repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
binghongcha08/pyQMD
GWP/2D/1.0.2/traj.py
14
1289
#!/usr/bin/python import numpy as np import pylab as plt import seaborn as sns sns.set_context("poster") #with open("traj.dat") as f: # data = f.read() # # data = data.split('\n') # # x = [row.split(' ')[0] for row in data] # y = [row.split(' ')[1] for row in data] # # fig = plt.figure() # # ax1 = fig.add_subplot(111) # # ax1.set_title("Plot title...") # ax1.set_xlabel('your x label..') # ax1.set_ylabel('your y label...') # # ax1.plot(x,y, c='r', label='the data') # # leg = ax1.legend() #fig = plt.figure() plt.subplot(121) #plt.ylim(-8,8) data = np.genfromtxt(fname='q.dat') #data = np.loadtxt('traj.dat') for x in range(1,data.shape[1]): plt.plot(data[:,0],data[:,x]) #plt.figure(1) #plt.plot(x,y1,'-') #plt.plot(x,y2,'g-') plt.xlabel('time') #plt.ylabel('position') #plt.title('traj') ax2 = plt.subplot(122) data = np.genfromtxt(fname='c.dat') #data = np.loadtxt('traj.dat') for x in range(1,data.shape[1]): plt.plot(data[:,0],data[:,x]) plt.xlabel('time') ax2.yaxis.tick_right() ax2.yaxis.set_ticks_position('both') plt.ylim(-0.2,5) #plt.subplot(2,2,3) #data = np.genfromtxt(fname='norm') #plt.plot(data[:,0],data[:,1],'r-',linewidth=2) #plt.ylabel('Norm') #plt.ylim(0,2) plt.legend() plt.savefig('traj.pdf') plt.show()
gpl-3.0
zaxtax/scikit-learn
benchmarks/bench_isolation_forest.py
40
3136
""" ========================================== IsolationForest benchmark ========================================== A test of IsolationForest on classical anomaly detection datasets. """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import IsolationForest from sklearn.metrics import roc_curve, auc from sklearn.datasets import fetch_kddcup99, fetch_covtype, fetch_mldata from sklearn.preprocessing import LabelBinarizer from sklearn.utils import shuffle as sh np.random.seed(1) datasets = ['http']#, 'smtp', 'SA', 'SF', 'shuttle', 'forestcover'] for dat in datasets: # loading and vectorization print('loading data') if dat in ['http', 'smtp', 'SA', 'SF']: dataset = fetch_kddcup99(subset=dat, shuffle=True, percent10=True) X = dataset.data y = dataset.target if dat == 'shuttle': dataset = fetch_mldata('shuttle') X = dataset.data y = dataset.target sh(X, y) # we remove data with label 4 # normal data are then those of class 1 s = (y != 4) X = X[s, :] y = y[s] y = (y != 1).astype(int) if dat == 'forestcover': dataset = fetch_covtype(shuffle=True) X = dataset.data y = dataset.target # normal data are those with attribute 2 # abnormal those with attribute 4 s = (y == 2) + (y == 4) X = X[s, :] y = y[s] y = (y != 2).astype(int) print('vectorizing data') if dat == 'SF': lb = LabelBinarizer() lb.fit(X[:, 1]) x1 = lb.transform(X[:, 1]) X = np.c_[X[:, :1], x1, X[:, 2:]] y = (y != 'normal.').astype(int) if dat == 'SA': lb = LabelBinarizer() lb.fit(X[:, 1]) x1 = lb.transform(X[:, 1]) lb.fit(X[:, 2]) x2 = lb.transform(X[:, 2]) lb.fit(X[:, 3]) x3 = lb.transform(X[:, 3]) X = np.c_[X[:, :1], x1, x2, x3, X[:, 4:]] y = (y != 'normal.').astype(int) if dat == 'http' or dat == 'smtp': y = (y != 'normal.').astype(int) n_samples, n_features = np.shape(X) n_samples_train = n_samples // 2 n_samples_test = n_samples - n_samples_train X = X.astype(float) X_train = X[:n_samples_train, :] X_test = X[n_samples_train:, :] y_train = y[:n_samples_train] y_test = y[n_samples_train:] print('IsolationForest processing...') model = IsolationForest(bootstrap=True, n_jobs=-1) tstart = time() model.fit(X_train) fit_time = time() - tstart tstart = time() scoring = model.predict(X_test) # the lower, the more normal predict_time = time() - tstart fpr, tpr, thresholds = roc_curve(y_test, scoring) AUC = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label='ROC for %s (area = %0.3f, train-time: %0.2fs, test-time: %0.2fs)' % (dat, AUC, fit_time, predict_time)) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show()
bsd-3-clause
glennq/scikit-learn
sklearn/externals/joblib/__init__.py
23
5101
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://pythonhosted.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make it easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.10.3' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count from .parallel import register_parallel_backend from .parallel import parallel_backend from .parallel import effective_n_jobs __all__ = ['Memory', 'MemorizedResult', 'PrintTime', 'Logger', 'hash', 'dump', 'load', 'Parallel', 'delayed', 'cpu_count', 'effective_n_jobs', 'register_parallel_backend', 'parallel_backend']
bsd-3-clause
davidgbe/scikit-learn
sklearn/svm/classes.py
126
40114
import warnings import numpy as np from .base import _fit_liblinear, BaseSVC, BaseLibSVM from ..base import BaseEstimator, RegressorMixin from ..linear_model.base import LinearClassifierMixin, SparseCoefMixin, \ LinearModel from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_X_y from ..utils.validation import _num_samples class LinearSVC(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Linear Support Vector Classification. Similar to SVC with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. loss : string, 'hinge' or 'squared_hinge' (default='squared_hinge') Specifies the loss function. 'hinge' is the standard SVM loss (used e.g. by the SVC class) while 'squared_hinge' is the square of the hinge loss. penalty : string, 'l1' or 'l2' (default='l2') Specifies the norm used in the penalization. The 'l2' penalty is the standard used in SVC. The 'l1' leads to `coef_` vectors that are sparse. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. multi_class: string, 'ovr' or 'crammer_singer' (default='ovr') Determines the multi-class strategy if `y` contains more than two classes. `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` optimizes a joint objective over all classes. While `crammer_singer` is interesting from a theoretical perspective as it is consistent, it is seldom used in practice as it rarely leads to better accuracy and is more expensive to compute. If `crammer_singer` is chosen, the options loss, penalty and dual will be ignored. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon to have slightly different results for the same input data. If that happens, try with a smaller ``tol`` parameter. The underlying implementation (liblinear) uses a sparse internal representation for the data that will incur a memory copy. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. **References:** `LIBLINEAR: A Library for Large Linear Classification <http://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__ See also -------- SVC Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to implement one vs the rest with SVC by using the :class:`sklearn.multiclass.OneVsRestClassifier` wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data will still incur memory copy though. sklearn.linear_model.SGDClassifier SGDClassifier can optimize the same cost function as LinearSVC by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, penalty='l2', loss='squared_hinge', dual=True, tol=1e-4, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000): self.dual = dual self.tol = tol self.C = C self.multi_class = multi_class self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.penalty = penalty self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'hinge', 'l2': 'squared_hinge'}.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") self.classes_ = np.unique(y) self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, self.multi_class, self.loss) if self.multi_class == "crammer_singer" and len(self.classes_) == 2: self.coef_ = (self.coef_[1] - self.coef_[0]).reshape(1, -1) if self.fit_intercept: intercept = self.intercept_[1] - self.intercept_[0] self.intercept_ = np.array([intercept]) return self class LinearSVR(LinearModel, RegressorMixin): """Linear Support Vector Regression. Similar to SVR with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. The penalty is a squared l2 penalty. The bigger this parameter, the less regularization is used. loss : string, 'epsilon_insensitive' or 'squared_epsilon_insensitive' (default='epsilon_insensitive') Specifies the loss function. 'l1' is the epsilon-insensitive loss (standard SVR) while 'l2' is the squared epsilon-insensitive loss. epsilon : float, optional (default=0.1) Epsilon parameter in the epsilon-insensitive loss function. Note that the value of this parameter depends on the scale of the target variable y. If unsure, set epsilon=0. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- LinearSVC Implementation of Support Vector Machine classifier using the same library as this class (liblinear). SVR Implementation of Support Vector Machine regression using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. sklearn.linear_model.SGDRegressor SGDRegressor can optimize the same cost function as LinearSVR by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, epsilon=0.0, tol=1e-4, C=1.0, loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1., dual=True, verbose=0, random_state=None, max_iter=1000): self.tol = tol self.C = C self.epsilon = epsilon self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.dual = dual self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'epsilon_insensitive', 'l2': 'squared_epsilon_insensitive' }.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") penalty = 'l2' # SVR only accepts l2 penalty self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, None, penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, loss=self.loss, epsilon=self.epsilon) self.coef_ = self.coef_.ravel() return self class SVC(BaseSVC): """C-Support Vector Classification. The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme. For details on the precise mathematical formulation of the provided kernel functions and how `gamma`, `coef0` and `degree` affect each other, see the corresponding section in the narrative documentation: :ref:`svm_kernels`. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape ``(n_samples, n_samples)``. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') ecision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import SVC >>> clf = SVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVR Support Vector Machine for Regression implemented using libsvm. LinearSVC Scalable Linear Support Vector Machine for classification implemented using liblinear. Check the See also section of LinearSVC for more comparison element. """ def __init__(self, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(SVC, self).__init__( impl='c_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class NuSVC(BaseSVC): """Nu-Support Vector Classification. Similar to SVC but uses a parameter to control the number of support vectors. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- nu : float, optional (default=0.5) An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'auto'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The 'auto' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') ecision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import NuSVC >>> clf = NuSVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVC(cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.5, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVC Support Vector Machine for classification using libsvm. LinearSVC Scalable linear Support Vector Machine for classification using liblinear. """ def __init__(self, nu=0.5, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(NuSVC, self).__init__( impl='nu_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=0., nu=nu, shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class SVR(BaseLibSVM, RegressorMixin): """Epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. epsilon : float, optional (default=0.1) Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import SVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = SVR(C=1.0, epsilon=0.2) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='auto', kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVR Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors. LinearSVR Scalable Linear Support Vector Machine for regression implemented using liblinear. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1): super(SVR, self).__init__( 'epsilon_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., epsilon=epsilon, verbose=verbose, shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, max_iter=max_iter, random_state=None) class NuSVR(BaseLibSVM, RegressorMixin): """Nu Support Vector Regression. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import NuSVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = NuSVR(C=1.0, nu=0.1) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVC Support Vector Machine for classification implemented with libsvm with a parameter to control the number of support vectors. SVR epsilon Support Vector Machine for regression implemented with libsvm. """ def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=1e-3, cache_size=200, verbose=False, max_iter=-1): super(NuSVR, self).__init__( 'nu_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=nu, epsilon=0., shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, verbose=verbose, max_iter=max_iter, random_state=None) class OneClassSVM(BaseLibSVM): """Unsupervised Outlier Detection. Estimate the support of a high-dimensional distribution. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_outlier_detection>`. Parameters ---------- kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. tol : float, optional Tolerance for stopping criterion. shrinking : boolean, optional Whether to use the shrinking heuristic. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [n_classes-1, n_SV] Coefficients of the support vectors in the decision function. coef_ : array, shape = [n_classes-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` intercept_ : array, shape = [n_classes-1] Constants in decision function. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(OneClassSVM, self).__init__( 'one_class', kernel, degree, gamma, coef0, tol, 0., nu, 0., shrinking, False, cache_size, None, verbose, max_iter, random_state) def fit(self, X, y=None, sample_weight=None, **params): """ Detects the soft boundary of the set of samples X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Set of samples, where n_samples is the number of samples and n_features is the number of features. sample_weight : array-like, shape (n_samples,) Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Returns self. Notes ----- If X is not a C-ordered contiguous array it is copied. """ super(OneClassSVM, self).fit(X, np.ones(_num_samples(X)), sample_weight=sample_weight, **params) return self def decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array-like, shape (n_samples,) Returns the decision function of the samples. """ dec = self._decision_function(X) return dec
bsd-3-clause
ky822/scikit-learn
sklearn/feature_selection/tests/test_from_model.py
244
1593
import numpy as np import scipy.sparse as sp from nose.tools import assert_raises, assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.svm import LinearSVC iris = load_iris() def test_transform_linear_model(): for clf in (LogisticRegression(C=0.1), LinearSVC(C=0.01, dual=False), SGDClassifier(alpha=0.001, n_iter=50, shuffle=True, random_state=0)): for thresh in (None, ".09*mean", "1e-5 * median"): for func in (np.array, sp.csr_matrix): X = func(iris.data) clf.set_params(penalty="l1") clf.fit(X, iris.target) X_new = clf.transform(X, thresh) if isinstance(clf, SGDClassifier): assert_true(X_new.shape[1] <= X.shape[1]) else: assert_less(X_new.shape[1], X.shape[1]) clf.set_params(penalty="l2") clf.fit(X_new, iris.target) pred = clf.predict(X_new) assert_greater(np.mean(pred == iris.target), 0.7) def test_invalid_input(): clf = SGDClassifier(alpha=0.1, n_iter=10, shuffle=True, random_state=None) clf.fit(iris.data, iris.target) assert_raises(ValueError, clf.transform, iris.data, "gobbledigook") assert_raises(ValueError, clf.transform, iris.data, ".5 * gobbledigook")
bsd-3-clause
shaunwbell/FOCI_Analysis
ReanalysisRetreival_orig/GOA_transplort_plot.py
1
5933
#!/usr/bin/env python """ GOA_transplort_plot.py Plot transport data from GOA for 2015 ngoa paper. Reads EPIC netcdf of transport as a function of time """ # Standard library. import datetime, sys # System Stack import argparse # Scientific stack. import numpy as np from netCDF4 import Dataset # Visual Stack import matplotlib.pyplot as plt from matplotlib.dates import MonthLocator, DateFormatter __author__ = 'Shaun Bell' __email__ = '[email protected]' __created__ = datetime.datetime(2015, 06, 17) __modified__ = datetime.datetime(2015, 06, 17) __version__ = "0.1.0" __status__ = "Development" """--------------------------------netcdf Routines---------------------------------------""" def get_global_atts(nchandle): g_atts = {} att_names = nchandle.ncattrs() for name in att_names: g_atts[name] = nchandle.getncattr(name) return g_atts def get_vars(nchandle): return nchandle.variables def ncreadfile_dic(nchandle, params): data = {} for j, v in enumerate(params): if v in nchandle.variables.keys(): #check for nc variable data[v] = nchandle.variables[v][:] else: #if parameter doesn't exist fill the array with zeros data[v] = None return (data) """--------------------------------time Routines---------------------------------------""" def date2pydate(file_time, file_time2=None, file_flag='EPIC'): if file_flag == 'EPIC': ref_time_py = datetime.datetime.toordinal(datetime.datetime(1968, 5, 23)) ref_time_epic = 2440000 offset = ref_time_epic - ref_time_py try: #if input is an array python_time = [None] * len(file_time) for i, val in enumerate(file_time): pyday = file_time[i] - offset pyfrac = file_time2[i] / (1000. * 60. * 60.* 24.) #milliseconds in a day python_time[i] = (pyday + pyfrac) except: pyday = file_time - offset pyfrac = file_time2 / (1000. * 60. * 60.* 24.) #milliseconds in a day python_time = (pyday + pyfrac) else: print "time flag not recognized" sys.exit() return np.array(python_time) """------------------------------- MAIN ----------------------------------------""" parser = argparse.ArgumentParser(description='EPIC NetCDF Timeseries Plot') parser.add_argument('DataPath', metavar='DataPath', type=str, help='full path to file') parser.add_argument("-monthly_average",'--monthly_average', action="store_true", help='calculate monthly average') parser.add_argument("-annual_signal",'--annual_signal', action="store_true", help='calculate total annual signal') args = parser.parse_args() ###nc readin nchandle = Dataset(args.DataPath,'a') global_atts = get_global_atts(nchandle) vars_dic = get_vars(nchandle) data1 = ncreadfile_dic(nchandle, vars_dic.keys()) nchandle.close() ### convert epic time to python serialdate time1 = date2pydate(data1['time'],data1['time2']) xdata = data1['TR_388'][:,0,0,0] label = 'TR_388' scale = 10**6 if args.monthly_average or args.annual_signal: proc_data = {} ave_data = {} ave_data_stats = {} months = ['01','02','03','04','05','06','07','08','09','10','11','12'] for i,v in enumerate(time1): proc_data[datetime.datetime.fromordinal(int(v)).strftime('%Y-%m-%d')] = data1['TR_388'][i,0,0,0] for years in np.arange(1984,2007): for month in months: sum = 0 count = 0 for k in proc_data.keys(): if str(years)+'-'+month in k: if proc_data[k] < 1e30: count += 1 sum = sum + proc_data[k] print str(years)+'-'+month+'-15' if count != 0: ave_data[str(years)+'-'+month+'-15'] = sum / scale / count ave_data_stats[str(years)+'-'+month+'-15'] = count else: ave_data[str(years)+'-'+month+'-15'] = 1e35 ave_data_stats[str(years)+'-'+month+'-15'] = 0 time1 = [] xdata = [] ### build x and y data # for x data we want all the months of the entire record to show up at the same 'x-point' so every feb for all years is collocated for k in sorted(ave_data.keys()): time1 = time1 + [datetime.datetime.strptime("2000-"+"-".join(k.split('-')[1:]),'%Y-%m-%d').toordinal()] xdata = xdata + [ave_data[k]] time1 = np.array(time1) xdata = np.array(xdata) if args.annual_signal: timet = [] xdatat = [] for month in months: time_base = datetime.datetime.strptime("2000-"+month+"-15",'%Y-%m-%d').toordinal() ave_ind = np.where(time1==time_base) #arbitrary 2000 year chosen above for plotting dave_ind = np.where(xdata[ave_ind] != 1e35) timet = timet + [time_base] xdatat = xdatat + [np.mean(xdata[ave_ind][dave_ind])] time1 = np.array(timet) xdata = np.array(xdatat) ### plot variable against time fig = plt.figure(2) ax2 = plt.subplot2grid((3, 1), (1, 0), colspan=1, rowspan=3) p2 = ax2.plot(time1, xdata,'r.', markersize=12) #ax2.set_ylim([xdata[xdata != 1e35].min()-0.5,xdata[xdata != 1e35].max()+0.5]) ax2.set_ylim([-2,3]) ax2.set_xlim([datetime.datetime.strptime("2000-1-1",'%Y-%m-%d').toordinal(),datetime.datetime.strptime("2001-1-1",'%Y-%m-%d').toordinal()]) plt.ylabel(label) ax2.xaxis.set_major_locator(MonthLocator(interval=1)) ax2.xaxis.set_minor_locator(MonthLocator()) ax2.xaxis.set_major_formatter(DateFormatter('%b')) fig.autofmt_xdate() fullpath = '/Users/bell/temp/' user_append = 'minus_downstream_monthlyaverage_ma' plt.savefig(fullpath + user_append + '_ngoa_fig8.svg', bbox_inches='tight', dpi = (300)) plt.close()
mit
traxys/EyeTrackingInfo
mainProg.py
1
2118
import numpy as np #Pour charger , et gerer les images from PIL import Image, ImageTk import tkinter as tk from time import sleep #Ca fait joli import progressbar #Temps d'attente entre chaque iteration LOOP_DELAY = 10 #Salle en 360 degré par dessus laquelle on peut superposer le cube def loadRoom(hasBar=True): '''Returns an array containg 359 frames as PIL objects''' room = [] if hasBar: bar = progressbar.ProgressBar( widgets=[ "Loading Room", progressbar.Bar(), "(",progressbar.ETA(),")" ], max_value=360) name = "Loading Room" for i in bar(range(1,361)): room.append( Image.open("room/deg_"+str(i)+".png") ) else: for i in range(1,361): room.append( Image.open("room/deg_"+str(i)+".png") ) return room #Entrée et sortie de la boucle runTrack = 0 def stopTrack(): '''Tk event func''' global runTrack runTrack = -1 def startTrack(): '''Tk event func''' global runTrack runTrack = 1 #Boucle principal du programme def eyeTrack(): '''Main loop , called by tk''' global runTrack if runTrack == 1: btnStart.pack_forget() btnEnd = tk.Button(root,text="Stop",command=stopTrack) btnEnd.pack() runTrack = 2 if runTrack == 2: #Appel des Fonctions Ici , le reste est pour gerer la boucle print("In loop") #Fin de la zone d'appel des fonctions root.update_idletasks() root.after(LOOP_DELAY,eyeTrack) elif runTrack == 0: root.after(LOOP_DELAY,eyeTrack) else: #Termine le programme quit() print("(1) Mode matplotlib\n(2) Mode superposition") mode = 0 while not (mode == 1 or mode == 2): try: mode = int(input("Mode :")) except Exception: pass if not (mode == 1 or mode == 2): print("Entrée Incorecte",end=' , ') #Mode avec Tkinter if mode == 2: #Mise en place du GUI root = tk.Tk() label = tk.Label(root) label.pack() btnStart = tk.Button(root,text="Start",command=startTrack) btnStart.pack() #Chargement de la salle avant le lancement du GUI room = loadRoom(False) #Lancement initiale de la boucle root.after(0,eyeTrack) #Lancement du GUI Tkinter , tout code ecrit apres cette ligne est inutile root.mainloop()
mit
nicholasmalaya/arcanus
uq/ps2/infer.py
2
3735
#!/usr/bin/env python import numpy as np import matplotlib matplotlib.use('Agg') from matplotlib import pyplot import pylab import matplotlib.mlab as mlab import matplotlib.ticker as ticker from scipy import stats import sys # local files that will be imported import likelihood from settings_infer import * from prior import * # ------------------------------------------------------------- # subroutine that generates a .pdf file plotting a prior and posterior quantity # ------------------------------------------------------------- def plotter(chain,ind,xmin=None,xmax=None): from math import log, pi bins = np.linspace(np.min(chain), np.max(chain), 200) qkde = stats.gaussian_kde(chain) qpdf = qkde.evaluate(bins) # plot posterior pyplot.figure() pyplot.plot(bins, qpdf, linewidth=3, label="Post") # plot prior (requires some cleverness to do in general) qpr = [prior_funcs[i](x) for x in bins] qpri = [np.exp(x) for x in qpr] qpri=qpri/np.linalg.norm(qpri) pyplot.plot(bins, qpri, linewidth=3, label="Prior") # user specified bounds to x-range: if(xmin != None and xmax != None): bounds = np.array([xmin, xmax]) pyplot.xlim(bounds) quant = qoi_list[i] pyplot.xlabel(quant, fontsize=30) pyplot.ylabel('$\pi('+quant+')$', fontsize=30) pyplot.legend(loc='upper left') pyplot.savefig(quant+'_post.pdf', bbox_inches='tight') # ------------------------------------------------------------- # MCMC sampling Function # ------------------------------------------------------------- class BayesianRichardsonExtrapolation(object): "Computes the Bayesian Richardson extrapolation posterior log density." def __call__(self, params, dtype=np.double): from math import log #print params[0], params[1], params[2] return ( prior(params) + likelihood.likelihood(params) ) # ------------------------------------------------------------- # Main Function # ------------------------------------------------------------- # # Stop module loading when imported. Otherwise continue running. if __name__ != '__main__': raise SystemExit, 0 # Example of sampling Bayesian Richardson extrapolation density using emcee from emcee import EnsembleSampler from math import ceil, floor, sqrt # # initalize the Bayesian Calibration Procedure # bre = BayesianRichardsonExtrapolation() #print("\nInitializing walkers") nwalk = 100 params0 = np.tile(guess_list, nwalk).reshape(nwalk, len(guess_list)) # # perturb walkers around guess # for i in xrange(len(guess_list)): params0.T[i] += np.random.rand(nwalk) * perturb_list[i] # hack! params0.T[2] = np.absolute(params0.T[2]) # ...and force >= 0 #print("\nInitializing the sampler and burning in walkers") s = EnsembleSampler(nwalk, params0.shape[-1], bre, threads=4) pos, prob, state = s.run_mcmc(params0, burn_in) s.reset() #print("\nSampling the posterior density for the problem") s.run_mcmc(pos, samples) samplea = s.flatchain[:,0] pylab.plot(samplea) pylab.xlabel('Step number') pylab.ylabel('alpha') pylab.show() pylab.savefig('alpha.png') samples = s.flatchain[:,1] pylab.plot(samples) pylab.xlabel('Step number') pylab.ylabel('sigma') pylab.show() pylab.savefig('sigma.png') sample = s.flatchain[:,2] pylab.plot(sample) pylab.xlabel('Step number') pylab.ylabel('Value') pylab.show() pylab.savefig('cd.png') filepath='sigma.dat' f = open(filepath, 'w') for item in samples: f.write("%s\n" % item) filepath='alpha.dat' f = open(filepath, 'w') for item in samplea: f.write("%s\n" % item) filepath='drag.dat' f = open(filepath, 'w') for item in sample: f.write("%s\n" % item)
mit
yaoqr15/Machine-Learning-Based-Rumors-Detection
Keras_main/other_model/training_52.99%.py
1
4628
# -*- coding: utf-8 -*- import pandas as pd import re import jieba import jieba.analyse import numpy as np import copy import datetime from keras.models import Sequential from keras.layers import Dense,Dropout,Activation,Embedding from keras.layers import Conv1D,GlobalMaxPooling1D from keras.utils.np_utils import to_categorical global len_of_count len_of_count = 0 short_text = 600 useless_word = [',',':','‘','’','','。','—','——', '你','我','他','它','咱们','大家','自己', '这','那','这儿','那边','各','每','的','了', '谁','什么','哪','怎么','哪里','几','地'] #the function to get the pure word def remove_mess(str): p = re.compile('[a-zA-Z\"\'’\/\(\),:;~‘\(\)\|\-\*@#$%^&\[\]{}<>+`\s\n\r\\\\]') return re.sub(p,'',str) #the function to cut the word def cut_the_word(str_in): length = len(str_in) if length <= short_text: tmp = list(jieba.cut(str_in,cut_all=False)) word = [x for x in tmp if x not in useless_word] return word else: cut = int(0.2*length) tmp = str_in[:cut]+str_in[-cut:] word = list(jieba.cut(tmp,cut_all=False)) word = [x for x in word if x not in useless_word] return word #the function to get word sequence #gather the word and count,then assign each a number def word_seq(x, maxlength): global len_of_count content = [] store = list(map(lambda s: cut_the_word(s), x[0])) for i in store: content += i count = pd.Series(content).value_counts() tmp = pd.DataFrame(count) select = tmp[tmp[0] > 1] count = copy.deepcopy(select[0]) count[:] = range(1, 1 + len(count)) count[''] = 0 len_of_count = len(count) def doc2num(a, maxlength): a = [i for i in a if i in count] a += max(maxlength-len(a),0)*[''] return list(count[a]) x['seq'] = list(map(lambda s: doc2num(s, maxlength), store)) return list(x['seq']) ########################## Pre-processing period ############################ ################################################################################## #import the training data fake = pd.read_excel("fake.xls", header=None) truth = pd.read_excel("truth.xls", header=None) not_sure = pd.read_excel("not_sure.xls", header=None) #giving the label fake['label'] = -1 truth['label'] = 1 not_sure['label'] = 0 #gather the data all_text = fake.append(truth, ignore_index=True) all_text = all_text.append(not_sure,ignore_index=True) #get the pure word all_text[0] = list(map(lambda s: remove_mess(s),all_text[0])) #get the maxlen all_text['len'] = list(map(lambda s:len(s),all_text[0])) long_text = int(max(list(all_text['len']))*0.4*0.5) maxlen = max(long_text,int(short_text*0.5)) #get the word sequence all_text['seq'] = word_seq(all_text, maxlen) ################################################################################## ############################## Training period ############################### ################################################################################## #shuffle the order idx = list(range(len(all_text))) np.random.shuffle(idx) all_text = all_text.loc[idx] print(all_text) #initialize the training data x_train = np.array(list(all_text['seq'])) y_train = np.array(list(all_text['label'])) y_train = to_categorical(y_train, num_classes=3) #setup the parameter of the layers embedding_vector_length = 32 batch_size = 32 nb_epoch = 10 nb_filter = 128 filter_length = 3 ################ define the model ############### model = Sequential() #Embedding layer print(len_of_count,maxlen) model.add(Embedding(len_of_count, embedding_vector_length, input_length=maxlen)) #Convolution-1D layer model.add(Conv1D(activation="relu", filters=256, kernel_size=3, padding="valid")) #Pooling layer model.add(GlobalMaxPooling1D()) #Dense layer ,Dropout layer & Activation layer model.add(Dense(128)) model.add(Dropout(0.2)) model.add(Activation('relu')) #Output layer model.add(Dense(3)) model.add(Activation('softmax')) #compile the model model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) #Fit the model print('Train...') model.fit(x_train, y_train, batch_size=batch_size, epochs=nb_epoch) score = model.evaluate(x_train, y_train, verbose=0) print('train score:', score[0]) print('train accuracy:', score[1]) time = str(datetime.datetime.now())[:10] model.save(str(score[1])[:5]+'_'+time+'.h5')
mit
SpatialMetabolomics/SM_distributed
sm/engine/fdr.py
2
4132
import logging import numpy as np import pandas as pd logger = logging.getLogger('engine') DECOY_ADDUCTS = ['+He', '+Li', '+Be', '+B', '+C', '+N', '+O', '+F', '+Ne', '+Mg', '+Al', '+Si', '+P', '+S', '+Cl', '+Ar', '+Ca', '+Sc', '+Ti', '+V', '+Cr', '+Mn', '+Fe', '+Co', '+Ni', '+Cu', '+Zn', '+Ga', '+Ge', '+As', '+Se', '+Br', '+Kr', '+Rb', '+Sr', '+Y', '+Zr', '+Nb', '+Mo', '+Ru', '+Rh', '+Pd', '+Ag', '+Cd', '+In', '+Sn', '+Sb', '+Te', '+I', '+Xe', '+Cs', '+Ba', '+La', '+Ce', '+Pr', '+Nd', '+Sm', '+Eu', '+Gd', '+Tb', '+Dy', '+Ho', '+Ir', '+Th', '+Pt', '+Os', '+Yb', '+Lu', '+Bi', '+Pb', '+Re', '+Tl', '+Tm', '+U', '+W', '+Au', '+Er', '+Hf', '+Hg', '+Ta'] class FDR(object): def __init__(self, job_id, decoy_sample_size, target_adducts, db): self.job_id = job_id self.decoy_sample_size = decoy_sample_size self.db = db self.target_adducts = target_adducts self.td_df = None self.fdr_levels = [0.05, 0.1, 0.2, 0.5] self.random_seed = 42 def _decoy_adduct_gen(self, target_ions, decoy_adducts_cand): np.random.seed(self.random_seed) for sf, ta in target_ions: for da in np.random.choice(decoy_adducts_cand, size=self.decoy_sample_size, replace=False): yield (sf, ta, da) def decoy_adducts_selection(self, target_ions): decoy_adduct_cand = [add for add in DECOY_ADDUCTS if add not in self.target_adducts] self.td_df = pd.DataFrame(self._decoy_adduct_gen(target_ions, decoy_adduct_cand), columns=['sf', 'ta', 'da']) def ion_tuples(self): """ All ions needed for FDR calculation """ d_ions = self.td_df[['sf', 'da']].drop_duplicates().values.tolist() t_ions = self.td_df[['sf', 'ta']].drop_duplicates().values.tolist() return list(map(tuple, t_ions + d_ions)) @staticmethod def _msm_fdr_map(target_msm, decoy_msm): target_msm_hits = pd.Series(target_msm.msm.value_counts(), name='target') decoy_msm_hits = pd.Series(decoy_msm.msm.value_counts(), name='decoy') msm_df = pd.concat([target_msm_hits, decoy_msm_hits], axis=1).fillna(0).sort_index(ascending=False) msm_df['target_cum'] = msm_df.target.cumsum() msm_df['decoy_cum'] = msm_df.decoy.cumsum() msm_df['fdr'] = msm_df.decoy_cum / msm_df.target_cum return msm_df.fdr def _digitize_fdr(self, fdr_df): df = fdr_df.copy().sort_values(by='msm', ascending=False) msm_levels = [df[df.fdr < fdr_thr].msm.min() for fdr_thr in self.fdr_levels] df['fdr_d'] = 1. for msm_thr, fdr_thr in zip(msm_levels, self.fdr_levels): row_mask = np.isclose(df.fdr_d, 1.) & np.greater_equal(df.msm, msm_thr) df.loc[row_mask, 'fdr_d'] = fdr_thr df['fdr'] = df.fdr_d return df.drop('fdr_d', axis=1) def estimate_fdr(self, sf_adduct_msm_df): logger.info('Estimating FDR') all_sf_adduct_msm_df = (pd.DataFrame(self.ion_tuples(), columns=['sf', 'adduct']) .set_index(['sf', 'adduct']).sort_index()) all_sf_adduct_msm_df = all_sf_adduct_msm_df.join(sf_adduct_msm_df).fillna(0) target_fdr_df_list = [] for ta in self.target_adducts: target_msm = all_sf_adduct_msm_df.loc(axis=0)[:, ta] full_decoy_df = self.td_df[self.td_df.ta == ta][['sf', 'da']] msm_fdr_list = [] for i in range(self.decoy_sample_size): decoy_subset_df = full_decoy_df[i::self.decoy_sample_size] sf_da_list = [tuple(row) for row in decoy_subset_df.values] decoy_msm = all_sf_adduct_msm_df.loc[sf_da_list] msm_fdr = self._msm_fdr_map(target_msm, decoy_msm) msm_fdr_list.append(msm_fdr) msm_fdr_avg = pd.Series(pd.concat(msm_fdr_list, axis=1).median(axis=1), name='fdr') target_fdr = self._digitize_fdr(target_msm.join(msm_fdr_avg, on='msm')) target_fdr_df_list.append(target_fdr.drop('msm', axis=1)) return pd.concat(target_fdr_df_list, axis=0)
apache-2.0
hsiaoyi0504/scikit-learn
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
jrversteegh/softsailor
deps/scipy-0.10.0b2/scipy/signal/filter_design.py
5
65733
"""Filter design. """ import types import warnings import numpy from numpy import atleast_1d, poly, polyval, roots, real, asarray, allclose, \ resize, pi, absolute, logspace, r_, sqrt, tan, log10, arctan, arcsinh, \ cos, exp, cosh, arccosh, ceil, conjugate, zeros, sinh from numpy import mintypecode from scipy import special, optimize from scipy.misc import comb __all__ = ['findfreqs', 'freqs', 'freqz', 'tf2zpk', 'zpk2tf', 'normalize', 'lp2lp', 'lp2hp', 'lp2bp', 'lp2bs', 'bilinear', 'iirdesign', 'iirfilter', 'butter', 'cheby1', 'cheby2', 'ellip', 'bessel', 'band_stop_obj', 'buttord', 'cheb1ord', 'cheb2ord', 'ellipord', 'buttap', 'cheb1ap', 'cheb2ap', 'ellipap', 'besselap', 'filter_dict', 'band_dict', 'BadCoefficients'] class BadCoefficients(UserWarning): pass abs = absolute def findfreqs(num, den, N): ep = atleast_1d(roots(den)) + 0j tz = atleast_1d(roots(num)) + 0j if len(ep) == 0: ep = atleast_1d(-1000) + 0j ez = r_['-1', numpy.compress(ep.imag >= 0, ep, axis=-1), numpy.compress((abs(tz) < 1e5) & (tz.imag >= 0), tz, axis=-1)] integ = abs(ez) < 1e-10 hfreq = numpy.around(numpy.log10(numpy.max(3 * abs(ez.real + integ) + 1.5 * ez.imag)) + 0.5) lfreq = numpy.around(numpy.log10(0.1 * numpy.min(abs(real(ez + integ)) + 2 * ez.imag)) - 0.5) w = logspace(lfreq, hfreq, N) return w def freqs(b, a, worN=None, plot=None): """ Compute frequency response of analog filter. Given the numerator (b) and denominator (a) of a filter compute its frequency response:: b[0]*(jw)**(nb-1) + b[1]*(jw)**(nb-2) + ... + b[nb-1] H(w) = ------------------------------------------------------- a[0]*(jw)**(na-1) + a[1]*(jw)**(na-2) + ... + a[na-1] Parameters ---------- b : ndarray Numerator of a linear filter. a : ndarray Denominator of a linear filter. worN : {None, int}, optional If None, then compute at 200 frequencies around the interesting parts of the response curve (determined by pole-zero locations). If a single integer, the compute at that many frequencies. Otherwise, compute the response at frequencies given in worN. plot : callable A callable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqs`. Returns ------- w : ndarray The frequencies at which h was computed. h : ndarray The frequency response. See Also -------- freqz : Compute the frequency response of a digital filter. Notes ----- Using Matplotlib's "plot" function as the callable for `plot` produces unexpected results, this plots the real part of the complex transfer function, not the magnitude. """ if worN is None: w = findfreqs(b, a, 200) elif isinstance(worN, types.IntType): N = worN w = findfreqs(b, a, N) else: w = worN w = atleast_1d(w) s = 1j * w h = polyval(b, s) / polyval(a, s) if not plot is None: plot(w, h) return w, h def freqz(b, a=1, worN=None, whole=0, plot=None): """ Compute the frequency response of a digital filter. Given the numerator ``b`` and denominator ``a`` of a digital filter compute its frequency response:: jw -jw -jmw jw B(e) b[0] + b[1]e + .... + b[m]e H(e) = ---- = ------------------------------------ jw -jw -jnw A(e) a[0] + a[1]e + .... + a[n]e Parameters ---------- b : ndarray numerator of a linear filter a : ndarray denominator of a linear filter worN : {None, int}, optional If None, then compute at 512 frequencies around the unit circle. If a single integer, the compute at that many frequencies. Otherwise, compute the response at frequencies given in worN whole : bool, optional Normally, frequencies are computed from 0 to pi (upper-half of unit-circle. If whole is True, compute frequencies from 0 to 2*pi. plot : callable A callable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqz`. Returns ------- w : ndarray The frequencies at which h was computed. h : ndarray The frequency response. Notes ----- Using Matplotlib's "plot" function as the callable for `plot` produces unexpected results, this plots the real part of the complex transfer function, not the magnitude. Examples -------- >>> import scipy.signal >>> b = sp.signal.firwin(80, 0.5, window=('kaiser', 8)) >>> h, w = sp.signal.freqz(b) >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.title('Digital filter frequency response') >>> ax1 = fig.add_subplot(111) >>> plt.semilogy(h, np.abs(w), 'b') >>> plt.ylabel('Amplitude (dB)', color='b') >>> plt.xlabel('Frequency (rad/sample)') >>> plt.grid() >>> plt.legend() >>> ax2 = ax1.twinx() >>> angles = np.unwrap(np.angle(w)) >>> plt.plot(h, angles, 'g') >>> plt.ylabel('Angle (radians)', color='g') >>> plt.show() """ b, a = map(atleast_1d, (b, a)) if whole: lastpoint = 2 * pi else: lastpoint = pi if worN is None: N = 512 w = numpy.linspace(0, lastpoint, N, endpoint=False) elif isinstance(worN, types.IntType): N = worN w = numpy.linspace(0, lastpoint, N, endpoint=False) else: w = worN w = atleast_1d(w) zm1 = exp(-1j * w) h = polyval(b[::-1], zm1) / polyval(a[::-1], zm1) if not plot is None: plot(w, h) return w, h def tf2zpk(b, a): """Return zero, pole, gain (z,p,k) representation from a numerator, denominator representation of a linear filter. Parameters ---------- b : ndarray Numerator polynomial. a : ndarray Denominator polynomial. Returns ------- z : ndarray Zeros of the transfer function. p : ndarray Poles of the transfer function. k : float System gain. If some values of b are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted. """ b, a = normalize(b, a) b = (b + 0.0) / a[0] a = (a + 0.0) / a[0] k = b[0] b /= b[0] z = roots(b) p = roots(a) return z, p, k def zpk2tf(z, p, k): """Return polynomial transfer function representation from zeros and poles Parameters ---------- z : ndarray Zeros of the transfer function. p : ndarray Poles of the transfer function. k : float System gain. Returns ------- b : ndarray Numerator polynomial. a : ndarray Denominator polynomial. """ z = atleast_1d(z) k = atleast_1d(k) if len(z.shape) > 1: temp = poly(z[0]) b = zeros((z.shape[0], z.shape[1] + 1), temp.dtype.char) if len(k) == 1: k = [k[0]] * z.shape[0] for i in range(z.shape[0]): b[i] = k[i] * poly(z[i]) else: b = k * poly(z) a = atleast_1d(poly(p)) return b, a def normalize(b, a): """Normalize polynomial representation of a transfer function. If values of b are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted. """ b, a = map(atleast_1d, (b, a)) if len(a.shape) != 1: raise ValueError("Denominator polynomial must be rank-1 array.") if len(b.shape) > 2: raise ValueError("Numerator polynomial must be rank-1 or" " rank-2 array.") if len(b.shape) == 1: b = asarray([b], b.dtype.char) while a[0] == 0.0 and len(a) > 1: a = a[1:] outb = b * (1.0) / a[0] outa = a * (1.0) / a[0] if allclose(outb[:, 0], 0, rtol=1e-14): warnings.warn("Badly conditioned filter coefficients (numerator): the " "results may be meaningless", BadCoefficients) while allclose(outb[:, 0], 0, rtol=1e-14) and (outb.shape[-1] > 1): outb = outb[:, 1:] if outb.shape[0] == 1: outb = outb[0] return outb, outa def lp2lp(b, a, wo=1.0): """Return a low-pass filter with cutoff frequency `wo` from a low-pass filter prototype with unity cutoff frequency. """ a, b = map(atleast_1d, (a, b)) try: wo = float(wo) except TypeError: wo = float(wo[0]) d = len(a) n = len(b) M = max((d, n)) pwo = pow(wo, numpy.arange(M - 1, -1, -1)) start1 = max((n - d, 0)) start2 = max((d - n, 0)) b = b * pwo[start1] / pwo[start2:] a = a * pwo[start1] / pwo[start1:] return normalize(b, a) def lp2hp(b, a, wo=1.0): """Return a high-pass filter with cutoff frequency `wo` from a low-pass filter prototype with unity cutoff frequency. """ a, b = map(atleast_1d, (a, b)) try: wo = float(wo) except TypeError: wo = float(wo[0]) d = len(a) n = len(b) if wo != 1: pwo = pow(wo, numpy.arange(max((d, n)))) else: pwo = numpy.ones(max((d, n)), b.dtype.char) if d >= n: outa = a[::-1] * pwo outb = resize(b, (d,)) outb[n:] = 0.0 outb[:n] = b[::-1] * pwo[:n] else: outb = b[::-1] * pwo outa = resize(a, (n,)) outa[d:] = 0.0 outa[:d] = a[::-1] * pwo[:d] return normalize(outb, outa) def lp2bp(b, a, wo=1.0, bw=1.0): """Return a band-pass filter with center frequency `wo` and bandwidth `bw` from a low-pass filter prototype with unity cutoff frequency. """ a, b = map(atleast_1d, (a, b)) D = len(a) - 1 N = len(b) - 1 artype = mintypecode((a, b)) ma = max([N, D]) Np = N + ma Dp = D + ma bprime = numpy.zeros(Np + 1, artype) aprime = numpy.zeros(Dp + 1, artype) wosq = wo * wo for j in range(Np + 1): val = 0.0 for i in range(0, N + 1): for k in range(0, i + 1): if ma - i + 2 * k == j: val += comb(i, k) * b[N - i] * (wosq) ** (i - k) / bw ** i bprime[Np - j] = val for j in range(Dp + 1): val = 0.0 for i in range(0, D + 1): for k in range(0, i + 1): if ma - i + 2 * k == j: val += comb(i, k) * a[D - i] * (wosq) ** (i - k) / bw ** i aprime[Dp - j] = val return normalize(bprime, aprime) def lp2bs(b, a, wo=1, bw=1): """Return a band-stop filter with center frequency `wo` and bandwidth `bw` from a low-pass filter prototype with unity cutoff frequency. """ a, b = map(atleast_1d, (a, b)) D = len(a) - 1 N = len(b) - 1 artype = mintypecode((a, b)) M = max([N, D]) Np = M + M Dp = M + M bprime = numpy.zeros(Np + 1, artype) aprime = numpy.zeros(Dp + 1, artype) wosq = wo * wo for j in range(Np + 1): val = 0.0 for i in range(0, N + 1): for k in range(0, M - i + 1): if i + 2 * k == j: val += (comb(M - i, k) * b[N - i] * (wosq) ** (M - i - k) * bw ** i) bprime[Np - j] = val for j in range(Dp + 1): val = 0.0 for i in range(0, D + 1): for k in range(0, M - i + 1): if i + 2 * k == j: val += (comb(M - i, k) * a[D - i] * (wosq) ** (M - i - k) * bw ** i) aprime[Dp - j] = val return normalize(bprime, aprime) def bilinear(b, a, fs=1.0): """Return a digital filter from an analog one using a bilinear transform. The bilinear transform substitutes ``(z-1) / (z+1``) for ``s``. """ fs = float(fs) a, b = map(atleast_1d, (a, b)) D = len(a) - 1 N = len(b) - 1 artype = float M = max([N, D]) Np = M Dp = M bprime = numpy.zeros(Np + 1, artype) aprime = numpy.zeros(Dp + 1, artype) for j in range(Np + 1): val = 0.0 for i in range(N + 1): for k in range(i + 1): for l in range(M - i + 1): if k + l == j: val += (comb(i, k) * comb(M - i, l) * b[N - i] * pow(2 * fs, i) * (-1) ** k) bprime[j] = real(val) for j in range(Dp + 1): val = 0.0 for i in range(D + 1): for k in range(i + 1): for l in range(M - i + 1): if k + l == j: val += (comb(i, k) * comb(M - i, l) * a[D - i] * pow(2 * fs, i) * (-1) ** k) aprime[j] = real(val) return normalize(bprime, aprime) def iirdesign(wp, ws, gpass, gstop, analog=0, ftype='ellip', output='ba'): """Complete IIR digital and analog filter design. Given passband and stopband frequencies and gains construct an analog or digital IIR filter of minimum order for a given basic type. Return the output in numerator, denominator ('ba') or pole-zero ('zpk') form. Parameters ---------- wp, ws : float Passband and stopband edge frequencies, normalized from 0 to 1 (1 corresponds to pi radians / sample). For example: - Lowpass: wp = 0.2, ws = 0.3 - Highpass: wp = 0.3, ws = 0.2 - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] gpass : float The maximum loss in the passband (dB). gstop : float The minimum attenuation in the stopband (dB). analog : int, optional Non-zero to design an analog filter (in this case `wp` and `ws` are in radians / second). ftype : str, optional The type of IIR filter to design: - elliptic : 'ellip' - Butterworth : 'butter', - Chebyshev I : 'cheby1', - Chebyshev II: 'cheby2', - Bessel : 'bessel' output : ['ba', 'zpk'], optional Type of output: numerator/denominator ('ba') or pole-zero ('zpk'). Default is 'ba'. Returns ------- b, a : Numerator and denominator of the IIR filter. Only returned if ``output='ba'``. z, p, k : Zeros, poles, and gain of the IIR filter. Only returned if ``output='zpk'``. """ try: ordfunc = filter_dict[ftype][1] except KeyError: raise ValueError("Invalid IIR filter type: %s" % ftype) except IndexError: raise ValueError(("%s does not have order selection use " "iirfilter function.") % ftype) wp = atleast_1d(wp) ws = atleast_1d(ws) band_type = 2 * (len(wp) - 1) band_type += 1 if wp[0] >= ws[0]: band_type += 1 btype = {1: 'lowpass', 2: 'highpass', 3: 'bandstop', 4: 'bandpass'}[band_type] N, Wn = ordfunc(wp, ws, gpass, gstop, analog=analog) return iirfilter(N, Wn, rp=gpass, rs=gstop, analog=analog, btype=btype, ftype=ftype, output=output) def iirfilter(N, Wn, rp=None, rs=None, btype='band', analog=0, ftype='butter', output='ba'): """IIR digital and analog filter design given order and critical points. Design an Nth order lowpass digital or analog filter and return the filter coefficients in (B,A) (numerator, denominator) or (Z,P,K) form. Parameters ---------- N : int The order of the filter. Wn : array_like A scalar or length-2 sequence giving the critical frequencies. rp : float, optional For Chebyshev and elliptic filters provides the maximum ripple in the passband. rs : float, optional For chebyshev and elliptic filters provides the minimum attenuation in the stop band. btype : str, optional The type of filter (lowpass, highpass, bandpass, bandstop). Default is bandpass. analog : int, optional Non-zero to return an analog filter, otherwise a digital filter is returned. ftype : str, optional The type of IIR filter to design: - elliptic : 'ellip' - Butterworth : 'butter', - Chebyshev I : 'cheby1', - Chebyshev II: 'cheby2', - Bessel : 'bessel' output : ['ba', 'zpk'], optional Type of output: numerator/denominator ('ba') or pole-zero ('zpk'). Default is 'ba'. See Also -------- butterord, cheb1ord, cheb2ord, ellipord """ ftype, btype, output = [x.lower() for x in (ftype, btype, output)] Wn = asarray(Wn) try: btype = band_dict[btype] except KeyError: raise ValueError("%s is an invalid bandtype for filter." % btype) try: typefunc = filter_dict[ftype][0] except KeyError: raise ValueError("%s is not a valid basic iir filter." % ftype) if output not in ['ba', 'zpk']: raise ValueError("%s is not a valid output form." % output) # pre-warp frequencies for digital filter design if not analog: fs = 2.0 warped = 2 * fs * tan(pi * Wn / fs) else: warped = Wn # convert to low-pass prototype if btype in ['lowpass', 'highpass']: wo = warped else: bw = warped[1] - warped[0] wo = sqrt(warped[0] * warped[1]) # Get analog lowpass prototype if typefunc in [buttap, besselap]: z, p, k = typefunc(N) elif typefunc == cheb1ap: if rp is None: raise ValueError("passband ripple (rp) must be provided to " "design a Chebyshev I filter.") z, p, k = typefunc(N, rp) elif typefunc == cheb2ap: if rs is None: raise ValueError("stopband atteunatuion (rs) must be provided to " "design an Chebyshev II filter.") z, p, k = typefunc(N, rs) else: # Elliptic filters if rs is None or rp is None: raise ValueError("Both rp and rs must be provided to design an " "elliptic filter.") z, p, k = typefunc(N, rp, rs) b, a = zpk2tf(z, p, k) # transform to lowpass, bandpass, highpass, or bandstop if btype == 'lowpass': b, a = lp2lp(b, a, wo=wo) elif btype == 'highpass': b, a = lp2hp(b, a, wo=wo) elif btype == 'bandpass': b, a = lp2bp(b, a, wo=wo, bw=bw) else: # 'bandstop' b, a = lp2bs(b, a, wo=wo, bw=bw) # Find discrete equivalent if necessary if not analog: b, a = bilinear(b, a, fs=fs) # Transform to proper out type (pole-zero, state-space, numer-denom) if output == 'zpk': return tf2zpk(b, a) else: return b, a def butter(N, Wn, btype='low', analog=0, output='ba'): """Butterworth digital and analog filter design. Design an Nth order lowpass digital or analog Butterworth filter and return the filter coefficients in (B,A) or (Z,P,K) form. See also -------- buttord. """ return iirfilter(N, Wn, btype=btype, analog=analog, output=output, ftype='butter') def cheby1(N, rp, Wn, btype='low', analog=0, output='ba'): """Chebyshev type I digital and analog filter design. Design an Nth order lowpass digital or analog Chebyshev type I filter and return the filter coefficients in (B,A) or (Z,P,K) form. See also -------- cheb1ord. """ return iirfilter(N, Wn, rp=rp, btype=btype, analog=analog, output=output, ftype='cheby1') def cheby2(N, rs, Wn, btype='low', analog=0, output='ba'): """Chebyshev type I digital and analog filter design. Design an Nth order lowpass digital or analog Chebyshev type I filter and return the filter coefficients in (B,A) or (Z,P,K) form. See also -------- cheb2ord. """ return iirfilter(N, Wn, rs=rs, btype=btype, analog=analog, output=output, ftype='cheby2') def ellip(N, rp, rs, Wn, btype='low', analog=0, output='ba'): """Elliptic (Cauer) digital and analog filter design. Design an Nth order lowpass digital or analog elliptic filter and return the filter coefficients in (B,A) or (Z,P,K) form. See also -------- ellipord. """ return iirfilter(N, Wn, rs=rs, rp=rp, btype=btype, analog=analog, output=output, ftype='elliptic') def bessel(N, Wn, btype='low', analog=0, output='ba'): """Bessel digital and analog filter design. Design an Nth order lowpass digital or analog Bessel filter and return the filter coefficients in (B,A) or (Z,P,K) form. """ return iirfilter(N, Wn, btype=btype, analog=analog, output=output, ftype='bessel') def maxflat(): pass def yulewalk(): pass def band_stop_obj(wp, ind, passb, stopb, gpass, gstop, type): """Band Stop Objective Function for order minimization. Returns the non-integer order for an analog band stop filter. Parameters ---------- wp : Edge of passband `passb`. ind : int Index specifying which `passb` edge to vary (0 or 1). passb : array_like Two element sequence of fixed passband edges. stopb : array_like Two element sequence of fixed stopband edges. gstop : float Amount of attenuation in stopband in dB. gpass : float Amount of ripple in the passband in dB. type : ['butter', 'cheby', 'ellip'] Type of filter. Returns ------- n : scalar Filter order (possibly non-integer). """ passbC = passb.copy() passbC[ind] = wp nat = (stopb * (passbC[0] - passbC[1]) / (stopb ** 2 - passbC[0] * passbC[1])) nat = min(abs(nat)) if type == 'butter': GSTOP = 10 ** (0.1 * abs(gstop)) GPASS = 10 ** (0.1 * abs(gpass)) n = (log10((GSTOP - 1.0) / (GPASS - 1.0)) / (2 * log10(nat))) elif type == 'cheby': GSTOP = 10 ** (0.1 * abs(gstop)) GPASS = 10 ** (0.1 * abs(gpass)) n = arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0))) / arccosh(nat) elif type == 'ellip': GSTOP = 10 ** (0.1 * gstop) GPASS = 10 ** (0.1 * gpass) arg1 = sqrt((GPASS - 1.0) / (GSTOP - 1.0)) arg0 = 1.0 / nat d0 = special.ellipk([arg0 ** 2, 1 - arg0 ** 2]) d1 = special.ellipk([arg1 ** 2, 1 - arg1 ** 2]) n = (d0[0] * d1[1] / (d0[1] * d1[0])) else: raise ValueError("Incorrect type: %s" % type) return n def buttord(wp, ws, gpass, gstop, analog=0): """Butterworth filter order selection. Return the order of the lowest order digital Butterworth filter that loses no more than `gpass` dB in the passband and has at least `gstop` dB attenuation in the stopband. Parameters ---------- wp, ws : float Passband and stopband edge frequencies, normalized from 0 to 1 (1 corresponds to pi radians / sample). For example: - Lowpass: wp = 0.2, ws = 0.3 - Highpass: wp = 0.3, ws = 0.2 - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] gpass : float The maximum loss in the passband (dB). gstop : float The minimum attenuation in the stopband (dB). analog : int, optional Non-zero to design an analog filter (in this case `wp` and `ws` are in radians / second). Returns ------- ord : int The lowest order for a Butterworth filter which meets specs. wn : ndarray or float The Butterworth natural frequency (i.e. the "3dB frequency"). Should be used with `butter` to give filter results. """ wp = atleast_1d(wp) ws = atleast_1d(ws) filter_type = 2 * (len(wp) - 1) filter_type += 1 if wp[0] >= ws[0]: filter_type += 1 # Pre-warp frequencies if not analog: passb = tan(wp * pi / 2.0) stopb = tan(ws * pi / 2.0) else: passb = wp * 1.0 stopb = ws * 1.0 if filter_type == 1: # low nat = stopb / passb elif filter_type == 2: # high nat = passb / stopb elif filter_type == 3: # stop wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, args=(0, passb, stopb, gpass, gstop, 'butter'), disp=0) passb[0] = wp0 wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], args=(1, passb, stopb, gpass, gstop, 'butter'), disp=0) passb[1] = wp1 nat = ((stopb * (passb[0] - passb[1])) / (stopb ** 2 - passb[0] * passb[1])) elif filter_type == 4: # pass nat = ((stopb ** 2 - passb[0] * passb[1]) / (stopb * (passb[0] - passb[1]))) nat = min(abs(nat)) GSTOP = 10 ** (0.1 * abs(gstop)) GPASS = 10 ** (0.1 * abs(gpass)) ord = int(ceil(log10((GSTOP - 1.0) / (GPASS - 1.0)) / (2 * log10(nat)))) # Find the butterworth natural frequency W0 (or the "3dB" frequency") # to give exactly gstop at nat. W0 will be between 1 and nat try: W0 = nat / ((10 ** (0.1 * abs(gstop)) - 1) ** (1.0 / (2.0 * ord))) except ZeroDivisionError: W0 = nat print "Warning, order is zero...check input parametegstop." # now convert this frequency back from lowpass prototype # to the original analog filter if filter_type == 1: # low WN = W0 * passb elif filter_type == 2: # high WN = passb / W0 elif filter_type == 3: # stop WN = numpy.zeros(2, float) discr = sqrt((passb[1] - passb[0]) ** 2 + 4 * W0 ** 2 * passb[0] * passb[1]) WN[0] = ((passb[1] - passb[0]) + discr) / (2 * W0) WN[1] = ((passb[1] - passb[0]) - discr) / (2 * W0) WN = numpy.sort(abs(WN)) elif filter_type == 4: # pass W0 = numpy.array([-W0, W0], float) WN = (-W0 * (passb[1] - passb[0]) / 2.0 + sqrt(W0 ** 2 / 4.0 * (passb[1] - passb[0]) ** 2 + passb[0] * passb[1])) WN = numpy.sort(abs(WN)) else: raise ValueError("Bad type: %s" % filter_type) if not analog: wn = (2.0 / pi) * arctan(WN) else: wn = WN if len(wn) == 1: wn = wn[0] return ord, wn def cheb1ord(wp, ws, gpass, gstop, analog=0): """Chebyshev type I filter order selection. Return the order of the lowest order digital Chebyshev Type I filter that loses no more than `gpass` dB in the passband and has at least `gstop` dB attenuation in the stopband. Parameters ---------- wp, ws : float Passband and stopband edge frequencies, normalized from 0 to 1 (1 corresponds to pi radians / sample). For example: - Lowpass: wp = 0.2, ws = 0.3 - Highpass: wp = 0.3, ws = 0.2 - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] gpass : float The maximum loss in the passband (dB). gstop : float The minimum attenuation in the stopband (dB). analog : int, optional Non-zero to design an analog filter (in this case `wp` and `ws` are in radians / second). Returns ------- ord : int The lowest order for a Chebyshev type I filter that meets specs. wn : ndarray or float The Chebyshev natural frequency (the "3dB frequency") for use with `cheby1` to give filter results. """ wp = atleast_1d(wp) ws = atleast_1d(ws) filter_type = 2 * (len(wp) - 1) if wp[0] < ws[0]: filter_type += 1 else: filter_type += 2 # Pre-wagpass frequencies if not analog: passb = tan(pi * wp / 2.) stopb = tan(pi * ws / 2.) else: passb = wp * 1.0 stopb = ws * 1.0 if filter_type == 1: # low nat = stopb / passb elif filter_type == 2: # high nat = passb / stopb elif filter_type == 3: # stop wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, args=(0, passb, stopb, gpass, gstop, 'cheby'), disp=0) passb[0] = wp0 wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], args=(1, passb, stopb, gpass, gstop, 'cheby'), disp=0) passb[1] = wp1 nat = ((stopb * (passb[0] - passb[1])) / (stopb ** 2 - passb[0] * passb[1])) elif filter_type == 4: # pass nat = ((stopb ** 2 - passb[0] * passb[1]) / (stopb * (passb[0] - passb[1]))) nat = min(abs(nat)) GSTOP = 10 ** (0.1 * abs(gstop)) GPASS = 10 ** (0.1 * abs(gpass)) ord = int(ceil(arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0))) / arccosh(nat))) # Natural frequencies are just the passband edges if not analog: wn = (2.0 / pi) * arctan(passb) else: wn = passb if len(wn) == 1: wn = wn[0] return ord, wn def cheb2ord(wp, ws, gpass, gstop, analog=0): """Chebyshev type II filter order selection. Description: Return the order of the lowest order digital Chebyshev Type II filter that loses no more than gpass dB in the passband and has at least gstop dB attenuation in the stopband. Parameters ---------- wp, ws : float Passband and stopband edge frequencies, normalized from 0 to 1 (1 corresponds to pi radians / sample). For example: - Lowpass: wp = 0.2, ws = 0.3 - Highpass: wp = 0.3, ws = 0.2 - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] gpass : float The maximum loss in the passband (dB). gstop : float The minimum attenuation in the stopband (dB). analog : int, optional Non-zero to design an analog filter (in this case `wp` and `ws` are in radians / second). Returns ------- ord : int The lowest order for a Chebyshev type II filter that meets specs. wn : ndarray or float The Chebyshev natural frequency (the "3dB frequency") for use with `cheby2` to give filter results. """ wp = atleast_1d(wp) ws = atleast_1d(ws) filter_type = 2 * (len(wp) - 1) if wp[0] < ws[0]: filter_type += 1 else: filter_type += 2 # Pre-wagpass frequencies if not analog: passb = tan(pi * wp / 2.0) stopb = tan(pi * ws / 2.0) else: passb = wp * 1.0 stopb = ws * 1.0 if filter_type == 1: # low nat = stopb / passb elif filter_type == 2: # high nat = passb / stopb elif filter_type == 3: # stop wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, args=(0, passb, stopb, gpass, gstop, 'cheby'), disp=0) passb[0] = wp0 wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], args=(1, passb, stopb, gpass, gstop, 'cheby'), disp=0) passb[1] = wp1 nat = ((stopb * (passb[0] - passb[1])) / (stopb ** 2 - passb[0] * passb[1])) elif filter_type == 4: # pass nat = ((stopb ** 2 - passb[0] * passb[1]) / (stopb * (passb[0] - passb[1]))) nat = min(abs(nat)) GSTOP = 10 ** (0.1 * abs(gstop)) GPASS = 10 ** (0.1 * abs(gpass)) ord = int(ceil(arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0))) / arccosh(nat))) # Find frequency where analog response is -gpass dB. # Then convert back from low-pass prototype to the original filter. new_freq = cosh(1.0 / ord * arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0)))) new_freq = 1.0 / new_freq if filter_type == 1: nat = passb / new_freq elif filter_type == 2: nat = passb * new_freq elif filter_type == 3: nat = numpy.zeros(2, float) nat[0] = (new_freq / 2.0 * (passb[0] - passb[1]) + sqrt(new_freq ** 2 * (passb[1] - passb[0]) ** 2 / 4.0 + passb[1] * passb[0])) nat[1] = passb[1] * passb[0] / nat[0] elif filter_type == 4: nat = numpy.zeros(2, float) nat[0] = (1.0 / (2.0 * new_freq) * (passb[0] - passb[1]) + sqrt((passb[1] - passb[0]) ** 2 / (4.0 * new_freq ** 2) + passb[1] * passb[0])) nat[1] = passb[0] * passb[1] / nat[0] if not analog: wn = (2.0 / pi) * arctan(nat) else: wn = nat if len(wn) == 1: wn = wn[0] return ord, wn def ellipord(wp, ws, gpass, gstop, analog=0): """Elliptic (Cauer) filter order selection. Return the order of the lowest order digital elliptic filter that loses no more than gpass dB in the passband and has at least gstop dB attenuation in the stopband. Parameters ---------- wp, ws : float Passband and stopband edge frequencies, normalized from 0 to 1 (1 corresponds to pi radians / sample). For example: - Lowpass: wp = 0.2, ws = 0.3 - Highpass: wp = 0.3, ws = 0.2 - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] gpass : float The maximum loss in the passband (dB). gstop : float The minimum attenuation in the stopband (dB). analog : int, optional Non-zero to design an analog filter (in this case `wp` and `ws` are in radians / second). Returns ------ ord : int The lowest order for an Elliptic (Cauer) filter that meets specs. wn : ndarray or float The Chebyshev natural frequency (the "3dB frequency") for use with `ellip` to give filter results.- """ wp = atleast_1d(wp) ws = atleast_1d(ws) filter_type = 2 * (len(wp) - 1) filter_type += 1 if wp[0] >= ws[0]: filter_type += 1 # Pre-wagpass frequencies if analog: passb = wp * 1.0 stopb = ws * 1.0 else: passb = tan(wp * pi / 2.0) stopb = tan(ws * pi / 2.0) if filter_type == 1: # low nat = stopb / passb elif filter_type == 2: # high nat = passb / stopb elif filter_type == 3: # stop wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, args=(0, passb, stopb, gpass, gstop, 'ellip'), disp=0) passb[0] = wp0 wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], args=(1, passb, stopb, gpass, gstop, 'ellip'), disp=0) passb[1] = wp1 nat = ((stopb * (passb[0] - passb[1])) / (stopb ** 2 - passb[0] * passb[1])) elif filter_type == 4: # pass nat = ((stopb ** 2 - passb[0] * passb[1]) / (stopb * (passb[0] - passb[1]))) nat = min(abs(nat)) GSTOP = 10 ** (0.1 * gstop) GPASS = 10 ** (0.1 * gpass) arg1 = sqrt((GPASS - 1.0) / (GSTOP - 1.0)) arg0 = 1.0 / nat d0 = special.ellipk([arg0 ** 2, 1 - arg0 ** 2]) d1 = special.ellipk([arg1 ** 2, 1 - arg1 ** 2]) ord = int(ceil(d0[0] * d1[1] / (d0[1] * d1[0]))) if not analog: wn = arctan(passb) * 2.0 / pi else: wn = passb if len(wn) == 1: wn = wn[0] return ord, wn def buttap(N): """Return (z,p,k) zero, pole, gain for analog prototype of an Nth order Butterworth filter.""" z = [] n = numpy.arange(1, N + 1) p = numpy.exp(1j * (2 * n - 1) / (2.0 * N) * pi) * 1j k = 1 return z, p, k def cheb1ap(N, rp): """Return (z,p,k) zero, pole, gain for Nth order Chebyshev type I lowpass analog filter prototype with `rp` decibels of ripple in the passband. """ z = [] eps = numpy.sqrt(10 ** (0.1 * rp) - 1.0) n = numpy.arange(1, N + 1) mu = 1.0 / N * numpy.log((1.0 + numpy.sqrt(1 + eps * eps)) / eps) theta = pi / 2.0 * (2 * n - 1.0) / N p = (-numpy.sinh(mu) * numpy.sin(theta) + 1j * numpy.cosh(mu) * numpy.cos(theta)) k = numpy.prod(-p, axis=0).real if N % 2 == 0: k = k / sqrt((1 + eps * eps)) return z, p, k def cheb2ap(N, rs): """Return (z,p,k) zero, pole, gain for Nth order Chebyshev type II lowpass analog filter prototype with `rs` decibels of ripple in the stopband. """ de = 1.0 / sqrt(10 ** (0.1 * rs) - 1) mu = arcsinh(1.0 / de) / N if N % 2: m = N - 1 n = numpy.concatenate((numpy.arange(1, N - 1, 2), numpy.arange(N + 2, 2 * N, 2))) else: m = N n = numpy.arange(1, 2 * N, 2) z = conjugate(1j / cos(n * pi / (2.0 * N))) p = exp(1j * (pi * numpy.arange(1, 2 * N, 2) / (2.0 * N) + pi / 2.0)) p = sinh(mu) * p.real + 1j * cosh(mu) * p.imag p = 1.0 / p k = (numpy.prod(-p, axis=0) / numpy.prod(-z, axis=0)).real return z, p, k EPSILON = 2e-16 def _vratio(u, ineps, mp): [s, c, d, phi] = special.ellipj(u, mp) ret = abs(ineps - s / c) return ret def _kratio(m, k_ratio): m = float(m) if m < 0: m = 0.0 if m > 1: m = 1.0 if abs(m) > EPSILON and (abs(m) + EPSILON) < 1: k = special.ellipk([m, 1 - m]) r = k[0] / k[1] - k_ratio elif abs(m) > EPSILON: r = -k_ratio else: r = 1e20 return abs(r) def ellipap(N, rp, rs): """Return (z,p,k) zeros, poles, and gain of an Nth order normalized prototype elliptic analog lowpass filter with `rp` decibels of ripple in the passband and a stopband `rs` decibels down. References ---------- Lutova, Tosic, and Evans, "Filter Design for Signal Processing", Chapters 5 and 12. """ if N == 1: p = -sqrt(1.0 / (10 ** (0.1 * rp) - 1.0)) k = -p z = [] return z, p, k eps = numpy.sqrt(10 ** (0.1 * rp) - 1) ck1 = eps / numpy.sqrt(10 ** (0.1 * rs) - 1) ck1p = numpy.sqrt(1 - ck1 * ck1) if ck1p == 1: raise ValueError("Cannot design a filter with given rp and rs" " specifications.") wp = 1 val = special.ellipk([ck1 * ck1, ck1p * ck1p]) if abs(1 - ck1p * ck1p) < EPSILON: krat = 0 else: krat = N * val[0] / val[1] m = optimize.fmin(_kratio, [0.5], args=(krat,), maxfun=250, maxiter=250, disp=0) if m < 0 or m > 1: m = optimize.fminbound(_kratio, 0, 1, args=(krat,), maxfun=250, maxiter=250, disp=0) capk = special.ellipk(m) ws = wp / sqrt(m) m1 = 1 - m j = numpy.arange(1 - N % 2, N, 2) jj = len(j) [s, c, d, phi] = special.ellipj(j * capk / N, m * numpy.ones(jj)) snew = numpy.compress(abs(s) > EPSILON, s, axis=-1) z = 1.0 / (sqrt(m) * snew) z = 1j * z z = numpy.concatenate((z, conjugate(z))) r = optimize.fmin(_vratio, special.ellipk(m), args=(1. / eps, ck1p * ck1p), maxfun=250, maxiter=250, disp=0) v0 = capk * r / (N * val[0]) [sv, cv, dv, phi] = special.ellipj(v0, 1 - m) p = -(c * d * sv * cv + 1j * s * dv) / (1 - (d * sv) ** 2.0) if N % 2: newp = numpy.compress(abs(p.imag) > EPSILON * numpy.sqrt(numpy.sum(p * numpy.conjugate(p), axis=0).real), p, axis=-1) p = numpy.concatenate((p, conjugate(newp))) else: p = numpy.concatenate((p, conjugate(p))) k = (numpy.prod(-p, axis=0) / numpy.prod(-z, axis=0)).real if N % 2 == 0: k = k / numpy.sqrt((1 + eps * eps)) return z, p, k def besselap(N): """Return (z,p,k) zero, pole, gain for analog prototype of an Nth order Bessel filter.""" z = [] k = 1 if N == 0: p = [] elif N == 1: p = [-1] elif N == 2: p = [-.8660254037844386467637229 + .4999999999999999999999996j, -.8660254037844386467637229 - .4999999999999999999999996j] elif N == 3: p = [-.9416000265332067855971980, -.7456403858480766441810907 - .7113666249728352680992154j, -.7456403858480766441810907 + .7113666249728352680992154j] elif N == 4: p = [-.6572111716718829545787781 - .8301614350048733772399715j, -.6572111716718829545787788 + .8301614350048733772399715j, -.9047587967882449459642637 - .2709187330038746636700923j, -.9047587967882449459642624 + .2709187330038746636700926j] elif N == 5: p = [-.9264420773877602247196260, -.8515536193688395541722677 - .4427174639443327209850002j, -.8515536193688395541722677 + .4427174639443327209850002j, -.5905759446119191779319432 - .9072067564574549539291747j, -.5905759446119191779319432 + .9072067564574549539291747j] elif N == 6: p = [-.9093906830472271808050953 - .1856964396793046769246397j, -.9093906830472271808050953 + .1856964396793046769246397j, -.7996541858328288520243325 - .5621717346937317988594118j, -.7996541858328288520243325 + .5621717346937317988594118j, -.5385526816693109683073792 - .9616876881954277199245657j, -.5385526816693109683073792 + .9616876881954277199245657j] elif N == 7: p = [-.9194871556490290014311619, -.8800029341523374639772340 - .3216652762307739398381830j, -.8800029341523374639772340 + .3216652762307739398381830j, -.7527355434093214462291616 - .6504696305522550699212995j, -.7527355434093214462291616 + .6504696305522550699212995j, -.4966917256672316755024763 - 1.002508508454420401230220j, -.4966917256672316755024763 + 1.002508508454420401230220j] elif N == 8: p = [-.9096831546652910216327629 - .1412437976671422927888150j, -.9096831546652910216327629 + .1412437976671422927888150j, -.8473250802359334320103023 - .4259017538272934994996429j, -.8473250802359334320103023 + .4259017538272934994996429j, -.7111381808485399250796172 - .7186517314108401705762571j, -.7111381808485399250796172 + .7186517314108401705762571j, -.4621740412532122027072175 - 1.034388681126901058116589j, -.4621740412532122027072175 + 1.034388681126901058116589j] elif N == 9: p = [-.9154957797499037686769223, -.8911217017079759323183848 - .2526580934582164192308115j, -.8911217017079759323183848 + .2526580934582164192308115j, -.8148021112269012975514135 - .5085815689631499483745341j, -.8148021112269012975514135 + .5085815689631499483745341j, -.6743622686854761980403401 - .7730546212691183706919682j, -.6743622686854761980403401 + .7730546212691183706919682j, -.4331415561553618854685942 - 1.060073670135929666774323j, -.4331415561553618854685942 + 1.060073670135929666774323j] elif N == 10: p = [-.9091347320900502436826431 - .1139583137335511169927714j, -.9091347320900502436826431 + .1139583137335511169927714j, -.8688459641284764527921864 - .3430008233766309973110589j, -.8688459641284764527921864 + .3430008233766309973110589j, -.7837694413101441082655890 - .5759147538499947070009852j, -.7837694413101441082655890 + .5759147538499947070009852j, -.6417513866988316136190854 - .8175836167191017226233947j, -.6417513866988316136190854 + .8175836167191017226233947j, -.4083220732868861566219785 - 1.081274842819124562037210j, -.4083220732868861566219785 + 1.081274842819124562037210j] elif N == 11: p = [-.9129067244518981934637318, -.8963656705721166099815744 - .2080480375071031919692341j, -.8963656705721166099815744 + .2080480375071031919692341j, -.8453044014712962954184557 - .4178696917801248292797448j, -.8453044014712962954184557 + .4178696917801248292797448j, -.7546938934722303128102142 - .6319150050721846494520941j, -.7546938934722303128102142 + .6319150050721846494520941j, -.6126871554915194054182909 - .8547813893314764631518509j, -.6126871554915194054182909 + .8547813893314764631518509j, -.3868149510055090879155425 - 1.099117466763120928733632j, -.3868149510055090879155425 + 1.099117466763120928733632j] elif N == 12: p = [-.9084478234140682638817772 - 95506365213450398415258360.0e-27j, -.9084478234140682638817772 + 95506365213450398415258360.0e-27j, -.8802534342016826507901575 - .2871779503524226723615457j, -.8802534342016826507901575 + .2871779503524226723615457j, -.8217296939939077285792834 - .4810212115100676440620548j, -.8217296939939077285792834 + .4810212115100676440620548j, -.7276681615395159454547013 - .6792961178764694160048987j, -.7276681615395159454547013 + .6792961178764694160048987j, -.5866369321861477207528215 - .8863772751320727026622149j, -.5866369321861477207528215 + .8863772751320727026622149j, -.3679640085526312839425808 - 1.114373575641546257595657j, -.3679640085526312839425808 + 1.114373575641546257595657j] elif N == 13: p = [-.9110914665984182781070663, -.8991314665475196220910718 - .1768342956161043620980863j, -.8991314665475196220910718 + .1768342956161043620980863j, -.8625094198260548711573628 - .3547413731172988997754038j, -.8625094198260548711573628 + .3547413731172988997754038j, -.7987460692470972510394686 - .5350752120696801938272504j, -.7987460692470972510394686 + .5350752120696801938272504j, -.7026234675721275653944062 - .7199611890171304131266374j, -.7026234675721275653944062 + .7199611890171304131266374j, -.5631559842430199266325818 - .9135900338325109684927731j, -.5631559842430199266325818 + .9135900338325109684927731j, -.3512792323389821669401925 - 1.127591548317705678613239j, -.3512792323389821669401925 + 1.127591548317705678613239j] elif N == 14: p = [-.9077932138396487614720659 - 82196399419401501888968130.0e-27j, -.9077932138396487614720659 + 82196399419401501888968130.0e-27j, -.8869506674916445312089167 - .2470079178765333183201435j, -.8869506674916445312089167 + .2470079178765333183201435j, -.8441199160909851197897667 - .4131653825102692595237260j, -.8441199160909851197897667 + .4131653825102692595237260j, -.7766591387063623897344648 - .5819170677377608590492434j, -.7766591387063623897344648 + .5819170677377608590492434j, -.6794256425119233117869491 - .7552857305042033418417492j, -.6794256425119233117869491 + .7552857305042033418417492j, -.5418766775112297376541293 - .9373043683516919569183099j, -.5418766775112297376541293 + .9373043683516919569183099j, -.3363868224902037330610040 - 1.139172297839859991370924j, -.3363868224902037330610040 + 1.139172297839859991370924j] elif N == 15: p = [-.9097482363849064167228581, -.9006981694176978324932918 - .1537681197278439351298882j, -.9006981694176978324932918 + .1537681197278439351298882j, -.8731264620834984978337843 - .3082352470564267657715883j, -.8731264620834984978337843 + .3082352470564267657715883j, -.8256631452587146506294553 - .4642348752734325631275134j, -.8256631452587146506294553 + .4642348752734325631275134j, -.7556027168970728127850416 - .6229396358758267198938604j, -.7556027168970728127850416 + .6229396358758267198938604j, -.6579196593110998676999362 - .7862895503722515897065645j, -.6579196593110998676999362 + .7862895503722515897065645j, -.5224954069658330616875186 - .9581787261092526478889345j, -.5224954069658330616875186 + .9581787261092526478889345j, -.3229963059766444287113517 - 1.149416154583629539665297j, -.3229963059766444287113517 + 1.149416154583629539665297j] elif N == 16: p = [-.9072099595087001356491337 - 72142113041117326028823950.0e-27j, -.9072099595087001356491337 + 72142113041117326028823950.0e-27j, -.8911723070323647674780132 - .2167089659900576449410059j, -.8911723070323647674780132 + .2167089659900576449410059j, -.8584264231521330481755780 - .3621697271802065647661080j, -.8584264231521330481755780 + .3621697271802065647661080j, -.8074790293236003885306146 - .5092933751171800179676218j, -.8074790293236003885306146 + .5092933751171800179676218j, -.7356166304713115980927279 - .6591950877860393745845254j, -.7356166304713115980927279 + .6591950877860393745845254j, -.6379502514039066715773828 - .8137453537108761895522580j, -.6379502514039066715773828 + .8137453537108761895522580j, -.5047606444424766743309967 - .9767137477799090692947061j, -.5047606444424766743309967 + .9767137477799090692947061j, -.3108782755645387813283867 - 1.158552841199330479412225j, -.3108782755645387813283867 + 1.158552841199330479412225j] elif N == 17: p = [-.9087141161336397432860029, -.9016273850787285964692844 - .1360267995173024591237303j, -.9016273850787285964692844 + .1360267995173024591237303j, -.8801100704438627158492165 - .2725347156478803885651973j, -.8801100704438627158492165 + .2725347156478803885651973j, -.8433414495836129204455491 - .4100759282910021624185986j, -.8433414495836129204455491 + .4100759282910021624185986j, -.7897644147799708220288138 - .5493724405281088674296232j, -.7897644147799708220288138 + .5493724405281088674296232j, -.7166893842372349049842743 - .6914936286393609433305754j, -.7166893842372349049842743 + .6914936286393609433305754j, -.6193710717342144521602448 - .8382497252826992979368621j, -.6193710717342144521602448 + .8382497252826992979368621j, -.4884629337672704194973683 - .9932971956316781632345466j, -.4884629337672704194973683 + .9932971956316781632345466j, -.2998489459990082015466971 - 1.166761272925668786676672j, -.2998489459990082015466971 + 1.166761272925668786676672j] elif N == 18: p = [-.9067004324162775554189031 - 64279241063930693839360680.0e-27j, -.9067004324162775554189031 + 64279241063930693839360680.0e-27j, -.8939764278132455733032155 - .1930374640894758606940586j, -.8939764278132455733032155 + .1930374640894758606940586j, -.8681095503628830078317207 - .3224204925163257604931634j, -.8681095503628830078317207 + .3224204925163257604931634j, -.8281885016242836608829018 - .4529385697815916950149364j, -.8281885016242836608829018 + .4529385697815916950149364j, -.7726285030739558780127746 - .5852778162086640620016316j, -.7726285030739558780127746 + .5852778162086640620016316j, -.6987821445005273020051878 - .7204696509726630531663123j, -.6987821445005273020051878 + .7204696509726630531663123j, -.6020482668090644386627299 - .8602708961893664447167418j, -.6020482668090644386627299 + .8602708961893664447167418j, -.4734268069916151511140032 - 1.008234300314801077034158j, -.4734268069916151511140032 + 1.008234300314801077034158j, -.2897592029880489845789953 - 1.174183010600059128532230j, -.2897592029880489845789953 + 1.174183010600059128532230j] elif N == 19: p = [-.9078934217899404528985092, -.9021937639390660668922536 - .1219568381872026517578164j, -.9021937639390660668922536 + .1219568381872026517578164j, -.8849290585034385274001112 - .2442590757549818229026280j, -.8849290585034385274001112 + .2442590757549818229026280j, -.8555768765618421591093993 - .3672925896399872304734923j, -.8555768765618421591093993 + .3672925896399872304734923j, -.8131725551578197705476160 - .4915365035562459055630005j, -.8131725551578197705476160 + .4915365035562459055630005j, -.7561260971541629355231897 - .6176483917970178919174173j, -.7561260971541629355231897 + .6176483917970178919174173j, -.6818424412912442033411634 - .7466272357947761283262338j, -.6818424412912442033411634 + .7466272357947761283262338j, -.5858613321217832644813602 - .8801817131014566284786759j, -.5858613321217832644813602 + .8801817131014566284786759j, -.4595043449730988600785456 - 1.021768776912671221830298j, -.4595043449730988600785456 + 1.021768776912671221830298j, -.2804866851439370027628724 - 1.180931628453291873626003j, -.2804866851439370027628724 + 1.180931628453291873626003j] elif N == 20: p = [-.9062570115576771146523497 - 57961780277849516990208850.0e-27j, -.9062570115576771146523497 + 57961780277849516990208850.0e-27j, -.8959150941925768608568248 - .1740317175918705058595844j, -.8959150941925768608568248 + .1740317175918705058595844j, -.8749560316673332850673214 - .2905559296567908031706902j, -.8749560316673332850673214 + .2905559296567908031706902j, -.8427907479956670633544106 - .4078917326291934082132821j, -.8427907479956670633544106 + .4078917326291934082132821j, -.7984251191290606875799876 - .5264942388817132427317659j, -.7984251191290606875799876 + .5264942388817132427317659j, -.7402780309646768991232610 - .6469975237605228320268752j, -.7402780309646768991232610 + .6469975237605228320268752j, -.6658120544829934193890626 - .7703721701100763015154510j, -.6658120544829934193890626 + .7703721701100763015154510j, -.5707026806915714094398061 - .8982829066468255593407161j, -.5707026806915714094398061 + .8982829066468255593407161j, -.4465700698205149555701841 - 1.034097702560842962315411j, -.4465700698205149555701841 + 1.034097702560842962315411j, -.2719299580251652601727704 - 1.187099379810885886139638j, -.2719299580251652601727704 + 1.187099379810885886139638j] elif N == 21: p = [-.9072262653142957028884077, -.9025428073192696303995083 - .1105252572789856480992275j, -.9025428073192696303995083 + .1105252572789856480992275j, -.8883808106664449854431605 - .2213069215084350419975358j, -.8883808106664449854431605 + .2213069215084350419975358j, -.8643915813643204553970169 - .3326258512522187083009453j, -.8643915813643204553970169 + .3326258512522187083009453j, -.8299435470674444100273463 - .4448177739407956609694059j, -.8299435470674444100273463 + .4448177739407956609694059j, -.7840287980408341576100581 - .5583186348022854707564856j, -.7840287980408341576100581 + .5583186348022854707564856j, -.7250839687106612822281339 - .6737426063024382240549898j, -.7250839687106612822281339 + .6737426063024382240549898j, -.6506315378609463397807996 - .7920349342629491368548074j, -.6506315378609463397807996 + .7920349342629491368548074j, -.5564766488918562465935297 - .9148198405846724121600860j, -.5564766488918562465935297 + .9148198405846724121600860j, -.4345168906815271799687308 - 1.045382255856986531461592j, -.4345168906815271799687308 + 1.045382255856986531461592j, -.2640041595834031147954813 - 1.192762031948052470183960j, -.2640041595834031147954813 + 1.192762031948052470183960j] elif N == 22: p = [-.9058702269930872551848625 - 52774908289999045189007100.0e-27j, -.9058702269930872551848625 + 52774908289999045189007100.0e-27j, -.8972983138153530955952835 - .1584351912289865608659759j, -.8972983138153530955952835 + .1584351912289865608659759j, -.8799661455640176154025352 - .2644363039201535049656450j, -.8799661455640176154025352 + .2644363039201535049656450j, -.8534754036851687233084587 - .3710389319482319823405321j, -.8534754036851687233084587 + .3710389319482319823405321j, -.8171682088462720394344996 - .4785619492202780899653575j, -.8171682088462720394344996 + .4785619492202780899653575j, -.7700332930556816872932937 - .5874255426351153211965601j, -.7700332930556816872932937 + .5874255426351153211965601j, -.7105305456418785989070935 - .6982266265924524000098548j, -.7105305456418785989070935 + .6982266265924524000098548j, -.6362427683267827226840153 - .8118875040246347267248508j, -.6362427683267827226840153 + .8118875040246347267248508j, -.5430983056306302779658129 - .9299947824439872998916657j, -.5430983056306302779658129 + .9299947824439872998916657j, -.4232528745642628461715044 - 1.055755605227545931204656j, -.4232528745642628461715044 + 1.055755605227545931204656j, -.2566376987939318038016012 - 1.197982433555213008346532j, -.2566376987939318038016012 + 1.197982433555213008346532j] elif N == 23: p = [-.9066732476324988168207439, -.9027564979912504609412993 - .1010534335314045013252480j, -.9027564979912504609412993 + .1010534335314045013252480j, -.8909283242471251458653994 - .2023024699381223418195228j, -.8909283242471251458653994 + .2023024699381223418195228j, -.8709469395587416239596874 - .3039581993950041588888925j, -.8709469395587416239596874 + .3039581993950041588888925j, -.8423805948021127057054288 - .4062657948237602726779246j, -.8423805948021127057054288 + .4062657948237602726779246j, -.8045561642053176205623187 - .5095305912227258268309528j, -.8045561642053176205623187 + .5095305912227258268309528j, -.7564660146829880581478138 - .6141594859476032127216463j, -.7564660146829880581478138 + .6141594859476032127216463j, -.6965966033912705387505040 - .7207341374753046970247055j, -.6965966033912705387505040 + .7207341374753046970247055j, -.6225903228771341778273152 - .8301558302812980678845563j, -.6225903228771341778273152 + .8301558302812980678845563j, -.5304922463810191698502226 - .9439760364018300083750242j, -.5304922463810191698502226 + .9439760364018300083750242j, -.4126986617510148836149955 - 1.065328794475513585531053j, -.4126986617510148836149955 + 1.065328794475513585531053j, -.2497697202208956030229911 - 1.202813187870697831365338j, -.2497697202208956030229911 + 1.202813187870697831365338j] elif N == 24: p = [-.9055312363372773709269407 - 48440066540478700874836350.0e-27j, -.9055312363372773709269407 + 48440066540478700874836350.0e-27j, -.8983105104397872954053307 - .1454056133873610120105857j, -.8983105104397872954053307 + .1454056133873610120105857j, -.8837358034555706623131950 - .2426335234401383076544239j, -.8837358034555706623131950 + .2426335234401383076544239j, -.8615278304016353651120610 - .3403202112618624773397257j, -.8615278304016353651120610 + .3403202112618624773397257j, -.8312326466813240652679563 - .4386985933597305434577492j, -.8312326466813240652679563 + .4386985933597305434577492j, -.7921695462343492518845446 - .5380628490968016700338001j, -.7921695462343492518845446 + .5380628490968016700338001j, -.7433392285088529449175873 - .6388084216222567930378296j, -.7433392285088529449175873 + .6388084216222567930378296j, -.6832565803536521302816011 - .7415032695091650806797753j, -.6832565803536521302816011 + .7415032695091650806797753j, -.6096221567378335562589532 - .8470292433077202380020454j, -.6096221567378335562589532 + .8470292433077202380020454j, -.5185914574820317343536707 - .9569048385259054576937721j, -.5185914574820317343536707 + .9569048385259054576937721j, -.4027853855197518014786978 - 1.074195196518674765143729j, -.4027853855197518014786978 + 1.074195196518674765143729j, -.2433481337524869675825448 - 1.207298683731972524975429j, -.2433481337524869675825448 + 1.207298683731972524975429j] elif N == 25: p = [-.9062073871811708652496104, -.9028833390228020537142561 - 93077131185102967450643820.0e-27j, -.9028833390228020537142561 + 93077131185102967450643820.0e-27j, -.8928551459883548836774529 - .1863068969804300712287138j, -.8928551459883548836774529 + .1863068969804300712287138j, -.8759497989677857803656239 - .2798521321771408719327250j, -.8759497989677857803656239 + .2798521321771408719327250j, -.8518616886554019782346493 - .3738977875907595009446142j, -.8518616886554019782346493 + .3738977875907595009446142j, -.8201226043936880253962552 - .4686668574656966589020580j, -.8201226043936880253962552 + .4686668574656966589020580j, -.7800496278186497225905443 - .5644441210349710332887354j, -.7800496278186497225905443 + .5644441210349710332887354j, -.7306549271849967721596735 - .6616149647357748681460822j, -.7306549271849967721596735 + .6616149647357748681460822j, -.6704827128029559528610523 - .7607348858167839877987008j, -.6704827128029559528610523 + .7607348858167839877987008j, -.5972898661335557242320528 - .8626676330388028512598538j, -.5972898661335557242320528 + .8626676330388028512598538j, -.5073362861078468845461362 - .9689006305344868494672405j, -.5073362861078468845461362 + .9689006305344868494672405j, -.3934529878191079606023847 - 1.082433927173831581956863j, -.3934529878191079606023847 + 1.082433927173831581956863j, -.2373280669322028974199184 - 1.211476658382565356579418j, -.2373280669322028974199184 + 1.211476658382565356579418j] else: raise ValueError("Bessel Filter not supported for order %d" % N) return z, p, k filter_dict = {'butter': [buttap, buttord], 'butterworth': [buttap, buttord], 'cauer': [ellipap, ellipord], 'elliptic': [ellipap, ellipord], 'ellip': [ellipap, ellipord], 'bessel': [besselap], 'cheby1': [cheb1ap, cheb1ord], 'chebyshev1': [cheb1ap, cheb1ord], 'chebyshevi': [cheb1ap, cheb1ord], 'cheby2': [cheb2ap, cheb2ord], 'chebyshev2': [cheb2ap, cheb2ord], 'chebyshevii': [cheb2ap, cheb2ord] } band_dict = {'band': 'bandpass', 'bandpass': 'bandpass', 'pass': 'bandpass', 'bp': 'bandpass', 'bs': 'bandstop', 'bandstop': 'bandstop', 'bands': 'bandstop', 'stop': 'bandstop', 'l': 'lowpass', 'low': 'lowpass', 'lowpass': 'lowpass', 'high': 'highpass', 'highpass': 'highpass', 'h': 'highpass' } warnings.simplefilter("always", BadCoefficients)
gpl-3.0
camallen/aggregation
experimental/penguins/cython/divisiveDBSCAN.py
2
7243
#!/usr/bin/env python __author__ = 'greg' from sklearn.cluster import DBSCAN import numpy as np import math import matplotlib.cbook as cbook from PIL import Image import matplotlib.pyplot as plt def dist(c1,c2): return math.sqrt((c1[0]-c2[0])**2 + (c1[1]-c2[1])**2) class CannotSplit(Exception): def __init__(self,value): self.value = value def __str__(self): return "" samples_needed = 3 class DivisiveDBSCAN: def __init__(self, min_samples): self.min_samples = min_samples self.starting_epsilon = math.sqrt(1000**2 + 750**2) def __own_DBSCAN__(self,epsilon,markings,debug=False): visited = {m:False for m in markings} in_cluster = {m:False for m in markings} def r1(m,m2): if math.sqrt(math.pow(m[0]-m2[0],2)+math.pow(m[1]-m2[1],2)) <= epsilon+0.05: return True else: return False def r2(m,m2): if ((m[0]-m2[0])**2+(m[1]-m2[1])**2)**0.5 <= epsilon: return True else: return False def query_region__(m): return [m2 for m2 in markings if r1(m,m2) and not(in_cluster[m2])] def cluster__(m, nearby_m): cluster = set([m]) in_cluster[m] = True for m2 in nearby_m: if not(in_cluster[m2]): cluster.add(m2) in_cluster[m2] = True if not(visited[m2]): visited[m2] = True nearby_m2 = query_region__(m2) if len(nearby_m2) >= self.min_samples: nearby_m.extend([m3 for m3 in nearby_m2 if not(m3 in nearby_m)]) return cluster clusters = [] for m in markings: if not(visited[m]): visited[m] = True nearby_m = query_region__(m) if len(nearby_m) >= self.min_samples: clusters.append(cluster__(m,nearby_m)) for c in clusters: assert(len(c) >= self.min_samples) labels = [] if debug: print clusters for m in markings: found = False for cluster_index,c in enumerate(clusters): if m in c: labels.append(cluster_index) found = True break if not(found): labels.append(-1) return labels def binary_search_DBSCAN(self,markings,user_ids,starting_epsilon,jpeg_file=None): if jpeg_file is not None: image_file = cbook.get_sample_data(jpeg_file) image = plt.imread(image_file) fig, ax = plt.subplots() im = ax.imshow(image) x,y = zip(*markings) plt.plot(x,y,'.',color='blue') #check to see if all of the points are from the same user - if so, they are noise #and we can skip the rest of the method if len(set(user_ids)) == 1: return markings,[],[] #given starting_epsilon (and min_samples), all of the markings should be in the same cluster markings_nparray = np.array(markings) min_epsilon = 0. max_epsilon = starting_epsilon #print "===" + str(starting_epsilon) #print self.min_samples while (max_epsilon-min_epsilon) >= 0.01: mid_epsilon = (max_epsilon+min_epsilon)/2. #print mid_epsilon db = DBSCAN(eps=mid_epsilon, min_samples=self.min_samples).fit(markings_nparray) labels = db.labels_ unique_labels = set(labels) #labels = self.__own_DBSCAN__(mid_epsilon,markings) #unique_labels = set(labels) if len(unique_labels) > 1: min_epsilon = mid_epsilon else: max_epsilon = mid_epsilon continue #if all of the resulting clusters still need to be split all_split = True for k in unique_labels: if k == -1: continue u_ = [ip for index,ip in enumerate(user_ids) if labels[index] == k] #if a cluster does not need to be split any further if len(set(u_)) == len(u_): all_split = False break if all_split: max_epsilon = mid_epsilon else: min_epsilon = mid_epsilon #this is the epsilon we are going to be using if min_epsilon == 0: assert unique_labels == set([-1]) return markings,[],[] assert min_epsilon > 0 #new_epsilon = int((min_epsilon*10))/10. db = DBSCAN(eps=min_epsilon, min_samples=self.min_samples).fit(markings_nparray) labels = db.labels_ #extract any and all clusters that do not need to be further split #labels = self.__own_DBSCAN__(new_epsilon,markings) unique_labels = set(labels) #if all of the resulting clusters still need to be split noise_markings = [] final_clusters = [] to_split_further_clusters = [] for k in unique_labels: x_ = [ip for index,ip in enumerate(markings) if labels[index] == k] #find out which points are in this cluster #this usually will not happen - but CAN if k == -1: noise_markings.extend(x_) else: u_ = [ip for index,ip in enumerate(user_ids) if labels[index] == k] #if a cluster does not need to be split any further - add it to the final clusters if len(set(u_)) == len(u_): if len(x_) < self.min_samples: noise_markings.extend(x_) else: final_clusters.append(x_) else: if len(x_) < self.min_samples: noise_markings.extend(x_) else: to_split_further_clusters.append((x_,u_,min_epsilon)) if (k == 0) and (jpeg_file is not None): x,y = zip(*x_) plt.plot(x,y,'.',color='green') if jpeg_file is not None: plt.show() return noise_markings,final_clusters,to_split_further_clusters def fit(self, markings,user_ids,jpeg_file=None): #start by creating the initial "super" cluster end_clusters = [] clusters_to_go = [(markings[:],user_ids[:],self.starting_epsilon),] while True: #if we have run out of clusters to process, break (hopefully done :) ) if clusters_to_go == []: break m_,u_,e_ = clusters_to_go.pop(0) noise,final,to_split = self.binary_search_DBSCAN(m_,u_,e_,jpeg_file) end_clusters.extend(final[:]) clusters_to_go.extend(to_split[:]) #break cluster_centers = [] for cluster in end_clusters: x,y = zip(*cluster) cluster_centers.append((np.mean(x),np.mean(y))) return cluster_centers
apache-2.0
mjudsp/Tsallis
sklearn/gaussian_process/kernels.py
24
66334
"""Kernels for Gaussian process regression and classification. The kernels in this module allow kernel-engineering, i.e., they can be combined via the "+" and "*" operators or be exponentiated with a scalar via "**". These sum and product expressions can also contain scalar values, which are automatically converted to a constant kernel. All kernels allow (analytic) gradient-based hyperparameter optimization. The space of hyperparameters can be specified by giving lower und upper boundaries for the value of each hyperparameter (the search space is thus rectangular). Instead of specifying bounds, hyperparameters can also be declared to be "fixed", which causes these hyperparameters to be excluded from optimization. """ # Author: Jan Hendrik Metzen <[email protected]> # Licence: BSD 3 clause # Note: this module is strongly inspired by the kernel module of the george # package. from abc import ABCMeta, abstractmethod from collections import namedtuple import math import numpy as np from scipy.special import kv, gamma from scipy.spatial.distance import pdist, cdist, squareform from ..metrics.pairwise import pairwise_kernels from ..externals import six from ..base import clone from sklearn.externals.funcsigs import signature class Hyperparameter(namedtuple('Hyperparameter', ('name', 'value_type', 'bounds', 'n_elements', 'fixed'))): """A kernel hyperparameter's specification in form of a namedtuple. Attributes ---------- name : string The name of the hyperparameter. Note that a kernel using a hyperparameter with name "x" must have the attributes self.x and self.x_bounds value_type : string The type of the hyperparameter. Currently, only "numeric" hyperparameters are supported. bounds : pair of floats >= 0 or "fixed" The lower and upper bound on the parameter. If n_elements>1, a pair of 1d array with n_elements each may be given alternatively. If the string "fixed" is passed as bounds, the hyperparameter's value cannot be changed. n_elements : int, default=1 The number of elements of the hyperparameter value. Defaults to 1, which corresponds to a scalar hyperparameter. n_elements > 1 corresponds to a hyperparameter which is vector-valued, such as, e.g., anisotropic length-scales. fixed : bool, default: None Whether the value of this hyperparameter is fixed, i.e., cannot be changed during hyperparameter tuning. If None is passed, the "fixed" is derived based on the given bounds. """ # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __init__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __new__(cls, name, value_type, bounds, n_elements=1, fixed=None): if not isinstance(bounds, six.string_types) or bounds != "fixed": bounds = np.atleast_2d(bounds) if n_elements > 1: # vector-valued parameter if bounds.shape[0] == 1: bounds = np.repeat(bounds, n_elements, 0) elif bounds.shape[0] != n_elements: raise ValueError("Bounds on %s should have either 1 or " "%d dimensions. Given are %d" % (name, n_elements, bounds.shape[0])) if fixed is None: fixed = isinstance(bounds, six.string_types) and bounds == "fixed" return super(Hyperparameter, cls).__new__( cls, name, value_type, bounds, n_elements, fixed) class Kernel(six.with_metaclass(ABCMeta)): """Base class for all kernels.""" def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict() # introspect the constructor arguments to find the model parameters # to represent cls = self.__class__ init = getattr(cls.__init__, 'deprecated_original', cls.__init__) init_sign = signature(init) args, varargs = [], [] for parameter in init_sign.parameters.values(): if (parameter.kind != parameter.VAR_KEYWORD and parameter.name != 'self'): args.append(parameter.name) if parameter.kind == parameter.VAR_POSITIONAL: varargs.append(parameter.name) if len(varargs) != 0: raise RuntimeError("scikit-learn kernels should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s doesn't follow this convention." % (cls, )) for arg in args: params[arg] = getattr(self, arg, None) return params def set_params(self, **params): """Set the parameters of this kernel. The method works on simple kernels as well as on nested kernels. The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Returns ------- self """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for kernel %s. ' 'Check the list of available parameters ' 'with `kernel.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for kernel %s. ' 'Check the list of available parameters ' 'with `kernel.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def clone_with_theta(self, theta): """Returns a clone of self with given hyperparameters theta. """ cloned = clone(self) cloned.theta = theta return cloned @property def n_dims(self): """Returns the number of non-fixed hyperparameters of the kernel.""" return self.theta.shape[0] @property def hyperparameters(self): """Returns a list of all hyperparameter specifications.""" r = [] for attr, value in sorted(self.__dict__.items()): if attr.startswith("hyperparameter_"): r.append(value) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ theta = [] for hyperparameter in self.hyperparameters: if not hyperparameter.fixed: theta.append(getattr(self, hyperparameter.name)) if len(theta) > 0: return np.log(np.hstack(theta)) else: return np.array([]) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ i = 0 for hyperparameter in self.hyperparameters: if hyperparameter.fixed: continue if hyperparameter.n_elements > 1: # vector-valued parameter setattr(self, hyperparameter.name, np.exp(theta[i:i + hyperparameter.n_elements])) i += hyperparameter.n_elements else: setattr(self, hyperparameter.name, np.exp(theta[i])) i += 1 if i != len(theta): raise ValueError("theta has not the correct number of entries." " Should be %d; given are %d" % (i, len(theta))) @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ bounds = [] for hyperparameter in self.hyperparameters: if not hyperparameter.fixed: bounds.append(hyperparameter.bounds) if len(bounds) > 0: return np.log(np.vstack(bounds)) else: return np.array([]) def __add__(self, b): if not isinstance(b, Kernel): return Sum(self, ConstantKernel(b)) return Sum(self, b) def __radd__(self, b): if not isinstance(b, Kernel): return Sum(ConstantKernel(b), self) return Sum(b, self) def __mul__(self, b): if not isinstance(b, Kernel): return Product(self, ConstantKernel(b)) return Product(self, b) def __rmul__(self, b): if not isinstance(b, Kernel): return Product(ConstantKernel(b), self) return Product(b, self) def __pow__(self, b): return Exponentiation(self, b) def __eq__(self, b): if type(self) != type(b): return False params_a = self.get_params() params_b = b.get_params() for key in set(list(params_a.keys()) + list(params_b.keys())): if np.any(params_a.get(key, None) != params_b.get(key, None)): return False return True def __repr__(self): return "{0}({1})".format(self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.theta))) @abstractmethod def __call__(self, X, Y=None, eval_gradient=False): """Evaluate the kernel.""" @abstractmethod def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ @abstractmethod def is_stationary(self): """Returns whether the kernel is stationary. """ class NormalizedKernelMixin(object): """Mixin for kernels which are normalized: k(X, X)=1.""" def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return np.ones(X.shape[0]) class StationaryKernelMixin(object): """Mixin for kernels which are stationary: k(X, Y)= f(X-Y).""" def is_stationary(self): """Returns whether the kernel is stationary. """ return True class CompoundKernel(Kernel): """Kernel which is composed of a set of other kernels.""" def __init__(self, kernels): self.kernels = kernels def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ return dict(kernels=self.kernels) @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return np.hstack([kernel.theta for kernel in self.kernels]) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ k_dims = self.k1.n_dims for i, kernel in enumerate(self.kernels): kernel.theta = theta[i * k_dims:(i + 1) * k_dims] @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ return np.vstack([kernel.bounds for kernel in self.kernels]) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Note that this compound kernel returns the results of all simple kernel stacked along an additional axis. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y, n_kernels) Kernel k(X, Y) K_gradient : array, shape (n_samples_X, n_samples_X, n_dims, n_kernels) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K = [] K_grad = [] for kernel in self.kernels: K_single, K_grad_single = kernel(X, Y, eval_gradient) K.append(K_single) K_grad.append(K_grad_single[..., np.newaxis]) return np.dstack(K), np.concatenate(K_grad, 3) else: return np.dstack([kernel(X, Y, eval_gradient) for kernel in self.kernels]) def __eq__(self, b): if type(self) != type(b) or len(self.kernels) != len(b.kernels): return False return np.all([self.kernels[i] == b.kernels[i] for i in range(len(self.kernels))]) def is_stationary(self): """Returns whether the kernel is stationary. """ return np.all([kernel.is_stationary() for kernel in self.kernels]) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X, n_kernels) Diagonal of kernel k(X, X) """ return np.vstack([kernel.diag(X) for kernel in self.kernels]).T class KernelOperator(Kernel): """Base class for all kernel operators. """ def __init__(self, k1, k2): self.k1 = k1 self.k2 = k2 def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict(k1=self.k1, k2=self.k2) if deep: deep_items = self.k1.get_params().items() params.update(('k1__' + k, val) for k, val in deep_items) deep_items = self.k2.get_params().items() params.update(('k2__' + k, val) for k, val in deep_items) return params @property def hyperparameters(self): """Returns a list of all hyperparameter.""" r = [] for hyperparameter in self.k1.hyperparameters: r.append(Hyperparameter("k1__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) for hyperparameter in self.k2.hyperparameters: r.append(Hyperparameter("k2__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return np.append(self.k1.theta, self.k2.theta) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ k1_dims = self.k1.n_dims self.k1.theta = theta[:k1_dims] self.k2.theta = theta[k1_dims:] @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ if self.k1.bounds.size == 0: return self.k2.bounds if self.k2.bounds.size == 0: return self.k1.bounds return np.vstack((self.k1.bounds, self.k2.bounds)) def __eq__(self, b): if type(self) != type(b): return False return (self.k1 == b.k1 and self.k2 == b.k2) \ or (self.k1 == b.k2 and self.k2 == b.k1) def is_stationary(self): """Returns whether the kernel is stationary. """ return self.k1.is_stationary() and self.k2.is_stationary() class Sum(KernelOperator): """Sum-kernel k1 + k2 of two kernels k1 and k2. The resulting kernel is defined as k_sum(X, Y) = k1(X, Y) + k2(X, Y) Parameters ---------- k1 : Kernel object The first base-kernel of the sum-kernel k2 : Kernel object The second base-kernel of the sum-kernel """ def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True) K2, K2_gradient = self.k2(X, Y, eval_gradient=True) return K1 + K2, np.dstack((K1_gradient, K2_gradient)) else: return self.k1(X, Y) + self.k2(X, Y) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.k1.diag(X) + self.k2.diag(X) def __repr__(self): return "{0} + {1}".format(self.k1, self.k2) class Product(KernelOperator): """Product-kernel k1 * k2 of two kernels k1 and k2. The resulting kernel is defined as k_prod(X, Y) = k1(X, Y) * k2(X, Y) Parameters ---------- k1 : Kernel object The first base-kernel of the product-kernel k2 : Kernel object The second base-kernel of the product-kernel """ def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True) K2, K2_gradient = self.k2(X, Y, eval_gradient=True) return K1 * K2, np.dstack((K1_gradient * K2[:, :, np.newaxis], K2_gradient * K1[:, :, np.newaxis])) else: return self.k1(X, Y) * self.k2(X, Y) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.k1.diag(X) * self.k2.diag(X) def __repr__(self): return "{0} * {1}".format(self.k1, self.k2) class Exponentiation(Kernel): """Exponentiate kernel by given exponent. The resulting kernel is defined as k_exp(X, Y) = k(X, Y) ** exponent Parameters ---------- kernel : Kernel object The base kernel exponent : float The exponent for the base kernel """ def __init__(self, kernel, exponent): self.kernel = kernel self.exponent = exponent def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict(kernel=self.kernel, exponent=self.exponent) if deep: deep_items = self.kernel.get_params().items() params.update(('kernel__' + k, val) for k, val in deep_items) return params @property def hyperparameters(self): """Returns a list of all hyperparameter.""" r = [] for hyperparameter in self.kernel.hyperparameters: r.append(Hyperparameter("kernel__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return self.kernel.theta @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ self.kernel.theta = theta @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ return self.kernel.bounds def __eq__(self, b): if type(self) != type(b): return False return (self.kernel == b.kernel and self.exponent == b.exponent) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K, K_gradient = self.kernel(X, Y, eval_gradient=True) K_gradient *= \ self.exponent * K[:, :, np.newaxis] ** (self.exponent - 1) return K ** self.exponent, K_gradient else: K = self.kernel(X, Y, eval_gradient=False) return K ** self.exponent def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.kernel.diag(X) ** self.exponent def __repr__(self): return "{0} ** {1}".format(self.kernel, self.exponent) def is_stationary(self): """Returns whether the kernel is stationary. """ return self.kernel.is_stationary() class ConstantKernel(StationaryKernelMixin, Kernel): """Constant kernel. Can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as part of a sum-kernel, where it modifies the mean of the Gaussian process. k(x_1, x_2) = constant_value for all x_1, x_2 Parameters ---------- constant_value : float, default: 1.0 The constant value which defines the covariance: k(x_1, x_2) = constant_value constant_value_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on constant_value """ def __init__(self, constant_value=1.0, constant_value_bounds=(1e-5, 1e5)): self.constant_value = constant_value self.constant_value_bounds = constant_value_bounds self.hyperparameter_constant_value = \ Hyperparameter("constant_value", "numeric", constant_value_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: Y = X elif eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") K = self.constant_value * np.ones((X.shape[0], Y.shape[0])) if eval_gradient: if not self.hyperparameter_constant_value.fixed: return (K, self.constant_value * np.ones((X.shape[0], X.shape[0], 1))) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.constant_value * np.ones(X.shape[0]) def __repr__(self): return "{0:.3g}**2".format(np.sqrt(self.constant_value)) class WhiteKernel(StationaryKernelMixin, Kernel): """White kernel. The main use-case of this kernel is as part of a sum-kernel where it explains the noise-component of the signal. Tuning its parameter corresponds to estimating the noise-level. k(x_1, x_2) = noise_level if x_1 == x_2 else 0 Parameters ---------- noise_level : float, default: 1.0 Parameter controlling the noise level noise_level_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on noise_level """ def __init__(self, noise_level=1.0, noise_level_bounds=(1e-5, 1e5)): self.noise_level = noise_level self.noise_level_bounds = noise_level_bounds self.hyperparameter_noise_level = \ Hyperparameter("noise_level", "numeric", noise_level_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is not None and eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") if Y is None: K = self.noise_level * np.eye(X.shape[0]) if eval_gradient: if not self.hyperparameter_noise_level.fixed: return (K, self.noise_level * np.eye(X.shape[0])[:, :, np.newaxis]) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K else: return np.zeros((X.shape[0], Y.shape[0])) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.noise_level * np.ones(X.shape[0]) def __repr__(self): return "{0}(noise_level={1:.3g})".format(self.__class__.__name__, self.noise_level) class RBF(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Radial-basis function kernel (aka squared-exponential kernel). The RBF kernel is a stationary kernel. It is also known as the "squared exponential" kernel. It is parameterized by a length-scale parameter length_scale>0, which can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs X (anisotropic variant of the kernel). The kernel is given by: k(x_i, x_j) = exp(-1 / 2 d(x_i / length_scale, x_j / length_scale)^2) This kernel is infinitely differentiable, which implies that GPs with this kernel as covariance function have mean square derivatives of all orders, and are thus very smooth. Parameters ----------- length_scale : float or array with shape (n_features,), default: 1.0 The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where each dimension of l defines the length-scale of the respective feature dimension. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale """ def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5)): if np.iterable(length_scale): if len(length_scale) > 1: self.anisotropic = True self.length_scale = np.asarray(length_scale, dtype=np.float) else: self.anisotropic = False self.length_scale = float(length_scale[0]) else: self.anisotropic = False self.length_scale = float(length_scale) self.length_scale_bounds = length_scale_bounds if self.anisotropic: # anisotropic length_scale self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds, len(length_scale)) else: self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if self.anisotropic and X.shape[1] != self.length_scale.shape[0]: raise Exception("Anisotropic kernel must have the same number of " "dimensions as data (%d!=%d)" % (self.length_scale.shape[0], X.shape[1])) if Y is None: dists = pdist(X / self.length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X / self.length_scale, Y / self.length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed return K, np.empty((X.shape[0], X.shape[0], 0)) elif not self.anisotropic or self.length_scale.shape[0] == 1: K_gradient = \ (K * squareform(dists))[:, :, np.newaxis] return K, K_gradient elif self.anisotropic: # We need to recompute the pairwise dimension-wise distances K_gradient = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 \ / (self.length_scale ** 2) K_gradient *= K[..., np.newaxis] return K, K_gradient else: raise Exception("Anisotropic kernels require that the number " "of length scales and features match.") else: return K def __repr__(self): if self.anisotropic: return "{0}(length_scale=[{1}])".format( self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.length_scale))) else: # isotropic return "{0}(length_scale={1:.3g})".format( self.__class__.__name__, self.length_scale) class Matern(RBF): """ Matern kernel. The class of Matern kernels is a generalization of the RBF and the absolute exponential kernel parameterized by an additional parameter nu. The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel becomes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important intermediate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable functions). See Rasmussen and Williams 2006, pp84 for details regarding the different variants of the Matern kernel. Parameters ----------- length_scale : float or array with shape (n_features,), default: 1.0 The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where each dimension of l defines the length-scale of the respective feature dimension. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale nu: float, default: 1.5 The parameter nu controlling the smoothness of the learned function. The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel becomes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important intermediate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable functions). Note that values of nu not in [0.5, 1.5, 2.5, inf] incur a considerably higher computational cost (appr. 10 times higher) since they require to evaluate the modified Bessel function. Furthermore, in contrast to l, nu is kept fixed to its initial value and not optimized. """ def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5), nu=1.5): super(Matern, self).__init__(length_scale, length_scale_bounds) self.nu = nu def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if self.anisotropic and X.shape[1] != self.length_scale.shape[0]: raise Exception("Anisotropic kernel must have the same number of " "dimensions as data (%d!=%d)" % (self.length_scale.shape[0], X.shape[1])) if Y is None: dists = pdist(X / self.length_scale, metric='euclidean') else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X / self.length_scale, Y / self.length_scale, metric='euclidean') if self.nu == 0.5: K = np.exp(-dists) elif self.nu == 1.5: K = dists * math.sqrt(3) K = (1. + K) * np.exp(-K) elif self.nu == 2.5: K = dists * math.sqrt(5) K = (1. + K + K ** 2 / 3.0) * np.exp(-K) else: # general case; expensive to evaluate K = dists K[K == 0.0] += np.finfo(float).eps # strict zeros result in nan tmp = (math.sqrt(2 * self.nu) * K) K.fill((2 ** (1. - self.nu)) / gamma(self.nu)) K *= tmp ** self.nu K *= kv(self.nu, tmp) if Y is None: # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed K_gradient = np.empty((X.shape[0], X.shape[0], 0)) return K, K_gradient # We need to recompute the pairwise dimension-wise distances if self.anisotropic: D = (X[:, np.newaxis, :] - X[np.newaxis, :, :])**2 \ / (self.length_scale ** 2) else: D = squareform(dists**2)[:, :, np.newaxis] if self.nu == 0.5: K_gradient = K[..., np.newaxis] * D \ / np.sqrt(D.sum(2))[:, :, np.newaxis] K_gradient[~np.isfinite(K_gradient)] = 0 elif self.nu == 1.5: K_gradient = \ 3 * D * np.exp(-np.sqrt(3 * D.sum(-1)))[..., np.newaxis] elif self.nu == 2.5: tmp = np.sqrt(5 * D.sum(-1))[..., np.newaxis] K_gradient = 5.0 / 3.0 * D * (tmp + 1) * np.exp(-tmp) else: # approximate gradient numerically def f(theta): # helper function return self.clone_with_theta(theta)(X, Y) return K, _approx_fprime(self.theta, f, 1e-10) if not self.anisotropic: return K, K_gradient[:, :].sum(-1)[:, :, np.newaxis] else: return K, K_gradient else: return K def __repr__(self): if self.anisotropic: return "{0}(length_scale=[{1}], nu={2:.3g})".format( self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.length_scale)), self.nu) else: # isotropic return "{0}(length_scale={1:.3g}, nu={2:.3g})".format( self.__class__.__name__, self.length_scale, self.nu) class RationalQuadratic(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Rational Quadratic kernel. The RationalQuadratic kernel can be seen as a scale mixture (an infinite sum) of RBF kernels with different characteristic length-scales. It is parameterized by a length-scale parameter length_scale>0 and a scale mixture parameter alpha>0. Only the isotropic variant where length_scale is a scalar is supported at the moment. The kernel given by: k(x_i, x_j) = (1 + d(x_i, x_j)^2 / (2*alpha * length_scale^2))^-alpha Parameters ---------- length_scale : float > 0, default: 1.0 The length scale of the kernel. alpha : float > 0, default: 1.0 Scale mixture parameter length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale alpha_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on alpha """ def __init__(self, length_scale=1.0, alpha=1.0, length_scale_bounds=(1e-5, 1e5), alpha_bounds=(1e-5, 1e5)): self.length_scale = length_scale self.alpha = alpha self.length_scale_bounds = length_scale_bounds self.alpha_bounds = alpha_bounds self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) self.hyperparameter_alpha = \ Hyperparameter("alpha", "numeric", alpha_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: dists = squareform(pdist(X, metric='sqeuclidean')) tmp = dists / (2 * self.alpha * self.length_scale ** 2) base = (1 + tmp) K = base ** -self.alpha np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='sqeuclidean') K = (1 + dists / (2 * self.alpha * self.length_scale ** 2)) \ ** -self.alpha if eval_gradient: # gradient with respect to length_scale if not self.hyperparameter_length_scale.fixed: length_scale_gradient = \ dists * K / (self.length_scale ** 2 * base) length_scale_gradient = length_scale_gradient[:, :, np.newaxis] else: # l is kept fixed length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0)) # gradient with respect to alpha if not self.hyperparameter_alpha.fixed: alpha_gradient = \ K * (-self.alpha * np.log(base) + dists / (2 * self.length_scale ** 2 * base)) alpha_gradient = alpha_gradient[:, :, np.newaxis] else: # alpha is kept fixed alpha_gradient = np.empty((K.shape[0], K.shape[1], 0)) return K, np.dstack((alpha_gradient, length_scale_gradient)) else: return K def __repr__(self): return "{0}(alpha={1:.3g}, length_scale={2:.3g})".format( self.__class__.__name__, self.alpha, self.length_scale) class ExpSineSquared(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Exp-Sine-Squared kernel. The ExpSineSquared kernel allows modeling periodic functions. It is parameterized by a length-scale parameter length_scale>0 and a periodicity parameter periodicity>0. Only the isotropic variant where l is a scalar is supported at the moment. The kernel given by: k(x_i, x_j) = exp(-2 sin(\pi / periodicity * d(x_i, x_j)) / length_scale)^2 Parameters ---------- length_scale : float > 0, default: 1.0 The length scale of the kernel. periodicity : float > 0, default: 1.0 The periodicity of the kernel. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale periodicity_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on periodicity """ def __init__(self, length_scale=1.0, periodicity=1.0, length_scale_bounds=(1e-5, 1e5), periodicity_bounds=(1e-5, 1e5)): self.length_scale = length_scale self.periodicity = periodicity self.length_scale_bounds = length_scale_bounds self.periodicity_bounds = periodicity_bounds self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) self.hyperparameter_periodicity = \ Hyperparameter("periodicity", "numeric", periodicity_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: dists = squareform(pdist(X, metric='euclidean')) arg = np.pi * dists / self.periodicity sin_of_arg = np.sin(arg) K = np.exp(- 2 * (sin_of_arg / self.length_scale) ** 2) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='euclidean') K = np.exp(- 2 * (np.sin(np.pi / self.periodicity * dists) / self.length_scale) ** 2) if eval_gradient: cos_of_arg = np.cos(arg) # gradient with respect to length_scale if not self.hyperparameter_length_scale.fixed: length_scale_gradient = \ 4 / self.length_scale**2 * sin_of_arg**2 * K length_scale_gradient = length_scale_gradient[:, :, np.newaxis] else: # length_scale is kept fixed length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0)) # gradient with respect to p if not self.hyperparameter_periodicity.fixed: periodicity_gradient = \ 4 * arg / self.length_scale**2 * cos_of_arg \ * sin_of_arg * K periodicity_gradient = periodicity_gradient[:, :, np.newaxis] else: # p is kept fixed periodicity_gradient = np.empty((K.shape[0], K.shape[1], 0)) return K, np.dstack((length_scale_gradient, periodicity_gradient)) else: return K def __repr__(self): return "{0}(length_scale={1:.3g}, periodicity={2:.3g})".format( self.__class__.__name__, self.length_scale, self.periodicity) class DotProduct(Kernel): """Dot-Product kernel. The DotProduct kernel is non-stationary and can be obtained from linear regression by putting N(0, 1) priors on the coefficients of x_d (d = 1, . . . , D) and a prior of N(0, \sigma_0^2) on the bias. The DotProduct kernel is invariant to a rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter sigma_0^2. For sigma_0^2 =0, the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by k(x_i, x_j) = sigma_0 ^ 2 + x_i \cdot x_j The DotProduct kernel is commonly combined with exponentiation. Parameters ---------- sigma_0 : float >= 0, default: 1.0 Parameter controlling the inhomogenity of the kernel. If sigma_0=0, the kernel is homogenous. sigma_0_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on l """ def __init__(self, sigma_0=1.0, sigma_0_bounds=(1e-5, 1e5)): self.sigma_0 = sigma_0 self.sigma_0_bounds = sigma_0_bounds self.hyperparameter_sigma_0 = \ Hyperparameter("sigma_0", "numeric", sigma_0_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: K = np.inner(X, X) + self.sigma_0 ** 2 else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") K = np.inner(X, Y) + self.sigma_0 ** 2 if eval_gradient: if not self.hyperparameter_sigma_0.fixed: K_gradient = np.empty((K.shape[0], K.shape[1], 1)) K_gradient[..., 0] = 2 * self.sigma_0 ** 2 return K, K_gradient else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return np.einsum('ij,ij->i', X, X) + self.sigma_0 ** 2 def is_stationary(self): """Returns whether the kernel is stationary. """ return False def __repr__(self): return "{0}(sigma_0={1:.3g})".format( self.__class__.__name__, self.sigma_0) # adapted from scipy/optimize/optimize.py for functions with 2d output def _approx_fprime(xk, f, epsilon, args=()): f0 = f(*((xk,) + args)) grad = np.zeros((f0.shape[0], f0.shape[1], len(xk)), float) ei = np.zeros((len(xk), ), float) for k in range(len(xk)): ei[k] = 1.0 d = epsilon * ei grad[:, :, k] = (f(*((xk + d,) + args)) - f0) / d[k] ei[k] = 0.0 return grad class PairwiseKernel(Kernel): """Wrapper for kernels in sklearn.metrics.pairwise. A thin wrapper around the functionality of the kernels in sklearn.metrics.pairwise. Note: Evaluation of eval_gradient is not analytic but numeric and all kernels support only isotropic distances. The parameter gamma is considered to be a hyperparameter and may be optimized. The other kernel parameters are set directly at initialization and are kept fixed. Parameters ---------- gamma: float >= 0, default: 1.0 Parameter gamma of the pairwise kernel specified by metric gamma_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on gamma metric : string, or callable, default: "linear" The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. pairwise_kernels_kwargs : dict, default: None All entries of this dict (if any) are passed as keyword arguments to the pairwise kernel function. """ def __init__(self, gamma=1.0, gamma_bounds=(1e-5, 1e5), metric="linear", pairwise_kernels_kwargs=None): self.gamma = gamma self.gamma_bounds = gamma_bounds self.hyperparameter_gamma = \ Hyperparameter("gamma", "numeric", gamma_bounds) self.metric = metric if pairwise_kernels_kwargs is not None: self.pairwise_kernels_kwargs = pairwise_kernels_kwargs else: self.pairwise_kernels_kwargs = {} def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) K = pairwise_kernels(X, Y, metric=self.metric, gamma=self.gamma, filter_params=True, **self.pairwise_kernels_kwargs) if eval_gradient: if self.hyperparameter_gamma.fixed: return K, np.empty((X.shape[0], X.shape[0], 0)) else: # approximate gradient numerically def f(gamma): # helper function return pairwise_kernels( X, Y, metric=self.metric, gamma=np.exp(gamma), filter_params=True, **self.pairwise_kernels_kwargs) return K, _approx_fprime(self.theta, f, 1e-10) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ # We have to fall back to slow way of computing diagonal return np.apply_along_axis(self, 1, X)[:, 0] def is_stationary(self): """Returns whether the kernel is stationary. """ return self.metric in ["rbf"] def __repr__(self): return "{0}(gamma={1}, metric={2})".format( self.__class__.__name__, self.gamma, self.metric)
bsd-3-clause
equialgo/scikit-learn
sklearn/metrics/cluster/supervised.py
25
31477
