians Z = 10.0 * (Z2 - Z1) fig, ax = plt.subplots(1, 1) CS = ax.contour(X, Y, Z) disp_units = [(216, 177), (359, 290), (521, 406)] data_units = [(-2, .5), (0, -1.5), (2.8, 1)] CS.clabel() for x, y in data_units: CS.add_label_near(x, y, inline=True, transform=None) for x, y in disp_units: CS.add_label_near(x, y, inline=True, transform=False) @image_comparison(baseline_images=['contour_corner_mask_False', 'contour_corner_mask_True'], extensions=['png'], remove_text=True) def test_corner_mask(): n = 60 mask_level = 0.95 noise_amp = 1.0 np.random.seed([1]) x, y = np.meshgrid(np.linspace(0, 2.0, n), np.linspace(0, 2.0, n)) z = np.cos(7*x)*np.sin(8*y) + noise_amp*np.random.rand(n, n) mask = np.where(np.random.rand(n, n) >= mask_level, True, False) z = np.ma.array(z, mask=mask) for corner_mask in [False, True]: fig = plt.figure() plt.contourf(z, corner_mask=corner_mask) @cleanup def test_contourf_decreasing_levels(): # github issue 5477. z = [[0.1, 0.3], [0.5, 0.7]] plt.figure() assert_raises(ValueError, plt.contourf, z, [1.0, 0.0]) # Legacy contouring algorithm gives a warning rather than raising an error, # plus a DeprecationWarning. with warnings.catch_warnings(record=True) as w: plt.contourf(z, [1.0, 0.0], corner_mask='legacy') assert_equal(len(w), 2) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
mit
nmartensen/pandas
pandas/core/reshape/tile.py
4
13776
""" Quantilization functions and related stuff """ from pandas.core.dtypes.missing import isna from pandas.core.dtypes.common import ( is_integer, is_scalar, is_categorical_dtype, is_datetime64_dtype, is_timedelta64_dtype, _ensure_int64) import pandas.core.algorithms as algos import pandas.core.nanops as nanops from pandas._libs.lib import infer_dtype from pandas import (to_timedelta, to_datetime, Categorical, Timestamp, Timedelta, Series, Interval, IntervalIndex) import numpy as np def cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False): """ Return indices of half-open bins to which each value of `x` belongs. Parameters ---------- x : array-like Input array to be binned. It has to be 1-dimensional. bins : int, sequence of scalars, or IntervalIndex If `bins` is an int, it defines the number of equal-width bins in the range of `x`. However, in this case, the range of `x` is extended by .1% on each side to include the min or max values of `x`. If `bins` is a sequence it defines the bin edges allowing for non-uniform bin width. No extension of the range of `x` is done in this case. right : bool, optional Indicates whether the bins include the rightmost edge or not. If right == True (the default), then the bins [1,2,3,4] indicate (1,2], (2,3], (3,4]. labels : array or boolean, default None Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins. retbins : bool, optional Whether to return the bins or not. Can be useful if bins is given as a scalar. precision : int, optional The precision at which to store and display the bins labels include_lowest : bool, optional Whether the first interval should be left-inclusive or not. Returns ------- out : Categorical or Series or array of integers if labels is False The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned. bins : ndarray of floats Returned only if `retbins` is True. Notes ----- The `cut` function can be useful for going from a continuous variable to a categorical variable. For example, `cut` could convert ages to groups of age ranges. Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Categorical object Examples -------- >>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True) ... # doctest: +ELLIPSIS ([(0.19, 3.367], (0.19, 3.367], (0.19, 3.367], (3.367, 6.533], ... Categories (3, interval[float64]): [(0.19, 3.367] < (3.367, 6.533] ... >>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), ... 3, labels=["good", "medium", "bad"]) ... # doctest: +SKIP [good, good, good, medium, bad, good] Categories (3, object): [good < medium < bad] >>> pd.cut(np.ones(5), 4, labels=False) array([1, 1, 1, 1, 1]) """ # NOTE: this binning code is changed a bit from histogram for var(x) == 0 # for handling the cut for datetime and timedelta objects x_is_series, series_index, name, x = _preprocess_for_cut(x) x, dtype = _coerce_to_type(x) if not np.iterable(bins): if is_scalar(bins) and bins < 1: raise ValueError("`bins` should be a positive integer.") try: # for array-like sz = x.size except AttributeError: x = np.asarray(x) sz = x.size if sz == 0: raise ValueError('Cannot cut empty array') rng = (nanops.nanmin(x), nanops.nanmax(x)) mn, mx = [mi + 0.0 for mi in rng] if mn == mx: # adjust end points before binning mn -= .001 * abs(mn) if mn != 0 else .001 mx += .001 * abs(mx) if mx != 0 else .001 bins = np.linspace(mn, mx, bins + 1, endpoint=True) else: # adjust end points after binning bins = np.linspace(mn, mx, bins + 1, endpoint=True) adj = (mx - mn) * 0.001 # 0.1% of the range if right: bins[0] -= adj else: bins[-1] += adj elif isinstance(bins, IntervalIndex): pass else: bins = np.asarray(bins) bins = _convert_bin_to_numeric_type(bins, dtype) if (np.diff(bins) < 0).any(): raise ValueError('bins must increase monotonically.') fac, bins = _bins_to_cuts(x, bins, right=right, labels=labels, precision=precision, include_lowest=include_lowest, dtype=dtype) return _postprocess_for_cut(fac, bins, retbins, x_is_series, series_index, name) def qcut(x, q, labels=None, retbins=False, precision=3, duplicates='raise'): """ Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point. Parameters ---------- x : ndarray or Series q : integer or array of quantiles Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles labels : array or boolean, default None Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins. retbins : bool, optional Whether to return the (bins, labels) or not. Can be useful if bins is given as a scalar. precision : int, optional The precision at which to store and display the bins labels duplicates : {default 'raise', 'drop'}, optional If bin edges are not unique, raise ValueError or drop non-uniques. .. versionadded:: 0.20.0 Returns ------- out : Categorical or Series or array of integers if labels is False The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned. bins : ndarray of floats Returned only if `retbins` is True. Notes ----- Out of bounds values will be NA in the resulting Categorical object Examples -------- >>> pd.qcut(range(5), 4) ... # doctest: +ELLIPSIS [(-0.001, 1.0], (-0.001, 1.0], (1.0, 2.0], (2.0, 3.0], (3.0, 4.0]] Categories (4, interval[float64]): [(-0.001, 1.0] < (1.0, 2.0] ... >>> pd.qcut(range(5), 3, labels=["good", "medium", "bad"]) ... # doctest: +SKIP [good, good, medium, bad, bad] Categories (3, object): [good < medium < bad] >>> pd.qcut(range(5), 4, labels=False) array([0, 0, 1, 2, 3]) """ x_is_series, series_index, name, x = _preprocess_for_cut(x) x, dtype = _coerce_to_type(x) if is_integer(q): quantiles = np.linspace(0, 1, q + 1) else: quantiles = q bins = algos.quantile(x, quantiles) fac, bins = _bins_to_cuts(x, bins, labels=labels, precision=precision, include_lowest=True, dtype=dtype, duplicates=duplicates) return _postprocess_for_cut(fac, bins, retbins, x_is_series, series_index, name) def _bins_to_cuts(x, bins, right=True, labels=None, precision=3, include_lowest=False, dtype=None, duplicates='raise'): if duplicates not in ['raise', 'drop']: raise ValueError("invalid value for 'duplicates' parameter, " "valid options are: raise, drop") if isinstance(bins, IntervalIndex): # we have a fast-path here ids = bins.get_indexer(x) result = algos.take_nd(bins, ids) result = Categorical(result, categories=bins, ordered=True) return result, bins unique_bins = algos.unique(bins) if len(unique_bins) < len(bins) and len(bins) != 2: if duplicates == 'raise': raise ValueError("Bin edges must be unique: {bins!r}.\nYou " "can drop duplicate edges by setting " "the 'duplicates' kwarg".format(bins=bins)) else: bins = unique_bins side = 'left' if right else 'right' ids = _ensure_int64(bins.searchsorted(x, side=side)) if include_lowest: ids[x == bins[0]] = 1 na_mask = isna(x) | (ids == len(bins)) | (ids == 0) has_nas = na_mask.any() if labels is not False: if labels is None: labels = _format_labels(bins, precision, right=right, include_lowest=include_lowest, dtype=dtype) else: if len(labels) != len(bins) - 1: raise ValueError('Bin labels must be one fewer than ' 'the number of bin edges') if not is_categorical_dtype(labels): labels = Categorical(labels, categories=labels, ordered=True) np.putmask(ids, na_mask, 0) result = algos.take_nd(labels, ids - 1) else: result = ids - 1 if has_nas: result = result.astype(np.float64) np.putmask(result, na_mask, np.nan) return result, bins def _trim_zeros(x): while len(x) > 1 and x[-1] == '0': x = x[:-1] if len(x) > 1 and x[-1] == '.': x = x[:-1] return x def _coerce_to_type(x): """ if the passed data is of datetime/timedelta type, this method converts it to integer so that cut method can handle it """ dtype = None if is_timedelta64_dtype(x): x = to_timedelta(x).view(np.int64) dtype = np.timedelta64 elif is_datetime64_dtype(x): x = to_datetime(x).view(np.int64) dtype = np.datetime64 return x, dtype def _convert_bin_to_numeric_type(bins, dtype): """ if the passed bin is of datetime/timedelta type, this method converts it to integer Parameters ---------- bins : list-liek of bins dtype : dtype of data Raises ------ ValueError if bins are not of a compat dtype to dtype """ bins_dtype = infer_dtype(bins) if is_timedelta64_dtype(dtype): if bins_dtype in ['timedelta', 'timedelta64']: bins = to_timedelta(bins).view(np.int64) else: raise ValueError("bins must be of timedelta64 dtype") elif is_datetime64_dtype(dtype): if bins_dtype in ['datetime', 'datetime64']: bins = to_datetime(bins).view(np.int64) else: raise ValueError("bins must be of datetime64 dtype") return bins def _format_labels(bins, precision, right=True, include_lowest=False, dtype=None): """ based on the dtype, return our labels """ closed = 'right' if right else 'left' if is_datetime64_dtype(dtype): formatter = Timestamp adjust = lambda x: x - Timedelta('1ns') elif is_timedelta64_dtype(dtype): formatter = Timedelta adjust = lambda x: x - Timedelta('1ns') else: precision = _infer_precision(precision, bins) formatter = lambda x: _round_frac(x, precision) adjust = lambda x: x - 10 ** (-precision) breaks = [formatter(b) for b in bins] labels = IntervalIndex.from_breaks(breaks, closed=closed) if right and include_lowest: # we will adjust the left hand side by precision to # account that we are all right closed v = adjust(labels[0].left) i = IntervalIndex.from_intervals( [Interval(v, labels[0].right, closed='right')]) labels = i.append(labels[1:]) return labels def _preprocess_for_cut(x): """ handles preprocessing for cut where we convert passed input to array, strip the index information and store it separately """ x_is_series = isinstance(x, Series) series_index = None name = None if x_is_series: series_index = x.index name = x.name x = np.asarray(x) return x_is_series, series_index, name, x def _postprocess_for_cut(fac, bins, retbins, x_is_series, series_index, name): """ handles post processing for the cut method where we combine the index information if the originally passed datatype was a series """ if x_is_series: fac = Series(fac, index=series_index, name=name) if not retbins: return fac return fac, bins def _round_frac(x, precision): """ Round the fractional part of the given number """ if not np.isfinite(x) or x == 0: return x else: frac, whole = np.modf(x) if whole == 0: digits = -int(np.floor(np.log10(abs(frac)))) - 1 + precision else: digits = precision return np.around(x, digits) def _infer_precision(base_precision, bins): """Infer an appropriate precision for _round_frac """ for precision in range(base_precision, 20): levels = [_round_frac(b, precision) for b in bins] if algos.unique(levels).size == bins.size: return precision return base_precision # default
bsd-3-clause
fhedberg/ardupilot
Tools/LogAnalyzer/tests/TestOptFlow.py
32
14968
from LogAnalyzer import Test,TestResult import DataflashLog from math import sqrt import numpy as np import matplotlib.pyplot as plt class TestFlow(Test): '''test optical flow sensor scale factor calibration''' # # Use the following procedure to log the calibration data. is assumed that the optical flow sensor has been # correctly aligned, is focussed and the test is performed over a textured surface with adequate lighting. # Note that the strobing effect from non incandescent artifical lighting can produce poor optical flow measurements. # # 1) Set LOG_DISARMED and FLOW_TYPE to 10 and verify that ATT and OF messages are being logged onboard # 2) Place on level ground, apply power and wait for EKF to complete attitude alignment # 3) Keeping the copter level, lift it to shoulder height and rock between +-20 and +-30 degrees # in roll about an axis that passes through the flow sensor lens assembly. The time taken to rotate from # maximum left roll to maximum right roll should be about 1 second. # 4) Repeat 3) about the pitch axis # 5) Holding the copter level, lower it to the ground and remove power # 6) Transfer the logfile from the sdcard. # 7) Open a terminal and cd to the ardupilot/Tools/LogAnalyzer directory # 8) Enter to run the analysis 'python LogAnalyzer.py <log file name including full path>' # 9) Check the OpticalFlow test status printed to the screen. The analysis plots are saved to # flow_calibration.pdf and the recommended scale factors to flow_calibration.param def __init__(self): Test.__init__(self) self.name = "OpticalFlow" def run(self, logdata, verbose): self.result = TestResult() self.result.status = TestResult.StatusType.GOOD def FAIL(): self.result.status = TestResult.StatusType.FAIL def WARN(): if self.result.status != TestResult.StatusType.FAIL: self.result.status = TestResult.StatusType.WARN try: # tuning parameters used by the algorithm tilt_threshold = 15 # roll and pitch threshold used to start and stop calibration (deg) quality_threshold = 124 # minimum flow quality required for data to be used by the curve fit (N/A) min_rate_threshold = 0.0 # if the gyro rate is less than this, the data will not be used by the curve fit (rad/sec) max_rate_threshold = 2.0 # if the gyro rate is greter than this, the data will not be used by the curve fit (rad/sec) param_std_threshold = 5.0 # maximum allowable 1-std uncertainty in scaling parameter (scale factor * 1000) param_abs_threshold = 200 # max/min allowable scale factor parameter. Values of FLOW_FXSCALER and FLOW_FYSCALER outside the range of +-param_abs_threshold indicate a sensor configuration problem. min_num_points = 100 # minimum number of points required for a curve fit - this is necessary, but not sufficient condition - the standard deviation estimate of the fit gradient is also important. # get the existing scale parameters flow_fxscaler = logdata.parameters["FLOW_FXSCALER"] flow_fyscaler = logdata.parameters["FLOW_FYSCALER"] # load required optical flow data if "OF" in logdata.channels: flowX = np.zeros(len(logdata.channels["OF"]["flowX"].listData)) for i in range(len(logdata.channels["OF"]["flowX"].listData)): (line, flowX[i]) = logdata.channels["OF"]["flowX"].listData[i] bodyX = np.zeros(len(logdata.channels["OF"]["bodyX"].listData)) for i in range(len(logdata.channels["OF"]["bodyX"].listData)): (line, bodyX[i]) = logdata.channels["OF"]["bodyX"].listData[i] flowY = np.zeros(len(logdata.channels["OF"]["flowY"].listData)) for i in range(len(logdata.channels["OF"]["flowY"].listData)): (line, flowY[i]) = logdata.channels["OF"]["flowY"].listData[i] bodyY = np.zeros(len(logdata.channels["OF"]["bodyY"].listData)) for i in range(len(logdata.channels["OF"]["bodyY"].listData)): (line, bodyY[i]) = logdata.channels["OF"]["bodyY"].listData[i] flow_time_us = np.zeros(len(logdata.channels["OF"]["TimeUS"].listData)) for i in range(len(logdata.channels["OF"]["TimeUS"].listData)): (line, flow_time_us[i]) = logdata.channels["OF"]["TimeUS"].listData[i] flow_qual = np.zeros(len(logdata.channels["OF"]["Qual"].listData)) for i in range(len(logdata.channels["OF"]["Qual"].listData)): (line, flow_qual[i]) = logdata.channels["OF"]["Qual"].listData[i] else: FAIL() self.result.statusMessage = "FAIL: no optical flow data\n" return # load required attitude data if "ATT" in logdata.channels: Roll = np.zeros(len(logdata.channels["ATT"]["Roll"].listData)) for i in range(len(logdata.channels["ATT"]["Roll"].listData)): (line, Roll[i]) = logdata.channels["ATT"]["Roll"].listData[i] Pitch = np.zeros(len(logdata.channels["ATT"]["Pitch"].listData)) for i in range(len(logdata.channels["ATT"]["Pitch"].listData)): (line, Pitch[i]) = logdata.channels["ATT"]["Pitch"].listData[i] att_time_us = np.zeros(len(logdata.channels["ATT"]["TimeUS"].listData)) for i in range(len(logdata.channels["ATT"]["TimeUS"].listData)): (line, att_time_us[i]) = logdata.channels["ATT"]["TimeUS"].listData[i] else: FAIL() self.result.statusMessage = "FAIL: no attitude data\n" return # calculate the start time for the roll calibration startTime = int(0) startRollIndex = int(0) for i in range(len(Roll)): if abs(Roll[i]) > tilt_threshold: startTime = att_time_us[i] break for i in range(len(flow_time_us)): if flow_time_us[i] > startTime: startRollIndex = i break # calculate the end time for the roll calibration endTime = int(0) endRollIndex = int(0) for i in range(len(Roll)-1,-1,-1): if abs(Roll[i]) > tilt_threshold: endTime = att_time_us[i] break for i in range(len(flow_time_us)-1,-1,-1): if flow_time_us[i] < endTime: endRollIndex = i break # check we have enough roll data points if (endRollIndex - startRollIndex <= min_num_points): FAIL() self.result.statusMessage = "FAIL: insufficient roll data pointsa\n" return # resample roll test data excluding data before first movement and after last movement # also exclude data where there is