repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
billy-inn/scikit-learn
sklearn/setup.py
225
2856
import os from os.path import join import warnings def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration from numpy.distutils.system_info import get_info, BlasNotFoundError import numpy libraries = [] if os.name == 'posix': libraries.append('m') config = Configuration('sklearn', parent_package, top_path) config.add_subpackage('__check_build') config.add_subpackage('svm') config.add_subpackage('datasets') config.add_subpackage('datasets/tests') config.add_subpackage('feature_extraction') config.add_subpackage('feature_extraction/tests') config.add_subpackage('cluster') config.add_subpackage('cluster/tests') config.add_subpackage('covariance') config.add_subpackage('covariance/tests') config.add_subpackage('cross_decomposition') config.add_subpackage('decomposition') config.add_subpackage('decomposition/tests') config.add_subpackage("ensemble") config.add_subpackage("ensemble/tests") config.add_subpackage('feature_selection') config.add_subpackage('feature_selection/tests') config.add_subpackage('utils') config.add_subpackage('utils/tests') config.add_subpackage('externals') config.add_subpackage('mixture') config.add_subpackage('mixture/tests') config.add_subpackage('gaussian_process') config.add_subpackage('gaussian_process/tests') config.add_subpackage('neighbors') config.add_subpackage('neural_network') config.add_subpackage('preprocessing') config.add_subpackage('manifold') config.add_subpackage('metrics') config.add_subpackage('semi_supervised') config.add_subpackage("tree") config.add_subpackage("tree/tests") config.add_subpackage('metrics/tests') config.add_subpackage('metrics/cluster') config.add_subpackage('metrics/cluster/tests') # add cython extension module for isotonic regression config.add_extension( '_isotonic', sources=['_isotonic.c'], include_dirs=[numpy.get_include()], libraries=libraries, ) # some libs needs cblas, fortran-compiled BLAS will not be sufficient blas_info = get_info('blas_opt', 0) if (not blas_info) or ( ('NO_ATLAS_INFO', 1) in blas_info.get('define_macros', [])): config.add_library('cblas', sources=[join('src', 'cblas', '*.c')]) warnings.warn(BlasNotFoundError.__doc__) # the following packages depend on cblas, so they have to be build # after the above. config.add_subpackage('linear_model') config.add_subpackage('utils') # add the test directory config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
khkaminska/scikit-learn
sklearn/datasets/__init__.py
176
3671
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_boston from .base import get_data_home from .base import clear_data_home from .base import load_sample_images from .base import load_sample_image from .covtype import fetch_covtype from .mlcomp import load_mlcomp from .lfw import load_lfw_pairs from .lfw import load_lfw_people from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_lfw_pairs', 'load_lfw_people', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
dyoung418/tensorflow
tensorflow/examples/learn/wide_n_deep_tutorial.py
4
8355
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example code for TensorFlow Wide & Deep Tutorial using TF.Learn API.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import shutil import sys import tempfile import pandas as pd from six.moves import urllib import tensorflow as tf CSV_COLUMNS = [ "age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket" ] gender = tf.feature_column.categorical_column_with_vocabulary_list( "gender", ["Female", "Male"]) education = tf.feature_column.categorical_column_with_vocabulary_list( "education", [ "Bachelors", "HS-grad", "11th", "Masters", "9th", "Some-college", "Assoc-acdm", "Assoc-voc", "7th-8th", "Doctorate", "Prof-school", "5th-6th", "10th", "1st-4th", "Preschool", "12th" ]) marital_status = tf.feature_column.categorical_column_with_vocabulary_list( "marital_status", [ "Married-civ-spouse", "Divorced", "Married-spouse-absent", "Never-married", "Separated", "Married-AF-spouse", "Widowed" ]) relationship = tf.feature_column.categorical_column_with_vocabulary_list( "relationship", [ "Husband", "Not-in-family", "Wife", "Own-child", "Unmarried", "Other-relative" ]) workclass = tf.feature_column.categorical_column_with_vocabulary_list( "workclass", [ "Self-emp-not-inc", "Private", "State-gov", "Federal-gov", "Local-gov", "?", "Self-emp-inc", "Without-pay", "Never-worked" ]) # To show an example of hashing: occupation = tf.feature_column.categorical_column_with_hash_bucket( "occupation", hash_bucket_size=1000) native_country = tf.feature_column.categorical_column_with_hash_bucket( "native_country", hash_bucket_size=1000) # Continuous base columns. age = tf.feature_column.numeric_column("age") education_num = tf.feature_column.numeric_column("education_num") capital_gain = tf.feature_column.numeric_column("capital_gain") capital_loss = tf.feature_column.numeric_column("capital_loss") hours_per_week = tf.feature_column.numeric_column("hours_per_week") # Transformations. age_buckets = tf.feature_column.bucketized_column( age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) # Wide columns and deep columns. base_columns = [ gender, education, marital_status, relationship, workclass, occupation, native_country, age_buckets, ] crossed_columns = [ tf.feature_column.crossed_column( ["education", "occupation"], hash_bucket_size=1000), tf.feature_column.crossed_column( [age_buckets, "education", "occupation"], hash_bucket_size=1000), tf.feature_column.crossed_column( ["native_country", "occupation"], hash_bucket_size=1000) ] deep_columns = [ tf.feature_column.indicator_column(workclass), tf.feature_column.indicator_column(education), tf.feature_column.indicator_column(gender), tf.feature_column.indicator_column(relationship), # To show an example of embedding tf.feature_column.embedding_column(native_country, dimension=8), tf.feature_column.embedding_column(occupation, dimension=8), age, education_num, capital_gain, capital_loss, hours_per_week, ] FLAGS = None def maybe_download(train_data, test_data): """Maybe downloads training data and returns train and test file names.""" if train_data: train_file_name = train_data else: train_file = tempfile.NamedTemporaryFile(delete=False) urllib.request.urlretrieve( "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", train_file.name) # pylint: disable=line-too-long train_file_name = train_file.name train_file.close() print("Training data is downloaded to %s" % train_file_name) if test_data: test_file_name = test_data else: test_file = tempfile.NamedTemporaryFile(delete=False) urllib.request.urlretrieve( "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test", test_file.name) # pylint: disable=line-too-long test_file_name = test_file.name test_file.close() print("Test data is downloaded to %s"% test_file_name) return train_file_name, test_file_name def build_estimator(model_dir, model_type): """Build an estimator.""" if model_type == "wide": m = tf.estimator.LinearClassifier( model_dir=model_dir, feature_columns=base_columns + crossed_columns) elif model_type == "deep": m = tf.estimator.DNNClassifier( model_dir=model_dir, feature_columns=deep_columns, hidden_units=[100, 50]) else: m = tf.estimator.DNNLinearCombinedClassifier( model_dir=model_dir, linear_feature_columns=crossed_columns, dnn_feature_columns=deep_columns, dnn_hidden_units=[100, 50]) return m def input_fn(data_file, num_epochs, shuffle): """Returns an `input_fn` required by Estimator train/evaluate. Args: data_file: The file path to the dataset. num_epochs: Number of epochs to iterate over data. If `None`, `input_fn` will generate infinite stream of data. shuffle: bool, whether to read the data in random order. """ df_data = pd.read_csv( tf.gfile.Open(data_file), names=CSV_COLUMNS, skipinitialspace=True, engine="python", skiprows=1) # remove NaN elements df_data = df_data.dropna(how="any", axis=0) labels = df_data["income_bracket"].apply(lambda x: ">50K" in x).astype(int) return tf.estimator.inputs.pandas_input_fn( x=df_data, y=labels, batch_size=100, num_epochs=num_epochs, shuffle=shuffle, num_threads=1) def main(_): tf.logging.set_verbosity(tf.logging.INFO) train_file_name, test_file_name = maybe_download(FLAGS.train_data, FLAGS.test_data) # Specify file path below if want to find the output easily model_dir = FLAGS.model_dir if FLAGS.model_dir else tempfile.mkdtemp() estimator = build_estimator(model_dir, FLAGS.model_type) # `tf.estimator.TrainSpec`, `tf.estimator.EvalSpec`, and # `tf.estimator.train_and_evaluate` API are available in TF 1.4. train_spec = tf.estimator.TrainSpec( input_fn=input_fn(train_file_name, num_epochs=None, shuffle=True), max_steps=FLAGS.train_steps) eval_spec = tf.estimator.EvalSpec( input_fn=input_fn(test_file_name, num_epochs=1, shuffle=False), # set steps to None to run evaluation until all data consumed. steps=None) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) # Manual cleanup shutil.rmtree(model_dir) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--model_dir", type=str, default="", help="Base directory for output models." ) parser.add_argument( "--model_type", type=str, default="wide_n_deep", help="Valid model types: {'wide', 'deep', 'wide_n_deep'}." ) parser.add_argument( "--train_steps", type=int, default=2000, help="Number of training steps." ) parser.add_argument( "--train_data", type=str, default="", help="Path to the training data." ) parser.add_argument( "--test_data", type=str, default="", help="Path to the test data." ) FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
bgris/ODL_bgris
lib/python3.5/site-packages/matplotlib/stackplot.py
6
4198
""" Stacked area plot for 1D arrays inspired by Douglas Y'barbo's stackoverflow answer: http://stackoverflow.com/questions/2225995/how-can-i-create-stacked-line-graph-with-matplotlib (http://stackoverflow.com/users/66549/doug) """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange from cycler import cycler import numpy as np __all__ = ['stackplot'] def stackplot(axes, x, *args, **kwargs): """Draws a stacked area plot. *x* : 1d array of dimension N *y* : 2d array of dimension MxN, OR any number 1d arrays each of dimension 1xN. The data is assumed to be unstacked. Each of the following calls is legal:: stackplot(x, y) # where y is MxN stackplot(x, y1, y2, y3, y4) # where y1, y2, y3, y4, are all 1xNm Keyword arguments: *baseline* : ['zero', 'sym', 'wiggle', 'weighted_wiggle'] Method used to calculate the baseline. 'zero' is just a simple stacked plot. 'sym' is symmetric around zero and is sometimes called `ThemeRiver`. 'wiggle' minimizes the sum of the squared slopes. 'weighted_wiggle' does the same but weights to account for size of each layer. It is also called `Streamgraph`-layout. More details can be found at http://leebyron.com/streamgraph/. *labels* : A list or tuple of labels to assign to each data series. *colors* : A list or tuple of colors. These will be cycled through and used to colour the stacked areas. All other keyword arguments are passed to :func:`~matplotlib.Axes.fill_between` Returns *r* : A list of :class:`~matplotlib.collections.PolyCollection`, one for each element in the stacked area plot. """ if len(args) == 1: y = np.atleast_2d(*args) elif len(args) > 1: y = np.row_stack(args) labels = iter(kwargs.pop('labels', [])) colors = kwargs.pop('colors', None) if colors is not None: axes.set_prop_cycle(cycler('color', colors)) baseline = kwargs.pop('baseline', 'zero') # Assume data passed has not been 'stacked', so stack it here. stack = np.cumsum(y, axis=0) if baseline == 'zero': first_line = 0. elif baseline == 'sym': first_line = -np.sum(y, 0) * 0.5 stack += first_line[None, :] elif baseline == 'wiggle': m = y.shape[0] first_line = (y * (m - 0.5 - np.arange(0, m)[:, None])).sum(0) first_line /= -m stack += first_line elif baseline == 'weighted_wiggle': m, n = y.shape center = np.zeros(n) total = np.sum(y, 0) # multiply by 1/total (or zero) to avoid infinities in the division: inv_total = np.zeros_like(total) mask = total > 0 inv_total[mask] = 1.0 / total[mask] increase = np.hstack((y[:, 0:1], np.diff(y))) below_size = total - stack below_size += 0.5 * y move_up = below_size * inv_total move_up[:, 0] = 0.5 center = (move_up - 0.5) * increase center = np.cumsum(center.sum(0)) first_line = center - 0.5 * total stack += first_line else: errstr = "Baseline method %s not recognised. " % baseline errstr += "Expected 'zero', 'sym', 'wiggle' or 'weighted_wiggle'" raise ValueError(errstr) # Color between x = 0 and the first array. color = axes._get_lines.get_next_color() coll = axes.fill_between(x, first_line, stack[0, :], facecolor=color, label=six.next(labels, None), **kwargs) coll.sticky_edges.y[:] = [0] r = [coll] # Color between array i-1 and array i for i in xrange(len(y) - 1): color = axes._get_lines.get_next_color() r.append(axes.fill_between(x, stack[i, :], stack[i + 1, :], facecolor=color, label= six.next(labels, None), **kwargs)) return r
gpl-3.0
drasmuss/numpy
numpy/core/function_base.py
3
7301
from __future__ import division, absolute_import, print_function import warnings import operator __all__ = ['logspace', 'linspace'] from . import numeric as _nx from .numeric import result_type, NaN, shares_memory, MAY_SHARE_BOUNDS, TooHardError def _index_deprecate(i, stacklevel=2): try: i = operator.index(i) except TypeError: msg = ("object of type {} cannot be safely interpreted as " "an integer.".format(type(i))) i = int(i) stacklevel += 1 warnings.warn(msg, DeprecationWarning, stacklevel=stacklevel) return i def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None): """ Return evenly spaced numbers over a specified interval. Returns `num` evenly spaced samples, calculated over the interval [`start`, `stop`]. The endpoint of the interval can optionally be excluded. Parameters ---------- start : scalar The starting value of the sequence. stop : scalar The end value of the sequence, unless `endpoint` is set to False. In that case, the sequence consists of all but the last of ``num + 1`` evenly spaced samples, so that `stop` is excluded. Note that the step size changes when `endpoint` is False. num : int, optional Number of samples to generate. Default is 50. Must be non-negative. endpoint : bool, optional If True, `stop` is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (`samples`, `step`), where `step` is the spacing between samples. dtype : dtype, optional The type of the output array. If `dtype` is not given, infer the data type from the other input arguments. .. versionadded:: 1.9.0 Returns ------- samples : ndarray There are `num` equally spaced samples in the closed interval ``[start, stop]`` or the half-open interval ``[start, stop)`` (depending on whether `endpoint` is True or False). step : float Only returned if `retstep` is True Size of spacing between samples. See Also -------- arange : Similar to `linspace`, but uses a step size (instead of the number of samples). logspace : Samples uniformly distributed in log space. Examples -------- >>> np.linspace(2.0, 3.0, num=5) array([ 2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([ 2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ # 2016-02-25, 1.12 num = _index_deprecate(num) if num < 0: raise ValueError("Number of samples, %s, must be non-negative." % num) div = (num - 1) if endpoint else num # Convert float/complex array scalars to float, gh-3504 start = start * 1. stop = stop * 1. dt = result_type(start, stop, float(num)) if dtype is None: dtype = dt y = _nx.arange(0, num, dtype=dt) delta = stop - start if num > 1: step = delta / div if step == 0: # Special handling for denormal numbers, gh-5437 y /= div y = y * delta else: # One might be tempted to use faster, in-place multiplication here, # but this prevents step from overriding what class is produced, # and thus prevents, e.g., use of Quantities; see gh-7142. y = y * step else: # 0 and 1 item long sequences have an undefined step step = NaN # Multiply with delta to allow possible override of output class. y = y * delta y += start if endpoint and num > 1: y[-1] = stop if retstep: return y.astype(dtype, copy=False), step else: return y.astype(dtype, copy=False) def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None): """ Return numbers spaced evenly on a log scale. In linear space, the sequence starts at ``base ** start`` (`base` to the power of `start`) and ends with ``base ** stop`` (see `endpoint` below). Parameters ---------- start : float ``base ** start`` is the starting value of the sequence. stop : float ``base ** stop`` is the final value of the sequence, unless `endpoint` is False. In that case, ``num + 1`` values are spaced over the interval in log-space, of which all but the last (a sequence of length ``num``) are returned. num : integer, optional Number of samples to generate. Default is 50. endpoint : boolean, optional If true, `stop` is the last sample. Otherwise, it is not included. Default is True. base : float, optional The base of the log space. The step size between the elements in ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Default is 10.0. dtype : dtype The type of the output array. If `dtype` is not given, infer the data type from the other input arguments. Returns ------- samples : ndarray `num` samples, equally spaced on a log scale. See Also -------- arange : Similar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included. linspace : Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space. Notes ----- Logspace is equivalent to the code >>> y = np.linspace(start, stop, num=num, endpoint=endpoint) ... # doctest: +SKIP >>> power(base, y).astype(dtype) ... # doctest: +SKIP Examples -------- >>> np.logspace(2.0, 3.0, num=4) array([ 100. , 215.443469 , 464.15888336, 1000. ]) >>> np.logspace(2.0, 3.0, num=4, endpoint=False) array([ 100. , 177.827941 , 316.22776602, 562.34132519]) >>> np.logspace(2.0, 3.0, num=4, base=2.0) array([ 4. , 5.0396842 , 6.34960421, 8. ]) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 10 >>> x1 = np.logspace(0.1, 1, N, endpoint=True) >>> x2 = np.logspace(0.1, 1, N, endpoint=False) >>> y = np.zeros(N) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ y = linspace(start, stop, num=num, endpoint=endpoint) if dtype is None: return _nx.power(base, y) return _nx.power(base, y).astype(dtype)
bsd-3-clause
qiwsir/vincent
examples/grouped_bar_examples.py
11
2923
# -*- coding: utf-8 -*- """ Vincent Grouped Bar Examples """ #Build a Grouped Bar Chart from scratch import pandas as pd from vincent import * from vincent.core import KeyedList farm_1 = {'apples': 10, 'berries': 32, 'squash': 21, 'melons': 13, 'corn': 18} farm_2 = {'apples': 15, 'berries': 40, 'squash': 17, 'melons': 10, 'corn': 22} farm_3 = {'apples': 6, 'berries': 24, 'squash': 22, 'melons': 16, 'corn': 30} farm_4 = {'apples': 12, 'berries': 30, 'squash': 15, 'melons': 9, 'corn': 15} farm_5 = {'apples': 20, 'berries': 35, 'squash': 19, 'melons': 17, 'corn': 19} farm_6 = {'apples': 3, 'berries': 28, 'squash': 21, 'melons': 11, 'corn': 23} data = [farm_1, farm_2, farm_3, farm_4, farm_5, farm_6] index = ['Farm 1', 'Farm 2', 'Farm 3', 'Farm 4', 'Farm 5', 'Farm 6'] df = pd.DataFrame(data, index=index) vis = Visualization(width=500, height=300) vis.padding = {'top': 10, 'left': 50, 'bottom': 50, 'right': 100} data = Data.from_pandas(df, grouped=True) vis.data['table'] = data vis.scales['x'] = Scale(name='x', type='ordinal', range='width', domain=DataRef(data='table', field="data.idx"), padding=0.2) vis.scales['y'] = Scale(name='y', range='height', nice=True, domain=DataRef(data='table', field="data.val")) vis.scales['color'] = Scale(name='color', type='ordinal', domain=DataRef(data='table', field='data.col'), range='category20') vis.axes.extend([Axis(type='x', scale='x'), Axis(type='y', scale='y')]) enter_props = PropertySet(x=ValueRef(scale='pos', field="data.group"), y=ValueRef(scale='y', field="data.val"), width=ValueRef(scale='pos', band=True, offset=-1), y2=ValueRef(value=0, scale='y'), fill=ValueRef(scale='color', field='data.col')) mark = Mark(type='group', from_=transform, marks=[Mark(type='rect', properties=MarkProperties(enter=enter_props))]) vis.marks.append(mark) #Mark group properties facet = Transform(type='facet', keys=['data.idx']) transform = MarkRef(data='table',transform=[facet]) group_props = PropertySet(x=ValueRef(scale='x', field="key"), width=ValueRef(scale='x', band=True)) vis.marks[0].properties = MarkProperties(enter=group_props) vis.marks[0].scales = KeyedList() vis.marks[0].scales['pos'] = Scale(name='pos', type='ordinal', range='width', domain=DataRef(field='data.group')) vis.axis_titles(x='Farms', y='Total Produce') vis.legend(title='Produce Type') vis.to_json('vega.json') #Convenience method vis = GroupedBar(df) vis.axis_titles(x='Farms', y='Total Produce') vis.width = 700 vis.legend(title='Produce Type') vis.colors(brew='Pastel1') vis.to_json('vega.json')
mit
NNPDF/reportengine
src/reportengine/figure.py
1
3481
# -*- coding: utf-8 -*- """ Save generated figures in the correct path. Use:: @figure def provider(arg): return plt.figure(...) to have the figure be automatically saved in the correct path, once it is constructed. Similarly use:: @figuregen def provider(arg): for ...: yield plt.figure(...) to have the action applied to each element of a generator. The figures will be automatically closed. Created on Thu Mar 10 00:59:31 2016 @author: Zahari Kassabov """ import logging import numpy as np from reportengine.formattingtools import spec_to_nice_name from reportengine.utils import add_highlight, normalize_name __all__ = ['figure', 'figuregen'] log = logging.getLogger(__name__) def _generate_markdown_link(path, caption=None): if caption is None: caption = path.suffix return f"[{caption}]({path})" class Figure(): def __init__(self, paths): self.paths = paths @property def as_markdown(self): # Prepare the anchor anchor_link_target = f'#{self.paths[0].stem}' # Prepare the link to the actual figures links = ' '.join(_generate_markdown_link(path) for path in self.paths) + ' ' links += _generate_markdown_link(anchor_link_target, "#") retmd = f'![{links}]({self.paths[0]}){{{anchor_link_target}}} \n' return retmd def prepare_paths(*,spec, namespace, environment ,**kwargs): paths = environment.get_figure_paths(spec_to_nice_name(namespace, spec)) #list is important here. The generator gives a hard to trace bug when #running in parallel return {'paths':list(paths), 'output':environment.output_path} def savefig(fig, *, paths, output ,suffix=''): """Final action to save figures, with a nice filename""" #Import here to avoid problems with use() import matplotlib.pyplot as plt outpaths = [] for path in paths: if suffix: suffix = normalize_name(suffix) path = path.with_name('_'.join((path.stem, suffix)) + path.suffix) log.debug("Writing figure file %s" % path) #Numpy can produce a lot of warnings while working on producing figures with np.errstate(invalid='ignore'): fig.savefig(str(path), bbox_inches='tight') outpaths.append(path.relative_to(output)) plt.close(fig) return Figure(outpaths) def savefiglist(figures, paths, output): """Final action to save lists of figures. It adds a numerical index as a suffix, for each figure in the generator.""" res = [] res.append('<div class="figiterwrapper">') for i, fig in enumerate(figures): #Support tuples with (suffix, figure) if isinstance(fig, tuple): fig, suffix = fig else: suffix = str(i) suffix = normalize_name(suffix) p_base = [paths[i].relative_to(output) for i in range(len(paths))] p_full = [ str(p.with_name('_'.join((p.stem, suffix)) + p.suffix)) for p in p_base ] ref = savefig(fig, paths=paths, output=output, suffix=suffix) html = ( f'\n<div>' f'{ref.as_markdown}' '</div>\n' ) res.append(html) res.append("</div>") return res @add_highlight def figure(f): f.prepare = prepare_paths f.final_action = savefig return f @add_highlight def figuregen(f): f.prepare = prepare_paths f.final_action = savefiglist return f
gpl-2.0
kristianfoerster/melodist
melodist/station.py
1
16151
# -*- coding: utf-8 -*- ############################################################################################################### # This file is part of MELODIST - MEteoroLOgical observation time series DISaggregation Tool # # a program to disaggregate daily values of meteorological variables to hourly values # # # # Copyright (C) 2016 Florian Hanzer (1,2), Kristian Förster (1,2), Benjamin Winter (1,2), Thomas Marke (1) # # # # (1) Institute of Geography, University of Innsbruck, Austria # # (2) alpS - Centre for Climate Change Adaptation, Innsbruck, Austria # # # # MELODIST is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # MELODIST is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # ############################################################################################################### from __future__ import print_function, division, absolute_import import melodist import melodist.util import pandas as pd class Station(object): """ Class representing meteorological stations including all relevant information such as metadata and meteorological time series (observed and disaggregated) """ _columns_daily = [ 'tmean', 'tmin', 'tmax', 'precip', 'glob', 'ssd', 'hum', 'wind', ] _columns_hourly = [ 'temp', 'precip', 'glob', 'hum', 'wind', ] def __init__(self, id=None, name=None, lon=None, lat=None, timezone=None, data_daily=None): self._lon = None self._lat = None self._timezone = None self._statistics = None self._data_daily = None self._data_disagg = None self.statistics = melodist.StationStatistics(lon=lon, lat=lat) self.id = id self.name = name self.lon = lon self.lat = lat self.timezone = timezone self.sun_times = None if data_daily is not None: self.data_daily = data_daily @property def data_daily(self): """ Daily meteorological time series either derived through observations or aggregation of hourly data for testing purposes. """ return self._data_daily @data_daily.setter def data_daily(self, df): assert isinstance(df, pd.DataFrame) assert df.index.is_all_dates # for col in df: # assert col in Station._columns_daily assert df.index.resolution == 'day' assert df.index.is_monotonic_increasing if df.index.freq is None: # likely some days are missing df = df.reindex(pd.date_range(start=df.index[0], end=df.index[-1], freq='D')) for var in 'tmin', 'tmax', 'tmean': if var in df: assert not any(df[var] < 200), 'Implausible temperature values detected - temperatures must be in K' self._data_daily = df.copy() # create data frame for disaggregated data: index = melodist.util.hourly_index(df.index) df = pd.DataFrame(index=index, columns=Station._columns_hourly, dtype=float) self._data_disagg = df if self.timezone is not None: self.calc_sun_times() @property def lon(self): """ Longitude of the station """ return self._lon @lon.setter def lon(self, lon): self._lon = lon self.statistics._lon = lon @property def lat(self): """ Latitude of the station """ return self._lat @lat.setter def lat(self, lat): self._lat = lat self.statistics._lat = lat @property def timezone(self): """ Timezone indicates the differnce in hours calculated from UTC Negative values indicate timezones later than UTC, i.e. west of 0 deg long. Positive values indicate the reverse. """ return self._timezone @timezone.setter def timezone(self, timezone): self._timezone = timezone self.statistics._timezone = timezone @property def statistics(self): """ The associated StationStatistics object """ return self._statistics @statistics.setter def statistics(self, s): assert isinstance(s, melodist.StationStatistics) s._lon = self.lon s._lat = self.lat s._timezone = self.timezone self._statistics = s @property def data_disagg(self): """ All results derived through disaggregation will be stored in this property. """ return self._data_disagg def calc_sun_times(self): """ Computes the times of sunrise, solar noon, and sunset for each day. """ self.sun_times = melodist.util.get_sun_times(self.data_daily.index, self.lon, self.lat, self.timezone) def disaggregate_wind(self, method='equal'): """ Disaggregate wind speed. Parameters ---------- method : str, optional Disaggregation method. ``equal`` Mean daily wind speed is duplicated for the 24 hours of the day. (Default) ``cosine`` Distributes daily mean wind speed using a cosine function derived from hourly observations. ``random`` Draws random numbers to distribute wind speed (usually not conserving the daily average). """ self.data_disagg.wind = melodist.disaggregate_wind(self.data_daily.wind, method=method, **self.statistics.wind) def disaggregate_humidity(self, method='equal', preserve_daily_mean=False): """ Disaggregate relative humidity. Parameters ---------- method : str, optional Disaggregation method. ``equal`` Mean daily humidity is duplicated for the 24 hours of the day. (Default) ``minimal``: Calculates humidity from daily dew point temperature by setting the dew point temperature equal to the daily minimum temperature. ``dewpoint_regression``: Calculates humidity from daily dew point temperature by calculating dew point temperature using ``Tdew = a * Tmin + b``, where ``a`` and ``b`` are determined by calibration. ``linear_dewpoint_variation``: Calculates humidity from hourly dew point temperature by assuming a linear dew point temperature variation between consecutive days. ``min_max``: Calculates hourly humidity from observations of daily minimum and maximum humidity. ``month_hour_precip_mean``: Calculates hourly humidity from categorical [month, hour, precip(y/n)] mean values derived from observations. preserve_daily_mean : bool, optional If True, correct the daily mean values of the disaggregated data with the observed daily means. """ self.data_disagg.hum = melodist.disaggregate_humidity( self.data_daily, temp=self.data_disagg.temp, method=method, preserve_daily_mean=preserve_daily_mean, **self.statistics.hum ) def disaggregate_temperature(self, method='sine_min_max', min_max_time='fix', mod_nighttime=False): """ Disaggregate air temperature. Parameters ---------- method : str, optional Disaggregation method. ``sine_min_max`` Hourly temperatures follow a sine function preserving daily minimum and maximum values. (Default) ``sine_mean`` Hourly temperatures follow a sine function preserving the daily mean value and the diurnal temperature range. ``sine`` Same as ``sine_min_max``. ``mean_course_min_max`` Hourly temperatures follow an observed average course (calculated for each month), preserving daily minimum and maximum values. ``mean_course_mean`` Hourly temperatures follow an observed average course (calculated for each month), preserving the daily mean value and the diurnal temperature range. min_max_time : str, optional Method to determine the time of minimum and maximum temperature. ``fix``: Minimum/maximum temperature are assumed to occur at 07:00/14:00 local time. ``sun_loc``: Minimum/maximum temperature are assumed to occur at sunrise / solar noon + 2 h. ``sun_loc_shift``: Minimum/maximum temperature are assumed to occur at sunrise / solar noon + monthly mean shift. mod_nighttime : bool, optional Use linear interpolation between minimum and maximum temperature. """ self.data_disagg.temp = melodist.disaggregate_temperature( self.data_daily, method=method, min_max_time=min_max_time, max_delta=self.statistics.temp.max_delta, mean_course=self.statistics.temp.mean_course, sun_times=self.sun_times, mod_nighttime=mod_nighttime ) def disaggregate_precipitation(self, method='equal', zerodiv='uniform', shift=0, master_precip=None): """ Disaggregate precipitation. Parameters ---------- method : str, optional Disaggregation method. ``equal`` Daily precipitation is distributed equally over the 24 hours of the day. (Default) ``cascade`` Hourly precipitation values are obtained using a cascade model set up using hourly observations. zerodiv : str, optional Method to deal with zero division, relevant for ``method='masterstation'``. ``uniform`` Use uniform distribution. (Default) master_precip : Series, optional Hourly precipitation records from a representative station (required for ``method='masterstation'``). """ if method == 'equal': precip_disagg = melodist.disagg_prec(self.data_daily, method=method, shift=shift) elif method == 'cascade': precip_disagg = pd.Series(index=self.data_disagg.index, dtype=float) for months, stats in zip(self.statistics.precip.months, self.statistics.precip.stats): precip_daily = melodist.seasonal_subset(self.data_daily.precip, months=months) if len(precip_daily) > 1: data = melodist.disagg_prec(precip_daily, method=method, cascade_options=stats, shift=shift, zerodiv=zerodiv) precip_disagg.loc[data.index] = data elif method == 'masterstation': precip_disagg = melodist.precip_master_station(self.data_daily.precip, master_precip, zerodiv) self.data_disagg.precip = precip_disagg def disaggregate_radiation(self, method='pot_rad', pot_rad=None): """ Disaggregate solar radiation. Parameters ---------- method : str, optional Disaggregation method. ``pot_rad`` Calculates potential clear-sky hourly radiation and scales it according to the mean daily radiation. (Default) ``pot_rad_via_ssd`` Calculates potential clear-sky hourly radiation and scales it according to the observed daily sunshine duration. ``pot_rad_via_bc`` Calculates potential clear-sky hourly radiation and scales it according to daily minimum and maximum temperature. ``mean_course`` Hourly radiation follows an observed average course (calculated for each month). pot_rad : Series, optional Hourly values of potential solar radiation. If ``None``, calculated internally. """ if self.sun_times is None: self.calc_sun_times() if pot_rad is None and method != 'mean_course': pot_rad = melodist.potential_radiation(self.data_disagg.index, self.lon, self.lat, self.timezone) self.data_disagg.glob = melodist.disaggregate_radiation( self.data_daily, sun_times=self.sun_times, pot_rad=pot_rad, method=method, angstr_a=self.statistics.glob.angstroem.a, angstr_b=self.statistics.glob.angstroem.b, bristcamp_a=self.statistics.glob.bristcamp.a, bristcamp_c=self.statistics.glob.bristcamp.c, mean_course=self.statistics.glob.mean_course ) def interpolate(self, column_hours, method='linear', limit=24, limit_direction='both', **kwargs): """ Wrapper function for ``pandas.Series.interpolate`` that can be used to "disaggregate" values using various interpolation methods. Parameters ---------- column_hours : dict Dictionary containing column names in ``data_daily`` and the hour values they should be associated to. method, limit, limit_direction, **kwargs These parameters are passed on to ``pandas.Series.interpolate``. Examples -------- Assume that ``mystation.data_daily.T7``, ``mystation.data_daily.T14``, and ``mystation.data_daily.T19`` contain air temperature measurements taken at 07:00, 14:00, and 19:00. We can use the interpolation functions provided by pandas/scipy to derive hourly values: >>> mystation.data_hourly.temp = mystation.interpolate({'T7': 7, 'T14': 14, 'T19': 19}) # linear interpolation (default) >>> mystation.data_hourly.temp = mystation.interpolate({'T7': 7, 'T14': 14, 'T19': 19}, method='cubic') # cubic spline """ kwargs = dict(kwargs, method=method, limit=limit, limit_direction=limit_direction) data = melodist.util.prepare_interpolation_data(self.data_daily, column_hours) return data.interpolate(**kwargs)
gpl-3.0
vitaliykomarov/NEUCOGAR
nest/noradrenaline/nest-2.10.0/topology/examples/test_3d_exp.py
13
2642
# -*- coding: utf-8 -*- # # test_3d_exp.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. ''' NEST Topology Module EXPERIMENTAL example of 3d layer. 3d layers are currently not supported, use at your own risk! Hans Ekkehard Plesser, UMB ''' import nest import pylab import random import nest.topology as topo import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D pylab.ion() nest.ResetKernel() # generate list of 1000 (x,y,z) triplets pos = [[random.uniform(-0.5,0.5), random.uniform(-0.5,0.5), random.uniform(-0.5,0.5)] for j in range(1000)] l1 = topo.CreateLayer({'extent': [1.5, 1.5, 1.5], # must specify 3d extent AND center 'center': [0., 0., 0.], 'positions': pos, 'elements': 'iaf_neuron'}) # visualize #xext, yext = nest.GetStatus(l1, 'topology')[0]['extent'] #xctr, yctr = nest.GetStatus(l1, 'topology')[0]['center'] # extract position information, transpose to list of x, y and z positions xpos, ypos, zpos = zip(*topo.GetPosition(nest.GetChildren(l1)[0])) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(xpos, ypos, zpos, s=15, facecolor='b', edgecolor='none') # Gaussian connections in full volume [-0.75,0.75]**3 topo.ConnectLayers(l1, l1, {'connection_type': 'divergent', 'allow_autapses': False, 'mask': {'volume': {'lower_left': [-0.75,-0.75,-0.75], 'upper_right': [0.75,0.75,0.75]}}, 'kernel':{'exponential': {'c': 0., 'a': 1., 'tau': 0.25}}}) # show connections from center element # sender shown in red, targets in green ctr=topo.FindCenterElement(l1) xtgt, ytgt, ztgt = zip(*topo.GetTargetPositions(ctr,l1)[0]) xctr, yctr, zctr = topo.GetPosition(ctr)[0] ax.scatter([xctr],[yctr],[zctr],s=40, facecolor='r', edgecolor='none') ax.scatter(xtgt,ytgt,ztgt,s=40, facecolor='g', edgecolor='g') tgts=topo.GetTargetNodes(ctr,l1)[0] d=topo.Distance(ctr,tgts) plt.figure() plt.hist(d, 25) #plt.show()
gpl-2.0
stefanpeidli/GoNet
Analysis/errorfuns.py
1
4439
# -*- coding: utf-8 -*- """ Created on Sun Dec 10 23:06:54 2017 @author: Stefan """ import random import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches def KLD(suggested, target): #Compute Kullback-Leibler divergence, now stable! t=target[target!=0] #->we'd divide by 0 else, does not have inpact on error anyway ->Problem: We don't punish the NN for predicting non-zero values on zero target! s=suggested[target!=0] difference=s/t #this is stable Error = - np.inner(t*np.log(difference),np.ones(len(t))) return Error def KLD2(suggested, target): #Compute Kullback-Leibler divergence, now stable! t=target t=t+1e-100 #->we'd divide by 0 else, does not have inpact on error anyway ->Problem: We don't punish the NN for predicting non-zero values on zero target! s=suggested s=s+1e-100 difference=s/t #this is stable Error = - np.inner(t*np.log(difference),np.ones(len(t))) return Error def KLDGRAD(sug, targ): g=np.zeros(len(targ)) sug=sug+1e-100 for i in range(0,len(targ)): if sug[i]!=0: g[i]=-targ[i]/sug[i] return g # error fct Number 1 def MSE (suggested, target): #Returns the total mean square error difference = np.absolute(suggested - target) Error = 0.5*np.inner(difference,difference) return Error # error fct Number 2 def HELDIST (suggested, target): return np.linalg.norm(np.sqrt(suggested)-np.sqrt(target), ord=2) /np.sqrt(2) # error fct Number 3 def CROSSENTRO (suggested, target): return ENTRO(target) + KLD(suggested,target) #wie rum kldiv? # error fct Number 4 def EXPE (suggested, target, gamma): alpha = 1/gamma beta = np.log(gamma) error = alpha*np.sum(np.exp((suggested - target)*beta)) return error def EXPEGRAD(suggested, target, gamma=1000): alpha = 1/gamma beta = np.log(gamma) gradient = alpha*beta*np.exp((suggested - target)*beta) return gradient # error fct Number x, actually not a good one. Only for statistics def MAE (suggested, target): #compare the prediction with the answer/target, absolute error difference = np.absolute(suggested - target) Error = np.inner(difference,np.ones(len(target))) return Error def ENTRO (distribution): return -np.inner(distribution[distribution!=0],np.log(distribution[distribution!=0])) le=5 y1=np.zeros(le) y1[1]=1 y3=np.zeros(le) y3[3]=1-1/le y3[1]=1/le yunif=np.ones(le)/le w=1/5 ali='center' for i in [y3,yunif]: print(np.round(i,2)) print(np.round(y1,2)) print("KLD",KLD(i,y1)) print("KLD2",KLD2(i,y1)) print("MSE",MSE(i,y1)) print("HELDIST",HELDIST(i,y1)) print("CROSSENTRO",CROSSENTRO(i,y1)) print("EXPE",EXPE(i,y1,1000)) print("EXPE2",EXPE(y1,i,1000)) print("MAE",MAE(i,y1)) print(" ") y0=yunif eta=0.01 y1=np.array([0,2,4,2,0]) y1=y1/np.sum(y1) plt.grid(True) plt.bar(np.arange(le)-w,y1,width=w,align=ali,color='b') bp = mpatches.Patch(color='blue', label='Target') plt.bar(np.arange(le),y0,width=w,align=ali,color='r') rp = mpatches.Patch(color='red', label='Start') gp = mpatches.Patch(color='green', label='Stop') plt.legend(handles=[bp,rp,gp]) for j in range(0, 8): yn=KLDGRAD(y0,y1) #yn=y0-y1 y0=np.abs(y0-eta*yn) y0=y0/np.inner(y0,np.ones(le)) #print(KLD(y0,y1)) print(np.round(y1,2)) print(np.round(y0,2)) plt.bar(np.arange(le)+2*w,y0,width=w,align=ali,color='y') #plt.show() for i in [y0]: print("KLD",KLD(i,y1)) print("KLD2",KLD2(i,y1)) print("MSE",MSE(i,y1)) print("HELDIST",HELDIST(i,y1)) print("CROSSENTRO",CROSSENTRO(i,y1)) print("EXPE",EXPE(i,y1,1000)) print("EXPE2",EXPE(y1,i,1000)) print("MAE",MAE(i,y1)) print(" ") ######### y0=yunif y=[[0,1,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,1,0,0],[0,0,1,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,1,0]] for i in range(100): random.shuffle(y) for j in y: y1=j yn=KLDGRAD(y0,y1) #yn=y0-y1 y0=np.abs(y0-eta*yn) y0=y0/np.inner(y0,np.ones(le)) #print(np.round(y1,2)) #print(np.round(y0,2)) #plt.bar(np.arange(le)+w,y0,width=w,align=ali,color='g') #plt.show() for i in [y0]: print("KLD",KLD(i,y1)) print("KLD2",KLD2(i,y1)) print("MSE",MSE(i,y1)) print("HELDIST",HELDIST(i,y1)) print("CROSSENTRO",CROSSENTRO(i,y1)) print("EXPE",EXPE(i,y1,1000)) print("EXPE2",EXPE(y1,i,1000)) print("MAE",MAE(i,y1)) print(" ")
mit
scramblingbalam/Alta_Real
labeling.py
1
14465
# -*- coding: utf-8 -*- """ Created on Tue Jun 06 14:40:17 2017 @author: scram """ import json import cPickle as pickle from pymongo import MongoClient from feature_creation_mongo import translatelabel import feature_functions as feature from sklearn.externals import joblib from collections import Counter import time ### open borwser import webbrowser import subprocess import requests from selenium import webdriver from bs4 import BeautifulSoup import re feature_list = [] event_feature_dic ={} #with open("event_model_dic","rb")as modelfile: # feature_list =pickle.load(modelfile) feature_list = joblib.load("event_model_dic.jonlib") #print type(feature_list) #print len(feature_list) feature_string = feature_list[0] event_feature_dic = feature_list[1] doc2vec_dir ="Data/doc2vec/not_trump" classifier = 'treecrf' featurename = feature_string.split("_") token_type = featurename[0] ### get pos tags # commented out since I'm getting urls from tweet json #POS_dir ="Data\\twitIE_pos\\" #pos_file_path1 = POS_dir+token_type+"_semeval2017"+"_twitIE_POS" #pos_file_path2 = POS_dir+token_type+"_Alta_Real_New"+"_twitIE_POS" #pos_file_path = [pos_file_path1, pos_file_path2] #id_pos_dic, index_pos_dic = feature.pos_extract(pos_file_path) event_target_dic ={} #with open("event_target_dic","rb")as modelfile: # event_target_dic = pickle.load(modelfile) event_target_dic = joblib.load("event_target_dic.jonlib") event_ID_dic = {} #with open("event_ID_dic","rb")as modelfile: # event_ID_dic = pickle.load(modelfile) event_ID_dic = joblib.load("event_ID_dic.jonlib") with open(doc2vec_dir+token_type+"_"+"id_text_dic.json",'r')as corpfile: sent_dic = json.load(corpfile) import httplib import urlparse def unshorten_url(url): parsed = urlparse.urlparse(url) h = httplib.HTTPConnection(parsed.netloc) h.request('HEAD', parsed.path) response = h.getresponse() if response.status/100 == 3 and response.getheader('Location'): return response.getheader('Location') else: return url DBname = 'Alta_Real_New' DBhost = 'localhost' DBport = 27017 DBname_t = 'semeval2017' # initiate Mongo Client client = MongoClient() client = MongoClient(DBhost, DBport) DB_trump = client[DBname] DB_train = client[DBname_t] def image_lookup(photo_url): filePath =photo_url # filePath = '/mnt/Images/test.png' searchUrl = "https://www.google.com/searchbyimage?&image_url=" # searchUrl = 'http://www.google.hr/searchbyimage/upload' # multipart = {'encoded_image': (filePath, open(filePath, 'rb')), 'image_content': ''} # response = requests.post(searchUrl, files=multipart, allow_redirects=False) request = searchUrl+photo_url print(request) response = requests.get(request, allow_redirects=False) fetchUrl = response.headers['Location'] webbrowser.open(fetchUrl) def print_tweet(Tweet): tweet_info = str(Tweet['_id'])+" "+Tweet['user']['screen_name']+" "+str(Tweet.get('label','')) print(tweet_info) text = Tweet['text'] print(text) # pos = map(lambda x:index_pos_dic[x],id_pos_dic[Tweet['_id']]) if Tweet.get('entities',None): # time.sleep(3) if Tweet['entities'].get('media',None): for num,media in enumerate(Tweet['entities']['media']): print(media['type']) if num == 0: time.sleep(2) else: time.sleep(4) webbrowser.open_new(media['media_url_https']) if Tweet['entities'].get('urls',None): for num,URL in enumerate(Tweet['entities']['urls']): print(URL['display_url']) if num == 0: time.sleep(2) else: time.sleep(4) webbrowser.open_new(URL['expanded_url']) # if u'URL' in pos: # url_count = Counter(pos)['URL'] # index = pos.index(u'URL') # url = text.split()[index] # print(unshorten_url(url)) # webbrowser.open_new(url) # print("URLS") # print Tweet['entities']['urls'] # print("media") # if Tweet['entities']['media']: # for media in Tweet['entities']['media']: # print("MEDIA_TYPE",media['type']) # if media['type'] == 'photo': # image_lookup(media['media_url_https']) # # print Tweet['entities']['media'] # p = subprocess.Popen(["firefox", url]) # time.sleep(5) #delay of 10 seconds # p.kill() # driver = webdriver.Chrome() # driver.get(url) # time.sleep(3) # driver.close() model = joblib.load("tCRF_"+"_"+classifier+"_"+"_".join(featurename)+".crf_model") test_id = 856172056932700164L#862135824745467905L def label_tweet(tweet,root_tweet,pred,db,Done_prec): # print(tweet.get('predicted',None),"predicted") # print(tweet.get('label',None),"label") # print(tweet.get('label_parent',None),"label_parent") sID = tweet['_id'] if root_tweet == tweet: print("\n________________________________________") print("Tweet is Root stance to claim") collection = db.trump_tweets else: collection = db.replies_to_trump print("\n________________________________________") print_tweet(root_tweet) parent_id = tweet.get('in_reply_to_status_id',None) parent_not_root = parent_id != root_tweet['_id'] and tweet['user']['screen_name'] != 'realDonaldTrump' if parent_not_root: parent_tweet = list(db.replies_to_trump.find({'_id':parent_id}))[0] if parent_tweet["in_reply_to_status_id"] != root_tweet['id']: print("|\n||||||||||||||||\n|") else: print("|\n|") print_tweet(parent_tweet) # print("\n") # print(tweet['user']['screen_name']) print("|\n|") print_tweet(tweet) # print(pos_tweet.index('url')) # print(pred) # print(tweet['in_reply_to_status_id'],root_tweet['_id']) # print(tweet['user']['screen_name']) # print(tweet['created_at']) collection.update_one( {'_id':sID}, {'$set':{'predicted':pred}}) try: label=int(input("\nStance to Root\n1=support 2=deny 3=query 4=comment\n>>\t"))-1 except: print("EXCEPTION") label = None if isinstance(label,int): if tweet['in_reply_to_screen_name'] == 'realDonaldTrump': collection.update_many( {'text':tweet['text']}, {'$set':{'label':feature.inverse_label(label)}}, ) collection.update_many( {'text':tweet['text']}, {'$set':{'label_parent':feature.inverse_label(label)}}, ) else: collection.update_one( {'_id':sID}, {'$set':{'label':feature.inverse_label(label)}}) output = feature.inverse_label(label)+" "+str(Done_prec)+"%" print(output) time.sleep(0.5) if parent_not_root: try: label_parent=int(input("\nStance to Parent\n1=support 2=deny 3=query 4=comment\n>>\t"))-1 except: print("EXCEPTION") label_parent = None elif parent_id == root_tweet['_id']: label_parent = label else: label_parent = None if isinstance(label_parent,int): collection.update_one( {'_id':sID}, {'$set':{'label_parent':feature.inverse_label(label_parent)}}) time.sleep(0.5) # print("\n________________________________________") def label_thread(thread_id,DB): preds = model.predict(event_feature_dic[thread_id]) preds = map(feature.inverse_label,preds[0]) root = list(DB.trump_tweets.find({'_id':thread_id}))[0] total = float(len(preds)) done = 0.0 for predicted,sID in zip(preds,sorted(event_ID_dic[thread_id][0])): twt = list(DB.replies_to_trump.find({'_id':sID})) if not twt: twt = list(DB.trump_tweets.find({'_id':sID})) twt =twt[0] # if not twt.get('label',None) and twt.get('in_reply_to_status_id',None)!= root['_id']: done +=1 if not twt.get('label',None) or not twt.get('label_parent',None): done_perc = (done/total)*100 print(twt['_id']) label_tweet(twt,root,predicted,DB,done_perc) print("THREAD LABELED!!!!") ### working list of threads for labeling train = [ 860477328882905089,#Win in house for 16244 860580764944969728,#weekly address 6497 860577873060651008# JOBS, JOBS, JOBS! https://t.co/UR0eetSEnO 9379 ] #label_thread(train[0],DB_trump) def dump_thread_labels(thread_id,DB): preds = model.predict(event_feature_dic[thread_id]) preds = map(feature.inverse_label,preds[0]) root = list(DB.trump_tweets.find({'_id':thread_id}))[0] label_dic = {} parent_label_dic ={} for predicted,sID in zip(preds,sorted(event_ID_dic[thread_id][0])): twt = list(DB.replies_to_trump.find({'_id':sID})) if not twt: twt = list(DB.trump_tweets.find({'_id':sID})) twt =twt[0] # if not twt.get('label',None) and twt.get('in_reply_to_status_id',None)!= root['_id']: if twt.get('label',None):# or twt.get('label_parent',None): label_dic[twt['id']] = twt['label'] parent_label_dic[twt['id']] = twt['label_parent'] with open("train_labels_thread_"+str(thread_id)+".json","w") as labelfile: json.dump(label_dic,labelfile) with open("parent_labels_thread_"+str(thread_id)+".json","w") as parentfile: json.dump(parent_label_dic,parentfile) for k,v in zip(sorted(label_dic.items()),sorted(parent_label_dic.items())): print k[0],k[1],v[1] print len(parent_label_dic) print len(label_dic) #dump_thread_labels(train[0],DB_trump) def update_thread_labels(thread_id,DB): label_dic = {} parent_label_dic ={} parent_updated = 0 label_updated = 0 # print(DB) # print( list(DB.replies_to_trump.find({'_id':860583926263238656})) ) with open("train_labels_thread_"+str(thread_id)+".json","r") as labelfile: label_dic = json.load(labelfile) with open("parent_labels_thread_"+str(thread_id)+".json","r") as parentfile: parent_label_dic = json.load(parentfile) for sID,label in label_dic.items(): # print(sID) # print(type(sID)) twt = list(DB.replies_to_trump.find({'_id':int(sID)})) # print(twt) collection = DB.replies_to_trump # print(twt) if not twt: # print("NOT TWT") twt = list(DB.trump_tweets.find({'_id':int(sID)})) collection = DB.trump_tweets twt =twt[0] if not twt.get('label',None): try: collection.update_many( {'id':int(sID)}, {'$set':{'label':feature.inverse_label(label)}}, ) label_updated += 1 except Exception as err: print(err) print(sID) else: if twt['label'] != label: print("Tweet with ID "+str(sID)+" has two Labels") print("current label "+twt['label']) print("new label " + label) if not twt.get('label_parent',None): try: collection.update_many( {'id':int(sID)}, {'$set':{'label_parent':feature.inverse_label( parent_label_dic[sID])}}, ) parent_updated += 1 except Exception as err: print(err) print(sID) else: if twt['label_parent'] != parent_label_dic[sID]: print("Tweet with ID "+str(sID)+" has two Parent labels") print("current label "+twt['label_parent']) print("new label " + parent_label_dic[sID]) print("Labels Updated"+str(label_updated)) print("Parent Labels Updated"+str(parent_updated)) def get_full_text(s_id,collection): twet = list(collection.find({'id':s_id}))[0] if twet["truncated"] == True: try: text_url = twet['entities']['urls'][0]['expanded_url'] response = requests.get(text_url, allow_redirects=False) # print response # print response.status_code if response.status_code == 200: # print "YES" soup = BeautifulSoup(response.text) tweet = soup.findAll('meta', {'property':"og:description"}) reg = re.findall('(?<=<meta content=").+\s*.*(?=" )',str(tweet[0])) return reg[0] else: # print "NO" return twet['text'] except: return twet['text'] print text_url print tweet[0] truc_tweets = [860592723413348352,860592674838953984,860592669222981633, 860592484287729664,860592429707255810,860592373398511616, 860592245250154496,860592221623648257,860592117722349572, 860592110411681793,860592087569485825,860592042493321216] #get_full_text(862739199014969348) #get_full_text(860592723413348352) #for twt_id in truc_tweets: # full_text = get_full_text(twt_id) # DB_trump.replies_to_trump.update_one( # {'id':int(twt_id)}, # {'$set':{'full_text':full_text}}, # ) #for tweet in list(DB_trump.replies_to_trump.find())[:10] # get_full_text(twt_id) collection = DB_trump.replies_to_trump #for tweet_id in list(collection.distinct('id',{"full_text":{"$exists":False}})): # full_text = get_full_text(tweet_id,collection) # DB_trump.replies_to_trump.update_one( # {'id':int(tweet_id)}, # {'$set':{'full_text':full_text}}, # ) collection = DB_trump.trump_tweets for tweet_id in list(collection.distinct('id',{"full_text":{"$exists":False}})): full_text = get_full_text(tweet_id,collection) DB_trump.trump_tweets.update_one( {'id':int(tweet_id)}, {'$set':{'full_text':full_text}}, )
mit
berkeley-stat159/project-alpha
final/image_scripts/convolution_appendix_plots.py
1
2416