"""Utilities to evaluate the clustering performance of models. Functions named as *_score return a scalar value to maximize: the higher the better. """ # Authors: Olivier Grisel <[email protected]> # Wei LI <[email protected]> # Diego Molla <[email protected]> # Arnaud Fouchet <[email protected]> # Thierry Guillemot <[email protected]> # Gregory Stupp <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause from __future__ import division from math import log import numpy as np from scipy.misc import comb from scipy import sparse as sp from .expected_mutual_info_fast import expected_mutual_information from ...utils.fixes import bincount from ...utils.validation import check_array def comb2(n): # the exact version is faster for k == 2: use it by default globally in # this module instead of the float approximate variant return comb(n, 2, exact=1) def check_clusterings(labels_true, labels_pred): """Check that the two clusterings matching 1D integer arrays.""" labels_true = np.asarray(labels_true) labels_pred = np.asarray(labels_pred) # input checks if labels_true.ndim != 1: raise ValueError( "labels_true must be 1D: shape is %r" % (labels_true.shape,)) if labels_pred.ndim != 1: raise ValueError( "labels_pred must be 1D: shape is %r" % (labels_pred.shape,)) if labels_true.shape != labels_pred.shape: raise ValueError( "labels_true and labels_pred must have same size, got %d and %d" % (labels_true.shape[0], labels_pred.shape[0])) return labels_true, labels_pred def contingency_matrix(labels_true, labels_pred, eps=None, sparse=False): """Build a contingency matrix describing the relationship between labels. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate eps : None or float, optional. If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If ``None``, nothing is adjusted. sparse : boolean, optional. If True, return a sparse CSR continency matrix. If ``eps is not None``, and ``sparse is True``, will throw ValueError. .. versionadded:: 0.18 Returns ------- contingency : {array-like, sparse}, shape=[n_classes_true, n_classes_pred] Matrix :math:`C` such that :math:`C_{i, j}` is the number of samples in true class :math:`i` and in predicted class :math:`j`. If ``eps is None``, the dtype of this array will be integer. If ``eps`` is given, the dtype will be float. Will be a ``scipy.sparse.csr_matrix`` if ``sparse=True``. """ if eps is not None and sparse: raise ValueError("Cannot set 'eps' when sparse=True") classes, class_idx = np.unique(labels_true, return_inverse=True) clusters, cluster_idx = np.unique(labels_pred, return_inverse=True) n_classes = classes.shape[0] n_clusters = clusters.shape[0] # Using coo_matrix to accelerate simple histogram calculation, # i.e. bins are consecutive integers # Currently, coo_matrix is faster than histogram2d for simple cases contingency = sp.coo_matrix((np.ones(class_idx.shape[0]), (class_idx, cluster_idx)), shape=(n_classes, n_clusters), dtype=np.int) if sparse: contingency = contingency.tocsr() contingency.sum_duplicates() else: contingency = contingency.toarray() if eps is not None: # don't use += as contingency is integer contingency = contingency + eps return contingency # clustering measures def adjusted_rand_score(labels_true, labels_pred): """Rand index adjusted for chance. The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The raw RI score is then "adjusted for chance" into the ARI score using the following scheme:: ARI = (RI - Expected_RI) / (max(RI) - Expected_RI) The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). ARI is a symmetric measure:: adjusted_rand_score(a, b) == adjusted_rand_score(b, a) Read more in the :ref:`User Guide <adjusted_rand_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate Returns ------- ari : float Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0. 1.0 stands for perfect match. Examples -------- Perfectly maching labelings have a score of 1 even >>> from sklearn.metrics.cluster import adjusted_rand_score >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:: >>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1]) # doctest: +ELLIPSIS 0.57... ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnecessary splits are penalized:: >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2]) # doctest: +ELLIPSIS 0.57... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the ARI is very low:: >>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [Hubert1985] `L. Hubert and P. Arabie, Comparing Partitions, Journal of Classification 1985` http://link.springer.com/article/10.1007%2FBF01908075 .. [wk] https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index See also -------- adjusted_mutual_info_score: Adjusted Mutual Information """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] n_classes = np.unique(labels_true).shape[0] n_clusters = np.unique(labels_pred).shape[0] # Special limit cases: no clustering since the data is not split; # or trivial clustering where each document is assigned a unique cluster. # These are perfect matches hence return 1.0. if (n_classes == n_clusters == 1 or n_classes == n_clusters == 0 or n_classes == n_clusters == n_samples): return 1.0 # Compute the ARI using the contingency data contingency = contingency_matrix(labels_true, labels_pred, sparse=True) sum_comb_c = sum(comb2(n_c) for n_c in np.ravel(contingency.sum(axis=1))) sum_comb_k = sum(comb2(n_k) for n_k in np.ravel(contingency.sum(axis=0))) sum_comb = sum(comb2(n_ij) for n_ij in contingency.data) prod_comb = (sum_comb_c * sum_comb_k) / comb(n_samples, 2) mean_comb = (sum_comb_k + sum_comb_c) / 2. return (sum_comb - prod_comb) / (mean_comb - prod_comb) def homogeneity_completeness_v_measure(labels_true, labels_pred): """Compute the homogeneity and completeness and V-Measure scores at once. Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given the knowledge of a Ground Truth class labels of the same samples. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. Both scores have positive values between 0.0 and 1.0, larger values being desirable. Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score values in any way. V-Measure is furthermore symmetric: swapping ``labels_true`` and ``label_pred`` will give the same score. This does not hold for homogeneity and completeness. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity : float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling completeness : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling v_measure : float harmonic mean of the first two See also -------- homogeneity_score completeness_score v_measure_score """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) if len(labels_true) == 0: return 1.0, 1.0, 1.0 entropy_C = entropy(labels_true) entropy_K = entropy(labels_pred) contingency = contingency_matrix(labels_true, labels_pred, sparse=True) MI = mutual_info_score(None, None, contingency=contingency) homogeneity = MI / (entropy_C) if entropy_C else 1.0 completeness = MI / (entropy_K) if entropy_K else 1.0 if homogeneity + completeness == 0.0: v_measure_score = 0.0 else: v_measure_score = (2.0 * homogeneity * completeness / (homogeneity + completeness)) return homogeneity, completeness, v_measure_score def homogeneity_score(labels_true, labels_pred): """Homogeneity metric of a cluster labeling given a ground truth. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`completeness_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity : float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- completeness_score v_measure_score Examples -------- Perfect labelings are homogeneous:: >>> from sklearn.metrics.cluster import homogeneity_score >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 1.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 1.0... Clusters that include samples from different classes do not make for an homogeneous labeling:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])) ... # doctest: +ELLIPSIS 0.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[0] def completeness_score(labels_true, labels_pred): """Completeness metric of a cluster labeling given a ground truth. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`homogeneity_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- completeness : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score v_measure_score Examples -------- Perfect labelings are complete:: >>> from sklearn.metrics.cluster import completeness_score >>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that assign all classes members to the same clusters are still complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0])) 1.0 >>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1])) 1.0 If classes members are split across different clusters, the assignment cannot be complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1])) 0.0 >>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3])) 0.0 """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[1] def v_measure_score(labels_true, labels_pred): """V-measure cluster labeling given a ground truth. This score is identical to :func:`normalized_mutual_info_score`. The V-measure is the harmonic mean between homogeneity and completeness:: v = 2 * (homogeneity * completeness) / (homogeneity + completeness) This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- v_measure : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score completeness_score Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import v_measure_score >>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penalized:: >>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.66... Labelings that have pure clusters with members coming from the same classes are homogeneous but un-necessary splits harms completeness and thus penalize V-measure as well:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.66... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the V-Measure is null:: >>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.0... Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling, hence:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[2] def mutual_info_score(labels_true, labels_pred, contingency=None): """Mutual Information between two clusterings. The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`P(i)` is the probability of a random sample occurring in cluster :math:`U_i` and :math:`P'(j)` is the probability of a random sample occurring in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\sum_{i=1}^R \sum_{j=1}^C P(i,j)\log\\frac{P(i,j)}{P(i)P'(j)} This is equal to the Kullback-Leibler divergence of the joint distribution with the product distribution of the marginals. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. contingency : {None, array, sparse matrix}, shape = [n_classes_true, n_classes_pred] A contingency matrix given by the :func:`contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi : float Mutual information, a non-negative value See also -------- adjusted_mutual_info_score: Adjusted against chance Mutual Information normalized_mutual_info_score: Normalized Mutual Information """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) contingency = contingency_matrix(labels_true, labels_pred, sparse=True) else: contingency = check_array(contingency, accept_sparse=['csr', 'csc', 'coo'], dtype=[int, np.int32, np.int64]) if isinstance(contingency, np.ndarray): # For an array nzx, nzy = np.nonzero(contingency) nz_val = contingency[nzx, nzy] elif sp.issparse(contingency): # For a sparse matrix nzx, nzy, nz_val = sp.find(contingency) else: raise ValueError("Unsupported type for 'contingency': %s" % type(contingency)) contingency_sum = contingency.sum() pi = np.ravel(contingency.sum(axis=1)) pj = np.ravel(contingency.sum(axis=0)) log_contingency_nm = np.log(nz_val) contingency_nm = nz_val / contingency_sum # Don't need to calculate the full outer product, just for non-zeroes outer = pi.take(nzx) * pj.take(nzy) log_outer = -np.log(outer) + log(pi.sum()) + log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) + contingency_nm * log_outer) return mi.sum() def adjusted_mutual_info_score(labels_true, labels_pred): """Adjusted Mutual Information between two clusterings. Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings :math:`U` and :math:`V`, the AMI is given as:: AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))] This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- ami: float(upperlimited by 1.0) The AMI returns a value of 1 when the two partitions are identical (ie perfectly matched). Random partitions (independent labellings) have an expected AMI around 0 on average hence can be negative. See also -------- adjusted_rand_score: Adjusted Rand Index mutual_information_score: Mutual Information (not adjusted for chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import adjusted_mutual_info_score >>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the AMI is null:: >>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [1] `Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance, JMLR <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf>`_ .. [2] `Wikipedia entry for the Adjusted Mutual Information <https://en.wikipedia.org/wiki/Adjusted_Mutual_Information>`_ """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred, sparse=True) contingency = contingency.astype(np.float64) # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information emi = expected_mutual_information(contingency, n_samples) # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) ami = (mi - emi) / (max(h_true, h_pred) - emi) return ami def normalized_mutual_info_score(labels_true, labels_pred): """Normalized Mutual Information between two clusterings. Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by ``sqrt(H(labels_true) * H(labels_pred))`` This measure is not adjusted for chance. Therefore :func:`adjusted_mustual_info_score` might be preferred. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- nmi : float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling See also -------- adjusted_rand_score: Adjusted Rand Index adjusted_mutual_info_score: Adjusted Mutual Information (adjusted against chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import normalized_mutual_info_score >>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the NMI is null:: >>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred, sparse=True) contingency = contingency.astype(np.float64) # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) nmi = mi / max(np.sqrt(h_true * h_pred), 1e-10) return nmi def fowlkes_mallows_score(labels_true, labels_pred, sparse=False): """Measure the similarity of two clusterings of a set of points. The Fowlkes-Mallows index (FMI) is defined as the geometric mean between of the precision and recall:: FMI = TP / sqrt((TP + FP) * (TP + FN)) Where ``TP`` is the number of **True Positive** (i.e. the number of pair of points that belongs in the same clusters in both ``labels_true`` and ``labels_pred``), ``FP`` is the number of **False Positive** (i.e. the number of pair of points that belongs in the same clusters in ``labels_true`` and not in ``labels_pred``) and ``FN`` is the number of **False Negative** (i.e the number of pair of points that belongs in the same clusters in ``labels_pred`` and not in ``labels_True``). The score ranges from 0 to 1. A high value indicates a good similarity between two clusters. Read more in the :ref:`User Guide <fowlkes_mallows_scores>`. Parameters ---------- labels_true : int array, shape = (``n_samples``,) A clustering of the data into disjoint subsets. labels_pred : array, shape = (``n_samples``, ) A clustering of the data into disjoint subsets. Returns ------- score : float The resulting Fowlkes-Mallows score. Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import fowlkes_mallows_score >>> fowlkes_mallows_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> fowlkes_mallows_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally random, hence the FMI is null:: >>> fowlkes_mallows_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [1] `E. B. Fowkles and C. L. Mallows, 1983. "A method for comparing two hierarchical clusterings". Journal of the American Statistical Association <http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf>`_ .. [2] `Wikipedia entry for the Fowlkes-Mallows Index <https://en.wikipedia.org/wiki/Fowlkes-Mallows_index>`_ """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples, = labels_true.shape c = contingency_matrix(labels_true, labels_pred, sparse=True) tk = np.dot(c.data, c.data) - n_samples pk = np.sum(np.asarray(c.sum(axis=0)).ravel() ** 2) - n_samples qk = np.sum(np.asarray(c.sum(axis=1)).ravel() ** 2) - n_samples return tk / np.sqrt(pk * qk) if tk != 0. else 0. def entropy(labels): """Calculates the entropy for a labeling.""" if len(labels) == 0: return 1.0 label_idx = np.unique(labels, return_inverse=True)[1] pi = bincount(label_idx).astype(np.float64) pi = pi[pi > 0] pi_sum = np.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision return -np.sum((pi / pi_sum) * (np.log(pi) - log(pi_sum)))
bsd-3-clause
noelevans/sandpit
kaggle/washington_bike_share/learner.py
1
1109
import csv import numpy as np import pandas as pd INPUT_FIELDS = set(['season', 'holiday', 'workingday', 'weather', 'temp', 'atemp', 'humidity', 'windspeed']) CONTINUOUS_FIELDS = set(['temp', 'atemp', 'humidity', 'windspeed']) MANUAL_FIELDS = set(['month', 'hour']) DISCRETE_FIELDS = (INPUT_FIELDS - CONTINUOUS_FIELDS).union(MANUAL_FIELDS) OUTCOME = 'count' def load_and_munge_training_data(filename): ds = pd.read_csv(open(filename)) parse_month = lambda dt: int(dt.split('-')[1]) parse_hour = lambda dt: int(dt.split()[1].split(':')[0]) ds['month'] = map(parse_month, ds['datetime']) ds['hour'] = map(parse_hour, ds['datetime']) return ds def fields_influence(training): def sum_std_deviations(field): return training.groupby(field)['count'].apply(np.mean).sum() return reversed(sorted((sum_std_deviations(f), f) for f in DISCRETE_FIELDS)) def main(): training = load_and_munge_training_data('train.csv') print [el[1] for el in fields_influence(training)] if __name__ == '__main__': main()
mit
metaml/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/fontconfig_pattern.py
72
6429
""" A module for parsing and generating fontconfig patterns. See the `fontconfig pattern specification <http://www.fontconfig.org/fontconfig-user.html>`_ for more information. """ # Author : Michael Droettboom <[email protected]> # License : matplotlib license (PSF compatible) # This class is defined here because it must be available in: # - The old-style config framework (:file:`rcsetup.py`) # - The traits-based config framework (:file:`mpltraits.py`) # - The font manager (:file:`font_manager.py`) # It probably logically belongs in :file:`font_manager.py`, but # placing it in any of these places would have created cyclical # dependency problems, or an undesired dependency on traits even # when the traits-based config framework is not used. import re from matplotlib.pyparsing import Literal, ZeroOrMore, \ Optional, Regex, StringEnd, ParseException, Suppress family_punc = r'\\\-:,' family_unescape = re.compile(r'\\([%s])' % family_punc).sub family_escape = re.compile(r'([%s])' % family_punc).sub value_punc = r'\\=_:,' value_unescape = re.compile(r'\\([%s])' % value_punc).sub value_escape = re.compile(r'([%s])' % value_punc).sub class FontconfigPatternParser: """A simple pyparsing-based parser for fontconfig-style patterns. See the `fontconfig pattern specification <http://www.fontconfig.org/fontconfig-user.html>`_ for more information. """ _constants = { 'thin' : ('weight', 'light'), 'extralight' : ('weight', 'light'), 'ultralight' : ('weight', 'light'), 'light' : ('weight', 'light'), 'book' : ('weight', 'book'), 'regular' : ('weight', 'regular'), 'normal' : ('weight', 'normal'), 'medium' : ('weight', 'medium'), 'demibold' : ('weight', 'demibold'), 'semibold' : ('weight', 'semibold'), 'bold' : ('weight', 'bold'), 'extrabold' : ('weight', 'extra bold'), 'black' : ('weight', 'black'), 'heavy' : ('weight', 'heavy'), 'roman' : ('slant', 'normal'), 'italic' : ('slant', 'italic'), 'oblique' : ('slant', 'oblique'), 'ultracondensed' : ('width', 'ultra-condensed'), 'extracondensed' : ('width', 'extra-condensed'), 'condensed' : ('width', 'condensed'), 'semicondensed' : ('width', 'semi-condensed'), 'expanded' : ('width', 'expanded'), 'extraexpanded' : ('width', 'extra-expanded'), 'ultraexpanded' : ('width', 'ultra-expanded') } def __init__(self): family = Regex(r'([^%s]|(\\[%s]))*' % (family_punc, family_punc)) \ .setParseAction(self._family) size = Regex(r"([0-9]+\.?[0-9]*|\.[0-9]+)") \ .setParseAction(self._size) name = Regex(r'[a-z]+') \ .setParseAction(self._name) value = Regex(r'([^%s]|(\\[%s]))*' % (value_punc, value_punc)) \ .setParseAction(self._value) families =(family + ZeroOrMore( Literal(',') + family) ).setParseAction(self._families) point_sizes =(size + ZeroOrMore( Literal(',') + size) ).setParseAction(self._point_sizes) property =( (name + Suppress(Literal('=')) + value + ZeroOrMore( Suppress(Literal(',')) + value) ) | name ).setParseAction(self._property) pattern =(Optional( families) + Optional( Literal('-') + point_sizes) + ZeroOrMore( Literal(':') + property) + StringEnd() ) self._parser = pattern self.ParseException = ParseException def parse(self, pattern): """ Parse the given fontconfig *pattern* and return a dictionary of key/value pairs useful for initializing a :class:`font_manager.FontProperties` object. """ props = self._properties = {} try: self._parser.parseString(pattern) except self.ParseException, e: raise ValueError("Could not parse font string: '%s'\n%s" % (pattern, e)) self._properties = None return props def _family(self, s, loc, tokens): return [family_unescape(r'\1', str(tokens[0]))] def _size(self, s, loc, tokens): return [float(tokens[0])] def _name(self, s, loc, tokens): return [str(tokens[0])] def _value(self, s, loc, tokens): return [value_unescape(r'\1', str(tokens[0]))] def _families(self, s, loc, tokens): self._properties['family'] = [str(x) for x in tokens] return [] def _point_sizes(self, s, loc, tokens): self._properties['size'] = [str(x) for x in tokens] return [] def _property(self, s, loc, tokens): if len(tokens) == 1: if tokens[0] in self._constants: key, val = self._constants[tokens[0]] self._properties.setdefault(key, []).append(val) else: key = tokens[0] val = tokens[1:] self._properties.setdefault(key, []).extend(val) return [] parse_fontconfig_pattern = FontconfigPatternParser().parse def generate_fontconfig_pattern(d): """ Given a dictionary of key/value pairs, generates a fontconfig pattern string. """ props = [] families = '' size = '' for key in 'family style variant weight stretch file size'.split(): val = getattr(d, 'get_' + key)() if val is not None and val != []: if type(val) == list: val = [value_escape(r'\\\1', str(x)) for x in val if x is not None] if val != []: val = ','.join(val) props.append(":%s=%s" % (key, val)) return ''.join(props)
agpl-3.0
armbrustlab/seaflowpy
src/seaflowpy/fileio.py
1
16455
from contextlib import contextmanager import gzip import io import os import zlib import numpy as np import pandas as pd from . import errors from . import particleops from .seaflowfile import SeaFlowFile from . import util @contextmanager def file_open_r(path, fileobj=None): """ Open path or fileobj for reading as a context manager. Data read from the return value of this function will come from path or preferentially fileobj if provided. If path is provided and ends with '.gz' data will be considered gzip compressed even if read from fileobj. All resources opened by this function (input file handles) or open resources passed to this function (fileobj) will be cleaned up by context managers. The return value of this function should always be used within a 'with' block. Parameters ----------- path: str File path. fileobj: io.BytesIO, optional Open file object. Returns ------- Context manager for file-like object of Bytes. """ # zlib is faster than gzip for decompression of EVT data on MacOS, and # comparable on Linux. if fileobj: if path.endswith('.gz'): gzdata = fileobj.read() zobj = zlib.decompressobj(wbits=zlib.MAX_WBITS|32) data = zobj.decompress(gzdata) yield io.BytesIO(data) else: yield fileobj else: if path.endswith('.gz'): with io.open(path, 'rb') as fileobj: gzdata = fileobj.read() zobj = zlib.decompressobj(wbits=zlib.MAX_WBITS|32) data = zobj.decompress(gzdata) yield io.BytesIO(data) else: with io.open(path, 'rb') as fh: yield fh @contextmanager def file_open_w(path): """ Open path for writing as a context manager. If path ends with '.gz' data will gzip compressed. Only the write method of the returned object should be used. All resources opened in this function (output file handles, gzipping child processes) will be cleaned up by context managers. The return value of this function should always be used within a 'with' block. Parameters ----------- path: str File path. Returns ------- Context manager for writable file-like object. """ if path.endswith('.gz'): with gzip.open(path, mode='wb', compresslevel=9) as fh: yield fh else: with io.open(path, 'wb') as fh: yield fh def read_labview(path, columns, fileobj=None): """ Read a labview binary SeaFlow data file. Data will be read from the file at the provided path or preferentially from fileobj if provided. If path is provided and ends with '.gz' data will be considered gzip compressed even if read from fileobj. Parameters ----------- path: str File path. columns: list of str Names of columns. Also represents how many columns there are. fileobj: io.BytesIO, optional Open file object. Returns ------- pandas.DataFrame SeaFlow event DataFrame as numpy.float64 values. """ colcnt = len(columns) + 2 # 2 leading column per row try: with file_open_r(path, fileobj) as fh: # Particle count (rows of data) is stored in an initial 32-bit # unsigned int buff = fh.read(4) if len(buff) == 0: raise errors.FileError("File is empty") if len(buff) != 4: raise errors.FileError("File has invalid particle count header") rowcnt = np.frombuffer(buff, dtype="uint32", count=1)[0] if rowcnt == 0: raise errors.FileError("File has no particle data") # Read the rest of the data. Each particle has colcnt unsigned # 16-bit ints in a row. expected_bytes = rowcnt * colcnt * 2 # rowcnt * colcnt columns * 2 bytes # must cast to int here because while BufferedIOReader objects # returned from io.open(path, "rb") will accept a numpy.int64 type, # io.BytesIO objects will not accept this type and will only accept # vanilla int types. This is true for Python 3, not for Python 2. buff = fh.read(int(expected_bytes)) # Read any extra data at the end of the file for error checking. There # shouldn't be any extra data, btw. extra_bytes = 0 while True: new_bytes = len(fh.read(8192)) extra_bytes += new_bytes if new_bytes == 0: # end of file break except (IOError, EOFError, zlib.error) as e: raise errors.FileError("File could not be read: {}".format(str(e))) # Check that file has the expected number of data bytes. found_bytes = len(buff) + extra_bytes if found_bytes != expected_bytes: raise errors.FileError( "File has incorrect number of data bytes. Expected %i, saw %i" % (expected_bytes, found_bytes) ) events = np.frombuffer(buff, dtype="uint16", count=rowcnt*colcnt) # Reshape into a matrix of colcnt columns and one row per particle events = np.reshape(events, [rowcnt, colcnt]) # Create a Pandas DataFrame with descriptive column names. # # The first two uint16s [0,10] from start of each row are left out. # These ints are an idiosyncrasy of LabVIEW's binary output format. # I believe they're supposed to serve as EOL signals (NULL, # linefeed in ASCII), but because the last line doesn't have them # it's easier to treat them as leading ints on each line after the # header. df = pd.DataFrame(np.delete(events, [0, 1], 1), columns=columns) return df def read_labview_row_count(path, fileobj=None): """ Get the row count of a labview binary SeaFlow data file. Only a small amount of data from the beginning of the file will be read to get the reported row count from the file header. This should be a much faster method of getting row count than reading the whole file. Data will be read from the file at the provided path or preferentially from fileobj if provided. If path is provided and ends with '.gz' data will be considered gzip compressed even if read from fileobj. Parameters ----------- path: str File path. fileobj: io.BytesIO, optional Open file object. Returns ------- int Number of rows reported in the labview file header (first uint32). """ if path.endswith('.gz'): with io.open(path, 'rb') as fh: fileobj = io.BytesIO(fh.read(512)) # read enough to get first 4 uncompressed bytes with file_open_r(path, fileobj) as fh: # Particle count (rows of data) is stored in an initial 32-bit # unsigned int try: buff = fh.read(4) except (IOError, EOFError) as e: raise errors.FileError("File could not be read: {}".format(str(e))) if len(buff) == 0: raise errors.FileError("File is empty") if len(buff) != 4: raise errors.FileError("File has invalid particle count header") rowcnt = np.frombuffer(buff, dtype="uint32", count=1)[0] return rowcnt def read_evt_labview(path, fileobj=None): """ Read a raw labview binary SeaFlow data file. Data will be read from the file at the provided path or preferentially from fileobj if provided. If path is provided and ends with '.gz' data will be considered gzip compressed even if read from fileobj. Parameters ----------- path: str File path. fileobj: io.BytesIO, optional Open file object. Returns ------- pandas.DataFrame SeaFlow event DataFrame as numpy.float64 values. """ return read_labview(path, particleops.COLUMNS, fileobj).astype(np.float64) def read_opp_labview(path, fileobj=None): """ Read an OPP labview binary SeaFlow data file. Data will be read from the file at the provided path or preferentially from fileobj if provided. If path is provided and ends with '.gz' data will be considered gzip compressed even if read from fileobj. Parameters ----------- path: str File path. fileobj: io.BytesIO, optional Open file object. Returns ------- pandas.DataFrame SeaFlow OPP DataFrame as numpy.float64 values with quantile flag columns. """ df = read_labview(path, particleops.COLUMNS + ["bitflags"], fileobj) df[particleops.COLUMNS] = df[particleops.COLUMNS].astype(np.float64) df["noise"] = False # we know there are no noise events in OPP data df["saturated"] = False # we know there are no saturated events in OPP data df = particleops.decode_bit_flags(df) return df def read_vct_csv(path, fileobj=None): """ Read a VCT space-separated CSV SeaFlow data file for one quantile. Data will be read from the file at the provided path or preferentially from fileobj if provided. If path is provided and ends with '.gz' data will be considered gzip compressed even if read from fileobj. Parameters ----------- path: str File path. fileobj: io.BytesIO, optional Open file object. Returns ------- pandas.DataFrame SeaFlow VCT DataFrame for one quantile as numpy.float64 values plus one text column for population labels. """ with file_open_r(path, fileobj) as fh: df = pd.read_csv(fh, sep=" ", names=["diam_lwr", "Qc_lwr", "diam_mid", "Qc_mid", "diam_upr", "Qc_upr", "pop"]) return df def read_filter_params_csv(path): """ Read a filter parameters csv file. Parameters ---------- path: str Path to filter parameters csv file. Returns ------- pandas.DataFrame Contents of csv file with "." in column headers replaced with "_". """ defaults = { "sep": str(','), "na_filter": True, "encoding": "utf-8" } try: df = pd.read_csv(path, **defaults) except pd.errors.ParserError: raise errors.FileError("could not parse {} as csv filter paramater file".format(path)) # Fix column names df.columns = [c.replace('.', '_') for c in df.columns] # Make sure serial numbers are treated as strings df = df.astype({"instrument": "str"}) return df def write_labview(df, path): """ Write SeaFlow event DataFrame as LabView binary file. Parameters ----------- df: pandas.DataFrame SeaFlow event DataFrame. path: str Output file path. If this ends with '.gz' data will be gzip compressed. """ # Make sure directory necessary directory tree exists util.mkdir_p(os.path.dirname(path)) # Open output file with file_open_w(path) as fh: # Write 32-bit uint particle count header header = np.array([len(df.index)], np.uint32) fh.write(header.tobytes()) if len(df.index) > 0: # Convert to uint16 before saving df = df.astype(np.uint16) # Add leading 4 bytes to match LabViews binary format zeros = np.zeros([len(df.index), 1], dtype=np.uint16) tens = np.copy(zeros) tens.fill(10) df.insert(0, "tens", tens) df.insert(1, "zeros", zeros) # Write particle data fh.write(df.values.tobytes()) def write_evt_labview(df, path, outdir, gz=True): """ Write a raw SeaFlow event DataFrame as LabView binary file. Parameters ----------- df: pandas.DataFrame SeaFlow raw event DataFrame. path: str File name. This will be converted into a standard SeaFlow file ID and will be used to construct the final output file path within outdir. The final file name will a ".gz" extension if gz is True. outdir: str Output directory. This function will create day of year subdirectories for EVT binary files. gz: bool, default True Gzip compress? """ if df is None: return sfile = SeaFlowFile(path) outpath = os.path.join(outdir, sfile.file_id) if gz: outpath = outpath + ".gz" # Only keep columns we intend to write to file write_labview(df[particleops.COLUMNS], outpath) def write_opp_labview(df, path, outdir, gz=True, require_all=True): """ Write an OPP SeaFlow event DataFrame as LabView binary file. Quantile flags will be encoded as a final bit flag column. The noise column will be dropped. Parameters ----------- df: pandas.DataFrame SeaFlow focused particle DataFrame. path: str File name. This will be converted into a standard SeaFlow file ID and will be used to construct the final output file path within outdir. The final file name will also have an ".opp" file extension, plus ".gz" extension if gz is True. outdir: str Output directory. This function will create day of year subdirectories for EVT binary files. gz: bool, default True Gzip compress? require_all: bool, default True If true all an output file will only be created if there is focused particle data for all quantiles. """ if df is None: return # Return early if any quantiles got completely filtered out write_flag = True if require_all: for q_col, _q, _q_str, q_df in particleops.quantiles_in_df(df): write_flag = write_flag & q_df[q_col].any() if write_flag: # Attach a bit flag column to encode all the per-quantile focused # particle flags. df = particleops.encode_bit_flags(df.copy()) sfile = SeaFlowFile(path) outpath = os.path.join(outdir, sfile.file_id + ".opp") if gz: outpath = outpath + ".gz" # Only keep columns we intend to write to file write_labview(df[particleops.COLUMNS + ["bitflags"]], outpath) def write_opp_parquet(opp_dfs, date, window_size, outdir): """ Write an OPP Parquet file. Use snappy compression. Parameters ----------- opp_dfs: pandas.DataFrame SeaFlow focused particle DataFrames with file_id, date, and index reflecting positions in original EVT DataFrames. date: pandas.Timestamp or datetime.datetime object Start timestamp for data in df. window_size: pandas offset alias for time window covered by this file. Time covered by this file is date + time_window. outdir: str Output directory. """ if not opp_dfs: return # Make sure directory necessary directory tree exists util.mkdir_p(outdir) outpath = os.path.join(outdir, date.isoformat().replace(":", "-")) + f".{window_size}.opp.parquet" df = pd.concat(opp_dfs, ignore_index=True) # Linearize data columns df = particleops.linearize_particles(df, columns=["D1", "D2", "fsc_small", "pe", "chl_small"]) # Only keep columns we intend to write to file, reorder columns = [ "date", "file_id", "D1", "D2", "fsc_small", "pe", "chl_small", "q2.5", "q50", "q97.5", "filter_id" ] df = df[columns] # Check for an existing file. Merge, overwriting matching existing entries. try: old_df = pd.read_parquet(outpath) except FileNotFoundError: pass else: if not all(old_df.columns == df.columns): raise ValueError("existing OPP parquet file has incompatible column names") new_files = list(df["file_id"].unique()) old_df = old_df[~old_df["file_id"].isin(new_files)] # drop rows in old_df that are in new data df = pd.concat([old_df, df], ignore_index=True) df.sort_values(by="file_id", kind="mergesort", inplace=True) # mergesort is stable # Make sure file_id and filter_id are categorical columns if df["file_id"].dtype.name != "category": df["file_id"] = df["file_id"].astype("category") if df["filter_id"].dtype.name != "category": df["filter_id"] = df["filter_id"].astype("category") # Write parquet df.to_parquet(outpath, compression="snappy", index=False, engine="pyarrow")
gpl-3.0
khkaminska/scikit-learn
sklearn/ensemble/tests/test_weight_boosting.py
83
17276
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_array_equal, assert_array_less from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal, assert_true from sklearn.utils.testing import assert_raises, assert_raises_regexp from sklearn.base import BaseEstimator from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import weight_boosting from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.svm import SVC, SVR from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import shuffle from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y_class = ["foo", "foo", "foo", 1, 1, 1] # test string class labels y_regr = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] y_t_class = ["foo", 1, 1] y_t_regr = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the boston dataset and randomly permute it boston = datasets.load_boston() boston.data, boston.target = shuffle(boston.data, boston.target, random_state=rng) def test_samme_proba(): # Test the `_samme_proba` helper function. # Define some example (bad) `predict_proba` output. probs = np.array([[1, 1e-6, 0], [0.19, 0.6, 0.2], [-999, 0.51, 0.5], [1e-6, 1, 1e-9]]) probs /= np.abs(probs.sum(axis=1))[:, np.newaxis] # _samme_proba calls estimator.predict_proba. # Make a mock object so I can control what gets returned. class MockEstimator(object): def predict_proba(self, X): assert_array_equal(X.shape, probs.shape) return probs mock = MockEstimator() samme_proba = weight_boosting._samme_proba(mock, 3, np.ones_like(probs)) assert_array_equal(samme_proba.shape, probs.shape) assert_true(np.isfinite(samme_proba).all()) # Make sure that the correct elements come out as smallest -- # `_samme_proba` should preserve the ordering in each example. assert_array_equal(np.argmin(samme_proba, axis=1), [2, 0, 0, 2]) assert_array_equal(np.argmax(samme_proba, axis=1), [0, 1, 1, 1]) def test_classification_toy(): # Check classification on a toy dataset. for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, random_state=0) clf.fit(X, y_class) assert_array_equal(clf.predict(T), y_t_class) assert_array_equal(np.unique(np.asarray(y_t_class)), clf.classes_) assert_equal(clf.predict_proba(T).shape, (len(T), 2)) assert_equal(clf.decision_function(T).shape, (len(T),)) def test_regression_toy(): # Check classification on a toy dataset. clf = AdaBoostRegressor(random_state=0) clf.fit(X, y_regr) assert_array_equal(clf.predict(T), y_t_regr) def test_iris(): # Check consistency on dataset iris. classes = np.unique(iris.target) clf_samme = prob_samme = None for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) assert_array_equal(classes, clf.classes_) proba = clf.predict_proba(iris.data) if alg == "SAMME": clf_samme = clf prob_samme = proba assert_equal(proba.shape[1], len(classes)) assert_equal(clf.decision_function(iris.data).shape[1], len(classes)) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) # Somewhat hacky regression test: prior to # ae7adc880d624615a34bafdb1d75ef67051b8200, # predict_proba returned SAMME.R values for SAMME. clf_samme.algorithm = "SAMME.R" assert_array_less(0, np.abs(clf_samme.predict_proba(iris.data) - prob_samme)) def test_boston(): # Check consistency on dataset boston house prices. clf = AdaBoostRegressor(random_state=0) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert score > 0.85 def test_staged_predict(): # Check staged predictions. rng = np.random.RandomState(0) iris_weights = rng.randint(10, size=iris.target.shape) boston_weights = rng.randint(10, size=boston.target.shape) # AdaBoost classification for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, n_estimators=10) clf.fit(iris.data, iris.target, sample_weight=iris_weights) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target, sample_weight=iris_weights) staged_scores = [ s for s in clf.staged_score( iris.data, iris.target, sample_weight=iris_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_probas), 10) assert_array_almost_equal(proba, staged_probas[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10, random_state=0) clf.fit(boston.data, boston.target, sample_weight=boston_weights) predictions = clf.predict(boston.data) staged_predictions = [p for p in clf.staged_predict(boston.data)] score = clf.score(boston.data, boston.target, sample_weight=boston_weights) staged_scores = [ s for s in clf.staged_score( boston.data, boston.target, sample_weight=boston_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): # Check that base trees can be grid-searched. # AdaBoost classification boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(), random_state=0) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(boston.data, boston.target) def test_pickle(): # Check pickability. import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_equal(score, score2) # Adaboost regressor obj = AdaBoostRegressor(random_state=0) obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert_equal(score, score2) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert_equal(importances.shape[0], 10) assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(), True) def test_error(): # Test that it gives proper exception on deficient input. assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier().fit, X, y_class, sample_weight=np.asarray([-1])) def test_base_estimator(): # Test different base estimators. from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # XXX doesn't work with y_class because RF doesn't support classes_ # Shouldn't AdaBoost run a LabelBinarizer? clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y_regr) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y_class) from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0) clf.fit(X, y_regr) clf = AdaBoostRegressor(SVR(), random_state=0) clf.fit(X, y_regr) # Check that an empty discrete ensemble fails in fit, not predict. X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]] y_fail = ["foo", "bar", 1, 2] clf = AdaBoostClassifier(SVC(), algorithm="SAMME") assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail, y_fail) def test_sample_weight_missing(): from sklearn.linear_model import LogisticRegression from sklearn.cluster import KMeans clf = AdaBoostClassifier(LogisticRegression(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostClassifier(KMeans(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostRegressor(KMeans()) assert_raises(ValueError, clf.fit, X, y_regr) def test_sparse_classification(): # Check classification with sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVC, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15, n_features=5, random_state=42) # Flatten y to a 1d array y = np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # decision_function sparse_results = sparse_classifier.decision_function(X_test_sparse) dense_results = dense_classifier.decision_function(X_test) assert_array_equal(sparse_results, dense_results) # predict_log_proba sparse_results = sparse_classifier.predict_log_proba(X_test_sparse) dense_results = dense_classifier.predict_log_proba(X_test) assert_array_equal(sparse_results, dense_results) # predict_proba sparse_results = sparse_classifier.predict_proba(X_test_sparse) dense_results = dense_classifier.predict_proba(X_test) assert_array_equal(sparse_results, dense_results) # score sparse_results = sparse_classifier.score(X_test_sparse, y_test) dense_results = dense_classifier.score(X_test, y_test) assert_array_equal(sparse_results, dense_results) # staged_decision_function sparse_results = sparse_classifier.staged_decision_function( X_test_sparse) dense_results = dense_classifier.staged_decision_function(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict_proba sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse) dense_results = dense_classifier.staged_predict_proba(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_score sparse_results = sparse_classifier.staged_score(X_test_sparse, y_test) dense_results = dense_classifier.staged_score(X_test, y_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # Verify sparsity of data is maintained during training types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sparse_regression(): # Check regression with sparse input. class CustomSVR(SVR): """SVR variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVR, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_regression(n_samples=15, n_features=50, n_targets=1, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = dense_results = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sample_weight_adaboost_regressor(): """ AdaBoostRegressor should work without sample_weights in the base estimator The random weighted sampling is done internally in the _boost method in AdaBoostRegressor. """ class DummyEstimator(BaseEstimator): def fit(self, X, y): pass def predict(self, X): return np.zeros(X.shape[0]) boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3) boost.fit(X, y_regr) assert_equal(len(boost.estimator_weights_), len(boost.estimator_errors_))
bsd-3-clause
jetuk/pywr
pywr/timestepper.py
3
3423
import pandas from pywr import _core class Timestepper(object): def __init__(self, start="2015-01-01", end="2015-12-31", delta=1): self.start = start self.end = end self.delta = delta self._last_length = None self.reset() def __iter__(self, ): return self def __len__(self, ): return int((self.end-self.start)/self.delta) + 1 def reset(self, start=None): """ Reset the timestepper If start is None it resets to the original self.start, otherwise start is used as the new starting point. """ self._current = None current_length = len(self) if start is None: self._next = _core.Timestep(self.start, 0, self.delta.days) else: # Calculate actual index from new position diff = start - self.start if diff.days % self.delta.days != 0: raise ValueError('New starting position is not compatible with the existing starting position and timestep.') index = diff.days / self.delta.days self._next = _core.Timestep(start, index, self.delta.days) length_changed = self._last_length != current_length self._last_length = current_length return length_changed def __next__(self, ): return self.next() def next(self, ): self._current = current = self._next if current.datetime > self.end: raise StopIteration() # Increment to next timestep self._next = _core.Timestep(current.datetime + self.delta, current.index + 1, self.delta.days) # Return this timestep return current def start(): def fget(self): return self._start def fset(self, value): if isinstance(value, pandas.Timestamp): self._start = value else: self._start = pandas.to_datetime(value) return locals() start = property(**start()) def end(): def fget(self): return self._end def fset(self, value): if isinstance(value, pandas.Timestamp): self._end = value else: self._end = pandas.to_datetime(value) return locals() end = property(**end()) def delta(): def fget(self): return self._delta def fset(self, value): try: self._delta = pandas.Timedelta(days=value) except TypeError: self._delta = pandas.to_timedelta(value) return locals() delta = property(**delta()) @property def current(self): """The current timestep If iteration has not begun this will return None. """ return self._current @property def datetime_index(self): """ Return a `pandas.DatetimeIndex` using the start, end and delta of this object This is useful for creating `pandas.DataFrame` objects from Model results """ freq = '{}D'.format(self.delta.days) return pandas.date_range(self.start, self.end, freq=freq) def __repr__(self): start = self.start.strftime("%Y-%m-%d") end = self.end.strftime("%Y-%m-%d") delta = self.delta.days return "<Timestepper start=\"{}\" end=\"{}\" delta=\"{}\">".format( start, end, delta )
gpl-3.0
ran5515/DeepDecision
tensorflow/contrib/learn/python/learn/learn_io/data_feeder.py
88
31139
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementations of different data feeders to provide data for TF trainer.""" # TODO(ipolosukhin): Replace this module with feed-dict queue runners & queues. from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import math import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.platform import tf_logging as logging # pylint: disable=g-multiple-import,g-bad-import-order from .pandas_io import HAS_PANDAS, extract_pandas_data, extract_pandas_matrix, extract_pandas_labels from .dask_io import HAS_DASK, extract_dask_data, extract_dask_labels # pylint: enable=g-multiple-import,g-bad-import-order def _get_in_out_shape(x_shape, y_shape, n_classes, batch_size=None): """Returns shape for input and output of the data feeder.""" x_is_dict, y_is_dict = isinstance( x_shape, dict), y_shape is not None and isinstance(y_shape, dict) if y_is_dict and n_classes is not None: assert (isinstance(n_classes, dict)) if batch_size is None: batch_size = list(x_shape.values())[0][0] if x_is_dict else x_shape[0] elif batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) if x_is_dict: input_shape = {} for k, v in list(x_shape.items()): input_shape[k] = [batch_size] + (list(v[1:]) if len(v) > 1 else [1]) else: x_shape = list(x_shape[1:]) if len(x_shape) > 1 else [1] input_shape = [batch_size] + x_shape if y_shape is None: return input_shape, None, batch_size def out_el_shape(out_shape, num_classes): out_shape = list(out_shape[1:]) if len(out_shape) > 1 else [] # Skip first dimension if it is 1. if out_shape and out_shape[0] == 1: out_shape = out_shape[1:] if num_classes is not None and num_classes > 1: return [batch_size] + out_shape + [num_classes] else: return [batch_size] + out_shape if not y_is_dict: output_shape = out_el_shape(y_shape, n_classes) else: output_shape = dict([ (k, out_el_shape(v, n_classes[k] if n_classes is not None and k in n_classes else None)) for k, v in list(y_shape.items()) ]) return input_shape, output_shape, batch_size def _data_type_filter(x, y): """Filter data types into acceptable format.""" if HAS_DASK: x = extract_dask_data(x) if y is not None: y = extract_dask_labels(y) if HAS_PANDAS: x = extract_pandas_data(x) if y is not None: y = extract_pandas_labels(y) return x, y def _is_iterable(x): return hasattr(x, 'next') or hasattr(x, '__next__') def setup_train_data_feeder(x, y, n_classes, batch_size=None, shuffle=True, epochs=None): """Create data feeder, to sample inputs from dataset. If `x` and `y` are iterators, use `StreamingDataFeeder`. Args: x: numpy, pandas or Dask matrix or dictionary of aforementioned. Also supports iterables. y: numpy, pandas or Dask array or dictionary of aforementioned. Also supports iterables. n_classes: number of classes. Must be None or same type as y. In case, `y` is `dict` (or iterable which returns dict) such that `n_classes[key] = n_classes for y[key]` batch_size: size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: DataFeeder object that returns training data. Raises: ValueError: if one of `x` and `y` is iterable and the other is not. """ x, y = _data_type_filter(x, y) if HAS_DASK: # pylint: disable=g-import-not-at-top import dask.dataframe as dd if (isinstance(x, (dd.Series, dd.DataFrame)) and (y is None or isinstance(y, (dd.Series, dd.DataFrame)))): data_feeder_cls = DaskDataFeeder else: data_feeder_cls = DataFeeder else: data_feeder_cls = DataFeeder if _is_iterable(x): if y is not None and not _is_iterable(y): raise ValueError('Both x and y should be iterators for ' 'streaming learning to work.') return StreamingDataFeeder(x, y, n_classes, batch_size) return data_feeder_cls( x, y, n_classes, batch_size, shuffle=shuffle, epochs=epochs) def _batch_data(x, batch_size=None): if (batch_size is not None) and (batch_size <= 0): raise ValueError('Invalid batch_size %d.' % batch_size) x_first_el = six.next(x) x = itertools.chain([x_first_el], x) chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False for data in x: if isinstance(data, dict): for k, v in list(data.items()): chunk[k].append(v) if (batch_size is not None) and (len(chunk[k]) >= batch_size): chunk[k] = np.matrix(chunk[k]) chunk_filled = True if chunk_filled: yield chunk chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False else: chunk.append(data) if (batch_size is not None) and (len(chunk) >= batch_size): yield np.matrix(chunk) chunk = [] if isinstance(x_first_el, dict): for k, v in list(data.items()): chunk[k] = np.matrix(chunk[k]) yield chunk else: yield np.matrix(chunk) def setup_predict_data_feeder(x, batch_size=None): """Returns an iterable for feeding into predict step. Args: x: numpy, pandas, Dask array or dictionary of aforementioned. Also supports iterable. batch_size: Size of batches to split data into. If `None`, returns one batch of full size. Returns: List or iterator (or dictionary thereof) of parts of data to predict on. Raises: ValueError: if `batch_size` <= 0. """ if HAS_DASK: x = extract_dask_data(x) if HAS_PANDAS: x = extract_pandas_data(x) if _is_iterable(x): return _batch_data(x, batch_size) if len(x.shape) == 1: x = np.reshape(x, (-1, 1)) if batch_size is not None: if batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) n_batches = int(math.ceil(float(len(x)) / batch_size)) return [x[i * batch_size:(i + 1) * batch_size] for i in xrange(n_batches)] return [x] def setup_processor_data_feeder(x): """Sets up processor iterable. Args: x: numpy, pandas or iterable. Returns: Iterable of data to process. """ if HAS_PANDAS: x = extract_pandas_matrix(x) return x def check_array(array, dtype): """Checks array on dtype and converts it if different. Args: array: Input array. dtype: Expected dtype. Returns: Original array or converted. """ # skip check if array is instance of other classes, e.g. h5py.Dataset # to avoid copying array and loading whole data into memory if isinstance(array, (np.ndarray, list)): array = np.array(array, dtype=dtype, order=None, copy=False) return array def _access(data, iloc): """Accesses an element from collection, using integer location based indexing. Args: data: array-like. The collection to access iloc: `int` or `list` of `int`s. Location(s) to access in `collection` Returns: The element of `a` found at location(s) `iloc`. """ if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if isinstance(data, pd.Series) or isinstance(data, pd.DataFrame): return data.iloc[iloc] return data[iloc] def _check_dtype(dtype): if dtypes.as_dtype(dtype) == dtypes.float64: logging.warn( 'float64 is not supported by many models, consider casting to float32.') return dtype class DataFeeder(object): """Data feeder is an example class to sample data for TF trainer.""" def __init__(self, x, y, n_classes, batch_size=None, shuffle=True, random_state=None, epochs=None): """Initializes a DataFeeder instance. Args: x: One feature sample which can either Nd numpy matrix of shape `[n_samples, n_features, ...]` or dictionary of Nd numpy matrix. y: label vector, either floats for regression or class id for classification. If matrix, will consider as a sequence of labels. Can be `None` for unsupervised setting. Also supports dictionary of labels. n_classes: Number of classes, 0 and 1 are considered regression, `None` will pass through the input labels without one-hot conversion. Also, if `y` is `dict`, then `n_classes` must be `dict` such that `n_classes[key] = n_classes for label y[key]`, `None` otherwise. batch_size: Mini-batch size to accumulate samples in one mini batch. shuffle: Whether to shuffle `x`. random_state: Numpy `RandomState` object to reproduce sampling. epochs: Number of times to iterate over input data before raising `StopIteration` exception. Attributes: x: Input features (ndarray or dictionary of ndarrays). y: Input label (ndarray or dictionary of ndarrays). n_classes: Number of classes (if `None`, pass through indices without one-hot conversion). batch_size: Mini-batch size to accumulate. input_shape: Shape of the input (or dictionary of shapes). output_shape: Shape of the output (or dictionary of shapes). input_dtype: DType of input (or dictionary of shapes). output_dtype: DType of output (or dictionary of shapes. """ x_is_dict, y_is_dict = isinstance(x, dict), y is not None and isinstance( y, dict) if isinstance(y, list): y = np.array(y) self._x = dict([(k, check_array(v, v.dtype)) for k, v in list(x.items()) ]) if x_is_dict else check_array(x, x.dtype) self._y = None if y is None else \ dict([(k, check_array(v, v.dtype)) for k, v in list(y.items())]) if x_is_dict else check_array(y, y.dtype) # self.n_classes is not None means we're converting raw target indices to one-hot. if n_classes is not None: if not y_is_dict: y_dtype = (np.int64 if n_classes is not None and n_classes > 1 else np.float32) self._y = (None if y is None else check_array(y, dtype=y_dtype)) self.n_classes = n_classes self.max_epochs = epochs x_shape = dict([(k, v.shape) for k, v in list(self._x.items()) ]) if x_is_dict else self._x.shape y_shape = dict([(k, v.shape) for k, v in list(self._y.items()) ]) if y_is_dict else None if y is None else self._y.shape self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) # Input dtype matches dtype of x. self._input_dtype = dict([(k, _check_dtype(v.dtype)) for k, v in list(self._x.items())]) if x_is_dict \ else _check_dtype(self._x.dtype) # note: self._output_dtype = np.float32 when y is None self._output_dtype = dict([(k, _check_dtype(v.dtype)) for k, v in list(self._y.items())]) if y_is_dict \ else _check_dtype(self._y.dtype) if y is not None else np.float32 # self.n_classes is None means we're passing in raw target indices if n_classes is not None and y_is_dict: for key in list(n_classes.keys()): if key in self._output_dtype: self._output_dtype[key] = np.float32 self._shuffle = shuffle self.random_state = np.random.RandomState( 42) if random_state is None else random_state num_samples = list(self._x.values())[0].shape[ 0] if x_is_dict else self._x.shape[0] if self._shuffle: self.indices = self.random_state.permutation(num_samples) else: self.indices = np.array(range(num_samples)) self.offset = 0 self.epoch = 0 self._epoch_placeholder = None @property def x(self): return self._x @property def y(self): return self._y @property def shuffle(self): return self._shuffle @property def input_dtype(self): return self._input_dtype @property def output_dtype(self): return self._output_dtype @property def batch_size(self): return self._batch_size def make_epoch_variable(self): """Adds a placeholder variable for the epoch to the graph. Returns: The epoch placeholder. """ self._epoch_placeholder = array_ops.placeholder( dtypes.int32, [1], name='epoch') return self._epoch_placeholder def input_builder(self): """Builds inputs in the graph. Returns: Two placeholders for inputs and outputs. """ def get_placeholder(shape, dtype, name_prepend): if shape is None: return None if isinstance(shape, dict): placeholder = {} for key in list(shape.keys()): placeholder[key] = array_ops.placeholder( dtypes.as_dtype(dtype[key]), [None] + shape[key][1:], name=name_prepend + '_' + key) else: placeholder = array_ops.placeholder( dtypes.as_dtype(dtype), [None] + shape[1:], name=name_prepend) return placeholder self._input_placeholder = get_placeholder(self.input_shape, self._input_dtype, 'input') self._output_placeholder = get_placeholder(self.output_shape, self._output_dtype, 'output') return self._input_placeholder, self._output_placeholder def set_placeholders(self, input_placeholder, output_placeholder): """Sets placeholders for this data feeder. Args: input_placeholder: Placeholder for `x` variable. Should match shape of the examples in the x dataset. output_placeholder: Placeholder for `y` variable. Should match shape of the examples in the y dataset. Can be `None`. """ self._input_placeholder = input_placeholder self._output_placeholder = output_placeholder def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return { 'epoch': self.epoch, 'offset': self.offset, 'batch_size': self._batch_size } def get_feed_dict_fn(self): """Returns a function that samples data into given placeholders. Returns: A function that when called samples a random subset of batch size from `x` and `y`. """ x_is_dict, y_is_dict = isinstance( self._x, dict), self._y is not None and isinstance(self._y, dict) # Assign input features from random indices. def extract(data, indices): return (np.array(_access(data, indices)).reshape((indices.shape[0], 1)) if len(data.shape) == 1 else _access(data, indices)) # assign labels from random indices def assign_label(data, shape, dtype, n_classes, indices): shape[0] = indices.shape[0] out = np.zeros(shape, dtype=dtype) for i in xrange(out.shape[0]): sample = indices[i] # self.n_classes is None means we're passing in raw target indices if n_classes is None: out[i] = _access(data, sample) else: if n_classes > 1: if len(shape) == 2: out.itemset((i, int(_access(data, sample))), 1.0) else: for idx, value in enumerate(_access(data, sample)): out.itemset(tuple([i, idx, value]), 1.0) else: out[i] = _access(data, sample) return out def _feed_dict_fn(): """Function that samples data into given placeholders.""" if self.max_epochs is not None and self.epoch + 1 > self.max_epochs: raise StopIteration assert self._input_placeholder is not None feed_dict = {} if self._epoch_placeholder is not None: feed_dict[self._epoch_placeholder.name] = [self.epoch] # Take next batch of indices. x_len = list(self._x.values())[0].shape[ 0] if x_is_dict else self._x.shape[0] end = min(x_len, self.offset + self._batch_size) batch_indices = self.indices[self.offset:end] # adding input placeholder feed_dict.update( dict([(self._input_placeholder[k].name, extract(v, batch_indices)) for k, v in list(self._x.items())]) if x_is_dict else {self._input_placeholder.name: extract(self._x, batch_indices)}) # move offset and reset it if necessary self.offset += self._batch_size if self.offset >= x_len: self.indices = self.random_state.permutation( x_len) if self._shuffle else np.array(range(x_len)) self.offset = 0 self.epoch += 1 # return early if there are no labels if self._output_placeholder is None: return feed_dict # adding output placeholders if y_is_dict: for k, v in list(self._y.items()): n_classes = (self.n_classes[k] if k in self.n_classes else None) if self.n_classes is not None else None shape, dtype = self.output_shape[k], self._output_dtype[k] feed_dict.update({ self._output_placeholder[k].name: assign_label(v, shape, dtype, n_classes, batch_indices) }) else: shape, dtype, n_classes = self.output_shape, self._output_dtype, self.n_classes feed_dict.update({ self._output_placeholder.name: assign_label(self._y, shape, dtype, n_classes, batch_indices) }) return feed_dict return _feed_dict_fn class StreamingDataFeeder(DataFeeder): """Data feeder for TF trainer that reads data from iterator. Streaming data feeder allows to read data as it comes it from disk or somewhere else. It's custom to have this iterators rotate infinetly over the dataset, to allow control of how much to learn on the trainer side. """ def __init__(self, x, y, n_classes, batch_size): """Initializes a StreamingDataFeeder instance. Args: x: iterator each element of which returns one feature sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices. y: iterator each element of which returns one label sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices with 1 or many classes regression values. n_classes: indicator of how many classes the corresponding label sample has for the purposes of one-hot conversion of label. In case where `y` is a dictionary, `n_classes` must be dictionary (with same keys as `y`) of how many classes there are in each label in `y`. If key is present in `y` and missing in `n_classes`, the value is assumed `None` and no one-hot conversion will be applied to the label with that key. batch_size: Mini batch size to accumulate samples in one batch. If set `None`, then assumes that iterator to return already batched element. Attributes: x: input features (or dictionary of input features). y: input label (or dictionary of output features). n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input (can be dictionary depending on `x`). output_shape: shape of the output (can be dictionary depending on `y`). input_dtype: dtype of input (can be dictionary depending on `x`). output_dtype: dtype of output (can be dictionary depending on `y`). """ # pylint: disable=invalid-name,super-init-not-called x_first_el = six.next(x) self._x = itertools.chain([x_first_el], x) if y is not None: y_first_el = six.next(y) self._y = itertools.chain([y_first_el], y) else: y_first_el = None self._y = None self.n_classes = n_classes x_is_dict = isinstance(x_first_el, dict) y_is_dict = y is not None and isinstance(y_first_el, dict) if y_is_dict and n_classes is not None: assert isinstance(n_classes, dict) # extract shapes for first_elements if x_is_dict: x_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(x_first_el.items())]) else: x_first_el_shape = [1] + list(x_first_el.shape) if y_is_dict: y_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(y_first_el.items())]) elif y is None: y_first_el_shape = None else: y_first_el_shape = ([1] + list(y_first_el[0].shape if isinstance( y_first_el, list) else y_first_el.shape)) self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_first_el_shape, y_first_el_shape, n_classes, batch_size) # Input dtype of x_first_el. if x_is_dict: self._input_dtype = dict( [(k, _check_dtype(v.dtype)) for k, v in list(x_first_el.items())]) else: self._input_dtype = _check_dtype(x_first_el.dtype) # Output dtype of y_first_el. def check_y_dtype(el): if isinstance(el, np.ndarray): return el.dtype elif isinstance(el, list): return check_y_dtype(el[0]) else: return _check_dtype(np.dtype(type(el))) # Output types are floats, due to both softmaxes and regression req. if n_classes is not None and (y is None or not y_is_dict) and n_classes > 0: self._output_dtype = np.float32 elif y_is_dict: self._output_dtype = dict( [(k, check_y_dtype(v)) for k, v in list(y_first_el.items())]) elif y is None: self._output_dtype = None else: self._output_dtype = check_y_dtype(y_first_el) def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self): """Returns a function, that will sample data and provide it to placeholders. Returns: A function that when called samples a random subset of batch size from x and y. """ self.stopped = False def _feed_dict_fn(): """Samples data and provides it to placeholders. Returns: `dict` of input and output tensors. """ def init_array(shape, dtype): """Initialize array of given shape or dict of shapes and dtype.""" if shape is None: return None elif isinstance(shape, dict): return dict([(k, np.zeros(shape[k], dtype[k])) for k in list(shape.keys())]) else: return np.zeros(shape, dtype=dtype) def put_data_array(dest, index, source=None, n_classes=None): """Puts data array into container.""" if source is None: dest = dest[:index] elif n_classes is not None and n_classes > 1: if len(self.output_shape) == 2: dest.itemset((index, source), 1.0) else: for idx, value in enumerate(source): dest.itemset(tuple([index, idx, value]), 1.0) else: if len(dest.shape) > 1: dest[index, :] = source else: dest[index] = source[0] if isinstance(source, list) else source return dest def put_data_array_or_dict(holder, index, data=None, n_classes=None): """Puts data array or data dictionary into container.""" if holder is None: return None if isinstance(holder, dict): if data is None: data = {k: None for k in holder.keys()} assert isinstance(data, dict) for k in holder.keys(): num_classes = n_classes[k] if (n_classes is not None and k in n_classes) else None holder[k] = put_data_array(holder[k], index, data[k], num_classes) else: holder = put_data_array(holder, index, data, n_classes) return holder if self.stopped: raise StopIteration inp = init_array(self.input_shape, self._input_dtype) out = init_array(self.output_shape, self._output_dtype) for i in xrange(self._batch_size): # Add handling when queue ends. try: next_inp = six.next(self._x) inp = put_data_array_or_dict(inp, i, next_inp, None) except StopIteration: self.stopped = True if i == 0: raise inp = put_data_array_or_dict(inp, i, None, None) out = put_data_array_or_dict(out, i, None, None) break if self._y is not None: next_out = six.next(self._y) out = put_data_array_or_dict(out, i, next_out, self.n_classes) # creating feed_dict if isinstance(inp, dict): feed_dict = dict([(self._input_placeholder[k].name, inp[k]) for k in list(self._input_placeholder.keys())]) else: feed_dict = {self._input_placeholder.name: inp} if self._y is not None: if isinstance(out, dict): feed_dict.update( dict([(self._output_placeholder[k].name, out[k]) for k in list(self._output_placeholder.keys())])) else: feed_dict.update({self._output_placeholder.name: out}) return feed_dict return _feed_dict_fn class DaskDataFeeder(object): """Data feeder for that reads data from dask.Series and dask.DataFrame. Numpy arrays can be serialized to disk and it's possible to do random seeks into them. DaskDataFeeder will remove requirement to have full dataset in the memory and still do random seeks for sampling of batches. """ def __init__(self, x, y, n_classes, batch_size, shuffle=True, random_state=None, epochs=None): """Initializes a DaskDataFeeder instance. Args: x: iterator that returns for each element, returns features. y: iterator that returns for each element, returns 1 or many classes / regression values. n_classes: indicator of how many classes the label has. batch_size: Mini batch size to accumulate. shuffle: Whether to shuffle the inputs. random_state: random state for RNG. Note that it will mutate so use a int value for this if you want consistent sized batches. epochs: Number of epochs to run. Attributes: x: input features. y: input label. n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input. output_shape: shape of the output. input_dtype: dtype of input. output_dtype: dtype of output. Raises: ValueError: if `x` or `y` are `dict`, as they are not supported currently. """ if isinstance(x, dict) or isinstance(y, dict): raise ValueError( 'DaskDataFeeder does not support dictionaries at the moment.') # pylint: disable=invalid-name,super-init-not-called import dask.dataframe as dd # pylint: disable=g-import-not-at-top # TODO(terrytangyuan): check x and y dtypes in dask_io like pandas self._x = x self._y = y # save column names self._x_columns = list(x.columns) if isinstance(y.columns[0], str): self._y_columns = list(y.columns) else: # deal with cases where two DFs have overlapped default numeric colnames self._y_columns = len(self._x_columns) + 1 self._y = self._y.rename(columns={y.columns[0]: self._y_columns}) # TODO(terrytangyuan): deal with unsupervised cases # combine into a data frame self.df = dd.multi.concat([self._x, self._y], axis=1) self.n_classes = n_classes x_count = x.count().compute()[0] x_shape = (x_count, len(self._x.columns)) y_shape = (x_count, len(self._y.columns)) # TODO(terrytangyuan): Add support for shuffle and epochs. self._shuffle = shuffle self.epochs = epochs self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) self.sample_fraction = self._batch_size / float(x_count) self._input_dtype = _check_dtype(self._x.dtypes[0]) self._output_dtype = _check_dtype(self._y.dtypes[self._y_columns]) if random_state is None: self.random_state = 66 else: self.random_state = random_state def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self, input_placeholder, output_placeholder): """Returns a function, that will sample data and provide it to placeholders. Args: input_placeholder: tf.Placeholder for input features mini batch. output_placeholder: tf.Placeholder for output labels. Returns: A function that when called samples a random subset of batch size from x and y. """ def _feed_dict_fn(): """Samples data and provides it to placeholders.""" # TODO(ipolosukhin): option for with/without replacement (dev version of # dask) sample = self.df.random_split( [self.sample_fraction, 1 - self.sample_fraction], random_state=self.random_state) inp = extract_pandas_matrix(sample[0][self._x_columns].compute()).tolist() out = extract_pandas_matrix(sample[0][self._y_columns].compute()) # convert to correct dtype inp = np.array(inp, dtype=self._input_dtype) # one-hot encode out for each class for cross entropy loss if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if not isinstance(out, pd.Series): out = out.flatten() out_max = self._y.max().compute().values[0] encoded_out = np.zeros((out.size, out_max + 1), dtype=self._output_dtype) encoded_out[np.arange(out.size), out] = 1 return {input_placeholder.name: inp, output_placeholder.name: encoded_out} return _feed_dict_fn
apache-2.0
scottpurdy/NAB
tests/integration/false_negative_test.py
8
3465
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2014-2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import datetime import pandas import unittest from nab.scorer import Scorer from nab.test_helpers import generateTimestamps, generateWindows, generateLabels class FalseNegativeTests(unittest.TestCase): def _checkCounts(self, counts, tn, tp, fp, fn): """Ensure the metric counts are correct.""" self.assertEqual(counts['tn'], tn, "Incorrect tn count") self.assertEqual(counts['tp'], tp, "Incorrect tp count") self.assertEqual(counts['fp'], fp, "Incorrect fp count") self.assertEqual(counts['fn'], fn, "Incorrect fn count") def setUp(self): self.costMatrix = {"tpWeight": 1.0, "fnWeight": 1.0, "fpWeight": 1.0, "tnWeight": 1.0} def testFalseNegativeCausesNegativeScore(self): """ A false negative with only one window should have exactly the negative of the false negative score. """ start = datetime.datetime.now() increment = datetime.timedelta(minutes=5) length = 1000 numWindows = 1 windowSize = 10 timestamps = generateTimestamps(start, increment, length) windows = generateWindows(timestamps, numWindows, windowSize) labels = generateLabels(timestamps, windows) predictions = pandas.Series([0]*length) scorer = Scorer(timestamps, predictions, labels, windows, self.costMatrix, probationaryPeriod=0) (_, score) = scorer.getScore() self.assertTrue(abs(score + self.costMatrix['fnWeight']) < 0.1) self._checkCounts(scorer.counts, length-windowSize*numWindows, 0, 0, windowSize*numWindows) def testFourFalseNegatives(self): """ A false negative with four windows should have exactly four times the negative of the false negative score. """ start = datetime.datetime.now() increment = datetime.timedelta(minutes=5) length = 2000 numWindows = 4 windowSize = 10 timestamps = generateTimestamps(start, increment, length) windows = generateWindows(timestamps, numWindows, windowSize) labels = generateLabels(timestamps, windows) predictions = pandas.Series([0]*length) scorer = Scorer(timestamps, predictions, labels, windows, self.costMatrix, probationaryPeriod=0) (_, score) = scorer.getScore() self.assertTrue(abs(score + 4*self.costMatrix['fnWeight']) < 0.01) self._checkCounts(scorer.counts, length-windowSize*numWindows, 0, 0, windowSize*numWindows) if __name__ == '__main__': unittest.main()
agpl-3.0
JsNoNo/scikit-learn
examples/manifold/plot_compare_methods.py
259
4031
""" ========================================= Comparison of Manifold Learning methods ========================================= An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods. For a discussion and comparison of these algorithms, see the :ref:`manifold module page <manifold>` For a similar example, where the methods are applied to a sphere dataset, see :ref:`example_manifold_plot_manifold_sphere.py` Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. """ # Author: Jake Vanderplas -- <[email protected]> print(__doc__) from time import time import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold, datasets # Next line to silence pyflakes. This import is needed. Axes3D n_points = 1000 X, color = datasets.samples_generator.make_s_curve(n_points, random_state=0) n_neighbors = 10 n_components = 2 fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(251, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.view_init(4, -72) except: ax = fig.add_subplot(251, projection='3d') plt.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components, eigen_solver='auto', method=method).fit_transform(X) t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X) t1 = time() print("Isomap: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(257) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("Isomap (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() mds = manifold.MDS(n_components, max_iter=100, n_init=1) Y = mds.fit_transform(X) t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() se = manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors) Y = se.fit_transform(X) t1 = time() print("SpectralEmbedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("SpectralEmbedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0) Y = tsne.fit_transform(X) t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(250) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
dlmacedo/SVM-CNN
elm.py
13
20319
# -*- coding: utf8 # Author: David C. Lambert [dcl -at- panix -dot- com] # Copyright(c) 2013 # License: Simple BSD """ The :mod:`elm` module implements the Extreme Learning Machine Classifiers and Regressors (ELMClassifier, ELMRegressor, SimpleELMRegressor, SimpleELMClassifier). An Extreme Learning Machine (ELM) is a single layer feedforward network with a random hidden layer components and ordinary linear least squares fitting of the hidden->output weights by default. [1][2] References ---------- .. [1] http://www.extreme-learning-machines.org .. [2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine: Theory and Applications", Neurocomputing, vol. 70, pp. 489-501, 2006. """ from abc import ABCMeta, abstractmethod import numpy as np from scipy.linalg import pinv2 from sklearn.utils import as_float_array from sklearn.utils.extmath import safe_sparse_dot from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin from sklearn.preprocessing import LabelBinarizer from random_layer import RandomLayer, MLPRandomLayer __all__ = ["ELMRegressor", "ELMClassifier", "GenELMRegressor", "GenELMClassifier"] # BaseELM class, regressor and hidden_layer attributes # and provides defaults for docstrings class BaseELM(BaseEstimator): """ Base class for ELMs. Warning: This class should not be used directly. Use derived classes instead. """ __metaclass__ = ABCMeta def __init__(self, hidden_layer, regressor): self.regressor = regressor self.hidden_layer = hidden_layer @abstractmethod def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ @abstractmethod def predict(self, X): """ Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values. """ class GenELMRegressor(BaseELM, RegressorMixin): """ ELMRegressor is a regressor based on the Extreme Learning Machine. An Extreme Learning Machine (ELM) is a single layer feedforward network with a random hidden layer components and ordinary linear least squares fitting of the hidden->output weights by default. [1][2] Parameters ---------- `hidden_layer` : random_layer instance, optional (default=MLPRandomLayer(random_state=0)) `regressor` : regressor instance, optional (default=None) If provided, this object is used to perform the regression from hidden unit activations to the outputs and subsequent predictions. If not present, an ordinary linear least squares fit is performed Attributes ---------- `coefs_` : numpy array Fitted regression coefficients if no regressor supplied. `fitted_` : bool Flag set when fit has been called already. `hidden_activations_` : numpy array of shape [n_samples, n_hidden] Hidden layer activations for last input. See Also -------- RBFRandomLayer, MLPRandomLayer, ELMRegressor, ELMClassifier References ---------- .. [1] http://www.extreme-learning-machines.org .. [2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine: Theory and Applications", Neurocomputing, vol. 70, pp. 489-501, 2006. """ def __init__(self, hidden_layer=MLPRandomLayer(random_state=0), regressor=None): super(GenELMRegressor, self).__init__(hidden_layer, regressor) self.coefs_ = None self.fitted_ = False self.hidden_activations_ = None def _fit_regression(self, y): """ fit regression using pseudo-inverse or supplied regressor """ if (self.regressor is None): self.coefs_ = safe_sparse_dot(pinv2(self.hidden_activations_), y) else: self.regressor.fit(self.hidden_activations_, y) self.fitted_ = True def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ # fit random hidden layer and compute the hidden layer activations self.hidden_activations_ = self.hidden_layer.fit_transform(X) # solve the regression from hidden activations to outputs self._fit_regression(as_float_array(y, copy=True)) return self def _get_predictions(self): """get predictions using internal least squares/supplied regressor""" if (self.regressor is None): preds = safe_sparse_dot(self.hidden_activations_, self.coefs_) else: preds = self.regressor.predict(self.hidden_activations_) return preds def predict(self, X): """ Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values. """ if (not self.fitted_): raise ValueError("ELMRegressor not fitted") # compute hidden layer activations self.hidden_activations_ = self.hidden_layer.transform(X) # compute output predictions for new hidden activations predictions = self._get_predictions() return predictions class GenELMClassifier(BaseELM, ClassifierMixin): """ GenELMClassifier is a classifier based on the Extreme Learning Machine. An Extreme Learning Machine (ELM) is a single layer feedforward network with a random hidden layer components and ordinary linear least squares fitting of the hidden->output weights by default. [1][2] Parameters ---------- `hidden_layer` : random_layer instance, optional (default=MLPRandomLayer(random_state=0)) `binarizer` : LabelBinarizer, optional (default=LabelBinarizer(-1, 1)) `regressor` : regressor instance, optional (default=None) If provided, this object is used to perform the regression from hidden unit activations to the outputs and subsequent predictions. If not present, an ordinary linear least squares fit is performed Attributes ---------- `classes_` : numpy array of shape [n_classes] Array of class labels `genelm_regressor_` : ELMRegressor instance Performs actual fit of binarized values See Also -------- RBFRandomLayer, MLPRandomLayer, ELMRegressor, ELMClassifier References ---------- .. [1] http://www.extreme-learning-machines.org .. [2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine: Theory and Applications", Neurocomputing, vol. 70, pp. 489-501, 2006. """ def __init__(self, hidden_layer=MLPRandomLayer(random_state=0), binarizer=LabelBinarizer(-1, 1), regressor=None): super(GenELMClassifier, self).__init__(hidden_layer, regressor) self.binarizer = binarizer self.classes_ = None self.genelm_regressor_ = GenELMRegressor(hidden_layer, regressor) def decision_function(self, X): """ This function return the decision function values related to each class on an array of test vectors X. Parameters ---------- X : array-like of shape [n_samples, n_features] Returns ------- C : array of shape [n_samples, n_classes] or [n_samples,] Decision function values related to each class, per sample. In the two-class case, the shape is [n_samples,] """ return self.genelm_regressor_.predict(X) def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ self.classes_ = np.unique(y) y_bin = self.binarizer.fit_transform(y) self.genelm_regressor_.fit(X, y_bin) return self def predict(self, X): """Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values. """ raw_predictions = self.decision_function(X) class_predictions = self.binarizer.inverse_transform(raw_predictions) return class_predictions # ELMRegressor with default RandomLayer class ELMRegressor(BaseEstimator, RegressorMixin): """ ELMRegressor is a regressor based on the Extreme Learning Machine. An Extreme Learning Machine (ELM) is a single layer feedforward network with a random hidden layer components and ordinary linear least squares fitting of the hidden->output weights by default. [1][2] ELMRegressor is a wrapper for an GenELMRegressor that uses a RandomLayer and passes the __init__ parameters through to the hidden layer generated by the fit() method. Parameters ---------- `n_hidden` : int, optional (default=20) Number of units to generate in the SimpleRandomLayer `alpha` : float, optional (default=0.5) Mixing coefficient for distance and dot product input activations: activation = alpha*mlp_activation + (1-alpha)*rbf_width*rbf_activation `rbf_width` : float, optional (default=1.0) multiplier on rbf_activation `activation_func` : {callable, string} optional (default='tanh') Function used to transform input activation It must be one of 'tanh', 'sine', 'tribas', 'inv_tribase', 'sigmoid', 'hardlim', 'softlim', 'gaussian', 'multiquadric', 'inv_multiquadric' or a callable. If none is given, 'tanh' will be used. If a callable is given, it will be used to compute the hidden unit activations. `activation_args` : dictionary, optional (default=None) Supplies keyword arguments for a callable activation_func `user_components`: dictionary, optional (default=None) dictionary containing values for components that woud otherwise be randomly generated. Valid key/value pairs are as follows: 'radii' : array-like of shape [n_hidden] 'centers': array-like of shape [n_hidden, n_features] 'biases' : array-like of shape [n_hidden] 'weights': array-like of shape [n_hidden, n_features] `regressor` : regressor instance, optional (default=None) If provided, this object is used to perform the regression from hidden unit activations to the outputs and subsequent predictions. If not present, an ordinary linear least squares fit is performed `random_state` : int, RandomState instance or None (default=None) Control the pseudo random number generator used to generate the hidden unit weights at fit time. Attributes ---------- `genelm_regressor_` : GenELMRegressor object Wrapped object that actually performs the fit. See Also -------- RandomLayer, RBFRandomLayer, MLPRandomLayer, GenELMRegressor, GenELMClassifier, ELMClassifier References ---------- .. [1] http://www.extreme-learning-machines.org .. [2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine: Theory and Applications", Neurocomputing, vol. 70, pp. 489-501, 2006. """ def __init__(self, n_hidden=20, alpha=0.5, rbf_width=1.0, activation_func='tanh', activation_args=None, user_components=None, regressor=None, random_state=None): self.n_hidden = n_hidden self.alpha = alpha self.random_state = random_state self.activation_func = activation_func self.activation_args = activation_args self.user_components = user_components self.rbf_width = rbf_width self.regressor = regressor self._genelm_regressor = None def _create_random_layer(self): """Pass init params to RandomLayer""" return RandomLayer(n_hidden=self.n_hidden, alpha=self.alpha, random_state=self.random_state, activation_func=self.activation_func, activation_args=self.activation_args, user_components=self.user_components, rbf_width=self.rbf_width) def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ rhl = self._create_random_layer() self._genelm_regressor = GenELMRegressor(hidden_layer=rhl, regressor=self.regressor) self._genelm_regressor.fit(X, y) return self def predict(self, X): """ Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values. """ if (self._genelm_regressor is None): raise ValueError("SimpleELMRegressor not fitted") return self._genelm_regressor.predict(X) class ELMClassifier(ELMRegressor): """ ELMClassifier is a classifier based on the Extreme Learning Machine. An Extreme Learning Machine (ELM) is a single layer feedforward network with a random hidden layer components and ordinary linear least squares fitting of the hidden->output weights by default. [1][2] ELMClassifier is an ELMRegressor subclass that first binarizes the data, then uses the superclass to compute the decision function that is then unbinarized to yield the prediction. The params for the RandomLayer used in the input transform are exposed in the ELMClassifier constructor. Parameters ---------- `n_hidden` : int, optional (default=20) Number of units to generate in the SimpleRandomLayer `activation_func` : {callable, string} optional (default='tanh') Function used to transform input activation It must be one of 'tanh', 'sine', 'tribas', 'inv_tribase', 'sigmoid', 'hardlim', 'softlim', 'gaussian', 'multiquadric', 'inv_multiquadric' or a callable. If none is given, 'tanh' will be used. If a callable is given, it will be used to compute the hidden unit activations. `activation_args` : dictionary, optional (default=None) Supplies keyword arguments for a callable activation_func `random_state` : int, RandomState instance or None (default=None) Control the pseudo random number generator used to generate the hidden unit weights at fit time. Attributes ---------- `classes_` : numpy array of shape [n_classes] Array of class labels See Also -------- RandomLayer, RBFRandomLayer, MLPRandomLayer, GenELMRegressor, GenELMClassifier, ELMClassifier References ---------- .. [1] http://www.extreme-learning-machines.org .. [2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine: Theory and Applications", Neurocomputing, vol. 70, pp. 489-501, 2006. """ def __init__(self, n_hidden=20, alpha=0.5, rbf_width=1.0, activation_func='tanh', activation_args=None, user_components=None, regressor=None, binarizer=LabelBinarizer(-1, 1), random_state=None): super(ELMClassifier, self).__init__(n_hidden=n_hidden, alpha=alpha, random_state=random_state, activation_func=activation_func, activation_args=activation_args, user_components=user_components, rbf_width=rbf_width, regressor=regressor) self.classes_ = None self.binarizer = binarizer def decision_function(self, X): """ This function return the decision function values related to each class on an array of test vectors X. Parameters ---------- X : array-like of shape [n_samples, n_features] Returns ------- C : array of shape [n_samples, n_classes] or [n_samples,] Decision function values related to each class, per sample. In the two-class case, the shape is [n_samples,] """ return super(ELMClassifier, self).predict(X) def fit(self, X, y): """ Fit the model using X, y as training data. Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape [n_samples, n_outputs] Target values (class labels in classification, real numbers in regression) Returns ------- self : object Returns an instance of self. """ self.classes_ = np.unique(y) y_bin = self.binarizer.fit_transform(y) super(ELMClassifier, self).fit(X, y_bin) return self def predict(self, X): """ Predict values using the model Parameters ---------- X : {array-like, sparse matrix} of shape [n_samples, n_features] Returns ------- C : numpy array of shape [n_samples, n_outputs] Predicted values. """ raw_predictions = self.decision_function(X) class_predictions = self.binarizer.inverse_transform(raw_predictions) return class_predictions def score(self, X, y): """Force use of accuracy score since we don't inherit from ClassifierMixin""" from sklearn.metrics import accuracy_score return accuracy_score(y, self.predict(X))
apache-2.0
jhmatthews/cobra
source/disk_sub.py
1
3164
import sys import numpy as np import pylab import matplotlib.pyplot as plt import scipy.integrate import scipy.optimize from collections import namedtuple import geo import astro_help as ah import disk_sub as disk RADIAN=57.29598 C=2.997925e10 MSOL=1.979e33 G=6.670e-8 YR=3.1556925e7 EPSILON=1e-6 PI=3.1416 STEFAN_BOLTZMANN=5.669e-5 def tdisk (m, mdot, r): t = 3. * G / (8. * PI * STEFAN_BOLTZMANN) * m * mdot / (r * r * r) t = pow (t, 0.25) return (t) def teff (t, x): q = (1.e0 - (x ** -0.5e0)) / (x * x * x); q = t * (q ** 0.25e0); return (q) def spec_disk (f1,f2,m,mdot,rmin,rmax): tref=tdisk(m, mdot, rmin) nfreq=(f2/f1)*100 freq=np.linspace(f1,f2,nfreq) spec=np.empty(nfreq) dfreq=freq[1]-freq[0] rtemp=np.logspace(np.log10(rmin),np.log10(rmax),num=100) rdisk=[] for j in range(len(rtemp)-1): rdisk.append((rtemp[j]+rtemp[j+1])/2.0) r=rdisk[j]/rmin area=PI*(rtemp[j+1]*rtemp[j+1]-rtemp[j]*rtemp[j]) t=(disk.teff(tref,r)) for i in range(len(freq)): spec[i]=spec[i]+(ah.planck_nu(t,freq[i])*area*PI*2) return (freq,spec) def spec_disk1 (f1,f2,m,mdot,rmin,rmax): tref=tdisk(m, mdot, rmin) nfreq=1000 freq=np.logspace(np.log10(f1),np.log10(f2),nfreq) spec=np.empty(nfreq) dfreq=freq[1]-freq[0] rtemp=np.logspace(np.log10(rmin),np.log10(rmax),num=100) rdisk=[] for j in range(len(rtemp)-1): rdisk.append((rtemp[j]+rtemp[j+1])/2.0) r=rdisk[j]/rmin area=PI*(rtemp[j+1]*rtemp[j+1]-rtemp[j]*rtemp[j]) t=(disk.teff(tref,r)) for i in range(len(freq)-1): spec[i]=spec[i]+(ah.planck_nu(t,(freq[i+1]+freq[i])/2.0)*area*PI*2*(freq[i+1]-freq[i])) return (freq,spec) def lnu_disk (f,m,mdot,rmin,rmax): tref=tdisk(m, mdot, rmin) rtemp=np.logspace(np.log10(rmin),np.log10(rmax),num=100) rdisk=[] lnu=0.0 for j in range(len(rtemp)-1): rdisk.append((rtemp[j]+rtemp[j+1])/2.0) r=rdisk[j]/rmin area=PI*(rtemp[j+1]*rtemp[j+1]-rtemp[j]*rtemp[j]) t=(disk.teff(tref,r)) lnu=lnu+(ah.planck_nu(t,f)*area*PI*2.0) return (lnu) def llamb_disk (lamb,m,mdot,rmin,rmax): tref=tdisk(m, mdot, rmin) rtemp=np.logspace(np.log10(rmin),np.log10(rmax),num=100) rdisk=[] llamb=0.0 for j in range(len(rtemp)-1): rdisk.append((rtemp[j]+rtemp[j+1])/2.0) r=rdisk[j]/rmin area=PI*(rtemp[j+1]*rtemp[j+1]-rtemp[j]*rtemp[j]) t=(disk.teff(tref,r)) llamb=llamb+(ah.planck_lamb(t,lamb)*area*PI*2.0) return (llamb) def spec_disk2 (f1,f2,m,mdot,rmin,rmax): tref=tdisk(m, mdot, rmin) nfreq=10 f1a=10**float(int(np.log10(f1))) f2a=10**float(int(np.log10(f2))+1) nrange=int(np.log10((f2a/f1a))) freq=[] dfreq=[] ftemp=f1a df=f1a/nfreq for i in range(nrange): for j in range(nfreq*9): ftemp=ftemp+df if ftemp > f2: break if ftemp >= f1: freq.append(ftemp) df=df*10.0 #print freq[0],freq[len(freq)-1] spec=np.zeros(len(freq)) rtemp=np.logspace(np.log10(rmin),np.log10(rmax),num=100) rdisk=[] for j in range(len(rtemp)-1): rdisk.append((rtemp[j]+rtemp[j+1])/2.0) r=rdisk[j]/rmin area=PI*(rtemp[j+1]*rtemp[j+1]-rtemp[j]*rtemp[j]) t=(disk.teff(tref,r)) for i in range(len(freq)-1): spec[i]=spec[i]+(ah.planck_nu(t,freq[i])*area*PI*2) return (freq,spec)
gpl-2.0
miaecle/deepchem
examples/toxcast/processing/tox.py
9
1668
#Processing of ToxCast data #Author - Aneesh Pappu import pandas as pd import numpy as np #Loading dataframes and editing indices path_to_casn_smiles = "./casn_to_smiles.csv.gz" path_to_code_casn = "./code_to_casn.csv.gz" path_to_hitc_code = "./code_to_hitc.csv.gz" casn_smiles_df = pd.read_csv(path_to_casn_smiles) code_casn_df = pd.read_csv(path_to_code_casn) hitc_code_df = pd.read_csv(path_to_hitc_code) casn_smiles_df = casn_smiles_df[['Substance_CASRN', 'Structure_SMILES']] code_casn_df = code_casn_df[['casn', 'code']] hitc_code_df.rename(columns = {'Unnamed: 0': 'code'}, inplace = True) casn_smiles_df.rename(columns = {'Substance_CASRN': 'casn', 'Structure_SMILES': 'smiles'}, inplace = True) code_casn_df.set_index('code', inplace = True) casn_smiles_df.set_index('casn', inplace= True) #Loop through rows of hitc matrix and replace codes with smiles strings badCounter = 0 #keep track of rows with no corresponding smiles strings for index, data in hitc_code_df.iterrows(): rowList = data.values.tolist() code = rowList[0] #get corresponding casn try: casn = code_casn_df.loc[code, 'casn'] except KeyError: badCounter+=1 pass #get corresponding smiles try: smiles = casn_smiles_df.loc[casn, 'smiles'] except KeyError: badCounter+=1 pass #write to cell hitc_code_df.loc[index, 'code'] = smiles #Tidy up and write to csv hitc_code_df.rename(columns = {'code': 'smiles'}, inplace = True) hitc_code_df.dropna(subset = ['smiles'], inplace = True) hitc_code_df.reset_index(inplace = True, drop = True) hitc_code_df.to_csv("./reprocessed_tox_cast.csv", index=False)
mit
scgmlz/BornAgain-tutorial
ba-school-2018/day_2/reflectometry_D/python_tutorial/task_script.py
2
2261
import numpy as np from matplotlib import pyplot as plt import bornagain as ba from bornagain import deg, angstrom, nm from plotter import PlotterSpecular data_1 = np.loadtxt("python_exp_data_1.txt") # [deg, intensity], angle range [0, 3] deg data_2 = np.loadtxt("python_exp_data_2.txt") # [deg, intensity], angle range [3, 5] deg def get_sample(params): # Task: adjust the sample to using params dictionary # Defining Materials material_1 = ba.MaterialBySLD("Air", 0.0, 0.0) material_2 = ba.MaterialBySLD("AgNano", 1.322e-06, 4.85e-07) material_3 = ba.MaterialBySLD("SiO2", 3.681e-06, 5.43e-07) material_4 = ba.MaterialBySLD("Si", 2.074e-06, 6.3e-08) # Defining Layers layer_1 = ba.Layer(material_1) layer_2 = ba.Layer(material_2, 20*nm) layer_3 = ba.Layer(material_3, 5*nm) layer_4 = ba.Layer(material_4) # Defining Multilayers multiLayer_1 = ba.MultiLayer() multiLayer_1.addLayer(layer_1) multiLayer_1.addLayer(layer_2) multiLayer_1.addLayer(layer_3) multiLayer_1.addLayer(layer_4) return multiLayer_1 def get_simulation_1(params): simulation = ba.SpecularSimulation() footprint = ba.FootprintFactorSquare(0.001) simulation.setBeamParameters(1.798*angstrom, data_1[:, 0]*deg, footprint) simulation.setBeamIntensity(1.0e+8) sample = get_sample(params) simulation.setSample(sample) return simulation def get_simulation_2(params): pass # Task: write your simulation getter here # simulation should comply with data_2 # set beam intensity equal to 5.0e+8 def run_fitting(): """ main function to run fitting """ fit_objective = ba.FitObjective() fit_objective.addSimulationAndData(get_simulation_1, data_1[:, 1], 1.0) # Task: add second simulation-data pair # visualizing fit progress fit_objective.initPrint(10) plotter = PlotterSpecular() fit_objective.initPlot(10, plotter) params = ba.Parameters() # Task: initialize fit parameters # use params.add(name, start, min, max) function minimizer = ba.Minimizer() result = minimizer.minimize(fit_objective.evaluate, params) fit_objective.finalize(result) if __name__ == '__main__': run_fitting() plt.show()
gpl-3.0
rueckstiess/dopamine
agents/valuebased/mdfaestimator.py
1
2463
from numpy import * from random import choice from dopamine.agents.valuebased.estimator import Estimator from dopamine.fapprox import Linear, LWPRFA from matplotlib import pyplot as plt class MDFAEstimator(Estimator): conditions = {'discreteStates':False, 'discreteActions':True} def __init__(self, stateDim, actionNum, faClass=Linear, ordered=False): """ initialize with the state dimension and number of actions. """ self.stateDim = stateDim self.actionNum = actionNum self.faClass = faClass self.ordered = ordered self.fa = None # create memory for ordered estimator if self.ordered: self.memory = [] # define training and target array self.reset() def getBestAction(self, state): """ returns the action with maximal value in the given state. if several actions have the same value, pick one at random. """ state = state.flatten() values = self.fa.predict(state) maxvalues = where(values == values.max())[0] if len(maxvalues) > 0: action = array([choice(maxvalues)]) else: # this should not happen, but it does in rare cases, return the first action action = array([0]) return action def getValue(self, state, action): """ returns the value of the given (state,action) pair as float. """ action = int(action.item()) if self.ordered and (action in self.memory): return -inf state = state.flatten() return self.fa.predict(state)[action] def updateValue(self, state, action, value): action = int(action.item()) state = state.flatten() output = self.fa.predict(state) output[action] = value self.fa.update(state, output) def reset(self): """ clear collected training set. """ # special case to clean up lwpr models that were pickled if self.faClass == LWPRFA: fa._cleanup() self.fa = self.faClass(self.stateDim, self.actionNum) def train(self): """ train individual models for each actions seperately. """ self.fa.train() def rememberAction(self, action): if self.ordered: self.memory.append(int(action.item())) def resetMemory(self): if self.ordered: self.memory = []
gpl-3.0
potash/scikit-learn
examples/svm/plot_svm_kernels.py
329
1971
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
voxlol/scikit-learn
sklearn/manifold/isomap.py
229
7169
"""Isomap for manifold learning""" # Author: Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) 2011 import numpy as np from ..base import BaseEstimator, TransformerMixin from ..neighbors import NearestNeighbors, kneighbors_graph from ..utils import check_array from ..utils.graph import graph_shortest_path from ..decomposition import KernelPCA from ..preprocessing import KernelCenterer class Isomap(BaseEstimator, TransformerMixin): """Isomap Embedding Non-linear dimensionality reduction through Isometric Mapping Read more in the :ref:`User Guide <isomap>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kernel_pca_ : object `KernelPCA` object used to implement the embedding. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. nbrs_ : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. dist_matrix_ : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. References ---------- .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500) """ def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'): self.n_neighbors = n_neighbors self.n_components = n_components self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.path_method = path_method self.neighbors_algorithm = neighbors_algorithm self.nbrs_ = NearestNeighbors(n_neighbors=n_neighbors, algorithm=neighbors_algorithm) def _fit_transform(self, X): X = check_array(X) self.nbrs_.fit(X) self.training_data_ = self.nbrs_._fit_X self.kernel_pca_ = KernelPCA(n_components=self.n_components, kernel="precomputed", eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter) kng = kneighbors_graph(self.nbrs_, self.n_neighbors, mode='distance') self.dist_matrix_ = graph_shortest_path(kng, method=self.path_method, directed=False) G = self.dist_matrix_ ** 2 G *= -0.5 self.embedding_ = self.kernel_pca_.fit_transform(G) def reconstruction_error(self): """Compute the reconstruction error for the embedding. Returns ------- reconstruction_error : float Notes ------- The cost function of an isomap embedding is ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel: ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` """ G = -0.5 * self.dist_matrix_ ** 2 G_center = KernelCenterer().fit_transform(G) evals = self.kernel_pca_.lambdas_ return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0] def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X: {array-like, sparse matrix, BallTree, KDTree} Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X: array-like, shape (n_samples, n_features) Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = check_array(X) distances, indices = self.nbrs_.kneighbors(X, return_distance=True) #Create the graph of shortest distances from X to self.training_data_ # via the nearest neighbors of X. #This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: G_X = np.zeros((X.shape[0], self.training_data_.shape[0])) for i in range(X.shape[0]): G_X[i] = np.min((self.dist_matrix_[indices[i]] + distances[i][:, None]), 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
bsd-3-clause
dhruv13J/scikit-learn
sklearn/manifold/isomap.py
229
7169
"""Isomap for manifold learning""" # Author: Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) 2011 import numpy as np from ..base import BaseEstimator, TransformerMixin from ..neighbors import NearestNeighbors, kneighbors_graph from ..utils import check_array from ..utils.graph import graph_shortest_path from ..decomposition import KernelPCA from ..preprocessing import KernelCenterer class Isomap(BaseEstimator, TransformerMixin): """Isomap Embedding Non-linear dimensionality reduction through Isometric Mapping Read more in the :ref:`User Guide <isomap>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kernel_pca_ : object `KernelPCA` object used to implement the embedding. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. nbrs_ : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. dist_matrix_ : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. References ---------- .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500) """ def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'): self.n_neighbors = n_neighbors self.n_components = n_components self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.path_method = path_method self.neighbors_algorithm = neighbors_algorithm self.nbrs_ = NearestNeighbors(n_neighbors=n_neighbors, algorithm=neighbors_algorithm) def _fit_transform(self, X): X = check_array(X) self.nbrs_.fit(X) self.training_data_ = self.nbrs_._fit_X self.kernel_pca_ = KernelPCA(n_components=self.n_components, kernel="precomputed", eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter) kng = kneighbors_graph(self.nbrs_, self.n_neighbors, mode='distance') self.dist_matrix_ = graph_shortest_path(kng, method=self.path_method, directed=False) G = self.dist_matrix_ ** 2 G *= -0.5 self.embedding_ = self.kernel_pca_.fit_transform(G) def reconstruction_error(self): """Compute the reconstruction error for the embedding. Returns ------- reconstruction_error : float Notes ------- The cost function of an isomap embedding is ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel: ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` """ G = -0.5 * self.dist_matrix_ ** 2 G_center = KernelCenterer().fit_transform(G) evals = self.kernel_pca_.lambdas_ return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0] def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X: {array-like, sparse matrix, BallTree, KDTree} Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X: array-like, shape (n_samples, n_features) Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = check_array(X) distances, indices = self.nbrs_.kneighbors(X, return_distance=True) #Create the graph of shortest distances from X to self.training_data_ # via the nearest neighbors of X. #This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: G_X = np.zeros((X.shape[0], self.training_data_.shape[0])) for i in range(X.shape[0]): G_X[i] = np.min((self.dist_matrix_[indices[i]] + distances[i][:, None]), 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
bsd-3-clause
TomAugspurger/pandas
pandas/tests/reshape/test_cut.py
1
19806
import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, Series, TimedeltaIndex, Timestamp, cut, date_range, isna, qcut, timedelta_range, to_datetime, ) import pandas._testing as tm from pandas.api.types import CategoricalDtype as CDT import pandas.core.reshape.tile as tmod def test_simple(): data = np.ones(5, dtype="int64") result = cut(data, 4, labels=False) expected = np.array([1, 1, 1, 1, 1]) tm.assert_numpy_array_equal(result, expected, check_dtype=False) def test_bins(): data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1]) result, bins = cut(data, 3, retbins=True) intervals = IntervalIndex.from_breaks(bins.round(3)) intervals = intervals.take([0, 0, 0, 1, 2, 0]) expected = Categorical(intervals, ordered=True) tm.assert_categorical_equal(result, expected) tm.assert_almost_equal(bins, np.array([0.1905, 3.36666667, 6.53333333, 9.7])) def test_right(): data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575]) result, bins = cut(data, 4, right=True, retbins=True) intervals = IntervalIndex.from_breaks(bins.round(3)) expected = Categorical(intervals, ordered=True) expected = expected.take([0, 0, 0, 2, 3, 0, 0]) tm.assert_categorical_equal(result, expected) tm.assert_almost_equal(bins, np.array([0.1905, 2.575, 4.95, 7.325, 9.7])) def test_no_right(): data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575]) result, bins = cut(data, 4, right=False, retbins=True) intervals = IntervalIndex.from_breaks(bins.round(3), closed="left") intervals = intervals.take([0, 0, 0, 2, 3, 0, 1]) expected = Categorical(intervals, ordered=True) tm.assert_categorical_equal(result, expected) tm.assert_almost_equal(bins, np.array([0.2, 2.575, 4.95, 7.325, 9.7095])) def test_array_like(): data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1] result, bins = cut(data, 3, retbins=True) intervals = IntervalIndex.from_breaks(bins.round(3)) intervals = intervals.take([0, 0, 0, 1, 2, 0]) expected = Categorical(intervals, ordered=True) tm.assert_categorical_equal(result, expected) tm.assert_almost_equal(bins, np.array([0.1905, 3.36666667, 6.53333333, 9.7])) def test_bins_from_interval_index(): c = cut(range(5), 3) expected = c result = cut(range(5), bins=expected.categories) tm.assert_categorical_equal(result, expected) expected = Categorical.from_codes( np.append(c.codes, -1), categories=c.categories, ordered=True ) result = cut(range(6), bins=expected.categories) tm.assert_categorical_equal(result, expected) def test_bins_from_interval_index_doc_example(): # Make sure we preserve the bins. ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60]) c = cut(ages, bins=[0, 18, 35, 70]) expected = IntervalIndex.from_tuples([(0, 18), (18, 35), (35, 70)]) tm.assert_index_equal(c.categories, expected) result = cut([25, 20, 50], bins=c.categories) tm.assert_index_equal(result.categories, expected) tm.assert_numpy_array_equal(result.codes, np.array([1, 1, 2], dtype="int8")) def test_bins_not_overlapping_from_interval_index(): # see gh-23980 msg = "Overlapping IntervalIndex is not accepted" ii = IntervalIndex.from_tuples([(0, 10), (2, 12), (4, 14)]) with pytest.raises(ValueError, match=msg): cut([5, 6], bins=ii) def test_bins_not_monotonic(): msg = "bins must increase monotonically" data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1] with pytest.raises(ValueError, match=msg): cut(data, [0.1, 1.5, 1, 10]) @pytest.mark.parametrize( "x, bins, expected", [ ( date_range("2017-12-31", periods=3), [Timestamp.min, Timestamp("2018-01-01"), Timestamp.max], IntervalIndex.from_tuples( [ (Timestamp.min, Timestamp("2018-01-01")), (Timestamp("2018-01-01"), Timestamp.max), ] ), ), ( [-1, 0, 1], np.array( [np.iinfo(np.int64).min, 0, np.iinfo(np.int64).max], dtype="int64" ), IntervalIndex.from_tuples( [(np.iinfo(np.int64).min, 0), (0, np.iinfo(np.int64).max)] ), ), ( [np.timedelta64(-1), np.timedelta64(0), np.timedelta64(1)], np.array( [ np.timedelta64(-np.iinfo(np.int64).max), np.timedelta64(0), np.timedelta64(np.iinfo(np.int64).max), ] ), IntervalIndex.from_tuples( [ (np.timedelta64(-np.iinfo(np.int64).max), np.timedelta64(0)), (np.timedelta64(0), np.timedelta64(np.iinfo(np.int64).max)), ] ), ), ], ) def test_bins_monotonic_not_overflowing(x, bins, expected): # GH 26045 result = cut(x, bins) tm.assert_index_equal(result.categories, expected) def test_wrong_num_labels(): msg = "Bin labels must be one fewer than the number of bin edges" data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1] with pytest.raises(ValueError, match=msg): cut(data, [0, 1, 10], labels=["foo", "bar", "baz"]) @pytest.mark.parametrize( "x,bins,msg", [ ([], 2, "Cannot cut empty array"), ([1, 2, 3], 0.5, "`bins` should be a positive integer"), ], ) def test_cut_corner(x, bins, msg): with pytest.raises(ValueError, match=msg): cut(x, bins) @pytest.mark.parametrize("arg", [2, np.eye(2), DataFrame(np.eye(2))]) @pytest.mark.parametrize("cut_func", [cut, qcut]) def test_cut_not_1d_arg(arg, cut_func): msg = "Input array must be 1 dimensional" with pytest.raises(ValueError, match=msg): cut_func(arg, 2) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3, 4, np.inf], [-np.inf, 0, 1, 2, 3, 4], [-np.inf, 0, 1, 2, 3, 4, np.inf], ], ) def test_int_bins_with_inf(data): # GH 24314 msg = "cannot specify integer `bins` when input data contains infinity" with pytest.raises(ValueError, match=msg): cut(data, bins=3) def test_cut_out_of_range_more(): # see gh-1511 name = "x" ser = Series([0, -1, 0, 1, -3], name=name) ind = cut(ser, [0, 1], labels=False) exp = Series([np.nan, np.nan, np.nan, 0, np.nan], name=name) tm.assert_series_equal(ind, exp) @pytest.mark.parametrize( "right,breaks,closed", [ (True, [-1e-3, 0.25, 0.5, 0.75, 1], "right"), (False, [0, 0.25, 0.5, 0.75, 1 + 1e-3], "left"), ], ) def test_labels(right, breaks, closed): arr = np.tile(np.arange(0, 1.01, 0.1), 4) result, bins = cut(arr, 4, retbins=True, right=right) ex_levels = IntervalIndex.from_breaks(breaks, closed=closed) tm.assert_index_equal(result.categories, ex_levels) def test_cut_pass_series_name_to_factor(): name = "foo" ser = Series(np.random.randn(100), name=name) factor = cut(ser, 4) assert factor.name == name def test_label_precision(): arr = np.arange(0, 0.73, 0.01) result = cut(arr, 4, precision=2) ex_levels = IntervalIndex.from_breaks([-0.00072, 0.18, 0.36, 0.54, 0.72]) tm.assert_index_equal(result.categories, ex_levels) @pytest.mark.parametrize("labels", [None, False]) def test_na_handling(labels): arr = np.arange(0, 0.75, 0.01) arr[::3] = np.nan result = cut(arr, 4, labels=labels) result = np.asarray(result) expected = np.where(isna(arr), np.nan, result) tm.assert_almost_equal(result, expected) def test_inf_handling(): data = np.arange(6) data_ser = Series(data, dtype="int64") bins = [-np.inf, 2, 4, np.inf] result = cut(data, bins) result_ser = cut(data_ser, bins) ex_uniques = IntervalIndex.from_breaks(bins) tm.assert_index_equal(result.categories, ex_uniques) assert result[5] == Interval(4, np.inf) assert result[0] == Interval(-np.inf, 2) assert result_ser[5] == Interval(4, np.inf) assert result_ser[0] == Interval(-np.inf, 2) def test_cut_out_of_bounds(): arr = np.random.randn(100) result = cut(arr, [-1, 0, 1]) mask = isna(result) ex_mask = (arr < -1) | (arr > 1) tm.assert_numpy_array_equal(mask, ex_mask) @pytest.mark.parametrize( "get_labels,get_expected", [ ( lambda labels: labels, lambda labels: Categorical( ["Medium"] + 4 * ["Small"] + ["Medium", "Large"], categories=labels, ordered=True, ), ), ( lambda labels: Categorical.from_codes([0, 1, 2], labels), lambda labels: Categorical.from_codes([1] + 4 * [0] + [1, 2], labels), ), ], ) def test_cut_pass_labels(get_labels, get_expected): bins = [0, 25, 50, 100] arr = [50, 5, 10, 15, 20, 30, 70] labels = ["Small", "Medium", "Large"] result = cut(arr, bins, labels=get_labels(labels)) tm.assert_categorical_equal(result, get_expected(labels)) def test_cut_pass_labels_compat(): # see gh-16459 arr = [50, 5, 10, 15, 20, 30, 70] labels = ["Good", "Medium", "Bad"] result = cut(arr, 3, labels=labels) exp = cut(arr, 3, labels=Categorical(labels, categories=labels, ordered=True)) tm.assert_categorical_equal(result, exp) @pytest.mark.parametrize("x", [np.arange(11.0), np.arange(11.0) / 1e10]) def test_round_frac_just_works(x): # It works. cut(x, 2) @pytest.mark.parametrize( "val,precision,expected", [ (-117.9998, 3, -118), (117.9998, 3, 118), (117.9998, 2, 118), (0.000123456, 2, 0.00012), ], ) def test_round_frac(val, precision, expected): # see gh-1979 result = tmod._round_frac(val, precision=precision) assert result == expected def test_cut_return_intervals(): ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8]) result = cut(ser, 3) exp_bins = np.linspace(0, 8, num=4).round(3) exp_bins[0] -= 0.008 expected = Series( IntervalIndex.from_breaks(exp_bins, closed="right").take( [0, 0, 0, 1, 1, 1, 2, 2, 2] ) ).astype(CDT(ordered=True)) tm.assert_series_equal(result, expected) def test_series_ret_bins(): # see gh-8589 ser = Series(np.arange(4)) result, bins = cut(ser, 2, retbins=True) expected = Series( IntervalIndex.from_breaks([-0.003, 1.5, 3], closed="right").repeat(2) ).astype(CDT(ordered=True)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "kwargs,msg", [ (dict(duplicates="drop"), None), (dict(), "Bin edges must be unique"), (dict(duplicates="raise"), "Bin edges must be unique"), (dict(duplicates="foo"), "invalid value for 'duplicates' parameter"), ], ) def test_cut_duplicates_bin(kwargs, msg): # see gh-20947 bins = [0, 2, 4, 6, 10, 10] values = Series(np.array([1, 3, 5, 7, 9]), index=["a", "b", "c", "d", "e"]) if msg is not None: with pytest.raises(ValueError, match=msg): cut(values, bins, **kwargs) else: result = cut(values, bins, **kwargs) expected = cut(values, pd.unique(bins)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("data", [9.0, -9.0, 0.0]) @pytest.mark.parametrize("length", [1, 2]) def test_single_bin(data, length): # see gh-14652, gh-15428 ser = Series([data] * length) result = cut(ser, 1, labels=False) expected = Series([0] * length) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "array_1_writeable,array_2_writeable", [(True, True), (True, False), (False, False)] ) def test_cut_read_only(array_1_writeable, array_2_writeable): # issue 18773 array_1 = np.arange(0, 100, 10) array_1.flags.writeable = array_1_writeable array_2 = np.arange(0, 100, 10) array_2.flags.writeable = array_2_writeable hundred_elements = np.arange(100) tm.assert_categorical_equal( cut(hundred_elements, array_1), cut(hundred_elements, array_2) ) @pytest.mark.parametrize( "conv", [ lambda v: Timestamp(v), lambda v: to_datetime(v), lambda v: np.datetime64(v), lambda v: Timestamp(v).to_pydatetime(), ], ) def test_datetime_bin(conv): data = [np.datetime64("2012-12-13"), np.datetime64("2012-12-15")] bin_data = ["2012-12-12", "2012-12-14", "2012-12-16"] expected = Series( IntervalIndex( [ Interval(Timestamp(bin_data[0]), Timestamp(bin_data[1])), Interval(Timestamp(bin_data[1]), Timestamp(bin_data[2])), ] ) ).astype(CDT(ordered=True)) bins = [conv(v) for v in bin_data] result = Series(cut(data, bins=bins)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ to_datetime(Series(["2013-01-01", "2013-01-02", "2013-01-03"])), [ np.datetime64("2013-01-01"), np.datetime64("2013-01-02"), np.datetime64("2013-01-03"), ], np.array( [ np.datetime64("2013-01-01"), np.datetime64("2013-01-02"), np.datetime64("2013-01-03"), ] ), DatetimeIndex(["2013-01-01", "2013-01-02", "2013-01-03"]), ], ) def test_datetime_cut(data): # see gh-14714 # # Testing time data when it comes in various collection types. result, _ = cut(data, 3, retbins=True) expected = Series( IntervalIndex( [ Interval( Timestamp("2012-12-31 23:57:07.200000"), Timestamp("2013-01-01 16:00:00"), ), Interval( Timestamp("2013-01-01 16:00:00"), Timestamp("2013-01-02 08:00:00") ), Interval( Timestamp("2013-01-02 08:00:00"), Timestamp("2013-01-03 00:00:00") ), ] ) ).astype(CDT(ordered=True)) tm.assert_series_equal(Series(result), expected) @pytest.mark.parametrize( "bins", [ 3, [ Timestamp("2013-01-01 04:57:07.200000"), Timestamp("2013-01-01 21:00:00"), Timestamp("2013-01-02 13:00:00"), Timestamp("2013-01-03 05:00:00"), ], ], ) @pytest.mark.parametrize("box", [list, np.array, Index, Series]) def test_datetime_tz_cut(bins, box): # see gh-19872 tz = "US/Eastern" s = Series(date_range("20130101", periods=3, tz=tz)) if not isinstance(bins, int): bins = box(bins) result = cut(s, bins) expected = Series( IntervalIndex( [ Interval( Timestamp("2012-12-31 23:57:07.200000", tz=tz), Timestamp("2013-01-01 16:00:00", tz=tz), ), Interval( Timestamp("2013-01-01 16:00:00", tz=tz), Timestamp("2013-01-02 08:00:00", tz=tz), ), Interval( Timestamp("2013-01-02 08:00:00", tz=tz), Timestamp("2013-01-03 00:00:00", tz=tz), ), ] ) ).astype(CDT(ordered=True)) tm.assert_series_equal(result, expected) def test_datetime_nan_error(): msg = "bins must be of datetime64 dtype" with pytest.raises(ValueError, match=msg): cut(date_range("20130101", periods=3), bins=[0, 2, 4]) def test_datetime_nan_mask(): result = cut( date_range("20130102", periods=5), bins=date_range("20130101", periods=2) ) mask = result.categories.isna() tm.assert_numpy_array_equal(mask, np.array([False])) mask = result.isna() tm.assert_numpy_array_equal(mask, np.array([False, True, True, True, True])) @pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"]) def test_datetime_cut_roundtrip(tz): # see gh-19891 ser = Series(date_range("20180101", periods=3, tz=tz)) result, result_bins = cut(ser, 2, retbins=True) expected = cut(ser, result_bins) tm.assert_series_equal(result, expected) expected_bins = DatetimeIndex( ["2017-12-31 23:57:07.200000", "2018-01-02 00:00:00", "2018-01-03 00:00:00"] ) expected_bins = expected_bins.tz_localize(tz) tm.assert_index_equal(result_bins, expected_bins) def test_timedelta_cut_roundtrip(): # see gh-19891 ser = Series(timedelta_range("1day", periods=3)) result, result_bins = cut(ser, 2, retbins=True) expected = cut(ser, result_bins) tm.assert_series_equal(result, expected) expected_bins = TimedeltaIndex( ["0 days 23:57:07.200000", "2 days 00:00:00", "3 days 00:00:00"] ) tm.assert_index_equal(result_bins, expected_bins) @pytest.mark.parametrize("bins", [6, 7]) @pytest.mark.parametrize( "box, compare", [ (Series, tm.assert_series_equal), (np.array, tm.assert_categorical_equal), (list, tm.assert_equal), ], ) def test_cut_bool_coercion_to_int(bins, box, compare): # issue 20303 data_expected = box([0, 1, 1, 0, 1] * 10) data_result = box([False, True, True, False, True] * 10) expected = cut(data_expected, bins, duplicates="drop") result = cut(data_result, bins, duplicates="drop") compare(result, expected) @pytest.mark.parametrize("labels", ["foo", 1, True]) def test_cut_incorrect_labels(labels): # GH 13318 values = range(5) msg = "Bin labels must either be False, None or passed in as a list-like argument" with pytest.raises(ValueError, match=msg): cut(values, 4, labels=labels) @pytest.mark.parametrize("bins", [3, [0, 5, 15]]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("include_lowest", [True, False]) def test_cut_nullable_integer(bins, right, include_lowest): a = np.random.randint(0, 10, size=50).astype(float) a[::2] = np.nan result = cut( pd.array(a, dtype="Int64"), bins, right=right, include_lowest=include_lowest ) expected = cut(a, bins, right=right, include_lowest=include_lowest) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize( "data, bins, labels, expected_codes, expected_labels", [ ([15, 17, 19], [14, 16, 18, 20], ["A", "B", "A"], [0, 1, 0], ["A", "B"]), ([1, 3, 5], [0, 2, 4, 6, 8], [2, 0, 1, 2], [2, 0, 1], [0, 1, 2]), ], ) def test_cut_non_unique_labels(data, bins, labels, expected_codes, expected_labels): # GH 33141 result = cut(data, bins=bins, labels=labels, ordered=False) expected = Categorical.from_codes( expected_codes, categories=expected_labels, ordered=False ) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize( "data, bins, labels, expected_codes, expected_labels", [ ([15, 17, 19], [14, 16, 18, 20], ["C", "B", "A"], [0, 1, 2], ["C", "B", "A"]), ([1, 3, 5], [0, 2, 4, 6, 8], [3, 0, 1, 2], [0, 1, 2], [3, 0, 1, 2]), ], ) def test_cut_unordered_labels(data, bins, labels, expected_codes, expected_labels): # GH 33141 result = cut(data, bins=bins, labels=labels, ordered=False) expected = Categorical.from_codes( expected_codes, categories=expected_labels, ordered=False ) tm.assert_categorical_equal(result, expected) def test_cut_unordered_with_missing_labels_raises_error(): # GH 33141 msg = "'labels' must be provided if 'ordered = False'" with pytest.raises(ValueError, match=msg): cut([0.5, 3], bins=[0, 1, 2], ordered=False)
bsd-3-clause
mc-hammertimeseries/cs207project
docs/conf.py
1
8736
# -*- coding: utf-8 -*- # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- Hack for ReadTheDocs ------------------------------------------------------ # This hack is necessary since RTD does not issue `sphinx-apidoc` before running # `sphinx-build -b html . _build/html`. See Issue: # https://github.com/rtfd/readthedocs.org/issues/1139 # DON'T FORGET: Check the box "Install your project inside a virtualenv using # setup.py install" in the RTD Advanced Settings. import os on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if on_rtd: import inspect from sphinx import apidoc __location__ = os.path.join(os.getcwd(), os.path.dirname( inspect.getfile(inspect.currentframe()))) output_dir = os.path.join(__location__, "../docs/api") module_dir = os.path.join(__location__, "../cs207project") cmd_line_template = "sphinx-apidoc -f -o {outputdir} {moduledir}" cmd_line = cmd_line_template.format(outputdir=output_dir, moduledir=module_dir) apidoc.main(cmd_line.split(" ")) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.autosummary', 'sphinx.ext.viewcode', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'sphinx.ext.ifconfig', 'sphinx.ext.pngmath', 'sphinx.ext.napoleon'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'cs207project' copyright = u'2016, Jonathan Friedman' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '' # Is set by calling `setup.py docs` # The full version, including alpha/beta/rc tags. release = '' # Is set by calling `setup.py docs` # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". try: from cs207project import __version__ as version except ImportError: pass else: release = version # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = "" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'cs207project-doc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'user_guide.tex', u'cs207project Documentation', u'Jonathan Friedman', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = "" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- External mapping ------------------------------------------------------------ python_version = '.'.join(map(str, sys.version_info[0:2])) intersphinx_mapping = { 'sphinx': ('http://sphinx.pocoo.org', None), 'python': ('http://docs.python.org/' + python_version, None), 'matplotlib': ('http://matplotlib.sourceforge.net', None), 'numpy': ('http://docs.scipy.org/doc/numpy', None), 'sklearn': ('http://scikit-learn.org/stable', None), 'pandas': ('http://pandas.pydata.org/pandas-docs/stable', None), 'scipy': ('http://docs.scipy.org/doc/scipy/reference/', None), }
mit
jlegendary/scikit-learn
sklearn/decomposition/truncated_svd.py
199
7744