insufficient angular rate flowX_resampled = [] bodyX_resampled = [] flowX_time_us_resampled = [] for i in range(len(Roll)): if (i >= startRollIndex) and (i <= endRollIndex) and (abs(bodyX[i]) > min_rate_threshold) and (abs(bodyX[i]) < max_rate_threshold) and (flow_qual[i] > quality_threshold): flowX_resampled.append(flowX[i]) bodyX_resampled.append(bodyX[i]) flowX_time_us_resampled.append(flow_time_us[i]) # calculate the start time for the pitch calibration startTime = 0 startPitchIndex = int(0) for i in range(len(Pitch)): if abs(Pitch[i]) > tilt_threshold: startTime = att_time_us[i] break for i in range(len(flow_time_us)): if flow_time_us[i] > startTime: startPitchIndex = i break # calculate the end time for the pitch calibration endTime = 0 endPitchIndex = int(0) for i in range(len(Pitch)-1,-1,-1): if abs(Pitch[i]) > tilt_threshold: endTime = att_time_us[i] break for i in range(len(flow_time_us)-1,-1,-1): if flow_time_us[i] < endTime: endPitchIndex = i break # check we have enough pitch data points if (endPitchIndex - startPitchIndex <= min_num_points): FAIL() self.result.statusMessage = "FAIL: insufficient pitch data pointsa\n" return # resample pitch test data excluding data before first movement and after last movement # also exclude data where there is insufficient or too much angular rate flowY_resampled = [] bodyY_resampled = [] flowY_time_us_resampled = [] for i in range(len(Roll)): if (i >= startPitchIndex) and (i <= endPitchIndex) and (abs(bodyY[i]) > min_rate_threshold) and (abs(bodyY[i]) < max_rate_threshold) and (flow_qual[i] > quality_threshold): flowY_resampled.append(flowY[i]) bodyY_resampled.append(bodyY[i]) flowY_time_us_resampled.append(flow_time_us[i]) # fit a straight line to the flow vs body rate data and calculate the scale factor parameter required to achieve a slope of 1 coef_flow_x , cov_x = np.polyfit(bodyX_resampled,flowX_resampled,1,rcond=None, full=False, w=None, cov=True) coef_flow_y , cov_y = np.polyfit(bodyY_resampled,flowY_resampled,1,rcond=None, full=False, w=None, cov=True) # taking the exisiting scale factor parameters into account, calculate the parameter values reequired to achieve a unity slope flow_fxscaler_new = int(1000 * (((1 + 0.001 * float(flow_fxscaler))/coef_flow_x[0] - 1))) flow_fyscaler_new = int(1000 * (((1 + 0.001 * float(flow_fyscaler))/coef_flow_y[0] - 1))) # Do a sanity check on the scale factor variance if sqrt(cov_x[0][0]) > param_std_threshold or sqrt(cov_y[0][0]) > param_std_threshold: FAIL() self.result.statusMessage = "FAIL: inaccurate fit - poor quality or insufficient data\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n" % (round(1000*sqrt(cov_x[0][0])),round(1000*sqrt(cov_y[0][0]))) # Do a sanity check on the scale factors if abs(flow_fxscaler_new) > param_abs_threshold or abs(flow_fyscaler_new) > param_abs_threshold: FAIL() self.result.statusMessage = "FAIL: required scale factors are excessive\nFLOW_FXSCALER=%i\nFLOW_FYSCALER=%i\n" % (flow_fxscaler,flow_fyscaler) # display recommended scale factors self.result.statusMessage = "Set FLOW_FXSCALER to %i\nSet FLOW_FYSCALER to %i\n\nCal plots saved to flow_calibration.pdf\nCal parameters saved to flow_calibration.param\n\nFLOW_FXSCALER 1STD = %u\nFLOW_FYSCALER 1STD = %u\n" % (flow_fxscaler_new,flow_fyscaler_new,round(1000*sqrt(cov_x[0][0])),round(1000*sqrt(cov_y[0][0]))) # calculate fit display data body_rate_display = [-max_rate_threshold,max_rate_threshold] fit_coef_x = np.poly1d(coef_flow_x) flowX_display = fit_coef_x(body_rate_display) fit_coef_y = np.poly1d(coef_flow_y) flowY_display = fit_coef_y(body_rate_display) # plot and save calibration test points to PDF from matplotlib.backends.backend_pdf import PdfPages output_plot_filename = "flow_calibration.pdf" pp = PdfPages(output_plot_filename) plt.figure(1,figsize=(20,13)) plt.subplot(2,1,1) plt.plot(bodyX_resampled,flowX_resampled,'b', linestyle=' ', marker='o',label="test points") plt.plot(body_rate_display,flowX_display,'r',linewidth=2.5,label="linear fit") plt.title('X axis flow rate vs gyro rate') plt.ylabel('flow rate (rad/s)') plt.xlabel('gyro rate (rad/sec)') plt.grid() plt.legend(loc='upper left') # draw plots plt.subplot(2,1,2) plt.plot(bodyY_resampled,flowY_resampled,'b', linestyle=' ', marker='o',label="test points") plt.plot(body_rate_display,flowY_display,'r',linewidth=2.5,label="linear fit") plt.title('Y axis flow rate vs gyro rate') plt.ylabel('flow rate (rad/s)') plt.xlabel('gyro rate (rad/sec)') plt.grid() plt.legend(loc='upper left') pp.savefig() plt.figure(2,figsize=(20,13)) plt.subplot(2,1,1) plt.plot(flow_time_us,flowX,'b',label="flow rate - all") plt.plot(flow_time_us,bodyX,'r',label="gyro rate - all") plt.plot(flowX_time_us_resampled,flowX_resampled,'c', linestyle=' ', marker='o',label="flow rate - used") plt.plot(flowX_time_us_resampled,bodyX_resampled,'m', linestyle=' ', marker='o',label="gyro rate - used") plt.title('X axis flow and body rate vs time') plt.ylabel('rate (rad/s)') plt.xlabel('time (usec)') plt.grid() plt.legend(loc='upper left') # draw plots plt.subplot(2,1,2) plt.plot(flow_time_us,flowY,'b',label="flow rate - all") plt.plot(flow_time_us,bodyY,'r',label="gyro rate - all") plt.plot(flowY_time_us_resampled,flowY_resampled,'c', linestyle=' ', marker='o',label="flow rate - used") plt.plot(flowY_time_us_resampled,bodyY_resampled,'m', linestyle=' ', marker='o',label="gyro rate - used") plt.title('Y axis flow and body rate vs time') plt.ylabel('rate (rad/s)') plt.xlabel('time (usec)') plt.grid() plt.legend(loc='upper left') pp.savefig() # close the pdf file pp.close() # close all figures plt.close("all") # write correction parameters to file test_results_filename = "flow_calibration.param" file = open(test_results_filename,"w") file.write("FLOW_FXSCALER"+" "+str(flow_fxscaler_new)+"\n") file.write("FLOW_FYSCALER"+" "+str(flow_fyscaler_new)+"\n") file.close() except KeyError as e: self.result.status = TestResult.StatusType.FAIL self.result.statusMessage = str(e) + ' not found'
gpl-3.0
severinson/coded-computing-tools
tests/simulationtests.py
2
4673
############################################################################ # Copyright 2016 Albin Severinson # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # ############################################################################ '''This module contains tests of the simulation module. ''' import os import math import unittest import tempfile import pandas as pd import simulation from functools import partial from model import SystemParameters from solvers.heuristicsolver import HeuristicSolver from evaluation.binsearch import SampleEvaluator class EvaluationTests(unittest.TestCase): '''Tests of the simulation module.''' def verify_result(self, result, correct_result, delta=0.1): '''Check the results against known correct results. Args: result: Measured result. correct_result: Dict with correct results. delta: Correct result must be within a delta fraction of the measured result. ''' for key, value in correct_result.items(): if value == math.inf: self.assertAlmostEqual(result[key].mean(), value, places=1, msg='key={}, value={}'.format(str(key), str(value))) else: self.assertAlmostEqual(result[key].mean(), value, delta=value*delta, msg='key={}, value={}'.format(str(key), str(value))) def verify_solver(self, solver, parameters, correct_results): '''Check the results from evaluating the assignment produced by some solver against known correct results. Args: solver: Assignment solver. parameters: System parameters. correct_results: List of dicts with correct results. ''' evaluator = binsearch.SampleEvaluator(num_samples=1000) for par, correct_result in zip(parameters, correct_results): assignment = solver.solve(par) self.assertTrue(assignment.is_valid()) result = evaluator.evaluate(par, assignment) self.verify_result(result, correct_result) return def test_simulation(self): '''Test basic functionality.''' parameters = SystemParameters(rows_per_batch=5, num_servers=10, q=9, num_outputs=9, server_storage=1/3, num_partitions=5) correct = {'servers': 9, 'batches': 324, 'delay': 25.460714285714285/9, 'unicast_load_1': 720/540/9, 'multicast_load_1': 840/540/9, 'unicast_load_2': 0, 'multicast_load_2': 1470/540/9} solver = HeuristicSolver() evaluator = SampleEvaluator(num_samples=1000) with tempfile.TemporaryDirectory() as tmpdir: filename = os.path.join(tmpdir, parameters.identifier() + '.csv') dataframe = simulation.simulate( parameters, directory=tmpdir, rerun=False, samples=10, solver=solver, assignment_eval=evaluator, ) self.verify_result(dataframe, correct) simulate_fun = partial( simulation.simulate, directory=tmpdir, rerun=False, samples=10, solver=solver, assignment_eval=evaluator, ) dataframe = simulation.simulate_parameter_list( parameter_list=[parameters], simulate_fun=simulate_fun, map_complexity_fun=lambda x: 1, encode_delay_fun=lambda x: 0, reduce_delay_fun=lambda x: 0, ) self.verify_result(dataframe, correct) return
apache-2.0
roxyboy/scikit-learn
sklearn/tests/test_dummy.py
129
17774
from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.base import clone from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.stats import _weighted_percentile from sklearn.dummy import DummyClassifier, DummyRegressor @ignore_warnings def _check_predict_proba(clf, X, y): proba = clf.predict_proba(X) # We know that we can have division by zero log_proba = clf.predict_log_proba(X) y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] n_samples = len(X) if n_outputs == 1: proba = [proba] log_proba = [log_proba] for k in range(n_outputs): assert_equal(proba[k].shape[0], n_samples) assert_equal(proba[k].shape[1], len(np.unique(y[:, k]))) assert_array_equal(proba[k].sum(axis=1), np.ones(len(X))) # We know that we can have division by zero assert_array_equal(np.log(proba[k]), log_proba[k]) def _check_behavior_2d(clf): # 1d case X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([1, 2, 1, 1]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) # 2d case y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_behavior_2d_for_constant(clf): # 2d case only X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([[1, 0, 5, 4, 3], [2, 0, 1, 2, 5], [1, 0, 4, 5, 2], [1, 3, 3, 2, 0]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_test): assert_array_equal(np.tile(statistic, (y_learn.shape[0], 1)), y_pred_learn) assert_array_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test) def test_most_frequent_and_prior_strategy(): X = [[0], [0], [0], [0]] # ignored y = [1, 2, 1, 1] for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) if strategy == "prior": assert_array_equal(clf.predict_proba(X[0]), clf.class_prior_.reshape((1, -1))) else: assert_array_equal(clf.predict_proba(X[0]), clf.class_prior_.reshape((1, -1)) > 0.5) def test_most_frequent_and_prior_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) n_samples = len(X) for strategy in ("prior", "most_frequent"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_stratified_strategy(): X = [[0]] * 5 # ignored y = [1, 2, 1, 1, 2] clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) def test_stratified_strategy_multioutput(): X = [[0]] * 5 # ignored y = np.array([[2, 1], [2, 2], [1, 1], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_uniform_strategy(): X = [[0]] * 4 # ignored y = [1, 2, 1, 1] clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) def test_uniform_strategy_multioutput(): X = [[0]] * 4 # ignored y = np.array([[2, 1], [2, 2], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_string_labels(): X = [[0]] * 5 y = ["paris", "paris", "tokyo", "amsterdam", "berlin"] clf = DummyClassifier(strategy="most_frequent") clf.fit(X, y) assert_array_equal(clf.predict(X), ["paris"] * 5) def test_classifier_exceptions(): clf = DummyClassifier(strategy="unknown") assert_raises(ValueError, clf.fit, [], []) assert_raises(ValueError, clf.predict, []) assert_raises(ValueError, clf.predict_proba, []) def test_mean_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 4 # ignored y = random_state.randn(4) reg = DummyRegressor() reg.fit(X, y) assert_array_equal(reg.predict(X), [np.mean(y)] * len(X)) def test_mean_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) mean = np.mean(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor() est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_regressor_exceptions(): reg = DummyRegressor() assert_raises(ValueError, reg.predict, []) def test_median_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="median") reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) def test_median_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="median") est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="quantile", quantile=0.5) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.min(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=1) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.max(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0.3) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X)) def test_quantile_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.5) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.8) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( quantile_values, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_invalid(): X = [[0]] * 5 # ignored y = [0] * 5 # ignored est = DummyRegressor(strategy="quantile") assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=None) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=[0]) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=-0.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=1.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile='abc') assert_raises(TypeError, est.fit, X, y) def test_quantile_strategy_empty_train(): est = DummyRegressor(strategy="quantile", quantile=0.4) assert_raises(ValueError, est.fit, [], []) def test_constant_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="constant", constant=[43]) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) reg = DummyRegressor(strategy="constant", constant=43) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) def test_constant_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) # test with 2d array constants = random_state.randn(5) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="constant", constant=constants) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( constants, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d_for_constant(est) def test_y_mean_attribute_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] # when strategy = 'mean' est = DummyRegressor(strategy='mean') est.fit(X, y) assert_equal(est.constant_, np.mean(y)) def test_unknown_strategey_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='gona') assert_raises(ValueError, est.fit, X, y) def test_constants_not_specified_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='constant') assert_raises(TypeError, est.fit, X, y) def test_constant_size_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X = random_state.randn(10, 10) y = random_state.randn(10, 5) est = DummyRegressor(strategy='constant', constant=[1, 2, 3, 4]) assert_raises(ValueError, est.fit, X, y) def test_constant_strategy(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0, constant=1) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) X = [[0], [0], [0], [0]] # ignored y = ['two', 'one', 'two', 'two'] clf = DummyClassifier(strategy="constant", random_state=0, constant='one') clf.fit(X, y) assert_array_equal(clf.predict(X), np.array(['one'] * 4)) _check_predict_proba(clf, X, y) def test_constant_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[2, 3], [1, 3], [2, 3], [2, 0]]) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) def test_constant_strategy_exceptions(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0) assert_raises(ValueError, clf.fit, X, y) clf = DummyClassifier(strategy="constant", random_state=0, constant=[2, 0]) assert_raises(ValueError, clf.fit, X, y) def test_classification_sample_weight(): X = [[0], [0], [1]] y = [0, 1, 0] sample_weight = [0.1, 1., 0.1] clf = DummyClassifier().fit(X, y, sample_weight) assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1. / 1.2]) def test_constant_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[0, 1], [4, 0], [1, 1], [1, 4], [1, 1]])) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) def test_uniform_strategy_sparse_target_warning(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[2, 1], [2, 2], [1, 4], [4, 2], [1, 1]])) clf = DummyClassifier(strategy="uniform", random_state=0) assert_warns_message(UserWarning, "the uniform strategy would not save memory", clf.fit, X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 1 / 3, decimal=1) assert_almost_equal(p[2], 1 / 3, decimal=1) assert_almost_equal(p[4], 1 / 3, decimal=1) def test_stratified_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[4, 1], [0, 0], [1, 1], [1, 4], [1, 1]])) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) y_pred = y_pred.toarray() for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[0], 1. / 5, decimal=1) assert_almost_equal(p[4], 1. / 5, decimal=1) def test_most_frequent_and_prior_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[1, 0], [1, 3], [4, 0], [0, 1], [1, 0]])) n_samples = len(X) y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), y_expected) def test_dummy_regressor_sample_weight(n_samples=10): random_state = np.random.RandomState(seed=1) X = [[0]] * n_samples y = random_state.rand(n_samples) sample_weight = random_state.rand(n_samples) est = DummyRegressor(strategy="mean").fit(X, y, sample_weight) assert_equal(est.constant_, np.average(y, weights=sample_weight)) est = DummyRegressor(strategy="median").fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 50.)) est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 95.))