""" Plot producing scripts for convolution appendix """ from __future__ import absolute_import, division, print_function import numpy as np import matplotlib.pyplot as plt import sys project_location= "../../" functions=project_location +"code/utils/functions/" location_of_created_images=project_location+"images/" sys.path.append(functions) from event_related_fMRI_functions import hrf_single,convolution_specialized one_zeros = np.zeros(40) one_zeros[4] = 1 one_zeros[16:20]=1 plt.scatter(np.arange(40),one_zeros) plt.xlim(-1,40) plt.title("Stimulus pattern") plt.savefig(location_of_created_images+"on_off_pattern.png") plt.close() plt.plot(np.linspace(0,30,200),np.array([hrf_single(x) for x in np.linspace(0,30,200)])) plt.title("Single HRF, started at t=0") plt.savefig(location_of_created_images+"hrf_pattern.png") plt.close() convolved=convolution_specialized(np.arange(40),one_zeros,hrf_single,np.linspace(0,60,300)) plt.plot(np.linspace(0,60,300),convolved) plt.title("Convolution") plt.savefig(location_of_created_images+"initial_convolved.png") plt.close() colors=["#CCCCFF","#C4C3D0","#92A1CF","#2A52BE","#003399","#120A8F","#000080","#002366"] xx=np.linspace(0,30,3001) i=3 one_zeros_2 = np.zeros(3001) one_zeros_2[(2*i*100-15):(2*i*100+15)]=.6 plt.plot(xx,.6-one_zeros_2,color="black") plt.title(" 'g' Moving Function") plt.ylim(-.1,1) plt.savefig(location_of_created_images+"play.png") plt.close() xx=np.linspace(0,30,3001) y1 = np.array([hrf_single(x) for x in np.linspace(0,30,3001)]) plt.plot(xx,y1) for i in range(len(colors)): one_zeros_2 = np.zeros(3001) one_zeros_2[(2*i*100-15):(2*i*100+15)]=.6 y2 = .6-one_zeros_2 # plt.plot(xx,y1) plt.plot(xx,one_zeros_2,color="black") plt.plot(xx,y2,color="white") plt.fill_between(xx,y2,y1 , facecolor=colors[i],where= y2<.6) plt.plot([15,19.75],[.4,.4],color="red") plt.plot([19,20],[.41,.4],color="red") plt.plot([19,20],[.39,.4],color="red") plt.plot([19,19.75],[.41,.4],color="red") plt.plot([19,19.75],[.39,.4],color="red") plt.title("Math Convolution") plt.savefig(location_of_created_images+"math_convolved.png") plt.close() """ xx=np.linspace(0,30,301) one_zeros_2 = np.zeros(301) one_zeros_2[58:62]=.6 y2 = .6-one_zeros_2 y1 = np.array([hrf_single(x) for x in np.linspace(0,30,301)]) plt.plot(xx,y1) plt.plot(xx,y2,color="white") plt.fill_between(xx,y2,y1 , facecolor="blue",where= y2<.6) """
bsd-3-clause
galtay/cosmolabe
tests/test_eh98.py
1
1268
import numpy as np import matplotlib.pyplot as plt import cosmolabe as cl from cosmolabe.transfer_functions import EH98 plt.ion() eh98_cosmo_params = { 'Omega_m': 0.2, 'Omega_b': 0.1, 'Omega_c': 0.1, 'h': 0.5, 'T_cmb': 2.728 * cl.u.K } def main(): dat = np.loadtxt('trans.dat') eh98 = EH98(eh98_cosmo_params) k_arr = np.logspace(-3.0, 0.0, 1000) * eh98.cu.h / eh98.cu.Mpc Tk_no_wiggles = eh98.T_no_wiggles(k_arr) Tk_zero_baryon = eh98.T_zero_baryon(k_arr) Tk = eh98.T(k_arr) plt.loglog(k_arr, Tk_zero_baryon, color='green', lw=2.0, ls='-', label='zero baryon') plt.loglog(k_arr, Tk_no_wiggles, color='lime', lw=2.0, ls='-', label='no wiggles') plt.loglog(k_arr, np.abs(Tk), color='red', lw=2.0, ls='-', label='full fit') plt.loglog(dat[:,0], dat[:,1], color='blue', lw=1.0, ls='--', label='original') plt.grid(which='major', ls='-', lw=1.0, color='grey', alpha=0.5) plt.grid(which='minor', ls='-', lw=1.0, color='grey', alpha=0.5) plt.xlabel(r'$k \; [h \, {\rm Mpc}^{-1}]$', fontsize=20) plt.ylabel(r'$|T(k)|$', fontsize=20) plt.legend(loc='best') plt.tight_layout() plt.show() if __name__ == '__main__': main()
mit
proto-n/Alpenglow
python/test_alpenglow/utils/test_ThreadedParameterSearch.py
2
1048
import alpenglow as prs import alpenglow.experiments import alpenglow.evaluation import pandas as pd import math import unittest from alpenglow.utils import ParameterSearch, ThreadedParameterSearch class TestThreadedParameterSearch(unittest.TestCase): def test_runMultiple(self): data = pd.read_csv( "python/test_alpenglow/test_data_4", sep=' ', header=None, names=['time', 'user', 'item', 'id', 'score', 'eval'] ) model = alpenglow.experiments.PopularityExperiment( top_k=100, seed=254938879 ) c = ParameterSearch(model, alpenglow.evaluation.DcgScore) c.set_parameter_values('top_k', [100, 50]) c.set_parameter_values('seed', [254938879, 123456]) d = ThreadedParameterSearch(model, alpenglow.evaluation.DcgScore) d.set_parameter_values('top_k', [100, 50]) d.set_parameter_values('seed', [254938879, 123456]) r1 = c.run(data) r2 = d.run(data) assert r1.equals(r2)
apache-2.0
MohammedWasim/scikit-learn
examples/model_selection/plot_confusion_matrix.py
244
2496
""" ================ Confusion matrix ================ Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the better, indicating many correct predictions. The figures show the confusion matrix with and without normalization by class support size (number of elements in each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation of which class is being misclassified. Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In real life applications this parameter is usually chosen using :ref:`grid_search`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.cross_validation import train_test_split from sklearn.metrics import confusion_matrix # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Split the data into a training set and a test set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Run classifier, using a model that is too regularized (C too low) to see # the impact on the results classifier = svm.SVC(kernel='linear', C=0.01) y_pred = classifier.fit(X_train, y_train).predict(X_test) def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(iris.target_names)) plt.xticks(tick_marks, iris.target_names, rotation=45) plt.yticks(tick_marks, iris.target_names) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Compute confusion matrix cm = confusion_matrix(y_test, y_pred) np.set_printoptions(precision=2) print('Confusion matrix, without normalization') print(cm) plt.figure() plot_confusion_matrix(cm) # Normalize the confusion matrix by row (i.e by the number of samples # in each class) cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print('Normalized confusion matrix') print(cm_normalized) plt.figure() plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix') plt.show()
bsd-3-clause
davebx/tools-iuc
tools/table_compute/scripts/safety.py
17
9977
import re class Safety(): """ Class to safely evaluate mathematical expression on single or table data """ __allowed_tokens = ( '(', ')', 'if', 'else', 'or', 'and', 'not', 'in', '+', '-', '*', '/', '%', ',', '!=', '==', '>', '>=', '<', '<=', 'min', 'max', 'sum', ) __allowed_ref_types = { 'pd.DataFrame': { 'abs', 'add', 'agg', 'aggregate', 'align', 'all', 'any', 'append', 'apply', 'applymap', 'as_matrix', 'asfreq', 'at', 'axes', 'bool', 'clip', 'clip_lower', 'clip_upper', 'columns', 'combine', 'compound', 'corr', 'count', 'cov', 'cummax', 'cummin', 'cumprod', 'cumsum', 'describe', 'div', 'divide', 'dot', 'drop', 'drop_duplicates', 'droplevel', 'dropna', 'duplicated', 'empty', 'eq', 'equals', 'expanding', 'ffill', 'fillna', 'filter', 'first', 'first_valid_index', 'floordiv', 'ge', 'groupby', 'gt', 'head', 'iat', 'iloc', 'index', 'insert', 'interpolate', 'isin', 'isna', 'isnull', 'items', 'iteritems', 'iterrows', 'itertuples', 'ix', 'join', 'keys', 'kurt', 'kurtosis', 'last', 'last_valid_index', 'le', 'loc', 'lookup', 'lt', 'mad', 'mask', 'max', 'mean', 'median', 'melt', 'merge', 'min', 'mod', 'mode', 'mul', 'multiply', 'ndim', 'ne', 'nlargest', 'notna', 'notnull', 'nsmallest', 'nunique', 'pct_change', 'pivot', 'pivot_table', 'pop', 'pow', 'prod', 'product', 'quantile', 'radd', 'rank', 'rdiv', 'replace', 'resample', 'rfloordiv', 'rmod', 'rmul', 'rolling', 'round', 'rpow', 'rsub', 'rtruediv', 'sample', 'select', 'sem', 'shape', 'shift', 'size', 'skew', 'slice_shift', 'squeeze', 'stack', 'std', 'sub', 'subtract', 'sum', 'swapaxes', 'swaplevel', 'T', 'tail', 'take', 'transform', 'transpose', 'truediv', 'truncate', 'tshift', 'unstack', 'var', 'where', }, 'pd.Series': { 'abs', 'add', 'agg', 'aggregate', 'align', 'all', 'any', 'append', 'apply', 'argsort', 'as_matrix', 'asfreq', 'asof', 'astype', 'at', 'at_time', 'autocorr', 'axes', 'between', 'between_time', 'bfill', 'bool', 'cat', 'clip', 'clip_lower', 'clip_upper', 'combine', 'combine_first', 'compound', 'corr', 'count', 'cov', 'cummax', 'cummin', 'cumprod', 'cumsum', 'describe', 'diff', 'div', 'divide', 'divmod', 'dot', 'drop', 'drop_duplicates', 'droplevel', 'dropna', 'dt', 'dtype', 'dtypes', 'duplicated', 'empty', 'eq', 'equals', 'ewm', 'expanding', 'factorize', 'ffill', 'fillna', 'filter', 'first', 'first_valid_index', 'flags', 'floordiv', 'ge', 'groupby', 'gt', 'hasnans', 'head', 'iat', 'idxmax', 'idxmin', 'iloc', 'imag', 'index', 'interpolate', 'is_monotonic', 'is_monotonic_decreasing', 'is_monotonic_increasing', 'is_unique', 'isin', 'isna', 'isnull', 'item', 'items', 'iteritems', 'ix', 'keys', 'kurt', 'kurtosis', 'last', 'last_valid_index', 'le', 'loc', 'lt', 'mad', 'map', 'mask', 'max', 'mean', 'median', 'min', 'mod', 'mode', 'mul', 'multiply', 'name', 'ndim', 'ne', 'nlargest', 'nonzero', 'notna', 'notnull', 'nsmallest', 'nunique', 'pct_change', 'pop', 'pow', 'prod', 'product', 'ptp', 'quantile', 'radd', 'rank', 'rdiv', 'rdivmod', 'real', 'repeat', 'replace', 'resample', 'rfloordiv', 'rmod', 'rmul', 'rolling', 'round', 'rpow', 'rsub', 'rtruediv', 'sample', 'searchsorted', 'select', 'sem', 'shape', 'shift', 'size', 'skew', 'slice_shift', 'sort_index', 'sort_values', 'squeeze', 'std', 'sub', 'subtract', 'sum', 'swapaxes', 'swaplevel', 'T', 'tail', 'take', 'transform', 'transpose', 'truediv', 'truncate', 'tshift', 'unique', 'unstack', 'value_counts', 'var', 'where', 'xs', }, } __allowed_qualified = { # allowed numpy functionality 'np': { 'abs', 'add', 'all', 'any', 'append', 'array', 'bool', 'ceil', 'complex', 'cos', 'cosh', 'cov', 'cumprod', 'cumsum', 'degrees', 'divide', 'divmod', 'dot', 'e', 'empty', 'exp', 'float', 'floor', 'hypot', 'inf', 'int', 'isfinite', 'isin', 'isinf', 'isnan', 'log', 'log10', 'log2', 'max', 'mean', 'median', 'min', 'mod', 'multiply', 'nan', 'ndim', 'pi', 'product', 'quantile', 'radians', 'rank', 'remainder', 'round', 'sin', 'sinh', 'size', 'sqrt', 'squeeze', 'stack', 'std', 'str', 'subtract', 'sum', 'swapaxes', 'take', 'tan', 'tanh', 'transpose', 'unique', 'var', 'where', }, # allowed math functionality 'math': { 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians', 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc', }, # allowed pd functionality 'pd': { 'DataFrame', 'array', 'concat', 'cut', 'date_range', 'factorize', 'interval_range', 'isna', 'isnull', 'melt', 'merge', 'notna', 'notnull', 'period_range', 'pivot', 'pivot_table', 'unique', 'value_counts', 'wide_to_long', }, } def __init__(self, expression, ref_whitelist=None, ref_type=None, custom_qualified=None): self.allowed_qualified = self.__allowed_qualified.copy() if ref_whitelist is None: self.these = [] else: self.these = ref_whitelist if ref_type is None or ref_type not in self.__allowed_ref_types: self.allowed_qualified['_this'] = set() else: self.allowed_qualified[ '_this' ] = self.__allowed_ref_types[ref_type] if custom_qualified is not None: self.allowed_qualified.update(custom_qualified) self.expr = expression self.__assertSafe() def generateFunction(self): "Generates a function to be evaluated outside the class" cust_fun = "def fun(%s):\n\treturn(%s)" % (self.these[0], self.expr) return cust_fun def __assertSafe(self): indeed, problematic_token = self.__isSafeStatement() if not indeed: self.detailedExcuse(problematic_token) raise ValueError("Custom Expression is not safe.") @staticmethod def detailedExcuse(word): "Gives a verbose statement for why users should not use some specific operators." mess = None if word == "for": mess = "for loops and comprehensions are not allowed. Use numpy or pandas table operations instead." elif word == ":": mess = "Colons are not allowed. Use inline Python if/else statements." elif word == "=": mess = "Variable assignment is not allowed. Use object methods to substitute values." elif word in ("[", "]"): mess = "Direct indexing of arrays is not allowed. Use numpy or pandas functions/methods to address specific parts of tables." else: mess = "Not an allowed token in this operation" print("( '%s' ) %s" % (word, mess)) def __isSafeStatement(self): """ Determines if a user-expression is safe to evaluate. To be considered safe an expression may contain only: - standard Python operators and numbers - inline conditional expressions - select functions and objects by default, these come from the math, numpy and pandas libraries, and must be qualified with the modules' conventional names math, np, pd; can be overridden at the instance level - references to a whitelist of objects (pd.DataFrames by default) and their methods """ safe = True # examples of user-expressions # '-math.log(1 - elem/4096) * 4096 if elem != 1 else elem - 0.5' # 'vec.median() + vec.sum()' # 1. Break expressions into tokens # e.g., # [ # '-', 'math.log', '(', '1', '-', 'elem', '/', '4096', ')', '*', # '4096', 'if', 'elem', '!=', '1', 'else', 'elem', '-', '0.5' # ] # or # ['vec.median', '(', ')', '+', 'vec.sum', '(', ')'] tokens = [ e for e in re.split( r'([a-zA-Z0-9_.]+|[^a-zA-Z0-9_.() ]+|[()])', self.expr ) if e.strip() ] # 2. Subtract allowed standard tokens rem = [e for e in tokens if e not in self.__allowed_tokens] # 3. Subtract allowed qualified objects from allowed modules # and whitelisted references and their attributes rem2 = [] for e in rem: parts = e.split('.') if len(parts) == 1: if parts[0] in self.these: continue if len(parts) == 2: if parts[0] in self.these: parts[0] = '_this' if parts[0] in self.allowed_qualified: if parts[1] in self.allowed_qualified[parts[0]]: continue rem2.append(e) # 4. Assert that rest are real numbers or strings e = '' for e in rem2: try: _ = float(e) except ValueError: safe = False break return safe, e
mit
CforED/Machine-Learning
examples/neighbors/plot_kde_1d.py
347
5100
""" =================================== Simple 1D Kernel Density Estimation =================================== This example uses the :class:`sklearn.neighbors.KernelDensity` class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a histogram can be thought of as a scheme in which a unit "block" is stacked above each point on a regular grid. As the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the estimate shown in the bottom left panel. This is a kernel density estimation with a "top hat" kernel. This idea can be generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate over the same distribution. Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the :class:`sklearn.neighbors.KernelDensity` estimator. The available kernels are shown in the second figure of this example. The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as well. """ # Author: Jake Vanderplas <[email protected]> # import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm from sklearn.neighbors import KernelDensity #---------------------------------------------------------------------- # Plot the progression of histograms to kernels np.random.seed(1) N = 20 X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] bins = np.linspace(-5, 10, 10) fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) fig.subplots_adjust(hspace=0.05, wspace=0.05) # histogram 1 ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True) ax[0, 0].text(-3.5, 0.31, "Histogram") # histogram 2 ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True) ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted") # tophat KDE kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density") # Gaussian KDE kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density") for axi in ax.ravel(): axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, '+k') axi.set_xlim(-4, 9) axi.set_ylim(-0.02, 0.34) for axi in ax[:, 0]: axi.set_ylabel('Normalized Density') for axi in ax[1, :]: axi.set_xlabel('x') #---------------------------------------------------------------------- # Plot all available kernels X_plot = np.linspace(-6, 6, 1000)[:, None] X_src = np.zeros((1, 1)) fig, ax = plt.subplots(2, 3, sharex=True, sharey=True) fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05) def format_func(x, loc): if x == 0: return '0' elif x == 1: return 'h' elif x == -1: return '-h' else: return '%ih' % x for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']): axi = ax.ravel()[i] log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot) axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF') axi.text(-2.6, 0.95, kernel) axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) axi.xaxis.set_major_locator(plt.MultipleLocator(1)) axi.yaxis.set_major_locator(plt.NullLocator()) axi.set_ylim(0, 1.05) axi.set_xlim(-2.9, 2.9) ax[0, 1].set_title('Available Kernels') #---------------------------------------------------------------------- # Plot a 1D density example N = 100 np.random.seed(1) X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0]) + 0.7 * norm(5, 1).pdf(X_plot[:, 0])) fig, ax = plt.subplots() ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2, label='input distribution') for kernel in ['gaussian', 'tophat', 'epanechnikov']: kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X) log_dens = kde.score_samples(X_plot) ax.plot(X_plot[:, 0], np.exp(log_dens), '-', label="kernel = '{0}'".format(kernel)) ax.text(6, 0.38, "N={0} points".format(N)) ax.legend(loc='upper left') ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k') ax.set_xlim(-4, 9) ax.set_ylim(-0.02, 0.4) plt.show()
bsd-3-clause
rayNymous/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/delaunay/triangulate.py
70
7732
import warnings try: set except NameError: from sets import Set as set import numpy as np from matplotlib._delaunay import delaunay from interpolate import LinearInterpolator, NNInterpolator __all__ = ['Triangulation', 'DuplicatePointWarning'] class DuplicatePointWarning(RuntimeWarning): """Duplicate points were passed in to the triangulation routine. """ class Triangulation(object): """A Delaunay triangulation of points in a plane. Triangulation(x, y) x, y -- the coordinates of the points as 1-D arrays of floats Let us make the following definitions: npoints = number of points input nedges = number of edges in the triangulation ntriangles = number of triangles in the triangulation point_id = an integer identifying a particular point (specifically, an index into x and y), range(0, npoints) edge_id = an integer identifying a particular edge, range(0, nedges) triangle_id = an integer identifying a particular triangle range(0, ntriangles) Attributes: (all should be treated as read-only to maintain consistency) x, y -- the coordinates of the points as 1-D arrays of floats. circumcenters -- (ntriangles, 2) array of floats giving the (x,y) coordinates of the circumcenters of each triangle (indexed by a triangle_id). edge_db -- (nedges, 2) array of point_id's giving the points forming each edge in no particular order; indexed by an edge_id. triangle_nodes -- (ntriangles, 3) array of point_id's giving the points forming each triangle in counter-clockwise order; indexed by a triangle_id. triangle_neighbors -- (ntriangles, 3) array of triangle_id's giving the neighboring triangle; indexed by a triangle_id. The value can also be -1 meaning that that edge is on the convex hull of the points and there is no neighbor on that edge. The values are ordered such that triangle_neighbors[tri, i] corresponds with the edge *opposite* triangle_nodes[tri, i]. As such, these neighbors are also in counter-clockwise order. hull -- list of point_id's giving the nodes which form the convex hull of the point set. This list is sorted in counter-clockwise order. """ def __init__(self, x, y): self.x = np.asarray(x, dtype=np.float64) self.y = np.asarray(y, dtype=np.float64) if self.x.shape != self.y.shape or len(self.x.shape) != 1: raise ValueError("x,y must be equal-length 1-D arrays") self.old_shape = self.x.shape j_unique = self._collapse_duplicate_points() if j_unique.shape != self.x.shape: warnings.warn( "Input data contains duplicate x,y points; some values are ignored.", DuplicatePointWarning, ) self.j_unique = j_unique self.x = self.x[self.j_unique] self.y = self.y[self.j_unique] else: self.j_unique = None self.circumcenters, self.edge_db, self.triangle_nodes, \ self.triangle_neighbors = delaunay(self.x, self.y) self.hull = self._compute_convex_hull() def _collapse_duplicate_points(self): """Generate index array that picks out unique x,y points. This appears to be required by the underlying delaunay triangulation code. """ # Find the indices of the unique entries j_sorted = np.lexsort(keys=(self.x, self.y)) mask_unique = np.hstack([ True, (np.diff(self.x[j_sorted]) != 0) | (np.diff(self.y[j_sorted]) != 0), ]) return j_sorted[mask_unique] def _compute_convex_hull(self): """Extract the convex hull from the triangulation information. The output will be a list of point_id's in counter-clockwise order forming the convex hull of the data set. """ border = (self.triangle_neighbors == -1) edges = {} edges.update(dict(zip(self.triangle_nodes[border[:,0]][:,1], self.triangle_nodes[border[:,0]][:,2]))) edges.update(dict(zip(self.triangle_nodes[border[:,1]][:,2], self.triangle_nodes[border[:,1]][:,0]))) edges.update(dict(zip(self.triangle_nodes[border[:,2]][:,0], self.triangle_nodes[border[:,2]][:,1]))) # Take an arbitrary starting point and its subsequent node hull = list(edges.popitem()) while edges: hull.append(edges.pop(hull[-1])) # hull[-1] == hull[0], so remove hull[-1] hull.pop() return hull def linear_interpolator(self, z, default_value=np.nan): """Get an object which can interpolate within the convex hull by assigning a plane to each triangle. z -- an array of floats giving the known function values at each point in the triangulation. """ z = np.asarray(z, dtype=np.float64) if z.shape != self.old_shape: raise ValueError("z must be the same shape as x and y") if self.j_unique is not None: z = z[self.j_unique] return LinearInterpolator(self, z, default_value) def nn_interpolator(self, z, default_value=np.nan): """Get an object which can interpolate within the convex hull by the natural neighbors method. z -- an array of floats giving the known function values at each point in the triangulation. """ z = np.asarray(z, dtype=np.float64) if z.shape != self.old_shape: raise ValueError("z must be the same shape as x and y") if self.j_unique is not None: z = z[self.j_unique] return NNInterpolator(self, z, default_value) def prep_extrapolator(self, z, bbox=None): if bbox is None: bbox = (self.x[0], self.x[0], self.y[0], self.y[0]) minx, maxx, miny, maxy = np.asarray(bbox, np.float64) minx = min(minx, np.minimum.reduce(self.x)) miny = min(miny, np.minimum.reduce(self.y)) maxx = max(maxx, np.maximum.reduce(self.x)) maxy = max(maxy, np.maximum.reduce(self.y)) M = max((maxx-minx)/2, (maxy-miny)/2) midx = (minx + maxx)/2.0 midy = (miny + maxy)/2.0 xp, yp= np.array([[midx+3*M, midx, midx-3*M], [midy, midy+3*M, midy-3*M]]) x1 = np.hstack((self.x, xp)) y1 = np.hstack((self.y, yp)) newtri = self.__class__(x1, y1) # do a least-squares fit to a plane to make pseudo-data xy1 = np.ones((len(self.x), 3), np.float64) xy1[:,0] = self.x xy1[:,1] = self.y from numpy.dual import lstsq c, res, rank, s = lstsq(xy1, z) zp = np.hstack((z, xp*c[0] + yp*c[1] + c[2])) return newtri, zp def nn_extrapolator(self, z, bbox=None, default_value=np.nan): newtri, zp = self.prep_extrapolator(z, bbox) return newtri.nn_interpolator(zp, default_value) def linear_extrapolator(self, z, bbox=None, default_value=np.nan): newtri, zp = self.prep_extrapolator(z, bbox) return newtri.linear_interpolator(zp, default_value) def node_graph(self): """Return a graph of node_id's pointing to node_id's. The arcs of the graph correspond to the edges in the triangulation. {node_id: set([node_id, ...]), ...} """ g = {} for i, j in self.edge_db: s = g.setdefault(i, set()) s.add(j) s = g.setdefault(j, set()) s.add(i) return g
agpl-3.0
bougui505/SOM
application/structureClustering.py
1
6157
#!/usr/bin/env python """ author: Guillaume Bouvier email: [email protected] creation date: 01 10 2013 license: GNU GPL Please feel free to use and modify this, but keep the above information. Thanks! """ import matplotlib.pyplot import IO import numpy import itertools import scipy.spatial import scipy.stats import scipy.ndimage.measurements import SOM import glob #from newProtocolModule import * from SOMTools import * import cPickle import os relearn = False if glob.glob('inputMatrix.dat') == []: struct = IO.Structure('struct.pdb') fd=open('resList') reslist=[ line[:-1].split(' ') for line in fd ] reslist=[ (int(x),y) for x,y in reslist ] # dico={} # mask=numpy.zeros((struct.atoms.shape[0]),dtype="bool") # for x,y in reslist: # if y not in dico: # dico[y]=struct.getSelectionIndices([y],'segid') # mask=numpy.logical_or(mask,numpy.logical_and(dico[y],struct.getSelectionIndices([x],'resid'))) mask = numpy.ones((struct.atoms.shape[0]),dtype="bool") traj = IO.Trajectory('traj.dcd', struct, selectionmask=mask, nframe=11731) restraints = readRestraints() dists = [] dotProducts = [] # i = itertools.count() shapeTraj = traj.array.reshape(traj.nframe,traj.natom,3) for r1, r2 in restraints: try: atom1 =(mask.nonzero()[0]==numpy.logical_and(traj.struct.getSelectionIndices([r1[0]],"resid"),traj.struct.getSelectionIndices([r1[1]],"segid")).nonzero()[0][0]).nonzero()[0][0] atom2 =(mask.nonzero()[0]==numpy.logical_and(traj.struct.getSelectionIndices([r2[0]],"resid"),traj.struct.getSelectionIndices([r2[1]],"segid")).nonzero()[0][0]).nonzero()[0][0] trajA1 = shapeTraj[:,atom1] trajA1m = shapeTraj[:,atom1-1] #for Calpha i-1 trajA1p = shapeTraj[:,atom1+1] #for Calpha i+1 trajA2 = shapeTraj[:,atom2] trajA2m = shapeTraj[:,atom2-1] #for Calpha i-1 trajA2p = shapeTraj[:,atom2+1] #for Calpha i+1 v_A1_1 = trajA1p - trajA1 v_A1_2 = trajA1m - trajA1 crossA1 = numpy.cross(v_A1_1, v_A1_2) v_A2_1 = trajA2p - trajA2 v_A2_2 = trajA2m - trajA2 crossA2 = numpy.cross(v_A2_1, v_A2_2) dotA1A2 = numpy.dot(crossA1/numpy.linalg.norm(crossA1),crossA2.T/numpy.linalg.norm(crossA2)).diagonal() distA1A2 = numpy.sqrt(((trajA1 - trajA2)**2).sum(axis=1)) dists.append(distA1A2) dotProducts.append(dotA1A2) except IndexError: pass inputMatrix = numpy.dstack((numpy.asarray(dists).T, numpy.asarray(dotProducts).T)) x, y, z = inputMatrix.shape inputMatrix = inputMatrix.reshape(x,y*z) #remove systematic zeros # mask = 1-(inputMatrix == 0).all(axis=0) # inputMatrix = inputMatrix.compress(mask, axis=1) inMfile = open('inputMatrix.dat', 'w') cPickle.dump(inputMatrix, inMfile) inMfile.close() else: inMfile = open('inputMatrix.dat') inputMatrix = cPickle.load(inMfile) inMfile.close() #Learning ############################################################################################################# mapFileName = 'map1.dat' if glob.glob(mapFileName) == []: som = SOM.SOM(inputMatrix, range(inputMatrix.shape[0]), metric='euclidean', autoParam = False) som.learn() os.system('mv map_%sx%s.dat map1.dat'%(som.X,som.Y)) else: som = SOM.SOM(inputMatrix, range(inputMatrix.shape[0]), mapFileName=mapFileName, metric='euclidean', autoParam = False) if relearn: som.learn() os.system('mv map_%sx%s.dat map1.dat'%(som.X,som.Y)) ####################################################################################################################### #Plot Maps ############################################################### allMaps = allKohonenMap2D(som.Map, inputMatrix, metric='euclidean') allMasks = findMinRegionAll(allMaps) allMins = findMinAll(allMaps) bmuDensity = numpy.reshape(allMins.sum(axis=1), (som.X,som.Y)) plotMat(bmuDensity, 'density.pdf', contour=False, interpolation='nearest') density = numpy.reshape(allMasks.sum(axis=1), (som.X,som.Y)) plotMat(density, 'density2.pdf', contour=False) #plot potential pMap = restraintsPotential(som.Map[:,:,0:-1:2], 10, 28, 36) stds = pMap.std(axis=0).std(axis=0) varCoef = numpy.nan_to_num(scipy.stats.variation(scipy.stats.variation(pMap, axis=0), axis=0)) averagepMap = numpy.average(pMap, axis=2, weights=varCoef) sumpMap = pMap.sum(axis=2) plotMat(averagepMap, 'averageRestraintPotentialMap.pdf', contour=True) plotMat(sumpMap, 'restraintPotentialMap.pdf', contour=True) logHmap = numpy.log((som.Map[:,:,0:-1:2]/15)**2).sum(axis=2) # target distance = 15 A plotMat(logHmap, 'logHmap.pdf', contour=True) #Number of violated restraints violationMap = (som.Map[:,:,0:-1:2] > 36).sum(axis=2) plotMat(violationMap, 'violationMap.pdf', interpolation='nearest') #EM map correlation correlations = numpy.atleast_2d(numpy.genfromtxt('correlationEM.dat')[:,1]) meanCorrelationMatrix = getEMmapCorrelationMatrix(correlations, allMins, som) plotMat(meanCorrelationMatrix, 'meanCorrelationMatrix.pdf', interpolation='nearest') meanCorrelationRegions = getEMmapCorrelationMatrix(correlations, allMasks, som) plotMat(meanCorrelationRegions, 'meanCorrelationRegions.pdf', contour=True) #outside map correlation outside = numpy.atleast_2d(numpy.genfromtxt('outsideEM.dat')[:,1]) meanOutsideMatrix = getEMmapCorrelationMatrix(outside, allMins, som) plotMat(meanOutsideMatrix, 'meanOutsideMatrix.pdf', interpolation='nearest') meanOutsideRegions = getEMmapCorrelationMatrix(outside, allMasks, som) plotMat(meanOutsideRegions, 'meanOutsideRegions.pdf', contour=True) ########################################################################## #uMatrix ############################################################# uMatrix = getUmatrix(som) plotMat(uMatrix, 'uMatrix.pdf', contour=False) clusterMatrix, nClusters = scipy.ndimage.measurements.label(findMinRegion(uMatrix, scale = 0.75)) plotMat(clusterMatrix, 'clusterMatrix.pdf', interpolation='nearest') for i in range(1,nClusters+1): indices = (allMins * numpy.atleast_2d((clusterMatrix == i).flatten()).T).any(axis=0) cluster = numpy.array(som.inputnames)[indices] outfile = open('cluster_%s.out'%i, 'w') [outfile.write('%s\n'%(e+1)) for e in cluster] # start from 1 outfile.write('\n') outfile.close() vmdMap(sliceMatrix(uMatrix), 'uMatrix.map')
gpl-2.0
toolforger/sympy
sympy/physics/quantum/tests/test_circuitplot.py
93
2065
from sympy.physics.quantum.circuitplot import labeller, render_label, Mz, CreateOneQubitGate,\ CreateCGate from sympy.physics.quantum.gate import CNOT, H, SWAP, CGate, S, T from sympy.external import import_module from sympy.utilities.pytest import skip mpl = import_module('matplotlib') def test_render_label(): assert render_label('q0') == r'$|q0\rangle$' assert render_label('q0', {'q0': '0'}) == r'$|q0\rangle=|0\rangle$' def test_Mz(): assert str(Mz(0)) == 'Mz(0)' def test_create1(): Qgate = CreateOneQubitGate('Q') assert str(Qgate(0)) == 'Q(0)' def test_createc(): Qgate = CreateCGate('Q') assert str(Qgate([1],0)) == 'C((1),Q(0))' def test_labeller(): """Test the labeller utility""" assert labeller(2) == ['q_1', 'q_0'] assert labeller(3,'j') == ['j_2', 'j_1', 'j_0'] def test_cnot(): """Test a simple cnot circuit. Right now this only makes sure the code doesn't raise an exception, and some simple properties """ if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(CNOT(1,0),2,labels=labeller(2)) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == ['q_1', 'q_0'] c = CircuitPlot(CNOT(1,0),2) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == [] def test_ex1(): if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(CNOT(1,0)*H(1),2,labels=labeller(2)) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == ['q_1', 'q_0'] def test_ex4(): if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(SWAP(0,2)*H(0)* CGate((0,),S(1)) *H(1)*CGate((0,),T(2))\ *CGate((1,),S(2))*H(2),3,labels=labeller(3,'j')) assert c.ngates == 7 assert c.nqubits == 3 assert c.labels == ['j_2', 'j_1', 'j_0']
bsd-3-clause
diegocavalca/Studies
phd-thesis/nilmtk/nilmtk/dataset_converters/greend/convert_greend.py
1
6732
from __future__ import print_function, division from os import listdir, getcwd from os.path import join, isdir, isfile, dirname, abspath import pandas as pd import numpy as np import datetime import time from nilmtk.datastore import Key from nilmtk.measurement import LEVEL_NAMES from nilm_metadata import convert_yaml_to_hdf5 import warnings import numpy as np from io import StringIO from multiprocessing import Pool from nilmtk.utils import get_module_directory def _get_blocks(filename): ''' Return a list of dataframes from a GREEND CSV file GREEND files can be interpreted as multiple CSV blocks concatenated into a single file per date. Since the columns of the individual blocks can vary in a single file, they need to be read separately. There are some issues we need to handle in the converter: - the headers from the multiple blocks - corrupted data (lines with null chars, broken lines) - more fields than specified in header ''' block_data = None dfs = [] previous_header = None print(filename) # Use float64 for timestamps and float32 for the rest of the columns dtypes = {} dtypes['timestamp'] = np.float64 def _process_block(): if block_data is None: return block_data.seek(0) try: # ignore extra fields for some files error_bad_lines = not ( ('building5' in filename and 'dataset_2014-02-04.csv' in filename) ) df = pd.read_csv(block_data, index_col='timestamp', dtype=dtypes, error_bad_lines=error_bad_lines) except: #(pd.errors.ParserError, ValueError, TypeError): print("ERROR", filename) raise df.index = pd.to_datetime(df.index, unit='s') df = df.tz_localize("UTC").tz_convert("CET").sort_index() dfs.append(df) block_data.close() special_check = ( ('dataset_2014-01-28.csv' in filename and 'building5' in filename) or ('dataset_2014-09-02.csv' in filename and 'building6' in filename) ) with open(filename, 'r') as f: for line in f: # At least one file have a bunch of nulls present, let's clean the data line = line.strip('\0') if 'time' in line: # Found a new block if not line.startswith('time'): # Some lines are corrupted, e.g. 1415605814.541311,0.0,NULL,NUtimestamp,000D6F00029C2918... line = line[line.find('time'):] if previous_header == line.strip(): # Same exact header, we can treat it as the same block # print('Skipping split') continue # Using a defaultdict for the dtypes didn't work with read_csv, # so we fill a normal dict when we find the columns cols = line.strip().split(',')[1:] for col in cols: dtypes[col] = np.float32 # print('Found new block') _process_block() block_data = StringIO() previous_header = line.strip() if special_check: if ('0.072.172091508705606' in line or '1409660828.0753369,NULL,NUL' == line): continue block_data.write(line) # Process the remaining block _process_block() return (filename, dfs) def _get_houses(greend_path): house_list = listdir(greend_path) return [h for h in house_list if isdir(join(greend_path,h))] def convert_greend(greend_path, hdf_filename, use_mp=True): """ Parameters ---------- greend_path : str The root path of the greend dataset. hdf_filename : str The destination HDF5 filename (including path and suffix). use_mp : bool Defaults to True. Use multiprocessing to load the files for each building. """ store = pd.HDFStore(hdf_filename, 'w', complevel=5, complib='zlib') houses = sorted(_get_houses(greend_path)) print('Houses found:', houses) if use_mp: pool = Pool() h = 1 # nilmtk counts buildings from 1 not from 0 as we do, so everything is shifted by 1 for house in houses: print('Loading', house) abs_house = join(greend_path, house) dates = [d for d in listdir(abs_house) if d.startswith('dataset')] target_filenames = [join(abs_house, date) for date in dates] if use_mp: house_data = pool.map(_get_blocks, target_filenames) # Ensure the blocks are sorted by date and make a plain list house_data_dfs = [] for date, data in sorted(house_data, key=lambda x: x[0]): house_data_dfs.extend(data) else: house_data_dfs = [] for fn in target_filenames: house_data_dfs.extend(_get_blocks(fn)[1]) overall_df = pd.concat(house_data_dfs, sort=False).sort_index() dups_in_index = overall_df.index.duplicated(keep='first') if dups_in_index.any(): print("Found duplicated values in index, dropping them.") overall_df = overall_df[~dups_in_index] m = 1 for column in overall_df.columns: print("meter {}: {}".format(m, column)) key = Key(building=h, meter=m) print("Putting into store...") df = overall_df[column].to_frame() #.dropna(axis=0) # if drop_duplicates: # print("Dropping duplicated values in data...") # df = df.drop_duplicates() df.columns = pd.MultiIndex.from_tuples([('power', 'active')]) df.columns.set_names(LEVEL_NAMES, inplace=True) store.put(str(key), df, format = 'table') m += 1 # print('Flushing store...') # store.flush() h += 1 store.close() # retrieve the dataset metadata in the metadata subfolder metadata_dir = join(get_module_directory(), 'dataset_converters', 'greend', 'metadata') convert_yaml_to_hdf5(metadata_dir, hdf_filename) #is only called when this file is the main file... only test purpose if __name__ == '__main__': t1 = time.time() convert_greend('GREEND_0-2_300615', 'GREEND_0-2_300615.h5') dt = time.time() - t1 print() print() print('Time passed: {}:{}'.format(int(dt/60), int(dt%60)))
cc0-1.0
sonofeft/M_Pool
m_pool/matrix_obj.py
1
37218
#!/usr/bin/env python # -*- coding: utf8 -*- import sys import itertools import copy import numpy as np from scipy.interpolate import interp1d from scipy.interpolate import RegularGridInterpolator try: from scipy.optimize import minimize except: print("...WARNING... scipy.optimize.minimize did NOT import...") print(" ... min/max functions are UNAVAILABLE ...") from m_pool.axis_obj import Axis from m_pool.axis_pool import AxisPool, axis_obj_dammit from m_pool.InterpProp_scipy import InterpProp try: import pylab got_pylab = True except: got_pylab = False class Matrix(object): '''An Matrix object holds data for N dimensional data There are N Axis objects for the data. The data is a single number indexed by the axes index values. *** Structured to easily pickle via a dictionary of named values for properties. *** ''' def __init__(self, D={'name':'matrixName', 'matValArr':None, 'units':'', 'axisNameL':None, 'axisPoolObj':None} ): '''Initialize with a dictionary so that pickle files can easily save and read objects axisNameL holds the names of axes that are in the axisPoolObj. The Matrix is dimensioned by the size of the axes in the order specified. An Axis obj can be shared by many Matrix objects. ''' self.name = D.get('name','UnkMatrix') self.matValArr = D.get('matValArr', None) self.units = D.get('units','') # Let it crash if axisNameL and axisPoolObj are not specified try: self.axisNameL = D.get('axisNameL') self.axisPoolObj = D.get('axisPoolObj') except: print('ERROR... both axisNameL and axisPoolObj MUST be specified in Matrix') sys.exit() self.axisL = [self.axisPoolObj.axisD[name] for name in self.axisNameL] self.NumAxes = len( self.axisL ) shape = [len(A) for A in self.axisL] # Init to Zeros if axes specified, but data not specified if self.matValArr is None and shape: self.matValArr = np.zeros( shape ) self.axisPoolObj.connectMatrixToAxes(self, self.axisNameL) # temporary list of numpy matrices used for interpolation self.terp_mL = [self.matValArr] # list of matrices used for interpolation self.terp_reg_grid = None # will be initialized if used self.terp_reg_grid_shape = None def solve_interp_min(self, order=3, method='TNC', tol=1.0E-8): # method can be: SLSQP, TNC return self.solve_interp_minmax( find_min=True, order=order, method=method, tol=tol) def solve_interp_max(self, order=3, method='TNC', tol=1.0E-8): # method can be: SLSQP, TNC return self.solve_interp_minmax( find_min=False, order=order, method=method, tol=tol) def solve_interp_minmax(self, find_min=False, order=3, method='TNC', tol=1.0E-8): # method can be: SLSQP, TNC boundsL = [] startValL = [] axisNameL = [] mn,mx = self.get_min_max() range = mx - mn interpD = {} # dictionary of axis values if find_min: iminmax = self.get_minima_indeces() else: iminmax = self.get_peak_indeces() for i,im in enumerate( iminmax ): #print 'minmax value at %s=%g'%(self.axisL[i].name, self.axisL[i][im]) #EPS=1.0E-10*abs(self.axisL[i][-1] - self.axisL[i][0]) boundsL.append( (self.axisL[i][0],self.axisL[i][-1]) ) startValL.append( self.axisL[i][im] ) axisNameL.append( self.axisL[i].name ) interpD[self.axisL[i].name] = self.axisL[i][im] #print 'minmax value =',self.matValArr[ iminmax ],' Min =',mn,' Max =',mx #print 'boundsL =',boundsL #print 'startValL =',startValL #print 'axisNameL =',axisNameL #print 'interpD =',interpD def fun( row ): # row is in axis-order from self.axisL for i,val in enumerate(row): interpD[ axisNameL[i] ] = val mval = self.interp(order=order, **interpD ) norm_val = float( (mval-mn)/range ) # normalize to help convergence if find_min: return norm_val else: return -norm_val res = minimize(fun, tuple(startValL), method=method, bounds=tuple(boundsL), tol=tol, options={'disp':False}) print(res) fun( res.x )# make sure interpD is set minmax_val = float( self.interp( **interpD ) ) return interpD, minmax_val def interp(self, order=1, **kwds): # kwds contains axis names... returns interpolated val if order>1: return self.interp_higher_order( order=order, **kwds ) else: return self.interp_linear( order=order, **kwds ) def interp_linear(self, **kwds ): if (self.terp_reg_grid is None) or (self.terp_reg_grid_shape != self.matValArr.shape ): self.terp_reg_grid_shape = self.matValArr.shape axis_valL = [ A.get_trans_valueL() for A in self.axisL ] self.terp_reg_grid = RegularGridInterpolator(axis_valL, self.matValArr) ptArr = np.array( [A.transObj( kwds[ A.name ] ) for A in self.axisL] ) ans = self.terp_reg_grid( ptArr ) #print( 'ans=',ans ) return ans[0] def interp_higher_order(self, order=3, **kwds): # kwds contains axis names... returns interpolated val ''' Call as: M.interp(order=3, pc=100, eps=20, mr=2.0) Uses scipy.interpolate.interp1d ''' # Only generate list of temporary matrices if 1st time, or if shape change if (len(self.terp_mL)==1) or (self.terp_mL[0].shape != self.matValArr.shape): #print 'orig shape =',self.matValArr.shape self.terp_mL[0] = self.matValArr # list of matrices used for interpolation #remove first dimension from each subsequent member of self.terp_mL next_shape = list( self.matValArr.shape )[1:] #print 'next_shape =',next_shape while len(next_shape)>0: self.terp_mL.append( np.zeros( next_shape ) ) next_shape = next_shape[1:] #print 'next_shape =',next_shape else: self.terp_mL[0] = self.matValArr # verify 1st matrix is current # interp from previous matrix for next matrix for ia,m in enumerate(self.terp_mL[1:]): # ia is index into self.axisL for current axis A = self.axisL[ia] xval = A.transObj( kwds[ A.name ] ) kind = min(len(A)-1, order) #print '... interpolating into',A.name,' xval=',xval,A for mindeces in itertools.product(*(list(range(s)) for s in m.shape)): # mindeces is a tuple index into m # indeces is index into last m yL = [] #print 'mindeces =',mindeces mindecesL = list( mindeces ) for iv,vax in enumerate( A ): indeces = tuple( [iv] + mindecesL ) val = self.terp_mL[ia][indeces] #print indeces, val yL.append( val ) #print 'xL=',A.transArr #print 'yL=',yL try: # do NOT set , fill_value="extrapolate" # ... let if fail so Extrapolating logic is used. m[mindeces] = interp1d( A.transArr , yL, kind=kind, fill_value="extrapolate")(xval) except: #print('Extrapolating',A.name,'axis =',A.transArr,' xval=',xval) print('Extrapolating',A.name,'axis %s='%A.name, kwds[ A.name ]) #print(' yL =',yL) if xval>=A.transArr[-2]: m[mindeces] = yL[-1] # assume out of bounds at high end else: m[mindeces] = yL[0] # assume out of bounds at low end #print 'Last matrix(array) =',self.terp_mL[-1] A = self.axisL[-1] kind = min(len(A)-1, order) xval = A.transObj( kwds[ A.name ] ) m = self.terp_mL[-1] #print 'm =',m #print 'axis =',A,' xval=',xval try: result = interp1d( A.transArr, m, kind=kind, fill_value="extrapolate")( xval ) except: print('Extrapolating','axis =',A,' xval=',xval) print(' m =',m) if xval>=A.transArr[-2]: result = m[-1] # assume out of bounds at high end else: result = m[0] # assume out of bounds at low end #print 'type(result)=',type(result), result.shape #return result return float( result ) def numNonZero(self): return np.count_nonzero( self.matValArr ) def iPercentFull(self): # return an integer percent full ntotal = 1 for i in self.matValArr.shape: ntotal *= i nfull = np.count_nonzero( self.matValArr ) return (100*nfull) / ntotal def get_pickleable_dict(self): '''Note that matrix_pool supplies axisPoolObj for pickled Matrix''' return {'name':self.name, 'matValArr':self.matValArr, 'units':self.units, 'axisNameL':self.axisNameL} def insert_dimension(self, iaxis,i ): newMat = np.insert( self.matValArr, i, 0.0, axis=iaxis ) self.matValArr = newMat def long_summ(self): sL = [self.short_summ()] sL.append( 'get_range = %s'%( self.get_range(), )) sL.append( 'get_ave = %s'%( self.get_ave(), )) sL.append( 'get_mean = %s'%( self.get_mean(), )) sL.append( 'get_std = %s'%( self.get_std(), )) sL.append( 'get_median = %s'%( self.get_median(), )) sL.append( 'get_min_max = %s'%( self.get_min_max(), )) return '\n'.join( sL ) def short_summ(self): if self.matValArr is None: sL = ['Matrix %s (shape=%s) %s (units=%s)'%(self.name, str(self.matValArr),self.name, self.units)] else: sL = ['Matrix %s (shape=%s) %s (units=%s)'%(self.name, str(self.matValArr.shape),self.name, self.units)] for A in self.axisL: s = str(A) ssL = s.split('\n') for s in ssL: sL.append( ' ' + s ) #sL.append( str(A) ) return '\n'.join( sL ) def __str__(self): s = self.short_summ() sL = s.split('\n') #if self.matValArr is None: # sL = ['Matrix %s (shape=%s) %s (units=%s)'%(self.name, str(self.matValArr),self.name, self.units)] #else: # sL = ['Matrix %s (shape=%s) %s (units=%s)'%(self.name, str(self.matValArr.shape),self.name, self.units)] #for A in self.axisL: # sL.append( str(A) ) sL.append( str(self.matValArr) ) return '\n'.join( sL ) def __getitem__(self, iL): return self.matValArr[ tuple(iL) ] def __setitem__(self, iL, val): # use as M[(i,j,k)] = val if val is None: print('ERROR... illegal value for "val" in Matrix.set. val =',val) else: self.matValArr[tuple(iL)] = float(val) def setByName(self, **kwds): # kwds contains axis names and "val" '''Call as: M.setByName(pc=100, eps=20, mr=2.0, val=29.23)''' iL = [] # list of indeces into matrix array for A in self.axisL: iL.append( A.getExactIndex( kwds[A.name] ) ) self.matValArr[tuple(iL)] = float( kwds['val'] ) def getByName(self, **kwds): # kwds contains axis names... returns val '''Call as: M.getByName(pc=100, eps=20, mr=2.0)''' iL = [] # list of indeces into matrix array for A in self.axisL: iL.append( A.getExactIndex( kwds[A.name] ) ) return self.matValArr[tuple(iL)] def get_list_of_peak_indeces(self): """Returns a list of all occurances of max value""" max_val = self.get_max() return np.argwhere( self.matValArr == max_val ) def get_peak_indeces(self): """Returns 1st occurance of max value""" imax = np.unravel_index(self.matValArr.argmax(), self.matValArr.shape) return imax def get_peak_dict(self): """Returns 1st occurance of max value""" imax = np.unravel_index(self.matValArr.argmax(), self.matValArr.shape) D = {} for i,im in enumerate( imax ): D[self.axisL[i].name] = self.axisL[i][im] return D def get_minima_indeces(self): """Returns 1st occurance of min value""" imin = np.unravel_index(self.matValArr.argmin(), self.matValArr.shape) return imin def get_minima_dict(self): """Returns 1st occurance of min value""" imin = np.unravel_index(self.matValArr.argmin(), self.matValArr.shape) D = {} for i,im in enumerate( imin ): D[self.axisL[i].name] = self.axisL[i][im] return D def get_min_max(self): return np.nanmin(self.matValArr), np.nanmax(self.matValArr) def get_min(self): return np.nanmin(self.matValArr) def get_max(self): return np.nanmax(self.matValArr) def get_sum(self): return np.nansum(self.matValArr) def get_ave(self): return np.average(self.matValArr) def get_mean(self): return np.mean(self.matValArr) def get_std(self): return np.std(self.matValArr) def get_median(self): return np.median(self.matValArr) def get_range(self): # returns max - min return np.ptp(self.matValArr) # peak to peak def __len__(self): return len( self.matValArr ) def shape(self): return self.matValArr.shape def size(self): return np.prod( self.matValArr.shape ) def iter_indeces(self): # an iterator over the indeces of the matrix for indeces in itertools.product(*(list(range(s)) for s in self.matValArr.shape)): yield indeces def iter_items(self): # iterator returns indeces and value at location for indeces in itertools.product(*(list(range(s)) for s in self.matValArr.shape)): val = self.matValArr[indeces] yield indeces,val def full_iter_items(self): # iterator returns indeces, value and axes value dictionary self.axisNameL for indeces in itertools.product(*(list(range(s)) for s in self.matValArr.shape)): val = self.matValArr[indeces] D={} for i,axname in enumerate( self.axisNameL ): D[axname] = self.axisL[ i ][indeces[i]] yield indeces,D,val def clone(self): Mclone = copy.deepcopy( self ) Mclone.name = self.name + '(clone)' return Mclone def __neg__(self): Mclone = self.clone() Mclone.matValArr = np.negative( Mclone.matValArr ) return Mclone #return self * (-1.0) def __abs__(self): Mclone = self.clone() Mclone.matValArr = abs(self.matValArr) return Mclone def __add__(self, other): Mclone = self.clone() if isinstance(other, Matrix): Mclone.name = self.name + ' + %s'%other.name Mclone.matValArr = self.matValArr + other.matValArr else: Mclone.name = self.name + ' + %s'%other Mclone.matValArr = self.matValArr + other return Mclone def __radd__(self, other): return self.__add__(other) def __iadd__(self, other): if isinstance(other, Matrix): self.name = self.name + ' + %s'%other.name self.matValArr = self.matValArr + other.matValArr else: self.name = self.name + ' + %s'%other self.matValArr = self.matValArr + other return self def __sub__(self, other): Mclone = self.clone() if isinstance(other, Matrix): Mclone.name = self.name + ' - %s'%other.name Mclone.matValArr = self.matValArr - other.matValArr else: Mclone.name = self.name + ' - %s'%other Mclone.matValArr = self.matValArr - other return Mclone def __rsub__(self, other): Mclone = self.clone() Mclone.matValArr = np.negative( Mclone.matValArr ) return Mclone + other def __isub__(self, other): if isinstance(other, Matrix): self.name = self.name + ' - %s'%other.name self.matValArr = self.matValArr - other.matValArr else: self.name = self.name + ' - %s'%other self.matValArr = self.matValArr - other return self def __mul__(self, other): Mclone = self.clone() if isinstance(other, Matrix): Mclone.name = self.name + ' * %s'%other.name Mclone.matValArr = self.matValArr * other.matValArr else: Mclone.name = self.name + ' * %s'%other Mclone.matValArr = self.matValArr * other return Mclone def __rmul__(self, other): return self * other def __imul__(self, other): if isinstance(other, Matrix): self.name = self.name + ' * %s'%other.name self.matValArr = self.matValArr * other.matValArr else: self.name = self.name + ' * %s'%other self.matValArr = self.matValArr * other return self def __div__(self, other): Mclone = self.clone() if isinstance(other, Matrix): Mclone.name = self.name + ' / %s'%other.name Mclone.matValArr = self.matValArr / other.matValArr else: Mclone.name = self.name + ' / %s'%other Mclone.matValArr = self.matValArr / other return Mclone def __rdiv__(self, other): Mclone = self.clone() Mclone.matValArr = np.reciprocal( Mclone.matValArr ) return Mclone * other def __idiv__(self, other): #print ' plain div' if isinstance(other, Matrix): self.name = self.name + ' / %s'%other.name self.matValArr = self.matValArr / other.matValArr else: self.name = self.name + ' / %s'%other self.matValArr = self.matValArr / other return self def __truediv__(self, other): # assumes from __future__ import division return self.__div__(other) def __rtruediv__(self, other): # assumes from __future__ import division return self.__rdiv__(other) def __itruediv__(self, other): # assumes from __future__ import division #print 'truediv' return self.