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA). """ # Author: Lars Buitinck <[email protected]> # Olivier Grisel <[email protected]> # Michael Becker <[email protected]> # License: 3-clause BSD. import numpy as np import scipy.sparse as sp try: from scipy.sparse.linalg import svds except ImportError: from ..utils.arpack import svds from ..base import BaseEstimator, TransformerMixin from ..utils import check_array, as_float_array, check_random_state from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip from ..utils.sparsefuncs import mean_variance_axis __all__ = ["TruncatedSVD"] class TruncatedSVD(BaseEstimator, TransformerMixin): """Dimensionality reduction using truncated SVD (aka LSA). This transformer performs linear dimensionality reduction by means of truncated singular value decomposition (SVD). It is very similar to PCA, but operates on sample vectors directly, instead of on a covariance matrix. This means it can work with scipy.sparse matrices efficiently. In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in sklearn.feature_extraction.text. In that context, it is known as latent semantic analysis (LSA). This estimator supports two algorithm: a fast randomized SVD solver, and a "naive" algorithm that uses ARPACK as an eigensolver on (X * X.T) or (X.T * X), whichever is more efficient. Read more in the :ref:`User Guide <LSA>`. Parameters ---------- n_components : int, default = 2 Desired dimensionality of output data. Must be strictly less than the number of features. The default value is useful for visualisation. For LSA, a value of 100 is recommended. algorithm : string, default = "randomized" SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy (scipy.sparse.linalg.svds), or "randomized" for the randomized algorithm due to Halko (2009). n_iter : int, optional Number of iterations for randomized SVD solver. Not used by ARPACK. random_state : int or RandomState, optional (Seed for) pseudo-random number generator. If not given, the numpy.random singleton is used. tol : float, optional Tolerance for ARPACK. 0 means machine precision. Ignored by randomized SVD solver. Attributes ---------- components_ : array, shape (n_components, n_features) explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. explained_variance_ : array, [n_components] The variance of the training samples transformed by a projection to each component. Examples -------- >>> from sklearn.decomposition import TruncatedSVD >>> from sklearn.random_projection import sparse_random_matrix >>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42) >>> svd = TruncatedSVD(n_components=5, random_state=42) >>> svd.fit(X) # doctest: +NORMALIZE_WHITESPACE TruncatedSVD(algorithm='randomized', n_components=5, n_iter=5, random_state=42, tol=0.0) >>> print(svd.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.07825... 0.05528... 0.05445... 0.04997... 0.04134...] >>> print(svd.explained_variance_ratio_.sum()) # doctest: +ELLIPSIS 0.27930... See also -------- PCA RandomizedPCA References ---------- Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 Notes ----- SVD suffers from a problem called "sign indeterminancy", which means the sign of the ``components_`` and the output from transform depend on the algorithm and random state. To work around this, fit instances of this class to data once, then keep the instance around to do transformations. """ def __init__(self, n_components=2, algorithm="randomized", n_iter=5, random_state=None, tol=0.): self.algorithm = algorithm self.n_components = n_components self.n_iter = n_iter self.random_state = random_state self.tol = tol def fit(self, X, y=None): """Fit LSI model on training data X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- self : object Returns the transformer object. """ self.fit_transform(X) return self def fit_transform(self, X, y=None): """Fit LSI model to X and perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = as_float_array(X, copy=False) random_state = check_random_state(self.random_state) # If sparse and not csr or csc, convert to csr if sp.issparse(X) and X.getformat() not in ["csr", "csc"]: X = X.tocsr() if self.algorithm == "arpack": U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol) # svds doesn't abide by scipy.linalg.svd/randomized_svd # conventions, so reverse its outputs. Sigma = Sigma[::-1] U, VT = svd_flip(U[:, ::-1], VT[::-1]) elif self.algorithm == "randomized": k = self.n_components n_features = X.shape[1] if k >= n_features: raise ValueError("n_components must be < n_features;" " got %d >= %d" % (k, n_features)) U, Sigma, VT = randomized_svd(X, self.n_components, n_iter=self.n_iter, random_state=random_state) else: raise ValueError("unknown algorithm %r" % self.algorithm) self.components_ = VT # Calculate explained variance & explained variance ratio X_transformed = np.dot(U, np.diag(Sigma)) self.explained_variance_ = exp_var = np.var(X_transformed, axis=0) if sp.issparse(X): _, full_var = mean_variance_axis(X, axis=0) full_var = full_var.sum() else: full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var return X_transformed def transform(self, X): """Perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = check_array(X, accept_sparse='csr') return safe_sparse_dot(X, self.components_.T) def inverse_transform(self, X): """Transform X back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data. Returns ------- X_original : array, shape (n_samples, n_features) Note that this is always a dense array. """ X = check_array(X) return np.dot(X, self.components_)
bsd-3-clause
yanlend/scikit-learn
benchmarks/bench_sgd_regression.py
283
5569
""" Benchmark for SGD regression Compares SGD regression against coordinate descent and Ridge on synthetic data. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # License: BSD 3 clause import numpy as np import pylab as pl import gc from time import time from sklearn.linear_model import Ridge, SGDRegressor, ElasticNet from sklearn.metrics import mean_squared_error from sklearn.datasets.samples_generator import make_regression if __name__ == "__main__": list_n_samples = np.linspace(100, 10000, 5).astype(np.int) list_n_features = [10, 100, 1000] n_test = 1000 noise = 0.1 alpha = 0.01 sgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) elnet_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) ridge_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) asgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) for i, n_train in enumerate(list_n_samples): for j, n_features in enumerate(list_n_features): X, y, coef = make_regression( n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] print("=======================") print("Round %d %d" % (i, j)) print("n_features:", n_features) print("n_samples:", n_train) # Shuffle data idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() print("- benchmarking ElasticNet") clf = ElasticNet(alpha=alpha, l1_ratio=0.5, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) elnet_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) elnet_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.01, power_t=0.25) tstart = time() clf.fit(X_train, y_train) sgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) sgd_results[i, j, 1] = time() - tstart gc.collect() print("n_iter", n_iter) print("- benchmarking A-SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.002, power_t=0.05, average=(n_iter * n_train // 2)) tstart = time() clf.fit(X_train, y_train) asgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) asgd_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking RidgeRegression") clf = Ridge(alpha=alpha, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) ridge_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) ridge_results[i, j, 1] = time() - tstart # Plot results i = 0 m = len(list_n_features) pl.figure('scikit-learn SGD regression benchmark results', figsize=(5 * 2, 4 * m)) for j in range(m): pl.subplot(m, 2, i + 1) pl.plot(list_n_samples, np.sqrt(elnet_results[:, j, 0]), label="ElasticNet") pl.plot(list_n_samples, np.sqrt(sgd_results[:, j, 0]), label="SGDRegressor") pl.plot(list_n_samples, np.sqrt(asgd_results[:, j, 0]), label="A-SGDRegressor") pl.plot(list_n_samples, np.sqrt(ridge_results[:, j, 0]), label="Ridge") pl.legend(prop={"size": 10}) pl.xlabel("n_train") pl.ylabel("RMSE") pl.title("Test error - %d features" % list_n_features[j]) i += 1 pl.subplot(m, 2, i + 1) pl.plot(list_n_samples, np.sqrt(elnet_results[:, j, 1]), label="ElasticNet") pl.plot(list_n_samples, np.sqrt(sgd_results[:, j, 1]), label="SGDRegressor") pl.plot(list_n_samples, np.sqrt(asgd_results[:, j, 1]), label="A-SGDRegressor") pl.plot(list_n_samples, np.sqrt(ridge_results[:, j, 1]), label="Ridge") pl.legend(prop={"size": 10}) pl.xlabel("n_train") pl.ylabel("Time [sec]") pl.title("Training time - %d features" % list_n_features[j]) i += 1 pl.subplots_adjust(hspace=.30) pl.show()
bsd-3-clause
gweidner/systemml
src/main/python/systemml/classloader.py
7
8270
# ------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ------------------------------------------------------------- __all__ = [ 'createJavaObject', 'jvm_stdout', 'default_jvm_stdout', 'default_jvm_stdout_parallel_flush', 'set_default_jvm_stdout', 'get_spark_context'] import os import numpy as np import pandas as pd import threading import time try: import py4j.java_gateway from py4j.java_gateway import JavaObject from pyspark import SparkContext from pyspark.sql import SparkSession except ImportError: raise ImportError( 'Unable to import `pyspark`. Hint: Make sure you are running with PySpark.') _loadedSystemML = False def get_spark_context(): """ Internal method to get already initialized SparkContext. Developers should always use get_spark_context() instead of SparkContext._active_spark_context to ensure SystemML loaded. Returns ------- sc: SparkContext SparkContext """ if SparkContext._active_spark_context is not None: sc = SparkContext._active_spark_context global _loadedSystemML if not _loadedSystemML: createJavaObject(sc, 'dummy') _loadedSystemML = True return sc else: raise Exception('Expected spark context to be created.') _in_jvm_stdout = False default_jvm_stdout = True default_jvm_stdout_parallel_flush = True def set_default_jvm_stdout(enable, parallel_flush=True): """ This is useful utility method to get the output of the driver JVM from within a Jupyter notebook Parameters ---------- enable: boolean Should flush the stdout by default when mlcontext.execute is invoked parallel_flush: boolean Should flush the stdout in parallel """ global default_jvm_stdout, default_jvm_stdout_parallel_flush default_jvm_stdout = enable default_jvm_stdout_parallel_flush = parallel_flush # This is useful utility class to get the output of the driver JVM from within a Jupyter notebook # Example usage: # with jvm_stdout(): # ml.execute(script) class jvm_stdout(object): """ This is useful utility class to get the output of the driver JVM from within a Jupyter notebook Parameters ---------- parallel_flush: boolean Should flush the stdout in parallel """ def __init__(self, parallel_flush=False): self.util = get_spark_context()._jvm.org.apache.sysml.api.ml.Utils() self.parallel_flush = parallel_flush self.t = threading.Thread(target=self.flush_stdout) self.stop = False def flush_stdout(self): while not self.stop: time.sleep(1) # flush stdout every 1 second str = self.util.flushStdOut() if str != '': str = str[:-1] if str.endswith('\n') else str print(str) def __enter__(self): global _in_jvm_stdout if _in_jvm_stdout: # Allow for nested jvm_stdout self.donotRedirect = True else: self.donotRedirect = False self.util.startRedirectStdOut() if self.parallel_flush: self.t.start() _in_jvm_stdout = True def __exit__(self, *args): global _in_jvm_stdout if not self.donotRedirect: if self.parallel_flush: self.stop = True self.t.join() print(self.util.stopRedirectStdOut()) _in_jvm_stdout = False _initializedSparkSession = False def _createJavaObject(sc, obj_type): # ----------------------------------------------------------------------------------- # Avoids race condition between locking of metastore_db of Scala SparkSession and PySpark SparkSession. # This is done at toDF() rather than import level to avoid creation of # SparkSession in worker processes. global _initializedSparkSession if not _initializedSparkSession: _initializedSparkSession = True SparkSession.builder.getOrCreate().createDataFrame( pd.DataFrame(np.array([[1, 2], [3, 4]]))) # ----------------------------------------------------------------------------------- if obj_type == 'mlcontext': return sc._jvm.org.apache.sysml.api.mlcontext.MLContext(sc._jsc) elif obj_type == 'dummy': return sc._jvm.org.apache.sysml.utils.SystemMLLoaderUtils() else: raise ValueError( 'Incorrect usage: supported values: mlcontext or dummy') def _getJarFileNames(sc): import imp import fnmatch jar_file_name = '_ignore.jar' java_dir = os.path.join(imp.find_module("systemml")[1], "systemml-java") jar_file_names = [] for file in os.listdir(java_dir): if fnmatch.fnmatch( file, 'systemml-*-SNAPSHOT.jar') or fnmatch.fnmatch(file, 'systemml-*.jar'): jar_file_names = jar_file_names + [os.path.join(java_dir, file)] return jar_file_names def _getLoaderInstance(sc, jar_file_name, className, hint): err_msg = 'Unable to load systemml-*.jar into current pyspark session.' if os.path.isfile(jar_file_name): sc._jsc.addJar(jar_file_name) jar_file_url = sc._jvm.java.io.File(jar_file_name).toURI().toURL() url_class = sc._jvm.java.net.URL jar_file_url_arr = sc._gateway.new_array(url_class, 1) jar_file_url_arr[0] = jar_file_url url_class_loader = sc._jvm.java.net.URLClassLoader( jar_file_url_arr, sc._jsc.getClass().getClassLoader()) c1 = sc._jvm.java.lang.Class.forName(className, True, url_class_loader) return c1.newInstance() else: raise ImportError( err_msg + ' Hint: Download the jar from http://systemml.apache.org/download and ' + hint) def createJavaObject(sc, obj_type): """ Performs appropriate check if SystemML.jar is available and returns the handle to MLContext object on JVM Parameters ---------- sc: SparkContext SparkContext obj_type: Type of object to create ('mlcontext' or 'dummy') """ try: return _createJavaObject(sc, obj_type) except (py4j.protocol.Py4JError, TypeError): ret = None err_msg = 'Unable to load systemml-*.jar into current pyspark session.' hint = 'Provide the following argument to pyspark: --driver-class-path ' jar_file_names = _getJarFileNames(sc) if len(jar_file_names) != 2: raise ImportError( 'Expected only systemml and systemml-extra jars, but found ' + str(jar_file_names)) for jar_file_name in jar_file_names: if 'extra' in jar_file_name: x = _getLoaderInstance( sc, jar_file_name, 'org.apache.sysml.api.dl.Caffe2DMLLoader', hint + 'systemml-*-extra.jar') x.loadCaffe2DML(jar_file_name) else: x = _getLoaderInstance( sc, jar_file_name, 'org.apache.sysml.utils.SystemMLLoaderUtils', hint + 'systemml-*.jar') x.loadSystemML(jar_file_name) try: ret = _createJavaObject(sc, obj_type) except (py4j.protocol.Py4JError, TypeError): raise ImportError(err_msg + ' Hint: ' + hint + jar_file_name) return ret
apache-2.0
zakahmad/kNN
kNN.py
1
2966
### ### # This is an implementation of the kNN algorithm. The code is written with # readability in mind, and most importantly, learning how the algorithm works. # I recommend using kNN from a generic machine learning library (sci-kit learn) # as those are usually optimized for performance. ### ### By: Zak Ahmad ([email protected]) ### # this code will run only if numpy and pandas are installed # if not, please download numpy from http://www.scipy.org/scipylib/download.html # and pandas from http://pandas.pydata.org/getpandas.html import numpy as np import pandas as pd import random # For more information about the 1974 Motor Trend Car Road Test dataset # see http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html # -------------------- read the data -------------------- # specify file name containing the data filename = "cardata.csv" # create a pandas dataframe containing the data in the csv file cardata = pd.read_csv(filename) # find the length (number of rows) of data data_length = len(cardata) # we will use only 60% of the data to construct our training set train_length = int(0.6 * data_length) # --------------------- prepare data -------------------- # generate numpy array from zero to length of data used for indices indices = np.arange(data_length) # randomize the order of the indices random.shuffle(indices) # create indices for training set from the randomized indices train_indices = indices[0:train_length] # output feature we are interested in predicting yfeature = ["mpg"] # input feature(s) we will use to construct our prediction model xfeatures = ["cyl","disp","wt"] # this creates the training set which constructs our prediction model X_train_data = cardata.ix[train_indices,xfeatures] Y_train_data = cardata.ix[train_indices,yfeature] # ------------------ predict, using data ----------------- # numpy array containing the features of the vehicle we want to predict # note the order of the array elements has to be the same as xfeatures my_vehicle = np.array([4,80,1.5]) # 4 cylinders, 80 cubic inches, 1.500 lb/1000 # k is the number of elements we will be averaging for our prediction k = 3 if k < 1: # k should atleast be 1 k = 1 elif k > len(Y_train_data): # k cannot be more than the training set's length k = len(Y_train_data) # this is where the "prediction begins", we compute the Euclidean distance # squared difference between my_vehicle and all x training set (input features) sqdiff = (X_train_data - my_vehicle)**2 # now compute the Euclidean distance for each row (axis = 1) dist = np.sqrt(sqdiff.sum(axis=1)) # store the Euclidean distance into a new column in the y training set (output) Y_train_data["dist"] = dist # sort the y training set by the Euclidean distance sorted_output = Y_train_data.sort("dist") # get the yfeature as a numpy array and compute mean of only k elements prediction = np.mean(sorted_output.as_matrix(yfeature)[0:k]) print prediction
gpl-2.0
shunliz/test
python/stock/stock2.py
1
1525
import tushare as ts import csv import time import pandas as pd pro = ts.pro_api('1dbda79ce58d052196b7ddec1663d53e4ea20571195a1a6055aab0c7') stock_basic = pro.stock_basic(list_status='L', fields='ts_code, symbol, name, industry') # 重命名行,便于后面导入neo4j basic_rename = {'ts_code': 'TS代码', 'symbol': '股票代码', 'name': '股票名称', 'industry': '行业'} stock_basic.rename(columns=basic_rename, inplace=True) # 保存为stock.csv stock_basic.to_csv('stock.csv', encoding='gbk') # 获取top10_holders holders = pd.DataFrame(columns=('ts_code', 'ann_date', 'end_date', 'holder_name', 'hold_amount', 'hold_ratio')) # 获取一年内所有上市股票股东信息(可以获取一个报告期的) for i in range(3610): code = stock_basic['TS代码'].values[i] top10_holders = pro.top10_holders(ts_code=code, start_date='20180101', end_date='20181231') holders = holders.append(top10_holders) time.sleep(0.3)# 数据接口限制 # 保存为holders.csv holders.to_csv('holders.csv', encoding='gbk') # 获取concept,并查看概念分类数量 concept = pro.concept() concept.to_csv('concept_num.csv', encoding='gbk') # 获取concept_detail concept_details = pd.DataFrame(columns=('id', 'concept_name', 'ts_code', 'name')) for i in range(358): id = 'TS' + str(i) concept_detail = pro.concept_detail(id=id) concept_details = concept_details.append(concept_detail) time.sleep(0.3) # 保存为concept_detail.csv concept_details.to_csv('concept.csv', encoding='gbk')
apache-2.0
jmcq89/megaman
megaman/geometry/laplacian.py
3
5335
# LICENSE: Simplified BSD https://github.com/mmp2/megaman/blob/master/LICENSE import numpy as np from scipy.sparse import isspmatrix from sklearn.utils.validation import check_array from .utils import RegisterSubclasses def compute_laplacian_matrix(affinity_matrix, method='auto', **kwargs): """Compute the laplacian matrix with the given method""" if method == 'auto': method = 'geometric' return Laplacian.init(method, **kwargs).laplacian_matrix(affinity_matrix) def laplacian_methods(): """Return the list of valid laplacian methods""" return ['auto'] + list(Laplacian.methods()) class Laplacian(RegisterSubclasses): """Base class for computing laplacian matrices Notes ----- The methods here all return the negative of the standard Laplacian definition. """ symmetric = False def __init__(self, symmetrize_input=True, scaling_epps=None, full_output=False): self.symmetrize_input = symmetrize_input self.scaling_epps = scaling_epps self.full_output = full_output @staticmethod def _symmetrize(A): # TODO: make this more efficient? return 0.5 * (A + A.T) @classmethod def symmetric_methods(cls): for method in cls.methods(): if cls.get_method(method).symmetric: yield method @classmethod def asymmetric_methods(cls): for method in cls.methods(): if not cls.get_method(method).symmetric: yield method def laplacian_matrix(self, affinity_matrix): affinity_matrix = check_array(affinity_matrix, copy=False, dtype=float, accept_sparse=['csr', 'csc', 'coo']) if self.symmetrize_input: affinity_matrix = self._symmetrize(affinity_matrix) if isspmatrix(affinity_matrix): affinity_matrix = affinity_matrix.tocoo() else: affinity_matrix = affinity_matrix.copy() lap, lapsym, w = self._compute_laplacian(affinity_matrix) if self.scaling_epps is not None and self.scaling_epps > 0.: if isspmatrix(lap): lap.data *= 4 / (self.scaling_epps ** 2) else: lap *= 4 / (self.scaling_epps ** 2) if self.full_output: return lap, lapsym, w else: return lap def _compute_laplacian(self, lap): raise NotImplementedError() class UnNormalizedLaplacian(Laplacian): name = 'unnormalized' symmetric = True def _compute_laplacian(self, lap): w = _degree(lap) _subtract_from_diagonal(lap, w) return lap, lap, w class GeometricLaplacian(Laplacian): name = 'geometric' symmetric = False def _compute_laplacian(self, lap): _normalize_laplacian(lap, symmetric=True) lapsym = lap.copy() w, nonzero = _normalize_laplacian(lap, symmetric=False) _subtract_from_diagonal(lap, nonzero) return lap, lapsym, w class RandomWalkLaplacian(Laplacian): name = 'randomwalk' symmetric = False def _compute_laplacian(self, lap): lapsym = lap.copy() w, nonzero = _normalize_laplacian(lap, symmetric=False) _subtract_from_diagonal(lap, nonzero) return lap, lapsym, w class SymmetricNormalizedLaplacian(Laplacian): name = 'symmetricnormalized' symmetric = True def _compute_laplacian(self, lap): w, nonzero = _normalize_laplacian(lap, symmetric=True, degree_exp=0.5) _subtract_from_diagonal(lap, nonzero) return lap, lap, w class RenormalizedLaplacian(Laplacian): name = 'renormalized' symmetric = False def __init__(self, symmetrize_input=True, scaling_epps=None, full_output=False, renormalization_exponent=1): self.symmetrize_input = symmetrize_input self.scaling_epps = scaling_epps self.full_output = full_output self.renormalization_exponent = renormalization_exponent def _compute_laplacian(self, lap): _normalize_laplacian(lap, symmetric=True, degree_exp=self.renormalization_exponent) lapsym = lap.copy() w, nonzero = _normalize_laplacian(lap, symmetric=False) _subtract_from_diagonal(lap, nonzero) return lap, lapsym, w # Utility routines: these operate in-place and assume either coo matrix or # dense array def _degree(lap): return np.asarray(lap.sum(1)).squeeze() def _divide_along_rows(lap, vals): if isspmatrix(lap): lap.data /= vals[lap.row] else: lap /= vals[:, np.newaxis] def _divide_along_cols(lap, vals): if isspmatrix(lap): lap.data /= vals[lap.col] else: lap /= vals def _normalize_laplacian(lap, symmetric=False, degree_exp=None): w = _degree(lap) w_nonzero = (w != 0) w[~w_nonzero] = 1 if degree_exp is not None: w **= degree_exp if symmetric: _divide_along_rows(lap, w) _divide_along_cols(lap, w) else: _divide_along_rows(lap, w) return w, w_nonzero def _subtract_from_diagonal(lap, vals): if isspmatrix(lap): lap.data[lap.row == lap.col] -= vals else: lap.flat[::lap.shape[0] + 1] -= vals
bsd-2-clause
wechselstrom/GNG_Reservoir
GNGReservoir.py
1
4895
#!/usr/bin/python3.4 import numpy as np import scipy as sp from numpy.linalg import norm from sklearn.preprocessing import normalize import sklearn.linear_model sigmaSq = 6 def genInitValues(numInp, numHidd): N = numInp+numHidd M = numHidd density = 1/sp.sqrt(N) W = sp.sparse.rand(N, M, density) negValDensity = 0.3 nM = sp.sign(sp.rand(N, M)-1+negValDensity) W = W.multiply(nM) W = normalize(W, axis=0, copy=False).T return (sp.sparse.csr_matrix(W)) def oneOfKtoStr(ook): if sp.sparse.issparse(ook): ook = ook.toarray() indices = np.argmax(ook,axis=1) s = '' for i in indices: if i==0: s+='.' elif i==1: s+=',' elif i==2: s+=' ' elif i==3: s+='\'' else: s+=chr(i+ord('a')-4) return(s) def oneOfK(string): i = 0 row = [] col = [] data = [] d = 0 for x in string: if x.islower(): d = ord(x)-ord('a')+4 elif x.isupper(): d = ord(x)-ord('A')+4 elif x=='.': d = 0 elif x == ',': d = 1 elif x == ' ': d = 2 elif x == '\'': d = 3 else: continue row.append(i) col.append(d) data.append(1.0) i+=1 return sp.sparse.csr_matrix((data, (row,col)), shape=(i,30)) def step(inp, states, W): S = np.concatenate([np.squeeze(inp), states]) Xcurr = generateSparseActivationMatrix(S, W) Diff = (Xcurr-W) Diff.data = Diff.data**2 Xnorm = np.array(Diff.sum(axis=1)) statesNext = np.squeeze(sp.exp(-(1/2*sigmaSq)*Xnorm)) return statesNext def computeOutputs(states,RR): return sp.squeeze(RR.predict(states)) def runWithStimuli(inp, W, RR=None, states=None): if states is None: states = sp.zeros(W.shape[0]) for i in range(inp.shape[0]): states = step(inp[i,:].toarray().T, states, W) if RR is None: yield states else: out = computeOutputs(states, RR) yield out,states def trainWeights(inp, outp, W, a): states = runStimulitoArray(inp,W) RR = sklearn.linear_model.Ridge(alpha=a) if sp.sparse.issparse(outp): outp=outp.toarray() RR.fit(states, outp) return RR def runStimulitoArray(stim, W, RR=None): if RR is None: return sp.array([val for val in runWithStimuli(stim, W)]) else: x = [val for val in runWithStimuli(stim, W, RR)] out, states = zip(*x) return sp.array(out),sp.array(states) def generateSparseActivationMatrix(S, W): Wc = W.copy() Wc.data = S[Wc.indices] Wc = normalize(Wc,axis=1, norm='l2') return Wc def testcase2(filename, trainsamples, numStates, lastChars, alpha): with open(filename,'r') as f: cont = f.read() inp1 = oneOfK(cont[:trainsamples]) *x1, y1 = genlistOfShiftedStrings(inp1) x1 = sp.sparse.hstack(x1).tocsr() W = genInitValues(x1.shape[1], numStates) RR = trainWeights(x1, y1, W, alpha) states = sp.zeros(W.shape[0]) x = oneOfK('lala').toarray().reshape(1,120) s = '' for i in range(1000): states = step(x,states,W) out = computeOutputs(states,RR) x[0,0:90] = x[0,30:120] x[0,90:120] = out s += oneOfKtoStr([out]) return s genlistOfShiftedStrings = lambda inp: [inp[i:-(lastChars-i)] for i in range(0,lastChars)] def testcase1(filename, trainsamples, testsamples, numStates, lastChars, alpha): with open(filename,'r') as f: cont = f.read() inp1 = oneOfK(cont[:trainsamples]) *x1, y1 = genlistOfShiftedStrings(inp1) x1 = sp.sparse.hstack(x1).tocsr() inp2 = oneOfK(cont[trainsamples:trainsamples+testsamples]) *x2, y2 = genlistOfShiftedStrings(inp2) x2 = sp.sparse.hstack(x2).tocsr() print('finished generation of testsamples') W = genInitValues(x1.shape[1], numStates) print('initialized network randomly') RR = trainWeights(x1, y1, W, alpha) print('finished training') out1, _ = runStimulitoArray(x1, W, RR) out2, _ = runStimulitoArray(x2, W, RR) print('ran on testset') return oneOfKtoStr(y1),oneOfKtoStr(out1), oneOfKtoStr(y2), oneOfKtoStr(out2) if __name__ == '__main__': filename = 'shakespeare.txt' trainsamples = 15000 lastChars = 5 numStates = 3000 testsamples = 2000 alpha=1e-4 y1,out1,y2,out2 = testcase1(filename, trainsamples, testsamples, numStates, lastChars, alpha) print('\noriginal traindata:\n%s\nreconstructed traindata:\n%s\noriginal testdata:\n%s\nrecosntructed testdata:\n%s\n' % (y1,out1,y2,out2)) s = testcase2(filename, trainsamples, numStates, lastChars, alpha) print(s)
gpl-2.0
liyu1990/sklearn
sklearn/ensemble/gradient_boosting.py
4
70898
"""Gradient Boosted Regression Trees This module contains methods for fitting gradient boosted regression trees for both classification and regression. The module structure is the following: - The ``BaseGradientBoosting`` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ in the concrete ``LossFunction`` used. - ``GradientBoostingClassifier`` implements gradient boosting for classification problems. - ``GradientBoostingRegressor`` implements gradient boosting for regression problems. """ # Authors: Peter Prettenhofer, Scott White, Gilles Louppe, Emanuele Olivetti, # Arnaud Joly, Jacob Schreiber # License: BSD 3 clause from __future__ import print_function from __future__ import division from abc import ABCMeta from abc import abstractmethod from .base import BaseEnsemble from ..base import BaseEstimator from ..base import ClassifierMixin from ..base import RegressorMixin from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ._gradient_boosting import predict_stages from ._gradient_boosting import predict_stage from ._gradient_boosting import _random_sample_mask import numbers import numpy as np from scipy import stats from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import issparse from time import time from ..tree.tree import DecisionTreeRegressor from ..tree._tree import DTYPE from ..tree._tree import TREE_LEAF from ..utils import check_random_state from ..utils import check_array from ..utils import check_X_y from ..utils import column_or_1d from ..utils import check_consistent_length from ..utils import deprecated from ..utils.extmath import logsumexp from ..utils.fixes import expit from ..utils.fixes import bincount from ..utils.stats import _weighted_percentile from ..utils.validation import check_is_fitted from ..utils.multiclass import check_classification_targets from ..exceptions import NotFittedError class QuantileEstimator(BaseEstimator): """An estimator predicting the alpha-quantile of the training targets.""" def __init__(self, alpha=0.9): if not 0 < alpha < 1.0: raise ValueError("`alpha` must be in (0, 1.0) but was %r" % alpha) self.alpha = alpha def fit(self, X, y, sample_weight=None): if sample_weight is None: self.quantile = stats.scoreatpercentile(y, self.alpha * 100.0) else: self.quantile = _weighted_percentile(y, sample_weight, self.alpha * 100.0) def predict(self, X): check_is_fitted(self, 'quantile') y = np.empty((X.shape[0], 1), dtype=np.float64) y.fill(self.quantile) return y class MeanEstimator(BaseEstimator): """An estimator predicting the mean of the training targets.""" def fit(self, X, y, sample_weight=None): if sample_weight is None: self.mean = np.mean(y) else: self.mean = np.average(y, weights=sample_weight) def predict(self, X): check_is_fitted(self, 'mean') y = np.empty((X.shape[0], 1), dtype=np.float64) y.fill(self.mean) return y class LogOddsEstimator(BaseEstimator): """An estimator predicting the log odds ratio.""" scale = 1.0 def fit(self, X, y, sample_weight=None): # pre-cond: pos, neg are encoded as 1, 0 if sample_weight is None: pos = np.sum(y) neg = y.shape[0] - pos else: pos = np.sum(sample_weight * y) neg = np.sum(sample_weight * (1 - y)) if neg == 0 or pos == 0: raise ValueError('y contains non binary labels.') self.prior = self.scale * np.log(pos / neg) def predict(self, X): check_is_fitted(self, 'prior') y = np.empty((X.shape[0], 1), dtype=np.float64) y.fill(self.prior) return y class ScaledLogOddsEstimator(LogOddsEstimator): """Log odds ratio scaled by 0.5 -- for exponential loss. """ scale = 0.5 class PriorProbabilityEstimator(BaseEstimator): """An estimator predicting the probability of each class in the training data. """ def fit(self, X, y, sample_weight=None): if sample_weight is None: sample_weight = np.ones_like(y, dtype=np.float64) class_counts = bincount(y, weights=sample_weight) self.priors = class_counts / class_counts.sum() def predict(self, X): check_is_fitted(self, 'priors') y = np.empty((X.shape[0], self.priors.shape[0]), dtype=np.float64) y[:] = self.priors return y class ZeroEstimator(BaseEstimator): """An estimator that simply predicts zero. """ def fit(self, X, y, sample_weight=None): if np.issubdtype(y.dtype, int): # classification self.n_classes = np.unique(y).shape[0] if self.n_classes == 2: self.n_classes = 1 else: # regression self.n_classes = 1 def predict(self, X): check_is_fitted(self, 'n_classes') y = np.empty((X.shape[0], self.n_classes), dtype=np.float64) y.fill(0.0) return y class LossFunction(six.with_metaclass(ABCMeta, object)): """Abstract base class for various loss functions. Attributes ---------- K : int The number of regression trees to be induced; 1 for regression and binary classification; ``n_classes`` for multi-class classification. """ is_multi_class = False def __init__(self, n_classes): self.K = n_classes def init_estimator(self): """Default ``init`` estimator for loss function. """ raise NotImplementedError() @abstractmethod def __call__(self, y, pred, sample_weight=None): """Compute the loss of prediction ``pred`` and ``y``. """ @abstractmethod def negative_gradient(self, y, y_pred, **kargs): """Compute the negative gradient. Parameters --------- y : np.ndarray, shape=(n,) The target labels. y_pred : np.ndarray, shape=(n,): The predictions. """ def update_terminal_regions(self, tree, X, y, residual, y_pred, sample_weight, sample_mask, learning_rate=1.0, k=0): """Update the terminal regions (=leaves) of the given tree and updates the current predictions of the model. Traverses tree and invokes template method `_update_terminal_region`. Parameters ---------- tree : tree.Tree The tree object. X : ndarray, shape=(n, m) The data array. y : ndarray, shape=(n,) The target labels. residual : ndarray, shape=(n,) The residuals (usually the negative gradient). y_pred : ndarray, shape=(n,) The predictions. sample_weight : ndarray, shape=(n,) The weight of each sample. sample_mask : ndarray, shape=(n,) The sample mask to be used. learning_rate : float, default=0.1 learning rate shrinks the contribution of each tree by ``learning_rate``. k : int, default 0 The index of the estimator being updated. """ # compute leaf for each sample in ``X``. terminal_regions = tree.apply(X) # mask all which are not in sample mask. masked_terminal_regions = terminal_regions.copy() masked_terminal_regions[~sample_mask] = -1 # update each leaf (= perform line search) for leaf in np.where(tree.children_left == TREE_LEAF)[0]: self._update_terminal_region(tree, masked_terminal_regions, leaf, X, y, residual, y_pred[:, k], sample_weight) # update predictions (both in-bag and out-of-bag) y_pred[:, k] += (learning_rate * tree.value[:, 0, 0].take(terminal_regions, axis=0)) @abstractmethod def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """Template method for updating terminal regions (=leaves). """ class RegressionLossFunction(six.with_metaclass(ABCMeta, LossFunction)): """Base class for regression loss functions. """ def __init__(self, n_classes): if n_classes != 1: raise ValueError("``n_classes`` must be 1 for regression but " "was %r" % n_classes) super(RegressionLossFunction, self).__init__(n_classes) class LeastSquaresError(RegressionLossFunction): """Loss function for least squares (LS) estimation. Terminal regions need not to be updated for least squares. """ def init_estimator(self): return MeanEstimator() def __call__(self, y, pred, sample_weight=None): if sample_weight is None: return np.mean((y - pred.ravel()) ** 2.0) else: return (1.0 / sample_weight.sum() * np.sum(sample_weight * ((y - pred.ravel()) ** 2.0))) def negative_gradient(self, y, pred, **kargs): return y - pred.ravel() def update_terminal_regions(self, tree, X, y, residual, y_pred, sample_weight, sample_mask, learning_rate=1.0, k=0): """Least squares does not need to update terminal regions. But it has to update the predictions. """ # update predictions y_pred[:, k] += learning_rate * tree.predict(X).ravel() def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): pass class LeastAbsoluteError(RegressionLossFunction): """Loss function for least absolute deviation (LAD) regression. """ def init_estimator(self): return QuantileEstimator(alpha=0.5) def __call__(self, y, pred, sample_weight=None): if sample_weight is None: return np.abs(y - pred.ravel()).mean() else: return (1.0 / sample_weight.sum() * np.sum(sample_weight * np.abs(y - pred.ravel()))) def negative_gradient(self, y, pred, **kargs): """1.0 if y - pred > 0.0 else -1.0""" pred = pred.ravel() return 2.0 * (y - pred > 0.0) - 1.0 def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """LAD updates terminal regions to median estimates. """ terminal_region = np.where(terminal_regions == leaf)[0] sample_weight = sample_weight.take(terminal_region, axis=0) diff = y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0) tree.value[leaf, 0, 0] = _weighted_percentile(diff, sample_weight, percentile=50) class HuberLossFunction(RegressionLossFunction): """Huber loss function for robust regression. M-Regression proposed in Friedman 2001. References ---------- J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001. """ def __init__(self, n_classes, alpha=0.9): super(HuberLossFunction, self).__init__(n_classes) self.alpha = alpha self.gamma = None def init_estimator(self): return QuantileEstimator(alpha=0.5) def __call__(self, y, pred, sample_weight=None): pred = pred.ravel() diff = y - pred gamma = self.gamma if gamma is None: if sample_weight is None: gamma = stats.scoreatpercentile(np.abs(diff), self.alpha * 100) else: gamma = _weighted_percentile(np.abs(diff), sample_weight, self.alpha * 100) gamma_mask = np.abs(diff) <= gamma if sample_weight is None: sq_loss = np.sum(0.5 * diff[gamma_mask] ** 2.0) lin_loss = np.sum(gamma * (np.abs(diff[~gamma_mask]) - gamma / 2.0)) loss = (sq_loss + lin_loss) / y.shape[0] else: sq_loss = np.sum(0.5 * sample_weight[gamma_mask] * diff[gamma_mask] ** 2.0) lin_loss = np.sum(gamma * sample_weight[~gamma_mask] * (np.abs(diff[~gamma_mask]) - gamma / 2.0)) loss = (sq_loss + lin_loss) / sample_weight.sum() return loss def negative_gradient(self, y, pred, sample_weight=None, **kargs): pred = pred.ravel() diff = y - pred if sample_weight is None: gamma = stats.scoreatpercentile(np.abs(diff), self.alpha * 100) else: gamma = _weighted_percentile(np.abs(diff), sample_weight, self.alpha * 100) gamma_mask = np.abs(diff) <= gamma residual = np.zeros((y.shape[0],), dtype=np.float64) residual[gamma_mask] = diff[gamma_mask] residual[~gamma_mask] = gamma * np.sign(diff[~gamma_mask]) self.gamma = gamma return residual def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): terminal_region = np.where(terminal_regions == leaf)[0] sample_weight = sample_weight.take(terminal_region, axis=0) gamma = self.gamma diff = (y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0)) median = _weighted_percentile(diff, sample_weight, percentile=50) diff_minus_median = diff - median tree.value[leaf, 0] = median + np.mean( np.sign(diff_minus_median) * np.minimum(np.abs(diff_minus_median), gamma)) class QuantileLossFunction(RegressionLossFunction): """Loss function for quantile regression. Quantile regression allows to estimate the percentiles of the conditional distribution of the target. """ def __init__(self, n_classes, alpha=0.9): super(QuantileLossFunction, self).__init__(n_classes) assert 0 < alpha < 1.0 self.alpha = alpha self.percentile = alpha * 100.0 def init_estimator(self): return QuantileEstimator(self.alpha) def __call__(self, y, pred, sample_weight=None): pred = pred.ravel() diff = y - pred alpha = self.alpha mask = y > pred if sample_weight is None: loss = (alpha * diff[mask].sum() + (1.0 - alpha) * diff[~mask].sum()) / y.shape[0] else: loss = ((alpha * np.sum(sample_weight[mask] * diff[mask]) + (1.0 - alpha) * np.sum(sample_weight[~mask] * diff[~mask])) / sample_weight.sum()) return loss def negative_gradient(self, y, pred, **kargs): alpha = self.alpha pred = pred.ravel() mask = y > pred return (alpha * mask) - ((1.0 - alpha) * ~mask) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): terminal_region = np.where(terminal_regions == leaf)[0] diff = (y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0)) sample_weight = sample_weight.take(terminal_region, axis=0) val = _weighted_percentile(diff, sample_weight, self.percentile) tree.value[leaf, 0] = val class ClassificationLossFunction(six.with_metaclass(ABCMeta, LossFunction)): """Base class for classification loss functions. """ def _score_to_proba(self, score): """Template method to convert scores to probabilities. the does not support probabilites raises AttributeError. """ raise TypeError('%s does not support predict_proba' % type(self).__name__) @abstractmethod def _score_to_decision(self, score): """Template method to convert scores to decisions. Returns int arrays. """ class BinomialDeviance(ClassificationLossFunction): """Binomial deviance loss function for binary classification. Binary classification is a special case; here, we only need to fit one tree instead of ``n_classes`` trees. """ def __init__(self, n_classes): if n_classes != 2: raise ValueError("{0:s} requires 2 classes.".format( self.__class__.__name__)) # we only need to fit one tree for binary clf. super(BinomialDeviance, self).__init__(1) def init_estimator(self): return LogOddsEstimator() def __call__(self, y, pred, sample_weight=None): """Compute the deviance (= 2 * negative log-likelihood). """ # logaddexp(0, v) == log(1.0 + exp(v)) pred = pred.ravel() if sample_weight is None: return -2.0 * np.mean((y * pred) - np.logaddexp(0.0, pred)) else: return (-2.0 / sample_weight.sum() * np.sum(sample_weight * ((y * pred) - np.logaddexp(0.0, pred)))) def negative_gradient(self, y, pred, **kargs): """Compute the residual (= negative gradient). """ return y - expit(pred.ravel()) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """Make a single Newton-Raphson step. our node estimate is given by: sum(w * (y - prob)) / sum(w * prob * (1 - prob)) we take advantage that: y - prob = residual """ terminal_region = np.where(terminal_regions == leaf)[0] residual = residual.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) numerator = np.sum(sample_weight * residual) denominator = np.sum(sample_weight * (y - residual) * (1 - y + residual)) if denominator == 0.0: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): proba = np.ones((score.shape[0], 2), dtype=np.float64) proba[:, 1] = expit(score.ravel()) proba[:, 0] -= proba[:, 1] return proba def _score_to_decision(self, score): proba = self._score_to_proba(score) return np.argmax(proba, axis=1) class MultinomialDeviance(ClassificationLossFunction): """Multinomial deviance loss function for multi-class classification. For multi-class classification we need to fit ``n_classes`` trees at each stage. """ is_multi_class = True def __init__(self, n_classes): if n_classes < 3: raise ValueError("{0:s} requires more than 2 classes.".format( self.__class__.__name__)) super(MultinomialDeviance, self).__init__(n_classes) def init_estimator(self): return PriorProbabilityEstimator() def __call__(self, y, pred, sample_weight=None): # create one-hot label encoding Y = np.zeros((y.shape[0], self.K), dtype=np.float64) for k in range(self.K): Y[:, k] = y == k if sample_weight is None: return np.sum(-1 * (Y * pred).sum(axis=1) + logsumexp(pred, axis=1)) else: return np.sum(-1 * sample_weight * (Y * pred).sum(axis=1) + logsumexp(pred, axis=1)) def negative_gradient(self, y, pred, k=0, **kwargs): """Compute negative gradient for the ``k``-th class. """ return y - np.nan_to_num(np.exp(pred[:, k] - logsumexp(pred, axis=1))) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """Make a single Newton-Raphson step. """ terminal_region = np.where(terminal_regions == leaf)[0] residual = residual.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) numerator = np.sum(sample_weight * residual) numerator *= (self.K - 1) / self.K denominator = np.sum(sample_weight * (y - residual) * (1.0 - y + residual)) if denominator == 0.0: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): return np.nan_to_num( np.exp(score - (logsumexp(score, axis=1)[:, np.newaxis]))) def _score_to_decision(self, score): proba = self._score_to_proba(score) return np.argmax(proba, axis=1) class ExponentialLoss(ClassificationLossFunction): """Exponential loss function for binary classification. Same loss as AdaBoost. References ---------- Greg Ridgeway, Generalized Boosted Models: A guide to the gbm package, 2007 """ def __init__(self, n_classes): if n_classes != 2: raise ValueError("{0:s} requires 2 classes.".format( self.__class__.__name__)) # we only need to fit one tree for binary clf. super(ExponentialLoss, self).__init__(1) def init_estimator(self): return ScaledLogOddsEstimator() def __call__(self, y, pred, sample_weight=None): pred = pred.ravel() if sample_weight is None: return np.mean(np.exp(-(2. * y - 1.) * pred)) else: return (1.0 / sample_weight.sum() * np.sum(sample_weight * np.exp(-(2 * y - 1) * pred))) def negative_gradient(self, y, pred, **kargs): y_ = -(2. * y - 1.) return y_ * np.exp(y_ * pred.ravel()) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): terminal_region = np.where(terminal_regions == leaf)[0] pred = pred.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) y_ = 2. * y - 1. numerator = np.sum(y_ * sample_weight * np.exp(-y_ * pred)) denominator = np.sum(sample_weight * np.exp(-y_ * pred)) if denominator == 0.0: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): proba = np.ones((score.shape[0], 2), dtype=np.float64) proba[:, 1] = expit(2.0 * score.ravel()) proba[:, 0] -= proba[:, 1] return proba def _score_to_decision(self, score): return (score.ravel() >= 0.0).astype(np.int) LOSS_FUNCTIONS = {'ls': LeastSquaresError, 'lad': LeastAbsoluteError, 'huber': HuberLossFunction, 'quantile': QuantileLossFunction, 'deviance': None, # for both, multinomial and binomial 'exponential': ExponentialLoss, } INIT_ESTIMATORS = {'zero': ZeroEstimator} class VerboseReporter(object): """Reports verbose output to stdout. If ``verbose==1`` output is printed once in a while (when iteration mod verbose_mod is zero).; if larger than 1 then output is printed for each update. """ def __init__(self, verbose): self.verbose = verbose def init(self, est, begin_at_stage=0): # header fields and line format str header_fields = ['Iter', 'Train Loss'] verbose_fmt = ['{iter:>10d}', '{train_score:>16.4f}'] # do oob? if est.subsample < 1: header_fields.append('OOB Improve') verbose_fmt.append('{oob_impr:>16.4f}') header_fields.append('Remaining Time') verbose_fmt.append('{remaining_time:>16s}') # print the header line print(('%10s ' + '%16s ' * (len(header_fields) - 1)) % tuple(header_fields)) self.verbose_fmt = ' '.join(verbose_fmt) # plot verbose info each time i % verbose_mod == 0 self.verbose_mod = 1 self.start_time = time() self.begin_at_stage = begin_at_stage def update(self, j, est): """Update reporter with new iteration. """ do_oob = est.subsample < 1 # we need to take into account if we fit additional estimators. i = j - self.begin_at_stage # iteration relative to the start iter if (i + 1) % self.verbose_mod == 0: oob_impr = est.oob_improvement_[j] if do_oob else 0 remaining_time = ((est.n_estimators - (j + 1)) * (time() - self.start_time) / float(i + 1)) if remaining_time > 60: remaining_time = '{0:.2f}m'.format(remaining_time / 60.0) else: remaining_time = '{0:.2f}s'.format(remaining_time) print(self.verbose_fmt.format(iter=j + 1, train_score=est.train_score_[j], oob_impr=oob_impr, remaining_time=remaining_time)) if self.verbose == 1 and ((i + 1) // (self.verbose_mod * 10) > 0): # adjust verbose frequency (powers of 10) self.verbose_mod *= 10 class BaseGradientBoosting(six.with_metaclass(ABCMeta, BaseEnsemble, _LearntSelectorMixin)): """Abstract base class for Gradient Boosting. """ @abstractmethod def __init__(self, loss, learning_rate, n_estimators, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_depth, init, subsample, max_features, random_state, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto'): self.n_estimators = n_estimators self.learning_rate = learning_rate self.loss = loss self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.subsample = subsample self.max_features = max_features self.max_depth = max_depth self.init = init self.random_state = random_state self.alpha = alpha self.verbose = verbose self.max_leaf_nodes = max_leaf_nodes self.warm_start = warm_start self.presort = presort self.estimators_ = np.empty((0, 0), dtype=np.object) def _fit_stage(self, i, X, y, y_pred, sample_weight, sample_mask, random_state, X_idx_sorted, X_csc=None, X_csr=None): """Fit another stage of ``n_classes_`` trees to the boosting model. """ assert sample_mask.dtype == np.bool loss = self.loss_ original_y = y for k in range(loss.K): if loss.is_multi_class: y = np.array(original_y == k, dtype=np.float64) residual = loss.negative_gradient(y, y_pred, k=k, sample_weight=sample_weight) # induce regression tree on residuals tree = DecisionTreeRegressor( criterion='friedman_mse', splitter='best', max_depth=self.max_depth, min_samples_split=self.min_samples_split, min_samples_leaf=self.min_samples_leaf, min_weight_fraction_leaf=self.min_weight_fraction_leaf, max_features=self.max_features, max_leaf_nodes=self.max_leaf_nodes, random_state=random_state, presort=self.presort) if self.subsample < 1.0: # no inplace multiplication! sample_weight = sample_weight * sample_mask.astype(np.float64) if X_csc is not None: tree.fit(X_csc, residual, sample_weight=sample_weight, check_input=False, X_idx_sorted=X_idx_sorted) else: tree.fit(X, residual, sample_weight=sample_weight, check_input=False, X_idx_sorted=X_idx_sorted) # update tree leaves if X_csr is not None: loss.update_terminal_regions(tree.tree_, X_csr, y, residual, y_pred, sample_weight, sample_mask, self.learning_rate, k=k) else: loss.update_terminal_regions(tree.tree_, X, y, residual, y_pred, sample_weight, sample_mask, self.learning_rate, k=k) # add tree to ensemble self.estimators_[i, k] = tree return y_pred def _check_params(self): """Check validity of parameters and raise ValueError if not valid. """ if self.n_estimators <= 0: raise ValueError("n_estimators must be greater than 0 but " "was %r" % self.n_estimators) if self.learning_rate <= 0.0: raise ValueError("learning_rate must be greater than 0 but " "was %r" % self.learning_rate) if (self.loss not in self._SUPPORTED_LOSS or self.loss not in LOSS_FUNCTIONS): raise ValueError("Loss '{0:s}' not supported. ".format(self.loss)) if self.loss == 'deviance': loss_class = (MultinomialDeviance if len(self.classes_) > 2 else BinomialDeviance) else: loss_class = LOSS_FUNCTIONS[self.loss] if self.loss in ('huber', 'quantile'): self.loss_ = loss_class(self.n_classes_, self.alpha) else: self.loss_ = loss_class(self.n_classes_) if not (0.0 < self.subsample <= 1.0): raise ValueError("subsample must be in (0,1] but " "was %r" % self.subsample) if self.init is not None: if isinstance(self.init, six.string_types): if self.init not in INIT_ESTIMATORS: raise ValueError('init="%s" is not supported' % self.init) else: if (not hasattr(self.init, 'fit') or not hasattr(self.init, 'predict')): raise ValueError("init=%r must be valid BaseEstimator " "and support both fit and " "predict" % self.init) if not (0.0 < self.alpha < 1.0): raise ValueError("alpha must be in (0.0, 1.0) but " "was %r" % self.alpha) if isinstance(self.max_features, six.string_types): if self.max_features == "auto": # if is_classification if self.n_classes_ > 1: max_features = max(1, int(np.sqrt(self.n_features))) else: # is regression max_features = self.n_features elif self.max_features == "sqrt": max_features = max(1, int(np.sqrt(self.n_features))) elif self.max_features == "log2": max_features = max(1, int(np.log2(self.n_features))) else: raise ValueError("Invalid value for max_features: %r. " "Allowed string values are 'auto', 'sqrt' " "or 'log2'." % self.max_features) elif self.max_features is None: max_features = self.n_features elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features else: # float if 0. < self.max_features <= 1.: max_features = max(int(self.max_features * self.n_features), 1) else: raise ValueError("max_features must be in (0, n_features]") self.max_features_ = max_features def _init_state(self): """Initialize model state and allocate model state data structures. """ if self.init is None: self.init_ = self.loss_.init_estimator() elif isinstance(self.init, six.string_types): self.init_ = INIT_ESTIMATORS[self.init]() else: self.init_ = self.init self.estimators_ = np.empty((self.n_estimators, self.loss_.K), dtype=np.object) self.train_score_ = np.zeros((self.n_estimators,), dtype=np.float64) # do oob? if self.subsample < 1.0: self.oob_improvement_ = np.zeros((self.n_estimators), dtype=np.float64) def _clear_state(self): """Clear the state of the gradient boosting model. """ if hasattr(self, 'estimators_'): self.estimators_ = np.empty((0, 0), dtype=np.object) if hasattr(self, 'train_score_'): del self.train_score_ if hasattr(self, 'oob_improvement_'): del self.oob_improvement_ if hasattr(self, 'init_'): del self.init_ def _resize_state(self): """Add additional ``n_estimators`` entries to all attributes. """ # self.n_estimators is the number of additional est to fit total_n_estimators = self.n_estimators if total_n_estimators < self.estimators_.shape[0]: raise ValueError('resize with smaller n_estimators %d < %d' % (total_n_estimators, self.estimators_[0])) self.estimators_.resize((total_n_estimators, self.loss_.K)) self.train_score_.resize(total_n_estimators) if (self.subsample < 1 or hasattr(self, 'oob_improvement_')): # if do oob resize arrays or create new if not available if hasattr(self, 'oob_improvement_'): self.oob_improvement_.resize(total_n_estimators) else: self.oob_improvement_ = np.zeros((total_n_estimators,), dtype=np.float64) def _is_initialized(self): return len(getattr(self, 'estimators_', [])) > 0 def _check_initialized(self): """Check that the estimator is initialized, raising an error if not.""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, call `fit`" " before making predictions`.") def fit(self, X, y, sample_weight=None, monitor=None): """Fit the gradient boosting model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values (integers in classification, real numbers in regression) For classification, labels must correspond to classes. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. monitor : callable, optional The monitor is called after each iteration with the current iteration, a reference to the estimator and the local variables of ``_fit_stages`` as keyword arguments ``callable(i, self, locals())``. If the callable returns ``True`` the fitting procedure is stopped. The monitor can be used for various things such as computing held-out estimates, early stopping, model introspect, and snapshoting. Returns ------- self : object Returns self. """ # if not warmstart - clear the estimator state if not self.warm_start: self._clear_state() # Check input X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'], dtype=DTYPE) n_samples, self.n_features = X.shape if sample_weight is None: sample_weight = np.ones(n_samples, dtype=np.float32) else: sample_weight = column_or_1d(sample_weight, warn=True) check_consistent_length(X, y, sample_weight) y = self._validate_y(y) random_state = check_random_state(self.random_state) self._check_params() if not self._is_initialized(): # init state self._init_state() # fit initial model - FIXME make sample_weight optional self.init_.fit(X, y, sample_weight) # init predictions y_pred = self.init_.predict(X) begin_at_stage = 0 else: # add more estimators to fitted model # invariant: warm_start = True if self.n_estimators < self.estimators_.shape[0]: raise ValueError('n_estimators=%d must be larger or equal to ' 'estimators_.shape[0]=%d when ' 'warm_start==True' % (self.n_estimators, self.estimators_.shape[0])) begin_at_stage = self.estimators_.shape[0] y_pred = self._decision_function(X) self._resize_state() X_idx_sorted = None presort = self.presort # Allow presort to be 'auto', which means True if the dataset is dense, # otherwise it will be False. if presort == 'auto' and issparse(X): presort = False elif presort == 'auto': presort = True if self.presort == True: if issparse(X): raise ValueError("Presorting is not supported for sparse matrices.") else: X_idx_sorted = np.asfortranarray(np.argsort(X, axis=0), dtype=np.int32) # fit the boosting stages n_stages = self._fit_stages(X, y, y_pred, sample_weight, random_state, begin_at_stage, monitor, X_idx_sorted) # change shape of arrays after fit (early-stopping or additional ests) if n_stages != self.estimators_.shape[0]: self.estimators_ = self.estimators_[:n_stages] self.train_score_ = self.train_score_[:n_stages] if hasattr(self, 'oob_improvement_'): self.oob_improvement_ = self.oob_improvement_[:n_stages] return self def _fit_stages(self, X, y, y_pred, sample_weight, random_state, begin_at_stage=0, monitor=None, X_idx_sorted=None): """Iteratively fits the stages. For each stage it computes the progress (OOB, train score) and delegates to ``_fit_stage``. Returns the number of stages fit; might differ from ``n_estimators`` due to early stopping. """ n_samples = X.shape[0] do_oob = self.subsample < 1.0 sample_mask = np.ones((n_samples, ), dtype=np.bool) n_inbag = max(1, int(self.subsample * n_samples)) loss_ = self.loss_ # Set min_weight_leaf from min_weight_fraction_leaf if self.min_weight_fraction_leaf != 0. and sample_weight is not None: min_weight_leaf = (self.min_weight_fraction_leaf * np.sum(sample_weight)) else: min_weight_leaf = 0. if self.verbose: verbose_reporter = VerboseReporter(self.verbose) verbose_reporter.init(self, begin_at_stage) X_csc = csc_matrix(X) if issparse(X) else None X_csr = csr_matrix(X) if issparse(X) else None # perform boosting iterations i = begin_at_stage for i in range(begin_at_stage, self.n_estimators): # subsampling if do_oob: sample_mask = _random_sample_mask(n_samples, n_inbag, random_state) # OOB score before adding this stage old_oob_score = loss_(y[~sample_mask], y_pred[~sample_mask], sample_weight[~sample_mask]) # fit next stage of trees y_pred = self._fit_stage(i, X, y, y_pred, sample_weight, sample_mask, random_state, X_idx_sorted, X_csc, X_csr) # track deviance (= loss) if do_oob: self.train_score_[i] = loss_(y[sample_mask], y_pred[sample_mask], sample_weight[sample_mask]) self.oob_improvement_[i] = ( old_oob_score - loss_(y[~sample_mask], y_pred[~sample_mask], sample_weight[~sample_mask])) else: # no need to fancy index w/ no subsampling self.train_score_[i] = loss_(y, y_pred, sample_weight) if self.verbose > 0: verbose_reporter.update(i, self) if monitor is not None: early_stopping = monitor(i, self, locals()) if early_stopping: break return i + 1 def _make_estimator(self, append=True): # we don't need _make_estimator raise NotImplementedError() def _init_decision_function(self, X): """Check input and compute prediction of ``init``. """ self._check_initialized() X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True) if X.shape[1] != self.n_features: raise ValueError("X.shape[1] should be {0:d}, not {1:d}.".format( self.n_features, X.shape[1])) score = self.init_.predict(X).astype(np.float64) return score def _decision_function(self, X): # for use in inner loop, not raveling the output in single-class case, # not doing input validation. score = self._init_decision_function(X) predict_stages(self.estimators_, X, self.learning_rate, score) return score @deprecated(" and will be removed in 0.19") def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : array, shape = [n_samples, n_classes] or [n_samples] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification produce an array of shape [n_samples]. """ self._check_initialized() X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True) score = self._decision_function(X) if score.shape[1] == 1: return score.ravel() return score def _staged_decision_function(self, X): """Compute decision function of ``X`` for each iteration. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification are special cases with ``k == 1``, otherwise ``k==n_classes``. """ X = check_array(X, dtype=DTYPE, order="C") score = self._init_decision_function(X) for i in range(self.estimators_.shape[0]): predict_stage(self.estimators_, i, X, self.learning_rate, score) yield score.copy() @deprecated(" and will be removed in 0.19") def staged_decision_function(self, X): """Compute decision function of ``X`` for each iteration. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification are special cases with ``k == 1``, otherwise ``k==n_classes``. """ for dec in self._staged_decision_function(X): # no yield from in Python2.X yield dec @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ self._check_initialized() total_sum = np.zeros((self.n_features, ), dtype=np.float64) for stage in self.estimators_: stage_sum = sum(tree.feature_importances_ for tree in stage) / len(stage) total_sum += stage_sum importances = total_sum / len(self.estimators_) return importances def _validate_y(self, y): self.n_classes_ = 1 if y.dtype.kind == 'O': y = y.astype(np.float64) # Default implementation return y def apply(self, X): """Apply trees in the ensemble to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators, n_classes] For each datapoint x in X and for each tree in the ensemble, return the index of the leaf x ends up in in each estimator. In the case of binary classification n_classes is 1. """ self._check_initialized() X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True) # n_classes will be equal to 1 in the binary classification or the # regression case. n_estimators, n_classes = self.estimators_.shape leaves = np.zeros((X.shape[0], n_estimators, n_classes)) for i in range(n_estimators): for j in range(n_classes): estimator = self.estimators_[i, j] leaves[:, i, j] = estimator.apply(X, check_input=False) return leaves class GradientBoostingClassifier(BaseGradientBoosting, ClassifierMixin): """Gradient Boosting for classification. GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage ``n_classes_`` regression trees are fit on the negative gradient of the binomial or multinomial deviance loss function. Binary classification is a special case where only a single regression tree is induced. Read more in the :ref:`User Guide <gradient_boosting>`. Parameters ---------- loss : {'deviance', 'exponential'}, optional (default='deviance') loss function to be optimized. 'deviance' refers to deviance (= logistic regression) for classification with probabilistic outputs. For loss 'exponential' gradient boosting recovers the AdaBoost algorithm. learning_rate : float, optional (default=0.1) learning rate shrinks the contribution of each tree by `learning_rate`. There is a trade-off between learning_rate and n_estimators. n_estimators : int (default=100) The number of boosting stages to perform. Gradient boosting is fairly robust to over-fitting so a large number usually results in better performance. max_depth : integer, optional (default=3) maximum depth of the individual regression estimators. The maximum depth limits the number of nodes in the tree. Tune this parameter for best performance; the best value depends on the interaction of the input variables. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. subsample : float, optional (default=1.0) The fraction of samples to be used for fitting the individual base learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. `subsample` interacts with the parameter `n_estimators`. Choosing `subsample < 1.0` leads to a reduction of variance and an increase in bias. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Choosing `max_features < n_features` leads to a reduction of variance and an increase in bias. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. init : BaseEstimator, None, optional (default=None) An estimator object that is used to compute the initial predictions. ``init`` has to provide ``fit`` and ``predict``. If None it uses ``loss.init_estimator``. verbose : int, default: 0 Enable verbose output. If 1 then it prints progress and performance once in a while (the more trees the lower the frequency). If greater than 1 then it prints progress and performance for every tree. warm_start : bool, default: False When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just erase the previous solution. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. presort : bool or 'auto', optional (default='auto') Whether to presort the data to speed up the finding of best splits in fitting. Auto mode by default will use presorting on dense data and default to normal sorting on sparse data. Setting presort to true on sparse data will raise an error. Attributes ---------- feature_importances_ : array, shape = [n_features] The feature importances (the higher, the more important the feature). oob_improvement_ : array, shape = [n_estimators] The improvement in loss (= deviance) on the out-of-bag samples relative to the previous iteration. ``oob_improvement_[0]`` is the improvement in loss of the first stage over the ``init`` estimator. train_score_ : array, shape = [n_estimators] The i-th score ``train_score_[i]`` is the deviance (= loss) of the model at iteration ``i`` on the in-bag sample. If ``subsample == 1`` this is the deviance on the training data. loss_ : LossFunction The concrete ``LossFunction`` object. init : BaseEstimator The estimator that provides the initial predictions. Set via the ``init`` argument or ``loss.init_estimator``. estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, ``loss_.K``] The collection of fitted sub-estimators. ``loss_.K`` is 1 for binary classification, otherwise n_classes. See also -------- sklearn.tree.DecisionTreeClassifier, RandomForestClassifier AdaBoostClassifier References ---------- J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001. J. Friedman, Stochastic Gradient Boosting, 1999 T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009. """ _SUPPORTED_LOSS = ('deviance', 'exponential') def __init__(self, loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_depth=3, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto'): super(GradientBoostingClassifier, self).__init__( loss=loss, learning_rate=learning_rate, n_estimators=n_estimators, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_depth=max_depth, init=init, subsample=subsample, max_features=max_features, random_state=random_state, verbose=verbose, max_leaf_nodes=max_leaf_nodes, warm_start=warm_start, presort=presort) def _validate_y(self, y): check_classification_targets(y) self.classes_, y = np.unique(y, return_inverse=True) self.n_classes_ = len(self.classes_) return y def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : array, shape = [n_samples, n_classes] or [n_samples] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification produce an array of shape [n_samples]. """ X = check_array(X, dtype=DTYPE, order="C") score = self._decision_function(X) if score.shape[1] == 1: return score.ravel() return score def staged_decision_function(self, X): """Compute decision function of ``X`` for each iteration. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification are special cases with ``k == 1``, otherwise ``k==n_classes``. """ for dec in self._staged_decision_function(X): # no yield from in Python2.X yield dec def predict(self, X): """Predict class for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y: array of shape = ["n_samples] The predicted values. """ score = self.decision_function(X) decisions = self.loss_._score_to_decision(score) return self.classes_.take(decisions, axis=0) def staged_predict(self, X): """Predict class at each stage for X. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array of shape = [n_samples] The predicted value of the input samples. """ for score in self._staged_decision_function(X): decisions = self.loss_._score_to_decision(score) yield self.classes_.take(decisions, axis=0) def predict_proba(self, X): """Predict class probabilities for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Raises ------ AttributeError If the ``loss`` does not support probabilities. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ score = self.decision_function(X) try: return self.loss_._score_to_proba(score) except NotFittedError: raise except AttributeError: raise AttributeError('loss=%r does not support predict_proba' % self.loss) def predict_log_proba(self, X): """Predict class log-probabilities for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Raises ------ AttributeError If the ``loss`` does not support probabilities. Returns ------- p : array of shape = [n_samples] The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) return np.log(proba) def staged_predict_proba(self, X): """Predict class probabilities at each stage for X. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array of shape = [n_samples] The predicted value of the input samples. """ try: for score in self._staged_decision_function(X): yield self.loss_._score_to_proba(score) except NotFittedError: raise except AttributeError: raise AttributeError('loss=%r does not support predict_proba' % self.loss) class GradientBoostingRegressor(BaseGradientBoosting, RegressorMixin): """Gradient Boosting for regression. GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function. Read more in the :ref:`User Guide <gradient_boosting>`. Parameters ---------- loss : {'ls', 'lad', 'huber', 'quantile'}, optional (default='ls') loss function to be optimized. 'ls' refers to least squares regression. 'lad' (least absolute deviation) is a highly robust loss function solely based on order information of the input variables. 'huber' is a combination of the two. 'quantile' allows quantile regression (use `alpha` to specify the quantile). learning_rate : float, optional (default=0.1) learning rate shrinks the contribution of each tree by `learning_rate`. There is a trade-off between learning_rate and n_estimators. n_estimators : int (default=100) The number of boosting stages to perform. Gradient boosting is fairly robust to over-fitting so a large number usually results in better performance. max_depth : integer, optional (default=3) maximum depth of the individual regression estimators. The maximum depth limits the number of nodes in the tree. Tune this parameter for best performance; the best value depends on the interaction of the input variables. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. subsample : float, optional (default=1.0) The fraction of samples to be used for fitting the individual base learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. `subsample` interacts with the parameter `n_estimators`. Choosing `subsample < 1.0` leads to a reduction of variance and an increase in bias. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Choosing `max_features < n_features` leads to a reduction of variance and an increase in bias. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. alpha : float (default=0.9) The alpha-quantile of the huber loss function and the quantile loss function. Only if ``loss='huber'`` or ``loss='quantile'``. init : BaseEstimator, None, optional (default=None) An estimator object that is used to compute the initial predictions. ``init`` has to provide ``fit`` and ``predict``. If None it uses ``loss.init_estimator``. verbose : int, default: 0 Enable verbose output. If 1 then it prints progress and performance once in a while (the more trees the lower the frequency). If greater than 1 then it prints progress and performance for every tree. warm_start : bool, default: False When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just erase the previous solution. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. presort : bool or 'auto', optional (default='auto') Whether to presort the data to speed up the finding of best splits in fitting. Auto mode by default will use presorting on dense data and default to normal sorting on sparse data. Setting presort to true on sparse data will raise an error. Attributes ---------- feature_importances_ : array, shape = [n_features] The feature importances (the higher, the more important the feature). oob_improvement_ : array, shape = [n_estimators] The improvement in loss (= deviance) on the out-of-bag samples relative to the previous iteration. ``oob_improvement_[0]`` is the improvement in loss of the first stage over the ``init`` estimator. train_score_ : array, shape = [n_estimators] The i-th score ``train_score_[i]`` is the deviance (= loss) of the model at iteration ``i`` on the in-bag sample. If ``subsample == 1`` this is the deviance on the training data. loss_ : LossFunction The concrete ``LossFunction`` object. `init` : BaseEstimator The estimator that provides the initial predictions. Set via the ``init`` argument or ``loss.init_estimator``. estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, 1] The collection of fitted sub-estimators. See also -------- DecisionTreeRegressor, RandomForestRegressor References ---------- J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001. J. Friedman, Stochastic Gradient Boosting, 1999 T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009. """ _SUPPORTED_LOSS = ('ls', 'lad', 'huber', 'quantile') def __init__(self, loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_depth=3, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto'): super(GradientBoostingRegressor, self).__init__( loss=loss, learning_rate=learning_rate, n_estimators=n_estimators, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_depth=max_depth, init=init, subsample=subsample, max_features=max_features, random_state=random_state, alpha=alpha, verbose=verbose, max_leaf_nodes=max_leaf_nodes, warm_start=warm_start, presort='auto') def predict(self, X): """Predict regression target for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : array of shape = [n_samples] The predicted values. """ X = check_array(X, dtype=DTYPE, order="C") return self._decision_function(X).ravel() def staged_predict(self, X): """Predict regression target at each stage for X. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array of shape = [n_samples] The predicted value of the input samples. """ for y in self._staged_decision_function(X): yield y.ravel() def apply(self, X): """Apply trees in the ensemble to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the ensemble, return the index of the leaf x ends up in in each estimator. """ leaves = super(GradientBoostingRegressor, self).apply(X) leaves = leaves.reshape(X.shape[0], self.estimators_.shape[0]) return leaves
bsd-3-clause
ryanfobel/dmf_control_board
docs/rename.py
3
2578
import sys import pandas as pd from path_helpers import path def main(root, old_name, new_name): names = pd.Series([old_name, new_name], index=['old', 'new']) underscore_names = names.map(lambda v: v.replace('-', '_')) camel_names = names.str.split('-').map(lambda x: ''.join([y.title() for y in x])) # Replace all occurrences of provided original name with new name, and all # occurrences where dashes (i.e., '-') are replaced with underscores. # # Dashes are used in Python package names, but underscores are used in # Python module names. for p in path(root).walkfiles(): data = p.bytes() if '.git' not in p and (names.old in data or underscore_names.old in data or camel_names.old in data): p.write_bytes(data.replace(names.old, names.new) .replace(underscore_names.old, underscore_names.new) .replace(camel_names.old, camel_names.new)) def rename_path(p): if '.git' in p: return if underscore_names.old in p.name: p.rename(p.parent.joinpath(p.name.replace(underscore_names.old, underscore_names.new))) if camel_names.old in p.name: p.rename(p.parent.joinpath(p.name.replace(camel_names.old, camel_names.new))) # Rename all files/directories containing original name with new name, and # all occurrences where dashes (i.e., '-') are replaced with underscores. # # Process list of paths in *reverse order* to avoid renaming parent # directories before children. for p in sorted(list(path(root).walkdirs()))[-1::-1]: rename_path(p) for p in path(root).walkfiles(): rename_path(p) def parse_args(args=None): """Parses arguments, returns (options, args).""" from argparse import ArgumentParser if args is None: args = sys.argv parser = ArgumentParser(description='Rename template project with' 'hyphen-separated <new name> (path names and in ' 'files).') parser.add_argument('new_name', help='New project name (e.g., ' ' `my-new-project`)') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() main('.', 'dmf-control-board-firmware', args.new_name)
gpl-3.0
tdhopper/scikit-learn
sklearn/datasets/svmlight_format.py
79
15976
"""This module implements a loader and dumper for the svmlight format This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. """ # Authors: Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from contextlib import closing import io import os.path import numpy as np import scipy.sparse as sp from ._svmlight_format import _load_svmlight_file from .. import __version__ from ..externals import six from ..externals.six import u, b from ..externals.six.moves import range, zip from ..utils import check_array from ..utils.fixes import frombuffer_empty def load_svmlight_file(f, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load datasets in the svmlight / libsvm format into sparse CSR matrix This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. Parsing a text based source can be expensive. When working on repeatedly on the same dataset, it is recommended to wrap this loader with joblib.Memory.cache to store a memmapped backup of the CSR results of the first call and benefit from the near instantaneous loading of memmapped structures for the subsequent calls. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. This implementation is written in Cython and is reasonably fast. However, a faster API-compatible loader is also available at: https://github.com/mblondel/svmlight-loader Parameters ---------- f : {str, file-like, int} (Path to) a file to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. A file-like or file descriptor will not be closed by this function. A file-like object must be opened in binary mode. n_features : int or None The number of features to use. If None, it will be inferred. This argument is useful to load several files that are subsets of a bigger sliced dataset: each subset might not have examples of every feature, hence the inferred shape might vary from one slice to another. multilabel : boolean, optional, default False Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based : boolean or "auto", optional, default "auto" Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id : boolean, default False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- X: scipy.sparse matrix of shape (n_samples, n_features) y: ndarray of shape (n_samples,), or, in the multilabel a list of tuples of length n_samples. query_id: array of shape (n_samples,) query_id for each sample. Only returned when query_id is set to True. See also -------- load_svmlight_files: similar function for loading multiple files in this format, enforcing the same number of features/columns on all of them. Examples -------- To use joblib.Memory to cache the svmlight file:: from sklearn.externals.joblib import Memory from sklearn.datasets import load_svmlight_file mem = Memory("./mycache") @mem.cache def get_data(): data = load_svmlight_file("mysvmlightfile") return data[0], data[1] X, y = get_data() """ return tuple(load_svmlight_files([f], n_features, dtype, multilabel, zero_based, query_id)) def _gen_open(f): if isinstance(f, int): # file descriptor return io.open(f, "rb", closefd=False) elif not isinstance(f, six.string_types): raise TypeError("expected {str, int, file-like}, got %s" % type(f)) _, ext = os.path.splitext(f) if ext == ".gz": import gzip return gzip.open(f, "rb") elif ext == ".bz2": from bz2 import BZ2File return BZ2File(f, "rb") else: return open(f, "rb") def _open_and_load(f, dtype, multilabel, zero_based, query_id): if hasattr(f, "read"): actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # XXX remove closing when Python 2.7+/3.1+ required else: with closing(_gen_open(f)) as f: actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # convert from array.array, give data the right dtype if not multilabel: labels = frombuffer_empty(labels, np.float64) data = frombuffer_empty(data, actual_dtype) indices = frombuffer_empty(ind, np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) # never empty query = frombuffer_empty(query, np.intc) data = np.asarray(data, dtype=dtype) # no-op for float{32,64} return data, indices, indptr, labels, query def load_svmlight_files(files, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load dataset from multiple files in SVMlight format This function is equivalent to mapping load_svmlight_file over a list of files, except that the results are concatenated into a single, flat list and the samples vectors are constrained to all have the same number of features. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. Parameters ---------- files : iterable over {str, file-like, int} (Paths of) files to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. File-likes and file descriptors will not be closed by this function. File-like objects must be opened in binary mode. n_features: int or None The number of features to use. If None, it will be inferred from the maximum column index occurring in any of the files. This can be set to a higher value than the actual number of features in any of the input files, but setting it to a lower value will cause an exception to be raised. multilabel: boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based: boolean or "auto", optional Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id: boolean, defaults to False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- [X1, y1, ..., Xn, yn] where each (Xi, yi) pair is the result from load_svmlight_file(files[i]). If query_id is set to True, this will return instead [X1, y1, q1, ..., Xn, yn, qn] where (Xi, yi, qi) is the result from load_svmlight_file(files[i]) Notes ----- When fitting a model to a matrix X_train and evaluating it against a matrix X_test, it is essential that X_train and X_test have the same number of features (X_train.shape[1] == X_test.shape[1]). This may not be the case if you load the files individually with load_svmlight_file. See also -------- load_svmlight_file """ r = [_open_and_load(f, dtype, multilabel, bool(zero_based), bool(query_id)) for f in files] if (zero_based is False or zero_based == "auto" and all(np.min(tmp[1]) > 0 for tmp in r)): for ind in r: indices = ind[1] indices -= 1 n_f = max(ind[1].max() for ind in r) + 1 if n_features is None: n_features = n_f elif n_features < n_f: raise ValueError("n_features was set to {}," " but input file contains {} features" .format(n_features, n_f)) result = [] for data, indices, indptr, y, query_values in r: shape = (indptr.shape[0] - 1, n_features) X = sp.csr_matrix((data, indices, indptr), shape) X.sort_indices() result += X, y if query_id: result.append(query_values) return result def _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id): is_sp = int(hasattr(X, "tocsr")) if X.dtype.kind == 'i': value_pattern = u("%d:%d") else: value_pattern = u("%d:%.16g") if y.dtype.kind == 'i': label_pattern = u("%d") else: label_pattern = u("%.16g") line_pattern = u("%s") if query_id is not None: line_pattern += u(" qid:%d") line_pattern += u(" %s\n") if comment: f.write(b("# Generated by dump_svmlight_file from scikit-learn %s\n" % __version__)) f.write(b("# Column indices are %s-based\n" % ["zero", "one"][one_based])) f.write(b("#\n")) f.writelines(b("# %s\n" % line) for line in comment.splitlines()) for i in range(X.shape[0]): if is_sp: span = slice(X.indptr[i], X.indptr[i + 1]) row = zip(X.indices[span], X.data[span]) else: nz = X[i] != 0 row = zip(np.where(nz)[0], X[i, nz]) s = " ".join(value_pattern % (j + one_based, x) for j, x in row) if multilabel: nz_labels = np.where(y[i] != 0)[0] labels_str = ",".join(label_pattern % j for j in nz_labels) else: labels_str = label_pattern % y[i] if query_id is not None: feat = (labels_str, query_id[i], s) else: feat = (labels_str, s) f.write((line_pattern % feat).encode('ascii')) def dump_svmlight_file(X, y, f, zero_based=True, comment=None, query_id=None, multilabel=False): """Dump the dataset in svmlight / libsvm file format. This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_labels] Target values. Class labels must be an integer or float, or array-like objects of integer or float for multilabel classifications. f : string or file-like in binary mode If string, specifies the path that will contain the data. If file-like, data will be written to f. f should be opened in binary mode. zero_based : boolean, optional Whether column indices should be written zero-based (True) or one-based (False). comment : string, optional Comment to insert at the top of the file. This should be either a Unicode string, which will be encoded as UTF-8, or an ASCII byte string. If a comment is given, then it will be preceded by one that identifies the file as having been dumped by scikit-learn. Note that not all tools grok comments in SVMlight files. query_id : array-like, shape = [n_samples] Array containing pairwise preference constraints (qid in svmlight format). multilabel: boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) """ if comment is not None: # Convert comment string to list of lines in UTF-8. # If a byte string is passed, then check whether it's ASCII; # if a user wants to get fancy, they'll have to decode themselves. # Avoid mention of str and unicode types for Python 3.x compat. if isinstance(comment, bytes): comment.decode("ascii") # just for the exception else: comment = comment.encode("utf-8") if six.b("\0") in comment: raise ValueError("comment string contains NUL byte") y = np.asarray(y) if y.ndim != 1 and not multilabel: raise ValueError("expected y of shape (n_samples,), got %r" % (y.shape,)) Xval = check_array(X, accept_sparse='csr') if Xval.shape[0] != y.shape[0]: raise ValueError("X.shape[0] and y.shape[0] should be the same, got" " %r and %r instead." % (Xval.shape[0], y.shape[0])) # We had some issues with CSR matrices with unsorted indices (e.g. #1501), # so sort them here, but first make sure we don't modify the user's X. # TODO We can do this cheaper; sorted_indices copies the whole matrix. if Xval is X and hasattr(Xval, "sorted_indices"): X = Xval.sorted_indices() else: X = Xval if hasattr(X, "sort_indices"): X.sort_indices() if query_id is not None: query_id = np.asarray(query_id) if query_id.shape[0] != y.shape[0]: raise ValueError("expected query_id of shape (n_samples,), got %r" % (query_id.shape,)) one_based = not zero_based if hasattr(f, "write"): _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id) else: with open(f, "wb") as f: _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id)
bsd-3-clause
BDonnot/TensorflowHelpers
TensorflowHelpers/DataHandler.py
1
45772
import random import datetime import os import pdb import numpy as np import tensorflow as tf from .Layers import DTYPE_USED, DTYPE_NPY # TODO READER: make them behave equally well, for now only TFRecordReader can preprocess for example # TODO: READERS: correct the but when encountering nan's or infinite value in all reader classes # TODO: have a better implementation of preprocessing function class ExpDataReader: ms_tensor=True # is the 'ms' field a tensor or a numpy array def __init__(self, train, batch_size, fun_preprocess=lambda x: x): """Read the usefull data for the Experience to run Store both input and outputs :param train: if True this data reader concerns the training set :param batch_size: number of data to read each time the iterator is called """ self.dataX = np.zeros( (0, 0), dtype=DTYPE_NPY) # main data set (eg the training set) # main data set (eg the training set) self.dataY = np.zeros((0, 0), dtype=DTYPE_NPY) self.dataset = tf.data.Dataset.from_tensor_slices( (self.dataX, self.dataY)) self.ms = {"input": tf.constant(0., dtype=DTYPE_USED), "output": tf.constant(0., dtype=DTYPE_USED)} self.sds = {"input": tf.constant(1., dtype=DTYPE_USED), "output": tf.constant(1., dtype=DTYPE_USED)} def nrowsX(self): """ :return: The number of rows / examples of the input data set """ return self._nrows(self.dataX) def _nrowsY(self): """ :return: The number of rows / examples of the output data set """ return self._nrows(self.dataY) def _nrows(self, array): """ :param array: the concerned "array" :return: The number of rows / examples of the data set "array" """ return array.shape[0] def init(self, sess): """ Initialize the datasets (if need to be done) :return: """ pass def _shape_properly(self, ms, name): """ Transform a dictionnary of numpy array in a dictionnary of tensorflow tensor :param ms: :param name: :return: """ return {k: tf.convert_to_tensor(v, name="{}_{}".format(name, k), dtype=DTYPE_USED) for k, v in ms.items()} # TODO refactor ExpCSVDataReader and ExpTFrecordDataReader # TODO at least _nrows, _ncols and _shape_properly are copy paste. # TODO beside the logic is exactly the same! class ExpCSVDataReader(ExpDataReader): def __init__(self, train, batch_size, pathdata=".", filename={"input": "X.csv", "output": "Y.csv"}, sizes={"input":1, "output":1}, num_thread=4, donnotcenter={}, fun_preprocess=lambda x: x, ms=None, sds=None): """ :param train: if true concern the training set :param batch_size: number of data to unpack each time :param pathdata: path where the data are stored :param filenames: names of the files with input data and output data [should be a dictionnary with keys as sizes] :param sizes: number of columns of the data in X and Y [should be a 2 keys dictionnaries with keys "input" and "output"] :param other_dataset: other files (same format as :param num_thread: number of thread to read the data :param donnotcenter: iterable: variable that won't be centered/reduced :param ms: means of X data set (used for validation instead of recomputing the mean) :param sds: standard deviation of Y data set (used for validation instead of recomputing the std) """ ExpDataReader.__init__(self, train=train, batch_size=batch_size) self.sizes = sizes # TODO optimization: do not parse the file if you nrows (training set parsed 2 times) # count the number of lines if (ms is None) or (sds is None): fun_process = self._normalize else: fun_process = self._countlines ms__, sds__, self.nrows = fun_process(path=pathdata, fns=filename, sizes=sizes) ms_ = {} sds_ = {} for k in ms__.keys(): if k in donnotcenter: ms_[k] = np.zeros(ms__[k].shape, dtype=DTYPE_NPY) sds_[k] = np.ones(sds__[k].shape, dtype=DTYPE_NPY) else: ms_[k] = ms__[k] sds_[k] = sds__[k] self.ms = self._shape_properly(ms_, name="means") if ms is None else ms self.sds = self._shape_properly(sds_, name="stds") if sds is None else sds self.datasets = {} for el in sizes.keys(): self.datasets[el] = tf.data.TextLineDataset( [os.path.join(pathdata, filename[el])]).skip(1).map( lambda line: self._parse_function(line, size=sizes[el], m=self.ms[el], std=self.sds[el]), num_parallel_calls=num_thread ).prefetch(num_thread * 5) self.dataset = tf.data.Dataset.zip(self.datasets) if train: self.dataset = self.dataset.repeat(-1) self.dataset = self.dataset.shuffle(buffer_size=10000) else: self.dataset = self.dataset.repeat(1) self.dataset = self.dataset.batch(batch_size=batch_size) def _normalize(self, path, sizes, fns): """ Compute some statistics of the files fns. :param path: the path where data are located :param sizes: a dictionnary (with keys ["input", "output"]) containing the number of rows of the datasets :param fns: a dictionnary (with keys ["input", "output"]) containing the names of the datasets :return: """ ms = {} sds = {} nrows = None prev_files = set() for key in sizes.keys(): m, sd, nrows_tmp = self._normalize_aux(path, size=sizes[key], fn=fns[key]) ms[key] = m sds[key] = sd if nrows is not None: if nrows_tmp != nrows: error_str = "ExpCSVDataReader._normalize: The files {} and {} (located at {}) " error_str += "does not count the same number of lines." raise RuntimeError(error_str.format(fns["input"], prev_files, path)) prev_files.add(fns[key]) # mX, sdX, nrowsX = self._normalize_aux(path, size=sizes["input"], fn=fns["input"]) # mY, sdY, nrowsY = self._normalize_aux(path, size=sizes["output"], fn=fns["output"]) # if nrowsX != nrowsY: # error_str = "ExpCSVDataReader._normalize: The files {} and {} (located at {}) " # error_str += "does not count the same number of lines." # raise RuntimeError(error_str.format(fns["input"], fns["output"], path)) # # ms = {"input": mX, "output": mY} # sds = {"input": sdX, "output": sdY} return ms, sds, nrows def _normalize_aux(self, path, size, fn): """ Compute some statistics of the file fn. fn should be a csv file with a semi-colon separator, copntaining only float objects, with a single header line. :param path: the path where the file is :param size: dimension of the file (number of columns) :param fn: the file name :return: the mean, the standard deviation, and the number of rows """ count = 0 acc = np.zeros(shape=(size)) acc2 = np.zeros(shape=(size)) with open(os.path.join(path, fn)) as fp: fp.readline() # do not parse the header for (count, li) in enumerate(fp, 1): spl = li.split(";") acc += [float(el) for el in spl] acc2 += [float(el) * float(el) for el in spl] count += 1 acc /= count acc2 /= count m = acc std = np.sqrt(acc2 - acc * acc) std[std <= 1e-3] = 1. m = {k:v.astype(DTYPE_NPY) for k, v in m} std = {k:v.astype(DTYPE_NPY) for k, v in std} return m, std, count def _countlines(self, path, sizes, fns): """ Compute the number of lines of both files fns (and check they match). each file in fns should be a csv file with a semi-colon separator, copntaining only float objects, with a single header line. :param path: the path where the file is :param size: dimension of the file (number of columns) :param fns: the file name :return: the mean, the standard deviation, and the number of rows """ nrows = None prev_files = set() for key in sizes.keys(): nrows_tmp = self._countlines_aux(path, fn=fns[key]) if nrows is not None: if nrows_tmp != nrows: error_str = "ExpCSVDataReader._normalize: The files {} and {} (located at {}) " error_str += "does not count the same number of lines." raise RuntimeError(error_str.format(fns[key], prev_files, path)) nrows = nrows_tmp prev_files.add(fns[key]) ms = {k: np.zeros(v, dtype=DTYPE_NPY) for k, v in sizes.items()} sds = {k: np.ones(v, dtype=DTYPE_NPY) for k, v in sizes.items()} return ms, sds, nrows def _countlines_aux(self, path, fn): """ Compute the number of rows of the file fn. fn should be a csv file with a coma separator, copntaining only float objects, with a single header line. :param path: the path where the file is located :param fn: the file name :return: the mean, the standard deviation, and the number of rows """ count = 0 with open(os.path.join(path, fn)) as fp: fp.readline() # do not count the header for (count, li) in enumerate(fp, 1): pass return count def _parse_function(self, csv_row, size, m, std): """ Read the data in the csv format :param csv_row: the lines to parse :param size: the number of columns :param m: the mean over the whole data set :param std: the standar deviation over the whole data set :return: """ # TODO make a cleaner version of preprocessing! record_defaults = [[0.0] for _ in range(size)] row = tf.decode_csv(csv_row, record_defaults=record_defaults, field_delim=";") row = row - m row = row / std return row def _nrows(self, array): """ :param array: unused :return: the number of rows in the training set """ return self.nrows class ExpTFrecordsDataReader(ExpDataReader): def __init__(self, train, batch_size, donnotcenter={}, pathdata=".", filename="data.tfrecord", sizes={"input":1, "output":1}, num_thread=4, ms=None, sds=None, fun_preprocess=None, add_noise={}, dtypes={}): """ ms (and sds) should be None or dictionnaries with at least the keys in vars, and tensorflow float32 tensors as values :param train: if true concern the training set :param batch_size: number of data to unpack each time :param donnotcenter: iterable: variable that will not be centered / reduced :param pathdata: path where the data are stored :param filenames: names of the files with input data and output data :param sizes: number of columns of the data in X and Y :param num_thread: number of thread to read the data :param ms: means of data set (used for validation instead -- of recomputing the mean). :param sds: standard deviation of data set (used for validation instead -- of recomputing the mean) :param fun_preprocess: fun use to preprocess data (before centering / reducing), (dictionnary with variable name as key) :param add_noise: iterable: in which data do you add noise """ if type(filename) == type(""): filename = {filename} ExpDataReader.__init__(self, train=train, batch_size=batch_size) self.sizes = sizes self.num_thread = num_thread self.batch_size = batch_size self.dtypes = dtypes # pdb.set_trace() self.features = {k: tf.FixedLenFeature((val,), tf.float32 if k not in dtypes else dtypes[k] # ,default_value=[0.0 for _ in range(val)] ) for k, val in sizes.items()} self.funs_preprocess = {k: tf.identity for k in sizes.keys()} if fun_preprocess is not None: for k, fun in fun_preprocess.items(): self.funs_preprocess[k] = fun self.donnotcenter = donnotcenter # TODO optimization: do not parse the file if you know nrows (training set parsed 2 times) # add noise when training, with customizable variance if len(add_noise) and train: self.sigma_noise = tf.get_variable(name="noise_std", trainable=False) self.amount_noise_ph = tf.placeholder(dtype=DTYPE_USED, shape=(), name="skip_conn") self.assign_noise = tf.assign(self.sigma_noise, self.amount_noise_ph, name="assign_noise_std") else: self.amount_noise_ph = tf.placeholder(dtype=DTYPE_USED, shape=(), name="skip_conn") self.assign_noise = tf.no_op(name="donothing_noise_std") # count the number of lines if (ms is None) or (sds is None): fun_process = self._normalize else: fun_process = self._countlines ms__, sds__, self.nrows = fun_process( path=pathdata, fn=filename, sizes=sizes) ms_ = {} sds_ = {} for k in ms__.keys(): if k in donnotcenter: ms_[k] = np.zeros(ms__[k].shape, dtype=DTYPE_NPY) sds_[k] = np.ones(sds__[k].shape, dtype=DTYPE_NPY) else: ms_[k] = ms__[k] sds_[k] = sds__[k] # if "cali_tempo.tfrecord" in filename :# or 'val.tfrecord' in filename: # self._normalize(path=pathdata, fn=filename, sizes=sizes) # pdb.set_trace() self.ms = self._shape_properly(ms_, name="means") if ms is None else ms self.sds = self._shape_properly(sds_, name="stds") if sds is None else sds self.dataset = tf.data.TFRecordDataset( [os.path.join(pathdata, fn) for fn in filename]).map( lambda line: self._parse_function(example_proto=line, sizes=sizes, ms=self.ms, stds=self.sds), num_parallel_calls=num_thread, # output_buffer_size=num_thread * 5 ).prefetch(num_thread * 5) # self.dataset = self.dataset.shard(10, 2) if train: self.dataset = self.dataset.repeat(-1) self.dataset = self.dataset.shuffle(buffer_size=10000) else: self.dataset = self.dataset.repeat(1) self.dataset = self.dataset.batch(batch_size=batch_size) def _countlines(self, path, fn, sizes): """ :param path: the path where data are located :param fn: the file names :return: the number of lines of the files (must iterate through it line by line) """ ms = {el: np.zeros(1, dtype=DTYPE_NPY) for el in sizes} sds = {el: np.ones(1, dtype=DTYPE_NPY) for el in sizes} nb_total = 0 for fn_ in [os.path.join(path, el) for el in fn]: nb = 0 for nb, record in enumerate(tf.python_io.tf_record_iterator(fn_)): pass if nb != 0: # if the file is empty, we don't have to add one line... nb_total += nb+1 # don't forget to add 1 because python start at 0! return ms, sds, nb_total def _parse_function(self, example_proto, sizes, ms, stds): """ :param example_proto: :param sizes: :param ms: :param stds: :return: """ parsed_features = tf.parse_single_example(example_proto, self.features) # TODO faster if I batch first! (use tf.pase_example instead) for k in sizes.keys(): parsed_features[k] = self.funs_preprocess[k](parsed_features[k]) parsed_features[k] = tf.cast(parsed_features[k], dtype=DTYPE_USED) parsed_features[k] = parsed_features[k] - ms[k] parsed_features[k] = parsed_features[k]/stds[k] return parsed_features def _normalize(self, path, fn, sizes): """ Compute some statistics of the file fn. fn should be a csv file with a coma separator, copntaining only float objects, with a single header line. side effect: will created some node in the tensorflow graph just to compute these statistics :param path: the path where the file is :param sizes: dimension of the file (number of columns) per type of data (dictionnary) :param fn: the file name :return: the mean, the standard deviation, and the number of rows """ acc = { k:np.zeros(shape=(v), dtype=np.float64) for k,v in sizes.items() } acc2 = { k:np.zeros(shape=(v), dtype=np.float64) for k,v in sizes.items() } msg_displayed = {k: 0 for k, _ in sizes.items()} with tf.variable_scope("datareader_compute_means_vars"): ms = {k: tf.constant(0.0, name="fake_means", dtype=DTYPE_USED) for k,_ in sizes.items()} sds = {k: tf.constant(1.0, name="fake_stds", dtype=DTYPE_USED) for k,_ in sizes.items()} dataset = tf.data.TFRecordDataset( [os.path.join(path, el) for el in fn]).map( lambda line: self._parse_function(example_proto=line, sizes=sizes, ms=ms, stds=sds), num_parallel_calls=self.num_thread ).prefetch(self.num_thread * 5).batch(self.num_thread).repeat(1) iterator = dataset.make_one_shot_iterator() parsed_features = iterator.get_next(name="fake_iterator") # I need a session to parse the features config = tf.ConfigProto() config.gpu_options.allow_growth = True # from tqdm import tqdm count = 0 with tf.Session(config=config) as sess: while True: count += 1 try: pf = sess.run(parsed_features) # print(np.sum(np.abs(pf["conso_X"]))) # pdb.set_trace() for k in sizes.keys(): vect = pf[k].astype(np.float64) if np.any(~np.isfinite(vect)): if msg_displayed[k] == 0: msg = "W Datareader : there are infinite or nan values in the dataset named {}" msg += ". We replaced it with the current average (by column)" print(msg.format(k)) msg_displayed[k] += 1 # pdb.set_trace() # import numpy.ma as ma vect = np.where(np.isfinite(vect), vect, acc[k]/(count*self.num_thread)) # pdb.set_trace() # vect[~np.isfinite(vect)] = acc[k]/(count*self.num_thread) acc[k] += np.nansum(vect, axis=0) acc2[k] += np.nansum(vect*vect, axis=0) # if np.any(~np.isfinite(acc2[k])): # pdb.set_trace() except tf.errors.OutOfRangeError: break for k in sizes.keys(): if msg_displayed[k] != 0: msg = "W Datareader : there are at least {} lines where infinite or nan values " msg += " were encounteredin the dataset named {}" msg += ". They were replaced with the current average (by column) at the time of computation" print(msg.format(msg_displayed[k], k)) acc = {k: v/(count*self.num_thread) for k,v in acc.items()} acc2 = {k: v/(count*self.num_thread) for k,v in acc2.items()} ms = acc # pdb.set_trace() stds = {k: np.sqrt(acc2[k] - v * v) for k,v in acc.items()} for k,v in stds.items(): stds[k][stds[k] <= 1e-3] = 1.0 ms = {k: v.astype(DTYPE_NPY) for k, v in ms.items()} stds = {k: v.astype(DTYPE_NPY) for k, v in stds.items()} return ms, stds, count def _nrows(self, array): """ :param array: unused :return: the number of rows in the training set """ return self.nrows class ExpData: def __init__(self, batch_size=50, sizemax=int(1e4), pathdata=".", path_exp=".", classData=ExpDataReader, sizes={"input":1, "output":1}, argsTdata=(), kwargsTdata={}, argsVdata=(), kwargsVdata={}, otherdsinfo = {}, donnotcenter={}, fun_preprocess=None, dtypes={} ): """ The base class for every 'data' subclasses, depending on the problem :param batch_size: the size of the minibatch :param pathdata: the path where data are stored :param path_exp: the path where the experiment is saved :param sizemax: maximum size of data chunk that will be "fed" to the computation graph :param classData: the class of data (should derive from 'ExpDataReader') :param sizes: the sizes (number of columns) of each dataset :param argsTdata: default arguments to build an instance of class 'expDataReader' (build the training data set) :param kwargsTdata: keywords arguments to build an instance of class 'expDataReader' (build the training data set) :param argsVdata: default arguments to build an instance of class 'expDataReader' (build the validation data set) :param kwargsVdata: keywords arguments to build an instance of class 'expDataReader' (build the validation data set) :param otherdsinfo : dictionnaries of keys = dataset name, values = dictionnaries of keys: "argsdata" : tuple, kwargsdata: dictionnaries :param donnotcenter: data that won't be centered/reduced :param fun_preprocess: fun use to preprocess data (before centering / reducing), not apply for variable in donnotcenter (pairs: fun to preprocess, fun to "un preprocess") """ # subdirectory name of the experiment where means and std will be stored self.means_vars_directory = "means_vars" self.path_exp = path_exp self.sizes = sizes self.donnotcenter = donnotcenter ms, sds = self._load_npy_means_stds(classData) self.classData = classData self.funs_preprocess = {varname: (tf.identity, lambda x :x ) for varname in self.sizes.keys()} if fun_preprocess is not None: for varname, fun in fun_preprocess.items(): self.funs_preprocess[varname]= fun fun_preprocess = {k: v[0] for k, v in self.funs_preprocess.items()} # pdb.set_trace() # the data for training (fitting the models parameters) self.trainingData = classData(*argsTdata, donnotcenter=donnotcenter, pathdata=pathdata, sizes=sizes, train=True, batch_size=batch_size, ms=ms, sds=sds, fun_preprocess=fun_preprocess, dtypes=dtypes, **kwargsTdata) self.sizes = self.trainingData.sizes # get the values of means and standard deviation of the training set, # to be use in the others sets self.ms = self.trainingData.ms self.sds = self.trainingData.sds # the data for training (only used when reporting error on the whole # set) self.trainData = classData(*argsTdata, donnotcenter=donnotcenter, pathdata=pathdata, sizes=self.sizes, train=False, batch_size=sizemax, ms=self.ms, sds=self.sds, fun_preprocess=fun_preprocess, dtypes=dtypes, **kwargsTdata) # the data for validation set (fitting the models hyper parameters -- # only used when reporting error on the whole set) self.valData = classData(*argsVdata, donnotcenter=donnotcenter, pathdata=pathdata, sizes=self.sizes, train=False, batch_size=sizemax, ms=self.ms, sds=self.sds, fun_preprocess=fun_preprocess, dtypes=dtypes, **kwargsVdata) self.sizemax = sizemax # size maximum of a "minibatch" eg the maximum number of examples that will be fed # at once for making a single forward computation self.iterator = tf.data.Iterator.from_structure( output_types=self.trainingData.dataset.output_types, output_shapes=self.trainingData.dataset.output_shapes) self.true_data = self.iterator.get_next( name="true_data") # pdb.set_trace() self.training_init_op = self.iterator.make_initializer( self.trainingData.dataset) self.train_init_op = self.iterator.make_initializer( self.trainData.dataset) self.validation_init_op = self.iterator.make_initializer( self.valData.dataset) self.otherdatasets = {} self.otheriterator_init = {} for otherdsname, values in otherdsinfo.items(): self.otherdatasets[otherdsname] = classData(*values["argsdata"], pathdata=pathdata, sizes=self.sizes, train=False, batch_size=sizemax, ms=self.ms, sds=self.sds, fun_preprocess=fun_preprocess, dtypes=dtypes, **values["kwargsdata"] ) self.otheriterator_init[otherdsname] = self.iterator.make_initializer(self.otherdatasets[otherdsname].dataset) def activate_val_set(self): dataset = self.valData initop = self.validation_init_op return dataset, initop def activate_trainining_set(self): dataset = self.trainingData initop = self.training_init_op return dataset, initop def activate_dataset(self, dataset_name): dataset = self.otherdatasets[dataset_name] initop = self.otheriterator_init[dataset_name] return dataset, initop def activate_trainining_set_sameorder(self): dataset = self.trainData initop = self.train_init_op return dataset, initop def _load_npy_means_stds(self, classData): """ If the means and variance have already been computed, it will load them from the hard drive :param classData: the data class used :return: ms, sds with ms = None if data does not exists, otherwise the dictionnary of means for each variable in "sizes" """ if not os.path.exists(os.path.join(self.path_exp, self.means_vars_directory)): return None, None else: isOk = True for k in self.sizes.keys(): mE = os.path.exists(os.path.join(self.path_exp, self.means_vars_directory, "ms-{}.npy".format(k))) sE = os.path.exists(os.path.join(self.path_exp, self.means_vars_directory, "sds-{}.npy".format(k))) if not mE or not sE: isOk = False break if not isOk: return None, None else: ms = {} sds = {} for k in self.sizes.keys(): m = np.load(os.path.join(self.path_exp, self.means_vars_directory, "ms-{}.npy".format(k))) s = np.load(os.path.join(self.path_exp, self.means_vars_directory, "sds-{}.npy".format(k))) if k in self.donnotcenter: m = np.zeros(m.shape, dtype=DTYPE_NPY) s = np.ones(s.shape, dtype=DTYPE_NPY) ms[k] = m sds[k] = s # pdb.set_trace() if classData.ms_tensor: ms = self._shape_properly(ms, name="means") sds = self._shape_properly(sds, name="stds") return ms, sds def _shape_properly(self, ms, name): """ TODO copy paste from TFDataReader Transform a dictionnary of numpy array in a dictionnary of tensorflow tensor :param name :param ms: :return: """ return {k: tf.convert_to_tensor(v, name="{}_{}".format(name, k), dtype=DTYPE_USED) for k, v in ms.items()} def getnrows(self): """ :return: Number of row of the training set """ return self.trainData.nrowsX() def fancydescrption(self): """ :return: A description for an instance of this data type """ return "Standard data type" def gettype(self): """ :return: the type of data this is. """ return "ExpData" def getnrowsval(self): """ :return: Number of row of the validation set """ return self.valData.nrowsX() def computetensorboard(self, sess, graph, writers, xval, minibatchnum, sum=False, dict_summary=None ): """ Compute and log (using writers) the errors on the training set and validation set Return the error ON THE VALIDATION SET :param sess: a tensorflow session :param graph: an object of class ExpGraph :param writers: an object of class ExpWriter :param xval: the index value of the tensorboard run :param minibatchnum: the number of minibatches computed :param sum: if true make the sum of both losses, other return the error ON THE VALIDATION SET :return: THE VALIDATION SET (except if sum is true) """ # TODO why is it in data ? valloss = np.NaN # switch the reader to the the "train" dataset for reporting the # training error sess.run(self.train_init_op) error_nan, trainloss = self.computetensorboard_aux( sess=sess, graph=graph, writer=writers.tfwriter.trainwriter, xval=xval, minibatchnum=minibatchnum, train=True, name="Train", textlogger=writers.logger) if not error_nan and dict_summary is not None: dict_summary["training_loss"] = float(trainloss) # switch the reader to the the "validation" dataset for reporting the # training error sess.run(self.validation_init_op) if not error_nan: error_nan, valloss = self.computetensorboard_aux( sess=sess, graph=graph, writer=writers.tfwriter.valwriter, xval=xval, minibatchnum=minibatchnum, train=False, name="Validation", textlogger=writers.logger) if not error_nan and dict_summary is not None: dict_summary["validation_loss"] = float(valloss) if not sum: res = valloss else: res = trainloss + valloss sess.run(self.training_init_op) return error_nan, res def computetensorboard_aux( self, sess, graph, writer, textlogger, name, xval, minibatchnum, train=True, dict_summary=None): """ Compute the error on a whole data set. Report the results in the text logger and in tensorboard. Chunk of data of size at most 'self.sizemax' are fed in one "chunk" :param sess: the tensorflow session :param graph: the ExpGraph to be used for the comptuation :param writer: the tensorflow writer to use :param textlogger: the text logger to use to store the information :param name: the name displayed on the file logger :param xval: the 'x value' to be written in tensorboard :param minibatchnum: the current number of minibatches :param train: does it concern the training set :return: """ acc_loss = 0. error_nan = False while True: try: summary, loss_ = graph.run( sess, toberun=[ graph.mergedsummaryvar, graph.loss]) if train: writer.add_summary(summary, xval) else: writer.add_summary(summary, xval) acc_loss += loss_ error_nan = not np.isfinite(loss_) if error_nan: break elif dict_summary is not None: dict_summary["loss_{}".format(name)] = float(loss_) except tf.errors.OutOfRangeError: break # name = "Train" if train else "Validation" textlogger.info( "{} l2 error after {} minibatches : {}".format( name, minibatchnum, acc_loss)) return error_nan, acc_loss def combinerescompute(self, res, curr, toberun, indx=None): """ Combines the previous results (in res) and the new one (in curr) to get the new one :param res: previous results :param curr: last results computed :param toberun: what have been run :param indx: on which part of the data :return: """ if toberun is None: res += np.float32(curr) # TODO false in case of mean for example! else: res[indx, :] = curr return res def initres(self, dataset, size=0): """ Init the results structure to store the results of a forward pass on the whole 'dataset' :param dataset: the data for which the resutls will be computed :param size: the size you want (by default dataset.nrowsX()) [unused in this version] :return: """ init = np.ndarray( (dataset.nrowsX(), dataset.ncolsY()), dtype=DTYPE_USED) return init def getdata(self): """ :return: the data read and parsed dictionnary with: key=name, values=the associated tensor """ return self.true_data def init(self, sess): """ initialize the data if needed :param sess: """ sess.run(self.training_init_op) if self.classData.ms_tensor: # the data class represents the means and standard deviation as tensors self.sds = sess.run(self.sds) self.ms = sess.run(self.ms) if not os.path.exists(os.path.join(self.path_exp, self.means_vars_directory)): os.mkdir(os.path.join(self.path_exp, self.means_vars_directory)) # pdb.set_trace() for k in self.sizes.keys(): np.save(file=os.path.join(self.path_exp, self.means_vars_directory, "ms-{}.npy".format(k)), arr=self.ms[k]) np.save(file=os.path.join(self.path_exp, self.means_vars_directory, "sds-{}.npy".format(k)), arr=self.sds[k]) def computetensorboard_annex(self, sess, writers, graph, xval, minibatchnum, name, dict_summary=None): """ Will compute the error on the data "referenced" by "name", and store it using the TFWriters "writers" :param sess: a tensorflow session :param graph: an object of class ExpGraph :param writers: an object of class ExpWriter :param xval: the index value of the tensorboard run :param minibatchnum: the number of minibatches computed :param name: the name of the dataset you want the error from :return: nothing """ if not name in self.otheriterator_init: error_str = "ExpData.computetensorboard_annex you ask to compute the error on the dataset name \"{}\"" error_str += " but it does not exists.\nMake sure to have passed the proper \"otherdsinfo\" arguments" error_str += " when you build your ExpData. For example :\n" error_str += "otherdsinfo={{ \"{}\":{{\"argsdata\":(), \"kwargsdata\": {{ \"filename\": " error_str += "\"test_example.tfrecord\" }} }} }} }} \n" error_str += "if you want to link the dataset with data coming from \"test_example.tfrecord\" to the name \"{}\"" raise RuntimeError(error_str.format(name, name, name)) sess.run(self.otheriterator_init[name]) self.computetensorboard_aux( sess=sess, graph=graph, writer=writers.tfwriter.othersavers[name], xval=xval, minibatchnum=minibatchnum, train=False, name=name, textlogger=writers.logger, dict_summary=dict_summary) sess.run(self.training_init_op) class ExpInMemoryDataReader(ExpDataReader): ms_tensor = False # is the "self.ms" (or "self.sds") a tensor (True) or a numpy array (False) def __init__(self, train, batch_size, pathdata=".", filename={"input": "X.npy" , "output": ("Y.npy",)}, sizes=None, num_thread=4, donnotcenter={}, fun_preprocess=lambda x: x, dtypes={}, ms=None, sds=None, numpy_=True, panda_=False, sep=";"): """ Load data in memory, and then use an iterator to process it. Data can be read from numpy array (numpy_ = True) or from pandas data frame (numpy_ = False, panda_=True). In the later case, dataframe are converted to numpy array :param train: :param batch_size: :param pathdata: :param filenames: :param sizes: :param num_thread: :param donnotcenter: :param ms: :param sds: """ self.train = train self.filename = filename if numpy_: mmap_mode = None if train else "c" # "c" stand for: data are kept on the hard drive, but can be modified in memory self.datasets = {k: np.load(os.path.join(pathdata, v), mmap_mode=mmap_mode) for k, v in filename.items()} elif panda_: import pandas as pd self.datasets = {k: pd.read_csv(os.path.join(pathdata, v), sep=sep).values for k, v in filename.items()} else: raise RuntimeError("For now only panda dataframe and numpy array are supported in ") self.datasets = {k: v.astype(DTYPE_NPY) for k, v in self.datasets.items() } if self.train: sizes = {k: el.shape[1] for k, el in self.datasets.items()} self.sizes = sizes else: self.sizes = sizes self._check_validity() # pdb.set_trace() if ms is None: ms_ = {k: np.mean(v, axis=0) for k,v in self.datasets.items()} self.ms = {k: v for k,v in ms_.items() if not k in donnotcenter} for el in donnotcenter: self.ms[el] = np.zeros(ms_[el].shape, dtype=DTYPE_NPY) else: self.ms = ms if sds is None: sds_ = {k: np.std(v, axis=0) for k,v in self.datasets.items()} for k, v in sds_.items(): sds_[k][v <= 1e-3] = 1.0 self.sds = {k: v for k,v in sds_.items() if not k in donnotcenter} for el in donnotcenter: self.sds[el] = np.ones(sds_[el].shape, dtype=DTYPE_NPY) else: self.sds = sds self.datasets = {k: (v-self.ms[k])/self.sds[k] for k, v in self.datasets.items()} # self.placeholders = {k: tf.placeholder(shape=(None, v), dtype=tf.float32) for k,v in sizes.items()} self.batch_size = batch_size self.nrows = self.datasets[next(iter(filename.keys()))].shape[0] self.indexDataMinibatch = list(range(self.nrows)) if self.train: random.shuffle(self.indexDataMinibatch) self.lastIndexDataMinibatch = 0 self.train = train self.features = {k: tf.FixedLenFeature(val, tf.float32)#, default_value=[0.0 for _ in range(val)]) for k, val in sizes.items()} self.dataset = tf.data.Dataset.from_generator(generator=self.generator, output_types={k: v.dtype for k, v in self.features.items()}, output_shapes={k: v.shape for k, v in self.features.items()}) # pdb.set_trace() if train: self.dataset = self.dataset.repeat(-1) # self.dataset = self.dataset.shuffle(buffer_size=10000) else: self.dataset = self.dataset.repeat(1) self.dataset = self.dataset.batch(batch_size=batch_size) # pdb.set_trace() def _check_validity(self): nr_ = None for k, v in self.datasets.items(): if nr_ is None: nr_ = v.shape[0] else: if v.shape[0] != nr_: raise RuntimeError("Dataset {} has not the same size as the other. Stopping here.".format(self.filename[k])) if v.shape[0] == 0: raise RuntimeError("Empty dataset file for {}. Stopping there".format(self.filename[k])) if v.shape[1] != self.sizes[k]: raise RuntimeError("Dataset {} has not the same number of columns as specified in the sizes.".format(self.filename[k])) def generator(self): """ :return: the data of one line of the dataset """ new_epoch = False while not new_epoch: new_epoch, indx = self.getnextindexes() yield {k: v[indx, :].flatten() for k, v in self.datasets.items()} raise StopIteration def getnextindexes(self): """ :return: the next index to be considered """ size = 1 new_epoch = False if self.lastIndexDataMinibatch+size < self.nrows: prev = self.lastIndexDataMinibatch self.lastIndexDataMinibatch += size res = self.indexDataMinibatch[prev:self.lastIndexDataMinibatch] else: new_epoch = True prev = self.lastIndexDataMinibatch res = self.indexDataMinibatch[prev:] if self.train: random.shuffle(self.indexDataMinibatch) self.lastIndexDataMinibatch = size-len(res) res += self.indexDataMinibatch[:self.lastIndexDataMinibatch] self.lastIndexDataMinibatch = 0 return new_epoch, res def init(self, sess): """ :param sess: :return: """ # tf.train.start_queue_runners(sess=sess) pass def nrowsX(self): """ :return: The number of rows / examples of the input data set """ return self.nrows class ExpNpyDataReader(ExpInMemoryDataReader): def __init__(self, args, kwargs): ExpInMemoryDataReader.__init__(self, *args, **kwargs) if __name__=="__main__": test_tf_nb_lines = ExpTFrecordsDataReader(train=True, batch_size=1) print("The number of lines computed is {}".format(test_tf_nb_lines._countlines(path="/home/bdonnot/Documents/PyHades2/tfrecords_118_5000", fn="neighbours-test.tfrecord", sizes={"prod_q": 54}))) print("Test lines parsing {}".format(test_tf_nb_lines._normalize(path="/home/bdonnot/Documents/PyHades2/tfrecords_118_5000", fn="neighbours-test.tfrecord", sizes={"prod_q":54})))
gpl-3.0
gregbehm/twittertools
twittertools.py
1
29539