bsd-3-clause
LiuVII/Self-driving-RC-car
train3.py
1
6148
"""" With admiration for and inspiration from: https://github.com/dolaameng/Udacity-SDC_Behavior-Cloning/ https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/ https://chatbotslife.com/using-augmentation-to-mimic-human-driving-496b569760a9 https://www.reddit.com/r/MachineLearning/comments/5qbjz7/p_an_autonomous_vehicle_steering_model_in_99/dcyphps/ https://medium.com/@harvitronix/training-a-deep-learning-model-to-steer-a-car-in-99-lines-of-code-ba94e0456e6a """ import os import csv, random, numpy as np, re import argparse from keras.models import load_model, Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.preprocessing.image import img_to_array, load_img, flip_axis, random_shift from keras.utils import to_categorical from sklearn.model_selection import train_test_split from PIL import Image import PIL from PIL import ImageOps from skimage.exposure import equalize_adapthist oshapeX = 640 oshapeY = 240 NUM_CLASSES = 3 shapeX = 320 shapeY = 120 cshapeY = 120 def model(load, shape, tr_model=None): """Return a model from file or to train on.""" if load and tr_model: return load_model(tr_model) # conv5x5_l, conv3x3_l, dense_layers = [16, 24], [36, 48], [512, 128, 16] conv3x3_l, dense_layers = [24, 32, 40, 48], [512, 64, 16] model = Sequential() model.add(Conv2D(16, (5, 5), activation='elu', input_shape=shape)) model.add(MaxPooling2D()) for i in range(len(conv3x3_l)): model.add(Conv2D(conv3x3_l[i], (3, 3), activation='elu')) if i < len(conv3x3_l) - 1: model.add(MaxPooling2D()) model.add(Flatten()) for dl in dense_layers: model.add(Dense(dl, activation='elu')) model.add(Dropout(0.5)) model.add(Dense(NUM_CLASSES, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy']) return model def get_X_y(data_file): """Read the log file and turn it into X/y pairs. Add an offset to left images, remove from right images.""" X, y = [], [] with open(data_file) as fin: reader = csv.reader(fin) next(reader, None) for img, command in reader: X.append(img.strip()) y.append(int(command)) return X, to_categorical(y, num_classes=NUM_CLASSES) def process_image(file_name, shape=(shapeY, shapeX)): """Process and augment an image.""" folder_name = "" image = load_img(file_name, target_size=shape) aimage = img_to_array(image) aimage = aimage.astype(np.float32) / 255. aimage = aimage - 0.5 return aimage def _generator(batch_size, classes, X, y): """Generate batches of training data forever.""" while 1: batch_X, batch_y = [], [] for i in range(batch_size): class_i = random.randint(0, NUM_CLASSES - 1) sample_index = random.choice(classes[class_i]) command = y[sample_index] image = process_image(img_dir + X[sample_index]) batch_X.append(image) batch_y.append(command) yield np.array(batch_X), np.array(batch_y) def train(model_name, val_split, epoch_num, step_num): """Load our network and our data, fit the model, save it.""" if model_name: net = model(load=True, shape=(cshapeY, shapeX, 3), tr_model=model_name) else: net = model(load=False, shape=(cshapeY, shapeX, 3)) net.summary() X, y = get_X_y(data_dir + args.img_dir + '_log.csv') # print("X\n", X[:10], "y\n", y[:10]) Xtr, Xval, ytr, yval = train_test_split(X, y, test_size=val_split, random_state=random.randint(0, 100)) tr_classes = [[] for _ in range(NUM_CLASSES)] for i in range(len(ytr)): for j in range(NUM_CLASSES): if ytr[i][j]: tr_classes[j].append(i) val_classes = [[] for _ in range(NUM_CLASSES)] for i in range(len(yval)): for j in range(NUM_CLASSES): if yval[i][j]: val_classes[j].append(i) net.fit_generator(_generator(batch_size, tr_classes, Xtr, ytr),\ validation_data=_generator(batch_size, val_classes, Xval, yval),\ validation_steps=max(len(Xval) // batch_size, 1), steps_per_epoch=1, epochs=1) net.fit_generator(_generator(batch_size, tr_classes, Xtr, ytr),\ validation_data=_generator(batch_size, val_classes, Xval, yval),\ validation_steps=max(len(Xval) // batch_size, 1), steps_per_epoch=step_num, epochs=epoch_num) if not os.path.exists(model_dir): os.mkdir(model_dir) net.save(model_dir + args.img_dir + "_" + str(step_num) + "-" + str(epoch_num) + "_" + str(batch_size) + "_" \ + str(shapeX) + "x" + str(shapeY) + '.h5') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Trainer') parser.add_argument( 'img_dir', type=str, help='Name of the training set folder. Default: ts_0', default="ts_0" ) parser.add_argument( 'steps', type=int, help='Training steps. Default: 200', default=200 ) parser.add_argument( '-batch', type=int, help='Batch size. Default: 64', default=64 ) parser.add_argument( '-model', type=str, default='', help='Path to model h5 file. Model should be on the same path.' ) parser.add_argument( '-valid', type=float, default=0.15, help='Validation fraction of data. Default: 0.15' ) parser.add_argument( '-epoch', type=int, default=1, help='Number of training epochs. Default: 1' ) args = parser.parse_args() batch_size = args.batch data_dir = "./model_data/" pos = args.img_dir.find("_s_") if pos > 0: img_dir = "./data_sets/" + args.img_dir[:pos] + "/" + "data/" else: img_dir = "./data_sets/" + args.img_dir + "/" + "data/" model_dir = "./models/" train(args.model, args.valid, args.epoch, args.steps)
mit
shahankhatch/scikit-learn
examples/ensemble/plot_forest_importances.py
241
1761
""" ========================================= Feature importances with forests of trees ========================================= This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(10): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(10), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(10), indices) plt.xlim([-1, 10]) plt.show()
bsd-3-clause
zcold/matplotlib-3d-objects
shape.py
1
2161
# -*- coding: utf-8 -*- class Shape(object): def __init__(self, ax, x = 0., y = 0., z = 0., a = 1., **kwargs) : self.ax = ax self.position = [x, y, z, a] self.surfaces = [] self.current_position = [x, y, z, a] @property def x(self): return self.position[0] @x.setter def x(self, value): self.position[0] = value @property def y(self): return self.position[1] @y.setter def y(self, value): self.position[1] = value @property def z(self): return self.position[2] @z.setter def z(self, value): self.position[2] = value @property def a(self): return self.position[3] @a.setter def a(self, value): self.position[3] = value @property def alpha(self): return self.position[3] @alpha.setter def alpha(self, value): self.position[3] = value _dimension_dict = {'x': 0, 'y': 1, 'z': 2, 'a': 3, 'alpha': 3} def _modify_dimension(self, new_value, dimension = 0) : if dimension not in [0, 1, 2, 3] : dimension = Shape._dimension_dict[dimension.lower()] diff = new_value - self.position[dimension] for surface in self.surfaces : for i, __ in enumerate(surface._vec[dimension]) : surface._vec[dimension][i] += diff self.position[dimension] = new_value def modify_x(self, new_x) : self._modify_dimension(new_x, dimension = 0) def modify_y(self, new_y) : self._modify_dimension(new_y, dimension = 1) def modify_z(self, new_z) : self._modify_dimension(new_z, dimension = 2) def modify_alpha(self, new_alpha) : self._modify_dimension(new_alpha, dimension = 3) def modify_position(self, *position) : self.modify_x(position[0]) self.modify_y(position[1]) self.modify_z(position[2]) if __name__ == '__main__' : from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt fig = plt.figure() ax = Axes3D(fig) ax.view_init(elev = -80., azim = 90) plt.xlabel('x') plt.ylabel('y') ax.set_xlim(-10, 10) ax.set_ylim(-10, 10) ax.set_zlim(-10, 10) ax.set_zlabel('z') ax.set_zticks([]) s = Shape(ax, x = 0, y = 1, z = 1) s.modify_x(2) plt.show()
mit
soravux/deap
deap/gp.py
9
46662
# This file is part of DEAP. # # DEAP is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # # DEAP is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with DEAP. If not, see <http://www.gnu.org/licenses/>. """The :mod:`gp` module provides the methods and classes to perform Genetic Programming with DEAP. It essentially contains the classes to build a Genetic Program Tree, and the functions to evaluate it. This module support both strongly and loosely typed GP. """ import copy import math import random import re import sys import warnings from collections import defaultdict, deque from functools import partial, wraps from inspect import isclass from operator import eq, lt import tools # Needed by HARM-GP ###################################### # GP Data structure # ###################################### # Define the name of type for any types. __type__ = object class PrimitiveTree(list): """Tree specifically formatted for optimization of genetic programming operations. The tree is represented with a list where the nodes are appended in a depth-first order. The nodes appended to the tree are required to have an attribute *arity* which defines the arity of the primitive. An arity of 0 is expected from terminals nodes. """ def __init__(self, content): list.__init__(self, content) def __deepcopy__(self, memo): new = self.__class__(self) new.__dict__.update(copy.deepcopy(self.__dict__, memo)) return new def __setitem__(self, key, val): # Check for most common errors # Does NOT check for STGP constraints if isinstance(key, slice): if key.start >= len(self): raise IndexError("Invalid slice object (try to assign a %s" " in a tree of size %d). Even if this is allowed by the" " list object slice setter, this should not be done in" " the PrimitiveTree context, as this may lead to an" " unpredictable behavior for searchSubtree or evaluate." % (key, len(self))) total = val[0].arity for node in val[1:]: total += node.arity - 1 if total != 0: raise ValueError("Invalid slice assignation : insertion of" " an incomplete subtree is not allowed in PrimitiveTree." " A tree is defined as incomplete when some nodes cannot" " be mapped to any position in the tree, considering the" " primitives' arity. For instance, the tree [sub, 4, 5," " 6] is incomplete if the arity of sub is 2, because it" " would produce an orphan node (the 6).") elif val.arity != self[key].arity: raise ValueError("Invalid node replacement with a node of a" " different arity.") list.__setitem__(self, key, val) def __str__(self): """Return the expression in a human readable string. """ string = "" stack = [] for node in self: stack.append((node, [])) while len(stack[-1][1]) == stack[-1][0].arity: prim, args = stack.pop() string = prim.format(*args) if len(stack) == 0: break # If stack is empty, all nodes should have been seen stack[-1][1].append(string) return string @classmethod def from_string(cls, string, pset): """Try to convert a string expression into a PrimitiveTree given a PrimitiveSet *pset*. The primitive set needs to contain every primitive present in the expression. :param string: String representation of a Python expression. :param pset: Primitive set from which primitives are selected. :returns: PrimitiveTree populated with the deserialized primitives. """ tokens = re.split("[ \t\n\r\f\v(),]", string) expr = [] ret_types = deque() for token in tokens: if token == '': continue if len(ret_types) != 0: type_ = ret_types.popleft() else: type_ = None if token in pset.mapping: primitive = pset.mapping[token] if type_ is not None and not issubclass(primitive.ret, type_): raise TypeError("Primitive {} return type {} does not " "match the expected one: {}." .format(primitive, primitive.ret, type_)) expr.append(primitive) if isinstance(primitive, Primitive): ret_types.extendleft(reversed(primitive.args)) else: try: token = eval(token) except NameError: raise TypeError("Unable to evaluate terminal: {}.".format(token)) if type_ is None: type_ = type(token) if not issubclass(type(token), type_): raise TypeError("Terminal {} type {} does not " "match the expected one: {}." .format(token, type(token), type_)) expr.append(Terminal(token, False, type_)) return cls(expr) @property def height(self): """Return the height of the tree, or the depth of the deepest node. """ stack = [0] max_depth = 0 for elem in self: depth = stack.pop() max_depth = max(max_depth, depth) stack.extend([depth + 1] * elem.arity) return max_depth @property def root(self): """Root of the tree, the element 0 of the list. """ return self[0] def searchSubtree(self, begin): """Return a slice object that corresponds to the range of values that defines the subtree which has the element with index *begin* as its root. """ end = begin + 1 total = self[begin].arity while total > 0: total += self[end].arity - 1 end += 1 return slice(begin, end) class Primitive(object): """Class that encapsulates a primitive and when called with arguments it returns the Python code to call the primitive with the arguments. >>> pr = Primitive("mul", (int, int), int) >>> pr.format(1, 2) 'mul(1, 2)' """ __slots__ = ('name', 'arity', 'args', 'ret', 'seq') def __init__(self, name, args, ret): self.name = name self.arity = len(args) self.args = args self.ret = ret args = ", ".join(map("{{{0}}}".format, range(self.arity))) self.seq = "{name}({args})".format(name=self.name, args=args) def format(self, *args): return self.seq.format(*args) def __eq__(self, other): if type(self) is type(other): return all(getattr(self, slot) == getattr(other, slot) for slot in self.__slots__) else: return NotImplemented class Terminal(object): """Class that encapsulates terminal primitive in expression. Terminals can be values or 0-arity functions. """ __slots__ = ('name', 'value', 'ret', 'conv_fct') def __init__(self, terminal, symbolic, ret): self.ret = ret self.value = terminal self.name = str(terminal) self.conv_fct = str if symbolic else repr @property def arity(self): return 0 def format(self): return self.conv_fct(self.value) def __eq__(self, other): if type(self) is type(other): return all(getattr(self, slot) == getattr(other, slot) for slot in self.__slots__) else: return NotImplemented class Ephemeral(Terminal): """Class that encapsulates a terminal which value is set when the object is created. To mutate the value, a new object has to be generated. This is an abstract base class. When subclassing, a staticmethod 'func' must be defined. """ def __init__(self): Terminal.__init__(self, self.func(), symbolic=False, ret=self.ret) @staticmethod def func(): """Return a random value used to define the ephemeral state. """ raise NotImplementedError class PrimitiveSetTyped(object): """Class that contains the primitives that can be used to solve a Strongly Typed GP problem. The set also defined the researched function return type, and input arguments type and number. """ def __init__(self, name, in_types, ret_type, prefix="ARG"): self.terminals = defaultdict(list) self.primitives = defaultdict(list) self.arguments = [] # setting "__builtins__" to None avoid the context # being polluted by builtins function when evaluating # GP expression. self.context = {"__builtins__": None} self.mapping = dict() self.terms_count = 0 self.prims_count = 0 self.name = name self.ret = ret_type self.ins = in_types for i, type_ in enumerate(in_types): arg_str = "{prefix}{index}".format(prefix=prefix, index=i) self.arguments.append(arg_str) term = Terminal(arg_str, True, type_) self._add(term) self.terms_count += 1 def renameArguments(self, **kargs): """Rename function arguments with new names from *kargs*. """ for i, old_name in enumerate(self.arguments): if old_name in kargs: new_name = kargs[old_name] self.arguments[i] = new_name self.mapping[new_name] = self.mapping[old_name] self.mapping[new_name].value = new_name del self.mapping[old_name] def _add(self, prim): def addType(dict_, ret_type): if not ret_type in dict_: new_list = [] for type_, list_ in dict_.items(): if issubclass(type_, ret_type): for item in list_: if not item in new_list: new_list.append(item) dict_[ret_type] = new_list addType(self.primitives, prim.ret) addType(self.terminals, prim.ret) self.mapping[prim.name] = prim if isinstance(prim, Primitive): for type_ in prim.args: addType(self.primitives, type_) addType(self.terminals, type_) dict_ = self.primitives else: dict_ = self.terminals for type_ in dict_: if issubclass(prim.ret, type_): dict_[type_].append(prim) def addPrimitive(self, primitive, in_types, ret_type, name=None): """Add a primitive to the set. :param primitive: callable object or a function. :parma in_types: list of primitives arguments' type :param ret_type: type returned by the primitive. :param name: alternative name for the primitive instead of its __name__ attribute. """ if name is None: name = primitive.__name__ prim = Primitive(name, in_types, ret_type) assert name not in self.context or \ self.context[name] is primitive, \ "Primitives are required to have a unique name. " \ "Consider using the argument 'name' to rename your "\ "second '%s' primitive." % (name,) self._add(prim) self.context[prim.name] = primitive self.prims_count += 1 def addTerminal(self, terminal, ret_type, name=None): """Add a terminal to the set. Terminals can be named using the optional *name* argument. This should be used : to define named constant (i.e.: pi); to speed the evaluation time when the object is long to build; when the object does not have a __repr__ functions that returns the code to build the object; when the object class is not a Python built-in. :param terminal: Object, or a function with no arguments. :param ret_type: Type of the terminal. :param name: defines the name of the terminal in the expression. """ symbolic = False if name is None and callable(terminal): name = terminal.__name__ assert name not in self.context, \ "Terminals are required to have a unique name. " \ "Consider using the argument 'name' to rename your "\ "second %s terminal." % (name,) if name is not None: self.context[name] = terminal terminal = name symbolic = True elif terminal in (True, False): # To support True and False terminals with Python 2. self.context[str(terminal)] = terminal prim = Terminal(terminal, symbolic, ret_type) self._add(prim) self.terms_count += 1 def addEphemeralConstant(self, name, ephemeral, ret_type): """Add an ephemeral constant to the set. An ephemeral constant is a no argument function that returns a random value. The value of the constant is constant for a Tree, but may differ from one Tree to another. :param name: name used to refers to this ephemeral type. :param ephemeral: function with no arguments returning a random value. :param ret_type: type of the object returned by *ephemeral*. """ module_gp = globals() if not name in module_gp: class_ = type(name, (Ephemeral,), {'func': staticmethod(ephemeral), 'ret': ret_type}) module_gp[name] = class_ else: class_ = module_gp[name] if issubclass(class_, Ephemeral): if class_.func is not ephemeral: raise Exception("Ephemerals with different functions should " "be named differently, even between psets.") elif class_.ret is not ret_type: raise Exception("Ephemerals with the same name and function " "should have the same type, even between psets.") else: raise Exception("Ephemerals should be named differently " "than classes defined in the gp module.") self._add(class_) self.terms_count += 1 def addADF(self, adfset): """Add an Automatically Defined Function (ADF) to the set. :param adfset: PrimitiveSetTyped containing the primitives with which the ADF can be built. """ prim = Primitive(adfset.name, adfset.ins, adfset.ret) self._add(prim) self.prims_count += 1 @property def terminalRatio(self): """Return the ratio of the number of terminals on the number of all kind of primitives. """ return self.terms_count / float(self.terms_count + self.prims_count) class PrimitiveSet(PrimitiveSetTyped): """Class same as :class:`~deap.gp.PrimitiveSetTyped`, except there is no definition of type. """ def __init__(self, name, arity, prefix="ARG"): args = [__type__] * arity PrimitiveSetTyped.