__idiv__(other) def __pow__(self, other): Mclone = self.clone() if isinstance(other, Matrix): Mclone.name = self.name + ' ** %s'%other.name Mclone.matValArr = self.matValArr ** other.matValArr else: Mclone.name = self.name + ' ** %s'%other Mclone.matValArr = self.matValArr ** other return Mclone def __rpow__(self, other): Mclone = self.clone() Mclone.matValArr = (Mclone.matValArr*0.0) + other return Mclone**self def __ipow__(self, other): #print ' plain div' if isinstance(other, Matrix): self.name = self.name + ' ** %s'%other.name self.matValArr = self.matValArr ** other.matValArr else: self.name = self.name + ' ** %s'%other self.matValArr = self.matValArr ** other return self def get_sub_matrix(self, **kwds): # kwds contains axis names... returns val '''Call as: M.get_sub_matrix(pc=100, eps=20, mr=2.0) Return a smaller Matrix at specified values in kwds''' is_in_cutL=[0 for axname in self.axisNameL] # set to 1 if axname is a cut plane orig_indexL = is_in_cutL[:] # hold index into axis for input axis value newAxisNameL = [] # smaller list of axis names in new, smaller Matrix for ia,axname in enumerate(self.axisNameL): if axname in kwds: is_in_cutL[ia]=1 # Also hold const index in cut axis orig_indexL[ia] = self.axisL[ia].getExactIndex( kwds[axname] ) else: newAxisNameL.append( axname ) #print 'is a slice plane =',is_in_cutL #print 'Index of slice plane =',orig_indexL new_name = self.name +'_'+ '_'.join( ['%s=%s'%(n,v) for n,v in list(kwds.items())] ) M = Matrix( {'name':new_name, 'units':self.units, 'axisNameL':newAxisNameL, 'axisPoolObj':self.axisPoolObj} ) # TODO: change to faster numpy slicing method. for new_indeces in M.iter_indeces(): inew = 0 for i,ia in enumerate(is_in_cutL): if ia==0: # if axis in new Matrix, iterate indeces orig_indexL[i] = new_indeces[inew] inew += 1 M[ tuple(new_indeces) ] = self.matValArr[ tuple(orig_indexL) ] return M def values_in_range(self, **kwds): for k,v in kwds.items(): A = self.get_axis_by_name( k ) if not A.value_in_range( v ): return False return True def get_axis_by_name(self, aname): for a in self.axisL: if a.name == aname: return a return None def matrix_axis_name_list(self): return [a.name for a in self.axisL] def is_axis_name(self, axis_name): return axis_name in self.matrix_axis_name_list() def get_indeces_where(self, if_gt=0.0, if_lt=None): """Return indeces of values in range. Ignore if set to None""" if if_lt is None: return np.argwhere( self.matValArr > if_gt ) elif if_gt is None: return np.argwhere( self.matValArr < if_lt ) else: return np.argwhere( self.matValArr < if_lt and self.matValArr > if_gt ) def get_dict_of_indeces(self, indeces): D={} for i,axname in enumerate( self.axisNameL ): D[axname] = self.axisL[ i ][indeces[i]] return D def fill_missing_from_good_neighbors(self, bad_if_lt=0.0, bad_if_gt=None, good_if_gt=0.0, good_if_lt=None): badL = self.get_indeces_where( if_gt=bad_if_gt, if_lt=bad_if_lt) for iL in badL: good_ivL = self.get_nearest_good_neighbors(iL, good_if_gt=good_if_gt, good_if_lt=good_if_lt) sum_wts = 0.0 # sum of data pt weights sum_val_x_wts = 0.0 # sum of value * wt for good_iv in good_ivL: good_indeces = good_iv[0] dist = sum( [ abs(i1-i2) for (i1,i2) in zip(iL,good_indeces) ] ) #print(dist, iL, good_indeces) #print(iL, good_indeces, dist) if dist > 0: wt = 1.0/float(dist) sum_wts += wt sum_val_x_wts += wt * self[ good_indeces ] if sum_wts > 0.0: new_val = sum_val_x_wts / sum_wts #iD = self.get_dict_of_indeces(iL) #iD['val'] = new_val #self.setByName( **iD ) self[ iL ] = new_val #print(iL,'new_val',new_val, self.get_dict_of_indeces(iL), self[iL]) #for good_iv in good_ivL: # print(' ',good_iv, self.get_dict_of_indeces(good_iv[0]), self[good_iv[0]]) def get_nearest_good_neighbors(self, iL, good_if_gt=0.0, good_if_lt=None ): """Return the indeces of nearest good neighbors""" def is_good_val( val ): if good_if_gt is None: return val < good_if_lt elif good_if_lt is None: return val > good_if_gt else: return val > good_if_gt and val < good_if_lt iL = list( iL ) # makes a list copy good_ivL = [] # list of tuples (indeces, val) for ia, i in enumerate( iL ): a = self.axisL[ia] itestL = iL[:] j = i+1 while j < len( a ): itestL[ia] = j if is_good_val( self[ itestL ] ): good_ivL.append( (itestL, self[itestL]) ) j += len(a) j += 1 itestL = iL[:] j = i-1 while j >= 0: itestL[ia] = j if is_good_val( self[ itestL ] ): good_ivL.append( (itestL, self[itestL]) ) j -= len(a) j -= 1 return good_ivL def interp_missing_from_good_neighbors(self, bad_if_lt=0.0, bad_if_gt=None, good_if_gt=0.0, good_if_lt=None): badL = self.get_indeces_where( if_gt=bad_if_gt, if_lt=bad_if_lt) print( "Replacing %i bad values from Nearest Neighbors in"%len(badL), self.name ) for iL in badL: good_ivL = self.get_nearest_good_neighbors(iL, good_if_gt=good_if_gt, good_if_lt=good_if_lt) sum_wts = 0.0 # sum of data pt weights sum_val_x_wts = 0.0 # sum of value * wt for good_iv in good_ivL: good_indeces = good_iv[0] dist = sum( [ abs(i1-i2) for (i1,i2) in zip(iL,good_indeces) ] ) #print(dist, iL, good_indeces) #print(iL, good_indeces, dist) if dist > 0: wt = 1.0/float(dist) sum_wts += wt sum_val_x_wts += wt * self[ good_indeces ] if sum_wts > 0.0: new_val = sum_val_x_wts / sum_wts #iD = self.get_dict_of_indeces(iL) #iD['val'] = new_val #self.setByName( **iD ) self[ iL ] = new_val #print(iL,'new_val',new_val, self.get_dict_of_indeces(iL), self[iL]) #for good_iv in good_ivL: # print(' ',good_iv, self.get_dict_of_indeces(good_iv[0]), self[good_iv[0]]) def get_1d_interp_fill_value(self, i_centerL, good_if_gt=0.0, good_if_lt=None): """ Given the indeces, i_centerL, of a point in the matrix, M, return all of the 1D matrices with GOOD values as defined by good_if_gt and good_if_lt. """ valueL = [] # list of interpolated values (will take average at end) for ia,a in enumerate(self.axisL): # start with a fresh center list cL = list( i_centerL ) aL = [] # good axis value list vL = [] # good value list for i in range( len(a) ): cL[ia] = i val = self[ cL ] if good_if_gt is None: if val < good_if_lt: aL.append( a.transObj( a.valueL[i] ) ) vL.append( val ) elif good_if_lt is None: if val > good_if_gt: aL.append( a.transObj( a.valueL[i] ) ) vL.append( val ) else: if val > good_if_gt and val < good_if_lt: aL.append( a.transObj( a.valueL[i] ) ) vL.append( val ) if aL: terp = InterpProp(aL, vL, extrapOK=1, linear=1) valueL.append( terp( a.transObj( a.valueL[ i_centerL[ia] ] ) ) ) #print(' val:',val,' terpVal:',valueL[-1], 'aL:',aL,' vL:',vL) if valueL: val = sum(valueL) / len(valueL) else: val = self[ i_centerL ] return val def fill_missing_from_1d_interp(self, bad_if_lt=0.0, bad_if_gt=None, good_if_gt=0.0, good_if_lt=None): badL = self.get_indeces_where( if_gt=bad_if_gt, if_lt=bad_if_lt) print( "1D Interpolating %i bad values in"%len(badL), self.name ) new_valD = {} # index:bad_indeces, value:val for iL in badL: val = self.get_1d_interp_fill_value( iL, good_if_gt=good_if_gt, good_if_lt=good_if_lt) new_valD[ tuple(iL) ] = val for k,v in new_valD.items(): self[ k ] = v # Just in case interpolation fails, use good neighbors self.interp_missing_from_good_neighbors( bad_if_lt=bad_if_lt, bad_if_gt=bad_if_gt, good_if_gt=good_if_gt, good_if_lt=good_if_lt) def plot_x_param(self, xVar='', param='', fixedD=None, interp_pts=0, interp_order=2, is_semilog=False, marker='o', markersize=0, rev_param_order=False, show_grid=True, min_val=float('-inf'), max_val=float('inf')): """ Make a plot of xVar vs matrix value, parameterized by param. If left blank, use names of 1st two axes. Set any other axis values based on fixedD. If not in fixedD, then use median value of axis. If interp_pts>0, insert interpolated points between axis pts """ #self.axisL self.matValArr if len( self.axisL ) < 2: print('ERROR... can not make plot_x_param with less than 2 axes.') return if not got_pylab: print('ERROR... pylab FAILED to import.') return # if xVar not input, set it to one of 1st 2 axes if not self.is_axis_name(xVar): if param != self.axisL[0].name: xVar = self.axisL[0].name else: xVar = self.axisL[1].name # if param not input, set it to one of 1st 2 axes if not self.is_axis_name(param): if xVar != self.axisL[0].name: param = self.axisL[0].name else: param = self.axisL[1].name #print('xVar=%s, param=%s'%(xVar, param)) xAxis = self.get_axis_by_name( xVar ) pAxis = self.get_axis_by_name( param ) #print( 'xAxis =',xAxis ) #print( 'pAxis =',pAxis ) changing_paramL = [xVar, param] # prepare fixedD of constant values fixed_paramL = [] if fixedD is None: D = {} else: D = fixedD.copy() sL = [] # making title string of fixed values fixedD = {} for a in self.axisL: if a.name not in D: D[a.name] = a.get_middle_value() if a.name not in changing_paramL: fixed_paramL.append( a.name ) sL.append( '%s=%g %s'%(a.name, D[a.name], a.units) ) fixedD[a.name] = D[a.name] fixed_s = ', '.join(sL) #print( "D=", D, ' fixedD',fixedD ) #print( 'fixed_paramL',fixed_paramL, ' fixed_s',fixed_s ) #print( 'changing_paramL',changing_paramL ) # .......... get sub-matrix to speed things up .................. SP = self.get_sub_matrix( **fixedD ) # ================= start making plot ======================== if rev_param_order: paramL = reversed( pAxis.valueL ) else: paramL = pAxis.valueL pylab.figure() markerD = {} # matplotlib options if marker: markerD['marker'] = '.' markerD['markevery'] = 1 + interp_pts if markersize: markerD['markersize'] = markersize # .... begin iterating over param and xVar for p in paramL: fL = [] xL = [] for x in xAxis.valueL: D[ xVar ] = x D[ param ] = p if interp_pts: if x in xAxis.valueL: f = SP.getByName( **D ) else: f = SP.interp( order=interp_order, **D) else: f = SP.getByName( **D ) if f is not None and ( min_val <= f <= max_val): fL.append( f ) xL.append( x ) if xL: if interp_pts: # make a transformed list of x's for interpolation xtL = [ xAxis.transObj(x) for x in xL] # make full xvarL for interpolation xvarL = xAxis.valueL[:] # make a copy... it will be modified f = 1.0/(1.0 + interp_pts) for i in range( len(xL) - 1 ): for j in range( interp_pts ): xvarL.append( xL[i] + f*(j+1) * (xL[i+1] - xL[i]) ) xL = sorted( xvarL ) fL = [ interp1d( xtL , fL, kind=interp_order, fill_value="extrapolate")\ ( xAxis.transObj(x) ) for x in xL] # Assume there are some interpolated points... plot twice. if is_semilog: lastplot = pylab.semilogx(xL, fL, label='%s=%g'%(param, p), **markerD) c = lastplot[0].get_color() pylab.semilogx(xL, fL, linestyle='None', marker='|', color=c) else: lastplot = pylab.plot(xL, fL, label='%s=%g'%(param, p), **markerD) c = lastplot[0].get_color() pylab.plot(xL, fL, linestyle='None', marker='|', color=c) pylab.title( '%s: %s'%(self.name, fixed_s) ) pylab.legend(loc='best', framealpha=0.3) def axis_label( a ): if a.units: return '%s (%s)'%(a.name, a.units) else: return a.name if show_grid: pylab.grid() pylab.xlabel( axis_label( xAxis ) ) pylab.ylabel( self.name ) if __name__=="__main__": epsAxis = Axis({'name':'eps', 'valueL':[10., 20., 30., 40.], 'units':'', 'transform':'log10'}) # Just a dict, not an Axis obj pcAxis = {'name':'pc', 'valueL':[100.,200.,300], 'units':'psia', 'transform':'log10'} mrAxis = Axis({'name':'mr', 'valueL':[1,2,3,4,5], 'units':'', 'transform':''}) axesDefL = [epsAxis, pcAxis, mrAxis] AP = AxisPool( {'axesDefL':axesDefL} ) axisNameL = ['eps','pc','mr'] shape = [len(AP.axisD[name]) for name in axisNameL] print('shape =',shape) matValArr = np.zeros( shape ) n0,n1,n2 = axisNameL for i0,v0 in enumerate(AP.axisD[n0]): for i1,v1 in enumerate(AP.axisD[n1]): for i2,v2 in enumerate(AP.axisD[n2]): matValArr[i0,i1,i2] = v0+v1+v2 M = Matrix( {'name':'isp_ode', 'matValArr':matValArr, 'units':'', 'axisNameL':axisNameL, 'axisPoolObj':AP} ) #print M.axisL print(M) #print type( M.axisL[0] ) == Axis #print type( {1:1} ) == dict print(M[(0,0,0)],M[3,2,4],'__getitem__ examples') print('_'*55) print(mrAxis.matrixConnectionL) #epsAxis.add_value( 16.0 ) j = AP.add_value_to_Axis('pc', 250.0) print(M) print(' ...Added new axis value. Matrix expands to accomodate') print('_'*55) for i in range( len(epsAxis) ): for k in range( len(mrAxis) ): M[(i,j,k)] = 7777.0 print(M) print(' ...Set inserted value to 7777. Use index from axis value insert.') print('_'*55) print() pc = 250.0 for eps in epsAxis: for mr in mrAxis: M.setByName( pc=pc, eps=eps, mr=mr, val=9999.0 ) print(M) print(' ...change 7777 to 9999 using dictionary indexing pc=pc.') print('_'*55)
gpl-3.0
lbishal/scikit-learn
sklearn/utils/tests/test_estimator_checks.py
69
3894
import scipy.sparse as sp import numpy as np import sys from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.testing import assert_raises_regex, assert_true from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.estimator_checks import check_estimators_unfitted from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import MultiTaskElasticNet from sklearn.utils.validation import check_X_y, check_array class CorrectNotFittedError(ValueError): """Exception class to raise if estimator is used before fitting. Like NotFittedError, it inherits from ValueError, but not from AttributeError. Used for testing only. """ class BaseBadClassifier(BaseEstimator, ClassifierMixin): def fit(self, X, y): return self def predict(self, X): return np.ones(X.shape[0]) class NoCheckinPredict(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) return self class NoSparseClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']) if sp.issparse(X): raise ValueError("Nonsensical Error") return self def predict(self, X): X = check_array(X) return np.ones(X.shape[0]) class CorrectNotFittedErrorClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) self.coef_ = np.ones(X.shape[1]) return self def predict(self, X): if not hasattr(self, 'coef_'): raise CorrectNotFittedError("estimator is not fitted yet") X = check_array(X) return np.ones(X.shape[0]) def test_check_estimator(): # tests that the estimator actually fails on "bad" estimators. # not a complete test of all checks, which are very extensive. # check that we have a set_params and can clone msg = "it does not implement a 'get_params' methods" assert_raises_regex(TypeError, msg, check_estimator, object) # check that we have a fit method msg = "object has no attribute 'fit'" assert_raises_regex(AttributeError, msg, check_estimator, BaseEstimator) # check that fit does input validation msg = "TypeError not raised by fit" assert_raises_regex(AssertionError, msg, check_estimator, BaseBadClassifier) # check that predict does input validation (doesn't accept dicts in input) msg = "Estimator doesn't check for NaN and inf in predict" assert_raises_regex(AssertionError, msg, check_estimator, NoCheckinPredict) # check for sparse matrix input handling name = NoSparseClassifier.__name__ msg = "Estimator " + name + " doesn't seem to fail gracefully on sparse data" # the check for sparse input handling prints to the stdout, # instead of raising an error, so as not to remove the original traceback. # that means we need to jump through some hoops to catch it. old_stdout = sys.stdout string_buffer = StringIO() sys.stdout = string_buffer try: check_estimator(NoSparseClassifier) except: pass finally: sys.stdout = old_stdout assert_true(msg in string_buffer.getvalue()) # doesn't error on actual estimator check_estimator(AdaBoostClassifier) check_estimator(MultiTaskElasticNet) def test_check_estimators_unfitted(): # check that a ValueError/AttributeError is raised when calling predict # on an unfitted estimator msg = "AttributeError or ValueError not raised by predict" assert_raises_regex(AssertionError, msg, check_estimators_unfitted, "estimator", NoSparseClassifier) # check that CorrectNotFittedError inherit from either ValueError # or AttributeError check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier)
bsd-3-clause
bzero/bitex
libs/coinkit/coinkit/words.py
11
726962
# -*- coding: utf-8 -*- """ Coinkit ~~~~~ :copyright: (c) 2014 by Halfmoon Labs :license: MIT, see LICENSE for more details. """ TOP_ENGLISH_WORDS = ["the", "of", "and", "to", "a", "in", "for", "is", "on", "that", "by", "this", "with", "i", "you", "it", "not", "or", "be", "are", "from", "at", "as", "your", "all", "have", "new", "more", "an", "was", "we", "will", "home", "can", "us", "about", "if", "page", "my", "has", "search", "free", "but", "our", "one", "other", "do", "no", "information", "time", "they", "site", "he", "up", "may", "what", "which", "their", "news", "out", "use", "any", "there", "see", "only", "so", "his", "when", "contact", "here", "business", "who", "web", "also", "now", "help", "get", "view", "online", "c", "e", "first", "am", "been", "would", "how", "were", "me", "s", "services", "some", "these", "click", "its", "like", "service", "x", "than", "find", "price", "date", "back", "top", "people", "had", "list", "name", "just", "over", "state", "year", "day", "into", "email", "two", "health", "n", "world", "re", "next", "used", "go", "b", "work", "last", "most", "products", "music", "buy", "data", "make", "them", "should", "product", "system", "post", "her", "city", "t", "add", "policy", "number", "such", "please", "available", "copyright", "support", "message", "after", "best", "software", "then", "jan", "good", "well", "d", "where", "rights", "public", "books", "high", "school", "through", "m", "each", "links", "she", "review", "years", "order", "very", "privacy", "book", "items", "company", "r", "read", "group", "sex", "need", "many", "user", "said", "de", "does", "set", "under", "general", "research", "university", "january", "mail", "full", "map", "reviews", "program", "life", "know", "games", "way", "days", "management", "p", "part", "could", "great", "united", "hotel", "real", "f", "item", "international", "center", "must", "store", "travel", "comments", "made", "development", "report", "off", "member", "details", "line", "terms", "before", "hotels", "did", "send", "right", "type", "because", "local", "those", "using", "results", "office", "education", "national", "car", "design", "take", "posted", "internet", "address", "community", "within", "states", "area", "want", "phone", "shipping", "reserved", "subject", "between", "forum", "family", "l", "long", "based", "w", "code", "show", "o", "even", "black", "check", "special", "prices", "index", "being", "women", "much", "sign", "file", "link", "open", "today", "technology", "south", "case", "project", "same", "pages", "uk", "version", "section", "own", "found", "sports", "house", "related", "security", "both", "g", "county", "american", "photo", "game", "members", "power", "while", "care", "network", "down", "computer", "systems", "three", "total", "place", "end", "following", "download", "h", "him", "without", "per", "access", "think", "north", "resources", "current", "posts", "big", "media", "law", "control", "water", "history", "pictures", "size", "art", "personal", "since", "including", "guide", "shop", "directory", "board", "location", "change", "white", "text", "small", "rating", "rate", "government", "children", "during", "usa", "return", "students", "v", "shopping", "account", "times", "sites", "level", "digital", "profile", "previous", "form", "events", "love", "old", "john", "main", "call", "hours", "image", "department", "title", "description", "non", "k", "y", "insurance", "another", "why", "shall", "property", "class", "cd", "still", "money", "quality", "every", "listing", "content", "country", "private", "little", "visit", "save", "tools", "low", "reply", "customer", "december", "compare", "movies", "include", "college", "value", "article", "york", "man", "card", "jobs", "provide", "j", "food", "source", "author", "different", "press", "u", "learn", "sale", "around", "print", "course", "job", "canada", "process", "teen", "room", "stock", "training", "too", "credit", "point", "join", "science", "men", "categories", "advanced", "west", "sales", "look", "english", "left", "team", "estate", "box", "conditions", "select", "windows", "gay", "thread", "week", "category", "note", "live", "large", "gallery", "table", "register", "however", "june", "october", "november", "market", "library", "really", "action", "start", "series", "model", "features", "air", "industry", "plan", "human", "provided", "tv", "yes", "required", "second", "hot", "accessories", "cost", "movie", "march", "la", "september", "better", "say", "questions", "july", "going", "medical", "test", "friend", "come", "dec", "study", "application", "cart", "staff", "articles", "san", "again", "play", "looking", "issues", "april", "never", "users", "complete", "street", "topic", "comment", "financial", "things", "working", "against", "standard", "tax", "person", "below", "mobile", "less", "got", "party", "payment", "equipment", "login", "student", "let", "programs", "offers", "legal", "above", "recent", "park", "stores", "side", "act", "problem", "red", "give", "memory", "performance", "social", "q", "august", "quote", "language", "story", "sell", "experience", "rates", "create", "key", "body", "young", "america", "important", "field", "few", "east", "paper", "single", "ii", "age", "activities", "club", "example", "girls", "additional", "password", "z", "latest", "something", "road", "gift", "question", "changes", "night", "ca", "hard", "texas", "oct", "pay", "four", "poker", "status", "browse", "issue", "range", "building", "seller", "court", "february", "always", "result", "light", "write", "war", "nov", "offer", "blue", "groups", "al", "easy", "given", "files", "event", "release", "analysis", "request", "china", "making", "picture", "needs", "possible", "might", "professional", "yet", "month", "major", "star", "areas", "future", "space", "committee", "hand", "sun", "cards", "problems", "london", "washington", "meeting", "become", "interest", "id", "child", "keep", "enter", "california", "share", "similar", "garden", "schools", "million", "added", "reference", "companies", "listed", "baby", "learning", "energy", "run", "delivery", "net", "popular", "term", "film", "stories", "put", "computers", "journal", "reports", "co", "try", "welcome", "central", "images", "president", "notice", "god", "original", "head", "radio", "until", "cell", "color", "self", "council", "away", "includes", "track", "australia", "discussion", "archive", "once", "others", "entertainment", "agreement", "format", "least", "society", "months", "log", "safety", "friends", "sure", "trade", "edition", "cars", "messages", "marketing", "tell", "further", "updated", "association", "able", "having", "provides", "david", "fun", "already", "green", "studies", "close", "common", "drive", "specific", "several", "gold", "feb", "living", "collection", "called", "short", "arts", "lot", "ask", "display", "limited", "solutions", "means", "director", "daily", "beach", "past", "natural", "whether", "due", "et", "five", "upon", "period", "planning", "says", "official", "weather", "mar", "land", "average", "done", "technical", "window", "france", "pro", "region", "island", "record", "direct", "conference", "environment", "records", "st", "district", "calendar", "costs", "style", "front", "statement", "parts", "aug", "ever", "early", "miles", "sound", "resource", "present", "applications", "either", "ago", "document", "word", "works", "material", "bill", "written", "talk", "federal", "rules", "final", "adult", "tickets", "thing", "centre", "requirements", "via", "cheap", "nude", "kids", "finance", "true", "minutes", "else", "mark", "third", "rock", "gifts", "europe", "reading", "topics", "bad", "individual", "tips", "plus", "auto", "cover", "usually", "edit", "together", "percent", "fast", "function", "fact", "unit", "getting", "global", "meet", "far", "economic", "en", "player", "projects", "lyrics", "often", "subscribe", "submit", "germany", "amount", "watch", "included", "feel", "though", "bank", "risk", "thanks", "everything", "deals", "various", "words", "jul", "production", "commercial", "james", "weight", "town", "heart", "advertising", "received", "choose", "treatment", "newsletter", "archives", "points", "knowledge", "magazine", "error", "camera", "girl", "currently", "construction", "toys", "registered", "clear", "golf", "receive", "domain", "methods", "chapter", "makes", "protection", "policies", "loan", "wide", "beauty", "manager", "india", "position", "taken", "sort", "models", "michael", "known", "half", "cases", "step", "engineering", "florida", "simple", "quick", "none", "wireless", "license", "paul", "friday", "lake", "whole", "annual", "published", "later", "basic", "shows", "corporate", "church", "method", "purchase", "customers", "active", "response", "practice", "hardware", "figure", "materials", "fire", "holiday", "chat", "enough", "designed", "along", "among", "death", "writing", "speed", "html", "countries", "loss", "face", "brand", "discount", "higher", "effects", "created", "remember", "standards", "oil", "bit", "yellow", "political", "increase", "advertise", "kingdom", "base", "near", "thought", "stuff", "french", "storage", "oh", "japan", "doing", "loans", "shoes", "entry", "stay", "nature", "orders", "availability", "africa", "summary", "turn", "mean", "growth", "notes", "agency", "king", "monday", "european", "activity", "copy", "although", "drug", "western", "income", "force", "cash", "employment", "overall", "bay", "river", "commission", "ad", "package", "contents", "seen", "players", "engine", "port", "album", "regional", "stop", "supplies", "started", "administration", "bar", "institute", "views", "plans", "double", "dog", "build", "screen", "exchange", "types", "soon", "lines", "electronic", "continue", "across", "benefits", "needed", "season", "apply", "someone", "held", "ny", "anything", "printer", "condition", "effective", "believe", "organization", "effect", "asked", "mind", "sunday", "selection", "casino", "lost", "tour", "menu", "volume", "cross", "anyone", "mortgage", "hope", "silver", "corporation", "wish", "inside", "solution", "mature", "role", "rather", "weeks", "addition", "came", "supply", "nothing", "certain", "executive", "running", "lower", "necessary", "union", "jewelry", "according", "dc", "clothing", "mon", "com", "particular", "fine", "names", "robert", "hour", "gas", "skills", "six", "bush", "islands", "advice", "career", "military", "rental", "decision", "leave", "british", "teens", "pre", "huge", "sat", "woman", "facilities", "zip", "bid", "kind", "sellers", "middle", "move", "cable", "opportunities", "taking", "values", "division", "coming", "tuesday", "object", "appropriate", "machine", "length", "actually", "nice", "score", "statistics", "client", "ok", "returns", "capital", "follow", "sample", "investment", "sent", "shown", "saturday", "christmas", "england", "culture", "band", "flash", "ms", "lead", "george", "choice", "went", "starting", "registration", "fri", "thursday", "courses", "consumer", "hi", "foreign", "artist", "outside", "furniture", "levels", "channel", "letter", "mode", "ideas", "wednesday", "structure", "fund", "summer", "allow", "degree", "contract", "button", "releases", "wed", "homes", "super", "male", "matter", "custom", "virginia", "almost", "took", "located", "multiple", "asian", "distribution", "editor", "inn", "industrial", "cause", "potential", "song", "ltd", "los", "focus", "late", "fall", "featured", "idea", "rooms", "female", "responsible", "inc", "communications", "win", "associated", "thomas", "primary", "cancer", "numbers", "reason", "tool", "browser", "spring", "foundation", "answer", "voice", "friendly", "schedule", "documents", "communication", "purpose", "feature", "bed", "comes", "police", "everyone", "independent", "approach", "brown", "physical", "operating", "hill", "maps", "medicine", "deal", "hold", "chicago", "forms", "glass", "happy", "tue", "smith", "wanted", "developed", "thank", "safe", "unique", "survey", "prior", "telephone", "sport", "ready", "feed", "animal", "sources", "mexico", "population", "pa", "regular", "secure", "navigation", "operations", "therefore", "ass", "simply", "evidence", "station", "christian", "round", "favorite", "understand", "option", "master", "valley", "recently", "probably", "sea", "built", "publications", "blood", "cut", "improve", "connection", "publisher", "hall", "larger", "networks", "earth", "parents", "impact", "transfer", "introduction", "kitchen", "strong", "tel", "carolina", "wedding", "properties", "hospital", "ground", "overview", "ship", "accommodation", "owners", "disease", "excellent", "paid", "italy", "perfect", "hair", "opportunity", "kit", "classic", "basis", "command", "cities", "william", "express", "award", "distance", "tree", "peter", "assessment", "ensure", "thus", "wall", "ie", "involved", "el", "extra", "especially", "pussy", "partners", "budget", "rated", "guides", "success", "maximum", "ma", "operation", "existing", "quite", "selected", "boy", "amazon", "patients", "restaurants", "beautiful", "warning", "wine", "locations", "horse", "vote", "forward", "flowers", "stars", "significant", "lists", "owner", "retail", "animals", "useful", "directly", "manufacturer", "ways", "est", "son", "providing", "rule", "mac", "housing", "takes", "iii", "bring", "catalog", "searches", "max", "trying", "mother", "authority", "considered", "told", "traffic", "programme", "joined", "strategy", "feet", "agent", "valid", "bin", "modern", "senior", "ireland", "teaching", "door", "grand", "testing", "trial", "charge", "units", "instead", "canadian", "cool", "normal", "wrote", "enterprise", "ships", "entire", "educational", "md", "leading", "metal", "positive", "fl", "fitness", "chinese", "opinion", "asia", "football", "abstract", "uses", "output", "funds", "mr", "greater", "likely", "develop", "employees", "artists", "alternative", "processing", "responsibility", "resolution", "java", "guest", "seems", "publication", "pass", "relations", "trust", "van", "contains", "session", "photography", "republic", "fees", "components", "vacation", "century", "academic", "assistance", "completed", "skin", "indian", "mary", "il", "expected", "ring", "grade", "dating", "pacific", "mountain", "organizations", "pop", "filter", "mailing", "vehicle", "longer", "consider", "int", "northern", "behind", "panel", "floor", "german", "buying", "match", "proposed", "default", "require", "iraq", "boys", "outdoor", "deep", "morning", "otherwise", "allows", "rest", "protein", "plant", "reported", "hit", "transportation", "mm", "pool", "politics", "partner", "disclaimer", "authors", "boards", "faculty", "parties", "fish", "membership", "mission", "eye", "string", "sense", "modified", "pack", "released", "stage", "internal", "goods", "recommended", "born", "unless", "richard", "detailed", "japanese", "race", "approved", "background", "target", "except", "character", "maintenance", "ability", "maybe", "functions", "ed", "moving", "brands", "places", "pretty", "spain", "southern", "yourself", "etc", "winter", "rape", "battery", "youth", "pressure", "submitted", "boston", "incest", "debt", "medium", "television", "interested", "core", "break", "purposes", "throughout", "sets", "dance", "wood", "itself", "defined", "papers", "playing", "awards", "fee", "studio", "reader", "virtual", "device", "established", "answers", "rent", "las", "remote", "dark", "external", "apple", "le", "regarding", "instructions", "min", "offered", "theory", "enjoy", "remove", "aid", "surface", "minimum", "visual", "host", "variety", "teachers", "martin", "manual", "block", "subjects", "agents", "increased", "repair", "fair", "civil", "steel", "understanding", "songs", "fixed", "wrong", "beginning", "hands", "associates", "finally", "classes", "paris", "ohio", "gets", "sector", "capacity", "requires", "jersey", "un", "fat", "fully", "father", "electric", "saw", "instruments", "quotes", "officer", "driver", "businesses", "dead", "respect", "unknown", "specified", "restaurant", "mike", "trip", "worth", "mi", "procedures", "poor", "teacher", "xxx", "eyes", "relationship", "workers", "farm", "georgia", "peace", "traditional", "campus", "tom", "showing", "creative", "coast", "benefit", "progress", "funding", "devices", "lord", "grant", "sub", "agree", "fiction", "hear", "sometimes", "watches", "careers", "beyond", "goes", "families", "led", "museum", "themselves", "fan", "transport", "interesting", "wife", "accepted", "former", "ten", "hits", "zone", "complex", "th", "cat", "galleries", "references", "die", "presented", "jack", "flat", "flow", "agencies", "literature", "respective", "parent", "spanish", "michigan", "columbia", "setting", "dr", "scale", "stand", "economy", "highest", "helpful", "monthly", "critical", "frame", "musical", "definition", "secretary", "path", "employee", "chief", "gives", "bottom", "magazines", "packages", "detail", "francisco", "laws", "changed", "pet", "heard", "begin", "individuals", "colorado", "royal", "clean", "switch", "russian", "largest", "african", "guy", "titles", "relevant", "guidelines", "justice", "bible", "cup", "basket", "applied", "weekly", "vol", "installation", "described", "demand", "pp", "suite", "na", "square", "chris", "attention", "advance", "skip", "diet", "army", "auction", "gear", "lee", "os", "difference", "allowed", "correct", "charles", "nation", "selling", "lots", "piece", "sheet", "firm", "seven", "older", "illinois", "regulations", "elements", "species", "jump", "cells", "resort", "facility", "random", "certificate", "minister", "motion", "looks", "fashion", "directions", "visitors", "monitor", "trading", "forest", "calls", "whose", "couple", "giving", "chance", "vision", "ball", "ending", "clients", "actions", "listen", "discuss", "accept", "naked", "goal", "successful", "sold", "wind", "communities", "clinical", "situation", "sciences", "markets", "lowest", "highly", "publishing", "appear", "emergency", "lives", "currency", "leather", "determine", "temperature", "palm", "announcements", "patient", "actual", "historical", "stone", "bob", "commerce", "perhaps", "persons", "difficult", "scientific", "satellite", "fit", "tests", "village", "accounts", "amateur", "ex", "met", "pain", "particularly", "factors", "coffee", "cum", "buyer", "cultural", "steve", "easily", "oral", "ford", "poster", "edge", "functional", "root", "au", "fi", "closed", "holidays", "ice", "pink", "zealand", "balance", "graduate", "replies", "shot", "architecture", "initial", "label", "thinking", "scott", "sec", "recommend", "canon", "league", "waste", "minute", "bus", "optional", "dictionary", "cold", "accounting", "manufacturing", "sections", "chair", "fishing", "effort", "phase", "fields", "bag", "fantasy", "po", "letters", "motor", "va", "professor", "context", "install", "shirt", "apparel", "generally", "continued", "foot", "mass", "crime", "count", "breast", "ibm", "johnson", "sc", "quickly", "dollars", "religion", "claim", "driving", "permission", "surgery", "patch", "heat", "wild", "measures", "generation", "kansas", "miss", "chemical", "doctor", "task", "reduce", "brought", "himself", "nor", "component", "enable", "exercise", "bug", "santa", "mid", "guarantee", "leader", "diamond", "israel", "se", "processes", "soft", "alone", "meetings", "seconds", "jones", "arizona", "interests", "flight", "congress", "fuel", "walk", "produced", "italian", "wait", "supported", "pocket", "saint", "rose", "freedom", "argument", "competition", "creating", "jim", "drugs", "joint", "premium", "fresh", "characters", "attorney", "di", "factor", "growing", "thousands", "km", "stream", "apartments", "pick", "hearing", "eastern", "entries", "dates", "generated", "signed", "upper", "administrative", "serious", "prime", "limit", "began", "louis", "steps", "errors", "shops", "bondage", "del", "efforts", "informed", "ga", "ac", "thoughts", "creek", "ft", "worked", "quantity", "urban", "practices", "sorted", "reporting", "essential", "myself", "tours", "platform", "load", "labor", "immediately", "nursing", "defense", "machines", "tags", "heavy", "covered", "recovery", "joe", "guys", "configuration", "cock", "merchant", "comprehensive", "expert", "universal", "protect", "drop", "solid", "presentation", "languages", "became", "orange", "compliance", "vehicles", "prevent", "theme", "rich", "im", "campaign", "marine", "improvement", "vs", "guitar", "finding", "pennsylvania", "examples", "saying", "spirit", "ar", "claims", "challenge", "acceptance", "mo", "seem", "affairs", "touch", "intended", "towards", "sa", "goals", "hire", "election", "suggest", "branch", "charges", "serve", "reasons", "magic", "mount", "smart", "talking", "gave", "ones", "latin", "avoid", "certified", "manage", "corner", "rank", "computing", "oregon", "element", "birth", "virus", "abuse", "requests", "separate", "quarter", "procedure", "leadership", "tables", "define", "racing", "religious", "facts", "breakfast", "kong", "column", "plants", "faith", "chain", "identify", "avenue", "missing", "died", "approximately", "domestic", "recommendations", "moved", "houston", "reach", "comparison", "mental", "viewed", "moment", "extended", "sequence", "inch", "attack", "sorry", "centers", "opening", "damage", "reserve", "recipes", "plastic", "produce", "snow", "placed", "truth", "counter", "failure", "follows", "eu", "dollar", "camp", "ontario", "automatically", "des", "minnesota", "films", "bridge", "native", "fill", "williams", "movement", "printing", "baseball", "owned", "approval", "draft", "chart", "played", "contacts", "cc", "jesus", "readers", "clubs", "wa", "jackson", "equal", "adventure", "matching", "offering", "shirts", "profit", "leaders", "posters", "institutions", "assistant", "variable", "ave", "advertisement", "expect", "headlines", "yesterday", "compared", "determined", "wholesale", "workshop", "russia", "gone", "codes", "kinds", "extension", "seattle", "statements", "golden", "completely", "teams", "fort", "cm", "wi", "lighting", "senate", "forces", "funny", "brother", "gene", "turned", "portable", "tried", "electrical", "applicable", "disc", "returned", "pattern", "boat", "named", "theatre", "earlier", "manufacturers", "sponsor", "classical", "warranty", "dedicated", "indiana", "direction", "harry", "objects", "ends", "delete", "evening", "assembly", "nuclear", "taxes", "mouse", "signal", "criminal", "issued", "brain", "sexual", "wisconsin", "powerful", "dream", "obtained", "false", "da", "cast", "flower", "felt", "personnel", "passed", "supplied", "identified", "falls", "pic", "soul", "aids", "opinions", "promote", "stated", "professionals", "appears", "carry", "flag", "decided", "covers", "hr", "em", "advantage", "hello", "designs", "maintain", "tourism", "priority", "newsletters", "adults", "savings", "iv", "graphic", "atom", "payments", "estimated", "binding", "brief", "ended", "winning", "eight", "anonymous", "iron", "straight", "script", "served", "wants", "miscellaneous", "prepared", "void", "dining", "alert", "integration", "atlanta", "dakota", "tag", "interview", "mix", "framework", "disk", "installed", "queen", "credits", "clearly", "fix", "handle", "sweet", "desk", "dave", "massachusetts", "diego", "hong", "vice", "associate", "ne", "truck", "behavior", "enlarge", "ray", "frequently", "revenue", "measure", "changing", "votes", "du", "duty", "looked", "discussions", "bear", "gain", "festival", "laboratory", "ocean", "flights", "experts", "signs", "lack", "depth", "iowa", "whatever", "vintage", "train", "exactly", "dry", "explore", "maryland", "spa", "concept", "nearly", "eligible", "reality", "forgot", "handling", "origin", "knew", "gaming", "feeds", "billion", "destination", "scotland", "faster", "intelligence", "dallas", "bought", "con", "ups", "nations", "route", "followed", "specifications", "broken", "frank", "alaska", "blow", "battle", "residential", "speak", "decisions", "industries", "protocol", "query", "clip", "partnership", "editorial", "nt", "expression", "es", "equity", "provisions", "speech", "wire", "principles", "suggestions", "rural", "shared", "sounds", "replacement", "tape", "strategic", "judge", "economics", "acid", "cent", "forced", "compatible", "fight", "apartment", "height", "null", "zero", "speaker", "filed", "netherlands", "obtain", "recreation", "offices", "designer", "remain", "managed", "pr", "failed", "marriage", "roll", "korea", "banks", "fr", "participants", "secret", "bath", "kelly", "leads", "negative", "austin", "favorites", "toronto", "theater", "springs", "missouri", "andrew", "var", "perform", "healthy", "translation", "estimates", "font", "assets", "injury", "mt", "joseph", "ministry", "drivers", "lawyer", "figures", "married", "protected", "proposal", "sharing", "philadelphia", "portal", "waiting", "birthday", "beta", "fail", "gratis", "banking", "officials", "brian", "toward", "won", "slightly", "assist", "conduct", "contained", "legislation", "calling", "serving", "bags", "miami", "comics", "matters", "houses", "doc", "postal", "relationships", "tennessee", "wear", "controls", "breaking", "combined", "ultimate", "wales", "representative", "frequency", "introduced", "minor", "finish", "departments", "residents", "noted", "displayed", "reduced", "physics", "rare", "spent", "performed", "extreme", "samples", "davis", "daniel", "bars", "reviewed", "row", "oz", "forecast", "removed", "helps", "administrator", "cycle", "contain", "accuracy", "dual", "rise", "sleep", "bird", "brazil", "creation", "static", "scene", "hunter", "addresses", "lady", "crystal", "famous", "writer", "chairman", "violence", "fans", "oklahoma", "speakers", "drink", "academy", "dynamic", "gender", "eat", "permanent", "agriculture", "dell", "cleaning", "portfolio", "practical", "delivered", "exclusive", "seat", "concerns", "colour", "vendor", "originally", "utilities", "philosophy", "regulation", "officers", "reduction", "aim", "bids", "referred", "supports", "nutrition", "recording", "regions", "junior", "toll", "les", "cape", "ann", "rings", "meaning", "tip", "secondary", "wonderful", "mine", "ladies", "henry", "ticket", "announced", "guess", "agreed", "prevention", "whom", "ski", "import", "posting", "presence", "instant", "mentioned", "automatic", "viewing", "maintained", "ch", "increasing", "majority", "connected", "christ", "dan", "dogs", "sd", "directors", "aspects", "austria", "ahead", "moon", "participation", "scheme", "utility", "fly", "manner", "matrix", "containing", "combination", "amendment", "despite", "strength", "guaranteed", "turkey", "libraries", "proper", "distributed", "degrees", "singapore", "enterprises", "delta", "fear", "seeking", "inches", "phoenix", "convention", "shares", "principal", "daughter", "standing", "comfort", "colors", "wars", "ordering", "kept", "alpha", "appeal", "cruise", "bonus", "previously", "hey", "buildings", "beat", "disney", "household", "batteries", "adobe", "smoking", "becomes", "drives", "arms", "alabama", "tea", "improved", "trees", "achieve", "positions", "dress", "subscription", "dealer", "contemporary", "sky", "utah", "nearby", "rom", "carried", "happen", "exposure", "hide", "signature", "gambling", "refer", "miller", "provision", "outdoors", "clothes", "caused", "luxury", "babes", "frames", "certainly", "indeed", "newspaper", "toy", "circuit", "layer", "printed", "slow", "removal", "easier", "liability", "trademark", "hip", "printers", "nine", "adding", "kentucky", "mostly", "eric", "spot", "taylor", "prints", "spend", "factory", "interior", "grow", "americans", "optical", "promotion", "relative", "amazing", "clock", "dot", "hiv", "identity", "suites", "conversion", "feeling", "hidden", "reasonable", "victoria", "serial", "relief", "revision", "influence", "ratio", "importance", "rain", "onto", "planet", "copies", "recipe", "zum", "permit", "seeing", "proof", "tennis", "bass", "prescription", "bedroom", "empty", "instance", "hole", "pets", "ride", "licensed", "orlando", "specifically", "tim", "bureau", "maine", "represent", "conservation", "pair", "ideal", "recorded", "don", "pieces", "finished", "parks", "dinner", "lawyers", "sydney", "stress", "cream", "runs", "trends", "discover", "ap", "patterns", "boxes", "louisiana", "hills", "fourth", "nm", "advisor", "mn", "marketplace", "nd", "evil", "aware", "wilson", "shape", "evolution", "irish", "certificates", "objectives", "stations", "suggested", "op", "remains", "greatest", "firms", "concerned", "operator", "structures", "generic", "usage", "cap", "ink", "charts", "continuing", "mixed", "census", "peak", "competitive", "exist", "wheel", "transit", "dick", "salt", "compact", "poetry", "lights", "tracking", "angel", "bell", "keeping", "preparation", "attempt", "receiving", "matches", "accordance", "width", "noise", "engines", "forget", "array", "discussed", "accurate", "stephen", "elizabeth", "climate", "reservations", "pin", "alcohol", "greek", "instruction", "managing", "sister", "raw", "differences", "walking", "explain", "smaller", "newest", "establish", "happened", "expressed", "jeff", "extent", "sharp", "ben", "lane", "paragraph", "kill", "mathematics", "compensation", "ce", "export", "managers", "aircraft", "sweden", "conflict", "conducted", "versions", "employer", "occur", "percentage", "knows", "mississippi", "describe", "concern", "requested", "citizens", "connecticut", "heritage", "immediate", "holding", "trouble", "spread", "coach", "agricultural", "expand", "supporting", "audience", "assigned", "jordan", "collections", "ages", "participate", "plug", "specialist", "cook", "affect", "virgin", "experienced", "investigation", "raised", "hat", "institution", "directed", "dealers", "searching", "sporting", "helping", "affected", "lib", "totally", "plate", "expenses", "indicate", "blonde", "ab", "proceedings", "favourite", "transmission", "anderson", "characteristics", "der", "lose", "organic", "seek", "experiences", "cheats", "extremely", "contracts", "guests", "diseases", "concerning", "equivalent", "chemistry", "tony", "neighborhood", "nevada", "thailand", "anyway", "continues", "tracks", "advisory", "cam", "curriculum", "logic", "prince", "circle", "soil", "grants", "anywhere", "psychology", "responses", "atlantic", "wet", "circumstances", "edward", "identification", "ram", "leaving", "appliances", "matt", "cooking", "speaking", "fox", "respond", "sizes", "plain", "exit", "entered", "iran", "arm", "keys", "launch", "wave", "checking", "costa", "belgium", "holy", "acts", "guidance", "mesh", "trail", "enforcement", "symbol", "crafts", "highway", "buddy", "observed", "dean", "poll", "glossary", "fiscal", "celebrity", "styles", "denver", "unix", "filled", "bond", "channels", "appendix", "notify", "blues", "chocolate", "pub", "portion", "scope", "hampshire", "cables", "cotton", "controlled", "requirement", "authorities", "biology", "dental", "killed", "border", "ancient", "debate", "representatives", "starts", "pregnancy", "causes", "arkansas", "biography", "leisure", "attractions", "learned", "transactions", "notebook", "explorer", "historic", "attached", "opened", "husband", "disabled", "authorized", "crazy", "britain", "concert", "retirement", "financing", "efficiency", "sp", "comedy", "adopted", "efficient", "linear", "commitment", "specialty", "bears", "jean", "hop", "carrier", "edited", "constant", "visa", "mouth", "jewish", "meter", "linked", "portland", "interviews", "concepts", "gun", "reflect", "pure", "deliver", "wonder", "hell", "lessons", "fruit", "begins", "qualified", "reform", "lens", "treated", "discovery", "draw", "classified", "relating", "assume", "confidence", "alliance", "fm", "confirm", "warm", "neither", "lewis", "howard", "leaves", "engineer", "consistent", "replace", "clearance", "connections", "inventory", "suck", "organisation", "babe", "checks", "reached", "becoming", "objective", "indicated", "sugar", "crew", "legs", "sam", "stick", "securities", "allen", "relation", "enabled", "genre", "slide", "montana", "volunteer", "tested", "rear", "democratic", "enhance", "switzerland", "exact", "bound", "formal", "dimensions", "contribute", "lock", "storm", "colleges", "mile", "showed", "challenges", "editors", "mens", "threads", "bowl", "supreme", "brothers", "recognition", "presents", "ref", "tank", "submission", "dolls", "estimate", "encourage", "navy", "kid", "inspection", "consumers", "cancel", "limits", "territory", "transaction", "manchester", "weapons", "paint", "delay", "pilot", "outlet", "contributions", "continuous", "czech", "resulting", "cambridge", "initiative", "novel", "pan", "execution", "disability", "increases", "ultra", "winner", "idaho", "contractor", "episode", "examination", "potter", "dish", "plays", "bulletin", "ia", "pt", "indicates", "modify", "oxford", "adam", "truly", "painting", "committed", "extensive", "universe", "candidate", "patent", "slot", "outstanding", "ha", "eating", "perspective", "planned", "watching", "lodge", "messenger", "mirror", "tournament", "consideration", "sterling", "sessions", "kernel", "stocks", "buyers", "journals", "gray", "catalogue", "ea", "antonio", "charged", "broad", "taiwan", "und", "chosen", "greece", "swiss", "sarah", "clark", "labour", "hate", "terminal", "publishers", "nights", "behalf", "caribbean", "liquid", "rice", "nebraska", "loop", "salary", "reservation", "foods", "guard", "properly", "orleans", "saving", "remaining", "empire", "resume", "twenty", "newly", "raise", "prepare", "gary", "depending", "illegal", "expansion", "vary", "hundreds", "rome", "arab", "lincoln", "helped", "premier", "tomorrow", "purchased", "milk", "decide", "consent", "drama", "visiting", "performing", "downtown", "keyboard", "contest", "collected", "nw", "bands", "boot", "suitable", "ff", "absolutely", "millions", "lunch", "audit", "push", "chamber", "guinea", "findings", "muscle", "iso", "implement", "clicking", "scheduled", "polls", "typical", "tower", "yours", "sum", "significantly", "chicken", "temporary", "attend", "shower", "alan", "sending", "jason", "tonight", "dear", "sufficient", "shell", "province", "catholic", "oak", "vat", "vancouver", "governor", "beer", "seemed", "contribution", "measurement", "swimming", "formula", "constitution", "solar", "jose", "catch", "jane", "pakistan", "ps", "reliable", "consultation", "northwest", "sir", "doubt", "earn", "finder", "unable", "periods", "classroom", "tasks", "democracy", "attacks", "kim", "merchandise", "const", "resistance", "doors", "symptoms", "resorts", "memorial", "visitor", "twin", "forth", "insert", "baltimore", "gateway", "ky", "dont", "drawing", "candidates", "charlotte", "ordered", "biological", "fighting", "transition", "happens", "preferences", "spy", "romance", "instrument", "bruce", "split", "themes", "powers", "heaven", "br", "bits", "pregnant", "twice", "classification", "focused", "egypt", "physician", "bargain", "cellular", "norway", "vermont", "asking", "blocks", "normally", "lo", "spiritual", "hunting", "suit", "shift", "chip", "res", "sit", "bodies", "photographs", "cutting", "simon", "writers", "marks", "flexible", "loved", "favourites", "numerous", "relatively", "birds", "satisfaction", "represents", "char", "pittsburgh", "superior", "preferred", "saved", "paying", "cartoon", "shots", "intellectual", "moore", "granted", "choices", "carbon", "spending", "comfortable", "magnetic", "interaction", "listening", "effectively", "registry", "crisis", "outlook", "massive", "denmark", "employed", "bright", "treat", "header", "cs", "poverty", "formed", "piano", "echo", "que", "sheets", "patrick", "experimental", "puerto", "revolution", "consolidation", "displays", "allowing", "earnings", "mystery", "landscape", "dependent", "mechanical", "journey", "delaware", "bidding", "risks", "banner", "applicant", "charter", "fig", "barbara", "cooperation", "counties", "acquisition", "ports", "directories", "recognized", "dreams", "notification", "licensing", "stands", "teach", "occurred", "rapid", "pull", "hairy", "diversity", "cleveland", "ut", "reverse", "deposit", "investments", "wheels", "specify", "dutch", "sensitive", "formats", "depends", "boots", "holds", "si", "editing", "poland", "completion", "pulse", "universities", "technique", "contractors", "voting", "courts", "notices", "subscriptions", "calculate", "detroit", "alexander", "broadcast", "converted", "anniversary", "improvements", "strip", "specification", "pearl", "accident", "nick", "accessible", "accessory", "resident", "plot", "possibly", "typically", "representation", "regard", "pump", "exists", "arrangements", "smooth", "conferences", "strike", "consumption", "birmingham", "flashing", "narrow", "afternoon", "threat", "surveys", "sitting", "putting", "controller", "ownership", "committees", "penis", "legislative", "vietnam", "trailer", "anne", "castle", "gardens", "missed", "malaysia", "antique", "labels", "willing", "molecular", "acting", "heads", "stored", "residence", "attorneys", "antiques", "density", "hundred", "ryan", "operators", "strange", "philippines", "statistical", "beds", "breasts", "mention", "innovation", "employers", "grey", "parallel", "amended", "operate", "bills", "bold", "bathroom", "stable", "opera", "definitions", "von", "doctors", "lesson", "asset", "scan", "elections", "drinking", "reaction", "blank", "enhanced", "entitled", "severe", "generate", "stainless", "newspapers", "hospitals", "vi", "humor", "aged", "exception", "lived", "duration", "bulk", "successfully", "indonesia", "pursuant", "fabric", "visits", "primarily", "tight", "domains", "capabilities", "contrast", "recommendation", "flying", "sin", "berlin", "cute", "organized", "ba", "para", "adoption", "improving", "cr", "expensive", "meant", "capture", "pounds", "buffalo", "organisations", "plane", "pg", "explained", "seed", "programmes", "desire", "mechanism", "camping", "ee", "jewellery", "meets", "welfare", "peer", "caught", "eventually", "marked", "driven", "measured", "bottle", "agreements", "considering", "marshall", "massage", "rubber", "conclusion", "closing", "thousand", "meat", "legend", "grace", "susan", "ing", "adams", "monster", "alex", "bang", "villa", "bone", "columns", "disorders", "bugs", "collaboration", "hamilton", "detection", "ftp", "cookies", "inner", "formation", "med", "engineers", "entity", "gate", "holder", "proposals", "sw", "settlement", "portugal", "lawrence", "roman", "duties", "valuable", "erotic", "tone", "ethics", "forever", "dragon", "busy", "captain", "fantastic", "imagine", "brings", "heating", "leg", "neck", "hd", "wing", "governments", "purchasing", "appointed", "taste", "dealing", "commit", "tiny", "rail", "liberal", "jay", "trips", "gap", "sides", "tube", "turns", "corresponding", "descriptions", "cache", "belt", "jacket", "determination", "animation", "oracle", "er", "matthew", "lease", "productions", "aviation", "proud", "excess", "disaster", "console", "commands", "jr", "instructor", "giant", "achieved", "injuries", "shipped", "seats", "approaches", "alarm", "anthony", "usual", "loading", "stamps", "appeared", "franklin", "angle", "rob", "mining", "melbourne", "worst", "betting", "scientists", "liberty", "wyoming", "argentina", "era", "convert", "possibility", "commissioner", "dangerous", "garage", "exciting", "thongs", "unfortunately", "respectively", "volunteers", "attachment", "finland", "morgan", "derived", "pleasure", "honor", "asp", "eagle", "pants", "columbus", "nurse", "prayer", "appointment", "workshops", "hurricane", "quiet", "luck", "postage", "producer", "represented", "mortgages", "dial", "responsibilities", "cheese", "comic", "carefully", "jet", "productivity", "investors", "crown", "par", "underground", "diagnosis", "maker", "crack", "principle", "picks", "vacations", "gang", "calculated", "fetish", "appearance", "smoke", "apache", "incorporated", "craft", "cake", "apart", "fellow", "blind", "lounge", "mad", "coins", "andy", "gross", "strongly", "cafe", "valentine", "hilton", "ken", "horror", "su", "familiar", "capable", "douglas", "till", "involving", "pen", "investing", "christopher", "admission", "shoe", "elected", "carrying", "victory", "sand", "madison", "joy", "editions", "mainly", "ethnic", "ran", "parliament", "actor", "finds", "seal", "situations", "fifth", "citizen", "vertical", "corrections", "structural", "municipal", "describes", "prize", "sr", "occurs", "jon", "absolute", "disabilities", "consists", "substance", "prohibited", "addressed", "lies", "pipe", "soldiers", "guardian", "lecture", "simulation", "ill", "concentration", "classics", "lbs", "lay", "interpretation", "horses", "dirty", "deck", "wayne", "donate", "taught", "bankruptcy", "worker", "alive", "temple", "substances", "prove", "discovered", "wings", "breaks", "restrictions", "participating", "waters", "promise", "thin", "exhibition", "prefer", "ridge", "cabinet", "harris", "bringing", "sick", "dose", "tiffany", "tropical", "collect", "bet", "composition", "streets", "definitely", "shaved", "turning", "buffer", "purple", "existence", "commentary", "larry", "developments", "def", "immigration", "lets", "mutual", "necessarily", "syntax", "li", "attribute", "prison", "skill", "chairs", "nl", "everyday", "apparently", "surrounding", "mountains", "moves", "popularity", "inquiry", "checked", "exhibit", "throw", "trend", "sierra", "visible", "cats", "desert", "ya", "oldest", "rhode", "obviously", "mercury", "steven", "handbook", "greg", "navigate", "worse", "summit", "victims", "spaces", "fundamental", "burning", "escape", "somewhat", "receiver", "substantial", "tr", "progressive", "boats", "glance", "scottish", "championship", "arcade", "richmond", "sacramento", "impossible", "russell", "tells", "obvious", "fiber", "depression", "graph", "covering", "platinum", "judgment", "bedrooms", "talks", "filing", "foster", "passing", "awarded", "testimonials", "trials", "tissue", "nz", "clinton", "masters", "bonds", "cartridge", "explanation", "folk", "commons", "cincinnati", "subsection", "fraud", "electricity", "permitted", "spectrum", "arrival", "pottery", "emphasis", "roger", "aspect", "awesome", "mexican", "confirmed", "counts", "priced", "hist", "crash", "lift", "desired", "inter", "closer", "assumes", "heights", "shadow", "riding", "infection", "lisa", "expense", "grove", "venture", "korean", "healing", "princess", "mall", "entering", "packet", "spray", "studios", "dad", "buttons", "observations", "thompson", "winners", "extend", "roads", "subsequent", "pat", "dublin", "rolling", "fell", "yard", "disclosure", "establishment", "memories", "nelson", "te", "arrived", "creates", "faces", "tourist", "cocks", "av", "mayor", "murder", "sean", "adequate", "senator", "yield", "grades", "cartoons", "pour", "digest", "reg", "lodging", "tion", "dust", "hence", "entirely", "replaced", "rescue", "undergraduate", "losses", "combat", "reducing", "stopped", "occupation", "lakes", "butt", "donations", "associations", "closely", "radiation", "diary", "seriously", "kings", "shooting", "kent", "adds", "ear", "flags", "baker", "launched", "elsewhere", "pollution", "conservative", "shock", "effectiveness", "walls", "abroad", "ebony", "tie", "ward", "drawn", "arthur", "ian", "visited", "roof", "walker", "demonstrate", "atmosphere", "suggests", "kiss", "beast", "ra", "operated", "experiment", "targets", "overseas", "purchases", "dodge", "counsel", "federation", "invited", "yards", "assignment", "chemicals", "gordon", "mod", "farmers", "queries", "rush", "ukraine", "absence", "nearest", "cluster", "vendors", "whereas", "yoga", "serves", "woods", "surprise", "lamp", "rico", "partial", "phil", "everybody", "couples", "nashville", "ranking", "jokes", "http", "simpson", "sublime", "palace", "acceptable", "satisfied", "glad", "wins", "measurements", "verify", "globe", "trusted", "copper", "milwaukee", "rack", "warehouse", "ec", "rep", "kerry", "receipt", "supposed", "ordinary", "nobody", "ghost", "violation", "stability", "mit", "applying", "southwest", "boss", "pride", "expectations", "independence", "knowing", "reporter", "keith", "champion", "cloudy", "linda", "ross", "personally", "chile", "anna", "plenty", "solo", "sentence", "throat", "ignore", "maria", "uniform", "excellence", "wealth", "tall", "somewhere", "vacuum", "dancing", "attributes", "recognize", "brass", "writes", "plaza", "survival", "quest", "publish", "screening", "toe", "trans", "jonathan", "whenever", "nova", "lifetime", "pioneer", "booty", "forgotten", "plates", "acres", "venue", "athletic", "essays", "behaviour", "vital", "telling", "fairly", "coastal", "cf", "charity", "intelligent", "edinburgh", "vt", "excel", "modes", "obligation", "campbell", "wake", "stupid", "harbor", "hungary", "traveler", "segment", "realize", "lan", "enemy", "puzzle", "rising", "aluminum", "wells", "opens", "insight", "restricted", "republican", "secrets", "lucky", "latter", "merchants", "thick", "repeat", "philips", "attendance", "penalty", "drum", "glasses", "enables", "nec", "builder", "vista", "jessica", "chips", "terry", "flood", "ease", "arguments", "amsterdam", "orgy", "arena", "adventures", "pupils", "stewart", "announcement", "outcome", "xx", "appreciate", "expanded", "casual", "grown", "polish", "lovely", "extras", "centres", "jerry", "clause", "smile", "lands", "ri", "troops", "indoor", "bulgaria", "armed", "broker", "charger", "regularly", "believed", "pine", "cooling", "tend", "gulf", "rick", "trucks", "cp", "mechanisms", "divorce", "laura", "tokyo", "partly", "tradition", "candy", "pills", "tiger", "donald", "folks", "exposed", "hunt", "angels", "deputy", "sealed", "physicians", "loaded", "fred", "complaint", "scenes", "experiments", "balls", "afghanistan", "scholarship", "governance", "mill", "founded", "chronic", "moral", "den", "finger", "keeps", "pound", "locate", "pl", "trained", "burn", "roses", "ourselves", "bread", "tobacco", "wooden", "motors", "tough", "roberts", "incident", "gonna", "lie", "conversation", "decrease", "chest", "pension", "billy", "revenues", "emerging", "worship", "capability", "ak", "fe", "craig", "herself", "producing", "churches", "precision", "damages", "reserves", "contributed", "solve", "reproduction", "minority", "diverse", "ingredients", "sb", "ah", "johnny", "sole", "franchise", "recorder", "complaints", "facing", "nancy", "promotions", "tones", "passion", "rehabilitation", "maintaining", "sight", "laid", "clay", "defence", "patches", "weak", "refund", "towns", "divided", "reception", "wise", "cyprus", "odds", "correctly", "consequences", "makers", "hearts", "geography", "appearing", "integrity", "worry", "discrimination", "eve", "carter", "legacy", "marc", "pleased", "danger", "widely", "phrase", "genuine", "raising", "implications", "paradise", "hybrid", "reads", "roles", "emotional", "sons", "leaf", "pad", "glory", "platforms", "ja", "bigger", "versus", "combine", "overnight", "geographic", "exceed", "rod", "saudi", "fault", "cuba", "hrs", "preliminary", "districts", "introduce", "silk", "kate", "babies", "bi", "karen", "compiled", "romantic", "revealed", "specialists", "generator", "albert", "examine", "jimmy", "graham", "suspension", "bristol", "margaret", "sad", "correction", "wolf", "slowly", "communicate", "rugby", "supplement", "cal", "portions", "infant", "promoting", "samuel", "fluid", "grounds", "fits", "kick", "regards", "meal", "ta", "hurt", "machinery", "unlike", "equation", "baskets", "probability", "pot", "dimension", "wright", "barry", "proven", "admissions", "warren", "slip", "studied", "reviewer", "involves", "quarterly", "profits", "devil", "grass", "comply", "marie", "illustrated", "cherry", "continental", "alternate", "deutsch", "achievement", "limitations", "kenya", "cuts", "funeral", "earrings", "enjoyed", "chapters", "charlie", "quebec", "passenger", "convenient", "dennis", "mars", "francis", "sized", "noticed", "socket", "silent", "literary", "egg", "signals", "caps", "pill", "theft", "childhood", "swing", "symbols", "lat", "meta", "humans", "facial", "choosing", "talent", "dated", "flexibility", "seeker", "wisdom", "shoot", "boundary", "mint", "offset", "philip", "elite", "gi", "spin", "holders", "believes", "swedish", "poems", "jurisdiction", "displaying", "witness", "collins", "equipped", "stages", "encouraged", "sur", "winds", "powder", "broadway", "acquired", "wash", "cartridges", "stones", "entrance", "roots", "declaration", "losing", "attempts", "noble", "glasgow", "rev", "gospel", "advantages", "shore", "loves", "induced", "ll", "knight", "preparing", "loose", "aims", "recipient", "linking", "extensions", "appeals", "earned", "illness", "islamic", "athletics", "southeast", "ho", "alternatives", "pending", "parker", "determining", "lebanon", "kennedy", "sh", "soap", "ae", "triple", "cooper", "vincent", "jam", "secured", "unusual", "answered", "destruction", "increasingly", "migration", "disorder", "routine", "rocks", "conventional", "titans", "applicants", "wearing", "axis", "sought", "mounted", "habitat", "median", "guns", "herein", "animated", "horny", "judicial", "rio", "adjustment", "hero", "bachelor", "attitude", "engaged", "falling", "montreal", "carpet", "lenses", "binary", "attended", "difficulty", "collective", "coalition", "pi", "dropped", "duke", "walter", "ai", "pace", "besides", "wage", "producers", "ot", "collector", "arc", "hosts", "moments", "atlas", "strings", "dawn", "representing", "observation", "feels", "torture", "carl", "coat", "mitchell", "mrs", "restoration", "convenience", "returning", "ralph", "opposition", "container", "yr", "defendant", "warner", "confirmation", "app", "embedded", "supervisor", "wizard", "corps", "actors", "liver", "liable", "morris", "petition", "recall", "picked", "assumed", "departure", "minneapolis", "belief", "killing", "memphis", "shoulder", "texts", "brokers", "roy", "ion", "diameter", "ottawa", "doll", "ic", "tit", "seasons", "peru", "refine", "bidder", "singer", "evans", "herald", "literacy", "fails", "aging", "intervention", "fed", "attraction", "diving", "invite", "modification", "alice", "suppose", "reed", "involve", "moderate", "terror", "younger", "thirty", "mice", "opposite", "understood", "rapidly", "ban", "mercedes", "assurance", "clerk", "happening", "vast", "mills", "outline", "amendments", "holland", "receives", "metropolitan", "compilation", "verification", "ent", "odd", "wrap", "refers", "mood", "favor", "veterans", "gr", "attractive", "occasion", "jefferson", "victim", "demands", "sleeping", "careful", "beam", "gardening", "obligations", "arrive", "orchestra", "sunset", "tracked", "moreover", "lottery", "tops", "framed", "aside", "licence", "essay", "discipline", "amy", "dialogue", "identifying", "alphabetical", "camps", "declared", "dispatched", "aaron", "trace", "disposal", "shut", "packs", "ge", "switches", "romania", "voluntary", "thou", "consult", "greatly", "mask", "midnight", "ng", "commonly", "pe", "photographer", "inform", "turkish", "coal", "cry", "quantum", "murray", "intent", "tt", "zoo", "largely", "pleasant", "announce", "constructed", "additions", "requiring", "spoke", "arrow", "engagement", "rough", "weird", "tee", "lion", "inspired", "holes", "weddings", "blade", "suddenly", "oxygen", "meals", "canyon", "meters", "merely", "arrangement", "conclusions", "passes", "bibliography", "pointer", "stretch", "durham", "furthermore", "permits", "cooperative", "muslim", "xl", "neil", "sleeve", "cleaner", "cricket", "beef", "feeding", "stroke", "township", "cad", "hats", "robin", "robinson", "jacksonville", "strap", "headquarters", "sharon", "crowd", "transfers", "surf", "olympic", "transformation", "remained", "attachments", "dir", "entities", "customs", "administrators", "personality", "rainbow", "hook", "roulette", "decline", "gloves", "cord", "cloud", "facilitate", "subscriber", "valve", "val", "explains", "proceed", "feelings", "knife", "jamaica", "shelf", "liked", "adopt", "denied", "incredible", "donation", "outer", "crop", "deaths", "rivers", "commonwealth", "manhattan", "tales", "katrina", "islam", "tu", "fy", "thumbs", "seeds", "cited", "lite", "hub", "realized", "twelve", "founder", "decade", "dispute", "portuguese", "tired", "adverse", "everywhere", "eng", "steam", "discharge", "ef", "drinks", "ace", "voices", "acute", "climbing", "stood", "sing", "tons", "perfume", "carol", "honest", "albany", "hazardous", "restore", "stack", "somebody", "sue", "ep", "reputation", "democrats", "hang", "curve", "creator", "amber", "qualifications", "museums", "variation", "passage", "transferred", "trunk", "lb", "damn", "pierre", "photograph", "oakland", "colombia", "waves", "camel", "lamps", "underlying", "hood", "wrestling", "suicide", "chi", "arabia", "gathering", "projection", "juice", "chase", "mathematical", "logical", "sauce", "fame", "extract", "specialized", "panama", "indianapolis", "af", "payable", "corporations", "courtesy", "criticism", "automobile", "confidential", "statutory", "accommodations", "athens", "northeast", "judges", "retired", "remarks", "detected", "decades", "paintings", "walked", "arising", "bracelet", "ins", "eggs", "juvenile", "injection", "yorkshire", "populations", "protective", "afraid", "railway", "indicator", "pointed", "causing", "mistake", "norton", "locked", "eliminate", "fusion", "mineral", "ruby", "steering", "beads", "fortune", "preference", "canvas", "threshold", "parish", "claimed", "screens", "cemetery", "croatia", "flows", "venezuela", "exploration", "fewer", "nurses", "stem", "proxy", "astronomy", "lanka", "edwards", "drew", "contests", "translate", "announces", "costume", "berkeley", "voted", "killer", "gates", "adjusted", "rap", "tune", "bishop", "pulled", "corn", "shaped", "compression", "seasonal", "establishing", "farmer", "counters", "puts", "constitutional", "grew", "perfectly", "tin", "slave", "instantly", "cultures", "norfolk", "coaching", "examined", "trek", "encoding", "litigation", "heroes", "painted", "ir", "horizontal", "resulted", "portrait", "ethical", "carriers", "mobility", "floral", "builders", "ties", "struggle", "schemes", "suffering", "neutral", "fisher", "rat", "spears", "prospective", "bedding", "ultimately", "joining", "heading", "equally", "artificial", "bearing", "spectacular", "seniors", "worlds", "guilty", "affiliated", "naturally", "haven", "tablet", "jury", "dos", "tail", "subscribers", "charm", "lawn", "violent", "underwear", "basin", "soup", "potentially", "ranch", "crossing", "inclusive", "cottage", "drunk", "considerable", "crimes", "resolved", "byte", "nose", "branches", "delhi", "holdings", "alien", "selecting", "processors", "broke", "nepal", "zimbabwe", "difficulties", "juan", "complexity", "constantly", "browsing", "resolve", "barcelona", "presidential", "documentary", "cod", "territories", "melissa", "moscow", "thesis", "thru", "jews", "discs", "rocky", "bargains", "frequent", "nigeria", "ceiling", "ensuring", "legislature", "hospitality", "gen", "anybody", "diamonds", "fleet", "bunch", "singing", "theoretical", "afford", "exercises", "surveillance", "quit", "distinct", "lung", "substitute", "inclusion", "hopefully", "brilliant", "turner", "sucking", "cents", "ti", "todd", "spoken", "stayed", "civic", "manuals", "sees", "termination", "watched", "thereof", "households", "redeem", "rogers", "grain", "authentic", "regime", "wishes", "bull", "montgomery", "architectural", "louisville", "depend", "differ", "movements", "ranging", "monica", "repairs", "breath", "amenities", "virtually", "cole", "mart", "candle", "hanging", "colored", "authorization", "tale", "verified", "lynn", "formerly", "bp", "situated", "comparative", "seeks", "loving", "strictly", "routing", "docs", "stanley", "psychological", "surprised", "elegant", "gains", "renewal", "genealogy", "opposed", "deemed", "scoring", "expenditure", "brooklyn", "liverpool", "sisters", "critics", "spots", "oo", "hacker", "madrid", "similarly", "margin", "coin", "solely", "fake", "salon", "norman", "excluding", "headed", "voters", "cure", "madonna", "commander", "arch", "ni", "murphy", "thinks", "suggestion", "soldier", "phillips", "aimed", "justin", "bomb", "harm", "interval", "mirrors", "tricks", "brush", "investigate", "thy", "panels", "repeated", "assault", "spare", "deer", "tongue", "bowling", "tri", "pal", "monkey", "proportion", "filename", "skirt", "florence", "invest", "honey", "um", "analyses", "drawings", "significance", "ye", "lovers", "atomic", "arabic", "gauge", "essentials", "junction", "protecting", "faced", "mat", "rachel", "solving", "transmitted", "produces", "oven", "ted", "intensive", "chains", "kingston", "sixth", "engage", "noon", "switching", "quoted", "correspondence", "farms", "imports", "supervision", "cheat", "bronze", "expenditures", "sandy", "separation", "testimony", "suspect", "celebrities", "sender", "boundaries", "crucial", "celebration", "adjacent", "filtering", "tuition", "spouse", "exotic", "threats", "luxembourg", "puzzles", "reaching", "vb", "damaged", "laugh", "joel", "surgical", "destroy", "citation", "pitch", "yo", "premises", "perry", "proved", "offensive", "imperial", "dozen", "benjamin", "teeth", "cloth", "studying", "colleagues", "stamp", "lotus", "salmon", "olympus", "separated", "cargo", "tan", "salem", "mate", "likes", "butter", "pepper", "weapon", "luggage", "burden", "chef", "zones", "races", "isle", "stylish", "slim", "maple", "luke", "grocery", "offshore", "depot", "kenneth", "comp", "alt", "pie", "blend", "harrison", "julie", "occasionally", "attending", "emission", "pete", "finest", "janet", "bow", "penn", "recruiting", "apparent", "autumn", "traveling", "probe", "midi", "toilet", "ranked", "jackets", "routes", "packed", "excited", "helen", "mounting", "recover", "tied", "balanced", "prescribed", "catherine", "timely", "talked", "delayed", "chuck", "reproduced", "hon", "dale", "explicit", "calculation", "villas", "ebook", "consolidated", "occasions", "brooks", "newton", "oils", "sept", "exceptional", "anxiety", "whilst", "unto", "prompt", "precious", "minds", "annually", "considerations", "pays", "cox", "fingers", "sunny", "ebooks", "delivers", "je", "queensland", "necklace", "musicians", "leeds", "composite", "cedar", "arranged", "lang", "theaters", "advocacy", "raleigh", "stud", "fold", "essentially", "designing", "threaded", "uv", "qualify", "fingering", "blair", "hopes", "mason", "diagram", "burns", "pumps", "slut", "ejaculation", "sg", "vic", "peoples", "victor", "mario", "pos", "attach", "licenses", "removing", "advised", "brunswick", "spider", "ranges", "pairs", "trails", "preservation", "hudson", "isolated", "interim", "assisted", "divine", "streaming", "approve", "chose", "compound", "intensity", "technological", "syndicate", "abortion", "venues", "blast", "calcium", "newport", "addressing", "pole", "discounted", "indians", "shield", "harvest", "membrane", "prague", "bangladesh", "constitute", "locally", "concluded", "desperate", "mothers", "iceland", "demonstration", "governmental", "manufactured", "candles", "graduation", "bend", "sailing", "variations", "sacred", "morocco", "tommy", "springfield", "refused", "brake", "exterior", "greeting", "oliver", "congo", "glen", "delays", "synthesis", "olive", "undefined", "unemployment", "scored", "newcastle", "velocity", "relay", "composed", "tears", "performances", "oasis", "cab", "angry", "fa", "societies", "brazilian", "identical", "petroleum", "compete", "ist", "norwegian", "lover", "belong", "honolulu", "lips", "escort", "retention", "exchanges", "pond", "rolls", "thomson", "barnes", "wondering", "malta", "daddy", "ferry", "rabbit", "profession", "seating", "dam", "separately", "physiology", "collecting", "das", "exports", "omaha", "tire", "dominican", "chad", "loads", "friendship", "heather", "passport", "unions", "treasury", "warrant", "frozen", "occupied", "josh", "royalty", "scales", "rally", "observer", "sunshine", "strain", "drag", "ceremony", "somehow", "arrested", "expanding", "provincial", "investigations", "ripe", "rely", "hebrew", "gained", "rochester", "dying", "laundry", "stuck", "solomon", "placing", "stops", "adjust", "assessed", "enabling", "filling", "sophisticated", "imposed", "silence", "soviet", "possession", "cu", "laboratories", "treaty", "vocal", "trainer", "organ", "stronger", "volumes", "advances", "vegetables", "lemon", "darkness", "nuts", "nail", "vienna", "implied", "span", "stanford", "stockings", "joke", "respondent", "packing", "statute", "rejected", "satisfy", "destroyed", "shelter", "chapel", "manufacture", "layers", "guided", "accredited", "appliance", "compressed", "bahamas", "powell", "mixture", "bench", "tub", "rider", "radius", "perspectives", "mortality", "logging", "hampton", "christians", "borders", "pads", "butts", "inns", "bobby", "impressive", "sheep", "accordingly", "architect", "railroad", "lectures", "challenging", "wines", "nursery", "harder", "cups", "ash", "microwave", "cheapest", "accidents", "stuart", "contributors", "salvador", "ali", "salad", "monroe", "tender", "violations", "foam", "temperatures", "paste", "clouds", "discretion", "tanzania", "preserve", "poem", "unsigned", "staying", "easter", "theories", "repository", "praise", "jeremy", "venice", "jo", "christianity", "veteran", "streams", "landing", "signing", "executed", "katie", "negotiations", "realistic", "integral", "asks", "relax", "namibia", "generating", "christina", "congressional", "synopsis", "hardly", "prairie", "reunion", "composer", "bean", "sword", "absent", "photographic", "sells", "ecuador", "hoping", "accessed", "spirits", "modifications", "coral", "float", "colin", "bias", "imported", "paths", "bubble", "por", "acquire", "contrary", "millennium", "tribune", "vessel", "acids", "cheaper", "admitted", "dairy", "admit", "mem", "fancy", "equality", "samoa", "achieving", "tap", "fisheries", "exceptions", "reactions", "beliefs", "ci", "companion", "squad", "analyze", "ashley", "scroll", "relate", "divisions", "swim", "wages", "suffer", "forests", "fellowship", "invalid", "concerts", "martial", "males", "victorian", "retain", "colours", "execute", "tunnel", "genres", "cambodia", "patents", "yn", "chaos", "lithuania", "wheat", "chronicles", "obtaining", "beaver", "distribute", "readings", "decorative", "confused", "compiler", "enlargement", "eagles", "bases", "vii", "accused", "bee", "campaigns", "unity", "loud", "bride", "rats", "defines", "airports", "instances", "indigenous", "begun", "brunette", "packets", "anchor", "socks", "parade", "corruption", "stat", "trigger", "incentives", "gathered", "essex", "notified", "differential", "beaches", "dramatic", "surfaces", "terrible", "cruz", "pendant", "dresses", "baptist", "scientist", "hiring", "clocks", "females", "wallace", "nevertheless", "reflects", "taxation", "fever", "cuisine", "surely", "practitioners", "transcript", "inflation", "thee", "ruth", "pray", "compounds", "pope", "drums", "contracting", "arnold", "reasonably", "chicks", "bare", "hung", "cattle", "radical", "graduates", "rover", "recommends", "controlling", "treasure", "flame", "tanks", "assuming", "monetary", "elderly", "pit", "arlington", "floating", "extraordinary", "tile", "indicating", "bolivia", "spell", "hottest", "stevens", "kuwait", "exclusively", "emily", "alleged", "limitation", "compile", "webster", "struck", "illustration", "plymouth", "warnings", "construct", "inquiries", "bridal", "annex", "mag", "inspiration", "tribal", "curious", "affecting", "freight", "eclipse", "sudan", "downloading", "shuttle", "aggregate", "stunning", "cycles", "affects", "detect", "actively", "knee", "prep", "pb", "complicated", "fastest", "butler", "injured", "decorating", "expressions", "ton", "courier", "shakespeare", "hints", "collapse", "unlikely", "oe", "gif", "pros", "conflicts", "beverage", "tribute", "wired", "immune", "travelers", "forestry", "barriers", "cant", "rarely", "infected", "offerings", "martha", "genesis", "barrier", "argue", "incorrect", "trains", "metals", "bicycle", "furnishings", "letting", "arise", "guatemala", "celtic", "thereby", "jamie", "particle", "perception", "minerals", "advise", "humidity", "bottles", "boxing", "wy", "renaissance", "pathology", "sara", "bra", "ordinance", "hughes", "bitch", "jeffrey", "chess", "operates", "survive", "oscar", "festivals", "menus", "joan", "possibilities", "duck", "reveal", "canal", "phi", "contributing", "herbs", "cow", "manitoba", "analytical", "missions", "watson", "lying", "costumes", "strict", "dive", "circulation", "drill", "offense", "bryan", "cet", "protest", "assumption", "jerusalem", "hobby", "tries", "invention", "nickname", "fiji", "enquiries", "washing", "exploring", "trick", "enquiry", "raid", "timber", "intense", "showers", "supporters", "ruling", "steady", "dirt", "statutes", "withdrawal", "myers", "drops", "predicted", "wider", "saskatchewan", "enrolled", "screw", "ministers", "publicly", "hourly", "blame", "geneva", "veterinary", "handed", "suffered", "informal", "incentive", "butterfly", "mechanics", "heavily", "fifty", "mistakes", "numerical", "ons", "uncle", "defining", "counting", "reflection", "sink", "accompanied", "assure", "invitation", "devoted", "princeton", "jacob", "sodium", "randy", "spirituality", "meanwhile", "proprietary", "timothy", "brick", "grip", "naval", "medieval", "porcelain", "bridges", "captured", "watt", "decent", "casting", "dayton", "translated", "shortly", "cameron", "pins", "carlos", "reno", "donna", "andreas", "warrior", "diploma", "cabin", "innocent", "scanning", "consensus", "polo", "copying", "delivering", "patricia", "horn", "eddie", "uganda", "fired", "journalism", "perth", "frog", "grammar", "intention", "syria", "disagree", "klein", "harvey", "tires", "logs", "undertaken", "hazard", "leo", "gregory", "episodes", "circular", "anger", "mainland", "illustrations", "suits", "chances", "snap", "happiness", "arg", "substantially", "bizarre", "glenn", "ur", "auckland", "fruits", "geo", "ribbon", "calculations", "doe", "conducting", "trinidad", "kissing", "wal", "handy", "swap", "exempt", "crops", "reduces", "accomplished", "geometry", "impression", "guild", "correlation", "gorgeous", "capitol", "sim", "dishes", "barbados", "nervous", "refuse", "extends", "fragrance", "mcdonald", "replica", "brussels", "tribe", "neighbors", "trades", "superb", "buzz", "transparent", "rid", "trinity", "charleston", "handled", "legends", "boom", "calm", "champions", "floors", "selections", "inappropriate", "exhaust", "comparing", "shanghai", "speaks", "burton", "vocational", "davidson", "copied", "scotia", "farming", "gibson", "fork", "troy", "roller", "batch", "organize", "appreciated", "alter", "ghana", "edges", "mixing", "handles", "skilled", "fitted", "albuquerque", "harmony", "distinguished", "projected", "assumptions", "shareholders", "twins", "rip", "triangle", "amend", "anticipated", "oriental", "reward", "windsor", "zambia", "completing", "hydrogen", "comparable", "chick", "advocate", "sims", "confusion", "copyrighted", "tray", "warranties", "escorts", "thong", "medal", "coaches", "vessels", "harbour", "walks", "sucks", "sol", "sage", "knives", "vulnerable", "arrange", "artistic", "bat", "honors", "booth", "reflected", "unified", "bones", "breed", "ignored", "polar", "fallen", "precise", "sussex", "respiratory", "invoice", "lip", "sap", "gather", "maternity", "backed", "alfred", "colonial", "carey", "forming", "embassy", "cave", "journalists", "danny", "rebecca", "slight", "proceeds", "indirect", "amongst", "wool", "foundations", "arrest", "horizon", "nu", "deeply", "marina", "liabilities", "prizes", "bosnia", "decreased", "patio", "tolerance", "lloyd", "describing", "optics", "pursue", "lightning", "overcome", "eyed", "ou", "quotations", "grab", "inspector", "attract", "brighton", "beans", "bookmarks", "ellis", "disable", "snake", "succeed", "leonard", "lending", "reminder", "xi", "searched", "riverside", "plains", "raymond", "abilities", "initiated", "sullivan", "za", "trap", "lonely", "fool", "ve", "lancaster", "suspended", "observe", "julia", "attitudes", "karl", "berry", "collar", "simultaneously", "racial", "bermuda", "amanda", "sociology", "exhibitions", "confident", "retrieved", "exhibits", "officially", "dies", "terrace", "bacteria", "replied", "novels", "recipients", "ought", "delicious", "traditions", "jail", "safely", "finite", "kidney", "periodically", "fixes", "sends", "durable", "allied", "throws", "moisture", "hungarian", "referring", "spencer", "uruguay", "transform", "tablets", "tuning", "gotten", "educators", "tyler", "futures", "vegetable", "verse", "humanities", "independently", "wanting", "custody", "scratch", "launches", "henderson", "bk", "britannica", "ellen", "competitors", "rocket", "bullet", "towers", "racks", "lace", "nasty", "latitude", "consciousness", "ste", "tumor", "ugly", "deposits", "beverly", "mistress", "encounter", "trustees", "watts", "duncan", "hart", "bernard", "resolutions", "ment", "forty", "tubes", "attempted", "col", "priest", "floyd", "ronald", "queue", "trance", "nicholas", "yu", "bundle", "hammer", "invasion", "witnesses", "runner", "rows", "administered", "notion", "sq", "skins", "mailed", "spelling", "arctic", "rewards", "beneath", "strengthen", "defend", "frederick", "seventh", "gods", "une", "welsh", "belly", "aggressive", "advertisements", "quarters", "stolen", "soonest", "haiti", "disturbed", "determines", "sculpture", "ears", "fist", "fitting", "fixtures", "mere", "agrees", "passengers", "quantities", "petersburg", "consistently", "cons", "elder", "cheers", "dig", "taxi", "punishment", "appreciation", "subsequently", "om", "nat", "gravity", "providence", "thumb", "restriction", "incorporate", "backgrounds", "treasurer", "essence", "flooring", "ethiopia", "mighty", "athletes", "humanity", "transcription", "holmes", "complications", "scholars", "remembered", "galaxy", "chester", "loc", "worn", "synthetic", "shaw", "vp", "segments", "testament", "twist", "stomach", "partially", "buried", "minimize", "darwin", "ranks", "wilderness", "debut", "generations", "tournaments", "bradley", "deny", "anatomy", "judy", "fraction", "trio", "proceeding", "cube", "defects", "uncertainty", "breakdown", "milton", "reconstruction", "subsidiary", "clarity", "rugs", "sandra", "adelaide", "encouraging", "furnished", "monaco", "settled", "folding", "comparisons", "beneficial", "belize", "fate", "promised", "penny", "robust", "threatened", "republicans", "discusses", "porter", "gras", "jungle", "ver", "responded", "rim", "zen", "ivory", "alpine", "dis", "prediction", "fabulous", "alias", "individually", "battlefield", "literally", "newer", "kay", "spice", "oval", "implies", "soma", "ser", "cooler", "consisting", "periodic", "submitting", "overhead", "ascii", "prospect", "shipment", "breeding", "citations", "geographical", "donor", "mozambique", "tension", "trash", "shapes", "tier", "earl", "manor", "envelope", "diane", "disclaimers", "excluded", "andrea", "breeds", "rapids", "sheffield", "bailey", "aus", "finishing", "emotions", "wellington", "incoming", "prospects", "bulgarian", "eternal", "cite", "aboriginal", "remarkable", "rotation", "nam", "productive", "boulevard", "eugene", "ix", "gdp", "pig", "metric", "minus", "penalties", "bennett", "imagination", "joshua", "armenia", "varied", "grande", "closest", "actress", "mess", "assign", "armstrong", "politicians", "lit", "accommodate", "tigers", "aurora", "una", "slides", "milan", "premiere", "lender", "villages", "shade", "chorus", "christine", "rhythm", "digit", "argued", "dietary", "symphony", "clarke", "sudden", "accepting", "precipitation", "lions", "ada", "pools", "tb", "lyric", "claire", "isolation", "speeds", "sustained", "matched", "approximate", "rope", "carroll", "rational", "fighters", "chambers", "dump", "greetings", "inherited", "warming", "incomplete", "chronicle", "fountain", "chubby", "grave", "legitimate", "biographies", "burner", "investigator", "plaintiff", "finnish", "gentle", "prisoners", "deeper", "muslims", "hose", "mediterranean", "worthy", "reveals", "architects", "saints", "carries", "sig", "duo", "excessive", "devon", "helena", "saves", "regarded", "valuation", "unexpected", "cigarette", "fog", "characteristic", "marion", "lobby", "egyptian", "tunisia", "outlined", "consequently", "treating", "punch", "appointments", "gotta", "cowboy", "narrative", "enormous", "karma", "consist", "betty", "queens", "quantitative", "lucas", "subdivision", "tribes", "defeat", "distinction", "honduras", "naughty", "hazards", "insured", "harper", "livestock", "exemption", "tenant", "cabinets", "tattoo", "shake", "algebra", "shadows", "holly", "silly", "yea", "mercy", "hartford", "freely", "marcus", "sunrise", "wrapping", "mild", "fur", "nicaragua", "tar", "belongs", "readily", "soc", "fence", "infinite", "diana", "relatives", "lindsay", "clan", "legally", "shame", "satisfactory", "revolutionary", "bracelets", "civilian", "mesa", "fatal", "remedy", "breathing", "briefly", "thickness", "adjustments", "genius", "discussing", "fighter", "flesh", "retreat", "adapted", "barely", "wherever", "estates", "rug", "democrat", "borough", "maintains", "failing", "ka", "retained", "pamela", "andrews", "marble", "extending", "jesse", "hull", "surrey", "dem", "blackberry", "highland", "meditation", "macedonia", "combining", "brandon", "instrumental", "giants", "organizing", "shed", "balloon", "winston", "ham", "solved", "tide", "hawaiian", "partition", "invisible", "consoles", "funk", "magnet", "translations", "jaguar", "reel", "sheer", "commodity", "posing", "wang", "kilometers", "bind", "thanksgiving", "rand", "hopkins", "urgent", "guarantees", "infants", "gothic", "cylinder", "witch", "buck", "indication", "eh", "congratulations", "cohen", "sie", "puppy", "acre", "cigarettes", "revenge", "expires", "enemies", "aqua", "chen", "emma", "finances", "accepts", "enjoying", "conventions", "eva", "patrol", "smell", "pest", "coordinates", "carnival", "roughly", "promises", "responding", "reef", "physically", "divide", "consecutive", "satin", "bon", "deserve", "attempting", "representations", "chan", "worried", "tunes", "garbage", "competing", "combines", "mas", "beth", "bradford", "len", "phrases", "kai", "peninsula", "chelsea", "boring", "reynolds", "dom", "jill", "accurately", "speeches", "reaches", "considers", "sofa", "ministries", "vacancies", "parliamentary", "prefix", "lucia", "savannah", "barrel", "typing", "nerve", "dans", "planets", "deficit", "boulder", "pointing", "renew", "coupled", "viii", "harold", "circuits", "texture", "jar", "somerset", "acknowledge", "thoroughly", "antigua", "nottingham", "thunder", "tent", "caution", "identifies", "qualification", "locks", "modelling", "namely", "miniature", "hack", "dare", "interstate", "pirates", "aerial", "hawk", "consequence", "rebel", "systematic", "perceived", "origins", "hired", "textile", "lamb", "madagascar", "nathan", "tobago", "presenting", "cos", "centuries", "magnitude", "richardson", "hindu", "vocabulary", "licking", "earthquake", "fundraising", "weights", "albania", "geological", "lasting", "wicked", "introduces", "kills", "pushed", "ro", "participated", "junk", "wax", "lucy", "answering", "hans", "impressed", "slope", "failures", "poet", "conspiracy", "surname", "theology", "nails", "evident", "epic", "saturn", "organizer", "nut", "sake", "twisted", "combinations", "preceding", "merit", "cumulative", "planes", "edmonton", "tackle", "disks", "arbitrary", "prominent", "retrieve", "lexington", "vernon", "sans", "irs", "fairy", "builds", "shaft", "lean", "bye", "occasional", "leslie", "deutsche", "ana", "innovations", "kitty", "drain", "monte", "fires", "algeria", "blessed", "luis", "reviewing", "cardiff", "cornwall", "favors", "potato", "panic", "explicitly", "sticks", "leone", "ez", "citizenship", "excuse", "reforms", "basement", "onion", "strand", "sandwich", "uw", "lawsuit", "alto", "cheque", "hierarchy", "influenced", "banners", "reject", "eau", "abandoned", "bd", "circles", "italic", "merry", "mil", "gore", "complement", "cult", "dash", "passive", "mauritius", "valued", "cage", "requesting", "courage", "verde", "extraction", "elevation", "coleman", "hugh", "lap", "utilization", "beverages", "jake", "efficiently", "textbook", "dried", "entertaining", "luther", "frontier", "settle", "stopping", "refugees", "knights", "hypothesis", "palmer", "medicines", "flux", "derby", "peaceful", "altered", "doctrine", "scenic", "intersection", "sewing", "consistency", "collectors", "conclude", "recognised", "munich", "oman", "propose", "azerbaijan", "lighter", "rage", "uh", "prix", "astrology", "pavilion", "tactics", "trusts", "occurring", "supplemental", "travelling", "talented", "annie", "pillow", "induction", "derek", "precisely", "shorter", "harley", "spreading", "provinces", "relying", "paraguay", "steal", "parcel", "refined", "bo", "fifteen", "widespread", "incidence", "fears", "predict", "boutique", "rolled", "avon", "incidents", "peterson", "rays", "shannon", "enhancing", "flavor", "alike", "walt", "homeless", "horrible", "hungry", "metallic", "blocked", "interference", "warriors", "palestine", "undo", "atmospheric", "wm", "dana", "halo", "curtis", "parental", "strikes", "lesser", "publicity", "marathon", "ant", "proposition", "pressing", "gasoline", "apt", "dressed", "scout", "belfast", "dealt", "niagara", "inf", "eos", "charms", "trader", "bucks", "allowance", "denial", "uri", "designation", "thrown", "raises", "gem", "duplicate", "criterion", "badge", "wrist", "civilization", "analyzed", "heath", "tremendous", "ballot", "varying", "remedies", "validity", "trustee", "weighted", "angola", "performs", "realm", "corrected", "jenny", "helmet", "salaries", "elephant", "yemen", "encountered", "scholar", "nickel", "surrounded", "geology", "creatures", "coating", "commented", "wallet", "cleared", "accomplish", "boating", "drainage", "corners", "broader", "vegetarian", "rouge", "yeast", "yale", "newfoundland", "sn", "pas", "clearing", "investigated", "ambassador", "coated", "intend", "stephanie", "contacting", "vegetation", "doom", "louise", "kenny", "specially", "owen", "hitting", "yukon", "beings", "bite", "aquatic", "reliance", "habits", "striking", "myth", "infectious", "singh", "gig", "gilbert", "continuity", "brook", "fu", "phenomenon", "ensemble", "assured", "biblical", "weed", "conscious", "accent", "eleven", "wives", "utilize", "mileage", "auburn", "unlock", "pledge", "vampire", "angela", "relates", "nitrogen", "dice", "dock", "differently", "framing", "organised", "musician", "blocking", "sorts", "limiting", "dispatch", "revisions", "papua", "restored", "hint", "armor", "riders", "chargers", "remark", "dozens", "varies", "reasoning", "rendered", "picking", "charitable", "guards", "annotated", "convinced", "openings", "buys", "replacing", "watershed", "councils", "occupations", "acknowledged", "nudity", "pockets", "granny", "pork", "zu", "equilibrium", "inquire", "pipes", "characterized", "laden", "cottages", "merge", "privilege", "edgar", "develops", "qualifying", "estimation", "barn", "pushing", "fleece", "fare", "pierce", "allan", "dressing", "sperm", "bald", "frost", "leon", "institutes", "mold", "dame", "fo", "sally", "yacht", "tracy", "prefers", "drilling", "herb", "ate", "breach", "whale", "traveller", "appropriations", "suspected", "tomatoes", "beginners", "instructors", "bedford", "stationery", "idle", "mustang", "unauthorized", "clusters", "competent", "momentum", "fin", "io", "pastor", "mud", "calvin", "uni", "shark", "contributor", "demonstrates", "phases", "grateful", "emerald", "gradually", "laughing", "grows", "cliff", "desirable", "tract", "ballet", "ol", "journalist", "abraham", "bumper", "afterwards", "religions", "garlic", "shine", "senegal", "explosion", "banned", "briefs", "signatures", "cove", "casa", "mu", "daughters", "conversations", "radios", "tariff", "opponent", "simplified", "muscles", "wrapped", "swift", "vagina", "eden", "distant", "champagne", "ala", "decimal", "deviation", "superintendent", "dip", "hostel", "housewives", "employ", "mongolia", "penguin", "magical", "influences", "irrigation", "miracle", "reprint", "reid", "hydraulic", "centered", "robertson", "yearly", "penetration", "wound", "belle", "rosa", "conviction", "hash", "omissions", "writings", "hamburg", "lazy", "qualities", "fathers", "charging", "cas", "marvel", "lined", "cio", "dow", "prototype", "petite", "apparatus", "terrain", "pens", "explaining", "yen", "strips", "gossip", "rangers", "nomination", "empirical", "rotary", "worm", "dependence", "beginner", "boxed", "lid", "cubic", "deaf", "commitments", "suggesting", "sapphire", "skirts", "mats", "remainder", "crawford", "labeled", "privileges", "marking", "commodities", "serbia", "sheriff", "griffin", "declined", "guyana", "spies", "neighbor", "elect", "highways", "concentrate", "intimate", "reproductive", "preston", "deadly", "molecules", "rounds", "refrigerator", "intervals", "sentences", "exclusion", "holocaust", "keen", "peas", "receivers", "disposition", "variance", "navigator", "investigators", "cameroon", "baking", "computed", "needle", "baths", "cathedral", "brakes", "og", "nirvana", "ko", "owns", "til", "sticky", "destiny", "generous", "madness", "climb", "blowing", "fascinating", "landscapes", "heated", "lafayette", "wto", "computation", "hay", "salvation", "dover", "adrian", "predictions", "accompanying", "vatican", "brutal", "selective", "arbitration", "token", "editorials", "zinc", "sacrifice", "seekers", "isa", "removable", "yields", "gibraltar", "levy", "suited", "anthropology", "skating", "aberdeen", "emperor", "grad", "bras", "belts", "blacks", "educated", "reporters", "burke", "proudly", "necessity", "rendering", "inserted", "pulling", "curves", "suburban", "touring", "clara", "tomato", "waterproof", "expired", "travels", "flush", "pale", "hayes", "humanitarian", "invitations", "functioning", "delight", "survivor", "garcia", "economies", "alexandria", "moses", "counted", "undertake", "declare", "continuously", "johns", "valves", "gaps", "impaired", "achievements", "donors", "tear", "jewel", "teddy", "convertible", "teaches", "ventures", "nil", "stranger", "tragedy", "julian", "nest", "painful", "velvet", "tribunal", "ruled", "pensions", "prayers", "nowhere", "cop", "paragraphs", "gale", "joins", "adolescent", "nominations", "wesley", "dim", "lately", "cancelled", "mattress", "likewise", "banana", "introductory", "cakes", "stan", "reservoir", "occurrence", "idol", "bloody", "remind", "worcester", "charming", "mai", "tooth", "disciplinary", "annoying", "respected", "stays", "disclose", "affair", "drove", "upset", "restrict", "beside", "mines", "portraits", "rebound", "logan", "mentor", "interpreted", "fought", "baghdad", "elimination", "metres", "hypothetical", "immigrants", "complimentary", "pencil", "freeze", "performer", "abu", "titled", "commissions", "sphere", "moss", "concord", "graduated", "endorsed", "ty", "surprising", "walnut", "lance", "ladder", "italia", "unnecessary", "dramatically", "liberia", "sherman", "cork", "hansen", "senators", "mali", "yugoslavia", "bleeding", "characterization", "colon", "likelihood", "lanes", "purse", "fundamentals", "contamination", "endangered", "compromise", "masturbation", "stating", "dome", "caroline", "expiration", "bless", "engaging", "negotiation", "crest", "opponents", "triumph", "nominated", "electoral", "welding", "deferred", "alternatively", "heel", "alloy", "plots", "polished", "yang", "gently", "locking", "casey", "controversial", "draws", "blanket", "bloom", "lou", "elliott", "recovered", "fraser", "justify", "blades", "loops", "surge", "aw", "tahoe", "advert", "possess", "demanding", "defensive", "sip", "forbidden", "vanilla", "deutschland", "picnic", "souls", "arrivals", "practitioner", "dumb", "smithsonian", "hollow", "vault", "securely", "examining", "groove", "revelation", "pursuit", "delegation", "wires", "dictionaries", "mails", "backing", "greenhouse", "sleeps", "blake", "transparency", "dee", "travis", "endless", "orbit", "niger", "bacon", "survivors", "colony", "cannon", "circus", "forbes", "mae", "mel", "descending", "spine", "trout", "enclosed", "feat", "cooked", "transmit", "fatty", "gerald", "pressed", "scanned", "reflections", "hunger", "sic", "municipality", "joyce", "detective", "surgeon", "cement", "experiencing", "fireplace", "endorsement", "disputes", "textiles", "missile", "closes", "seq", "persistent", "deborah", "marco", "assists", "summaries", "glow", "gabriel", "auditor", "violin", "prophet", "bracket", "isaac", "oxide", "oaks", "magnificent", "erik", "colleague", "naples", "promptly", "adaptation", "hu", "harmful", "sexually", "enclosure", "dividend", "newark", "kw", "paso", "phantom", "westminster", "turtle", "distances", "absorption", "treasures", "warned", "ware", "fossil", "mia", "badly", "apollo", "wan", "disappointed", "persian", "continually", "communist", "greene", "grenada", "creations", "jade", "scoop", "acquisitions", "foul", "earning", "excitement", "somalia", "verbal", "blink", "presently", "seas", "carlo", "mysterious", "novelty", "bryant", "tiles", "librarian", "switched", "stockholm", "pose", "grams", "richards", "promising", "relaxation", "goat", "render", "carmen", "ira", "sen", "thereafter", "hardwood", "temporal", "sail", "forge", "commissioners", "dense", "brave", "forwarding", "awful", "nightmare", "reductions", "southampton", "impose", "organisms", "telescope", "asbestos", "portsmouth", "meyer", "enters", "pod", "savage", "advancement", "wu", "willow", "resumes", "bolt", "gage", "throwing", "existed", "whore", "generators", "lu", "wagon", "dat", "favour", "knock", "urge", "generates", "potatoes", "thorough", "inexpensive", "kurt", "peers", "roland", "quilt", "huntington", "creature", "ours", "mounts", "syracuse", "lone", "refresh", "aluminium", "michel", "subtle", "notre", "shipments", "stripes", "antarctica", "cope", "shepherd", "cradle", "chancellor", "lime", "kirk", "flour", "controversy", "legendary", "sympathy", "choir", "avoiding", "beautifully", "blond", "expects", "fabrics", "hygiene", "wit", "poultry", "virtue", "burst", "examinations", "surgeons", "bouquet", "promotes", "mandate", "departmental", "ind", "corpus", "johnston", "terminology", "gentleman", "fibre", "reproduce", "shades", "jets", "qui", "threatening", "spokesman", "frankfurt", "prisoner", "daisy", "halifax", "encourages", "assembled", "earliest", "donated", "insects", "terminals", "crude", "morrison", "maiden", "sufficiently", "examines", "viking", "myrtle", "bored", "yarn", "knit", "conditional", "mug", "bother", "budapest", "knitting", "attacked", "mating", "compute", "arrives", "translator", "automobiles", "allah", "continent", "ob", "fares", "longitude", "resist", "challenged", "hoped", "pike", "insertion", "hugo", "wagner", "constraint", "touched", "strengthening", "cologne", "wishing", "ranger", "smallest", "insulation", "newman", "marsh", "scared", "infringement", "bent", "laos", "subjective", "monsters", "asylum", "robbie", "stake", "cocktail", "outlets", "varieties", "arbor", "poison", "dominated", "costly", "derivatives", "prevents", "stitch", "rifle", "severity", "notable", "warfare", "judiciary", "embroidery", "mama", "inland", "greenland", "interpret", "accord", "modest", "countryside", "sorting", "liaison", "unused", "bulbs", "consuming", "tourists", "sandals", "seconded", "waist", "attributed", "seychelles", "fatigue", "owl", "patriot", "sewer", "crystals", "kathleen", "bosch", "forthcoming", "num", "treats", "marino", "detention", "carson", "exceeds", "complementary", "gallon", "coil", "battles", "traders", "carlton", "bitter", "memorandum", "burned", "cardinal", "dragons", "converting", "romeo", "din", "incredibly", "delegates", "turks", "roma", "balancing", "att", "vet", "sided", "claiming", "courtyard", "presidents", "offenders", "depart", "cuban", "tenants", "expressly", "distinctive", "lily", "brackets", "unofficial", "oversight", "privately", "minded", "resin", "allies", "twilight", "preserved", "crossed", "kensington", "monterey", "linen", "rita", "ascending", "seals", "nominal", "alicia", "decay", "weaknesses", "quartz", "registers", "eighth", "usher", "herbert", "authorised", "improves", "advocates", "phenomena", "buffet", "deciding", "skate", "joey", "hackers", "tilt", "granite", "repeatedly", "lynch", "masses", "transformed", "athlete", "franc", "bead", "enforce", "similarity", "landlord", "leak", "timor", "assorted", "implements", "adviser", "flats", "compelling", "vouchers", "expecting", "heels", "voter", "urine", "capri", "towel", "ginger", "suburbs", "imagery", "sears", "als", "flies", "competence", "inadequate", "crying", "matthews", "amateurs", "crane", "defendants", "deployed", "governed", "considerably", "investigating", "rotten", "habit", "bulb", "scattered", "honour", "useless", "protects", "northwestern", "audiences", "iris", "coupe", "hal", "benin", "bach", "manages", "erosion", "abundance", "carpenter", "khan", "insufficient", "highlands", "peters", "fertility", "clever", "primer", "che", "lords", "bu", "tends", "enjoyable", "crescent", "freshman", "playground", "negotiate", "sixty", "exploit", "orgies", "permanently", "concentrated", "distinguish", "ei", "projections", "spark", "illustrate", "lin", "patience", "securing", "pathway", "shallow", "stir", "spike", "plated", "jacques", "drawer", "ingredient", "togo", "lifting", "judith", "curtain", "disclosed", "davies", "tactical", "pilots", "copenhagen", "expedition", "pile", "operative", "humour", "maturity", "caller", "distortion", "prosecution", "het", "tonga", "imprint", "natalie", "receipts", "assisting", "shirley", "sanctions", "goodbye", "emerged", "defect", "poorly", "goddess", "backs", "observers", "magnets", "formulas", "spacious", "shoulders", "nas", "argues", "wade", "soils", "chapman", "organs", "det", "loyalty", "beloved", "sometime", "ballard", "beating", "faithful", "libya", "offence", "invested", "whatsoever", "numbered", "terminated", "expands", "sedan", "pony", "comprises", "leap", "bolton", "founding", "swan", "covenant", "dropping", "archaeology", "sailor", "fittings", "lining", "banquet", "cares", "sanctuary", "flora", "statue", "hilary", "quotation", "equals", "hardy", "caravan", "diagrams", "harness", "manipulation", "bells", "vascular", "alongside", "impressions", "yankees", "forwarded", "gal", "transmitter", "dorothy", "freeman", "andre", "ems", "puppies", "relaxing", "delphi", "trophy", "emotion", "nets", "sights", "uniforms", "disasters", "asterisk", "versatile", "liquor", "kindergarten", "profitable", "wounded", "clayton", "derivative", "suffolk", "necklaces", "tot", "occupancy", "doses", "educate", "baked", "glove", "prejudice", "herzegovina", "probable", "baldwin", "incorporation", "rem", "evolutionary", "arriving", "decoration", "trojan", "assistants", "counselor", "spinal", "eliminated", "sooner", "struggling", "enacted", "tenure", "plush", "weber", "unstable", "elk", "nelly", "fulfill", "urged", "reflecting", "brent", "gaining", "definitive", "appropriately", "shifts", "inactive", "lansing", "traveled", "adapt", "extracted", "accession", "patterson", "carriage", "therein", "terminate", "rex", "fuels", "traditionally", "withdraw", "soy", "brett", "anchorage", "paula", "landmark", "greens", "neat", "naming", "stern", "bentley", "bud", "slaves", "dentist", "utilizing", "mis", "burkina", "tutor", "idiot", "comprised", "winnipeg", "charities", "mickey", "sebastian", "aliens", "domino", "raven", "defeated", "strains", "dwelling", "slice", "tanning", "gambia", "aspen", "lacking", "symbolic", "cest", "objectionable", "angles", "pressures", "webb", "mediation", "venus", "bump", "cowboys", "flames", "primitive", "auf", "stocking", "esp", "balloons", "malcolm", "georgetown", "norwich", "halls", "decorations", "pause", "simplicity", "postscript", "dividends", "relaxed", "periodicals", "pearson", "demon", "welcomed", "infinity", "gabon", "notation", "chandler", "aunt", "interviewed", "crow", "dia", "discontinued", "concurrent", "decides", "caption", "bargaining", "complain", "pulmonary", "adhesive", "toledo", "asses", "altitude", "compass", "closet", "couch", "evolved", "downs", "exceeding", "rogue", "unfair", "electronically", "augusta", "infantry", "renowned", "corridor", "philosophical", "scripture", "celebrating", "sahara", "justification", "rebuild", "vacant", "manuscript", "fixing", "gram", "hiding", "methodist", "dye", "sits", "alphabet", "shelves", "toes", "cleaned", "honored", "optic", "hannah", "telephones", "insect", "frances", "diaries", "chili", "grief", "leicester", "sweat", "dolphin", "pendants", "wonders", "ventilation", "masks", "bust", "lateral", "quake", "alley", "gardner", "sanders", "pathways", "telegraph", "pertaining", "memorable", "professors", "monument", "formally", "twain", "ile", "nevis", "dew", "lavender", "justified", "withdrawn", "breeze", "debates", "gems", "outgoing", "mann", "yankee", "outs", "deficiency", "gum", "progression", "adv", "saddle", "malaria", "loyal", "torrent", "odyssey", "spite", "nero", "capita", "imply", "inaccuracies", "tendency", "caledonia", "wholly", "chill", "utilized", "embrace", "ein", "liner", "manila", "auxiliary", "initiate", "ua", "elevated", "purely", "fry", "lifts", "vivid", "allegations", "stationary", "corresponds", "foil", "whitney", "celebrated", "alarms", "hunters", "roi", "allison", "stairs", "kt", "acted", "byron", "critique", "honestly", "skull", "continuation", "carnegie", "servant", "falcon", "jointly", "canadians", "avoided", "comprising", "tick", "terrier", "listened", "explanations", "renewed", "incorporating", "variant", "riley", "equatorial", "critic", "sediment", "translators", "squares", "deg", "bot", "lea", "vans", "od", "honeymoon", "percussion", "glue", "cone", "margins", "sands", "survived", "spinning", "adequately", "spectral", "prevalence", "dominica", "contaminated", "fragment", "finishes", "lecturer", "embroidered", "bucket", "steak", "commits", "cobra", "threw", "sutton", "djibouti", "authorize", "decorated", "credited", "cherokee", "apo", "ao", "recruit", "simmons", "gals", "hoc", "wherein", "appearances", "performers", "dessert", "dissertation", "walsh", "nos", "marry", "blankets", "enthusiasm", "confusing", "celebrations", "approaching", "bounce", "ivan", "spiral", "governors", "weakness", "wills", "katherine", "atoms", "jacobs", "mauritania", "tissues", "reminded", "drake", "cynthia", "roosevelt", "practicing", "schmidt", "nicely", "surprisingly", "expressing", "della", "laurel", "carolyn", "rails", "fried", "cairo", "ambulance", "practically", "traded", "signaling", "vivo", "domination", "shrimp", "chords", "molecule", "dedication", "desires", "woody", "dismissed", "cried", "psychic", "cracks", "analyzing", "sincerely", "beaten", "piercing", "antilles", "establishments", "marginal", "visions", "efficacy", "prestige", "cocaine", "accelerated", "pinnacle", "tucker", "recognizes", "plugs", "responsive", "supra", "omitted", "molly", "proximity", "ku", "belonging", "unbiased", "pear", "chiefs", "franz", "collision", "supplementary", "clue", "scandal", "lodges", "dangers", "lys", "travellers", "gia", "scream", "discrepancies", "pirate", "senses", "repeats", "willie", "rival", "slower", "simulated", "culinary", "fairfax", "beck", "huh", "accountant", "propaganda", "offender", "waterloo", "warwick", "rounded", "boarding", "vanity", "mitigation", "tome", "prof", "homer", "daylight", "macdonald", "gases", "dependency", "dioxide", "fireworks", "genus", "approached", "catching", "cutter", "connects", "ont", "liberals", "aperture", "roofing", "dixon", "elastic", "melody", "sins", "cousin", "hath", "recalls", "consultations", "debts", "phillip", "burial", "balcony", "prescriptions", "prop", "avril", "willis", "myths", "camden", "coupling", "knees", "neglect", "emerge", "winchester", "clutch", "shy", "poets", "auditorium", "pedro", "maid", "sid", "carrie", "towels", "canterbury", "trent", "barber", "intuitive", "rigid", "sta", "degradation", "ret", "orthodox", "erin", "ferguson", "fragments", "mariana", "qualitative", "claude", "minorities", "blown", "diffusion", "baton", "polynesia", "barton", "umbrella", "rods", "stimulation", "abbey", "pigs", "olivia", "refugee", "straps", "maya", "discourse", "lancashire", "headache", "stained", "marital", "socialist", "bruno", "attracted", "undertaking", "slavery", "notwithstanding", "feasible", "romans", "credibility", "shores", "fest", "thames", "flowing", "montenegro", "deed", "whirlpool", "perfumes", "sustain", "mechanic", "bauer", "eliminating", "rejection", "bowls", "dissemination", "cardinals", "cosmic", "dawson", "defective", "lengths", "beacon", "hoover", "politically", "elective", "forensic", "botanical", "quartet", "suspense", "drafting", "cruel", "observing", "advertised", "commencement", "southwestern", "conform", "helmets", "firing", "eager", "denise", "touching", "vacancy", "papa", "settlements", "strawberry", "chang", "gloria", "elevator", "pupil", "feast", "maggie", "redemption", "profound", "canton", "nina", "registering", "seth", "warn", "conservatives", "bonnie", "laying", "provisional", "compiling", "strive", "releasing", "martinique", "shells", "painter", "ankle", "peso", "leagues", "monkeys", "historically", "transitions", "prevented", "digits", "err", "banker", "sup", "easiest", "borrow", "bamboo", "lv", "denotes", "communicating", "ki", "decks", "vibration", "stepped", "vent", "blunt", "protector", "aux", "react", "understands", "rises", "issuing", "accents", "insane", "buddha", "voyage", "een", "colonel", "transitional", "mozart", "acceleration", "sketch", "hoffman", "balances", "firearms", "nightly", "pitt", "deduction", "dancer", "coats", "pol", "capsules", "hyde", "firmly", "doo", "dots", "pursuing", "aston", "mugs", "washed", "resonance", "mosaic", "rhodes", "fiesta", "vase", "forcing", "fairs", "flute", "durability", "meadows", "hindi", "harsh", "outfit", "substitution", "burma", "cease", "deserves", "aboard", "irving", "perfection", "joints", "overwhelming", "poles", "bounds", "lyon", "santiago", "vera", "advising", "altogether", "devils", "dignity", "europa", "wondered", "cheshire", "boyd", "sliding", "accumulation", "descriptive", "inst", "feasibility", "negotiating", "homo", "pier", "sioux", "cote", "premiums", "lutheran", "fellows", "valencia", "superman", "perkins", "ideally", "splash", "equip", "saga", "probation", "ast", "gran", "commissioned", "hedge", "ke", "fender", "violet", "dancers", "mutation", "envelopes", "alle", "compulsory", "favorable", "rue", "preparations", "maxwell", "illustrates", "inheritance", "curry", "oblique", "pearls", "worms", "satisfying", "succeeded", "apples", "elf", "dewey", "surviving", "pouch", "advent", "proposes", "hooks", "ces", "exploitation", "singers", "mayo", "tasmania", "mansion", "cha", "surrender", "schneider", "accumulated", "arsenal", "dub", "screws", "pyramid", "enjoys", "hacking", "stripe", "averages", "peaks", "tai", "como", "lisp", "limousine", "churchill", "affirmative", "keynote", "planted", "petitioner", "spoon", "bombs", "niche", "fortunately", "cigar", "vis", "calculating", "erie", "berkshire", "proportional", "credentials", "deprecated", "municipalities", "chin", "locker", "jenkins", "squash", "expectation", "severely", "spotted", "curse", "ajax", "coconut", "interrupt", "conductor", "wont", "liberation", "grandfather", "removes", "luxurious", "titan", "booked", "anita", "indirectly", "nile", "blessing", "lumber", "pillows", "portals", "illustrator", "asleep", "potassium", "prompted", "shout", "presidency", "abnormal", "delicate", "convince", "whoever", "straw", "lifted", "mankind", "uncertain", "paramount", "upright", "breakfasts", "inspectors", "emergencies", "ernest", "shocked", "alcoholic", "bakery", "lieutenant", "orchid", "histories", "loses", "atkins", "variability", "observatory", "soda", "waited", "preventive", "peach", "calculus", "stefan", "breathe", "dunn", "smiling", "ounces", "economically", "uncut", "intact", "noting", "shifting", "samurai", "moines", "ivy", "delegate", "lightly", "negotiated", "herman", "congestion", "runners", "stove", "accidental", "talents", "nixon", "refuge", "brady", "guadeloupe", "walton", "carved", "ark", "freak", "obstacles", "preferably", "bluff", "jasper", "sed", "newborn", "sadly", "laughed", "avail", "emerson", "regulate", "orchard", "mythology", "trousers", "hatch", "replaces", "tomb", "regina", "stein", "shortage", "privileged", "spill", "goodness", "drift", "extracts", "professions", "explored", "mysteries", "fuller", "decreases", "crisp", "cor", "keeper", "reinforced", "johannesburg", "spells", "specifying", "buddhist", "inevitable", "etiquette", "environ", "nic", "coloured", "births", "kr", "cubs", "wheeler", "ritual", "miguel", "pulp", "onset", "interpreter", "specimens", "initiation", "assay", "reconciliation", "pots", "recognizing", "leigh", "slam", "respects", "tents", "plaque", "accounted", "deposited", "lowe", "beavers", "crib", "defending", "pulls", "autonomous", "granting", "motoring", "appropriation", "condensed", "philippine", "theological", "quietly", "scenery", "drying", "assemblies", "collateral", "learner", "welcomes", "swallow", "tara", "transplant", "usenet", "marines", "lighthouse", "proves", "crab", "jen", "brightness", "maurice", "brooke", "consumed", "maxim", "bore", "depreciation", "technically", "enjoyment", "cows", "austrian", "correspond", "slate", "suzanne", "confined", "inhabitants", "straightforward", "delighted", "morton", "peel", "cue", "jupiter", "simultaneous", "monopoly", "debris", "han", "intentions", "pagan", "widow", "sac", "peg", "randall", "benson", "sleeves", "troubled", "footnote", "vibrant", "evolving", "sweater", "approximation", "skies", "barrett", "burners", "alison", "fitzgerald", "kicks", "disappeared", "canoe", "sovereign", "reminds", "organism", "corrupt", "violated", "correspondent", "drought", "bake", "hurricanes", "symptom", "laughter", "propagation", "ignorance", "explosive", "inventor", "scaling", "juicy", "moody", "fashioned", "grains", "vicinity", "thyroid", "purification", "heal", "southeastern", "wizards", "horoscope", "prosperity", "rainfall", "mum", "launching", "pedal", "plantation", "storing", "asa", "tote", "jumped", "seemingly", "tuned", "passionate", "staples", "mayer", "backward", "sour", "combustion", "scrap", "administer", "bilateral", "bella", "blondes", "disposable", "williamson", "sock", "gentlemen", "terra", "literal", "questioned", "guiding", "charcoal", "vapor", "beware", "aloud", "glorious", "overlap", "handsome", "grounded", "bail", "goose", "fn", "judgement", "cruiser", "cumberland", "gifted", "esteem", "cascade", "endorse", "strokes", "shelby", "hen", "ancestry", "dolphins", "adopting", "landed", "nucleus", "detached", "scouts", "warsaw", "ib", "mist", "verb", "chic", "objection", "phosphate", "noisy", "abide", "sentinel", "birthdays", "preserving", "vest", "neal", "economist", "meridian", "marriages", "regret", "stakes", "rotating", "brigade", "movable", "doubles", "bliss", "humiliation", "tens", "litter", "reflective", "abbreviations", "executing", "greenwich", "flooding", "rugged", "jelly", "grandmother", "renovation", "puma", "appoint", "panthers", "perceptions", "greenwood", "ignition", "humble", "petrol", "midway", "mania", "edwin", "ax", "clare", "recognise", "hostile", "aphrodite", "establishes", "whites", "rant", "trapped", "bolts", "diplomatic", "fringe", "linguistic", "internally", "planetary", "laurent", "ego", "manuel", "gaza", "influenza", "gill", "rude", "sang", "steele", "citing", "viewpoint", "nay", "servants", "meanings", "conception", "unemployed", "heavenly", "exeter", "amusement", "middlesex", "curl", "albanian", "overflow", "hastings", "subsidies", "thirds", "willingness", "implicit", "patriotic", "simplify", "darling", "schwartz", "satan", "ornaments", "oppose", "terrific", "definite", "congregation", "regiment", "cheer", "everett", "reviewers", "misleading", "marty", "vine", "vale", "whereby", "deceased", "sparks", "simpler", "captures", "capitalism", "hancock", "falkland", "cur", "mammals", "grape", "russ", "peppers", "deeds", "lively", "inequality", "educator", "premature", "tripod", "immigrant", "demonstrations", "obsolete", "rust", "lon", "interfere", "traps", "shuffle", "wardrobe", "vin", "successes", "racer", "fabrication", "guilt", "sweep", "nash", "exploited", "bladder", "inflammatory", "iss", "immunity", "bets", "doyle", "ducks", "paints", "neighbourhood", "cheating", "carr", "fade", "tastes", "storms", "smiled", "jurisdictions", "scrutiny", "regeneration", "lunar", "differentiation", "shields", "nonsense", "invented", "elaine", "posed", "subjected", "tasting", "gwen", "mob", "expose", "borrowing", "arises", "imf", "precautions", "branded", "manning", "lisbon", "forks", "monk", "boxer", "shining", "weigh", "clerical", "voyager", "hobart", "moose", "dorset", "buenos", "conscience", "crush", "mystic", "solicitation", "rectangular", "fischer", "pooh", "enthusiast", "positively", "shaping", "ich", "afghan", "inspire", "paulo", "torn", "meantime", "pumping", "patented", "revival", "disappear", "lever", "redundant", "regency", "tasty", "gag", "mccarthy", "heck", "civilians", "bark", "carts", "wasted", "cocoa", "invites", "cushion", "reversed", "lynx", "goa", "specimen", "ancestors", "panther", "mixes", "graves", "branding", "examiner", "vineyard", "meadow", "feeder", "mercer", "roms", "goodman", "listener", "chloride", "awaiting", "kane", "becker", "bulls", "orion", "councillor", "hurry", "clarkson", "beneficiary", "hanson", "offspring", "panorama", "roth", "odor", "demanded", "wastes", "clash", "fidelity", "sis", "castro", "flew", "holden", "ale", "sem", "rhapsody", "trumpet", "solitaire", "decreasing", "freezing", "kaiser", "wallis", "criminals", "retire", "rumors", "accomplishments", "emergence", "theatres", "apex", "crimson", "compassion", "needing", "twentieth", "pronounced", "extensively", "stain", "conrad", "wished", "transient", "kicked", "coloring", "curb", "reign", "trivial", "coke", "clauses", "baron", "sensible", "unlawful", "bates", "webs", "swinging", "accountable", "thrust", "proving", "opposing", "novice", "hewitt", "dei", "delightful", "cane", "cruising", "fury", "personalities", "stiff", "todo", "noah", "wore", "christchurch", "traces", "rabbi", "puffy", "weston", "headings", "enthusiasts", "ridiculous", "scattering", "secretaries", "contracted", "elbow", "fights", "scholarly", "detailing", "stark", "roberto", "strongest", "hammond", "padded", "circa", "revise", "contributes", "surroundings", "proficiency", "uranium", "honours", "consolidate", "daniels", "billions", "hut", "stafford", "labrador", "refusal", "lima", "suppression", "weaver", "readiness", "secular", "majesty", "fishery", "teresa", "distributing", "estimating", "outdated", "dues", "pewter", "distress", "pumpkin", "notably", "intends", "trevor", "homosexual", "garment", "supplying", "secondly", "razor", "cough", "cerebral", "grandma", "oceans", "displacement", "backwards", "arrows", "volunteering", "presumably", "plea", "constructive", "bundles", "tibet", "pres", "isles", "stretching", "ovens", "garrett", "esther", "abundant", "deductible", "priests", "accompany", "compares", "hesitate", "inspiring", "prey", "deposition", "laurie", "tas", "zodiac", "pavement", "keller", "pedestrian", "fencing", "artery", "inlet", "rub", "violate", "stimulate", "realise", "fluids", "conveniently", "lick", "gov", "stealth", "ter", "ness", "repayment", "canopy", "gloss", "whip", "porch", "pertinent", "lifelong", "promoter", "collegiate", "construed", "interchange", "remotely", "fletcher", "concise", "fibers", "handful", "brains", "curtains", "eaten", "indigo", "retaining", "kelley", "autobiography", "conditioned", "prohibition", "motions", "emphasize", "excite", "rebels", "believing", "hilarious", "salisbury", "gu", "quoting", "sinks", "steep", "dynasty", "creed", "nan", "raiders", "spreads", "elegance", "volatile", "pointers", "sensory", "throne", "chartered", "slopes", "socially", "unfortunate", "seized", "territorial", "leases", "consisted", "randolph", "memoirs", "alkaline", "expire", "och", "midst", "borne", "forgive", "competitor", "mansfield", "neighbours", "marvin", "conversions", "usable", "tempo", "mutations", "readable", "almanac", "conway", "ay", "gail", "responds", "denote", "slayer", "payne", "purchaser", "relies", "inserting", "tibetan", "prepares", "concludes", "waterford", "rodney", "cylinders", "mus", "selects", "fulton", "directing", "nationality", "torch", "zurich", "stretched", "depressed", "encounters", "haunted", "spares", "symmetry", "bout", "salons", "olympia", "hank", "negligence", "screened", "helper", "carlisle", "rancho", "transferring", "stepping", "hacks", "attic", "appetite", "sensation", "piper", "morality", "honorable", "wealthy", "handicap", "skinny", "sewage", "endowment", "demonstrating", "avec", "sonoma", "esta", "defender", "amos", "wretch", "sunlight", "stems", "wo", "ventura", "convey", "ang", "evergreen", "bearings", "govern", "feather", "fond", "sore", "fiat", "sixteen", "blinds", "traits", "tightly", "graded", "successor", "intrusion", "sickness", "guiana", "underneath", "prohibit", "noel", "cans", "abused", "avery", "brushes", "tenth", "anthology", "prosecutor", "smiles", "merged", "auditors", "grandchildren", "desks", "capsule", "aided", "suspend", "eternity", "introductions", "weighing", "currents", "aide", "kindly", "nes", "protests", "sharks", "notch", "minors", "dances", "revealing", "reprinted", "fernando", "mapped", "resurrection", "lieu", "decree", "tor", "discovering", "tuberculosis", "lacks", "horizons", "daytime", "elaborate", "contour", "gamble", "fra", "descent", "gravel", "analyse", "disturbing", "judged", "shutter", "illusion", "ambitious", "ole", "notorious", "ibid", "residue", "reds", "enlarged", "stephens", "transforming", "stripping", "bart", "assert", "fluctuations", "bowie", "archaeological", "inspect", "thrice", "babylon", "edison", "casualty", "musings", "poses", "noir", "eli", "evan", "mushroom", "designate", "scent", "sequel", "gymnastics", "titanic", "knob", "wolves", "exquisite", "upward", "sentenced", "dundee", "principe", "acquiring", "judging", "unchanged", "kicking", "meg", "fines", "grasp", "streak", "ounce", "thirteen", "tragic", "theodore", "buena", "irrelevant", "professionally", "liberties", "sounding", "milano", "toast", "happily", "hooked", "shrink", "knox", "unesco", "mutually", "beaded", "remembering", "boca", "exodus", "compartment", "brittany", "dove", "testified", "iis", "cunningham", "derive", "affinity", "presbyterian", "pretend", "buddhism", "amnesty", "borrower", "gloucester", "warrants", "owens", "fairness", "needles", "coll", "quota", "discreet", "versa", "imp", "oi", "mack", "pu", "sung", "lowell", "whichever", "starr", "elliot", "uae", "chooses", "tuscany", "crowded", "tickling", "wee", "unreal", "wounds", "advisers", "manufactures", "physiological", "addison", "charters", "generalized", "unprecedented", "flint", "dummy", "financially", "awake", "sanitation", "swivel", "ally", "dissolved", "cleanliness", "kung", "collectively", "inhibition", "burnt", "solidarity", "frustrated", "muhammad", "alma", "ger", "hanover", "inverse", "clifton", "holt", "isis", "verdict", "nominee", "medals", "dickinson", "christi", "lister", "recurring", "studs", "rhetoric", "modifying", "incubus", "impulse", "surveyed", "creditors", "dull", "tis", "cabins", "commenced", "ballroom", "employing", "satellites", "ignoring", "stevenson", "coherent", "beetle", "converts", "majestic", "bicycles", "omni", "clifford", "critically", "cy", "composers", "localities", "owe", "reciprocal", "accelerate", "hatred", "questioning", "manifest", "indications", "petty", "permitting", "som", "behave", "bees", "zeppelin", "felix", "shiny", "carmel", "encore", "smash", "angelina", "braun", "destructive", "sockets", "claimant", "psa", "ample", "countless", "energies", "repealed", "listeners", "abusive", "merits", "scarf", "strangers", "garland", "voor", "riviera", "apprentice", "obscure", "napoleon", "glamour", "hated", "sigh", "trolley", "principals", "sidney", "spicy", "frankly", "chronological", "itinerary", "fools", "beard", "discoveries", "economical", "miniatures", "wedge", "adjusting", "mock", "peggy", "bats", "patriots", "ruins", "sheila", "dependencies", "benton", "chateau", "denis", "homestead", "changer", "sergeant", "melt", "syrian", "ned", "cypress", "courtney", "cites", "prospectus", "protectors", "interiors", "encouragement", "disadvantages", "abbott", "tailor", "chocolates", "faux", "supervised", "interpreting", "pascal", "tha", "serenity", "ore", "pant", "sheridan", "gallons", "attainment", "sanitary", "cooperate", "dreaming", "fortunate", "mushrooms", "interpretations", "geoffrey", "faults", "silva", "grease", "diablo", "cairns", "premise", "epidemic", "prima", "rite", "cinnamon", "lac", "discharged", "alba", "underworld", "variants", "palms", "lawsuits", "seated", "lattice", "realization", "absorbed", "sirius", "chord", "vous", "turf", "asphalt", "improper", "dilemma", "rebuilding", "livingston", "commenting", "shifted", "tangible", "smoked", "hawks", "irons", "comet", "berg", "baltic", "corrective", "competency", "muse", "probing", "teachings", "tyne", "fowler", "xv", "youngest", "contingent", "refreshing", "syrup", "xii", "warmth", "hawkins", "lust", "correlated", "augustine", "dominion", "verses", "astronomical", "solvent", "luna", "amplitude", "aesthetic", "commercially", "dion", "wolfgang", "completeness", "irregular", "barker", "solids", "capturing", "certify", "consulted", "realised", "jude", "eighteen", "singular", "jennings", "demons", "unacceptable", "redistribute", "coping", "baxter", "outbreak", "abdominal", "deficiencies", "curved", "milestone", "erase", "lien", "nip", "bites", "prose", "marx", "incidental", "toni", "arguing", "vein", "hale", "swear", "bel", "clown", "spontaneous", "summers", "taboo", "equestrian", "malicious", "consume", "amazed", "fourteen", "legislators", "volcano", "capacities", "skeleton", "tsp", "suspects", "displaced", "sounded", "honesty", "dwarf", "bis", "northeastern", "shocks", "rewarding", "battalion", "candid", "schooling", "thornton", "schoolgirl", "caesar", "pines", "stellar", "davenport", "locating", "monogram", "philippe", "aix", "ornament", "urges", "sophie", "attacking", "microscope", "threaten", "bait", "badges", "kitten", "brides", "dent", "stealing", "bullets", "emphasized", "glossy", "informations", "haired", "alterations", "pablo", "biographical", "confirms", "cavity", "molded", "vladimir", "ida", "probate", "terrestrial", "completes", "beams", "props", "incense", "formulated", "dough", "stool", "towing", "welch", "rosemary", "millionaire", "turquoise", "exposures", "boone", "substituted", "horde", "paperwork", "nanny", "suburb", "hutchinson", "cohort", "succession", "alliances", "sums", "averaged", "glacier", "pueblo", "rigorous", "relieve", "clarion", "override", "angus", "enthusiastic", "lame", "squeeze", "sar", "burgundy", "struggles", "farewell", "soho", "ashes", "vanguard", "natal", "locus", "evenings", "misses", "troubles", "elton", "purity", "shaking", "witnessed", "cellar", "friction", "prone", "valerie", "enclosures", "mer", "equitable", "fuse", "lobster", "judaism", "atlantis", "amid", "onions", "corinthians", "crosses", "uncomfortable", "sylvia", "furnace", "poisoning", "doubled", "clues", "inflammation", "rabbits", "icc", "transported", "crews", "goodwill", "anxious", "tariffs", "norris", "ly", "baptism", "cutlery", "overlooking", "knot", "rad", "gut", "staffordshire", "factories", "swords", "advancing", "timed", "evolve", "yuan", "esa", "suspicious", "leased", "subscribed", "tate", "dartmouth", "brewing", "coop", "blossom", "scare", "confessions", "bergen", "lowered", "thief", "prisons", "pictured", "feminine", "grabbed", "rocking", "nichols", "blackwell", "fulfilled", "sweets", "nautical", "imprisonment", "employs", "gutenberg", "bubbles", "ashton", "pitcher", "judgments", "muscular", "motif", "illnesses", "plum", "saloon", "prophecy", "loft", "historian", "elm", "facsimile", "hurts", "folded", "sofia", "comprise", "lump", "disposed", "chestnut", "engraved", "halt", "alta", "pastoral", "unpaid", "ghosts", "doubts", "locality", "substantive", "bulletins", "worries", "hug", "rejects", "spear", "nigel", "referee", "transporter", "jolie", "broadly", "ethereal", "crossroads", "aero", "constructing", "smoothly", "parsons", "bury", "blanc", "autonomy", "bounded", "insist", "birch", "slash", "exercised", "detecting", "howell", "digestive", "entertain", "cinderella", "sesame", "duct", "touches", "joanne", "housewife", "pursued", "lend", "corvette", "yachts", "stacy", "christie", "unrelated", "lois", "levi", "stimulating", "mont", "misuse", "cosmos", "speculation", "dixie", "pans", "enforced", "legion", "fulfillment", "assertion", "shook", "lincolnshire", "dismissal", "mah", "shocking", "overland", "prolonged", "isaiah", "backbone", "unanimously", "sausage", "neighboring", "uncommon", "centralized", "stratford", "heidi", "objections", "unpublished", "ames", "slaughter", "enlightenment", "pistol", "juniors", "rockets", "seymour", "arithmetic", "supposedly", "bombay", "originals", "enrichment", "milford", "buckle", "bartlett", "fetch", "kitchens", "wat", "rey", "divers", "townsend", "blackburn", "founders", "sundays", "upside", "admiral", "patron", "sandwiches", "sinclair", "boiler", "anticipate", "induce", "annapolis", "padding", "diagonal", "unite", "cracked", "debtor", "polk", "mets", "shear", "mortal", "sovereignty", "franchises", "rams", "cleansing", "gown", "ponds", "archery", "excludes", "sabbath", "ruin", "trump", "nate", "escaped", "precursor", "mates", "stella", "passages", "vu", "cereal", "comprehension", "sy", "tow", "resolving", "drills", "alexandra", "champ", "agreeing", "rented", "deductions", "harrisburg", "brushed", "augmentation", "otto", "annuity", "assortment", "credible", "ik", "cultured", "importing", "deliberately", "openly", "crawl", "theo", "sparkling", "bindings", "convincing", "flaws", "este", "tracing", "deviations", "incomes", "fragile", "jeremiah", "sapiens", "nyt", "olsen", "serbian", "hai", "restoring", "sanchez", "rushing", "behold", "amherst", "alteration", "murdered", "hazel", "ledger", "scarlet", "crushed", "laughs", "connie", "referendum", "modulation", "statues", "depths", "spices", "communion", "uncertainties", "colonies", "followers", "caldwell", "squadron", "bei", "rupee", "subsidy", "demolition", "irene", "felony", "lungs", "monuments", "veronica", "filtered", "growers", "vinci", "adj", "haul", "acknowledgement", "duly", "roasted", "tenders", "inviting", "rig", "ov", "mick", "mustard", "strait", "masterpiece", "obey", "donkey", "jacks", "conceived", "boasts", "praying", "oss", "multiply", "intercourse", "radial", "mare", "instructed", "stole", "kirby", "armour", "summarized", "avalanche", "northampton", "manuscripts", "cary", "exhibited", "disciples", "shaving", "bishops", "kite", "destroying", "humorous", "faa", "corona", "heap", "griffith", "erection", "quasi", "energetic", "disturbance", "saunders", "ribbons", "jew", "exile", "bilder", "reside", "cashier", "jaw", "butterflies", "eats", "knots", "flea", "offences", "anton", "pals", "celebrates", "hail", "armenian", "longitudinal", "historians", "realities", "mentions", "samson", "jumps", "fleming", "optimistic", "wasting", "acclaimed", "seldom", "morrow", "glitter", "giovanni", "lasted", "awhile", "scaled", "contingency", "wiltshire", "vague", "wraps", "constituents", "herd", "handicapped", "exported", "lag", "warns", "harmless", "sting", "bravo", "believers", "dispersion", "curiosity", "resting", "missiles", "persistence", "coarse", "continents", "carpets", "recovering", "submarine", "blessings", "prevailing", "originated", "axe", "sculptures", "intrinsic", "thoughtful", "nicht", "archer", "hertfordshire", "warmer", "calf", "basil", "grouped", "dominate", "orient", "contra", "damaging", "populated", "renee", "boiling", "journeys", "parsing", "splitting", "derbyshire", "abandon", "rave", "ej", "dy", "cigars", "nicolas", "inference", "ras", "recalled", "transformer", "weiss", "declarations", "rib", "chattanooga", "giles", "drafts", "excursions", "jerk", "shack", "marrow", "tavern", "bathing", "lambert", "epilepsy", "allowances", "goggles", "ses", "unhappy", "foregoing", "certainty", "sleek", "gerard", "antarctic", "ord", "successive", "neglected", "ariel", "monty", "cafes", "classmates", "hitch", "fracture", "ama", "foremost", "nineteenth", "chesapeake", "mahogany", "actresses", "clarence", "ernst", "buster", "moderated", "mal", "nassau", "flap", "ignorant", "allowable", "compositions", "sings", "marcos", "sorrow", "carte", "canned", "collects", "treaties", "endurance", "teaspoon", "insulated", "dupont", "harriet", "philosopher", "rectangle", "woo", "queer", "pains", "decatur", "wrapper", "ahmed", "buchanan", "drummer", "sobre", "ceremonies", "satisfies", "appellate", "comma", "conformity", "avant", "supper", "fulfilling", "hooded", "instability", "seminary", "presenter", "offenses", "emulation", "lengthy", "sonata", "fortress", "contiguous", "perez", "inaccurate", "explanatory", "settlers", "stools", "ministerial", "xavier", "torah", "fao", "publishes", "stacks", "owning", "andersen", "sermon", "facilitating", "complained", "ferdinand", "taps", "thrill", "lagoon", "undoubtedly", "withheld", "insisted", "reluctant", "headaches", "ramsey", "oath", "pigeon", "rivals", "freed", "constrained", "parrot", "magnum", "invoked", "invaluable", "keystone", "inclined", "gala", "cheek", "traction", "utterly", "gavin", "illuminated", "lasts", "gloucestershire", "psychologist", "dane", "claudia", "perpetual", "solicitor", "clustering", "glimpse", "verbatim", "innocence", "quicker", "grandparents", "cardboard", "attributable", "sketches", "angelo", "tertiary", "exhausted", "smarter", "shelters", "attain", "dora", "inconvenience", "tang", "vaccination", "farther", "chats", "riot", "fats", "mandarin", "dungeon", "germans", "lilly", "shire", "mosquito", "kashmir", "lyons", "putnam", "corpse", "speedy", "ming", "lush", "barrels", "transformations", "analogue", "werner", "clyde", "honorary", "irwin", "brewer", "exchanged", "adhere", "fran", "rafael", "ccc", "enquire", "toilets", "mains", "whales", "lindsey", "parity", "partitions", "grim", "hubbard", "prism", "chasing", "flop", "aggregation", "shelley", "batting", "borrowed", "rests", "toss", "depicted", "grapes", "proposing", "winding", "ripped", "cobalt", "pity", "downward", "catalogues", "aspire", "harvesting", "garfield", "groom", "jewels", "saturated", "georges", "quincy", "doughty", "weeds", "stripped", "clive", "fixture", "canary", "steadily", "imagined", "darby", "woke", "fills", "proportions", "grips", "clergy", "solicitors", "moderately", "altar", "salvage", "stanton", "creators", "kilometres", "cuff", "repeating", "empires", "oyster", "sturdy", "massacre", "undergo", "risen", "blended", "imperative", "beg", "digging", "lantern", "catches", "evangelical", "eaton", "ruler", "henri", "tokens", "piping", "swept", "staring", "seventy", "troop", "arose", "decomposition", "chatham", "becky", "elders", "interpreters", "supporter", "klaus", "conquest", "repairing", "assemble", "whistle", "dresden", "diversified", "fertilizer", "analytic", "predominantly", "amethyst", "woodward", "rewritten", "concerto", "adorable", "ambition", "torres", "apologize", "restraint", "eddy", "condemned", "berger", "parole", "corey", "kendall", "slips", "trays", "stewardship", "esq", "kisses", "kerr", "regulating", "flock", "exporting", "arabian", "bending", "boris", "ammunition", "vega", "pleasures", "shortest", "denying", "shave", "sexe", "disruption", "galway", "colt", "artillery", "furnish", "precedence", "grinding", "rubbish", "missionary", "knocked", "swamp", "pitching", "bordeaux", "manifold", "wf", "tornado", "possessed", "upstairs", "turtles", "vauxhall", "welcoming", "learns", "manipulate", "dividing", "hickory", "renovated", "inmates", "slices", "cody", "lawson", "quo", "damned", "beethoven", "faint", "rebuilt", "proceeded", "lei", "tentative", "peterborough", "fierce", "jars", "authenticity", "hips", "rene", "gland", "wigs", "resignation", "striped", "zion", "blends", "garments", "fraternity", "tapestry", "originating", "stu", "chap", "blows", "inevitably", "converse", "gardener", "winnie", "ita", "higgins", "warwickshire", "penguins", "attracting", "jeeves", "harp", "wes", "denton", "anthem", "tack", "whitman", "nowadays", "woodstock", "sack", "inferior", "abuses", "inspected", "deb", "jockey", "indicative", "incumbent", "ithaca", "edmund", "upholstery", "aggression", "practiced", "ella", "casualties", "monarch", "housed", "administering", "temptation", "havana", "roe", "nasal", "restrictive", "costing", "ranged", "hier", "spruce", "paradox", "billings", "jeanne", "oxidation", "marin", "halfway", "amending", "conflicting", "georgian", "compensate", "recherche", "loser", "claus", "braves", "cracking", "sued", "shoots", "interrupted", "hemisphere", "miranda", "clover", "kindness", "porto", "directs", "jolly", "snakes", "swelling", "spanning", "politician", "femme", "unanimous", "railways", "approves", "scriptures", "misconduct", "lester", "resides", "wording", "obliged", "perceive", "rockies", "siege", "exercising", "voluntarily", "atkinson", "nord", "truths", "grouping", "wolfe", "thereto", "authorizing", "enamel", "toby", "radiant", "virgins", "firstly", "martini", "butte", "reeves", "suspicion", "disadvantage", "bastard", "spends", "hicks", "pratt", "pedigree", "fraudulent", "sherwood", "forgiveness", "almond", "har", "petitions", "francais", "trenton", "chalk", "omar", "alexis", "axle", "puppet", "cultivation", "surveying", "grazing", "pillar", "mirage", "questionable", "seaside", "precinct", "renamed", "cobb", "unbelievable", "soluble", "piracy", "rowing", "siding", "hardest", "forrest", "reminders", "negro", "blanca", "equivalents", "johann", "pineapple", "wrath", "opal", "simplest", "patrons", "peculiar", "toon", "europeans", "commence", "descendants", "redmond", "safeguard", "lars", "obsession", "grind", "albeit", "billiards", "clint", "bankers", "righteous", "eo", "redistribution", "freaks", "tra", "sincere", "intentionally", "blitz", "tended", "censorship", "cactus", "viva", "attained", "blew", "howe", "nap", "splendid", "janice", "lava", "leonardo", "sucked", "scissors", "cooks", "sharply", "granada", "laurence", "rebellion", "rainy", "tho", "regent", "evelyn", "vinegar", "vie", "pluto", "gil", "vail", "fisherman", "misery", "undergoing", "limerick", "envy", "sweeping", "healthier", "ussr", "preface", "jameson", "grievance", "unread", "sentiment", "pencils", "galloway", "forged", "viola", "disclosures", "provence", "computerized", "rustic", "rumor", "dillon", "shah", "eleanor", "deception", "conducts", "divorced", "rushed", "weighs", "magnolia", "diver", "disappointment", "castles", "notions", "plateau", "dexter", "palette", "blaze", "wreck", "threatens", "strengthened", "sammy", "wakefield", "devastating", "centro", "arabs", "bild", "robbery", "eine", "jasmine", "crochet", "brock", "crowds", "hoops", "macon", "stamped", "increment", "ju", "ideals", "chloe", "ape", "gee", "apologies", "malignant", "dismiss", "preceded", "lawful", "stag", "crosby", "rash", "gateways", "collapsed", "horns", "diversion", "fantasies", "beginnings", "reversal", "lex", "presses", "ordination", "oxfordshire", "yves", "tandem", "boil", "deliberate", "gagged", "surprises", "abe", "roc", "barley", "potent", "vo", "amusing", "mastering", "nerves", "retains", "chimney", "naomi", "proverbs", "risky", "mistaken", "carving", "miracles", "clair", "slipped", "realism", "crete", "fractions", "bloodhound", "sherry", "desperately", "indies", "tulip", "madame", "remedial", "vain", "bert", "dalton", "bologna", "departing", "maze", "barefoot", "remuneration", "bohemian", "imposing", "damon", "tivoli", "rode", "amen", "marching", "evacuation", "owing", "warp", "catholics", "imo", "faculties", "denies", "reinforce", "inception", "draper", "bowman", "subversion", "benny", "spires", "barney", "homosexuality", "declares", "masonry", "medicinal", "accrued", "temples", "realizing", "annum", "cemeteries", "indoors", "telescopes", "magellan", "champs", "averaging", "salads", "addicted", "flashlight", "disappointing", "eighty", "unlocked", "scarce", "roche", "ropes", "spiders", "obedience", "plague", "diluted", "canine", "gladly", "brewery", "lineage", "mehr", "brew", "vaughan", "kern", "julius", "coup", "cannes", "morse", "dominance", "piston", "itu", "cords", "revisited", "cass", "sealing", "topped", "rag", "despair", "fore", "absorb", "injected", "alps", "commodore", "enlisted", "prophets", "supernatural", "overlooked", "ditch", "feared", "prelude", "rowe", "slick", "limestone", "commentaries", "manpower", "lec", "chunk", "reels", "lob", "slept", "gregg", "drafted", "chalet", "hopper", "sus", "specialization", "abstraction", "ludwig", "scandinavian", "detained", "luncheon", "zenith", "browns", "waits", "tenor", "softly", "plenary", "scrub", "wilkinson", "limb", "intestinal", "poe", "refusing", "suffers", "occupy", "gan", "bethlehem", "caves", "authoritative", "celestial", "immense", "audrey", "merlin", "aiming", "seizure", "stuttgart", "diplomacy", "differing", "foreigners", "limp", "capitalist", "mute", "prescott", "protestant", "metre", "tricky", "ordinances", "koch", "topaz", "ans", "imaginary", "albion", "sutherland", "dar", "dart", "wrought", "robe", "theresa", "heidelberg", "multitude", "tutors", "ezra", "housekeeping", "captive", "kettle", "visitation", "chr", "gibbs", "baggage", "dusty", "patty", "serena", "satire", "tortured", "pioneers", "crate", "episcopal", "moonlight", "mast", "unfinished", "goth", "cared", "affection", "sworn", "bowen", "vicious", "educating", "kin", "cozy", "mackenzie", "slippers", "earthquakes", "hayward", "wandering", "comb", "liquids", "beech", "vineyards", "amer", "zur", "frogs", "consequential", "unreasonable", "osborne", "stimulus", "economists", "miners", "agnes", "constituency", "rocker", "acknowledges", "alas", "sawyer", "maori", "tense", "predicting", "filipino", "cooled", "prudential", "basel", "migrant", "devotion", "invoke", "arte", "leaning", "paddle", "watkins", "oxley", "anterior", "chop", "rooted", "onyx", "benches", "illumination", "freedoms", "foolish", "finale", "weaker", "foley", "fir", "stirling", "moran", "compose", "nausea", "comfortably", "hoop", "temps", "clearer", "floods", "fritz", "mover", "modeled", "erica", "malaga", "sustaining", "repaired", "diocese", "francois", "obituary", "painters", "thistle", "tem", "sleepy", "footnotes", "rupert", "shrine", "purified", "striving", "dire", "attendant", "gull", "jour", "mir", "northumberland", "memoir", "betsy", "meredith", "fauna", "cliffs", "hayden", "roadside", "smells", "dispose", "waking", "feathers", "reflex", "falcons", "spurs", "sion", "crashed", "travelled", "urgency", "gould", "brit", "eliza", "graduating", "rims", "harmonic", "darts", "shin", "intriguing", "flaw", "tails", "emulator", "discarded", "bibles", "hangs", "joanna", "synonyms", "stranded", "horton", "dolce", "hercules", "pane", "browning", "angular", "veins", "folds", "sneak", "incorrectly", "avoidance", "sauces", "conquer", "probabilities", "immortal", "mariners", "endeavor", "creole", "mateo", "teas", "settling", "badger", "mohammed", "saturdays", "partisan", "pri", "gratitude", "impress", "willy", "anon", "eminent", "ribs", "communicated", "exceptionally", "quilts", "splits", "subscribing", "companions", "cheques", "edith", "screwed", "magna", "sectional", "fashionable", "polly", "tidal", "ballots", "hog", "testify", "poole", "boycott", "vitality", "clerks", "crust", "bothered", "traverse", "vengeance", "dolly", "garrison", "sal", "barb", "huns", "miner", "fashions", "barr", "analogy", "insomnia", "constituent", "aura", "cecil", "sponge", "sect", "diner", "anticipation", "enduring", "scarborough", "regis", "winters", "nous", "explosives", "mound", "xiv", "backgammon", "ox", "snatch", "mole", "obs", "owed", "ethan", "kissed", "buff", "butcher", "psalms", "rum", "chefs", "engraving", "constituted", "hamlet", "clad", "excursion", "inverness", "orb", "grange", "resigned", "fled", "enriched", "harrington", "brandy", "swings", "scion", "elle", "reptiles", "vortex", "swallowing", "purses", "bodily", "xiii", "awe", "beaumont", "australasia", "mandy", "hoods", "fireplaces", "requisite", "retrospective", "emphasizes", "lizard", "hawthorne", "bouquets", "wears", "shropshire", "baja", "regal", "safeguards", "cabbage", "cub", "spectator", "arrests", "circumstance", "numbering", "sliced", "reproductions", "byrd", "sidewalk", "prob", "breaker", "curly", "alberto", "asserted", "jealous", "refinement", "durban", "learnt", "hound", "squirrel", "concealed", "wharf", "rhythms", "departures", "shotgun", "stimulated", "chickens", "langley", "briggs", "cheyenne", "lug", "surveyor", "maize", "extinction", "unaware", "discretionary", "ry", "psalm", "scented", "gowns", "spying", "nicholson", "lied", "ek", "bloc", "recurrent", "talbot", "leaks", "tam", "swell", "obstacle", "ville", "mantle", "chico", "driveway", "irony", "gesture", "fairbanks", "parfum", "armies", "hy", "hugs", "greenfield", "santos", "owls", "cutters", "acquires", "ceased", "merging", "plaques", "breadth", "mammoth", "convictions", "intentional", "sophia", "prohibits", "innings", "reorganization", "pronunciation", "concession", "measurable", "ami", "parcels", "pastry", "manners", "phosphorus", "viper", "hid", "volcanic", "gypsy", "thieves", "preaching", "repeal", "uncovered", "hemp", "eileen", "proficient", "pelican", "apocalypse", "cousins", "discharges", "giorgio", "admire", "nk", "poured", "usefulness", "unsolicited", "binds", "unveiled", "burt", "titus", "suffix", "installment", "spindle", "heavens", "wink", "mister", "rounding", "inorganic", "flare", "scholastic", "wight", "withholding", "foliage", "nod", "ocr", "fife", "generals", "crank", "goats", "autographs", "stub", "fundamentally", "creamy", "exposition", "rains", "buckley", "middleton", "organise", "tort", "brace", "novelties", "gigantic", "abdul", "sheldon", "ryder", "octave", "struts", "ud", "suppress", "harding", "dams", "deserved", "violates", "rutherford", "separates", "proofs", "precedent", "confirming", "garth", "nolan", "mach", "facilitated", "paolo", "metaphor", "bridget", "infusion", "jessie", "organising", "argus", "mango", "spur", "jubilee", "landmarks", "polite", "sith", "thigh", "paving", "cyclone", "perennial", "jacqueline", "seventeen", "meats", "wie", "bulldog", "cleavage", "analysed", "uma", "gradual", "brethren", "embodiment", "violating", "recruited", "toilette", "trailing", "pact", "honourable", "lulu", "windy", "punished", "chronology", "mastery", "thermometer", "cranberry", "kan", "downhill", "vita", "steer", "nesting", "vogue", "aired", "outward", "whisper", "ipswich", "compromised", "confession", "deprived", "benedict", "vodka", "molding", "zaire", "bricks", "communism", "leopard", "flowering", "wig", "jingle", "bounty", "arcadia", "fishes", "ringing", "knobs", "taurus", "whiskey", "absurd", "tolerant", "stoves", "enactment", "embryo", "ska", "nora", "salts", "marietta", "furious", "iteration", "vida", "ceilings", "dispenser", "respecting", "approving", "unsafe", "separating", "soups", "residing", "richie", "markings", "moist", "trina", "drained", "mule", "cummings", "cessation", "append", "motive", "pests", "seasoned", "sunflower", "duel", "bernardino", "stocked", "bethel", "entre", "sunderland", "doris", "motives", "reinforcement", "dwight", "provost", "guessing", "tal", "mead", "harlem", "throttle", "gong", "ber", "sympathetic", "fridays", "isolate", "unconscious", "bays", "faulty", "affidavit", "messiah", "infamous", "pleasing", "seizures", "appealed", "surveyors", "tenacious", "waterfall", "sensual", "persecution", "petit", "burgess", "gaze", "chlorine", "freshly", "saxon", "cabo", "rye", "isabella", "monies", "assassination", "remarkably", "pointe", "stall", "deere", "entirety", "destined", "marcel", "lad", "hulk", "ora", "bal", "flores", "olivier", "portage", "dwellings", "informing", "yellowstone", "characterize", "ricardo", "yourselves", "rotterdam", "hostage", "cracker", "anglican", "monks", "compliment", "camino", "storey", "scotch", "sermons", "remembers", "freddie", "contention", "juliet", "adjunct", "guernsey", "bangor", "persia", "axes", "stirring", "wil", "haze", "pits", "utter", "bottled", "ants", "gastric", "influencing", "rents", "christy", "theirs", "mattresses", "donovan", "lax", "colts", "rehearsal", "strauss", "reputable", "wei", "tuck", "rei", "slab", "lure", "ren", "archbishop", "ling", "incompatible", "emblem", "roadway", "overlapping", "walters", "dunes", "murders", "miserable", "unsuccessful", "decorate", "appleton", "bottoms", "revocation", "vomiting", "chesterfield", "exposing", "pea", "tubs", "simulate", "medina", "thankful", "alaskan", "friedrich", "elephants", "pinch", "flynn", "braces", "calhoun", "deficient", "annotations", "filth", "moderation", "worrying", "outrageous", "kraft", "blackboard", "nitrate", "skates", "comstock", "hers", "grin", "footprint", "tunnels", "crises", "trillion", "comforter", "cashmere", "heavier", "meteorological", "spit", "labelled", "darker", "salomon", "globes", "dissent", "daly", "choral", "unrestricted", "happenings", "leicestershire", "neu", "contempt", "socialism", "hem", "edible", "anarchy", "arden", "clicked", "ineffective", "drawers", "byrne", "acme", "leakage", "shady", "chemist", "evenly", "reclamation", "rove", "lionel", "praised", "rhymes", "blizzard", "erect", "refining", "concessions", "commandments", "malone", "confront", "vests", "lydia", "coyote", "breeder", "electrode", "pollen", "drunken", "mot", "avis", "valet", "cheng", "shrubs", "watering", "barrow", "eliot", "jung", "transporting", "rifles", "posterior", "aria", "elgin", "excise", "poetic", "mortar", "blamed", "rae", "recommending", "inmate", "dirk", "posture", "thereon", "valleys", "declaring", "commencing", "armada", "wrench", "thanked", "arranging", "thrilled", "bas", "amelia", "jonah", "discomfort", "scar", "indictment", "apology", "collars", "andover", "pudding", "plato", "examiners", "salzburg", "rot", "possesses", "squared", "needless", "pies", "palma", "barnett", "ther", "heterogeneous", "aspirations", "fences", "excavation", "luckily", "rutland", "lighted", "pneumonia", "monastery", "erected", "expresses", "migrate", "carton", "lorraine", "councillors", "hague", "transforms", "ammonia", "roxy", "outlaw", "saws", "bovine", "dislike", "systematically", "ogden", "interruption", "demi", "imminent", "madam", "tights", "compelled", "criticized", "hypertext", "electra", "communal", "landlords", "emu", "libby", "seite", "dynamite", "tease", "motley", "aroma", "pierced", "translates", "mais", "cognition", "cain", "verona", "syn", "delegated", "chatting", "punish", "fishermen", "conforming", "causal", "stringent", "rowan", "assigning", "dwell", "hacked", "inaugural", "awkward", "weaving", "metropolis", "psychologists", "diligence", "stair", "dine", "enforcing", "struggled", "lookout", "arterial", "injustice", "mystical", "ironing", "commanded", "woodlands", "guardians", "manifesto", "slap", "jaws", "finn", "pedestal", "widening", "underwood", "saline", "sonny", "longevity", "paw", "isabel", "sterile", "botany", "dissolution", "pauline", "quart", "bison", "suppressed", "allegro", "materially", "cit", "amor", "xvi", "fungi", "phyllis", "bengal", "scrolls", "awakening", "fairies", "prescribe", "greed", "nominate", "sparkle", "autograph", "migrating", "refrain", "lastly", "overcoming", "wander", "kona", "relieved", "luc", "elena", "intermittent", "ante", "vols", "revolving", "bundled", "covert", "crater", "leah", "favored", "bred", "fractional", "fostering", "thence", "birthplace", "bleed", "reverend", "transmitting", "serie", "neptune", "caucasian", "goblet", "inventions", "dea", "practicable", "fronts", "ancestor", "russians", "incur", "canonical", "nodded", "confronted", "believer", "australians", "declines", "peacock", "utmost", "yates", "leroy", "helpers", "elapsed", "academies", "tout", "gre", "imitation", "harvested", "dab", "hopeful", "furnishing", "negatively", "residences", "spinach", "liquidation", "predecessor", "cheeks", "hare", "beasts", "philanthropy", "peanuts", "discovers", "discard", "cavalry", "breakers", "quorum", "forwards", "prevalent", "plat", "exploits", "dukes", "offended", "trimmed", "py", "worcestershire", "bonn", "prostitution", "mosque", "horseback", "vested", "terribly", "earnest", "homme", "clancy", "tory", "rossi", "oldham", "gonzales", "vor", "confederate", "presumed", "annette", "climax", "blending", "weave", "postponed", "philosophers", "speeding", "creditor", "exits", "pardon", "oder", "abby", "teller", "mandates", "siena", "veil", "peck", "custodian", "dante", "lange", "quarry", "seneca", "oceanic", "tres", "helm", "burbank", "festive", "rosen", "alla", "preserves", "ingram", "jess", "secretion", "insult", "scraps", "waived", "cured", "buggy", "kennel", "drilled", "souvenirs", "prescribing", "slack", "gin", "differentiate", "jays", "pilgrim", "vines", "susceptibility", "ambiguous", "disputed", "scouting", "royale", "instinct", "gorge", "righteousness", "carrot", "opaque", "bullying", "saul", "flaming", "apis", "marian", "liens", "caterpillar", "remington", "chew", "benefited", "prevail", "musik", "undermine", "omission", "boyle", "mio", "diminished", "jonas", "locke", "cages", "jolla", "capitals", "correctness", "implication", "pap", "banjo", "shaker", "natives", "tive", "stout", "rewarded", "athena", "deepest", "matthias", "duane", "sane", "climbed", "corrupted", "relays", "hanna", "husbands", "fading", "colchester", "persuade", "roaming", "determinations", "weighed", "ashamed", "concierge", "gorilla", "gatherings", "endure", "nom", "cheltenham", "dickens", "juniper", "repetition", "siberian", "preparatory", "fielding", "dune", "hee", "adler", "yosemite", "cursed", "youths", "migrants", "massey", "tumble", "stare", "unlocking", "missy", "meade", "contradiction", "helium", "wonderfully", "dug", "congenital", "trojans", "insanity", "embraced", "finely", "authenticated", "reformed", "tolerate", "lest", "adhesion", "tic", "noticeable", "cette", "aesthetics", "smoker", "benign", "hypotheses", "afforded", "aisle", "dunno", "blur", "evidently", "limbs", "unforgettable", "punt", "tanned", "altering", "bunker", "multiplication", "paved", "fabricated", "pasture", "richest", "cruelty", "mormon", "scots", "genuinely", "neighbouring", "plugged", "tyson", "souvenir", "mifflin", "cucumber", "occurrences", "marshal", "anders", "seize", "decisive", "spawn", "blanks", "dungeons", "sailors", "stony", "fayette", "shelving", "annals", "sadness", "periodical", "moe", "dime", "losers", "punta", "flavour", "crypt", "accomplishment", "onwards", "bogus", "carp", "prompts", "witches", "skinner", "dusk", "nouveau", "customary", "vertically", "crashing", "cautious", "possessions", "urging", "passions", "faded", "counterpart", "utensils", "secretly", "tying", "lent", "magician", "indulgence", "johan", "melted", "lund", "fam", "nel", "extremes", "puff", "galileo", "bloomfield", "obsessed", "flavored", "groceries", "motto", "singled", "alton", "staple", "pathetic", "craftsman", "irritation", "rulers", "collisions", "militia", "eis", "conservatory", "bananas", "adherence", "defended", "grille", "elisabeth", "claw", "pushes", "alain", "flagship", "kittens", "illegally", "deter", "tyre", "furry", "cubes", "transcribed", "bouncing", "wand", "cavalier", "ish", "rinse", "outfits", "charlton", "respectfully", "ulster", "tides", "chu", "weld", "venom", "writ", "patagonia", "dispensing", "puppets", "tapping", "immersion", "explode", "toulouse", "escapes", "berries", "happier", "mummy", "punjab", "stacked", "brighter", "cries", "speciality", "warranted", "ruined", "damp", "sanity", "ether", "suction", "crusade", "rumble", "correcting", "shattered", "heroic", "retreats", "formulate", "sheds", "anomalies", "homogeneous", "humphrey", "spheres", "belonged", "assigns", "sofas", "croix", "cushions", "fern", "defenders", "odessa", "lore", "whipped", "vox", "dinners", "rosie", "genealogical", "terre", "selfish", "eventual", "nach", "mitigate", "jamestown", "elisa", "shelton", "boiled", "neville", "natasha", "endeavour", "roswell", "haute", "herring", "unfamiliar", "expectancy", "deterioration", "proclaimed", "arid", "coincidence", "idiots", "mona", "muddy", "nuevo", "hitchcock", "cid", "neighbour", "raspberry", "illusions", "spikes", "enumeration", "suche", "permissible", "yielded", "nuisance", "siam", "latent", "marcia", "drowning", "spun", "shalt", "ric", "loch", "commanding", "sparrow", "poorest", "hector", "brotherhood", "milling", "sinking", "sulphur", "wicker", "balm", "figs", "browne", "nephew", "confess", "chit", "chaotic", "alexandre", "lays", "principally", "visor", "mundo", "jarvis", "drip", "traced", "outright", "melodies", "myriad", "stains", "sandal", "rubbing", "naive", "wien", "skeptical", "remembrance", "detects", "dragged", "foreman", "allegiance", "conduit", "dependable", "echoes", "ladders", "prudent", "glowing", "alchemy", "linden", "sven", "geographically", "alternating", "tristan", "audible", "folio", "presiding", "mans", "waterways", "aff", "fractures", "apprenticeship", "childbirth", "dumped", "barre", "rama", "johannes", "fiery", "convex", "richer", "mop", "urn", "soleil", "connor", "northamptonshire", "biscuits", "disclaims", "sich", "restless", "unanswered", "paired", "vaults", "ahmad", "tossed", "caucus", "cooke", "pillars", "katy", "zoe", "overwhelmed", "salute", "parody", "compensated", "lacked", "circulated", "soo", "maltese", "acorn", "bosses", "pint", "ascension", "ply", "mornings", "mentioning", "flagstaff", "pretoria", "thrive", "rightly", "paragon", "basal", "persist", "wilde", "indispensable", "illicit", "liar", "pledged", "pictorial", "curling", "ares", "smoky", "opus", "aromatic", "flirt", "slang", "emporium", "princes", "restricting", "promoters", "soothing", "freshmen", "departed", "aristotle", "finch", "inherently", "krishna", "forefront", "largo", "amazingly", "plural", "dominic", "skipped", "hereinafter", "nur", "extracting", "analogous", "hebrews", "tally", "unpleasant", "uno", "tempted", "blindness", "creep", "staining", "shaded", "cot", "plaster", "novo", "hearted", "obstruction", "agility", "complying", "otis", "overture", "newcomers", "noteworthy", "agile", "sacks", "ionic", "stray", "runaway", "slowing", "watchers", "supplemented", "poppy", "monmouth", "frenzy", "jargon", "kangaroo", "sleeper", "elemental", "unnamed", "doncaster", "particulars", "jerking", "bungalow", "bazaar", "predicate", "recurrence", "recruits", "sharper", "tablespoons", "supervise", "termed", "frauen", "stamping", "coolest", "reilly", "basque", "ire", "pegasus", "silhouette", "dorado", "daring", "realms", "maestro", "turin", "gus", "forte", "tipping", "holster", "fiddle", "crunch", "leipzig", "bard", "kellogg", "reap", "exemplary", "caliber", "apostle", "playful", "icelandic", "multiplied", "enchanted", "belgrade", "styled", "commanders", "thor", "waive", "bethany", "vance", "soprano", "polishing", "marquis", "wen", "translating", "frontiers", "adjoining", "greet", "acclaim", "hardship", "hast", "miriam", "cavaliers", "rollers", "carleton", "pumped", "differentiated", "sonia", "verifying", "almighty", "vel", "intuition", "revoked", "openness", "circulating", "bryce", "ilo", "latch", "verbs", "drank", "darlington", "slippery", "galerie", "outpost", "seville", "mira", "chatter", "santo", "lettuce", "raging", "tidy", "jong", "oppression", "bows", "yielding", "torso", "occult", "expeditions", "nok", "hooker", "lorenzo", "beau", "subordinate", "lilies", "articulate", "ecstasy", "sweetheart", "fulfil", "calcutta", "hobbs", "mediator", "tad", "cultivated", "rang", "disconnected", "consulate", "wilkes", "disagreement", "strands", "sicily", "compost", "adjourned", "familiarity", "erroneous", "pulses", "theses", "stuffing", "jeux", "wilton", "