""" twittertools.py Twitter API data acquisition tools Author: Greg Behm Copyright 2017-2019 Caution! This software is for personal use and demonstration only. Any Twitter content collected with this software should be used in accordance with Twitter's Terms of Service: https://twitter.com/en/tos Read the Twitter Terms of Service, Twitter Developer Agreement, and Twitter Developer Policy before collecting Twitter content with this or any derivative software. A few of the methods presented here were derived (and improved) from sample code in the book Mining the Social Web, 2nd Edition, copyright 2014 by Matthew A. Russell, O'Reilly, ISBN 978-1449367619. The book's author and publisher give permission to reuse sample code under the Simplified BSD License. More information is found at: https://github.com/ptwobrussell/Mining-the-Social-Web-2nd-Edition """ import collections from contextlib import suppress import datetime import itertools import json import re import time import pandas # https://pypi.python.org/pypi/twitter import twitter # --- Define functions --- # def get_api(credentials_file): """ Create an authenticated twitter.Twitter() API object. :param credentials_file: Twitter application credentials JSON file name. :return: twitter.Twitter() API object """ with open(credentials_file) as f: data = json.load(f) auth = twitter.oauth.OAuth(data['access_token'], data['access_token_secret'], data['consumer_key'], data['consumer_secret']) return twitter.Twitter(auth=auth) def save_to_json(items, path_or_buf): """ Save an iterable of dict objects to a JSON file. :param items: Iterable of dictionary objects :param path_or_buf: String, file path or file handle :return: None """ with open(path_or_buf, mode='w', encoding='utf-8-sig') as f: json.dump(items, f) def save_to_csv(items, unpack_func, path_or_buf): """ Save an iterable of tweets to a CSV file, saving select fields as defined in function unpack_tweet(). :param items: Iterable of Twitter objects :param unpack_func: function to extract select fields from individual Twitter objects, such as tweets and user profiles Example: save_to_csv(tweets, unpack_tweets, 'tweets.csv') :param path_or_buf: String, file path or file handle :return: None """ df = pandas.DataFrame(unpack_func(item) for item in items) df.to_csv(path_or_buf, index=False, encoding='utf-8-sig') def save_tweets(tweets, path_or_buf): """ Save an iterable of tweets to a CSV file, saving select fields as defined in function unpack_tweet(). :param tweets: Iterable of tweet objects :param path_or_buf: String, file path or file handle :return: None """ save_to_csv(tweets, unpack_tweet, path_or_buf) def save_profiles(profiles, path_or_buf): """ Save an iterable of user objects to a CSV file, saving select fields as defined in function unpack_profile(). :param profiles: Iterable of user objects :param path_or_buf: String, file path or file handle :return: None """ save_to_csv(profiles, unpack_profile, path_or_buf) def get_data(item, *args): """ Search input item dictionary by key words for single-value or list-of-value items. The caller must specify the necessary key words in correct hierarchical order to retrieve the requested item. Examples: To get a tweet's user screen_name, e.g. {"user": {..., "screen_name": "katyperry", ...}}, call get_data(tweet, 'user', 'screen_name'). To get a tweet's hashtags, e.g. {"entities": {"hashtags": [{"text": "blockchain",...}}, call get_list_dict_data(tweet, 'entities', 'hashtags', 'text') :param item: Twitter dictionary object, e.g. Tweet or User :param args: Item-search dictionary keys :return: Requested item or object. If the last args key word retrieves a list of objects, get_data() returns a concatenated string of list items. """ def next_item(item, key): """ Get a dictionary or list object, depending on whether the input item is a dictionary or list. :param item: Twitter object dictionary or list :param key: Target element key word :return: If item is a dictionary, return the value for input key. If item is a list with dictionary elements containing the input key, return the list. """ # Try item as a dictionary try: # return the dictionary item's value return item[key] except KeyError: # Try item as a list of dictionaries try: if item[0].get(key, None): # return the dictionary return item except (IndexError, AttributeError): # Nothing relevant found return None # def next_item for arg in args: item = next_item(item, arg) if item is None: return None # Handle list items if isinstance(item, list): # Try as list of dictionaries with suppress(IndexError, KeyError): key = args[-1] return ' '.join(elem[key] for elem in item) # Flatten list of lists flat = itertools.chain.from_iterable(item) return ' '.join(str(elem) for elem in flat) # Return any other item as-is return item def unpack_tweet(tweet): """ Extract select fields from the given tweet object. :param tweet: Twitter Tweet object :return: Ordered dictionary of select tweet field values """ try: if tweet['retweeted_status'] is None: text = tweet['full_text'] else: text = tweet['retweeted_status']['full_text'] except KeyError: text = tweet['full_text'] fields = [('screen_name', get_data(tweet, 'user', 'screen_name')), ('created', format_datetime(get_data(tweet, 'created_at'))), ('full_text', clean_whitespace(text)), ('retweet_count', get_data(tweet, 'retweet_count')), ('hashtags', get_data(tweet, 'entities', 'hashtags', 'text')), ('mentions', get_data(tweet, 'entities', 'user_mentions', 'screen_name')), ('urls', get_data(tweet, 'entities', 'urls', 'url')), ('expanded_urls', get_data(tweet, 'entities', 'urls', 'expanded_url')), ('media_urls', get_data(tweet, 'entities', 'media', 'url')), ('media_types', get_data(tweet, 'entities', 'media', 'type')), ('tweet_id', get_data(tweet, 'id_str')), ('symbols', get_data(tweet, 'entities', 'symbols', 'text')) ] return collections.OrderedDict(fields) def unpack_profile(profile): """ Extract select fields from the given user object. :param profile: Twitter User object :return: Ordered dictionary of select user field values """ fields = [('name', get_data(profile, 'name')), ('screen_name', get_data(profile, 'screen_name')), ('id', get_data(profile, 'id_str')), ('description', clean_whitespace(get_data(profile, 'description'))), ('location', get_data(profile, 'location')), ('tweets', get_data(profile, 'statuses_count')), ('following', get_data(profile, 'friends_count')), ('followers', get_data(profile, 'followers_count')), ('favorites', get_data(profile, 'favourites_count')), ('language', get_data(profile, 'lang')), ('listed', get_data(profile, 'listed_count')), ('created', format_datetime(get_data(profile, 'created_at'))), ('time_zone', get_data(profile, 'time_zone')), ('protected', get_data(profile, 'protected')), ('verified', get_data(profile, 'verified')), ('geo_enabled', get_data(profile, 'geo_enabled')) ] return collections.OrderedDict(fields) def format_datetime(date_str): """ Convert Twitter's date time format ("Thu Jul 20 19:34:20 +0000 2017") to ISO 8601 International Standard Date and Time format. :param date_str: :return: """ with suppress(TypeError, ValueError): dt = datetime.datetime.strptime(date_str, '%a %b %d %H:%M:%S +0000 %Y') return dt.strftime('%Y-%m-%dT%H:%M:%SZ') return None def clean_whitespace(text): """ Remove extraneous whitespace characters (includes e.g. newlines) :param text: Input text :return: Cleaned text with unwanted whitespace characters replaced with single spaces. """ return re.sub('\s+', ' ', text) # --- Define classes --- # class TwitterTools: """ twittertools Twitter API class """ def __init__(self, credentials_file): self.credentials = credentials_file self.api = get_api(self.credentials) if self.api: self.api_endpoint_method = { '/application/rate_limit_status': self.api.application.rate_limit_status, '/favorites/list': self.api.favorites.list, '/followers/ids': self.api.followers.ids, '/friends/ids': self.api.friends.ids, '/lists/create': self.api.lists.create, '/lists/members/create': self.api.lists.members.create, '/lists/members/create_all': self.api.lists.members.create_all, '/search/tweets': self.api.search.tweets, '/statuses/home_timeline': self.api.statuses.home_timeline, '/statuses/user_timeline': self.api.statuses.user_timeline, '/statuses/lookup': self.api.statuses.lookup, '/statuses/update': self.api.statuses.update, '/trends/available': self.api.trends.available, '/trends/closest': self.api.trends.closest, '/trends/place': self.api.trends.place, '/users/lookup': self.api.users.lookup } def __repr__(self): return f'{self.__class__.__name__}({self.credentials!r})' def endpoint_request(self, endpoint, *args, **kwargs): """ Send Twitter API requests (e.g. GET, POST), handle request errors, and return requested Twitter content. :param endpoint: Endpoint request string, e.g. '/search/tweets' :param args: Optional, user-supplied positional arguments :param kwargs: Optional, user-supplied keyword arguments :return: Twitter content, defined by endpoint request. """ def handle_http_error(error, endpoint, wait, retry=True): """ Handle common twitter.api.TwitterHTTPError(s) :param error: twitter.api.TwitterHTTPError error object :param endpoint: Endpoint request string, e.g. '/search/tweets' :param wait: Wait period, in seconds :param retry: Retry on error; default True :return: Updated wait time """ # See https://dev.twitter.com/docs/error-codes-responses errors = {401: '(Unauthorized)', 403: '(Forbidden)', 404: '(Not Found)', 429: '(Rate Limit Exceeded)', 500: '(Internal Server Error)', 502: '(Bad Gateway)', 503: '(Service Unavailable)', 504: '(Gateway Timeout)' } ecode = error.e.code now = f'{datetime.datetime.now():%Y-%m-%d %H:%M:%S}' descr = errors.get(ecode, "(Unknown)") print(f'{now}: Error {ecode} {descr} on "{endpoint}"', flush=True) if ecode in (401, 403, 404): # Caller must handle these errors. Return 0 wait time. return 0 if ecode == 429: if retry: print('Retrying in 15 minutes...', end=' ', flush=True) time.sleep(60 * 15) print('awake and trying again.') # Return wait time to default 1 second. return 1 else: # No retries return 0 if ecode in (500, 502, 503, 504): if retry: print(f'Retrying in {wait} seconds...', end=' ', flush=True) time.sleep(wait) print('awake and trying again.') wait *= 1.5 if wait < 60 * 30: return wait print('Too many retries. Quitting.') raise error # def handle_http_error api_endpoint = self.api_endpoint_method[endpoint] wait = 1 while wait: try: return api_endpoint(*args, **kwargs) except twitter.api.TwitterHTTPError as e: wait = handle_http_error(e, endpoint, wait) def get_user_tweets(self, endpoint, screen_name=None, user_id=None, max_tweets=None, **kwargs): """ Request a user's tweets (statuses) according to the endpoint :param endpoint: Endpoint request string, e.g. '/statuses/user_timeline' :param screen_name: User's screen name, a.k.a. handle, e.g. 'katyperry' :param user_id: User's numeric ID :param max_tweets: Maximum tweets requested :param kwargs: Optional, user-supplied keyword arguments :return: A list of Tweet objects """ # No screen_name or user_id implies default to authenticated user if screen_name: kwargs['screen_name'] = screen_name elif user_id: kwargs['user_id'] = user_id kwargs['tweet_mode'] = 'extended' count = 200 tweets = [] while True: # Limit each GET to a maximum 200 tweets kwargs['count'] = min(count, max_tweets - len(tweets)) if max_tweets else count # To correctly traverse the user's timeline, set the # max_id parameter after the first tweets are available. # See https://dev.twitter.com/rest/public/timelines. if tweets: kwargs['max_id'] = min(tweet['id'] for tweet in results) - 1 results = self.endpoint_request(endpoint, **kwargs) if not results: break tweets.extend(results) if max_tweets and len(tweets) >= max_tweets: break return tweets def get_cursored_items(self, endpoint, key, count=5000, max_items=None, **kwargs): """ Helper request function for cursored objects. :param endpoint: Endpoint request string, e.g. '/followers/ids' :param key: Cursored items key, e.g. 'ids' :param count: Maximum items per request :param max_items: Maximum total items requested :param kwargs: Optional, user-supplied keyword arguments :return: A list of requested objects """ kwargs['count'] = count items = [] cursor = -1 while cursor: kwargs['cursor'] = cursor results = self.endpoint_request(endpoint, **kwargs) if not results: break items.extend(results[key]) if max_items and len(items) >= max_items: break cursor = results['next_cursor'] return items def get_items_by_lookup(self, endpoint, item_keyword, items, **kwargs): """ Get user-requested objects of type item_keyword, named in the items list. :param endpoint: Endpoint request string, e.g. '/users/lookup' :param item_keyword: Endpoint request keyword Note: Endpoint 'id' requests must call the twitter.Twitter() API methods with kwargs['_id'] to produce correct results. :param items: User-supplied list of requested items, e.g. screen names :param kwargs: Optional, user-supplied keyword arguments :return: A list of user-requested objects. Note: The Twitter API doesn't guarantee that objects are returned in the order requested. The caller is responsible for confirming the order and completeness of the returned list, if necessary. """ # Request up to 100 items per call items_max = 100 results = [] while items: items_str = ','.join(str(item) for item in items[:items_max]) kwargs[item_keyword] = items_str response = self.endpoint_request(endpoint, **kwargs) if not response: break results.extend(response) items = items[items_max:] return results def get_rate_limits(self, key_0=None, key_1=None): """ Query the authorized user's current rate limit data. See Rate Limits chart at https://dev.twitter.com/rest/public/rate-limits :param key_0: Optional, single category request, e.g. 'statuses' :param key_1: Optional, subcategory category request, e.g. '/statuses/user_timeline' :return: Requested limits dictionary """ limits = self.endpoint_request('/application/rate_limit_status') if limits: limits = limits['resources'] if key_0 in limits: limits = limits[key_0] return limits[key_1] if key_1 else limits else: return limits return None def get_home_timeline(self, max_tweets=None): """ Get a list of the most recent tweets and retweets posted by the authenticating user and the user's friends (following). :param max_tweets: Optional maximum tweets requested :return: List of tweets """ return self.get_user_tweets('/statuses/home_timeline', max_tweets) def get_user_timeline(self, screen_name=None, user_id=None, max_tweets=None): """ Get a list of the most recent tweets posted by the user specified by screen_name or user_id. If both screen_name and user_id are given, screen_name is used. If neither screen_name nor user_id is given, results are collected for the authenticated user. :param screen_name: User's screen name, a.k.a. handle, e.g. 'katyperry' :param user_id: User's numeric ID :param max_tweets: Maximum desired tweets :return: List of tweets """ return self.get_user_tweets('/statuses/user_timeline', screen_name, user_id, max_tweets) def get_user_favorites(self, screen_name=None, user_id=None, max_tweets=None): """ Get a list of the most recent tweets favorited by the authenticating user, or the user specified by screen_name or user_id. If both screen_name and user_id are given, screen_name is used. If neither screen_name nor user_id is given, results are collected for the authenticated user. :param screen_name: User's screen name, a.k.a. handle, e.g. 'katyperry' :param user_id: User's numeric ID :param max_tweets: Maximum desired tweets :return: List of tweets """ return self.get_user_tweets('/favorites/list', screen_name, user_id, max_tweets) def get_user_profiles(self, screen_names=None, user_ids=None): """ Get a list of user objects as specified by values given by the screen_names or user_ids list parameter. If both lists, screen_names and user_ids, are given, screen_names is used. :param screen_names: List of user screen names, a.k.a. handles :param user_ids: List of user numeric IDs :return: List of user objects """ items = screen_names or user_ids item_keyword = 'screen_name' if screen_names else 'user_id' return self.get_items_by_lookup('/users/lookup', item_keyword, items) def get_tweets_by_id(self, ids, **kwargs): """ Get a list of tweets, specified by a given list of numeric Tweet IDs in parameter ids. :param ids: List of unique numeric tweet IDs :return: List of requested tweets """ kwargs['tweet_mode'] = 'extended' return self.get_items_by_lookup('/statuses/lookup', '_id', ids, **kwargs) def get_connection_ids(self, which='friends', screen_name=None, user_id=None, max_ids=None, **kwargs): """ For the user specified by screen_name or user_id, get a list of user IDs for every user the specified user is following (which="friends"), or for every user following the specified user (which=followers"). If both screen_name and user_id are given, screen_name is used. :param which: Connection type, Friends or Followers :param screen_name: User's screen name, a.k.a. handle, e.g. 'katyperry' :param user_id: User's numeric ID :param max_ids: Maximum IDs to request :param kwargs: Optional, user-supplied keyword arguments :return: List of user IDs """ endpoint = {'friends': '/friends/ids', 'followers': '/followers/ids'}.get(which) # No screen_name or user_id implies default to authenticated user if screen_name: kwargs['screen_name'] = screen_name elif user_id: kwargs['user_id'] = user_id return self.get_cursored_items(endpoint, 'ids', max_items=max_ids, **kwargs) def get_trend_locations(self, lat_lon=None): """ Get a list of locations for which Twitter has trending topic information. Each location response encodes the WOEID and other human-readable information, such as a canonical name and country. If param lat_lon is given, returns a list of locations for which Twitter has trending topics closest to the specified location. A WOEID is a Yahoo! Where On Earth ID (http://developer.yahoo.com/geo/geoplanet). :param lat_lon: Earth latitude and longitude coordinates, passed as a tuple or list of decimal values ranging from +90.0 to -90.0 for latitude, and from +180.0 to -180.0 for longitude. :return: List of Twitter location objects """ if lat_lon: lat, lon = lat_lon kwargs = {'lat': lat, 'long': lon} return self.endpoint_request('/trends/closest', **kwargs) else: return self.endpoint_request('/trends/available') def get_trends(self, woeid=1): """ Get a list of the top 50 trending topics for a specific WOEID, if trending information is available for that WOEID. Responses are trend objects that encode the trending topic, from which the "query" parameter can be used to search for the topic on Twitter Search. :param woeid: Yahoo! Where On Earth location ID (http://developer.yahoo.com/geo/geoplanet) Default: WOEID=1 for worldwide :return: List of trending topics for the specified WOEID. """ kwargs = {'_id': woeid} return self.endpoint_request('/trends/place', **kwargs)[0]['trends'] def post_status_update(self, status, media_ids=None, **kwargs): """ Post a Tweet! :param status: Required text :param media_ids: Optional media id list. Twitter-supplied ids from media upload. See https://dev.twitter.com/rest/reference/post/media/upload :param kwargs: Optional, user-supplied keyword arguments :return: Status (tweet) object, or error on failure """ kwargs['status'] = status if media_ids: kwargs['media_ids'] = media_ids return self.endpoint_request('/statuses/update', **kwargs) def post_lists_create(self, name, mode='private', description=None, **kwargs): """ Create a list :param name: The name for the list. A list’s name must start with a letter and can consist only of 25 or fewer letters, numbers, “-”, or “_” characters. :param mode: "public" or "private"; default "private" :param description: Optional list description (100 character limit) :param kwargs: Optional, user-supplied keyword arguments :return: Twitter List object """ kwargs['name'] = name kwargs['mode'] = mode if description: kwargs['description'] = description return self.endpoint_request('/lists/create', **kwargs) def post_lists_members_create(self, mode='add', list_id=None, slug=None, user_ids=None, screen_names=None, owner_screen_name=None, owner_id=None, **kwargs): """ Add user(s) to a list :param mode: 'add' member to list, or create 'all' members :param list_id: Numerical list id :param slug: You can identify a list by its slug instead of by its numerical id. If using slug, must also specify list owner using owner_id or owner_screen_name parameter. :param user_ids: Python list of user IDs; up to 100 per request. :param screen_names: Python list of screen names; up to 100 per request. :param owner_screen_name: User screen name who owns list requested by slug. :param owner_id: User ID who owns list requested by slug. :param kwargs: Optional, user-supplied keyword arguments :return: Twitter List object """ kwargs['slug'] = slug kwargs['list_id'] = list_id kwargs['owner_screen_name'] = owner_screen_name kwargs['owner_id'] = owner_id names = screen_names if names: kwargs['screen_name'] = names[0] if mode == 'add' else ','.join(names) elif user_ids: kwargs['user_id'] = user_ids[0] if mode == 'add' else ','.join(user_ids) else: return None if mode == 'add': return self.endpoint_request('/lists/members/create', **kwargs) else: return self.endpoint_request('/lists/members/create_all', **kwargs) def search_tweets(self, query, max_requests=5): """ Get a list of relevant Tweets matching a specified query. # See https://dev.twitter.com/rest/public/search and # https://dev.twitter.com/rest/reference/get/search/tweets Quoting from https://dev.twitter.com/rest/public/search: "The Twitter Search API is part of Twitter’s REST API. It allows queries against the indices of recent or popular Tweets and behaves similarly to, but not exactly like the Search feature available in Twitter mobile or web clients, such as Twitter.com search. The Twitter Search API searches against a sampling of recent Tweets published in the past 7 days. Before getting involved, it’s important to know that the Search API is focused on relevance and not completeness. This means that some Tweets and users may be missing from search results. If you want to match for completeness you should consider using a Streaming API instead." :param query: Twitter search term :param max_requests: Maximum query requests. Each request returns up to 100 results, and the authenticated user is limited to 180 requests per 15 minutes. :return: List of tweets """ # Prepare first request kwargs = {'q': query, 'count': 100, 'tweet_mode': 'extended'} tweets = [] for search in range(max_requests): if tweets: try: next_results = results['search_metadata']['next_results'] # Create a dict from next_results, which has this format: # ?max_id=313519052523986943&q=NCAA&include_entities=1 kwargs = dict(item.split('=') for item in next_results[1:].split("&")) # No further results when 'next_results' is missing except KeyError: break results = self.endpoint_request('/search/tweets', **kwargs) if not results['statuses']: break tweets.extend(results['statuses']) return tweets
mit
cbeighley/peregrine
peregrine/analysis/acquisition.py
4
8541
#!/usr/bin/env python # Copyright (C) 2012 Swift Navigation Inc. # # This source is subject to the license found in the file 'LICENSE' which must # be be distributed together with this source. All other rights reserved. # # THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, # EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. """Functions for analysing and plotting acquisition results.""" import numpy as np import matplotlib.pyplot as plt from operator import attrgetter from peregrine.acquisition import AcquisitionResult, DEFAULT_THRESHOLD __all__ = ['acq_table', 'snr_bars', 'peak_plot', 'acq_plot_3d'] def acq_table(acq_results, show_all=False): """ Print a table of acquisition results. Parameters ---------- acq_results : [:class:`peregrine.acquisition.AcquisitionResult`] List of :class:`peregrine.acquisition.AcquisitionResult` objects. show_all : bool, optional If `True` then even satellites which have not been acquired will be shown in the table. """ for ar in acq_results: if ar.status == 'A': if show_all: print '*', print ar elif show_all: print ' ', print ar def snr_bars(acq_results, threshold=DEFAULT_THRESHOLD, ax=None, show_missing=True): """ Display the acquisition Signal to Noise Ratios as a bar chart. This function is useful for visualising the output of :meth:`peregrine.acquisition.Acquisition.acquisition` or saved acquisition results files loaded with :func:`peregrine.acquisition.load_acq_results`. Parameters ---------- acq_results : [:class:`peregrine.acquisition.AcquisitionResult`] List of :class:`peregrine.acquisition.AcquisitionResult` objects to plot bars for. If the `status` field of the :class:`peregrine.acquisition.AcquisitionResult` object is ``'A'``, i.e. the satellite has been acquired, then the bar will be highlighted. theshold : {float, `None`}, optional If not `None` then an acquisition theshold of this value will be indicated on the plot. Defaults to the value of :attr:`peregrine.acquisition.DEFAULT_THRESHOLD`. ax : :class:`matplotlib.axes.Axes`, optional If `ax` is not `None` then the bar chart will be plotted on the supplied :class:`matplotlib.axes.Axes` object rather than as a new figure. show_missing : bool, optional If `True` then the bar chart will show empty spaces for all PRNs not included in `acq_results`, otherwise only the PRNs in `acq_results` will be plotted. Returns ------- out : :class:`matplotlib.axes.Axes` The `Axes` object that the bar chart was drawn to. """ if ax is None: fig = plt.figure() fig.set_size_inches(10, 4, forward=True) ax = fig.add_subplot(111) if show_missing: prns = [r.prn for r in acq_results] missing = [prn for prn in range(31) if not prn in prns] acq_results = acq_results[:] + \ [AcquisitionResult(prn, 0, 0, 0, 0, '-') for prn in missing] acq_results.sort(key=attrgetter('prn')) for n, result in enumerate(acq_results): if (result.status == 'A'): colour = '#FFAAAA' else: colour = '0.8' ax.bar(n-0.5, result.snr, color=colour, width=1) ax.set_xticks(range(len(acq_results))) ax.set_xticklabels(['%02d' % (r.prn+1) for r in acq_results]) ax.set_title('Acquisition results') ax.set_ylabel('Acquisition metric') if threshold is not None: ax.plot([-0.5, len(acq_results)-0.5], [threshold, threshold], linestyle='dashed', color='black') ax.text(0.01, 0.97, 'threshold = %.1f' % threshold, horizontalalignment='left', verticalalignment='top', transform = ax.transAxes) yticks = ax.get_yticks() dist = np.abs(yticks - threshold).min() if dist >= 0.25*(yticks[1] - yticks[0]): ax.set_yticks(np.append(yticks, threshold)) ax.set_xbound(-0.5, len(acq_results)-0.5) ax.set_xlabel('PRN') return ax def peak_plot(powers, freqs, samples_per_code, code_length=1023.0): """ Visualise the peak in a table of acquisition correlation powers. Display, in various ways, the peak in a 2D array of acquisition correlation powers against code phase and Doppler shift. This is useful for visualising the output of :meth:`peregrine.acquisition.Acquisition.acquire`. Parameters ---------- powers : :class:`numpy.ndarray`, shape(len(`freqs`), `samples_per_code`) 2D array containing correlation powers at different frequencies and code phases. Code phase axis is in samples from zero to `samples_per_code`. freqs : iterable List of frequencies mapping the results frequency index to a value in Hz. samples_per_code : float The number of samples corresponding to one code length. code_length : int, optional The number of chips in the chipping code. Defaults to the GPS C/A code value of 1023. """ samples_per_chip = samples_per_code / code_length fig = plt.figure() fig.set_size_inches(10, 10, forward=True) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) peak = np.unravel_index(powers.argmax(), powers.shape) powers_detail = powers[peak[0]-5:peak[0]+5, peak[1]-50:peak[1]+50] code_phases = np.arange(samples_per_code) / samples_per_chip ax1.plot(code_phases, powers[peak[0],:], color='black') ax1.set_title("Code phase cross-section") ax1.set_xlabel("Code phase (chips)") ax1.set_ylabel("Correlation magnitude") ax1.set_xbound(0, code_length) ax1.set_xticks([0, code_phases[peak[1]], code_length]) ax1.set_xticklabels(['0', code_phases[peak[1]], '%.0f' % code_length]) ax2.plot(freqs, powers[:,peak[1]], color='black') ax2.set_title("Carrier frequency cross-section") ax2.set_xlabel("Doppler shift (Hz)") ax2.set_ylabel("Correlation magnitude") ax2.set_xbound(freqs[0], freqs[-1]) ax2.set_xticks([freqs[0], freqs[peak[0]], freqs[-1]]) ax3.plot(code_phases[peak[1]-50:peak[1]+50], powers[peak[0],peak[1]-50:peak[1]+50], color='black') ax3.set_title("Code phase cross-section detail") ax3.set_xlabel("Code phase (chips)") ax3.set_ylabel("Correlation magnitude") ax3.set_xbound(code_phases[peak[1]-50], code_phases[peak[1]+50]) ax4.imshow(powers_detail, aspect='auto', cmap=plt.cm.RdYlBu_r, extent=(code_phases[peak[1]-50], code_phases[peak[1]+50], freqs[peak[0]-5], freqs[peak[0]+5]), interpolation='bilinear') ax4.set_title("Peak detail") ax4.set_xlabel("Code phase (chips)") ax4.set_ylabel("Doppler shift (Hz)") fig.tight_layout() def acq_plot_3d(powers, freqs, samples_per_code, code_length=1023.0): """ Display a 3D plot of correlation power against code phase and Doppler shift. This is useful for visualising the output of :meth:`peregrine.acquisition.Acquisition.acquire`. Parameters ---------- powers : :class:`numpy.ndarray`, shape(len(`freqs`), `samples_per_code`) 2D array containing correlation powers at different frequencies and code phases. Code phase axis is in samples from zero to `samples_per_code`. freqs : iterable List of frequencies mapping the results frequency index to a value in Hz. samples_per_code : float The number of samples corresponding to one code length. code_length : int, optional The number of chips in the chipping code. Defaults to the GPS C/A code value of 1023. """ from mpl_toolkits.mplot3d import Axes3D samples_per_chip = samples_per_code / code_length fig = plt.figure() ax = fig.add_subplot(111, projection='3d') code_phases = np.arange(samples_per_code) / samples_per_chip X, Y = np.meshgrid(code_phases, freqs) ax.plot_surface(X[:], Y[:], powers[:], cmap=plt.cm.RdYlBu_r, linewidth=0) ax.set_title("Acquisition") ax.set_xlabel("Code phase (chips)") ax.set_xbound(0, code_length) ax.set_ylabel("Doppler shift (Hz)") ax.set_ybound(freqs[0], freqs[-1]) ax.set_zlabel("Correlation magnitude") fig.tight_layout() def main(): import argparse import peregrine.acquisition parser = argparse.ArgumentParser() parser.add_argument("file", help="the acquisition results file to analyse") args = parser.parse_args() acq_results = peregrine.acquisition.load_acq_results(args.file) acq_table(acq_results) snr_bars(acq_results) plt.show() if __name__ == "__main__": main()
gpl-3.0
pyspace/pyspace
pySPACE/resources/dataset_defs/performance_result.py
1
76012
""" Tabular listing data sets, parameters and a huge number of performance metrics Store and load the performance results of an operation from a csv file, select subsets of this results or for create various kinds of plots **Special Static Methods** :merge_performance_results: Merge result*.csv files when classification fails or is aborted. :repair_csv: Wrapper function for whole csv repair process when classification fails or is aborted. """ from itertools import cycle try: # import packages for plotting import pylab import matplotlib.pyplot import matplotlib # uncomment for nice latex output # pylab.rc('text', usetex=True) # font = {'family': 'serif', # 'size': 14} # pylab.rc('font', **font) except: pass try: # import packages for plotting error bars import scipy.stats except: pass from collections import defaultdict import numpy import os import glob # imports for storing import yaml import warnings import logging # tools import pySPACE.tools.csv_analysis as csv_analysis from pySPACE.tools.yaml_helpers import python2yaml # base class from pySPACE.resources.dataset_defs.base import BaseDataset from pySPACE.tools.filesystem import get_author # roc imports import cPickle # load roc points from operator import itemgetter class PerformanceResultSummary(BaseDataset): """ Classification performance results summary For the identifiers some syntax rules hold to make some distinction: 1. Parameters/Variables start and end with `__`. These identifiers define the processing differences of the entries. Altogether the corresponding values build a unique key of each row. 2. Normal metrics start with a Big letter and continue normally with small letters except AUC. 3. Meta metrics like training metrics, LOO metrics or soft metrics start with small letters defining the category followed by a `-` and continue with the detailed metric name. 4. Meta information like chosen optimal parameters can be separated from metrics and variables using `~~` at beginning and end of the information name. This class can load a result tabular (namely the results.csv file) using the factory method :func:`from_csv`. Furthermore, the method :func:`project_onto` allows to select a subset of the result collection where a parameter takes on a certain value. The class contains various methods for plotting the loaded results. These functions are used by the analysis operation and by the interactive analysis GUI. Mainly result collections are loaded for :mod:`~pySPACE.missions.operations.comp_analysis`, :mod:`~pySPACE.missions.operations.analysis` and as best alternative with the :mod:`~pySPACE.run.gui.performance_results_analysis`. They can be build e.g. with the :mod:`~pySPACE.missions.nodes.sink.classification_performance_sink` nodes, with :ref:`MMLF <tutorial_interface_to_mmlf>` or with :class:`~pySPACE.missions.operations.weka_classification.WekaClassificationOperation`. The metrics as result of :mod:`~pySPACE.missions.nodes.sink.classification_performance_sink` nodes are calculated in the :mod:`~pySPACE.resources.dataset_defs.metric` dataset module. .. todo:: Access in result collection via indexing ndarray with one dimension for each parameter. Entries are indexes in list. So the corresponding values can be accessed very fast. .. todo:: Faster, memory efficient loading is needed. Pickling or new data structure? The class constructor expects the following **arguments**: :data: A dictionary that contains a mapping from an attribute (e.g. accuracy) to a list of values taken by this attribute. An entry is the entirety of all i-th values over all dict-values :tmp_pathlist: List of files to be deleted after successful storing When constructed via `from_multiple_csv` all included csv files can be deleted after the collection is stored. Therefore the parameter `delete` has to be active. (*optional, default:None*) :delete: Switch for deleting files in `tmp_pathlist` after collection is stored. (*optional, default: False*) :Author: Mario M. Krell ([email protected]) """ def __init__(self, data=None, dataset_md=None, dataset_dir=None, csv_filename=None, **kwargs): super(PerformanceResultSummary, self).__init__() if csv_filename and not dataset_dir: # csv_filename is expected to be a path dataset_dir="" self.delete = False self.tmp_pathlist = None if dataset_md != None: self.meta_data.update(dataset_md) if data != None: self.data = data elif dataset_dir != None: # load data if csv_filename != None: # maybe it's not results.csv but it's definitely only one file self.data = PerformanceResultSummary.from_csv(os.path.join(dataset_dir, csv_filename)) elif os.path.isfile(os.path.join(dataset_dir,"results.csv")): # delegate to from_csv_method csv_file_path = os.path.join(dataset_dir,"results.csv") self.data = PerformanceResultSummary.from_csv(csv_file_path) else: # multiple csv_files self.data, self.tmp_pathlist = \ PerformanceResultSummary.from_multiple_csv(dataset_dir) self.delete = True # update meta data try: splits = max(map(int,self.data["__Key_Fold__"])) runs = max(map(int,self.data["__Key_Run__"]))+1 except: warnings.warn('Splits and runs not available!') else: self.meta_data.update({"splits": splits, "runs": runs}) else: # we have a problem self._log("Result tabular could not be created - data is missing!", level=logging.CRITICAL) warnings.warn("Result tabular could not be created - data is missing!") self.data = {} # modifier for getting general box plots in Gui if not self.data.has_key('None'): self.data['None'] = ['All'] * len(self.data.values()[0]) self.identifiers = self.data.keys() # indexed version of the data self.data_dict = None self.transform() @staticmethod def from_csv(csv_file_path): """ Loading data from the csv file located under *csv_file_path* """ # # pickle loading # try: # if csv_file_path.endswith("pickle"): # f = open(csv_file_path, "rb") # elif csv_file_path.endswith("csv"): # f = open(csv_file_path[:-3] + "pickle", 'rb') # res=cPickle.load(f) # f.close() # return res # except IOError: # pass data_dict = csv_analysis.csv2dict(csv_file_path) PerformanceResultSummary.translate_weka_key_schemes(data_dict) # # save better csv version # f = open(csv_file_path[:-3] + "pickle", "wb") # f.write(cPickle.dumps(res, protocol=2)) # f.close() return data_dict @staticmethod def from_multiple_csv(input_dir): """ All csv files in the only function parameter 'input_dir' are combined to just one result collection Deleting of files will be done in the store method, *after* the result is stored successfully. """ # A list of all result files (one per classification process) pathlist = glob.glob(os.path.join(input_dir, "results_*")) if len(pathlist) == 0: warnings.warn( 'No files in the format "results_*" found for merging results!') return result_dict = None # For all result files of the WEKA processes or hashed files for input_file_name in pathlist: # first occurrence if result_dict is None: result_dict = csv_analysis.csv2dict(input_file_name) PerformanceResultSummary.transfer_Key_Dataset_to_parameters( result_dict, input_file_name) else: result = csv_analysis.csv2dict(input_file_name) PerformanceResultSummary.transfer_Key_Dataset_to_parameters( result, input_file_name) csv_analysis.extend_dict(result_dict,result, retain_unique_items=True) PerformanceResultSummary.translate_weka_key_schemes(result_dict) return (result_dict, pathlist) def transform(self): """ Fix format problems like floats in metric columns and tuples instead of column lists """ for key in self.get_metrics(): if not type(self.data[key][0]) == float: try: l = [float(value) if not value == "" else 0 for value in self.data[key]] self.data[key] = l except: warnings.warn("Metric %s has entry %s not of type float."%( key,str(value) )) for key in self.identifiers: if not type(self.data[key]) == tuple: self.data[key] = tuple(self.data[key]) @staticmethod def merge_traces(input_dir): """ Merge and store the classification trace files in directory tree The collected results are stored in a common file in the *input_dir*. """ import cPickle traces = dict() long_traces = dict() save_long_traces = True sorted_keys = None # save merged files to delete them later merged_files = [] for dir_path, dir_names, files in os.walk(input_dir): for filename in files: if filename.startswith("trace_sp"): pass else: continue main_directory = dir_path.split(os.sep)[-3] # needed in transfer_Key_Dataset_to_parameters temp_key_dict = defaultdict(list) # add a temporal Key_Dataset, deleted in next step temp_key_dict["Key_Dataset"] = [main_directory] # read parameters from key dataset PerformanceResultSummary.transfer_Key_Dataset_to_parameters( temp_key_dict, input_file_name=os.path.join(dir_path, filename)) key_dict = dict([(key,value[0]) for key, value in temp_key_dict.items()]) # add run/split identifiers split_number = int(filename[8:-7]) # from trace_spX.pickle key_dict["__Key_Fold__"] = split_number # from persistency_runX run_number = int(dir_path.split(os.sep)[-2][15:]) key_dict["__Key_Run__"] = run_number # transfer keys to hashable tuple of values # the keys should always be the same if sorted_keys is None: sorted_keys = sorted(key_dict.keys()) traces["parameter_keys"] = sorted_keys long_traces["parameter_keys"] = sorted_keys identifier = [] for key in sorted_keys: identifier.append(key_dict[key]) # load the actual classification trace trace = cPickle.load(open(dir_path + os.sep + filename, 'rb')) traces[tuple(identifier)] = trace merged_files.append(dir_path + os.sep + filename) if save_long_traces: try: trace = cPickle.load(open(dir_path + os.sep +"long_"+ filename, 'rb')) long_traces[tuple(identifier)] = trace merged_files.append(dir_path + os.sep +"long_"+ filename) except IOError: save_long_traces = False # clean up if sorted_keys is not None: name = 'traces.pickle' result_file = open(os.path.join(input_dir, name), "wb") result_file.write(cPickle.dumps(traces, protocol=2)) result_file.close() if save_long_traces: name = 'long_traces.pickle' result_file = open(os.path.join(input_dir, name), "wb") result_file.write(cPickle.dumps(long_traces, protocol=2)) result_file.close() for temp_file in merged_files: os.remove(temp_file) @staticmethod def translate_weka_key_schemes(data_dict): """ Data dict is initialized as 'defaultdict(list)' and so the append function will work on non existing keys. """ if not data_dict.has_key("Key_Scheme"): return for i,value in data_dict["Key_scheme"].iter(): # Some special cases # For these cases we rewrite the value to be meaningful # Important parts of "Key_Scheme_Options" will be added to "Key_Scheme" # Furthermore we introduce numerous new variables to benchmark value = value.split(".")[-1] if value == "SMO": options = data_dict["Key_Scheme_options"][i] options = options.split() data_dict["__Classifier_Type__"].append(value) for token in options: # Search kernel type if token.count("supportVector") >=1: kernel_type = token.split(".")[-1] data_dict["Kernel_Type"].append(kernel_type) break # Search complexity for index, token in enumerate(options): if token.count("-C") >=1: complexity = options[index + 1] data_dict["__Complexity__"].append(complexity) # Add to value the complexity value += " C=%s" break if kernel_type == 'PolyKernel': # Search exponent in options of PolyKernel exponent = options[options.index("-E") + 1] if "\\" in exponent: exponent = exponent.split("\\")[0] #Add Kernel Type and Exponent to value data_dict["__Kernel_Exponent__"].append(exponent) if not exponent == "0": value += " %s Exp=%s" % (kernel_type, exponent) else: value += " linear" # unimportant parameter data_dict["__Kernel_Gamma__"].append(0.0) elif kernel_type == 'RBFKernel': # Search gamma in options of RBFKernel gamma = options[options.index("-G") + 1] if "\\" in gamma: gamma = gamma.split("\\")[0] data_dict["__Kernel_Gamma__"].append(gamma) value += " %s G=%s" % (kernel_type, gamma) # unimportant parameter data_dict["__Kernel_Exponent__"].append(0.0) else: #TODO: Warning: unknown kernel data_dict["__Kernel_Exponent__"].append(0.0) data_dict["__Kernel_Gamma__"].append(0.0) # parameters used additionally in libsvm data_dict["__Kernel_Offset__"].append(0.0) data_dict["__Kernel_Weight__"].append(0.0) # LibSVM works the same way as SMO and comes with WEKA. # For NodeChainOperations a better version is integrated in C++ # It has more options, especially to weight the classes, to make oversampling unnecessary # When using nonlinear kernels, # one should consider the influence of the offset and for polynomial k. the scaling factor gamma. elif value == "LibSVM": options = data_dict["Key_Scheme_options"][i] weight = options.split("-W")[-1] options = options.split() for index, token in enumerate(options): if token.count("-S") >=1: # 0 -- C-SVC # 1 -- nu-SVC # 2 -- one-class SVM # 3 -- epsilon-SVR # 4 -- nu-SVR classifier = options[index + 1] if classifier == "0": classifier ="C_CVC" data_dict["__Classifier_Type__"].append(classifier) value += " %s" % (classifier) elif token.count("-K") >=1: # 0 -- linear: u'*v # 1 -- polynomial: (gamma*u'*v + coef0)^degree # 2 -- radial basis function: exp(-gamma*|u-v|^2) # 3 -- sigmoid: tanh(gamma*u'*v + coef0) kernel = options[index + 1] if kernel == "0": kernel = "linear" elif kernel == "1": kernel = "polynomial" elif kernel == "2": kernel = "RBF" elif kernel == "3": kernel = "sigmoid" data_dict["__Kernel_Type__"].append(kernel) value += " %s" % (kernel) elif token.count("-C") >=1: complexity = options[index + 1] data_dict["__Complexity__"].append(complexity) value += " C=%s" % (complexity) elif token.count("-D") >=1: degree = options[index + 1] data_dict["__Kernel_Exponent__"].append(degree) if not degree == "0": value += " Exp=%s" % (degree) elif token.count("-G") >=1: gamma = options[index + 1] data_dict["__Kernel_Gamma__"].append(gamma) if not gamma == "0.0": value += " G=%s" % (gamma) elif token.count("-R") >=1: coef0 = options[index + 1] data_dict["__Kernel_Offset__"].append(coef0) if not coef0 == "0.0": value += " c0=%s" % (coef0) elif token.count("W")>=1: if "\\" in weight: weight = weight.split("\\\"")[1] data_dict["__Kernel_Weight__"].append(weight) if not weight == "1.0 1.0": value += " W=%s" % (weight) else: # TODO: Warning: unknown classifier # All parameters of the two integrated classifier to make analysis operation compatible with other classifiers data_dict["__Kernel_Type__"].append(value) data_dict["__Complexity__"].append(0.0) data_dict["__Kernel_Exponent__"].append(0.0) data_dict["__Kernel_Gamma__"].append(0.0) data_dict["__Kernel_Offset__"].append(0.0) data_dict["__Kernel_Weight__"].append(0.0) del data_dict["Key_Scheme"] ## Done @staticmethod def merge_performance_results(input_dir, delete_files=False): """Merge result*.csv files when classification fails or is aborted. Use function with the pathname where the csv-files are stored. E.g., merge_performance_results('/Users/seeland/collections/20100812_11_18_58') **Parameters** :input_dir: Contains a string with the path where csv files are stored. :delete_files: controls if the csv-files will be removed after merging has finished (optional, default: False) :Author: Mario Krell :Created: 2011/09/21 """ collection = PerformanceResultSummary(dataset_dir=input_dir) collection.delete = delete_files collection.store(input_dir) @staticmethod def repair_csv(path, num_splits=None, default_dict=None, delete_files=True): """Wrapper function for whole csv repair process when classification fails or is aborted. This function performs merge_performance_results, reporting and reconstruction of missing conditions, and a final merge. As a result two files are written: results.csv and repaired_results.csv to the path specified. **Parameters** :path: String containing the path where the classification results are stored. This path is also used for storing the resulting csv files. :num_splits: Number of splits used for classification. If not specified this information is read out from the csv file of the merge_performance_results procedure. (optional, default: None) :default_dict: A dictionary specifying default values for missing conditions. This dictionary can e.g. be constructed using empty_dict(csv_dict) and subsequent modification, e.g. default_dict['Metric'].append(0). This parameter is used in reconstruct_failures. (optional, default: None) :delete_files: Controls if unnecessary files are deleted by merge_performance_results and check_op_libSVM. (optional, default: True) :Author: Mario Krell, Sirko Straube :Created: 2010/11/09 """ PerformanceResultSummary.merge_performance_results(path, delete_files=delete_files) filename= path + '/results.csv' csv_dict = csv_analysis.csv2dict(filename) if not num_splits: num_splits = int(max(csv_dict['__Key_Fold__'])) oplist= csv_analysis.check_op_libSVM(path, delete_file=delete_files) failures = csv_analysis.report_failures(oplist, num_splits) final_dict= csv_analysis.reconstruct_failures(csv_dict, failures, num_splits, default_dict=default_dict) csv_analysis.dict2csv(path + '/repaired_results.csv', final_dict) def store(self, result_dir, name = "results", s_format = "csv", main_metric="Balanced_accuracy"): """ Stores this collection in the directory *result_dir*. In contrast to *dump* this method stores the collection not in a single file but as a whole directory structure with meta information etc. **Parameters** :result_dir: The directory in which the collection will be stored :name: The name of the file in which the result file is stored. (*optional, default: 'results'*) :s_format: The format in which the actual data sets should be stored. (*optional, default: 'csv'*) :main_metric: Name of the metric used for the shortened stored file. If no metric is given, no shortened version is stored. (*optional, default: 'Balanced_accuracy'*) """ author = get_author() # Update the meta data self.update_meta_data({"type" : "result", "storage_format": s_format, "author" : author}) # file name in which the operation's results will be stored output_file_name = os.path.join(result_dir,name + "." + s_format) self._log("\tWriting results to %s ..." % output_file_name) if s_format == "csv": #Store meta data BaseDataset.store_meta_data(result_dir,self.meta_data) self.data.pop("None",False) csv_analysis.dict2csv(output_file_name, self.data) if main_metric in self.identifiers: reduced_data = dict() for key in self.get_variables(): try: if len(list(set(self.data[key]))) > 1: reduced_data[key] = self.data[key] except TypeError: if len(list(set([python2yaml(item) for item in self.data[key]]))) > 1: reduced_data[key] = self.data[key] reduced_data[main_metric] = self.data[main_metric] metric_list = ["True_positives","True_negatives","False_negatives","False_positives"] for metric in [x for x in self.data.keys() if x in metric_list]: reduced_data[metric]=self.data[metric] output_file_name = os.path.join(result_dir,"short_"+name + "." + s_format) csv_analysis.dict2csv(output_file_name, reduced_data) else: self._log("The format %s is not supported!"%s_format, level=logging.CRITICAL) return if self.delete: for temp_result_file in self.tmp_pathlist: os.remove(temp_result_file) @staticmethod def transfer_Key_Dataset_to_parameters(data_dict, input_file_name=None): if not data_dict.has_key("Key_Dataset"): return data_dict for key_dataset in data_dict["Key_Dataset"]: if not "}{" in key_dataset and not input_file_name is None: hash_name = input_file_name.split("test_") if len(hash_name) > 1: hash_name = hash_name[-1][:-4] else: hash_name = input_file_name.split("train_")[-1][:-4] # hash_name = input_file_name.split("_")[-1][:-4] result_folder_name = os.path.dirname(input_file_name) with open(os.path.join(result_folder_name, hash_name, "metadata.yaml")) as metadata_file: metadata = yaml.load(metadata_file) if "input_collection_name" in metadata: warnings.warn( "'input_collection_name' needs to be renamed to 'input_dataset_name'!") metadata["input_dataset_name"]=metadata.pop("input_collection_name") parameter_settings = metadata.get("parameter_setting", {}) hide_parameters = metadata.get("hide_parameters", []) if not "__Dataset__" in data_dict: data_dict["__Dataset__"] = [] data_dict["__hash__"] = [] for key in parameter_settings: if key not in hide_parameters: data_dict[key] = [] data_dict["__Dataset__"].append( metadata["input_dataset_name"].strip(os.sep).split( os.sep)[-1].strip("'}{").split("}{")[0]) for key in parameter_settings: if key not in hide_parameters: data_dict[key].append(parameter_settings[key]) data_dict["__hash__"].append(hash_name.strip("}{")) else: components = (key_dataset.strip("}{")).split("}{") for index, attribute in enumerate(components): if index >= 1: # for compatibility with old data: index 1 might be the # specification file name if index == 1 and not ("#" in attribute): attribute_key = "__Template__" attribute_value = attribute continue try: attribute_key, attribute_value = attribute.split("#") except ValueError: warnings.warn("\tValueError when splitting attributes!") print "ValueError in result collection when splitting attributes." continue elif index == 0: attribute_key = "__Dataset__" attribute_value = attribute data_dict[attribute_key].append(attribute_value) del data_dict["Key_Dataset"] return data_dict def project_onto(self, proj_parameter, proj_values): """ Project result collection onto a subset that fulfills all criteria Project the result collection onto the rows where the parameter *proj_parameter* takes on the value *proj_value*. """ if type(proj_values) != list: proj_values = [proj_values] projected_dict = defaultdict(list) entries_added = False for i in range(len(self.data[proj_parameter])): if self.data[proj_parameter][i] in proj_values: entries_added = True for column_key in self.identifiers: # will leave projection column in place if there are # still different values for this parameter if column_key == proj_parameter: if len(proj_values) == 1: continue projected_dict[column_key].append(self.data[column_key][i]) # If the projected_dict is empty we continue if not entries_added: return return PerformanceResultSummary(projected_dict) def get_gui_metrics(self): """ Returns the columns in data that correspond to metrics for visualization. This excludes 'Key_Dataset' and gui variables of the tabular, """ metrics = [] variables = self.get_gui_variables() for key in self.identifiers: if not(key in variables) or key in ['Key_Dataset']: metrics.append(key) # Add variables, that can be interpreted as metrics if type(key) is str and \ (key in ['__Num_Retained_Features__', '__Num_Eliminated_Sensors__'] or key.startswith("~") or "Pon" in key) \ and len(list(set(self.data[key]))) > 1 \ and not (key in metrics): metrics.append(key) return metrics def get_metrics(self): """ Returns the columns in data that are real metrics """ metrics = [] variables = self.get_variables() for key in self.identifiers: if not type(key) is str: warnings.warn("Wrong key (%s) provided with type %s." % (str(key), type(key))) elif not(key in variables) and not key.startswith("~") and \ not key == "None": metrics.append(key) # Add variables, that can be interpreted as metrics if key in ['__Num_Retained_Features__', '__Num_Eliminated_Sensors__']: metrics.append(key) return metrics def get_gui_variables(self): """ Returns the column headings that correspond to 'variables' to be visualized in the Gui """ variables = [] for key in self.identifiers: if not type(key) is str: warnings.warn("Wrong key (%s) provided with type %s." % (str(key), type(key))) # special key to get box plots without parameter dependencies elif (key == 'None' or ( (key in ['__Dataset__', 'Kernel_Weight', 'Complexity', 'Kernel_Exponent', 'Kernel_Gamma', 'Kernel_Offset', 'Classifier_Type', 'Kernel_Type', 'Key_Scheme', 'Key_Run', 'Key_Fold', 'Run', 'Split'] or key.startswith('__') or key.startswith('~')) and len(list(set(self.data[key]))) > 1)): variables.append(key) return variables def get_variables(self): """ Variables are marked with '__' Everything else are metrics, meta metrics, or processing information. """ variables = [] for key in self.identifiers: if not type(key) is str: warnings.warn("Wrong key (%s) provided with type %s." % (str(key), type(key))) elif key.startswith('__'): variables.append(key) return variables def get_parameter_values(self, parameter): """ Returns the values that *parameter* takes on in the data """ return set(self.data[parameter]) def get_nominal_parameters(self, parameters): """ Returns a generator over the nominal parameters in *parameters* .. note:: Nearly same code as in *get_numeric_parameters*. Changes in this method should be done also to this method. """ for parameter in parameters: try: # Try to create a float of the first value of the parameter [float(value) for value in self.data[parameter]] # No exception and enough entities thus a numeric attribute if len(set(self.data[parameter])) >= 5: continue else: yield parameter except ValueError: # This is not a numeric parameter, treat it as nominal yield parameter except KeyError: # This exception should inform the user about wrong parameters # in his YAML file. import warnings warnings.warn('The parameter "' + parameter + '" is not contained in the PerformanceResultSummary') except IndexError: # This exception informs the user about wrong parameters in # his YAML file. import warnings warnings.warn('The parameter "' + parameter + '" has no values.') def get_numeric_parameters(self, parameters): """ Returns a generator over the numeric parameters in *parameters* .. note:: Nearly same code as in *get_nominal_parameters*. Changes in this method should be done also to this method. """ for parameter in parameters: try: # Try to create a float of the first value of the parameter float(self.data[parameter][0]) # No exception and enough entities thus a numeric attribute if len(set(self.data[parameter]))>=5: yield parameter else: continue except ValueError: # This is not a numeric parameter, treat it as nominal continue except KeyError: #"This exception should inform the user about wrong parameters # in his YAML file." import warnings warnings.warn('The parameter "' + parameter + '" is not contained in the PerformanceResultSummary') except IndexError: #This exception informs the user about wrong parameters in # his YAML file. import warnings warnings.warn('The parameter "' + parameter + '" has no values.') def dict2tuple(self,dictionary): """ Return dictionary values sorted by key names """ keys=sorted(dictionary.keys()) l=[] for key in keys: l.append(dictionary[key]) return tuple(l) def get_indexed_data(self): """ Take the variables and create a dictionary with variable entry tuples as keys """ # index keys self.variables = sorted(self.get_variables()) # other keys keys = [key for key in self.identifiers if not key in self.variables] # final dictionary data_dict = {} for i in range(len(self.data[self.variables[0]])): var_dict = {} perf_dict = {} # read out variable values for variable in self.variables: value = self.data[variable][i] var_dict[variable] = value perf_dict[variable] = value # read out the rest for key in keys: perf_dict[key] = self.data[key][i] # save it into dictionary by mapping values to tuple as key/index data_dict[self.dict2tuple(var_dict)] = perf_dict return data_dict def get_performance_entry(self, search_dict): """ Get the line in the data, which corresponds to the `search_dict` """ search_tuple = self.dict2tuple(search_dict) if self.data_dict is None: self.data_dict = self.get_indexed_data() return self.data_dict.get(search_tuple,None) def plot_numeric(self, axes, x_key, y_key, conditions=[]): """ Creates a plot of the y_key for the given numeric parameter x_key. A function that allows to create a plot that visualizes the effect of differing one variable onto a second one (e.g. the effect of differing the number of features onto the accuracy). **Expected arguments** :axes: The axes into which the plot is written :x_key: The key of the dictionary whose values should be used as values for the x-axis (the independent variable) :y_key: The key of the dictionary whose values should be used as values for the y-axis, i.e. the dependent variable :conditions: A list of functions that need to be fulfilled in order to use one entry in the plot. Each function has to take two arguments: The data dictionary containing all entries and the index of the entry that should be checked. Each condition must return a boolean value. """ colors = cycle(['b', 'g', 'r', 'c', 'm', 'y', 'k', 'brown', 'gray']) linestyles = cycle(['-']*9 + ['--']*9 + [':']*9 + ['-.']*9) curves = defaultdict(lambda : defaultdict(list)) for i in range(len(self.data[x_key])): # Check is this particular entry should be used if not all(condition(self.data, i) for condition in conditions): continue # Get the value of the independent variable for this entry x_value = float(self.data[x_key][i]) # Attach the corresponding value to the respective partition if y_key.count("#") == 0: y_value = float(self.data[y_key][i]) else: # A weighted cost function weight1, value_key1, weight2, value_key2 = y_key.split("#") y_value = float(weight1) * float(self.data[value_key1][i]) \ + float(weight2) * float(self.data[value_key2][i]) curves[y_key][x_value].append(y_value) for y_key, curve in curves.iteritems(): curve_x = [] curve_y = [] for x_value, y_values in sorted(curve.iteritems()): curve_x.append(x_value) curve_y.append(y_values) # Create an error bar plot axes.errorbar(curve_x, map(numpy.mean, curve_y), yerr=map(scipy.stats.sem, curve_y), elinewidth = 1, capsize = 5, label=y_key, color = colors.next(), linestyle=linestyles.next()) axes.set_xlabel(x_key) if y_key.count("#") == 0: axes.set_ylabel(y_key.strip("_").replace("_", " ")) else: axes.set_ylabel("%s*%s+%s*%s" % tuple(y_key.split("#"))) # display nearly invisible lines in the back for better orientation axes.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) axes.set_axisbelow(True) # Return figure name return "_".join([y_key, x_key]) def plot_numeric_vs_numeric(self, axes, axis_keys, value_key, scatter=True): """ Contour plot of the value_key for the two numeric parameters axis_keys. A function that allows to create a contour plot that visualizes the effect of differing two variables on a third one (e.g. the effect of differing the lower and upper cutoff frequency of a bandpass filter onto the accuracy). **Parameters** :axes: The axes into which the plot is written :axis_keys: The two keys of the dictionary that are assumed to have \ an effect on a third variable (the dependent variable) :value_key: The dependent variables whose values determine the \ color of the contour plot :scatter: Plot nearly invisible dots behind the real data points. (*optional, default: True*) """ assert(len(axis_keys) == 2) # Determine a sorted list of the values taken on by the axis keys: x_values = set([float(value) for value in self.data[axis_keys[0]]]) x_values = sorted(list(x_values)) y_values = set([float(value) for value in self.data[axis_keys[1]]]) y_values = sorted(list(y_values)) #Done # We cannot create a contour plot if one dimension is only 1d if len(x_values) == 1 or len(y_values) == 1: return # Create a meshgrid of them X, Y = pylab.meshgrid(x_values, y_values) # Determine the average value taken on by the dependent variable # for each combination of the the two source variables Z = numpy.zeros((len(x_values),len(y_values))) counter = numpy.zeros((len(x_values),len(y_values))) for i in range(len(self.data[axis_keys[0]])): x_value = float(self.data[axis_keys[0]][i]) y_value = float(self.data[axis_keys[1]][i]) if value_key.count("#") == 0: performance_value = float(self.data[value_key][i]) else: # A weighted cost function weight1, value_key1, weight2, value_key2 = value_key.split("#") performance_value = float(weight1) * float(self.data[value_key1][i]) \ + float(weight2) * float(self.data[value_key2][i]) Z[x_values.index(x_value), y_values.index(y_value)] += performance_value counter[x_values.index(x_value), y_values.index(y_value)] += 1 Z = Z / counter # Create the plot for this specific dependent variable cf = axes.contourf(X, Y, Z.T, 100) axes.get_figure().colorbar(cf) if scatter: axes.scatter(X,Y,marker='.',facecolors='None', alpha=0.1) axes.set_xlabel(axis_keys[0].strip("_").replace("_", " ")) axes.set_ylabel(axis_keys[1].strip("_").replace("_", " ")) axes.set_xlim(min(x_values), max(x_values)) axes.set_ylim(min(y_values), max(y_values)) if value_key.count("#") == 0: axes.set_title(value_key.strip("_").replace("_", " ")) else: axes.set_title("%s*%s+%s*%s" % tuple(value_key.split("#"))) # Return figure name return "%s_%s_vs_%s" % (value_key, axis_keys[0].strip("_").replace("_", " "), axis_keys[1].strip("_").replace("_", " ")) def plot_numeric_vs_nominal(self, axes, numeric_key, nominal_key, value_key, dependent_BA_plot=False, relative_plot=False, minimal=False): """ Plot for comparison of several different values of a nominal parameter with mean and standard error A function that allows to create a plot that visualizes the effect of varying one numeric parameter onto the performance for several different values of a nominal parameter. **Parameters** :axes: The axes into which the plot is written :numeric_key: The numeric parameter whose effect (together with the nominal parameter) onto the dependent variable should be investigated. :nominal_key: The nominal parameter whose effect (together with the numeric parameter) onto the dependent variable should be investigated. :value_key: The dependent variable whose values determine the color of the contour plot :dependent_BA_plot: If the `value_key` contains *time* or *iterations* and this variable is True, the value is replaced by *Balanced_Accuracy* and the `nominal_key` by the `value_key`. The point in the graph are constructed by averaging over the old `nominal parameter`. (*optional, default: False*) :relative_plot: The first `nominal_key` value (alphabetic ordering) is chosen and the other parameters are averaged relative to this parameter, to show by which factor they change the metric. Therefore a clean tabular is needed with only relevant variables correctly named and where each parameter is compared with the other. Relative plots and dependent_BA plots can be combined. (*optional, default: False*) :minimal: Do not plot labels and legends. (*optional, default: False*) """ colors = cycle(['b','r', 'g', 'c', 'm', 'y', 'k', 'brown', 'gray','orange']) linestyles = cycle(['-']*10 + ['-.']*10 + [':']*10 + ['--']*10) eps=10**(-6) # Determine a mapping from the value of the nominal value to a mapping # from the value of the numeric value to the achieved performance: # nominal -> (numeric -> performance) if (("time" in value_key) or ("Time" in value_key) or ("iterations" in value_key)) and dependent_BA_plot: dependent_key = value_key value_key = "Balanced_accuracy" else: dependent_key = False relative_plot = False if relative_plot: rel_par = sorted(list(set(self.data[nominal_key])))[0] rel_vars = self.get_variables() curves = defaultdict(lambda: defaultdict(list)) for i in range(len(self.data[nominal_key])): curve_key = self.data[nominal_key][i] parameter_value = float(self.data[numeric_key][i]) if value_key.count("#") == 0: performance_value = float(self.data[value_key][i]) else: # A weighted cost function weight1, value_key1, weight2, value_key2 = value_key.split("#") performance_value = \ float(weight1) * float(self.data[value_key1][i]) \ + float(weight2) * float(self.data[value_key2][i]) if relative_plot: if curve_key == rel_par: factor = 1 performance_value = 1 if dependent_key: dependent_factor = self.data[dependent_key][i] else: rel_vars_dict = dict() for var in rel_vars: rel_vars_dict[var] = self.data[var][i] rel_vars_dict[nominal_key] = rel_par rel_data = self.get_performance_entry(rel_vars_dict) if value_key.count("#") == 0: try: factor = float(rel_data[value_key]) except TypeError,e: print rel_data print value_key print rel_vars_dict print rel_vars_dict.keys() raise(e) else: # A weighted cost function weight1, value_key1, weight2, value_key2 = value_key.split("#") factor = float(weight1) * float(rel_data[value_key1]) \ + float(weight2) * float(rel_data[value_key2]) dependent_factor = rel_data.get(dependent_key,1) if dependent_factor == 0: dependent_factor = eps warnings.warn("Dependent key %s got zero value in reference %s."%( str(dependent_key),rel_par )) if factor == 0: factor = eps warnings.warn("Value key %s got zero value in reference %s."%( str(value_key),rel_par )) else: factor = 1 dependent_factor = 1 if not dependent_key: curves[curve_key][parameter_value].append(performance_value/factor) else: curves[curve_key][parameter_value].append((performance_value/factor,float(self.data[dependent_key][i])/float(dependent_factor))) # Iterate over all values of the nominal parameter and create one curve # in the plot showing the mapping from numeric parameter to performance # for this particular value of the nominal parameter for curve_key, curve in sorted(curves.iteritems()): curve_key = curve_key.strip("_").replace("_", " ") x_values = [] y_values = [] y_errs = [] x_errs = [] for x_value, y_value in sorted(curve.iteritems()): if not dependent_key: x_values.append(x_value) # Plot the mean of all values of the performance for this # particular combination of nominal and numeric parameter y_values.append(pylab.mean(y_value)) y_errs.append(scipy.stats.sem(y_value)) x_errs = None else: # calculate mean and standard deviation # of metric and dependent parameter values and # use the dependent parameter as x_value # and the metric as y_value mean = numpy.mean(y_value,axis=0) metric_mean = mean[0] time_mean = mean[1] sem = scipy.stats.sem(y_value,axis=0) metric_sem = sem[0] time_sem = sem[1] x_values.append(time_mean) y_values.append(metric_mean) x_errs.append(time_sem) y_errs.append(metric_sem) if len(x_values)<101: if minimal: axes.errorbar( x_values, y_values, xerr = x_errs, yerr=y_errs, # label=curve_key, color=colors.next(), linestyle=linestyles.next(), # lw=2, elinewidth=0.8, capsize=3,marker='x') lw=4, elinewidth=0.8, capsize=3,marker='x') else: axes.errorbar( x_values, y_values, xerr = x_errs, yerr=y_errs, label=curve_key, color=colors.next(), linestyle=linestyles.next(), lw=2, elinewidth=0.8, capsize=3,marker='x') else: axes.errorbar(x_values, y_values, xerr = x_errs, yerr=y_errs, label=curve_key, color = colors.next(), linestyle=linestyles.next(), lw=1, elinewidth=0.04,capsize=1) if dependent_key: numeric_key = dependent_key.strip("_") + " averaged dependent on " + numeric_key.strip("_") if relative_plot: value_key = value_key.strip("_")+" relative to "+ rel_par if minimal: axes.get_xaxis().set_visible(False) axes.get_yaxis().set_visible(False) else: axes.set_xlabel(numeric_key.strip("_").replace("_", " ")) if value_key.count("#") == 0: axes.set_ylabel(value_key.strip("_").replace("_", " ")) else: axes.set_ylabel("%s*%s+%s*%s" % tuple(value_key.split("#"))) # display nearly invisible lines in the back for better orientation axes.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) axes.set_axisbelow(True) prop = matplotlib.font_manager.FontProperties(size='xx-small') prop = matplotlib.font_manager.FontProperties(size='small') if not nominal_key=="None": lg=axes.legend(prop=prop, loc=0,fancybox=True,title=nominal_key.strip("_").replace("_", " ")) lg.get_frame().set_facecolor('0.90') lg.get_frame().set_alpha(.3) # axes.set_xscale('log') # Return figure name return "%s_%s_vs_%s" % (value_key, nominal_key, numeric_key) def plot_nominal(self, axes, x_key, y_key): """ Creates a boxplot of the y_key for the given nominal parameter x_key. A function that allows to create a plot that visualizes the effect of differing one nominal variable onto a second one (e.g. the effect of differing the classifier onto the accuracy). **Expected arguments** :axes: The axes into which the plot is written :x_key: The key of the dictionary whose values should be used as values for the x-axis (the independent variables) :y_key: The key of the dictionary whose values should be used as values for the y-axis, i.e. the dependent variable """ # Create the plot for this specific dependent variable values = defaultdict(list) for i in range(len(self.data[x_key])): parameter_value = self.data[x_key][i] if y_key.count("#") == 0: performance_value = float(self.data[y_key][i]) else: # A weighted cost function weight1, y_key1, weight2, y_key2 = y_key.split("#") performance_value = float(weight1) * float(self.data[y_key1][i]) \ + float(weight2) * float(self.data[y_key2][i]) values[parameter_value].append(performance_value) values = sorted(values.items(), reverse=True) # the bottom of the subplots of the figure axes.figure.subplots_adjust(bottom = 0.3) axes.boxplot(map(lambda x: x[1], values)) axes.set_xticklabels(map(lambda x: x[0], values)) matplotlib.pyplot.setp(axes.get_xticklabels(), rotation=-90) matplotlib.pyplot.setp(axes.get_xticklabels(), size='small') axes.set_xlabel(x_key.replace("_", " ")) # display nearly invisible lines in the back for better orientation axes.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) axes.set_axisbelow(True) if y_key.count("#") == 0: axes.set_ylabel(y_key.replace("_", " ")) else: axes.set_ylabel("%s*%s+%s*%s" % tuple(y_key.split("#"))) # Return figure name return "%s_%s" % (y_key, x_key) def plot_nominal_vs_nominal(self, axes, nominal_key1, nominal_key2, value_key): """ Plot comparison of several different values of two nominal parameters A function that allows to create a plot that visualizes the effect of varying one nominal parameter onto the performance for several different values of another nominal parameter. **Expected arguments** :axes: The axes into which the plot is written :nominal_key1: The name of the first nominal parameter whose effect shall be investigated. This parameter determines the x-axis. :nominal_key2: The second nominal parameter. This parameter will be represented by a different color per value. :value_key: The name of the dependent variable whose values determines the y-values in the plot. """ from matplotlib.patches import Polygon, Rectangle # boxColors = ['b','r', 'g', 'c', 'm', 'y', 'k', 'brown', 'gray'] boxColors = ['steelblue','burlywood', 'crimson', 'olive', 'cadetblue', 'cornflowerblue', 'darkgray', 'darkolivegreen', 'goldenrod', 'lightcoral', 'lightsalmon', 'lightseagreen', 'lightskyblue', 'lightslategray', 'mediumseagreen', 'mediumturquoise', 'mediumvioletred', 'navy', 'orange', 'tan', 'teal', 'yellowgreen'] # Gathering of the data plot_data = defaultdict(lambda: defaultdict(list)) for i in range(len(self.data[nominal_key2])): nom1_key = self.data[nominal_key1][i] nom2_key = self.data[nominal_key2][i] if value_key.count("#") == 0: performance_value = float(self.data[value_key][i]) else: # A weighted cost function weight1, value_key1, weight2, value_key2 = value_key.split("#") performance_value = \ float(weight1) * float(self.data[value_key1][i]) \ + float(weight2) * float(self.data[value_key2][i]) plot_data[nom1_key][nom2_key].append(performance_value) # Prepare data for boxplots box_data = [] nom1_keys = [] for nom1_key, curve in sorted(plot_data.iteritems(), reverse=True): x_values = [] y_values = [] nom1_keys.append(nom1_key) for x_value, y_values in sorted(curve.iteritems()): box_data.append(y_values) # Make sure we always have enough colors available nom2_keys = sorted(plot_data[nom1_key].keys()) while len(nom2_keys) > len(boxColors): boxColors += boxColors # the bottom of the subplots of the figure axes.figure.subplots_adjust(bottom=0.3) # position the boxes in the range of +-0.25 around {1,2,3,...} box_positions=[] for i in range(len(nom1_keys)): if len(nom2_keys) > 1: box_positions.extend([i+1 - .25 + a*.5/(len(nom2_keys)-1) for a in range(len(nom2_keys))]) else: box_positions.extend([i+1]) # actual plotting; width of the boxes: w = .5 if len(nom2_keys) == 1 else .35/(len(nom2_keys)-1) bp = axes.boxplot(box_data, positions=box_positions, widths=w) # design of boxplot components matplotlib.pyplot.setp(bp['boxes'], color='black') matplotlib.pyplot.setp(bp['whiskers'], color='black') matplotlib.pyplot.setp(bp['fliers'], color='grey', marker='+', mew=1.5) # use the nom1 keys as x-labels axes.set_xticks([i+1 for i in range(len(nom1_keys))], minor=False) axes.set_xticklabels(nom1_keys) matplotlib.pyplot.setp(axes.get_xticklabels(), rotation=-90) matplotlib.pyplot.setp(axes.get_xticklabels(), size='small') axes.set_xlabel(nominal_key1.replace("_", " ")) # Now fill the boxes with desired colors by superposing polygons numBoxes = len(nom1_keys)*len(nom2_keys) medians = range(numBoxes) # get all box coordinates for i in range(numBoxes): box = bp['boxes'][i] boxX = [] boxY = [] for j in range(5): boxX.append(box.get_xdata()[j]) boxY.append(box.get_ydata()[j]) boxCoords = zip(boxX,boxY) # cycle through predefined colors k = i % len(nom2_keys) # draw polygon boxPolygon = Polygon(boxCoords, facecolor=boxColors[k]) axes.add_patch(boxPolygon) # Now draw the median lines back over what we just filled in med = bp['medians'][i] medianX = [] medianY = [] for j in range(2): medianX.append(med.get_xdata()[j]) medianY.append(med.get_ydata()[j]) axes.plot(medianX, medianY, 'k') medians[i] = medianY[0] # Draw a legend by hand. As the legend is hand made, it is not easily # possible to change it's location or size - sorry for inconvenience. # width of the axes and xy-position of legend element #offset dxy = [axes.get_xlim()[1]-axes.get_xlim()[0], axes.get_ylim()[1]-axes.get_ylim()[0]] xy = lambda offset: [axes.get_xlim()[0] + .8*dxy[0], axes.get_ylim()[0] + .03*dxy[1] + .05*dxy[1]*offset] # Background rectangle for the legend. rect = Rectangle([xy(0)[0]-.02*dxy[0], xy(0)[1]-.02*dxy[1]], .2*dxy[0],(.05*(len(nom2_keys)+1)+0.0175)*dxy[1], facecolor='lightgrey', fill=True, zorder=5) # legend "title" axes.text(xy(len(nom2_keys))[0]+.03*dxy[0], xy(len(nom2_keys))[1]+.005*dxy[1], nominal_key2.strip("_").replace("_", " "), color='black', weight='roman', size='small', zorder=6) axes.add_patch(rect) # rect and text for each nom2-Value for key in range(len(nom2_keys)): rect = Rectangle(xy(key),.05*dxy[0],.035*dxy[1], facecolor=boxColors[len(nom2_keys)-key-1], zorder=6) axes.add_patch(rect) axes.text(xy(key)[0]+.06*dxy[0], xy(key)[1]+.005*dxy[1], nom2_keys[len(nom2_keys)-key-1], color='black', weight='roman', size='small', zorder=6) # Add a horizontal grid to the plot axes.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) axes.set_axisbelow(True) if value_key.count("#") == 0: axes.set_ylabel(value_key.strip("_").replace("_", " ")) else: axes.set_ylabel("%s*%s+%s*%s" % tuple(value_key.split("#"))) # display nearly invisible lines in the back for better orientation axes.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) axes.set_axisbelow(True) # Return figure name return "%s_%s_vs_%s" % (value_key, nominal_key1, nominal_key2) def plot_histogram(self, axes, metric, numeric_parameters, nominal_parameters, average_runs = True): """ Plots a histogram of the values the given metric takes on in data Plots histogram for *metric* in which each parameter combination from *numeric_parameters* and *nominal_parameters* corresponds to one value (if *average_runs* == True) or each run corresponds to one value (if *average_runs* == False). The plot is written into *axes*. """ if average_runs == False: metric_values = map(float, self.data[metric]) else: # Merge all parameters in one list parameters = list(numeric_parameters) parameters.extend(nominal_parameters) # Sort metric values according to the parameterization for the # specific value all_values = defaultdict(list) for i in range(len(self.data[metric])): key = tuple(self.data[parameter][i] for parameter in parameters) all_values[key].append(float(self.data[metric][i])) # Combine the mean value of the metric for each parameter # combination metric_values = [numpy.mean(value) for value in all_values.itervalues()] # Plot and store the histogram axes.hist(metric_values, histtype='stepfilled', align='left') axes.set_ylim((0, pylab.ylim()[1])) axes.set_xlabel(metric if average_runs == False else "Mean %s" % metric) axes.set_ylabel('Occurrences') # Return figure name return "%s_histogram" % metric ############################################################################### class ROCCurves(object): """ Class for plotting ROC curves """ def __init__(self, base_path): self.roc_curves = self._load_all_curves(base_path) self.colors = cycle(['b', 'g', 'r', 'c', 'm', 'y', 'k', 'brown', 'gray']) def is_empty(self): """ Return whether there are no loaded ROC curves """ return len(self.roc_curves) == 0 def plot(self, axis, selected_variable, projection_parameter, fpcost=1.0, fncost=1.0, collection=None): # Draw cost grid into the background for cost in numpy.linspace(0.0, fpcost+fncost, 25): axis.plot([0.0, 1.0], [1-cost/fncost, 1-(cost-fpcost)/fncost], c='gray', lw=0.5) # # If we do not average: # if selected_variable == None: # # Delegate to plot_all method # return self.plot_all(axis, projection_parameter, collection) # Draw an additional "axis" (the identity) to show skew/centroid of # ROC curves axis.plot([0.0, 1.0], [0.0, 1.0], c='k', lw=2) for k in numpy.linspace(0.0, 1.0, 11): axis.plot([k+0.01, k-0.01], [k-0.01, k+0.01], c='k', lw=1) # Create a color dict color_dict = defaultdict(lambda : self.colors.next()) # Some helper function def create_roc_function(roc_curve): """ Create a function mapping FPR onto TPR for the given roc_curve """ def roc_function(query_fpr): """ Map FPR onto TPR using linear interpolation on ROC curve.""" if query_fpr == 0.0: return 0.0 # Avoid division by zero last_fpr, last_tpr = 0.0, 0.0 for fpr, tpr in roc_curve: if fpr >= query_fpr: return (query_fpr - last_fpr) / (fpr - last_fpr) * \ (tpr - last_tpr) + last_tpr last_fpr, last_tpr = fpr, tpr return tpr return roc_function def create_weight_function(x_values, mean_curve): """ Creates a function that computes the orthogonal distance of the ROC curve from the identity axis at an arbitrary (k,k) """ def weight_function(k): """ Creates a function that computes the orthogonal distance of the ROC curve from the identity axis at (k,k) """ if k == 0.0: return 0.0 # Avoid division by zero for fpr, tpr in zip(x_values, mean_curve): if 0.5 * fpr + 0.5 * tpr >= k: return 2 * (0.5 * fpr - 0.5 * tpr)**2 return 0.0 return weight_function # Create mapping parameterization -> ROC functions roc_fct_dict = defaultdict(list) for parametrization, roc_curve in self._project_onto_subset( self.roc_curves, projection_parameter): key = parametrization[selected_variable] \ if selected_variable is not None and selected_variable \ in parametrization.keys() else "Global" roc_fct_dict[key].append(create_roc_function(roc_curve)) # Iterate over all parametrization and average ROC functions and compute # centroid for param, roc_fcts in roc_fct_dict.iteritems(): x_values = numpy.linspace(0.0, 1.0, 500) roc_values = [] for x in x_values: roc_values.append([roc_fct(x) for roc_fct in roc_fcts]) mean_curve = map(numpy.mean, roc_values) # Compute centroid of the mean ROC curve over the identity axis weight_fct = create_weight_function(x_values, mean_curve) k_values = numpy.linspace(0.0, 1.0, 100) weights = [weight_fct(k) for k in numpy.linspace(0.0, 1.0, 100)] centroid = sum(k_values[i]*weights[i] for i in range(len(k_values))) \ / sum(weights) if selected_variable == None: color = self.colors.next() else: color = color_dict[param] axis.plot(x_values, mean_curve, c=color, label=str(param).replace("_"," ").strip()) axis.errorbar(x_values[::25], mean_curve[::25], yerr=map(scipy.stats.sem, roc_values)[::25], c=color, fmt='.') axis.plot([centroid], [centroid], c=color, marker='h') axis.set_xlabel("False positive rate") axis.set_ylabel("True positive rate") axis.set_xlim(0.0, 1.0) axis.set_ylim(0.0, 1.0) axis.legend(loc=0) if selected_variable is not None: axis.set_title(str(selected_variable).replace("_"," ").strip()) def plot_all(self, axis, projection_parameter, collection=None): """ Plot all loaded ROC curves after projecting onto subset. """ # Iterate over all ROC curves for parametrization that are selected # by projection_parameter. for parametrization, roc_curve in self._project_onto_subset(self.roc_curves, projection_parameter): color = self.colors.next() axis.plot(map(itemgetter(0), roc_curve), map(itemgetter(1), roc_curve), c=color) # fpr = eval(collection.data['False_positive_rate'][0]) # tpr = eval(collection.data['True_positive_rate'][0]) # axis.scatter([fpr], [tpr], c='k', s=50) axis.set_xlabel("False positive rate") axis.set_ylabel("True positive rate") axis.set_xlim(0.0, 1.0) axis.set_ylim(0.0, 1.0) axis.legend(loc=0) def _load_all_curves(self, dir): """ Load all ROC curves located in the persistency dirs below *dir* """ all_roc_curves = [] for subdir in [name for name in os.listdir(dir) if os.path.isdir(os.path.join(dir, name))]: if not subdir.startswith("{"): continue parametrization = {} tokens = subdir.strip("}{").split("}{") parametrization["__Dataset__"] = tokens[0] for token in tokens[1:]: # TODO if anything else then node chain template # has no # this will fail; # delete as soon as no more data with node chain templates # in folder names circulate if '#' not in token: parametrization["__Template__"] = token continue key, value = token.split("#") try: value = eval(value) except: pass parametrization[key] = value for run_dir in glob.glob(dir + os.sep + subdir + os.sep + "persistency_run*"): run = eval(run_dir.split("persistency_run")[1]) for split_file in glob.glob(run_dir + os.sep + "PerformanceSinkNode" + os.sep + "roc_points_sp*.pickle"): split = eval(split_file.split("roc_points_sp")[1].strip(".pickle")) rs_parametrization = dict(parametrization) rs_parametrization["__Key_Run__"] = run rs_parametrization["__Run__"] = "__Run_"+str(run) rs_parametrization["__Key_Fold__"] = split rs_parametrization["__Split__"] = "__Split_"+str(split) roc_curves = cPickle.load(open(split_file, 'r')) all_roc_curves.append((rs_parametrization, roc_curves[0])) return all_roc_curves def _project_onto_subset(self, roc_curves, constraints): """ Retain only roc_curves that fulfill the given constraints. """ for parametrization, roc_curve in roc_curves: # Check constraints constraints_fulfilled = True for constraint_key, constraint_values in constraints.iteritems(): if not constraint_key in parametrization or not \ parametrization[constraint_key] in constraint_values: constraints_fulfilled = False break if constraints_fulfilled: yield (parametrization, roc_curve)
bsd-3-clause
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/tests/io/msgpack/test_extension.py
2
2179
import array import pandas.io.msgpack as msgpack from pandas.io.msgpack import ExtType from .common import frombytes, tobytes def test_pack_ext_type(): def p(s): packer = msgpack.Packer() packer.pack_ext_type(0x42, s) return packer.bytes() assert p(b"A") == b"\xd4\x42A" # fixext 1 assert p(b"AB") == b"\xd5\x42AB" # fixext 2 assert p(b"ABCD") == b"\xd6\x42ABCD" # fixext 4 assert p(b"ABCDEFGH") == b"\xd7\x42ABCDEFGH" # fixext 8 assert p(b"A" * 16) == b"\xd8\x42" + b"A" * 16 # fixext 16 assert p(b"ABC") == b"\xc7\x03\x42ABC" # ext 8 assert p(b"A" * 0x0123) == b"\xc8\x01\x23\x42" + b"A" * 0x0123 # ext 16 assert ( p(b"A" * 0x00012345) == b"\xc9\x00\x01\x23\x45\x42" + b"A" * 0x00012345 ) # ext 32 def test_unpack_ext_type(): def check(b, expected): assert msgpack.unpackb(b) == expected check(b"\xd4\x42A", ExtType(0x42, b"A")) # fixext 1 check(b"\xd5\x42AB", ExtType(0x42, b"AB")) # fixext 2 check(b"\xd6\x42ABCD", ExtType(0x42, b"ABCD")) # fixext 4 check(b"\xd7\x42ABCDEFGH", ExtType(0x42, b"ABCDEFGH")) # fixext 8 check(b"\xd8\x42" + b"A" * 16, ExtType(0x42, b"A" * 16)) # fixext 16 check(b"\xc7\x03\x42ABC", ExtType(0x42, b"ABC")) # ext 8 check(b"\xc8\x01\x23\x42" + b"A" * 0x0123, ExtType(0x42, b"A" * 0x0123)) # ext 16 check( b"\xc9\x00\x01\x23\x45\x42" + b"A" * 0x00012345, ExtType(0x42, b"A" * 0x00012345), ) # ext 32 def test_extension_type(): def default(obj): print("default called", obj) if isinstance(obj, array.array): typecode = 123 # application specific typecode data = tobytes(obj) return ExtType(typecode, data) raise TypeError("Unknown type object {obj!r}".format(obj)) def ext_hook(code, data): print("ext_hook called", code, data) assert code == 123 obj = array.array("d") frombytes(obj, data) return obj obj = [42, b"hello", array.array("d", [1.1, 2.2, 3.3])] s = msgpack.packb(obj, default=default) obj2 = msgpack.unpackb(s, ext_hook=ext_hook) assert obj == obj2
apache-2.0
SkyHenryk/KBL-ANN
KBL-ANN/mining/kboDataPreprocessing.py
1
6248
# -*- coding: utf-8 -*- import csv import numpy as np import pandas as pd class kboDataPreprocessing: matchYears = [2016] dataFolder = "../data" def start(self): allStatus, allMatchResult = self.loadAllMatchResult(self.matchYears) preprocessedData = self.preprocessingData(allStatus, allMatchResult) self.saveInCsv(preprocessedData) def loadAllMatchResult(self, matchYears): allStatus = {} allMatchResult = None for matchYearIndex, matchYear in enumerate(matchYears): for statusYearIndex in [0, 1]: statusYear = self.loadStatusYear(matchYear,statusYearIndex) allStatus[statusYear] = {} for statusType in ["player", "team"]: allStatus[statusYear][statusType] = {} for statusPosition in ["batter", "pitcher"]: allStatus[statusYear][statusType][statusPosition] = {} with open(f"{self.dataFolder}/kbo_{statusType}_{statusPosition}_{statusYear}.csv", newline='') as kboStatus: kboStatusReader = csv.reader(kboStatus, delimiter=',', quotechar='|') for status in kboStatusReader: allStatus[statusYear][statusType][statusPosition][status[0]] = status[-7:] with open(f"{self.dataFolder}/kbo_result_{matchYear}.csv", newline='') as kboResult: kboResultReader = csv.reader(kboResult, delimiter=',', quotechar='|') kboResult = np.array(list(kboResultReader)) kboResult = np.insert(kboResult, 0, matchYear, axis=1) kboResult = np.insert(kboResult, 1, statusYear, axis=1) kboResult = np.insert(kboResult, 2, matchYear - int(statusYear), axis=1) if allMatchResult is None: allMatchResult = kboResult else: allMatchResult = np.concatenate((allMatchResult, kboResult), axis=0) return allStatus, allMatchResult def loadStatusYear(self, matchYear, statusYearIndex): return str(matchYear - statusYearIndex) def preprocessingData(self, allStatus, allMatchResult): matchYear = allMatchResult[:, 0] statusYear = allMatchResult[:, 2] matchMonth = [x.split(".")[0] for x in allMatchResult[:, 3]] homeTeamName = allMatchResult[:, 5] scoreData = allMatchResult[:, 6] awayTeamName = allMatchResult[:, 7] matchYearOneHot = self.oneHot(matchYear) statusYearOneHot = self.oneHot(statusYear) matchMonthOneHot = self.oneHot(matchMonth) homeTeamOneHot = self.oneHot(homeTeamName) awayTeamOneHot = self.oneHot(awayTeamName) scoreDif = np.array([int(x.split(":")[0]) - int(x.split(":")[1]) for x in scoreData]) scoreWinningRate = np.vectorize(self.calculateWinningRate)(scoreDif) scoreWinningRateOneShot = self.oneHot(scoreWinningRate) allPlayerStatus = self.loadStatusByPlayerName(allStatus, allMatchResult) preprocessedData = np.concatenate( (statusYearOneHot, matchYearOneHot, matchMonthOneHot, homeTeamOneHot, awayTeamOneHot, allPlayerStatus, scoreWinningRateOneShot), axis=1) np.random.shuffle(preprocessedData) return preprocessedData def calculateWinningRate(self, x): if x > 1: return 1 else: return 0 def loadStatusByPlayerName(self, allStatus, allMatchResult): allMatchStatus = [] for MatchResult in allMatchResult: matchStatus = [] yearStatus = allStatus.get(MatchResult[1]) yearPlayerStatus = yearStatus.get("player") yearTeamStatus = yearStatus.get("team") if yearPlayerStatus is None: continue yearPlayerPitcherStatus = yearPlayerStatus.get("pitcher") yearPlayerBatterStatus = yearPlayerStatus.get("batter") if yearTeamStatus is None: continue yearTeamPitcherStatus = yearTeamStatus.get("pitcher") yearTeamBatterStatus = yearTeamStatus.get("batter") homePicherStatus = yearPlayerPitcherStatus.get(MatchResult[8].strip()) if homePicherStatus is None: homePicherStatus = yearTeamPitcherStatus.get(MatchResult[5].strip()) matchStatus += homePicherStatus awayPicherStatus = yearPlayerPitcherStatus.get(MatchResult[28].strip()) if awayPicherStatus is None: awayPicherStatus = yearTeamPitcherStatus.get(MatchResult[7].strip()) matchStatus += awayPicherStatus for homeBatterIndex in range(9, 28): homeBatterStatus = yearPlayerBatterStatus.get(MatchResult[homeBatterIndex].strip()) if homeBatterStatus is None: homeBatterStatus = yearTeamBatterStatus.get(MatchResult[5].strip()) matchStatus += homeBatterStatus for awayBatterIndex in range(29, 38): awayBatterStatus = yearPlayerBatterStatus.get(MatchResult[awayBatterIndex].strip()) if awayBatterStatus is None: awayBatterStatus = yearTeamBatterStatus.get(MatchResult[7].strip()) matchStatus += awayBatterStatus matchStatus = [self.setFloat(x) for x in matchStatus] allMatchStatus.append(matchStatus) if len(allMatchStatus) == 0: allMatchStatus = [[0]] return np.array(allMatchStatus) def oneHot(self,x): result = pd.get_dummies(pd.Series(x)).values return result def setFloat(self, x): if " -" in x: if len(x) > 2: result = float(x[2:]) * -1 else: result = float(0) else: result = float(x) return result def saveInCsv(self, data): with open(f'{self.dataFolder}/kbo_data.csv',"w") as f: writer = csv.writer(f) writer.writerows(list(data)) if __name__ == "__main__": kboDataPreprocessing().start()
mit
deeplook/bokeh
bokeh/compat/mpl.py
32
2834
"Supporting objects and functions to convert Matplotlib objects into Bokeh." #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from warnings import warn import matplotlib.pyplot as plt from .bokeh_exporter import BokehExporter from .bokeh_renderer import BokehRenderer #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- def to_bokeh(fig=None, name=None, server=None, notebook=None, pd_obj=True, xkcd=False): """ Uses bokeh to display a Matplotlib Figure. You can store a bokeh plot in a standalone HTML file, as a document in a Bokeh plot server, or embedded directly into an IPython Notebook output cell. Parameters ---------- fig: matplotlib.figure.Figure The figure to display. If None or not specified, then the current figure will be used. name: str (default=None) If this option is provided, then the Bokeh figure will be saved into this HTML file, and then a web browser will be used to display it. server: str (default=None) Fully specified URL of bokeh plot server. Default bokeh plot server URL is "http://localhost:5006" or simply "deault" notebook: bool (default=False) Return an output value from this function which represents an HTML object that the IPython notebook can display. You can also use it with a bokeh plot server just specifying the URL. pd_obj: bool (default=True) The implementation asumes you are plotting using the pandas. You have the option to turn it off (False) to plot the datetime xaxis with other non-pandas interfaces. xkcd: bool (default=False) If this option is True, then the Bokeh figure will be saved with a xkcd style. """ if name is not None: warn("Use standard output_file(...) from bokeh.io") if server is not None: warn("Use standard output_server(...) from bokeh.io") if notebook is not None: warn("Use standard output_notebook() from bokeh.io") if fig is None: fig = plt.gcf() renderer = BokehRenderer(pd_obj, xkcd) exporter = BokehExporter(renderer) exporter.run(fig) return renderer.fig
bsd-3-clause
lseman/pylspm
pylspm/boot.py
1
7810
# PyLS-PM bootstraping Library # Author: Laio Oriel Seman # Creation: November 2016 from multiprocessing import Pool, freeze_support import pandas as pd import numpy as np from .pylspm import PyLSpm import random from scipy.stats.stats import pearsonr class PyLSboot(object): def do_work(self, item): amostra = self.data.sample( len(self.data), replace=True, random_state=(np.random.RandomState())) # amostra.index = range(len(self.data)) # print(amostra) try: bootstraping = PyLSpm(amostra, self.LVcsv, self.Mcsv, self.scheme, self.reg, self.h, self.maximo, self.stopCriterion) if (bootstraping.convergiu == 1): return [bootstraping.path_matrix.values] except: return None def do_work_jk(self, item): amostra = self.data.ix[self.indices[item]].reset_index(drop=True) bootstraping = PyLSpm(amostra, self.LVcsv, self.Mcsv, self.scheme, self.reg, self.h, self.maximo, self.stopCriterion) if (bootstraping.convergiu == 1): return [bootstraping.path_matrix.values] def do_work_ga(self, item): output = pd.DataFrame(self.population[item].genes) output.columns = ['Split'] dataSplit = pd.concat([self.data, output], axis=1) f1 = [] results = [] for i in range(self.nclusters): dataSplited = (dataSplit.loc[dataSplit['Split'] == i]).drop('Split', axis=1) dataSplited.index = range(len(dataSplited)) try: results.append(PyLSpm(dataSplited, self.LVcsv, self.Mcsv, self.scheme, self.reg, 0, 50, HOC='true')) resid = results[i].residuals()[3] f1.append(resid) except: f1.append(10000) print((1 / np.sum(f1))) return (1 / np.sum(f1)) def do_work_pso(self, item): output = pd.DataFrame(self.population[item].position) output.columns = ['Split'] dataSplit = pd.concat([self.data, output], axis=1) f1 = [] results = [] for i in range(self.nclusters): dataSplited = (dataSplit.loc[dataSplit['Split'] == i]).drop('Split', axis=1) dataSplited.index = range(len(dataSplited)) try: results.append(PyLSpm(dataSplited, self.LVcsv, self.Mcsv, self.scheme, self.reg, 0, 50, HOC='true')) resid = results[i].residuals()[3] f1.append(resid) except: f1.append(10000) print((1 / np.sum(f1))) return (1 / np.sum(f1)) def do_work_tabu(self, item): output = pd.DataFrame(self.population[item]) output.columns = ['Split'] dataSplit = pd.concat([self.data, output], axis=1) f1 = [] results = [] for i in range(self.nclusters): dataSplited = (dataSplit.loc[dataSplit['Split'] == i]).drop('Split', axis=1) dataSplited.index = range(len(dataSplited)) try: results.append(PyLSpm(dataSplited, self.LVcsv, self.Mcsv, self.scheme, self.reg, 0, 50, HOC='true')) resid = results[i].residuals()[3] f1.append(resid) except: f1.append(10000) cost = (np.sum(f1)) print(1 / cost) return [self.population[item], cost] def do_work_permuta(self, item): node = np.zeros(self.lenT) while np.count_nonzero(node) != self.leng2: node[random.randint(0, self.lenT - 1)] = 1 output = pd.DataFrame(node) output.columns = ['Split'] dataSplit = pd.concat([self.dataPermuta, output], axis=1) results = [] f1 = [] f2 = [] f3 = [] try: for i in range(2): dataSplited = (dataSplit.loc[dataSplit['Split'] == i]).drop('Split', axis=1) dataSplited.index = range(len(dataSplited)) results.append(PyLSpm(dataSplited, self.LVcsv, self.Mcsv, self.scheme, self.reg, 0, 50, HOC='false')) outer_weights = results[i].outer_weights f1.append(outer_weights) singleResult = PyLSpm(self.dataPermuta, self.LVcsv, self.Mcsv, self.scheme, self.reg, 0, 50, HOC='false') fscores = singleResult.fscores for i in range(2): f2_ = fscores.loc[(dataSplit['Split'] == i)] f2.append(np.mean(f2_)) f3.append(np.var(f2_)) score1 = pd.DataFrame.dot(results[0].normaliza(dataSplited), f1[0]) score2 = pd.DataFrame.dot(results[0].normaliza(dataSplited), f1[1]) c = [] for i in range(len(score1.columns)): c_ = np.corrcoef(score1.ix[:, i], score2.ix[:, i]) c.append(c_[0][1]) mean_diff = f2[0] - f2[1] log_diff = np.log(f3[0]) - np.log(f3[1]) # print(log_diff.values) return c, mean_diff, log_diff except: return None def __init__(self, br, cores, dados, LVcsv, Mcsv, scheme='path', reg='ols', h=0, maximo=300, stopCrit=7, nclusters=2, population=None, g1=None, g2=None, segmento=None): self.data = dados self.LVcsv = LVcsv self.Mcsv = Mcsv self.maximo = maximo self.stopCriterion = stopCrit self.h = h self.br = br self.cores = cores self.scheme = scheme self.reg = reg self.nclusters = nclusters self.population = population self.g1 = g1 self.g2 = g2 self.segmento = segmento def boot(self): p = Pool(self.cores) result = p.map(self.do_work, range(self.br)) p.close() p.join() return result def jk(self): p = Pool(self.cores) base = np.arange(0, len(self.data)) self.indices = list(np.delete(base, i) for i in base) result = p.map(self.do_work_jk, range(self.br)) p.close() p.join() return result def permuta(self): self.dataPermuta = (self.data.loc[(self.data[self.segmento] == self.g1) | ( self.data[self.segmento] == self.g2)]).drop(self.segmento, axis=1) self.dataPermuta.index = range(len(self.dataPermuta)) self.leng1 = len(self.data.loc[(self.data[self.segmento] == self.g1)]) self.leng2 = len(self.data.loc[(self.data[self.segmento] == self.g2)]) self.lenT = self.leng1 + self.leng2 p = Pool(self.cores) result = p.map(self.do_work_permuta, range(self.br)) p.close() p.join() return result def gac(self): p = Pool(self.cores) result = p.map(self.do_work_ga, range(self.br)) p.close() p.join() return result def pso(self): p = Pool(self.cores) result = p.map(self.do_work_pso, range(self.br)) p.close() p.join() return result def tabu(self): p = Pool(self.cores) result = p.map(self.do_work_tabu, range(self.br)) p.close() p.join() return result
mit
petteyg/intellij-community
python/helpers/pydev/pydevd.py
15
100137
#IMPORTANT: pydevd_constants must be the 1st thing defined because it'll keep a reference to the original sys._getframe from __future__ import nested_scopes # Jython 2.1 support import pydev_monkey_qt from pydevd_utils import save_main_module pydev_monkey_qt.patch_qt() import traceback from pydevd_frame_utils import add_exception_to_frame import pydev_imports from pydevd_breakpoints import * #@UnusedWildImport import fix_getpass from pydevd_comm import CMD_CHANGE_VARIABLE, \ CMD_EVALUATE_EXPRESSION, \ CMD_EXEC_EXPRESSION, \ CMD_GET_COMPLETIONS, \ CMD_GET_FRAME, \ CMD_GET_VARIABLE, \ CMD_GET_ARRAY, \ CMD_LIST_THREADS, \ CMD_REMOVE_BREAK, \ CMD_RUN, \ CMD_SET_BREAK, \ CMD_SET_NEXT_STATEMENT,\ CMD_STEP_INTO, \ CMD_STEP_OVER, \ CMD_STEP_RETURN, \ CMD_STEP_INTO_MY_CODE, \ CMD_THREAD_KILL, \ CMD_THREAD_RUN, \ CMD_THREAD_SUSPEND, \ CMD_RUN_TO_LINE, \ CMD_RELOAD_CODE, \ CMD_VERSION, \ CMD_CONSOLE_EXEC, \ CMD_ADD_EXCEPTION_BREAK, \ CMD_REMOVE_EXCEPTION_BREAK, \ CMD_LOAD_SOURCE, \ CMD_ADD_DJANGO_EXCEPTION_BREAK, \ CMD_REMOVE_DJANGO_EXCEPTION_BREAK, \ CMD_SMART_STEP_INTO,\ InternalChangeVariable, \ InternalGetCompletions, \ InternalEvaluateExpression, \ InternalConsoleExec, \ InternalGetFrame, \ InternalGetVariable, \ InternalGetArray, \ InternalTerminateThread, \ InternalRunThread, \ InternalStepThread, \ NetCommandFactory, \ PyDBDaemonThread, \ _queue, \ ReaderThread, \ SetGlobalDebugger, \ WriterThread, \ PydevdFindThreadById, \ PydevdLog, \ StartClient, \ StartServer, \ InternalSetNextStatementThread, \ ReloadCodeCommand, \ CMD_SET_PY_EXCEPTION, \ CMD_IGNORE_THROWN_EXCEPTION_AT,\ InternalGetBreakpointException, \ InternalSendCurrExceptionTrace,\ InternalSendCurrExceptionTraceProceeded,\ CMD_ENABLE_DONT_TRACE, \ CMD_GET_FILE_CONTENTS,\ CMD_SET_PROPERTY_TRACE, CMD_RUN_CUSTOM_OPERATION,\ InternalRunCustomOperation, CMD_EVALUATE_CONSOLE_EXPRESSION, InternalEvaluateConsoleExpression,\ InternalConsoleGetCompletions from pydevd_file_utils import NormFileToServer, GetFilenameAndBase import pydevd_file_utils import pydevd_vars import pydevd_vm_type import pydevd_tracing import pydevd_io from pydevd_additional_thread_info import PyDBAdditionalThreadInfo from pydevd_custom_frames import CustomFramesContainer, CustomFramesContainerInit import pydevd_dont_trace import pydevd_traceproperty from _pydev_imps import _pydev_time as time, _pydev_thread import _pydev_threading as threading import os import atexit SUPPORT_PLUGINS = not IS_JYTH_LESS25 PluginManager = None if SUPPORT_PLUGINS: from pydevd_plugin_utils import PluginManager if IS_PY3K: import pkgutil else: from _pydev_imps import _pydev_pkgutil_old as pkgutil threadingEnumerate = threading.enumerate threadingCurrentThread = threading.currentThread try: 'dummy'.encode('utf-8') # Added because otherwise Jython 2.2.1 wasn't finding the encoding (if it wasn't loaded in the main thread). except: pass LIB_FILE = 0 PYDEV_FILE = 1 DONT_TRACE = { # commonly used things from the stdlib that we don't want to trace 'Queue.py':LIB_FILE, 'queue.py':LIB_FILE, 'socket.py':LIB_FILE, 'weakref.py':LIB_FILE, '_weakrefset.py':LIB_FILE, 'linecache.py':LIB_FILE, 'threading.py':LIB_FILE, # thirs party libs that we don't want to trace '_pydev_pluginbase.py':PYDEV_FILE, '_pydev_pkgutil_old.py':PYDEV_FILE, '_pydev_uuid_old.py':PYDEV_FILE, #things from pydev that we don't want to trace '_pydev_execfile.py':PYDEV_FILE, '_pydev_jython_execfile.py':PYDEV_FILE, '_pydev_threading':PYDEV_FILE, '_pydev_Queue':PYDEV_FILE, 'django_debug.py':PYDEV_FILE, 'jinja2_debug.py':PYDEV_FILE, 'pydev_log.py':PYDEV_FILE, 'pydev_monkey.py':PYDEV_FILE, 'pydev_monkey_qt.py':PYDEV_FILE, 'pydevd.py':PYDEV_FILE, 'pydevd_additional_thread_info.py':PYDEV_FILE, 'pydevd_breakpoints.py':PYDEV_FILE, 'pydevd_comm.py':PYDEV_FILE, 'pydevd_console.py':PYDEV_FILE, 'pydevd_constants.py':PYDEV_FILE, 'pydevd_custom_frames.py':PYDEV_FILE, 'pydevd_dont_trace.py':PYDEV_FILE, 'pydevd_exec.py':PYDEV_FILE, 'pydevd_exec2.py':PYDEV_FILE, 'pydevd_file_utils.py':PYDEV_FILE, 'pydevd_frame.py':PYDEV_FILE, 'pydevd_import_class.py':PYDEV_FILE, 'pydevd_io.py':PYDEV_FILE, 'pydevd_psyco_stub.py':PYDEV_FILE, 'pydevd_referrers.py':PYDEV_FILE, 'pydevd_reload.py':PYDEV_FILE, 'pydevd_resolver.py':PYDEV_FILE, 'pydevd_save_locals.py':PYDEV_FILE, 'pydevd_signature.py':PYDEV_FILE, 'pydevd_stackless.py':PYDEV_FILE, 'pydevd_traceproperty.py':PYDEV_FILE, 'pydevd_tracing.py':PYDEV_FILE, 'pydevd_utils.py':PYDEV_FILE, 'pydevd_vars.py':PYDEV_FILE, 'pydevd_vm_type.py':PYDEV_FILE, 'pydevd_xml.py':PYDEV_FILE, } if IS_PY3K: # if we try to trace io.py it seems it can get halted (see http://bugs.python.org/issue4716) DONT_TRACE['io.py'] = LIB_FILE # Don't trace common encodings too DONT_TRACE['cp1252.py'] = LIB_FILE DONT_TRACE['utf_8.py'] = LIB_FILE connected = False bufferStdOutToServer = False bufferStdErrToServer = False remote = False from _pydev_filesystem_encoding import getfilesystemencoding file_system_encoding = getfilesystemencoding() # Hack for https://sw-brainwy.rhcloud.com/tracker/PyDev/363 (i.e.: calling isAlive() can throw AssertionError under some circumstances) # It is required to debug threads started by start_new_thread in Python 3.4 _temp = threading.Thread() if hasattr(_temp, '_is_stopped'): # Python 3.4 has this def isThreadAlive(t): try: return not t._is_stopped except: return t.isAlive() elif hasattr(_temp, '_Thread__stopped'): # Python 2.7 has this def isThreadAlive(t): try: return not t._Thread__stopped except: return t.isAlive() else: # Haven't checked all other versions, so, let's use the regular isAlive call in this case. def isThreadAlive(t): return t.isAlive() del _temp #======================================================================================================================= # PyDBCommandThread #======================================================================================================================= class PyDBCommandThread(PyDBDaemonThread): def __init__(self, pyDb): PyDBDaemonThread.__init__(self) self._py_db_command_thread_event = pyDb._py_db_command_thread_event self.pyDb = pyDb self.setName('pydevd.CommandThread') def OnRun(self): for i in xrange(1, 10): time.sleep(0.5) #this one will only start later on (because otherwise we may not have any non-daemon threads if self.killReceived: return if self.dontTraceMe: self.pyDb.SetTrace(None) # no debugging on this thread try: while not self.killReceived: try: self.pyDb.processInternalCommands() except: PydevdLog(0, 'Finishing debug communication...(2)') self._py_db_command_thread_event.clear() self._py_db_command_thread_event.wait(0.5) except: pydev_log.debug(sys.exc_info()[0]) #only got this error in interpreter shutdown #PydevdLog(0, 'Finishing debug communication...(3)') def killAllPydevThreads(): threads = DictKeys(PyDBDaemonThread.created_pydb_daemon_threads) for t in threads: if hasattr(t, 'doKillPydevThread'): t.doKillPydevThread() #======================================================================================================================= # CheckOutputThread # Non-daemonic thread guaranties that all data is written even if program is finished #======================================================================================================================= class CheckOutputThread(PyDBDaemonThread): def __init__(self, pyDb): PyDBDaemonThread.__init__(self) self.pyDb = pyDb self.setName('pydevd.CheckAliveThread') self.daemon = False pyDb.output_checker = self def OnRun(self): if self.dontTraceMe: disable_tracing = True if pydevd_vm_type.GetVmType() == pydevd_vm_type.PydevdVmType.JYTHON and sys.hexversion <= 0x020201f0: # don't run untraced threads if we're in jython 2.2.1 or lower # jython bug: if we start a thread and another thread changes the tracing facility # it affects other threads (it's not set only for the thread but globally) # Bug: http://sourceforge.net/tracker/index.php?func=detail&aid=1870039&group_id=12867&atid=112867 disable_tracing = False if disable_tracing: pydevd_tracing.SetTrace(None) # no debugging on this thread while not self.killReceived: time.sleep(0.3) if not self.pyDb.haveAliveThreads() and self.pyDb.writer.empty() \ and not has_data_to_redirect(): try: pydev_log.debug("No alive threads, finishing debug session") self.pyDb.FinishDebuggingSession() killAllPydevThreads() except: traceback.print_exc() self.killReceived = True self.pyDb.checkOutputRedirect() def doKillPydevThread(self): self.killReceived = True #======================================================================================================================= # PyDB #======================================================================================================================= class PyDB: """ Main debugging class Lots of stuff going on here: PyDB starts two threads on startup that connect to remote debugger (RDB) The threads continuously read & write commands to RDB. PyDB communicates with these threads through command queues. Every RDB command is processed by calling processNetCommand. Every PyDB net command is sent to the net by posting NetCommand to WriterThread queue Some commands need to be executed on the right thread (suspend/resume & friends) These are placed on the internal command queue. """ def __init__(self): SetGlobalDebugger(self) pydevd_tracing.ReplaceSysSetTraceFunc() self.reader = None self.writer = None self.output_checker = None self.quitting = None self.cmdFactory = NetCommandFactory() self._cmd_queue = {} # the hash of Queues. Key is thread id, value is thread self.breakpoints = {} self.file_to_id_to_line_breakpoint = {} self.file_to_id_to_plugin_breakpoint = {} # Note: breakpoints dict should not be mutated: a copy should be created # and later it should be assigned back (to prevent concurrency issues). self.break_on_uncaught_exceptions = {} self.break_on_caught_exceptions = {} self.readyToRun = False self._main_lock = _pydev_thread.allocate_lock() self._lock_running_thread_ids = _pydev_thread.allocate_lock() self._py_db_command_thread_event = threading.Event() CustomFramesContainer._py_db_command_thread_event = self._py_db_command_thread_event self._finishDebuggingSession = False self._terminationEventSent = False self.signature_factory = None self.SetTrace = pydevd_tracing.SetTrace self.break_on_exceptions_thrown_in_same_context = False self.ignore_exceptions_thrown_in_lines_with_ignore_exception = True self.project_roots = None # Suspend debugger even if breakpoint condition raises an exception SUSPEND_ON_BREAKPOINT_EXCEPTION = True self.suspend_on_breakpoint_exception = SUSPEND_ON_BREAKPOINT_EXCEPTION # By default user can step into properties getter/setter/deleter methods self.disable_property_trace = False self.disable_property_getter_trace = False self.disable_property_setter_trace = False self.disable_property_deleter_trace = False #this is a dict of thread ids pointing to thread ids. Whenever a command is passed to the java end that #acknowledges that a thread was created, the thread id should be passed here -- and if at some time we do not #find that thread alive anymore, we must remove it from this list and make the java side know that the thread #was killed. self._running_thread_ids = {} self._set_breakpoints_with_id = False # This attribute holds the file-> lines which have an @IgnoreException. self.filename_to_lines_where_exceptions_are_ignored = {} #working with plugins (lazily initialized) self.plugin = None self.has_plugin_line_breaks = False self.has_plugin_exception_breaks = False # matplotlib support in debugger and debug console self.mpl_in_use = False self.mpl_hooks_in_debug_console = False self.mpl_modules_for_patching = {} def get_plugin_lazy_init(self): if self.plugin is None and SUPPORT_PLUGINS: self.plugin = PluginManager(self) return self.plugin def get_project_roots(self): if self.project_roots is None: roots = os.getenv('IDE_PROJECT_ROOTS', '').split(os.pathsep) pydev_log.debug("IDE_PROJECT_ROOTS %s\n" % roots) self.project_roots = roots def not_in_scope(self, filename): self.get_project_roots() filename = os.path.normcase(filename) for root in self.project_roots: root = os.path.normcase(root) if filename.startswith(root): return False return True def first_appearance_in_scope(self, trace): if trace is None or self.not_in_scope(trace.tb_frame.f_code.co_filename): return False else: trace = trace.tb_next while trace is not None: frame = trace.tb_frame if not self.not_in_scope(frame.f_code.co_filename): return False trace = trace.tb_next return True def haveAliveThreads(self): for t in threadingEnumerate(): if getattr(t, 'is_pydev_daemon_thread', False): #Important: Jython 2.5rc4 has a bug where a thread created with thread.start_new_thread won't be #set as a daemon thread, so, we also have to check for the 'is_pydev_daemon_thread' flag. #See: https://github.com/fabioz/PyDev.Debugger/issues/11 continue if isinstance(t, PyDBDaemonThread): pydev_log.error_once( 'Error in debugger: Found PyDBDaemonThread not marked with is_pydev_daemon_thread=True.\n') if isThreadAlive(t): if not t.isDaemon() or hasattr(t, "__pydevd_main_thread"): return True return False def FinishDebuggingSession(self): self._finishDebuggingSession = True def acquire(self): if PyDBUseLocks: self.lock.acquire() return True def release(self): if PyDBUseLocks: self.lock.release() return True def initializeNetwork(self, sock): try: sock.settimeout(None) # infinite, no timeouts from now on - jython does not have it except: pass self.writer = WriterThread(sock) self.reader = ReaderThread(sock) self.writer.start() self.reader.start() time.sleep(0.1) # give threads time to start def connect(self, host, port): if host: s = StartClient(host, port) else: s = StartServer(port) self.initializeNetwork(s) def getInternalQueue(self, thread_id): """ returns internal command queue for a given thread. if new queue is created, notify the RDB about it """ if thread_id.startswith('__frame__'): thread_id = thread_id[thread_id.rfind('|') + 1:] try: return self._cmd_queue[thread_id] except KeyError: return self._cmd_queue.setdefault(thread_id, _queue.Queue()) #@UndefinedVariable def postInternalCommand(self, int_cmd, thread_id): """ if thread_id is *, post to all """ if thread_id == "*": threads = threadingEnumerate() for t in threads: thread_id = GetThreadId(t) queue = self.getInternalQueue(thread_id) queue.put(int_cmd) else: queue = self.getInternalQueue(thread_id) queue.put(int_cmd) def checkOutputRedirect(self): global bufferStdOutToServer global bufferStdErrToServer if bufferStdOutToServer: initStdoutRedirect() self.checkOutput(sys.stdoutBuf, 1) #@UndefinedVariable if bufferStdErrToServer: initStderrRedirect() self.checkOutput(sys.stderrBuf, 2) #@UndefinedVariable def checkOutput(self, out, outCtx): '''Checks the output to see if we have to send some buffered output to the debug server @param out: sys.stdout or sys.stderr @param outCtx: the context indicating: 1=stdout and 2=stderr (to know the colors to write it) ''' try: v = out.getvalue() if v: self.cmdFactory.makeIoMessage(v, outCtx, self) except: traceback.print_exc() def init_matplotlib_in_debug_console(self): # import hook and patches for matplotlib support in debug console from pydev_import_hook import import_hook_manager for module in DictKeys(self.mpl_modules_for_patching): import_hook_manager.add_module_name(module, DictPop(self.mpl_modules_for_patching, module)) def init_matplotlib_support(self): # prepare debugger for integration with matplotlib GUI event loop from pydev_ipython.matplotlibtools import activate_matplotlib, activate_pylab, activate_pyplot, do_enable_gui # enable_gui_function in activate_matplotlib should be called in main thread. Unlike integrated console, # in the debug console we have no interpreter instance with exec_queue, but we run this code in the main # thread and can call it directly. class _MatplotlibHelper: _return_control_osc = False def return_control(): # Some of the input hooks (e.g. Qt4Agg) check return control without doing # a single operation, so we don't return True on every # call when the debug hook is in place to allow the GUI to run _MatplotlibHelper._return_control_osc = not _MatplotlibHelper._return_control_osc return _MatplotlibHelper._return_control_osc from pydev_ipython.inputhook import set_return_control_callback set_return_control_callback(return_control) self.mpl_modules_for_patching = {"matplotlib": lambda: activate_matplotlib(do_enable_gui), "matplotlib.pyplot": activate_pyplot, "pylab": activate_pylab } def processInternalCommands(self): '''This function processes internal commands ''' self._main_lock.acquire() try: self.checkOutputRedirect() curr_thread_id = GetThreadId(threadingCurrentThread()) program_threads_alive = {} all_threads = threadingEnumerate() program_threads_dead = [] self._lock_running_thread_ids.acquire() try: for t in all_threads: thread_id = GetThreadId(t) if getattr(t, 'is_pydev_daemon_thread', False): pass # I.e.: skip the DummyThreads created from pydev daemon threads elif isinstance(t, PyDBDaemonThread): pydev_log.error_once('Error in debugger: Found PyDBDaemonThread not marked with is_pydev_daemon_thread=True.\n') elif isThreadAlive(t): program_threads_alive[thread_id] = t if not DictContains(self._running_thread_ids, thread_id): if not hasattr(t, 'additionalInfo'): # see http://sourceforge.net/tracker/index.php?func=detail&aid=1955428&group_id=85796&atid=577329 # Let's create the additional info right away! t.additionalInfo = PyDBAdditionalThreadInfo() self._running_thread_ids[thread_id] = t self.writer.addCommand(self.cmdFactory.makeThreadCreatedMessage(t)) queue = self.getInternalQueue(thread_id) cmdsToReadd = [] # some commands must be processed by the thread itself... if that's the case, # we will re-add the commands to the queue after executing. try: while True: int_cmd = queue.get(False) if not self.mpl_hooks_in_debug_console and isinstance(int_cmd, InternalConsoleExec): # add import hooks for matplotlib patches if only debug console was started try: self.init_matplotlib_in_debug_console() self.mpl_in_use = True except: PydevdLog(2, "Matplotlib support in debug console failed", traceback.format_exc()) finally: self.mpl_hooks_in_debug_console = True if int_cmd.canBeExecutedBy(curr_thread_id): PydevdLog(2, "processing internal command ", str(int_cmd)) int_cmd.doIt(self) else: PydevdLog(2, "NOT processing internal command ", str(int_cmd)) cmdsToReadd.append(int_cmd) except _queue.Empty: #@UndefinedVariable for int_cmd in cmdsToReadd: queue.put(int_cmd) # this is how we exit thread_ids = list(self._running_thread_ids.keys()) for tId in thread_ids: if not DictContains(program_threads_alive, tId): program_threads_dead.append(tId) finally: self._lock_running_thread_ids.release() for tId in program_threads_dead: try: self.processThreadNotAlive(tId) except: sys.stderr.write('Error iterating through %s (%s) - %s\n' % ( program_threads_alive, program_threads_alive.__class__, dir(program_threads_alive))) raise if len(program_threads_alive) == 0: self.FinishDebuggingSession() for t in all_threads: if hasattr(t, 'doKillPydevThread'): t.doKillPydevThread() finally: self._main_lock.release() def setTracingForUntracedContexts(self, ignore_frame=None, overwrite_prev_trace=False): # Enable the tracing for existing threads (because there may be frames being executed that # are currently untraced). threads = threadingEnumerate() try: for t in threads: # TODO: optimize so that we only actually add that tracing if it's in # the new breakpoint context. additionalInfo = None try: additionalInfo = t.additionalInfo except AttributeError: pass # that's ok, no info currently set if additionalInfo is not None: for frame in additionalInfo.IterFrames(): if frame is not ignore_frame: self.SetTraceForFrameAndParents(frame, overwrite_prev_trace=overwrite_prev_trace) finally: frame = None t = None threads = None additionalInfo = None def consolidate_breakpoints(self, file, id_to_breakpoint, breakpoints): break_dict = {} for breakpoint_id, pybreakpoint in DictIterItems(id_to_breakpoint): break_dict[pybreakpoint.line] = pybreakpoint breakpoints[file] = break_dict def add_break_on_exception( self, exception, notify_always, notify_on_terminate, notify_on_first_raise_only, ignore_libraries=False ): try: eb = ExceptionBreakpoint( exception, notify_always, notify_on_terminate, notify_on_first_raise_only, ignore_libraries ) except ImportError: pydev_log.error("Error unable to add break on exception for: %s (exception could not be imported)\n" % (exception,)) return None if eb.notify_on_terminate: cp = self.break_on_uncaught_exceptions.copy() cp[exception] = eb if DebugInfoHolder.DEBUG_TRACE_BREAKPOINTS > 0: pydev_log.error("Exceptions to hook on terminate: %s\n" % (cp,)) self.break_on_uncaught_exceptions = cp if eb.notify_always: cp = self.break_on_caught_exceptions.copy() cp[exception] = eb if DebugInfoHolder.DEBUG_TRACE_BREAKPOINTS > 0: pydev_log.error("Exceptions to hook always: %s\n" % (cp,)) self.break_on_caught_exceptions = cp return eb def update_after_exceptions_added(self, added): updated_on_caught = False updated_on_uncaught = False for eb in added: if not updated_on_uncaught and eb.notify_on_terminate: updated_on_uncaught = True update_exception_hook(self) if not updated_on_caught and eb.notify_always: updated_on_caught = True self.setTracingForUntracedContexts() def processNetCommand(self, cmd_id, seq, text): '''Processes a command received from the Java side @param cmd_id: the id of the command @param seq: the sequence of the command @param text: the text received in the command @note: this method is run as a big switch... after doing some tests, it's not clear whether changing it for a dict id --> function call will have better performance result. A simple test with xrange(10000000) showed that the gains from having a fast access to what should be executed are lost because of the function call in a way that if we had 10 elements in the switch the if..elif are better -- but growing the number of choices makes the solution with the dispatch look better -- so, if this gets more than 20-25 choices at some time, it may be worth refactoring it (actually, reordering the ifs so that the ones used mostly come before probably will give better performance). ''' #print(ID_TO_MEANING[str(cmd_id)], repr(text)) self._main_lock.acquire() try: try: cmd = None if cmd_id == CMD_RUN: self.readyToRun = True elif cmd_id == CMD_VERSION: # response is version number # ide_os should be 'WINDOWS' or 'UNIX'. ide_os = 'WINDOWS' # Breakpoints can be grouped by 'LINE' or by 'ID'. breakpoints_by = 'LINE' splitted = text.split('\t') if len(splitted) == 1: _local_version = splitted elif len(splitted) == 2: _local_version, ide_os = splitted elif len(splitted) == 3: _local_version, ide_os, breakpoints_by = splitted if breakpoints_by == 'ID': self._set_breakpoints_with_id = True else: self._set_breakpoints_with_id = False pydevd_file_utils.set_ide_os(ide_os) cmd = self.cmdFactory.makeVersionMessage(seq) elif cmd_id == CMD_LIST_THREADS: # response is a list of threads cmd = self.cmdFactory.makeListThreadsMessage(seq) elif cmd_id == CMD_THREAD_KILL: int_cmd = InternalTerminateThread(text) self.postInternalCommand(int_cmd, text) elif cmd_id == CMD_THREAD_SUSPEND: # Yes, thread suspend is still done at this point, not through an internal command! t = PydevdFindThreadById(text) if t: additionalInfo = None try: additionalInfo = t.additionalInfo except AttributeError: pass # that's ok, no info currently set if additionalInfo is not None: for frame in additionalInfo.IterFrames(): self.SetTraceForFrameAndParents(frame) del frame self.setSuspend(t, CMD_THREAD_SUSPEND) elif text.startswith('__frame__:'): sys.stderr.write("Can't suspend tasklet: %s\n" % (text,)) elif cmd_id == CMD_THREAD_RUN: t = PydevdFindThreadById(text) if t: thread_id = GetThreadId(t) int_cmd = InternalRunThread(thread_id) self.postInternalCommand(int_cmd, thread_id) elif text.startswith('__frame__:'): sys.stderr.write("Can't make tasklet run: %s\n" % (text,)) elif cmd_id == CMD_STEP_INTO or cmd_id == CMD_STEP_OVER or cmd_id == CMD_STEP_RETURN or \ cmd_id == CMD_STEP_INTO_MY_CODE: # we received some command to make a single step t = PydevdFindThreadById(text) if t: thread_id = GetThreadId(t) int_cmd = InternalStepThread(thread_id, cmd_id) self.postInternalCommand(int_cmd, thread_id) elif text.startswith('__frame__:'): sys.stderr.write("Can't make tasklet step command: %s\n" % (text,)) elif cmd_id == CMD_RUN_TO_LINE or cmd_id == CMD_SET_NEXT_STATEMENT or cmd_id == CMD_SMART_STEP_INTO: # we received some command to make a single step thread_id, line, func_name = text.split('\t', 2) t = PydevdFindThreadById(thread_id) if t: int_cmd = InternalSetNextStatementThread(thread_id, cmd_id, line, func_name) self.postInternalCommand(int_cmd, thread_id) elif thread_id.startswith('__frame__:'): sys.stderr.write("Can't set next statement in tasklet: %s\n" % (thread_id,)) elif cmd_id == CMD_RELOAD_CODE: # we received some command to make a reload of a module module_name = text.strip() thread_id = '*' # Any thread # Note: not going for the main thread because in this case it'd only do the load # when we stopped on a breakpoint. # for tid, t in self._running_thread_ids.items(): #Iterate in copy # thread_name = t.getName() # # print thread_name, GetThreadId(t) # #Note: if possible, try to reload on the main thread # if thread_name == 'MainThread': # thread_id = tid int_cmd = ReloadCodeCommand(module_name, thread_id) self.postInternalCommand(int_cmd, thread_id) elif cmd_id == CMD_CHANGE_VARIABLE: # the text is: thread\tstackframe\tFRAME|GLOBAL\tattribute_to_change\tvalue_to_change try: thread_id, frame_id, scope, attr_and_value = text.split('\t', 3) tab_index = attr_and_value.rindex('\t') attr = attr_and_value[0:tab_index].replace('\t', '.') value = attr_and_value[tab_index + 1:] int_cmd = InternalChangeVariable(seq, thread_id, frame_id, scope, attr, value) self.postInternalCommand(int_cmd, thread_id) except: traceback.print_exc() elif cmd_id == CMD_GET_VARIABLE: # we received some command to get a variable # the text is: thread_id\tframe_id\tFRAME|GLOBAL\tattributes* try: thread_id, frame_id, scopeattrs = text.split('\t', 2) if scopeattrs.find('\t') != -1: # there are attributes beyond scope scope, attrs = scopeattrs.split('\t', 1) else: scope, attrs = (scopeattrs, None) int_cmd = InternalGetVariable(seq, thread_id, frame_id, scope, attrs) self.postInternalCommand(int_cmd, thread_id) except: traceback.print_exc() elif cmd_id == CMD_GET_ARRAY: # we received some command to get an array variable # the text is: thread_id\tframe_id\tFRAME|GLOBAL\tname\ttemp\troffs\tcoffs\trows\tcols\tformat try: roffset, coffset, rows, cols, format, thread_id, frame_id, scopeattrs = text.split('\t', 7) if scopeattrs.find('\t') != -1: # there are attributes beyond scope scope, attrs = scopeattrs.split('\t', 1) else: scope, attrs = (scopeattrs, None) int_cmd = InternalGetArray(seq, roffset, coffset, rows, cols, format, thread_id, frame_id, scope, attrs) self.postInternalCommand(int_cmd, thread_id) except: traceback.print_exc() elif cmd_id == CMD_GET_COMPLETIONS: # we received some command to get a variable # the text is: thread_id\tframe_id\tactivation token try: thread_id, frame_id, scope, act_tok = text.split('\t', 3) int_cmd = InternalGetCompletions(seq, thread_id, frame_id, act_tok) self.postInternalCommand(int_cmd, thread_id) except: traceback.print_exc() elif cmd_id == CMD_GET_FRAME: thread_id, frame_id, scope = text.split('\t', 2) int_cmd = InternalGetFrame(seq, thread_id, frame_id) self.postInternalCommand(int_cmd, thread_id) elif cmd_id == CMD_SET_BREAK: # func name: 'None': match anything. Empty: match global, specified: only method context. # command to add some breakpoint. # text is file\tline. Add to breakpoints dictionary if self._set_breakpoints_with_id: breakpoint_id, type, file, line, func_name, condition, expression = text.split('\t', 6) breakpoint_id = int(breakpoint_id) line = int(line) # We must restore new lines and tabs as done in # AbstractDebugTarget.breakpointAdded condition = condition.replace("@_@NEW_LINE_CHAR@_@", '\n').\ replace("@_@TAB_CHAR@_@", '\t').strip() expression = expression.replace("@_@NEW_LINE_CHAR@_@", '\n').