__init__(self, name, args, __type__, prefix) def addPrimitive(self, primitive, arity, name=None): """Add primitive *primitive* with arity *arity* to the set. If a name *name* is provided, it will replace the attribute __name__ attribute to represent/identify the primitive. """ assert arity > 0, "arity should be >= 1" args = [__type__] * arity PrimitiveSetTyped.addPrimitive(self, primitive, args, __type__, name) def addTerminal(self, terminal, name=None): """Add a terminal to the set.""" PrimitiveSetTyped.addTerminal(self, terminal, __type__, name) def addEphemeralConstant(self, name, ephemeral): """Add an ephemeral constant to the set.""" PrimitiveSetTyped.addEphemeralConstant(self, name, ephemeral, __type__) ###################################### # GP Tree compilation functions # ###################################### def compile(expr, pset): """Compile the expression *expr*. :param expr: Expression to compile. It can either be a PrimitiveTree, a string of Python code or any object that when converted into string produced a valid Python code expression. :param pset: Primitive set against which the expression is compile. :returns: a function if the primitive set has 1 or more arguments, or return the results produced by evaluating the tree. """ code = str(expr) if len(pset.arguments) > 0: # This section is a stripped version of the lambdify # function of SymPy 0.6.6. args = ",".join(arg for arg in pset.arguments) code = "lambda {args}: {code}".format(args=args, code=code) try: return eval(code, pset.context, {}) except MemoryError: _, _, traceback = sys.exc_info() raise MemoryError, ("DEAP : Error in tree evaluation :" " Python cannot evaluate a tree higher than 90. " "To avoid this problem, you should use bloat control on your " "operators. See the DEAP documentation for more information. " "DEAP will now abort."), traceback def compileADF(expr, psets): """Compile the expression represented by a list of trees. The first element of the list is the main tree, and the following elements are automatically defined functions (ADF) that can be called by the first tree. :param expr: Expression to compile. It can either be a PrimitiveTree, a string of Python code or any object that when converted into string produced a valid Python code expression. :param psets: List of primitive sets. Each set corresponds to an ADF while the last set is associated with the expression and should contain reference to the preceding ADFs. :returns: a function if the main primitive set has 1 or more arguments, or return the results produced by evaluating the tree. """ adfdict = {} func = None for pset, subexpr in reversed(zip(psets, expr)): pset.context.update(adfdict) func = compile(subexpr, pset) adfdict.update({pset.name: func}) return func ###################################### # GP Program generation functions # ###################################### def genFull(pset, min_, max_, type_=None): """Generate an expression where each leaf has a the same depth between *min* and *max*. :param pset: Primitive set from which primitives are selected. :param min_: Minimum height of the produced trees. :param max_: Maximum Height of the produced trees. :param type_: The type that should return the tree when called, when :obj:`None` (default) the type of :pset: (pset.ret) is assumed. :returns: A full tree with all leaves at the same depth. """ def condition(height, depth): """Expression generation stops when the depth is equal to height.""" return depth == height return generate(pset, min_, max_, condition, type_) def genGrow(pset, min_, max_, type_=None): """Generate an expression where each leaf might have a different depth between *min* and *max*. :param pset: Primitive set from which primitives are selected. :param min_: Minimum height of the produced trees. :param max_: Maximum Height of the produced trees. :param type_: The type that should return the tree when called, when :obj:`None` (default) the type of :pset: (pset.ret) is assumed. :returns: A grown tree with leaves at possibly different depths. """ def condition(height, depth): """Expression generation stops when the depth is equal to height or when it is randomly determined that a a node should be a terminal. """ return depth == height or \ (depth >= min_ and random.random() < pset.terminalRatio) return generate(pset, min_, max_, condition, type_) def genHalfAndHalf(pset, min_, max_, type_=None): """Generate an expression with a PrimitiveSet *pset*. Half the time, the expression is generated with :func:`~deap.gp.genGrow`, the other half, the expression is generated with :func:`~deap.gp.genFull`. :param pset: Primitive set from which primitives are selected. :param min_: Minimum height of the produced trees. :param max_: Maximum Height of the produced trees. :param type_: The type that should return the tree when called, when :obj:`None` (default) the type of :pset: (pset.ret) is assumed. :returns: Either, a full or a grown tree. """ method = random.choice((genGrow, genFull)) return method(pset, min_, max_, type_) def genRamped(pset, min_, max_, type_=None): """ .. deprecated:: 1.0 The function has been renamed. Use :func:`~deap.gp.genHalfAndHalf` instead. """ warnings.warn("gp.genRamped has been renamed. Use genHalfAndHalf instead.", FutureWarning) return genHalfAndHalf(pset, min_, max_, type_) def generate(pset, min_, max_, condition, type_=None): """Generate a Tree as a list of list. The tree is build from the root to the leaves, and it stop growing when the condition is fulfilled. :param pset: Primitive set from which primitives are selected. :param min_: Minimum height of the produced trees. :param max_: Maximum Height of the produced trees. :param condition: The condition is a function that takes two arguments, the height of the tree to build and the current depth in the tree. :param type_: The type that should return the tree when called, when :obj:`None` (default) the type of :pset: (pset.ret) is assumed. :returns: A grown tree with leaves at possibly different depths dependending on the condition function. """ if type_ is None: type_ = pset.ret expr = [] height = random.randint(min_, max_) stack = [(0, type_)] while len(stack) != 0: depth, type_ = stack.pop() if condition(height, depth): try: term = random.choice(pset.terminals[type_]) except IndexError: _, _, traceback = sys.exc_info() raise IndexError, "The gp.generate function tried to add "\ "a terminal of type '%s', but there is "\ "none available." % (type_,), traceback if isclass(term): term = term() expr.append(term) else: try: prim = random.choice(pset.primitives[type_]) except IndexError: _, _, traceback = sys.exc_info() raise IndexError, "The gp.generate function tried to add "\ "a primitive of type '%s', but there is "\ "none available." % (type_,), traceback expr.append(prim) for arg in reversed(prim.args): stack.append((depth + 1, arg)) return expr ###################################### # GP Crossovers # ###################################### def cxOnePoint(ind1, ind2): """Randomly select in each individual and exchange each subtree with the point as root between each individual. :param ind1: First tree participating in the crossover. :param ind2: Second tree participating in the crossover. :returns: A tuple of two trees. """ if len(ind1) < 2 or len(ind2) < 2: # No crossover on single node tree return ind1, ind2 # List all available primitive types in each individual types1 = defaultdict(list) types2 = defaultdict(list) if ind1.root.ret == __type__: # Not STGP optimization types1[__type__] = xrange(1, len(ind1)) types2[__type__] = xrange(1, len(ind2)) common_types = [__type__] else: for idx, node in enumerate(ind1[1:], 1): types1[node.ret].append(idx) for idx, node in enumerate(ind2[1:], 1): types2[node.ret].append(idx) common_types = set(types1.keys()).intersection(set(types2.keys())) if len(common_types) > 0: type_ = random.choice(list(common_types)) index1 = random.choice(types1[type_]) index2 = random.choice(types2[type_]) slice1 = ind1.searchSubtree(index1) slice2 = ind2.searchSubtree(index2) ind1[slice1], ind2[slice2] = ind2[slice2], ind1[slice1] return ind1, ind2 def cxOnePointLeafBiased(ind1, ind2, termpb): """Randomly select crossover point in each individual and exchange each subtree with the point as root between each individual. :param ind1: First typed tree participating in the crossover. :param ind2: Second typed tree participating in the crossover. :param termpb: The probability of chosing a terminal node (leaf). :returns: A tuple of two typed trees. When the nodes are strongly typed, the operator makes sure the second node type corresponds to the first node type. The parameter *termpb* sets the probability to choose between a terminal or non-terminal crossover point. For instance, as defined by Koza, non- terminal primitives are selected for 90% of the crossover points, and terminals for 10%, so *termpb* should be set to 0.1. """ if len(ind1) < 2 or len(ind2) < 2: # No crossover on single node tree return ind1, ind2 # Determine wether we keep terminals or primitives for each individual terminal_op = partial(eq, 0) primitive_op = partial(lt, 0) arity_op1 = terminal_op if random.random() < termpb else primitive_op arity_op2 = terminal_op if random.random() < termpb else primitive_op # List all available primitive or terminal types in each individual types1 = defaultdict(list) types2 = defaultdict(list) for idx, node in enumerate(ind1[1:], 1): if arity_op1(node.arity): types1[node.ret].append(idx) for idx, node in enumerate(ind2[1:], 1): if arity_op2(node.arity): types2[node.ret].append(idx) common_types = set(types1.keys()).intersection(set(types2.keys())) if len(common_types) > 0: # Set does not support indexing type_ = random.sample(common_types, 1)[0] index1 = random.choice(types1[type_]) index2 = random.choice(types2[type_]) slice1 = ind1.searchSubtree(index1) slice2 = ind2.searchSubtree(index2) ind1[slice1], ind2[slice2] = ind2[slice2], ind1[slice1] return ind1, ind2 ###################################### # GP Mutations # ###################################### def mutUniform(individual, expr, pset): """Randomly select a point in the tree *individual*, then replace the subtree at that point as a root by the expression generated using method :func:`expr`. :param individual: The tree to be mutated. :param expr: A function object that can generate an expression when called. :returns: A tuple of one tree. """ index = random.randrange(len(individual)) slice_ = individual.searchSubtree(index) type_ = individual[index].ret individual[slice_] = expr(pset=pset, type_=type_) return individual, def mutNodeReplacement(individual, pset): """Replaces a randomly chosen primitive from *individual* by a randomly chosen primitive with the same number of arguments from the :attr:`pset` attribute of the individual. :param individual: The normal or typed tree to be mutated. :returns: A tuple of one tree. """ if len(individual) < 2: return individual, index = random.randrange(1, len(individual)) node = individual[index] if node.arity == 0: # Terminal term = random.choice(pset.terminals[node.ret]) if isclass(term): term = term() individual[index] = term else: # Primitive prims = [p for p in pset.primitives[node.ret] if p.args == node.args] individual[index] = random.choice(prims) return individual, def mutEphemeral(individual, mode): """This operator works on the constants of the tree *individual*. In *mode* ``"one"``, it will change the value of one of the individual ephemeral constants by calling its generator function. In *mode* ``"all"``, it will change the value of **all** the ephemeral constants. :param individual: The normal or typed tree to be mutated. :param mode: A string to indicate to change ``"one"`` or ``"all"`` ephemeral constants. :returns: A tuple of one tree. """ if mode not in ["one", "all"]: raise ValueError("Mode must be one of \"one\" or \"all\"") ephemerals_idx = [index for index, node in enumerate(individual) if isinstance(node, Ephemeral)] if len(ephemerals_idx) > 0: if mode == "one": ephemerals_idx = (random.choice(ephemerals_idx),) for i in ephemerals_idx: individual[i] = type(individual[i])() return individual, def mutInsert(individual, pset): """Inserts a new branch at a random position in *individual*. The subtree at the chosen position is used as child node of the created subtree, in that way, it is really an insertion rather than a replacement. Note that the original subtree will become one of the children of the new primitive inserted, but not perforce the first (its position is randomly selected if the new primitive has more than one child). :param individual: The normal or typed tree to be mutated. :returns: A tuple of one tree. """ index = random.randrange(len(individual)) node = individual[index] slice_ = individual.searchSubtree(index) choice = random.choice # As we want to keep the current node as children of the new one, # it must accept the return value of the current node primitives = [p for p in pset.primitives[node.ret] if node.ret in p.args] if len(primitives) == 0: return individual, new_node = choice(primitives) new_subtree = [None] * len(new_node.args) position = choice([i for i, a in enumerate(new_node.args) if a == node.ret]) for i, arg_type in enumerate(new_node.args): if i != position: term = choice(pset.terminals[arg_type]) if isclass(term): term = term() new_subtree[i] = term new_subtree[position:position + 1] = individual[slice_] new_subtree.insert(0, new_node) individual[slice_] = new_subtree return individual, def mutShrink(individual): """This operator shrinks the *individual* by chosing randomly a branch and replacing it with one of the branch's arguments (also randomly chosen). :param individual: The tree to be shrinked. :returns: A tuple of one tree. """ # We don't want to "shrink" the root if len(individual) < 3 or individual.height <= 1: return individual, iprims = [] for i, node in enumerate(individual[1:], 1): if isinstance(node, Primitive) and node.ret in node.args: iprims.append((i, node)) if len(iprims) != 0: index, prim = random.choice(iprims) arg_idx = random.choice([i for i, type_ in enumerate(prim.args) if type_ == prim.ret]) rindex = index + 1 for _ in range(arg_idx + 1): rslice = individual.searchSubtree(rindex) subtree = individual[rslice] rindex += len(subtree) slice_ = individual.searchSubtree(index) individual[slice_] = subtree return individual, ###################################### # GP bloat control decorators # ###################################### def staticLimit(key, max_value): """Implement a static limit on some measurement on a GP tree, as defined by Koza in [Koza1989]. It may be used to decorate both crossover and mutation operators. When an invalid (over the limit) child is generated, it is simply replaced by one of its parents, randomly selected. This operator can be used to avoid memory errors occuring when the tree gets higher than 90 levels (as Python puts a limit on the call stack depth), because it can ensure that no tree higher than this limit will ever be accepted in the population, except if it was generated at initialization time. :param key: The function to use in order the get the wanted value. For instance, on a GP tree, ``operator.attrgetter('height')`` may be used to set a depth limit, and ``len`` to set a size limit. :param max_value: The maximum value allowed for the given measurement. :returns: A decorator that can be applied to a GP operator using \ :func:`~deap.base.Toolbox.decorate` .. note:: If you want to reproduce the exact behavior intended by Koza, set *key* to ``operator.attrgetter('height')`` and *max_value* to 17. .. [Koza1989] J.R. Koza, Genetic Programming - On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, MA, 1992) """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): keep_inds = [copy.deepcopy(ind) for ind in args] new_inds = list(func(*args, **kwargs)) for i, ind in enumerate(new_inds): if key(ind) > max_value: new_inds[i] = random.choice(keep_inds) return new_inds return wrapper return decorator ###################################### # GP bloat control algorithms # ###################################### def harm(population, toolbox, cxpb, mutpb, ngen, alpha, beta, gamma, rho, nbrindsmodel=-1, mincutoff=20, stats=None, halloffame=None, verbose=__debug__): """Implement bloat control on a GP evolution using HARM-GP, as defined in [Gardner2015]. It is implemented in the form of an evolution algorithm (similar to :func:`~deap.algorithms.eaSimple`). :param population: A list of individuals. :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution operators. :param cxpb: The probability of mating two individuals. :param mutpb: The probability of mutating an individual. :param ngen: The number of generation. :param alpha: The HARM *alpha* parameter. :param beta: The HARM *beta* parameter. :param gamma: The HARM *gamma* parameter. :param rho: The HARM *rho* parameter. :param nbrindsmodel: The number of individuals to generate in order to model the natural distribution. -1 is a special value which uses the equation proposed in [Gardner2015] to set the value of this parameter : max(2000, len(population)) :param mincutoff: The absolute minimum value for the cutoff point. It is used to ensure that HARM does not shrink the population too much at the beginning of the evolution. The default value is usually fine. :param stats: A :class:`~deap.tools.Statistics` object that is updated inplace, optional. :param halloffame: A :class:`~deap.tools.HallOfFame` object that will contain the best individuals, optional. :param verbose: Whether or not to log the statistics. :returns: The final population :returns: A class:`~deap.tools.Logbook` with the statistics of the evolution This function expects the :meth:`toolbox.mate`, :meth:`toolbox.mutate`, :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be registered in the toolbox. .. note:: The recommended values for the HARM-GP parameters are *alpha=0.05*, *beta=10*, *gamma=0.25*, *rho=0.9*. However, these parameters can be adjusted to perform better on a specific problem (see the relevant paper for tuning information). The number of individuals used to model the natural distribution and the minimum cutoff point are less important, their default value being effective in most cases. .. [Gardner2015] M.-A. Gardner, C. Gagne, and M. Parizeau, Controlling Code Growth by Dynamically Shaping the Genotype Size Distribution, Genetic Programming and Evolvable Machines, 2015, DOI 10.1007/s10710-015-9242-8 """ def _genpop(n, pickfrom=[], acceptfunc=lambda s: True, producesizes=False): # Generate a population of n individuals, using individuals in # *pickfrom* if possible, with a *acceptfunc* acceptance function. # If *producesizes* is true, also return a list of the produced # individuals sizes. # This function is used 1) to generate the natural distribution # (in this case, pickfrom and acceptfunc should be let at their # default values) and 2) to generate the final population, in which # case pickfrom should be the natural population previously generated # and acceptfunc a function implementing the HARM-GP algorithm. producedpop = [] producedpopsizes = [] while len(producedpop) < n: if len(pickfrom) > 0: # If possible, use the already generated # individuals (more efficient) aspirant = pickfrom.pop() if acceptfunc(len(aspirant)): producedpop.append(aspirant) if producesizes: producedpopsizes.append(len(aspirant)) else: opRandom = random.random() if opRandom < cxpb: # Crossover aspirant1, aspirant2 = toolbox.mate(*map(toolbox.clone, toolbox.select(population, 2))) del aspirant1.fitness.values, aspirant2.fitness.values if acceptfunc(len(aspirant1)): producedpop.append(aspirant1) if producesizes: producedpopsizes.append(len(aspirant1)) if len(producedpop) < n and acceptfunc(len(aspirant2)): producedpop.append(aspirant2) if producesizes: producedpopsizes.append(len(aspirant2)) else: aspirant = toolbox.clone(toolbox.select(population, 1)[0]) if opRandom - cxpb < mutpb: # Mutation aspirant = toolbox.mutate(aspirant)[0] del aspirant.fitness.values if acceptfunc(len(aspirant)): producedpop.append(aspirant) if producesizes: producedpopsizes.append(len(aspirant)) if producesizes: return producedpop, producedpopsizes else: return producedpop halflifefunc = lambda x: (x * float(alpha) + beta) if nbrindsmodel == -1: nbrindsmodel = max(2000, len(population)) logbook = tools.Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit if halloffame is not None: halloffame.update(population) record = stats.compile(population) if stats else {} logbook.record(gen=0, nevals=len(invalid_ind), **record) if verbose: print logbook.stream # Begin the generational process for gen in range(1, ngen + 1): # Estimation population natural distribution of sizes naturalpop, naturalpopsizes = _genpop(nbrindsmodel, producesizes=True) naturalhist = [0] * (max(naturalpopsizes) + 3) for indsize in naturalpopsizes: # Kernel density estimation application naturalhist[indsize] += 0.4 naturalhist[indsize - 1] += 0.2 naturalhist[indsize + 1] += 0.2 naturalhist[indsize + 2] += 0.1 if indsize - 2 >= 0: naturalhist[indsize - 2] += 0.1 # Normalization naturalhist = [val * len(population) / nbrindsmodel for val in naturalhist] # Cutoff point selection sortednatural = sorted(naturalpop, key=lambda ind: ind.fitness) cutoffcandidates = sortednatural[int(len(population) * rho - 1):] # Select the cutoff point, with an absolute minimum applied # to avoid weird cases in the first generations cutoffsize = max(mincutoff, len(min(cutoffcandidates, key=len))) # Compute the target distribution targetfunc = lambda x: (gamma * len(population) * math.log(2) / halflifefunc(x)) * math.exp(-math.log(2) * (x - cutoffsize) / halflifefunc(x)) targethist = [naturalhist[binidx] if binidx <= cutoffsize else targetfunc(binidx) for binidx in range(len(naturalhist))] # Compute the probabilities distribution probhist = [t / n if n > 0 else t for n, t in zip(naturalhist, targethist)] probfunc = lambda s: probhist[s] if s < len(probhist) else targetfunc(s) acceptfunc = lambda s: random.random() <= probfunc(s) # Generate offspring using the acceptance probabilities # previously computed offspring = _genpop(len(population), pickfrom=naturalpop, acceptfunc=acceptfunc, producesizes=False) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(offspring) # Replace the current population by the offspring population[:] = offspring # Append the current generation statistics to the logbook record = stats.compile(population) if stats else {} logbook.record(gen=gen, nevals=len(invalid_ind), **record) if verbose: print logbook.stream return population, logbook def graph(expr): """Construct the graph of a tree expression. The tree expression must be valid. It returns in order a node list, an edge list, and a dictionary of the per node labels. The node are represented by numbers, the edges are tuples connecting two nodes (number), and the labels are values of a dictionary for which keys are the node numbers. :param expr: A tree expression to convert into a graph. :returns: A node list, an edge list, and a dictionary of labels. The returned objects can be used directly to populate a `pygraphviz <http://networkx.lanl.gov/pygraphviz/>`_ graph:: import pygraphviz as pgv # [...] Execution of code that produce a tree expression nodes, edges, labels = graph(expr) g = pgv.AGraph() g.add_nodes_from(nodes) g.add_edges_from(edges) g.layout(prog="dot") for i in nodes: n = g.get_node(i) n.attr["label"] = labels[i] g.draw("tree.pdf") or a `NetworX <http://networkx.github.com/>`_ graph:: import matplotlib.pyplot as plt import networkx as nx # [...] Execution of code that produce a tree expression nodes, edges, labels = graph(expr) g = nx.Graph() g.add_nodes_from(nodes) g.add_edges_from(edges) pos = nx.graphviz_layout(g, prog="dot") nx.draw_networkx_nodes(g, pos) nx.draw_networkx_edges(g, pos) nx.draw_networkx_labels(g, pos, labels) plt.show() .. note:: We encourage you to use `pygraphviz <http://networkx.lanl.gov/pygraphviz/>`_ as the nodes might be plotted out of order when using `NetworX <http://networkx.github.com/>`_. """ nodes = range(len(expr)) edges = list() labels = dict() stack = [] for i, node in enumerate(expr): if stack: edges.append((stack[-1][0], i)) stack[-1][1] -= 1 labels[i] = node.name if isinstance(node, Primitive) else node.value stack.append([i, node.arity]) while stack and stack[-1][1] == 0: stack.pop() return nodes, edges, labels if __name__ == "__main__": import doctest doctest.testmod()
lgpl-3.0
kdebrab/pandas
scripts/find_undoc_args.py
5
5098
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Script that compares the signature arguments with the ones in the docsting and returns the differences in plain text or GitHub task list format. Usage:: $ ./find_undoc_args.py (see arguments below) """ from __future__ import print_function import sys from collections import namedtuple import types import os import re import argparse import inspect parser = argparse.ArgumentParser(description='Program description.') parser.add_argument('-p', '--path', metavar='PATH', type=str, required=False, default=None, action='store', help='full path relative to which paths wills be reported') parser.add_argument('-m', '--module', metavar='MODULE', type=str, required=True, action='store', help='name of package to import and examine') parser.add_argument('-G', '--github_repo', metavar='REPO', type=str, required=False, default=None, action='store', help='github project where the code lives, ' 'e.g. "pandas-dev/pandas"') args = parser.parse_args() Entry = namedtuple('Entry', 'func path lnum undoc_names missing_args ' 'nsig_names ndoc_names') def entry_gen(root_ns, module_name): """Walk and yield all methods and functions in the module root_ns and submodules.""" q = [root_ns] seen = set() while q: ns = q.pop() for x in dir(ns): cand = getattr(ns, x) if (isinstance(cand, types.ModuleType) and cand.__name__ not in seen and cand.__name__.startswith(module_name)): seen.add(cand.__name__) q.insert(0, cand) elif (isinstance(cand, (types.MethodType, types.FunctionType)) and cand not in seen and cand.__doc__): seen.add(cand) yield cand def cmp_docstring_sig(f): """Return an `Entry` object describing the differences between the arguments in the signature and the documented ones.""" def build_loc(f): path = f.__code__.co_filename.split(args.path, 1)[-1][1:] return dict(path=path, lnum=f.__code__.co_firstlineno) sig_names = set(inspect.getargspec(f).args) # XXX numpydoc can be used to get the list of parameters doc = f.__doc__.lower() doc = re.split('^\s*parameters\s*', doc, 1, re.M)[-1] doc = re.split('^\s*returns*', doc, 1, re.M)[0] doc_names = {x.split(":")[0].strip() for x in doc.split('\n') if re.match('\s+[\w_]+\s*:', x)} sig_names.discard('self') doc_names.discard('kwds') doc_names.discard('kwargs') doc_names.discard('args') return Entry(func=f, path=build_loc(f)['path'], lnum=build_loc(f)['lnum'], undoc_names=sig_names.difference(doc_names), missing_args=doc_names.difference(sig_names), nsig_names=len(sig_names), ndoc_names=len(doc_names)) def format_id(i): return i def format_item_as_github_task_list(i, item, repo): tmpl = ('- [ ] {id_}) [{fname}:{lnum} ({func_name}())]({link}) - ' '__Missing__[{nmissing}/{total_args}]: {undoc_names}') link_tmpl = "https://github.com/{repo}/blob/master/{file}#L{lnum}" link = link_tmpl.format(repo=repo, file=item.path, lnum=item.lnum) s = tmpl.format(id_=i, fname=item.path, lnum=item.lnum, func_name=item.func.__name__, link=link, nmissing=len(item.undoc_names), total_args=item.nsig_names, undoc_names=list(item.undoc_names)) if item.missing_args: s += ' __Extra__(?): %s' % list(item.missing_args) return s def format_item_as_plain(i, item): tmpl = ('+{lnum} {path} {func_name}(): ' 'Missing[{nmissing}/{total_args}]={undoc_names}') s = tmpl.format(path=item.path, lnum=item.lnum, func_name=item.func.__name__, nmissing=len(item.undoc_names), total_args=item.nsig_names, undoc_names=list(item.undoc_names)) if item.missing_args: s += ' Extra(?)=%s' % list(item.missing_args) return s def main(): module = __import__(args.module) if not args.path: args.path = os.path.dirname(module.__file__) collect = [cmp_docstring_sig(e) for e in entry_gen(module, module.__name__)] # only include if there are missing arguments in the docstring # (fewer false positives) and there are at least some documented arguments collect = [e for e in collect if e.undoc_names and len(e.undoc_names) != e.nsig_names] collect.sort(key=lambda x: x.path) if args.github_repo: for i, item in enumerate(collect, 1): print(format_item_as_github_task_list(i, item, args.github_repo)) else: for i, item in enumerate(collect, 1): print(format_item_as_plain(i, item)) if __name__ == '__main__': sys.exit(main())
bsd-3-clause
Mecanon/morphing_wing
dynamic_model/results/flexinol_SMA/config_C/max_deflection/power_usage_2.py
3
11206
# -*- coding: utf-8 -*- """ Analyze the heating, current and power usage of teh actuation Created on Thu Apr 28 09:56:23 2016 @author: Pedro Leal """ import math import numpy as np import pickle import matplotlib.pyplot as plt #Time step delta_t = 0.005 sigma_o = 100e6 r = 0.000381/2. d = 2*r alpha = 0. #set to zero on purpose c = 837.36 rho = 6450. #Transformation strain properties H_max = 0.0550 H_min = 0.0387 sigma_crit = 0 k = 4.6849e-09 rho_E_M = 0.8e-6 #Dynalloy rho_E_A = 1.0e-6 #Dynalloy E_A = 3.7427e+10 E_M = 8.8888e+10 C_A = 7.9498e+06 C_M = 7.1986e+06 M_s = 363.5013 M_f = 297.9735 A_s = 324.6427 A_f = 385.0014 n1 = 0.1752 n2 = 0.1789 n3 = 0.1497 n4 = 0.2935 sigma_cal = 200E6 #Load data Data = pickle.load(open( "data.p", "rb" )) sigma = Data['sigma'] T = Data['T'] xi = Data['xi'] eps_s = Data['eps_s'] L_s = Data['L_s'] T_o = T[0] n = len(eps_s) #============================================================================== # Calculate output work #============================================================================== W_list = [] deltaW_list = [] Total_work = 0 total_work_list = [] for i in range(1, n): delta_eps = abs(eps_s[i] - eps_s[i-1]) delta_sigma = abs(sigma[i] - sigma[i-1]) # avg_eps = abs(eps_s[i] + eps_s[i-1])/2. # avg_sigma = abs(sigma[i] + sigma[i-1])/2. av_eps = (eps_s[i] + eps_s[i-1])/2. av_sigma = (sigma[i] + sigma[i-1])/2. dW = math.pi*r**2*L_s[0]*0.5*(sigma[i]+sigma[i-1])*delta_eps deltaW = math.pi*r**2*L_s[0]*(eps_s[i]*delta_sigma/delta_t + sigma[i]*delta_eps/delta_t) W_list.append(dW) deltaW_list.append(deltaW) Total_work += deltaW total_work_list.append(Total_work) Total_work = sum(W_list)*delta_t Total_delta = sum(deltaW_list)*delta_t #print Total_delta plt.figure() plt.plot(eps_s) plt.figure() plt.plot(sigma) #============================================================================== # Calculate input heat for different h #============================================================================== h_list = np.linspace(0,100., 6) P_h_list = [] total_power_list = [] for j in range(len(h_list)): h = h_list[j] P_list = [] I_list = [] a = 0 b = 0 for i in range(1, n): delta_sigma = sigma[i] - sigma[i-1] delta_T = T[i] - T[i-1] delta_xi = xi[i] - xi[i-1] rho_E = rho_E_M*xi[i] + (1-xi[i])*rho_E_A if abs(sigma[i]) <= sigma_crit: dH_cur = 0 else: dH_cur = k*(H_max-H_min)*math.exp(-k*(abs(sigma[i])-sigma_crit))*np.sign(sigma[i]) H_cur = H_min + (H_max - H_min)*(1. - math.exp(-k*(abs(sigma_o) - sigma_crit))) H_cur_cal = H_min + (H_max - H_min)*(1. - math.exp(-k*(abs(sigma_cal) - sigma_crit))) rho_delta_s0 = (-2*(C_M*C_A)*(H_cur_cal + sigma_cal*dH_cur + sigma_cal*(1/E_M - 1/E_A)))/(C_M + C_A) a1 = rho_delta_s0*(M_f - M_s) a2 = rho_delta_s0*(A_s - A_f) a3 = -a1/4 * (1 + 1/(n1+1) - 1/(n2+1)) + a2/4 * (1+1/(n3+1) - 1/(n4+1)) Y_0_t = rho_delta_s0/2*(M_s - A_f) - a3 D = ((C_M - C_A)*(H_cur_cal + sigma_cal*dH_cur + sigma_cal*(1/E_M - 1/E_A)))/((C_M + C_A)*(H_cur_cal+ sigma_cal*dH_cur)) pi_t = Y_0_t + D*abs(sigma[i])*H_cur #constant h I = r*math.pi*math.sqrt((r/rho_E)*((r/delta_t)*((T[i]*alpha*delta_sigma + \ rho*c*delta_T + delta_xi*(-pi_t + rho_delta_s0*T[i]) ) + \ 2.*h*(T[i] - T_o)))) P = math.pi*r**2*L_s[i]*((T[i]*alpha*delta_sigma + \ rho*c*delta_T + delta_xi*(-pi_t + rho_delta_s0*T[i]) )/delta_t + \ 2.*(h/r)*(T[i] - T_o)) print P, T[i]*alpha*delta_sigma, rho*c*delta_T, delta_xi*(-pi_t + rho_delta_s0*T[i]) a += rho*c*delta_T b += delta_xi*(-pi_t + rho_delta_s0*T[i]) # print a,b I_list.append(I) P_list.append(P) P_h_list.append(P_list) Total_power = 0 for i in range(len(P_list)-1): Total_power += delta_t*P_list[i] total_power_list.append(Total_power) t = np.linspace(0,(n-2)*delta_t, n-1) #plt.figure() #plt.plot(t, I_list, 'b') #plt.scatter(t, I_list, c = 'b') #plt.xlabel('Time (s)') #plt.ylabel('Current (A)') #plt.axis([min(t) - 0.02*(max(t)-min(t)), max(t)+ 0.02*(max(t)-min(t)), # min(I_list) - 0.02*(max(I_list)-min(I_list)), # max(I_list) + 0.02*(max(I_list)-min(I_list))]) #plt.grid() plt.figure() for i in range(len(h_list)): color=((1.-float(i)/(len(h_list)-1), float(i)/(len(h_list)-1),0, 1.)) plt.plot(t, P_h_list[i], label = 'h = ' + str(h_list[i]), color = color) plt.plot(t, deltaW_list, 'b', label = '$\dot{W}$') #plt.plot(t, W_list, 'b', label = '$\dot{W}$') #plt.scatter(t, P_list, c = 'b') plt.xlabel('Time (s)') plt.ylabel('Power (W)') #plt.axis([min(t) - 0.02*(max(t)-min(t)), max(t)+ 0.02*(max(t)-min(t)), # min(P_list) - 0.02*(max(P_list)-min(P_list)), # max(P_list) + 0.02*(max(P_list)-min(P_list))]) plt.grid() plt.legend(loc= 'upper left') plt.figure() plt.plot(h_list, total_power_list) plt.xlabel('Convection coefficient') plt.ylabel('Total power consumption (J)') plt.grid() plt.figure() plt.plot(h_list, 100.*Total_delta/np.array(total_power_list)) plt.xlabel('Convection coefficient $h$ ') plt.ylabel('Efficiency (%)') plt.grid() print 'Total adiabatic power is %f Joules' % total_power_list[0] print 'Total work is %f Joules' % Total_delta print 'Adiabatic efficiency is %f ' % (Total_delta/total_power_list[0]) #============================================================================== # Calculate input heat for different delta_t #============================================================================== delta_t_list = np.linspace(0.001,0.05, 50) #h = 10. h_dt_power_list = [] for i in range(len(h_list)): h = h_list[i] total_power_list = [] for j in range(len(delta_t_list)): delta_t = delta_t_list[j] P_list = [] I_list = [] a = 0 b = 0 for i in range(1, n): delta_sigma = sigma[i] - sigma[i-1] delta_T = T[i] - T[i-1] delta_xi = xi[i] - xi[i-1] rho_E = rho_E_M*xi[i] + (1-xi[i])*rho_E_A if abs(sigma[i]) <= sigma_crit: dH_cur = 0 else: dH_cur = k*(H_max-H_min)*math.exp(-k*(abs(sigma[i])-sigma_crit))*np.sign(sigma[i]) H_cur = H_min + (H_max - H_min)*(1. - math.exp(-k*(abs(sigma_o) - sigma_crit))) H_cur_cal = H_min + (H_max - H_min)*(1. - math.exp(-k*(abs(sigma_cal) - sigma_crit))) rho_delta_s0 = (-2*(C_M*C_A)*(H_cur_cal + sigma_cal*dH_cur + sigma_cal*(1/E_M - 1/E_A)))/(C_M + C_A) a1 = rho_delta_s0*(M_f - M_s) a2 = rho_delta_s0*(A_s - A_f) a3 = -a1/4 * (1 + 1/(n1+1) - 1/(n2+1)) + a2/4 * (1+1/(n3+1) - 1/(n4+1)) Y_0_t = rho_delta_s0/2*(M_s - A_f) - a3 D = ((C_M - C_A)*(H_cur_cal + sigma_cal*dH_cur + sigma_cal*(1/E_M - 1/E_A)))/((C_M + C_A)*(H_cur_cal+ sigma_cal*dH_cur)) pi_t = Y_0_t + D*abs(sigma[i])*H_cur #constant h I = r*math.pi*math.sqrt((r/rho_E)*((r/delta_t)*((T[i]*alpha*delta_sigma + \ rho*c*delta_T + delta_xi*(-pi_t + rho_delta_s0*T[i]) ) + \ 2.*h*(T[i] - T_o)))) P = math.pi*r**2*L_s[i]*((T[i]*alpha*delta_sigma + \ rho*c*delta_T + delta_xi*(-pi_t + rho_delta_s0*T[i]) )/delta_t + \ 2.*(h/r)*(T[i] - T_o)) a += rho*c*delta_T b += delta_xi*(-pi_t + rho_delta_s0*T[i]) # print a,b I_list.append(I) P_list.append(P) Total_power = 0 for i in range(len(P_list)-1): Total_power += delta_t*P_list[i] total_power_list.append(Total_power) h_dt_power_list.append(total_power_list) t = np.linspace(0,(n-2)*delta_t, n-1) plt.figure() for i in range(len(h_list)): # print len(h_dt_power_list) color=((1.-float(i)/(len(h_list)-1), float(i)/(len(h_list)-1),0, 1.)) plt.plot(delta_t_list, 100.*Total_delta/np.array(h_dt_power_list[i]), color = color, label= 'h = %.f' % h_list[i]) plt.xlabel('$\Delta t$ ') plt.ylabel('Efficiency (%)') plt.grid() plt.legend(loc='best') #============================================================================== # Calculate heat input for different T_o #============================================================================== delta_t = 0.05 h = 10. #invented (adiabatic) T_list = np.linspace(200,300., 5) P_T_list = [] total_power_list = [] for j in range(len(T_list)): T_o = T_list[j] P_list = [] I_list = [] for i in range(1, n): delta_sigma = sigma[i] - sigma[i-1] delta_T = T[i] - T[i-1] delta_xi = xi[i] - xi[i-1] rho_E = rho_E_M*xi[i] + (1-xi[i])*rho_E_A if abs(sigma[i]) <= sigma_crit: dH_cur = 0 else: dH_cur = k*(H_max-H_min)*math.exp(-k*(abs(sigma[i])-sigma_crit))*np.sign(sigma[i]) H_cur = H_min + (H_max - H_min)*(1. - math.exp(-k*(abs(sigma_o) - sigma_crit))) H_cur_cal = H_min + (H_max - H_min)*(1. - math.exp(-k*(abs(sigma_cal) - sigma_crit))) rho_delta_s0 = (-2*(C_M*C_A)*(H_cur_cal + sigma_cal*dH_cur + sigma_cal*(1/E_M - 1/E_A)))/(C_M + C_A) a1 = rho_delta_s0*(M_f - M_s) a2 = rho_delta_s0*(A_s - A_f) a3 = -a1/4 * (1 + 1/(n1+1) - 1/(n2+1)) + a2/4 * (1+1/(n3+1) - 1/(n4+1)) Y_0_t = rho_delta_s0/2*(M_s - A_f) - a3 D = ((C_M - C_A)*(H_cur_cal + sigma_cal*dH_cur + sigma_cal*(1/E_M - 1/E_A)))/((C_M + C_A)*(H_cur_cal+ sigma_cal*dH_cur)) pi_t = Y_0_t + D*abs(sigma[i])*H_cur #constant h # I = r*math.pi*math.sqrt((r/rho_E)*((r/delta_t)*((T[i]*alpha*delta_sigma + \ # rho*c*delta_T + delta_xi*(-pi_t + rho_delta_s0*T[i]) ) + \ # 2.*h*(T[i] - T_o)))) # P = math.pi*r**2*L_s[i]*((T[i]*alpha*delta_sigma + \ rho*c*delta_T + delta_xi*(-pi_t + rho_delta_s0*T[i]) )/delta_t + \ 2.*(h/r)*(T[i] - T_o)) I_list.append(I) P_list.append(P) P_T_list.append(P_list) Total_power = 0 for i in range(len(P_list)-1): Total_power += delta_t*(P_list[i] + P_list[i+1])/2. total_power_list.append(Total_power) plt.figure() for i in range(len(T_list)): color = ((1.-float(i)/(len(T_list)-1), float(i)/(len(T_list)-1),0, 1.)) plt.plot(t, P_T_list[i], 'b', label = '$T_o$ = ' + str(T_list[i]), color = color) #plt.scatter(t, P_list, c = 'b') plt.xlabel('Time (s)') plt.ylabel('Power (W)') #plt.axis([min(t) - 0.02*(max(t)-min(t)), max(t)+ 0.02*(max(t)-min(t)), # min(P_list) - 0.02*(max(P_list)-min(P_list)), # max(P_list) + 0.02*(max(P_list)-min(P_list))]) plt.grid() plt.legend(loc= 'upper left') plt.figure() plt.plot(T_list, total_power_list) plt.xlabel('Temperature (K)') plt.ylabel('Total power consumption (J)') plt.grid()
mit
h2educ/scikit-learn
examples/gaussian_process/gp_diabetes_dataset.py
223
1976
#!/usr/bin/python # -*- coding: utf-8 -*- """ ======================================================================== Gaussian Processes regression: goodness-of-fit on the 'diabetes' dataset ======================================================================== In this example, we fit a Gaussian Process model onto the diabetes dataset. We determine the correlation parameters with maximum likelihood estimation (MLE). We use an anisotropic squared exponential correlation model with a constant regression model. We also use a nugget of 1e-2 to account for the (strong) noise in the targets. We compute a cross-validation estimate of the coefficient of determination (R2) without reperforming MLE, using the set of correlation parameters found on the whole dataset. """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Licence: BSD 3 clause from sklearn import datasets from sklearn.gaussian_process import GaussianProcess from sklearn.cross_validation import cross_val_score, KFold # Load the dataset from scikit's data sets diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target # Instanciate a GP model gp = GaussianProcess(regr='constant', corr='absolute_exponential', theta0=[1e-4] * 10, thetaL=[1e-12] * 10, thetaU=[1e-2] * 10, nugget=1e-2, optimizer='Welch') # Fit the GP model to the data performing maximum likelihood estimation gp.fit(X, y) # Deactivate maximum likelihood estimation for the cross-validation loop gp.theta0 = gp.theta_ # Given correlation parameter = MLE gp.thetaL, gp.thetaU = None, None # None bounds deactivate MLE # Perform a cross-validation estimate of the coefficient of determination using # the cross_validation module using all CPUs available on the machine K = 20 # folds R2 = cross_val_score(gp, X, y=y, cv=KFold(y.size, K), n_jobs=1).mean() print("The %d-Folds estimate of the coefficient of determination is R2 = %s" % (K, R2))
bsd-3-clause
bmmalone/pymisc-utils
pyllars/sklearn_transformers/nan_standard_scaler.py
1
4256
import logging logger = logging.getLogger(__name__) import numpy as np import pandas as pd import sklearn.base import pyllars.validation_utils as validation_utils class NaNStandardScaler(sklearn.base.TransformerMixin): """ Scale the specified columns to zero mean and unit variance while ignoring np.nan's. This is expected to make more of a difference when there are many np.nan values which may incorrectly suggest a smaller empirical variance if just replaced by the mean. Additionally, this class maintains the presence of the np.nan's, so downstream tasks can handle them as appropriate. """ def __init__(self, columns=None): self.col_mean_ = None self.col_std_ = None self.columns = columns def fit(self, X, *_): if self.columns is None: if isinstance(X, pd.DataFrame): self.columns_ = X.columns elif isinstance(X, np.ndarray): if len(X.shape) == 1: X = X.reshape(-1, 1) self.columns_ = np.arange(X.shape[1]) else: self.columns_ = self.columns # now, actually grab the columns depending on the type of X if isinstance(X, pd.DataFrame): X_cols = X[self.columns_] elif isinstance(X, np.ndarray): X_cols = X[:,self.columns_] else: msg = ("[NanStandardScaler.fit]: unrecognized data type: {}". format(type(X))) raise ValueError(msg) ### # make sure we have numpy floats. we might not in cases where # the original data matrix contains mixed types (categorical and # numeric types) # # See this SO comment for more details: # https://stackoverflow.com/questions/18557337/ ### X_cols = X_cols.astype(float) self.col_mean_ = np.nanmean(X_cols, axis=0) self.col_std_ = np.nanstd(X_cols, axis=0) # we will not do anything with observations we see less than twice m_zero = self.col_std_ == 0 m_nan = np.isnan(self.col_std_) self.col_ignore_ = m_zero | m_nan # do this to avoid divide by zero warnings later self.col_mean_ = np.nan_to_num(self.col_mean_) self.col_std_[self.col_ignore_] = 1 return self def transform(self, X, *_): to_check = [ 'col_mean_', 'col_std_', 'columns_', 'col_ignore_', ] validation_utils.check_is_fitted(self, to_check) # if we did not see a column in the training, or if it had only one # value, we cannot really do anything with it # so ignore those # do not overwrite our original information X = X.copy() # now, actually grab the columns depending on the type of X if isinstance(X, pd.DataFrame): X_cols = X[self.columns_].copy() X_cols.iloc[:, self.col_ignore_] = 0 elif isinstance(X, np.ndarray): # check if we have a single vector if len(X.shape) == 1: #X[self.col_ignore_] = 0 X = X.reshape(-1, 1) X_cols = X[:,self.columns_] X_cols[:,self.col_ignore_] = 0 else: msg = ("[NanStandardScaler.transform]: unrecognized data type: {}". format(type(X))) raise ValueError(msg) X_transform = ((X_cols - self.col_mean_) / self.col_std_) # and stick the columns back if isinstance(X, pd.DataFrame): X[self.columns_] = X_transform else: X[:,self.columns_] = X_transform return X @classmethod def get_scaler(cls, means, stds): scaler = cls() num_features = means.shape[0] scaler.col_mean_ = means scaler.col_std_ = stds scaler.columns_ = np.arange(num_features) m_zero = scaler.col_std_ == 0 m_nan = np.isnan(scaler.col_std_) scaler.col_ignore_ = m_zero | m_nan scaler.col_mean_ = np.nan_to_num(scaler.col_mean_) scaler.col_std_[scaler.col_ignore_] = 1 return scaler
mit
gaoxianglong/oceanbase
oceanbase_0.4/tools/deploy/perf/1.py
12
1857
import datetime import re import sys try: import matplotlib.pyplot as plt except ImportError: plt = None time_format = "%Y-%m-%d %H:%M:%S" d = dict() start_time = None start_time = None sql_count = 0 sql_time = 0 sql_time_dist = dict() rpc_time = 0 urpc_time = 0 wait_time = 0 qps2time = dict() rpc_times = [] urpc_times = [] wait_times = [] for l in sys.stdin: m = re.search(r'trace_id=\[(\d+)\] sql=\[.*\] sql_to_logicalplan=\[\d+\] logicalplan_to_physicalplan=\[\d+\] handle_sql_time=\[(\d+)\] wait_sql_queue_time=\[(\d+)\] rpc:channel_id=\[\d+\] latency=\[(\d+)\] print_time=\[(\d+)\]', l) if m is not None: end_time = int(m.group(5)) if start_time is None: start_time = end_time trace_id = m.group(1) ts = m.group(5)[:-6] d[trace_id] = dict( sql_time = int(m.group(2)), wait_time = int(m.group(3)), rpc_time = int(m.group(4)), ) sql_count += 1 sql_time += d[trace_id]['sql_time'] if sql_time_dist.has_key(d[trace_id]['sql_time']): sql_time_dist[d[trace_id]['sql_time']] += 1 else: sql_time_dist[d[trace_id]['sql_time']] = 0 wait_time += d[trace_id]['wait_time'] wait_times.append(d[trace_id]['wait_time']) rpc_time += d[trace_id]['rpc_time'] rpc_times.append(d[trace_id]['rpc_time']) if qps2time.has_key(ts): qps2time[ts] += 1 else: qps2time[ts] = 0 elapsed_seconds = (end_time - start_time) / 10**6 qps = sql_count / elapsed_seconds avg_sql_time = float(sql_time) / sql_count avg_rpc_time = float(rpc_time) / sql_count avg_urpc_time = float(urpc_time) / sql_count avg_wait_time = float(wait_time) / sql_count print "QPS: %d" % (qps) print "AVG TIME: %f" % (avg_sql_time) print "AVG RPC TIME: %f" % (avg_rpc_time) print "AVG WAIT TIME: %f" % (avg_wait_time)
gpl-2.0
flightgong/scikit-learn
examples/linear_model/plot_sgd_penalties.py
249
1563
""" ============== SGD: Penalties ============== Plot the contours of the three penalties. All of the above are supported by :class:`sklearn.linear_model.stochastic_gradient`. """ from __future__ import division print(__doc__) import numpy as np import matplotlib.pyplot as plt def l1(xs): return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs]) def l2(xs): return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs]) def el(xs, z): return np.array([(2 - 2 * x - 2 * z + 4 * x * z - (4 * z ** 2 - 8 * x * z ** 2 + 8 * x ** 2 * z ** 2 - 16 * x ** 2 * z ** 3 + 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2) - 2 * x * z ** 2) / (2 - 4 * z) for x in xs]) def cross(ext): plt.plot([-ext, ext], [0, 0], "k-") plt.plot([0, 0], [-ext, ext], "k-") xs = np.linspace(0, 1, 100) alpha = 0.501 # 0.5 division throuh zero cross(1.2) plt.plot(xs, l1(xs), "r-", label="L1") plt.plot(xs, -1.0 * l1(xs), "r-") plt.plot(-1 * xs, l1(xs), "r-") plt.plot(-1 * xs, -1.0 * l1(xs), "r-") plt.plot(xs, l2(xs), "b-", label="L2") plt.plot(xs, -1.0 * l2(xs), "b-") plt.plot(-1 * xs, l2(xs), "b-") plt.plot(-1 * xs, -1.0 * l2(xs), "b-") plt.plot(xs, el(xs, alpha), "y-", label="Elastic Net") plt.plot(xs, -1.0 * el(xs, alpha), "y-") plt.plot(-1 * xs, el(xs, alpha), "y-") plt.plot(-1 * xs, -1.0 * el(xs, alpha), "y-") plt.xlabel(r"$w_0$") plt.ylabel(r"$w_1$") plt.legend() plt.axis("equal") plt.show()
bsd-3-clause
twneale/pypscl
pscl/rollcall.py
1
4640
import numpy as np from pandas.rpy import common as rpy_common from rpy2.robjects.packages import importr from .base import Field, Translator, Wrapper from .accessors import ValueAccessor, VectorAccessor from .ordfile import OrdFile from .wnominate import wnominate from .ideal import ideal pscl = importr('pscl') class NumberOfLegislators(VectorAccessor): '''Number of legislators in the rollcall object, after processing the dropList. ''' key = 'n' class NumberOfRollcalls(VectorAccessor): '''Number of roll call votes in the rollcall object, after processing the dropList. ''' key = 'm' class AllVotes(VectorAccessor): '''A matrix containing a tabular breakdown of all votes in the rollcall matrix (object$votes), after processing the dropList. ''' key = 'allVotes' class Votes(VectorAccessor): ''' ''' class Source(VectorAccessor): '''A fake, hard-coded C: filesystem location of the ord file. Useless. ''' class RollcallSummary(Wrapper): all_votes = AllVotes() n = NumberOfLegislators() m = NumberOfRollcalls() eq_attrs = ('m', 'n', 'codes', 'all_votes') @property def codes(self): '''Return a mapping of vote values like "yea" or "nay" to the "codes" (in the docs, integers) that represent them in the underlying Rollcall object. ''' items = [] for yes_no_other, value_list in self['codes'].iteritems(): items.append((yes_no_other, tuple(value_list))) return dict(items) class Rollcall(Wrapper): '''A wrapper for the pscl rollcall object. ''' # Wrapped R functions --------------------------------------------------- def drop_unanimous(self, lop=0): self.obj = pscl.dropUnanimous(self.obj, lop=0) return self def summary(self): return RollcallSummary(pscl.summary_rollcall(self.obj)) # Accessors --------------------------------------------------------------- n = NumberOfLegislators() m = NumberOfRollcalls() votes = Votes() source = Source() eq_attrs = ('m', 'n', 'codes', 'all_votes') @property def codes(self): '''Return a mapping of vote values like "yea" or "nay" to the "codes" (in the docs, integers) that represent them in the underlying Rollcall object. ''' items = [] for yes_no_other, value_list in self['codes'].iteritems(): items.append((yes_no_other, tuple(value_list))) return dict(items) # Alternative constructors ------------------------------------------------ @classmethod def from_matrix(cls, r_matrix, **kwargs): '''Instantiate a Rollcall object from an R matrix, of the kind described in the pscl docs. See http://cran.r-project.org/web/packages/pscl/pscl.pdf ''' return _RollcallTranslator(**kwargs).r_object(r_matrix) @classmethod def from_dataframe(cls, dataframe, **kwargs): '''Instantiate a Rollcall object from a pandas.DataFrame corresponding to the R matrix described in the pscl docs. See http://cran.r-project.org/web/packages/pscl/pscl.pdf ''' r_matrix = rpy_common.convert_to_r_matrix(dataframe) return cls.from_matrix(r_matrix, **kwargs) @classmethod def from_ordfile(cls, fp, **kwargs): '''Instantiate a RollCall object from an ordfile. ''' dataframe = OrdFile(fp).as_dataframe() rollcall = cls.from_dataframe(dataframe, yea=[1.0, 2.0, 3.0], nay=[4.0, 5.0, 6.0], missing=[7.0, 8.0, 9.0], not_in_legis=0.0, legis_names=tuple(dataframe.index), **kwargs) return rollcall # Analysis methods ------------------------------------------------------- def ideal(self, *args, **kwargs): ''' ''' return ideal(self, *args, **kwargs) def wnominate(self, polarity, *args, **kwargs): ''' ''' return wnominate(self, polarity, *args, **kwargs) class _RollcallTranslator(Translator): '''A python wrapper around the R pscl pacakge's rollcall object. ''' r_type = pscl.rollcall wrapper = Rollcall yea = Field(name='yea', default=1) nay = Field(name='nay', default=2) not_in_legis = Field(name='notInLegis', default=9) field_names = ( ('missing', 'missing'), ('legis_names', 'legis.names'), ('vote_names', 'vote.names'), ('legis_data', 'legis.data'), ('vote_data', 'vote.data'), ('desc', 'desc'), ('source', 'source'))
bsd-3-clause
ChinaQuants/blaze
blaze/compute/csv.py
11
2667
from __future__ import absolute_import, division, print_function import pandas import os from toolz import curry, concat import pandas as pd import numpy as np from collections import Iterator, Iterable from odo import into from odo.chunks import chunks from odo.backends.csv import CSV from multipledispatch import MDNotImplementedError from ..dispatch import dispatch from ..expr import Expr, Head, ElemWise, Distinct, Symbol, Projection, Field from ..expr.core import path from ..utils import available_memory from ..expr.split import split from .core import compute from ..expr.optimize import lean_projection from .pmap import get_default_pmap __all__ = ['optimize', 'pre_compute', 'compute_chunk', 'compute_down'] @dispatch(Expr, CSV) def optimize(expr, _): return lean_projection(expr) # This is handled in pre_compute @dispatch(Expr, CSV) def pre_compute(expr, data, comfortable_memory=None, chunksize=2**18, **kwargs): comfortable_memory = comfortable_memory or min(1e9, available_memory() / 4) kwargs = dict() # Chunk if the file is large if os.path.getsize(data.path) > comfortable_memory: kwargs['chunksize'] = chunksize else: chunksize = None # Insert projection into read_csv oexpr = optimize(expr, data) leaf = oexpr._leaves()[0] pth = list(path(oexpr, leaf)) if len(pth) >= 2 and isinstance(pth[-2], (Projection, Field)): kwargs['usecols'] = pth[-2].fields if chunksize: return into(chunks(pd.DataFrame), data, dshape=leaf.dshape, **kwargs) else: return into(pd.DataFrame, data, dshape=leaf.dshape, **kwargs) Cheap = (Head, ElemWise, Distinct, Symbol) @dispatch(Head, CSV) def pre_compute(expr, data, **kwargs): leaf = expr._leaves()[0] if all(isinstance(e, Cheap) for e in path(expr, leaf)): return into(Iterator, data, chunksize=10000, dshape=leaf.dshape) else: raise MDNotImplementedError() def compute_chunk(chunk, chunk_expr, part): return compute(chunk_expr, {chunk: part}) @dispatch(Expr, pandas.io.parsers.TextFileReader) def compute_down(expr, data, map=None, **kwargs): if map is None: map = get_default_pmap() leaf = expr._leaves()[0] (chunk, chunk_expr), (agg, agg_expr) = split(leaf, expr) parts = list(map(curry(compute_chunk, chunk, chunk_expr), data)) if isinstance(parts[0], np.ndarray): intermediate = np.concatenate(parts) elif isinstance(parts[0], pd.DataFrame): intermediate = pd.concat(parts) elif isinstance(parts[0], (Iterable, Iterator)): intermediate = concat(parts) return compute(agg_expr, {agg: intermediate})
bsd-3-clause
louispotok/pandas
pandas/tests/plotting/test_groupby.py
9
2451
# coding: utf-8 """ Test cases for GroupBy.plot """ from pandas import Series, DataFrame import pandas.util.testing as tm import pandas.util._test_decorators as td import numpy as np from pandas.tests.plotting.common import TestPlotBase @td.skip_if_no_mpl class TestDataFrameGroupByPlots(TestPlotBase): def test_series_groupby_plotting_nominally_works(self): n = 10 weight = Series(np.random.normal(166, 20, size=n)) height = Series(np.random.normal(60, 10, size=n)) with tm.RNGContext(42): gender = np.random.choice(['male', 'female'], size=n) weight.groupby(gender).plot() tm.close() height.groupby(gender).hist() tm.close() # Regression test for GH8733 height.groupby(gender).plot(alpha=0.5) tm.close() def test_plotting_with_float_index_works(self): # GH 7025 df = DataFrame({'def': [1, 1, 1, 2, 2, 2, 3, 3, 3], 'val': np.random.randn(9)}, index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0]) df.groupby('def')['val'].plot() tm.close() df.groupby('def')['val'].apply(lambda x: x.plot()) tm.close() def test_hist_single_row(self): # GH10214 bins = np.arange(80, 100 + 2, 1) df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]}) df["Mark"].hist(by=df["ByCol"], bins=bins) df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]}) df["Mark"].hist(by=df["ByCol"], bins=bins) def test_plot_submethod_works(self): df = DataFrame({'x': [1, 2, 3, 4, 5], 'y': [1, 2, 3, 2, 1], 'z': list('ababa')}) df.groupby('z').plot.scatter('x', 'y') tm.close() df.groupby('z')['x'].plot.line() tm.close() def test_plot_kwargs(self): df = DataFrame({'x': [1, 2, 3, 4, 5], 'y': [1, 2, 3, 2, 1], 'z': list('ababa')}) res = df.groupby('z').plot(kind='scatter', x='x', y='y') # check that a scatter plot is effectively plotted: the axes should # contain a PathCollection from the scatter plot (GH11805) assert len(res['a'].collections) == 1 res = df.groupby('z').plot.scatter(x='x', y='y') assert len(res['a'].collections) == 1
bsd-3-clause
DimensionalScoop/kautschuk
AP_SS16/504/python/helpers.py
2
2188
import os import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import uncertainties from scipy.optimize import curve_fit from uncertainties import ufloat from uncertainties.unumpy import uarray maxfev = 1000000 def autofit(x, y, fitFunction, p0_=None): """Returns params of the curvefit as ufloat.""" if isinstance(y[0], uncertainties.UFloat): ny = [i.nominal_value for i in y] dy = [i.std_dev for i in y] params, covariance = curve_fit(fitFunction, x, ny, sigma=dy, absolute_sigma=True, p0=p0_, maxfev=maxfev) else: params, covariance = curve_fit(fitFunction, x, y, p0=p0_, maxfev=maxfev) errors = np.sqrt(np.diag(covariance)) return uarray(params, errors) def combine_measurements(values): """Combines a np.array of measurements into one ufloat""" return ufloat(mean(values), stdDevOfMean(values)) def mean(values): """Return the mean of values""" values = np.array(values) return sum(values) / len(values) def stdDev(values): """Return estimated standard deviation""" values = np.array(values) b = 0 m = mean(values) for x in values: b += (x - m) ** 2 return np.sqrt(1 / (len(values) - 1) * b) def stdDevOfMean(values): """Return estimated standard deviation of the mean (the important one!)""" return stdDev(values) / np.sqrt(len(values)) def cutErrors(values): """Converts an array of ufloat to an array of floats, discarding errors""" return np.array([v.nominal_value for v in values]) def estimate_sigmas(values, ableseunsicherheit): """Generates std deviations for analoge instruments. Returns a ufloatarray.""" nominal = values magnitude = np.floor(np.log10(nominal)) error = [ableseunsicherheit * 10**mag for mag in magnitude] return uarray(nominal, error) def estimate_sigmas_only(values, ableseunsicherheit): """Generates std deviations for analoge instruments. Returns only an array with the errors.""" nominal = values magnitude = np.floor(np.log10(nominal)) error = [ableseunsicherheit * 10**mag for mag in magnitude] return error