\ replace("@_@TAB_CHAR@_@", '\t').strip() else: #Note: this else should be removed after PyCharm migrates to setting #breakpoints by id (and ideally also provides func_name). type, file, line, func_name, condition, expression = text.split('\t', 5) # If we don't have an id given for each breakpoint, consider # the id to be the line. breakpoint_id = line = int(line) condition = condition.replace("@_@NEW_LINE_CHAR@_@", '\n'). \ replace("@_@TAB_CHAR@_@", '\t').strip() expression = expression.replace("@_@NEW_LINE_CHAR@_@", '\n'). \ replace("@_@TAB_CHAR@_@", '\t').strip() if not IS_PY3K: # In Python 3, the frame object will have unicode for the file, whereas on python 2 it has a byte-array encoded with the filesystem encoding. file = file.encode(file_system_encoding) file = NormFileToServer(file) if not pydevd_file_utils.exists(file): sys.stderr.write('pydev debugger: warning: trying to add breakpoint'\ ' to file that does not exist: %s (will have no effect)\n' % (file,)) sys.stderr.flush() if len(condition) <= 0 or condition is None or condition == "None": condition = None if len(expression) <= 0 or expression is None or expression == "None": expression = None supported_type = False if type == 'python-line': breakpoint = LineBreakpoint(line, condition, func_name, expression) breakpoints = self.breakpoints file_to_id_to_breakpoint = self.file_to_id_to_line_breakpoint supported_type = True else: result = None plugin = self.get_plugin_lazy_init() if plugin is not None: result = plugin.add_breakpoint('add_line_breakpoint', self, type, file, line, condition, expression, func_name) if result is not None: supported_type = True breakpoint, breakpoints = result file_to_id_to_breakpoint = self.file_to_id_to_plugin_breakpoint else: supported_type = False if not supported_type: raise NameError(type) if DebugInfoHolder.DEBUG_TRACE_BREAKPOINTS > 0: pydev_log.debug('Added breakpoint:%s - line:%s - func_name:%s\n' % (file, line, func_name.encode('utf-8'))) sys.stderr.flush() if DictContains(file_to_id_to_breakpoint, file): id_to_pybreakpoint = file_to_id_to_breakpoint[file] else: id_to_pybreakpoint = file_to_id_to_breakpoint[file] = {} id_to_pybreakpoint[breakpoint_id] = breakpoint self.consolidate_breakpoints(file, id_to_pybreakpoint, breakpoints) if self.plugin is not None: self.has_plugin_line_breaks = self.plugin.has_line_breaks() self.setTracingForUntracedContexts(overwrite_prev_trace=True) elif cmd_id == CMD_REMOVE_BREAK: #command to remove some breakpoint #text is type\file\tid. Remove from breakpoints dictionary breakpoint_type, file, breakpoint_id = text.split('\t', 2) if not IS_PY3K: # In Python 3, the frame object will have unicode for the file, whereas on python 2 it has a byte-array encoded with the filesystem encoding. file = file.encode(file_system_encoding) file = NormFileToServer(file) try: breakpoint_id = int(breakpoint_id) except ValueError: pydev_log.error('Error removing breakpoint. Expected breakpoint_id to be an int. Found: %s' % (breakpoint_id,)) else: file_to_id_to_breakpoint = None if breakpoint_type == 'python-line': breakpoints = self.breakpoints file_to_id_to_breakpoint = self.file_to_id_to_line_breakpoint elif self.get_plugin_lazy_init() is not None: result = self.plugin.get_breakpoints(self, breakpoint_type) if result is not None: file_to_id_to_breakpoint = self.file_to_id_to_plugin_breakpoint breakpoints = result if file_to_id_to_breakpoint is None: pydev_log.error('Error removing breakpoint. Cant handle breakpoint of type %s' % breakpoint_type) else: try: id_to_pybreakpoint = file_to_id_to_breakpoint.get(file, {}) if DebugInfoHolder.DEBUG_TRACE_BREAKPOINTS > 0: existing = id_to_pybreakpoint[breakpoint_id] sys.stderr.write('Removed breakpoint:%s - line:%s - func_name:%s (id: %s)\n' % ( file, existing.line, existing.func_name.encode('utf-8'), breakpoint_id)) del id_to_pybreakpoint[breakpoint_id] self.consolidate_breakpoints(file, id_to_pybreakpoint, breakpoints) if self.plugin is not None: self.has_plugin_line_breaks = self.plugin.has_line_breaks() except KeyError: pydev_log.error("Error removing breakpoint: Breakpoint id not found: %s id: %s. Available ids: %s\n" % ( file, breakpoint_id, DictKeys(id_to_pybreakpoint))) elif cmd_id == CMD_EVALUATE_EXPRESSION or cmd_id == CMD_EXEC_EXPRESSION: #command to evaluate the given expression #text is: thread\tstackframe\tLOCAL\texpression thread_id, frame_id, scope, expression, trim = text.split('\t', 4) int_cmd = InternalEvaluateExpression(seq, thread_id, frame_id, expression, cmd_id == CMD_EXEC_EXPRESSION, int(trim) == 1) self.postInternalCommand(int_cmd, thread_id) elif cmd_id == CMD_CONSOLE_EXEC: #command to exec expression in console, in case expression is only partially valid 'False' is returned #text is: thread\tstackframe\tLOCAL\texpression thread_id, frame_id, scope, expression = text.split('\t', 3) int_cmd = InternalConsoleExec(seq, thread_id, frame_id, expression) self.postInternalCommand(int_cmd, thread_id) elif cmd_id == CMD_SET_PY_EXCEPTION: # Command which receives set of exceptions on which user wants to break the debugger # text is: break_on_uncaught;break_on_caught;TypeError;ImportError;zipimport.ZipImportError; # This API is optional and works 'in bulk' -- it's possible # to get finer-grained control with CMD_ADD_EXCEPTION_BREAK/CMD_REMOVE_EXCEPTION_BREAK # which allows setting caught/uncaught per exception. # splitted = text.split(';') self.break_on_uncaught_exceptions = {} self.break_on_caught_exceptions = {} added = [] if len(splitted) >= 4: if splitted[0] == 'true': break_on_uncaught = True else: break_on_uncaught = False if splitted[1] == 'true': break_on_caught = True else: break_on_caught = False if splitted[2] == 'true': self.break_on_exceptions_thrown_in_same_context = True else: self.break_on_exceptions_thrown_in_same_context = False if splitted[3] == 'true': self.ignore_exceptions_thrown_in_lines_with_ignore_exception = True else: self.ignore_exceptions_thrown_in_lines_with_ignore_exception = False for exception_type in splitted[4:]: exception_type = exception_type.strip() if not exception_type: continue exception_breakpoint = self.add_break_on_exception( exception_type, notify_always=break_on_caught, notify_on_terminate=break_on_uncaught, notify_on_first_raise_only=False, ) if exception_breakpoint is None: continue added.append(exception_breakpoint) self.update_after_exceptions_added(added) else: sys.stderr.write("Error when setting exception list. Received: %s\n" % (text,)) elif cmd_id == CMD_GET_FILE_CONTENTS: if not IS_PY3K: # In Python 3, the frame object will have unicode for the file, whereas on python 2 it has a byte-array encoded with the filesystem encoding. text = text.encode(file_system_encoding) if os.path.exists(text): f = open(text, 'r') try: source = f.read() finally: f.close() cmd = self.cmdFactory.makeGetFileContents(seq, source) elif cmd_id == CMD_SET_PROPERTY_TRACE: # Command which receives whether to trace property getter/setter/deleter # text is feature_state(true/false);disable_getter/disable_setter/disable_deleter if text != "": splitted = text.split(';') if len(splitted) >= 3: if self.disable_property_trace is False and splitted[0] == 'true': # Replacing property by custom property only when the debugger starts pydevd_traceproperty.replace_builtin_property() self.disable_property_trace = True # Enable/Disable tracing of the property getter if splitted[1] == 'true': self.disable_property_getter_trace = True else: self.disable_property_getter_trace = False # Enable/Disable tracing of the property setter if splitted[2] == 'true': self.disable_property_setter_trace = True else: self.disable_property_setter_trace = False # Enable/Disable tracing of the property deleter if splitted[3] == 'true': self.disable_property_deleter_trace = True else: self.disable_property_deleter_trace = False else: # User hasn't configured any settings for property tracing pass elif cmd_id == CMD_ADD_EXCEPTION_BREAK: if text.find('\t') != -1: exception, notify_always, notify_on_terminate, ignore_libraries = text.split('\t', 3) else: exception, notify_always, notify_on_terminate, ignore_libraries = text, 0, 0, 0 if exception.find('-') != -1: type, exception = exception.split('-') else: type = 'python' if type == 'python': if int(notify_always) == 1: pydev_log.warn("Deprecated parameter: 'notify always' policy removed in PyCharm\n") exception_breakpoint = self.add_break_on_exception( exception, notify_always=int(notify_always) > 0, notify_on_terminate = int(notify_on_terminate) == 1, notify_on_first_raise_only=int(notify_always) == 2, ignore_libraries=int(ignore_libraries) > 0 ) if exception_breakpoint is not None: self.update_after_exceptions_added([exception_breakpoint]) else: supported_type = False plugin = self.get_plugin_lazy_init() if plugin is not None: supported_type = plugin.add_breakpoint('add_exception_breakpoint', self, type, exception) if supported_type: self.has_plugin_exception_breaks = self.plugin.has_exception_breaks() else: raise NameError(type) elif cmd_id == CMD_REMOVE_EXCEPTION_BREAK: exception = text if exception.find('-') != -1: type, exception = exception.split('-') else: type = 'python' if type == 'python': try: cp = self.break_on_uncaught_exceptions.copy() DictPop(cp, exception, None) self.break_on_uncaught_exceptions = cp cp = self.break_on_caught_exceptions.copy() DictPop(cp, exception, None) self.break_on_caught_exceptions = cp except: pydev_log.debug("Error while removing exception %s"%sys.exc_info()[0]) update_exception_hook(self) else: supported_type = False # I.e.: no need to initialize lazy (if we didn't have it in the first place, we can't remove # anything from it anyways). plugin = self.plugin if plugin is not None: supported_type = plugin.remove_exception_breakpoint(self, type, exception) if supported_type: self.has_plugin_exception_breaks = self.plugin.has_exception_breaks() else: raise NameError(type) elif cmd_id == CMD_LOAD_SOURCE: path = text try: f = open(path, 'r') source = f.read() self.cmdFactory.makeLoadSourceMessage(seq, source, self) except: return self.cmdFactory.makeErrorMessage(seq, pydevd_tracing.GetExceptionTracebackStr()) elif cmd_id == CMD_ADD_DJANGO_EXCEPTION_BREAK: exception = text plugin = self.get_plugin_lazy_init() if plugin is not None: plugin.add_breakpoint('add_exception_breakpoint', self, 'django', exception) self.has_plugin_exception_breaks = self.plugin.has_exception_breaks() elif cmd_id == CMD_REMOVE_DJANGO_EXCEPTION_BREAK: exception = text # I.e.: no need to initialize lazy (if we didn't have it in the first place, we can't remove # anything from it anyways). plugin = self.plugin if plugin is not None: plugin.remove_exception_breakpoint(self, 'django', exception) self.has_plugin_exception_breaks = self.plugin.has_exception_breaks() elif cmd_id == CMD_EVALUATE_CONSOLE_EXPRESSION: # Command which takes care for the debug console communication if text != "": thread_id, frame_id, console_command = text.split('\t', 2) console_command, line = console_command.split('\t') if console_command == 'EVALUATE': int_cmd = InternalEvaluateConsoleExpression(seq, thread_id, frame_id, line) elif console_command == 'GET_COMPLETIONS': int_cmd = InternalConsoleGetCompletions(seq, thread_id, frame_id, line) self.postInternalCommand(int_cmd, thread_id) elif cmd_id == CMD_RUN_CUSTOM_OPERATION: # Command which runs a custom operation if text != "": try: location, custom = text.split('||', 1) except: sys.stderr.write('Custom operation now needs a || separator. Found: %s\n' % (text,)) raise thread_id, frame_id, scopeattrs = location.split('\t', 2) if scopeattrs.find('\t') != -1: # there are attributes beyond scope scope, attrs = scopeattrs.split('\t', 1) else: scope, attrs = (scopeattrs, None) # : style: EXECFILE or EXEC # : encoded_code_or_file: file to execute or code # : fname: name of function to be executed in the resulting namespace style, encoded_code_or_file, fnname = custom.split('\t', 3) int_cmd = InternalRunCustomOperation(seq, thread_id, frame_id, scope, attrs, style, encoded_code_or_file, fnname) self.postInternalCommand(int_cmd, thread_id) elif cmd_id == CMD_IGNORE_THROWN_EXCEPTION_AT: if text: replace = 'REPLACE:' # Not all 3.x versions support u'REPLACE:', so, doing workaround. if not IS_PY3K: replace = unicode(replace) if text.startswith(replace): text = text[8:] self.filename_to_lines_where_exceptions_are_ignored.clear() if text: for line in text.split('||'): # Can be bulk-created (one in each line) filename, line_number = line.split('|') if not IS_PY3K: filename = filename.encode(file_system_encoding) filename = NormFileToServer(filename) if os.path.exists(filename): lines_ignored = self.filename_to_lines_where_exceptions_are_ignored.get(filename) if lines_ignored is None: lines_ignored = self.filename_to_lines_where_exceptions_are_ignored[filename] = {} lines_ignored[int(line_number)] = 1 else: sys.stderr.write('pydev debugger: warning: trying to ignore exception thrown'\ ' on file that does not exist: %s (will have no effect)\n' % (filename,)) elif cmd_id == CMD_ENABLE_DONT_TRACE: if text: true_str = 'true' # Not all 3.x versions support u'str', so, doing workaround. if not IS_PY3K: true_str = unicode(true_str) mode = text.strip() == true_str pydevd_dont_trace.trace_filter(mode) else: #I have no idea what this is all about cmd = self.cmdFactory.makeErrorMessage(seq, "unexpected command " + str(cmd_id)) if cmd is not None: self.writer.addCommand(cmd) del cmd except Exception: traceback.print_exc() cmd = self.cmdFactory.makeErrorMessage(seq, "Unexpected exception in processNetCommand.\nInitial params: %s" % ((cmd_id, seq, text),)) self.writer.addCommand(cmd) finally: self._main_lock.release() def processThreadNotAlive(self, threadId): """ if thread is not alive, cancel trace_dispatch processing """ self._lock_running_thread_ids.acquire() try: thread = self._running_thread_ids.pop(threadId, None) if thread is None: return wasNotified = thread.additionalInfo.pydev_notify_kill if not wasNotified: thread.additionalInfo.pydev_notify_kill = True finally: self._lock_running_thread_ids.release() cmd = self.cmdFactory.makeThreadKilledMessage(threadId) self.writer.addCommand(cmd) def setSuspend(self, thread, stop_reason): thread.additionalInfo.suspend_type = PYTHON_SUSPEND thread.additionalInfo.pydev_state = STATE_SUSPEND thread.stop_reason = stop_reason # If conditional breakpoint raises any exception during evaluation send details to Java if stop_reason == CMD_SET_BREAK and self.suspend_on_breakpoint_exception: self.sendBreakpointConditionException(thread) def sendBreakpointConditionException(self, thread): """If conditional breakpoint raises an exception during evaluation send exception details to java """ thread_id = GetThreadId(thread) conditional_breakpoint_exception_tuple = thread.additionalInfo.conditional_breakpoint_exception # conditional_breakpoint_exception_tuple - should contain 2 values (exception_type, stacktrace) if conditional_breakpoint_exception_tuple and len(conditional_breakpoint_exception_tuple) == 2: exc_type, stacktrace = conditional_breakpoint_exception_tuple int_cmd = InternalGetBreakpointException(thread_id, exc_type, stacktrace) # Reset the conditional_breakpoint_exception details to None thread.additionalInfo.conditional_breakpoint_exception = None self.postInternalCommand(int_cmd, thread_id) def sendCaughtExceptionStack(self, thread, arg, curr_frame_id): """Sends details on the exception which was caught (and where we stopped) to the java side. arg is: exception type, description, traceback object """ thread_id = GetThreadId(thread) int_cmd = InternalSendCurrExceptionTrace(thread_id, arg, curr_frame_id) self.postInternalCommand(int_cmd, thread_id) def sendCaughtExceptionStackProceeded(self, thread): """Sends that some thread was resumed and is no longer showing an exception trace. """ thread_id = GetThreadId(thread) int_cmd = InternalSendCurrExceptionTraceProceeded(thread_id) self.postInternalCommand(int_cmd, thread_id) self.processInternalCommands() def doWaitSuspend(self, thread, frame, event, arg): #@UnusedVariable """ busy waits until the thread state changes to RUN it expects thread's state as attributes of the thread. Upon running, processes any outstanding Stepping commands. """ self.processInternalCommands() message = getattr(thread.additionalInfo, "message", None) cmd = self.cmdFactory.makeThreadSuspendMessage(GetThreadId(thread), frame, thread.stop_reason, message) self.writer.addCommand(cmd) CustomFramesContainer.custom_frames_lock.acquire() try: from_this_thread = [] for frame_id, custom_frame in DictIterItems(CustomFramesContainer.custom_frames): if custom_frame.thread_id == thread.ident: # print >> sys.stderr, 'Frame created: ', frame_id self.writer.addCommand(self.cmdFactory.makeCustomFrameCreatedMessage(frame_id, custom_frame.name)) self.writer.addCommand(self.cmdFactory.makeThreadSuspendMessage(frame_id, custom_frame.frame, CMD_THREAD_SUSPEND, "")) from_this_thread.append(frame_id) finally: CustomFramesContainer.custom_frames_lock.release() imported = False info = thread.additionalInfo if info.pydev_state == STATE_SUSPEND and not self._finishDebuggingSession: # before every stop check if matplotlib modules were imported inside script code if len(self.mpl_modules_for_patching) > 0: for module in DictKeys(self.mpl_modules_for_patching): if module in sys.modules: activate_function = DictPop(self.mpl_modules_for_patching, module) activate_function() self.mpl_in_use = True while info.pydev_state == STATE_SUSPEND and not self._finishDebuggingSession: if self.mpl_in_use: # call input hooks if only matplotlib is in use try: if not imported: from pydev_ipython.inputhook import get_inputhook imported = True inputhook = get_inputhook() if inputhook: inputhook() except: pass self.processInternalCommands() time.sleep(0.01) # process any stepping instructions if info.pydev_step_cmd == CMD_STEP_INTO or info.pydev_step_cmd == CMD_STEP_INTO_MY_CODE: info.pydev_step_stop = None info.pydev_smart_step_stop = None elif info.pydev_step_cmd == CMD_STEP_OVER: info.pydev_step_stop = frame info.pydev_smart_step_stop = None self.SetTraceForFrameAndParents(frame) elif info.pydev_step_cmd == CMD_SMART_STEP_INTO: self.SetTraceForFrameAndParents(frame) info.pydev_step_stop = None info.pydev_smart_step_stop = frame elif info.pydev_step_cmd == CMD_RUN_TO_LINE or info.pydev_step_cmd == CMD_SET_NEXT_STATEMENT : self.SetTraceForFrameAndParents(frame) if event == 'line' or event == 'exception': #If we're already in the correct context, we have to stop it now, because we can act only on #line events -- if a return was the next statement it wouldn't work (so, we have this code #repeated at pydevd_frame). stop = False curr_func_name = frame.f_code.co_name #global context is set with an empty name if curr_func_name in ('?', '<module>'): curr_func_name = '' if curr_func_name == info.pydev_func_name: line = info.pydev_next_line if frame.f_lineno == line: stop = True else : if frame.f_trace is None: frame.f_trace = self.trace_dispatch frame.f_lineno = line frame.f_trace = None stop = True if stop: info.pydev_state = STATE_SUSPEND self.doWaitSuspend(thread, frame, event, arg) return elif info.pydev_step_cmd == CMD_STEP_RETURN: back_frame = frame.f_back if back_frame is not None: # steps back to the same frame (in a return call it will stop in the 'back frame' for the user) info.pydev_step_stop = frame self.SetTraceForFrameAndParents(frame) else: # No back frame?!? -- this happens in jython when we have some frame created from an awt event # (the previous frame would be the awt event, but this doesn't make part of 'jython', only 'java') # so, if we're doing a step return in this situation, it's the same as just making it run info.pydev_step_stop = None info.pydev_step_cmd = None info.pydev_state = STATE_RUN del frame cmd = self.cmdFactory.makeThreadRunMessage(GetThreadId(thread), info.pydev_step_cmd) self.writer.addCommand(cmd) CustomFramesContainer.custom_frames_lock.acquire() try: # The ones that remained on last_running must now be removed. for frame_id in from_this_thread: # print >> sys.stderr, 'Removing created frame: ', frame_id self.writer.addCommand(self.cmdFactory.makeThreadKilledMessage(frame_id)) finally: CustomFramesContainer.custom_frames_lock.release() def handle_post_mortem_stop(self, additionalInfo, t): pydev_log.debug("We are stopping in post-mortem\n") frame, frames_byid = additionalInfo.pydev_force_stop_at_exception thread_id = GetThreadId(t) pydevd_vars.addAdditionalFrameById(thread_id, frames_byid) try: try: add_exception_to_frame(frame, additionalInfo.exception) self.setSuspend(t, CMD_ADD_EXCEPTION_BREAK) self.doWaitSuspend(t, frame, 'exception', None) except: pydev_log.error("We've got an error while stopping in post-mortem: %s\n"%sys.exc_info()[0]) finally: additionalInfo.pydev_force_stop_at_exception = None pydevd_vars.removeAdditionalFrameById(thread_id) def trace_dispatch(self, frame, event, arg): ''' This is the callback used when we enter some context in the debugger. We also decorate the thread we are in with info about the debugging. The attributes added are: pydev_state pydev_step_stop pydev_step_cmd pydev_notify_kill ''' try: if self._finishDebuggingSession and not self._terminationEventSent: #that was not working very well because jython gave some socket errors try: if self.output_checker is None: killAllPydevThreads() except: traceback.print_exc() self._terminationEventSent = True return None filename, base = GetFilenameAndBase(frame) is_file_to_ignore = DictContains(DONT_TRACE, base) #we don't want to debug threading or anything related to pydevd #print('trace_dispatch', base, frame.f_lineno, event, frame.f_code.co_name, is_file_to_ignore) if is_file_to_ignore: if DONT_TRACE[base] == LIB_FILE: if self.not_in_scope(filename): return None else: return None try: #this shouldn't give an exception, but it could happen... (python bug) #see http://mail.python.org/pipermail/python-bugs-list/2007-June/038796.html #and related bug: http://bugs.python.org/issue1733757 t = threadingCurrentThread() except: frame.f_trace = self.trace_dispatch return self.trace_dispatch try: additionalInfo = t.additionalInfo if additionalInfo is None: raise AttributeError() except: t.additionalInfo = PyDBAdditionalThreadInfo() additionalInfo = t.additionalInfo if additionalInfo is None: return None if additionalInfo.is_tracing: f = frame while f is not None: if 'trace_dispatch' == f.f_code.co_name: _fname, bs = GetFilenameAndBase(f) if bs == 'pydevd_frame.py': return None #we don't wan't to trace code invoked from pydevd_frame.trace_dispatch f = f.f_back # if thread is not alive, cancel trace_dispatch processing if not isThreadAlive(t): self.processThreadNotAlive(GetThreadId(t)) return None # suspend tracing # each new frame... return additionalInfo.CreateDbFrame((self, filename, additionalInfo, t, frame)).trace_dispatch(frame, event, arg) except SystemExit: return None except Exception: # Log it try: if traceback is not None: # This can actually happen during the interpreter shutdown in Python 2.7 traceback.print_exc() except: # Error logging? We're really in the interpreter shutdown... # (https://github.com/fabioz/PyDev.Debugger/issues/8) pass return None if USE_PSYCO_OPTIMIZATION: try: import psyco trace_dispatch = psyco.proxy(trace_dispatch) processNetCommand = psyco.proxy(processNetCommand) processInternalCommands = psyco.proxy(processInternalCommands) doWaitSuspend = psyco.proxy(doWaitSuspend) getInternalQueue = psyco.proxy(getInternalQueue) except ImportError: if hasattr(sys, 'exc_clear'): # jython does not have it sys.exc_clear() # don't keep the traceback (let's keep it clear for when we go to the point of executing client code) if not IS_PY3K and not IS_PY27 and not IS_64_BITS and not sys.platform.startswith("java") and not sys.platform.startswith("cli"): sys.stderr.write("pydev debugger: warning: psyco not available for speedups (the debugger will still work correctly, but a bit slower)\n") sys.stderr.flush() def SetTraceForFrameAndParents(self, frame, also_add_to_passed_frame=True, overwrite_prev_trace=False, dispatch_func=None): if dispatch_func is None: dispatch_func = self.trace_dispatch if also_add_to_passed_frame: self.update_trace(frame, dispatch_func, overwrite_prev_trace) frame = frame.f_back while frame: self.update_trace(frame, dispatch_func, overwrite_prev_trace) frame = frame.f_back del frame def update_trace(self, frame, dispatch_func, overwrite_prev): if frame.f_trace is None: frame.f_trace = dispatch_func else: if overwrite_prev: frame.f_trace = dispatch_func else: try: #If it's the trace_exception, go back to the frame trace dispatch! if frame.f_trace.im_func.__name__ == 'trace_exception': frame.f_trace = frame.f_trace.im_self.trace_dispatch except AttributeError: pass frame = frame.f_back del frame def prepareToRun(self): ''' Shared code to prepare debugging by installing traces and registering threads ''' self.patch_threads() pydevd_tracing.SetTrace(self.trace_dispatch) PyDBCommandThread(self).start() if self.signature_factory is not None: # we need all data to be sent to IDE even after program finishes CheckOutputThread(self).start() def patch_threads(self): try: # not available in jython! threading.settrace(self.trace_dispatch) # for all future threads except: pass from pydev_monkey import patch_thread_modules patch_thread_modules() def get_fullname(self, mod_name): try: loader = pkgutil.get_loader(mod_name) except: return None if loader is not None: for attr in ("get_filename", "_get_filename"): meth = getattr(loader, attr, None) if meth is not None: return meth(mod_name) return None def run(self, file, globals=None, locals=None, module=False, set_trace=True): if module: filename = self.get_fullname(file) if filename is None: sys.stderr.write("No module named %s\n" % file) return else: file = filename if os.path.isdir(file): new_target = os.path.join(file, '__main__.py') if os.path.isfile(new_target): file = new_target if globals is None: m = save_main_module(file, 'pydevd') globals = m.__dict__ try: globals['__builtins__'] = __builtins__ except NameError: pass # Not there on Jython... if locals is None: locals = globals if set_trace: # Predefined (writable) attributes: __name__ is the module's name; # __doc__ is the module's documentation string, or None if unavailable; # __file__ is the pathname of the file from which the module was loaded, # if it was loaded from a file. The __file__ attribute is not present for # C modules that are statically linked into the interpreter; for extension modules # loaded dynamically from a shared library, it is the pathname of the shared library file. # I think this is an ugly hack, bug it works (seems to) for the bug that says that sys.path should be the same in # debug and run. if m.__file__.startswith(sys.path[0]): # print >> sys.stderr, 'Deleting: ', sys.path[0] del sys.path[0] # now, the local directory has to be added to the pythonpath # sys.path.insert(0, os.getcwd()) # Changed: it's not the local directory, but the directory of the file launched # The file being run ust be in the pythonpath (even if it was not before) sys.path.insert(0, os.path.split(file)[0]) self.prepareToRun() while not self.readyToRun: time.sleep(0.1) # busy wait until we receive run command try: self.init_matplotlib_support() except: sys.stderr.write("Matplotlib support in debugger failed\n") traceback.print_exc() pydev_imports.execfile(file, globals, locals) # execute the script def exiting(self): sys.stdout.flush() sys.stderr.flush() self.checkOutputRedirect() cmd = self.cmdFactory.makeExitMessage() self.writer.addCommand(cmd) def wait_for_commands(self, globals): thread = threading.currentThread() import pydevd_frame_utils frame = pydevd_frame_utils.Frame(None, -1, pydevd_frame_utils.FCode("Console", os.path.abspath(os.path.dirname(__file__))), globals, globals) thread_id = GetThreadId(thread) import pydevd_vars pydevd_vars.addAdditionalFrameById(thread_id, {id(frame): frame}) cmd = self.cmdFactory.makeShowConsoleMessage(thread_id, frame) self.writer.addCommand(cmd) while True: self.processInternalCommands() time.sleep(0.01) def set_debug(setup): setup['DEBUG_RECORD_SOCKET_READS'] = True setup['DEBUG_TRACE_BREAKPOINTS'] = 1 setup['DEBUG_TRACE_LEVEL'] = 3 def processCommandLine(argv): """ parses the arguments. removes our arguments from the command line """ setup = {} setup['client'] = '' setup['server'] = False setup['port'] = 0 setup['file'] = '' setup['multiproc'] = False #Used by PyCharm (reuses connection: ssh tunneling) setup['multiprocess'] = False # Used by PyDev (creates new connection to ide) setup['save-signatures'] = False setup['print-in-debugger-startup'] = False setup['cmd-line'] = False setup['module'] = False i = 0 del argv[0] while (i < len(argv)): if argv[i] == '--port': del argv[i] setup['port'] = int(argv[i]) del argv[i] elif argv[i] == '--vm_type': del argv[i] setup['vm_type'] = argv[i] del argv[i] elif argv[i] == '--client': del argv[i] setup['client'] = argv[i] del argv[i] elif argv[i] == '--server': del argv[i] setup['server'] = True elif argv[i] == '--file': del argv[i] setup['file'] = argv[i] i = len(argv) # pop out, file is our last argument elif argv[i] == '--DEBUG_RECORD_SOCKET_READS': del argv[i] setup['DEBUG_RECORD_SOCKET_READS'] = True elif argv[i] == '--DEBUG': del argv[i] set_debug(setup) elif argv[i] == '--multiproc': del argv[i] setup['multiproc'] = True elif argv[i] == '--multiprocess': del argv[i] setup['multiprocess'] = True elif argv[i] == '--save-signatures': del argv[i] setup['save-signatures'] = True elif argv[i] == '--print-in-debugger-startup': del argv[i] setup['print-in-debugger-startup'] = True elif (argv[i] == '--cmd-line'): del argv[i] setup['cmd-line'] = True elif (argv[i] == '--module'): del argv[i] setup['module'] = True else: raise ValueError("unexpected option " + argv[i]) return setup def usage(doExit=0): sys.stdout.write('Usage:\n') sys.stdout.write('pydevd.py --port=N [(--client hostname) | --server] --file executable [file_options]\n') if doExit: sys.exit(0) def initStdoutRedirect(): if not getattr(sys, 'stdoutBuf', None): sys.stdoutBuf = pydevd_io.IOBuf() sys.stdout_original = sys.stdout sys.stdout = pydevd_io.IORedirector(sys.stdout, sys.stdoutBuf) #@UndefinedVariable def initStderrRedirect(): if not getattr(sys, 'stderrBuf', None): sys.stderrBuf = pydevd_io.IOBuf() sys.stderr_original = sys.stderr sys.stderr = pydevd_io.IORedirector(sys.stderr, sys.stderrBuf) #@UndefinedVariable def has_data_to_redirect(): if getattr(sys, 'stdoutBuf', None): if not sys.stdoutBuf.empty(): return True if getattr(sys, 'stderrBuf', None): if not sys.stderrBuf.empty(): return True return False #======================================================================================================================= # settrace #======================================================================================================================= def settrace( host=None, stdoutToServer=False, stderrToServer=False, port=5678, suspend=True, trace_only_current_thread=False, overwrite_prev_trace=False, patch_multiprocessing=False, ): '''Sets the tracing function with the pydev debug function and initializes needed facilities. @param host: the user may specify another host, if the debug server is not in the same machine (default is the local host) @param stdoutToServer: when this is true, the stdout is passed to the debug server @param stderrToServer: when this is true, the stderr is passed to the debug server so that they are printed in its console and not in this process console. @param port: specifies which port to use for communicating with the server (note that the server must be started in the same port). @note: currently it's hard-coded at 5678 in the client @param suspend: whether a breakpoint should be emulated as soon as this function is called. @param trace_only_current_thread: determines if only the current thread will be traced or all current and future threads will also have the tracing enabled. @param overwrite_prev_trace: if True we'll reset the frame.f_trace of frames which are already being traced @param patch_multiprocessing: if True we'll patch the functions which create new processes so that launched processes are debugged. ''' _set_trace_lock.acquire() try: _locked_settrace( host, stdoutToServer, stderrToServer, port, suspend, trace_only_current_thread, overwrite_prev_trace, patch_multiprocessing, ) finally: _set_trace_lock.release() _set_trace_lock = _pydev_thread.allocate_lock() def _locked_settrace( host, stdoutToServer, stderrToServer, port, suspend, trace_only_current_thread, overwrite_prev_trace, patch_multiprocessing, ): if patch_multiprocessing: try: import pydev_monkey #Jython 2.1 can't use it... except: pass else: pydev_monkey.patch_new_process_functions() if host is None: import pydev_localhost host = pydev_localhost.get_localhost() global connected global bufferStdOutToServer global bufferStdErrToServer if not connected : pydevd_vm_type.SetupType() debugger = PyDB() debugger.connect(host, port) # Note: connect can raise error. # Mark connected only if it actually succeeded. connected = True bufferStdOutToServer = stdoutToServer bufferStdErrToServer = stderrToServer if bufferStdOutToServer: initStdoutRedirect() if bufferStdErrToServer: initStderrRedirect() debugger.SetTraceForFrameAndParents(GetFrame(), False, overwrite_prev_trace=overwrite_prev_trace) CustomFramesContainer.custom_frames_lock.acquire() try: for _frameId, custom_frame in DictIterItems(CustomFramesContainer.custom_frames): debugger.SetTraceForFrameAndParents(custom_frame.frame, False) finally: CustomFramesContainer.custom_frames_lock.release() t = threadingCurrentThread() try: additionalInfo = t.additionalInfo except AttributeError: additionalInfo = PyDBAdditionalThreadInfo() t.additionalInfo = additionalInfo while not debugger.readyToRun: time.sleep(0.1) # busy wait until we receive run command # note that we do that through pydevd_tracing.SetTrace so that the tracing # is not warned to the user! pydevd_tracing.SetTrace(debugger.trace_dispatch) if not trace_only_current_thread: # Trace future threads? debugger.patch_threads() # As this is the first connection, also set tracing for any untraced threads debugger.setTracingForUntracedContexts(ignore_frame=GetFrame(), overwrite_prev_trace=overwrite_prev_trace) # Stop the tracing as the last thing before the actual shutdown for a clean exit. atexit.register(stoptrace) PyDBCommandThread(debugger).start() CheckOutputThread(debugger).start() #Suspend as the last thing after all tracing is in place. if suspend: debugger.setSuspend(t, CMD_THREAD_SUSPEND) else: # ok, we're already in debug mode, with all set, so, let's just set the break debugger = GetGlobalDebugger() debugger.SetTraceForFrameAndParents(GetFrame(), False) t = threadingCurrentThread() try: additionalInfo = t.additionalInfo except AttributeError: additionalInfo = PyDBAdditionalThreadInfo() t.additionalInfo = additionalInfo pydevd_tracing.SetTrace(debugger.trace_dispatch) if not trace_only_current_thread: # Trace future threads? debugger.patch_threads() if suspend: debugger.setSuspend(t, CMD_THREAD_SUSPEND) def stoptrace(): global connected if connected: pydevd_tracing.RestoreSysSetTraceFunc() sys.settrace(None) try: #not available in jython! threading.settrace(None) # for all future threads except: pass from pydev_monkey import undo_patch_thread_modules undo_patch_thread_modules() debugger = GetGlobalDebugger() if debugger: debugger.SetTraceForFrameAndParents( GetFrame(), also_add_to_passed_frame=True, overwrite_prev_trace=True, dispatch_func=lambda *args:None) debugger.exiting() killAllPydevThreads() connected = False class Dispatcher(object): def __init__(self): self.port = None def connect(self, host, port): self.host = host self.port = port self.client = StartClient(self.host, self.port) self.reader = DispatchReader(self) self.reader.dontTraceMe = False #we run reader in the same thread so we don't want to loose tracing self.reader.run() def close(self): try: self.reader.doKillPydevThread() except : pass class DispatchReader(ReaderThread): def __init__(self, dispatcher): self.dispatcher = dispatcher ReaderThread.__init__(self, self.dispatcher.client) def OnRun(self): dummy_thread = threading.currentThread() dummy_thread.is_pydev_daemon_thread = False return ReaderThread.OnRun(self) def handleExcept(self): ReaderThread.handleExcept(self) def processCommand(self, cmd_id, seq, text): if cmd_id == 99: self.dispatcher.port = int(text) self.killReceived = True DISPATCH_APPROACH_NEW_CONNECTION = 1 # Used by PyDev DISPATCH_APPROACH_EXISTING_CONNECTION = 2 # Used by PyCharm DISPATCH_APPROACH = DISPATCH_APPROACH_NEW_CONNECTION def dispatch(): setup = SetupHolder.setup host = setup['client'] port = setup['port'] if DISPATCH_APPROACH == DISPATCH_APPROACH_EXISTING_CONNECTION: dispatcher = Dispatcher() try: dispatcher.connect(host, port) port = dispatcher.port finally: dispatcher.close() return host, port def settrace_forked(): ''' When creating a fork from a process in the debugger, we need to reset the whole debugger environment! ''' host, port = dispatch() import pydevd_tracing pydevd_tracing.RestoreSysSetTraceFunc() if port is not None: global connected connected = False CustomFramesContainerInit() settrace( host, port=port, suspend=False, trace_only_current_thread=False, overwrite_prev_trace=True, patch_multiprocessing=True, ) #======================================================================================================================= # SetupHolder #======================================================================================================================= class SetupHolder: setup = None #======================================================================================================================= # main #======================================================================================================================= if __name__ == '__main__': # parse the command line. --file is our last argument that is required try: sys.original_argv = sys.argv[:] setup = processCommandLine(sys.argv) SetupHolder.setup = setup except ValueError: traceback.print_exc() usage(1) if setup['print-in-debugger-startup']: try: pid = ' (pid: %s)' % os.getpid() except: pid = '' sys.stderr.write("pydev debugger: starting%s\n" % pid) fix_getpass.fixGetpass() pydev_log.debug("Executing file %s" % setup['file']) pydev_log.debug("arguments: %s"% str(sys.argv)) pydevd_vm_type.SetupType(setup.get('vm_type', None)) if os.getenv('PYCHARM_DEBUG'): set_debug(setup) DebugInfoHolder.DEBUG_RECORD_SOCKET_READS = setup.get('DEBUG_RECORD_SOCKET_READS', False) DebugInfoHolder.DEBUG_TRACE_BREAKPOINTS = setup.get('DEBUG_TRACE_BREAKPOINTS', -1) DebugInfoHolder.DEBUG_TRACE_LEVEL = setup.get('DEBUG_TRACE_LEVEL', -1) port = setup['port'] host = setup['client'] f = setup['file'] fix_app_engine_debug = False try: import pydev_monkey except: pass #Not usable on jython 2.1 else: if setup['multiprocess']: # PyDev pydev_monkey.patch_new_process_functions() elif setup['multiproc']: # PyCharm pydev_log.debug("Started in multiproc mode\n") # Note: we're not inside method, so, no need for 'global' DISPATCH_APPROACH = DISPATCH_APPROACH_EXISTING_CONNECTION dispatcher = Dispatcher() try: dispatcher.connect(host, port) if dispatcher.port is not None: port = dispatcher.port pydev_log.debug("Received port %d\n" %port) pydev_log.info("pydev debugger: process %d is connecting\n"% os.getpid()) try: pydev_monkey.patch_new_process_functions() except: pydev_log.error("Error patching process functions\n") traceback.print_exc() else: pydev_log.error("pydev debugger: couldn't get port for new debug process\n") finally: dispatcher.close() else: pydev_log.info("pydev debugger: starting\n") try: pydev_monkey.patch_new_process_functions_with_warning() except: pydev_log.error("Error patching process functions\n") traceback.print_exc() # Only do this patching if we're not running with multiprocess turned on. if f.find('dev_appserver.py') != -1: if os.path.basename(f).startswith('dev_appserver.py'): appserver_dir = os.path.dirname(f) version_file = os.path.join(appserver_dir, 'VERSION') if os.path.exists(version_file): try: stream = open(version_file, 'r') try: for line in stream.read().splitlines(): line = line.strip() if line.startswith('release:'): line = line[8:].strip() version = line.replace('"', '') version = version.split('.') if int(version[0]) > 1: fix_app_engine_debug = True elif int(version[0]) == 1: if int(version[1]) >= 7: # Only fix from 1.7 onwards fix_app_engine_debug = True break finally: stream.close() except: traceback.print_exc() try: # In the default run (i.e.: run directly on debug mode), we try to patch stackless as soon as possible # on a run where we have a remote debug, we may have to be more careful because patching stackless means # that if the user already had a stackless.set_schedule_callback installed, he'd loose it and would need # to call it again (because stackless provides no way of getting the last function which was registered # in set_schedule_callback). # # So, ideally, if there's an application using stackless and the application wants to use the remote debugger # and benefit from stackless debugging, the application itself must call: # # import pydevd_stackless # pydevd_stackless.patch_stackless() # # itself to be able to benefit from seeing the tasklets created before the remote debugger is attached. import pydevd_stackless pydevd_stackless.patch_stackless() except: pass # It's ok not having stackless there... debugger = PyDB() is_module = setup['module'] if fix_app_engine_debug: sys.stderr.write("pydev debugger: google app engine integration enabled\n") curr_dir = os.path.dirname(__file__) app_engine_startup_file = os.path.join(curr_dir, 'pydev_app_engine_debug_startup.py') sys.argv.insert(1, '--python_startup_script=' + app_engine_startup_file) import json setup['pydevd'] = __file__ sys.argv.insert(2, '--python_startup_args=%s' % json.dumps(setup),) sys.argv.insert(3, '--automatic_restart=no') sys.argv.insert(4, '--max_module_instances=1') # Run the dev_appserver debugger.run(setup['file'], None, None, is_module, set_trace=False) else: # as to get here all our imports are already resolved, the psyco module can be # changed and we'll still get the speedups in the debugger, as those functions # are already compiled at this time. try: import psyco except ImportError: if hasattr(sys, 'exc_clear'): # jython does not have it sys.exc_clear() # don't keep the traceback -- clients don't want to see it pass # that's ok, no need to mock psyco if it's not available anyways else: # if it's available, let's change it for a stub (pydev already made use of it) import pydevd_psyco_stub sys.modules['psyco'] = pydevd_psyco_stub if setup['save-signatures']: if pydevd_vm_type.GetVmType() == pydevd_vm_type.PydevdVmType.JYTHON: sys.stderr.write("Collecting run-time type information is not supported for Jython\n") else: # Only import it if we're going to use it! from pydevd_signature import SignatureFactory debugger.signature_factory = SignatureFactory() try: debugger.connect(host, port) except: sys.stderr.write("Could not connect to %s: %s\n" % (host, port)) traceback.print_exc() sys.exit(1) connected = True # Mark that we're connected when started from inside ide. globals = debugger.run(setup['file'], None, None, is_module) if setup['cmd-line']: debugger.wait_for_commands(globals)
apache-2.0
lin-credible/scikit-learn
examples/mixture/plot_gmm_sin.py
248
2747
""" ================================= Gaussian Mixture Model Sine Curve ================================= This example highlights the advantages of the Dirichlet Process: complexity control and dealing with sparse data. The dataset is formed by 100 points loosely spaced following a noisy sine curve. The fit by the GMM class, using the expectation-maximization algorithm to fit a mixture of 10 Gaussian components, finds too-small components and very little structure. The fits by the Dirichlet process, however, show that the model can either learn a global structure for the data (small alpha) or easily interpolate to finding relevant local structure (large alpha), never falling into the problems shown by the GMM class. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture from sklearn.externals.six.moves import xrange # Number of samples per component n_samples = 100 # Generate random sample following a sine curve np.random.seed(0) X = np.zeros((n_samples, 2)) step = 4 * np.pi / n_samples for i in xrange(X.shape[0]): x = i * step - 6 X[i, 0] = x + np.random.normal(0, 0.1) X[i, 1] = 3 * (np.sin(x) + np.random.normal(0, .2)) color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm']) for i, (clf, title) in enumerate([ (mixture.GMM(n_components=10, covariance_type='full', n_iter=100), "Expectation-maximization"), (mixture.DPGMM(n_components=10, covariance_type='full', alpha=0.01, n_iter=100), "Dirichlet Process,alpha=0.01"), (mixture.DPGMM(n_components=10, covariance_type='diag', alpha=100., n_iter=100), "Dirichlet Process,alpha=100.")]): clf.fit(X) splot = plt.subplot(3, 1, 1 + i) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip( clf.means_, clf._get_covars(), color_iter)): v, w = linalg.eigh(covar) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-6, 4 * np.pi - 6) plt.ylim(-5, 5) plt.title(title) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
robin-lai/scikit-learn
sklearn/neighbors/tests/test_ball_tree.py
159
10196
import pickle import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.ball_tree import (BallTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils.testing import SkipTest, assert_allclose rng = np.random.RandomState(10) V = rng.rand(3, 3) V = np.dot(V, V.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'minkowski': dict(p=3), 'chebyshev': {}, 'seuclidean': dict(V=np.random.random(DIMENSION)), 'wminkowski': dict(p=3, w=np.random.random(DIMENSION)), 'mahalanobis': dict(V=V)} DISCRETE_METRICS = ['hamming', 'canberra', 'braycurtis'] BOOLEAN_METRICS = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_ball_tree_query(): np.random.seed(0) X = np.random.random((40, DIMENSION)) Y = np.random.random((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): bt = BallTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = bt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_ball_tree_query_boolean_metrics(): np.random.seed(0) X = np.random.random((40, 10)).round(0) Y = np.random.random((10, 10)).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in BOOLEAN_METRICS: yield check_neighbors, metric def test_ball_tree_query_discrete_metrics(): np.random.seed(0) X = (4 * np.random.random((40, 10))).round(0) Y = (4 * np.random.random((10, 10))).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in DISCRETE_METRICS: yield check_neighbors, metric def test_ball_tree_query_radius(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = bt.query_radius([query_pt], r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_ball_tree_query_radius_distance(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = bt.query_radius([query_pt], r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_ball_tree_kde(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) bt = BallTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) def check_results(kernel, h, atol, rtol, breadth_first): dens = bt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde np.random.seed(0) x_in = np.random.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: bt = BallTree(x_in[:, None]) try: gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) except TypeError: raise SkipTest("Old version of scipy, doesn't accept " "explicit bandwidth.") dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_bt, dens_gkde, decimal=3) def test_ball_tree_two_point(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) r = np.linspace(0, 1, 10) bt = BallTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = bt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_ball_tree_pickle(): np.random.seed(0) X = np.random.random((10, 3)) bt1 = BallTree(X, leaf_size=1) # Test if BallTree with callable metric is picklable bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2) ind1, dist1 = bt1.query(X) ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(bt1, protocol=protocol) bt2 = pickle.loads(s) s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol) bt2_pyfunc = pickle.loads(s_pyfunc) ind2, dist2 = bt2.query(X) ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc) assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = np.random.random(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = np.random.random(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = np.random.random((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2) def test_query_haversine(): np.random.seed(0) X = 2 * np.pi * np.random.random((40, 2)) bt = BallTree(X, leaf_size=1, metric='haversine') dist1, ind1 = bt.query(X, k=5) dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine') assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2)
bsd-3-clause
jaidevd/scikit-learn
sklearn/linear_model/bayes.py
14
19671
""" Various bayesian regression """ from __future__ import print_function # Authors: V. Michel, F. Pedregosa, A. Gramfort # License: BSD 3 clause from math import log import numpy as np from scipy import linalg from .base import LinearModel from ..base import RegressorMixin from ..utils.extmath import fast_logdet, pinvh from ..utils import check_X_y ############################################################################### # BayesianRidge regression class BayesianRidge(LinearModel, RegressorMixin): """Bayesian ridge regression Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300. tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6 alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6 compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : float estimated precision of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes ----- See examples/linear_model/plot_bayesian_ridge.py for an example. References ---------- D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems, Vol. 4, No. 3, 1992. R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15 Their beta is our self.alpha_ Their alpha is our self.lambda_ """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the model Parameters ---------- X : numpy array of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples] Target values Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X) self.X_offset_ = X_offset_ self.X_scale_ = X_scale_ n_samples, n_features = X.shape # Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = 1. verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S ** 2 # Convergence loop of the bayesian ridge regression for iter_ in range(self.n_iter): # Compute mu and sigma # sigma_ = lambda_ / alpha_ * np.eye(n_features) + np.dot(X.T, X) # coef_ = sigma_^-1 * XT * y if n_samples > n_features: coef_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]) coef_ = np.dot(coef_, XT_y) if self.compute_score: logdet_sigma_ = - np.sum( np.log(lambda_ + alpha_ * eigen_vals_)) else: coef_ = np.dot(X.T, np.dot( U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T)) coef_ = np.dot(coef_, y) if self.compute_score: logdet_sigma_ = lambda_ * np.ones(n_features) logdet_sigma_[:n_samples] += alpha_ * eigen_vals_ logdet_sigma_ = - np.sum(np.log(logdet_sigma_)) # Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = (np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))) lambda_ = ((gamma_ + 2 * lambda_1) / (np.sum(coef_ ** 2) + 2 * lambda_2)) alpha_ = ((n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)) # Compute the objective function if self.compute_score: s = lambda_1 * log(lambda_) - lambda_2 * lambda_ s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (n_features * log(lambda_) + n_samples * log(alpha_) - alpha_ * rmse_ - (lambda_ * np.sum(coef_ ** 2)) - logdet_sigma_ - n_samples * log(2 * np.pi)) self.scores_.append(s) # Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.alpha_ = alpha_ self.lambda_ = lambda_ self.coef_ = coef_ sigma_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]) self.sigma_ = (1. / alpha_) * sigma_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self def predict(self, X, return_std=False): """Predict using the linear model. In addition to the mean of the predictive distribution, also its standard deviation can be returned. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. return_std : boolean, optional Whether to return the standard deviation of posterior prediction. Returns ------- y_mean : array, shape = (n_samples,) Mean of predictive distribution of query points. y_std : array, shape = (n_samples,) Standard deviation of predictive distribution of query points. """ y_mean = self._decision_function(X) if return_std is False: return y_mean else: if self.normalize: X = (X - self.X_offset_) / self.X_scale_ sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_)) return y_mean, y_std ############################################################################### # ARD (Automatic Relevance Determination) regression class ARDRegression(LinearModel, RegressorMixin): """Bayesian ARD regression. Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300 tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False. threshold_lambda : float, optional threshold for removing (pruning) weights with high precision from the computation. Default is 1.e+4. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. copy_X : boolean, optional, default True. If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes -------- See examples/linear_model/plot_ard.py for an example. References ---------- D. J. C. MacKay, Bayesian nonlinear modeling for the prediction competition, ASHRAE Transactions, 1994. R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15 Their beta is our self.alpha_ Their alpha is our self.lambda_ ARD is a little different than the slide: only dimensions/features for which self.lambda_ < self.threshold_lambda are kept and the rest are discarded. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, threshold_lambda=1.e+4, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.threshold_lambda = threshold_lambda self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the ARDRegression model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) n_samples, n_features = X.shape coef_ = np.zeros(n_features) X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X) # Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose # Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = np.ones(n_features) self.scores_ = list() coef_old_ = None # Iterative procedure of ARDRegression for iter_ in range(self.n_iter): # Compute mu and sigma (using Woodbury matrix identity) sigma_ = pinvh(np.eye(n_samples) / alpha_ + np.dot(X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1]), X[:, keep_lambda].T)) sigma_ = np.dot(sigma_, X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1])) sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1]) * X[:, keep_lambda].T, sigma_) sigma_.flat[::(sigma_.shape[1] + 1)] += 1. / lambda_[keep_lambda] coef_[keep_lambda] = alpha_ * np.dot( sigma_, np.dot(X[:, keep_lambda].T, y)) # Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)) alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) / (rmse_ + 2. * alpha_2)) # Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 # Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_))) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum()) self.scores_.append(s) # Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self def predict(self, X, return_std=False): """Predict using the linear model. In addition to the mean of the predictive distribution, also its standard deviation can be returned. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. return_std : boolean, optional Whether to return the standard deviation of posterior prediction. Returns ------- y_mean : array, shape = (n_samples,) Mean of predictive distribution of query points. y_std : array, shape = (n_samples,) Standard deviation of predictive distribution of query points. """ y_mean = self._decision_function(X) if return_std is False: return y_mean else: if self.normalize: X = (X - self.X_offset_) / self.X_scale_ X = X[:, self.lambda_ < self.threshold_lambda] sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_)) return y_mean, y_std
bsd-3-clause
largelymfs/w2vtools
build/scipy/scipy/signal/spectral.py
6
13467
"""Tools for spectral analysis. """ from __future__ import division, print_function, absolute_import import numpy as np from scipy import fftpack from . import signaltools from .windows import get_window from ._spectral import lombscargle import warnings from scipy.lib.six import string_types __all__ = ['periodogram', 'welch', 'lombscargle'] def periodogram(x, fs=1.0, window=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate power spectral density using a periodogram. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series in units of Hz. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is an array it will be used directly as the window. Defaults to None; equivalent to 'boxcar'. nfft : int, optional Length of the FFT used. If None the length of `x` will be used. detrend : str or function, optional Specifies how to detrend `x` prior to computing the spectrum. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it should return a detrended array. Defaults to 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz if `x` is measured in V and computing the power spectrum ('spectrum') where `Pxx` has units of V**2 if `x` is measured in V. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of `x`. Notes ----- .. versionadded:: 0.12.0 See Also -------- welch: Estimate power spectral density using Welch's method lombscargle: Lomb-Scargle periodogram for unevenly sampled data Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.periodogram(x, fs) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([1e-7, 1e2]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0009924865443739191 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.ylim([1e-4, 1e1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ x = np.asarray(x) if x.size == 0: return np.empty(x.shape), np.empty(x.shape) if window is None: window = 'boxcar' if nfft is None: nperseg = x.shape[axis] elif nfft == x.shape[axis]: nperseg = nfft elif nfft > x.shape[axis]: nperseg = x.shape[axis] elif nfft < x.shape[axis]: s = [np.s_[:]]*len(x.shape) s[axis] = np.s_[:nfft] x = x[s] nperseg = nfft nfft = None return welch(x, fs, window, nperseg, 0, nfft, detrend, return_onesided, scaling, axis) def welch(x, fs=1.0, window='hanning', nperseg=256, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate power spectral density using Welch's method. Welch's method [1]_ computes an estimate of the power spectral density by dividing the data into overlapping segments, computing a modified periodogram for each segment and averaging the periodograms. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series in units of Hz. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length will be used for nperseg. Defaults to 'hanning'. nperseg : int, optional Length of each segment. Defaults to 256. noverlap: int, optional Number of points to overlap between segments. If None, ``noverlap = nperseg / 2``. Defaults to None. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is `nperseg`. Defaults to None. detrend : str or function, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it takes a segment and returns a detrended segment. Defaults to 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where Pxx has units of V**2/Hz if x is measured in V and computing the power spectrum ('spectrum') where Pxx has units of V**2 if x is measured in V. Defaults to 'density'. axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of x. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data Notes ----- An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default 'hanning' window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. If `noverlap` is 0, this method is equivalent to Bartlett's method [2]_. .. versionadded:: 0.12.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika, vol. 37, pp. 1-16, 1950. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([0.5e-3, 1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0009924865443739191 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ x = np.asarray(x) if x.size == 0: return np.empty(x.shape), np.empty(x.shape) if axis != -1: x = np.rollaxis(x, axis, len(x.shape)) if x.shape[-1] < nperseg: warnings.warn('nperseg = %d, is greater than x.shape[%d] = %d, using ' 'nperseg = x.shape[%d]' % (nperseg, axis, x.shape[axis], axis)) nperseg = x.shape[-1] if isinstance(window, string_types) or type(window) is tuple: win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if win.shape[0] > x.shape[-1]: raise ValueError('window is longer than x.') nperseg = win.shape[0] if scaling == 'density': scale = 1.0 / (fs * (win*win).sum()) elif scaling == 'spectrum': scale = 1.0 / win.sum()**2 else: raise ValueError('Unknown scaling: %r' % scaling) if noverlap is None: noverlap = nperseg // 2 elif noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') if nfft is None: nfft = nperseg elif nfft < nperseg: raise ValueError('nfft must be greater than or equal to nperseg.') if not hasattr(detrend, '__call__'): detrend_func = lambda seg: signaltools.detrend(seg, type=detrend) elif axis != -1: # Wrap this function so that it receives a shape that it could # reasonably expect to receive. def detrend_func(seg): seg = np.rollaxis(seg, -1, axis) seg = detrend(seg) return np.rollaxis(seg, axis, len(seg.shape)) else: detrend_func = detrend step = nperseg - noverlap indices = np.arange(0, x.shape[-1]-nperseg+1, step) if np.isrealobj(x) and return_onesided: outshape = list(x.shape) if nfft % 2 == 0: # even outshape[-1] = nfft // 2 + 1 Pxx = np.empty(outshape, x.dtype) for k, ind in enumerate(indices): x_dt = detrend_func(x[..., ind:ind+nperseg]) xft = fftpack.rfft(x_dt*win, nfft) # fftpack.rfft returns the positive frequency part of the fft # as real values, packed r r i r i r i ... # this indexing is to extract the matching real and imaginary # parts, while also handling the pure real zero and nyquist # frequencies. if k == 0: Pxx[..., (0,-1)] = xft[..., (0,-1)]**2 Pxx[..., 1:-1] = xft[..., 1:-1:2]**2 + xft[..., 2::2]**2 else: Pxx *= k/(k+1.0) Pxx[..., (0,-1)] += xft[..., (0,-1)]**2 / (k+1.0) Pxx[..., 1:-1] += (xft[..., 1:-1:2]**2 + xft[..., 2::2]**2) \ / (k+1.0) else: # odd outshape[-1] = (nfft+1) // 2 Pxx = np.empty(outshape, x.dtype) for k, ind in enumerate(indices): x_dt = detrend_func(x[..., ind:ind+nperseg]) xft = fftpack.rfft(x_dt*win, nfft) if k == 0: Pxx[..., 0] = xft[..., 0]**2 Pxx[..., 1:] = xft[..., 1::2]**2 + xft[..., 2::2]**2 else: Pxx *= k/(k+1.0) Pxx[..., 0] += xft[..., 0]**2 / (k+1) Pxx[..., 1:] += (xft[..., 1::2]**2 + xft[..., 2::2]**2) \ / (k+1.0) Pxx[..., 1:-1] *= 2*scale Pxx[..., (0,-1)] *= scale f = np.arange(Pxx.shape[-1]) * (fs/nfft) else: for k, ind in enumerate(indices): x_dt = detrend_func(x[..., ind:ind+nperseg]) xft = fftpack.fft(x_dt*win, nfft) if k == 0: Pxx = (xft * xft.conj()).real else: Pxx *= k/(k+1.0) Pxx += (xft * xft.conj()).real / (k+1.0) Pxx *= scale f = fftpack.fftfreq(nfft, 1.0/fs) if axis != -1: Pxx = np.rollaxis(Pxx, -1, axis) return f, Pxx
mit
nvoron23/statsmodels
examples/python/formulas.py
33
4968
## Formulas: Fitting models using R-style formulas # Since version 0.5.0, ``statsmodels`` allows users to fit statistical models using R-style formulas. Internally, ``statsmodels`` uses the [patsy](http://patsy.readthedocs.org/) package to convert formulas and data to the matrices that are used in model fitting. The formula framework is quite powerful; this tutorial only scratches the surface. A full description of the formula language can be found in the ``patsy`` docs: # # * [Patsy formula language description](http://patsy.readthedocs.org/) # # ## Loading modules and functions from __future__ import print_function import numpy as np import statsmodels.api as sm ##### Import convention # You can import explicitly from statsmodels.formula.api from statsmodels.formula.api import ols # Alternatively, you can just use the `formula` namespace of the main `statsmodels.api`. sm.formula.ols # Or you can use the following conventioin import statsmodels.formula.api as smf # These names are just a convenient way to get access to each model's `from_formula` classmethod. See, for instance sm.OLS.from_formula # All of the lower case models accept ``formula`` and ``data`` arguments, whereas upper case ones take ``endog`` and ``exog`` design matrices. ``formula`` accepts a string which describes the model in terms of a ``patsy`` formula. ``data`` takes a [pandas](http://pandas.pydata.org/) data frame or any other data structure that defines a ``__getitem__`` for variable names like a structured array or a dictionary of variables. # # ``dir(sm.formula)`` will print(a list of available models. # # Formula-compatible models have the following generic call signature: ``(formula, data, subset=None, *args, **kwargs)`` # # ## OLS regression using formulas # # To begin, we fit the linear model described on the [Getting Started](gettingstarted.html) page. Download the data, subset columns, and list-wise delete to remove missing observations: dta = sm.datasets.get_rdataset("Guerry", "HistData", cache=True) df = dta.data[['Lottery', 'Literacy', 'Wealth', 'Region']].dropna() df.head() # Fit the model: mod = ols(formula='Lottery ~ Literacy + Wealth + Region', data=df) res = mod.fit() print(res.summary()) # ## Categorical variables # # Looking at the summary printed above, notice that ``patsy`` determined that elements of *Region* were text strings, so it treated *Region* as a categorical variable. `patsy`'s default is also to include an intercept, so we automatically dropped one of the *Region* categories. # # If *Region* had been an integer variable that we wanted to treat explicitly as categorical, we could have done so by using the ``C()`` operator: res = ols(formula='Lottery ~ Literacy + Wealth + C(Region)', data=df).fit() print(res.params) # Patsy's mode advanced features for categorical variables are discussed in: [Patsy: Contrast Coding Systems for categorical variables](contrasts.html) # ## Operators # # We have already seen that "~" separates the left-hand side of the model from the right-hand side, and that "+" adds new columns to the design matrix. # # ### Removing variables # # The "-" sign can be used to remove columns/variables. For instance, we can remove the intercept from a model by: res = ols(formula='Lottery ~ Literacy + Wealth + C(Region) -1 ', data=df).fit() print(res.params) # ### Multiplicative interactions # # ":" adds a new column to the design matrix with the interaction of the other two columns. "*" will also include the individual columns that were multiplied together: res1 = ols(formula='Lottery ~ Literacy : Wealth - 1', data=df).fit() res2 = ols(formula='Lottery ~ Literacy * Wealth - 1', data=df).fit() print(res1.params, '\n') print(res2.params) # Many other things are possible with operators. Please consult the [patsy docs](https://patsy.readthedocs.org/en/latest/formulas.html) to learn more. # ## Functions # # You can apply vectorized functions to the variables in your model: res = sm.ols(formula='Lottery ~ np.log(Literacy)', data=df).fit() print(res.params) # Define a custom function: def log_plus_1(x): return np.log(x) + 1. res = sm.ols(formula='Lottery ~ log_plus_1(Literacy)', data=df).fit() print(res.params) # Any function that is in the calling namespace is available to the formula. # ## Using formulas with models that do not (yet) support them # # Even if a given `statsmodels` function does not support formulas, you can still use `patsy`'s formula language to produce design matrices. Those matrices # can then be fed to the fitting function as `endog` and `exog` arguments. # # To generate ``numpy`` arrays: import patsy f = 'Lottery ~ Literacy * Wealth' y,X = patsy.dmatrices(f, df, return_type='dataframe') print(y[:5]) print(X[:5]) # To generate pandas data frames: f = 'Lottery ~ Literacy * Wealth' y,X = patsy.dmatrices(f, df, return_type='dataframe') print(y[:5]) print(X[:5]) print(sm.OLS(y, X).fit().summary())
bsd-3-clause
channsoden/hannsoden-bioinformatics
plots.py
1
10700
#!/usr/bin/env python from matplotlib import pyplot as plt from matplotlib.path import Path from matplotlib.spines import Spine from matplotlib.projections.polar import PolarAxes from matplotlib.projections import register_projection import numpy as np import statsmodels.api as sm import plotting_tools as pt def box_plot(ax, data, color='black', spacing = 1, offset = 0, sym = 'k+'): categories = sorted(data.keys()) series = [data[category] for category in categories] positions = [1+(i*spacing)+offset for i in range(len(series))] box = ax.boxplot(series, patch_artist=True, positions=positions, sym=sym, widths=0.4, vert=True) [patch.set_facecolor(color) for patch in box['boxes']] [patch.set_color(color) for patch in box['boxes']] [line.set_color('white') for line in box['medians']] [line.set_color(color) for line in box['whiskers']] [line.set_color(color) for line in box['caps']] [sym.set_color(color) for sym in box['fliers']] ax.set_xticklabels(categories) def pretty_bar(ax, data, labels, title=None, shift = 0, barwidth=0.5, barcolor='gray', horizontal=False): if horizontal: plotter = ax.barh xlim = ax.set_ylim xticks = ax.set_yticks yticks = ax.set_xticks xticklabels = ax.set_yticklabels grid = ax.xaxis.grid rotation = -90 else: plotter = ax.bar xlim = ax.set_xlim xticks = ax.set_xticks yticks = ax.set_yticks xticklabels = ax.set_xticklabels grid = ax.yaxis.grid rotation = 0 # Matplotlib assumes you have numerical data for both axes # But for the X axis, we have categorical data # So we need to plug in a range of numbers to place the bars at x = list(range(len(data))) x = [i + shift for i in x] # Bars will appear at 0, 1, 2, etc # So set the x-limits to include these values xlim(-barwidth, len(data)-barwidth) # Here we turn the bars grey and remove their edge border. # Also make the bars a little more narrow. bars = plotter(x, data, barwidth, align='center', color=barcolor, edgecolor='none') # Set the ticks to match the bars and label them. if max([len(l) for l in labels]) > 4: rotation += 90 xticks(x) xticklabels(labels, rotation=rotation) # Hide the frame around the plot for spine in ax.spines: ax.spines[spine].set_visible(False) # Turn off the ticks ax.tick_params(bottom='off', top='off', left='off', right='off') # Overlay a white grid on the y axis grid(True, color='white', linestyle='solid') if title: ax.set_title(title, fontweight='bold') return bars def manhattan(ax, positions, p_vals, scaffold_positions, color = 'black', sig = 2): rgba = np.zeros((len(positions), 4)) if type(color) == str: rgba[:, 0:3] = colors.to_rgba(color)[0:3] else: rgba[:, 0:3] = color #rgba[p_vals < sig, 0:3] = np.array([0., 0., 0.]) # insignificant points are black rgba[:, 3] = 1 # make opaque ax.scatter(positions, p_vals, color = rgba, s = 5) ax.set_ylabel('-log(p)') max_y = int(max(p_vals)) + 1 ax.set_ylim(-0.3, max_y) yticks = list(range(max_y + 1)) ax.set_yticks(yticks) xtick_labels = sorted(list(scaffold_positions.keys()), key=lambda k: scaffold_positions[k]) xticks = [scaffold_positions[k] for k in xtick_labels] label_locations = [(xticks[i]+xticks[i+1])/2. for i in range(len(xticks)-1)] ax.set_xlim(0, max(xticks)) ax.set_xticks(xticks) ax.set_xticklabels('') # turn off major tick labels ax.set_xticks(label_locations, minor=True) ax.set_xticklabels(xtick_labels, rotation='vertical', minor=True) ax.tick_params(axis='x', which='minor', bottom='off') class regression_plot(object): def __init__(self, x, y, alpha = 0.05, label = None): self.x = x self.y = y self.label = label self.alpha = alpha def regress(self, slope = 'nonzero'): X = sm.add_constant(self.x) self.model = sm.OLS(self.y, X, missing='drop') results = self.model.fit() self.r2 = results.rsquared self.intercept, self.slope = results.params[:2] self.raw_int_p = results.pvalues[0] if slope == 'nonzero': self.raw_slope_p = results.pvalues[1] elif slope == 'negative' or slope == 'positive': # convert to single-tailed test for appropriate slope pval = results.pvalues[1] / 2. if ((slope == 'negative' and self.slope > 0) or (slope == 'positive' and self.slope < 0)): pval = 1. - pval self.raw_slope_p = pval else: raise ValueError("slope argument should be 'nonzero', 'negative', or 'positive'.") self.p_val = self.raw_slope_p return self.raw_slope_p def draw(self, ax, logx = False, logy = False, xlim = None, ylim = None, scientific = True, sig_color = 'k', insig_color = 'r', sig_style = '--', insig_style = '--', fit_report_location = None, fit_report_ha = 'left', fit_report_va = 'bottom', marker_alpha=0.3, plot_regression=True): with np.errstate(divide='ignore'): if logx: X = np.log10(self.x) else: X = self.x if logy: Y = np.log10(self.y) else: Y = self.y ax.scatter(X, Y, c='k', alpha = marker_alpha, edgecolors='none') if xlim: ax.set_xlim(*xlim) if ylim: ax.set_ylim(*ylim) if scientific: pt.scientific(ax) if plot_regression: if self.p_val <= self.alpha: line = '{}{}'.format(sig_style, sig_color) else: line = '{}{}'.format(insig_style, insig_color) regressx = np.linspace(self.x.min(), self.x.max(), num=100) prediction = regressx * self.slope + self.intercept with np.errstate(divide='ignore'): if logx: regressx = np.log10(regressx) if logy: prediction = np.log10(prediction) ax.plot(regressx, prediction, line) if fit_report_location: fit_report = 'R2 = {:.4f}\np = {:.3E}'.format(self.r2, self.p_val) left, right = ax.get_xlim() bottom, top = ax.get_ylim() location = (left + (right-left) * fit_report_location[0], bottom + (top-bottom) * fit_report_location[1]) ax.text(location[0], location[1], fit_report, ha=fit_report_ha, va=fit_report_va) ax.set_title(self.label) def radar_factory(num_vars, frame='circle'): """Create a radar chart with `num_vars` axes. This function creates a RadarAxes projection and registers it. Parameters ---------- num_vars : int Number of variables for radar chart. frame : {'circle' | 'polygon'} Shape of frame surrounding axes. """ # calculate evenly-spaced axis angles theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False) # rotate theta such that the first axis is at the top theta += np.pi/2 def draw_poly_patch(self): verts = unit_poly_verts(theta) return plt.Polygon(verts, closed=True, edgecolor='k') def draw_circle_patch(self): # unit circle centered on (0.5, 0.5) return plt.Circle((0.5, 0.5), 0.5) patch_dict = {'polygon': draw_poly_patch, 'circle': draw_circle_patch} if frame not in patch_dict: raise ValueError('unknown value for `frame`: %s' % frame) class RadarAxes(PolarAxes): name = 'radar' # use 1 line segment to connect specified points RESOLUTION = 1 # define draw_frame method draw_patch = patch_dict[frame] def fill(self, *args, **kwargs): """Override fill so that line is closed by default""" closed = kwargs.pop('closed', True) return super(RadarAxes, self).fill(closed=closed, *args, **kwargs) def plot(self, *args, **kwargs): """Override plot so that line is closed by default""" lines = super(RadarAxes, self).plot(*args, **kwargs) for line in lines: self._close_line(line) def _close_line(self, line): x, y = line.get_data() # FIXME: markers at x[0], y[0] get doubled-up if x[0] != x[-1]: x = np.concatenate((x, [x[0]])) y = np.concatenate((y, [y[0]])) line.set_data(x, y) def set_varlabels(self, labels): self.set_thetagrids(np.degrees(theta), labels) def _gen_axes_patch(self): return self.draw_patch() def _gen_axes_spines(self): if frame == 'circle': return PolarAxes._gen_axes_spines(self) # The following is a hack to get the spines (i.e. the axes frame) # to draw correctly for a polygon frame. # spine_type must be 'left', 'right', 'top', 'bottom', or `circle`. spine_type = 'circle' verts = unit_poly_verts(theta) # close off polygon by repeating first vertex verts.append(verts[0]) path = Path(verts) spine = Spine(self, spine_type, path) spine.set_transform(self.transAxes) return {'polar': spine} register_projection(RadarAxes) return theta def unit_poly_verts(theta): """Return vertices of polygon for subplot axes. This polygon is circumscribed by a unit circle centered at (0.5, 0.5) """ x0, y0, r = [0.5] * 3 verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta] return verts def radar_plot(titles, data): theta = radar_factory(len(titles), frame='circle') fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111, projection='radar') ax.set_rgrids([0.2*i for i in range(1,6)]) ax.set_ylim(0, 1) ax.set_title('this is a radar plot') ax.set_varlabels(titles) #ax.spines['polar'].set_linewidth(0) # to turn off bounding box [line.set_visible(False) for line in ax.xaxis.get_gridlines()] inspect = ax.xaxis.get_gridlines() print(inspect) print(dir(inspect)) for d in data: ax.plot(theta, d) fig.savefig('radar_plot.png', bbox_inches='tight')
gpl-3.0
ryfeus/lambda-packs
Sklearn_scipy_numpy/source/sklearn/svm/tests/test_svm.py
6
32057
""" Testing for Support Vector Machine module (sklearn.svm) TODO: remove hard coded numerical results when possible """ import numpy as np import itertools from numpy.testing import assert_array_equal, assert_array_almost_equal from numpy.testing import assert_almost_equal from scipy import sparse from nose.tools import assert_raises, assert_true, assert_equal, assert_false from sklearn.base import ChangedBehaviorWarning from sklearn import svm, linear_model, datasets, metrics, base from sklearn.cross_validation import train_test_split from sklearn.datasets import make_classification, make_blobs from sklearn.metrics import f1_score from sklearn.metrics.pairwise import rbf_kernel from sklearn.utils import check_random_state from sklearn.utils import ConvergenceWarning from sklearn.utils.validation import NotFittedError from sklearn.utils.testing import assert_greater, assert_in, assert_less from sklearn.utils.testing import assert_raises_regexp, assert_warns from sklearn.utils.testing import assert_warns_message, assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.multiclass import OneVsRestClassifier # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] Y = [1, 1, 1, 2, 2, 2] T = [[-1, -1], [2, 2], [3, 2]] true_result = [1, 2, 2] # also load the iris dataset iris = datasets.load_iris() rng = check_random_state(42) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_libsvm_parameters(): # Test parameters on classes that make use of libsvm. clf = svm.SVC(kernel='linear').fit(X, Y) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.support_vectors_, (X[1], X[3])) assert_array_equal(clf.intercept_, [0.]) assert_array_equal(clf.predict(X), Y) def test_libsvm_iris(): # Check consistency on dataset iris. # shuffle the dataset so that labels are not ordered for k in ('linear', 'rbf'): clf = svm.SVC(kernel=k).fit(iris.data, iris.target) assert_greater(np.mean(clf.predict(iris.data) == iris.target), 0.9) assert_array_equal(clf.classes_, np.sort(clf.classes_)) # check also the low-level API model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64)) pred = svm.libsvm.predict(iris.data, *model) assert_greater(np.mean(pred == iris.target), .95) model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64), kernel='linear') pred = svm.libsvm.predict(iris.data, *model, kernel='linear') assert_greater(np.mean(pred == iris.target), .95) pred = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_greater(np.mean(pred == iris.target), .95) # If random_seed >= 0, the libsvm rng is seeded (by calling `srand`), hence # we should get deteriministic results (assuming that there is no other # thread calling this wrapper calling `srand` concurrently). pred2 = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_array_equal(pred, pred2) @ignore_warnings def test_single_sample_1d(): # Test whether SVCs work on a single sample given as a 1-d array clf = svm.SVC().fit(X, Y) clf.predict(X[0]) clf = svm.LinearSVC(random_state=0).fit(X, Y) clf.predict(X[0]) def test_precomputed(): # SVC with a precomputed kernel. # We test it with a toy dataset and with iris. clf = svm.SVC(kernel='precomputed') # Gram matrix for train data (square matrix) # (we use just a linear kernel) K = np.dot(X, np.array(X).T) clf.fit(K, Y) # Gram matrix for test data (rectangular matrix) KT = np.dot(T, np.array(X).T) pred = clf.predict(KT) assert_raises(ValueError, clf.predict, KT.T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. KT = np.zeros_like(KT) for i in range(len(T)): for j in clf.support_: KT[i, j] = np.dot(T[i], X[j]) pred = clf.predict(KT) assert_array_equal(pred, true_result) # same as before, but using a callable function instead of the kernel # matrix. kernel is just a linear kernel kfunc = lambda x, y: np.dot(x, y.T) clf = svm.SVC(kernel=kfunc) clf.fit(X, Y) pred = clf.predict(T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # test a precomputed kernel with the iris dataset # and check parameters against a linear SVC clf = svm.SVC(kernel='precomputed') clf2 = svm.SVC(kernel='linear') K = np.dot(iris.data, iris.data.T) clf.fit(K, iris.target) clf2.fit(iris.data, iris.target) pred = clf.predict(K) assert_array_almost_equal(clf.support_, clf2.support_) assert_array_almost_equal(clf.dual_coef_, clf2.dual_coef_) assert_array_almost_equal(clf.intercept_, clf2.intercept_) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. K = np.zeros_like(K) for i in range(len(iris.data)): for j in clf.support_: K[i, j] = np.dot(iris.data[i], iris.data[j]) pred = clf.predict(K) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) clf = svm.SVC(kernel=kfunc) clf.fit(iris.data, iris.target) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) def test_svr(): # Test Support Vector Regression diabetes = datasets.load_diabetes() for clf in (svm.NuSVR(kernel='linear', nu=.4, C=1.0), svm.NuSVR(kernel='linear', nu=.4, C=10.), svm.SVR(kernel='linear', C=10.), svm.LinearSVR(C=10.), svm.LinearSVR(C=10.), ): clf.fit(diabetes.data, diabetes.target) assert_greater(clf.score(diabetes.data, diabetes.target), 0.02) # non-regression test; previously, BaseLibSVM would check that # len(np.unique(y)) < 2, which must only be done for SVC svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data))) svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) def test_linearsvr(): # check that SVR(kernel='linear') and LinearSVC() give # comparable results diabetes = datasets.load_diabetes() lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target) score1 = lsvr.score(diabetes.data, diabetes.target) svr = svm.SVR(kernel='linear', C=1e3).fit(diabetes.data, diabetes.target) score2 = svr.score(diabetes.data, diabetes.target) assert np.linalg.norm(lsvr.coef_ - svr.coef_) / np.linalg.norm(svr.coef_) < .1 assert np.abs(score1 - score2) < 0.1 def test_svr_errors(): X = [[0.0], [1.0]] y = [0.0, 0.5] # Bad kernel clf = svm.SVR(kernel=lambda x, y: np.array([[1.0]])) clf.fit(X, y) assert_raises(ValueError, clf.predict, X) def test_oneclass(): # Test OneClassSVM clf = svm.OneClassSVM() clf.fit(X) pred = clf.predict(T) assert_array_almost_equal(pred, [-1, -1, -1]) assert_array_almost_equal(clf.intercept_, [-1.008], decimal=3) assert_array_almost_equal(clf.dual_coef_, [[0.632, 0.233, 0.633, 0.234, 0.632, 0.633]], decimal=3) assert_raises(ValueError, lambda: clf.coef_) def test_oneclass_decision_function(): # Test OneClassSVM decision function clf = svm.OneClassSVM() rnd = check_random_state(2) # Generate train data X = 0.3 * rnd.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rnd.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) # predict things y_pred_test = clf.predict(X_test) assert_greater(np.mean(y_pred_test == 1), .9) y_pred_outliers = clf.predict(X_outliers) assert_greater(np.mean(y_pred_outliers == -1), .9) dec_func_test = clf.decision_function(X_test) assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1) dec_func_outliers = clf.decision_function(X_outliers) assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1) def test_tweak_params(): # Make sure some tweaking of parameters works. # We change clf.dual_coef_ at run time and expect .predict() to change # accordingly. Notice that this is not trivial since it involves a lot # of C/Python copying in the libsvm bindings. # The success of this test ensures that the mapping between libsvm and # the python classifier is complete. clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, Y) assert_array_equal(clf.dual_coef_, [[-.25, .25]]) assert_array_equal(clf.predict([[-.1, -.1]]), [1]) clf._dual_coef_ = np.array([[.0, 1.]]) assert_array_equal(clf.predict([[-.1, -.1]]), [2]) def test_probability(): # Predict probabilities using SVC # This uses cross validation, so we use a slightly bigger testing set. for clf in (svm.SVC(probability=True, random_state=0, C=1.0), svm.NuSVC(probability=True, random_state=0)): clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal( np.sum(prob_predict, 1), np.ones(iris.data.shape[0])) assert_true(np.mean(np.argmax(prob_predict, 1) == clf.predict(iris.data)) > 0.9) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8) def test_decision_function(): # Test decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(iris.data, iris.target) dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int)]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) # kernel binary: clf = svm.SVC(kernel='rbf', gamma=1, decision_function_shape='ovo') clf.fit(X, Y) rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) def test_decision_function_shape(): # check that decision_function_shape='ovr' gives # correct shape and is consistent with predict clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(iris.data, iris.target) dec = clf.decision_function(iris.data) assert_equal(dec.shape, (len(iris.data), 3)) assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1)) # with five classes: X, y = make_blobs(n_samples=80, centers=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(X_train, y_train) dec = clf.decision_function(X_test) assert_equal(dec.shape, (len(X_test), 5)) assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1)) # check shape of ovo_decition_function=True clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(X_train, y_train) dec = clf.decision_function(X_train) assert_equal(dec.shape, (len(X_train), 10)) # check deprecation warning clf = svm.SVC(kernel='linear', C=0.1).fit(X_train, y_train) msg = "change the shape of the decision function" dec = assert_warns_message(ChangedBehaviorWarning, msg, clf.decision_function, X_train) assert_equal(dec.shape, (len(X_train), 10)) def test_svr_predict(): # Test SVR's decision_function # Sanity check, test that predict implemented in python # returns the same as the one in libsvm X = iris.data y = iris.target # linear kernel reg = svm.SVR(kernel='linear', C=0.1).fit(X, y) dec = np.dot(X, reg.coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel()) # rbf kernel reg = svm.SVR(kernel='rbf', gamma=1).fit(X, y) rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma) dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel()) def test_weight(): # Test class weights clf = svm.SVC(class_weight={1: 0.1}) # we give a small weights to class 1 clf.fit(X, Y) # so all predicted values belong to class 2 assert_array_almost_equal(clf.predict(X), [2] * 6) X_, y_ = make_classification(n_samples=200, n_features=10, weights=[0.833, 0.167], random_state=2) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: .1, 1: 10}) clf.fit(X_[:100], y_[:100]) y_pred = clf.predict(X_[100:]) assert_true(f1_score(y_[100:], y_pred) > .3) def test_sample_weights(): # Test weights on individual samples # TODO: check on NuSVR, OneClass, etc. clf = svm.SVC() clf.fit(X, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) # test that rescaling all samples is the same as changing C clf = svm.SVC() clf.fit(X, Y) dual_coef_no_weight = clf.dual_coef_ clf.set_params(C=100) clf.fit(X, Y, sample_weight=np.repeat(0.01, len(X))) assert_array_almost_equal(dual_coef_no_weight, clf.dual_coef_) def test_auto_weight(): # Test class weights for imbalanced data from sklearn.linear_model import LogisticRegression # We take as dataset the two-dimensional projection of iris so # that it is not separable and remove half of predictors from # class 1. # We add one to the targets as a non-regression test: class_weight="balanced" # used to work only when the labels where a range [0..K). from sklearn.utils import compute_class_weight X, y = iris.data[:, :2], iris.target + 1 unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2]) classes = np.unique(y[unbalanced]) class_weights = compute_class_weight('balanced', classes, y[unbalanced]) assert_true(np.argmax(class_weights) == 2) for clf in (svm.SVC(kernel='linear'), svm.LinearSVC(random_state=0), LogisticRegression()): # check that score is better when class='balanced' is set. y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X) clf.set_params(class_weight='balanced') y_pred_balanced = clf.fit(X[unbalanced], y[unbalanced],).predict(X) assert_true(metrics.f1_score(y, y_pred, average='weighted') <= metrics.f1_score(y, y_pred_balanced, average='weighted')) def test_bad_input(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X, Y2) # Test with arrays that are non-contiguous. for clf in (svm.SVC(), svm.LinearSVC(random_state=0)): Xf = np.asfortranarray(X) assert_false(Xf.flags['C_CONTIGUOUS']) yf = np.ascontiguousarray(np.tile(Y, (2, 1)).T) yf = yf[:, -1] assert_false(yf.flags['F_CONTIGUOUS']) assert_false(yf.flags['C_CONTIGUOUS']) clf.fit(Xf, yf) assert_array_equal(clf.predict(T), true_result) # error for precomputed kernelsx clf = svm.SVC(kernel='precomputed') assert_raises(ValueError, clf.fit, X, Y) # sample_weight bad dimensions clf = svm.SVC() assert_raises(ValueError, clf.fit, X, Y, sample_weight=range(len(X) - 1)) # predict with sparse input when trained with dense clf = svm.SVC().fit(X, Y) assert_raises(ValueError, clf.predict, sparse.lil_matrix(X)) Xt = np.array(X).T clf.fit(np.dot(X, Xt), Y) assert_raises(ValueError, clf.predict, X) clf = svm.SVC() clf.fit(X, Y) assert_raises(ValueError, clf.predict, Xt) def test_sparse_precomputed(): clf = svm.SVC(kernel='precomputed') sparse_gram = sparse.csr_matrix([[1, 0], [0, 1]]) try: clf.fit(sparse_gram, [0, 1]) assert not "reached" except TypeError as e: assert_in("Sparse precomputed", str(e)) def test_linearsvc_parameters(): # Test possible parameter combinations in LinearSVC # Generate list of possible parameter combinations losses = ['hinge', 'squared_hinge', 'logistic_regression', 'foo'] penalties, duals = ['l1', 'l2', 'bar'], [True, False] X, y = make_classification(n_samples=5, n_features=5) for loss, penalty, dual in itertools.product(losses, penalties, duals): clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual) if ((loss, penalty) == ('hinge', 'l1') or (loss, penalty, dual) == ('hinge', 'l2', False) or (penalty, dual) == ('l1', True) or loss == 'foo' or penalty == 'bar'): assert_raises_regexp(ValueError, "Unsupported set of arguments.*penalty='%s.*" "loss='%s.*dual=%s" % (penalty, loss, dual), clf.fit, X, y) else: clf.fit(X, y) # Incorrect loss value - test if explicit error message is raised assert_raises_regexp(ValueError, ".*loss='l3' is not supported.*", svm.LinearSVC(loss="l3").fit, X, y) # FIXME remove in 1.0 def test_linearsvx_loss_penalty_deprecations(): X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the %s will be removed in %s") # LinearSVC # loss l1/L1 --> hinge assert_warns_message(DeprecationWarning, msg % ("l1", "hinge", "loss='l1'", "1.0"), svm.LinearSVC(loss="l1").fit, X, y) # loss l2/L2 --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("L2", "squared_hinge", "loss='L2'", "1.0"), svm.LinearSVC(loss="L2").fit, X, y) # LinearSVR # loss l1/L1 --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("L1", "epsilon_insensitive", "loss='L1'", "1.0"), svm.LinearSVR(loss="L1").fit, X, y) # loss l2/L2 --> squared_epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("l2", "squared_epsilon_insensitive", "loss='l2'", "1.0"), svm.LinearSVR(loss="l2").fit, X, y) # FIXME remove in 0.18 def test_linear_svx_uppercase_loss_penalty(): # Check if Upper case notation is supported by _fit_liblinear # which is called by fit X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the uppercase notation will be removed in %s") # loss SQUARED_hinge --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("SQUARED_hinge", "squared_hinge", "0.18"), svm.LinearSVC(loss="SQUARED_hinge").fit, X, y) # penalty L2 --> l2 assert_warns_message(DeprecationWarning, msg.replace("loss", "penalty") % ("L2", "l2", "0.18"), svm.LinearSVC(penalty="L2").fit, X, y) # loss EPSILON_INSENSITIVE --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("EPSILON_INSENSITIVE", "epsilon_insensitive", "0.18"), svm.LinearSVR(loss="EPSILON_INSENSITIVE").fit, X, y) def test_linearsvc(): # Test basic routines using LinearSVC clf = svm.LinearSVC(random_state=0).fit(X, Y) # by default should have intercept assert_true(clf.fit_intercept) assert_array_equal(clf.predict(T), true_result) assert_array_almost_equal(clf.intercept_, [0], decimal=3) # the same with l1 penalty clf = svm.LinearSVC(penalty='l1', loss='squared_hinge', dual=False, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty with dual formulation clf = svm.LinearSVC(penalty='l2', dual=True, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty, l1 loss clf = svm.LinearSVC(penalty='l2', loss='hinge', dual=True, random_state=0) clf.fit(X, Y) assert_array_equal(clf.predict(T), true_result) # test also decision function dec = clf.decision_function(T) res = (dec > 0).astype(np.int) + 1 assert_array_equal(res, true_result) def test_linearsvc_crammer_singer(): # Test LinearSVC with crammer_singer multi-class svm ovr_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) cs_clf = svm.LinearSVC(multi_class='crammer_singer', random_state=0) cs_clf.fit(iris.data, iris.target) # similar prediction for ovr and crammer-singer: assert_true((ovr_clf.predict(iris.data) == cs_clf.predict(iris.data)).mean() > .9) # classifiers shouldn't be the same assert_true((ovr_clf.coef_ != cs_clf.coef_).all()) # test decision function assert_array_equal(cs_clf.predict(iris.data), np.argmax(cs_clf.decision_function(iris.data), axis=1)) dec_func = np.dot(iris.data, cs_clf.coef_.T) + cs_clf.intercept_ assert_array_almost_equal(dec_func, cs_clf.decision_function(iris.data)) def test_crammer_singer_binary(): # Test Crammer-Singer formulation in the binary case X, y = make_classification(n_classes=2, random_state=0) for fit_intercept in (True, False): acc = svm.LinearSVC(fit_intercept=fit_intercept, multi_class="crammer_singer", random_state=0).fit(X, y).score(X, y) assert_greater(acc, 0.9) def test_linearsvc_iris(): # Test that LinearSVC gives plausible predictions on the iris dataset # Also, test symbolic class names (classes_). target = iris.target_names[iris.target] clf = svm.LinearSVC(random_state=0).fit(iris.data, target) assert_equal(set(clf.classes_), set(iris.target_names)) assert_greater(np.mean(clf.predict(iris.data) == target), 0.8) dec = clf.decision_function(iris.data) pred = iris.target_names[np.argmax(dec, 1)] assert_array_equal(pred, clf.predict(iris.data)) def test_dense_liblinear_intercept_handling(classifier=svm.LinearSVC): # Test that dense liblinear honours intercept_scaling param X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = classifier(fit_intercept=True, penalty='l1', loss='squared_hinge', dual=False, C=4, tol=1e-7, random_state=0) assert_true(clf.intercept_scaling == 1, clf.intercept_scaling) assert_true(clf.fit_intercept) # when intercept_scaling is low the intercept value is highly "penalized" # by regularization clf.intercept_scaling = 1 clf.fit(X, y) assert_almost_equal(clf.intercept_, 0, decimal=5) # when intercept_scaling is sufficiently high, the intercept value # is not affected by regularization clf.intercept_scaling = 100 clf.fit(X, y) intercept1 = clf.intercept_ assert_less(intercept1, -1) # when intercept_scaling is sufficiently high, the intercept value # doesn't depend on intercept_scaling value clf.intercept_scaling = 1000 clf.fit(X, y) intercept2 = clf.intercept_ assert_array_almost_equal(intercept1, intercept2, decimal=2) def test_liblinear_set_coef(): # multi-class case clf = svm.LinearSVC().fit(iris.data, iris.target) values = clf.decision_function(iris.data) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(iris.data) assert_array_almost_equal(values, values2) # binary-class case X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = svm.LinearSVC().fit(X, y) values = clf.decision_function(X) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(X) assert_array_equal(values, values2) def test_immutable_coef_property(): # Check that primal coef modification are not silently ignored svms = [ svm.SVC(kernel='linear').fit(iris.data, iris.target), svm.NuSVC(kernel='linear').fit(iris.data, iris.target), svm.SVR(kernel='linear').fit(iris.data, iris.target), svm.NuSVR(kernel='linear').fit(iris.data, iris.target), svm.OneClassSVM(kernel='linear').fit(iris.data), ] for clf in svms: assert_raises(AttributeError, clf.__setattr__, 'coef_', np.arange(3)) assert_raises((RuntimeError, ValueError), clf.coef_.__setitem__, (0, 0), 0) def test_linearsvc_verbose(): # stdout: redirect import os stdout = os.dup(1) # save original stdout os.dup2(os.pipe()[1], 1) # replace it # actual call clf = svm.LinearSVC(verbose=1) clf.fit(X, Y) # stdout: restore os.dup2(stdout, 1) # restore original stdout def test_svc_clone_with_callable_kernel(): # create SVM with callable linear kernel, check that results are the same # as with built-in linear kernel svm_callable = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, decision_function_shape='ovr') # clone for checking clonability with lambda functions.. svm_cloned = base.clone(svm_callable) svm_cloned.fit(iris.data, iris.target) svm_builtin = svm.SVC(kernel='linear', probability=True, random_state=0, decision_function_shape='ovr') svm_builtin.fit(iris.data, iris.target) assert_array_almost_equal(svm_cloned.dual_coef_, svm_builtin.dual_coef_) assert_array_almost_equal(svm_cloned.intercept_, svm_builtin.intercept_) assert_array_equal(svm_cloned.predict(iris.data), svm_builtin.predict(iris.data)) assert_array_almost_equal(svm_cloned.predict_proba(iris.data), svm_builtin.predict_proba(iris.data), decimal=4) assert_array_almost_equal(svm_cloned.decision_function(iris.data), svm_builtin.decision_function(iris.data)) def test_svc_bad_kernel(): svc = svm.SVC(kernel=lambda x, y: x) assert_raises(ValueError, svc.fit, X, Y) def test_timeout(): a = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, a.fit, X, Y) def test_unfitted(): X = "foo!" # input validation not required when SVM not fitted clf = svm.SVC() assert_raises_regexp(Exception, r".*\bSVC\b.*\bnot\b.*\bfitted\b", clf.predict, X) clf = svm.NuSVR() assert_raises_regexp(Exception, r".*\bNuSVR\b.*\bnot\b.*\bfitted\b", clf.predict, X) # ignore convergence warnings from max_iter=1 @ignore_warnings def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2) def test_linear_svc_convergence_warnings(): # Test that warnings are raised if model does not converge lsvc = svm.LinearSVC(max_iter=2, verbose=1) assert_warns(ConvergenceWarning, lsvc.fit, X, Y) assert_equal(lsvc.n_iter_, 2) def test_svr_coef_sign(): # Test that SVR(kernel="linear") has coef_ with the right sign. # Non-regression test for #2933. X = np.random.RandomState(21).randn(10, 3) y = np.random.RandomState(12).randn(10) for svr in [svm.SVR(kernel='linear'), svm.NuSVR(kernel='linear'), svm.LinearSVR()]: svr.fit(X, y) assert_array_almost_equal(svr.predict(X), np.dot(X, svr.coef_.ravel()) + svr.intercept_) def test_linear_svc_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: lsvc = svm.LinearSVC(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % lsvc.intercept_scaling) assert_raise_message(ValueError, msg, lsvc.fit, X, Y) def test_lsvc_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False lsvc = svm.LinearSVC(fit_intercept=False) lsvc.fit(X, Y) assert_equal(lsvc.intercept_, 0.) def test_hasattr_predict_proba(): # Method must be (un)available before or after fit, switched by # `probability` param G = svm.SVC(probability=True) assert_true(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_true(hasattr(G, 'predict_proba')) G = svm.SVC(probability=False) assert_false(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_false(hasattr(G, 'predict_proba')) # Switching to `probability=True` after fitting should make # predict_proba available, but calling it must not work: G.probability = True assert_true(hasattr(G, 'predict_proba')) msg = "predict_proba is not available when fitted with probability=False" assert_raise_message(NotFittedError, msg, G.predict_proba, iris.data) def test_decision_function_shape_two_class(): for n_classes in [2, 3]: X, y = make_blobs(centers=n_classes, random_state=0) for estimator in [svm.SVC, svm.NuSVC]: clf = OneVsRestClassifier(estimator( decision_function_shape="ovr")).fit(X, y) assert_equal(len(clf.predict(X)), len(y))
mit
xaratustrah/pymirko
pymirko.py
1
9318
#!/usr/bin/env python """ MIRKO post processing tools 2016 Xaratustrah """ import sys, os, argparse, glob from subprocess import call import numpy as np import matplotlib.pyplot as plt import fortranformat as ff MIRKO = 'mirko' EVET_LOOPS = 10 N_TURNS = 3 MIX_FILE = 'esr_2016-04.mix' TEMP_FILENAME = 'temp.mak' MIXFILE_PLACEHOLDER = 'MIXFILE_PLACEHOLDER' PLACEHOLDER = 'NUMBERPLACEHOLDER' FILENAME_PLACEHOLDER = 'FILENAME_PLACEHOLDER' LAST_RING_ELEMENT = 330 def get_apreture_dic(): ffline = ff.FortranRecordReader('(3X,a16,3I4,F17.4,F17.10,2F12.3,I4,2x,a16)') dic = {} with open(MIX_FILE) as f: for _ in range(31): next(f) # for i in range(LAST_RING_ELEMENT): while True: try: line = f.readline() if not line: break hh = ffline.read(line) device_type = int(hh[2]) if device_type == 2: # this is a drift space, ignore it continue # name = 'DRIFT' else: name = hh[0].strip() aperture = hh[6] if name not in dic: dic.update({name: aperture}) # print('{},\t{},\t,{}\n'.format(name, device_type, aperture)) # if aperture == 0: # print(name) except: pass return dic def loop_mirko(generator_filename): print('Using MIX file {}.'.format(MIX_FILE)) for i in range(1, EVET_LOOPS + 1): create_mak_file(i, generator_filename, N_TURNS) cmd = MIRKO.split() cmd.append(TEMP_FILENAME) print('Running MIRKO for event at element No. {}.'.format(i)) call(cmd) os.remove(TEMP_FILENAME) def create_mak_file(current_idx, generator_filename, n_turns=1): # read the header section from a file with open(generator_filename) as f: header_section = f.read() repeat_section = ''.join('aenv,{},{}\n*\n'.format(i, i) for i in range(1, 365 + 1)) middle_section = 'savs,less,penv,,delp,\n*\n' final_section = 'close,9\n*\npnul,solb,0,0,0,0,0,-0.009,sync\n' with open(TEMP_FILENAME, 'w') as f: new_head = header_section.replace(PLACEHOLDER, '{}'.format(current_idx)).replace(MIXFILE_PLACEHOLDER, '{}'.format(MIX_FILE)).replace( FILENAME_PLACEHOLDER, 'result_at_{:03d}.txt'.format(current_idx)) f.write(new_head) for i in range(n_turns): f.write(repeat_section) f.write(middle_section) f.write(final_section) def get_data_from_result_file(filename): dic = get_apreture_dic() arr = np.array([]) arr_of_z_at_ends = np.array([]) current_turn_number = 1 z_at_end = 0 with open(filename) as f: for line in f: s = line.split() if not len(s) == 6: continue try: number = int(s[-6]) z = float(s[-4]) # add the circumference BEFORE checking last element z_cont = z + z_at_end # check for last element now if number == LAST_RING_ELEMENT: # this is really cool: z_at_end += z arr_of_z_at_ends = np.append(arr_of_z_at_ends, z_at_end) current_turn_number += 1 up = float(s[-3]) down = float(s[-2]) ref = float(s[-1]) # do this one at last, to make advantage of try/except block aperture = dic[s[-5].strip()] arr = np.append(arr, (number, aperture, z, z_cont, up, down, ref, current_turn_number)) except(ValueError, IndexError, KeyError): # boah! pass arr = np.reshape(arr, (int(len(arr)) / 8, 8)) return arr, arr_of_z_at_ends def check_particle_loss(arr): el_number = 0 loss_z_cont = 0 loss_ref = 0 current_turn_number = 0 for i in range(np.shape(arr)[0]): # check if the particle hits the aperture if arr[i, 4] >= arr[i, 1] or arr[i, 5] < (-1 * arr[i, 1]): # determine loss position using z_cont el_number, loss_z_cont, loss_ref, current_turn_number = int(arr[i, 0]), arr[i, 3], arr[i, 6], int(arr[i, 7]) return el_number, loss_z_cont, loss_ref, current_turn_number def check_particle_at_element(arr, element_number, element_x_min, element_x_max): pock_z = np.array([]) pock_x = np.array([]) current_turn_number_array = np.array([]) for i in range(np.shape(arr)[0]): # check the position of particle at a specific element if arr[i, 0] == element_number: pock_z = np.append(pock_z, arr[i, 3]) current_turn_number_array = np.append(current_turn_number_array, arr[i, 7]) if arr[i, 6] >= element_x_min and arr[i, 6] <= element_x_max: print('Turn {}: Particle hits pocket detector (element number {} at {}mm).'.format(int(arr[i, 7]), element_number, arr[i, 6])) pock_x = np.append(pock_x, arr[i, 6]) # we already found a hit, so quit break else: print('Turn {}: Particle misses pocket detector (element number {}).'.format(int(arr[i, 7]), element_number)) pock_x = np.append(pock_x, 0) return pock_z, pock_x, current_turn_number_array def save_to_file(arr): np.savetxt('result_array.txt', arr, delimiter=',') # -------------------- def plot_data(arr, arr_of_z_at_ends, filename): fig = plt.figure() ax = fig.add_subplot(111) # plot lines first ax.plot(arr[:, 3], arr[:, 4], 'g-') ax.plot(arr[:, 3], arr[:, 6], 'b-.') ax.plot(arr[:, 3], arr[:, 5], 'g-') # plot vertical lines for turns for i in range(len(arr_of_z_at_ends)): plt.axvline(arr_of_z_at_ends[i], color='b', linestyle='--') # find loss point el_number, loss_z_cont, loss_ref, current_turn_number = check_particle_loss(arr) if el_number == 0 and loss_z_cont == 0 and loss_ref == 0: print('Particle would survive for all turns if no pocket detectors were inside.') else: print('Particle is lost at element number.'.format(el_number)) ax.plot(loss_z_cont, loss_ref, 'rv') # check position at pocket detector which is element 229 pock_z, pock_x, current_turn_number_array = check_particle_at_element(arr, 229, 22, 82) for i in range(len(pock_z)): ax.axvline(pock_z[i], color='r', linestyle='--') if pock_x[i] != 0: ax.plot(pock_z[i], pock_x[i], 'rD') ax.annotate('Pocket detector hit (turn {})'.format(int(current_turn_number_array[i])), xy=(pock_z[i], pock_x[i]), xytext=(0.4, 0.8), textcoords='figure fraction', xycoords='data', arrowprops=dict(width=1, headwidth=5, edgecolor='blue', facecolor='blue', shrink=0.05)) else: ax.plot(pock_z[i], pock_x[i], 'rx') # finalize the plot plt.grid(True) plt.xlabel('Path [mm]') plt.ylabel('Offset [mm]') filename_wo_ext = os.path.splitext(filename)[0] plt.title(filename_wo_ext) fig.savefig(os.path.splitext(filename_wo_ext)[0] + '.png', dpi=400) # plt.show() def main(): parser = argparse.ArgumentParser(prog='pymirko') parser.add_argument('--verbose', action='store_true', help='Increase verbosity.') parser.add_argument('--loop', action='store_true', help='Loop MIRKO.') parser.add_argument('--plot', action='store_true', help='Plot results file.') parser.add_argument('--check', action='store_true', help='Only check misses and hits.') parser.add_argument('--many', action='store_true', help='Plot loop.') parser.add_argument('filename', nargs=1, type=str, help='Input file name.') args = parser.parse_args() # check the first switches filename = args.filename[0] if not os.path.exists(filename): print('Please enter a valid filename.') return if args.loop and args.plot: parser.print_help() return if args.loop: loop_mirko(filename) if args.plot: arr, arr_of_z_at_ends = get_data_from_result_file(filename) save_to_file(arr) plot_data(arr, arr_of_z_at_ends, filename) if args.check: arr, _ = get_data_from_result_file(filename) check_particle_at_element(arr, 229, 22, 82) if args.many: for file in glob.glob("result_at_*.txt"): print(file) arr, arr_of_z_at_ends = get_data_from_result_file(file) # check_particle_at_element(arr, 229, 22, 82) plot_data(arr, arr_of_z_at_ends, file) # -------------------- if __name__ == '__main__': main()
gpl-3.0
jacobdein/nacoustik
nacoustik/colormaps.py
1
2457
""" colormaps Jacob Dein 2016 nacoustik Author: Jacob Dein License: MIT """ from matplotlib.colors import LinearSegmentedColormap def spectro_white(): color_list = [ (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), (0.8823529411764706, 0.9725490196078431, 1.0), (0.8235294117647058, 0.9450980392156862, 1.0), (0.7647058823529411, 0.9098039215686274, 1.0), (0.7058823529411765, 0.8666666666666667, 1.0), (0.6470588235294118, 0.8156862745098039, 1.0), (0.5882352941176471, 0.7568627450980392, 1.0), (0.5294117647058824, 0.6862745098039216, 1.0), (0.47058823529411764, 0.611764705882353, 1.0), (0.4117647058823529, 0.5254901960784314, 1.0), (0.35294117647058826, 0.43137254901960786, 1.0), (0.29411764705882354, 0.3333333333333333, 1.0), (0.24705882352941178, 0.23529411764705882, 1.0), (0.25098039215686274, 0.17647058823529413, 1.0), (0.25882352941176473, 0.11764705882352941, 1.0), (0.2980392156862745, 0.0, 1.0), (0.0, 0.5019607843137255, 0.050980392156862744), (0.03137254901960784, 0.5411764705882353, 0.0), (0.0784313725490196, 0.5607843137254902, 0.0), (0.12941176470588237, 0.5803921568627451, 0.0), (0.1803921568627451, 0.6, 0.0), (0.23529411764705882, 0.6196078431372549, 0.0), (0.3568627450980392, 0.6588235294117647, 0.0), (0.4235294117647059, 0.6784313725490196, 0.0), (0.49019607843137253, 0.7019607843137254, 0.0), (0.5607843137254902, 0.7215686274509804, 0.0), (0.6352941176470588, 0.7411764705882353, 0.0), (0.7137254901960784, 0.7607843137254902, 0.0), (0.7803921568627451, 0.7647058823529411, 0.0), (0.8, 0.7215686274509804, 0.0), (1.0, 0.9019607843137255, 0.5019607843137255), (1.0, 0.8666666666666667, 0.4666666666666667), (1.0, 0.8352941176470589, 0.43529411764705883), (1.0, 0.796078431372549, 0.4), (1.0, 0.7568627450980392, 0.3686274509803922), (1.0, 0.7098039215686275, 0.3333333333333333), (1.0, 0.6627450980392157, 0.30196078431372547), (1.0, 0.615686274509804, 0.26666666666666666), (1.0, 0.5607843137254902, 0.23529411764705882), (1.0, 0.5058823529411764, 0.2), (1.0, 0.44313725490196076, 0.16862745098039217), (1.0, 0.3803921568627451, 0.13333333333333333), (1.0, 0.3176470588235294, 0.09803921568627451), (1.0, 0.24705882352941178, 0.06666666666666667), (1.0, 0.17647058823529413, 0.03137254901960784), (1.0, 0.10196078431372549, 0.0) ] return LinearSegmentedColormap.from_list(name='spectro_white', colors=color_list)
mit
Ecotrust/growth-yield-batch
scripts/extract.py
2
16956
#!/usr/bin/env python """extract.py Extract variables from directories with FVS runs with offset plots; uses fvs .out files Usage: extract.py INDIR OUTCSV extract.py (-h | --help) extract.py --version Options: -h --help Show this screen. --version Show version. """ from docopt import docopt from pandas import DataFrame, merge from collections import defaultdict import glob import os import re import json def parse_name(filename): """ >>> parse_name("/path/to/some/varWC_rx25_cond31566_site3_climNoClimate_off20.key") >>> parse_name("varWC_rx25_cond31566_site3_climNoClimate_off20.key") >>> parse_name("varWC_rx25_cond31566_site3_climNoClimate_off20") {'var': 'WC', 'cond': '31566', 'rx': '25', 'site': '3', 'offset': '20', 'climate': 'NoClimate'} """ basename = os.path.splitext(os.path.basename(filename))[0] exp = re.compile("var([a-zA-Z]+)_rx([0-9a-zA-Z]+)_cond([0-9a-zA-Z]+)_site([0-9a-zA-Z]+)_clim([0-9a-zA-Z-]+)_off([0-9]+)") parts = exp.match(basename).groups() conv_parts = [] for part in parts: try: part = int(part) except ValueError: part = str(part) conv_parts.append(part) keys = ("var", "rx", "cond", "site", "climate", "offset") return dict(zip(keys, conv_parts)) def classify_tree(spz, diam): diam_class = int(diam / 10.0) return "%s_%s" % (spz, diam_class) def split_fixed(line, fixed_schema, failsafe=False): funcs = {'int': int, 'float': float, 'str': str} data = {} for var in fixed_schema: try: data[var[0]] = funcs[var[3]](line[var[1]-1:var[2]]) except ValueError as e: if failsafe: data[var[0]] = None else: raise e return data def extract_data(indir): carbon_rows = [] harvested_carbon_rows = [] econ_rows = [] harvest_rows = [] summary_rows = [] activity_rows = [] for outfile in glob.glob(os.path.join(indir, "*.out")): info = parse_name(outfile) ############# Extract Stand Carbon Report ready = False countdown = None with open(outfile, 'r') as fh: lines = fh.readlines() for line in lines: if "STAND CARBON REPORT" in line: # We've found the carbon report, data starts 9 lines down ready = True countdown = 9 if not ready or countdown > 0: if countdown: countdown -= 1 continue if line.strip() == "": # blank line == we're done break # Got it: this is a data line """ 'year', 'agl', 'agl_merch', 'bgl', 'bgd', 'dead', 'ddw', 'floor', 'shbhrb', 'total_stand_carbon', 'total_removed_carbon', 'carbon_fire' """ fixed_schema = [ ('year', 1, 4, 'int'), ('agl', 5, 13, 'float'), ('bgl', 23, 31, 'float'), ('dead', 41, 49, 'float'), ('total_stand_carbon', 77, 85, 'float'), ] data = split_fixed(line.strip(), fixed_schema) # calculate our own carbon carbon = float(data['agl']) + float(data['bgl']) + float(data['dead']) data['calc_carbon'] = carbon # need to include variant? data.update(info) carbon_rows.append(data) ############# Extract Harvested Carbon Report ready = False countdown = None for line in lines: if "HARVESTED PRODUCTS REPORT" in line and not line.startswith("CARBCUT"): # We've found the harvested products carbon report, data starts 9 lines down ready = True countdown = 9 if not ready or countdown > 0: if countdown: countdown -= 1 continue if line.strip() == "": # blank line == we're done break # Got it: this is a data line fixed_schema = [ ('year', 1, 4, 'int'), ('merch_carbon_stored', 41, 49, 'float'), ('merch_carbon_removed', 50, 58, 'float'), ] data = split_fixed(line.strip(), fixed_schema) # need to include variant? data.update(info) harvested_carbon_rows.append(data) ############# Extract ECONOMIC ANALYSIS SUMMARY REPORT ready = False countdown = None for line in lines: if line.startswith("ECONOMIC ANALYSIS SUMMARY REPORT"): # We've found the econ summary report, data starts 6 lines down ready = True countdown = 6 if not ready or countdown > 0: if countdown: countdown -= 1 continue if line.strip() == "": # blank line == we're done break # Got it: this is a data line fixed_schema = [ ('year', 1, 5, 'int'), ('undiscounted_revenue', 29, 37, 'int'), # TODO Check all these once DD gets econ reporting in place ('econ_removed_merch_ft3', 101, 107, 'int'), ('econ_removed_merch_bdft', 108, 114, 'int'), ] data = split_fixed(line.strip(), fixed_schema) # need to include variant? data.update(info) econ_rows.append(data) # # ############# Extract HARVEST VOLUME AND GROSS VALUE REPORT ready = False countdown = None within_year = None yeardata = defaultdict(list) blanks = 0 for line in lines: if line.startswith("HARVEST VOLUME AND GROSS VALUE REPORT"): # We've found the econ summary report, data starts 2 lines down ready = True countdown = 2 if not ready or countdown > 0: if countdown: countdown -= 1 continue if line.strip() == "": # 3 blank lines == we're done blanks += 1 if blanks == 3: break continue if line.strip().startswith("-------"): # single blank line == we're done with this TIME PERIOD blanks = 0 within_year = None continue if line.startswith(" YEAR = "): within_year = int(line[8:12]) countdown = 3 continue if not within_year: continue fixed_schema = [ ('spp', 1, 8, 'str'), ('mindiam', 11, 16, 'float'), ('maxdiam', 17, 24, 'float'), # TODO Check all these once DD gets econ reporting in place ('harv_ft3', 69, 76, 'int'), ('harv_bdft', 88, 95, 'int'), ] d = split_fixed(line.strip(), fixed_schema, failsafe=True) d['spp'] = d['spp'].strip() yeardata[within_year].append(d) for k, v in yeardata.items(): data = {'year': k, 'harvest_report': json.dumps(v)} data.update(info) harvest_rows.append(data) ############# Extract Summary Statistics ready = False countdown = None data = None for line in lines: if "SUMMARY STATISTICS (PER ACRE OR STAND BASED ON TOTAL STAND AREA)" in line: # We've found the summary stats, data starts 7 lines down ready = True countdown = 7 if not ready or countdown > 0: if countdown: countdown -= 1 continue if line.strip() == "": # blank line == we're done break # Got it: this is a data line """ 'year', 'age', 'num_trees', 'ba', 'sdi', 'ccf', 'top_ht', 'qmd', 'total_ft3', 'merch_ft3', 'merch_bdft', 'cut_trees', 'cut_total_ft3', 'cut_merch_ft3', 'cut_merch_bdft', 'after_ba', 'after_sdi', 'after_ccf', 'after_ht', 'after_qmd', 'growth_yrs', 'growth_accreper', 'growth_mortyear', 'mai_merch_ft3', 'for_ss_typ_zt' """ fixed_schema = [ ('year', 1, 4, 'int'), ('age', 5, 8, 'int'), ('start_tpa', 9, 14, 'int'), ('start_ba', 15, 18, 'int'), ('start_total_ft3', 37, 42, 'int'), ('start_merch_ft3', 43, 48, 'int'), ('start_merch_bdft', 49, 54, 'int'), ('removed_tpa', 56, 60, 'int'), ('removed_total_ft3', 61, 66, 'int'), ('removed_merch_ft3', 67, 72, 'int'), ('removed_merch_bdft', 73, 78, 'int'), ('after_ba', 79, 82, 'int'), ('after_sdi', 83, 87, 'int'), ('after_qmd', 96, 100, 'float'), ('accretion', 109, 113, 'int'), ('mortality', 114, 119, 'int'), ('fortype', 129, 131, 'int'), ('size_class', 133, 133, 'int'), ('stocking_class', 134, 134, 'int') ] data = split_fixed(line.strip(), fixed_schema) data['after_tpa'] = data['start_tpa'] - data['removed_tpa'] data['after_total_ft3'] = data['start_total_ft3'] - data['removed_total_ft3'] data['after_merch_ft3'] = data['start_merch_ft3'] - data['removed_merch_ft3'] data['after_merch_bdft'] = data['start_merch_bdft'] - data['removed_merch_bdft'] data.update(info) summary_rows.append(data) ############# Extract Activity Summary # List of Compute Variables to look for looking_for = [ # Harvest BF by species group "PINE_HRV", "SPRC_HRV", "CEDR_HRV", "DF_HRV", "HW_HRV", "MNCONHRV", "MNHW_HRV", "WJ_HRV", "WW_HRV", # Standing BF by species group "PINE_BF", "SPRC_BF", "CEDR_BF", "DF_BF", "HW_BF", "MNCONBF", "MNHW_BF", "WJ_BF", "WW_BF", # ??? Are we using these ?? "SPPRICH", "SPPSIMP", # Cost Model "SM_CF", "SM_HW", "SM_TPA", "LG_CF", "LG_HW", "LG_TPA", "CH_CF", "CH_HW", "CH_TPA", "CUT_TYPE", # "PLANT" ESTAB PLANT; multiple per year though! # Habitat "NSONEST", "NSOFRG", "NSODIS", # Pests #"PP_BTL", #"LP_BTL", "PINEBTL", "DF_BTL", "ES_BTL", "DEFOL", # Fire "FIREHZD", ] ready = False countdown = None within_year = None data = {} for line in lines: if "ACTIVITY SUMMARY" in line: # We've found the summary stats, data starts x lines down ready = True countdown = 9 if not ready or countdown > 0: if countdown: countdown -= 1 continue if line.strip() == "": # blank line == we're done with this TIME PERIOD within_year = None activity_rows.append(data) data = {} continue if line.startswith("-----"): activity_rows.append(data) break # This is the start of a time period if not within_year: within_year = int(line[7:11]) data['year'] = within_year data.update(info) # initialize year with null values for all variables for var in looking_for: data[var] = None # special case ESTB PLANT keyword data['PLANT'] = 0 else: var = line[24:34].strip() status = line[40:59].strip() # disregard NOT DONE or DELETED OR CANCELED if status.startswith("DONE IN") and var in looking_for: val = float(line[61:72]) # Is this wide enough?? data[var] = val elif status.startswith("DONE IN") and var == 'PLANT': # special case ESTB PLANT keyword aggregates second column val = float(line[73:82]) data[var] += val # load into pandas dataframes, join activity_df = DataFrame(activity_rows) summary_df = DataFrame(summary_rows) carbon_df = DataFrame(carbon_rows) econ_df = DataFrame(econ_rows) harvest_df = DataFrame(harvest_rows) harvested_carbon_df = DataFrame(harvested_carbon_rows) final_merge = merge(summary_df, activity_df, how='outer', on=['var', 'rx', 'cond', 'site', 'offset', 'year', 'climate']) final_merge = merge(final_merge, harvested_carbon_df, how='outer', on=['var', 'rx', 'cond', 'site', 'offset', 'year', 'climate']) final_merge = merge(final_merge, carbon_df, how="outer", on=['var', 'rx', 'cond', 'site', 'offset', 'year', 'climate']) final_merge = merge(final_merge, econ_df, how="outer", on=['var', 'rx', 'cond', 'site', 'offset', 'year', 'climate']) if len(harvest_rows) > 0: final_merge = merge(final_merge, harvest_df, how="outer", on=['var', 'rx', 'cond', 'site', 'offset', 'year', 'climate']) # manage types final_merge[['offset']] = final_merge[['offset']].astype(int) final_merge[['rx']] = final_merge[['rx']].astype(int) final_merge[['year']] = final_merge[['year']].astype(int) final_merge[['cond']] = final_merge[['cond']].astype(int) # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # IMPORTANT NOTE # The data structure of `final_merge` must match the schema in run_fvs.create_data_db() (~ line 303) # Use the code below to generate a schema # hint, may need to switch some to REAL if nulls exists (which show up as 'object' dtype) # in general there should be very few TEXTs: var, climate and harvest_report being the current ones # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # # for col, dtype in zip(final_merge.columns, final_merge.dtypes): # if 'int' in str(dtype): # print '"%s" INTEGER, -- %s' % (col, dtype) # elif 'float' in str(dtype): # print '"%s" REAL, -- %s' % (col, dtype) # else: # print '"%s" TEXT, -- %s' % (col, dtype) return final_merge if __name__ == "__main__": args = docopt(__doc__, version='1.0') indir = os.path.abspath(args['INDIR']) csv = os.path.abspath(args['OUTCSV']) df = extract_data(indir) df.to_csv(csv, index=False, header=True) keys = [x.lower() for x in df.columns] vals = [x.name for x in df.dtypes] print "-" * 80 print "class FVSAggregate(models.Model):" for colname, coltype in zip(keys, vals): if coltype == "float64": print " %s = models.FloatField(null=True, blank=True)" % colname elif coltype == "int64": print " %s = models.IntegerField(null=True, blank=True)" % colname elif coltype == "object" and colname in ['var']: print " %s = models.CharField(max_length=2)" % colname elif coltype == "object" and colname in ['site', 'cond', 'offset', 'rx']: print " %s = models.IntegerField()" % colname else: # default print " %s = models.FloatField(null=True, blank=True)" % colname print "-" * 80 print """ COPY trees_fvsaggregate(%s) FROM '%s' DELIMITER ',' CSV HEADER;""" % (",".join(['"%s"' % x for x in keys]), "merged_file.csv") print "-" * 80 print """ cd /usr/local/data/out # copy header sed -n 1p first.csv > merged_file.csv #copy all but the first line from all other files for i in *.csv; do sed 1d $i; done >> merged_file.csv""" print "-" * 80 print """ 1. Run fvsbatch 2. copy model defn 3. schemamigration 4. migrate 5. sed merge csvs 6. postgres copy 7. create indicies """ print
bsd-3-clause
rlabbe/filterpy
docs/conf.py
3
11304
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # FilterPy documentation build configuration file, created by # sphinx-quickstart on Sat Nov 22 14:54:37 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import mock MOCK_MODULES = ['numpy', 'scipy', 'matplotlib', 'matplotlib.pyplot', 'scipy.linalg', 'numpy.linalg', 'matplotlib.pyplot', 'numpy.random', 'scipy.sparse', 'scipy.sparse.linalg', 'scipy.stats', 'matplotlib.patches', 'scipy.ndimage.filters', 'scipy.ndimage.interpolation', 'scipy.ndimage'] for mod_name in MOCK_MODULES: sys.modules[mod_name] = mock.Mock() # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) #sys.path.insert(0, os.path.abspath('../filterpy')) sys.path.insert(0, os.path.abspath('../')) from filterpy import * import filterpy import filterpy.kalman # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'numpydoc', 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.autodoc', 'sphinx.ext.napoleon' ] numpydoc_show_class_members = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'FilterPy' copyright = '2014-2016, Roger R. Labbe' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = filterpy.__version__ # The full version, including alpha/beta/rc tags. release = filterpy.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = "autolink" # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinxdoc' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'FilterPydoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'FilterPy.tex', 'FilterPy Documentation', 'Roger R. Labbe', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'filterpy', 'FilterPy Documentation', ['Roger R. Labbe'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'FilterPy', 'FilterPy Documentation', 'Roger R. Labbe', 'FilterPy', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # -- Options for Epub output ---------------------------------------------- # Bibliographic Dublin Core info. epub_title = 'FilterPy' epub_author = 'Roger R. Labbe' epub_publisher = 'Roger R. Labbe' epub_copyright = '2015, Roger R. Labbe' # The basename for the epub file. It defaults to the project name. #epub_basename = 'FilterPy' # The HTML theme for the epub output. Since the default themes are not optimized # for small screen space, using the same theme for HTML and epub output is # usually not wise. This defaults to 'epub', a theme designed to save visual # space. #epub_theme = 'epub' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # A sequence of (type, uri, title) tuples for the guide element of content.opf. #epub_guide = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Choose between 'default' and 'includehidden'. #epub_tocscope = 'default' # Fix unsupported image types using the PIL. #epub_fix_images = False # Scale large images. #epub_max_image_width = 0 # How to display URL addresses: 'footnote', 'no', or 'inline'. #epub_show_urls = 'inline' # If false, no index is generated. #epub_use_index = True # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None} autodoc_member_order = 'bysource'
mit
dymkowsk/mantid
scripts/FilterEvents/MplFigureCanvas.py
3
1355
#pylint: disable=invalid-name from __future__ import (absolute_import, division, print_function) from PyQt4 import QtGui from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure class MplFigureCanvas(FigureCanvas): """ A customized Qt widget for matplotlib figure. It can be used to replace GraphicsView of QtGui """ def __init__(self, parent): """ Initialization """ # Instantialize matplotlib Figure self.fig = Figure() self.axes = self.fig.add_subplot(111) # Initialize parent class and set parent FigureCanvas.__init__(self, self.fig) self.setParent(parent) # Set size policy to be able to expanding and resizable with frame FigureCanvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) return def plot(self, x, y): """ Plot a set of data Argument: - x: numpy array X - y: numpy array Y """ self.x = x self.y = y self.axes.plot(self.x, self.y) return def getPlot(self): """ reture figure's axes to expose the matplotlib figure to PyQt client """ return self.axes
gpl-3.0
miguelotemagno/imagestion
imagestion_1.0/test-train-pyBrain.py
1
5972
import scipy from scipy import ndimage from scipy import stats from scipy.misc import toimage import math import matplotlib.pyplot as plt import numpy as np import colorsys, sys, os from PIL import Image, ImageDraw, ImageFont from scipy.optimize import curve_fit from scipy.misc import factorial from Segmentation import * from pybrain.tools.shortcuts import buildNetwork from pybrain.datasets import SupervisedDataSet from pybrain.supervised.trainers import BackpropTrainer from pybrain.structure import TanhLayer from pybrain.structure import FeedForwardNetwork import pickle ## from ANN import * #----------------------------------------------------------------------- def HSVColor(img): if isinstance(img,Image.Image): r,g,b = img.split() Hdat = [] Sdat = [] Vdat = [] for rd,gn,bl in zip(r.getdata(),g.getdata(),b.getdata()) : h,s,v = colorsys.rgb_to_hsv(rd/255.,gn/255.,bl/255.) Hdat.append(int(h*255.)) Sdat.append(int(s*255.)) Vdat.append(int(v*255.)) r.putdata(Hdat) g.putdata(Sdat) b.putdata(Vdat) return Image.merge('RGB',(r,g,b)) else: return None def plotHistogram(arr, b): hist, bins = np.histogram(arr, bins=b) #width = 0.7 * (bins[1] - bins[0]) center = (bins[:-1] + bins[1:]) / 2 plt.bar(center, hist, align='center') #, width=width) plt.show() # http://stackoverflow.com/questions/16373425/add-text-on-image-using-pil def showImage(img, text): draw = ImageDraw.Draw(img) # font = ImageFont.truetype(<font-file>, <font-size>) font = ImageFont.truetype("Pillow/Tests/fonts/FreeMono.ttf", 16) # draw.text((x, y),"Sample Text",(r,g,b)) draw.text((10, 10),text) #,font=font,fill=(255,255,255)) img.show() #----------------------------------------------------------------------- # Referencias: http://www.scipy-lectures.org/advanced/image_processing/ # http://gis.stackexchange.com/questions/24827/how-to-smooth-the-polygons-in-a-contour-map # http://scikit-image.org # https://sites.google.com/site/bustosmerino/home/segmentacion---color-de-piel imgFile = sys.argv[1] dbFile = sys.argv[2] print imgFile print dbFile shape1 = (2,2) shape2 = (6,6) seg = Segmentation(imgFile) rgb = seg.rgb rgb1 = np.array(seg.erodeRGB(shape1)) rgb2 = np.array(seg.dilateRGB(shape2)) diff = rgb2 - rgb1 seg.rgb2hsv() seg.erodeHSV(shape2) seg.dilateHSV(shape1) seg.statisticalDispersionHSV() hsv = seg.getHSV() mask = seg.getHSVmask() invMask = ~mask mask[mask != 0xFF] = 0 piel = seg.applyMask2Rgb(mask) invMask[invMask != 0xFF] = 0 fondo = seg.applyMask2Rgb(invMask) seg.setRGB(piel) img1 = np.array(seg.erodeRGB(shape1)) img2 = np.array(seg.dilateRGB(shape2)) diff2 = img2 - img1 ## toimage(seg.maskH).show() ## toimage(seg.maskS).show() ## toimage(seg.maskV).show() ## toimage(hsv).show() ## toimage(mask).show() ## toimage(invMask).show() toimage(piel).show() ## toimage(fondo).show() ## toimage(diff).show() ## toimage(diff2).show() #----------------------------------------------------------------------- #http://pybrain.org/docs/quickstart/dataset.html ds = SupervisedDataSet(3, 1) hist = {} muestra1 = [] muestra2 = [] i = 0 for y in range(seg.height): ## if i > 10: ## break for x in range(seg.width): r,g,b = piel.getpixel((x,y)) key = "x%02x%02x%02x" % (r, g, b) hist[key] = hist[key] + 1 if key in hist else 0 if (r|g|b and hist[key] == 0) : muestra1 = [float(r)/256, float(g)/256, float(b)/256] print "%05d (%02x, %02x, %02x) => [1] %s" % (i,r,g,b, muestra1) ds.addSample((muestra1[0], muestra1[1], muestra1[2]), (1)) ## ds.append([muestra1, [1]]) i += 1 i = 0 for y in range(seg.height): ## if i > 10: ## break for x in range(seg.width): r,g,b = fondo.getpixel((x,y)) key = "x%02x%02x%02x" % (r, g, b) hist[key] = hist[key] + 1 if key in hist else 0 if (r|g|b and hist[key] == 0) : muestra2 = [float(r)/255, float(g)/255, float(b)/255] print "%05d (%02x, %02x, %02x) => [0] %s" % (i,r,g,b, muestra2) ds.addSample((muestra2[0], muestra2[1], muestra2[2]), (0)) ## ds.append([muestra2, [0]]) i += 1 print '#########################' #http://pybrain.org/docs/api/supervised/trainers.html#pybrain.supervised.trainers.BackpropTrainer #http://pybrain.org/docs/quickstart/training.html #http://pybrain.org/docs/tutorial/netmodcon.html#netmodcon fileObject = open(dbFile, 'a+') newFile = False try: if os.stat(dbFile).st_size == 0 : raise Exception("File %s is empty, proceed to create network" % (dbFile)) print "Loading %s for feed new data" % (dbFile) net = pickle.load(fileObject) except Exception as e: print e net = buildNetwork(3, 3, 1, bias=True, hiddenclass=TanhLayer) newFile = True epochs = 500 threshold = 0.01 error = 1 trainer = BackpropTrainer(net, ds, threshold) ## if newFile == True : ## while error > threshold: ## error = trainer.train() ## epochs -= 1 ## print "%d) e -> %f" % (epochs, error) ## if epochs <= 0: ## break print "1.- Train Until Convergence #####################################" trainer.trainUntilConvergence(ds, epochs, True) print ("epochs:%d error:%f" % (epochs,error)) print net.activate([muestra1[0], muestra1[1], muestra1[2]]) print net.activate([muestra2[0], muestra2[1], muestra2[2]]) ## net = ANN(3, 4, 1, 0.001) ## net.iniciar_perceptron() ## net.entrenar_perceptron(ds, 5000) ## net.clasificar(ds) #http://stackoverflow.com/questions/6006187/how-to-save-and-recover-pybrain-training pickle.dump(net, fileObject) fileObject.close() print "2.- Segmentation ################################################" # http://effbot.org/imagingbook/image.htm for y in range(seg.height): for x in range(seg.width): r,g,b = rgb.getpixel((x,y)) pixel = [float(r)/255, float(g)/255, float(b)/255] test = net.activate(pixel) if (test[0] < 0.5 ) : rgb.putpixel((x,y), 0) toimage(rgb).show()
gpl-2.0
dialounke/pylayers
pylayers/simul/examples/ex_simulem_fur.py
3
1157
from pylayers.simul.simulem import * from pylayers.signal.bsignal import * from pylayers.measures.mesuwb import * import matplotlib.pyplot as plt from pylayers.gis.layout import * #M=UWBMesure(173) M=UWBMesure(13) #M=UWBMesure(1) cir=TUsignal() cirf=TUsignal() #cir.readcir("where2cir-tx001-rx145.mat","Tx001") #cirf.readcir("where2-furcir-tx001-rx145.mat","Tx001") cir.readcir("where2cir-tx002-rx012.mat","Tx002") #cirf.readcir("where2-furcir-tx002-rx012.mat","Tx002") #cir.readcir("where2cir-tx001-rx001.mat","Tx001") #cirf.readcir("where2-furcir-tx001-rx001.mat","Tx001") plt.ion() fig = plt.figure() fig.subplots_adjust(hspace=0.5) ax1 = fig.add_subplot(411,title="points and layout") L=Layout() L.load('siradel-cut-fur.ini') #L.build() L.showGs(fig=fig,ax=ax1) ax1.plot(M.tx[0],M.tx[1],'or') #ax1.plot(M.rx[1][0],M.rx[1][1],'ob') ax1.plot(M.rx[2][0],M.rx[2][1],'ob') ax2 = fig.add_subplot(412,title="Measurement") M.tdd.ch2.plot() #ax3 = fig.add_subplot(413,title="Simulation with furniture",sharex=ax2,sharey=ax2) #cirf.plot(col='red') ax4 = fig.add_subplot(414,title="Simulation",sharex=ax2,sharey=ax2) cir.plot(col='blue') plt.show()
mit
CKPalk/MachineLearning
FinalProject/MachineLearning/Stacking/ConfusionMatrix/confusion_matrix.py
1
1584
''' Work of Cameron Palk ''' import sys import pandas as pd def getDifferenceMatrix( csv ): df = pd.read_csv( csv ) all_labels = sorted(df.Label.unique()) RF_matrix = { label: [0 for _ in all_labels] for label in all_labels } P_matrix = { label: [0 for _ in all_labels] for label in all_labels } KNN_matrix = { label: [0 for _ in all_labels] for label in all_labels } for idx, row in df.iterrows(): real_idx = row.Label RF_pred_idx = all_labels.index( row.Random_Forest ) P_pred_idx = all_labels.index( row.Perceptron ) KNN_pred_idx = all_labels.index( row.KNN ) RF_matrix [ real_idx ][ RF_pred_idx ] += 1 P_matrix [ real_idx ][ P_pred_idx ] += 1 KNN_matrix[ real_idx ][ KNN_pred_idx ] += 1 return ({ 'Random_Forest':RF_matrix, 'Perceptron':P_matrix, 'KNN':KNN_matrix }, all_labels ) # def main( argv ): try: csv = argv[ 1 ] except IndexError: print( "Error ** Usage: \"python3 {} <csv>\"".format( argv[ 0 ] ) ) # differenceMatrix = getDifferenceMatrix( csv ) for name, matrix in differenceMatrix[0].items(): print( "\nConfusion Matrix for", name ) df = pd.DataFrame( matrix, index=differenceMatrix[1] ) df.to_csv( "{}_confusion_matrix.csv".format( name ) ) print( "Saved confusion matrix for", name ) ''' s = [[str(e) for e in row] for row in matrix] lens = [max(map(len, col))-1 for col in zip(*s)] fmt = '\t'.join('{{:{}}}'.format(x) for x in lens) table = [fmt.format(*row) for row in s] print( '\n'.join(table) ) ''' print( "\nDone.\n" ) # if __name__=='__main__': main( sys.argv ) #
mit
iamkakadong/SparseRL
chain_walk_run.py
1
4271
import MDP.chain_walk as chain_walk import MDP.chain_walk_policy as chain_walk_policy import numpy as np import td.fast_elastic_td as elastic_td import td.elastic_td as elastic import td.lstd as lstd import matplotlib.pyplot as plt if __name__ == '__main__': gamma = 0.9 length = 20 # Define environment and policy env = chain_walk.chain_walk(gamma, length) policy = chain_walk_policy.chain_walk_policy(length) # Set policy to optimal policy, i.e. move left if state < 10, move right if state >= 10 (state index start with 0) p_mat = np.zeros([20, 2]) #+ 0.5 p_mat[0:10, 0] = 1 p_mat[10::, 1] = 1 policy.set_policy(p_mat) # Get true value function for the policy vf = env.get_vf(policy) # Generate a sequence of 1000 noisy samples with 20 irrelavent features from the environment n_noisy = 800 n_samples = 1000 n_iter = 500 #n_samples / length state_seq = [] next_state_seq = [] action_seq = [] reward_seq = [] for i in range(n_samples): # set to a new state every 50 iterations if i % n_iter == 0: env.set_cur_state(9 + i / n_iter) state_seq.append(env.get_noisy_state(n_noisy)) else: state_seq.append(sample[2]) # Each sample is a tuple (action, reward, next state) sample = env.noisy_sample_corr(policy, n_noisy) action_seq.append(sample[0]) reward_seq.append(sample[1]) next_state_seq.append(sample[2]) # running lstd agent = lstd.lstd(0.0, 3 + n_noisy, gamma) state_seq.append(next_state_seq[-1]) agent.set_start(state_seq[0]) prev_state = state_seq[0] for i in range(len(reward_seq)): if i == 500: agent.set_start(state_seq[i]) prev_state = state_seq[i] else: agent.update_V(prev_state, state_seq[i + 1], reward_seq[i]) prev_state = state_seq[i + 1] state_seq.pop() theta = agent.get_theta() print theta # generate feature vectors for all states x = np.arange(length) phi_x = np.c_[np.ones(length), x, x ** 2] # calculate the aproximated value function beta_x = theta[0:3] V_y = np.dot(phi_x, beta_x) # parameters for Elastic_TD # mu: parameter for augmented Lagrangian # epsilon: parameter for equility constraint # delta: paramter for l1-norm and l2-norm # stop_ep: parameter for stopping criteria (ADMM) mu = 10 epsilon = 0.01 stop_ep = 0.01 eta = 0.5 # # running putong Elastic_TD # alg = elastic.Elastic_TD(n_samples, n_noisy + 3, gamma) # beta_putong = alg.run(mu, epsilon, delta, stop_ep, np.array(state_seq), np.array(next_state_seq), np.array(reward_seq)) # print(beta_putong) # # generate feature vectors for all states # x = np.arange(length) # phi_x = np.c_[np.ones(length), x, x ** 2] # # calculate the aproximated value function # beta_x = beta_putong[0:3] # V_x = np.dot(phi_x, beta_x) # # generate the stationary distribution # D = np.diag(env.get_stationary(policy)) # # calculate the MSE # v = V_x - vf[:,0] # loss2 = np.dot(np.dot(v.T, D), v) # print loss2 # # running l2 # delta = 0.0 # alg = elastic_td.Elastic_TD(n_samples, n_noisy + 3, gamma) # beta_l2 = alg.run(mu, epsilon, delta, stop_ep, eta, np.array(state_seq), np.array(next_state_seq), np.array(reward_seq)) # print(beta_l2) # # running Elastic_TD # delta = 0.5 # alg = elastic_td.Elastic_TD(n_samples, n_noisy + 3, gamma) # beta_elas = alg.run(mu, epsilon, delta, stop_ep, eta, np.array(state_seq), np.array(next_state_seq), np.array(reward_seq)) # print(beta_elas) # running l1 delta = 1 alg = elastic_td.Elastic_TD(n_samples, n_noisy + 3, gamma) beta_l1 = alg.run(mu, epsilon, delta, stop_ep, eta, np.array(state_seq), np.array(next_state_seq), np.array(reward_seq)) print(beta_l1) mse, truth, pred = env.compute_mse(policy, theta, n_noisy, mc_iter=1000, restart=200) mse_l1, truth, pred = env.compute_mse(policy, beta_l1, n_noisy, mc_iter=1000, restart=200) print mse, mse_l1 V_x = np.dot(phi_x, beta_l1[0:3]) plt.plot(V_x) plt.plot(V_y) plt.plot(vf) plt.show()
gpl-3.0
andnovar/ggplot
ggplot/tests/test_reverse.py
12
1028
from __future__ import (absolute_import, division, print_function, unicode_literals) from six.moves import xrange from nose.tools import assert_equal, assert_true, assert_raises from ggplot.tests import image_comparison from ggplot import * import numpy as np import pandas as pd @image_comparison(baseline_images=['scale_without_reverse', 'scale_y_reverse', 'scale_x_reverse', 'scale_both_reverse'], extensions=["png"]) def test_scale_reverse(): df = pd.DataFrame({"x": np.arange(0, 100), "y": np.arange(0, 100), "z": np.arange(0, 100)}) df['cat'] = np.where(df.x*2 > 50, 'blah', 'blue') df['cat'] = np.where(df.y > 50, 'hello', df.cat) df['cat2'] = np.where(df.y < 15, 'one', 'two') df['y'] = np.sin(df.y) gg = ggplot(aes(x="x", y="y", shape="cat2", color="cat"), data=df) + geom_line() print(gg) print(gg + scale_y_reverse()) print(gg + scale_x_reverse()) print(gg + scale_x_reverse() + scale_y_reverse())
bsd-2-clause
lbdreyer/iris
lib/iris/symbols.py
5
7616
# Copyright Iris contributors # # This file is part of Iris and is released under the LGPL license. # See COPYING and COPYING.LESSER in the root of the repository for full # licensing details. """ Contains symbol definitions for use with :func:`iris.plot.symbols`. """ import itertools import math from matplotlib.patches import PathPatch from matplotlib.path import Path import numpy as np __all__ = ("CLOUD_COVER",) # The thickness to use for lines, circles, etc. _THICKNESS = 0.1 def _make_merged_patch(paths): # Convert a list of Path instances into a single, black PathPatch. # Prepare empty vertex/code arrays for the merged path. # The vertex array is initially flat for convenient initialisation, # but is then reshaped to (N, 2). total_len = sum(len(path) for path in paths) all_vertices = np.empty(total_len * 2) all_codes = np.empty(total_len, dtype=Path.code_type) # Copy vertex/code details from the source paths all_segments = itertools.chain(*(path.iter_segments() for path in paths)) i_vertices = 0 i_codes = 0 for vertices, code in all_segments: n_vertices = len(vertices) all_vertices[i_vertices : i_vertices + n_vertices] = vertices i_vertices += n_vertices n_codes = n_vertices // 2 if code == Path.STOP: code = Path.MOVETO all_codes[i_codes : i_codes + n_codes] = code i_codes += n_codes all_vertices.shape = (total_len, 2) return PathPatch( Path(all_vertices, all_codes), facecolor="black", edgecolor="none" ) def _ring_path(): # Returns a Path for a hollow ring. # The outer radius is 1, the inner radius is 1 - _THICKNESS. circle = Path.unit_circle() inner_radius = 1.0 - _THICKNESS vertices = np.concatenate( [circle.vertices[:-1], circle.vertices[-2::-1] * inner_radius] ) codes = np.concatenate([circle.codes[:-1], circle.codes[:-1]]) return Path(vertices, codes) def _vertical_bar_path(): # Returns a Path for a vertical rectangle, with width _THICKNESS, that will # nicely overlap the result of _ring_path(). width = _THICKNESS / 2.0 inner_radius = 1.0 - _THICKNESS vertices = np.array( [ [-width, -inner_radius], [width, -inner_radius], [width, inner_radius], [-width, inner_radius], [-width, inner_radius], ] ) codes = np.array( [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] ) return Path(vertices, codes) def _slot_path(): # Returns a Path for a filled unit circle with a vertical rectangle # removed. circle = Path.unit_circle() vertical_bar = _vertical_bar_path() vertices = np.concatenate( [circle.vertices[:-1], vertical_bar.vertices[-2::-1]] ) codes = np.concatenate([circle.codes[:-1], vertical_bar.codes[:-1]]) return Path(vertices, codes) def _left_bar_path(): # Returns a Path for the left-hand side of a horizontal rectangle, with # height _THICKNESS, that will nicely overlap the result of _ring_path(). inner_radius = 1.0 - _THICKNESS height = _THICKNESS / 2.0 vertices = np.array( [ [-inner_radius, -height], [0, -height], [0, height], [-inner_radius, height], [-inner_radius, height], ] ) codes = np.array( [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] ) return Path(vertices, codes) def _slash_path(): # Returns a Path for diagonal, bottom-left to top-right rectangle, with # width _THICKNESS, that will nicely overlap the result of _ring_path(). half_width = _THICKNESS / 2.0 central_radius = 1.0 - half_width cos45 = math.cos(math.radians(45)) end_point_offset = cos45 * central_radius half_width_offset = cos45 * half_width vertices = np.array( [ [ -end_point_offset - half_width_offset, -end_point_offset + half_width_offset, ], [ -end_point_offset + half_width_offset, -end_point_offset - half_width_offset, ], [ end_point_offset + half_width_offset, end_point_offset - half_width_offset, ], [ end_point_offset - half_width_offset, end_point_offset + half_width_offset, ], [ -end_point_offset - half_width_offset, -end_point_offset + half_width_offset, ], ] ) codes = np.array( [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] ) return Path(vertices, codes) def _backslash_path(): # Returns a Path for diagonal, top-left to bottom-right rectangle, with # width _THICKNESS, that will nicely overlap the result of _ring_path(). half_width = _THICKNESS / 2.0 central_radius = 1.0 - half_width cos45 = math.cos(math.radians(45)) end_point_offset = cos45 * central_radius half_width_offset = cos45 * half_width vertices = np.array( [ [ -end_point_offset - half_width_offset, end_point_offset - half_width_offset, ], [ end_point_offset - half_width_offset, -end_point_offset - half_width_offset, ], [ end_point_offset + half_width_offset, -end_point_offset + half_width_offset, ], [ -end_point_offset + half_width_offset, end_point_offset + half_width_offset, ], [ -end_point_offset - half_width_offset, end_point_offset - half_width_offset, ], ] ) codes = np.array( [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] ) return Path(vertices, codes) def _wedge_fix(wedge_path): """ Fixes the problem with Path.wedge where it doesn't initialise the first, and last two vertices. This fix should not have any side-effects once Path.wedge has been fixed, but will then be redundant and should be removed. This is fixed in MPL v1.3, raising a RuntimeError. A check is performed to allow for backward compatibility with MPL v1.2.x. """ if wedge_path.vertices.flags.writeable: wedge_path.vertices[0] = 0 wedge_path.vertices[-2:] = 0 return wedge_path CLOUD_COVER = { 0: [_ring_path()], 1: [_ring_path(), _vertical_bar_path()], 2: [_ring_path(), _wedge_fix(Path.wedge(0, 90))], 3: [_ring_path(), _wedge_fix(Path.wedge(0, 90)), _vertical_bar_path()], 4: [_ring_path(), Path.unit_circle_righthalf()], 5: [_ring_path(), Path.unit_circle_righthalf(), _left_bar_path()], 6: [_ring_path(), _wedge_fix(Path.wedge(-180, 90))], 7: [_slot_path()], 8: [Path.unit_circle()], 9: [_ring_path(), _slash_path(), _backslash_path()], } """ A dictionary mapping WMO cloud cover codes to their corresponding symbol. See http://www.wmo.int/pages/prog/www/DPFS/documents/485_Vol_I_en_colour.pdf Part II, Appendix II.4, Graphical Representation of Data, Analyses and Forecasts """ def _convert_paths_to_patches(): # Convert the symbols defined as lists-of-paths into patches. for code, symbol in CLOUD_COVER.items(): CLOUD_COVER[code] = _make_merged_patch(symbol) _convert_paths_to_patches()
lgpl-3.0
zjonke/EImotif
simulations/stp/show_figure.py
1
1803
from eim.settings_loader import GeneralSettings, DataSettings from eim.common import DictClass from eim.data import loadData from eim.spike_train import train_sec2ms from figure_helper import plotSTPFig import matplotlib.pyplot as plt ########## PLOTTING SETTINGS ########## train_start_time_ms = 0 train_end_time_ms = 2500 max_nrns_to_plot = 200 ################################################# ########## LOAD DATA ########## ter = DictClass(loadData('results/testing_short.shelf')) ted = DictClass(loadData('data/testing_short.shelf')) anr = DictClass(loadData('results/analysis.shelf')) ################################################# # LOAD SETTINGS gs = GeneralSettings() ds = DataSettings(gs.dataPath + gs.dataSettings) # PREPARE IDs = ds.patternIDs train = ted.train pd = train.pd patlen = train.patlen pc = [(0.0, 0.3, 1.0), (0.0, 0.8, 0.0)] # input neurons spikes spikesIN_ms = train_sec2ms(ter.spikes['in'])[::2] # take every 2nd # excitatory neurons spikes spikesE_ms = train_sec2ms(ter.spikes['e']) # pattern prefered neurons - spikes P1_spikesE_ms = [spikesE_ms[i] for i in anr.nrns_inds_P1] P2_spikesE_ms = [spikesE_ms[i] for i in anr.nrns_inds_P2] #non prefered neurons - subset rest_spikesE_ms = [spikesE_ms[i] for i in anr.nrns_nondist][:max_nrns_to_plot - len(P1_spikesE_ms)-len(P2_spikesE_ms)] # inhibitory neurons spikes spikesI_ms = train_sec2ms(ter.spikes['i'])[::2] # take every 2nd # PLOT FIGURE plotSTPFig(train, pd, patlen, ted.pg, train_start_time_ms, train_end_time_ms, IDs, pc, spikesIN_ms, P1_spikesE_ms, P2_spikesE_ms, rest_spikesE_ms, spikesI_ms, anr.nrntracesP1_P1, anr.nrntracesP1_P2, anr.nrntracesP2_P1, anr.nrntracesP2_P2) # SAVE FIGURE plt.savefig('plots/fig.png', dpi=600) plt.savefig('plots/fig.eps')
mit
vibhorag/scikit-learn
sklearn/linear_model/logistic.py
57
65098
""" Logistic Regression """ # Author: Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Manoj Kumar <[email protected]> # Lars Buitinck # Simon Wu <[email protected]> import numbers import warnings import numpy as np from scipy import optimize, sparse from .base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator from .sag import sag_solver from .sag_fast import get_max_squared_sum from ..feature_selection.from_model import _LearntSelectorMixin from ..preprocessing import LabelEncoder, LabelBinarizer from ..svm.base import _fit_liblinear from ..utils import check_array, check_consistent_length, compute_class_weight from ..utils import check_random_state from ..utils.extmath import (logsumexp, log_logistic, safe_sparse_dot, softmax, squared_norm) from ..utils.optimize import newton_cg from ..utils.validation import (DataConversionWarning, check_X_y, NotFittedError) from ..utils.fixes import expit from ..externals.joblib import Parallel, delayed from ..cross_validation import check_cv from ..externals import six from ..metrics import SCORERS # .. some helper functions for logistic_regression_path .. def _intercept_dot(w, X, y): """Computes y * np.dot(X, w). It takes into consideration if the intercept should be fit or not. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. """ c = 0. if w.size == X.shape[1] + 1: c = w[-1] w = w[:-1] z = safe_sparse_dot(X, w) + c return w, c, y * z def _logistic_loss_and_grad(w, X, y, alpha, sample_weight=None): """Computes the logistic loss and gradient. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. """ _, n_features = X.shape grad = np.empty_like(w) w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if grad.shape[0] > n_features: grad[-1] = z0.sum() return out, grad def _logistic_loss(w, X, y, alpha, sample_weight=None): """Computes the logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. """ w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) return out def _logistic_grad_hess(w, X, y, alpha, sample_weight=None): """Computes the gradient and the Hessian, in the case of a logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. Hs : callable Function that takes the gradient as a parameter and returns the matrix product of the Hessian and gradient. """ n_samples, n_features = X.shape grad = np.empty_like(w) fit_intercept = grad.shape[0] > n_features w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if fit_intercept: grad[-1] = z0.sum() # The mat-vec product of the Hessian d = sample_weight * z * (1 - z) if sparse.issparse(X): dX = safe_sparse_dot(sparse.dia_matrix((d, 0), shape=(n_samples, n_samples)), X) else: # Precompute as much as possible dX = d[:, np.newaxis] * X if fit_intercept: # Calculate the double derivative with respect to intercept # In the case of sparse matrices this returns a matrix object. dd_intercept = np.squeeze(np.array(dX.sum(axis=0))) def Hs(s): ret = np.empty_like(s) ret[:n_features] = X.T.dot(dX.dot(s[:n_features])) ret[:n_features] += alpha * s[:n_features] # For the fit intercept case. if fit_intercept: ret[:n_features] += s[-1] * dd_intercept ret[-1] = dd_intercept.dot(s[:n_features]) ret[-1] += d.sum() * s[-1] return ret return grad, Hs def _multinomial_loss(w, X, Y, alpha, sample_weight): """Computes multinomial loss and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- loss : float Multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities. w : ndarray, shape (n_classes, n_features) Reshaped param vector excluding intercept terms. """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) w = w.reshape(n_classes, -1) sample_weight = sample_weight[:, np.newaxis] if fit_intercept: intercept = w[:, -1] w = w[:, :-1] else: intercept = 0 p = safe_sparse_dot(X, w.T) p += intercept p -= logsumexp(p, axis=1)[:, np.newaxis] loss = -(sample_weight * Y * p).sum() loss += 0.5 * alpha * squared_norm(w) p = np.exp(p, p) return loss, p, w def _multinomial_loss_grad(w, X, Y, alpha, sample_weight): """Computes the multinomial loss, gradient and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- loss : float Multinomial loss. grad : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = (w.size == n_classes * (n_features + 1)) grad = np.zeros((n_classes, n_features + bool(fit_intercept))) loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] diff = sample_weight * (p - Y) grad[:, :n_features] = safe_sparse_dot(diff.T, X) grad[:, :n_features] += alpha * w if fit_intercept: grad[:, -1] = diff.sum(axis=0) return loss, grad.ravel(), p def _multinomial_grad_hess(w, X, Y, alpha, sample_weight): """ Computes the gradient and the Hessian, in the case of a multinomial loss. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- grad : array, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. hessp : callable Function that takes in a vector input of shape (n_classes * n_features) or (n_classes * (n_features + 1)) and returns matrix-vector product with hessian. References ---------- Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian. http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf """ n_features = X.shape[1] n_classes = Y.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) # `loss` is unused. Refactoring to avoid computing it does not # significantly speed up the computation and decreases readability loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] # Hessian-vector product derived by applying the R-operator on the gradient # of the multinomial loss function. def hessp(v): v = v.reshape(n_classes, -1) if fit_intercept: inter_terms = v[:, -1] v = v[:, :-1] else: inter_terms = 0 # r_yhat holds the result of applying the R-operator on the multinomial # estimator. r_yhat = safe_sparse_dot(X, v.T) r_yhat += inter_terms r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis] r_yhat *= p r_yhat *= sample_weight hessProd = np.zeros((n_classes, n_features + bool(fit_intercept))) hessProd[:, :n_features] = safe_sparse_dot(r_yhat.T, X) hessProd[:, :n_features] += v * alpha if fit_intercept: hessProd[:, -1] = r_yhat.sum(axis=0) return hessProd.ravel() return grad, hessp def _check_solver_option(solver, multi_class, penalty, dual, sample_weight): if solver not in ['liblinear', 'newton-cg', 'lbfgs', 'sag']: raise ValueError("Logistic Regression supports only liblinear," " newton-cg, lbfgs and sag solvers, got %s" % solver) if multi_class not in ['multinomial', 'ovr']: raise ValueError("multi_class should be either multinomial or " "ovr, got %s" % multi_class) if multi_class == 'multinomial' and solver in ['liblinear', 'sag']: raise ValueError("Solver %s does not support " "a multinomial backend." % solver) if solver != 'liblinear': if penalty != 'l2': raise ValueError("Solver %s supports only l2 penalties, " "got %s penalty." % (solver, penalty)) if dual: raise ValueError("Solver %s supports only " "dual=False, got dual=%s" % (solver, dual)) if solver == 'liblinear' and sample_weight is not None: raise ValueError("Solver %s does not support " "sample weights." % solver) def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, solver='lbfgs', coef=None, copy=False, class_weight=None, dual=False, penalty='l2', intercept_scaling=1., multi_class='ovr', random_state=None, check_input=True, max_squared_sum=None, sample_weight=None): """Compute a Logistic Regression model for a list of regularization parameters. This is an implementation that uses the result of the previous model to speed up computations along the set of solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) Input data, target values. Cs : int | array-like, shape (n_cs,) List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. fit_intercept : bool Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int Maximum number of iterations for the solver. tol : float Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag'} Numerical solver to use. coef : array-like, shape (n_features,), default None Initialization value for coefficients of logistic regression. Useless for liblinear solver. copy : bool, default False Whether or not to produce a copy of the data. A copy is not required anymore. This parameter is deprecated and will be removed in 0.19. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' and 'newton-cg' solvers. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. check_input : bool, default True If False, the input arrays X and y will not be checked. max_squared_sum : float, default None Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like, shape(n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. n_iter : array, shape (n_cs,) Actual number of iteration for each Cs. Notes ----- You might get slighly different results with the solver liblinear than with the others since this uses LIBLINEAR which penalizes the intercept. """ if copy: warnings.warn("A copy is not required anymore. The 'copy' parameter " "is deprecated and will be removed in 0.19.", DeprecationWarning) if isinstance(Cs, numbers.Integral): Cs = np.logspace(-4, 4, Cs) _check_solver_option(solver, multi_class, penalty, dual, sample_weight) # Preprocessing. if check_input or copy: X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False, copy=copy, dtype=None) check_consistent_length(X, y) _, n_features = X.shape classes = np.unique(y) random_state = check_random_state(random_state) if pos_class is None and multi_class != 'multinomial': if (classes.size > 2): raise ValueError('To fit OvR, use the pos_class argument') # np.unique(y) gives labels in sorted order. pos_class = classes[1] # If sample weights exist, convert them to array (support for lists) # and check length # Otherwise set them to 1 for all examples if sample_weight is not None: sample_weight = np.array(sample_weight, dtype=np.float64, order='C') check_consistent_length(y, sample_weight) else: sample_weight = np.ones(X.shape[0]) # If class_weights is a dict (provided by the user), the weights # are assigned to the original labels. If it is "auto", then # the class_weights are assigned after masking the labels with a OvR. le = LabelEncoder() if isinstance(class_weight, dict): if solver == "liblinear": if classes.size == 2: # Reconstruct the weights with keys 1 and -1 temp = {1: class_weight[pos_class], -1: class_weight[classes[0]]} class_weight = temp.copy() else: raise ValueError("In LogisticRegressionCV the liblinear " "solver cannot handle multiclass with " "class_weight of type dict. Use the lbfgs, " "newton-cg or sag solvers or set " "class_weight='auto'") else: class_weight_ = compute_class_weight(class_weight, classes, y) sample_weight *= class_weight_[le.fit_transform(y)] # For doing a ovr, we need to mask the labels first. for the # multinomial case this is not necessary. if multi_class == 'ovr': w0 = np.zeros(n_features + int(fit_intercept)) mask_classes = np.array([-1, 1]) mask = (y == pos_class) y_bin = np.ones(y.shape, dtype=np.float64) y_bin[~mask] = -1. else: lbin = LabelBinarizer() Y_bin = lbin.fit_transform(y) if Y_bin.shape[1] == 1: Y_bin = np.hstack([1 - Y_bin, Y_bin]) w0 = np.zeros((Y_bin.shape[1], n_features + int(fit_intercept)), order='F') mask_classes = classes if class_weight == "auto": class_weight_ = compute_class_weight(class_weight, mask_classes, y_bin) sample_weight *= class_weight_[le.fit_transform(y_bin)] if coef is not None: # it must work both giving the bias term and not if multi_class == 'ovr': if coef.size not in (n_features, w0.size): raise ValueError( 'Initialization coef is of shape %d, expected shape ' '%d or %d' % (coef.size, n_features, w0.size)) w0[:coef.size] = coef else: # For binary problems coef.shape[0] should be 1, otherwise it # should be classes.size. n_vectors = classes.size if n_vectors == 2: n_vectors = 1 if (coef.shape[0] != n_vectors or coef.shape[1] not in (n_features, n_features + 1)): raise ValueError( 'Initialization coef is of shape (%d, %d), expected ' 'shape (%d, %d) or (%d, %d)' % ( coef.shape[0], coef.shape[1], classes.size, n_features, classes.size, n_features + 1)) w0[:, :coef.shape[1]] = coef if multi_class == 'multinomial': # fmin_l_bfgs_b and newton-cg accepts only ravelled parameters. w0 = w0.ravel() target = Y_bin if solver == 'lbfgs': func = lambda x, *args: _multinomial_loss_grad(x, *args)[0:2] elif solver == 'newton-cg': func = lambda x, *args: _multinomial_loss(x, *args)[0] grad = lambda x, *args: _multinomial_loss_grad(x, *args)[1] hess = _multinomial_grad_hess else: target = y_bin if solver == 'lbfgs': func = _logistic_loss_and_grad elif solver == 'newton-cg': func = _logistic_loss grad = lambda x, *args: _logistic_loss_and_grad(x, *args)[1] hess = _logistic_grad_hess coefs = list() warm_start_sag = {'coef': w0} n_iter = np.zeros(len(Cs), dtype=np.int32) for i, C in enumerate(Cs): if solver == 'lbfgs': try: w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol, maxiter=max_iter) except TypeError: # old scipy doesn't have maxiter w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol) if info["warnflag"] == 1 and verbose > 0: warnings.warn("lbfgs failed to converge. Increase the number " "of iterations.") try: n_iter_i = info['nit'] - 1 except: n_iter_i = info['funcalls'] - 1 elif solver == 'newton-cg': args = (X, target, 1. / C, sample_weight) w0, n_iter_i = newton_cg(hess, func, grad, w0, args=args, maxiter=max_iter, tol=tol) elif solver == 'liblinear': coef_, intercept_, n_iter_i, = _fit_liblinear( X, target, C, fit_intercept, intercept_scaling, class_weight, penalty, dual, verbose, max_iter, tol, random_state) if fit_intercept: w0 = np.concatenate([coef_.ravel(), intercept_]) else: w0 = coef_.ravel() elif solver == 'sag': w0, n_iter_i, warm_start_sag = sag_solver( X, target, sample_weight, 'log', 1. / C, max_iter, tol, verbose, random_state, False, max_squared_sum, warm_start_sag) else: raise ValueError("solver must be one of {'liblinear', 'lbfgs', " "'newton-cg', 'sag'}, got '%s' instead" % solver) if multi_class == 'multinomial': multi_w0 = np.reshape(w0, (classes.size, -1)) if classes.size == 2: multi_w0 = multi_w0[1][np.newaxis, :] coefs.append(multi_w0) else: coefs.append(w0.copy()) n_iter[i] = n_iter_i return coefs, np.array(Cs), n_iter # helper function for LogisticCV def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10, scoring=None, fit_intercept=False, max_iter=100, tol=1e-4, class_weight=None, verbose=0, solver='lbfgs', penalty='l2', dual=False, intercept_scaling=1., multi_class='ovr', random_state=None, max_squared_sum=None, sample_weight=None): """Computes scores across logistic_regression_path Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target labels. train : list of indices The indices of the train set. test : list of indices The indices of the test set. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. If not provided, then a fixed set of values for Cs are used. scoring : callable For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. fit_intercept : bool If False, then the bias term is set to zero. Else the last term of each coef_ gives us the intercept. max_iter : int Maximum number of iterations for the solver. tol : float Tolerance for stopping criteria. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag'} Decides which solver to use. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' and 'newton-cg' solver. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. max_squared_sum : float, default None Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like, shape(n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. scores : ndarray, shape (n_cs,) Scores obtained for each Cs. n_iter : array, shape(n_cs,) Actual number of iteration for each Cs. """ _check_solver_option(solver, multi_class, penalty, dual, sample_weight) X_train = X[train] X_test = X[test] y_train = y[train] y_test = y[test] if sample_weight is not None: sample_weight = sample_weight[train] coefs, Cs, n_iter = logistic_regression_path( X_train, y_train, Cs=Cs, fit_intercept=fit_intercept, solver=solver, max_iter=max_iter, class_weight=class_weight, pos_class=pos_class, multi_class=multi_class, tol=tol, verbose=verbose, dual=dual, penalty=penalty, intercept_scaling=intercept_scaling, random_state=random_state, check_input=False, max_squared_sum=max_squared_sum, sample_weight=sample_weight) log_reg = LogisticRegression(fit_intercept=fit_intercept) # The score method of Logistic Regression has a classes_ attribute. if multi_class == 'ovr': log_reg.classes_ = np.array([-1, 1]) elif multi_class == 'multinomial': log_reg.classes_ = np.unique(y_train) else: raise ValueError("multi_class should be either multinomial or ovr, " "got %d" % multi_class) if pos_class is not None: mask = (y_test == pos_class) y_test = np.ones(y_test.shape, dtype=np.float64) y_test[~mask] = -1. # To deal with object dtypes, we need to convert into an array of floats. y_test = check_array(y_test, dtype=np.float64, ensure_2d=False) scores = list() if isinstance(scoring, six.string_types): scoring = SCORERS[scoring] for w in coefs: if multi_class == 'ovr': w = w[np.newaxis, :] if fit_intercept: log_reg.coef_ = w[:, :-1] log_reg.intercept_ = w[:, -1] else: log_reg.coef_ = w log_reg.intercept_ = 0. if scoring is None: scores.append(log_reg.score(X_test, y_test)) else: scores.append(scoring(log_reg, X_test, y_test)) return coefs, Cs, np.array(scores), n_iter class LogisticRegression(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr' and uses the cross-entropy loss, if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs' and 'newton-cg' solvers.) This class implements regularized logistic regression using the `liblinear` library, newton-cg and lbfgs solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The newton-cg and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. C : float, optional (default=1.0) Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. intercept_scaling : float, default: 1 Useful only if solver is liblinear. when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. max_iter : int Useful only for the newton-cg, sag and lbfgs solvers. Maximum number of iterations taken for the solvers to converge. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag'} Algorithm to use in the optimization problem. - For small datasets, 'liblinear' is a good choice, whereas 'sag' is faster for large ones. - For multiclass problems, only 'newton-cg' and 'lbfgs' handle multinomial loss; 'sag' and 'liblinear' are limited to one-versus-rest schemes. - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. tol : float, optional Tolerance for stopping criteria. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Useless for liblinear solver. n_jobs : int, optional Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. Attributes ---------- coef_ : array, shape (n_classes, n_features) Coefficient of the features in the decision function. intercept_ : array, shape (n_classes,) Intercept (a.k.a. bias) added to the decision function. If `fit_intercept` is set to False, the intercept is set to zero. n_iter_ : array, shape (n_classes,) or (1, ) Actual number of iterations for all classes. If binary or multinomial, it returns only 1 element. For liblinear solver, only the maximum number of iteration across all classes is given. See also -------- SGDClassifier : incrementally trained logistic regression (when given the parameter ``loss="log"``). sklearn.svm.LinearSVC : learns SVM models using the same algorithm. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a smaller tol parameter. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. References ---------- LIBLINEAR -- A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/ Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning 85(1-2):41-75. http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf """ def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1): self.penalty = penalty self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.random_state = random_state self.solver = solver self.max_iter = max_iter self.multi_class = multi_class self.verbose = verbose self.warm_start = warm_start self.n_jobs = n_jobs def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- self : object Returns self. """ if not isinstance(self.C, numbers.Number) or self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") self.classes_ = np.unique(y) n_samples, n_features = X.shape _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual, sample_weight) if self.solver == 'liblinear': self.coef_, self.intercept_, n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state) self.n_iter_ = np.array([n_iter_]) return self max_squared_sum = get_max_squared_sum(X) if self.solver == 'sag' \ else None n_classes = len(self.classes_) classes_ = self.classes_ if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) if len(self.classes_) == 2: n_classes = 1 classes_ = classes_[1:] if self.warm_start: warm_start_coef = getattr(self, 'coef_', None) else: warm_start_coef = None if warm_start_coef is not None and self.fit_intercept: warm_start_coef = np.append(warm_start_coef, self.intercept_[:, np.newaxis], axis=1) self.coef_ = list() self.intercept_ = np.zeros(n_classes) # Hack so that we iterate only once for the multinomial case. if self.multi_class == 'multinomial': classes_ = [None] warm_start_coef = [warm_start_coef] if warm_start_coef is None: warm_start_coef = [None] * n_classes path_func = delayed(logistic_regression_path) # The SAG solver releases the GIL so it's more efficient to use # threads for this solver. backend = 'threading' if self.solver == 'sag' else 'multiprocessing' fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend=backend)( path_func(X, y, pos_class=class_, Cs=[self.C], fit_intercept=self.fit_intercept, tol=self.tol, verbose=self.verbose, solver=self.solver, copy=False, multi_class=self.multi_class, max_iter=self.max_iter, class_weight=self.class_weight, check_input=False, random_state=self.random_state, coef=warm_start_coef_, max_squared_sum=max_squared_sum, sample_weight=sample_weight) for (class_, warm_start_coef_) in zip(classes_, warm_start_coef)) fold_coefs_, _, n_iter_ = zip(*fold_coefs_) self.n_iter_ = np.asarray(n_iter_, dtype=np.int32)[:, 0] if self.multi_class == 'multinomial': self.coef_ = fold_coefs_[0][0] else: self.coef_ = np.asarray(fold_coefs_) self.coef_ = self.coef_.reshape(n_classes, n_features + int(self.fit_intercept)) if self.fit_intercept: self.intercept_ = self.coef_[:, -1] self.coef_ = self.coef_[:, :-1] return self def predict_proba(self, X): """Probability estimates. The returned estimates for all classes are ordered by the label of classes. For a multi_class problem, if multi_class is set to be "multinomial" the softmax function is used to find the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of each class assuming it to be positive using the logistic function. and normalize these values across all the classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ if not hasattr(self, "coef_"): raise NotFittedError("Call fit before prediction") calculate_ovr = self.coef_.shape[0] == 1 or self.multi_class == "ovr" if calculate_ovr: return super(LogisticRegression, self)._predict_proba_lr(X) else: return softmax(self.decision_function(X), copy=False) def predict_log_proba(self, X): """Log of probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return np.log(self.predict_proba(X)) class LogisticRegressionCV(LogisticRegression, BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin): """Logistic Regression CV (aka logit, MaxEnt) classifier. This class implements logistic regression using liblinear, newton-cg, sag of lbfgs optimizer. The newton-cg, sag and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between 1e-4 and 1e4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using the cv parameter. In the case of newton-cg and lbfgs solvers, we warm start along the path i.e guess the initial coefficients of the present fit to be the coefficients got after convergence in the previous fit, so it is supposed to be faster for high-dimensional dense data. For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. cv : integer or cross-validation generator The default cross-validation generator used is Stratified K-Folds. If an integer is provided, then it is the number of folds used. See the module :mod:`sklearn.cross_validation` module for the list of possible cross-validation objects. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. scoring : callabale Scoring function to use as cross-validation criteria. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag'} Algorithm to use in the optimization problem. - For small datasets, 'liblinear' is a good choice, whereas 'sag' is faster for large ones. - For multiclass problems, only 'newton-cg' and 'lbfgs' handle multinomial loss; 'sag' and 'liblinear' are limited to one-versus-rest schemes. - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty. - 'liblinear' might be slower in LogisticRegressionCV because it does not handle warm-starting. tol : float, optional Tolerance for stopping criteria. max_iter : int, optional Maximum number of iterations of the optimization algorithm. n_jobs : int, optional Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. verbose : int For the 'liblinear', 'sag' and 'lbfgs' solvers set verbose to any positive number for verbosity. refit : bool If set to True, the scores are averaged across all folds, and the coefs and the C that corresponds to the best score is taken, and a final refit is done using these parameters. Otherwise the coefs, intercepts and C that correspond to the best scores across folds are averaged. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for 'lbfgs' and 'newton-cg' solvers. intercept_scaling : float, default 1. Useful only if solver is liblinear. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Attributes ---------- coef_ : array, shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. `coef_` is of shape (1, n_features) when the given problem is binary. `coef_` is readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape (1,) or (n_classes,) Intercept (a.k.a. bias) added to the decision function. It is available only when parameter intercept is set to True and is of shape(1,) when the problem is binary. Cs_ : array Array of C i.e. inverse of regularization parameter values used for cross-validation. coefs_paths_ : array, shape ``(n_folds, len(Cs_), n_features)`` or \ ``(n_folds, len(Cs_), n_features + 1)`` dict with classes as the keys, and the path of coefficients obtained during cross-validating across each fold and then across each Cs after doing an OvR for the corresponding class as values. If the 'multi_class' option is set to 'multinomial', then the coefs_paths are the coefficients corresponding to each class. Each dict value has shape ``(n_folds, len(Cs_), n_features)`` or ``(n_folds, len(Cs_), n_features + 1)`` depending on whether the intercept is fit or not. scores_ : dict dict with classes as the keys, and the values as the grid of scores obtained during cross-validating each fold, after doing an OvR for the corresponding class. If the 'multi_class' option given is 'multinomial' then the same scores are repeated across all classes, since this is the multinomial class. Each dict value has shape (n_folds, len(Cs)) C_ : array, shape (n_classes,) or (n_classes - 1,) Array of C that maps to the best scores across every class. If refit is set to False, then for each class, the best C is the average of the C's that correspond to the best scores for each fold. n_iter_ : array, shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs) Actual number of iterations for all classes, folds and Cs. In the binary or multinomial cases, the first dimension is equal to 1. See also -------- LogisticRegression """ def __init__(self, Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None, solver='lbfgs', tol=1e-4, max_iter=100, class_weight=None, n_jobs=1, verbose=0, refit=True, intercept_scaling=1., multi_class='ovr', random_state=None): self.Cs = Cs self.fit_intercept = fit_intercept self.cv = cv self.dual = dual self.penalty = penalty self.scoring = scoring self.tol = tol self.max_iter = max_iter self.class_weight = class_weight self.n_jobs = n_jobs self.verbose = verbose self.solver = solver self.refit = refit self.intercept_scaling = intercept_scaling self.multi_class = multi_class self.random_state = random_state def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- self : object Returns self. """ _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual, sample_weight) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") max_squared_sum = get_max_squared_sum(X) if self.solver == 'sag' \ else None if y.ndim == 2 and y.shape[1] == 1: warnings.warn( "A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning) y = np.ravel(y) check_consistent_length(X, y) # init cross-validation generator cv = check_cv(self.cv, X, y, classifier=True) folds = list(cv) self._enc = LabelEncoder() self._enc.fit(y) labels = self.classes_ = np.unique(y) n_classes = len(labels) if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % self.classes_[0]) if n_classes == 2: # OvR in case of binary problems is as good as fitting # the higher label n_classes = 1 labels = labels[1:] # We need this hack to iterate only once over labels, in the case of # multi_class = multinomial, without changing the value of the labels. iter_labels = labels if self.multi_class == 'multinomial': iter_labels = [None] if self.class_weight and not(isinstance(self.class_weight, dict) or self.class_weight in ['balanced', 'auto']): raise ValueError("class_weight provided should be a " "dict or 'balanced'") path_func = delayed(_log_reg_scoring_path) # The SAG solver releases the GIL so it's more efficient to use # threads for this solver. backend = 'threading' if self.solver == 'sag' else 'multiprocessing' fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend=backend)( path_func(X, y, train, test, pos_class=label, Cs=self.Cs, fit_intercept=self.fit_intercept, penalty=self.penalty, dual=self.dual, solver=self.solver, tol=self.tol, max_iter=self.max_iter, verbose=self.verbose, class_weight=self.class_weight, scoring=self.scoring, multi_class=self.multi_class, intercept_scaling=self.intercept_scaling, random_state=self.random_state, max_squared_sum=max_squared_sum, sample_weight=sample_weight ) for label in iter_labels for train, test in folds) if self.multi_class == 'multinomial': multi_coefs_paths, Cs, multi_scores, n_iter_ = zip(*fold_coefs_) multi_coefs_paths = np.asarray(multi_coefs_paths) multi_scores = np.asarray(multi_scores) # This is just to maintain API similarity between the ovr and # multinomial option. # Coefs_paths in now n_folds X len(Cs) X n_classes X n_features # we need it to be n_classes X len(Cs) X n_folds X n_features # to be similar to "ovr". coefs_paths = np.rollaxis(multi_coefs_paths, 2, 0) # Multinomial has a true score across all labels. Hence the # shape is n_folds X len(Cs). We need to repeat this score # across all labels for API similarity. scores = np.tile(multi_scores, (n_classes, 1, 1)) self.Cs_ = Cs[0] self.n_iter_ = np.reshape(n_iter_, (1, len(folds), len(self.Cs_))) else: coefs_paths, Cs, scores, n_iter_ = zip(*fold_coefs_) self.Cs_ = Cs[0] coefs_paths = np.reshape(coefs_paths, (n_classes, len(folds), len(self.Cs_), -1)) self.n_iter_ = np.reshape(n_iter_, (n_classes, len(folds), len(self.Cs_))) self.coefs_paths_ = dict(zip(labels, coefs_paths)) scores = np.reshape(scores, (n_classes, len(folds), -1)) self.scores_ = dict(zip(labels, scores)) self.C_ = list() self.coef_ = np.empty((n_classes, X.shape[1])) self.intercept_ = np.zeros(n_classes) # hack to iterate only once for multinomial case. if self.multi_class == 'multinomial': scores = multi_scores coefs_paths = multi_coefs_paths for index, label in enumerate(iter_labels): if self.multi_class == 'ovr': scores = self.scores_[label] coefs_paths = self.coefs_paths_[label] if self.refit: best_index = scores.sum(axis=0).argmax() C_ = self.Cs_[best_index] self.C_.append(C_) if self.multi_class == 'multinomial': coef_init = np.mean(coefs_paths[:, best_index, :, :], axis=0) else: coef_init = np.mean(coefs_paths[:, best_index, :], axis=0) w, _, _ = logistic_regression_path( X, y, pos_class=label, Cs=[C_], solver=self.solver, fit_intercept=self.fit_intercept, coef=coef_init, max_iter=self.max_iter, tol=self.tol, penalty=self.penalty, copy=False, class_weight=self.class_weight, multi_class=self.multi_class, verbose=max(0, self.verbose - 1), random_state=self.random_state, check_input=False, max_squared_sum=max_squared_sum, sample_weight=sample_weight) w = w[0] else: # Take the best scores across every fold and the average of all # coefficients corresponding to the best scores. best_indices = np.argmax(scores, axis=1) w = np.mean([coefs_paths[i][best_indices[i]] for i in range(len(folds))], axis=0) self.C_.append(np.mean(self.Cs_[best_indices])) if self.multi_class == 'multinomial': self.C_ = np.tile(self.C_, n_classes) self.coef_ = w[:, :X.shape[1]] if self.fit_intercept: self.intercept_ = w[:, -1] else: self.coef_[index] = w[: X.shape[1]] if self.fit_intercept: self.intercept_[index] = w[-1] self.C_ = np.asarray(self.C_) return self
bsd-3-clause
nguyentu1602/statsmodels
statsmodels/tsa/vector_ar/plotting.py
31
7291
from statsmodels.compat.python import lrange, range import numpy as np import statsmodels.tsa.vector_ar.util as util class MPLConfigurator(object): def __init__(self): self._inverse_actions = [] def revert(self): for action in self._inverse_actions: action() def set_fontsize(self, size): import matplotlib as mpl old_size = mpl.rcParams['font.size'] mpl.rcParams['font.size'] = size def revert(): mpl.rcParams['font.size'] = old_size self._inverse_actions.append(revert) #------------------------------------------------------------------------------- # Plotting functions def plot_mts(Y, names=None, index=None): """ Plot multiple time series """ import matplotlib.pyplot as plt k = Y.shape[1] rows, cols = k, 1 plt.figure(figsize=(10, 10)) for j in range(k): ts = Y[:, j] ax = plt.subplot(rows, cols, j+1) if index is not None: ax.plot(index, ts) else: ax.plot(ts) if names is not None: ax.set_title(names[j]) def plot_var_forc(prior, forc, err_upper, err_lower, index=None, names=None, plot_stderr=True): import matplotlib.pyplot as plt n, k = prior.shape rows, cols = k, 1 fig = plt.figure(figsize=(10, 10)) prange = np.arange(n) rng_f = np.arange(n - 1, n + len(forc)) rng_err = np.arange(n, n + len(forc)) for j in range(k): ax = plt.subplot(rows, cols, j+1) p1 = ax.plot(prange, prior[:, j], 'k', label='Observed') p2 = ax.plot(rng_f, np.r_[prior[-1:, j], forc[:, j]], 'k--', label='Forecast') if plot_stderr: p3 = ax.plot(rng_err, err_upper[:, j], 'k-.', label='Forc 2 STD err') ax.plot(rng_err, err_lower[:, j], 'k-.') if names is not None: ax.set_title(names[j]) ax.legend(loc='upper right') def plot_with_error(y, error, x=None, axes=None, value_fmt='k', error_fmt='k--', alpha=0.05, stderr_type = 'asym'): """ Make plot with optional error bars Parameters ---------- y : error : array or None """ import matplotlib.pyplot as plt if axes is None: axes = plt.gca() x = x if x is not None else lrange(len(y)) plot_action = lambda y, fmt: axes.plot(x, y, fmt) plot_action(y, value_fmt) #changed this if error is not None: if stderr_type == 'asym': q = util.norm_signif_level(alpha) plot_action(y - q * error, error_fmt) plot_action(y + q * error, error_fmt) if stderr_type in ('mc','sz1','sz2','sz3'): plot_action(error[0], error_fmt) plot_action(error[1], error_fmt) def plot_full_acorr(acorr, fontsize=8, linewidth=8, xlabel=None, err_bound=None): """ Parameters ---------- """ import matplotlib.pyplot as plt config = MPLConfigurator() config.set_fontsize(fontsize) k = acorr.shape[1] fig, axes = plt.subplots(k, k, figsize=(10, 10), squeeze=False) for i in range(k): for j in range(k): ax = axes[i][j] acorr_plot(acorr[:, i, j], linewidth=linewidth, xlabel=xlabel, ax=ax) if err_bound is not None: ax.axhline(err_bound, color='k', linestyle='--') ax.axhline(-err_bound, color='k', linestyle='--') adjust_subplots() config.revert() return fig def acorr_plot(acorr, linewidth=8, xlabel=None, ax=None): import matplotlib.pyplot as plt if ax is None: ax = plt.gca() if xlabel is None: xlabel = np.arange(len(acorr)) ax.vlines(xlabel, [0], acorr, lw=linewidth) ax.axhline(0, color='k') ax.set_ylim([-1, 1]) # hack? ax.set_xlim([-1, xlabel[-1] + 1]) def plot_acorr_with_error(): pass def adjust_subplots(**kwds): import matplotlib.pyplot as plt passed_kwds = dict(bottom=0.05, top=0.925, left=0.05, right=0.95, hspace=0.2) passed_kwds.update(kwds) plt.subplots_adjust(**passed_kwds) #------------------------------------------------------------------------------- # Multiple impulse response (cum_effects, etc.) cplots def irf_grid_plot(values, stderr, impcol, rescol, names, title, signif=0.05, hlines=None, subplot_params=None, plot_params=None, figsize=(10,10), stderr_type='asym'): """ Reusable function to make flexible grid plots of impulse responses and comulative effects values : (T + 1) x k x k stderr : T x k x k hlines : k x k """ import matplotlib.pyplot as plt if subplot_params is None: subplot_params = {} if plot_params is None: plot_params = {} nrows, ncols, to_plot = _get_irf_plot_config(names, impcol, rescol) fig, axes = plt.subplots(nrows=nrows, ncols=ncols, sharex=True, squeeze=False, figsize=figsize) # fill out space adjust_subplots() fig.suptitle(title, fontsize=14) subtitle_temp = r'%s$\rightarrow$%s' k = len(names) rng = lrange(len(values)) for (j, i, ai, aj) in to_plot: ax = axes[ai][aj] # HACK? if stderr is not None: if stderr_type == 'asym': sig = np.sqrt(stderr[:, j * k + i, j * k + i]) plot_with_error(values[:, i, j], sig, x=rng, axes=ax, alpha=signif, value_fmt='b', stderr_type=stderr_type) if stderr_type in ('mc','sz1','sz2','sz3'): errs = stderr[0][:, i, j], stderr[1][:, i, j] plot_with_error(values[:, i, j], errs, x=rng, axes=ax, alpha=signif, value_fmt='b', stderr_type=stderr_type) else: plot_with_error(values[:, i, j], None, x=rng, axes=ax, value_fmt='b') ax.axhline(0, color='k') if hlines is not None: ax.axhline(hlines[i,j], color='k') sz = subplot_params.get('fontsize', 12) ax.set_title(subtitle_temp % (names[j], names[i]), fontsize=sz) def _get_irf_plot_config(names, impcol, rescol): nrows = ncols = k = len(names) if impcol is not None and rescol is not None: # plot one impulse-response pair nrows = ncols = 1 j = util.get_index(names, impcol) i = util.get_index(names, rescol) to_plot = [(j, i, 0, 0)] elif impcol is not None: # plot impacts of impulse in one variable ncols = 1 j = util.get_index(names, impcol) to_plot = [(j, i, i, 0) for i in range(k)] elif rescol is not None: # plot only things having impact on particular variable ncols = 1 i = util.get_index(names, rescol) to_plot = [(j, i, j, 0) for j in range(k)] else: # plot everything to_plot = [(j, i, i, j) for i in range(k) for j in range(k)] return nrows, ncols, to_plot #------------------------------------------------------------------------------- # Forecast error variance decomposition
bsd-3-clause
akaszynski/vtkInterface
setup.py
1
2456
""" Installation file for python pyvista module """ import os import platform import sys import warnings from io import open as io_open from setuptools import setup package_name = 'pyvista' __version__ = None filepath = os.path.dirname(__file__) version_file = os.path.join(filepath, package_name, '_version.py') with io_open(version_file, mode='r') as fd: exec(fd.read()) # pre-compiled vtk available for python3 install_requires = ['numpy', 'imageio', 'appdirs', 'scooby>=0.5.1', 'meshio>=4.0.3, <5.0', ] # add vtk if not windows and 2.7 py_ver = int(sys.version[0]) if os.name == 'nt' and (py_ver < 3 or '64' not in platform.architecture()[0]): warnings.warn('\nYou will need to install VTK manually.' ' Try using Anaconda. See:\n' 'https://anaconda.org/anaconda/vtk') else: install_requires.append(['vtk']) readme_file = os.path.join(filepath, 'README.rst') setup( name=package_name, packages=[package_name, 'pyvista.examples', 'pyvista.core', 'pyvista.plotting', 'pyvista.utilities'], version=__version__, description='Easier Pythonic interface to VTK', long_description=io_open(readme_file, encoding="utf-8").read(), author='PyVista Developers', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Information Analysis', 'License :: OSI Approved :: MIT License', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: MacOS', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], url='https://github.com/pyvista/pyvista', keywords='vtk numpy plotting mesh', package_data={'pyvista.examples': ['airplane.ply', 'ant.ply', 'channels.vti', 'hexbeam.vtk', 'sphere.ply', 'uniform.vtk', 'rectilinear.vtk', 'globe.vtk', '2k_earth_daymap.jpg']}, python_requires='>=3.5.*', install_requires=install_requires, extras_require={ 'colormaps': ['matplotlib', 'colorcet', 'cmocean'] }, )
mit
ifuding/Kaggle
SVPC/Code/philly/lgb_predict.py
3
2602
import pandas as pd import time import numpy as np import gc from feature_engineer import gen_features from feature_engineer import timer import keras_train from nfold_train import nfold_train, models_eval import tensorflow as tf import os import shutil from lcc_sample import neg_sample from sklearn import metrics import lightgbm as lgb from main import * DENSE_FEATURE_TYPE = keras_train.DENSE_FEATURE_TYPE def find_best_iteration_search(bst): """ """ valide_df = load_valide_data() valide_data = valide_df[keras_train.USED_FEATURE_LIST].values.astype(DENSE_FEATURE_TYPE) valide_label = valide_df['is_attributed'].values.astype(np.uint8) del valide_df gc.collect() if FLAGS.stacking: valide_data = gen_stacking_data(valide_data) pos_cnt = valide_label.sum() neg_cnt = len(valide_label) - pos_cnt print ("valide type: {0} valide size: {1} valide data pos: {2} neg: {3}".format( valide_data.dtype, len(valide_data), pos_cnt, neg_cnt)) with timer("finding best iteration..."): search_iterations = [int(ii.strip()) for ii in FLAGS.search_iterations.split(',')] for i in range(search_iterations[0], search_iterations[1], search_iterations[2]): y_pred = bst.predict(valide_data, num_iteration=i) score = metrics.roc_auc_score(valide_label, y_pred) loss = metrics.log_loss(valide_label, y_pred) print ("Iteration: {0} AUC: {1} Logloss: {2}".format(i, score, loss)) def predict_test(bst): test_df = load_test_data() test_data = test_df[keras_train.USED_FEATURE_LIST].values.astype(DENSE_FEATURE_TYPE) test_id = test_df['click_id'].values #.astype(np.uint32) print ("test type {0}".format(test_data.dtype)) del test_df gc.collect() if FLAGS.stacking: test_data = gen_stacking_data(test_data) with timer("predicting test data"): print('predicting test data...') sub_re = pd.DataFrame(test_id, columns = ['click_id']) sub_re['is_attributed'] = bst.predict(test_data, num_iteration=FLAGS.best_iteration) time_label = time.strftime('_%Y_%m_%d_%H_%M_%S', time.gmtime()) sub_name = FLAGS.output_model_path + "sub" + time_label + ".csv" sub_re.to_csv(sub_name, index=False) if __name__ == "__main__": # load model to predict bst = lgb.Booster(model_file= FLAGS.input_previous_model_path + '/model.txt') if FLAGS.search_best_iteration: find_best_iteration_search(bst) else: predict_test(bst)
apache-2.0
turi-code/SFrame
oss_src/unity/python/sframe/data_structures/sframe.py
5
231056
from __future__ import print_function """ This module defines the SFrame class which provides the ability to create, access and manipulate a remote scalable dataframe object. SFrame acts similarly to pandas.DataFrame, but the data is completely immutable and is stored column wise on the GraphLab Server side. """ ''' Copyright (C) 2016 Turi All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. ''' from .. import connect as _mt from ..connect import main as glconnect from ..cython.cy_flexible_type import infer_type_of_list from ..cython.context import debug_trace as cython_context from ..cython.cy_sframe import UnitySFrameProxy from ..util import _is_non_string_iterable, _make_internal_url from ..util import infer_dbapi2_types from ..util import get_module_from_object, pytype_to_printf from .sarray import SArray, _create_sequential_sarray from .. import aggregate from .image import Image as _Image from ..deps import pandas, HAS_PANDAS, HAS_NUMPY from .grouped_sframe import GroupedSFrame import array from prettytable import PrettyTable from textwrap import wrap import datetime import time import itertools import logging as _logging import os import subprocess import uuid import platform import numbers import sys import six import csv __all__ = ['SFrame'] __LOGGER__ = _logging.getLogger(__name__) SFRAME_GARBAGE_COLLECTOR = [] SFRAME_GRAPHLABUTIL_REF = None FOOTER_STRS = ['Note: Only the head of the SFrame is printed.', 'You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.'] LAZY_FOOTER_STRS = ['Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.', 'You can use sf.materialize() to force materialization.'] root_package_name = __import__(__name__.split('.')[0]).__name__ SFRAME_ROOTS = [# Binary/lib location in production egg os.path.abspath(os.path.join(os.path.dirname( os.path.realpath(__file__)), '..')), # Build tree location of SFrame binaries os.path.abspath(os.path.join(os.path.dirname( os.path.realpath(__file__)), '..', '..', '..', '..','..','oss_src','sframe')), # Location of python sources os.path.abspath(os.path.join(os.path.dirname( os.path.realpath(__file__)), '..', '..', '..', '..', 'unity', 'python', root_package_name)), # Build tree dependency location os.path.abspath(os.path.join(os.path.dirname( os.path.realpath(__file__)), '..', '..', '..', '..', '..', '..', 'deps', 'local', 'lib')) ] SPARK_UNITY = "spark_unity" HDFS_LIB = "libhdfs.so" RDD_JAR_FILE = "spark_unity.jar" RDD_SUPPORT_INITED = False BINARY_PATHS = {} STAGING_DIR = None RDD_SUPPORT = True PRODUCTION_RUN = False REMOTE_OS = None SPARK_SUPPORT_NAMES = {'RDD_JAR_PATH': 'spark_unity.jar'} first = True for i in SFRAME_ROOTS: for key,val in SPARK_SUPPORT_NAMES.items(): tmp_path = os.path.join(i, val) if key not in BINARY_PATHS and os.path.isfile(tmp_path): BINARY_PATHS[key] = tmp_path if all(name in BINARY_PATHS for name in list(SPARK_SUPPORT_NAMES.keys())): if first: PRODUCTION_RUN = True break first = False for name in SPARK_SUPPORT_NAMES.keys(): if (name not in BINARY_PATHS): if sys.platform != 'win32': __LOGGER__.warn("GraphLab engine cannot find %s" % SPARK_SUPPORT_NAMES[name]) if not all(name in BINARY_PATHS for name in SPARK_SUPPORT_NAMES.keys()): RDD_SUPPORT = False if sys.version_info.major > 2: long = int def get_spark_integration_jar_path(): """ The absolute path of the jar file required to enable GraphLab Create's integration with Apache Spark. """ if 'RDD_JAR_PATH' not in BINARY_PATHS: raise RuntimeError("Could not find a spark integration jar. "\ "Does your version of GraphLab Create support Spark Integration (is it >= 1.0)?") return BINARY_PATHS['RDD_JAR_PATH'] def __rdd_support_init__(sprk_ctx,graphlab_util_ref): global REMOTE_OS global RDD_SUPPORT_INITED global STAGING_DIR global BINARY_PATHS if not RDD_SUPPORT or RDD_SUPPORT_INITED: return sprk_ctx._jsc.addJar(BINARY_PATHS['RDD_JAR_PATH']) # Make sure our GraphLabUtil scala functions are accessible from the driver try: graphlab_util_ref.getBinaryName() except: raise RuntimeError("Could not execute RDD translation functions. "\ "This means either SparkContext is not initialized correctly "\ "or %s is not accessible.\n "\ "jar file path: %s" % (RDD_JAR_FILE,BINARY_PATHS['RDD_JAR_PATH'])) dummy_rdd = sprk_ctx.parallelize([1]) if PRODUCTION_RUN and (sprk_ctx.master.startswith('yarn-client') or sprk_ctx.master.startswith('spark://')): # Get cluster operating system os_rdd = dummy_rdd.map(lambda x: platform.system()) REMOTE_OS = os_rdd.collect()[0] # Set binary path for i in BINARY_PATHS.keys(): s = BINARY_PATHS[i] if REMOTE_OS == 'Linux': BINARY_PATHS[i] = os.path.join(os.path.dirname(s),os.path.basename(s)) elif REMOTE_OS == 'Darwin': BINARY_PATHS[i] = os.path.join(os.path.dirname(s),os.path.basename(s)) else: raise RuntimeError("YARN cluster has unsupported operating system "\ "(something other than Linux or Mac OS X). "\ "Cannot convert RDDs on this cluster to SFrame.") # Create staging directory staging_dir = '.graphlabStaging' if sprk_ctx.master.startswith('yarn-client') or sprk_ctx.master.startswith('spark://'): # Get that staging directory's full name tmp_loc = graphlab_util_ref.getHadoopNameNode() STAGING_DIR = os.path.join(tmp_loc, "user", sprk_ctx.sparkUser(), staging_dir) if STAGING_DIR is None: raise RuntimeError("Failed to create a staging directory on HDFS. "\ "Do your cluster nodes have a working hdfs client?") # Actually create the staging dir unity = glconnect.get_unity() unity.__mkdir__(STAGING_DIR) unity.__chmod__(STAGING_DIR, 0o777) elif sprk_ctx.master[0:5] == 'local': # Save the output sframes to the same temp workspace this engine is # using #TODO: Consider cases where server and client aren't on the same machine unity = glconnect.get_unity() STAGING_DIR = unity.get_current_cache_file_location() if STAGING_DIR is None: raise RuntimeError("Could not retrieve local staging directory!") else: raise RuntimeError("Your spark context's master is '" + str(sprk_ctx.master) + "'. Only 'local' and 'yarn-client' are supported.") RDD_SUPPORT_INITED = True def load_sframe(filename): """ Load an SFrame. The filename extension is used to determine the format automatically. This function is particularly useful for SFrames previously saved in binary format. For CSV imports the ``SFrame.read_csv`` function provides greater control. If the SFrame is in binary format, ``filename`` is actually a directory, created when the SFrame is saved. Parameters ---------- filename : string Location of the file to load. Can be a local path or a remote URL. Returns ------- out : SFrame See Also -------- SFrame.save, SFrame.read_csv Examples -------- >>> sf = graphlab.SFrame({'id':[1,2,3], 'val':['A','B','C']}) >>> sf.save('my_sframe') # 'my_sframe' is a directory >>> sf_loaded = graphlab.load_sframe('my_sframe') """ sf = SFrame(data=filename) return sf def _get_global_dbapi_info(dbapi_module, conn): """ Fetches all needed information from the top-level DBAPI module, guessing at the module if it wasn't passed as a parameter. Returns a dictionary of all the needed variables. This is put in one place to make sure the error message is clear if the module "guess" is wrong. """ module_given_msg = "The DBAPI2 module given ({0}) is missing the global\n"+\ "variable '{1}'. Please make sure you are supplying a module that\n"+\ "conforms to the DBAPI 2.0 standard (PEP 0249)." module_not_given_msg = "Hello! I gave my best effort to find the\n"+\ "top-level module that the connection object you gave me came from.\n"+\ "I found '{0}' which doesn't have the global variable '{1}'.\n"+\ "To avoid this confusion, you can pass the module as a parameter using\n"+\ "the 'dbapi_module' argument to either from_sql or to_sql." if dbapi_module is None: dbapi_module = get_module_from_object(conn) module_given = False else: module_given = True module_name = dbapi_module.__name__ if hasattr(dbapi_module, '__name__') else None needed_vars = ['apilevel','paramstyle','Error','DATETIME','NUMBER','ROWID'] ret_dict = {} ret_dict['module_name'] = module_name for i in needed_vars: tmp = None try: tmp = eval("dbapi_module."+i) except AttributeError as e: # Some DBs don't actually care about types, so they won't define # the types. These are the ACTUALLY needed variables though if i not in ['apilevel','paramstyle','Error']: pass elif module_given: raise AttributeError(module_given_msg.format(module_name, i)) else: raise AttributeError(module_not_given_msg.format(module_name, i)) ret_dict[i] = tmp try: if ret_dict['apilevel'][0:3] != "2.0": raise NotImplementedError("Unsupported API version " +\ str(ret_dict['apilevel']) + ". Only DBAPI 2.0 is supported.") except TypeError as e: e.message = "Module's 'apilevel' value is invalid." raise e acceptable_paramstyles = ['qmark','numeric','named','format','pyformat'] try: if ret_dict['paramstyle'] not in acceptable_paramstyles: raise TypeError("Module's 'paramstyle' value is invalid.") except TypeError as e: raise TypeError("Module's 'paramstyle' value is invalid.") return ret_dict # Expects list of tuples def _force_cast_sql_types(data, result_types, force_cast_cols): if len(force_cast_cols) == 0: return data ret_data = [] for row in data: row = list(row) for idx in force_cast_cols: if row[idx] is not None and result_types[idx] != datetime.datetime: row[idx] = result_types[idx](row[idx]) ret_data.append(row) return ret_data class SFrame(object): """ A tabular, column-mutable dataframe object that can scale to big data. The data in SFrame is stored column-wise on the GraphLab Server side, and is stored on persistent storage (e.g. disk) to avoid being constrained by memory size. Each column in an SFrame is a size-immutable :class:`~graphlab.SArray`, but SFrames are mutable in that columns can be added and subtracted with ease. An SFrame essentially acts as an ordered dict of SArrays. Currently, we support constructing an SFrame from the following data formats: * csv file (comma separated value) * sframe directory archive (A directory where an sframe was saved previously) * general text file (with csv parsing options, See :py:meth:`read_csv()`) * a Python dictionary * pandas.DataFrame * JSON * Apache Avro * PySpark RDD and from the following sources: * your local file system * the GraphLab Server's file system * HDFS * Amazon S3 * HTTP(S). Only basic examples of construction are covered here. For more information and examples, please see the `User Guide <https://turi.com/learn/user guide/index.html#Working_with_data_Tabular_data>`_, `API Translator <https://turi.com/learn/translator>`_, `How-Tos <https://turi.com/learn/how-to>`_, and data science `Gallery <https://turi.com/learn/gallery>`_. Parameters ---------- data : array | pandas.DataFrame | string | dict, optional The actual interpretation of this field is dependent on the ``format`` parameter. If ``data`` is an array or Pandas DataFrame, the contents are stored in the SFrame. If ``data`` is a string, it is interpreted as a file. Files can be read from local file system or urls (local://, hdfs://, s3://, http://). format : string, optional Format of the data. The default, "auto" will automatically infer the input data format. The inference rules are simple: If the data is an array or a dataframe, it is associated with 'array' and 'dataframe' respectively. If the data is a string, it is interpreted as a file, and the file extension is used to infer the file format. The explicit options are: - "auto" - "array" - "dict" - "sarray" - "dataframe" - "csv" - "tsv" - "sframe". See Also -------- read_csv: Create a new SFrame from a csv file. Preferred for text and CSV formats, because it has a lot more options for controlling the parser. save : Save an SFrame for later use. Notes ----- - When reading from HDFS on Linux we must guess the location of your java installation. By default, we will use the location pointed to by the JAVA_HOME environment variable. If this is not set, we check many common installation paths. You may use two environment variables to override this behavior. GRAPHLAB_JAVA_HOME allows you to specify a specific java installation and overrides JAVA_HOME. GRAPHLAB_LIBJVM_DIRECTORY overrides all and expects the exact directory that your preferred libjvm.so file is located. Use this ONLY if you'd like to use a non-standard JVM. Examples -------- >>> import graphlab >>> from graphlab import SFrame **Construction** Construct an SFrame from a dataframe and transfers the dataframe object across the network. >>> df = pandas.DataFrame() >>> sf = SFrame(data=df) Construct an SFrame from a local csv file (only works for local server). >>> sf = SFrame(data='~/mydata/foo.csv') Construct an SFrame from a csv file on Amazon S3. This requires the environment variables: *AWS_ACCESS_KEY_ID* and *AWS_SECRET_ACCESS_KEY* to be set before the python session started. Alternatively, you can use :py:func:`graphlab.aws.set_credentials()` to set the credentials after python is started and :py:func:`graphlab.aws.get_credentials()` to verify these environment variables. >>> sf = SFrame(data='s3://mybucket/foo.csv') Read from HDFS using a specific java installation (environment variable only applies when using Linux) >>> import os >>> os.environ['GRAPHLAB_JAVA_HOME'] = '/my/path/to/java' >>> from graphlab import SFrame >>> sf = SFrame("hdfs://mycluster.example.com:8020/user/myname/coolfile.txt") An SFrame can be constructed from a dictionary of values or SArrays: >>> sf = gl.SFrame({'id':[1,2,3],'val':['A','B','C']}) >>> sf Columns: id int val str Rows: 3 Data: id val 0 1 A 1 2 B 2 3 C Or equivalently: >>> ids = SArray([1,2,3]) >>> vals = SArray(['A','B','C']) >>> sf = SFrame({'id':ids,'val':vals}) It can also be constructed from an array of SArrays in which case column names are automatically assigned. >>> ids = SArray([1,2,3]) >>> vals = SArray(['A','B','C']) >>> sf = SFrame([ids, vals]) >>> sf Columns: X1 int X2 str Rows: 3 Data: X1 X2 0 1 A 1 2 B 2 3 C If the SFrame is constructed from a list of values, an SFrame of a single column is constructed. >>> sf = SFrame([1,2,3]) >>> sf Columns: X1 int Rows: 3 Data: X1 0 1 1 2 2 3 **Parsing** The :py:func:`graphlab.SFrame.read_csv()` is quite powerful and, can be used to import a variety of row-based formats. First, some simple cases: >>> !cat ratings.csv user_id,movie_id,rating 10210,1,1 10213,2,5 10217,2,2 10102,1,3 10109,3,4 10117,5,2 10122,2,4 10114,1,5 10125,1,1 >>> gl.SFrame.read_csv('ratings.csv') Columns: user_id int movie_id int rating int Rows: 9 Data: +---------+----------+--------+ | user_id | movie_id | rating | +---------+----------+--------+ | 10210 | 1 | 1 | | 10213 | 2 | 5 | | 10217 | 2 | 2 | | 10102 | 1 | 3 | | 10109 | 3 | 4 | | 10117 | 5 | 2 | | 10122 | 2 | 4 | | 10114 | 1 | 5 | | 10125 | 1 | 1 | +---------+----------+--------+ [9 rows x 3 columns] Delimiters can be specified, if "," is not the delimiter, for instance space ' ' in this case. Only single character delimiters are supported. >>> !cat ratings.csv user_id movie_id rating 10210 1 1 10213 2 5 10217 2 2 10102 1 3 10109 3 4 10117 5 2 10122 2 4 10114 1 5 10125 1 1 >>> gl.SFrame.read_csv('ratings.csv', delimiter=' ') By default, "NA" or a missing element are interpreted as missing values. >>> !cat ratings2.csv user,movie,rating "tom",,1 harry,5, jack,2,2 bill,, >>> gl.SFrame.read_csv('ratings2.csv') Columns: user str movie int rating int Rows: 4 Data: +---------+-------+--------+ | user | movie | rating | +---------+-------+--------+ | tom | None | 1 | | harry | 5 | None | | jack | 2 | 2 | | missing | None | None | +---------+-------+--------+ [4 rows x 3 columns] Furthermore due to the dictionary types and list types, can handle parsing of JSON-like formats. >>> !cat ratings3.csv business, categories, ratings "Restaurant 1", [1 4 9 10], {"funny":5, "cool":2} "Restaurant 2", [], {"happy":2, "sad":2} "Restaurant 3", [2, 11, 12], {} >>> gl.SFrame.read_csv('ratings3.csv') Columns: business str categories array ratings dict Rows: 3 Data: +--------------+--------------------------------+-------------------------+ | business | categories | ratings | +--------------+--------------------------------+-------------------------+ | Restaurant 1 | array('d', [1.0, 4.0, 9.0, ... | {'funny': 5, 'cool': 2} | | Restaurant 2 | array('d') | {'sad': 2, 'happy': 2} | | Restaurant 3 | array('d', [2.0, 11.0, 12.0]) | {} | +--------------+--------------------------------+-------------------------+ [3 rows x 3 columns] The list and dictionary parsers are quite flexible and can absorb a variety of purely formatted inputs. Also, note that the list and dictionary types are recursive, allowing for arbitrary values to be contained. All these are valid lists: >>> !cat interesting_lists.csv list [] [1,2,3] [1;2,3] [1 2 3] [{a:b}] ["c",d, e] [[a]] >>> gl.SFrame.read_csv('interesting_lists.csv') Columns: list list Rows: 7 Data: +-----------------+ | list | +-----------------+ | [] | | [1, 2, 3] | | [1, 2, 3] | | [1, 2, 3] | | [{'a': 'b'}] | | ['c', 'd', 'e'] | | [['a']] | +-----------------+ [7 rows x 1 columns] All these are valid dicts: >>> !cat interesting_dicts.csv dict {"classic":1,"dict":1} {space:1 seperated:1} {emptyvalue:} {} {:} {recursive1:[{a:b}]} {:[{:[a]}]} >>> gl.SFrame.read_csv('interesting_dicts.csv') Columns: dict dict Rows: 7 Data: +------------------------------+ | dict | +------------------------------+ | {'dict': 1, 'classic': 1} | | {'seperated': 1, 'space': 1} | | {'emptyvalue': None} | | {} | | {None: None} | | {'recursive1': [{'a': 'b'}]} | | {None: [{None: array('d')}]} | +------------------------------+ [7 rows x 1 columns] **Saving** Save and load the sframe in native format. >>> sf.save('mysframedir') >>> sf2 = graphlab.load_sframe('mysframedir') **Column Manipulation** An SFrame is composed of a collection of columns of SArrays, and individual SArrays can be extracted easily. For instance given an SFrame: >>> sf = SFrame({'id':[1,2,3],'val':['A','B','C']}) >>> sf Columns: id int val str Rows: 3 Data: id val 0 1 A 1 2 B 2 3 C The "id" column can be extracted using: >>> sf["id"] dtype: int Rows: 3 [1, 2, 3] And can be deleted using: >>> del sf["id"] Multiple columns can be selected by passing a list of column names: >>> sf = SFrame({'id':[1,2,3],'val':['A','B','C'],'val2':[5,6,7]}) >>> sf Columns: id int val str val2 int Rows: 3 Data: id val val2 0 1 A 5 1 2 B 6 2 3 C 7 >>> sf2 = sf[['id','val']] >>> sf2 Columns: id int val str Rows: 3 Data: id val 0 1 A 1 2 B 2 3 C You can also select columns using types or a list of types: >>> sf2 = sf[int] >>> sf2 Columns: id int val2 int Rows: 3 Data: id val2 0 1 5 1 2 6 2 3 7 Or a mix of types and names: >>> sf2 = sf[['id', str]] >>> sf2 Columns: id int val str Rows: 3 Data: id val 0 1 A 1 2 B 2 3 C The same mechanism can be used to re-order columns: >>> sf = SFrame({'id':[1,2,3],'val':['A','B','C']}) >>> sf Columns: id int val str Rows: 3 Data: id val 0 1 A 1 2 B 2 3 C >>> sf[['val','id']] >>> sf Columns: val str id int Rows: 3 Data: val id 0 A 1 1 B 2 2 C 3 **Element Access and Slicing** SFrames can be accessed by integer keys just like a regular python list. Such operations may not be fast on large datasets so looping over an SFrame should be avoided. >>> sf = SFrame({'id':[1,2,3],'val':['A','B','C']}) >>> sf[0] {'id': 1, 'val': 'A'} >>> sf[2] {'id': 3, 'val': 'C'} >>> sf[5] IndexError: SFrame index out of range Negative indices can be used to access elements from the tail of the array >>> sf[-1] # returns the last element {'id': 3, 'val': 'C'} >>> sf[-2] # returns the second to last element {'id': 2, 'val': 'B'} The SFrame also supports the full range of python slicing operators: >>> sf[1000:] # Returns an SFrame containing rows 1000 to the end >>> sf[:1000] # Returns an SFrame containing rows 0 to row 999 inclusive >>> sf[0:1000:2] # Returns an SFrame containing rows 0 to row 1000 in steps of 2 >>> sf[-100:] # Returns an SFrame containing last 100 rows >>> sf[-100:len(sf):2] # Returns an SFrame containing last 100 rows in steps of 2 **Logical Filter** An SFrame can be filtered using >>> sframe[binary_filter] where sframe is an SFrame and binary_filter is an SArray of the same length. The result is a new SFrame which contains only rows of the SFrame where its matching row in the binary_filter is non zero. This permits the use of boolean operators that can be used to perform logical filtering operations. For instance, given an SFrame >>> sf Columns: id int val str Rows: 3 Data: id val 0 1 A 1 2 B 2 3 C >>> sf[(sf['id'] >= 1) & (sf['id'] <= 2)] Columns: id int val str Rows: 3 Data: id val 0 1 A 1 2 B See :class:`~graphlab.SArray` for more details on the use of the logical filter. This can also be used more generally to provide filtering capability which is otherwise not expressible with simple boolean functions. For instance: >>> sf[sf['id'].apply(lambda x: math.log(x) <= 1)] Columns: id int val str Rows: 3 Data: id val 0 1 A 1 2 B Or alternatively: >>> sf[sf.apply(lambda x: math.log(x['id']) <= 1)] Create an SFrame from a Python dictionary. >>> from graphlab import SFrame >>> sf = SFrame({'id':[1,2,3], 'val':['A','B','C']}) >>> sf Columns: id int val str Rows: 3 Data: id val 0 1 A 1 2 B 2 3 C """ __slots__ = ['_proxy', '_cache'] __construct_ctr = int(time.time()) % 1000 def __init__(self, data=None, format='auto', _proxy=None): """__init__(data=list(), format='auto') Construct a new SFrame from a url or a pandas.DataFrame. """ # emit metrics for num_rows, num_columns, and type (local://, s3, hdfs, http) SFrame.__construct_ctr += 1 if SFrame.__construct_ctr % 1000 == 0: _mt._get_metric_tracker().track('sframe.init1000') if (_proxy): self.__proxy__ = _proxy else: self.__proxy__ = UnitySFrameProxy(glconnect.get_client()) _format = None if (format == 'auto'): if (HAS_PANDAS and isinstance(data, pandas.DataFrame)): _format = 'dataframe' _mt._get_metric_tracker().track('sframe.location.memory', value=1) elif (isinstance(data, str) or (sys.version_info.major < 3 and isinstance(data, unicode))): if data.find('://') == -1: suffix = 'local' else: suffix = data.split('://')[0] if data.endswith(('.csv', '.csv.gz')): _format = 'csv' elif data.endswith(('.tsv', '.tsv.gz')): _format = 'tsv' elif data.endswith(('.txt', '.txt.gz')): print("Assuming file is csv. For other delimiters, " + \ "please use `SFrame.read_csv`.") _format = 'csv' else: _format = 'sframe' elif type(data) == SArray: _format = 'sarray' elif isinstance(data, SFrame): _format = 'sframe_obj' elif isinstance(data, dict): _format = 'dict' elif _is_non_string_iterable(data): _format = 'array' elif data is None: _format = 'empty' else: raise ValueError('Cannot infer input type for data ' + str(data)) else: _format = format with cython_context(): if (_format == 'dataframe'): for c in data.columns.values: self.add_column(SArray(data[c].values), str(c)) elif (_format == 'sframe_obj'): for col in data.column_names(): self.__proxy__.add_column(data[col].__proxy__, col) elif (_format == 'sarray'): self.__proxy__.add_column(data.__proxy__, '') elif (_format == 'array'): if len(data) > 0: unique_types = set([type(x) for x in data if x is not None]) if len(unique_types) == 1 and SArray in unique_types: for arr in data: self.add_column(arr) elif SArray in unique_types: raise ValueError("Cannot create SFrame from mix of regular values and SArrays") else: self.__proxy__.add_column(SArray(data).__proxy__, '') elif (_format == 'dict'): # Validate that every column is the same length. if len(set(len(value) for value in data.values())) > 1: # probably should be a value error. But we used to raise # runtime error here... raise RuntimeError("All column should be of the same length") # split into SArray values and other iterable values. # We convert the iterable values in bulk, and then add the sarray values as columns sarray_keys = sorted(key for key,value in six.iteritems(data) if isinstance(value, SArray)) self.__proxy__.load_from_dataframe({key:value for key,value in six.iteritems(data) if not isinstance(value, SArray)}) for key in sarray_keys: self.__proxy__.add_column(data[key].__proxy__, key) elif (_format == 'csv'): url = data tmpsf = SFrame.read_csv(url, delimiter=',', header=True) self.__proxy__ = tmpsf.__proxy__ elif (_format == 'tsv'): url = data tmpsf = SFrame.read_csv(url, delimiter='\t', header=True) self.__proxy__ = tmpsf.__proxy__ elif (_format == 'sframe'): url = _make_internal_url(data) self.__proxy__.load_from_sframe_index(url) elif (_format == 'empty'): pass else: raise ValueError('Unknown input type: ' + format) sframe_size = -1 if self.__has_size__(): sframe_size = self.num_rows() @staticmethod def _infer_column_types_from_lines(first_rows): if (len(first_rows.column_names()) < 1): print("Insufficient number of columns to perform type inference") raise RuntimeError("Insufficient columns ") if len(first_rows) < 1: print("Insufficient number of rows to perform type inference") raise RuntimeError("Insufficient rows") # gets all the values column-wise all_column_values_transposed = [list(first_rows[col]) for col in first_rows.column_names()] # transpose all_column_values = [list(x) for x in list(zip(*all_column_values_transposed))] all_column_type_hints = [[type(t) for t in vals] for vals in all_column_values] # collect the hints # if every line was inferred to have a different number of elements, die if len(set(len(x) for x in all_column_type_hints)) != 1: print("Unable to infer column types. Defaulting to str") return str import types column_type_hints = all_column_type_hints[0] # now perform type combining across rows for i in range(1, len(all_column_type_hints)): currow = all_column_type_hints[i] for j in range(len(column_type_hints)): # combine types d = set([currow[j], column_type_hints[j]]) if (len(d) == 1): # easy case. both agree on the type continue if (((long in d) or (int in d)) and (float in d)): # one is an int, one is a float. its a float column_type_hints[j] = float elif ((array.array in d) and (list in d)): # one is an array , one is a list. its a list column_type_hints[j] = list elif type(None) in d: # one is a NoneType. assign to other type if currow[j] != type(None): column_type_hints[j] = currow[j] else: column_type_hints[j] = str # final pass. everything whih is still NoneType is now a str for i in range(len(column_type_hints)): if column_type_hints[i] == type(None): column_type_hints[i] = str return column_type_hints @classmethod def _read_csv_impl(cls, url, delimiter=',', header=True, error_bad_lines=False, comment_char='', escape_char='\\', double_quote=True, quote_char='\"', skip_initial_space=True, column_type_hints=None, na_values=["NA"], line_terminator="\n", usecols=[], nrows=None, skiprows=0, verbose=True, store_errors=True, nrows_to_infer=100, **kwargs): """ Constructs an SFrame from a CSV file or a path to multiple CSVs, and returns a pair containing the SFrame and optionally (if store_errors=True) a dict of filenames to SArrays indicating for each file, what are the incorrectly parsed lines encountered. Parameters ---------- store_errors : bool If true, the output errors dict will be filled. See `read_csv` for the rest of the parameters. """ # Pandas argument compatibility if "sep" in kwargs: delimiter = kwargs['sep'] del kwargs['sep'] if "quotechar" in kwargs: quote_char = kwargs['quotechar'] del kwargs['quotechar'] if "doublequote" in kwargs: double_quote = kwargs['doublequote'] del kwargs['doublequote'] if "comment" in kwargs: comment_char = kwargs['comment'] del kwargs['comment'] if comment_char is None: comment_char = '' if "lineterminator" in kwargs: line_terminator = kwargs['lineterminator'] del kwargs['lineterminator'] if len(kwargs) > 0: raise TypeError("Unexpected keyword arguments " + str(kwargs.keys())) parsing_config = dict() parsing_config["delimiter"] = delimiter parsing_config["use_header"] = header parsing_config["continue_on_failure"] = not error_bad_lines parsing_config["comment_char"] = comment_char parsing_config["escape_char"] = escape_char parsing_config["double_quote"] = double_quote parsing_config["quote_char"] = quote_char parsing_config["skip_initial_space"] = skip_initial_space parsing_config["store_errors"] = store_errors parsing_config["line_terminator"] = line_terminator parsing_config["output_columns"] = usecols parsing_config["skip_rows"] =skiprows if type(na_values) is str: na_values = [na_values] if na_values is not None and len(na_values) > 0: parsing_config["na_values"] = na_values if nrows != None: parsing_config["row_limit"] = nrows proxy = UnitySFrameProxy(glconnect.get_client()) internal_url = _make_internal_url(url) # Attempt to automatically detect the column types. Either produce a # list of types; otherwise default to all str types. column_type_inference_was_used = False if column_type_hints is None: try: # Get the first nrows_to_infer rows (using all the desired arguments). first_rows = SFrame.read_csv(url, nrows=nrows_to_infer, column_type_hints=type(None), header=header, delimiter=delimiter, comment_char=comment_char, escape_char=escape_char, double_quote=double_quote, quote_char=quote_char, skip_initial_space=skip_initial_space, na_values=na_values, line_terminator=line_terminator, usecols=usecols, skiprows=skiprows, verbose=verbose) column_type_hints = SFrame._infer_column_types_from_lines(first_rows) typelist = '[' + ','.join(t.__name__ for t in column_type_hints) + ']' if verbose != False: print("------------------------------------------------------") print("Inferred types from first %d line(s) of file as " % nrows_to_infer) print("column_type_hints="+ typelist) print("If parsing fails due to incorrect types, you can correct") print("the inferred type list above and pass it to read_csv in") print( "the column_type_hints argument") print("------------------------------------------------------") column_type_inference_was_used = True except RuntimeError as e: if type(e) == RuntimeError and ("cancel" in str(e.args[0]) or "Cancel" in str(e.args[0])): raise e # If the above fails, default back to str for all columns. column_type_hints = str if verbose != False: print('Could not detect types. Using str for each column.') if type(column_type_hints) is type: type_hints = {'__all_columns__': column_type_hints} elif type(column_type_hints) is list: type_hints = dict(list(zip(['__X%d__' % i for i in range(len(column_type_hints))], column_type_hints))) elif type(column_type_hints) is dict: # we need to fill in a potentially incomplete dictionary try: # Get the first nrows_to_infer rows (using all the desired arguments). first_rows = SFrame.read_csv(url, nrows=nrows_to_infer, column_type_hints=type(None), header=header, delimiter=delimiter, comment_char=comment_char, escape_char=escape_char, double_quote=double_quote, quote_char=quote_char, skip_initial_space=skip_initial_space, na_values=na_values, line_terminator=line_terminator, usecols=usecols, skiprows=skiprows, verbose=verbose) inferred_types = SFrame._infer_column_types_from_lines(first_rows) # make a dict of column_name to type inferred_types = dict(list(zip(first_rows.column_names(), inferred_types))) # overwrite with the user's specified types for key in column_type_hints: inferred_types[key] = column_type_hints[key] column_type_hints = inferred_types except RuntimeError as e: if type(e) == RuntimeError and ("cancel" in e.message or "Cancel" in e.message): raise e # If the above fails, default back to str for unmatched columns if verbose != False: print('Could not detect types. Using str for all unspecified columns.') type_hints = column_type_hints else: raise TypeError("Invalid type for column_type_hints. Must be a dictionary, list or a single type.") suffix='' if url.find('://') == -1: suffix = 'local' else: suffix = url.split('://')[0] try: if (not verbose): glconnect.get_server().set_log_progress(False) with cython_context(): errors = proxy.load_from_csvs(internal_url, parsing_config, type_hints) except Exception as e: if type(e) == RuntimeError and "CSV parsing cancelled" in str(e.args[0]): raise e if column_type_inference_was_used: # try again if verbose != False: print("Unable to parse the file with automatic type inference.") print("Defaulting to column_type_hints=str") type_hints = {'__all_columns__': str} try: with cython_context(): errors = proxy.load_from_csvs(internal_url, parsing_config, type_hints) except: glconnect.get_server().set_log_progress(True) raise else: glconnect.get_server().set_log_progress(True) raise glconnect.get_server().set_log_progress(True) return (cls(_proxy=proxy), { f: SArray(_proxy = es) for (f, es) in errors.items() }) @classmethod def read_csv_with_errors(cls, url, delimiter=',', header=True, comment_char='', escape_char='\\', double_quote=True, quote_char='\"', skip_initial_space=True, column_type_hints=None, na_values=["NA"], line_terminator='\n', usecols = [], nrows=None, skiprows=0, verbose=True, nrows_to_infer=100, **kwargs): """ Constructs an SFrame from a CSV file or a path to multiple CSVs, and returns a pair containing the SFrame and a dict of filenames to SArrays indicating for each file, what are the incorrectly parsed lines encountered. Parameters ---------- url : string Location of the CSV file or directory to load. If URL is a directory or a "glob" pattern, all matching files will be loaded. delimiter : string, optional This describes the delimiter used for parsing csv files. header : bool, optional If true, uses the first row as the column names. Otherwise use the default column names: 'X1, X2, ...'. comment_char : string, optional The character which denotes that the remainder of the line is a comment. escape_char : string, optional Character which begins a C escape sequence double_quote : bool, optional If True, two consecutive quotes in a string are parsed to a single quote. quote_char : string, optional Character sequence that indicates a quote. skip_initial_space : bool, optional Ignore extra spaces at the start of a field column_type_hints : None, type, list[type], dict[string, type], optional This provides type hints for each column. By default, this method attempts to detect the type of each column automatically. Supported types are int, float, str, list, dict, and array.array. * If a single type is provided, the type will be applied to all columns. For instance, column_type_hints=float will force all columns to be parsed as float. * If a list of types is provided, the types applies to each column in order, e.g.[int, float, str] will parse the first column as int, second as float and third as string. * If a dictionary of column name to type is provided, each type value in the dictionary is applied to the key it belongs to. For instance {'user':int} will hint that the column called "user" should be parsed as an integer, and the rest will be type inferred. na_values : str | list of str, optional A string or list of strings to be interpreted as missing values. line_terminator : str, optional A string to be interpreted as the line terminator. Defaults to "\\n" which will also correctly match Mac, Linux and Windows line endings ("\\r", "\\n" and "\\r\\n" respectively) usecols : list of str, optional A subset of column names to output. If unspecified (default), all columns will be read. This can provide performance gains if the number of columns are large. If the input file has no headers, usecols=['X1','X3'] will read columns 1 and 3. nrows : int, optional If set, only this many rows will be read from the file. skiprows : int, optional If set, this number of rows at the start of the file are skipped. verbose : bool, optional If True, print the progress. Returns ------- out : tuple The first element is the SFrame with good data. The second element is a dictionary of filenames to SArrays indicating for each file, what are the incorrectly parsed lines encountered. See Also -------- read_csv, SFrame Examples -------- >>> bad_url = 'https://static.turi.com/datasets/bad_csv_example.csv' >>> (sf, bad_lines) = graphlab.SFrame.read_csv_with_errors(bad_url) >>> sf +---------+----------+--------+ | user_id | movie_id | rating | +---------+----------+--------+ | 25904 | 1663 | 3 | | 25907 | 1663 | 3 | | 25923 | 1663 | 3 | | 25924 | 1663 | 3 | | 25928 | 1663 | 2 | | ... | ... | ... | +---------+----------+--------+ [98 rows x 3 columns] >>> bad_lines {'https://static.turi.com/datasets/bad_csv_example.csv': dtype: str Rows: 1 ['x,y,z,a,b,c']} """ return cls._read_csv_impl(url, delimiter=delimiter, header=header, error_bad_lines=False, # we are storing errors, # thus we must not fail # on bad lines comment_char=comment_char, escape_char=escape_char, double_quote=double_quote, quote_char=quote_char, skip_initial_space=skip_initial_space, column_type_hints=column_type_hints, na_values=na_values, line_terminator=line_terminator, usecols=usecols, nrows=nrows, verbose=verbose, skiprows=skiprows, store_errors=True, nrows_to_infer=nrows_to_infer, **kwargs) @classmethod def read_csv(cls, url, delimiter=',', header=True, error_bad_lines=False, comment_char='', escape_char='\\', double_quote=True, quote_char='\"', skip_initial_space=True, column_type_hints=None, na_values=["NA"], line_terminator='\n', usecols=[], nrows=None, skiprows=0, verbose=True, nrows_to_infer=100, **kwargs): """ Constructs an SFrame from a CSV file or a path to multiple CSVs. Parameters ---------- url : string Location of the CSV file or directory to load. If URL is a directory or a "glob" pattern, all matching files will be loaded. delimiter : string, optional This describes the delimiter used for parsing csv files. header : bool, optional If true, uses the first row as the column names. Otherwise use the default column names : 'X1, X2, ...'. error_bad_lines : bool If true, will fail upon encountering a bad line. If false, will continue parsing skipping lines which fail to parse correctly. A sample of the first 10 encountered bad lines will be printed. comment_char : string, optional The character which denotes that the remainder of the line is a comment. escape_char : string, optional Character which begins a C escape sequence double_quote : bool, optional If True, two consecutive quotes in a string are parsed to a single quote. quote_char : string, optional Character sequence that indicates a quote. skip_initial_space : bool, optional Ignore extra spaces at the start of a field column_type_hints : None, type, list[type], dict[string, type], optional This provides type hints for each column. By default, this method attempts to detect the type of each column automatically. Supported types are int, float, str, list, dict, and array.array. * If a single type is provided, the type will be applied to all columns. For instance, column_type_hints=float will force all columns to be parsed as float. * If a list of types is provided, the types applies to each column in order, e.g.[int, float, str] will parse the first column as int, second as float and third as string. * If a dictionary of column name to type is provided, each type value in the dictionary is applied to the key it belongs to. For instance {'user':int} will hint that the column called "user" should be parsed as an integer, and the rest will be type inferred. na_values : str | list of str, optional A string or list of strings to be interpreted as missing values. line_terminator : str, optional A string to be interpreted as the line terminator. Defaults to "\n" which will also correctly match Mac, Linux and Windows line endings ("\\r", "\\n" and "\\r\\n" respectively) usecols : list of str, optional A subset of column names to output. If unspecified (default), all columns will be read. This can provide performance gains if the number of columns are large. If the input file has no headers, usecols=['X1','X3'] will read columns 1 and 3. nrows : int, optional If set, only this many rows will be read from the file. skiprows : int, optional If set, this number of rows at the start of the file are skipped. verbose : bool, optional If True, print the progress. Returns ------- out : SFrame See Also -------- read_csv_with_errors, SFrame Examples -------- Read a regular csv file, with all default options, automatically determine types: >>> url = 'https://static.turi.com/datasets/rating_data_example.csv' >>> sf = graphlab.SFrame.read_csv(url) >>> sf Columns: user_id int movie_id int rating int Rows: 10000 +---------+----------+--------+ | user_id | movie_id | rating | +---------+----------+--------+ | 25904 | 1663 | 3 | | 25907 | 1663 | 3 | | 25923 | 1663 | 3 | | 25924 | 1663 | 3 | | 25928 | 1663 | 2 | | ... | ... | ... | +---------+----------+--------+ [10000 rows x 3 columns] Read only the first 100 lines of the csv file: >>> sf = graphlab.SFrame.read_csv(url, nrows=100) >>> sf Columns: user_id int movie_id int rating int Rows: 100 +---------+----------+--------+ | user_id | movie_id | rating | +---------+----------+--------+ | 25904 | 1663 | 3 | | 25907 | 1663 | 3 | | 25923 | 1663 | 3 | | 25924 | 1663 | 3 | | 25928 | 1663 | 2 | | ... | ... | ... | +---------+----------+--------+ [100 rows x 3 columns] Read all columns as str type >>> sf = graphlab.SFrame.read_csv(url, column_type_hints=str) >>> sf Columns: user_id str movie_id str rating str Rows: 10000 +---------+----------+--------+ | user_id | movie_id | rating | +---------+----------+--------+ | 25904 | 1663 | 3 | | 25907 | 1663 | 3 | | 25923 | 1663 | 3 | | 25924 | 1663 | 3 | | 25928 | 1663 | 2 | | ... | ... | ... | +---------+----------+--------+ [10000 rows x 3 columns] Specify types for a subset of columns and leave the rest to be str. >>> sf = graphlab.SFrame.read_csv(url, ... column_type_hints={ ... 'user_id':int, 'rating':float ... }) >>> sf Columns: user_id str movie_id str rating float Rows: 10000 +---------+----------+--------+ | user_id | movie_id | rating | +---------+----------+--------+ | 25904 | 1663 | 3.0 | | 25907 | 1663 | 3.0 | | 25923 | 1663 | 3.0 | | 25924 | 1663 | 3.0 | | 25928 | 1663 | 2.0 | | ... | ... | ... | +---------+----------+--------+ [10000 rows x 3 columns] Not treat first line as header: >>> sf = graphlab.SFrame.read_csv(url, header=False) >>> sf Columns: X1 str X2 str X3 str Rows: 10001 +---------+----------+--------+ | X1 | X2 | X3 | +---------+----------+--------+ | user_id | movie_id | rating | | 25904 | 1663 | 3 | | 25907 | 1663 | 3 | | 25923 | 1663 | 3 | | 25924 | 1663 | 3 | | 25928 | 1663 | 2 | | ... | ... | ... | +---------+----------+--------+ [10001 rows x 3 columns] Treat '3' as missing value: >>> sf = graphlab.SFrame.read_csv(url, na_values=['3'], column_type_hints=str) >>> sf Columns: user_id str movie_id str rating str Rows: 10000 +---------+----------+--------+ | user_id | movie_id | rating | +---------+----------+--------+ | 25904 | 1663 | None | | 25907 | 1663 | None | | 25923 | 1663 | None | | 25924 | 1663 | None | | 25928 | 1663 | 2 | | ... | ... | ... | +---------+----------+--------+ [10000 rows x 3 columns] Throw error on parse failure: >>> bad_url = 'https://static.turi.com/datasets/bad_csv_example.csv' >>> sf = graphlab.SFrame.read_csv(bad_url, error_bad_lines=True) RuntimeError: Runtime Exception. Unable to parse line "x,y,z,a,b,c" Set error_bad_lines=False to skip bad lines """ return cls._read_csv_impl(url, delimiter=delimiter, header=header, error_bad_lines=error_bad_lines, comment_char=comment_char, escape_char=escape_char, double_quote=double_quote, quote_char=quote_char, skip_initial_space=skip_initial_space, column_type_hints=column_type_hints, na_values=na_values, line_terminator=line_terminator, usecols=usecols, nrows=nrows, skiprows=skiprows, verbose=verbose, store_errors=False, nrows_to_infer=nrows_to_infer, **kwargs)[0] @classmethod def read_json(cls, url, orient='records'): """ Reads a JSON file representing a table into an SFrame. Parameters ---------- url : string Location of the CSV file or directory to load. If URL is a directory or a "glob" pattern, all matching files will be loaded. orient : string, optional. Either "records" or "lines" If orient="records" the file is expected to contain a single JSON array, where each array element is a dictionary. If orient="lines", the file is expected to contain a JSON element per line. Examples -------- The orient parameter describes the expected input format of the JSON file. If orient="records", the JSON file is expected to contain a single JSON Array where each array element is a dictionary describing the row. For instance: >>> !cat input.json [{'a':1,'b':1}, {'a':2,'b':2}, {'a':3,'b':3}] >>> SFrame.read_json('input.json', orient='records') Columns: a int b int Rows: 3 Data: +---+---+ | a | b | +---+---+ | 1 | 1 | | 2 | 2 | | 3 | 3 | +---+---+ If orient="lines", the JSON file is expected to contain a JSON element per line. If each line contains a dictionary, it is automatically unpacked. >>> !cat input.json {'a':1,'b':1} {'a':2,'b':2} {'a':3,'b':3} >>> g = SFrame.read_json('input.json', orient='lines') Columns: a int b int Rows: 3 Data: +---+---+ | a | b | +---+---+ | 1 | 1 | | 2 | 2 | | 3 | 3 | +---+---+ If the lines are not dictionaries, the original format is maintained. >>> !cat input.json ['a','b','c'] ['d','e','f'] ['g','h','i'] [1,2,3] >>> g = SFrame.read_json('input.json', orient='lines') Columns: X1 list Rows: 3 Data: +-----------+ | X1 | +-----------+ | [a, b, c] | | [d, e, f] | | [g, h, i] | +-----------+ [3 rows x 1 columns] """ if orient == "records": g = cls.read_csv(url, line_terminator='', header=False, column_type_hints=list) if g.num_cols() != 1: raise RuntimeError("Input JSON not of expected format") return g.stack('X1').unpack('X1','') elif orient == "lines": g = cls.read_csv(url, header=False) if g.num_cols() != 1: raise RuntimeError("Input JSON not of expected format") if g['X1'].dtype() == dict: return g.unpack('X1','') else: return g else: raise ValueError("Invalid value for orient parameter (" + str(orient) + ")") @classmethod def __get_graphlabutil_reference_on_spark_unity_jar(cls,sc): ''' A utility function to get a handle to GraphLabUtil object in jar file. This utility function dynamically loads the GraphLabUtil class and call factory method ``getUtil()`` that returns a GraphLabUtil object. Parameters ---------- sc : SparkContext Current SparkContext. ''' global SFRAME_GRAPHLABUTIL_REF if SFRAME_GRAPHLABUTIL_REF is None: jar_path = get_spark_integration_jar_path() jar_file = sc._jvm.java.io.File(jar_path) jar_url = jar_file.toURL() url_array = sc._gateway.new_array(sc._jvm.java.net.URL,1) url_array[0] = jar_url child = sc._jvm.java.net.URLClassLoader(url_array) load_class = child.loadClass("org.graphlab.create.GraphLabUtil") method = load_class.getDeclaredMethod("getUtil",None) SFRAME_GRAPHLABUTIL_REF = method.invoke(load_class,None) return SFRAME_GRAPHLABUTIL_REF def to_spark_dataframe(self,sc,sql,number_of_partitions=4): """ Convert the current SFrame to the Spark DataFrame. Parameters ---------- sc : SparkContext sc is an existing SparkContext. sql : SQLContext sql is an existing SQLContext. number_of_partitions : int number of partitions for the output rdd Returns ---------- out: pyspark.sql.DataFrame Notes ----- - Look at to_rdd() - Look at from_rdd() Examples -------- >>> from pyspark import SparkContext, SQLContext >>> from graphlab import SFrame >>> from pyspark.sql import SQLContext >>> sc = SparkContext('local') >>> sql = SQLContext(sc) >>> sf = SFrame({'x': [1,2,3], 'y': ['fish', 'chips', 'salad']}) >>> df = sf.to_spark_dataframe(sc, sql) >>> df.show() x y 1 fish 2 chips 3 salad """ def homogeneous_type(seq): if seq is None or len(seq) == 0: return True iseq = iter(seq) first_type = type(next(iseq)) return True if all( (type(x) is first_type) for x in iseq ) else False if len(self) == 0: raise ValueError("SFrame is empty") column_names = self.column_names() first_row = self.head(1)[0] for name in column_names: if _is_non_string_iterable(first_row[name]) and not homogeneous_type(first_row[name]): raise TypeError("Support for translation to Spark DataFrame not enabled for heterogeneous iterable type (column: %s). Use SFrame.to_rdd()." % name) rdd = self.to_rdd(sc,number_of_partitions); from pyspark.sql import Row rowRdd = rdd.map(lambda x: Row(**x)) if(hasattr(sql,'createDataFrame')): return sql.createDataFrame(rowRdd) else: return sql.inferSchema(rowRdd) def to_rdd(self, sc, number_of_partitions=4): """ Convert the current SFrame to the Spark RDD. Parameters ---------- sc : SparkContext sc is an existing SparkContext. number_of_partitions: int number of partitions for the output rdd Returns ---------- out: pyspark.rdd.RDD Notes ---------- - Look at from_rdd(). - Look at to_spark_dataframe(). Examples -------- >>> from pyspark import SparkContext >>> from graphlab import SFrame >>> sc = SparkContext('local') >>> sf = SFrame({'x': [1,2,3], 'y': ['fish', 'chips', 'salad']}) >>> rdd = sf.to_rdd(sc) >>> rdd.collect() [{'x': 1L, 'y': 'fish'}, {'x': 2L, 'y': 'chips'}, {'x': 3L, 'y': 'salad'}] """ _mt._get_metric_tracker().track('sframe.to_rdd') if not RDD_SUPPORT: raise Exception("Support for translation to Spark RDDs not enabled.") for _type in self.column_types(): if(_type.__name__ == 'Image'): raise TypeError("Support for translation to Spark RDDs not enabled for Image type.") if number_of_partitions is None: number_of_partitions = sc.defaultParallelism if type(number_of_partitions) is not int: raise ValueError("number_of_partitions parameter expects an integer type") if number_of_partitions == 0: raise ValueError("number_of_partitions can not be initialized to zero") # get a handle to GraphLabUtil java object graphlab_util_ref = self.__get_graphlabutil_reference_on_spark_unity_jar(sc) # Save SFrame in a temporary place tmp_loc = self.__get_staging_dir__(sc,graphlab_util_ref) sf_loc = os.path.join(tmp_loc, str(uuid.uuid4())) # Following substring replace is required to make # to_rdd() works on Azure blob storage accounts. if sf_loc.startswith("wasb://"): sf_loc = sf_loc.replace(graphlab_util_ref.getHadoopNameNode(),"hdfs://") self.save(sf_loc) print(sf_loc) # Keep track of the temporary sframe that is saved(). We need to delete it eventually. dummysf = load_sframe(sf_loc) dummysf.__proxy__.delete_on_close() SFRAME_GARBAGE_COLLECTOR.append(dummysf) # Run the spark job javaRDD = graphlab_util_ref.pySparkToRDD( sc._jsc.sc(),sf_loc,number_of_partitions,"") from pyspark import RDD import pyspark output_rdd = RDD(javaRDD,sc,pyspark.serializers.PickleSerializer()) return output_rdd @classmethod def __get_staging_dir__(cls,cur_sc,graphlab_util_ref): if not RDD_SUPPORT_INITED: __rdd_support_init__(cur_sc,graphlab_util_ref) return STAGING_DIR @classmethod def from_rdd(cls, rdd, cur_sc): """ Convert a Spark RDD into an SFrame. Parameters ---------- rdd : pyspark.rdd.RDD or pyspark.sql.DataFrame The input Spark RDD that is going to be converted to an SFrame. cur_sc : SparkContext An instance object of an SparkContext. Returns ------- out : SFrame Notes ---------- - look at to_rdd(). - look at to_spark_dataframe(). Examples -------- >>> from pyspark import SparkContext >>> from graphlab import SFrame >>> sc = SparkContext('local') >>> rdd = sc.parallelize([1,2,3]) >>> sf = SFrame.from_rdd(rdd, sc) >>> sf Data: +-----+ | X1 | +-----+ | 1.0 | | 2.0 | | 3.0 | +-----+ [3 rows x 1 columns] """ _mt._get_metric_tracker().track('sframe.from_rdd') if not RDD_SUPPORT: raise Exception("Support for translation to Spark RDDs not enabled.") jrdd_deserializer = None from pyspark import RDD from pyspark.sql import DataFrame if isinstance(rdd,DataFrame): jrdd_deserializer = rdd.rdd._jrdd_deserializer elif isinstance(rdd,RDD): jrdd_deserializer = rdd._jrdd_deserializer else: raise RuntimeError("RDD type " + rdd.__class__.__name__ + " is currently unsupported.") # Determine the encoding of the RDD encoding = "batch" # default encoding in spark is batch if(jrdd_deserializer.__class__.__name__ == 'PickleSerializer'): encoding = "pickle" elif(jrdd_deserializer.__class__.__name__ == 'UTF8Deserializer'): encoding = "utf8" # get a handle to GraphLabUtil java object graphlab_util_ref = SFrame.__get_graphlabutil_reference_on_spark_unity_jar(cur_sc) # Prep the sframe environment tmp_loc = SFrame.__get_staging_dir__(cur_sc,graphlab_util_ref) if tmp_loc is None: raise RuntimeError("Could not determine staging directory for SFrame files.") # directory to stage the SFrame outputDir = tmp_loc # prefix for the final SFrame name. This would normally be a meaningful name # however since this sframe will immediately be opened we use a random name finalSFramePrefix = str(uuid.uuid4()) # run the spark job which returns the filename of the final sframe index if isinstance(rdd,DataFrame): # if its a dataframe use the special java code path. df = rdd._jdf finalSFrameFilename = graphlab_util_ref.toSFrame( df, tmp_loc, finalSFramePrefix) else: if encoding == 'utf8': ## TODO: This is a temporary solution. Here we are completely bypassing ## toSFrame() codepath when encoding is 'utf8'. This is because of Spark1.5 error ## for closure cleaning issue on deep nested functions. def f(iterator): for obj in iterator: yield obj.encode("utf-8") rdd = rdd.mapPartitions(f) encoding = "batch" if(rdd._jrdd_deserializer.__class__.__name__ == 'PickleSerializer'): encoding = "pickle" #finalSFrameFilename = graphlab_util_ref.toSFrame( # rdd._jrdd.rdd(),tmp_loc, finalSFramePrefix) #else: # Prep the additional arguments to feed into the pySparkToSFrame function in Java # that will call the spark_unity binary which does the actual encoding additiona_args = os.path.join(" --encoding=%s " % encoding +\ " --type=rdd ") finalSFrameFilename = graphlab_util_ref.pySparkToSFrame( rdd._jrdd, tmp_loc, finalSFramePrefix, additiona_args) # Load and return the sframe sf = SFrame() sf.