mit
manashmndl/scikit-learn
sklearn/datasets/tests/test_rcv1.py
322
2414
"""Test the rcv1 loader. Skipped if rcv1 is not already downloaded to data_home. """ import errno import scipy.sparse as sp import numpy as np from sklearn.datasets import fetch_rcv1 from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest def test_fetch_rcv1(): try: data1 = fetch_rcv1(shuffle=False, download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("Download RCV1 dataset to run this test.") X1, Y1 = data1.data, data1.target cat_list, s1 = data1.target_names.tolist(), data1.sample_id # test sparsity assert_true(sp.issparse(X1)) assert_true(sp.issparse(Y1)) assert_equal(60915113, X1.data.size) assert_equal(2606875, Y1.data.size) # test shapes assert_equal((804414, 47236), X1.shape) assert_equal((804414, 103), Y1.shape) assert_equal((804414,), s1.shape) assert_equal(103, len(cat_list)) # test ordering of categories first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151'] assert_array_equal(first_categories, cat_list[:6]) # test number of sample for some categories some_categories = ('GMIL', 'E143', 'CCAT') number_non_zero_in_cat = (5, 1206, 381327) for num, cat in zip(number_non_zero_in_cat, some_categories): j = cat_list.index(cat) assert_equal(num, Y1[:, j].data.size) # test shuffling and subset data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77, download_if_missing=False) X2, Y2 = data2.data, data2.target s2 = data2.sample_id # The first 23149 samples are the training samples assert_array_equal(np.sort(s1[:23149]), np.sort(s2)) # test some precise values some_sample_ids = (2286, 3274, 14042) for sample_id in some_sample_ids: idx1 = s1.tolist().index(sample_id) idx2 = s2.tolist().index(sample_id) feature_values_1 = X1[idx1, :].toarray() feature_values_2 = X2[idx2, :].toarray() assert_almost_equal(feature_values_1, feature_values_2) target_values_1 = Y1[idx1, :].toarray() target_values_2 = Y2[idx2, :].toarray() assert_almost_equal(target_values_1, target_values_2)
bsd-3-clause
neuroidss/nupic
examples/opf/clients/cpu/cpu.py
10
3122
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """A simple client to read CPU usage and predict it in real time.""" from collections import deque import time import psutil import matplotlib.pyplot as plt from nupic.data.inference_shifter import InferenceShifter from nupic.frameworks.opf.model_factory import ModelFactory import model_params SECONDS_PER_STEP = 2 WINDOW = 60 # turn matplotlib interactive mode on (ion) plt.ion() fig = plt.figure() # plot title, legend, etc plt.title('CPU prediction example') plt.xlabel('time [s]') plt.ylabel('CPU usage [%]') def runCPU(): """Poll CPU usage, make predictions, and plot the results. Runs forever.""" # Create the model for predicting CPU usage. model = ModelFactory.create(model_params.MODEL_PARAMS) model.enableInference({'predictedField': 'cpu'}) # The shifter will align prediction and actual values. shifter = InferenceShifter() # Keep the last WINDOW predicted and actual values for plotting. actHistory = deque([0.0] * WINDOW, maxlen=60) predHistory = deque([0.0] * WINDOW, maxlen=60) # Initialize the plot lines that we will update with each new record. actline, = plt.plot(range(WINDOW), actHistory) predline, = plt.plot(range(WINDOW), predHistory) # Set the y-axis range. actline.axes.set_ylim(0, 100) predline.axes.set_ylim(0, 100) while True: s = time.time() # Get the CPU usage. cpu = psutil.cpu_percent() # Run the input through the model and shift the resulting prediction. modelInput = {'cpu': cpu} result = shifter.shift(model.run(modelInput)) # Update the trailing predicted and actual value deques. inference = result.inferences['multiStepBestPredictions'][5] if inference is not None: actHistory.append(result.rawInput['cpu']) predHistory.append(inference) # Redraw the chart with the new data. actline.set_ydata(actHistory) # update the data predline.set_ydata(predHistory) # update the data plt.draw() plt.legend( ('actual','predicted') ) # Make sure we wait a total of 2 seconds per iteration. try: plt.pause(SECONDS_PER_STEP) except: pass if __name__ == "__main__": runCPU()
agpl-3.0
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/lib/mpl_examples/animation/old_animation/strip_chart_demo.py
6
2137
""" Emulate an oscilloscope. Requires the animation API introduced in matplotlib 0.84. See http://www.scipy.org/wikis/topical_software/Animations for an explanation. This example uses gtk but does not depend on it intimately. It just uses the idle handler to trigger events. You can plug this into a different GUI that supports animation (GTKAgg, TkAgg, WXAgg) and use your toolkits idle/timer functions. """ import gobject import matplotlib matplotlib.use('GTKAgg') import numpy as np from matplotlib.lines import Line2D class Scope: def __init__(self, ax, maxt=10, dt=0.01): self.ax = ax self.canvas = ax.figure.canvas self.dt = dt self.maxt = maxt self.tdata = [0] self.ydata = [0] self.line = Line2D(self.tdata, self.ydata, animated=True) self.ax.add_line(self.line) self.background = None self.canvas.mpl_connect('draw_event', self.update_background) self.ax.set_ylim(-.1, 1.1) self.ax.set_xlim(0, self.maxt) def update_background(self, event): self.background = self.canvas.copy_from_bbox(self.ax.bbox) def emitter(self, p=0.01): 'return a random value with probability p, else 0' v = np.random.rand(1) if v>p: return 0. else: return np.random.rand(1) def update(self, *args): if self.background is None: return True y = self.emitter() lastt = self.tdata[-1] if lastt>self.tdata[0]+self.maxt: # reset the arrays self.tdata = [self.tdata[-1]] self.ydata = [self.ydata[-1]] self.ax.set_xlim(self.tdata[0], self.tdata[0]+self.maxt) self.ax.figure.canvas.draw() self.canvas.restore_region(self.background) t = self.tdata[-1] + self.dt self.tdata.append(t) self.ydata.append(y) self.line.set_data(self.tdata, self.ydata) self.ax.draw_artist(self.line) self.canvas.blit(self.ax.bbox) return True from pylab import figure, show fig = figure() ax = fig.add_subplot(111) scope = Scope(ax) gobject.idle_add(scope.update) show()
mit
hlin117/scikit-learn
sklearn/linear_model/stochastic_gradient.py
9
51137
# Authors: Peter Prettenhofer <[email protected]> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np from abc import ABCMeta, abstractmethod from ..externals.joblib import Parallel, delayed from .base import LinearClassifierMixin, SparseCoefMixin from .base import make_dataset from ..base import BaseEstimator, RegressorMixin from ..utils import check_array, check_random_state, check_X_y from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted from ..externals import six from .sgd_fast import plain_sgd, average_sgd from ..utils.fixes import astype from ..utils import compute_class_weight from ..utils import deprecated from .sgd_fast import Hinge from .sgd_fast import SquaredHinge from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredLoss from .sgd_fast import Huber from .sgd_fast import EpsilonInsensitive from .sgd_fast import SquaredEpsilonInsensitive LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} DEFAULT_EPSILON = 0.1 # Default value of ``epsilon`` parameter. class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self.average = average self._validate_params() def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") if self.learning_rate == "optimal" and self.alpha == 0: raise ValueError("alpha must be > 0 since " "learning_rate is 'optimal'. alpha is used " "to compute the optimal learning rate.") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match " "dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(self.standard_intercept_.shape, dtype=np.float64, order="C") def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.standard_coef_.ravel() intercept = est.standard_intercept_[0] average_coef = est.average_coef_.ravel() average_intercept = est.average_intercept_[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est.standard_coef_[i] intercept = est.standard_intercept_[i] average_coef = est.average_coef_[i] average_intercept = est.average_intercept_[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if not est.average: return plain_sgd(coef, intercept, est.loss_function_, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) else: standard_coef, standard_intercept, average_coef, \ average_intercept = average_sgd(coef, intercept, average_coef, average_intercept, est.loss_function_, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if len(est.classes_) == 2: est.average_intercept_[0] = average_intercept else: est.average_intercept_[i] = average_intercept return standard_coef, standard_intercept class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) self.class_weight = class_weight self.n_jobs = int(n_jobs) @property @deprecated("Attribute loss_function was deprecated in version 0.19 and " "will be removed in 0.21. Use 'loss_function_' instead") def loss_function(self): return self.loss_function_ def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if getattr(self, "coef_", None) is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) self.loss_function_ = self._get_loss_function(loss) if not hasattr(self, "t_"): self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and hasattr(self, "coef_"): if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = 1.0 self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) self.t_ += n_iter * X.shape[0] # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self.average_coef_.reshape(1, -1) self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_.reshape(1, -1) self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept self.t_ += n_iter * X.shape[0] if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.standard_intercept_ = np.atleast_1d(self.intercept_) self.intercept_ = self.standard_intercept_ def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ if self.class_weight in ['balanced']: raise ValueError("class_weight '{0}' is not supported for " "partial_fit. In order to use 'balanced' weights," " use compute_class_weight('{0}', classes, y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.".format(self.class_weight)) return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the constructor) if class_weight is specified Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int, RandomState instance or None, optional (default=None) The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : integer, optional The verbosity level epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate schedule: - 'constant': eta = eta0 - 'optimal': eta = 1.0 / (alpha * (t + t0)) [default] - 'invscaling': eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10`` will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes,\ n_features) Weights assigned to the features. intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. loss_function_ : concrete ``LossFunction`` Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): check_is_fitted(self, "t_") if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. For other loss functions it is necessary to perform proper probability calibration by wrapping the classifier with :class:`sklearn.calibration.CalibratedClassifierCV` instead. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64) y = astype(y, np.float64, copy=False) n_samples, n_features = X.shape self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if getattr(self, "coef_", None) is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and getattr(self, "average_coef_", None) is None: self.average_coef_ = np.zeros(n_features, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and getattr(self, "coef_", None) is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_intercept_ = self.intercept_ self.standard_coef_ = self.coef_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = 1.0 return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_features,) The initial coefficients to warm-start the optimization. intercept_init : array, shape (1,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) def _decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self, ["t_", "coef_", "intercept_"], all_or_any=all) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if not hasattr(self, "t_"): self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ =\ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_) class SGDRegressor(BaseSGDRegressor): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int, RandomState instance or None, optional (default=None) The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : integer, optional The verbosity level. epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate schedule: - 'constant': eta = eta0 - 'optimal': eta = 1.0 / (alpha * (t + t0)) [default] - 'invscaling': eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10`` will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (n_features,) Weights assigned to the features. intercept_ : array, shape (1,) The intercept term. average_coef_ : array, shape (n_features,) Averaged weights assigned to the features. average_intercept_ : array, shape (1,) The averaged intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=True, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average)
bsd-3-clause
nmartensen/pandas
scripts/gen_release_notes.py
6
2434
from __future__ import print_function import sys import json from pandas.io.common import urlopen from datetime import datetime class Milestone(object): def __init__(self, title, number): self.title = title self.number = number def __eq__(self, other): if isinstance(other, Milestone): return self.number == other.number return False class Issue(object): def __init__(self, title, labels, number, milestone, body, state): self.title = title self.labels = set([x['name'] for x in labels]) self.number = number self.milestone = milestone self.body = body self.closed = state == 'closed' def __eq__(self, other): if isinstance(other, Issue): return self.number == other.number return False def get_issues(): all_issues = [] page_number = 1 while True: iss = _get_page(page_number) if len(iss) == 0: break page_number += 1 all_issues.extend(iss) return all_issues def _get_page(page_number): gh_url = ('https://api.github.com/repos/pandas-dev/pandas/issues?' 'milestone=*&state=closed&assignee=*&page=%d') % page_number with urlopen(gh_url) as resp: rs = resp.readlines()[0] jsondata = json.loads(rs) issues = [Issue(x['title'], x['labels'], x['number'], get_milestone(x['milestone']), x['body'], x['state']) for x in jsondata] return issues def get_milestone(data): if data is None: return None return Milestone(data['title'], data['number']) def collate_label(issues, label): lines = [] for x in issues: if label in x.labels: lines.append('\t- %s(#%d)' % (x.title, x.number)) return '\n'.join(lines) def release_notes(milestone): issues = get_issues() headers = ['New Features', 'Improvements to existing features', 'API Changes', 'Bug fixes'] labels = ['New', 'Enhancement', 'API-Change', 'Bug'] rs = 'pandas %s' % milestone rs += '\n' + ('=' * len(rs)) rs += '\n\n **Release date:** %s' % datetime.today().strftime('%B %d, %Y') for i, h in enumerate(headers): rs += '\n\n**%s**\n\n' % h l = labels[i] rs += collate_label(issues, l) return rs if __name__ == '__main__': rs = release_notes(sys.argv[1]) print(rs)
bsd-3-clause
zorroblue/scikit-learn
examples/cluster/plot_segmentation_toy.py
33
3442
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 # ############################################################################# # 4 circles img = circle1 + circle2 + circle3 + circle4 # We use a mask that limits to the foreground: the problem that we are # interested in here is not separating the objects from the background, # but separating them one from the other. mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) # ############################################################################# # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
BhallaLab/moose-core
tests/support/test_hhfit.py
2
6029
# -*- coding: utf-8 -*- # Author: Subha # Maintainer: Dilawar Singh # Created: Tue May 21 16:34:45 2013 (+0530) # This test is fragile. from __future__ import print_function, division, absolute_import import numpy as np import unittest import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import moose.neuroml2.hhfit as hhfit np.random.seed(10) class TestFindRateFn(unittest.TestCase): def setUp(self): self.vmin = -120e-3 self.vmax = 40e-3 self.vdivs = 640 self.v_array = np.linspace(self.vmin, self.vmax, self.vdivs + 1) # Parameters for sigmoid function - from traub2005, NaF->m_inf p_sigmoid = (1.0, 1 / -10e-3, -38e-3, 0.0) self.sigmoid = p_sigmoid[0] / ( 1.0 + np.exp(p_sigmoid[1] * (self.v_array - p_sigmoid[2]))) + p_sigmoid[3] self.p_sigmoid = p_sigmoid # Parameters for exponential function - from traub2005, KC->n_inf p_exp = (2e3, 1 / -27e-3, -53.5e-3, 0.0) self.exp = p_exp[0] * np.exp(p_exp[1] * (self.v_array - p_exp[2])) + p_exp[3] self.p_exp = p_exp # Parameters for linoid function: alpha_n from original Hodgkin-Huxley K channel. p_linoid = (-0.01 * 1e3, -1 / 10e-3, 10e-3, 0.0) self.linoid = p_linoid[3] + p_linoid[0] * \ (self.v_array - p_linoid[2]) / (np.exp(p_linoid[1] * (self.v_array - p_linoid[2])) - 1) self.p_linoid = p_linoid # This is tau_m of transient Ca2+ current (eq. 7) from # Huguenard and McCormick, J Neurophysiol, 68:1373-1383, # 1992.; #1e-3 * (0.612 + 1 / (np.exp((self.v_array*1e3 + 132)/-16.7) + np.exp((self.v_array*1e3 + 16.8)/18.2))) p_dblexp = (1e-3, -1 / 16.7e-3, -132e-3, 1 / 18.2e-3, -16.8e-3, 0.612e-3) self.dblexp = p_dblexp[5] + p_dblexp[0] / ( np.exp(p_dblexp[1] * (self.v_array - p_dblexp[2])) + np.exp(p_dblexp[3] * (self.v_array - p_dblexp[4]))) self.p_dblexp = p_dblexp def test_sigmoid(self): print('Testing sigmoid') fn, params = hhfit.find_ratefn(self.v_array, self.sigmoid) print('Sigmoid params original:', self.p_sigmoid, 'detected:', params) self.assertEqual(hhfit.sigmoid, fn) rms_error = np.sqrt( np.mean((self.sigmoid - fn(self.v_array, *params))**2)) self.assertAlmostEqual(rms_error / max(abs(self.sigmoid)), 0.0, places=3) plt.plot(self.v_array, self.sigmoid, 'y-', self.v_array, hhfit.sigmoid(self.v_array, *self.p_sigmoid), 'b--', self.v_array, fn(self.v_array, *params), 'r-.') plt.legend('original sigmoid %s fitted %s' % (self.p_sigmoid, fn)) plt.savefig("__test_sigmoid.png") def test_exponential(self): print('Testing exponential') fn, params = hhfit.find_ratefn(self.v_array, self.exp) print('Exponential params original:', self.p_exp, 'detected:', params) if params is not None: # The `find_ratefn` might return a parameter array for different # function sometimes. exponential takes only upto 5 parameters. fnval = hhfit.exponential(self.v_array, *params[:4]) self.assertEqual(hhfit.exponential, fn) # The same exponential can be satisfied by an infinite number # of parameter values. Hence we cannot compare the parameters, # but only the fit rms_error = np.sqrt(np.sum((self.exp - fnval)**2)) print(rms_error, rms_error / max(self.exp)) self.assertAlmostEqual(rms_error / max(self.exp), 0.0, places=3) plt.plot(self.v_array, self.exp, 'y-', self.v_array, hhfit.exponential(self.v_array, *self.p_exp), 'b--', self.v_array, fnval, 'r-.') plt.legend('original exp %s fitted %s' % (self.p_exp, fn)) out = "__test_exponential.png" plt.savefig(out) print('Plot is saved saved to %s' % out) else: print("[INFO ] Failed find a suitable approximation...") def test_linoid(self): print('Testing linoid') fn, params = hhfit.find_ratefn(self.v_array, self.linoid) if params is not None: print('Linoid params original:', self.p_linoid, 'detected:', params) self.assertEqual(hhfit.linoid, fn) fnval = fn(self.v_array, *params) rms_error = np.sqrt(np.mean((self.linoid - fnval)**2)) self.assertAlmostEqual(rms_error / max(self.linoid), 0.0, places=3) plt.plot(self.v_array, self.linoid, 'y-', self.v_array, hhfit.linoid(self.v_array, *self.p_linoid), 'b--', self.v_array, fn(self.v_array, *params), 'r-.') plt.legend('Original linoid %s fitted %s' % (self.p_linoid, fn)) out = "__test_linoid.png" plt.savefig(out) print('Plot is saved saved to %s' % out) else: print('Failed to find a suitable fit.') def test_dblexponential(self): print('Testing double exponential') fn, params = hhfit.find_ratefn(self.v_array, self.dblexp) fnval = fn(self.v_array, *params) plt.plot(self.v_array, self.dblexp, 'y-', self.v_array, hhfit.double_exp(self.v_array, *self.p_dblexp), 'b--', self.v_array, fnval, 'r-.') self.assertEqual(hhfit.double_exp, fn) rms_error = np.sqrt(np.mean((self.dblexp - fnval)**2)) print(params, rms_error) self.assertAlmostEqual(rms_error / max(self.dblexp), 0.0, places=3) plt.legend('Original dblexp %s, fitted %s' %(self.dblexp, fn)) out = "__test_dblexponential.png" plt.savefig(out) print('Plot is saved saved to %s' % out) if __name__ == '__main__': unittest.main()
gpl-3.0