__proxy__.load_from_sframe_index(_make_internal_url(finalSFrameFilename)) return sf @classmethod def from_odbc(cls, db, sql, verbose=False): """ Convert a table or query from a database to an SFrame. This function does not do any checking on the given SQL query, and cannot know what effect it will have on the database. Any side effects from the query will be reflected on the database. If no result rows are returned, an empty SFrame is created. Keep in mind the default case your database stores table names in. In some cases, you may need to add quotation marks (or whatever character your database uses to quote identifiers), especially if you created the table using `to_odbc`. Parameters ---------- db : `graphlab.extensions._odbc_connection.unity_odbc_connection` An ODBC connection object. This can only be obtained by calling `graphlab.connect_odbc`. Check that documentation for how to create this object. sql : str A SQL query. The query must be acceptable by the ODBC driver used by `graphlab.extensions._odbc_connection.unity_odbc_connection`. Returns ------- out : SFrame Notes ----- This functionality is only supported when using GraphLab Create entirely on your local machine. Therefore, GraphLab Create's EC2 and Hadoop execution modes will not be able to use ODBC. Note that this does not apply to the machine your database is running, which can (and often will) be running on a separate machine. Examples -------- >>> db = graphlab.connect_odbc("DSN=my_awesome_dsn;UID=user;PWD=mypassword") >>> a_table = graphlab.SFrame.from_odbc(db, "SELECT * FROM a_table") >>> join_result = graphlab.SFrame.from_odbc(db, 'SELECT * FROM "MyTable" a, "AnotherTable" b WHERE a.id=b.id') """ _mt._get_metric_tracker().track('sframe.from_odbc') result = db.execute_query(sql) if not isinstance(result, SFrame): raise RuntimeError("Cannot create an SFrame for query. No result set.") cls = result return cls def to_odbc(self, db, table_name, append_if_exists=False, verbose=True): """ Convert an SFrame to a table in a database. By default, searches for a table in the database with the given name. If found, this will attempt to append all the rows of the SFrame to the end of the table. If not, this will create a new table with the given name. This behavior is toggled with the `append_if_exists` flag. When creating a new table, GraphLab Create uses a heuristic approach to pick a corresponding type for each column in the SFrame using the type information supplied by the database's ODBC driver. Your driver must support giving this type information for GraphLab Create to support writing to the database. To allow more expressive and accurate naming, `to_odbc` puts quotes around each identifier (table names and column names). Depending on your database, you may need to refer to the created table with quote characters around the name. This character is not the same for all databases, but '"' is the most common. Parameters ---------- db : `graphlab.extensions._odbc_connection.unity_odbc_connection` An ODBC connection object. This can only be obtained by calling `graphlab.connect_odbc`. Check that documentation for how to create this object. table_name : str The name of the table you would like to create/append to. append_if_exists : bool If True, this will attempt to append to the table named `table_name` if it is found to exist in the database. verbose : bool Print progress updates on the insertion process. Notes ----- This functionality is only supported when using GraphLab Create entirely on your local machine. Therefore, GraphLab Create's EC2 and Hadoop execution modes will not be able to use ODBC. Note that this "local machine" rule does not apply to the machine your database is running on, which can (and often will) be running on a separate machine. Examples -------- >>> db = graphlab.connect_odbc("DSN=my_awesome_dsn;UID=user;PWD=mypassword") >>> sf = graphlab.SFrame({'a':[1,2,3],'b':['hi','pika','bye']}) >>> sf.to_odbc(db, 'a_cool_table') """ _mt._get_metric_tracker().track('sframe.to_odbc') if (not verbose): glconnect.get_server().set_log_progress(False) db._insert_sframe(self, table_name, append_if_exists) if (not verbose): glconnect.get_server().set_log_progress(True) @classmethod def from_sql(cls, conn, sql_statement, params=None, type_inference_rows=100, dbapi_module=None, column_type_hints=None, cursor_arraysize=128): """ Convert the result of a SQL database query to an SFrame. Parameters ---------- conn : dbapi2.Connection A DBAPI2 connection object. Any connection object originating from the 'connect' method of a DBAPI2-compliant package can be used. sql_statement : str The query to be sent to the database through the given connection. No checks are performed on the `sql_statement`. Any side effects from the query will be reflected on the database. If no result rows are returned, an empty SFrame is created. params : iterable | dict, optional Parameters to substitute for any parameter markers in the `sql_statement`. Be aware that the style of parameters may vary between different DBAPI2 packages. type_inference_rows : int, optional The maximum number of rows to use for determining the column types of the SFrame. These rows are held in Python until all column types are determined or the maximum is reached. dbapi_module : module | package, optional The top-level DBAPI2 module/package that constructed the given connection object. By default, a best guess of which module the connection came from is made. In the event that this guess is wrong, this will need to be specified. column_type_hints : dict | list | type, optional Specifies the types of the output SFrame. If a dict is given, it must have result column names as keys, but need not have all of the result column names. If a list is given, the length of the list must match the number of result columns. If a single type is given, all columns in the output SFrame will be this type. If the result type is incompatible with the types given in this argument, a casting error will occur. cursor_arraysize : int, optional The number of rows to fetch from the database at one time. Returns ------- out : SFrame Examples -------- >>> import sqlite3 >>> conn = sqlite3.connect('example.db') >>> graphlab.SFrame.from_sql(conn, "SELECT * FROM foo") Columns: a int b int Rows: 1 Data: +---+---+ | a | b | +---+---+ | 1 | 2 | +---+---+ [1 rows x 2 columns] """ # Mapping types is always the trickiest part about reading from a # database, so the main complexity of this function concerns types. # Much of the heavy-lifting of this is done by the DBAPI2 module, which # holds the burden of the actual mapping from the database-specific # type to a suitable Python type. The problem is that the type that the # module chooses may not be supported by SFrame, and SFrame needs a # list of types to be created, so we must resort to guessing the type # of a column if the query result returns lots of NULL values. The goal # of these steps is to fail as little as possible first, and then # preserve data as much as we can. # # Here is how the type for an SFrame column is chosen: # # 1. The column_type_hints parameter is checked. # # Each column specified in the parameter will be forced to the # hinted type via a Python-side cast before it is given to the # SFrame. Only int, float, and str are allowed to be hints. # # 2. The types returned from the cursor are checked. # # The first non-None result for each column is taken to be the type # of that column. The type is checked for whether SFrame supports # it, or whether it can convert to a supported type. If the type is # supported, no Python-side cast takes place. If unsupported, the # SFrame column is set to str and the values are casted in Python to # str before being added to the SFrame. # # 3. DB type codes provided by module are checked # # This case happens for any column that only had None values in the # first `type_inference_rows` rows. In this case we check the # type_code in the cursor description for the columns missing types. # These types often do not match up with an SFrame-supported Python # type, so the utility of this step is limited. It can only result # in labeling datetime.datetime, float, or str. If a suitable # mapping isn't found, we fall back to str. mod_info = _get_global_dbapi_info(dbapi_module, conn) _mt._get_metric_tracker().track('sframe.from_sql', properties={'module_name':mod_info['module_name']}) from .sframe_builder import SFrameBuilder c = conn.cursor() try: if params is None: c.execute(sql_statement) else: c.execute(sql_statement, params) except mod_info['Error'] as e: # The rollback method is considered optional by DBAPI2, but some # modules that do implement it won't work again unless it is called # if an error happens on a cursor. if hasattr(conn, 'rollback'): conn.rollback() raise e c.arraysize = cursor_arraysize result_desc = c.description result_names = [i[0] for i in result_desc] result_types = [None for i in result_desc] cols_to_force_cast = set() temp_vals = [] # Set any types that are given to us col_name_to_num = {result_names[i]:i for i in range(len(result_names))} if column_type_hints is not None: if type(column_type_hints) is dict: for k,v in column_type_hints.items(): col_num = col_name_to_num[k] cols_to_force_cast.add(col_num) result_types[col_num] = v elif type(column_type_hints) is list: if len(column_type_hints) != len(result_names): __LOGGER__.warn("If column_type_hints is specified as a "+\ "list, it must be of the same size as the result "+\ "set's number of columns. Ignoring (use dict instead).") else: result_types = column_type_hints cols_to_force_cast.update(range(len(result_desc))) elif type(column_type_hints) is type: result_types = [column_type_hints for i in result_desc] cols_to_force_cast.update(range(len(result_desc))) # Since we will be casting whatever we receive to the types given # before submitting the values to the SFrame, we need to make sure that # these are types that a "cast" makes sense, and we're not calling a # constructor that expects certain input (e.g. datetime.datetime), # since we could get lots of different input hintable_types = [int,float,str] if not all([i in hintable_types or i is None for i in result_types]): raise TypeError("Only " + str(hintable_types) + " can be provided as type hints!") # Perform type inference by checking to see what python types are # returned from the cursor if not all(result_types): # Only test the first fetch{one,many} command since the only way it # will raise an exception is if execute didn't produce a result set try: row = c.fetchone() except mod_info['Error'] as e: if hasattr(conn, 'rollback'): conn.rollback() raise e while row is not None: # Assumes that things like dicts are not a "single sequence" temp_vals.append(row) val_count = 0 for val in row: if result_types[val_count] is None and val is not None: result_types[val_count] = type(val) val_count += 1 if all(result_types) or len(temp_vals) >= type_inference_rows: break row = c.fetchone() # This will be true if some columns have all missing values up to this # point. Try using DBAPI2 type_codes to pick a suitable type. If this # doesn't work, fall back to string. if not all(result_types): missing_val_cols = [i for i,v in enumerate(result_types) if v is None] cols_to_force_cast.update(missing_val_cols) inferred_types = infer_dbapi2_types(c, mod_info) cnt = 0 for i in result_types: if i is None: result_types[cnt] = inferred_types[cnt] cnt += 1 sb = SFrameBuilder(result_types, column_names=result_names) unsupported_cols = [i for i,v in enumerate(sb.column_types()) if v is type(None)] if len(unsupported_cols) > 0: cols_to_force_cast.update(unsupported_cols) for i in unsupported_cols: result_types[i] = str sb = SFrameBuilder(result_types, column_names=result_names) sb.append_multiple(_force_cast_sql_types(temp_vals, result_types, cols_to_force_cast)) rows = c.fetchmany() while len(rows) > 0: sb.append_multiple(_force_cast_sql_types(rows, result_types, cols_to_force_cast)) rows = c.fetchmany() cls = sb.close() try: c.close() except mod_info['Error'] as e: if hasattr(conn, 'rollback'): conn.rollback() raise e return cls def to_sql(self, conn, table_name, dbapi_module=None, use_python_type_specifiers=False, use_exact_column_names=True): """ Convert an SFrame to a single table in a SQL database. This function does not attempt to create the table or check if a table named `table_name` exists in the database. It simply assumes that `table_name` exists in the database and appends to it. `to_sql` can be thought of as a convenience wrapper around parameterized SQL insert statements. Parameters ---------- conn : dbapi2.Connection A DBAPI2 connection object. Any connection object originating from the 'connect' method of a DBAPI2-compliant package can be used. table_name : str The name of the table to append the data in this SFrame. dbapi_module : module | package, optional The top-level DBAPI2 module/package that constructed the given connection object. By default, a best guess of which module the connection came from is made. In the event that this guess is wrong, this will need to be specified. use_python_type_specifiers : bool, optional If the DBAPI2 module's parameter marker style is 'format' or 'pyformat', attempt to use accurate type specifiers for each value ('s' for string, 'd' for integer, etc.). Many DBAPI2 modules simply use 's' for all types if they use these parameter markers, so this is False by default. use_exact_column_names : bool, optional Specify the column names of the SFrame when inserting its contents into the DB. If the specified table does not have the exact same column names as the SFrame, inserting the data will fail. If False, the columns in the SFrame are inserted in order without care of the schema of the DB table. True by default. """ mod_info = _get_global_dbapi_info(dbapi_module, conn) _mt._get_metric_tracker().track('sframe.to_sql', properties={'module_name':mod_info['module_name']}) c = conn.cursor() col_info = list(zip(self.column_names(), self.column_types())) if not use_python_type_specifiers: pytype_to_printf = lambda x: 's' # DBAPI2 standard allows for five different ways to specify parameters sql_param = { 'qmark' : lambda name,col_num,col_type: '?', 'numeric' : lambda name,col_num,col_type:':'+str(col_num+1), 'named' : lambda name,col_num,col_type:':'+str(name), 'format' : lambda name,col_num,col_type:'%'+pytype_to_printf(col_type), 'pyformat': lambda name,col_num,col_type:'%('+str(name)+')'+pytype_to_printf(col_type), } get_sql_param = sql_param[mod_info['paramstyle']] # form insert string ins_str = "INSERT INTO " + str(table_name) value_str = " VALUES (" col_str = " (" count = 0 for i in col_info: col_str += i[0] value_str += get_sql_param(i[0],count,i[1]) if count < len(col_info)-1: col_str += "," value_str += "," count += 1 col_str += ")" value_str += ")" if use_exact_column_names: ins_str += col_str ins_str += value_str # Some formats require values in an iterable, some a dictionary if (mod_info['paramstyle'] == 'named' or\ mod_info['paramstyle'] == 'pyformat'): prepare_sf_row = lambda x:x else: col_names = self.column_names() prepare_sf_row = lambda x: [x[i] for i in col_names] for i in self: try: c.execute(ins_str, prepare_sf_row(i)) except mod_info['Error'] as e: if hasattr(conn, 'rollback'): conn.rollback() raise e conn.commit() c.close() def __hash__(self): ''' Because we override `__eq__` we need to implement this function in Python 3. Just make it match default behavior in Python 2. ''' return id(self) // 16 def __repr__(self): """ Returns a string description of the frame """ ret = self.__get_column_description__() (is_empty, data_str) = self.__str_impl__() if is_empty: data_str = "\t[]" if self.__has_size__(): ret = ret + "Rows: " + str(len(self)) + "\n\n" else: ret = ret + "Rows: Unknown" + "\n\n" ret = ret + "Data:\n" ret = ret + data_str return ret def __get_column_description__(self): colnames = self.column_names() coltypes = self.column_types() ret = "Columns:\n" if len(colnames) > 0: for i in range(len(colnames)): ret = ret + "\t" + colnames[i] + "\t" + coltypes[i].__name__ + "\n" ret = ret + "\n" else: ret = ret + "\tNone\n\n" return ret def __get_pretty_tables__(self, wrap_text=False, max_row_width=80, max_column_width=30, max_columns=20, max_rows_to_display=60): """ Returns a list of pretty print tables representing the current SFrame. If the number of columns is larger than max_columns, the last pretty table will contain an extra column of "...". Parameters ---------- wrap_text : bool, optional max_row_width : int, optional Max number of characters per table. max_column_width : int, optional Max number of characters per column. max_columns : int, optional Max number of columns per table. max_rows_to_display : int, optional Max number of rows to display. Returns ------- out : list[PrettyTable] """ if (len(self) <= max_rows_to_display): headsf = self.__copy__() else: headsf = self.head(max_rows_to_display) if headsf.shape == (0, 0): return [PrettyTable()] # convert array.array column to list column so they print like [...] # and not array('d', ...) for col in headsf.column_names(): if headsf[col].dtype() is array.array: headsf[col] = headsf[col].astype(list) def _value_to_str(value): if (type(value) is array.array): return str(list(value)) elif (type(value) is list): return '[' + ", ".join(_value_to_str(x) for x in value) + ']' else: return str(value) def _escape_space(s): if sys.version_info.major == 3: return "".join([ch.encode('unicode_escape').decode() if ch.isspace() else ch for ch in s]) return "".join([ch.encode('string_escape') if ch.isspace() else ch for ch in s]) def _truncate_respect_unicode(s, max_length): if (len(s) <= max_length): return s else: if sys.version_info.major < 3: u = unicode(s, 'utf-8', errors='replace') return u[:max_length].encode('utf-8') else: return s[:max_length] def _truncate_str(s, wrap_str=False): """ Truncate and optionally wrap the input string as unicode, replace unconvertible character with a diamond ?. """ s = _escape_space(s) if len(s) <= max_column_width: if sys.version_info.major < 3: return unicode(s, 'utf-8', errors='replace') else: return s else: ret = '' # if wrap_str is true, wrap the text and take at most 2 rows if wrap_str: wrapped_lines = wrap(s, max_column_width) if len(wrapped_lines) == 1: return wrapped_lines[0] last_line = wrapped_lines[1] if len(last_line) >= max_column_width: last_line = _truncate_respect_unicode(last_line, max_column_width - 4) ret = wrapped_lines[0] + '\n' + last_line + ' ...' else: ret = _truncate_respect_unicode(s, max_column_width - 4) + '...' if sys.version_info.major < 3: return unicode(ret, 'utf-8', errors='replace') else: return ret columns = self.column_names()[:max_columns] columns.reverse() # reverse the order of columns and we will pop from the end num_column_of_last_table = 0 row_of_tables = [] # let's build a list of tables with max_columns # each table should satisfy, max_row_width, and max_column_width while len(columns) > 0: tbl = PrettyTable() table_width = 0 num_column_of_last_table = 0 while len(columns) > 0: col = columns.pop() # check the max length of element in the column if len(headsf) > 0: col_width = min(max_column_width, max(len(str(x)) for x in headsf[col])) else: col_width = max_column_width if (table_width + col_width < max_row_width): # truncate the header if necessary header = _truncate_str(col, wrap_text) tbl.add_column(header, [_truncate_str(_value_to_str(x), wrap_text) for x in headsf[col]]) table_width = str(tbl).find('\n') num_column_of_last_table += 1 else: # the column does not fit in the current table, push it back to columns columns.append(col) break tbl.align = 'c' row_of_tables.append(tbl) # add a column of all "..." if there are more columns than displayed if self.num_cols() > max_columns: row_of_tables[-1].add_column('...', ['...'] * len(headsf)) num_column_of_last_table += 1 # add a row of all "..." if there are more rows than displayed if self.__has_size__() and self.num_rows() > headsf.num_rows(): row_of_tables[-1].add_row(['...'] * num_column_of_last_table) return row_of_tables def print_rows(self, num_rows=10, num_columns=40, max_column_width=30, max_row_width=80, output_file=None): """ Print the first M rows and N columns of the SFrame in human readable format. Parameters ---------- num_rows : int, optional Number of rows to print. num_columns : int, optional Number of columns to print. max_column_width : int, optional Maximum width of a column. Columns use fewer characters if possible. max_row_width : int, optional Maximum width of a printed row. Columns beyond this width wrap to a new line. `max_row_width` is automatically reset to be the larger of itself and `max_column_width`. output_file: file, optional The stream or file that receives the output. By default the output goes to sys.stdout, but it can also be redirected to a file or a string (using an object of type StringIO). See Also -------- head, tail """ if output_file is None: output_file = sys.stdout max_row_width = max(max_row_width, max_column_width + 1) printed_sf = self._imagecols_to_stringcols(num_rows) row_of_tables = printed_sf.__get_pretty_tables__(wrap_text=False, max_rows_to_display=num_rows, max_columns=num_columns, max_column_width=max_column_width, max_row_width=max_row_width) footer = "[%d rows x %d columns]\n" % self.shape print('\n'.join([str(tb) for tb in row_of_tables]) + "\n" + footer, file=output_file) def _imagecols_to_stringcols(self, num_rows=10): # A list of column types types = self.column_types() # A list of indexable column names names = self.column_names() # Constructing names of sframe columns that are of image type image_column_names = [names[i] for i in range(len(names)) if types[i] == _Image] #If there are image-type columns, copy the SFrame and cast the top MAX_NUM_ROWS_TO_DISPLAY of those columns to string printed_sf = self.__copy__() if len(image_column_names) > 0: for t in names: if t in image_column_names: printed_sf[t] = self[t].astype(str) return printed_sf.head(num_rows) def __str_impl__(self, num_rows=10, footer=True): """ Returns a string containing the first num_rows elements of the frame, along with a description of the frame. """ MAX_ROWS_TO_DISPLAY = num_rows printed_sf = self._imagecols_to_stringcols(MAX_ROWS_TO_DISPLAY) row_of_tables = printed_sf.__get_pretty_tables__(wrap_text=False, max_rows_to_display=MAX_ROWS_TO_DISPLAY) is_empty = len(printed_sf) == 0 if (not footer): return (is_empty, '\n'.join([str(tb) for tb in row_of_tables])) if self.__has_size__(): footer = '[%d rows x %d columns]\n' % self.shape if (self.num_rows() > MAX_ROWS_TO_DISPLAY): footer += '\n'.join(FOOTER_STRS) else: footer = '[? rows x %d columns]\n' % self.num_columns() footer += '\n'.join(LAZY_FOOTER_STRS) return (is_empty, '\n'.join([str(tb) for tb in row_of_tables]) + "\n" + footer) def __str__(self, num_rows=10, footer=True): """ Returns a string containing the first 10 elements of the frame, along with a description of the frame. """ return self.__str_impl__(num_rows, footer)[1] def _repr_html_(self): MAX_ROWS_TO_DISPLAY = 10 printed_sf = self._imagecols_to_stringcols(MAX_ROWS_TO_DISPLAY) row_of_tables = printed_sf.__get_pretty_tables__(wrap_text=True, max_row_width=120, max_columns=40, max_column_width=25, max_rows_to_display=MAX_ROWS_TO_DISPLAY) if self.__has_size__(): footer = '[%d rows x %d columns]<br/>' % self.shape if (self.num_rows() > MAX_ROWS_TO_DISPLAY): footer += '<br/>'.join(FOOTER_STRS) else: footer = '[? rows x %d columns]<br/>' % self.num_columns() footer += '<br/>'.join(LAZY_FOOTER_STRS) begin = '<div style="max-height:1000px;max-width:1500px;overflow:auto;">' end = '\n</div>' return begin + '\n'.join([tb.get_html_string(format=True) for tb in row_of_tables]) + "\n" + footer + end def __nonzero__(self): """ Returns true if the frame is not empty. """ return self.num_rows() != 0 def __len__(self): """ Returns the number of rows of the sframe. """ return self.num_rows() def __copy__(self): """ Returns a shallow copy of the sframe. """ return self.select_columns(self.column_names()) def __deepcopy__(self, memo): """ Returns a deep copy of the sframe. As the data in an SFrame is immutable, this is identical to __copy__. """ return self.__copy__() def copy(self): """ Returns a shallow copy of the sframe. """ return self.__copy__() def __eq__(self, other): raise NotImplementedError def __ne__(self, other): raise NotImplementedError def _row_selector(self, other): """ Where other is an SArray of identical length as the current Frame, this returns a selection of a subset of rows in the current SFrame where the corresponding row in the selector is non-zero. """ if type(other) is SArray: if self.__has_size__() and other.__has_size__() and len(other) != len(self): raise IndexError("Cannot perform logical indexing on arrays of different length.") with cython_context(): return SFrame(_proxy=self.__proxy__.logical_filter(other.__proxy__)) def dtype(self): """ The type of each column. Returns ------- out : list[type] Column types of the SFrame. See Also -------- column_types """ return self.column_types() def num_rows(self): """ The number of rows in this SFrame. Returns ------- out : int Number of rows in the SFrame. See Also -------- num_columns """ return self.__proxy__.num_rows() def num_cols(self): """ The number of columns in this SFrame. Returns ------- out : int Number of columns in the SFrame. See Also -------- num_columns, num_rows """ return self.__proxy__.num_columns() def num_columns(self): """ The number of columns in this SFrame. Returns ------- out : int Number of columns in the SFrame. See Also -------- num_cols, num_rows """ return self.__proxy__.num_columns() def column_names(self): """ The name of each column in the SFrame. Returns ------- out : list[string] Column names of the SFrame. See Also -------- rename """ return self.__proxy__.column_names() def column_types(self): """ The type of each column in the SFrame. Returns ------- out : list[type] Column types of the SFrame. See Also -------- dtype """ return self.__proxy__.dtype() def head(self, n=10): """ The first n rows of the SFrame. Parameters ---------- n : int, optional The number of rows to fetch. Returns ------- out : SFrame A new SFrame which contains the first n rows of the current SFrame See Also -------- tail, print_rows """ return SFrame(_proxy=self.__proxy__.head(n)) def to_dataframe(self): """ Convert this SFrame to pandas.DataFrame. This operation will construct a pandas.DataFrame in memory. Care must be taken when size of the returned object is big. Returns ------- out : pandas.DataFrame The dataframe which contains all rows of SFrame """ assert HAS_PANDAS, 'pandas is not installed.' df = pandas.DataFrame() for i in range(self.num_columns()): column_name = self.column_names()[i] df[column_name] = list(self[column_name]) if len(df[column_name]) == 0: df[column_name] = df[column_name].astype(self.column_types()[i]) return df def to_numpy(self): """ Converts this SFrame to a numpy array This operation will construct a numpy array in memory. Care must be taken when size of the returned object is big. Returns ------- out : numpy.ndarray A Numpy Array containing all the values of the SFrame """ assert HAS_NUMPY, 'numpy is not installed.' import numpy return numpy.transpose(numpy.asarray([self[x] for x in self.column_names()])) def tail(self, n=10): """ The last n rows of the SFrame. Parameters ---------- n : int, optional The number of rows to fetch. Returns ------- out : SFrame A new SFrame which contains the last n rows of the current SFrame See Also -------- head, print_rows """ return SFrame(_proxy=self.__proxy__.tail(n)) def apply(self, fn, dtype=None, seed=None): """ Transform each row to an :class:`~graphlab.SArray` according to a specified function. Returns a new SArray of ``dtype`` where each element in this SArray is transformed by `fn(x)` where `x` is a single row in the sframe represented as a dictionary. The ``fn`` should return exactly one value which can be cast into type ``dtype``. If ``dtype`` is not specified, the first 100 rows of the SFrame are used to make a guess of the target data type. Parameters ---------- fn : function The function to transform each row of the SFrame. The return type should be convertible to `dtype` if `dtype` is not None. This can also be a toolkit extension function which is compiled as a native shared library using SDK. dtype : dtype, optional The dtype of the new SArray. If None, the first 100 elements of the array are used to guess the target data type. seed : int, optional Used as the seed if a random number generator is included in `fn`. Returns ------- out : SArray The SArray transformed by fn. Each element of the SArray is of type ``dtype`` Examples -------- Concatenate strings from several columns: >>> sf = graphlab.SFrame({'user_id': [1, 2, 3], 'movie_id': [3, 3, 6], 'rating': [4, 5, 1]}) >>> sf.apply(lambda x: str(x['user_id']) + str(x['movie_id']) + str(x['rating'])) dtype: str Rows: 3 ['134', '235', '361'] Using native toolkit extension function: .. code-block:: c++ #include <graphlab/sdk/toolkit_function_macros.hpp> double mean(const std::map<flexible_type, flexible_type>& dict) { double sum = 0.0; for (const auto& kv: dict) sum += (double)kv.second; return sum / dict.size(); } BEGIN_FUNCTION_REGISTRATION REGISTER_FUNCTION(mean, "row"); END_FUNCTION_REGISTRATION compiled into example.so >>> import example >>> sf = graphlab.SFrame({'x0': [1, 2, 3], 'x1': [2, 3, 1], ... 'x2': [3, 1, 2]}) >>> sf.apply(example.mean) dtype: float Rows: 3 [2.0,2.0,2.0] """ assert callable(fn), "Input must be callable" test_sf = self[:10] dryrun = [fn(row) for row in test_sf] if dtype is None: dtype = SArray(dryrun).dtype() if seed is None: seed = abs(hash("%0.20f" % time.time())) % (2 ** 31) nativefn = None try: from .. import extensions as extensions nativefn = extensions._build_native_function_call(fn) except: pass if nativefn is not None: # this is a toolkit lambda. We can do something about it with cython_context(): return SArray(_proxy=self.__proxy__.transform_native(nativefn, dtype, seed)) with cython_context(): return SArray(_proxy=self.__proxy__.transform(fn, dtype, seed)) def flat_map(self, column_names, fn, column_types='auto', seed=None): """ Map each row of the SFrame to multiple rows in a new SFrame via a function. The output of `fn` must have type List[List[...]]. Each inner list will be a single row in the new output, and the collection of these rows within the outer list make up the data for the output SFrame. All rows must have the same length and the same order of types to make sure the result columns are homogeneously typed. For example, if the first element emitted into in the outer list by `fn` is [43, 2.3, 'string'], then all other elements emitted into the outer list must be a list with three elements, where the first is an int, second is a float, and third is a string. If column_types is not specified, the first 10 rows of the SFrame are used to determine the column types of the returned sframe. Parameters ---------- column_names : list[str] The column names for the returned SFrame. fn : function The function that maps each of the sframe row into multiple rows, returning List[List[...]]. All outputted rows must have the same length and order of types. column_types : list[type], optional The column types of the output SFrame. Default value will be automatically inferred by running `fn` on the first 10 rows of the input. If the types cannot be inferred from the first 10 rows, an error is raised. seed : int, optional Used as the seed if a random number generator is included in `fn`. Returns ------- out : SFrame A new SFrame containing the results of the flat_map of the original SFrame. Examples --------- Repeat each row according to the value in the 'number' column. >>> sf = graphlab.SFrame({'letter': ['a', 'b', 'c'], ... 'number': [1, 2, 3]}) >>> sf.flat_map(['number', 'letter'], ... lambda x: [list(x.itervalues()) for i in range(0, x['number'])]) +--------+--------+ | number | letter | +--------+--------+ | 1 | a | | 2 | b | | 2 | b | | 3 | c | | 3 | c | | 3 | c | +--------+--------+ [6 rows x 2 columns] """ assert callable(fn), "Input must be callable" if seed is None: seed = abs(hash("%0.20f" % time.time())) % (2 ** 31) # determine the column_types if column_types == 'auto': types = set() sample = self[0:10] results = [fn(row) for row in sample] for rows in results: if type(rows) is not list: raise TypeError("Output type of the lambda function must be a list of lists") # note: this skips empty lists for row in rows: if type(row) is not list: raise TypeError("Output type of the lambda function must be a list of lists") types.add(tuple([type(v) for v in row])) if len(types) == 0: raise TypeError( "Could not infer output column types from the first ten rows " +\ "of the SFrame. Please use the 'column_types' parameter to " +\ "set the types.") if len(types) > 1: raise TypeError("Mapped rows must have the same length and types") column_types = list(types.pop()) assert type(column_types) is list, "'column_types' must be a list." assert len(column_types) == len(column_names), "Number of output columns must match the size of column names" with cython_context(): return SFrame(_proxy=self.__proxy__.flat_map(fn, column_names, column_types, seed)) def sample(self, fraction, seed=None): """ Sample the current SFrame's rows. Parameters ---------- fraction : float Approximate fraction of the rows to fetch. Must be between 0 and 1. The number of rows returned is approximately the fraction times the number of rows. seed : int, optional Seed for the random number generator used to sample. Returns ------- out : SFrame A new SFrame containing sampled rows of the current SFrame. Examples -------- Suppose we have an SFrame with 6,145 rows. >>> import random >>> sf = SFrame({'id': range(0, 6145)}) Retrieve about 30% of the SFrame rows with repeatable results by setting the random seed. >>> len(sf.sample(.3, seed=5)) 1783 """ if seed is None: seed = abs(hash("%0.20f" % time.time())) % (2 ** 31) if (fraction > 1 or fraction < 0): raise ValueError('Invalid sampling rate: ' + str(fraction)) if (self.num_rows() == 0 or self.num_cols() == 0): return self else: with cython_context(): return SFrame(_proxy=self.__proxy__.sample(fraction, seed)) def random_split(self, fraction, seed=None): """ Randomly split the rows of an SFrame into two SFrames. The first SFrame contains *M* rows, sampled uniformly (without replacement) from the original SFrame. *M* is approximately the fraction times the original number of rows. The second SFrame contains the remaining rows of the original SFrame. Parameters ---------- fraction : float Approximate fraction of the rows to fetch for the first returned SFrame. Must be between 0 and 1. seed : int, optional Seed for the random number generator used to split. Returns ------- out : tuple [SFrame] Two new SFrames. Examples -------- Suppose we have an SFrame with 1,024 rows and we want to randomly split it into training and testing datasets with about a 90%/10% split. >>> sf = graphlab.SFrame({'id': range(1024)}) >>> sf_train, sf_test = sf.random_split(.9, seed=5) >>> print(len(sf_train), len(sf_test)) 922 102 """ if (fraction > 1 or fraction < 0): raise ValueError('Invalid sampling rate: ' + str(fraction)) if (self.num_rows() == 0 or self.num_cols() == 0): return (SFrame(), SFrame()) if seed is None: # Include the nanosecond component as well. seed = abs(hash("%0.20f" % time.time())) % (2 ** 31) # The server side requires this to be an int, so cast if we can try: seed = int(seed) except ValueError: raise ValueError('The \'seed\' parameter must be of type int.') with cython_context(): proxy_pair = self.__proxy__.random_split(fraction, seed) return (SFrame(data=[], _proxy=proxy_pair[0]), SFrame(data=[], _proxy=proxy_pair[1])) def topk(self, column_name, k=10, reverse=False): """ Get top k rows according to the given column. Result is according to and sorted by `column_name` in the given order (default is descending). When `k` is small, `topk` is more efficient than `sort`. Parameters ---------- column_name : string The column to sort on k : int, optional The number of rows to return reverse : bool, optional If True, return the top k rows in ascending order, otherwise, in descending order. Returns ------- out : SFrame an SFrame containing the top k rows sorted by column_name. See Also -------- sort Examples -------- >>> sf = graphlab.SFrame({'id': range(1000)}) >>> sf['value'] = -sf['id'] >>> sf.topk('id', k=3) +--------+--------+ | id | value | +--------+--------+ | 999 | -999 | | 998 | -998 | | 997 | -997 | +--------+--------+ [3 rows x 2 columns] >>> sf.topk('value', k=3) +--------+--------+ | id | value | +--------+--------+ | 1 | -1 | | 2 | -2 | | 3 | -3 | +--------+--------+ [3 rows x 2 columns] """ if type(column_name) is not str: raise TypeError("column_name must be a string") sf = self[self[column_name].topk_index(k, reverse)] return sf.sort(column_name, ascending=reverse) def save(self, filename, format=None): """ Save the SFrame to a file system for later use. Parameters ---------- filename : string The location to save the SFrame. Either a local directory or a remote URL. If the format is 'binary', a directory will be created at the location which will contain the sframe. format : {'binary', 'csv', 'json'}, optional Format in which to save the SFrame. Binary saved SFrames can be loaded much faster and without any format conversion losses. If not given, will try to infer the format from filename given. If file name ends with 'csv' or '.csv.gz', then save as 'csv' format, otherwise save as 'binary' format. See export_csv for more csv saving options. See Also -------- load_sframe, SFrame Examples -------- >>> # Save the sframe into binary format >>> sf.save('data/training_data_sframe') >>> # Save the sframe into csv format >>> sf.save('data/training_data.csv', format='csv') """ if format == None: if filename.endswith(('.csv', '.csv.gz')): format = 'csv' else: format = 'binary' else: if format is 'csv': if not filename.endswith(('.csv', '.csv.gz')): filename = filename + '.csv' elif format is not 'binary' and format is not 'json': raise ValueError("Invalid format: {}. Supported formats are 'csv' and 'binary' and 'json'".format(format)) ## Save the SFrame url = _make_internal_url(filename) with cython_context(): if format is 'binary': self.__proxy__.save(url) elif format is 'csv': assert filename.endswith(('.csv', '.csv.gz')) self.__proxy__.save_as_csv(url, {}) elif format is 'json': self.export_json(url) else: raise ValueError("Unsupported format: {}".format(format)) def export_csv(self, filename, delimiter=',', line_terminator='\n', header=True, quote_level=csv.QUOTE_NONNUMERIC, double_quote=True, escape_char='\\', quote_char='\"', na_rep='', file_header='', file_footer='', line_prefix='', _no_prefix_on_first_value=False, **kwargs): """ Writes an SFrame to a CSV file. Parameters ---------- filename : string The location to save the CSV. delimiter : string, optional This describes the delimiter used for writing csv files. line_terminator: string, optional The newline character header : bool, optional If true, the column names are emitted as a header. quote_level: csv.QUOTE_ALL | csv.QUOTE_NONE | csv.QUOTE_NONNUMERIC, optional The quoting level. If csv.QUOTE_ALL, every field is quoted. if csv.quote_NONE, no field is quoted. If csv.QUOTE_NONNUMERIC, only non-numeric fileds are quoted. csv.QUOTE_MINIMAL is interpreted as csv.QUOTE_NONNUMERIC. double_quote : bool, optional If True, quotes are escaped as two consecutive quotes escape_char : string, optional Character which begins a C escape sequence quote_char: string, optional Character used to quote fields na_rep: string, optional The value used to denote a missing value. file_header: string, optional A string printed to the start of the file file_footer: string, optional A string printed to the end of the file line_prefix: string, optional A string printed at the start of each value line """ # Pandas argument compatibility if "sep" in kwargs: delimiter = kwargs['sep'] del kwargs['sep'] if "quotechar" in kwargs: quote_char = kwargs['quotechar'] del kwargs['quotechar'] if "doublequote" in kwargs: double_quote = kwargs['doublequote'] del kwargs['doublequote'] if "lineterminator" in kwargs: line_terminator = kwargs['lineterminator'] del kwargs['lineterminator'] if len(kwargs) > 0: raise TypeError("Unexpected keyword arguments " + str(list(kwargs.keys()))) write_csv_options = {} write_csv_options['delimiter'] = delimiter write_csv_options['escape_char'] = escape_char write_csv_options['double_quote'] = double_quote write_csv_options['quote_char'] = quote_char if quote_level == csv.QUOTE_MINIMAL: write_csv_options['quote_level'] = 0 elif quote_level == csv.QUOTE_ALL: write_csv_options['quote_level'] = 1 elif quote_level == csv.QUOTE_NONNUMERIC: write_csv_options['quote_level'] = 2 elif quote_level == csv.QUOTE_NONE: write_csv_options['quote_level'] = 3 write_csv_options['header'] = header write_csv_options['line_terminator'] = line_terminator write_csv_options['na_value'] = na_rep write_csv_options['file_header'] = file_header write_csv_options['file_footer'] = file_footer write_csv_options['line_prefix'] = line_prefix # undocumented option. Disables line prefix on the first value line write_csv_options['_no_prefix_on_first_value'] = _no_prefix_on_first_value url = _make_internal_url(filename) self.__proxy__.save_as_csv(url, write_csv_options) def export_json(self, filename, orient='records'): """ Writes an SFrame to a JSON file. Parameters ---------- filename : string The location to save the JSON file. orient : string, optional. Either "records" or "lines" If orient="records" the file is saved as a single JSON array. If orient="lines", the file is saves as a JSON value per line. Examples -------- The orient parameter describes the expected input format of the JSON file. If orient="records", the output will be a single JSON Array where each array element is a dictionary describing the row. >>> g Columns: a int b int Rows: 3 Data: +---+---+ | a | b | +---+---+ | 1 | 1 | | 2 | 2 | | 3 | 3 | +---+---+ >>> g.export('output.json', orient='records') >>> !cat output.json [ {'a':1,'b':1}, {'a':2,'b':2}, {'a':3,'b':3}, ] If orient="rows", each row will be emitted as a JSON dictionary to each file line. >>> g Columns: a int b int Rows: 3 Data: +---+---+ | a | b | +---+---+ | 1 | 1 | | 2 | 2 | | 3 | 3 | +---+---+ >>> g.export('output.json', orient='rows') >>> !cat output.json {'a':1,'b':1} {'a':2,'b':2} {'a':3,'b':3} """ if orient == "records": self.pack_columns(dtype=dict).export_csv( filename, file_header='[', file_footer=']', header=False, double_quote=False, quote_level=csv.QUOTE_NONE, line_prefix=',', _no_prefix_on_first_value=True) elif orient == "lines": self.pack_columns(dtype=dict).export_csv( filename, header=False, double_quote=False, quote_level=csv.QUOTE_NONE) else: raise ValueError("Invalid value for orient parameter (" + str(orient) + ")") def _save_reference(self, filename): """ Performs an incomplete save of an existing SFrame into a directory. This saved SFrame may reference SFrames in other locations in the same filesystem for certain resources. Parameters ---------- filename : string The location to save the SFrame. Either a local directory or a remote URL. See Also -------- load_sframe, SFrame Examples -------- >>> # Save the sframe into binary format >>> sf.save_reference('data/training_data_sframe') """ ## Save the SFrame url = _make_internal_url(filename) with cython_context(): self.__proxy__.save_reference(url) def select_column(self, key): """ Get a reference to the :class:`~graphlab.SArray` that corresponds with the given key. Throws an exception if the key is something other than a string or if the key is not found. Parameters ---------- key : str The column name. Returns ------- out : SArray The SArray that is referred by ``key``. See Also -------- select_columns Examples -------- >>> sf = graphlab.SFrame({'user_id': [1,2,3], ... 'user_name': ['alice', 'bob', 'charlie']}) >>> # This line is equivalent to `sa = sf['user_name']` >>> sa = sf.select_column('user_name') >>> sa dtype: str Rows: 3 ['alice', 'bob', 'charlie'] """ if not isinstance(key, str): raise TypeError("Invalid key type: must be str") with cython_context(): return SArray(data=[], _proxy=self.__proxy__.select_column(key)) def select_columns(self, keylist): """ Selects all columns where the name of the column or the type of column is included in the keylist. An exception is raised if duplicate columns are selected i.e. sf.select_columns(['a','a']), or non-existant columns are selected. Throws an exception for all other input types. Parameters ---------- keylist : list[str or type] The list of column names or a list of types. Returns ------- out : SFrame A new SFrame that is made up of the columns referred to in ``keylist`` from the current SFrame. See Also -------- select_column Examples -------- >>> sf = graphlab.SFrame({'user_id': [1,2,3], ... 'user_name': ['alice', 'bob', 'charlie'], ... 'zipcode': [98101, 98102, 98103] ... }) >>> # This line is equivalent to `sf2 = sf[['user_id', 'zipcode']]` >>> sf2 = sf.select_columns(['user_id', 'zipcode']) >>> sf2 +---------+---------+ | user_id | zipcode | +---------+---------+ | 1 | 98101 | | 2 | 98102 | | 3 | 98103 | +---------+---------+ [3 rows x 2 columns] """ if not _is_non_string_iterable(keylist): raise TypeError("keylist must be an iterable") if not (all([isinstance(x, str) or isinstance(x, type) or isinstance(x, bytes) for x in keylist])): raise TypeError("Invalid key type: must be str, bytes or type") column_names_set = set(self.column_names()) # quick validation to make sure all selected string columns exist requested_str_columns = [s for s in keylist if isinstance(s, str)] for i in requested_str_columns: if i not in column_names_set: raise RuntimeError("Column name " + i + " does not exist") # Make sure there are no duplicates keys from collections import Counter keylist_counter = Counter(keylist) if (len(keylist)) != len(keylist_counter): for key in keylist_counter: if keylist_counter[key] > 1: raise ValueError("There are duplicate keys in key list: '" + key + "'") colnames_and_types = list(zip(self.column_names(), self.column_types())) # Ok. we want the string columns to be in the ordering defined by the # argument. And then all the type selection columns. selected_columns = requested_str_columns typelist = [s for s in keylist if isinstance(s, type)] # next the type selection columns # loop through all the columns, adding all columns with types in # typelist. But don't add a column if it has already been added. for i in colnames_and_types: if i[1] in typelist and i[0] not in selected_columns: selected_columns += [i[0]] selected_columns = selected_columns with cython_context(): return SFrame(data=[], _proxy=self.__proxy__.select_columns(selected_columns)) def add_column(self, data, name=""): """ Add a column to this SFrame. The number of elements in the data given must match the length of every other column of the SFrame. This operation modifies the current SFrame in place and returns self. If no name is given, a default name is chosen. Parameters ---------- data : SArray The 'column' of data to add. name : string, optional The name of the column. If no name is given, a default name is chosen. Returns ------- out : SFrame The current SFrame. See Also -------- add_columns Examples -------- >>> sf = graphlab.SFrame({'id': [1, 2, 3], 'val': ['A', 'B', 'C']}) >>> sa = graphlab.SArray(['cat', 'dog', 'fossa']) >>> # This line is equivalant to `sf['species'] = sa` >>> sf.add_column(sa, name='species') >>> sf +----+-----+---------+ | id | val | species | +----+-----+---------+ | 1 | A | cat | | 2 | B | dog | | 3 | C | fossa | +----+-----+---------+ [3 rows x 3 columns] """ # Check type for pandas dataframe or SArray? if not isinstance(data, SArray): raise TypeError("Must give column as SArray") if not isinstance(name, str): raise TypeError("Invalid column name: must be str") with cython_context(): self.__proxy__.add_column(data.__proxy__, name) self._cache = None return self def add_columns(self, data, namelist=None): """ Adds multiple columns to this SFrame. The number of elements in all columns must match the length of every other column of the SFrame. This operation modifies the current SFrame in place and returns self. Parameters ---------- data : list[SArray] or SFrame The columns to add. namelist : list of string, optional A list of column names. All names must be specified. ``namelist`` is ignored if data is an SFrame. Returns ------- out : SFrame The current SFrame. See Also -------- add_column Examples -------- >>> sf = graphlab.SFrame({'id': [1, 2, 3], 'val': ['A', 'B', 'C']}) >>> sf2 = graphlab.SFrame({'species': ['cat', 'dog', 'fossa'], ... 'age': [3, 5, 9]}) >>> sf.add_columns(sf2) >>> sf +----+-----+-----+---------+ | id | val | age | species | +----+-----+-----+---------+ | 1 | A | 3 | cat | | 2 | B | 5 | dog | | 3 | C | 9 | fossa | +----+-----+-----+---------+ [3 rows x 4 columns] """ datalist = data if isinstance(data, SFrame): other = data datalist = [other.select_column(name) for name in other.column_names()] namelist = other.column_names() my_columns = set(self.column_names()) for name in namelist: if name in my_columns: raise ValueError("Column '" + name + "' already exists in current SFrame") else: if not _is_non_string_iterable(datalist): raise TypeError("datalist must be an iterable") if not _is_non_string_iterable(namelist): raise TypeError("namelist must be an iterable") if not all([isinstance(x, SArray) for x in datalist]): raise TypeError("Must give column as SArray") if not all([isinstance(x, str) for x in namelist]): raise TypeError("Invalid column name in list : must all be str") with cython_context(): self.__proxy__.add_columns([x.__proxy__ for x in datalist], namelist) self._cache = None return self def remove_column(self, name): """ Remove a column from this SFrame. This operation modifies the current SFrame in place and returns self. Parameters ---------- name : string The name of the column to remove. Returns ------- out : SFrame The SFrame with given column removed. Examples -------- >>> sf = graphlab.SFrame({'id': [1, 2, 3], 'val': ['A', 'B', 'C']}) >>> # This is equivalent to `del sf['val']` >>> sf.remove_column('val') >>> sf +----+ | id | +----+ | 1 | | 2 | | 3 | +----+ [3 rows x 1 columns] """ name = str(name) if name not in self.column_names(): raise KeyError('Cannot find column %s' % name) colid = self.column_names().index(name) with cython_context(): self.__proxy__.remove_column(colid) self._cache = None return self def remove_columns(self, column_names): """ Remove one or more columns from this SFrame. This operation modifies the current SFrame in place and returns self. Parameters ---------- column_names : list or iterable A list or iterable of column names. Returns ------- out : SFrame The SFrame with given columns removed. Examples -------- >>> sf = graphlab.SFrame({'id': [1, 2, 3], 'val1': ['A', 'B', 'C'], 'val2' : [10, 11, 12]}) >>> sf.remove_columns(['val1', 'val2']) >>> sf +----+ | id | +----+ | 1 | | 2 | | 3 | +----+ [3 rows x 1 columns] """ column_names = list(column_names) existing_columns = dict((k, i) for i, k in enumerate(self.column_names())) for name in column_names: if name not in existing_columns: raise KeyError('Cannot find column %s' % name) # Delete it going backwards so we don't invalidate indices deletion_indices = sorted(existing_columns[name] for name in column_names) for colid in reversed(deletion_indices): with cython_context(): self.__proxy__.remove_column(colid) self._cache = None return self def swap_columns(self, column_1, column_2): """ Swap the columns with the given names. This operation modifies the current SFrame in place and returns self. Parameters ---------- column_1 : string Name of column to swap column_2 : string Name of other column to swap Returns ------- out : SFrame The SFrame with swapped columns. Examples -------- >>> sf = graphlab.SFrame({'id': [1, 2, 3], 'val': ['A', 'B', 'C']}) >>> sf.swap_columns('id', 'val') >>> sf +-----+-----+ | val | id | +-----+-----+ | A | 1 | | B | 2 | | C | 3 | +----+-----+ [3 rows x 2 columns] """ colnames = self.column_names() colid_1 = colnames.index(column_1) colid_2 = colnames.index(column_2) with cython_context(): self.__proxy__.swap_columns(colid_1, colid_2) self._cache = None return self def rename(self, names): """ Rename the given columns. ``names`` is expected to be a dict specifying the old and new names. This changes the names of the columns given as the keys and replaces them with the names given as the values. This operation modifies the current SFrame in place and returns self. Parameters ---------- names : dict [string, string] Dictionary of [old_name, new_name] Returns ------- out : SFrame The current SFrame. See Also -------- column_names Examples -------- >>> sf = SFrame({'X1': ['Alice','Bob'], ... 'X2': ['123 Fake Street','456 Fake Street']}) >>> sf.rename({'X1': 'name', 'X2':'address'}) >>> sf +-------+-----------------+ | name | address | +-------+-----------------+ | Alice | 123 Fake Street | | Bob | 456 Fake Street | +-------+-----------------+ [2 rows x 2 columns] """ if (type(names) is not dict): raise TypeError('names must be a dictionary: oldname -> newname') all_columns = set(self.column_names()) for k in names: if not k in all_columns: raise ValueError('Cannot find column %s in the SFrame' % k) with cython_context(): for k in names: colid = self.column_names().index(k) self.__proxy__.set_column_name(colid, names[k]) self._cache = None return self def __getitem__(self, key): """ This method does things based on the type of `key`. If `key` is: * str selects column with name 'key' * type selects all columns with types matching the type * list of str or type selects all columns with names or type in the list * SArray Performs a logical filter. Expects given SArray to be the same length as all columns in current SFrame. Every row corresponding with an entry in the given SArray that is equivalent to False is filtered from the result. * int Returns a single row of the SFrame (the `key`th one) as a dictionary. * slice Returns an SFrame including only the sliced rows. """ if type(key) is SArray: return self._row_selector(key) elif type(key) is str: return self.select_column(key) elif type(key) is type: return self.select_columns([key]) elif _is_non_string_iterable(key): return self.select_columns(key) elif isinstance(key, numbers.Integral): sf_len = len(self) if key < 0: key = sf_len + key if key >= sf_len: raise IndexError("SFrame index out of range") if not hasattr(self, '_cache') or self._cache is None: self._cache = {} try: lb, ub, value_list = self._cache["getitem_cache"] if lb <= key < ub: return value_list[int(key - lb)] except KeyError: pass # Not in cache, need to grab it. Smaller here than with sarray # Do we have a good block size that won't cause memory to blow up? if not "getitem_cache_blocksize" in self._cache: block_size = \ (8*1024) // sum( (2 if dt in [int, long, float] else 8) for dt in self.column_types()) block_size = max(16, block_size) self._cache["getitem_cache_blocksize"] = block_size else: block_size = self._cache["getitem_cache_blocksize"] block_num = int(key // block_size) lb = block_num * block_size ub = min(sf_len, lb + block_size) val_list = list(SFrame(_proxy = self.__proxy__.copy_range(lb, 1, ub))) self._cache["getitem_cache"] = (lb, ub, val_list) return val_list[int(key - lb)] elif type(key) is slice: start = key.start stop = key.stop step = key.step if start is None: start = 0 if stop is None: stop = len(self) if step is None: step = 1 # handle negative indices if start < 0: start = len(self) + start if stop < 0: stop = len(self) + stop return SFrame(_proxy = self.__proxy__.copy_range(start, step, stop)) else: raise TypeError("Invalid index type: must be SArray, list, int, or str") def __setitem__(self, key, value): """ A wrapper around add_column(s). Key can be either a list or a str. If value is an SArray, it is added to the SFrame as a column. If it is a constant value (int, str, or float), then a column is created where every entry is equal to the constant value. Existing columns can also be replaced using this wrapper. """ if type(key) is list: self.add_columns(value, key) elif type(key) is str: sa_value = None if (type(value) is SArray): sa_value = value elif _is_non_string_iterable(value): # wrap list, array... to sarray sa_value = SArray(value) else: # create an sarray of constant value sa_value = SArray.from_const(value, self.num_rows()) # set new column if not key in self.column_names(): with cython_context(): self.add_column(sa_value, key) else: # special case if replacing the only column. # server would fail the replacement if the new column has different # length than current one, which doesn't make sense if we are replacing # the only column. To support this, we first take out the only column # and then put it back if exception happens single_column = (self.num_cols() == 1) if (single_column): tmpname = key saved_column = self.select_column(key) self.remove_column(key) else: # add the column to a unique column name. tmpname = '__' + '-'.join(self.column_names()) try: self.add_column(sa_value, tmpname) except Exception as e: if (single_column): self.add_column(saved_column, key) raise if (not single_column): # if add succeeded, remove the column name and rename tmpname->columnname. self.swap_columns(key, tmpname) self.remove_column(key) self.rename({tmpname: key}) else: raise TypeError('Cannot set column with key type ' + str(type(key))) def __delitem__(self, key): """ Wrapper around remove_column. """ self.remove_column(key) def materialize(self): """ For an SFrame that is lazily evaluated, force the persistence of the SFrame to disk, committing all lazy evaluated operations. """ return self.__materialize__() def __materialize__(self): """ For an SFrame that is lazily evaluated, force the persistence of the SFrame to disk, committing all lazy evaluated operations. """ with cython_context(): self.__proxy__.materialize() def is_materialized(self): """ Returns whether or not the SFrame has been materialized. """ return self.__is_materialized__() def __is_materialized__(self): """ Returns whether or not the SFrame has been materialized. """ return self.__proxy__.is_materialized() def __has_size__(self): """ Returns whether or not the size of the SFrame is known. """ return self.__proxy__.has_size() def __query_plan_str__(self): """ Returns the query plan as a dot graph string """ return self.__proxy__.query_plan_string() def __iter__(self): """ Provides an iterator to the rows of the SFrame. """ def generator(): elems_at_a_time = 262144 self.__proxy__.begin_iterator() ret = self.__proxy__.iterator_get_next(elems_at_a_time) column_names = self.column_names() while(True): for j in ret: yield dict(list(zip(column_names, j))) if len(ret) == elems_at_a_time: ret = self.__proxy__.iterator_get_next(elems_at_a_time) else: break return generator() def append(self, other): """ Add the rows of an SFrame to the end of this SFrame. Both SFrames must have the same set of columns with the same column names and column types. Parameters ---------- other : SFrame Another SFrame whose rows are appended to the current SFrame. Returns ------- out : SFrame The result SFrame from the append operation. Examples -------- >>> sf = graphlab.SFrame({'id': [4, 6, 8], 'val': ['D', 'F', 'H']}) >>> sf2 = graphlab.SFrame({'id': [1, 2, 3], 'val': ['A', 'B', 'C']}) >>> sf = sf.append(sf2) >>> sf +----+-----+ | id | val | +----+-----+ | 4 | D | | 6 | F | | 8 | H | | 1 | A | | 2 | B | | 3 | C | +----+-----+ [6 rows x 2 columns] """ if type(other) is not SFrame: raise RuntimeError("SFrame append can only work with SFrame") left_empty = len(self.column_names()) == 0 right_empty = len(other.column_names()) == 0 if (left_empty and right_empty): return SFrame() if (left_empty or right_empty): non_empty_sframe = self if right_empty else other return non_empty_sframe.__copy__() my_column_names = self.column_names() my_column_types = self.column_types() other_column_names = other.column_names() if (len(my_column_names) != len(other_column_names)): raise RuntimeError("Two SFrames have to have the same number of columns") # check if the order of column name is the same column_name_order_match = True for i in range(len(my_column_names)): if other_column_names[i] != my_column_names[i]: column_name_order_match = False break; processed_other_frame = other if not column_name_order_match: # we allow name order of two sframes to be different, so we create a new sframe from # "other" sframe to make it has exactly the same shape processed_other_frame = SFrame() for i in range(len(my_column_names)): col_name = my_column_names[i] if(col_name not in other_column_names): raise RuntimeError("Column " + my_column_names[i] + " does not exist in second SFrame") other_column = other.select_column(col_name); processed_other_frame.add_column(other_column, col_name) # check column type if my_column_types[i] != other_column.dtype(): raise RuntimeError("Column " + my_column_names[i] + " type is not the same in two SFrames, one is " + str(my_column_types[i]) + ", the other is " + str(other_column.dtype())) with cython_context(): return SFrame(_proxy=self.__proxy__.append(processed_other_frame.__proxy__)) def groupby(self, key_columns, operations, *args): """ Perform a group on the key_columns followed by aggregations on the columns listed in operations. The operations parameter is a dictionary that indicates which aggregation operators to use and which columns to use them on. The available operators are SUM, MAX, MIN, COUNT, AVG, VAR, STDV, CONCAT, SELECT_ONE, ARGMIN, ARGMAX, and QUANTILE. For convenience, aggregators MEAN, STD, and VARIANCE are available as synonyms for AVG, STDV, and VAR. See :mod:`~graphlab.aggregate` for more detail on the aggregators. Parameters ---------- key_columns : string | list[string] Column(s) to group by. Key columns can be of any type other than dictionary. operations : dict, list Dictionary of columns and aggregation operations. Each key is a output column name and each value is an aggregator. This can also be a list of aggregators, in which case column names will be automatically assigned. *args All other remaining arguments will be interpreted in the same way as the operations argument. Returns ------- out_sf : SFrame A new SFrame, with a column for each groupby column and each aggregation operation. See Also -------- aggregate Examples -------- Suppose we have an SFrame with movie ratings by many users. >>> import graphlab.aggregate as agg >>> url = 'https://static.turi.com/datasets/rating_data_example.csv' >>> sf = graphlab.SFrame.read_csv(url) >>> sf +---------+----------+--------+ | user_id | movie_id | rating | +---------+----------+--------+ | 25904 | 1663 | 3 | | 25907 | 1663 | 3 | | 25923 | 1663 | 3 | | 25924 | 1663 | 3 | | 25928 | 1663 | 2 | | 25933 | 1663 | 4 | | 25934 | 1663 | 4 | | 25935 | 1663 | 4 | | 25936 | 1663 | 5 | | 25937 | 1663 | 2 | | ... | ... | ... | +---------+----------+--------+ [10000 rows x 3 columns] Compute the number of occurrences of each user. >>> user_count = sf.groupby(key_columns='user_id', ... operations={'count': agg.COUNT()}) >>> user_count +---------+-------+ | user_id | count | +---------+-------+ | 62361 | 1 | | 30727 | 1 | | 40111 | 1 | | 50513 | 1 | | 35140 | 1 | | 42352 | 1 | | 29667 | 1 | | 46242 | 1 | | 58310 | 1 | | 64614 | 1 | | ... | ... | +---------+-------+ [9852 rows x 2 columns] Compute the mean and standard deviation of ratings per user. >>> user_rating_stats = sf.groupby(key_columns='user_id', ... operations={ ... 'mean_rating': agg.MEAN('rating'), ... 'std_rating': agg.STD('rating') ... }) >>> user_rating_stats +---------+-------------+------------+ | user_id | mean_rating | std_rating | +---------+-------------+------------+ | 62361 | 5.0 | 0.0 | | 30727 | 4.0 | 0.0 | | 40111 | 2.0 | 0.0 | | 50513 | 4.0 | 0.0 | | 35140 | 4.0 | 0.0 | | 42352 | 5.0 | 0.0 | | 29667 | 4.0 | 0.0 | | 46242 | 5.0 | 0.0 | | 58310 | 2.0 | 0.0 | | 64614 | 2.0 | 0.0 | | ... | ... | ... | +---------+-------------+------------+ [9852 rows x 3 columns] Compute the movie with the minimum rating per user. >>> chosen_movies = sf.groupby(key_columns='user_id', ... operations={ ... 'worst_movies': agg.ARGMIN('rating','movie_id') ... }) >>> chosen_movies +---------+-------------+ | user_id | worst_movies | +---------+-------------+ | 62361 | 1663 | | 30727 | 1663 | | 40111 | 1663 | | 50513 | 1663 | | 35140 | 1663 | | 42352 | 1663 | | 29667 | 1663 | | 46242 | 1663 | | 58310 | 1663 | | 64614 | 1663 | | ... | ... | +---------+-------------+ [9852 rows x 2 columns] Compute the movie with the max rating per user and also the movie with the maximum imdb-ranking per user. >>> sf['imdb-ranking'] = sf['rating'] * 10 >>> chosen_movies = sf.groupby(key_columns='user_id', ... operations={('max_rating_movie','max_imdb_ranking_movie'): agg.ARGMAX(('rating','imdb-ranking'),'movie_id')}) >>> chosen_movies +---------+------------------+------------------------+ | user_id | max_rating_movie | max_imdb_ranking_movie | +---------+------------------+------------------------+ | 62361 | 1663 | 16630 | | 30727 | 1663 | 16630 | | 40111 | 1663 | 16630 | | 50513 | 1663 | 16630 | | 35140 | 1663 | 16630 | | 42352 | 1663 | 16630 | | 29667 | 1663 | 16630 | | 46242 | 1663 | 16630 | | 58310 | 1663 | 16630 | | 64614 | 1663 | 16630 | | ... | ... | ... | +---------+------------------+------------------------+ [9852 rows x 3 columns] Compute the movie with the max rating per user. >>> chosen_movies = sf.groupby(key_columns='user_id', operations={'best_movies': agg.ARGMAX('rating','movie')}) Compute the movie with the max rating per user and also the movie with the maximum imdb-ranking per user. >>> chosen_movies = sf.groupby(key_columns='user_id', operations={('max_rating_movie','max_imdb_ranking_movie'): agg.ARGMAX(('rating','imdb-ranking'),'movie')}) Compute the count, mean, and standard deviation of ratings per (user, time), automatically assigning output column names. >>> sf['time'] = sf.apply(lambda x: (x['user_id'] + x['movie_id']) % 11 + 2000) >>> user_rating_stats = sf.groupby(['user_id', 'time'], ... [agg.COUNT(), ... agg.AVG('rating'), ... agg.STDV('rating')]) >>> user_rating_stats +------+---------+-------+---------------+----------------+ | time | user_id | Count | Avg of rating | Stdv of rating | +------+---------+-------+---------------+----------------+ | 2006 | 61285 | 1 | 4.0 | 0.0 | | 2000 | 36078 | 1 | 4.0 | 0.0 | | 2003 | 47158 | 1 | 3.0 | 0.0 | | 2007 | 34446 | 1 | 3.0 | 0.0 | | 2010 | 47990 | 1 | 3.0 | 0.0 | | 2003 | 42120 | 1 | 5.0 | 0.0 | | 2007 | 44940 | 1 | 4.0 | 0.0 | | 2008 | 58240 | 1 | 4.0 | 0.0 | | 2002 | 102 | 1 | 1.0 | 0.0 | | 2009 | 52708 | 1 | 3.0 | 0.0 | | ... | ... | ... | ... | ... | +------+---------+-------+---------------+----------------+ [10000 rows x 5 columns] The groupby function can take a variable length list of aggregation specifiers so if we want the count and the 0.25 and 0.75 quantiles of ratings: >>> user_rating_stats = sf.groupby(['user_id', 'time'], agg.COUNT(), ... {'rating_quantiles': agg.QUANTILE('rating',[0.25, 0.75])}) >>> user_rating_stats +------+---------+-------+------------------------+ | time | user_id | Count | rating_quantiles | +------+---------+-------+------------------------+ | 2006 | 61285 | 1 | array('d', [4.0, 4.0]) | | 2000 | 36078 | 1 | array('d', [4.0, 4.0]) | | 2003 | 47158 | 1 | array('d', [3.0, 3.0]) | | 2007 | 34446 | 1 | array('d', [3.0, 3.0]) | | 2010 | 47990 | 1 | array('d', [3.0, 3.0]) | | 2003 | 42120 | 1 | array('d', [5.0, 5.0]) | | 2007 | 44940 | 1 | array('d', [4.0, 4.0]) | | 2008 | 58240 | 1 | array('d', [4.0, 4.0]) | | 2002 | 102 | 1 | array('d', [1.0, 1.0]) | | 2009 | 52708 | 1 | array('d', [3.0, 3.0]) | | ... | ... | ... | ... | +------+---------+-------+------------------------+ [10000 rows x 4 columns] To put all items a user rated into one list value by their star rating: >>> user_rating_stats = sf.groupby(["user_id", "rating"], ... {"rated_movie_ids":agg.CONCAT("movie_id")}) >>> user_rating_stats +--------+---------+----------------------+ | rating | user_id | rated_movie_ids | +--------+---------+----------------------+ | 3 | 31434 | array('d', [1663.0]) | | 5 | 25944 | array('d', [1663.0]) | | 4 | 38827 | array('d', [1663.0]) | | 4 | 51437 | array('d', [1663.0]) | | 4 | 42549 | array('d', [1663.0]) | | 4 | 49532 | array('d', [1663.0]) | | 3 | 26124 | array('d', [1663.0]) | | 4 | 46336 | array('d', [1663.0]) | | 4 | 52133 | array('d', [1663.0]) | | 5 | 62361 | array('d', [1663.0]) | | ... | ... | ... | +--------+---------+----------------------+ [9952 rows x 3 columns] To put all items and rating of a given user together into a dictionary value: >>> user_rating_stats = sf.groupby("user_id", ... {"movie_rating":agg.CONCAT("movie_id", "rating")}) >>> user_rating_stats +---------+--------------+ | user_id | movie_rating | +---------+--------------+ | 62361 | {1663: 5} | | 30727 | {1663: 4} | | 40111 | {1663: 2} | | 50513 | {1663: 4} | | 35140 | {1663: 4} | | 42352 | {1663: 5} | | 29667 | {1663: 4} | | 46242 | {1663: 5} | | 58310 | {1663: 2} | | 64614 | {1663: 2} | | ... | ... | +---------+--------------+ [9852 rows x 2 columns] """ # some basic checking first # make sure key_columns is a list if isinstance(key_columns, str): key_columns = [key_columns] # check that every column is a string, and is a valid column name my_column_names = self.column_names() key_columns_array = [] for column in key_columns: if not isinstance(column, str): raise TypeError("Column name must be a string") if column not in my_column_names: raise KeyError("Column " + column + " does not exist in SFrame") if self[column].dtype() == dict: raise TypeError("Cannot group on a dictionary column.") key_columns_array.append(column) group_output_columns = [] group_columns = [] group_ops = [] all_ops = [operations] + list(args) for op_entry in all_ops: # if it is not a dict, nor a list, it is just a single aggregator # element (probably COUNT). wrap it in a list so we can reuse the # list processing code operation = op_entry if not(isinstance(operation, list) or isinstance(operation, dict)): operation = [operation] if isinstance(operation, dict): # now sweep the dict and add to group_columns and group_ops for key in operation: val = operation[key] if type(val) is tuple: (op, column) = val if (op == '__builtin__avg__' and self[column[0]].dtype() is array.array): op = '__builtin__vector__avg__' if (op == '__builtin__sum__' and self[column[0]].dtype() is array.array): op = '__builtin__vector__sum__' if (op == '__builtin__argmax__' or op == '__builtin__argmin__') and ((type(column[0]) is tuple) != (type(key) is tuple)): raise TypeError("Output column(s) and aggregate column(s) for aggregate operation should be either all tuple or all string.") if (op == '__builtin__argmax__' or op == '__builtin__argmin__') and type(column[0]) is tuple: for (col,output) in zip(column[0],key): group_columns = group_columns + [[col,column[1]]] group_ops = group_ops + [op] group_output_columns = group_output_columns + [output] else: group_columns = group_columns + [column] group_ops = group_ops + [op] group_output_columns = group_output_columns + [key] if (op == '__builtin__concat__dict__'): key_column = column[0] key_column_type = self.select_column(key_column).dtype() if not key_column_type in (int, float, str): raise TypeError('CONCAT key column must be int, float or str type') elif val == aggregate.COUNT: group_output_columns = group_output_columns + [key] val = aggregate.COUNT() (op, column) = val group_columns = group_columns + [column] group_ops = group_ops + [op] else: raise TypeError("Unexpected type in aggregator definition of output column: " + key) elif isinstance(operation, list): # we will be using automatically defined column names for val in operation: if type(val) is tuple: (op, column) = val if (op == '__builtin__avg__' and self[column[0]].dtype() is array.array): op = '__builtin__vector__avg__' if (op == '__builtin__sum__' and self[column[0]].dtype() is array.array): op = '__builtin__vector__sum__' if (op == '__builtin__argmax__' or op == '__builtin__argmin__') and type(column[0]) is tuple: for col in column[0]: group_columns = group_columns + [[col,column[1]]] group_ops = group_ops + [op] group_output_columns = group_output_columns + [""] else: group_columns = group_columns + [column] group_ops = group_ops + [op] group_output_columns = group_output_columns + [""] if (op == '__builtin__concat__dict__'): key_column = column[0] key_column_type = self.select_column(key_column).dtype() if not key_column_type in (int, float, str): raise TypeError('CONCAT key column must be int, float or str type') elif val == aggregate.COUNT: group_output_columns = group_output_columns + [""] val = aggregate.COUNT() (op, column) = val group_columns = group_columns + [column] group_ops = group_ops + [op] else: raise TypeError("Unexpected type in aggregator definition.") # let's validate group_columns and group_ops are valid for (cols, op) in zip(group_columns, group_ops): for col in cols: if not isinstance(col, str): raise TypeError("Column name must be a string") if not isinstance(op, str): raise TypeError("Operation type not recognized.") if op is not aggregate.COUNT()[0]: for col in cols: if col not in my_column_names: raise KeyError("Column " + col + " does not exist in SFrame") with cython_context(): return SFrame(_proxy=self.__proxy__.groupby_aggregate(key_columns_array, group_columns, group_output_columns, group_ops)) def join(self, right, on=None, how='inner'): """ Merge two SFrames. Merges the current (left) SFrame with the given (right) SFrame using a SQL-style equi-join operation by columns. Parameters ---------- right : SFrame The SFrame to join. on : None | str | list | dict, optional The column name(s) representing the set of join keys. Each row that has the same value in this set of columns will be merged together. * If 'None' is given, join will use all columns that have the same name as the set of join keys. * If a str is given, this is interpreted as a join using one column, where both SFrames have the same column name. * If a list is given, this is interpreted as a join using one or more column names, where each column name given exists in both SFrames. * If a dict is given, each dict key is taken as a column name in the left SFrame, and each dict value is taken as the column name in right SFrame that will be joined together. e.g. {'left_col_name':'right_col_name'}. how : {'left', 'right', 'outer', 'inner'}, optional The type of join to perform. 'inner' is default. * inner: Equivalent to a SQL inner join. Result consists of the rows from the two frames whose join key values match exactly, merged together into one SFrame. * left: Equivalent to a SQL left outer join. Result is the union between the result of an inner join and the rest of the rows from the left SFrame, merged with missing values. * right: Equivalent to a SQL right outer join. Result is the union between the result of an inner join and the rest of the rows from the right SFrame, merged with missing values. * outer: Equivalent to a SQL full outer join. Result is the union between the result of a left outer join and a right outer join. Returns ------- out : SFrame Examples -------- >>> animals = graphlab.SFrame({'id': [1, 2, 3, 4], ... 'name': ['dog', 'cat', 'sheep', 'cow']}) >>> sounds = graphlab.SFrame({'id': [1, 3, 4, 5], ... 'sound': ['woof', 'baa', 'moo', 'oink']}) >>> animals.join(sounds, how='inner') +----+-------+-------+ | id | name | sound | +----+-------+-------+ | 1 | dog | woof | | 3 | sheep | baa | | 4 | cow | moo | +----+-------+-------+ [3 rows x 3 columns] >>> animals.join(sounds, on='id', how='left') +----+-------+-------+ | id | name | sound | +----+-------+-------+ | 1 | dog | woof | | 3 | sheep | baa | | 4 | cow | moo | | 2 | cat | None | +----+-------+-------+ [4 rows x 3 columns] >>> animals.join(sounds, on=['id'], how='right') +----+-------+-------+ | id | name | sound | +----+-------+-------+ | 1 | dog | woof | | 3 | sheep | baa | | 4 | cow | moo | | 5 | None | oink | +----+-------+-------+ [4 rows x 3 columns] >>> animals.join(sounds, on={'id':'id'}, how='outer') +----+-------+-------+ | id | name | sound | +----+-------+-------+ | 1 | dog | woof | | 3 | sheep | baa | | 4 | cow | moo | | 5 | None | oink | | 2 | cat | None | +----+-------+-------+ [5 rows x 3 columns] """ available_join_types = ['left','right','outer','inner'] if not isinstance(right, SFrame): raise TypeError("Can only join two SFrames") if how not in available_join_types: raise ValueError("Invalid join type") if (self.num_cols() <= 0) or (right.num_cols() <= 0): raise ValueError("Cannot join an SFrame with no columns.") join_keys = dict() if on is None: left_names = self.column_names() right_names = right.column_names() common_columns = [name for name in left_names if name in right_names] for name in common_columns: join_keys[name] = name elif type(on) is str: join_keys[on] = on elif type(on) is list: for name in on: if type(name) is not str: raise TypeError("Join keys must each be a str.") join_keys[name] = name elif type(on) is dict: join_keys = on else: raise TypeError("Must pass a str, list, or dict of join keys") with cython_context(): return SFrame(_proxy=self.__proxy__.join(right.__proxy__, how, join_keys)) def filter_by(self, values, column_name, exclude=False): """ Filter an SFrame by values inside an iterable object. Result is an SFrame that only includes (or excludes) the rows that have a column with the given ``column_name`` which holds one of the values in the given ``values`` :class:`~graphlab.SArray`. If ``values`` is not an SArray, we attempt to convert it to one before filtering. Parameters ---------- values : SArray | list | numpy.ndarray | pandas.Series | str The values to use to filter the SFrame. The resulting SFrame will only include rows that have one of these values in the given column. column_name : str The column of the SFrame to match with the given `values`. exclude : bool If True, the result SFrame will contain all rows EXCEPT those that have one of ``values`` in ``column_name``. Returns ------- out : SFrame The filtered SFrame. Examples -------- >>> sf = graphlab.SFrame({'id': [1, 2, 3, 4], ... 'animal_type': ['dog', 'cat', 'cow', 'horse'], ... 'name': ['bob', 'jim', 'jimbob', 'bobjim']}) >>> household_pets = ['cat', 'hamster', 'dog', 'fish', 'bird', 'snake'] >>> sf.filter_by(household_pets, 'animal_type') +-------------+----+------+ | animal_type | id | name | +-------------+----+------+ | dog | 1 | bob | | cat | 2 | jim | +-------------+----+------+ [2 rows x 3 columns] >>> sf.filter_by(household_pets, 'animal_type', exclude=True) +-------------+----+--------+ | animal_type | id | name | +-------------+----+--------+ | horse | 4 | bobjim | | cow | 3 | jimbob | +-------------+----+--------+ [2 rows x 3 columns] """ if type(column_name) is not str: raise TypeError("Must pass a str as column_name") existing_columns = self.column_names() if column_name not in existing_columns: raise KeyError("Column '" + column_name + "' not in SFrame.") if type(values) is not SArray: # If we were given a single element, try to put in list and convert # to SArray if not _is_non_string_iterable(values): values = [values] values = SArray(values) value_sf = SFrame() value_sf.add_column(values, column_name) existing_type = self.column_types()[self.column_names().index(column_name)] given_type = value_sf.column_types()[0] if given_type != existing_type: raise TypeError("Type of given values does not match type of column '" + column_name + "' in SFrame.") # Make sure the values list has unique values, or else join will not # filter. value_sf = value_sf.groupby(column_name, {}) with cython_context(): if exclude: id_name = "id" # Make sure this name is unique so we know what to remove in # the result while id_name in existing_columns: id_name += "1" value_sf = value_sf.add_row_number(id_name) tmp = SFrame(_proxy=self.__proxy__.join(value_sf.__proxy__, 'left', {column_name:column_name})) ret_sf = tmp[tmp[id_name] == None] del ret_sf[id_name] return ret_sf else: return SFrame(_proxy=self.__proxy__.join(value_sf.__proxy__, 'inner', {column_name:column_name})) def show(self, columns=None, view=None, x=None, y=None): """ show(columns=None, view=None, x=None, y=None) Visualize the SFrame with GraphLab Create :mod:`~graphlab.canvas`. This function starts Canvas if it is not already running. If the SFrame has already been plotted, this function will update the plot. Parameters ---------- view : str, optional The name of the SFrame view to show. Can be one of: - None: Use the default (depends on which Canvas target is set). - 'Table': Show a scrollable, tabular view of the data in the SFrame. - 'Summary': Show a list of columns with some summary statistics and plots for each column. - 'Scatter Plot': Show a scatter plot of two numeric columns. - 'Heat Map': Show a heat map of two numeric columns. - 'Bar Chart': Show a bar chart of one numeric and one categorical column. - 'BoxWhisker Plot': Show a box and whisker plot of one numeric and one categorical column. - 'Line Chart': Show a line chart of one numeric and one categorical column. x : str, optional The column to use for the X axis in a Scatter Plot, Heat Map, Bar Chart, or Line Chart view. Must be the name of one of the columns in this SFrame. For Scatter Plot and Heat Map, the column must be numeric (int or float). If not set, defaults to the first available valid column. y : str, optional The column to use for the Y axis in a Scatter Plot, Heat Map, Bar Chart, or Line Chart view. Must be the name of one of the numeric columns in this SFrame. If not set, defaults to the second available numeric column. Returns ------- view : graphlab.canvas.view.View An object representing the GraphLab Canvas view. See Also -------- canvas Examples -------- Suppose 'sf' is an SFrame, we can view it in GraphLab Canvas using: >>> sf.show() To choose a specific view of the SFrame: >>> sf.show(view="Summary") >>> sf.show(view="Table") >>> sf.show(view="Bar Chart", x="col1", y="col2") >>> sf.show(view="Line Chart", x="col1", y="col2") >>> sf.show(view="Scatter Plot", x="col1", y="col2") >>> sf.show(view="Heat Map", x="col1", y="col2") """ if columns is not None: __LOGGER__.warn("Column selection for SFrame.show is deprecated. To show only certain columns, use the sf[['column1', 'column2']] syntax or construct a new SFrame with the desired columns.") from ..visualization.show import show show(self, view=view, x=x, y=y) def pack_columns(self, columns=None, column_prefix=None, dtype=list, fill_na=None, remove_prefix=True, new_column_name=None): """ Pack columns of the current SFrame into one single column. The result is a new SFrame with the unaffected columns from the original SFrame plus the newly created column. The list of columns that are packed is chosen through either the ``columns`` or ``column_prefix`` parameter. Only one of the parameters is allowed to be provided. ``columns`` explicitly specifies the list of columns to pack, while ``column_prefix`` specifies that all columns that have the given prefix are to be packed. The type of the resulting column is decided by the ``dtype`` parameter. Allowed values for ``dtype`` are dict, array.array and list: - *dict*: pack to a dictionary SArray where column name becomes dictionary key and column value becomes dictionary value - *array.array*: pack all values from the packing columns into an array - *list*: pack all values from the packing columns into a list. Parameters ---------- columns : list[str], optional A list of column names to be packed. If omitted and `column_prefix` is not specified, all columns from current SFrame are packed. This parameter is mutually exclusive with the `column_prefix` parameter. column_prefix : str, optional Pack all columns with the given `column_prefix`. This parameter is mutually exclusive with the `columns` parameter. dtype : dict | array.array | list, optional The resulting packed column type. If not provided, dtype is list. fill_na : value, optional Value to fill into packed column if missing value is encountered. If packing to dictionary, `fill_na` is only applicable to dictionary values; missing keys are not replaced. remove_prefix : bool, optional If True and `column_prefix` is specified, the dictionary key will be constructed by removing the prefix from the column name. This option is only applicable when packing to dict type. new_column_name : str, optional Packed column name. If not given and `column_prefix` is given, then the prefix will be used as the new column name, otherwise name is generated automatically. Returns ------- out : SFrame An SFrame that contains columns that are not packed, plus the newly packed column. See Also -------- unpack Notes ----- - If packing to dictionary, missing key is always dropped. Missing values are dropped if fill_na is not provided, otherwise, missing value is replaced by 'fill_na'. If packing to list or array, missing values will be kept. If 'fill_na' is provided, the missing value is replaced with 'fill_na' value. Examples -------- Suppose 'sf' is an an SFrame that maintains business category information: >>> sf = graphlab.SFrame({'business': range(1, 5), ... 'category.retail': [1, None, 1, None], ... 'category.food': [1, 1, None, None], ... 'category.service': [None, 1, 1, None], ... 'category.shop': [1, 1, None, 1]}) >>> sf +----------+-----------------+---------------+------------------+---------------+ | business | category.retail | category.food | category.service | category.shop | +----------+-----------------+---------------+------------------+---------------+ | 1 | 1 | 1 | None | 1 | | 2 | None | 1 | 1 | 1 | | 3 | 1 | None | 1 | None | | 4 | None | 1 | None | 1 | +----------+-----------------+---------------+------------------+---------------+ [4 rows x 5 columns] To pack all category columns into a list: >>> sf.pack_columns(column_prefix='category') +----------+--------------------+ | business | X2 | +----------+--------------------+ | 1 | [1, 1, None, 1] | | 2 | [None, 1, 1, 1] | | 3 | [1, None, 1, None] | | 4 | [None, 1, None, 1] | +----------+--------------------+ [4 rows x 2 columns] To pack all category columns into a dictionary, with new column name: >>> sf.pack_columns(column_prefix='category', dtype=dict, ... new_column_name='category') +----------+--------------------------------+ | business | category | +----------+--------------------------------+ | 1 | {'food': 1, 'shop': 1, 're ... | | 2 | {'food': 1, 'shop': 1, 'se ... | | 3 | {'retail': 1, 'service': 1} | | 4 | {'food': 1, 'shop': 1} | +----------+--------------------------------+ [4 rows x 2 columns] To keep column prefix in the resulting dict key: >>> sf.pack_columns(column_prefix='category', dtype=dict, remove_prefix=False) +----------+--------------------------------+ | business | X2 | +----------+--------------------------------+ | 1 | {'category.retail': 1, 'ca ... | | 2 | {'category.food': 1, 'cate ... | | 3 | {'category.retail': 1, 'ca ... | | 4 | {'category.food': 1, 'cate ... | +----------+--------------------------------+ [4 rows x 2 columns] To explicitly pack a set of columns: >>> sf.pack_columns(columns = ['business', 'category.retail', 'category.food', 'category.service', 'category.shop']) +-----------------------+ | X1 | +-----------------------+ | [1, 1, 1, None, 1] | | [2, None, 1, 1, 1] | | [3, 1, None, 1, None] | | [4, None, 1, None, 1] | +-----------------------+ [4 rows x 1 columns] To pack all columns with name starting with 'category' into an array type, and with missing value replaced with 0: >>> sf.pack_columns(column_prefix="category", dtype=array.array, ... fill_na=0) +----------+--------------------------------+ | business | X2 | +----------+--------------------------------+ | 1 | array('d', [1.0, 1.0, 0.0, ... | | 2 | array('d', [0.0, 1.0, 1.0, ... | | 3 | array('d', [1.0, 0.0, 1.0, ... | | 4 | array('d', [0.0, 1.0, 0.0, ... | +----------+--------------------------------+ [4 rows x 2 columns] """ if columns != None and column_prefix != None: raise ValueError("'columns' and 'column_prefix' parameter cannot be given at the same time.") if new_column_name == None and column_prefix != None: new_column_name = column_prefix if column_prefix != None: if type(column_prefix) != str: raise TypeError("'column_prefix' must be a string") columns = [name for name in self.column_names() if name.startswith(column_prefix)] if len(columns) == 0: raise ValueError("There is no column starts with prefix '" + column_prefix + "'") elif columns == None: columns = self.column_names() else: if not _is_non_string_iterable(columns): raise TypeError("columns must be an iterable type") column_names = set(self.column_names()) for column in columns: if (column not in column_names): raise ValueError("Current SFrame has no column called '" + str(column) + "'.") # check duplicate names if len(set(columns)) != len(columns): raise ValueError("There is duplicate column names in columns parameter") if (dtype not in (dict, list, array.array)): raise ValueError("Resulting dtype has to be one of dict/array.array/list type") # fill_na value for array needs to be numeric if dtype == array.array: if (fill_na != None) and (type(fill_na) not in (int, float)): raise ValueError("fill_na value for array needs to be numeric type") # all columns have to be numeric type for column in columns: if self[column].dtype() not in (int, float): raise TypeError("Column '" + column + "' type is not numeric, cannot pack into array type") # generate dict key names if pack to dictionary # we try to be smart here # if all column names are like: a.b, a.c, a.d,... # we then use "b", "c", "d", etc as the dictionary key during packing if (dtype == dict) and (column_prefix != None) and (remove_prefix == True): size_prefix = len(column_prefix) first_char = set([c[size_prefix:size_prefix+1] for c in columns]) if ((len(first_char) == 1) and first_char.pop() in ['.','-','_']): dict_keys = [name[size_prefix+1:] for name in columns] else: dict_keys = [name[size_prefix:] for name in columns] else: dict_keys = columns rest_columns = [name for name in self.column_names() if name not in columns] if new_column_name != None: if type(new_column_name) != str: raise TypeError("'new_column_name' has to be a string") if new_column_name in rest_columns: raise KeyError("Current SFrame already contains a column name " + new_column_name) else: new_column_name = "" ret_sa = None with cython_context(): ret_sa = SArray(_proxy=self.__proxy__.pack_columns(columns, dict_keys, dtype, fill_na)) new_sf = self.select_columns(rest_columns) new_sf.add_column(ret_sa, new_column_name) return new_sf def split_datetime(self, expand_column, column_name_prefix=None, limit=None, tzone=False): """ Splits a datetime column of SFrame to multiple columns, with each value in a separate column. Returns a new SFrame with the expanded column replaced with a list of new columns. The expanded column must be of datetime type. For more details regarding name generation and other, refer to :py:func:`graphlab.SArray.split_datetime()` Parameters ---------- expand_column : str Name of the unpacked column. column_name_prefix : str, optional If provided, expanded column names would start with the given prefix. If not provided, the default value is the name of the expanded column. limit: list[str], optional Limits the set of datetime elements to expand. Possible values are 'year','month','day','hour','minute','second', 'weekday', 'isoweekday', 'tmweekday', and 'us'. If not provided, only ['year','month','day','hour','minute','second'] are expanded. tzone : bool, optional A boolean parameter that determines whether to show the timezone column or not. Defaults to False. Returns ------- out : SFrame A new SFrame that contains rest of columns from original SFrame with the given column replaced with a collection of expanded columns. Examples --------- >>> sf Columns: id int submission datetime Rows: 2 Data: +----+-------------------------------------------------+ | id | submission | +----+-------------------------------------------------+ | 1 | datetime(2011, 1, 21, 7, 17, 21, tzinfo=GMT(+1))| | 2 | datetime(2011, 1, 21, 5, 43, 21, tzinfo=GMT(+1))| +----+-------------------------------------------------+ >>> sf.split_datetime('submission',limit=['hour','minute']) Columns: id int submission.hour int submission.minute int Rows: 2 Data: +----+-----------------+-------------------+ | id | submission.hour | submission.minute | +----+-----------------+-------------------+ | 1 | 7 | 17 | | 2 | 5 | 43 | +----+-----------------+-------------------+ """ if expand_column not in self.column_names(): raise KeyError("column '" + expand_column + "' does not exist in current SFrame") if column_name_prefix == None: column_name_prefix = expand_column new_sf = self[expand_column].split_datetime(column_name_prefix, limit, tzone) # construct return SFrame, check if there is conflict rest_columns = [name for name in self.column_names() if name != expand_column] new_names = new_sf.column_names() while set(new_names).intersection(rest_columns): new_names = [name + ".1" for name in new_names] new_sf.rename(dict(list(zip(new_sf.column_names(), new_names)))) ret_sf = self.select_columns(rest_columns) ret_sf.add_columns(new_sf) return ret_sf def unpack(self, unpack_column, column_name_prefix=None, column_types=None, na_value=None, limit=None): """ Expand one column of this SFrame to multiple columns with each value in a separate column. Returns a new SFrame with the unpacked column replaced with a list of new columns. The column must be of list/array/dict type. For more details regarding name generation, missing value handling and other, refer to the SArray version of :py:func:`~graphlab.SArray.unpack()`. Parameters ---------- unpack_column : str Name of the unpacked column column_name_prefix : str, optional If provided, unpacked column names would start with the given prefix. If not provided, default value is the name of the unpacked column. column_types : [type], optional Column types for the unpacked columns. If not provided, column types are automatically inferred from first 100 rows. For array type, default column types are float. If provided, column_types also restricts how many columns to unpack. na_value : flexible_type, optional If provided, convert all values that are equal to "na_value" to missing value (None). limit : list[str] | list[int], optional Control unpacking only a subset of list/array/dict value. For dictionary SArray, `limit` is a list of dictionary keys to restrict. For list/array SArray, `limit` is a list of integers that are indexes into the list/array value. Returns ------- out : SFrame A new SFrame that contains rest of columns from original SFrame with the given column replaced with a collection of unpacked columns. See Also -------- pack_columns, SArray.unpack Examples --------- >>> sf = graphlab.SFrame({'id': [1,2,3], ... 'wc': [{'a': 1}, {'b': 2}, {'a': 1, 'b': 2}]}) +----+------------------+ | id | wc | +----+------------------+ | 1 | {'a': 1} | | 2 | {'b': 2} | | 3 | {'a': 1, 'b': 2} | +----+------------------+ [3 rows x 2 columns] >>> sf.unpack('wc') +----+------+------+ | id | wc.a | wc.b | +----+------+------+ | 1 | 1 | None | | 2 | None | 2 | | 3 | 1 | 2 | +----+------+------+ [3 rows x 3 columns] To not have prefix in the generated column name: >>> sf.unpack('wc', column_name_prefix="") +----+------+------+ | id | a | b | +----+------+------+ | 1 | 1 | None | | 2 | None | 2 | | 3 | 1 | 2 | +----+------+------+ [3 rows x 3 columns] To limit subset of keys to unpack: >>> sf.unpack('wc', limit=['b']) +----+------+ | id | wc.b | +----+------+ | 1 | None | | 2 | 2 | | 3 | 2 | +----+------+ [3 rows x 3 columns] To unpack an array column: >>> sf = graphlab.SFrame({'id': [1,2,3], ... 'friends': [array.array('d', [1.0, 2.0, 3.0]), ... array.array('d', [2.0, 3.0, 4.0]), ... array.array('d', [3.0, 4.0, 5.0])]}) >>> sf +----+-----------------------------+ | id | friends | +----+-----------------------------+ | 1 | array('d', [1.0, 2.0, 3.0]) | | 2 | array('d', [2.0, 3.0, 4.0]) | | 3 | array('d', [3.0, 4.0, 5.0]) | +----+-----------------------------+ [3 rows x 2 columns] >>> sf.unpack('friends') +----+-----------+-----------+-----------+ | id | friends.0 | friends.1 | friends.2 | +----+-----------+-----------+-----------+ | 1 | 1.0 | 2.0 | 3.0 | | 2 | 2.0 | 3.0 | 4.0 | | 3 | 3.0 | 4.0 | 5.0 | +----+-----------+-----------+-----------+ [3 rows x 4 columns] """ if unpack_column not in self.column_names(): raise KeyError("column '" + unpack_column + "' does not exist in current SFrame") if column_name_prefix == None: column_name_prefix = unpack_column new_sf = self[unpack_column].unpack(column_name_prefix, column_types, na_value, limit) # construct return SFrame, check if there is conflict rest_columns = [name for name in self.column_names() if name != unpack_column] new_names = new_sf.column_names() while set(new_names).intersection(rest_columns): new_names = [name + ".1" for name in new_names] new_sf.rename(dict(list(zip(new_sf.column_names(), new_names)))) ret_sf = self.select_columns(rest_columns) ret_sf.add_columns(new_sf) return ret_sf def stack(self, column_name, new_column_name=None, drop_na=False, new_column_type=None): """ Convert a "wide" column of an SFrame to one or two "tall" columns by stacking all values. The stack works only for columns of dict, list, or array type. If the column is dict type, two new columns are created as a result of stacking: one column holds the key and another column holds the value. The rest of the columns are repeated for each key/value pair. If the column is array or list type, one new column is created as a result of stacking. With each row holds one element of the array or list value, and the rest columns from the same original row repeated. The new SFrame includes the newly created column and all columns other than the one that is stacked. Parameters -------------- column_name : str The column to stack. This column must be of dict/list/array type new_column_name : str | list of str, optional The new column name(s). If original column is list/array type, new_column_name must a string. If original column is dict type, new_column_name must be a list of two strings. If not given, column names are generated automatically. drop_na : boolean, optional If True, missing values and empty list/array/dict are all dropped from the resulting column(s). If False, missing values are maintained in stacked column(s). new_column_type : type | list of types, optional The new column types. If original column is a list/array type new_column_type must be a single type, or a list of one type. If original column is of dict type, new_column_type must be a list of two types. If not provided, the types are automatically inferred from the first 100 values of the SFrame. Returns ------- out : SFrame A new SFrame that contains newly stacked column(s) plus columns in original SFrame other than the stacked column. See Also -------- unstack Examples --------- Suppose 'sf' is an SFrame that contains a column of dict type: >>> sf = graphlab.SFrame({'topic':[1,2,3,4], ... 'words': [{'a':3, 'cat':2}, ... {'a':1, 'the':2}, ... {'the':1, 'dog':3}, ... {}] ... }) +-------+----------------------+ | topic | words | +-------+----------------------+ | 1 | {'a': 3, 'cat': 2} | | 2 | {'a': 1, 'the': 2} | | 3 | {'the': 1, 'dog': 3} | | 4 | {} | +-------+----------------------+ [4 rows x 2 columns] Stack would stack all keys in one column and all values in another column: >>> sf.stack('words', new_column_name=['word', 'count']) +-------+------+-------+ | topic | word | count | +-------+------+-------+ | 1 | a | 3 | | 1 | cat | 2 | | 2 | a | 1 | | 2 | the | 2 | | 3 | the | 1 | | 3 | dog | 3 | | 4 | None | None | +-------+------+-------+ [7 rows x 3 columns] Observe that since topic 4 had no words, an empty row is inserted. To drop that row, set dropna=True in the parameters to stack. Suppose 'sf' is an SFrame that contains a user and his/her friends, where 'friends' columns is an array type. Stack on 'friends' column would create a user/friend list for each user/friend pair: >>> sf = graphlab.SFrame({'topic':[1,2,3], ... 'friends':[[2,3,4], [5,6], ... [4,5,10,None]] ... }) >>> sf +-------+------------------+ | topic | friends | +-------+------------------+ | 1 | [2, 3, 4] | | 2 | [5, 6] | | 3 | [4, 5, 10, None] | +----- -+------------------+ [3 rows x 2 columns] >>> sf.stack('friends', new_column_name='friend') +------+--------+ | user | friend | +------+--------+ | 1 | 2 | | 1 | 3 | | 1 | 4 | | 2 | 5 | | 2 | 6 | | 3 | 4 | | 3 | 5 | | 3 | 10 | | 3 | None | +------+--------+ [9 rows x 2 columns] """ # validate column_name column_name = str(column_name) if column_name not in self.column_names(): raise ValueError("Cannot find column '" + str(column_name) + "' in the SFrame.") stack_column_type = self[column_name].dtype() if (stack_column_type not in [dict, array.array, list]): raise TypeError("Stack is only supported for column of dict/list/array type.") # user defined types. do some checking if new_column_type != None: # if new_column_type is a single type, just make it a list of one type if type(new_column_type) is type: new_column_type = [new_column_type] if (stack_column_type in [list, array.array]) and len(new_column_type) != 1: raise ValueError("Expecting a single column type to unpack list or array columns") if (stack_column_type in [dict]) and len(new_column_type) != 2: raise ValueError("Expecting two column types to unpack a dict column") if (new_column_name != None): if stack_column_type == dict: if (type(new_column_name) is not list): raise TypeError("new_column_name has to be a list to stack dict type") elif (len(new_column_name) != 2): raise TypeError("new_column_name must have length of two") else: if (type(new_column_name) != str): raise TypeError("new_column_name has to be a str") new_column_name = [new_column_name] # check if the new column name conflicts with existing ones for name in new_column_name: if (name in self.column_names()) and (name != column_name): raise ValueError("Column with name '" + name + "' already exists, pick a new column name") else: if stack_column_type == dict: new_column_name = ["",""] else: new_column_name = [""] # infer column types head_row = SArray(self[column_name].head(100)).dropna() if (len(head_row) == 0): raise ValueError("Cannot infer column type because there is not enough rows to infer value") if new_column_type == None: # we have to perform type inference if stack_column_type == dict: # infer key/value type keys = []; values = [] for row in head_row: for val in row: keys.append(val) if val != None: values.append(row[val]) new_column_type = [ infer_type_of_list(keys), infer_type_of_list(values) ] else: values = [v for v in itertools.chain.from_iterable(head_row)] new_column_type = [infer_type_of_list(values)] with cython_context(): return SFrame(_proxy=self.__proxy__.stack(column_name, new_column_name, new_column_type, drop_na)) def unstack(self, column, new_column_name=None): """ Concatenate values from one or two columns into one column, grouping by all other columns. The resulting column could be of type list, array or dictionary. If ``column`` is a numeric column, the result will be of array.array type. If ``column`` is a non-numeric column, the new column will be of list type. If ``column`` is a list of two columns, the new column will be of dict type where the keys are taken from the first column in the list. Parameters ---------- column : str | [str, str] The column(s) that is(are) to be concatenated. If str, then collapsed column type is either array or list. If [str, str], then collapsed column type is dict new_column_name : str, optional New column name. If not given, a name is generated automatically. Returns ------- out : SFrame A new SFrame containing the grouped columns as well as the new column. See Also -------- stack : The inverse of unstack. groupby : ``unstack`` is a special version of ``groupby`` that uses the :mod:`~graphlab.aggregate.CONCAT` aggregator Notes ----- - There is no guarantee the resulting SFrame maintains the same order as the original SFrame. - Missing values are maintained during unstack. - When unstacking into a dictionary, if there is more than one instance of a given key for a particular group, an arbitrary value is selected. Examples -------- >>> sf = graphlab.SFrame({'count':[4, 2, 1, 1, 2, None], ... 'topic':['cat', 'cat', 'dog', 'elephant', 'elephant', 'fish'], ... 'word':['a', 'c', 'c', 'a', 'b', None]}) >>> sf.unstack(column=['word', 'count'], new_column_name='words') +----------+------------------+ | topic | words | +----------+------------------+ | elephant | {'a': 1, 'b': 2} | | dog | {'c': 1} | | cat | {'a': 4, 'c': 2} | | fish | None | +----------+------------------+ [4 rows x 2 columns] >>> sf = graphlab.SFrame({'friend': [2, 3, 4, 5, 6, 4, 5, 2, 3], ... 'user': [1, 1, 1, 2, 2, 2, 3, 4, 4]}) >>> sf.unstack('friend', new_column_name='friends') +------+-----------------------------+ | user | friends | +------+-----------------------------+ | 3 | array('d', [5.0]) | | 1 | array('d', [2.0, 4.0, 3.0]) | | 2 | array('d', [5.0, 6.0, 4.0]) | | 4 | array('d', [2.0, 3.0]) | +------+-----------------------------+ [4 rows x 2 columns] """ if (type(column) != str and len(column) != 2): raise TypeError("'column' parameter has to be either a string or a list of two strings.") with cython_context(): if type(column) == str: key_columns = [i for i in self.column_names() if i != column] if new_column_name != None: return self.groupby(key_columns, {new_column_name : aggregate.CONCAT(column)}) else: return self.groupby(key_columns, aggregate.CONCAT(column)) elif len(column) == 2: key_columns = [i for i in self.column_names() if i not in column] if new_column_name != None: return self.groupby(key_columns, {new_column_name: aggregate.CONCAT(column[0], column[1])}) else: return self.groupby(key_columns, aggregate.CONCAT(column[0], column[1])) def unique(self): """ Remove duplicate rows of the SFrame. Will not necessarily preserve the order of the given SFrame in the new SFrame. Returns ------- out : SFrame A new SFrame that contains the unique rows of the current SFrame. Raises ------ TypeError If any column in the SFrame is a dictionary type. See Also -------- SArray.unique Examples -------- >>> sf = graphlab.SFrame({'id':[1,2,3,3,4], 'value':[1,2,3,3,4]}) >>> sf +----+-------+ | id | value | +----+-------+ | 1 | 1 | | 2 | 2 | | 3 | 3 | | 3 | 3 | | 4 | 4 | +----+-------+ [5 rows x 2 columns] >>> sf.unique() +----+-------+ | id | value | +----+-------+ | 2 | 2 | | 4 | 4 | | 3 | 3 | | 1 | 1 | +----+-------+ [4 rows x 2 columns] """ return self.groupby(self.column_names(),{}) def sort(self, sort_columns, ascending=True): """ Sort current SFrame by the given columns, using the given sort order. Only columns that are type of str, int and float can be sorted. Parameters ---------- sort_columns : str | list of str | list of (str, bool) pairs Names of columns to be sorted. The result will be sorted first by first column, followed by second column, and so on. All columns will be sorted in the same order as governed by the `ascending` parameter. To control the sort ordering for each column individually, `sort_columns` must be a list of (str, bool) pairs. Given this case, the first value is the column name and the second value is a boolean indicating whether the sort order is ascending. ascending : bool, optional Sort all columns in the given order. Returns ------- out : SFrame A new SFrame that is sorted according to given sort criteria See Also -------- topk Examples -------- Suppose 'sf' is an sframe that has three columns 'a', 'b', 'c'. To sort by column 'a', ascending >>> sf = graphlab.SFrame({'a':[1,3,2,1], ... 'b':['a','c','b','b'], ... 'c':['x','y','z','y']}) >>> sf +---+---+---+ | a | b | c | +---+---+---+ | 1 | a | x | | 3 | c | y | | 2 | b | z | | 1 | b | y | +---+---+---+ [4 rows x 3 columns] >>> sf.sort('a') +---+---+---+ | a | b | c | +---+---+---+ | 1 | a | x | | 1 | b | y | | 2 | b | z | | 3 | c | y | +---+---+---+ [4 rows x 3 columns] To sort by column 'a', descending >>> sf.sort('a', ascending = False) +---+---+---+ | a | b | c | +---+---+---+ | 3 | c | y | | 2 | b | z | | 1 | a | x | | 1 | b | y | +---+---+---+ [4 rows x 3 columns] To sort by column 'a' and 'b', all ascending >>> sf.sort(['a', 'b']) +---+---+---+ | a | b | c | +---+---+---+ | 1 | a | x | | 1 | b | y | | 2 | b | z | | 3 | c | y | +---+---+---+ [4 rows x 3 columns] To sort by column 'a' ascending, and then by column 'c' descending >>> sf.sort([('a', True), ('c', False)]) +---+---+---+ | a | b | c | +---+---+---+ | 1 | b | y | | 1 | a | x | | 2 | b | z | | 3 | c | y | +---+---+---+ [4 rows x 3 columns] """ sort_column_names = [] sort_column_orders = [] # validate sort_columns if (type(sort_columns) == str): sort_column_names = [sort_columns] elif (type(sort_columns) == list): if (len(sort_columns) == 0): raise ValueError("Please provide at least one column to sort") first_param_types = set([type(i) for i in sort_columns]) if (len(first_param_types) != 1): raise ValueError("sort_columns element are not of the same type") first_param_type = first_param_types.pop() if (first_param_type == tuple): sort_column_names = [i[0] for i in sort_columns] sort_column_orders = [i[1] for i in sort_columns] elif(first_param_type == str): sort_column_names = sort_columns else: raise TypeError("sort_columns type is not supported") else: raise TypeError("sort_columns type is not correct. Supported types are str, list of str or list of (str,bool) pair.") # use the second parameter if the sort order is not given if (len(sort_column_orders) == 0): sort_column_orders = [ascending for i in sort_column_names] # make sure all column exists my_column_names = set(self.column_names()) for column in sort_column_names: if (type(column) != str): raise TypeError("Only string parameter can be passed in as column names") if (column not in my_column_names): raise ValueError("SFrame has no column named: '" + str(column) + "'") if (self[column].dtype() not in (str, int, float,datetime.datetime)): raise TypeError("Only columns of type (str, int, float) can be sorted") with cython_context(): return SFrame(_proxy=self.__proxy__.sort(sort_column_names, sort_column_orders)) def dropna(self, columns=None, how='any'): """ Remove missing values from an SFrame. A missing value is either ``None`` or ``NaN``. If ``how`` is 'any', a row will be removed if any of the columns in the ``columns`` parameter contains at least one missing value. If ``how`` is 'all', a row will be removed if all of the columns in the ``columns`` parameter are missing values. If the ``columns`` parameter is not specified, the default is to consider all columns when searching for missing values. Parameters ---------- columns : list or str, optional The columns to use when looking for missing values. By default, all columns are used. how : {'any', 'all'}, optional Specifies whether a row should be dropped if at least one column has missing values, or if all columns have missing values. 'any' is default. Returns ------- out : SFrame SFrame with missing values removed (according to the given rules). See Also -------- dropna_split : Drops missing rows from the SFrame and returns them. Examples -------- Drop all missing values. >>> sf = graphlab.SFrame({'a': [1, None, None], 'b': ['a', 'b', None]}) >>> sf.dropna() +---+---+ | a | b | +---+---+ | 1 | a | +---+---+ [1 rows x 2 columns] Drop rows where every value is missing. >>> sf.dropna(any="all") +------+---+ | a | b | +------+---+ | 1 | a | | None | b | +------+---+ [2 rows x 2 columns] Drop rows where column 'a' has a missing value. >>> sf.dropna('a', any="all") +---+---+ | a | b | +---+---+ | 1 | a | +---+---+ [1 rows x 2 columns] """ # If the user gives me an empty list (the indicator to use all columns) # NA values being dropped would not be the expected behavior. This # is a NOOP, so let's not bother the server if type(columns) is list and len(columns) == 0: return SFrame(_proxy=self.__proxy__) (columns, all_behavior) = self.__dropna_errchk(columns, how) with cython_context(): return SFrame(_proxy=self.__proxy__.drop_missing_values(columns, all_behavior, False)) def dropna_split(self, columns=None, how='any'): """ Split rows with missing values from this SFrame. This function has the same functionality as :py:func:`~graphlab.SFrame.dropna`, but returns a tuple of two SFrames. The first item is the expected output from :py:func:`~graphlab.SFrame.dropna`, and the second item contains all the rows filtered out by the `dropna` algorithm. Parameters ---------- columns : list or str, optional The columns to use when looking for missing values. By default, all columns are used. how : {'any', 'all'}, optional Specifies whether a row should be dropped if at least one column has missing values, or if all columns have missing values. 'any' is default. Returns ------- out : (SFrame, SFrame) (SFrame with missing values removed, SFrame with the removed missing values) See Also -------- dropna Examples -------- >>> sf = graphlab.SFrame({'a': [1, None, None], 'b': ['a', 'b', None]}) >>> good, bad = sf.dropna_split() >>> good +---+---+ | a | b | +---+---+ | 1 | a | +---+---+ [1 rows x 2 columns] >>> bad +------+------+ | a | b | +------+------+ | None | b | | None | None | +------+------+ [2 rows x 2 columns] """ # If the user gives me an empty list (the indicator to use all columns) # NA values being dropped would not be the expected behavior. This # is a NOOP, so let's not bother the server if type(columns) is list and len(columns) == 0: return (SFrame(_proxy=self.__proxy__), SFrame()) (columns, all_behavior) = self.__dropna_errchk(columns, how) sframe_tuple = self.__proxy__.drop_missing_values(columns, all_behavior, True) if len(sframe_tuple) != 2: raise RuntimeError("Did not return two SFrames!") with cython_context(): return (SFrame(_proxy=sframe_tuple[0]), SFrame(_proxy=sframe_tuple[1])) def __dropna_errchk(self, columns, how): if columns is None: # Default behavior is to consider every column, specified to # the server by an empty list (to avoid sending all the column # in this case, since it is the most common) columns = list() elif type(columns) is str: columns = [columns] elif type(columns) is not list: raise TypeError("Must give columns as a list, str, or 'None'") else: # Verify that we are only passing strings in our list list_types = set([type(i) for i in columns]) if (str not in list_types) or (len(list_types) > 1): raise TypeError("All columns must be of 'str' type") if how not in ['any','all']: raise ValueError("Must specify 'any' or 'all'") if how == 'all': all_behavior = True else: all_behavior = False return (columns, all_behavior) def fillna(self, column, value): """ Fill all missing values with a given value in a given column. If the ``value`` is not the same type as the values in ``column``, this method attempts to convert the value to the original column's type. If this fails, an error is raised. Parameters ---------- column : str The name of the column to modify. value : type convertible to SArray's type The value used to replace all missing values. Returns ------- out : SFrame A new SFrame with the specified value in place of missing values. See Also -------- dropna Examples -------- >>> sf = graphlab.SFrame({'a':[1, None, None], ... 'b':['13.1', '17.2', None]}) >>> sf = sf.fillna('a', 0) >>> sf +---+------+ | a | b | +---+------+ | 1 | 13.1 | | 0 | 17.2 | | 0 | None | +---+------+ [3 rows x 2 columns] """ # Normal error checking if type(column) is not str: raise TypeError("Must give column name as a str") ret = self[self.column_names()] ret[column] = ret[column].fillna(value) return ret def add_row_number(self, column_name='id', start=0): """ Returns a new SFrame with a new column that numbers each row sequentially. By default the count starts at 0, but this can be changed to a positive or negative number. The new column will be named with the given column name. An error will be raised if the given column name already exists in the SFrame. Parameters ---------- column_name : str, optional The name of the new column that will hold the row numbers. start : int, optional The number used to start the row number count. Returns ------- out : SFrame The new SFrame with a column name Notes ----- The range of numbers is constrained by a signed 64-bit integer, so beware of overflow if you think the results in the row number column will be greater than 9 quintillion. Examples -------- >>> sf = graphlab.SFrame({'a': [1, None, None], 'b': ['a', 'b', None]}) >>> sf.add_row_number() +----+------+------+ | id | a | b | +----+------+------+ | 0 | 1 | a | | 1 | None | b | | 2 | None | None | +----+------+------+ [3 rows x 3 columns] """ if type(column_name) is not str: raise TypeError("Must give column_name as strs") if type(start) is not int: raise TypeError("Must give start as int") if column_name in self.column_names(): raise RuntimeError("Column '" + column_name + "' already exists in the current SFrame") the_col = _create_sequential_sarray(self.num_rows(), start) # Make sure the row number column is the first column new_sf = SFrame() new_sf.add_column(the_col, column_name) new_sf.add_columns(self) return new_sf def _group(self, key_columns): """ Left undocumented intentionally. """ gsf = GroupedSFrame(self, key_columns) return gsf @property def shape(self): """ The shape of the SFrame, in a tuple. The first entry is the number of rows, the second is the number of columns. Examples -------- >>> sf = graphlab.SFrame({'id':[1,2,3], 'val':['A','B','C']}) >>> sf.shape (3, 2) """ return (self.num_rows(), self.num_cols()) @property def __proxy__(self): return self._proxy @__proxy__.setter def __proxy__(self, value): assert type(value) is UnitySFrameProxy self._cache = None self._proxy = value self._cache = None
bsd-3-clause
heyigor/aubio
python/demos/demo_mfcc.py
7
1722
#! /usr/bin/env python import sys from aubio import source, pvoc, mfcc from numpy import array, vstack, zeros win_s = 512 # fft size hop_s = win_s / 4 # hop size n_filters = 40 n_coeffs = 13 samplerate = 44100 if len(sys.argv) < 2: print "Usage: %s <source_filename>" % sys.argv[0] sys.exit(1) source_filename = sys.argv[1] samplerate = 0 if len( sys.argv ) > 2: samplerate = int(sys.argv[2]) s = source(source_filename, samplerate, hop_s) samplerate = s.samplerate p = pvoc(win_s, hop_s) m = mfcc(win_s, n_filters, n_coeffs, samplerate) desc = [] tdesc = [] mfccs = zeros([13,]) frames_read = 0 while True: samples, read = s() spec = p(samples) mfcc_out = m(spec) mfccs = vstack((mfccs, mfcc_out)) frames_read += read if read < hop_s: break # do plotting from numpy import arange from demo_waveform_plot import get_waveform_plot from demo_waveform_plot import set_xlabels_sample2time import matplotlib.pyplot as plt fig = plt.figure() plt.rc('lines',linewidth='.8') wave = plt.axes([0.1, 0.75, 0.8, 0.19]) get_waveform_plot( source_filename, samplerate, block_size = hop_s, ax = wave) wave.xaxis.set_visible(False) wave.yaxis.set_visible(False) all_times = arange(mfccs.shape[0]) * hop_s n_coeffs = mfccs.shape[1] for i in range(n_coeffs): ax = plt.axes ( [0.1, 0.75 - ((i+1) * 0.65 / n_coeffs), 0.8, 0.65 / n_coeffs], sharex = wave ) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) ax.plot(all_times, mfccs.T[i]) # add time to the last axis set_xlabels_sample2time( ax, frames_read, samplerate) #plt.ylabel('spectral descriptor value') ax.xaxis.set_visible(True) wave.set_title('MFCC for %s' % source_filename) plt.show()
gpl-3.0
CaymanUnterborn/burnman
burnman/tools.py
3
28641
# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences # Copyright (C) 2012 - 2017 by the BurnMan team, released under the GNU # GPL v2 or later. from __future__ import absolute_import from __future__ import print_function import operator import bisect import os import pkgutil import numpy as np from scipy.optimize import fsolve, curve_fit from scipy.ndimage.filters import gaussian_filter from scipy.interpolate import interp2d from collections import Counter import itertools from . import constants import itertools def copy_documentation(copy_from): """ Decorator @copy_documentation(another_function) will copy the documentation found in a different function (for example from a base class). The docstring applied to some function a() will be :: (copied from BaseClass.some_function): <documentation from BaseClass.some_function> <optionally the documentation found in a()> """ def mydecorator(func): def wrapper(*args): return func(*args) old = "" if func.__doc__: old = "\n" + func.__doc__ copied_from = "" if hasattr(copy_from, "__name__"): copied_from = "(copied from " + copy_from.__name__ + "):\n" wrapper.__doc__ = copied_from + copy_from.__doc__ + old wrapper.__name__ = func.__name__ return wrapper return mydecorator def flatten(l): return flatten(l[0]) + (flatten(l[1:]) if len(l) > 1 else []) if type(l) is list or type(l) is np.ndarray else [l] def round_to_n(x, xerr, n): return round(x, -int(np.floor(np.log10(np.abs(xerr)))) + (n - 1)) def unit_normalize(a, order=2, axis=-1): """ Calculates the L2 normalized array of numpy array a of a given order and along a given axis. """ l2 = np.atleast_1d(np.apply_along_axis(np.linalg.norm, axis, a, order)) l2[l2==0] = 1 return a / np.expand_dims(l2, axis)[0][0] def pretty_print_values(popt, pcov, params): """ Takes a numpy array of parameters, the corresponding covariance matrix and a set of parameter names and prints the parameters and principal 1-s.d.uncertainties (np.sqrt(pcov[i][i])) in a nice text based format. """ for i, p in enumerate(params): p_rnd = round_to_n(popt[i], np.sqrt(pcov[i][i]), 1) c_rnd = round_to_n(np.sqrt(pcov[i][i]), np.sqrt(pcov[i][i]), 1) if p_rnd != 0.: p_expnt = np.floor(np.log10(np.abs(p_rnd))) else: p_expnt = 0. scale = np.power(10., p_expnt) nd = p_expnt - np.floor(np.log10(np.abs(c_rnd))) print ('{0:s}: ({1:{4}{5}f} +/- {2:{4}{5}f}) x {3:.0e}'.format(p, p_rnd/scale, c_rnd/scale, scale, 0, (nd)/10.)) def pretty_print_table(table, use_tabs=False): """ Takes a 2d table and prints it in a nice text based format. If use_tabs=True then only \t is used as a separator. This is useful for importing the data into other apps (Excel, ...). The default is to pad the columns with spaces to make them look neat. The first column is left aligned, while the remainder is right aligned. """ if use_tabs: for r in table: print("\t".join(r).replace("_", "\_")) return def col_width(table, colidx): return max([len(str(row[colidx])) for row in table]) # create a format string with the first column left aligned, the others right # example: {:<27}{:>11}{:>6}{:>8} frmt = "".join( [('{:<' if i == 0 else '{:>') + str(1 + col_width(table, i)) + '}' for i in range(len(table[0]))]) for r in table: print(frmt.format(*r)) def pretty_plot(): """ Makes pretty plots. Overwrites the matplotlib default settings to allow for better fonts. Slows down plotting """ import matplotlib.pyplot as plt plt.rc('text', usetex=True) plt.rcParams['text.latex.preamble'] = '\\usepackage{relsize}' plt.rc('font', family='sanserif') def sort_table(table, col=0): """ Sort the table according to the column number """ return sorted(table, key=operator.itemgetter(col)) def float_eq(a, b): """ Test if two floats are almost equal to each other """ return abs(a - b) < 1e-10 * max(1e-5, abs(a), abs(b)) def linear_interpol(x, x1, x2, y1, y2): """ Linearly interpolate to point x, between the points (x1,y1), (x2,y2) """ assert(x1 <= x) assert(x2 >= x) assert(x1 <= x2) alpha = (x - x1) / (x2 - x1) return (1. - alpha) * y1 + alpha * y2 def read_table(filename): datastream = pkgutil.get_data('burnman', 'data/' + filename) datalines = [line.strip() for line in datastream.decode('ascii').split('\n') if line.strip()] table = [] for line in datalines: if (line[0] != '#'): numbers = np.fromstring(line, sep=' ') table.append(numbers) return np.array(table) def array_from_file(filename): """ Generic function to read a file containing floats and commented lines into a 2D numpy array. Commented lines are prefixed by the characters # or %. """ f = open(filename, 'r') data = [] datastream = f.read() f.close() datalines = [line.strip().split() for line in datastream.split('\n') if line.strip()] for line in datalines: if line[0] != "#" and line[0] != "%": data.append(map(float, line)) data = np.array(zip(*data)) return data def cut_table(table, min_value, max_value): tablen = [] for i in range(min_value, max_value, 1): tablen.append(table[i, :]) return tablen def lookup_and_interpolate(table_x, table_y, x_value): idx = bisect.bisect_left(table_x, x_value) - 1 if (idx < 0): return table_y[0] elif (idx < len(table_x) - 1): return linear_interpol(x_value, table_x[idx], table_x[idx + 1], table_y[idx], table_y[idx + 1]) else: return table_y[idx] def molar_volume_from_unit_cell_volume(unit_cell_v, z): """ Converts a unit cell volume from Angstroms^3 per unitcell, to m^3/mol. Parameters ---------- unit_cell_v : float Unit cell volumes [A^3/unit cell] z : float Number of formula units per unit cell Returns ------- V : float Volume [m^3/mol] """ V = unit_cell_v * constants.Avogadro / 1.e30 / z return V def equilibrium_pressure(minerals, stoichiometry, temperature, pressure_initial_guess=1.e5): """ Given a list of minerals, their reaction stoichiometries and a temperature of interest, compute the equilibrium pressure of the reaction. Parameters ---------- minerals : list of minerals List of minerals involved in the reaction. stoichiometry : list of floats Reaction stoichiometry for the minerals provided. Reactants and products should have the opposite signs [mol] temperature : float Temperature of interest [K] pressure_initial_guess : optional float Initial pressure guess [Pa] Returns ------- pressure : float The equilibrium pressure of the reaction [Pa] """ def eqm(P, T): gibbs = 0. for i, mineral in enumerate(minerals): mineral.set_state(P[0], T) gibbs = gibbs + mineral.gibbs * stoichiometry[i] return gibbs pressure = fsolve(eqm, [pressure_initial_guess], args=(temperature))[0] return pressure def equilibrium_temperature(minerals, stoichiometry, pressure, temperature_initial_guess=1000.): """ Given a list of minerals, their reaction stoichiometries and a pressure of interest, compute the equilibrium temperature of the reaction. Parameters ---------- minerals : list of minerals List of minerals involved in the reaction. stoichiometry : list of floats Reaction stoichiometry for the minerals provided. Reactants and products should have the opposite signs [mol] pressure : float Pressure of interest [Pa] temperature_initial_guess : optional float Initial temperature guess [K] Returns ------- temperature : float The equilibrium temperature of the reaction [K] """ def eqm(T, P): gibbs = 0. for i, mineral in enumerate(minerals): mineral.set_state(P, T[0]) gibbs = gibbs + mineral.gibbs * stoichiometry[i] return gibbs temperature = fsolve(eqm, [temperature_initial_guess], args=(pressure))[0] return temperature def invariant_point(minerals_r1, stoichiometry_r1, minerals_r2, stoichiometry_r2, pressure_temperature_initial_guess=[1.e9, 1000.]): """ Given a list of minerals, their reaction stoichiometries and a pressure of interest, compute the equilibrium temperature of the reaction. Parameters ---------- minerals : list of minerals List of minerals involved in the reaction. stoichiometry : list of floats Reaction stoichiometry for the minerals provided. Reactants and products should have the opposite signs [mol] pressure : float Pressure of interest [Pa] temperature_initial_guess : optional float Initial temperature guess [K] Returns ------- temperature : float The equilibrium temperature of the reaction [K] """ def eqm(PT): P, T = PT gibbs_r1 = 0. for i, mineral in enumerate(minerals_r1): mineral.set_state(P, T) gibbs_r1 = gibbs_r1 + mineral.gibbs * stoichiometry_r1[i] gibbs_r2 = 0. for i, mineral in enumerate(minerals_r2): mineral.set_state(P, T) gibbs_r2 = gibbs_r2 + mineral.gibbs * stoichiometry_r2[i] return [gibbs_r1, gibbs_r2] pressure, temperature = fsolve(eqm, pressure_temperature_initial_guess) return pressure, temperature def hugoniot(mineral, P_ref, T_ref, pressures, reference_mineral=None): """ Calculates the temperatures (and volumes) along a Hugoniot as a function of pressure according to the Hugoniot equation U2-U1 = 0.5*(p2 - p1)(V1 - V2) where U and V are the internal energies and volumes (mass or molar) and U = F + TS Parameters ---------- mineral : mineral Mineral for which the Hugoniot is to be calculated. P_ref : float Reference pressure [Pa] T_ref : float Reference temperature [K] pressures : numpy array of floats Set of pressures [Pa] for which the Hugoniot temperature and volume should be calculated reference_mineral : mineral Mineral which is stable at the reference conditions Provides an alternative U_0 and V_0 when the reference mineral transforms to the mineral of interest at some (unspecified) pressure. Returns ------- temperatures : numpy array of floats The Hugoniot temperatures at pressure volumes : numpy array of floats The Hugoniot volumes at pressure """ def Ediff(T, mineral, P, P_ref, U_ref, V_ref): mineral.set_state(P, T[0]) U = mineral.helmholtz + T[0] * mineral.S V = mineral.V return (U - U_ref) - 0.5 * (P - P_ref) * (V_ref - V) if reference_mineral is None: reference_mineral = mineral reference_mineral.set_state(P_ref, T_ref) U_ref = reference_mineral.helmholtz + T_ref * reference_mineral.S V_ref = reference_mineral.V temperatures = np.empty_like(pressures) volumes = np.empty_like(pressures) for i, P in enumerate(pressures): temperatures[i] = fsolve( Ediff, [T_ref], args=(mineral, P, P_ref, U_ref, V_ref))[0] volumes[i] = mineral.V return temperatures, volumes def convert_fractions(composite, phase_fractions, input_type, output_type): """ Takes a composite with a set of user defined molar, volume or mass fractions (which do not have to be the fractions currently associated with the composite) and converts the fractions to molar, mass or volume. Conversions to and from mass require a molar mass to be defined for all phases. Conversions to and from volume require set_state to have been called for the composite. Parameters ---------- composite : Composite Composite for which fractions are to be defined. phase_fractions : list of floats List of input phase fractions (of type input_type) input_type : string Input fraction type: 'molar', 'mass' or 'volume' output_type : string Output fraction type: 'molar', 'mass' or 'volume' Returns ------- output_fractions : list of floats List of output phase fractions (of type output_type) """ if input_type == 'volume' or output_type == 'volume': if composite.temperature == None: raise Exception( composite.to_string() + ".set_state(P, T) has not been called, so volume fractions are currently undefined. Exiting.") if input_type == 'molar': molar_fractions = phase_fractions if input_type == 'volume': total_moles = sum( volume_fraction / phase.molar_volume for volume_fraction, phase in zip(phase_fractions, composite.phases)) molar_fractions = [volume_fraction / (phase.molar_volume * total_moles) for volume_fraction, phase in zip(phase_fractions, composite.phases)] if input_type == 'mass': total_moles = sum(mass_fraction / phase.molar_mass for mass_fraction, phase in zip(phase_fractions, composite.phases)) molar_fractions = [mass_fraction / (phase.molar_mass * total_moles) for mass_fraction, phase in zip(phase_fractions, composite.phases)] if output_type == 'volume': total_volume = sum( molar_fraction * phase.molar_volume for molar_fraction, phase in zip(molar_fractions, composite.phases)) output_fractions = [molar_fraction * phase.molar_volume / total_volume for molar_fraction, phase in zip(molar_fractions, composite.phases)] elif output_type == 'mass': total_mass = sum(molar_fraction * phase.molar_mass for molar_fraction, phase in zip(molar_fractions, composite.phases)) output_fractions = [molar_fraction * phase.molar_mass / total_mass for molar_fraction, phase in zip(molar_fractions, composite.phases)] elif output_type == 'molar': output_fractions = molar_fractions return output_fractions def bracket(fn, x0, dx, args=(), ratio=1.618, maxiter=100): """ Given a function and a starting guess, find two inputs for the function that bracket a root. Parameters ---------- fn : function The function to bracket x0 : float The starting guess dx : float Small step for starting the search args : parameter list Additional arguments to give to fn ratio : The step size increases by this ratio every step in the search. Defaults to the golden ratio. maxiter : int The maximum number of steps before giving up. Returns ------- xa, xb, fa, fb: floats xa and xb are the inputs which bracket a root of fn. fa and fb are the values of the function at those points. If the bracket function takes more than maxiter steps, it raises a ValueError. """ niter = 0 dx = np.abs(dx) assert(ratio > 1.0) # Get the starting positions f0 = fn(x0, *args) x_left = x0 - dx x_right = x0 + dx f_left = fn(x_left, *args) f_right = fn(x_right, *args) # Overshot zero, try making dx smaller if (f0 - f_left) * (f_right - f0) < 0.: while (f0 - f_left) * (f_right - f0) < 0. and dx > np.finfo('float').eps and niter < maxiter: dx /= ratio x_left = x0 - dx x_right = x0 + dx f_left = fn(x_left, *args) f_right = fn(x_right, *args) niter += 1 if niter == maxiter: # Couldn't find something with same slope in both directions raise ValueError('Cannot find zero.') niter = 0 slope = f_right - f0 if slope > 0. and f0 > 0.: # Walk left dx = -dx x1 = x_left f1 = f_left elif slope > 0. and f0 < 0.: # Walk right x1 = x_right f1 = f_right elif slope < 0. and f0 > 0: # Walk right x1 = x_right f1 = f_right else: # Walk left dx = -dx x1 = x_left f1 = f_left # Do the walking while f0 * f1 > 0. and niter < maxiter: dx *= ratio xnew = x1 + dx fnew = fn(xnew, *args) x0 = x1 f0 = f1 x1 = xnew f1 = fnew niter += 1 if f0 * f1 > 0.: raise ValueError('Cannot find zero.') else: return x0, x1, f0, f1 def check_eos_consistency(m, P=1.e9, T=300., tol=1.e-4, verbose=False): """ Compute numerical derivatives of the gibbs free energy of a mineral under given conditions, and check these values against those provided analytically by the equation of state Parameters ---------- m : mineral The mineral for which the equation of state is to be checked for consistency P : float The pressure at which to check consistency T : float The temperature at which to check consistency tol : float The fractional tolerance for each of the checks verbose : boolean Decide whether to print information about each check Returns ------- consistency: boolean If all checks pass, returns True """ dT = 1. dP = 1000. m.set_state(P, T) G0 = m.gibbs S0 = m.S V0 = m.V expr = ['G = F + PV', 'G = H - TS', 'G = E - TS + PV'] eq = [[m.gibbs, (m.helmholtz + P*m.V)], [m.gibbs, (m.H - T*m.S)], [m.gibbs, (m.internal_energy - T*m.S + P*m.V)]] m.set_state(P, T + dT) G1 = m.gibbs S1 = m.S V1 = m.V m.set_state(P + dP, T) G2 = m.gibbs V2 = m.V # T derivatives m.set_state(P, T + 0.5*dT) expr.extend(['S = -dG/dT', 'alpha = 1/V dV/dT', 'C_p = T dS/dT']) eq.extend([[m.S, -(G1 - G0)/dT], [m.alpha, (V1 - V0)/dT/m.V], [m.heat_capacity_p, (T + 0.5*dT)*(S1 - S0)/dT]]) # P derivatives m.set_state(P + 0.5*dP, T) expr.extend(['V = dG/dP', 'K_T = -V dP/dV']) eq.extend([[m.V, (G2 - G0)/dP], [m.K_T, -0.5*(V2 + V0)*dP/(V2 - V0)]]) expr.extend(['C_v = Cp - alpha^2*K_T*V*T', 'K_S = K_T*Cp/Cv', 'gr = alpha*K_T*V/Cv']) eq.extend([[m.heat_capacity_v, m.heat_capacity_p - m.alpha*m.alpha*m.K_T*m.V*T], [m.K_S, m.K_T*m.heat_capacity_p/m.heat_capacity_v], [m.gr, m.alpha*m.K_T*m.V/m.heat_capacity_v]]) expr.extend(['Vphi = np.sqrt(K_S/rho)', 'Vp = np.sqrt((K_S + 4G/3)/rho)', 'Vs = np.sqrt(G_S/rho)']) eq.extend([[m.bulk_sound_velocity, np.sqrt(m.K_S/m.rho)], [m.p_wave_velocity, np.sqrt((m.K_S + 4.*m.G/3.)/m.rho)], [m.shear_wave_velocity, np.sqrt(m.G/m.rho)]]) consistencies = [np.abs(e[0] - e[1]) < np.abs(tol*e[1]) + np.finfo('float').eps for e in eq] consistency = np.all(consistencies) if verbose == True: print('Checking EoS consistency for {0:s}'.format(m.to_string())) print('Expressions within tolerance of {0:2f}'.format(tol)) for i, c in enumerate(consistencies): print('{0:10s} : {1:5s}'.format(expr[i], str(c))) if consistency == True: print('All EoS consistency constraints satisfied for {0:s}'.format(m.to_string())) else: print('Not satisfied all EoS consistency constraints for {0:s}'.format(m.to_string())) return consistency def _pad_ndarray_inverse_mirror(array, padding): """ Pads an ndarray according to an inverse mirror scheme. For example, for a 1D array [2, 4, 6, 7, 8] padded by 3 cells, we have: padding | original array | padding -3 -2 0 | 2 4 6 7 8 | 9 10 12 Parameters ---------- array : numpy ndarray The array to be padded padding : tuple The number of elements with which to pad the array in each dimension. Returns ------- padded_array: numpy ndarray The padded array """ padded_shape = [n + 2*padding[i] for i, n in enumerate(array.shape)] padded_array = np.zeros(padded_shape) slices = tuple([ slice(padding[i], padding[i] + l) for i, l in enumerate(array.shape)]) padded_array[slices] = array padded_array_indices = list(itertools.product(*[range(n + 2*padding[i]) for i, n in enumerate(array.shape)])) inserted_indices = list(itertools.product(*[range(padding[i], padding[i] + l) for i, l in enumerate(array.shape)])) padded_array_indices.extend(inserted_indices) counter = Counter(padded_array_indices) keys = list(counter.keys()) padded_indices = [keys[i] for i, value in enumerate(counter.values()) if value == 1] edge_indices = tuple([tuple([np.min([np.max([axis_idx, padding[dimension]]), padded_array.shape[dimension] - padding[dimension] - 1]) for dimension, axis_idx in enumerate(idx)]) for idx in padded_indices]) mirror_indices = tuple([tuple([2*edge_indices[i][j] - padded_indices[i][j] for j in range(len(array.shape))]) for i in range(len(padded_indices))]) for i, idx in enumerate(padded_indices): padded_array[idx] = 2.*padded_array[edge_indices[i]] - padded_array[mirror_indices[i]] return padded_array def smooth_array(array, grid_spacing, gaussian_rms_widths, truncate=4.0, mode='inverse_mirror'): """ Creates a smoothed array by convolving it with a gaussian filter. Grid resolutions and gaussian RMS widths are required for each of the axes of the numpy array. The smoothing is truncated at a user-defined number of standard deviations. The edges of the array can be padded in a number of different ways given by the 'mode' parameter. Parameters ---------- array : numpy ndarray The array to smooth grid_spacing : numpy array of floats The spacing of points along each axis gaussian_rms_widths : numpy array of floats The Gaussian RMS widths/standard deviations for the Gaussian convolution. truncate : float (default=4.) The number of standard deviations at which to truncate the smoothing. mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap', 'inverse_mirror'} The mode parameter determines how the array borders are handled either by scipy.ndimage.filters.gaussian_filter. Default is 'inverse_mirror', which uses burnman.tools._pad_ndarray_inverse_mirror(). Returns ------- smoothed_array: numpy ndarray The smoothed array """ # gaussian_filter works with standard deviations normalised to # the grid spacing. sigma = tuple(np.array(gaussian_rms_widths)/np.array(grid_spacing)) if mode == 'inverse_mirror': padding = tuple([int(np.ceil(truncate*s)) for s in sigma]) padded_array = _pad_ndarray_inverse_mirror(array, padding) smoothed_padded_array = gaussian_filter(padded_array, sigma=sigma) slices = tuple([ slice(padding[i], padding[i] + l) for i, l in enumerate(array.shape)]) smoothed_array = smoothed_padded_array[slices] else: smoothed_array = gaussian_filter(array, sigma=sigma, mode=mode) return smoothed_array def interp_smoothed_array_and_derivatives(array, x_values, y_values, x_stdev=0., y_stdev=0., truncate=4., mode='inverse_mirror', indexing='xy'): """ Creates a smoothed array on a regular 2D grid. Smoothing is achieved using burnman.tools.smooth_array(). Outputs scipy.interpolate.interp2d() interpolators which can be used to query the array, or its derivatives in the x- and y- directions. Parameters ---------- array : 2D numpy array The array to smooth. Each element array[i][j] corresponds to the position x_values[i], y_values[j] x_values : 1D numpy array The gridded x values over which to create the smoothed grid y_values : 1D numpy array The gridded y_values over which to create the smoothed grid x_stdev : float The standard deviation for the Gaussian filter along the x axis y_stdev : float The standard deviation for the Gaussian filter along the x axis truncate : float (optional) The number of standard deviations at which to truncate the smoothing (default = 4.). mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap', 'inverse_mirror'} The mode parameter determines how the array borders are handled either by scipy.ndimage.filters.gaussian_filter. Default is 'inverse_mirror', which uses burnman.tools._pad_ndarray_inverse_mirror(). indexing : {'xy', 'ij'}, optional Cartesian ('xy', default) or matrix ('ij') indexing of output. See numpy.meshgrid for more details. Returns ------- interps: tuple of three interp2d functors interpolation functions for the smoothed property and the first derivatives with respect to x and y. """ dx = x_values[1] - x_values[0] dy = y_values[1] - y_values[0] if indexing == 'xy': smoothed_array = smooth_array(array = array, grid_spacing = np.array([dy, dx]), gaussian_rms_widths = np.array([y_stdev, x_stdev]), truncate=truncate, mode=mode) elif indexing == 'ij': smoothed_array = smooth_array(array = array, grid_spacing = np.array([dx, dy]), gaussian_rms_widths = np.array([x_stdev, y_stdev]), truncate=truncate, mode=mode).T else: raise Exception('Indexing scheme not recognised. Should be ij or xy.') dSAdydy, dSAdxdx = np.gradient(smoothed_array) interps = (interp2d(x_values, y_values, smoothed_array, kind='linear'), interp2d(x_values, y_values, dSAdxdx/dx, kind='linear'), interp2d(x_values, y_values, dSAdydy/dy, kind='linear')) return interps def attribute_function(m, attributes, powers=[]): """ Function which returns a function which can be used to evaluate material properties at a point. This function allows the user to define the property returned as a string. The function can itself be passed to another function (such as nonlinear_fitting.confidence_prediction_bands()). Properties can either be simple attributes (e.g. K_T) or a product of attributes, each raised to some power. Parameters ---------- m : Material The material instance evaluated by the output function. attributes : list of strings The list of material attributes / properties to be evaluated in the product powers : list of floats The powers to which each attribute should be raised during evaluation Returns ------- f : function(x) Function which returns the value of product(a_i**p_i) as a function of condition (x = [P, T, V]) """ if type(attributes) is str: attributes = [attributes] if powers == []: powers = [1. for a in attributes] def f(x): P, T, V = x m.set_state(P, T) value = 1. for a, p in zip(*[attributes, powers]): value *= np.power(getattr(m, a), p) return value return f
gpl-2.0
pprett/scikit-learn
examples/ensemble/plot_bias_variance.py
357
7324
""" ============================================================ Single estimator versus bagging: bias-variance decomposition ============================================================ This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single estimator against a bagging ensemble. In regression, the expected mean squared error of an estimator can be decomposed in terms of bias, variance and noise. On average over datasets of the regression problem, the bias term measures the average amount by which the predictions of the estimator differ from the predictions of the best possible estimator for the problem (i.e., the Bayes model). The variance term measures the variability of the predictions of the estimator when fit over different instances LS of the problem. Finally, the noise measures the irreducible part of the error which is due the variability in the data. The upper left figure illustrates the predictions (in dark red) of a single decision tree trained over a random dataset LS (the blue dots) of a toy 1d regression problem. It also illustrates the predictions (in light red) of other single decision trees trained over other (and different) randomly drawn instances LS of the problem. Intuitively, the variance term here corresponds to the width of the beam of predictions (in light red) of the individual estimators. The larger the variance, the more sensitive are the predictions for `x` to small changes in the training set. The bias term corresponds to the difference between the average prediction of the estimator (in cyan) and the best possible model (in dark blue). On this problem, we can thus observe that the bias is quite low (both the cyan and the blue curves are close to each other) while the variance is large (the red beam is rather wide). The lower left figure plots the pointwise decomposition of the expected mean squared error of a single decision tree. It confirms that the bias term (in blue) is low while the variance is large (in green). It also illustrates the noise part of the error which, as expected, appears to be constant and around `0.01`. The right figures correspond to the same plots but using instead a bagging ensemble of decision trees. In both figures, we can observe that the bias term is larger than in the previous case. In the upper right figure, the difference between the average prediction (in cyan) and the best possible model is larger (e.g., notice the offset around `x=2`). In the lower right figure, the bias curve is also slightly higher than in the lower left figure. In terms of variance however, the beam of predictions is narrower, which suggests that the variance is lower. Indeed, as the lower right figure confirms, the variance term (in green) is lower than for single decision trees. Overall, the bias- variance decomposition is therefore no longer the same. The tradeoff is better for bagging: averaging several decision trees fit on bootstrap copies of the dataset slightly increases the bias term but allows for a larger reduction of the variance, which results in a lower overall mean squared error (compare the red curves int the lower figures). The script output also confirms this intuition. The total error of the bagging ensemble is lower than the total error of a single decision tree, and this difference indeed mainly stems from a reduced variance. For further details on bias-variance decomposition, see section 7.3 of [1]_. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning", Springer, 2009. """ print(__doc__) # Author: Gilles Louppe <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import BaggingRegressor from sklearn.tree import DecisionTreeRegressor # Settings n_repeat = 50 # Number of iterations for computing expectations n_train = 50 # Size of the training set n_test = 1000 # Size of the test set noise = 0.1 # Standard deviation of the noise np.random.seed(0) # Change this for exploring the bias-variance decomposition of other # estimators. This should work well for estimators with high variance (e.g., # decision trees or KNN), but poorly for estimators with low variance (e.g., # linear models). estimators = [("Tree", DecisionTreeRegressor()), ("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor()))] n_estimators = len(estimators) # Generate data def f(x): x = x.ravel() return np.exp(-x ** 2) + 1.5 * np.exp(-(x - 2) ** 2) def generate(n_samples, noise, n_repeat=1): X = np.random.rand(n_samples) * 10 - 5 X = np.sort(X) if n_repeat == 1: y = f(X) + np.random.normal(0.0, noise, n_samples) else: y = np.zeros((n_samples, n_repeat)) for i in range(n_repeat): y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples) X = X.reshape((n_samples, 1)) return X, y X_train = [] y_train = [] for i in range(n_repeat): X, y = generate(n_samples=n_train, noise=noise) X_train.append(X) y_train.append(y) X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat) # Loop over estimators to compare for n, (name, estimator) in enumerate(estimators): # Compute predictions y_predict = np.zeros((n_test, n_repeat)) for i in range(n_repeat): estimator.fit(X_train[i], y_train[i]) y_predict[:, i] = estimator.predict(X_test) # Bias^2 + Variance + Noise decomposition of the mean squared error y_error = np.zeros(n_test) for i in range(n_repeat): for j in range(n_repeat): y_error += (y_test[:, j] - y_predict[:, i]) ** 2 y_error /= (n_repeat * n_repeat) y_noise = np.var(y_test, axis=1) y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2 y_var = np.var(y_predict, axis=1) print("{0}: {1:.4f} (error) = {2:.4f} (bias^2) " " + {3:.4f} (var) + {4:.4f} (noise)".format(name, np.mean(y_error), np.mean(y_bias), np.mean(y_var), np.mean(y_noise))) # Plot figures plt.subplot(2, n_estimators, n + 1) plt.plot(X_test, f(X_test), "b", label="$f(x)$") plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$") for i in range(n_repeat): if i == 0: plt.plot(X_test, y_predict[:, i], "r", label="$\^y(x)$") else: plt.plot(X_test, y_predict[:, i], "r", alpha=0.05) plt.plot(X_test, np.mean(y_predict, axis=1), "c", label="$\mathbb{E}_{LS} \^y(x)$") plt.xlim([-5, 5]) plt.title(name) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.subplot(2, n_estimators, n_estimators + n + 1) plt.plot(X_test, y_error, "r", label="$error(x)$") plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"), plt.plot(X_test, y_var, "g", label="$variance(x)$"), plt.plot(X_test, y_noise, "c", label="$noise(x)$") plt.xlim([-5, 5]) plt.ylim([0, 0.1]) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.show()
bsd-3-clause
mira67/DL4RS
MPFprj/test.py
1
4132
""" Test Main Update config.ini for model and data Author: Qi Liu, 11/2016 """ import os import logging import timeit import ConfigParser import numpy as np from prjutil import read_config from keras.models import load_model from dbaccess import pdread,sqlwrite import pandas as pd import glob from sklearn.preprocessing import normalize # import multiprocessing def model_test(p): #load model model = load_model(p['model_path']+p['model_name']) df = pdread(p['test_sql']) df = df.replace(-9999, 0) #df['julian'][(df['julian'] < 213) & (df['julian'] > 152)] = 0.1 basen = 2 julian_m = 197.5 alpha = 10 beta = 0.01 #df['julian'] = alpha*np.power(df['julian']-julian_m, basen)/np.power(274,basen)+beta print df.head(n=5) #df = minmaxscaler(df) data = df.as_matrix() X_predict = data[:,0:] #X_predict = normalize(X_predict,norm='l2',axis=0) # print X_predict[1:5,:] #predict with model Y_predict = model.predict(X_predict)*100 df = pd.DataFrame(Y_predict, columns=['MPF', 'IF', 'WF']) #record to mysql df.to_csv(p['result_path']+p['test_result_csv'], sep=',', encoding='utf-8') #also write to database sqlwrite(p['result_path'], p['test_result_csv'], p['csvtosql']) def dual_model(p): #load model model = load_model(p['model_path']+p['model_name']) #model2 = load_model(p['model_path']+p['model_name2']) df = pdread(p['test_sql']) df = df.replace(-9999, 0) #print df.head(n=5) data = df.as_matrix() attr_n = 7 attr = data[:,0:attr_n]#year,month,day,nrow,ncol X_predict = data[:,attr_n:attr_n+p['fea_num']] d_month = data[:,p['fea_num']] #X_predict = normalize(X_predict,norm='l2',axis=0) print X_predict[1:attr_n,:] Y_predict = model.predict(X_predict)*100 final_data = np.concatenate((attr,Y_predict), axis=1) print final_data.shape df = pd.DataFrame(final_data, columns=['year','month','day','nrow','ncol','qc','cloud','MPF', 'IF', 'WF']) #record to mysql with open(p['result_path']+p['test_result_csv'], 'a') as f: df.to_csv(f, sep=',', encoding='utf-8',header=False) #also write to database sqlwrite(p['result_path'], p['test_result_csv'], p['csvtosql']) def fast_test(p): #create processing pc = multiprocessing.Pool(processes = 1) #load test files tlist = glob.glob(p['test_path']+'*.csv') for tf in tlist: # launch a process for each file (ish). # The result will be approximately one process per CPU core available. pc.apply_async(arctic_test, [tf,p]) pc.close() pc.join() # Wait for all child processes to close. def arctic_test(tf,p): #load model model = load_model(p['model_path']+p['model_name']) df = pd.read_csv(tf, sep=",", skiprows=1, names = ["year","month","day","nrow","ncol","qc","cloud","b1","b2","b3","b4","b5","b6","b7"]) nsplit = os.path.basename(tf).split('.') print nsplit[0] df = df.replace(-9999, 0) #run through model data = df.as_matrix() attr_n = 7 X_predict = data[:,attr_n:attr_n+p['fea_num']] Y_predict = model.predict(X_predict)*100 final_data = np.concatenate((data,Y_predict), axis=1) df = pd.DataFrame(final_data, columns=["year","month","day","nrow","ncol","qc","cloud","b1","b2","b3","b4","b5","b6","b7","mpf","if","wf"]) df['mpf'][df['b1'] < -2] = -9999 df['if'][df['b1'] < -2] = -9999 df['wf'][df['b1'] < -2] = -9999 #record to mysql with open(p['result_path']+os.path.basename(tf), 'w') as f: df.to_csv(f, sep=',', encoding='utf-8',index=False) def main(): logging.basicConfig(filename='testing.log', level=logging.INFO) logging.info('Started Testing') #read config p = read_config(); logging.info('Testing with Model: ' + str(p['model_id'])) #model_test(p) #dual_model(p) fast_test(p) #sqlwrite(p['result_path'], p['test_result_csv'], p['csvtosql']) os.system('espeak "done"') if __name__ == '__main__': logging.info("Testing Time (s): " + str(timeit.timeit("main()", setup="from __main__ import main", number=1)))
gpl-3.0
spallavolu/scikit-learn
sklearn/decomposition/nmf.py
100
19059
""" Non-negative matrix factorization """ # Author: Vlad Niculae # Lars Buitinck <[email protected]> # Author: Chih-Jen Lin, National Taiwan University (original projected gradient # NMF implementation) # Author: Anthony Di Franco (original Python and NumPy port) # License: BSD 3 clause from __future__ import division from math import sqrt import warnings import numpy as np import scipy.sparse as sp from scipy.optimize import nnls from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm from ..utils.validation import check_is_fitted, check_non_negative def safe_vstack(Xs): if any(sp.issparse(X) for X in Xs): return sp.vstack(Xs) else: return np.vstack(Xs) def norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return sqrt(squared_norm(x)) def trace_dot(X, Y): """Trace of np.dot(X, Y.T).""" return np.dot(X.ravel(), Y.ravel()) def _sparseness(x): """Hoyer's measure of sparsity for a vector""" sqrt_n = np.sqrt(len(x)) return (sqrt_n - np.linalg.norm(x, 1) / norm(x)) / (sqrt_n - 1) def _initialize_nmf(X, n_components, variant=None, eps=1e-6, random_state=None): """NNDSVD algorithm for NMF initialization. Computes a good initial guess for the non-negative rank k matrix approximation for X: X = WH Parameters ---------- X : array, [n_samples, n_features] The data matrix to be decomposed. n_components : array, [n_components, n_features] The number of components desired in the approximation. variant : None | 'a' | 'ar' The variant of the NNDSVD algorithm. Accepts None, 'a', 'ar' None: leaves the zero entries as zero 'a': Fills the zero entries with the average of X 'ar': Fills the zero entries with standard normal random variates. Default: None eps: float Truncate all values less then this in output to zero. random_state : numpy.RandomState | int, optional The generator used to fill in the zeros, when using variant='ar' Default: numpy.random Returns ------- (W, H) : Initial guesses for solving X ~= WH such that the number of columns in W is n_components. References ---------- C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ check_non_negative(X, "NMF initialization") if variant not in (None, 'a', 'ar'): raise ValueError("Invalid variant name") random_state = check_random_state(random_state) U, S, V = randomized_svd(X, n_components, random_state=random_state) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if variant == "a": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif variant == "ar": avg = X.mean() W[W == 0] = abs(avg * random_state.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * random_state.randn(len(H[H == 0])) / 100) return W, H def _nls_subproblem(V, W, H, tol, max_iter, sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. min || WH - V ||_2 Parameters ---------- V, W : array-like Constant matrices. H : array-like Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like Solution to the non-negative least squares problem. grad : array-like The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtV = safe_sparse_dot(W.T, V) WtW = np.dot(W.T, W) # values justified in the paper alpha = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtV # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(19): # Gradient step. Hn = H - alpha * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_alpha = not suff_decr if decr_alpha: if suff_decr: H = Hn break else: alpha *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: alpha /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.") return H, grad, n_iter class ProjectedGradientNMF(BaseEstimator, TransformerMixin): """Non-Negative matrix factorization by Projected Gradient (NMF) Read more in the :ref:`User Guide <NMF>`. Parameters ---------- n_components : int or None Number of components, if n_components is not set all components are kept init : 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'random' Method used to initialize the procedure. Default: 'nndsvd' if n_components < n_features, otherwise random. Valid options:: 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 'random': non-negative random matrices sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : int, default: 200 Number of iterations to compute. nls_max_iter : int, default: 2000 Number of iterations in NLS subproblem. random_state : int or RandomState Random number generator seed control. Attributes ---------- components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. ``|| X - WH ||_2`` n_iter_ : int Number of iterations run. Examples -------- >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import ProjectedGradientNMF >>> model = ProjectedGradientNMF(n_components=2, init='random', ... random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness=None, tol=0.0001) >>> model.components_ array([[ 0.77032744, 0.11118662], [ 0.38526873, 0.38228063]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00746... >>> model = ProjectedGradientNMF(n_components=2, ... sparseness='components', init='random', random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness='components', tol=0.0001) >>> model.components_ array([[ 1.67481991, 0.29614922], [ 0. , 0.4681982 ]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.513... References ---------- This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 2004. NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ def __init__(self, n_components=None, init=None, sparseness=None, beta=1, eta=0.1, tol=1e-4, max_iter=200, nls_max_iter=2000, random_state=None): self.n_components = n_components self.init = init self.tol = tol if sparseness not in (None, 'data', 'components'): raise ValueError( 'Invalid sparseness parameter: got %r instead of one of %r' % (sparseness, (None, 'data', 'components'))) self.sparseness = sparseness self.beta = beta self.eta = eta self.max_iter = max_iter self.nls_max_iter = nls_max_iter self.random_state = random_state def _init(self, X): n_samples, n_features = X.shape init = self.init if init is None: if self.n_components_ < n_features: init = 'nndsvd' else: init = 'random' rng = check_random_state(self.random_state) if init == 'nndsvd': W, H = _initialize_nmf(X, self.n_components_, random_state=rng) elif init == 'nndsvda': W, H = _initialize_nmf(X, self.n_components_, variant='a', random_state=rng) elif init == 'nndsvdar': W, H = _initialize_nmf(X, self.n_components_, variant='ar', random_state=rng) elif init == "random": W = rng.randn(n_samples, self.n_components_) # we do not write np.abs(W, out=W) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(W, W) H = rng.randn(self.n_components_, n_features) np.abs(H, H) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'))) return W, H def _update_W(self, X, H, W, tolW): n_samples, n_features = X.shape if self.sparseness is None: W, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, self.nls_max_iter) elif self.sparseness == 'data': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((1, n_samples))]), safe_vstack([H.T, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), W.T, tolW, self.nls_max_iter) elif self.sparseness == 'components': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((self.n_components_, n_samples))]), safe_vstack([H.T, np.sqrt(self.eta) * np.eye(self.n_components_)]), W.T, tolW, self.nls_max_iter) return W.T, gradW.T, iterW def _update_H(self, X, H, W, tolH): n_samples, n_features = X.shape if self.sparseness is None: H, gradH, iterH = _nls_subproblem(X, W, H, tolH, self.nls_max_iter) elif self.sparseness == 'data': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((self.n_components_, n_features))]), safe_vstack([W, np.sqrt(self.eta) * np.eye(self.n_components_)]), H, tolH, self.nls_max_iter) elif self.sparseness == 'components': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((1, n_features))]), safe_vstack([W, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), H, tolH, self.nls_max_iter) return H, gradH, iterH def fit_transform(self, X, y=None): """Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- data: array, [n_samples, n_components] Transformed data """ X = check_array(X, accept_sparse='csr') check_non_negative(X, "NMF.fit") n_samples, n_features = X.shape if not self.n_components: self.n_components_ = n_features else: self.n_components_ = self.n_components W, H = self._init(X) gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = norm(np.r_[gradW, gradH.T]) tolW = max(0.001, self.tol) * init_grad # why max? tolH = tolW tol = self.tol * init_grad for n_iter in range(1, self.max_iter + 1): # stopping condition # as discussed in paper proj_norm = norm(np.r_[gradW[np.logical_or(gradW < 0, W > 0)], gradH[np.logical_or(gradH < 0, H > 0)]]) if proj_norm < tol: break # update W W, gradW, iterW = self._update_W(X, H, W, tolW) if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = self._update_H(X, H, W, tolH) if iterH == 1: tolH = 0.1 * tolH if not sp.issparse(X): error = norm(X - np.dot(W, H)) else: sqnorm_X = np.dot(X.data, X.data) norm_WHT = trace_dot(np.dot(np.dot(W.T, W), H), H) cross_prod = trace_dot((X * H.T), W) error = sqrt(sqnorm_X + norm_WHT - 2. * cross_prod) self.reconstruction_err_ = error self.comp_sparseness_ = _sparseness(H.ravel()) self.data_sparseness_ = _sparseness(W.ravel()) H[H == 0] = 0 # fix up negative zeros self.components_ = H if n_iter == self.max_iter: warnings.warn("Iteration limit reached during fit. Solving for W exactly.") return self.transform(X) self.n_iter_ = n_iter return W def fit(self, X, y=None, **params): """Learn a NMF model for the data X. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- self """ self.fit_transform(X, **params) return self def transform(self, X): """Transform the data X according to the fitted NMF model Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be transformed by the model Returns ------- data: array, [n_samples, n_components] Transformed data """ check_is_fitted(self, 'n_components_') X = check_array(X, accept_sparse='csc') Wt = np.zeros((self.n_components_, X.shape[0])) check_non_negative(X, "ProjectedGradientNMF.transform") if sp.issparse(X): Wt, _, _ = _nls_subproblem(X.T, self.components_.T, Wt, tol=self.tol, max_iter=self.nls_max_iter) else: for j in range(0, X.shape[0]): Wt[:, j], _ = nnls(self.components_.T, X[j, :]) return Wt.T class NMF(ProjectedGradientNMF): __doc__ = ProjectedGradientNMF.__doc__ pass
bsd-3-clause
arabenjamin/scikit-learn
sklearn/utils/tests/test_murmurhash.py
261
2836
# Author: Olivier Grisel <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.externals.six import b, u from sklearn.utils.murmurhash import murmurhash3_32 from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from nose.tools import assert_equal, assert_true def test_mmhash3_int(): assert_equal(murmurhash3_32(3), 847579505) assert_equal(murmurhash3_32(3, seed=0), 847579505) assert_equal(murmurhash3_32(3, seed=42), -1823081949) assert_equal(murmurhash3_32(3, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=False), -1823081949) assert_equal(murmurhash3_32(3, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=True), 2471885347) def test_mmhash3_int_array(): rng = np.random.RandomState(42) keys = rng.randint(-5342534, 345345, size=3 * 2 * 1).astype(np.int32) keys = keys.reshape((3, 2, 1)) for seed in [0, 42]: expected = np.array([murmurhash3_32(int(k), seed) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed), expected) for seed in [0, 42]: expected = np.array([murmurhash3_32(k, seed, positive=True) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed, positive=True), expected) def test_mmhash3_bytes(): assert_equal(murmurhash3_32(b('foo'), 0), -156908512) assert_equal(murmurhash3_32(b('foo'), 42), -1322301282) assert_equal(murmurhash3_32(b('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(b('foo'), 42, positive=True), 2972666014) def test_mmhash3_unicode(): assert_equal(murmurhash3_32(u('foo'), 0), -156908512) assert_equal(murmurhash3_32(u('foo'), 42), -1322301282) assert_equal(murmurhash3_32(u('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(u('foo'), 42, positive=True), 2972666014) def test_no_collision_on_byte_range(): previous_hashes = set() for i in range(100): h = murmurhash3_32(' ' * i, 0) assert_true(h not in previous_hashes, "Found collision on growing empty string") def test_uniform_distribution(): n_bins, n_samples = 10, 100000 bins = np.zeros(n_bins, dtype=np.float) for i in range(n_samples): bins[murmurhash3_32(i, positive=True) % n_bins] += 1 means = bins / n_samples expected = np.ones(n_bins) / n_bins assert_array_almost_equal(means / expected, np.ones(n_bins), 2)
bsd-3-clause
smrjan/seldon-server
docker/pyseldon/scripts/start_prediction_default_rpc_microservice.py
2
1110
from concurrent import futures import time import sys, getopt, argparse import seldon.pipeline.util as sutl import random import grpc import google.protobuf from google.protobuf import any_pb2 import pandas as pd from seldon.microservice.rpc import CustomDataHandler from seldon.microservice import Microservices if __name__ == "__main__": import logging logger = logging.getLogger() logging.basicConfig(format='%(asctime)s : %(levelname)s : %(name)s : %(message)s', level=logging.DEBUG) logger.setLevel(logging.INFO) parser = argparse.ArgumentParser(prog='microservice') parser.add_argument('--model-name', help='name of model', required=True) parser.add_argument('--pipeline', help='location of prediction pipeline', required=True) parser.add_argument('--aws-key', help='aws key', required=False) parser.add_argument('--aws-secret', help='aws secret', required=False) args = parser.parse_args() opts = vars(args) m = Microservices(aws_key=args.aws_key,aws_secret=args.aws_secret) m.create_prediction_rpc_microservice(args.pipeline,args.model_name)
apache-2.0
cauchycui/scikit-learn
sklearn/utils/tests/test_estimator_checks.py
202
3757
import scipy.sparse as sp import numpy as np import sys from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.testing import assert_raises_regex, assert_true from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.estimator_checks import check_estimators_unfitted from sklearn.linear_model import LogisticRegression from sklearn.utils.validation import check_X_y, check_array class CorrectNotFittedError(ValueError): """Exception class to raise if estimator is used before fitting. Like NotFittedError, it inherits from ValueError, but not from AttributeError. Used for testing only. """ class BaseBadClassifier(BaseEstimator, ClassifierMixin): def fit(self, X, y): return self def predict(self, X): return np.ones(X.shape[0]) class NoCheckinPredict(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) return self class NoSparseClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']) if sp.issparse(X): raise ValueError("Nonsensical Error") return self def predict(self, X): X = check_array(X) return np.ones(X.shape[0]) class CorrectNotFittedErrorClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) self.coef_ = np.ones(X.shape[1]) return self def predict(self, X): if not hasattr(self, 'coef_'): raise CorrectNotFittedError("estimator is not fitted yet") X = check_array(X) return np.ones(X.shape[0]) def test_check_estimator(): # tests that the estimator actually fails on "bad" estimators. # not a complete test of all checks, which are very extensive. # check that we have a set_params and can clone msg = "it does not implement a 'get_params' methods" assert_raises_regex(TypeError, msg, check_estimator, object) # check that we have a fit method msg = "object has no attribute 'fit'" assert_raises_regex(AttributeError, msg, check_estimator, BaseEstimator) # check that fit does input validation msg = "TypeError not raised by fit" assert_raises_regex(AssertionError, msg, check_estimator, BaseBadClassifier) # check that predict does input validation (doesn't accept dicts in input) msg = "Estimator doesn't check for NaN and inf in predict" assert_raises_regex(AssertionError, msg, check_estimator, NoCheckinPredict) # check for sparse matrix input handling msg = "Estimator type doesn't seem to fail gracefully on sparse data" # the check for sparse input handling prints to the stdout, # instead of raising an error, so as not to remove the original traceback. # that means we need to jump through some hoops to catch it. old_stdout = sys.stdout string_buffer = StringIO() sys.stdout = string_buffer try: check_estimator(NoSparseClassifier) except: pass finally: sys.stdout = old_stdout assert_true(msg in string_buffer.getvalue()) # doesn't error on actual estimator check_estimator(LogisticRegression) def test_check_estimators_unfitted(): # check that a ValueError/AttributeError is raised when calling predict # on an unfitted estimator msg = "AttributeError or ValueError not raised by predict" assert_raises_regex(AssertionError, msg, check_estimators_unfitted, "estimator", NoSparseClassifier) # check that CorrectNotFittedError inherit from either ValueError # or AttributeError check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier)
bsd-3-clause
Adai0808/scikit-learn
examples/datasets/plot_random_multilabel_dataset.py
278
3402
""" ============================================== Plot randomly generated multilabel dataset ============================================== This illustrates the `datasets.make_multilabel_classification` dataset generator. Each sample consists of counts of two features (up to 50 in total), which are differently distributed in each of two classes. Points are labeled as follows, where Y means the class is present: ===== ===== ===== ====== 1 2 3 Color ===== ===== ===== ====== Y N N Red N Y N Blue N N Y Yellow Y Y N Purple Y N Y Orange Y Y N Green Y Y Y Brown ===== ===== ===== ====== A star marks the expected sample for each class; its size reflects the probability of selecting that class label. The left and right examples highlight the ``n_labels`` parameter: more of the samples in the right plot have 2 or 3 labels. Note that this two-dimensional example is very degenerate: generally the number of features would be much greater than the "document length", while here we have much larger documents than vocabulary. Similarly, with ``n_classes > n_features``, it is much less likely that a feature distinguishes a particular class. """ from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification as make_ml_clf print(__doc__) COLORS = np.array(['!', '#FF3333', # red '#0198E1', # blue '#BF5FFF', # purple '#FCD116', # yellow '#FF7216', # orange '#4DBD33', # green '#87421F' # brown ]) # Use same random seed for multiple calls to make_multilabel_classification to # ensure same distributions RANDOM_SEED = np.random.randint(2 ** 10) def plot_2d(ax, n_labels=1, n_classes=3, length=50): X, Y, p_c, p_w_c = make_ml_clf(n_samples=150, n_features=2, n_classes=n_classes, n_labels=n_labels, length=length, allow_unlabeled=False, return_distributions=True, random_state=RANDOM_SEED) ax.scatter(X[:, 0], X[:, 1], color=COLORS.take((Y * [1, 2, 4] ).sum(axis=1)), marker='.') ax.scatter(p_w_c[0] * length, p_w_c[1] * length, marker='*', linewidth=.5, edgecolor='black', s=20 + 1500 * p_c ** 2, color=COLORS.take([1, 2, 4])) ax.set_xlabel('Feature 0 count') return p_c, p_w_c _, (ax1, ax2) = plt.subplots(1, 2, sharex='row', sharey='row', figsize=(8, 4)) plt.subplots_adjust(bottom=.15) p_c, p_w_c = plot_2d(ax1, n_labels=1) ax1.set_title('n_labels=1, length=50') ax1.set_ylabel('Feature 1 count') plot_2d(ax2, n_labels=3) ax2.set_title('n_labels=3, length=50') ax2.set_xlim(left=0, auto=True) ax2.set_ylim(bottom=0, auto=True) plt.show() print('The data was generated from (random_state=%d):' % RANDOM_SEED) print('Class', 'P(C)', 'P(w0|C)', 'P(w1|C)', sep='\t') for k, p, p_w in zip(['red', 'blue', 'yellow'], p_c, p_w_c.T): print('%s\t%0.2f\t%0.2f\t%0.2f' % (k, p, p_w[0], p_w[1]))
bsd-3-clause
Aasmi/scikit-learn
benchmarks/bench_random_projections.py
397
8900
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.externals.six.moves import xrange from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." " ('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." " ('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
mwv/scikit-learn
sklearn/manifold/tests/test_locally_linear.py
232
4761
from itertools import product from nose.tools import assert_true import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from scipy import linalg from sklearn import neighbors, manifold from sklearn.manifold.locally_linear import barycenter_kneighbors_graph from sklearn.utils.testing import assert_less from sklearn.utils.testing import ignore_warnings eigen_solvers = ['dense', 'arpack'] #---------------------------------------------------------------------- # Test utility routines def test_barycenter_kneighbors_graph(): X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = barycenter_kneighbors_graph(X, 1) assert_array_almost_equal( A.toarray(), [[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]]) A = barycenter_kneighbors_graph(X, 2) # check that columns sum to one assert_array_almost_equal(np.sum(A.toarray(), 1), np.ones(3)) pred = np.dot(A.toarray(), X) assert_less(linalg.norm(pred - X) / X.shape[0], 1) #---------------------------------------------------------------------- # Test LLE by computing the reconstruction error on some manifolds. def test_lle_simple_grid(): # note: ARPACK is numerically unstable, so this test will fail for # some random seeds. We choose 2 because the tests pass. rng = np.random.RandomState(2) tol = 0.1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(5), repeat=2))) X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 clf = manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=n_components, random_state=rng) tol = 0.1 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X, 'fro') assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 assert_less(reconstruction_error, tol) assert_almost_equal(clf.reconstruction_error_, reconstruction_error, decimal=1) # re-embed a noisy version of X using the transform method noise = rng.randn(*X.shape) / 100 X_reembedded = clf.transform(X + noise) assert_less(linalg.norm(X_reembedded - clf.embedding_), tol) def test_lle_manifold(): rng = np.random.RandomState(0) # similar test on a slightly more complex manifold X = np.array(list(product(np.arange(18), repeat=2))) X = np.c_[X, X[:, 0] ** 2 / 18] X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 for method in ["standard", "hessian", "modified", "ltsa"]: clf = manifold.LocallyLinearEmbedding(n_neighbors=6, n_components=n_components, method=method, random_state=0) tol = 1.5 if method == "standard" else 3 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X) assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 details = ("solver: %s, method: %s" % (solver, method)) assert_less(reconstruction_error, tol, msg=details) assert_less(np.abs(clf.reconstruction_error_ - reconstruction_error), tol * reconstruction_error, msg=details) def test_pipeline(): # check that LocallyLinearEmbedding works fine as a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful from sklearn import pipeline, datasets X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('filter', manifold.LocallyLinearEmbedding(random_state=0)), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y)) # Test the error raised when the weight matrix is singular def test_singular_matrix(): from nose.tools import assert_raises M = np.ones((10, 3)) f = ignore_warnings assert_raises(ValueError, f(manifold.locally_linear_embedding), M, 2, 1, method='standard', eigen_solver='arpack')
bsd-3-clause
antoinecarme/pyaf
tests/basic_checks/test_temporal_demo_hourly_D_H_ErrorMessage.py
1
1208
# %matplotlib inline import pyaf import numpy as np import pandas as pd DATA_FREQ = 'H' PERIODS = ["D" , "H"] H = 365 N = H * 10 lDateColumn = "Date" lSignalVar = "Signal"; START_TIME = "2001-01-25" # generate a daily signal covering one year 2016 in a pandas dataframe np.random.seed(seed=1960) df_train = pd.DataFrame({lDateColumn : pd.date_range(start=START_TIME, periods=N, freq=DATA_FREQ), lSignalVar : (np.arange(N)//40 + np.arange(N) % 21 + np.random.randn(N))}) # print(df_train.head(N)) lHierarchy = {}; lHierarchy['Levels'] = None; lHierarchy['Data'] = None; lHierarchy['Groups']= {}; lHierarchy['Periods']= PERIODS lHierarchy['Type'] = "Temporal"; import pyaf.HierarchicalForecastEngine as hautof lEngine = hautof.cHierarchicalForecastEngine() # lEngine.mOptions.mNbCores = 1 lEngine.mOptions.mHierarchicalCombinationMethod = ["BU" , 'TD' , 'MO' , 'OC']; lFailed = None try: lSignalHierarchy = lEngine.train(df_train , lDateColumn, lSignalVar, H, lHierarchy, None); lFailed = False except Exception as lEx: print("ERROR" , lEx.__class__, lEx) lFailed = True if(not lFailed): raise Exception("NORMAL_BEHAVIOR_NOT_EXPECTED_SHOULD_HAVE_FAILED")
bsd-3-clause
aiguofer/bokeh
examples/charts/server/interactive_excel.py
6
3225
import xlwings as xw import pandas as pd from pandas.util.testing import assert_frame_equal from bokeh.client import push_session from bokeh.charts import Line, Bar from bokeh.charts.operations import blend from bokeh.io import curdoc from bokeh.layouts import row, column from bokeh.models import Paragraph wb = xw.Workbook() # Creates a connection with a new workbook # write example data to notebook xw.Range('A1').value = pd.DataFrame( { 'Italy':[3016.17,3114.73, 3128.31, 3137.38, 3089.51, 3016.32, 2942.62, 2735.05, 2813.51], 'Japan':[4004.67, 3963.47, 4089.39, 4073.75, 4068.52, 4031.99, 3880.45, 3700.22, 3883.046557], 'Brazil':[1084.48, 1075.76, 1092.31, 1096.13, 1140.61, 1158.39, 1186.27, 1240.22, 1297.91], 'USA':[8056.55, 7825.18, 7838.52, 7788.32, 7875.28, 7840.53, 7691.69, 7749.23, 7481.02], 'year':[2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008], }) # read back to make sure we have same data format.. data = xw.Range('A1').table.value energy_per_capita = pd.DataFrame(data[1:], columns=data[0]) countries = ['Brazil', 'Italy', 'USA', 'Japan'] def create_line(data): """ Convenience function to create a new line chart with the right args """ return Line(data, x='year', y=countries, legend=True, width=1400, height=300, ylabel='Energy use per capita', palette=['purple', 'green', 'blue', 'pink']) def create_bar(data): op = blend(*countries, labels_name='countries', name='energy') return Bar(data, label='year', values=op, color='countries', group='countries', width=1400, height=600, ylabel='Energy use per capita', palette=['purple', 'green', 'blue', 'pink'], legend=True) def data_changed(old): """ Returns a new dataframe if data has changed on the excel workbook """ data = xw.Range('A1').table.value df = pd.DataFrame(data[1:], columns=data[0]) try: assert_frame_equal(df, old) return None except AssertionError: return df # open a session to keep our local document in sync with server session = push_session(curdoc()) def update(): global layout global energy_per_capita new_df = data_changed(energy_per_capita) if new_df is not None: energy_per_capita = new_df plots_box.children[0] = create_line(energy_per_capita) plots_box.children[1] = create_bar(energy_per_capita) line = create_line(energy_per_capita) bar = create_bar(energy_per_capita) desc1 = Paragraph(text=""" This example shows live integration between bokeh server and Excel using XLWings.""") desc2 = Paragraph(text=""" *** YOU MUST HAVE EXCEL and XLWINGS INSTALLED ON YOUR MACHINE FOR IT TO WORK *** """) desc3 = Paragraph(text=""" It opens this plots window and an excel spreadsheet instance with the values being plotted. When user changes the values on the excel spreadsheet the plots will be updated accordingly. It's not required to save the spreadsheet for the plots to update. """) plots_box = row(line, bar) layout = column(desc1, desc2, desc3, plots_box) curdoc().add_root(layout) curdoc().add_periodic_callback(update, 500) session.show() # open the document in a browser session.loop_until_closed() # run forever
bsd-3-clause
mgaitan/scipy
tools/refguide_check.py
29
23595
#!/usr/bin/env python """ refguide_check.py [OPTIONS] [-- ARGS] Check for a Scipy submodule whether the objects in its __all__ dict correspond to the objects included in the reference guide. Example of usage:: $ python refguide_check.py optimize Note that this is a helper script to be able to check if things are missing; the output of this script does need to be checked manually. In some cases objects are left out of the refguide for a good reason (it's an alias of another function, or deprecated, or ...) Another use of this helper script is to check validity of code samples in docstrings. This is different from doctesting [we do not aim to have scipy docstrings doctestable!], this is just to make sure that code in docstrings is valid python:: $ python refguide_check.py --check_docs optimize """ from __future__ import print_function import sys import os import re import copy import inspect import warnings import doctest import tempfile import io import docutils.core from docutils.parsers.rst import directives import shutil from doctest import NORMALIZE_WHITESPACE, ELLIPSIS, IGNORE_EXCEPTION_DETAIL from argparse import ArgumentParser, REMAINDER import numpy as np sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'doc', 'sphinxext')) from numpydoc.docscrape_sphinx import get_doc_object # Remove sphinx directives that don't run without Sphinx environment directives._directives.pop('versionadded', None) directives._directives.pop('moduleauthor', None) directives._directives.pop('sectionauthor', None) directives._directives.pop('codeauthor', None) directives._directives.pop('toctree', None) BASE_MODULE = "scipy" PUBLIC_SUBMODULES = [ 'cluster', 'cluster.hierarchy', 'cluster.vq', 'constants', 'fftpack', 'fftpack.convolve', 'integrate', 'interpolate', 'io', 'io.arff', 'io.wavfile', 'linalg', 'linalg.blas', 'linalg.lapack', 'linalg.interpolative', 'misc', 'ndimage', 'odr', 'optimize', 'signal', 'sparse', 'sparse.csgraph', 'sparse.linalg', 'spatial', 'spatial.distance', 'special', 'stats', 'stats.mstats', ] # Docs for these modules are included in the parent module OTHER_MODULE_DOCS = { 'fftpack.convolve': 'fftpack', 'io.wavfile': 'io', 'io.arff': 'io', } # these names are known to fail doctesting and we like to keep it that way # e.g. sometimes pseudocode is acceptable etc DOCTEST_SKIPLIST = set([ 'scipy.stats.kstwobign', # inaccurate cdf or ppf 'scipy.stats.levy_stable', 'scipy.special.sinc', # comes from numpy 'scipy.misc.who', # comes from numpy ]) # these names are not required to be present in ALL despite being in # autosummary:: listing REFGUIDE_ALL_SKIPLIST = [ r'scipy\.sparse\.csgraph', r'scipy\.sparse\.linalg', r'scipy\.spatial\.distance', r'scipy\.linalg\.blas\.[sdczi].*', r'scipy\.linalg\.lapack\.[sdczi].*', ] def short_path(path, cwd=None): """ Return relative or absolute path name, whichever is shortest. """ if not isinstance(path, str): return path if cwd is None: cwd = os.getcwd() abspath = os.path.abspath(path) relpath = os.path.relpath(path, cwd) if len(abspath) <= len(relpath): return abspath return relpath def find_names(module, names_dict): # Refguide entries: # # - 3 spaces followed by function name, and maybe some spaces, some # dashes, and an explanation; only function names listed in # refguide are formatted like this (mostly, there may be some false # positives) # # - special directives, such as data and function # # - (scipy.constants only): quoted list # patterns = [ r"^\s\s\s([a-z_0-9A-Z]+)(\s+-+.*)?$", r"^\.\. (?:data|function)::\s*([a-z_0-9A-Z]+)\s*$" ] if module.__name__ == 'scipy.constants': patterns += ["^``([a-z_0-9A-Z]+)``"] patterns = [re.compile(pattern) for pattern in patterns] module_name = module.__name__ for line in module.__doc__.splitlines(): res = re.search(r"^\s*\.\. (?:currentmodule|module):: ([a-z0-9A-Z_.]+)\s*$", line) if res: module_name = res.group(1) continue for pattern in patterns: res = re.match(pattern, line) if res is not None: name = res.group(1) entry = '.'.join([module_name, name]) names_dict.setdefault(module_name, set()).add(name) break def get_all_dict(module): """Return a copy of the __all__ dict with irrelevant items removed.""" if hasattr(module, "__all__"): all_dict = copy.deepcopy(module.__all__) else: all_dict = copy.deepcopy(dir(module)) all_dict = [name for name in all_dict if not name.startswith("_")] for name in ['absolute_import', 'division', 'print_function']: try: all_dict.remove(name) except ValueError: pass # Modules are almost always private; real submodules need a separate # run of refguide_check. all_dict = [name for name in all_dict if not inspect.ismodule(getattr(module, name, None))] deprecated = [] not_deprecated = [] for name in all_dict: f = getattr(module, name, None) if callable(f) and is_deprecated(f): deprecated.append(name) else: not_deprecated.append(name) others = set(dir(module)).difference(set(deprecated)).difference(set(not_deprecated)) return not_deprecated, deprecated, others def compare(all_dict, others, names, module_name): """Return sets of objects only in __all__, refguide, or completely missing.""" only_all = set() for name in all_dict: if name not in names: only_all.add(name) only_ref = set() missing = set() for name in names: if name not in all_dict: for pat in REFGUIDE_ALL_SKIPLIST: if re.match(pat, module_name + '.' + name): if name not in others: missing.add(name) break else: only_ref.add(name) return only_all, only_ref, missing def is_deprecated(f): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("error") try: f(**{"not a kwarg":None}) except DeprecationWarning: return True except: pass return False def check_items(all_dict, names, deprecated, others, module_name, dots=True): num_all = len(all_dict) num_ref = len(names) output = "" output += "Non-deprecated objects in __all__: %i\n" % num_all output += "Objects in refguide: %i\n\n" % num_ref only_all, only_ref, missing = compare(all_dict, others, names, module_name) dep_in_ref = set(only_ref).intersection(deprecated) only_ref = set(only_ref).difference(deprecated) if len(dep_in_ref) > 0: output += "Deprecated objects in refguide::\n\n" for name in sorted(deprecated): output += " " + name + "\n" if len(only_all) == len(only_ref) == len(missing) == 0: if dots: output_dot('.') return [(None, True, output)] else: if len(only_all) > 0: output += "ERROR: objects in %s.__all__ but not in refguide::\n\n" % module_name for name in sorted(only_all): output += " " + name + "\n" if len(only_ref) > 0: output += "ERROR: objects in refguide but not in %s.__all__::\n\n" % module_name for name in sorted(only_ref): output += " " + name + "\n" if len(missing) > 0: output += "ERROR: missing objects::\n\n" for name in sorted(missing): output += " " + name + "\n" if dots: output_dot('F') return [(None, False, output)] def validate_rst_syntax(text, name, dots=True): if text is None: if dots: output_dot('E') return False, "ERROR: %s: no documentation" % (name,) ok_unknown_items = set([ 'mod', 'currentmodule', 'autosummary', 'data', 'obj', 'versionadded', 'module', 'class', 'ref', 'func', 'toctree', 'moduleauthor', 'sectionauthor', 'codeauthor', 'eq', ]) # Run through docutils error_stream = io.StringIO() def resolve(name, is_label=False): return ("http://foo", name) token = '<RST-VALIDATE-SYNTAX-CHECK>' docutils.core.publish_doctree( text, token, settings_overrides = dict(halt_level=5, traceback=True, default_reference_context='title-reference', default_role='emphasis', link_base='', resolve_name=resolve, stylesheet_path='', raw_enabled=0, file_insertion_enabled=0, warning_stream=error_stream)) # Print errors, disregarding unimportant ones error_msg = error_stream.getvalue() errors = error_msg.split(token) success = True output = "" for error in errors: lines = error.splitlines() if not lines: continue m = re.match(r'.*Unknown (?:interpreted text role|directive type) "(.*)".*$', lines[0]) if m: if m.group(1) in ok_unknown_items: continue m = re.match(r'.*Error in "math" directive:.*unknown option: "label"', " ".join(lines), re.S) if m: continue output += name + lines[0] + "::\n " + "\n ".join(lines[1:]).rstrip() + "\n" success = False if not success: output += " " + "-"*72 + "\n" for lineno, line in enumerate(text.splitlines()): output += " %-4d %s\n" % (lineno+1, line) output += " " + "-"*72 + "\n\n" if dots: output_dot('.' if success else 'F') return success, output def output_dot(msg='.', stream=sys.stderr): stream.write(msg) stream.flush() def check_rest(module, names, dots=True): """ Check reStructuredText formatting of docstrings Returns: [(name, success_flag, output), ...] """ skip_types = (dict, str, unicode, float, int) results = [] if module.__name__[6:] not in OTHER_MODULE_DOCS: results += [(module.__name__,) + validate_rst_syntax(inspect.getdoc(module), module.__name__, dots=dots)] for name in names: full_name = module.__name__ + '.' + name obj = getattr(module, name, None) if obj is None: results.append((full_name, False, "%s has no docstring" % (full_name,))) continue elif isinstance(obj, skip_types): continue if inspect.ismodule(obj): text = inspect.getdoc(obj) else: try: text = str(get_doc_object(obj)) except: import traceback results.append((full_name, False, "Error in docstring format!\n" + traceback.format_exc())) continue try: src_file = short_path(inspect.getsourcefile(obj)) except TypeError: src_file = None if src_file: file_full_name = src_file + ':' + full_name else: file_full_name = full_name results.append((full_name,) + validate_rst_syntax(text, file_full_name, dots=dots)) return results def check_doctests(module, verbose, dots=True, doctest_warnings=False): """Check code in docstrings of the module's public symbols. Returns: list of [(item_name, success_flag, output), ...] """ # the namespace to run examples in ns = {'np': np, 'assert_allclose': np.testing.assert_allclose, 'assert_equal': np.testing.assert_equal, # recognize numpy repr's 'array': np.array, 'int64': np.int64, 'uint64': np.uint64, 'int8': np.int8, 'int32': np.int32, 'float64': np.float64, 'dtype': np.dtype, 'nan': np.nan, 'NaN': np.nan, 'inf': np.inf, 'Inf': np.inf,} # if MPL is available, use display-less backend try: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt have_matplotlib = True except ImportError: have_matplotlib = False class DTRunner(doctest.DocTestRunner): DIVIDER = "\n" def __init__(self, item_name, checker=None, verbose=None, optionflags=0): self._item_name = item_name doctest.DocTestRunner.__init__(self, checker=checker, verbose=verbose, optionflags=optionflags) def _report_item_name(self, out, new_line=False): if self._item_name is not None: if new_line: out("\n") self._item_name = None def report_start(self, out, test, example): self._checker._source = example.source return doctest.DocTestRunner.report_start(self, out, test, example) def report_success(self, out, test, example, got): if self._verbose: self._report_item_name(out, new_line=True) return doctest.DocTestRunner.report_success(self, out, test, example, got) def report_unexpected_exception(self, out, test, example, exc_info): self._report_item_name(out) return doctest.DocTestRunner.report_unexpected_exception( self, out, test, example, exc_info) def report_failure(self, out, test, example, got): self._report_item_name(out) return doctest.DocTestRunner.report_failure(self, out, test, example, got) class Checker(doctest.OutputChecker): obj_pattern = re.compile('at 0x[0-9a-fA-F]+>') vanilla = doctest.OutputChecker() rndm_markers = {'# random', '# Random', '#random', '#Random', "# may vary"} stopwords = {'plt.', '.hist', '.show', '.ylim', '.subplot(', 'set_title', 'imshow', 'plt.show', 'ax.axis', 'plt.plot(', '.bar(', '.title', '.ylabel', '.xlabel', 'set_ylim', 'set_xlim'} def __init__(self, parse_namedtuples=True, atol=1e-8, rtol=1e-2): self.parse_namedtuples = parse_namedtuples self.atol, self.rtol = atol, rtol def check_output(self, want, got, optionflags): # cut it short if they are equal if want == got: return True # skip stopwords in source if any(word in self._source for word in self.stopwords): return True # skip random stuff if any(word in want for word in self.rndm_markers): return True # skip function/object addresses if self.obj_pattern.search(got): return True # ignore comments (e.g. signal.freqresp) if want.lstrip().startswith("#"): return True # try the standard doctest try: if self.vanilla.check_output(want, got, optionflags): return True except Exception: pass # OK then, convert strings to objects try: a_want = eval(want, dict(ns)) a_got = eval(got, dict(ns)) except: if not self.parse_namedtuples: return False # suppose that "want" is a tuple, and "got" is smth like # MoodResult(statistic=10, pvalue=0.1). # Then convert the latter to the tuple (10, 0.1), # and then compare the tuples. try: num = len(a_want) regex = ('[\w\d_]+\(' + ', '.join(['[\w\d_]+=(.+)']*num) + '\)') grp = re.findall(regex, got.replace('\n', ' ')) if len(grp) > 1: # no more than one for now return False # fold it back to a tuple got_again = '(' + ', '.join(grp[0]) + ')' return self.check_output(want, got_again, optionflags) except Exception: return False # ... and defer to numpy try: return self._do_check(a_want, a_got) except Exception: # heterog tuple, eg (1, np.array([1., 2.])) try: return all(self._do_check(w, g) for w, g in zip(a_want, a_got)) except TypeError: return False def _do_check(self, want, got): # This should be done exactly as written to correctly handle all of # numpy-comparable objects, strings, and heterogenous tuples try: if want == got: return True except Exception: pass return np.allclose(want, got, atol=self.atol, rtol=self.rtol) # Loop over non-deprecated items results = [] all_success = True for name in get_all_dict(module)[0]: full_name = module.__name__ + '.' + name if full_name in DOCTEST_SKIPLIST: continue try: obj = getattr(module, name) except AttributeError: import traceback results.append((full_name, False, "Missing item!\n" + traceback.format_exc())) continue finder = doctest.DocTestFinder() try: tests = finder.find(obj, name, globs=dict(ns)) except: import traceback results.append((full_name, False, "Failed to get doctests!\n" + traceback.format_exc())) continue flags = NORMALIZE_WHITESPACE | ELLIPSIS | IGNORE_EXCEPTION_DETAIL runner = DTRunner(full_name, checker=Checker(), optionflags=flags, verbose=verbose) output = [] success = True def out(msg): output.append(msg) class MyStderr(object): """Redirect stderr to the current stdout""" def write(self, msg): if doctest_warnings: sys.stdout.write(msg) else: out(msg) # Run tests, trying to restore global state afterward old_printoptions = np.get_printoptions() old_errstate = np.seterr() old_stderr = sys.stderr cwd = os.getcwd() tmpdir = tempfile.mkdtemp() sys.stderr = MyStderr() try: os.chdir(tmpdir) # try to ensure random seed is NOT reproducible np.random.seed(None) for t in tests: t.filename = short_path(t.filename, cwd) fails, successes = runner.run(t, out=out) if fails > 0: success = False all_success = False if have_matplotlib: plt.close('all') finally: sys.stderr = old_stderr os.chdir(cwd) shutil.rmtree(tmpdir) np.set_printoptions(**old_printoptions) np.seterr(**old_errstate) if dots: output_dot('.' if success else 'F') results.append((full_name, success, "".join(output))) return results def main(argv): parser = ArgumentParser(usage=__doc__.lstrip()) parser.add_argument("module_names", metavar="SUBMODULES", default=list(PUBLIC_SUBMODULES), nargs='*', help="Submodules to check (default: all public)") parser.add_argument("--doctests", action="store_true", help="Run also doctests") parser.add_argument("-v", "--verbose", action="count", default=0) parser.add_argument("--doctest-warnings", action="store_true", help="Enforce warning checking for doctests") args = parser.parse_args(argv) modules = [] names_dict = {} os.environ['SCIPY_PIL_IMAGE_VIEWER'] = 'true' module_names = list(args.module_names) for name in list(module_names): if name in OTHER_MODULE_DOCS: name = OTHER_MODULE_DOCS[name] if name not in module_names: module_names.append(name) for submodule_name in module_names: module_name = BASE_MODULE + '.' + submodule_name __import__(module_name) module = sys.modules[module_name] if submodule_name not in OTHER_MODULE_DOCS: find_names(module, names_dict) if submodule_name in args.module_names: modules.append(module) dots = True success = True results = [] print("Running checks for %d modules:" % (len(modules),)) for module in modules: if dots: if module is not modules[0]: sys.stderr.write(' ') sys.stderr.write(module.__name__ + ' ') sys.stderr.flush() all_dict, deprecated, others = get_all_dict(module) names = names_dict.get(module.__name__, set()) mod_results = [] mod_results += check_items(all_dict, names, deprecated, others, module.__name__) mod_results += check_rest(module, set(names).difference(deprecated), dots=dots) if args.doctests: mod_results += check_doctests(module, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) for v in mod_results: assert isinstance(v, tuple), v results.append((module, mod_results)) if dots: sys.stderr.write("\n") sys.stderr.flush() # Report results all_success = True for module, mod_results in results: success = all(x[1] for x in mod_results) all_success = all_success and success if success and args.verbose == 0: continue print("") print("=" * len(module.__name__)) print(module.__name__) print("=" * len(module.__name__)) print("") for name, success, output in mod_results: if name is None: if not success or args.verbose >= 1: print(output.strip()) print("") elif not success or (args.verbose >= 2 and output.strip()): print(name) print("-"*len(name)) print("") print(output.strip()) print("") if all_success: print("\nOK: refguide and doctests checks passed!") sys.exit(0) else: print("\nERROR: refguide or doctests have errors") sys.exit(1) if __name__ == '__main__': main(argv=sys.argv[1:])
bsd-3-clause
zedyang/vnpy
vn.datayes/storage.py
29
18623
import os import json import pymongo import pandas as pd from datetime import datetime, timedelta from api import Config, PyApi from api import BaseDataContainer, History, Bar from errors import (VNPAST_ConfigError, VNPAST_RequestError, VNPAST_DataConstructorError, VNPAST_DatabaseError) class DBConfig(Config): """ Json-like config object; inherits from Config() Contains all kinds of settings relating to database settings. privates -------- Inherited from api.Config, plus: * client: pymongo.MongoClient object, the connection that is to be used for this session. * body: dictionary; the main content of config. - client: pymongo.MongoClient(), refers to self.client. - dbs: dictionary, is a mapping from database alias to another dictionary, which inclues configurations and themselves(i.e. pymongo.database entity) Concretely, dbs has the structure like: { alias1 : { 'self': client[dbName1], 'index': dbIndex1, 'collNames': collectionNameType1 }, alias2 : { 'self': client[dbName2], 'index': dbIndex2, 'collNames': collectionNameType2 }, ... } where alias#: string; dbs.alias#.self: pymongo.database; dbs.alias#.index: string; dbs.alias#.collNames: string; - dbNames: list; a list of database alias. """ head = 'DB config' client = pymongo.MongoClient() body = { 'client': client, 'dbs': { 'EQU_M1': { 'self': client['DATAYES_EQUITY_M1'], 'index': 'dateTime', 'collNames': 'secID' }, 'EQU_D1': { 'self': client['DATAYES_EQUITY_D1'], 'index': 'date', 'collNames': 'equTicker' }, 'FUT_D1': { 'self': client['DATAYES_FUTURE_D1'], 'index': 'date', 'collNames': 'futTicker' }, 'OPT_D1': { 'self': client['DATAYES_OPTION_D1'], 'index': 'date', 'collNames': 'optTicker' }, 'FUD_D1': { 'self': client['DATAYES_FUND_D1'], 'index': 'date', 'collNames': 'fudTicker' }, 'IDX_D1': { 'self': client['DATAYES_INDEX_D1'], 'index': 'date', 'collNames': 'idxTicker' } }, 'dbNames': ['EQU_M1', 'EQU_D1', 'FUT_D1', 'OPT_D1', 'FUD_D1', 'IDX_D1'] } def __init__(self, head=None, token=None, body=None): """ Inherited constructor. parameters ---------- * head: string; the name of config file. Default is None. * token: string; user's token. * body: dictionary; the main content of config """ super(DBConfig, self).__init__(head, token, body) def view(self): """ Reloaded Prettify printing method. """ config_view = { 'dbConfig_head' : self.head, 'dbConfig_body' : str(self.body), } print json.dumps(config_view, indent=4, sort_keys=True) #---------------------------------------------------------------------- # MongoDB Controller class class MongodController(object): """ The MongoDB controller interface. MongodController is initialized with a DBConfig configuration object and a PyApi object, which has already been contructed with its own Config json. The default version of constructor actually does nothing special about the database. Yet if user executes shell script prepare.sh to prepare the connection, MongodController will firstly gather symbols that are going to become collection names in corresponding databases. This process is done one database by another, user can skip useless databases by editing the scripts. Then, it ensures the index of each collection due to the 'index' value in DBConfig.body.dbs. Concretely, for D1 bars, the index will be 'date', and for intraday bars, it will be 'dateTime'; both take the form of datetime.datetime timestamp. download() and update() methods of controller dynamically construct and maintain the databases, requesting data via PyApi. Once the database is constructed, MongodController can access required data via its fetch() method. privates -------- * _config: DBConfig object; a container of all useful settings for the databases. * _api: PyApi object; is responsible for making requests. * _client: pymongo.MongoClient object; the connection to MongoDB. * _dbs: dictionary; a mapping from database names to another dictionary, which includes configurations of the database and the pymongo.database entity. Inherited from _config.body.['dbs']. Note that keys self._dbs are mere strings, only self._dbs[key]['self'] refers to the pymongo.Database object. * _dbNames: list; a list of names of databases. * _collNames: dictionary; mapping from self._db[key]['collNames'] attribute to the names of collections(i.e. tickers) within. - example: _collNames['equTicker'] = ['000001', '000002', ...] * _connected: boolean; whether the MongoClient was connected to or not. * _mapTickersToSecIDs: dictionary; mapping from stock tickers to its security ID. example ------- >> myApi = PyApi(Config()) >> mydbs = DBConfig() >> controller = MongodController(mydbs, myApi) >> controller._get_coll_names() >> controller._ensure_index() >> controller.download_equity_D1(20130101, 20150801) >> controller.update_equity_D1() """ _config = DBConfig() _api = None _client = None _dbs = None _dbNames = [] _collNames = dict() _connected = False _mapTickersToSecIDs = dict() def __init__(self, config, api): """ Constructor. parameters ---------- * config: DBConfig object; specifies database configs. * api: PyApi object. """ self._api = api # Set Datayes PyApi. if config.body: try: self._config = config.body self._client = config.body['client'] self._dbs = config.body['dbs'] self._dbNames = config.body['dbNames'] self._connected = True except KeyError: msg = '[MONGOD]: Unable to configure database; ' + \ 'config file is incomplete.' raise VNPAST_ConfigError(msg) except Exception,e: msg = '[MONGOD]: Unable to configure database; ' + str(e) raise VNPAST_ConfigError(msg) if self._connected: #self._get_coll_names() #self._ensure_index() pass def view(self): """ NOT IMPLEMENTED """ return #---------------------------------------------------------------------- # Get collection names methods. """ Decorator; Targeting at path dName, if exists, read data from this file; if not, execute handle() which returns a json-like data and stores the data at dName path. parameters ---------- * dName: string; the specific path of file that __md looks at. """ def __md(dName): def _md(get): def handle(*args, **kwargs): try: if os.path.isfile(dName): # if directory exists, read from it. jsonFile = open(dName,'r') data = json.loads(jsonFile.read()) jsonFile.close() else: # if not, get data via *get method, # then write to the file. data = get(*args, **kwargs) jsonFile = open(dName, 'w+') jsonFile.write(json.dumps(data)) jsonFile.close() #print data return data except Exception,e: raise e return handle return _md @__md('names/equTicker.json') def _allEquTickers(self): """get all equity tickers, decorated by @__md().""" data = self._api.get_equity_D1() allEquTickers = list(data.body['ticker']) return allEquTickers @__md('names/secID.json') def _allSecIds(self): """get all security IDs, decorated by @__md().""" data = self._api.get_equity_D1() allTickers = list(data.body['ticker']) exchangeCDs = list(data.body['exchangeCD']) allSecIds = [allTickers[k]+'.'+exchangeCDs[k] for k in range( len(allTickers))] return allSecIds @__md('names/futTicker.json') def _allFutTickers(self): """get all future tickers, decorated by @__md().""" data = self._api.get_future_D1() allFutTickers = list(data.body['ticker']) return allFutTickers @__md('names/optTicker.json') def _allOptTickers(self): """get all option tickers, decorated by @__md().""" data = self._api.get_option_D1() allOptTickers = list(data.body['ticker']) return allOptTickers @__md('names/fudTicker.json') def _allFudTickers(self): """get all fund tickers, decorated by @__md().""" data = self._api.get_fund_D1() allFudTickers = list(data.body['ticker']) return allFudTickers @__md('names/idxTicker.json') def _allIdxTickers(self): """get all index tickers, decorated by @__md().""" data = self._api.get_index_D1() allIdxTickers = list(data.body['ticker']) return allIdxTickers @__md('names/bndTicker.json') def _allBndTickers(self): """get all bond tickers, decorated by @__md().""" data = self._api.get_bond_D1() allBndTickers = list(data.body['ticker']) return allBndTickers def _get_coll_names(self): """ get all instruments'names and store them in self._collNames. """ try: if not os.path.exists('names'): os.makedirs('names') self._collNames['equTicker'] = self._allEquTickers() self._collNames['fudTicker'] = self._allFudTickers() self._collNames['secID'] = self._allSecIds() self._collNames['futTicker'] = self._allFutTickers() self._collNames['optTicker'] = self._allOptTickers() self._collNames['idxTicker'] = self._allIdxTickers() print '[MONGOD]: Collection names gotten.' return 1 except AssertionError: warning = '[MONGOD]: Warning, collection names ' + \ 'is an empty list.' print warning except Exception, e: msg = '[MONGOD]: Unable to set collection names; ' + \ str(e) raise VNPAST_DatabaseError(msg) #---------------------------------------------------------------------- # Ensure collection index method. def _ensure_index(self): """ Ensure indices for all databases and collections. first access self._dbs config to get index column names; then get collection names from self._collNames and loop over all collections. """ if self._collNames and self._dbs: try: for dbName in self._dbs: # Iterate over database configurations. db = self._dbs[dbName] dbSelf = db['self'] index = db['index'] collNames = self._collNames[db['collNames']] # db['self'] is the pymongo.Database object. for name in collNames: coll = dbSelf[name] coll.ensure_index([(index, pymongo.DESCENDING)], unique=True) print '[MONGOD]: MongoDB index set.' return 1 except KeyError: msg = '[MONGOD]: Unable to set collection indices; ' + \ 'infomation in Config.body["dbs"] is incomplete.' raise VNPAST_DatabaseError(msg) except Exception, e: msg = '[MONGOD]: Unable to set collection indices; ' + str(e) raise VNPAST_DatabaseError(msg) #---------------------------------------------------------------------- # Download method. def download_equity_D1(self, start, end, sessionNum=30): """ """ try: db = self._dbs['EQU_D1']['self'] self._api.get_equity_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) def download_equity_M1(self, tasks, startYr=2012, endYr=2015): """ """ try: # map equity tickers to security IDs. if self._mapTickersToSecIDs: maps = self._mapTickersToSecIDs else: assert os.isfile('./names/secID.json') jsonFile = open(dName,'r') allSecIds = json.loads(jsonFile.read()) jsonFile.close() allTickers = [s.split('.')[0] for s in allSecIds] maps = dict(zip(allTickers, allSecIds)) self._mapTickersToSecIDs = maps tasks_ = [maps[task] for task in tasks] db = self._dbs['EQU_M1']['self'] self._api.get_equity_M1_interMonth(db, id=1, startYr = startYr, endYr = endYr, tasks = tasks_) except AssertionError: msg = '[MONGOD]: Cannot map tickers to secIDs; ' + \ 'secID.json does not exist.' raise VNPAST_DatabaseError(msg) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) def download_bond_D1(self, start, end, sessionNum=30): """ """ pass def download_future_D1(self, start, end, sessionNum=30): """ """ try: db = self._dbs['FUT_D1']['self'] self._api.get_future_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) def download_option_D1(self, start, end, sessionNum=30): """ """ try: db = self._dbs['OPT_D1']['self'] self._api.get_option_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) def download_index_D1(self, start, end, sessionNum=30): """ """ try: db = self._dbs['IDX_D1']['self'] self._api.get_index_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) def download_fund_D1(self, start, end, sessionNum=30): """ """ try: db = self._dbs['FUD_D1']['self'] self._api.get_fund_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to download data; ' + str(e) raise VNPAST_DatabaseError(msg) #---------------------------------------------------------------------- # Update methods. def __update(self, key, target1, target2, sessionNum): """ Basic update method. Looks into the database specified by 'key', find the latest record in the collection of it. Then update the collections till last trading date. parameters ---------- * key: string; a database alias (refer to the database config) e.g., 'EQU_D1'. * target1: method; pointer to the function with which controller obtain all tickers in the database. Concretely, target1 are self._all#Tickers methods. * target2: method; pointer to the api overlord requesting functions i.e. self._api.get_###_mongod methods. * sessionNum: integer; the number of threads. """ try: # get databases and tickers db = self._dbs[key]['self'] index = self._dbs[key]['index'] allTickers = target1() coll = db[allTickers[0]] # find the latest timestamp in collection. latest = coll.find_one( sort=[(index, pymongo.DESCENDING)])[index] start = datetime.strftime( latest + timedelta(days=1),'%Y%m%d') end = datetime.strftime(datetime.now(), '%Y%m%d') # then download. target2(db, start, end, sessionNum) return db except Exception, e: msg = '[MONGOD]: Unable to update data; ' + str(e) raise VNPAST_DatabaseError(msg) def update_equity_D1(self, sessionNum=30): """ """ db = self.__update(key = 'EQU_D1', target1 = self._allEquTickers, target2 = self._api.get_equity_D1_mongod, sessionNum = sessionNum) return db def update_future_D1(self, sessionNum=30): """ """ db = self.__update(key = 'FUT_D1', target1 = self._allFutTickers, target2 = self._api.get_future_D1_mongod, sessionNum = sessionNum) return db def update_option_D1(self, sessionNum=30): """ """ db = self.__update(key = 'OPT_D1', target1 = self._allOptTickers, target2 = self._api.get_option_D1_mongod, sessionNum = sessionNum) return db def update_index_D1(self, sessionNum=30): """ """ db = self.__update(key = 'IDX_D1', target1 = self._allIdxTickers, target2 = self._api.get_index_D1_mongod, sessionNum = sessionNum) return db def update_fund_D1(self, sessionNum=30): """ """ db = self.__update(key = 'FUD_D1', target1 = self._allFudTickers, target2 = self._api.get_fund_D1_mongod, sessionNum = sessionNum) return db #----------------------------------------------------------------------# # stuff that will be deprecated def update_equity_D1_(self, sessionNum=30): """ """ try: # set databases and tickers db = self._dbs['EQU_D1']['self'] index = self._dbs['EQU_D1']['index'] allEquTickers = self._allEquTickers() coll = db[allEquTickers[0]] # find the latest timestamp in collection. latest = coll.find_one( sort=[(index, pymongo.DESCENDING)])[index] start = datetime.strftime(latest + timedelta(days=1),'%Y%m%d') end = datetime.strftime(datetime.now(), '%Y%m%d') # then download. self._api.get_equity_D1_mongod(db, start, end, sessionNum) except Exception, e: msg = '[MONGOD]: Unable to update data; ' + str(e) raise VNPAST_DatabaseError(msg) def update_equity_M1(self): """ """ pass #---------------------------------------------------------------------- # Fetch method. def fetch(self, dbName, ticker, start, end, output='list'): """ """ # check inputs' validity. if output not in ['df', 'list', 'json']: raise ValueError('[MONGOD]: Unsupported output type.') if dbName not in self._dbNames: raise ValueError('[MONGOD]: Unable to locate database name.') db = self._dbs[dbName] dbSelf = db['self'] dbIndex = db['index'] try: coll = db[ticker] if len(start)==8 and len(end)==8: # yyyymmdd, len()=8 start = datetime.strptime(start, '%Y%m%d') end = datetime.strptime(end, '%Y%m%d') elif len(start)==14 and len(end)==14: # yyyymmdd HH:MM, len()=14 start = datetime.strptime(start, '%Y%m%d %H:%M') end = datetime.strptime(end, '%Y%m%d %H:%M') else: pass docs = [] # find in MongoDB. for doc in coll.find(filter={dbIndex: {'$lte': end, '$gte': start}}, projection={'_id': False}): docs.append(doc) if output == 'list': return docs[::-1] except Exception, e: msg = '[MONGOD]: Error encountered when fetching data' + \ 'from MongoDB; '+ str(e) return -1 if __name__ == '__main__': dc = DBConfig() api = PyApi(Config()) mc = MongodController(dc, api) mc.update_index_D1()
mit
JsNoNo/scikit-learn
sklearn/decomposition/__init__.py
147
1421
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, ProjectedGradientNMF from .pca import PCA, RandomizedPCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd from .online_lda import LatentDirichletAllocation __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'ProjectedGradientNMF', 'RandomizedPCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD', 'LatentDirichletAllocation']
bsd-3-clause
jsilter/scipy
scipy/stats/kde.py
9
18242
#------------------------------------------------------------------------------- # # Define classes for (uni/multi)-variate kernel density estimation. # # Currently, only Gaussian kernels are implemented. # # Written by: Robert Kern # # Date: 2004-08-09 # # Modified: 2005-02-10 by Robert Kern. # Contributed to Scipy # 2005-10-07 by Robert Kern. # Some fixes to match the new scipy_core # # Copyright 2004-2005 by Enthought, Inc. # #------------------------------------------------------------------------------- from __future__ import division, print_function, absolute_import # Standard library imports. import warnings # Scipy imports. from scipy.lib.six import callable, string_types from scipy import linalg, special from numpy import atleast_2d, reshape, zeros, newaxis, dot, exp, pi, sqrt, \ ravel, power, atleast_1d, squeeze, sum, transpose import numpy as np from numpy.random import randint, multivariate_normal # Local imports. from . import mvn __all__ = ['gaussian_kde'] class gaussian_kde(object): """Representation of a kernel-density estimate using Gaussian kernels. Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in a non-parametric way. `gaussian_kde` works for both uni-variate and multi-variate data. It includes automatic bandwidth determination. The estimation works best for a unimodal distribution; bimodal or multi-modal distributions tend to be oversmoothed. Parameters ---------- dataset : array_like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2-D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), 'scott' is used. See Notes for more details. Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. d : int Number of dimensions. n : int Number of datapoints. factor : float The bandwidth factor, obtained from `kde.covariance_factor`, with which the covariance matrix is multiplied. covariance : ndarray The covariance matrix of `dataset`, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of `covariance`. Methods ------- kde.evaluate(points) : ndarray Evaluate the estimated pdf on a provided set of points. kde(points) : ndarray Same as kde.evaluate(points) kde.integrate_gaussian(mean, cov) : float Multiply pdf with a specified Gaussian and integrate over the whole domain. kde.integrate_box_1d(low, high) : float Integrate pdf (1D only) between two bounds. kde.integrate_box(low_bounds, high_bounds) : float Integrate pdf over a rectangular space between low_bounds and high_bounds. kde.integrate_kde(other_kde) : float Integrate two kernel density estimates multiplied together. kde.pdf(points) : ndarray Alias for ``kde.evaluate(points)``. kde.logpdf(points) : ndarray Equivalent to ``np.log(kde.evaluate(points))``. kde.resample(size=None) : ndarray Randomly sample a dataset from the estimated pdf. kde.set_bandwidth(bw_method='scott') : None Computes the bandwidth, i.e. the coefficient that multiplies the data covariance matrix to obtain the kernel covariance matrix. .. versionadded:: 0.11.0 kde.covariance_factor : float Computes the coefficient (`kde.factor`) that multiplies the data covariance matrix to obtain the kernel covariance matrix. The default is `scotts_factor`. A subclass can overwrite this method to provide a different method, or set it through a call to `kde.set_bandwidth`. Notes ----- Bandwidth selection strongly influences the estimate obtained from the KDE (much more so than the actual shape of the kernel). Bandwidth selection can be done by a "rule of thumb", by cross-validation, by "plug-in methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde` uses a rule of thumb, the default is Scott's Rule. Scott's Rule [1]_, implemented as `scotts_factor`, is:: n**(-1./(d+4)), with ``n`` the number of data points and ``d`` the number of dimensions. Silverman's Rule [2]_, implemented as `silverman_factor`, is:: (n * (d + 2) / 4.)**(-1. / (d + 4)). Good general descriptions of kernel density estimation can be found in [1]_ and [2]_, the mathematics for this multi-dimensional implementation can be found in [1]_. References ---------- .. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and Visualization", John Wiley & Sons, New York, Chicester, 1992. .. [2] B.W. Silverman, "Density Estimation for Statistics and Data Analysis", Vol. 26, Monographs on Statistics and Applied Probability, Chapman and Hall, London, 1986. .. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993. .. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel conditional density estimation", Computational Statistics & Data Analysis, Vol. 36, pp. 279-298, 2001. Examples -------- Generate some random two-dimensional data: >>> from scipy import stats >>> def measure(n): >>> "Measurement model, return two coupled measurements." >>> m1 = np.random.normal(size=n) >>> m2 = np.random.normal(scale=0.5, size=n) >>> return m1+m2, m1-m2 >>> m1, m2 = measure(2000) >>> xmin = m1.min() >>> xmax = m1.max() >>> ymin = m2.min() >>> ymax = m2.max() Perform a kernel density estimate on the data: >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] >>> positions = np.vstack([X.ravel(), Y.ravel()]) >>> values = np.vstack([m1, m2]) >>> kernel = stats.gaussian_kde(values) >>> Z = np.reshape(kernel(positions).T, X.shape) Plot the results: >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r, ... extent=[xmin, xmax, ymin, ymax]) >>> ax.plot(m1, m2, 'k.', markersize=2) >>> ax.set_xlim([xmin, xmax]) >>> ax.set_ylim([ymin, ymax]) >>> plt.show() """ def __init__(self, dataset, bw_method=None): self.dataset = atleast_2d(dataset) if not self.dataset.size > 1: raise ValueError("`dataset` input should have multiple elements.") self.d, self.n = self.dataset.shape self.set_bandwidth(bw_method=bw_method) def evaluate(self, points): """Evaluate the estimated pdf on a set of points. Parameters ---------- points : (# of dimensions, # of points)-array Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point. Returns ------- values : (# of points,)-array The values at each point. Raises ------ ValueError : if the dimensionality of the input points is different than the dimensionality of the KDE. """ points = atleast_2d(points) d, m = points.shape if d != self.d: if d == 1 and m == self.d: # points was passed in as a row vector points = reshape(points, (self.d, 1)) m = 1 else: msg = "points have dimension %s, dataset has dimension %s" % (d, self.d) raise ValueError(msg) result = zeros((m,), dtype=np.float) if m >= self.n: # there are more points than data, so loop over data for i in range(self.n): diff = self.dataset[:, i, newaxis] - points tdiff = dot(self.inv_cov, diff) energy = sum(diff*tdiff,axis=0) / 2.0 result = result + exp(-energy) else: # loop over points for i in range(m): diff = self.dataset - points[:, i, newaxis] tdiff = dot(self.inv_cov, diff) energy = sum(diff * tdiff, axis=0) / 2.0 result[i] = sum(exp(-energy), axis=0) result = result / self._norm_factor return result __call__ = evaluate def integrate_gaussian(self, mean, cov): """ Multiply estimated density by a multivariate Gaussian and integrate over the whole space. Parameters ---------- mean : aray_like A 1-D array, specifying the mean of the Gaussian. cov : array_like A 2-D array, specifying the covariance matrix of the Gaussian. Returns ------- result : scalar The value of the integral. Raises ------ ValueError : If the mean or covariance of the input Gaussian differs from the KDE's dimensionality. """ mean = atleast_1d(squeeze(mean)) cov = atleast_2d(cov) if mean.shape != (self.d,): raise ValueError("mean does not have dimension %s" % self.d) if cov.shape != (self.d, self.d): raise ValueError("covariance does not have dimension %s" % self.d) # make mean a column vector mean = mean[:, newaxis] sum_cov = self.covariance + cov diff = self.dataset - mean tdiff = dot(linalg.inv(sum_cov), diff) energies = sum(diff * tdiff, axis=0) / 2.0 result = sum(exp(-energies), axis=0) / sqrt(linalg.det(2 * pi * sum_cov)) / self.n return result def integrate_box_1d(self, low, high): """ Computes the integral of a 1D pdf between two bounds. Parameters ---------- low : scalar Lower bound of integration. high : scalar Upper bound of integration. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDE is over more than one dimension. """ if self.d != 1: raise ValueError("integrate_box_1d() only handles 1D pdfs") stdev = ravel(sqrt(self.covariance))[0] normalized_low = ravel((low - self.dataset) / stdev) normalized_high = ravel((high - self.dataset) / stdev) value = np.mean(special.ndtr(normalized_high) - special.ndtr(normalized_low)) return value def integrate_box(self, low_bounds, high_bounds, maxpts=None): """Computes the integral of a pdf over a rectangular interval. Parameters ---------- low_bounds : array_like A 1-D array containing the lower bounds of integration. high_bounds : array_like A 1-D array containing the upper bounds of integration. maxpts : int, optional The maximum number of points to use for integration. Returns ------- value : scalar The result of the integral. """ if maxpts is not None: extra_kwds = {'maxpts': maxpts} else: extra_kwds = {} value, inform = mvn.mvnun(low_bounds, high_bounds, self.dataset, self.covariance, **extra_kwds) if inform: msg = ('An integral in mvn.mvnun requires more points than %s' % (self.d * 1000)) warnings.warn(msg) return value def integrate_kde(self, other): """ Computes the integral of the product of this kernel density estimate with another. Parameters ---------- other : gaussian_kde instance The other kde. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDEs have different dimensionality. """ if other.d != self.d: raise ValueError("KDEs are not the same dimensionality") # we want to iterate over the smallest number of points if other.n < self.n: small = other large = self else: small = self large = other sum_cov = small.covariance + large.covariance sum_cov_chol = linalg.cho_factor(sum_cov) result = 0.0 for i in range(small.n): mean = small.dataset[:, i, newaxis] diff = large.dataset - mean tdiff = linalg.cho_solve(sum_cov_chol, diff) energies = sum(diff * tdiff, axis=0) / 2.0 result += sum(exp(-energies), axis=0) result /= sqrt(linalg.det(2 * pi * sum_cov)) * large.n * small.n return result def resample(self, size=None): """ Randomly sample a dataset from the estimated pdf. Parameters ---------- size : int, optional The number of samples to draw. If not provided, then the size is the same as the underlying dataset. Returns ------- resample : (self.d, `size`) ndarray The sampled dataset. """ if size is None: size = self.n norm = transpose(multivariate_normal(zeros((self.d,), float), self.covariance, size=size)) indices = randint(0, self.n, size=size) means = self.dataset[:, indices] return means + norm def scotts_factor(self): return power(self.n, -1./(self.d+4)) def silverman_factor(self): return power(self.n*(self.d+2.0)/4.0, -1./(self.d+4)) # Default method to calculate bandwidth, can be overwritten by subclass covariance_factor = scotts_factor def set_bandwidth(self, bw_method=None): """Compute the estimator bandwidth with given method. The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density. Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept. Notes ----- .. versionadded:: 0.11 Examples -------- >>> x1 = np.array([-7, -5, 1, 4, 5.]) >>> kde = stats.gaussian_kde(x1) >>> xs = np.linspace(-10, 10, num=50) >>> y1 = kde(xs) >>> kde.set_bandwidth(bw_method='silverman') >>> y2 = kde(xs) >>> kde.set_bandwidth(bw_method=kde.factor / 3.) >>> y3 = kde(xs) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo', ... label='Data points (rescaled)') >>> ax.plot(xs, y1, label='Scott (default)') >>> ax.plot(xs, y2, label='Silverman') >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)') >>> ax.legend() >>> plt.show() """ if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif np.isscalar(bw_method) and not isinstance(bw_method, string_types): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) self._compute_covariance() def _compute_covariance(self): """Computes the covariance matrix for each Gaussian kernel using covariance_factor(). """ self.factor = self.covariance_factor() # Cache covariance and inverse covariance of the data if not hasattr(self, '_data_inv_cov'): self._data_covariance = atleast_2d(np.cov(self.dataset, rowvar=1, bias=False)) self._data_inv_cov = linalg.inv(self._data_covariance) self.covariance = self._data_covariance * self.factor**2 self.inv_cov = self._data_inv_cov / self.factor**2 self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n def pdf(self, x): """ Evaluate the estimated pdf on a provided set of points. Notes ----- This is an alias for `gaussian_kde.evaluate`. See the ``evaluate`` docstring for more details. """ return self.evaluate(x) def logpdf(self, x): """ Evaluate the log of the estimated pdf on a provided set of points. Notes ----- See `gaussian_kde.evaluate` for more details; this method simply returns ``np.log(gaussian_kde.evaluate(x))``. """ return np.log(self.evaluate(x))
bsd-3-clause
Chasego/beaker-notebook
plugin/ipythonPlugins/src/dist/python3/beaker_runtime3.py
1
18609
# Copyright 2014 TWO SIGMA OPEN SOURCE, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, json, pandas, numpy import urllib.request, urllib.parse, urllib.error, urllib.request, urllib.error, urllib.parse, IPython, datetime, calendar, math, traceback, time from IPython.utils.traitlets import Unicode class OutputContainer: def __init__(self): self.items = [] def clear(self): self.items = [ ] def addItem(self, obj): self.items.append(obj) def getItems(self): return self.items class BeakerCodeCell: def __init__(self, cellId, evaluatorId): self.cellId = cellId self.evaluatorId = evaluatorId self.code = '' self.outputtype = '' self.output = None self.tags = '' def getCellId(self): return self.cellId def getEvaluatorId(self): return self.evaluatorId def getCode(self): return self.code def getOutputType(self): return self.outputtype def getOutput(self): return self.output def getTags(self): return self.tags def convertTypeName(typ): if typ.startswith("float"): return "double" if typ.startswith("int") or typ.startswith("uint") or typ.startswith("short") or typ.startswith("ushort") or typ.startswith("long") or typ.startswith("ulong"): return "integer" if typ.startswith("bool"): return "boolean" if typ.startswith("date") or typ.startswith("Time"): return "time" return "string" def isPrimitiveType(typ): if typ.startswith("float"): return True if typ.startswith("int") or typ.startswith("uint") or typ.startswith("short") or typ.startswith("ushort") or typ.startswith("long") or typ.startswith("ulong"): return True if typ.startswith("bool"): return True if typ.startswith("date") or typ.startswith("Time"): return True if typ.startswith("str"): return True return False def isListOfMaps(data): if type(data) != list: return False for w in data: if type(w) != dict: return False for v in w.values(): if not isPrimitiveType(type(v).__name__): return False return True def isDictionary(data): if type(data) != dict: return False for v in data.values(): if not isPrimitiveType(type(v).__name__): return False return True def transformNaN(obj): if not isinstance(obj, float): return obj if math.isnan(obj): return "Nan"; if math.isinf(obj): if obj>0: return "Infinity" else: return "-Infinity" return obj def transformNaNs(obj): for x in range(0,len(obj)): i = obj[x]; if not isinstance(i, float): continue if math.isnan(i): obj[x] = "NaN"; if math.isinf(i): if i>0: obj[x] = "Infinity" else: obj[x] = "-Infinity" def fixNaNBack(obj): if not isinstance(obj, str): return obj if obj == "NaN": return float('nan') if obj == "Infinity": return float('inf') if obj == "-Infinity": return float('-inf') return obj def fixNaNsBack(obj): for x in range(0,len(obj)): i = obj[x]; if not isinstance(i, str): continue if i == "NaN": obj[x] = float('nan') if i == "Infinity": obj[x] = float('inf') if i == "-Infinity": obj[x] = float('-inf') def transform(obj): if type(obj) == bytes: return str(obj) if isListOfMaps(obj): out = {} out['type'] = "TableDisplay" out['subtype'] = "ListOfMaps" cols = [] for l in obj: cols.extend(l.keys()) cols = list(set(cols)) out['columnNames'] = cols vals = [] for l in obj: row = [] for r in cols: if r in l: row.append(transform(l[r])) else: row.append('') vals.append(row) out['values'] = vals return out if isDictionary(obj): out = {} out['type'] = "TableDisplay" out['subtype'] = "Dictionary" out['columnNames'] = [ "Key", "Value" ] values = [] for k,v in obj.items(): values.append( [k, transform(v)] ) out['values'] = values return out if type(obj) == dict: out = {} for k,v in obj.items(): out[k] = transform(v) return out if type(obj) == list: out = [] for v in obj: out.append(transform(v)) return out if isinstance(obj, OutputContainer): out = {} out['type'] = "OutputContainer" items = [] for v in obj.getItems(): items.append(transform(v)) out['items'] = items return out if isinstance(obj, BeakerCodeCell): out = {} out['type'] = "BeakerCodeCell" out['cellId'] = obj.getCellId() out['evaluatorId'] = obj.getEvaluatorId() out['code'] = obj.getCode() out['outputtype'] = obj.getOutputType() out['output'] = transform(obj.getOutput()) out['tags'] = obj.getTags() return out return transformNaN(obj) def transformBack(obj): if type(obj) == dict: out = {} for k,v in obj.items(): out[str(k)] = transformBack(v) if "type" in out: if out['type'] == "BeakerCodeCell": c = BeakerCodeCell(out['cellId'], out['evaluatorId']) if 'code' in out: c.code = out['code'] if 'outputtype' in out: c.outputtype = out['outputtype'] if 'output' in out: c.output = transformBack(out['output']) if 'tags' in out: c.tags = out['tags'] return c if out['type'] == "OutputContainer": c = OutputContainer() if 'items' in out: for i in out['items']: c.addItem(i) return c; if out['type'] == "Date": return datetime.datetime.fromtimestamp(out["timestamp"]/1000) if out['type'] == "TableDisplay": if 'subtype' in out: if out['subtype'] == "Dictionary": out2 = { } for r in out['values']: out2[r[0]] = fixNaNBack(r[1]) if out['columnNames'][0] == "Index": return pandas.Series(out2) return out2 if out['subtype'] == "Matrix": vals = out['values'] fixNaNsBack(vals) return numpy.matrix(vals) if out['subtype'] == "ListOfMaps": out2 = [] cnames = out['columnNames'] for r in out['values']: out3 = { } for i in range(len(cnames)): if r[i] != '': out3[ cnames[i] ] = r[i] out2.append(out3) return out2 # transform to dataframe if ('hasIndex' in out) and (out['hasIndex'] == "true"): # first column becomes the index vals = out['values'] cnames = out['columnNames'][1:] index = [] for x in range(0,len(vals)): index.append(transformBack(vals[x][0])) v = vals[x][1:] fixNaNsBack(v) vals[x] = v return pandas.DataFrame(data=vals, columns=cnames, index=index) else: vals = out['values'] cnames = out['columnNames'] for x in range(0,len(vals)): v = vals[x] fixNaNsBack(v) vals[x] = v return pandas.DataFrame(data=vals, columns=cnames) return out if type(obj) == list: out = [] for v in obj: out.append(transformBack(v)) return out try: if type(obj) == bytes: obj = str(obj) except Exception as e: return obj return obj # should be inner class to Beaker class DataFrameEncoder(json.JSONEncoder): def default(self, obj): # similarly handle Panels. # make this extensible by the user to handle their own types. if isinstance(obj, numpy.generic): return transformNaN(obj.item()) if isinstance(obj, numpy.ndarray) and obj.ndim == 2: out = {} out['type'] = "TableDisplay" out['subtype'] = "Matrix" cols = [ ] for i in range(obj.shape[1]): cols.append( "c" + str(i) ) out['columnNames'] =cols vars = obj.tolist() for x in range(0,len(vars)): transformNaNs(vars[x]) out['values'] = vars return out if isinstance(obj, numpy.ndarray): ret = obj.tolist() transformNaNs(ret) return ret if type(obj) == datetime.datetime or type(obj) == datetime.date or type(obj).__name__ == 'Timestamp': out = {} out['type'] = "Date" out['timestamp'] = int(obj.strftime("%s"))*1000 return out if type(obj) == pandas.core.frame.DataFrame: out = {} out['type'] = "TableDisplay" out['subtype'] = "TableDisplay" out['hasIndex'] = "true" out['columnNames'] = ['Index'] + obj.columns.tolist() vals = obj.values.tolist() idx = obj.index.tolist() for x in range(0,len(vals)): vals[x] = [ idx[x] ] + vals[x] ty = [] num = len(obj.columns.tolist()) x = 0; for x in range(0,num+1): ty.append( convertTypeName(type(vals[0][x]).__name__)) out['types'] = ty for x in range(0,len(vals)): transformNaNs(vals[x]) out['values'] = vals return out if type(obj) == pandas.core.series.Series: basict = True for i in range(len(obj)): if not isPrimitiveType(type(obj[i]).__name__): basict = False break if basict: out = {} out['type'] = "TableDisplay" out['subtype'] = "Dictionary" out['columnNames'] = [ "Index", "Value" ] values = [] for k,v in obj.items(): values.append( [k, transform(v)] ) out['values'] = values return out return obj.to_dict() return json.JSONEncoder.default(self, obj) class MyJSONFormatter(IPython.core.formatters.BaseFormatter): format_type = Unicode('application/json') def __call__(self, obj): try: obj = transform(obj) return json.dumps(obj, cls=DataFrameEncoder) except Exception as e: #print(e) #traceback.print_exc() return None class Beaker: """Runtime support for Python code in Beaker.""" session_id = '' core_url = '127.0.0.1:' + os.environ['beaker_core_port'] _beaker_password_mgr = urllib.request.HTTPPasswordMgrWithDefaultRealm() _beaker_password_mgr.add_password(None, core_url, 'beaker', os.environ['beaker_core_password']) _beaker_url_opener = urllib.request.build_opener(urllib.request.HTTPBasicAuthHandler(_beaker_password_mgr), urllib.request.ProxyHandler({})) def set4(self, var, val, unset, sync): args = {'name': var, 'session':self.session_id, 'sync':sync} if not unset: val = transform(val) args['value'] = json.dumps(val, cls=DataFrameEncoder) req = urllib.request.Request('http://' + self.core_url + '/rest/namespace/set', urllib.parse.urlencode(args).encode('utf8')) conn = self._beaker_url_opener.open(req) reply = conn.read().decode("utf-8") if reply != 'ok': raise NameError(reply) def get(self, var): req = urllib.request.Request('http://' + self.core_url + '/rest/namespace/get?' + urllib.parse.urlencode({ 'name': var, 'session':self.session_id})) conn = self._beaker_url_opener.open(req) result = json.loads(conn.read().decode()) if not result['defined']: raise NameError('name \'' + var + '\' is not defined in notebook namespace') return transformBack(result['value']) def set_session(self, id): self.session_id = id def register_output(self): ip = IPython.InteractiveShell.instance() ip.display_formatter.formatters['application/json'] = MyJSONFormatter(parent=ip.display_formatter) def set(self, var, val): return self.set4(var, val, False, True) def createOutputContainer(self): return OutputContainer() def showProgressUpdate(self): return "WARNING: python3 language plugin does not support progress updates" def evaluate(self,filter): args = {'filter': filter, 'session':self.session_id} req = urllib.request.Request('http://' + self.core_url + '/rest/notebookctrl/evaluate', urllib.parse.urlencode(args).encode('utf8')) conn = self._beaker_url_opener.open(req) result = json.loads(conn.read().decode()) return transformBack(result) def evaluateCode(self, evaluator,code): args = {'evaluator': evaluator, 'code' : code, 'session':self.session_id} req = urllib.request.Request('http://' + self.core_url + '/rest/notebookctrl/evaluateCode', urllib.parse.urlencode(args).encode('utf8')) conn = self._beaker_url_opener.open(req) result = json.loads(conn.read().decode()) return transformBack(result) def showStatus(self,msg): args = {'msg': msg, 'session':self.session_id} req = urllib.request.Request('http://' + self.core_url + '/rest/notebookctrl/showStatus', urllib.parse.urlencode(args).encode('utf8')) conn = self._beaker_url_opener.open(req) result = conn.read() return result=="true" def clearStatus(self,msg): args = {'msg': msg, 'session':self.session_id} req = urllib.request.Request('http://' + self.core_url + '/rest/notebookctrl/clearStatus', urllib.parse.urlencode(args).encode('utf8')) conn = self._beaker_url_opener.open(req) result = conn.read() return result=="true" def showTransientStatus(self,msg): args = {'msg': msg, 'session':self.session_id} req = urllib.request.Request('http://' + self.core_url + '/rest/notebookctrl/showTransientStatus', urllib.parse.urlencode(args).encode('utf8')) conn = self._beaker_url_opener.open(req) result = conn.read() return result=="true" def getEvaluators(self): req = urllib.request.Request('http://' + self.core_url + '/rest/notebookctrl/getEvaluators?' + urllib.parse.urlencode({ 'session':self.session_id})) conn = self._beaker_url_opener.open(req) result = json.loads(conn.read().decode()) return transformBack(result) def getCodeCells(self,filter): req = urllib.request.Request('http://' + self.core_url + '/rest/notebookctrl/getCodeCells?' + urllib.parse.urlencode({ 'session':self.session_id, 'filter':filter})) conn = self._beaker_url_opener.open(req) result = json.loads(conn.read().decode()) return transformBack(result) def setCodeCellBody(self,name,body): args = {'name': name, 'body':body, 'session':self.session_id} req = urllib.request.Request('http://' + self.core_url + '/rest/notebookctrl/setCodeCellBody', urllib.parse.urlencode(args).encode('utf8')) conn = self._beaker_url_opener.open(req) result = conn.read() return result=="true" def setCodeCellEvaluator(self,name,evaluator): args = {'name': name, 'evaluator':evaluator, 'session':self.session_id} req = urllib.request.Request('http://' + self.core_url + '/rest/notebookctrl/setCodeCellEvaluator', urllib.parse.urlencode(args).encode('utf8')) conn = self._beaker_url_opener.open(req) result = conn.read() return result=="true" def setCodeCellTags(self,name,tags): args = {'name': name, 'tags':tags, 'session':self.session_id} req = urllib.request.Request('http://' + self.core_url + '/rest/notebookctrl/setCodeCellTags', urllib.parse.urlencode(args).encode('utf8')) conn = self._beaker_url_opener.open(req) result = conn.read() return result=="true" def __setattr__(self, name, value): if 'session_id' == name: self.__dict__['session_id'] = value return return self.set(name, value) def __getattr__(self, name): return self.get(name)
apache-2.0
jason-neal/astro_scripts
SWEETCat.py
1
1644
#!/usr/bin/env python # -*- coding: utf8 -*- # My imports from __future__ import division, print_function import os import requests import numpy as np import matplotlib.pyplot as plt import pandas as pd try: import seaborn as sns sns.set_context('talk') except ImportError: print('For better looking plots, try install seaborn (pip install seaborn)') pass def _read_sweetcat(fname): """ Read SWEETCat into a pandas DataFrame """ if not isinstance(fname, str): raise ValueError('Input name must be a str') names = ['star', 'hd', 'ra', 'dec', 'vmag', 'ervmag', 'par', 'erpar', 'parsource', 'teff', 'erteff', 'logg', 'erlogg', 'logglc', 'erlogglc', 'vt', 'ervt', 'metal', 'ermetal', 'mass', 'ermass', 'author', 'link', 'source', 'update', 'comment1', 'comment2'] df = pd.read_csv(fname, sep='\t', names=names, na_values=['~']) # Adding luminosity to the DataFrame df['lum'] = (df.teff/5777)**4 * df.mass return df def _download_sweetcat(fout): """ Download SWEETCAT and write it to file """ url = 'https://www.astro.up.pt/resources/sweet-cat/download.php' table = requests.get(url) with open(fout, 'w') as file: file.write(table.content) path = os.path.expanduser('~/.SWEETCat/') _sc = os.path.join(path, 'sweetcat.csv') if os.path.isdir(path): if not os.path.isfile(_sc): print('Downloading SWEET-Cat...') _download_sweetcat(_sc) else: os.mkdir(path) print('{0!s} Created'.format(path)) print('Downloading SWEET-Cat...') _download_sweetcat(_sc) df = _read_sweetcat(_sc)
mit
chenyyx/scikit-learn-doc-zh
examples/en/decomposition/plot_sparse_coding.py
60
4016
""" =========================================== Sparse coding with a precomputed dictionary =========================================== Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the :class:`sklearn.decomposition.SparseCoder` estimator. The Ricker (also known as Mexican hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates learning the dictionary to best fit your type of signals. The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same order of magnitude. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import SparseCoder def ricker_function(resolution, center, width): """Discrete sub-sampled Ricker (Mexican hat) wavelet""" x = np.linspace(0, resolution - 1, resolution) x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4))) * (1 - ((x - center) ** 2 / width ** 2)) * np.exp((-(x - center) ** 2) / (2 * width ** 2))) return x def ricker_matrix(width, resolution, n_components): """Dictionary of Ricker (Mexican hat) wavelets""" centers = np.linspace(0, resolution - 1, n_components) D = np.empty((n_components, resolution)) for i, center in enumerate(centers): D[i] = ricker_function(resolution, center, width) D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis] return D resolution = 1024 subsampling = 3 # subsampling factor width = 100 n_components = resolution // subsampling # Compute a wavelet dictionary D_fixed = ricker_matrix(width=width, resolution=resolution, n_components=n_components) D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution, n_components=n_components // 5) for w in (10, 50, 100, 500, 1000))] # Generate a signal y = np.linspace(0, resolution - 1, resolution) first_quarter = y < resolution / 4 y[first_quarter] = 3. y[np.logical_not(first_quarter)] = -1. # List the different sparse coding methods in the following format: # (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs) estimators = [('OMP', 'omp', None, 15, 'navy'), ('Lasso', 'lasso_cd', 2, None, 'turquoise'), ] lw = 2 plt.figure(figsize=(13, 6)) for subplot, (D, title) in enumerate(zip((D_fixed, D_multi), ('fixed width', 'multiple widths'))): plt.subplot(1, 2, subplot + 1) plt.title('Sparse coding against %s dictionary' % title) plt.plot(y, lw=lw, linestyle='--', label='Original signal') # Do a wavelet approximation for title, algo, alpha, n_nonzero, color in estimators: coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero, transform_alpha=alpha, transform_algorithm=algo) x = coder.transform(y.reshape(1, -1)) density = len(np.flatnonzero(x)) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) plt.plot(x, color=color, lw=lw, label='%s: %s nonzero coefs,\n%.2f error' % (title, density, squared_error)) # Soft thresholding debiasing coder = SparseCoder(dictionary=D, transform_algorithm='threshold', transform_alpha=20) x = coder.transform(y.reshape(1, -1)) _, idx = np.where(x != 0) x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) plt.plot(x, color='darkorange', lw=lw, label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error' % (len(idx), squared_error)) plt.axis('tight') plt.legend(shadow=False, loc='best') plt.subplots_adjust(.04, .07, .97, .90, .09, .2) plt.show()
gpl-3.0
kjung/scikit-learn
sklearn/utils/tests/test_estimator_checks.py
69
3894
import scipy.sparse as sp import numpy as np import sys from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.testing import assert_raises_regex, assert_true from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.estimator_checks import check_estimators_unfitted from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import MultiTaskElasticNet from sklearn.utils.validation import check_X_y, check_array class CorrectNotFittedError(ValueError): """Exception class to raise if estimator is used before fitting. Like NotFittedError, it inherits from ValueError, but not from AttributeError. Used for testing only. """ class BaseBadClassifier(BaseEstimator, ClassifierMixin): def fit(self, X, y): return self def predict(self, X): return np.ones(X.shape[0]) class NoCheckinPredict(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) return self class NoSparseClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']) if sp.issparse(X): raise ValueError("Nonsensical Error") return self def predict(self, X): X = check_array(X) return np.ones(X.shape[0]) class CorrectNotFittedErrorClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) self.coef_ = np.ones(X.shape[1]) return self def predict(self, X): if not hasattr(self, 'coef_'): raise CorrectNotFittedError("estimator is not fitted yet") X = check_array(X) return np.ones(X.shape[0]) def test_check_estimator(): # tests that the estimator actually fails on "bad" estimators. # not a complete test of all checks, which are very extensive. # check that we have a set_params and can clone msg = "it does not implement a 'get_params' methods" assert_raises_regex(TypeError, msg, check_estimator, object) # check that we have a fit method msg = "object has no attribute 'fit'" assert_raises_regex(AttributeError, msg, check_estimator, BaseEstimator) # check that fit does input validation msg = "TypeError not raised by fit" assert_raises_regex(AssertionError, msg, check_estimator, BaseBadClassifier) # check that predict does input validation (doesn't accept dicts in input) msg = "Estimator doesn't check for NaN and inf in predict" assert_raises_regex(AssertionError, msg, check_estimator, NoCheckinPredict) # check for sparse matrix input handling name = NoSparseClassifier.__name__ msg = "Estimator " + name + " doesn't seem to fail gracefully on sparse data" # the check for sparse input handling prints to the stdout, # instead of raising an error, so as not to remove the original traceback. # that means we need to jump through some hoops to catch it. old_stdout = sys.stdout string_buffer = StringIO() sys.stdout = string_buffer try: check_estimator(NoSparseClassifier) except: pass finally: sys.stdout = old_stdout assert_true(msg in string_buffer.getvalue()) # doesn't error on actual estimator check_estimator(AdaBoostClassifier) check_estimator(MultiTaskElasticNet) def test_check_estimators_unfitted(): # check that a ValueError/AttributeError is raised when calling predict # on an unfitted estimator msg = "AttributeError or ValueError not raised by predict" assert_raises_regex(AssertionError, msg, check_estimators_unfitted, "estimator", NoSparseClassifier) # check that CorrectNotFittedError inherit from either ValueError # or AttributeError check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier)
bsd-3-clause
robbymeals/scikit-learn
examples/text/hashing_vs_dict_vectorizer.py
284
3265
""" =========================================== FeatureHasher and DictVectorizer Comparison =========================================== Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn't actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents. A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions. """ # Author: Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import re import sys from time import time import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction import DictVectorizer, FeatureHasher def n_nonzero_columns(X): """Returns the number of non-zero columns in a CSR matrix X.""" return len(np.unique(X.nonzero()[1])) def tokens(doc): """Extract tokens from doc. This uses a simple regex to break strings into tokens. For a more principled approach, see CountVectorizer or TfidfVectorizer. """ return (tok.lower() for tok in re.findall(r"\w+", doc)) def token_freqs(doc): """Extract a dict mapping tokens from doc to their frequencies.""" freq = defaultdict(int) for tok in tokens(doc): freq[tok] += 1 return freq categories = [ 'alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'misc.forsale', 'rec.autos', 'sci.space', 'talk.religion.misc', ] # Uncomment the following line to use a larger set (11k+ documents) #categories = None print(__doc__) print("Usage: %s [n_features_for_hashing]" % sys.argv[0]) print(" The default number of features is 2**18.") print() try: n_features = int(sys.argv[1]) except IndexError: n_features = 2 ** 18 except ValueError: print("not a valid number of features: %r" % sys.argv[1]) sys.exit(1) print("Loading 20 newsgroups training data") raw_data = fetch_20newsgroups(subset='train', categories=categories).data data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6 print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb)) print() print("DictVectorizer") t0 = time() vectorizer = DictVectorizer() vectorizer.fit_transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % len(vectorizer.get_feature_names())) print() print("FeatureHasher on frequency dicts") t0 = time() hasher = FeatureHasher(n_features=n_features) X = hasher.transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X)) print() print("FeatureHasher on raw tokens") t0 = time() hasher = FeatureHasher(n_features=n_features, input_type="string") X = hasher.transform(tokens(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X))
bsd-3-clause
f3r/scikit-learn
examples/semi_supervised/plot_label_propagation_digits_active_learning.py
294
3417
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(5): y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print('Iteration %i %s' % (i, 70 * '_')) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select five digit examples that the classifier is most uncertain about uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:] # keep track of indices that we get labels for delete_indices = np.array([]) f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += 5 f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.") plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45) plt.show()
bsd-3-clause
mjvakili/supermean
code/fastsampler.py
1
5083
import numpy as np import matplotlib.pyplot as plt import pyfits as pf import sampler_new import h5py import matplotlib matplotlib.use('Agg') from matplotlib import rc rc('font',**{'family':'serif','serif':'Computer Modern Roman','size':12}) rc('text', usetex=True) from matplotlib import cm import numpy as np from matplotlib.colors import LogNorm from mpl_toolkits.axes_grid1 import make_axes_locatable #b = pf.open("wfc3_f160w_clean_central100.fits")[1].data[0:120,:] fl= 1e-5 f = .05 g = .01 H = 3 X = np.exp(np.loadtxt("superb_wfc_mean_iter_5_nfl.txt")) data = pf.open("wfc3_f160w_clean_central100.fits")[0].data[0:120,:] mask = pf.open("wfc3_f160w_clean_central100.fits")[1].data[0:120,:] mask[mask == 0] = -1 mask[mask > 0] = False mask[mask < 0] = True mask = mask == True cx = np.loadtxt("wfc3_f160w_clean_central100_matchedfilterpoly_cx.txt")[0:120] cy = np.loadtxt("wfc3_f160w_clean_central100_matchedfilterpoly_cy.txt")[0:120] F = np.loadtxt("superb_wfc_flux_iter_5_nfl.txt")#.reshape(75,75) B = np.loadtxt("superb_wfc_bkg_iter_5_nfl.txt")#.reshape(75,75) MS = h5py.File('masked_samplerx3.hdf5','r') MD = h5py.File('masked_data.hdf5','r') masked_samplers = MS["masked_samplerx3"]#[random] masked_data = MD["masked_data"]#[random] import sampler import time import scipy.optimize as op def function(theta, masked_data, mask , sr_psf, flux, bkg, floor, gain): """ Inputs: theta = [old_cx, old_cy], where: old_cx = current sub-pixel shift of the center of star in x at the naitive pixel resolution old_cy = current sub-pixel shift of the center of star in y at the naitive pixel resolution masked_data = patch with flagged pixels masked out mask = flagged pixels sr_psf = super resolution psf model floor = floor variance of the noise model gain = gain of the noise model Outputs: (non-regularized) NLL of the patch. Note that the regularization term is only a function of superresolution psf, so we do not include it here. """ Kp = sampler.imatrix_new(25, H, theta[0], theta[1])[: , mask] # masked sampler model = flux*np.dot(sr_psf , Kp) + bkg # maksed model var = floor + gain * np.abs(model) res = masked_data - model func = 0.5*np.sum(((res)**2.)/var) + 0.5*np.sum(np.log(var)) return func def fit(theta , masked_data, mask , sr_psf, flux, bkg, floor, gain): #size = I.shape[0] #x = np.linspace(0.5, size - .5, size) #y = x[:,np.newaxis] #x0_true = I.shape[0]/2. #y0_true = I.shape[0]/2. #flux0_true = 1. #size = I.shape[0] #x = np.linspace(0.5, size - .5, size) #y = x[:,np.newaxis] nll = lambda *args: function(*args) results = op.fmin(nll , [theta[0] , theta[1]] , args = (masked_data, mask , sr_psf, flux, bkg, floor, gain))# , disp = False) #flux0_ml , x0_ml , y0_ml = results["x"] return results[0] , results[1] for p in range(0,2): a = time.time() print cx[p] , cy[p] x, y = fit((cx[p] , cy[p]) , data[p,mask[p]], mask[p] , X, F[p], B[p], 0.05, 0.01) Kp = sampler.imatrix_new(25, H, x,y) print time.time() - a #Kp = sampler_new.imatrix_new(25, H , cx[p] , cy[p]) model = F[p]*np.dot(fl+X,Kp) + B[p] resi = (data[p,:] - model).reshape(25,25) res = (data[p,:] - model)*100/data[p,:] res = res.reshape(25,25) chi = (data[p,:] - model)/(f+g*np.abs(model))**.5 chi = chi.reshape(25,25) maskp = mask[p,:].reshape(25,25) #res[maskp!=0] = np.nan chi[maskp!=True] = np.nan #resi[maskp!=0] = np.nan mi = min(data[p , mask[p]].min(), model[mask[p]].min()) ma = max(data[p , mask[p]].max(), model[mask[p]].max()) plt.figure(figsize=(10,10)) plt.subplot(1,3,1) plt.set_cmap('RdBu') ax = plt.gca() im = ax.imshow(data[p].reshape(25,25) , interpolation="None" , origin="lower" , norm = LogNorm(), vmin = mi , vmax = ma) plt.title("Data") divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.2) plt.colorbar(im , cax = cax) ax.set_xticks(()) ax.set_yticks(()) plt.subplot(1,3,2) ax = plt.gca() im = ax.imshow(model.reshape(25,25) , interpolation = "None" , origin = "lower",norm=LogNorm(), vmin = mi , vmax = ma) plt.title("Model") divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.2) plt.colorbar(im , cax = cax) ax.set_xticks(()) ax.set_yticks(()) plt.subplot(1,3,3) ax = plt.gca() im = ax.imshow(chi.reshape(25,25) , interpolation = "None" , origin = "lower") plt.title("Chi") divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.2) plt.colorbar(im , cax = cax) ax.set_xticks(()) ax.set_yticks(()) plt.show() plt.close()
mit