irhete/predictive-monitoring-benchmark
preprocessing/preprocess_logs_hospital_billing.py
1
5225
import pandas as pd import numpy as np import os import sys input_data_folder = "../orig_logs" output_data_folder = "../labeled_logs_csv_processed" in_filename = "Hospital Billing - Event Log.csv" case_id_col = "Case ID" activity_col = "Activity" timestamp_col = "Complete Timestamp" label_col = "label" pos_label = "deviant" neg_label = "regular" category_freq_threshold = 10 # features for classifier dynamic_cat_cols = ["Activity", 'Resource', 'actOrange', 'actRed', 'blocked', 'caseType', 'diagnosis', 'flagC', 'flagD', 'msgCode', 'msgType', 'state', 'version', 'isCancelled', 'isClosed', 'closeCode'] static_cat_cols = ['speciality'] dynamic_num_cols = ['msgCount'] static_num_cols = [] static_cols = static_cat_cols + static_num_cols + [case_id_col] dynamic_cols = dynamic_cat_cols + dynamic_num_cols + [timestamp_col] cat_cols = dynamic_cat_cols + static_cat_cols def extract_timestamp_features(group): group = group.sort_values(timestamp_col, ascending=False, kind='mergesort') tmp = group[timestamp_col] - group[timestamp_col].shift(-1) tmp = tmp.fillna(0) group["timesincelastevent"] = tmp.apply(lambda x: float(x / np.timedelta64(1, 'm'))) # m is for minutes tmp = group[timestamp_col] - group[timestamp_col].iloc[-1] tmp = tmp.fillna(0) group["timesincecasestart"] = tmp.apply(lambda x: float(x / np.timedelta64(1, 'm'))) # m is for minutes group = group.sort_values(timestamp_col, ascending=True, kind='mergesort') group["event_nr"] = range(1, len(group) + 1) return group def check_if_activity_exists(group, activity, cut_from_idx=True): relevant_activity_idxs = np.where(group[activity_col] == activity)[0] if len(relevant_activity_idxs) > 0: idx = relevant_activity_idxs[0] group[label_col] = pos_label if cut_from_idx: return group[:idx] else: return group else: group[label_col] = neg_label return group def check_if_attribute_exists(group, attribute, cut_from_idx=True): group[label_col] = neg_label if True in list(group[attribute]) else pos_label relevant_idxs = np.where(group[attribute]==True)[0] if len(relevant_idxs) > 0: cut_idx = relevant_idxs[0] if cut_from_idx: return group[:idx] else: return group else: return group data = pd.read_csv(os.path.join(input_data_folder, in_filename), sep=";") data[case_id_col] = data[case_id_col].fillna("missing_caseid") data.rename(columns=lambda x: x.replace('(case) ', ''), inplace=True) # remove incomplete cases tmp = data.groupby(case_id_col).apply(check_if_any_of_activities_exist, activities=["BILLED", "DELETE", "FIN"]) incomplete_cases = tmp.index[tmp==False] data = data[~data[case_id_col].isin(incomplete_cases)] del tmp data = data[static_cols + dynamic_cols] # add features extracted from timestamp data[timestamp_col] = pd.to_datetime(data[timestamp_col]) data["timesincemidnight"] = data[timestamp_col].dt.hour * 60 + data[timestamp_col].dt.minute data["month"] = data[timestamp_col].dt.month data["weekday"] = data[timestamp_col].dt.weekday data["hour"] = data[timestamp_col].dt.hour data = data.groupby(case_id_col).apply(extract_timestamp_features) # add inter-case features print("Extracting open cases...") sys.stdout.flush() data = data.sort_values([timestamp_col], ascending=True, kind='mergesort') dt_first_last_timestamps = data.groupby(case_id_col)[timestamp_col].agg([min, max]) dt_first_last_timestamps.columns = ["start_time", "end_time"] case_end_times = dt_first_last_timestamps.to_dict()["end_time"] data["open_cases"] = 0 case_dict_state = {} for idx, row in data.iterrows(): case = row[case_id_col] current_ts = row[timestamp_col] # save the state data.set_value(idx, 'open_cases', len(case_dict_state)) if current_ts >= case_end_times[case]: if case in case_dict_state: del case_dict_state[case] else: case_dict_state[case] = 1 print("Imputing missing values...") sys.stdout.flush() # impute missing values grouped = data.sort_values(timestamp_col, ascending=True, kind='mergesort').groupby(case_id_col) for col in static_cols + dynamic_cols: data[col] = grouped[col].transform(lambda grp: grp.fillna(method='ffill')) data[cat_cols] = data[cat_cols].fillna('missing') data = data.fillna(0) # set infrequent factor levels to "other" for col in cat_cols: counts = data[col].value_counts() mask = data[col].isin(counts[counts >= category_freq_threshold].index) data.loc[~mask, col] = "other" data = data.sort_values(timestamp_col, ascending=True, kind="mergesort") # second labeling dt_labeled = data.groupby(case_id_col).apply(check_if_attribute_exists, attribute="isClosed", cut_from_idx=False) dt_labeled.drop(['isClosed'], axis=1).to_csv(os.path.join(output_data_folder, "hospital_billing_2.csv"), sep=";", index=False) del dt_labeled # third labeling dt_labeled = data.groupby(case_id_col).apply(check_if_activity_exists, activity="REOPEN", cut_from_idx=True) dt_labeled.to_csv(os.path.join(output_data_folder, "hospital_billing_3.csv"), sep=";", index=False) del dt_labeled
apache-2.0
madjelan/scikit-learn
examples/applications/plot_prediction_latency.py
234
11277
""" ================== Prediction Latency ================== This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode. The plots represent the distribution of the prediction latency as a boxplot. """ # Authors: Eustache Diemert <[email protected]> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import time import gc import numpy as np import matplotlib.pyplot as plt from scipy.stats import scoreatpercentile from sklearn.datasets.samples_generator import make_regression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.svm.classes import SVR def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() def atomic_benchmark_estimator(estimator, X_test, verbose=False): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_instances, dtype=np.float) for i in range(n_instances): instance = X_test[i, :] start = time.time() estimator.predict(instance) runtimes[i] = time.time() - start if verbose: print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose): """Measure runtime prediction of the whole input.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_bulk_repeats, dtype=np.float) for i in range(n_bulk_repeats): start = time.time() estimator.predict(X_test) runtimes[i] = time.time() - start runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes))) if verbose: print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False): """ Measure runtimes of prediction in both atomic and bulk mode. Parameters ---------- estimator : already trained estimator supporting `predict()` X_test : test input n_bulk_repeats : how many times to repeat when evaluating bulk mode Returns ------- atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the runtimes in seconds. """ atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose) bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose) return atomic_runtimes, bulk_runtimes def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False): """Generate a regression dataset with the given parameters.""" if verbose: print("generating dataset...") X, y, coef = make_regression(n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() if verbose: print("ok") return X_train, y_train, X_test, y_test def boxplot_runtimes(runtimes, pred_type, configuration): """ Plot a new `Figure` with boxplots of prediction runtimes. Parameters ---------- runtimes : list of `np.array` of latencies in micro-seconds cls_names : list of estimator class names that generated the runtimes pred_type : 'bulk' or 'atomic' """ fig, ax1 = plt.subplots(figsize=(10, 6)) bp = plt.boxplot(runtimes, ) cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] plt.setp(ax1, xticklabels=cls_infos) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Prediction Time per Instance - %s, %d feats.' % ( pred_type.capitalize(), configuration['n_features'])) ax1.set_ylabel('Prediction Time (us)') plt.show() def benchmark(configuration): """Run the whole benchmark.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) stats = {} for estimator_conf in configuration['estimators']: print("Benchmarking", estimator_conf['instance']) estimator_conf['instance'].fit(X_train, y_train) gc.collect() a, b = benchmark_estimator(estimator_conf['instance'], X_test) stats[estimator_conf['name']] = {'atomic': a, 'bulk': b} cls_names = [estimator_conf['name'] for estimator_conf in configuration[ 'estimators']] runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'atomic', configuration) runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'], configuration) def n_feature_influence(estimators, n_train, n_test, n_features, percentile): """ Estimate influence of the number of features on prediction time. Parameters ---------- estimators : dict of (name (str), estimator) to benchmark n_train : nber of training instances (int) n_test : nber of testing instances (int) n_features : list of feature-space dimensionality to test (int) percentile : percentile at which to measure the speed (int [0-100]) Returns: -------- percentiles : dict(estimator_name, dict(n_features, percentile_perf_in_us)) """ percentiles = defaultdict(defaultdict) for n in n_features: print("benchmarking with %d features" % n) X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n) for cls_name, estimator in estimators.items(): estimator.fit(X_train, y_train) gc.collect() runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False) percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes, percentile) return percentiles def plot_n_features_influence(percentiles, percentile): fig, ax1 = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] for i, cls_name in enumerate(percentiles.keys()): x = np.array(sorted([n for n in percentiles[cls_name].keys()])) y = np.array([percentiles[cls_name][n] for n in x]) plt.plot(x, y, color=colors[i], ) ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Evolution of Prediction Time with #Features') ax1.set_xlabel('#Features') ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile) plt.show() def benchmark_throughputs(configuration, duration_secs=0.1): """benchmark throughput for different estimators.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) throughputs = dict() for estimator_config in configuration['estimators']: estimator_config['instance'].fit(X_train, y_train) start_time = time.time() n_predictions = 0 while (time.time() - start_time) < duration_secs: estimator_config['instance'].predict(X_test[0]) n_predictions += 1 throughputs[estimator_config['name']] = n_predictions / duration_secs return throughputs def plot_benchmark_throughput(throughputs, configuration): fig, ax = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] cls_values = [throughputs[estimator_conf['name']] for estimator_conf in configuration['estimators']] plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors) ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs))) ax.set_xticklabels(cls_infos, fontsize=10) ymax = max(cls_values) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('Throughput (predictions/sec)') ax.set_title('Prediction Throughput for different estimators (%d ' 'features)' % configuration['n_features']) plt.show() ############################################################################### # main code start_time = time.time() # benchmark bulk/atomic prediction speed for various regressors configuration = { 'n_train': int(1e3), 'n_test': int(1e2), 'n_features': int(1e2), 'estimators': [ {'name': 'Linear Model', 'instance': SGDRegressor(penalty='elasticnet', alpha=0.01, l1_ratio=0.25, fit_intercept=True), 'complexity_label': 'non-zero coefficients', 'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)}, {'name': 'RandomForest', 'instance': RandomForestRegressor(), 'complexity_label': 'estimators', 'complexity_computer': lambda clf: clf.n_estimators}, {'name': 'SVR', 'instance': SVR(kernel='rbf'), 'complexity_label': 'support vectors', 'complexity_computer': lambda clf: len(clf.support_vectors_)}, ] } benchmark(configuration) # benchmark n_features influence on prediction speed percentile = 90 percentiles = n_feature_influence({'ridge': Ridge()}, configuration['n_train'], configuration['n_test'], [100, 250, 500], percentile) plot_n_features_influence(percentiles, percentile) # benchmark throughput throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) stop_time = time.time() print("example run in %.2fs" % (stop_time - start_time))
bsd-3-clause
ronalcc/zipline
tests/test_rolling_panel.py
20
7005
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from collections import deque import numpy as np import pandas as pd import pandas.util.testing as tm from zipline.utils.data import MutableIndexRollingPanel, RollingPanel from zipline.finance.trading import with_environment class TestRollingPanel(unittest.TestCase): @with_environment() def test_alignment(self, env): items = ('a', 'b') sids = (1, 2) dts = env.market_minute_window( env.open_and_closes.market_open[0], 4, ).values rp = RollingPanel(2, items, sids, initial_dates=dts[1:-1]) frame = pd.DataFrame( data=np.arange(4).reshape((2, 2)), columns=sids, index=items, ) nan_arr = np.empty((2, 6)) nan_arr.fill(np.nan) rp.add_frame(dts[-1], frame) cur = rp.get_current() data = np.array((((np.nan, np.nan), (0, 1)), ((np.nan, np.nan), (2, 3))), float) expected = pd.Panel( data, major_axis=dts[2:], minor_axis=sids, items=items, ) expected.major_axis = expected.major_axis.tz_localize('utc') tm.assert_panel_equal( cur, expected, ) rp.extend_back(dts[:-2]) cur = rp.get_current() data = np.array((((np.nan, np.nan), (np.nan, np.nan), (np.nan, np.nan), (0, 1)), ((np.nan, np.nan), (np.nan, np.nan), (np.nan, np.nan), (2, 3))), float) expected = pd.Panel( data, major_axis=dts, minor_axis=sids, items=items, ) expected.major_axis = expected.major_axis.tz_localize('utc') tm.assert_panel_equal( cur, expected, ) @with_environment() def test_get_current_multiple_call_same_tick(self, env): """ In old get_current, each call the get_current would copy the data. Thus changing that object would have no side effects. To keep the same api, make sure that the raw option returns a copy too. """ def data_id(values): return values.__array_interface__['data'] items = ('a', 'b') sids = (1, 2) dts = env.market_minute_window( env.open_and_closes.market_open[0], 4, ).values rp = RollingPanel(2, items, sids, initial_dates=dts[1:-1]) frame = pd.DataFrame( data=np.arange(4).reshape((2, 2)), columns=sids, index=items, ) nan_arr = np.empty((2, 6)) nan_arr.fill(np.nan) rp.add_frame(dts[-1], frame) # each get_current call makea a copy cur = rp.get_current() cur2 = rp.get_current() assert data_id(cur.values) != data_id(cur2.values) # make sure raw follow same logic raw = rp.get_current(raw=True) raw2 = rp.get_current(raw=True) assert data_id(raw) != data_id(raw2) class TestMutableIndexRollingPanel(unittest.TestCase): def test_basics(self, window=10): items = ['bar', 'baz', 'foo'] minor = ['A', 'B', 'C', 'D'] rp = MutableIndexRollingPanel(window, items, minor, cap_multiple=2) dates = pd.date_range('2000-01-01', periods=30, tz='utc') major_deque = deque(maxlen=window) frames = {} for i, date in enumerate(dates): frame = pd.DataFrame(np.random.randn(3, 4), index=items, columns=minor) rp.add_frame(date, frame) frames[date] = frame major_deque.append(date) result = rp.get_current() expected = pd.Panel(frames, items=list(major_deque), major_axis=items, minor_axis=minor) tm.assert_panel_equal(result, expected.swapaxes(0, 1)) def test_adding_and_dropping_items(self, n_items=5, n_minor=10, window=10, periods=30): np.random.seed(123) items = deque(range(n_items)) minor = deque(range(n_minor)) expected_items = deque(range(n_items)) expected_minor = deque(range(n_minor)) first_non_existant = max(n_items, n_minor) + 1 # We want to add new columns with random order add_items = np.arange(first_non_existant, first_non_existant + periods) np.random.shuffle(add_items) rp = MutableIndexRollingPanel(window, items, minor, cap_multiple=2) dates = pd.date_range('2000-01-01', periods=periods, tz='utc') frames = {} expected_frames = deque(maxlen=window) expected_dates = deque() for i, (date, add_item) in enumerate(zip(dates, add_items)): frame = pd.DataFrame(np.random.randn(n_items, n_minor), index=items, columns=minor) if i >= window: # Old labels and dates should start to get dropped at every # call del frames[expected_dates.popleft()] expected_minor.popleft() expected_items.popleft() expected_frames.append(frame) expected_dates.append(date) rp.add_frame(date, frame) frames[date] = frame result = rp.get_current() np.testing.assert_array_equal(sorted(result.minor_axis.values), sorted(expected_minor)) np.testing.assert_array_equal(sorted(result.items.values), sorted(expected_items)) tm.assert_frame_equal(frame.T, result.ix[frame.index, -1, frame.columns]) expected_result = pd.Panel(frames).swapaxes(0, 1) tm.assert_panel_equal(expected_result, result) # Insert new items minor.popleft() minor.append(add_item) items.popleft() items.append(add_item) expected_minor.append(add_item) expected_items.append(add_item)
apache-2.0