flooded", "reverted", "crackers", "greyhound", "corsair", "ironic", "wards", "unsupported", "hinge", "ultima", "cockpit", "venetian", "sew", "carrots", "faire", "laps", "memorials", "resumed", "conversely", "emory", "stunt", "excuses", "vitae", "hustle", "stimuli", "upwards", "witty", "transcend", "loosely", "anchors", "hun", "atheist", "capped", "oro", "liking", "preacher", "complied", "intangible", "compassionate", "substitutes", "flown", "frau", "dubbed", "silky", "vows", "macy", "distorted", "nathaniel", "attracts", "bern", "qualifies", "grizzly", "micah", "hurting", "homicide", "await", "sparse", "corridors", "sont", "mcdowell", "fossils", "victories", "chemically", "compliments", "cider", "crooked", "gangs", "segregation", "nemo", "overcast", "inverted", "lenny", "achieves", "forehead", "skye", "percy", "scratches", "conan", "lilac", "intellect", "charmed", "denny", "harman", "hears", "wilhelm", "nationalism", "pervasive", "auch", "enfield", "nie", "clears", "knowingly", "pivot", "undergraduates", "digestion", "mixtures", "soaring", "dragging", "virtues", "flushing", "deprivation", "delights", "foreword", "glide", "transverse", "engagements", "withstand", "newbury", "authorizes", "blooms", "soar", "uniformly", "todos", "piedmont", "empowered", "asi", "lena", "outlying", "slogan", "subdivisions", "deducted", "ezekiel", "totaling", "elijah", "compton", "vigorous", "flee", "biscuit", "creme", "submits", "woes", "waltz", "menace", "emerges", "classify", "paige", "downstairs", "statesman", "cheerful", "blush", "leaflet", "monde", "weymouth", "spherical", "favourable", "informs", "dramas", "cher", "billiard", "aut", "malay", "unseen", "optimism", "silica", "kara", "unusually", "widest", "impotence", "medley", "cadet", "redskins", "temper", "asserts", "stew", "hereafter", "retiring", "smashing", "accumulate", "tahiti", "mariner", "collier", "hush", "whispered", "generosity", "vibrating", "lama", "artisan", "akin", "raphael", "lola", "embarrassing", "aqueous", "pembroke", "stockholders", "lillian", "splinter", "ibn", "preferable", "juices", "ironically", "morale", "morales", "solder", "trench", "persuasion", "practise", "lodged", "revolt", "renders", "pristine", "francaise", "shines", "catalan", "auditory", "applause", "trait", "popped", "busted", "basins", "farmhouse", "pounding", "picturesque", "ottoman", "eater", "utopia", "insists", "willard", "lettering", "marlborough", "pouring", "concentrating", "soak", "buckingham", "hides", "goodwin", "manure", "savior", "dade", "secrecy", "wesleyan", "duplicated", "dreamed", "fertile", "hinges", "plausible", "creepy", "narrator", "augustus", "fahrenheit", "hillside", "standpoint", "nationalist", "piazza", "denoted", "oneself", "royalties", "abbreviation", "blanco", "critiques", "stroll", "anomaly", "thighs", "boa", "expressive", "infect", "pers", "dotted", "frontal", "havoc", "ubiquitous", "arsenic", "synonym", "yer", "doomed", "francs", "ballad", "sling", "contraction", "devised", "explorers", "billie", "ravens", "underline", "obscene", "mes", "hymn", "continual", "slowed", "aladdin", "tolerated", "quay", "outing", "instruct", "wilcox", "overhaul", "peruvian", "indemnity", "lev", "imaginative", "weir", "remarked", "portrayed", "clarendon", "ferris", "julio", "spelled", "epoch", "mourning", "phelps", "aft", "plaid", "fable", "rescued", "exploded", "padres", "scars", "whisky", "tes", "uptown", "susie", "batter", "reyes", "vivian", "nuggets", "silently", "pesos", "shakes", "dram", "impartial", "punctuation", "initials", "spans", "pallet", "pistols", "mara", "tanner", "avenues", "dun", "compress", "apostles", "sober", "tread", "legitimacy", "zoology", "steals", "unwilling", "lis", "paddy", "plunge", "pearce", "vos", "sinister", "burr", "arteries", "formations", "vantage", "texans", "diffuse", "boredom", "norma", "crosse", "mondo", "helpless", "wyatt", "spades", "slug", "visionary", "coffin", "otter", "navajo", "earns", "amplified", "recess", "dispersed", "shouted", "shilling", "resemble", "carbonate", "mimi", "discriminate", "stared", "crocodile", "ratification", "vases", "advises", "sind", "coward", "inequalities", "garde", "dyes", "viz", "turbulence", "yell", "fins", "ritchie", "dresser", "rake", "ornamental", "riches", "resign", "injunction", "intervene", "poised", "barking", "josephine", "dread", "dag", "handwriting", "serpent", "tapped", "articulated", "pitched", "wisely", "accustomed", "bremen", "steaks", "playhouse", "superficial", "suns", "josef", "casts", "bunk", "stab", "sanction", "dyer", "effected", "tubular", "moi", "ode", "avoids", "richter", "evidenced", "heinz", "argos", "dit", "larvae", "dyke", "cassidy", "kernels", "mobilization", "amt", "wilkins", "manipulated", "alleviate", "seam", "riddle", "comedies", "fainter", "respectful", "cabaret", "recession", "awaited", "nozzle", "externally", "needy", "wheeled", "booksellers", "darn", "diners", "greeks", "reich", "armored", "weary", "solitary", "photographed", "tweed", "snowy", "pianist", "emmanuel", "acapulco", "surrounds", "knocking", "cosmopolitan", "magistrate", "everlasting", "pigment", "faction", "tous", "argentine", "scandinavia", "minnie", "genie", "linn", "handel", "microscopic", "clarified", "coherence", "sensations", "orphan", "conferred", "acp", "disturbances", "chandelier", "embryonic", "carver", "paterson", "delle", "graceful", "intercept", "shouts", "ascertain", "veto", "exhaustive", "annoyed", "bureaucracy", "paz", "stalls", "fined", "bien", "inward", "reflector", "greeted", "hartley", "defenses", "meaningless", "clam", "francesco", "hes", "georg", "negligible", "starch", "melinda", "godfather", "apron", "guts", "ros", "pragmatic", "tyranny", "warehouses", "regimen", "axel", "antony", "hahn", "fluffy", "marianne", "slender", "hereford", "aides", "forma", "absorbing", "cherries", "gaelic", "gomez", "alec", "distinguishing", "glazed", "judd", "dashed", "libyan", "dickson", "distressed", "shouting", "bullock", "villagers", "acknowledgments", "ethiopian", "mermaid", "buds", "sexes", "wilder", "sire", "centred", "confinement", "islanders", "ding", "uncover", "contested", "coma", "husky", "conserve", "bland", "abatement", "originator", "whipping", "skipping", "routed", "rudolph", "abigail", "missionaries", "householder", "plotting", "yan", "succeeding", "elmer", "sails", "schuster", "overlook", "robes", "sham", "fungus", "astonishing", "graveyard", "chunks", "bourne", "revert", "ignores", "popping", "captains", "loaf", "pandora", "gabrielle", "stad", "abel", "enigma", "glands", "militant", "jug", "inferno", "torrents", "outset", "confuse", "yvonne", "attaching", "adept", "doubtful", "ratified", "insecure", "explosions", "trunks", "gareth", "versatility", "lothian", "fem", "intricate", "strata", "depository", "hubert", "proclamation", "beauties", "hybrids", "gillian", "darrell", "irrespective", "imposition", "ensured", "kidnapped", "sai", "cereals", "outrage", "poop", "scrubs", "orchestral", "bellingham", "dripping", "afterward", "devote", "facets", "musique", "frightened", "noises", "ambiguity", "booths", "discourage", "elusive", "speculative", "madeira", "intimacy", "hallway", "whey", "ripping", "mei", "hob", "reloaded", "garry", "ester", "annan", "thriving", "hampers", "bragg", "gracious", "snail", "curt", "demise", "theoretically", "grooves", "sutra", "conveyed", "swine", "typographical", "ellison", "ado", "trophies", "quicken", "werden", "heron", "graft", "moth", "crossings", "derrick", "mash", "germ", "envoy", "breckenridge", "pug", "antoine", "domingo", "resembles", "doorway", "grandson", "tat", "catalina", "redding", "accompaniment", "derivation", "warden", "voir", "tug", "margarita", "clans", "instituted", "notary", "thi", "sociological", "offending", "forgetting", "macedonian", "votre", "reservoirs", "barlow", "tyrone", "halle", "edged", "encompass", "spade", "hermes", "glare", "metaphysical", "insignificant", "exchanging", "pledges", "mentality", "turbulent", "pip", "pup", "fortunes", "sultan", "masked", "casing", "plotted", "haley", "generously", "amounted", "icy", "repression", "reaper", "honoring", "facto", "climatic", "broaden", "begging", "wharton", "sui", "freddy", "bushes", "contend", "restraints", "truncated", "gibbons", "nitric", "atop", "glover", "railroads", "unicorn", "normandy", "floats", "justices", "orderly", "wafer", "puck", "roofs", "reefs", "hover", "quarantine", "detrimental", "molds", "elias", "hou", "subsistence", "chilled", "foe", "citadel", "topography", "leaflets", "wrinkle", "contemplated", "adolescence", "nun", "harmon", "indulge", "bernhard", "hearth", "edna", "embarrassed", "aggressively", "coincide", "maynard", "genoa", "enlightened", "clippings", "radicals", "penetrate", "stride", "catastrophe", "greatness", "archie", "parasites", "entertained", "inventors", "ferret", "louisa", "agony", "marseille", "taller", "doubling", "stupidity", "moor", "stephenson", "enrich", "foreground", "revelations", "replying", "incapable", "parte", "acknowledgment", "labyrinth", "africans", "sway", "undergone", "lacey", "preach", "triangular", "disabling", "cones", "inversion", "thankfully", "taxed", "presumption", "excitation", "salesman", "hatfield", "constantine", "confederation", "petals", "imprisoned", "heller", "docks", "landowners", "sul", "juno", "deux", "defiance", "bully", "valiant", "constructions", "youngsters", "toad", "breasted", "banging", "vertigo", "unsatisfactory", "fluent", "rhyme", "eros", "aan", "mcintosh", "suffice", "convened", "nah", "accusations", "debated", "stallion", "equipments", "necessities", "camelot", "deserted", "keepers", "logically", "caravans", "oranges", "bum", "presse", "olga", "contends", "snort", "occupants", "organiser", "vim", "luminous", "crowe", "unparalleled", "anyhow", "waterfalls", "obtains", "antwerp", "ulrich", "hardened", "primal", "straits", "upheld", "wir", "malt", "sinai", "endowed", "cameo", "attire", "blaine", "typewriter", "pomona", "goddard", "fanny", "plagiarism", "milky", "combs", "upland", "unconstitutional", "adopts", "macao", "snaps", "defends", "depicts", "pilgrimage", "elevators", "ohne", "narrowed", "eighteenth", "hurst", "inscription", "ascent", "pisa", "tedious", "pods", "universally", "chewing", "accommodated", "tendencies", "rowland", "welded", "conforms", "reggie", "refreshments", "depict", "coils", "callers", "navel", "arbitrator", "prolific", "nurseries", "footsteps", "indefinitely", "sucker", "bumps", "frightening", "wildly", "sable", "retarded", "neatly", "singleton", "spaniel", "somerville", "worthless", "git", "spool", "jeopardy", "rovers", "voiced", "annoy", "clap", "aspiring", "dazzling", "cornelius", "scientifically", "grandpa", "cornish", "guessed", "kennels", "sera", "axiom", "stamina", "hardness", "abound", "curing", "socrates", "aztec", "confer", "vents", "mater", "oneida", "aiken", "crowned", "sandstone", "adapting", "cranes", "rooster", "proctor", "prehistoric", "balkans", "dictate", "joker", "wiped", "contours", "abdomen", "baden", "tudor", "paws", "villains", "poke", "prayed", "inefficient", "heirs", "parasite", "shortcomings", "cures", "concentrates", "preclude", "fasting", "loudly", "horseshoe", "zeus", "constellation", "recital", "utrecht", "freud", "bedtime", "thinkers", "hume", "reminiscent", "rapport", "ephesians", "dope", "truss", "kiln", "peaches", "depressing", "strangely", "narratives", "sud", "skipper", "gy", "drains", "maxima", "unification", "sous", "testimonial", "khaki", "distributes", "navigating", "slough", "prodigy", "embossed", "mould", "jock", "blasts", "poorer", "anglia", "dyed", "dissatisfied", "bourbon", "staggering", "bismarck", "hoe", "rubbed", "wasp", "bookseller", "fuss", "muir", "uterus", "chimes", "webber", "aggregated", "pico", "exhibiting", "gimme", "nee", "beaufort", "radically", "terminating", "platter", "chamberlain", "steamboat", "brewster", "inferred", "croft", "ism", "uplifting", "penal", "exclusions", "pageant", "henley", "purchasers", "pitchers", "tracts", "morally", "hosiery", "yt", "reptile", "overdue", "cowan", "mohawk", "riots", "hassan", "schwarz", "persuaded", "teasing", "rejecting", "emphasizing", "unbound", "quentin", "shepard", "sacrifices", "delinquent", "contrasting", "nestle", "correspondents", "guthrie", "imperfect", "disguise", "eleventh", "embassies", "lapse", "wally", "phenomenal", "civilizations", "friendships", "marjorie", "shrub", "kindred", "reconsider", "sanctioned", "parfums", "condemn", "renegade", "awaits", "hue", "augmented", "amends", "fullest", "shafts", "finer", "ys", "burdens", "invocation", "gillespie", "brooch", "motifs", "nineteen", "griffiths", "invaders", "edmond", "volunteered", "swollen", "liste", "grasses", "scatter", "steward", "ito", "cherished", "smack", "incidentally", "sine", "depleted", "holiness", "divinity", "campaigning", "tougher", "sherlock", "comprehend", "cloak", "pamphlet", "clipper", "umbrellas", "priceless", "mig", "assassin", "exploiting", "cynical", "toro", "etched", "bray", "choke", "underwent", "comforts", "appoints", "keene", "rachael", "swallowed", "imperialism", "mouths", "halter", "ley", "ike", "pumpkins", "shrinking", "roar", "novelist", "potomac", "arroyo", "tipped", "amidst", "insurgents", "wanda", "etching", "discouraged", "gall", "oblivion", "gravy", "inherit", "sprinkle", "stitching", "advisable", "loi", "meme", "gladstone", "jugs", "congregations", "handing", "payer", "ze", "beforehand", "laborer", "watcher", "vibrations", "apes", "strawberries", "abbas", "moods", "dobson", "ives", "soaked", "abridged", "palate", "thierry", "masculine", "realizes", "kahn", "petitioners", "constable", "sayings", "unconditional", "vue", "progressively", "topping", "baird", "chilling", "translucent", "glaze", "newcomer", "branching", "unmarried", "unexpectedly", "funniest", "bona", "scorpion", "mirrored", "sel", "anatomical", "misdemeanor", "tobias", "salle", "infra", "strasbourg", "commemorative", "implicitly", "ewing", "austen", "assurances", "comedian", "rascal", "nid", "roberta", "dizzy", "outbreaks", "annuities", "slit", "whitening", "occupying", "depicting", "ordnance", "verge", "ransom", "nomad", "dagger", "thorn", "preamble", "mor", "spins", "solicit", "provoking", "orchids", "buckets", "spoil", "blazing", "palermo", "snapped", "alligator", "detectives", "rochelle", "nomenclature", "abdullah", "invade", "regulates", "rendezvous", "strives", "trapping", "gardeners", "clemens", "deuteronomy", "diminish", "britannia", "manifestations", "tak", "stitches", "promulgated", "mediocre", "passports", "ayrshire", "invent", "eagerly", "damascus", "reformation", "hypocrisy", "parishes", "trooper", "bun", "compendium", "disappears", "hymns", "monotone", "palsy", "propositions", "locomotive", "debating", "cuffs", "prosperous", "famine", "orally", "elliptical", "grabbing", "jogging", "stipulated", "persuasive", "horrors", "bearer", "pastors", "acquainted", "dependents", "dizziness", "ture", "brilliance", "nicky", "originate", "respectable", "horace", "prohibiting", "disappearance", "morals", "invaded", "spoiled", "monet", "pickle", "quaker", "haunting", "manipulating", "tangent", "tempest", "petra", "dominique", "waving", "dai", "uneven", "plata", "plurality", "warrington", "adventurous", "luigi", "bayou", "accueil", "confluence", "blossoms", "succeeds", "orphans", "louder", "boilers", "reunions", "yelling", "trough", "leaned", "quadrant", "discrepancy", "slid", "antioch", "tonic", "magnus", "harrow", "jig", "reckless", "raining", "peasant", "vader", "qua", "figuring", "crushing", "thorpe", "ordained", "hodges", "saucer", "chinook", "passover", "byzantine", "tomas", "triangles", "curvature", "rites", "sideways", "devious", "dreamer", "acknowledging", "estuary", "burglary", "pouches", "thrilling", "spectacle", "sentiments", "ditto", "nana", "waiter", "oddly", "suchen", "raft", "cul", "nutshell", "arrogant", "hermann", "induces", "thrift", "sae", "admired", "stunts", "iaea", "youthful", "stumbled", "emitted", "sufficiency", "tempered", "slipping", "solitude", "cylindrical", "destroyer", "fide", "undesirable", "mongolian", "weakly", "parsley", "undue", "stunned", "smiths", "magyar", "hostility", "groves", "pursuits", "reflux", "adaptations", "jurisprudence", "invariably", "lecturers", "progressed", "brow", "elves", "kearney", "graeme", "kimball", "chant", "turnkey", "sprays", "tighten", "revolver", "crowns", "intermediary", "matted", "apricot", "tufts", "cuckold", "unreliable", "rosewood", "parry", "existent", "tongues", "dictator", "jehovah", "fanatics", "coeur", "perpendicular", "fay", "hedgehog", "raves", "mamma", "entails", "folly", "wheeling", "sharpe", "hawthorn", "mural", "bankrupt", "wager", "purge", "interpolation", "adjournment", "pitfalls", "stationed", "ambrose", "nightmares", "aggravated", "deem", "melville", "cavern", "ene", "sumner", "descended", "disgusting", "flax", "weakened", "imposes", "withdrew", "tart", "guerrilla", "spoons", "persona", "poser", "tram", "distinctions", "peabody", "alia", "iced", "faulkner", "scarcely", "excused", "fused", "madeleine", "roaring", "witchcraft", "stopper", "fibres", "cullen", "crested", "stump", "scalp", "gunn", "erwin", "conductors", "criticisms", "hadley", "diplomat", "sylvester", "melon", "tablespoon", "manganese", "siren", "clasp", "olives", "nino", "summons", "lucrative", "porous", "shrewsbury", "bile", "siegel", "cara", "ese", "ils", "hinduism", "elevations", "thirst", "endeavors", "sportsman", "scratching", "iodine", "phoebe", "wipes", "fro", "krone", "urgently", "exposes", "natures", "liberalism", "meer", "derry", "suisse", "frankenstein", "parc", "heir", "phy", "successors", "eccentric", "yarmouth", "transports", "amour", "illustrative", "prosecuted", "sailed", "craving", "advocating", "titel", "leaking", "escaping", "possessing", "suicidal", "cruisers", "masonic", "forage", "loco", "hellenic", "kwh", "ethel", "distinctly", "assertions", "baba", "pebble", "staffs", "ets", "hoo", "denomination", "patched", "patriotism", "battling", "tickle", "bandit", "acquaintance", "lambs", "loom", "blouse", "heightened", "chests", "ambitions", "feline", "grub", "ulcer", "slew", "menstrual", "canals", "negatives", "threading", "duet", "intolerance", "ammonium", "zephyr", "tearing", "muffins", "naar", "autor", "fannie", "foothills", "atrium", "thine", "superiority", "gestures", "nemesis", "engel", "confessional", "cardigan", "taunton", "evaporation", "devise", "abolished", "sorrento", "blanchard", "uns", "toying", "parma", "wreath", "plight", "opium", "irrational", "arches", "naturalist", "encompassing", "penetrating", "destroys", "prussia", "lowers", "cookery", "nal", "beatrice", "policeman", "cartilage", "turnpike", "migratory", "jurors", "mea", "enumerated", "sheltered", "doctrines", "seams", "pleaded", "pca", "elasticity", "cel", "gutter", "ulcers", "sloppy", "flannel", "volcanoes", "ridden", "contradictory", "misunderstood", "steamer", "cong", "barometer", "exclaimed", "diem", "barge", "spartan", "nea", "crystalline", "rumours", "famed", "brandt", "riga", "bengali", "respite", "grimm", "shetland", "provocative", "guido", "tasted", "licked", "banged", "rufus", "hopeless", "henrik", "safest", "daphne", "ame", "pollock", "meteor", "granville", "veneer", "anonymously", "manageable", "slant", "disciplined", "pollard", "comme", "chops", "broom", "plainly", "ibrahim", "snare", "shank", "uphold", "revising", "insignia", "nurture", "leash", "hunts", "faber", "plantations", "factions", "falmouth", "humility", "commentators", "impeachment", "acton", "engages", "carbide", "pullman", "characterised", "kinder", "deems", "outsiders", "dodd", "dissolve", "adrienne", "deduct", "crawling", "modifier", "muck", "colombo", "hoax", "cohesion", "reconnaissance", "antagonists", "bachelors", "observes", "corporal", "ligne", "wary", "locust", "condenser", "articulation", "villain", "tre", "oft", "secures", "leviticus", "impending", "rejoice", "pickering", "poisson", "bursts", "versailles", "hurdles", "lucie", "geese", "condemnation", "candies", "sidewalks", "formidable", "pun", "autres", "mecca", "rested", "paused", "macbeth", "abandonment", "nada", "bertrand", "broth", "wentworth", "seduction", "fertilizers", "maison", "contrasts", "giuseppe", "tae", "improperly", "nebula", "crows", "blooming", "mace", "seminole", "taper", "synagogue", "sugars", "burnham", "allure", "intestine", "ambassadors", "reclaim", "isla", "kingdoms", "richness", "converge", "pianos", "dol", "workings", "penelope", "extinct", "ponder", "revue", "lunches", "fooled", "smear", "rigging", "derives", "praises", "detachment", "luca", "caracas", "lids", "pore", "ey", "radiance", "oily", "quitting", "ina", "grover", "screams", "masking", "patchwork", "heinrich", "breton", "assures", "joys", "involuntary", "allegation", "infinitely", "dorchester", "serge", "morphine", "gymnasium", "waldo", "diese", "chiefly", "judah", "conjecture", "mich", "restitution", "indicted", "blasting", "confronting", "mastered", "powders", "debtors", "grit", "slain", "nearer", "ancestral", "mujeres", "faithfully", "revolutions", "sei", "quail", "tanker", "administrations", "sho", "rector", "ballast", "immature", "recognises", "taxing", "icing", "substituting", "executes", "originality", "pinned", "gables", "discontinue", "bantam", "bianca", "zimmer", "earthly", "conceive", "forfeiture", "disastrous", "gladiator", "poplar", "ence", "recourse", "martian", "equinox", "hinder", "fredericksburg", "presume", "weil", "armchair", "cecilia", "strut", "kari", "pavel", "appropriateness", "tame", "solstice", "oats", "italien", "wolff", "plume", "sparta", "calypso", "pantry", "etienne", "italics", "reversing", "murderer", "courteous", "wilt", "smoothing", "billet", "pretending", "hammock", "receptions", "revoke", "intruder", "wagons", "jennie", "platte", "plank", "paddling", "ting", "interrogation", "neue", "longing", "irresistible", "pilgrims", "disappearing", "sau", "enact", "inertia", "misunderstanding", "deity", "pruning", "agra", "mandolin", "rolf", "swiftly", "claws", "brightly", "manly", "emit", "shortened", "fearful", "potency", "ifc", "flawless", "peril", "alessandro", "breaches", "resultant", "nestled", "hairs", "dumfries", "drastic", "guarded", "celery", "reconcile", "grammatical", "collin", "ven", "admiration", "zanzibar", "offend", "severance", "somali", "combating", "numb", "retina", "maids", "tempting", "bureaus", "voyages", "galatians", "flo", "planters", "rocco", "sheath", "louie", "chaplain", "benefiting", "dubious", "occupies", "mammal", "shielded", "degeneration", "listens", "swirl", "emery", "twists", "scot", "intrigue", "blanche", "dialect", "nominating", "fanatic", "upton", "pave", "coverings", "danced", "slightest", "libre", "bromley", "revive", "corolla", "predominant", "abode", "savoy", "vogel", "insecurity", "trustworthy", "uniformity", "conquered", "alarming", "dur", "amused", "horizontally", "knitted", "exploding", "narrowly", "campo", "rampant", "suitcase", "embarrassment", "spectators", "coronado", "retaliation", "inquirer", "dreadful", "metaphysics", "drifting", "ritter", "attends", "nicer", "mellow", "boast", "gents", "respiration", "absentee", "duplicates", "dubois", "corollary", "tighter", "predetermined", "asparagus", "airy", "progresses", "canister", "stiffness", "thrifty", "canning", "workmanship", "complexities", "shan", "wrinkles", "illustrating", "perch", "craven", "divergence", "homage", "atrocities", "londonderry", "hops", "emmy", "chez", "admittedly", "ruiz", "angst", "liturgy", "nativity", "surety", "tranquil", "disseminated", "staircase", "cutler", "cradles", "electorate", "airs", "reconstructed", "resent", "opposes", "silvia", "distraction", "dominates", "kimberley", "despatch", "fugitive", "tucked", "jericho", "turmoil", "gilles", "dietrich", "haines", "unjust", "markedly", "fascinated", "disturb", "terminates", "exempted", "bounced", "rankin", "brightest", "saddles", "scotsman", "fitzpatrick", "gushing", "distracted", "secluded", "criticize", "bog", "livelihood", "godfrey", "minerva", "superseded", "iceberg", "caleb", "christening", "jealousy", "plumber", "hagen", "squeezed", "judas", "valle", "dole", "wick", "gertrude", "communists", "owes", "scents", "bertha", "levied", "sag", "barns", "covenants", "peat", "proprietor", "lizzie", "raids", "solos", "compartments", "maj", "foi", "importation", "mss", "planter", "ici", "metz", "immaculate", "pur", "reindeer", "telegram", "ruben", "shaken", "wares", "rivalry", "verve", "charley", "carpenters", "spree", "sunk", "morley", "bespoke", "inflicted", "abbreviated", "drowned", "escorted", "brute", "barracks", "kidneys", "warbler", "onward", "kidnapping", "inducing", "lancet", "antelope", "terminus", "castings", "flanders", "pellets", "enclosing", "starred", "deacon", "kabul", "sweeps", "butch", "mercure", "bookcase", "assembling", "diaphragm", "questo", "chores", "consignment", "yarns", "liv", "seedlings", "fortified", "reconsideration", "barnard", "profoundly", "bartender", "mayfair", "jag", "maneuver", "ridder", "vanished", "lair", "enclose", "sinners", "lille", "calves", "defer", "desmond", "liars", "els", "sod", "lacy", "pharaoh", "advocated", "itching", "alles", "devotional", "taft", "comparatively", "spartans", "tourney", "reasoned", "lawton", "degli", "saith", "astral", "ach", "parallels", "yelled", "wren", "terence", "hamper", "balkan", "blurred", "smuggling", "instincts", "hutton", "masquerade", "deans", "duality", "sensational", "kites", "smoother", "expulsion", "withhold", "romano", "grievances", "betrayed", "dumps", "buckles", "joyful", "generalization", "hin", "pancakes", "crave", "cordova", "focussed", "ripple", "claimants", "consolidating", "goldsmith", "inclination", "measles", "arcs", "portman", "baptized", "expelled", "rupees", "betrayal", "flourish", "heed", "mein", "graf", "hawking", "divides", "composing", "handicrafts", "healed", "burmese", "boon", "valor", "pedestrians", "gathers", "pawn", "stitched", "camille", "ceases", "dorsal", "collie", "hereditary", "exaggerated", "buccaneers", "spleen", "allotment", "jeu", "multiplying", "empress", "orbits", "whence", "bois", "trusting", "sabre", "stigma", "abduction", "attaches", "tartan", "twisting", "tore", "eth", "mimic", "shielding", "stormy", "vulgar", "pathological", "hodge", "trimming", "emanuel", "serene", "obligatory", "corrugated", "queenstown", "forbid", "unhealthy", "felicity", "ticks", "fascination", "sono", "experimenting", "splendor", "vigil", "robbed", "rebirth", "winona", "progressing", "fragrant", "defeating", "hotter", "instantaneous", "operatives", "carmichael", "bulky", "exponent", "desperation", "parlor", "setter", "monumental", "olaf", "fer", "stirred", "toughest", "fil", "facade", "frankfort", "monograph", "booze", "widen", "adjective", "disciple", "cipher", "arrears", "rhythmic", "unaffected", "starving", "vide", "lennox", "sil", "hearty", "triton", "deus", "devine", "adore", "entertainer", "colds", "dependant", "thicker", "weeping", "chandeliers", "moneys", "infancy", "dips", "honoured", "yachting", "cleanse", "chilly", "digs", "bolivar", "womb", "irritating", "monarchy", "corset", "hinged", "attendants", "cummins", "robins", "booming", "artikel", "scandals", "screamed", "cramps", "enid", "herrera", "digger", "espionage", "pups", "avenged", "norte", "glade", "pendulum", "bounces", "nehemiah", "thinner", "noch", "licks", "soto", "caste", "jus", "daft", "sampson", "psyche", "rudolf", "angling", "stubborn", "diplomats", "physicist", "tagalog", "coo", "requiem", "bleu", "redeemed", "sighed", "lures", "bavaria", "devastation", "heroine", "bingham", "achilles", "flaps", "indifferent", "cadence", "frosted", "schubert", "rhine", "manifested", "denominations", "interrupts", "rattle", "insults", "oatmeal", "marta", "distilled", "stricken", "unrest", "cascades", "druid", "dunbar", "outsider", "ris", "abstinence", "nag", "poodle", "wunder", "stefano", "sitter", "colder", "laborers", "whispers", "swarm", "elise", "ledge", "winthrop", "historia", "peasants", "nectar", "anecdotes", "gilt", "masterpieces", "symbolism", "monsoon", "drown", "strife", "esprit", "attaining", "consular", "treason", "reckon", "gaston", "prosper", "napier", "supremacy", "capillary", "germain", "islington", "anchored", "yong", "vers", "mulberry", "sinful", "cheeses", "bradshaw", "mythical", "abyss", "whitehall", "malachi", "ble", "clipping", "niece", "irresponsible", "pleas", "softer", "paralysis", "devastated", "tarzan", "shutters", "flask", "arisen", "femmes", "relentless", "ribbed", "omnibus", "stables", "inhabited", "hereof", "untold", "observable", "gretchen", "lanterns", "tulips", "vigorously", "interfering", "idols", "designating", "nugget", "reminding", "gusts", "xviii", "magistrates", "procession", "spiritually", "attentive", "rupture", "trad", "assimilation", "lyrical", "concorde", "angelica", "braided", "wooded", "intensely", "propelled", "artisans", "bastards", "bassett", "aspiration", "appended", "slammed", "aviator", "implicated", "seriousness", "conformation", "intimidation", "paladin", "ihr", "nests", "civilized", "marched", "cassandra", "cath", "sighted", "hopping", "destin", "rosary", "platoon", "andres", "loneliness", "pulley", "alleging", "synonymous", "confectionery", "regrets", "consciously", "cours", "footprints", "priscilla", "stimulates", "darkest", "implying", "conducive", "uncontrolled", "ballads", "mathew", "hugely", "sevilla", "hostages", "rosario", "fruitful", "franks", "indemnify", "satisfactorily", "thinker", "contestants", "sia", "influx", "convoy", "sled", "pyramids", "depended", "conveyance", "tortoise", "milo", "cultivate", "crocker", "dialogues", "abolition", "coax", "padre", "lees", "mari", "quattro", "foresight", "peppermint", "tod", "castillo", "remnants", "nailed", "alum", "frantic", "zachary", "comrades", "cocoon", "doth", "gladys", "bowers", "strengthens", "qual", "dictatorship", "breezy", "plow", "mundane", "douglass", "barclay", "foes", "cloths", "clowns", "lombard", "barren", "histoire", "plead", "behaved", "embargo", "condensation", "yokohama", "vow", "claudio", "blot", "primera", "commentator", "patterned", "sheen", "specter", "imam", "assent", "hove", "shading", "scrubbed", "warts", "roundabout", "harmed", "paternity", "conceal", "starvation", "appointing", "seine", "flowed", "sewn", "zulu", "rin", "barnet", "rift", "saviour", "lapel", "turk", "cupboard", "archipelago", "peep", "deceptive", "undertakings", "tinted", "congratulate", "constance", "vanishing", "legislator", "notifying", "aches", "kitchener", "leaked", "genera", "idioms", "gardiner", "gli", "poisonous", "chime", "spence", "mischief", "argent", "delinquency", "cou", "sentimental", "unsuitable", "mildly", "forging", "pew", "waitress", "caribou", "merced", "expansive", "footing", "manu", "sligo", "remit", "bonnet", "stumble", "undertook", "promenade", "exhaustion", "unborn", "wendell", "hammers", "coasts", "emitting", "concur", "exert", "madeline", "sanskrit", "torre", "worldly", "wedges", "corded", "heirloom", "pleasantly", "portray", "pero", "esoteric", "luxe", "messengers", "landings", "graphically", "shameless", "communicates", "bourgeois", "yeh", "napkins", "unloading", "bakers", "selma", "pears", "heats", "lucid", "lobe", "canaan", "oppressed", "infer", "prosecute", "thatcher", "bret", "hauling", "inconsistencies", "indebtedness", "scramble", "adversary", "elsa", "quaint", "oswald", "dipping", "revere", "troopers", "domaine", "olde", "guerra", "solemn", "eruption", "celeste", "gentry", "enchanting", "preached", "mica", "cadets", "lads", "endured", "ensuite", "fermentation", "careless", "chemists", "inca", "fad", "julien", "dandy", "narcotic", "moulin", "paine", "incompetent", "ain", "predecessors", "lancer", "sorcerer", "fishers", "invoking", "muffin", "motherhood", "wexford", "ihre", "dressings", "partridge", "synod", "noticing", "inte", "newmarket", "amigo", "discerning", "caddy", "burrows", "furnaces", "zee", "occupant", "livingstone", "juggling", "wildfire", "seductive", "scala", "pamphlets", "rambling", "kidd", "bedside", "lausanne", "legality", "arbitrarily", "heb", "luz", "regulars", "robson", "mysticism", "accompanies", "summed", "chopin", "torches", "dominating", "joiner", "viejo", "explorations", "guaranty", "procure", "stillwater", "sunsets", "cropping", "anastasia", "arrogance", "diverted", "forgiven", "bleak", "christophe", "wenn", "drudge", "dolores", "tramp", "saliva", "chichester", "artemis", "lessen", "weller", "syringe", "diversions", "admiralty", "powdered", "granger", "prevailed", "glacial", "alleges", "shredded", "antiquity", "zeal", "valparaiso", "blaming", "embark", "manned", "porte", "johanna", "granular", "sant", "orkney", "bah", "vero", "oscillations", "sphinx", "spiegel", "mujer", "ceremonial", "sonnet", "constituencies", "sprung", "hedges", "inflated", "crooks", "prospecting", "quilted", "walled", "immensely", "trafalgar", "relapse", "descend", "jakob", "bolster", "nietzsche", "fol", "rocked", "rancid", "disparity", "malice", "vom", "knapp", "swimmers", "syllable", "painfully", "sweating", "demolished", "catholicism", "trident", "lemonade", "absences", "andes", "ciudad", "josie", "persists", "propeller", "dents", "anarchist", "submerged", "entrusted", "essen", "calming", "intending", "cromwell", "drummond", "dissertations", "highlander", "solicitations", "lar", "punto", "survives", "darcy", "funnel", "moons", "gent", "thirsty", "freshness", "lathe", "shabby", "punched", "petri", "virgil", "gaa", "marbles", "cottonwood", "mildred", "deletions", "cleopatra", "undecided", "startling", "inductive", "inadvertently", "bursting", "wird", "halves", "moulding", "melancholy", "observance", "leaps", "halen", "galvanized", "hoy", "teapot", "conveys", "lends", "squire", "ache", "counterfeit", "waller", "duval", "yoke", "resonant", "mak", "outskirts", "expedite", "grayson", "sweetness", "crook", "rearing", "davison", "tins", "deliberations", "indifference", "xix", "invading", "dives", "loot", "coyotes", "stale", "cosmo", "levers", "cog", "incarnation", "strained", "putty", "reacted", "admissible", "sunless", "puzzled", "unexplained", "patsy", "thermometers", "fourteenth", "compounded", "chippewa", "eldest", "terrifying", "climbs", "uprising", "gasp", "swans", "tories", "hap", "remnant", "immoral", "sacrificed", "unequal", "weaken", "braxton", "categorical", "cupid", "stalking", "sturgeon", "jap", "piers", "ensuing", "mitigating", "tint", "dykes", "revived", "joachim", "eet", "earle", "hosea", "sua", "haste", "flakes", "alfalfa", "corfu", "argyll", "emil", "joking", "rhetorical", "simmer", "vert", "smallpox", "overwhelmingly", "waterway", "migrated", "reacts", "bain", "norbert", "complication", "aubrey", "adaptable", "sainte", "bitte", "fleur", "muy", "berth", "uninterrupted", "lint", "chalmers", "crabs", "tuscan", "lingo", "einer", "budding", "roam", "resemblance", "hackney", "toto", "hebron", "saber", "cataract", "midday", "fait", "innate", "medallion", "prominently", "kant", "nazareth", "nadia", "glanced", "calais", "rapture", "sunbeam", "abruptly", "beetles", "caspian", "impair", "stun", "shepherds", "susanna", "philosophies", "lager", "projecting", "goblin", "bluffs", "parrots", "anthems", "terrified", "nocturnal", "nueva", "emulate", "accuse", "hunted", "diminishing", "lew", "ridley", "produits", "zipped", "intrepid", "babel", "clustered", "primate", "eyebrows", "compromising", "willingly", "harlequin", "revisit", "insulting", "prominence", "cuckoo", "parrish", "inspires", "acacia", "fang", "netting", "contemplating", "erasmus", "sop", "recalling", "practising", "hermitage", "starlight", "foyer", "palaces", "brood", "azure", "compel", "contradictions", "festivities", "trenches", "sabine", "doorstep", "sniff", "dangling", "negligent", "gliding", "woe", "meditations", "tranquility", "halted", "liza", "drawback", "smyrna", "hostess", "weep", "posse", "mosquitoes", "commun", "weldon", "frying", "hesitation", "imprinted", "bereavement", "surrendered", "iam", "bestand", "westward", "converged", "leopold", "recognizable", "ludlow", "sprague", "saba", "embraces", "gustav", "waxing", "gael", "sinner", "auspices", "coles", "ergo", "dissenting", "melee", "radcliffe", "countess", "pleading", "crafty", "llama", "montague", "troubling", "vowel", "reuben", "cob", "fearing", "coronation", "isabelle", "reluctance", "inconsistency", "apostolic", "summoned", "treble", "galley", "shovel", "kam", "entail", "mashed", "aire", "pacing", "moan", "opec", "jimmie", "henson", "unfolding", "tottenham", "deserts", "milking", "wilbur", "suitably", "enormously", "aber", "cicero", "scribe", "nellie", "sleigh", "formulae", "fen", "sank", "frontage", "blister", "ration", "humid", "portrayal", "guile", "lacquer", "unfold", "hammered", "tutti", "mined", "caucasus", "intervening", "bale", "astronomers", "thrills", "therefor", "sores", "fel", "pastures", "unattended", "playwright", "carthage", "zechariah", "selves", "naturalization", "whispering", "dissipation", "sprite", "keel", "leighton", "atheism", "gripping", "cellars", "tainted", "remission", "praxis", "affirmation", "perturbation", "wandered", "reeds", "angler", "astounding", "cosy", "resend", "augment", "flares", "shedding", "glastonbury", "funerals", "eucalyptus", "conservatism", "questa", "bumped", "fortuna", "cripple", "lofty", "proclaim", "cropped", "merton", "ere", "richly", "ravi", "dogma", "priori", "vaguely", "yam", "ple", "siberia", "melons", "farley", "seer", "evils", "spontaneously", "unavoidable", "ruthless", "almonds", "ecclesiastes", "aptitude", "vial", "chao", "sharpening", "seniority", "prompting", "objected", "equator", "guilds", "blatant", "favoured", "ridges", "oysters", "gust", "cate", "receptacle", "mendoza", "haus", "puberty", "shorten", "shawl", "samaritan", "bends", "grimes", "unison", "tabular", "amir", "dormant", "nell", "restrained", "tropics", "concerted", "avenir", "refrigerated", "crouch", "pence", "formulating", "lamentations", "napkin", "emile", "contagious", "inaccessible", "administers", "crockett", "conspicuous", "barbarian", "soaking", "reforming", "gar", "intrusive", "thyme", "parasitic", "abusing", "receptive", "capt", "uwe", "xvii", "vulcan", "musk", "lucille", "executions", "refreshed", "guarding", "atwood", "windmill", "lice", "garter", "footed", "dedicate", "libros", "renewing", "burroughs", "ioc", "skim", "touche", "welt", "veal", "perpetrators", "embarked", "quickest", "euclid", "tremendously", "anglais", "smashed", "oscillation", "thunderstorm", "retrospect", "jog", "hailed", "bahia", "miraculous", "hounds", "tightening", "draining", "paroles", "sensibility", "rags", "punching", "distinguishes", "poi", "dazzle", "dangle", "eaters", "exceedingly", "inauguration", "inquired", "repentance", "unprotected", "merle", "savory", "evacuated", "reclaimed", "prefecture", "accented", "crawley", "baum", "racket", "hannibal", "sickle", "violently", "attest", "untouched", "comforting", "creeping", "kerosene", "appraised", "restorative", "chet", "peacefully", "stature", "sentry", "pel", "assaults", "berwick", "vices", "amo", "tolls", "degrading", "forster", "fireman", "maniac", "antics", "deze", "formative", "recognising", "wordsworth", "wrongly", "cree", "physicists", "falsely", "abbot", "officio", "consul", "plagued", "lahore", "aiding", "kunst", "suckers", "swallows", "patronage", "canoes", "matilda", "fodder", "impetus", "peeled", "whining", "arson", "hirsch", "tapestries", "transatlantic", "jak", "freeing", "kilkenny", "redress", "settles", "seaman", "skulls", "cayenne", "treatise", "defeats", "testimonies", "kali", "weitere", "itch", "withdrawing", "solicited", "jai", "gard", "brilliantly", "deja", "mccann", "spalding", "dill", "reopen", "potts", "erased", "resisting", "congregational", "antiquities", "dunham", "monsieur", "inhaled", "fuses", "britt", "blinded", "madras", "sacrificing", "faiths", "tinker", "sonora", "echoed", "elisha", "gazing", "skepticism", "zane", "eighties", "groupe", "freehold", "braid", "ance", "forester", "resisted", "alp", "munro", "agar", "arundel", "shiraz", "disgrace", "mediate", "rein", "realisation", "irritable", "cunning", "fists", "pennies", "jos", "hemorrhage", "awning", "ointment", "spilled", "tripping", "occidental", "vigor", "chariot", "buoy", "geraldine", "matrimonial", "squads", "niet", "tenn", "disclosing", "masthead", "ursula", "disbursements", "boucher", "chadwick", "candidacy", "hypnotic", "adultery", "fis", "seventeenth", "temperament", "prostitutes", "healer", "hive", "circulate", "glued", "sycamore", "belinda", "westmoreland", "shuts", "tenderness", "ocular", "smelling", "dung", "keine", "scratched", "conclusive", "alder", "polluted", "undersigned", "lark", "oda", "carlyle", "restores", "lullaby", "sanderson", "hoes", "lawns", "midas", "choking", "castor", "plentiful", "bonner", "stately", "raced", "deuce", "oma", "squirrels", "paddington", "drawbacks", "evoked", "dictates", "studded", "individuality", "spared", "anticipating", "californian", "brownie", "undressing", "quits", "ensign", "restraining", "blockade", "girard", "nearing", "ruff", "burglar", "warped", "tributes", "freezes", "knoll", "thinning", "reddy", "primrose", "parting", "humber", "michelangelo", "corduroy", "torpedo", "muffler", "troublesome", "eucharist", "wadsworth", "magnetism", "hodgson", "inventive", "speculate", "craze", "dispatches", "craftsmen", "desiring", "felipe", "hoffmann", "texan", "nombre", "grated", "submarines", "provoke", "romana", "accommodating", "grenoble", "calvary", "banded", "deportation", "harald", "cuttings", "invests", "sculptor", "kildare", "commended", "roper", "narrowing", "sergey", "mechanically", "profanity", "playmate", "scum", "seasoning", "adolf", "adjourn", "widows", "conveying", "precincts", "volta", "mediums", "discern", "bran", "fumes", "futile", "disqualified", "fenced", "eel", "animate", "faro", "resembling", "buren", "totem", "experimentally", "drinkers", "hermione", "indus", "harms", "asserting", "affluent", "ell", "protesting", "dix", "lonesome", "liberated", "unconventional", "amore", "reckoning", "fabian", "concurrence", "closets", "carve", "metaphors", "muster", "labourer", "heartfelt", "pertain", "democracies", "gideon", "mallory", "gauntlet", "martyrs", "cots", "victorious", "sylvan", "beverley", "unnatural", "swish", "confessed", "nae", "drumming", "patching", "fret", "abiding", "luscious", "sighting", "relic", "slipper", "augsburg", "bil", "argyle", "cling", "prophetic", "commune", "agatha", "tut", "haut", "gesellschaft", "circumcision", "neutrality", "aqui", "snoring", "trembling", "reproducing", "comets", "unitarian", "governs", "gums", "delaying", "mainz", "reconstruct", "toned", "erred", "modelled", "expiring", "mabel", "whistles", "jewellers", "kann", "caron", "understandings", "dared", "herndon", "nudge", "seeming", "rosebud", "alf", "andromeda", "sixteenth", "origination", "uso", "doves", "landowner", "preachers", "leiden", "ramona", "glib", "brutality", "fictitious", "francesca", "rumour", "immortality", "saffron", "ragged", "peerless", "constitutions", "improbable", "reiterated", "jesuit", "excessively", "mounds", "extraordinarily", "parted", "munster", "sufferers", "skunk", "interruptions", "placer", "lingering", "brooches", "heaps", "hydra", "anvil", "blinking", "sweetest", "noe", "dishonest", "stalk", "kun", "inert", "favorably", "vocation", "tribunals", "cedric", "favours", "witnessing", "eject", "seventies", "rayon", "dryden", "foreigner", "policemen", "unfavorable", "anomalous", "katharine", "barter", "rowley", "modifies", "frugal", "starry", "thanking", "nouns", "consequent", "entrances", "danube", "evasion", "filenames", "mayors", "gospels", "wicket", "cora", "lazarus", "vile", "misguided", "reunited", "conversational", "inspirations", "blasted", "shingles", "gresham", "cumbersome", "immersed", "philemon", "roasting", "accrue", "loire", "vented", "pont", "consolation", "cer", "frazer", "outlay", "dreaded", "airing", "alternately", "gracefully", "intrigued", "antagonist", "exalted", "cadre", "serb", "jaeger", "overthrow", "patiently", "cabot", "controversies", "narrated", "squat", "illuminating", "artificially", "saucepan", "freshest", "noi", "martyr", "hacienda", "koran", "quito", "tiara", "elegantly", "temptations", "skinned", "irrigated", "hives", "groundwork", "cyril", "kew", "resentment", "glaciers", "peri", "manfred", "gaping", "infringe", "porta", "inferences", "abrupt", "gambler", "dissection", "nightingale", "landau", "contemplate", "amigos", "putt", "colonization", "coon", "crock", "ailments", "disagreed", "boldly", "narration", "unopened", "insisting", "yeas", "brushing", "resolves", "sacrament", "cram", "shortening", "cloves", "marketable", "presto", "hiram", "broadening", "hens", "bowed", "whimsical", "harden", "molten", "repaid", "warmly", "hogs", "sporadic", "eyebrow", "strickland", "unnecessarily", "iom", "tess", "trois", "painless", "serbs", "verdi", "annexation", "dissatisfaction", "alpes", "applaud", "haben", "primo", "abolish", "climates", "uneasy", "busiest", "fray", "florian", "clogs", "flank", "cartel", "numerically", "perforated", "intensified", "sexton", "postmaster", "washes", "shrugged", "electors", "departs", "mindful", "lurking", "hitherto", "egyptians", "looms", "spectre", "downright", "refractory", "counsellor", "inexperienced", "outraged", "belgique", "smother", "frosty", "mules", "sash", "truro", "moaning", "ponies", "originates", "blight", "physique", "independents", "contentious", "cheering", "archibald", "emancipation", "duchess", "commemorate", "spout", "perish", "hoist", "narrower", "captivity", "peyton", "overloaded", "shorthand", "ceres", "bravery", "lizards", "einen", "fergus", "sincerity", "calder", "oar", "mullins", "flagged", "relics", "relish", "imagining", "belongings", "lire", "legislatures", "unchecked", "knocks", "alfonso", "contradict", "fleurs", "scarcity", "ashby", "fleeing", "filament", "abingdon", "theorists", "hof", "southwark", "celia", "disguised", "implanted", "thrash", "antiquarian", "dina", "fluency", "uniting", "behaves", "slabs", "conceivable", "agate", "incline", "hartmann", "bai", "soliciting", "thoroughbred", "calle", "oneness", "climber", "commonplace", "intellectually", "casanova", "himalayan", "downfall", "bookcases", "strides", "vanish", "ute", "transmits", "adair", "impatient", "aforesaid", "elbows", "truce", "bette", "stairway", "woodrow", "sou", "boar", "vertebrate", "laird", "multiplicity", "objectively", "resigns", "anguish", "petal", "perfected", "tomlinson", "odors", "mite", "blackstone", "clipped", "lago", "jed", "dries", "mejor", "sikh", "annoyance", "grating", "prostitute", "mina", "elixir", "guardianship", "gamblers", "autre", "peeps", "rol", "reverence", "sardinia", "outweigh", "verne", "gaylord", "bunting", "avenger", "spar", "waugh", "captivating", "tiers", "centurion", "propagate", "prosecuting", "montpellier", "willem", "slavic", "nutritious", "marguerite", "vapour", "pluck", "cautiously", "prick", "contingencies", "coercion", "picard", "rubble", "scrambled", "agitation", "chas", "truthful", "woodpecker", "herds", "corsica", "penetrated", "sein", "adder", "weakest", "weakening", "nome", "thorne", "anticipates", "poignant", "germs", "frees", "punishable", "fractured", "waterman", "brat", "uranus", "salient", "gabe", "censor", "semitic", "wits", "perverted", "bordering", "widowed", "tombstone", "begged", "flushed", "cautions", "lavish", "roscoe", "brighten", "vixen", "whips", "marches", "xxi", "anew", "commandment", "undetermined", "horner", "yah", "conceded", "circumference", "postpone", "disproportionate", "pheasant", "alonso", "bally", "zijn", "guillaume", "marrying", "carvings", "complains", "resided", "terriers", "weasel", "venerable", "preis", "toasted", "admirable", "illuminate", "holbrook", "fades", "bulge", "eller", "lucinda", "brittle", "bandits", "politely", "desde", "watermelon", "ingenious", "carols", "pensioners", "obadiah", "mannheim", "hepburn", "fetched", "alderman", "lockwood", "coughing", "hiatus", "upholstered", "evangelist", "louvre", "spurious", "gloom", "severn", "angelic", "astrological", "nobility", "bayern", "afternoons", "ramifications", "wakes", "ashore", "workman", "swimmer", "sitio", "unload", "loon", "marge", "wanderers", "sips", "badness", "undertakes", "miscarriage", "vulgate", "stoned", "provoked", "herr", "fables", "crumbs", "wort", "palisades", "confidently", "commences", "dispense", "dangerously", "figaro", "sadie", "protested", "capitalists", "accusing", "stink", "convent", "valdez", "childish", "adhered", "priesthood", "jagged", "dispersal", "overt", "verbally", "squeak", "constituting", "nuns", "pronounce", "scorpions", "incompleteness", "thurston", "dearly", "suggestive", "osa", "electrified", "unbalanced", "gypsum", "slime", "baroness", "winnings", "imaginable", "bromide", "lui", "crusaders", "summing", "lament", "gregor", "terraces", "canyons", "predatory", "towne", "descendant", "disgust", "banked", "rationality", "screwing", "dismal", "ranches", "cochin", "wipo", "prologue", "whaling", "patrols", "stumbling", "swung", "outlaws", "sinn", "waved", "libel", "ellipse", "alarmed", "justine", "jest", "garda", "eskimo", "caesars", "luce", "strapped", "reluctantly", "woodwork", "centrifugal", "authorship", "cavities", "buxton", "cravings", "decidedly", "pau", "apathy", "mercantile", "stalled", "infused", "peaked", "stronghold", "huxley", "moritz", "bearded", "greasy", "vowed", "carnage", "asher", "ingenuity", "mort", "infested", "creeks", "bessie", "adele", "ota", "rattan", "coroner", "irregularities", "tiled", "elaboration", "hectic", "lun", "snuff", "convene", "vai", "calmly", "horribly", "dilute", "contemplation", "sino", "uhr", "carta", "gaseous", "afflicted", "gloomy", "kirkwood", "orchards", "prophecies", "marques", "septuagint", "pertains", "clothed", "plummer", "italians", "talon", "repellent", "laval", "sorcery", "abstain", "elsie", "barring", "undermined", "tid", "bestowed", "habeas", "inactivity", "crewe", "grassy", "aprons", "clumsy", "columbian", "ayr", "pounded", "carrington", "stint", "rousseau", "sarcasm", "accomplishing", "overturned", "uphill", "maximus", "warmed", "parable", "jolt", "affords", "deadlock", "deriving", "quadrangle", "elects", "liebe", "eradicate", "likeness", "ral", "jem", "unter", "alpaca", "degrade", "flemish", "shred", "conseil", "steamed", "aroused", "remittance", "sieve", "bloch", "alienation", "reddish", "impulses", "interpol", "pleads", "whitby", "goliath", "caprice", "hors", "horned", "fowl", "janus", "hester", "benevolent", "superstition", "cohorts", "camilla", "rarity", "limbo", "shove", "accusation", "bernardo", "flake", "hating", "pate", "sewers", "spores", "mahmoud", "shears", "mucho", "flutes", "tabernacle", "minced", "westerly", "despatched", "munitions", "symmetrical", "ornate", "midwife", "uniformed", "snug", "coveted", "prohibitions", "moulded", "deceived", "convict", "nai", "tossing", "regularity", "criticised", "lawfully", "goethe", "slade", "dumas", "jester", "notifies", "recount", "dearest", "nook", "commensurate", "schiller", "bowler", "wiser", "gallant", "disbelief", "gon", "unqualified", "cautioned", "recollection", "locomotives", "condemns", "fastening", "jeweler", "nuremberg", "ostrich", "maud", "flirting", "misplaced", "prosecutions", "dido", "poisoned", "researches", "chou", "discriminating", "exclamation", "collingwood", "intercepted", "ascendant", "flung", "clovis", "eam", "railing", "cremation", "banter", "balconies", "awaken", "pigeons", "singularity", "signify", "granddaughter", "subdirectory", "bancroft", "progeny", "alters", "gratefully", "divergent", "fleets", "dorian", "juli", "tackled", "shoals", "tributary", "clique", "rosy", "satanic", "stubbs", "durch", "torment", "mussels", "emigration", "howl", "wel", "iglesias", "hir", "ecclesiastical", "crippled", "hilltop", "tabor", "peut", "tenet", "fifteenth", "chute", "bohemia", "mountainous", "fonds", "ogre", "unforeseen", "pickles", "submissive", "curses", "stampede", "utilised", "trieste", "whine", "nus", "fatality", "tierra", "looming", "zo", "sped", "ankles", "mosques", "fuchs", "guerilla", "squeezing", "fisk", "canes", "follower", "euler", "alumina", "degenerate", "spiked", "cru", "misrepresentation", "strung", "chanting", "wrestler", "officiating", "hermit", "behaving", "colbert", "josiah", "deepen", "acadia", "eso", "remy", "pats", "valentin", "mora", "cri", "enrico", "reciprocity", "crease", "wis", "ook", "bartholomew", "perseverance", "catalonia", "yorktown", "impede", "clasps", "tilted", "vicar", "confines", "prank", "dass", "repent", "dio", "agreeable", "riddles", "bennington", "pulpit", "appreciates", "marshes", "bellies", "corrosive", "ambush", "palazzo", "franciscan", "figurative", "gait", "emphasised", "bonfire", "aversion", "vicente", "stiles", "stewards", "chauffeur", "elicit", "henrietta", "slapped", "bitten", "lind", "salamanca", "martyn", "dynamo", "hobson", "stow", "summon", "skeletons", "parchment", "lingua", "distractions", "forfeit", "pepe", "paddles", "unpopular", "republics", "inspecting", "retainer", "hardening", "loosen", "beowulf", "undiscovered", "einem", "imputed", "cabs", "cheated", "willows", "hump", "delft", "communicative", "grieving", "chastity", "faust", "fright", "harbors", "adorned", "obnoxious", "diligently", "decays", "mortimer", "marvellous", "nouvelle", "easing", "mathieu", "picket", "thrones", "emilia", "eyre", "maturing", "seu", "illogical", "awakened", "beet", "suing", "brine", "lorna", "waning", "cartwright", "armoire", "piled", "twinkle", "lodgings", "maitland", "supple", "geld", "soi", "fabio", "unfit", "uttered", "rumanian", "shaggy", "elongated", "ordeal", "pegs", "astronomer", "incompetence", "flicker", "ramsay", "relieving", "towering", "operas", "slaughtered", "assaulted", "mena", "rouse", "appel", "armand", "spiel", "impurities", "stemming", "inscriptions", "hos", "tentatively", "tragedies", "interlude", "oates", "dialects", "vas", "ovid", "carcass", "casually", "scamp", "freedman", "reprise", "zig", "lash", "ills", "simms", "danes", "pebbles", "quicksilver", "sacked", "omen", "forfeited", "stipend", "conceptions", "lii", "amulet", "informally", "sarcastic", "indemnification", "hawke", "complexion", "daisies", "informant", "sorrows", "ite", "aegean", "andere", "sluggish", "brig", "tiempo", "marsden", "coy", "grouse", "reginald", "wierd", "pasted", "moths", "batavia", "evoke", "dispositions", "haywood", "staunton", "nit", "amorphous", "tributaries", "townships", "nantes", "assam", "mousse", "shameful", "chiffon", "archaic", "elevate", "deafness", "bec", "sala", "laureate", "contemporaries", "syphilis", "vigilance", "appalling", "palmyra", "foxes", "davie", "affixed", "ticking", "pantheon", "gully", "bitterness", "brill", "defy", "stor", "consumes", "lovingly", "agua", "thrush", "bribery", "smokes", "ventilated", "kettles", "ascend", "nutmeg", "chained", "magnify", "precautionary", "travail", "livres", "fiddler", "wholesome", "wrists", "severed", "mites", "puddle", "azores", "vegetative", "agora", "sob", "elaborated", "reeve", "embellishments", "willful", "grandeur", "plough", "pritchard", "mansions", "macpherson", "overheard", "persisted", "whereabouts", "haydn", "symphonies", "reclining", "rodrigo", "bounding", "annexed", "atheists", "umpire", "orthodoxy", "kilt", "doubtless", "keyed", "esquire", "cryptic", "primus", "wherefore", "cholera", "midsummer", "colouring", "intoxicated", "mysore", "jerks", "mise", "darius", "bullion", "deflection", "hateful", "propensity", "journalistic", "essences", "dispensed", "lemons", "stratum", "vendetta", "lod", "felicia", "restrain", "clutches", "cults", "whit", "amaze", "manassas", "rembrandt", "estado", "easel", "reisen", "potion", "ovation", "paddock", "numerals", "surpassed", "vino", "gable", "johnnie", "thirteenth", "laced", "quill", "saa", "mares", "enthusiastically", "fetching", "chaps", "tendon", "bellows", "keats", "deceit", "caro", "unmarked", "joyous", "boswell", "venting", "infringing", "blythe", "chisholm", "gunner", "verso", "samoan", "absorbent", "grossly", "cleft", "clog", "hongkong", "impoverished", "stabbed", "teaspoons", "comedians", "awnings", "sill", "lucknow", "bleaching", "isolde", "startled", "mathematician", "untrue", "algonquin", "hurried", "vir", "dieser", "staggered", "vacated", "vente", "fitz", "dura", "fingered", "apprentices", "cerca", "booted", "allie", "sens", "sprouts", "bower", "moab", "wolcott", "extremity", "orphaned", "requisites", "prudence", "kaufmann", "bij", "gingerbread", "biggs", "tasteful", "puritan", "osiris", "affirming", "salud", "excavations", "forearm", "distract", "seaport", "flashed", "longs", "dawes", "buns", "deceive", "civilisation", "starved", "amico", "colosseum", "stipulation", "emptiness", "maddox", "shoemaker", "cushioned", "dada", "osborn", "hastily", "ful", "invader", "patriarch", "consents", "nils", "polynesian", "swain", "lain", "groningen", "emilio", "mourn", "abandoning", "oddities", "soften", "troupe", "blacksmith", "suicides", "powerfully", "compromises", "helene", "thirdly", "classifying", "deepening", "unfairly", "connexions", "calico", "wrongs", "pores", "johnstone", "undermining", "burnside", "colossus", "frivolous", "indecent", "dishonesty", "oiled", "turnbull", "microbes", "sharpen", "phonetic", "oppressive", "coined", "tito", "moray", "simeon", "onslaught", "nationale", "noses", "treasured", "sharpness", "corral", "fortnight", "lia", "plunged", "reals", "modulated", "defiant", "brisk", "meath", "jena", "ponce", "perjury", "mua", "generality", "vigilant", "pronto", "vistas", "eerie", "arne", "stonewall", "wrestlers", "jackass", "geometrical", "priory", "epsom", "corpses", "wiping", "mercenaries", "bronchitis", "therese", "whirlwind", "howling", "apprehension", "raisins", "turkeys", "tio", "hora", "bobbie", "shale", "diligent", "nachrichten", "dann", "adversity", "wiggins", "torts", "egress", "adjectives", "crepe", "dum", "sheepskin", "concave", "heresy", "armory", "forthwith", "avert", "oat", "guise", "curiously", "fullness", "culminating", "kipling", "vomit", "compounding", "afar", "ebb", "shaky", "brutally", "pennant", "nicest", "willoughby", "necks", "lak", "mathias", "levee", "hindus", "powerless", "populace", "deliberation", "soles", "jetty", "luster", "overrun", "undone", "delia", "habitual", "alhambra", "mee", "uplift", "causeway", "murderers", "reopened", "guid", "inhabit", "lorenz", "conglomerate", "fastened", "tompkins", "extradition", "geschichte", "perils", "jerky", "proportionate", "compte", "algo", "boroughs", "deliverance", "resists", "lovell", "discourses", "subdued", "adhering", "falk", "suspicions", "hampered", "bruxelles", "detriment", "prejudices", "purported", "tron", "ine", "mangrove", "gab", "fawn", "scaffolding", "prin", "narrows", "sensed", "insuring", "babcock", "rhys", "boasting", "norah", "ascertained", "fluctuation", "jeannie", "ond", "twenties", "monstrous", "stetson", "accuses", "calibre", "nobles", "fumble", "attrition", "atherton", "lassen", "proverb", "darin", "mercenary", "clams", "reis", "tightened", "levies", "speck", "gutters", "murderous", "rudder", "amusements", "scares", "deformed", "wretched", "decadent", "incarcerated", "unsurpassed", "surpass", "annihilation", "pietro", "memoranda", "steaming", "magnifying", "serra", "hideous", "abreast", "intuitively", "extremities", "tyrant", "decency", "papal", "sprang", "palais", "obscured", "duets", "mountaineers", "blount", "butchers", "apologise", "geologist", "piccadilly", "axioms", "mogul", "fiercely", "varnish", "hysteria", "nei", "insistence", "aer", "clockwork", "mecklenburg", "intelligently", "fuer", "vials", "imputation", "albrecht", "densely", "droit", "odin", "colton", "distrust", "ulm", "assassins", "hatton", "fraternal", "refinements", "eloquent", "cwt", "silas", "wondrous", "decrees", "touchstone", "etext", "drayton", "grieve", "reigns", "pleasurable", "dobbs", "tunis", "olin", "bustling", "galt", "flue", "lucerne", "fiasco", "emir", "deacons", "slings", "dwarfs", "apportionment", "thoreau", "reins", "anson", "broadest", "scrambling", "misfortune", "drenched", "astonished", "kiel", "subconscious", "agi", "incandescent", "disappoint", "mobs", "cris", "rehearsals", "massa", "firewood", "serenade", "weathered", "truffles", "anno", "kepler", "teatro", "lawless", "gout", "coincides", "inhuman", "gentiles", "jardin", "fag", "rubs", "irritated", "despise", "floated", "fresco", "auteur", "custard", "prius", "dias", "hasan", "branched", "shipbuilding", "mildew", "tombs", "frown", "fulfilment", "accords", "privy", "caretaker", "antonia", "feeble", "gentile", "contractions", "combatants", "annuals", "champlain", "valence", "deteriorated", "droits", "disobedience", "gat", "unpack", "divination", "haw", "nationalities", "cultivating", "triumphant", "superbly", "hombres", "constrain", "magicians", "gra", "hobbes", "contended", "nazarene", "potsdam", "genevieve", "shiloh", "damper", "afrika", "forgiving", "yahweh", "madman", "sor", "slumber", "shimmering", "rigidity", "bane", "marius", "inventing", "chipped", "ane", "forts", "tumbling", "interprets", "surat", "dormitory", "confiscated", "discharging", "unnoticed", "ridicule", "thaw", "vandals", "reinstated", "lizzy", "unpacking", "darien", "intersect", "finden", "janvier", "garnish", "designates", "peeling", "levis", "blindly", "unintentional", "durant", "repertory", "toi", "disagreements", "gatt", "bene", "fifties", "goody", "dugout", "battleship", "talisman", "eels", "shun", "blackwood", "giggle", "worden", "deforestation", "streaks", "roderick", "bor", "corinth", "perverse", "glittering", "jails", "casket", "brigitte", "detour", "husbandry", "visibly", "defunct", "unveil", "circulars", "merciful", "ines", "tun", "tipperary", "kinship", "springtime", "philipp", "blouses", "hemlock", "sniffing", "uncanny", "stork", "concede", "combustible", "fallacy", "nicknames", "noxious", "tunic", "farce", "drowsiness", "chants", "ashe", "rhone", "lunatic", "pyrenees", "auctioneer", "recovers", "haggard", "manger", "chills", "whack", "drone", "breezes", "esteemed", "godly", "spire", "distillation", "edging", "langdon", "mathematicians", "soe", "cymbals", "antidote", "emblems", "caricature", "shroud", "stead", "recoil", "reconciled", "daze", "raisin", "amb", "amounting", "schon", "boer", "poisons", "nameless", "trot", "musically", "intensify", "voltaire", "harmonies", "benito", "accumulating", "indebted", "wald", "breathed", "misled", "mani", "culprit", "transact", "billig", "spiced", "berne", "pron", "puncture", "nella", "lighten", "practised", "canteen", "fein", "hysterical", "fick", "darkened", "requisition", "shrug", "boils", "enchantment", "greta", "covey", "donne", "pena", "loathing", "duc", "woof", "ominous", "parlour", "hammocks", "quieter", "poking", "tallest", "wrestle", "entrenched", "rectify", "virtuous", "ous", "davy", "snails", "decipher", "incapacity", "mittens", "ferns", "curls", "ens", "wrecked", "wince", "friendliness", "invincible", "healthiest", "prometheus", "rushes", "deities", "wor", "comanche", "melts", "trickle", "disapprove", "erratic", "familiarize", "insufficiency", "drifted", "propagated", "hardships", "sabres", "foraging", "wasps", "chien", "mitre", "tonnage", "corals", "mille", "continuance", "unrecognized", "premieres", "affectionate", "baptiste", "unimportant", "ferrara", "greener", "bowles", "endowments", "grudge", "zoological", "norse", "wetting", "bosom", "bales", "blackbird", "causation", "persecuted", "deciduous", "straighten", "convocation", "merrick", "precaution", "playmates", "philanthropic", "maneuvers", "stratified", "critter", "begs", "emphasise", "uit", "adresse", "connell", "busts", "cutaneous", "porters", "forgery", "pereira", "infrequent", "mull", "ort", "brandenburg", "incision", "jumble", "cognac", "wading", "imitate", "grasping", "borneo", "mortuary", "bode", "thorns", "rightful", "scarecrow", "mosaics", "pious", "utterance", "undeveloped", "basalt", "undisputed", "distracting", "urns", "unfolds", "brocade", "seaweed", "prevails", "candlelight", "votive", "wafers", "messina", "schumann", "tarts", "cuthbert", "nance", "babble", "pessimistic", "niches", "untill", "quid", "cadiz", "shortwave", "overlooks", "diversify", "hugging", "postman", "oas", "overboard", "goddesses", "faithless", "regained", "coolidge", "ephraim", "foggy", "shone", "criticizing", "leafy", "passionately", "stroking", "matured", "dolor", "procured", "excellency", "camels", "partie", "tou", "justifying", "eased", "slay", "deprive", "kremlin", "thea", "lusty", "virtuoso", "buzzing", "dauphin", "steed", "cowley", "paraffin", "unites", "stimulant", "realising", "millet", "invert", "vermilion", "grinned", "marche", "thelma", "enlightening", "endlessly", "hasty", "dexterity", "puzzling", "nods", "dieses", "sumatra", "nigger", "scrape", "kendrick", "prized", "arresting", "bewitched", "resumption", "irma", "intimidated", "traitor", "clove", "illiterate", "widened", "bordered", "mallet", "leech", "giver", "discontent", "gaz", "punishing", "seedling", "dwellers", "mouthpiece", "nymph", "reassuring", "astor", "myles", "prematurely", "frail", "adventurer", "irradiated", "awfully", "mayflower", "arched", "enlist", "vedic", "exemplified", "profane", "ubi", "cornelia", "romney", "macaroni", "electing", "dictation", "tage", "robber", "evacuate", "tus", "conveniences", "roving", "drinker", "softened", "peking", "fillet", "maar", "churn", "nimbus", "nog", "smartest", "neale", "ett", "madre", "impart", "feats", "concomitant", "donner", "scaffold", "oui", "ano", "millie", "libro", "leisurely", "loki", "dislikes", "mayonnaise", "dra", "limitless", "knopf", "hangman", "sloping", "mitt", "constitutionally", "disapproval", "bavarian", "crucified", "pocahontas", "masons", "surges", "literatures", "unlucky", "yawn", "distort", "mun", "wahl", "loosing", "canopies", "handicraft", "buscar", "piling", "basilica", "amine", "robbers", "juliana", "lowland", "sausages", "spake", "feud", "subordinated", "awoke", "unheard", "prune", "endanger", "cairn", "nomadic", "disgusted", "olfactory", "prolong", "fontaine", "knits", "thinly", "tant", "garnett", "galen", "arable", "parallelism", "brut", "vernacular", "latitudes", "alkali", "mowing", "foreseen", "palmerston", "sever", "expend", "stahl", "gist", "auntie", "afghans", "blames", "subdivided", "happiest", "lucca", "francine", "reserving", "nagasaki", "wid", "indented", "humming", "disclaim", "frans", "diameters", "exerted", "justifies", "freiburg", "regenerate", "titre", "tumbler", "bonne", "improvised", "flocks", "bothering", "garnered", "fling", "comrade", "ascended", "juliette", "porcupine", "chopping", "enacting", "stabbing", "metamorphosis", "hilda", "wanderer", "flattened", "dawkins", "spitting", "inconvenient", "seacoast", "imperfections", "lewes", "chancery", "raving", "hed", "executor", "anglesey", "choirs", "wreaths", "tasteless", "tomahawk", "tact", "projet", "instructive", "absorbs", "susannah", "toutes", "mathematically", "godwin", "drier", "bothers", "parades", "shoved", "invokes", "cannons", "hamish", "chromatic", "rife", "rallying", "enoch", "carriages", "dales", "polled", "agnostic", "emptied", "denounced", "delusion", "rimini", "verity", "turret", "precede", "huts", "betts", "domes", "eras", "wildest", "foodstuffs", "wessex", "priming", "vowels", "sulphate", "clandestine", "migrations", "hovering", "texte", "tamper", "pugh", "punishments", "dagen", "heathen", "unduly", "rigged", "domicile", "chargeable", "fanning", "meu", "spurred", "broughton", "wha", "osage", "peregrine", "tabitha", "puede", "crumb", "fostered", "culmination", "revolves", "mend", "theoretic", "softening", "glimpses", "hattie", "tastefully", "capo", "grate", "lourdes", "diseased", "kenilworth", "margot", "socialists", "deduced", "buttocks", "unmanned", "rainbows", "gunnar", "burials", "eunice", "bountiful", "salazar", "mesopotamia", "jetzt", "poseidon", "ratify", "mexicans", "fiend", "drapery", "bernice", "deported", "muzzle", "entrant", "schoolhouse", "retribution", "yusuf", "stallman", "slander", "basing", "baits", "fireside", "disposing", "herzog", "suffrage", "triumphs", "fortifying", "sleepless", "schiff", "watered", "lass", "fleas", "tully", "ventured", "recite", "kneeling", "negation", "dismay", "smelled", "jute", "heals", "prim", "trespass", "conciliation", "compasses", "groomed", "leaping", "impunity", "sunken", "inaugurated", "encountering", "infernal", "sewell", "pang", "swag", "reared", "pampered", "inquiring", "numero", "praising", "momentary", "commemoration", "favre", "poli", "holstein", "serpentine", "hangings", "lugar", "sundry", "protestants", "therefrom", "espace", "wrecking", "cristo", "pique", "swore", "novembre", "fawcett", "journeyman", "enlighten", "descartes", "flashy", "prowess", "abstractions", "enriching", "trampling", "signet", "bello", "iroquois", "digested", "rothschild", "trumpets", "embodies", "messe", "manhood", "kincaid", "cannibal", "nephews", "oblivious", "icao", "atmospheres", "stricter", "jeter", "memes", "roughness", "ancients", "snapping", "jethro", "cauliflower", "feudal", "unbearable", "perpetrated", "basses", "juni", "boarded", "olympian", "sedgwick", "livre", "mano", "interferes", "devotions", "myra", "devotees", "acquaintances", "sectarian", "fathom", "cools", "segundo", "appreciative", "innumerable", "parramatta", "noticeably", "furs", "atonement", "extant", "ignacio", "unmask", "chisel", "mysteriously", "wayward", "redness", "dreamland", "wands", "illustrious", "fishy", "nao", "pauses", "intoxication", "glimmer", "blooded", "slamming", "syllables", "whim", "filmy", "timid", "ismail", "tampering", "weavers", "magically", "pied", "thyself", "rooting", "pretended", "nigh", "therewith", "interment", "partitioned", "aller", "populous", "modesty", "veils", "frei", "zest", "sumptuous", "wayside", "spotless", "wich", "summits", "ner", "banc", "barbed", "legions", "dona", "lustre", "wer", "sunflowers", "sommer", "ecstatic", "campania", "blasphemy", "wisp", "countenance", "skinning", "sift", "ooze", "recounts", "adventurers", "oktober", "bigotry", "leaky", "contradicts", "leven", "pagans", "dinars", "diesem", "fume", "afloat", "bruised", "flattering", "brigades", "leur", "engrossed", "dashes", "impeach", "atrophy", "hur", "brag", "earls", "confers", "totality", "circumvent", "boulders", "negotiator", "yolanda", "muff", "maude", "odour", "bellamy", "snag", "fringes", "gough", "excavated", "smoothed", "affirms", "gulch", "irrevocable", "wieder", "moaned", "axles", "graciously", "radiated", "bribe", "propel", "outspoken", "verily", "ardent", "forcibly", "presided", "shimmer", "tremor", "gnp", "loaned", "violins", "extravagant", "ghent", "astute", "jamieson", "pemberton", "inflict", "invalidate", "ridiculously", "legible", "towed", "disregarded", "auguste", "puc", "salted", "attractiveness", "calamity", "brewed", "aristocrats", "fiance", "sprawling", "vulture", "mislead", "ventral", "twa", "retard", "medio", "platters", "canto", "germanic", "harassed", "discriminated", "estelle", "sponges", "cavendish", "receptacles", "jacinto", "revered", "harassing", "dislocation", "shingle", "timbers", "undergoes", "tilting", "conquering", "harass", "meditate", "hues", "alsace", "denominated", "ostensibly", "lumps", "facie", "emploi", "cretaceous", "fished", "drizzle", "bracing", "mesure", "blackmail", "corte", "remorse", "navarre", "clout", "jours", "wag", "fella", "mountaineer", "pondering", "purposely", "worshipped", "lucifer", "unholy", "spectacles", "dulce", "muttered", "aquila", "hoff", "mme", "spat", "henceforth", "argo", "strapping", "expedient", "unconditionally", "ices", "secreted", "buch", "chaucer", "livery", "recapture", "chevalier", "incompatibility", "anchoring", "navigable", "personas", "milieu", "stonehenge", "injure", "knuckles", "zoeken", "intermission", "amazement", "medusa", "pagoda", "manifests", "primed", "keg", "recited", "reformers", "ensued", "justly", "throats", "aron", "barrage", "pis", "pari", "buoyancy", "aussi", "curled", "raoul", "peeping", "paces", "heaviest", "walnuts", "ena", "broadened", "lashes", "esplanade", "prairies", "mandel", "conical", "tricked", "etymology", "cheaply", "allege", "draped", "subtly", "manslaughter", "consort", "shad", "fleeting", "sibley", "plumb", "needlework", "caballero", "annoyances", "uti", "bacchus", "chuckle", "unfolded", "israelites", "rit", "briar", "wavy", "moulds", "hindered", "bloated", "pranks", "mantel", "languedoc", "fatima", "disordered", "belated", "englishman", "winder", "paralyzed", "junta", "shrunk", "crammed", "aar", "hatchet", "unsuspecting", "dismissing", "cetera", "windfall", "filaments", "jocelyn", "companionship", "creeper", "cuando", "epidemics", "illegitimate", "slag", "undisturbed", "transcendental", "georgina", "chantilly", "farmed", "fuentes", "malo", "complicate", "alston", "indistinguishable", "skillful", "groot", "compensating", "overrated", "reasonableness", "nuances", "knuckle", "bastion", "scraping", "gypsies", "concurring", "assemblage", "watery", "tro", "juanita", "coiled", "yucatan", "sipping", "beatrix", "cheerfully", "sledge", "gilded", "murdering", "dijon", "unbroken", "sages", "tropic", "capella", "beim", "condemning", "entourage", "travers", "familia", "iota", "realist", "suppressing", "scorn", "crusades", "pris", "whirl", "pervert", "defences", "humiliating", "circled", "withers", "sprout", "elicited", "swirling", "campos", "clinging", "bunches", "bagged", "negotiators", "deviate", "blackened", "whereupon", "muriel", "hostilities", "atelier", "penned", "conte", "horatio", "cheered", "bled", "throbbing", "sleepers", "seiten", "zeit", "sallie", "solace", "lucien", "havre", "moles", "unloaded", "projectile", "transplanted", "bandages", "handcuffs", "beacons", "stucco", "intrinsically", "geschichten", "impervious", "shams", "shawls", "aos", "flourishing", "precedes", "bruises", "instructs", "palatine", "lor", "carnation", "kangaroos", "slum", "ruffle", "knack", "rivet", "aragon", "aggie", "tilly", "sonya", "haue", "grunt", "talmud", "grammars", "overalls", "doubted", "ravaged", "whistling", "upholding", "ailing", "obeyed", "tattooed", "ghostly", "mutiny", "delusions", "foresee", "rations", "bitterly", "windmills", "perpetrator", "cleverly", "misunderstandings", "amerika", "counsellors", "amis", "sisterhood", "lightening", "overturn", "doit", "thoughtfully", "mortem", "rencontre", "risking", "proprietors", "tatiana", "ingress", "gros", "barbers", "retires", "duro", "commotion", "deduce", "bolted", "materialism", "eternally", "senseless", "rabid", "reassure", "recollections", "probed", "pox", "hamlets", "unwritten", "jammed", "moveable", "housekeeper", "agrarian", "humana", "lovable", "sawmill", "abram", "catharine", "consented", "perseus", "styx", "congested", "banished", "terraced", "buttermilk", "laces", "toil", "hugged", "flurry", "gower", "warmest", "horrified", "walpole", "cada", "alte", "bertram", "perturbations", "adversaries", "aunts", "mau", "vapors", "skylight", "gemma", "constantinople", "monarchs", "unsolved", "strenuous", "roost", "unreasonably", "shuffling", "ludicrous", "tenets", "albanians", "pius", "garb", "steadfast", "reckoned", "promissory", "overflows", "queried", "squarely", "softness", "crayon", "rotting", "exhilarating", "excepted", "flavoured", "marque", "ditches", "millionaires", "evade", "pars", "scourge", "twig", "lapis", "bandage", "detach", "virginity", "mala", "doctrinal", "adaptability", "cramped", "wept", "ganz", "racking", "corrects", "avignon", "servicio", "vanishes", "obedient", "selkirk", "mur", "sects", "modo", "anxiously", "ascribed", "strikers", "optimist", "gratification", "seashore", "automaton", "otros", "pierson", "unskilled", "brigadier", "consonant", "acetic", "unarmed", "dyeing", "intolerable", "republished", "tawny", "absinthe", "hygienic", "sufferings", "tahitian", "propagating", "sacraments", "layman", "vellum", "ignatius", "emperors", "ferro", "stalks", "stanza", "londres", "terminations", "novices", "grasped", "bequest", "deo", "beggars", "redeemer", "florin", "quixote", "chaise", "paternal", "dey", "rained", "indigent", "trellis", "trabajo", "mythic", "crystallization", "marries", "echoing", "recitation", "aptly", "alleviation", "liege", "remittances", "romances", "nieces", "characterizes", "papyrus", "fop", "candlestick", "circling", "hellas", "sheik", "pints", "girdle", "siamese", "veiled", "blotting", "intimates", "eruptions", "javelin", "ipsum", "stares", "eastward", "tecumseh", "yon", "entree", "desist", "grasshopper", "rheumatic", "autobiographical", "piety", "embody", "petites", "gris", "crawled", "soiled", "dich", "froze", "superfluous", "gai", "disarm", "sot", "tacit", "chansons", "parenthesis", "reorganized", "daybreak", "rallied", "quakers", "pentecost", "beulah", "unveiling", "burg", "astray", "blisters", "infirmary", "hinted", "sanctity", "gad", "modus", "pedantic", "beste", "dennison", "grandes", "bullies", "notoriously", "lucius", "kirsty", "caustic", "rook", "gleaming", "dominoes", "tua", "parochial", "bertie", "moreau", "precedents", "exiled", "howells", "pall", "mustered", "pretext", "whisk", "flared", "kleine", "deference", "artful", "eld", "audacity", "margate", "judson", "downwards", "moat", "inasmuch", "plotters", "caress", "hails", "swam", "wilfred", "mauve", "hazy", "twitch", "alegre", "glorified", "combed", "reclaiming", "baptists", "paraphrase", "flounder", "crept", "fibrous", "swamps", "epilogue", "hoof", "epistle", "exiles", "wheatley", "clapping", "finesse", "sociale", "cordelia", "infrequently", "favoring", "converging", "cour", "firma", "inquisition", "reputed", "dinah", "seduce", "bearers", "kimono", "guesses", "foote", "impossibility", "ceylon", "courant", "invasions", "eminence", "canna", "liberate", "gracie", "gunther", "hanged", "flatter", "acquitted", "dimmer", "sola", "cauldron", "dredge", "tingling", "preferring", "cordial", "reassurance", "superintendents", "nervousness", "delineated", "imaginations", "quarrel", "bess", "aryan", "tendering", "transitive", "furthering", "connoisseur", "idealism", "separable", "awa", "liqueur", "spokes", "pastime", "pursues", "bugle", "luxemburg", "disperse", "incoherent", "fours", "treffen", "devout", "strom", "alva", "unfurnished", "blinding", "inaction", "northward", "trotter", "subversive", "contre", "impediments", "armoured", "breathless", "intertwined", "steen", "corkscrew", "trop", "affections", "inherits", "mortals", "purgatory", "vise", "comer", "tillage", "pere", "discloses", "easterly", "lagged", "hawker", "vertebrates", "toughness", "disrespect", "lagging", "uncovering", "indeterminate", "refreshment", "momentarily", "festa", "langer", "lute", "rosette", "changeable", "tragically", "waverley", "clapham", "trumps", "justifiable", "twofold", "sicilian", "marlowe", "unearned", "thwart", "potted", "chanson", "amelie", "incurring", "gracias", "convalescent", "terme", "mackerel", "goings", "brim", "clinch", "provident", "leprosy", "chum", "cometh", "fitter", "glut", "fasten", "locksmith", "interrupting", "sulla", "daggers", "pleases", "moors", "arno", "geranium", "kendal", "revolve", "choc", "waged", "waxed", "concourse", "confine", "jaded", "mingle", "purify", "desolate", "withdraws", "choked", "whereof", "pape", "gruesome", "pleadings", "defying", "sacs", "perished", "erskine", "tentacles", "britons", "pringle", "outcast", "faraday", "oblong", "ophelia", "wearer", "propriety", "attainable", "hearsay", "roomy", "brutus", "obscurity", "heros", "colonists", "matting", "overflowing", "capers", "entice", "lasso", "soot", "yonder", "virulence", "heretic", "draught", "comical", "generalizations", "waiters", "gasped", "geologists", "caverns", "boarder", "bumping", "eines", "greets", "ova", "waxes", "whiz", "bevel", "straining", "seduced", "angrily", "croquet", "vacate", "stanislaus", "soundness", "marquise", "bonjour", "xxiii", "protracted", "siegfried", "affaires", "digby", "eyelid", "undeniable", "taming", "precluded", "repressed", "perforce", "barons", "boundless", "hopelessly", "grandchild", "sucre", "pasteur", "valuables", "indignation", "sprinkled", "menstruation", "stuffs", "antichrist", "emptying", "reiterate", "himalayas", "monopolies", "sowing", "frills", "wad", "shearing", "ruining", "pinion", "yew", "windward", "hermosa", "haunts", "unsere", "brawl", "delirium", "unfounded", "heroism", "gillis", "rutledge", "barrister", "neglecting", "saxony", "karel", "vane", "alienated", "tum", "synagogues", "entangled", "mane", "reise", "liberating", "embarking", "tonneau", "cynicism", "bayonet", "considerate", "extraneous", "janitor", "environs", "reverses", "reunite", "hawkeye", "steers", "ravenna", "crockery", "juries", "presidente", "nang", "gare", "legacies", "tial", "theologians", "arnaud", "enticing", "embankment", "quadruple", "crazed", "xxii", "equipping", "fondly", "whither", "counteract", "sighs", "discouraging", "flasks", "preservative", "tribulation", "bridesmaids", "rhea", "raided", "salaried", "mises", "intolerant", "rarities", "battled", "obstructions", "discredit", "grotesque", "artistes", "perugia", "gij", "spoils", "monasteries", "crucible", "modena", "generalize", "hasta", "pronouns", "misconception", "rudimentary", "sown", "protege", "vulgaris", "beak", "settler", "prag", "rabble", "rung", "piped", "orpheus", "retour", "insurgent", "rightfully", "hilfe", "medici", "fabrice", "marshals", "nue", "crumbling", "relegated", "allotments", "immer", "stagnant", "giacomo", "follies", "dells", "cleanly", "unclean", "seizing", "molasses", "tablecloth", "hutchins", "purifying", "delineation", "schooner", "dignified", "numbness", "papier", "machinist", "anima", "apologized", "meshes", "grotto", "marais", "loam", "politique", "carnations", "rivets", "jeune", "hatching", "leveled", "graces", "corinne", "adheres", "collusion", "rawhide", "propos", "knotted", "agitated", "sorter", "misused", "relieves", "linguist", "rigorously", "erroneously", "especial", "betray", "dario", "cui", "heywood", "suspending", "mormons", "davids", "bennet", "proclaiming", "purposeful", "undress", "procrastination", "hemel", "gauze", "precepts", "constellations", "gazed", "skips", "forceful", "fuente", "magdalena", "rut", "sehr", "hera", "subterranean", "rumored", "galicia", "amuse", "villager", "fixer", "condensing", "emanating", "assassinated", "brodie", "untimely", "associating", "romp", "idiom", "tangle", "legitimately", "congratulated", "couriers", "unwelcome", "concurred", "upsets", "sceptre", "confederacy", "matinee", "snatched", "plunder", "maa", "impromptu", "searchers", "gamut", "czar", "putney", "shattering", "refute", "amphibious", "mush", "shudder", "eyesight", "parson", "infidelity", "firemen", "contrived", "exhausts", "opposites", "dreamers", "foal", "hesse", "hesitated", "precarious", "hodder", "pease", "testifying", "topographical", "instructing", "dreary", "crispin", "horrid", "dryness", "wreckage", "paras", "captives", "despised", "conqueror", "innocents", "unprepared", "dost", "treacherous", "filet", "infidel", "volley", "carnal", "larceny", "versed", "confronts", "parliaments", "mitigated", "youngster", "enigmatic", "bridle", "stretcher", "cosa", "enfants", "leila", "berliner", "effecting", "hallucinations", "unravel", "smugglers", "intimidate", "rubens", "galilee", "frenchman", "tiller", "orifice", "bragging", "hordes", "beryl", "ferre", "forerunner", "grinning", "slashed", "watchful", "appalled", "silenced", "vanities", "evaporated", "affliction", "zag", "intestines", "saute", "iba", "schuyler", "idyllic", "satchel", "peruse", "revel", "alleys", "crucifixion", "hearn", "madly", "stiller", "experimented", "comming", "steeped", "gripe", "summa", "eyelids", "thereupon", "archers", "steamers", "bubbling", "forbids", "disdain", "exhausting", "absurdity", "magnified", "horsemen", "alabaster", "reigning", "deane", "georgie", "zara", "bribes", "kidnap", "coercive", "romanticism", "luo", "forme", "reinstate", "unthinkable", "lowly", "outburst", "scant", "mattered", "fitzroy", "ove", "raspberries", "sorely", "pail", "obtainable", "elvira", "mastiff", "drummers", "reformer", "solemnly", "liberally", "dahlia", "concentric", "loin", "ved", "unwarranted", "marmalade", "sandoval", "applauded", "ravine", "exponents", "brice", "ressources", "californians", "procuring", "pours", "leer", "nave", "arranges", "valhalla", "adoration", "amity", "superiors", "decanter", "starve", "leek", "shortness", "fronted", "lightest", "banquets", "picnics", "compulsion", "prerogative", "abscess", "paraphernalia", "heretofore", "memento", "lina", "tumbled", "masterful", "insoluble", "cockburn", "harwich", "casas", "semper", "repressive", "clos", "sweeter", "mattie", "deutscher", "spilling", "saucers", "gondola", "elizabethan", "hein", "spines", "reiter", "amphitheatre", "stupendous", "flutter", "acumen", "absolut", "shiver", "lumiere", "shatter", "pickled", "nieuwe", "hades", "superimposed", "burdened", "randal", "dandelion", "nuance", "classmate", "catechism", "driftwood", "rosalind", "giorni", "juin", "bigelow", "anointed", "mythological", "interspersed", "horseman", "nervously", "intruders", "chaparral", "nya", "decaying", "vez", "muses", "padlock", "oars", "gilead", "classed", "informer", "freer", "toute", "calabria", "dismantled", "overcame", "exertion", "solidly", "affidavits", "weaves", "chimera", "handkerchief", "foaming", "tailors", "barbarians", "splendour", "niveau", "sheriffs", "tassel", "admiring", "harmonized", "khartoum", "leans", "frankreich", "baffled", "wasteful", "hertford", "tripoli", "refraction", "grainger", "penzance", "fillets", "aztecs", "consults", "hoi", "foils", "retract", "inaudible", "nurtured", "frantically", "buoys", "tait", "disintegration", "theologian", "aquitaine", "sigmund", "individualism", "starboard", "precludes", "burdensome", "brest", "renown", "murky", "truthfully", "deutschen", "tongs", "perpetuate", "vigo", "cabal", "musa", "materia", "interwoven", "beggar", "pard", "extinguished", "silhouettes", "abundantly", "declination", "excesses", "mucous", "poked", "caricatures", "artiste", "bogen", "repose", "hasten", "tendered", "temperance", "risque", "resembled", "helpfulness", "omitting", "earthy", "adored", "embellished", "feathered", "aggrieved", "hacer", "assisi", "aggravating", "insulted", "fugitives", "passe", "anecdote", "partake", "pseudonym", "altitudes", "carolinas", "strikingly", "zy", "rancher", "morn", "bodyguard", "gnats", "solon", "eduard", "detract", "portraying", "pitted", "enlarging", "wrecks", "bombardment", "buckner", "dares", "tems", "eigen", "siesta", "satirical", "paar", "antoinette", "ugo", "cynic", "amenable", "runways", "frowned", "sass", "rout", "pus", "rubies", "checkered", "hatched", "sketching", "hypocritical", "trample", "courtship", "cupboards", "tolerable", "magi", "brescia", "alonzo", "tutto", "attenuated", "inefficiency", "merci", "booms", "demented", "eri", "bonaparte", "musketeers", "twickenham", "glee", "forgets", "grapple", "lowlands", "stimulants", "greenery", "proverbial", "tranquillity", "numa", "monastic", "uncles", "eph", "soared", "householders", "nestor", "impediment", "hel", "anarchists", "freund", "perilous", "devonshire", "tanto", "violets", "nouvelles", "nether", "nomads", "ramble", "ambulances", "natura", "hams", "idiotic", "parti", "cerberus", "bering", "formosa", "erg", "bough", "hoot", "herewith", "workmen", "grist", "penrose", "duster", "pronoun", "signer", "sloth", "steely", "pulleys", "fates", "stews", "nourishment", "gravitation", "loophole", "drags", "retrograde", "sade", "exaggeration", "shadowy", "liquors", "archangel", "fenwick", "creases", "primordial", "nourish", "vit", "uplifted", "percival", "gingham", "batterie", "gossamer", "hairdresser", "plover", "weg", "mow", "disliked", "leinster", "impurity", "worshipping", "chasm", "nuovo", "greenish", "regiments", "adel", "selfishness", "reactionary", "adriatic", "ejected", "grappling", "hammering", "mingling", "earnestly", "scribes", "leed", "monologue", "amphitheater", "vive", "signaled", "clem", "littered", "acutely", "razors", "masse", "legumes", "speculated", "worded", "quant", "fleshy", "desirability", "sundown", "persistently", "decoy", "balsam", "baruch", "verdicts", "authorise", "outcry", "eyeglass", "waterside", "grime", "extortion", "cordon", "colorless", "idealistic", "cutlass", "rigor", "greyhounds", "amalgamation", "preponderance", "cowardly", "pretentious", "cervantes", "wielding", "gusto", "maidens", "weimar", "mijn", "humbly", "langue", "unworthy", "expectant", "laurens", "azalea", "jeannette", "fruition", "florentine", "dwelt", "vlaanderen", "oberon", "enslaved", "vil", "cathay", "jura", "correspondingly", "legalized", "predicament", "hilly", "aisles", "trusty", "gratuitous", "fatally", "caged", "ephemeral", "radium", "dissimilar", "mutilation", "kon", "waging", "infringed", "overwhelm", "cognizant", "profil", "andalusia", "rowdy", "popes", "bravely", "sportsmen", "stumbles", "clematis", "slashing", "leger", "incomprehensible", "suez", "clogged", "gabriella", "fluctuating", "demeanor", "shipboard", "labourers", "paganism", "fido", "sounder", "mest", "caledonian", "hegel", "stench", "cursing", "pmb", "wickedness", "crouching", "attila", "emits", "culminated", "thefts", "sturm", "weiter", "auld", "spanned", "ebenezer", "closeness", "redeeming", "polity", "scriptural", "transylvania", "obscenity", "gaul", "heartache", "reigned", "entitles", "exacting", "wanton", "pelle", "enforces", "necessitate", "locket", "aver", "commemorating", "reconciling", "desolation", "gander", "bastille", "traceable", "voila", "savor", "darkly", "faithfulness", "resourceful", "heraldry", "incomparable", "dilated", "angered", "condone", "ahora", "mademoiselle", "constitutionality", "viscount", "preliminaries", "devolved", "liquefied", "alcatraz", "streamed", "resorting", "garters", "adamant", "pontoon", "tableau", "vernal", "napoleonic", "tennyson", "rubicon", "disorderly", "tala", "ivanhoe", "destroyers", "analogies", "frigate", "instalment", "dazed", "sentient", "entrust", "iti", "puffs", "burying", "dispatching", "cyclops", "veritable", "posterity", "keenly", "healthful", "nem", "meine", "repealing", "gourd", "groaned", "ferocious", "voicing", "mons", "sacrificial", "defies", "abnormally", "resuming", "bruising", "flogging", "religiously", "mundi", "encroachment", "demande", "seaboard", "laplace", "southerly", "humiliated", "unearthed", "sut", "cataracts", "subordinates", "vagabond", "consecrated", "oscillating", "jib", "bodice", "foray", "opiate", "cristal", "unmistakable", "filly", "rhubarb", "silencing", "aesop", "hab", "diminishes", "tidings", "sneaking", "unassisted", "insidious", "dike", "immutable", "croton", "depots", "nodding", "jasmin", "libri", "misrepresented", "amici", "substantiate", "algiers", "ocho", "templar", "cedars", "fortitude", "aloft", "mated", "wart", "tribus", "hollander", "ruffled", "armament", "plums", "tien", "revisiting", "fairer", "enterprising", "prides", "grafting", "smoothness", "trinket", "neutralize", "vasco", "playwrights", "wishful", "fal", "herod", "trailed", "habitation", "rogues", "speechless", "expanse", "preside", "arles", "colette", "delightfully", "oeuvres", "concealment", "unruly", "uncompromising", "moriarty", "obstruct", "unbounded", "coincided", "encased", "undertaker", "flickering", "sive", "gush", "saddened", "bathe", "scarred", "ignited", "crowding", "tew", "vrouw", "gladiators", "krebs", "stoddard", "scrooge", "aeroplane", "nagging", "contemporaneous", "precipitated", "hiss", "outlawed", "injuring", "bellow", "girth", "poppies", "inlaid", "notched", "baldness", "didactic", "lillie", "irritability", "provocation", "lustrous", "reeling", "desertification", "rennes", "crests", "molto", "loafers", "slapping", "tiene", "squires", "insures", "slaying", "mie", "frauds", "lobes", "dios", "thundering", "remus", "coals", "succulent", "heartily", "hic", "yellowish", "unsuccessfully", "moderne", "moustache", "geen", "lobsters", "eventful", "feasts", "stiletto", "teacup", "rebekah", "kein", "alvarado", "secession", "countered", "instinctively", "conspiracies", "chapels", "grado", "minions", "brunt", "infraction", "gory", "glens", "strangest", "stagnation", "displace", "countrymen", "perishable", "lyra", "gustave", "proteus", "denoting", "apiece", "jeanie", "strasse", "gammon", "storming", "islet", "conduits", "cinco", "headway", "friars", "maples", "alluring", "ikke", "edouard", "buzzard", "bony", "halting", "sana", "halley", "cranks", "headwaters", "reviving", "burrow", "universality", "veranda", "underrated", "insatiable", "exquisitely", "unfriendly", "hatches", "christened", "actuality", "teased", "murad", "attica", "flatten", "savant", "appreciating", "stinging", "membres", "gulls", "prescribes", "sultry", "sinned", "globular", "asiatic", "macaulay", "depositing", "engravings", "showering", "fanatical", "caper", "yann", "predicated", "montezuma", "lentils", "quack", "bruges", "grooms", "ousted", "cask", "grocer", "speedily", "auberge", "negroes", "chases", "intervened", "mezzo", "incarnate", "chimneys", "hela", "preoccupied", "hither", "diggers", "glances", "tyrants", "constantin", "giddy", "denounce", "entertainments", "oaths", "furness", "ripples", "herz", "bloodshed", "maw", "viento", "upsetting", "durante", "oxen", "nascent", "toda", "reinforcements", "precept", "salerno", "pavements", "murmured", "propellers", "violinist", "himalaya", "gibbon", "gratifying", "delirious", "excepting", "unlawfully", "spanien", "urchin", "polygamy", "utterances", "devising", "sustains", "woodman", "gravely", "errands", "hells", "cartes", "impulsive", "spasms", "rationally", "psychologie", "uproar", "savages", "craters", "wilmot", "mockery", "railings", "paulina", "northerly", "tenths", "quench", "passer", "projekt", "encompassed", "broil", "hurrah", "modestly", "epitaph", "allahabad", "insurrection", "brugge", "alger", "emigrated", "barges", "nota", "tremblant", "antennae", "fermented", "enfant", "headmaster", "walrus", "secretive", "grievous", "generative", "assyrian", "repetitions", "pensioner", "spellbound", "bretagne", "tengo", "domenico", "fend", "sapphires", "compressing", "intoxicating", "crumble", "resorted", "lecturing", "retreated", "senza", "magdalene", "veer", "netted", "dispel", "warships", "tamar", "woodbine", "straightening", "envious", "regretted", "colic", "oni", "membre", "adolph", "farthest", "iniquity", "fooling", "vaulted", "warms", "formalities", "resounding", "aku", "brazos", "saucy", "blistering", "illuminates", "masque", "kazan", "shillings", "gleaned", "decomposed", "flowery", "scandalous", "blas", "ciel", "menacing", "elector", "lili", "neurotic", "bituminous", "askew", "phipps", "groan", "dusting", "lombardy", "uncontrollable", "shackles", "shrines", "bridged", "consenting", "torturing", "toile", "relentlessly", "bracken", "couches", "decadence", "antes", "nourishing", "herschel", "reconsidered", "anche", "arduous", "morten", "assimilated", "creeps", "gripped", "sama", "unscrupulous", "nymphs", "unsettled", "inseparable", "caso", "jurist", "vestal", "dismisses", "variously", "arran", "unintentionally", "sprites", "dashing", "tiring", "abate", "piloting", "decreed", "mossy", "ores", "banque", "keyhole", "usages", "wickham", "vieux", "bowels", "cornet", "reversion", "sanctuaries", "convicts", "osman", "lodger", "santee", "thunderbolt", "claudius", "tremors", "apropos", "pitiful", "winkel", "sparrows", "bleached", "arbiter", "locomotion", "hus", "antimony", "hater", "buoyant", "expel", "martine", "combatant", "swoop", "neuter", "prejudicial", "gente", "introspection", "meister", "mariage", "benedictine", "reputations", "vitally", "mavis", "undivided", "chatted", "lured", "hurling", "brevity", "visage", "prickly", "septembre", "astonishment", "overshadowed", "rescuing", "sensibilities", "meritorious", "beheld", "martyrdom", "manna", "octobre", "moorings", "buddhists", "soars", "gnat", "housework", "gunpowder", "undressed", "southward", "liszt", "zwei", "zorn", "recounted", "denials", "prussian", "adorn", "contemplative", "awkwardly", "etta", "projets", "lik", "belles", "stipulations", "lifeless", "baffle", "pared", "sobriety", "slums", "burnet", "spaniards", "piloted", "successively", "cucumbers", "squaw", "snowdon", "pomegranate", "glas", "bouts", "transcends", "murmur", "bookkeeper", "crickets", "extinguishing", "noche", "attache", "bulging", "chemise", "epics", "smug", "flanking", "dons", "stadt", "prejudiced", "larva", "laziness", "mouldings", "tireless", "leander", "growl", "gorges", "stata", "canons", "pastimes", "diurnal", "coolness", "busca", "recumbent", "shipwreck", "fader", "unconsciously", "buffaloes", "marne", "dissolving", "osmond", "highness", "abstracted", "typhoid", "perfecting", "nez", "furtherance", "suis", "slits", "inquires", "yule", "phantasy", "sprache", "hoss", "crusty", "stillness", "precipitate", "underlie", "pharisees", "nicknamed", "drones", "minster", "sully", "bate", "pert", "depositions", "camped", "fraught", "perplexed", "replenish", "necessitated", "slowest", "unwillingness", "sehen", "trimmings", "esperanza", "divan", "lehrer", "holborn", "concours", "extraordinaire", "eloquence", "definitively", "natchez", "tripped", "strewn", "rubles", "bewildered", "beatings", "copious", "cade", "tremble", "instantaneously", "thump", "ghi", "pompeii", "alluded", "aberrations", "sojourn", "stateroom", "palacio", "adherents", "herbaceous", "distinguishable", "immaterial", "sina", "surging", "lop", "greased", "contraband", "flagging", "willed", "wounding", "inclement", "ange", "magpie", "stil", "robbing", "impartiality", "phosphates", "harpsichord", "capes", "impersonal", "proposer", "interpolated", "strolling", "moro", "salvo", "twigs", "furiously", "epitome", "joked", "breaths", "lilian", "glancing", "discarding", "fared", "fleck", "inflamed", "clough", "unlink", "shadowing", "wert", "regimental", "signifying", "tutte", "rectified", "savoie", "flanked", "bayonne", "primacy", "fuego", "buckland", "centrale", "eyeing", "bade", "insolvent", "mists", "nuit", "carmine", "relinquish", "emilie", "succinct", "palpable", "eton", "estar", "inhale", "dreamt", "convulsions", "snowshoes", "fiancee", "fue", "blumen", "yolk", "mediocrity", "rhyming", "sucht", "transcendent", "lichen", "lapsed", "stroked", "gallop", "cull", "unsatisfied", "wmo", "minstrel", "ewe", "contentment", "fareham", "cranium", "politic", "exchequer", "falsehood", "slugs", "carcasses", "piero", "candlesticks", "rosalie", "mingled", "rafts", "indulgent", "longed", "rammed", "wailing", "shrugs", "negros", "vertebrae", "moans", "buffets", "aristocracy", "eaves", "popularly", "brinkley", "marred", "falconer", "watchman", "venturing", "entitle", "bagley", "alibi", "ahoy", "jellies", "postponement", "brooding", "juncture", "greenleaf", "naturalized", "pikes", "haar", "meager", "commandant", "copernicus", "bourgeoisie", "plucked", "inflexible", "flowered", "bueno", "discord", "patrolling", "injurious", "voiture", "utilitarian", "compacted", "ende", "doughnuts", "reread", "stormed", "crucifix", "irreverent", "censure", "carbine", "credo", "heartless", "contented", "vultures", "forcible", "bushy", "thickening", "moins", "porches", "inoculation", "luxuries", "glorify", "abner", "maris", "admixture", "heredity", "nominally", "forza", "chloroform", "nettle", "mismanagement", "convincingly", "evangeline", "descends", "mischievous", "fateful", "complacency", "impregnated", "insular", "lagoons", "sensuality", "vere", "affix", "professed", "unrivalled", "sensuous", "owne", "sawing", "yelp", "herding", "mammalia", "hopped", "sceptical", "arma", "interfered", "halcyon", "bowing", "cogent", "parishioners", "traversing", "uninformed", "yorke", "aberration", "mollie", "nef", "conclusively", "calcareous", "tufted", "chieftain", "gestalt", "honeysuckle", "zeitschrift", "unspoken", "ishmael", "apprehended", "rhoda", "jammer", "forbidding", "sparring", "mindanao", "adonis", "domed", "distressing", "prettiest", "lif", "panes", "testifies", "filipinos", "chambre", "dainty", "crackle", "jes", "thwarted", "alban", "planks", "orville", "belcher", "spirals", "speculations", "sedentary", "extermination", "plumes", "outweighed", "transposition", "acheter", "beets", "repel", "pali", "coleridge", "anxieties", "poste", "onerous", "tenderly", "bonny", "haddock", "virginian", "pyjamas", "finns", "oftentimes", "entanglement", "miserably", "savoir", "rojas", "argosy", "elba", "stumps", "clouded", "diverting", "derogatory", "esteban", "xxiv", "sear", "rouen", "inaccuracy", "assimilate", "medea", "regenerated", "laine", "gottfried", "rapp", "credence", "welling", "patrolled", "georgette", "lovelace", "caen", "conferring", "incite", "divulge", "wardens", "scrubbing", "laughable", "momentous", "footpath", "entreprise", "harem", "fussy", "civility", "deluge", "squadrons", "ventricle", "fluted", "sweetened", "pry", "venison", "shoal", "basking", "pare", "blushing", "breathes", "lectured", "babylonian", "annonce", "morte", "bord", "skillfully", "heady", "confucius", "bombarded", "celts", "bathed", "cortes", "intractable", "corresponded", "speckled", "enumerate", "persuading", "onondaga", "diphtheria", "plaines", "hoard", "offre", "courting", "petrie", "lading", "woodcock", "churning", "chariots", "battalions", "unquestionably", "presque", "reproach", "viol", "vishnu", "cherub", "lieder", "trumpeter", "straws", "serrated", "puny", "emphatically", "reassured", "perceiving", "commendation", "leben", "contending", "patriarchal", "spelt", "barks", "dodging", "antiseptic", "browned", "oed", "hendrik", "highlanders", "ligaments", "wurde", "upheaval", "cringe", "crimea", "sugarcane", "mouthful", "gazelle", "gauche", "minion", "complicity", "unstrung", "tendons", "thrives", "penchant", "drab", "roared", "prospector", "unwise", "financier", "allegory", "harbours", "konstantin", "acropolis", "stifle", "tiberius", "paradoxical", "rousing", "sebastopol", "knelt", "radiating", "devour", "treachery", "petting", "inoculated", "princesses", "rossini", "portraiture", "incapacitated", "attested", "ope", "nuestra", "overcrowded", "warring", "arouse", "ticked", "purged", "repulsive", "sikkim", "seclusion", "elucidate", "fated", "frighten", "amputation", "halts", "subtlety", "creditable", "protruding", "appreciable", "delicacy", "paradis", "cinch", "futility", "dumplings", "diesen", "upholds", "enlistment", "inroads", "blissful", "boasted", "zealanders", "stirs", "platonic", "donkeys", "etna", "averse", "siempre", "afield", "endearing", "mishap", "lackey", "quod", "labors", "whooping", "sonnets", "musing", "masai", "barricade", "inquest", "snipe", "hapless", "cuenta", "polen", "ably", "montagne", "brun", "mirza", "beaux", "traversed", "sparsely", "shrinks", "channing", "fib", "ail", "innkeeper", "mistrust", "overcomes", "lordship", "egregious", "cubans", "transacted", "blaise", "chaplains", "conventionally", "nuestro", "perceptive", "haber", "lard", "destitute", "platz", "disbanded", "singly", "headless", "petrified", "emigrants", "thane", "salve", "hindustan", "marseilles", "beauchamp", "grates", "fissure", "curtail", "talker", "divorces", "vitesse", "winks", "harte", "loopholes", "soit", "novelists", "bestow", "homespun", "hulls", "complimented", "intonation", "proclaims", "dissecting", "clamped", "retracted", "friar", "hospitable", "melodrama", "creased", "preparer", "postures", "trapper", "makeshift", "tattered", "embarrass", "slanted", "plagues", "jota", "harvests", "surged", "blume", "natured", "clemency", "woolly", "blemish", "ajouter", "bushels", "tapers", "geniuses", "rind", "whiskers", "huntsman", "personne", "perpetually", "soundings", "evicted", "rara", "divisible", "accumulations", "lightness", "avoir", "quelle", "admirers", "marcello", "harbinger", "mustache", "revolutionize", "dwindling", "beaker", "arcades", "baggy", "jeweled", "rejoicing", "uomo", "ariadne", "dickie", "quiver", "sylvie", "frequented", "coronet", "agnew", "discredited", "taverns", "prodigal", "aden", "wield", "resolute", "adage", "wetter", "jeg", "conjure", "rote", "recitals", "adrift", "confiscation", "stings", "budge", "ilk", "ose", "silks", "sequins", "fringed", "goblins", "delineate", "organist", "kneel", "illuminations", "chuckled", "tacitus", "armenians", "excels", "furthest", "virulent", "masts", "garret", "commendable", "inadequacy", "barbaric", "deliciously", "ruse", "persephone", "lifelike", "culled", "muss", "presbytery", "tumblers", "gunshot", "desiree", "supposing", "sculptors", "charme", "calicut", "inde", "castilla", "zealous", "rattlesnake", "iridescent", "robberies", "elms", "excelled", "twine", "meteors", "judicious", "unaltered", "collation", "geist", "silvio", "parke", "diction", "unoccupied", "tigris", "pedestals", "tribulations", "colman", "sabina", "meilleurs", "buckwheat", "enshrined", "surpasses", "yearling", "agape", "wrenching", "damnation", "rapidity", "bajo", "tempus", "deleterious", "intersecting", "garibaldi", "alluvial", "xxv", "incisive", "concealing", "clutching", "drifts", "tenement", "discernment", "chalice", "hypocrite", "harrowing", "prefect", "sweetly", "cleave", "flimsy", "strada", "delilah", "bedded", "shivering", "formality", "produit", "mangroves", "suffices", "bingley", "whosoever", "comte", "tigre", "cham", "graced", "ultimo", "statuary", "moraine", "moravian", "intermittently", "armaments", "grins", "chewed", "accomplishes", "inapplicable", "bly", "pasha", "scour", "motionless", "notaries", "galant", "fallow", "indictments", "aileen", "leapt", "pelo", "widower", "quagmire", "taffy", "purging", "cleansed", "bem", "fainting", "theorist", "scaring", "serviceable", "obstructed", "indigestion", "jackal", "snowflakes", "massacres", "entailed", "curative", "bier", "traitors", "igneous", "cambio", "lull", "rinsed", "delectable", "proletariat", "lise", "fanciful", "bey", "mystics", "fresher", "consummate", "brows", "technic", "veda", "ephesus", "domesticated", "dismayed", "steered", "remitted", "shew", "miraculously", "lapses", "romagna", "freemasonry", "dwells", "penitentiary", "shrewd", "impatience", "italie", "crass", "spaulding", "jot", "gott", "benevolence", "lancelot", "suspiciously", "eugenia", "reprimand", "mangled", "staunch", "shaven", "fez", "feld", "molestation", "quarts", "yells", "lacs", "blindfolded", "premiers", "wraith", "nimble", "hyacinth", "yonge", "durst", "naturalists", "derelict", "gle", "shrouded", "clarissa", "brazen", "inundated", "joie", "brahma", "anni", "veracity", "pinocchio", "angers", "gustavus", "raps", "unwittingly", "counsels", "battlefields", "antecedent", "matty", "dorothea", "licht", "legislate", "voluptuous", "complacent", "germania", "grandmothers", "dalla", "objet", "unaccompanied", "schooled", "picts", "foresters", "hag", "guerre", "dorn", "ainsi", "orinoco", "loveless", "sharpened", "nostrils", "cambrian", "impure", "gridiron", "innermost", "wry", "pilate", "pinning", "alms", "stung", "koko", "phantoms", "retort", "congregate", "meditative", "smirking", "chestnuts", "expositions", "begotten", "gainsborough", "sparkles", "collared", "stringed", "barnabas", "weeding", "evasive", "smirk", "ancora", "pausing", "grands", "replete", "inconceivable", "antworten", "crutches", "apportioned", "pawnee", "accumulates", "failings", "otra", "bristle", "classe", "terrors", "uriah", "oblige", "visite", "panacea", "vibrate", "penetrates", "mayhew", "cathedrals", "toads", "liber", "perceives", "nubian", "stumped", "cramp", "sodom", "imitations", "mistletoe", "naam", "hallowed", "appease", "hawes", "furlong", "heralded", "linde", "clearest", "supersede", "shovels", "renaud", "phrasing", "quarries", "sensibly", "vio", "mouthed", "gills", "braids", "milder", "inexplicable", "counterfeiting", "expeditious", "intently", "chrysalis", "rechercher", "hoary", "corse", "crocodiles", "ronde", "eze", "zeno", "deceiving", "oedipus", "beamed", "scraped", "chagrin", "vill", "tickled", "hindrance", "discreetly", "sparing", "emeralds", "wanders", "disillusioned", "preoccupation", "stato", "restful", "aristocratic", "scouring", "profitably", "pinched", "purport", "plunging", "shambles", "juillet", "marten", "admittance", "stinking", "porridge", "symbolize", "standstill", "unattractive", "diffused", "firmer", "reproduces", "promulgation", "unshaven", "rakes", "sante", "incognito", "silliness", "burgh", "giggling", "coldest", "proviso", "quando", "barnyard", "dikes", "vento", "donal", "artifice", "dato", "glides", "allot", "witte", "vad", "progenitor", "abomination", "erste", "mote", "argumentation", "passively", "hurled", "vesta", "jacky", "wold", "habe", "straightened", "deranged", "contesting", "darwinian", "touchy", "rafters", "unintelligible", "whitworth", "hinten", "infantile", "unspeakable", "demolish", "comforted", "disgraceful", "worshippers", "servitude", "aqueduct", "framers", "streamers", "humbled", "marcella", "radiate", "stipulate", "proximate", "secretions", "attains", "gallus", "idem", "hark", "perturbed", "cemented", "dissolves", "crowning", "bettina", "smuggled", "punctuated", "blunder", "euston", "zucker", "belted", "baal", "felon", "deen", "thud", "hagar", "antlers", "doubting", "dunkirk", "libretto", "debatable", "reaping", "aborigines", "estranged", "merthyr", "ihn", "joh", "decisively", "swims", "undeniably", "spasm", "kom", "notables", "eminently", "snorting", "seguro", "mercilessly", "firs", "cobbler", "invigorating", "heinous", "dusky", "kultur", "esso", "linnaeus", "infallible", "loaves", "dieu", "heeled", "quibble", "meandering", "incessant", "baines", "blick", "namen", "cheery", "curbing", "harshly", "betterment", "rump", "oben", "sweethearts", "slush", "mutton", "coi", "blinked", "altri", "lenore", "townshend", "zigzag", "lesen", "dragoon", "sympathies", "leggings", "benefactor", "thales", "nacht", "merrily", "vouch", "pompey", "blackness", "transitory", "gales", "hypocrites", "larynx", "droughts", "ancona", "springing", "bethune", "nocturne", "perdue", "altruism", "ceasing", "dutchman", "capricious", "angelique", "harmonize", "crescendo", "gipsy", "frederik", "miserables", "amalgamated", "obeying", "gunners", "pent", "mishaps", "subsidence", "plastering", "promiscuous", "asturias", "basso", "dusted", "sago", "inlets", "fords", "pekka", "parentage", "mutter", "litters", "brothel", "rive", "shelled", "outlandish", "sneezing", "sancho", "variegated", "abysmal", "personnes", "bourse", "tenacity", "partir", "moslem", "fourths", "revolutionized", "permanence", "coincident", "inez", "minding", "permis", "enviable", "accessions", "carpeted", "zeke", "eloquently", "overtaken", "hock", "subheading", "renews", "extinguish", "oli", "lowing", "bullied", "accruing", "dirge", "actuated", "bluish", "tingle", "captivated", "parlors", "lamented", "bruise", "cesare", "perfumed", "dames", "unfettered", "imogen", "lewd", "thither", "rebuke", "collated", "occasioned", "swayed", "dupe", "bogs", "affording", "assuredly", "allusions", "shadowed", "seamen", "intelligible", "overlaid", "censors", "shakespearean", "edict", "octavia", "boyhood", "sustenance", "shrew", "freya", "disrespectful", "confounding", "dispensation", "arian", "depreciated", "diagonally", "cased", "laterally", "prays", "nonce", "lemme", "elevating", "augustin", "beresford", "loup", "likened", "bericht", "sketched", "plage", "firmness", "injustices", "longfellow", "unequivocally", "perspiration", "mirth", "serre", "pauper", "brooms", "horus", "casi", "fois", "ushered", "remedied", "vocations", "depuis", "scorched", "instep", "wilfrid", "machiavelli", "ivor", "mignon", "houseboat", "krieg", "clementine", "smokeless", "stanhope", "thorax", "recherches", "warship", "corinthian", "rattles", "esti", "garten", "dislocated", "marvels", "booby", "conceivably", "persians", "injunctions", "crunching", "exuberant", "dus", "composure", "contradicted", "birthright", "errant", "proofread", "rearranged", "heifer", "earthen", "uplands", "paget", "portcullis", "noose", "recur", "desirous", "exemplar", "shivers", "smitten", "rarest", "quiero", "averted", "publique", "dissipated", "gregorio", "masquerading", "discernible", "looser", "ptolemy", "lauded", "pais", "consonants", "demarcation", "miocene", "steeple", "concussion", "nailing", "deadliest", "sparingly", "penance", "priestly", "curtailed", "lovejoy", "rollo", "conspicuously", "risked", "bowled", "modernized", "blemishes", "eagerness", "pearly", "recklessly", "islets", "apothecary", "gagne", "looted", "padua", "jointed", "heyday", "voce", "pulsating", "beaming", "dore", "taint", "lounging", "predisposition", "outwardly", "tumultuous", "overseer", "chine", "crier", "decompose", "unimaginable", "briton", "glistening", "moonshine", "jurgen", "leurs", "scribble", "anselm", "fete", "puerta", "peculiarities", "lichtenstein", "favourably", "beset", "romain", "involuntarily", "swede", "discoverer", "livers", "plowing", "militarism", "glassy", "riddled", "wealthiest", "shrill", "swedes", "headland", "agitator", "utensil", "volk", "sheba", "glows", "heighten", "surpassing", "ladle", "pasa", "pinks", "rusted", "naturalistic", "dogmatic", "tristram", "ballon", "surly", "presente", "sonne", "fertilized", "admirer", "seco", "gibt", "motioned", "catastrophes", "thickened", "indra", "candor", "sabin", "wigwam", "animales", "beheaded", "postmark", "helga", "bereaved", "malin", "drugged", "motte", "volga", "rivalries", "gnomes", "denne", "affectionately", "uneducated", "necessitates", "blunders", "proportionately", "corea", "porque", "mocked", "holler", "fain", "hae", "sint", "darrin", "mois", "cruelly", "tapioca", "furrow", "fewest", "parables", "drowsy", "bushel", "beholder", "sedition", "lutherans", "examen", "ghastly", "vaudeville", "succumb", "criticise", "inquisitive", "doorways", "sirs", "overruled", "menagerie", "osgood", "teamsters", "seul", "forked", "apprehensive", "cowards", "cielo", "cowl", "captors", "fils", "laity", "prefixed", "arming", "amassed", "itinerant", "felons", "dormitories", "dearth", "palatable", "unmasked", "instinctive", "corpo", "sais", "restlessness", "baptised", "burlesque", "regaining", "perversion", "swells", "sujet", "acquaint", "tog", "altro", "havelock", "lengthening", "taut", "laa", "romulus", "sommers", "doings", "financiers", "foolishness", "unequivocal", "noire", "arriba", "silken", "stringing", "bazar", "thrusting", "pavilions", "maddy", "clung", "hie", "bist", "needlessly", "squatting", "cordially", "wilkie", "succumbed", "superstitions", "spangled", "rectory", "alli", "multum", "iliad", "graze", "looped", "unobtrusive", "judea", "currant", "underlies", "intricacies", "afoot", "oddity", "gerrit", "cornered", "auspicious", "splashing", "hotly", "puffed", "disapproved", "interlaced", "instalments", "presumptive", "comprehensible", "tempore", "fallacies", "theodor", "sawdust", "metaphorical", "leaped", "alertness", "embers", "assemblages", "searchlight", "heil", "swinton", "ize", "snob", "stave", "vertu", "snowing", "bleeds", "canaries", "semblance", "shins", "fickle", "outnumbered", "recht", "lukewarm", "quai", "rotunda", "observances", "faintly", "indiscriminate", "alphonse", "piu", "raison", "eyeballs", "barricades", "devoting", "idolatry", "decked", "introspective", "aggravation", "sedge", "nou", "pinching", "tine", "pretenders", "infidels", "dweller", "diabolic", "demonstrable", "letzte", "priestess", "nimrod", "irritate", "siguiente", "beards", "churchyard", "despicable", "canter", "reminiscences", "racy", "stoop", "intr", "rendu", "facile", "christiana", "coerced", "billets", "sneeze", "sian", "dignitaries", "somber", "overgrown", "statesmen", "vecchio", "advices", "coffers", "sikhs", "awry", "celt", "lode", "elia", "zora", "rages", "clumps", "tithe", "subordination", "fictions", "deposed", "trending", "disinterested", "forsake", "conspirators", "swinburne", "unresponsive", "baboon", "romani", "swamped", "ensues", "habla", "seit", "elated", "buttered", "sangre", "selfe", "stuffy", "depress", "eccentricity", "transgression", "idealized", "clings", "flamboyant", "memoria", "nachricht", "macht", "toma", "clergyman", "sociales", "scape", "francia", "pledging", "dependants", "rechte", "puddings", "partisans", "mausoleum", "idler", "dawned", "generale", "carelessly", "narcissus", "crusoe", "einfach", "skimming", "stomachs", "namesake", "slaps", "maximilian", "gratuity", "reorganize", "foothold", "reggio", "usted", "madge", "gleam", "rudyard", "supposition", "sprinkling", "besieged", "malaise", "draperies", "newby", "rococo", "brabant", "superlative", "presser", "chamois", "dwt", "voy", "seared", "tinged", "professorship", "diamant", "leeward", "fruitless", "tamer", "ticklish", "alienate", "displeasure", "connoisseurs", "mutilated", "usefully", "instituting", "balzac", "moyen", "threefold", "innocently", "deepened", "clef", "dak", "pura", "regarder", "trice", "pretense", "jungles", "imitating", "shreds", "petitioned", "thad", "archway", "danse", "loudest", "ultimatum", "shuffled", "moy", "shelling", "visita", "zeitung", "observant", "unhappiness", "cinder", "pelt", "ung", "laurels", "methodical", "engulfed", "bequests", "monotonous", "pythagoras", "operatic", "malevolent", "lessened", "stile", "reciting", "naught", "antagonism", "prisms", "debby", "coinage", "unproductive", "banqueting", "nefarious", "stoppage", "defray", "endangering", "zealots", "weighty", "oeuvre", "subsided", "sahib", "gasping", "idiocy", "frenzied", "postulate", "senor", "trespassing", "pendent", "edifice", "vermin", "loosening", "dialectic", "tantalizing", "rhinoceros", "adjutant", "otro", "sickening", "pondered", "teil", "snows", "steeper", "rangoon", "depriving", "stalwart", "verandah", "schreiben", "buttery", "deformity", "cronies", "undervalued", "invalidity", "soundly", "dank", "pinkerton", "canvases", "weakens", "paulus", "ebcdic", "politik", "lariat", "pursuance", "scapegoat", "anathema", "comptes", "trifle", "forefathers", "piraeus", "xxvi", "eradicated", "toga", "fram", "inadmissible", "strasburg", "berths", "innocuous", "heroines", "retake", "unpacked", "gonzalo", "clenched", "groupes", "evaporate", "midwinter", "compagnie", "bellini", "undoing", "communes", "cassava", "disappointments", "glace", "puns", "hilt", "devoured", "inwardly", "adeline", "smothered", "eulogy", "siva", "lond", "forsythe", "pernicious", "fenster", "continua", "babbitt", "reims", "scrimmage", "privates", "whims", "hew", "skirmish", "roan", "nonsensical", "gallows", "rheumatism", "devotee", "nieuw", "cowardice", "fabled", "fangs", "animosity", "wily", "wiles", "ensue", "jaffa", "sagging", "chemin", "crumbled", "sybil", "pekin", "defied", "hopelessness", "errand", "yeoman", "slimy", "unser", "coerce", "overhang", "ihren", "jeunes", "sobbing", "muslin", "deliberative", "gute", "tattooing", "shekels", "emigrant", "dodo", "jahr", "thorny", "epistles", "trampled", "anthracite", "meditating", "merciless", "clump", "transcribe", "atrocity", "elinor", "proportionally", "untrained", "beene", "thrusts", "tiresome", "splashed", "antonyms", "lune", "moccasins", "parthenon", "abounds", "salutes", "collided", "tilde", "potash", "boarders", "lapping", "chivalry", "corazon", "frustrate", "sideboard", "poaching", "montmartre", "foiled", "flocked", "connaught", "tether", "hyperbole", "borghese", "schrieb", "brahman", "charlemagne", "pulsing", "heralds", "sterility", "dynasties", "prowl", "amiable", "akt", "sittings", "undulating", "thatched", "felice", "esto", "irrevocably", "bunyan", "hinders", "tubers", "unrelenting", "expeditiously", "antiquated", "jerked", "sputtering", "opulent", "mots", "dimly", "coconuts", "confuses", "executors", "squall", "nothingness", "hebrides", "demeter", "antagonistic", "bowery", "immovable", "caterpillars", "consigned", "rhein", "fervor", "pret", "scooped", "exerts", "idling", "cursory", "dissipate", "hymen", "refuted", "ionian", "americanism", "pessimism", "vehemently", "velvety", "vedere", "wheezing", "teeming", "paradoxes", "lampe", "foolishly", "ordre", "eer", "inanimate", "panting", "comers", "romaine", "wulf", "peckham", "tacks", "veille", "effusion", "lunacy", "loathe", "notoriety", "showered", "brats", "huddle", "taxicab", "confounded", "coughs", "pretends", "faery", "eloise", "widens", "omnipotent", "gautier", "poise", "zeeland", "ringed", "cima", "huddled", "unsteady", "zwischen", "duchy", "malacca", "wol", "magda", "carrion", "summarily", "heine", "voi", "ejaculations", "leopards", "dette", "sanctified", "tradesmen", "excitedly", "pentru", "braced", "gaunt", "nourished", "cornstarch", "doch", "effie", "daffodils", "lettre", "boden", "pollute", "bara", "kamen", "neuer", "pomp", "noms", "stora", "sprouting", "summoning", "annabel", "tartar", "brownish", "rejoin", "rosettes", "etats", "volition", "crawls", "suave", "riddance", "gulp", "lottie", "hac", "lurk", "smudge", "tulle", "helplessness", "circumstantial", "dermot", "naturalism", "haga", "colle", "galloping", "indestructible", "principality", "indulging", "allusion", "bosh", "samaria", "smeared", "gouvernement", "liqueurs", "winifred", "parasol", "coloration", "stingy", "succinctly", "devotes", "manet", "anos", "vigour", "snares", "schnell", "illegible", "mortars", "didst", "curiosities", "wither", "schloss", "seamed", "calmed", "flattered", "babbling", "roch", "admirably", "vipers", "nightfall", "nul", "manos", "hurl", "loyalists", "dory", "sheltering", "forego", "castile", "klasse", "blockquote", "tyrol", "irreparable", "immunities", "broiled", "superstitious", "evangelists", "insides", "sedative", "defraud", "toothed", "bygone", "wilds", "intercession", "complet", "lettered", "mirada", "paa", "apricots", "darkening", "depressions", "mache", "toasting", "exhale", "markt", "altars", "abolishing", "chauncey", "recesses", "kinsman", "payed", "overworked", "cecile", "orbs", "aime", "mutable", "delicacies", "toujours", "scorching", "coffins", "jove", "cashed", "ushers", "jewry", "copperfield", "chapelle", "whoop", "cacao", "andra", "annoys", "heiress", "godhead", "canvassing", "portia", "shyness", "angelus", "subjecting", "momento", "escorte", "unsightly", "frayed", "criminality", "woolen", "repos", "levelling", "shrapnel", "arthurian", "burgos", "litany", "fairest", "nutter", "bristles", "larder", "ganges", "machen", "truthfulness", "atrocious", "obelisk", "valeria", "claret", "fru", "samos", "consecration", "forbearance", "acerca", "plastered", "apostrophe", "stepmother", "ruf", "lapland", "publius", "ihnen", "jesuits", "voluminous", "mottled", "plu", "tosses", "manifesting", "estella", "publics", "rien", "normandie", "scrip", "rocher", "inadequately", "arabella", "matti", "throng", "flemming", "shunned", "abandons", "appetites", "turnip", "juxtaposition", "crushes", "carnivorous", "berber", "mince", "banish", "flapping", "fino", "frets", "schism", "sculptured", "suivant", "jemima", "heretics", "dogged", "apparition", "barristers", "scrutinized", "earthworks", "thrashing", "salome", "thumping", "vara", "quenching", "hunch", "amaryllis", "messes", "perdition", "wintering", "topple", "chickasaw", "pungent", "discontinuance", "unbridled", "astrologer", "dut", "canvass", "manifestly", "emphatic", "susy", "outgrowth", "homeward", "withered", "baiting", "surrendering", "fortification", "mingo", "spurt", "elation", "wail", "artistically", "elma", "epileptic", "crag", "hace", "feller", "enmity", "sanctum", "mazes", "jenks", "schutz", "materialistic", "boaz", "jahre", "gud", "oncoming", "racked", "cloister", "provincia", "fancied", "spoilt", "predisposed", "hydrochloric", "filippo", "strode", "agen", "marchand", "disorganized", "shaftesbury", "littoral", "denn", "aggressor", "giggled", "consummation", "fronting", "zola", "heute", "unfaithful", "executioner", "titular", "swears", "diminutive", "paring", "damning", "matrimony", "armas", "humbug", "signalled", "granulated", "ailment", "homely", "perpetuity", "stepfather", "disprove", "dinero", "bernhardt", "incurable", "dixit", "shoving", "furnishes", "anointing", "corinna", "strictest", "domiciled", "minx", "eclipses", "prise", "misdemeanors", "hadrian", "supremely", "mensch", "hastened", "perpetuating", "prostrate", "provisionally", "cocked", "raged", "boyne", "singularly", "elam", "gobble", "preposterous", "symbolized", "breech", "ripening", "pyramidal", "shee", "choruses", "obstructing", "phosphoric", "parquet", "vint", "pasquale", "reparation", "amply", "damask", "rejoined", "impotent", "spits", "papacy", "thimble", "lacquered", "ablaze", "simmering", "nettie", "grasshoppers", "senatorial", "thawed", "unexplored", "transpired", "toulon", "fortifications", "dens", "loafer", "quin", "insurmountable", "prettier", "peu", "haystack", "komen", "chaque", "confining", "louvain", "etchings", "impenetrable", "gymnastic", "tink", "purr", "duped", "stifling", "realises", "vindicated", "bund", "invades", "oust", "suo", "dipper", "signified", "talkers", "exemplify", "inane", "byways", "ibsen", "justus", "bluntly", "bask", "mermaids", "contemplates", "inglis", "defensible", "spinster", "goblets", "interrogated", "yolks", "famille", "dello", "magdeburg", "tarnished", "deducting", "fie", "brimming", "ridiculed", "baie", "ionia", "olden", "herne", "unending", "abominable", "rattled", "basse", "farmhouses", "tambourine", "venomous", "impressively", "inextricably", "etexts", "tapering", "prinz", "unjustly", "rehearse", "apertures", "seducing", "screeching", "reedy", "ceded", "sido", "imbued", "fearsome", "bureaux", "sleds", "christendom", "biographer", "wreak", "planta", "bridegroom", "swarming", "hava", "accomplice", "vivre", "moni", "mui", "ili", "servi", "irregularity", "gash", "impeded", "gravestone", "pompous", "sunt", "subvert", "hanno", "instrumentality", "barnaby", "antwort", "impassioned", "mous", "esau", "desperado", "flavoring", "mouton", "bau", "contagion", "archimedes", "desecration", "pocketbook", "anselmo", "misinterpreted", "garlands", "varma", "mongol", "audacious", "midshipmen", "degrades", "maggiore", "protestantism", "soreness", "boldness", "schip", "inhalt", "otras", "cassius", "powdery", "exportation", "diverge", "loosened", "misunderstand", "virility", "inalienable", "norden", "untamed", "eben", "viel", "xxviii", "meddling", "objecting", "gib", "shoddy", "salutation", "altercation", "octagonal", "mended", "navigators", "notches", "odysseus", "unfavourable", "abject", "heretical", "riveted", "quiescent", "strangeness", "rideau", "tincture", "erecting", "tenderer", "wirtschaft", "lucian", "jaar", "persevere", "fittest", "tarnish", "isthmus", "giuliano", "wordt", "hildebrand", "feu", "treads", "lengthen", "bahn", "prodigious", "spoonful", "sociable", "requisitions", "deftly", "raucous", "toasts", "exaggerate", "odes", "blushed", "saddest", "grinds", "immorality", "addington", "marcellus", "ciencia", "wench", "celle", "spontaneity", "illusory", "sympathize", "faggot", "barrows", "tantamount", "slaughtering", "dissected", "borrows", "frigid", "hemispheres", "woollen", "musick", "speculating", "pawns", "outermost", "selwyn", "westphalia", "augmenting", "winded", "poder", "methinks", "rambles", "namur", "tyme", "dawning", "lait", "klang", "congratulating", "sempre", "flagrant", "wane", "loins", "uneventful", "quis", "scoundrels", "distraught", "assassinate", "unwavering", "confidentially", "piecemeal", "soll", "inferiority", "burnished", "clothe", "swelled", "vides", "breda", "gentleness", "staked", "rigidly", "simile", "phalanx", "hindering", "sloped", "sifting", "fixe", "isobel", "loudness", "guillotine", "reverting", "dionysus", "leanings", "groans", "herbst", "canker", "keener", "embellishment", "confesses", "mistresses", "breakwater", "smuggler", "busily", "poached", "aram", "shopkeeper", "hailing", "imparted", "traduction", "contradicting", "headlong", "captor", "indelible", "tethered", "whiteness", "grazed", "unfulfilled", "acquittal", "meilleur", "fluently", "ascribe", "stalked", "deluded", "trembled", "gens", "doon", "unobserved", "labored", "tete", "twitching", "smacks", "silber", "troughs", "unbelievers", "hungerford", "brothels", "skilful", "werk", "basta", "bolder", "omits", "endures", "heeft", "silencio", "laski", "selle", "pueden", "impersonation", "hote", "lavinia", "intents", "unconnected", "ovum", "pruned", "wedded", "lashed", "valladolid", "contentions", "bickering", "whaler", "unobstructed", "menschen", "fondling", "cref", "laissez", "ricks", "spenser", "astounded", "permanency", "smacked", "personen", "pallas", "anatole", "sleet", "disgraced", "philippa", "royaume", "grooved", "resigning", "appareil", "alcove", "termine", "ungodly", "felling", "landes", "hout", "ois", "disclaimed", "aucun", "upp", "appartement", "couleur", "montagu", "steamship", "condescending", "recounting", "breeches", "appellation", "mitglied", "abbe", "montes", "exemple", "handsomely", "fille", "segovia", "untenable", "messer", "deformities", "necktie", "huis", "xxvii", "tardy", "disregarding", "matron", "seaward", "uppermost", "adolphus", "ciphers", "nibble", "heim", "volver", "exerting", "fenn", "fleeces", "industrious", "foie", "decayed", "proprietorship", "essere", "allgemeine", "umsonst", "harps", "hedged", "cleanest", "selon", "teutonic", "viceroy", "maintenant", "ingrained", "caspar", "swordsman", "commissary", "yellows", "habitually", "naman", "maxime", "majorities", "rendus", "mummies", "conquests", "brimstone", "quand", "trowel", "tyndall", "profiting", "beseech", "hitched", "mucha", "mair", "smelt", "fatale", "margery", "yearn", "mismo", "culprits", "trinkets", "whig", "enchant", "austere", "earths", "selbst", "storehouse", "cowhide", "plumage", "antecedents", "diabolical", "tugs", "rapier", "unspoiled", "haughty", "relinquished", "assaulting", "admirals", "cosi", "meisjes", "esmeralda", "captivate", "terug", "deterred", "agostino", "apathetic", "uninteresting", "lyre", "yawning", "centralization", "prunes", "buller", "cossacks", "attuned", "herons", "raiding", "deft", "seething", "carne", "jardins", "alligators", "instigated", "superstructure", "husk", "grandiose", "clerkship", "concisely", "sah", "scepticism", "quatre", "constancy", "plats", "countryman", "insufficiently", "reappear", "boudoir", "affinities", "glades", "crutch", "rioting", "espoused", "mamie", "frisch", "discursive", "disputing", "unpaved", "lieber", "repudiation", "clarice", "dimples", "inhabitant", "flourishes", "colonized", "hessian", "feder", "ardour", "hing", "erat", "arbeit", "levant", "imitators", "talkative", "phonograph", "speculators", "sty", "quelques", "smelting", "cuss", "slats", "transcribing", "manoeuvre", "offends", "lumpy", "landlocked", "embattled", "wisest", "giulio", "zin", "diminution", "ging", "rencontres", "southernmost", "freckles", "civilised", "airship", "galls", "ammon", "imitated", "inflicting", "inducement", "heave", "cud", "gegen", "proclamations", "rarer", "slowness", "wrongfully", "lessening", "aurelius", "pout", "cognate", "mire", "sufferer", "mores", "raindrops", "elegy", "sanctification", "sanded", "indignant", "godless", "sloop", "politeness", "baffling", "hurriedly", "characterise", "purporting", "passo", "taunt", "ick", "hinting", "schoolboy", "bailiff", "outpouring", "deflected", "inflection", "lettres", "myrrh", "infuse", "chaff", "defaced", "mimicking", "counseled", "showy", "altruistic", "aldermen", "commends", "moorish", "etre", "bobbing", "defiantly", "colonels", "posible", "bli", "cualquier", "pathos", "battleships", "smartly", "laments", "spied", "playthings", "argumentative", "roused", "aloof", "snore", "charred", "industria", "hij", "ihrer", "dunstan", "bolshevik", "unsound", "hatter", "creepers", "recreations", "profusely", "intelligences", "sorrel", "reverie", "colloquial", "callous", "oom", "perplexing", "splashes", "homesick", "gainer", "ochre", "dois", "bystander", "quell", "repulsion", "capitan", "balk", "imagines", "softens", "harnessed", "exuberance", "flocking", "unnumbered", "outbursts", "undying", "stubble", "bande", "amie", "envie", "tle", "quivering", "ete", "euery", "wein", "sark", "commending", "sofort", "flattery", "soothes", "millstone", "mortgaged", "impossibly", "giorno", "compels", "succes", "drunkenness", "indulged", "habitable", "spn", "subtleties", "ministre", "trappings", "afterthought", "damsel", "euphrates", "schoen", "decorum", "hommes", "spoiling", "yellowing", "robs", "giselle", "earthenware", "incendiary", "selina", "lenient", "dined", "idly", "freda", "devilish", "aristocrat", "scathing", "twinkling", "nichts", "pantomime", "familie", "wanderings", "decimated", "overthrown", "moored", "peered", "bores", "regrettable", "strangled", "maxims", "cama", "engrossing", "fere", "jezebel", "lethargy", "komm", "frolic", "painstaking", "goths", "finality", "toppled", "ewes", "mending", "wrestled", "hurtful", "alternation", "receding", "gast", "laban", "neuen", "paix", "candelabra", "outposts", "treading", "hedwig", "downy", "conformed", "characteristically", "canadien", "goldsmiths", "swarms", "geographers", "somos", "evolutions", "escorting", "irregularly", "oratory", "sharpest", "palisade", "moccasin", "circumcised", "growled", "auxiliaries", "benefactors", "terse", "insistent", "peppered", "sterne", "avez", "utile", "frightful", "trite", "gentler", "vex", "dilapidated", "mien", "avance", "wollen", "dela", "stubby", "sixpence", "hoch", "visto", "impaled", "forays", "charon", "flanks", "pavia", "curbed", "efficacious", "philanthropist", "thaddeus", "convinces", "rede", "minder", "orator", "abet", "dien", "ropa", "sence", "steppe", "plowed", "sires", "transgressions", "lingers", "smothering", "encampment", "roque", "prophesy", "recast", "misrepresentations", "bards", "bestial", "neuf", "buddhas", "oozing", "vicenza", "richelieu", "curd", "bookish", "subdue", "raking", "denouncing", "ascertaining", "stags", "vittoria", "soldered", "privateer", "milly", "vicarious", "traverses", "seedy", "imbedded", "elysium", "quenched", "antithesis", "envoyer", "awakens", "accentuate", "squandered", "sortie", "withal", "eyelashes", "colliers", "minuten", "tilden", "asti", "blindfold", "rampart", "possessive", "feldspar", "facades", "idealist", "constables", "mourns", "solidified", "cura", "conceit", "needful", "locusts", "thatch", "cappadocia", "weathers", "grunts", "thicket", "zou", "depraved", "continence", "treatises", "renseignements", "sauvage", "prying", "rascals", "voyageurs", "rudely", "weeps", "deplorable", "smacking", "aggravate", "quoth", "snowstorm", "lacuna", "chambres", "rawson", "levelled", "incessantly", "toit", "apres", "flaring", "neues", "langton", "testa", "lye", "ditty", "pestilence", "rapide", "thoroughfare", "skiff", "belligerent", "impeached", "hight", "eclipsed", "conspired", "catacombs", "agonizing", "bottomless", "sows", "attributing", "londoners", "faut", "sardis", "excruciating", "punctual", "runaways", "boniface", "grafted", "watercourse", "propped", "beaton", "telegrams", "staking", "conversing", "acetylene", "calamities", "viennese", "fancies", "accuser", "bystanders", "minos", "ganymede", "enjoined", "animating", "mercurial", "bargained", "repugnant", "citron", "clave", "pageants", "grosses", "tacked", "zeigen", "supplant", "slates", "prue", "corroborated", "andros", "tipsy", "tabac", "recognisable", "neuralgia", "timbre", "clasped", "pecking", "womanhood", "crimean", "exorbitant", "tish", "grieved", "experimenter", "tallies", "serpents", "tampered", "severally", "bedstead", "acquis", "bostonian", "whirlpools", "sotto", "caressing", "reliefs", "tassels", "culpa", "whiter", "froth", "obliterated", "regalia", "peerage", "deceitful", "storied", "unprofitable", "doublet", "astonishingly", "dein", "cannibalism", "menos", "mera", "pretender", "mosses", "subside", "burney", "conspiring", "nostra", "retaliate", "deafening", "beleaguered", "jarring", "baptismal", "magdalen", "brackish", "direkt", "vse", "tinsel", "edel", "scrutinize", "adverb", "mumbled", "commis", "yams", "breve", "mut", "worthiness", "lazily", "disarming", "ween", "woefully", "kaj", "promontory", "eres", "paye", "smote", "taunting", "etruscan", "outwards", "rend", "hezekiah", "depravity", "wealthier", "onda", "scientifique", "disagreeable", "drei", "castes", "corrupting", "massif", "murat", "kine", "lus", "overtures", "pharaohs", "fraudulently", "plunges", "gibberish", "cela", "tammany", "boulevards", "redistributing", "darken", "dowry", "chateaux", "quam", "skirting", "adieu", "kindling", "affluence", "passable", "shouldered", "hilarity", "fulfils", "predominance", "mitten", "conquerors", "thar", "admonition", "ferdinando", "perchance", "rots", "demetrius", "precocious", "rood", "sachsen", "luzon", "moravia", "byzantium", "gaf", "altre", "repress", "domini", "loro", "moiety", "steeply", "darned", "locum", "denser", "moorland", "coincidences", "divinely", "skimmed", "lassie", "congratulation", "seminaries", "hotchkiss", "trotting", "ambushed", "combing", "travesty", "bewildering", "hunchback", "aback", "deepens", "griff", "enactments", "scaly", "heaped", "fantastically", "cobham", "oracles", "untied", "quince", "lage", "profusion", "conjectures", "glint", "incitement", "hansel", "figuratively", "sorceress", "stoic", "fatigued", "unconsciousness", "quarto", "improvise", "incipient", "avalanches", "cheval", "crackling", "creeds", "thro", "outrun", "extenuating", "blackberries", "amiss", "cavernous", "snodgrass", "darlings", "reprieve", "shanty", "rapping", "proffered", "rowena", "livid", "distasteful", "distinctively", "luft", "hares", "overturning", "attestation", "bravado", "overpowering", "ravings", "childless", "voix", "grecian", "proportioned", "lavishly", "smite", "forthright", "kritik", "foretold", "dado", "engraver", "saddled", "tortures", "crusts", "vamos", "loge", "presupposes", "trickery", "adherent", "fragen", "populi", "astrologers", "wuz", "vindication", "opined", "falter", "chatty", "auvergne", "philistines", "retainers", "tener", "cherbourg", "imperfection", "sorrowful", "unchanging", "predominate", "wodehouse", "molested", "titres", "hyena", "wedlock", "erstwhile", "vist", "obtuse", "caudal", "sternly", "chanted", "jonson", "klug", "savour", "stabs", "indecency", "lingered", "elke", "feasting", "suffocation", "softest", "sniffed", "lurks", "tenses", "lawlessness", "recollect", "alors", "projectiles", "heures", "larch", "interrogatories", "dess", "whet", "impatiently", "suspecting", "dessous", "aline", "disjointed", "seizes", "reine", "triomphe", "thebes", "doer", "pandemonium", "lege", "ravished", "discerned", "seulement", "icicles", "fanaticism", "flamed", "godsend", "rubbers", "eder", "anderen", "rehearsed", "alix", "outrageously", "bagdad", "petticoat", "inhabiting", "unrestrained", "injures", "botha", "pigtail", "appraising", "enthralled", "strays", "embroiled", "toussaint", "armistice", "ellery", "damped", "southerners", "fissures", "clinched", "forlorn", "apologetic", "absolution", "inordinate", "burdett", "clank", "individualistic", "conseils", "marts", "obra", "artemisia", "evermore", "engendered", "manchu", "disconcerting", "priestley", "appropriating", "shinto", "attentions", "regno", "gawd", "inhaling", "calmer", "passers", "fluttering", "irishman", "brier", "phoenician", "hundredth", "firstborn", "coves", "armes", "betraying", "screech", "fetches", "paltry", "carelessness", "threes", "broadside", "importante", "doers", "sods", "technicalities", "thais", "groaning", "beckons", "rejoiced", "quickness", "jeunesse", "onze", "entertains", "turban", "freie", "ruffles", "infatuation", "gaiters", "meisje", "geben", "nulla", "plutarch", "curving", "misrepresent", "tankard", "xxxix", "amorous", "kurz", "overflowed", "jesu", "weaned", "armchairs", "appartements", "vagueness", "grumble", "wronged", "politiques", "fireflies", "hoisting", "falsified", "dialectical", "schatz", "labours", "espagne", "flatly", "harsher", "inciting", "malleable", "indecision", "unselfish", "shem", "starke", "alight", "epochs", "nosotros", "genial", "langues", "revolved", "ifad", "snowed", "cachet", "fortify", "cherubs", "armature", "implicate", "tolling", "provisioned", "sista", "syriac", "dived", "baffles", "infamy", "dapper", "belfry", "elysian", "odious", "rehearsing", "ellipsis", "outhouse", "romanesque", "gobierno", "vanquish", "imparts", "sobs", "laudable", "thawing", "tienen", "writs", "omnipresent", "gesundheit", "hovered", "devouring", "renunciation", "stunted", "munching", "fumbling", "purl", "lasse", "banal", "rears", "portico", "excites", "placard", "quartermaster", "peculiarly", "placards", "transposed", "ganga", "thrace", "waistcoat", "vier", "perusal", "petrus", "childlike", "shamelessly", "saison", "tomo", "cloaked", "lichens", "brotherly", "uninhabited", "sawn", "unbelief", "overtaking", "transference", "arjuna", "pliable", "mantua", "sardines", "dictating", "studien", "crystallized", "reprisal", "blighted", "kunz", "dissect", "rumbling", "perceptible", "blazes", "encircled", "odette", "saxons", "transcending", "snout", "goodly", "philosophically", "directeur", "bigot", "bramble", "persisting", "bouillon", "scribbled", "celibacy", "beaucoup", "tooting", "gruppe", "displeased", "portant", "lather", "falstaff", "unchallenged", "strayed", "commutation", "spiritualism", "gracia", "omnia", "engender", "fini", "jurists", "cloaks", "streaked", "downe", "chieftains", "garrick", "perches", "scrapes", "silhouetted", "crouched", "juana", "gradation", "tole", "unanimity", "radnor", "tycho", "impeding", "reino", "grisly", "fornication", "contro", "sassafras", "heure", "tramps", "assis", "blossoming", "barbary", "irate", "partisanship", "wean", "omelet", "suh", "sheaf", "folios", "iban", "dictum", "refutation", "posthumous", "inclinations", "ledges", "wenig", "muchas", "enlisting", "roars", "swindle", "revolting", "candied", "plaine", "macedon", "dingy", "bons", "frieze", "staircases", "horas", "multiplies", "impressing", "twirling", "lachlan", "entwicklung", "sergeants", "overcoat", "shak", "tyrannical", "infinitesimal", "scharf", "spouting", "origine", "humbling", "truer", "limes", "katharina", "martians", "sullen", "machin", "prolonging", "battering", "superficially", "upstart", "ihm", "imps", "divulged", "shrunken", "quays", "reprehensible", "provokes", "distancia", "dedicating", "confessing", "forbade", "incursions", "viele", "pieced", "arching", "bett", "gloriously", "gourds", "worsted", "nevermore", "sanguine", "acorns", "slung", "rowers", "shockingly", "viaje", "vagrant", "empties", "bight", "entra", "fells", "morgen", "lors", "dormer", "geht", "ahab", "prolongation", "uprooted", "talons", "germaine", "dualism", "intrigues", "cannibals", "pounce", "marchant", "vedas", "panier", "mouthfuls", "instilled", "calyx", "valour", "litle", "mightily", "cuzco", "unwieldy", "perpetuated", "steht", "exaggerating", "smoldering", "peuvent", "snub", "coarsely", "voz", "withstanding", "thickens", "hissing", "crumpled", "topmost", "intrude", "behest", "pitkin", "snatching", "resto", "charmer", "escapades", "haphazard", "infirm", "pontiff", "menage", "preaches", "varios", "growling", "indescribable", "arraignment", "eugen", "kentish", "napping", "sabatini", "toppling", "sten", "astley", "bouton", "excellently", "ier", "pails", "burly", "derecho", "formule", "hillsides", "segunda", "xxix", "contenu", "divest", "mange", "unfairness", "abated", "sohn", "tiniest", "mowed", "sano", "overhauled", "caskets", "lecteur", "congenial", "lut", "fervently", "sprained", "harlot", "ravages", "choix", "superhuman", "conclave", "humanly", "altura", "livia", "causa", "dentro", "magnificence", "sacramental", "peddler", "eterna", "mystere", "fayre", "glared", "adverbs", "donc", "ugliness", "constantia", "shavings", "lusts", "nunca", "helplessly", "quintessence", "throes", "malabar", "crowbar", "blots", "nettles", "scud", "raked", "cruised", "stupidly", "lashing", "gaudy", "merriman", "swoon", "buckskin", "kommt", "recluse", "displacing", "neapolitan", "blacker", "haarlem", "quel", "aspires", "telegraphic", "quali", "frescoes", "patted", "puritans", "gentlewoman", "somme", "meinen", "nouveaux", "victors", "revels", "droves", "slur", "laetitia", "eisen", "phrased", "puddles", "nobleman", "kort", "assailant", "luxuriously", "flatness", "pardons", "debauchery", "wij", "extravagance", "buttress", "entrada", "junge", "rigors", "foregone", "stellung", "overjoyed", "bourgogne", "newhaven", "apologists", "fut", "allemagne", "vind", "waddington", "refilled", "whiff", "burrowing", "strolled", "estos", "regen", "encrusted", "clashed", "harpoon", "sombre", "machinations", "hearse", "libertad", "roamed", "approbation", "nen", "wut", "calmness", "confound", "lengthwise", "fatter", "abstained", "chasse", "christen", "comparaison", "valeur", "senile", "cobwebs", "tusk", "hellish", "conquers", "iglesia", "preceptor", "claro", "ugliest", "ungrateful", "renounced", "clashing", "decomposing", "sauter", "sain", "postponing", "israelite", "graver", "flees", "torrid", "absalom", "preconceived", "zug", "engrave", "dishonor", "hoarding", "bauxite", "barrack", "compatriots", "stereotyped", "conscription", "maken", "philosophie", "minna", "tradesman", "embodying", "unscathed", "moslems", "courageously", "snugly", "tarry", "fevers", "interrogate", "eocene", "muddled", "sklaven", "leonora", "militaire", "subjection", "punctuality", "hoarse", "misfortunes", "vexed", "delos", "vanquished", "ibi", "inquisitor", "floored", "inheriting", "historique", "plied", "beaters", "twang", "ombre", "conceiving", "syrians", "mij", "indivisible", "poetical", "stagger", "crusted", "heraldic", "belli", "maladies", "adjudged", "adolphe", "fou", "wissen", "turrets", "pression", "efter", "calms", "misgivings", "presumes", "juggler", "obeys", "stifled", "preposition", "vestibule", "heer", "mournful", "ameliorate", "scheming", "disarmed", "baseless", "voile", "picturing", "dismemberment", "quartered", "agrippa", "lioness", "appendages", "feverish", "pavillon", "couleurs", "neglects", "suckling", "scythe", "heaving", "homily", "pensive", "lado", "fum", "upshot", "sifted", "felder", "fuerte", "boisterous", "sate", "alleviated", "outbuildings", "icj", "decanters", "elevates", "poitiers", "goed", "ferment", "bounties", "incursion", "aurelia", "thinned", "consternation", "hoisted", "aeroplanes", "auteurs", "antigone", "chirp", "dimmed", "yore", "scurry", "growths", "thoth", "halve", "conversant", "torpedoes", "sovereigns", "unencumbered", "eliciting", "tamed", "fiends", "farmyard", "condense", "garbled", "tallow", "unforgiving", "immobile", "indisputable", "unkind", "prismatic", "aunty", "paucity", "expediency", "frisian", "lieutenants", "philology", "prophesied", "backwoods", "pheasants", "slouch", "amulets", "cargoes", "accentuated", "eddies", "kategorien", "disobey", "literatur", "bandy", "watercourses", "amicable", "prospered", "savoury", "colloquy", "retorted", "fiftieth", "joyfully", "onder", "offensively", "plausibility", "magnate", "pillage", "vengeful", "lunatics", "satis", "nol", "edom", "impracticable", "misdirected", "weer", "surrenders", "manchuria", "playfully", "barony", "leyden", "gruff", "snatches", "buxom", "deciphering", "botanist", "deine", "timidity", "musty", "silences", "guineas", "hebben", "ministering", "strangle", "swerve", "proscribed", "chattering", "esser", "franconia", "dominions", "plateaus", "berthold", "spaniard", "plummet", "transplanting", "onlookers", "wissenschaft", "phebe", "easiness", "trepidation", "squatters", "plantain", "pepys", "frailty", "neutralized", "tangier", "ismael", "guten", "bateau", "mourners", "twos", "passageway", "reestablish", "fondo", "parsonage", "quien", "sulphide", "outcasts", "mortally", "oot", "agni", "carbonic", "unassuming", "disillusionment", "nouvel", "knead", "wilful", "gaol", "erudite", "appreciably", "equalize", "prepositions", "petits", "tarn", "endeavoured", "enl", "attentively", "interred", "indiscriminately", "encumbered", "herodotus", "favouring", "neutrals", "conspire", "recompense", "colonnade", "unde", "eustace", "abides", "yuh", "damen", "seus", "strove", "ogni", "dissenters", "imparting", "apologizing", "coups", "verdant", "secrete", "libris", "twirl", "noo", "beadle", "denizens", "cockney", "guppy", "leeches", "convoys", "manoeuvres", "shapely", "rooks", "shuddered", "stelle", "ornamentation", "lynching", "sommes", "perdido", "dictatorial", "uncomfortably", "defenseless", "glean", "amory", "ander", "edad", "gratified", "participle", "schlegel", "watchmen", "galleon", "travaux", "eten", "enim", "chafing", "betrays", "assyria", "inwards", "corsican", "libertine", "immeasurable", "esthetic", "testator", "distaste", "offshoot", "smithson", "resolutely", "friendliest", "uttering", "jacobus", "construe", "algemeen", "mourned", "despotism", "flotilla", "fragmentary", "anjou", "omniscient", "gladness", "frisky", "generalities", "condolence", "siddhartha", "brightening", "inimitable", "ineffectual", "armorial", "poppa", "thickly", "blossomed", "cistern", "tableaux", "latins", "phaeton", "fecundity", "malle", "caliph", "dysentery", "soir", "grenier", "funnels", "pasty", "cuffed", "peau", "tumult", "defoe", "curate", "donned", "wilks", "allegorical", "monotony", "reve", "ohr", "lucile", "amazons", "manon", "unabated", "plante", "curzon", "wohl", "marksman", "philosophic", "denna", "troubadour", "volgende", "truest", "hypnotized", "voitures", "rudeness", "felled", "alleen", "tinned", "concoction", "flay", "patter", "seinen", "tortoises", "roxana", "pli", "crone", "possessor", "wintry", "gode", "admonished", "wickedly", "laver", "shamed", "eluded", "incriminating", "unsealed", "misinformed", "tambien", "journeyed", "presenta", "sett", "magnificently", "unpunished", "albatros", "apostasy", "bereft", "lucretia", "hibernian", "vitriol", "vicarage", "vestry", "gleefully", "mercies", "paralleled", "entwined", "fosse", "taille", "resplendent", "thrall", "barked", "cormac", "sju", "unum", "scorned", "relapsed", "thicken", "sanaa", "ceci", "selene", "artfully", "pilgrimages", "fides", "blazed", "edda", "wheelbarrow", "maimed", "chor", "dernier", "duda", "pater", "meno", "mused", "jamais", "puffing", "besten", "wielded", "futurity", "quicksand", "trestle", "souffle", "rebus", "proces", "sentinels", "pardoned", "wormwood", "sighing", "harz", "awed", "shrank", "conceals", "glycerine", "staub", "abolitionist", "foamy", "aventure", "meunier", "unpainted", "knolls", "unwell", "unconscionable", "wedged", "outgrown", "evading", "commemorated", "lurid", "annunciation", "rumoured", "idee", "coalesce", "brougham", "windings", "strongholds", "burglars", "shrimps", "stirrup", "seria", "creo", "dictionnaire", "finde", "flopped", "elbe", "whitewash", "subservient", "suivante", "stubbornly", "benediction", "disobedient", "seamstress", "immortals", "euripides", "uninitiated", "mikko", "mond", "zwart", "briskly", "afflictions", "buon", "zon", "weariness", "ascendancy", "affront", "telephoned", "treasuries", "energetically", "tinge", "fingal", "defection", "murmurs", "slog", "gav", "dispersing", "tractable", "lapped", "syl", "petitioning", "clawed", "einmal", "winsome", "presuming", "englishmen", "equaled", "flog", "notte", "deferring", "quills", "oud", "practises", "unattainable", "lengthened", "dramatist", "grayish", "hallucination", "exhortation", "arousing", "hippopotamus", "wile", "forgeries", "chartres", "recline", "maitre", "remembrances", "disturbs", "chums", "determinate", "heeded", "telephoning", "sophocles", "humiliate", "erfurt", "wasser", "tomes", "ingen", "accompaniments", "clairvoyant", "shriek", "ferocity", "quoi", "withering", "procreation", "xxxi", "exasperated", "eerste", "groping", "soule", "pinnacles", "miser", "scaffolds", "reprisals", "culpable", "unserer", "asunder", "qualms", "unharmed", "sheaves", "tritt", "godmother", "impresses", "lidia", "plusieurs", "buttoned", "sprouted", "armoury", "marshalling", "longue", "omelette", "disintegrated", "forgetfulness", "muerte", "stilts", "samaritans", "knocker", "underfoot", "roofed", "jinn", "nunc", "primeval", "sakes", "horsemanship", "aviators", "destinies", "jure", "sherbet", "nutritive", "hurrying", "helden", "tepid", "opportune", "intuitions", "dissuade", "hemmed", "personified", "cornice", "smock", "musket", "beautify", "tannery", "sooty", "buckled", "purveyor", "kindled", "provencal", "schein", "stairways", "methodists", "bourg", "pretence", "questioner", "repute", "nakedness", "scabbard", "covet", "debe", "rippling", "mony", "nelle", "rationalism", "wistful", "admires", "hissed", "overpowered", "pervades", "mele", "tirade", "elucidation", "prongs", "fumbled", "acte", "confided", "mumbling", "abstaining", "giotto", "punkte", "lancers", "heimlich", "waren", "confederates", "stretchers", "demosthenes", "warum", "avait", "devonian", "infinitum", "justo", "antti", "ointments", "tugging", "opulence", "appomattox", "bentham", "coursing", "beschreibung", "patrician", "zacharias", "melodramatic", "effet", "inexperience", "palabras", "aantal", "rime", "casement", "kalle", "serially", "gefunden", "apprised", "thoughtless", "comparer", "goad", "parle", "muddle", "levites", "christus", "blasphemous", "unaided", "candidature", "clapped", "fatherland", "evergreens", "recede", "dears", "willkommen", "spry", "objets", "toki", "maggots", "calor", "hominem", "tints", "waver", "handkerchiefs", "punishes", "salut", "acquiescence", "disaffected", "manors", "chronicled", "laure", "inundation", "earshot", "omens", "brule", "transfiguration", "punctured", "coughed", "repaying", "filial", "mocks", "niggers", "refrained", "shallower", "durer", "patriarchs", "respectability", "commode", "overbearing", "townspeople", "adoring", "trodden", "reaped", "bequeathed", "grumbling", "elude", "decently", "metaphorically", "tripe", "glitters", "ahmet", "austerity", "mitte", "informe", "enjoin", "dazu", "boyish", "egotistical", "neared", "claes", "rostov", "diverging", "estoy", "uninvited", "irkutsk", "trappers", "aniline", "tuk", "spilt", "forgetful", "conceding", "brightened", "inconveniences", "maun", "rigour", "evinced", "uneasiness", "afresh", "taal", "bunks", "ducked", "situate", "sowie", "escapade", "loomed", "egbert", "hungarians", "clamor", "abdallah", "hond", "pews", "workhouse", "handbuch", "unorganized", "whalers", "smuggle", "laboring", "nooks", "wud", "autocratic", "titania", "broder", "shyly", "stewed", "disguises", "stowed", "unmanageable", "denunciation", "squeal", "ducking", "throb", "scorch", "perusing", "duels", "villainous", "caius", "pythagorean", "steadfastly", "abstention", "genealogies", "ruthlessly", "falsify", "swagger", "flicked", "emigrate", "arbour", "accomplices", "nonproprietary", "gebraucht", "toothless", "frankincense", "commendations", "comprehended", "bravest", "crevice", "papel", "telltale", "typewritten", "progenitors", "forges", "loosed", "madcap", "neigh", "evie", "casimir", "persecute", "voracious", "foret", "rescuer", "massacred", "signification", "quarrels", "remoteness", "dominus", "botticelli", "balmy", "hele", "splinters", "kleiner", "epithet", "blonds", "ravenous", "mongols", "camphor", "savagery", "ober", "navigated", "dieppe", "mies", "pretensions", "thunders", "prins", "diogenes", "comings", "danke", "farthing", "crevices", "wringing", "tearful", "betwixt", "florent", "unmistakably", "unu", "massed", "plucking", "slavonic", "reprimanded", "rebelled", "thunderous", "rolle", "encloses", "sorties", "revives", "toleration", "suitors", "minutiae", "deviated", "sleight", "burman", "skirted", "coachman", "bigots", "reappeared", "comprehending", "reckons", "inexhaustible", "canny", "fainted", "pianoforte", "rifts", "winking", "firmament", "hovers", "thoroughness", "confessor", "gooseberry", "aimlessly", "pronouncing", "agassiz", "dazzled", "inborn", "manera", "ould", "consuls", "eure", "doria", "newness", "ascetic", "bearable", "russet", "specie", "hothouse", "incas", "skein", "virginie", "mettle", "ojo", "endeavored", "matin", "demonstrative", "seis", "detta", "bigoted", "discordant", "lilacs", "levying", "elles", "oriel", "buoyed", "malady", "brahmin", "grandsons", "tempers", "quinine", "thirtieth", "sige", "grog", "fester", "permeated", "retards", "resentful", "headlands", "saintly", "oude", "aught", "cornelis", "adjuncts", "jeweller", "wooing", "conjunctions", "embellish", "cordes", "moonlit", "intercepting", "denounces", "besser", "wegen", "dienst", "corks", "obscuring", "tages", "nullify", "corroborate", "envied", "chins", "runt", "nursed", "loathsome", "cosas", "althea", "dando", "icebergs", "sacking", "settee", "driest", "scipio", "stealthy", "flaunt", "mistaking", "saxe", "dyspepsia", "tryst", "cede", "annihilate", "candidly", "honorably", "shifty", "ello", "deceptions", "snorted", "signe", "shivered", "teem", "replenished", "assailants", "degeneracy", "giovanna", "consummated", "cosimo", "cotes", "obstinate", "farquhar", "retrace", "revolvers", "lurch", "gregarious", "allee", "oor", "nightgown", "bombard", "missus", "mystified", "drooping", "diable", "inconsiderate", "swirled", "darted", "warlike", "colons", "supplication", "fretted", "gauged", "suet", "overhanging", "impropriety", "maligned", "thackeray", "nought", "barbarous", "grandi", "olly", "diu", "scepter", "writhing", "enticed", "schmuck", "gasps", "exclaim", "greve", "vestiges", "rustling", "recaptured", "marauders", "spars", "howls", "answerable", "inky", "ock", "sneer", "allay", "derision", "zog", "dutifully", "octavo", "jerrold", "maddening", "plundered", "damit", "henriette", "decry", "buen", "devant", "conspirator", "luring", "gallantry", "hewn", "whisked", "pericles", "desertion", "rumania", "yow", "wherewith", "siliceous", "mund", "circulates", "signore", "coldly", "envoys", "restorer", "staves", "coldness", "existe", "friesland", "orden", "riviere", "gusty", "brazier", "bayreuth", "sonntag", "semaine", "godliness", "docile", "maliciously", "vole", "cantons", "siglo", "enveloping", "piedra", "subito", "tangles", "meanest", "hollows", "luckiest", "officiate", "mumble", "espacio", "oppress", "grandfathers", "usury", "russes", "greedily", "vizier", "ojos", "nostril", "tombstones", "wavering", "barbarism", "vienne", "alway", "surmise", "blanch", "inscrutable", "campagne", "syne", "xxxii", "saluted", "protectorate", "hieroglyphics", "materialist", "landlady", "blameless", "amalia", "absurdly", "garnished", "fernand", "corporeal", "passivity", "partiality", "circumscribed", "steno", "disposes", "berta", "emanate", "rummage", "headstrong", "plies", "scantily", "waar", "befriended", "professing", "nestling", "piedras", "immortalized", "leper", "animus", "dimple", "noblest", "supine", "bloodthirsty", "squint", "vitals", "lamenting", "benedetto", "vindictive", "overtook", "goe", "palast", "triumphed", "scanty", "difficile", "vagaries", "undaunted", "lucan", "hemming", "nuevas", "defiled", "faltering", "saracens", "tisch", "eke", "conceited", "denys", "naissance", "laymen", "shopkeepers", "mortification", "combats", "indulgences", "tard", "fattening", "drench", "digesting", "cupola", "hund", "kommer", "canst", "idleness", "lunge", "mahmud", "minuet", "entombed", "fers", "diverged", "spouts", "pontifical", "glided", "sleeplessness", "iago", "axed", "overdone", "socratic", "revulsion", "rosamond", "schwarze", "criticising", "porpoise", "nowe", "oligarchy", "psychical", "rives", "houten", "fanned", "berge", "wagging", "germinate", "chrysanthemums", "misdeeds", "acto", "earnestness", "wetted", "undercurrent", "steerage", "granary", "befitting", "whitish", "irreconcilable", "giveth", "concocted", "essayist", "epicurean", "blacked", "refit", "boite", "unwashed", "detaining", "shod", "oratorio", "befall", "appurtenances", "wearily", "northernmost", "trollope", "enchanter", "unscientific", "withstood", "sandhills", "heaviness", "knapsack", "animaux", "calcul", "consciences", "inflected", "linseed", "caisse", "staccato", "dels", "agamemnon", "dodged", "refusals", "outrages", "cuneiform", "footstool", "dopo", "uncircumcised", "emblazoned", "mettre", "wrangling", "dorcas", "confiscate", "bloods", "odours", "mongrel", "forewarned", "degenerated", "eventide", "impairing", "dispossessed", "meagre", "mopping", "iver", "fantastical", "dorf", "yama", "laatste", "chintz", "nebulous", "slink", "lineal", "droll", "honouring", "grenadier", "anachronism", "methodically", "stiffened", "athenians", "hautes", "aleppo", "whimper", "whomsoever", "viciously", "fiddlers", "endow", "raum", "indistinct", "counterbalance", "razed", "anzahl", "invents", "loungers", "wilberforce", "manus", "tenfold", "scoured", "schule", "carley", "knotty", "stewardess", "furthered", "chancel", "inexorably", "mitglieder", "worships", "ironed", "inhabits", "domestication", "olof", "japon", "appendage", "geographer", "omnis", "naphtha", "clairvoyance", "frente", "aeneas", "narrates", "girdles", "heartbroken", "parola", "lameness", "offal", "smithy", "dawns", "frais", "couverture", "staid", "encircling", "verte", "wove", "pithy", "caressed", "infinitive", "hysterically", "incantation", "blissfully", "shirk", "pangs", "monsignor", "fulness", "commande", "domestics", "unpretentious", "poachers", "galvanic", "narr", "joven", "parlance", "lethargic", "drunkard", "conveyances", "steinmetz", "cowper", "bronzes", "essa", "knell", "profited", "flavia", "startle", "algernon", "exterminate", "heikki", "exalt", "nein", "zal", "interludes", "jahren", "bide", "suitor", "russe", "bevy", "gravelly", "inconspicuous", "juste", "wisps", "urbane", "hoek", "nebuchadnezzar", "diffusing", "stupor", "gratuitously", "aimless", "parfait", "flit", "quietness", "accede", "sicher", "overshadow", "xli", "principale", "turnips", "statuette", "theobald", "dwindled", "dispenses", "fertilizing", "ower", "narcissist", "sextant", "falsehoods", "swampy", "euch", "wast", "obtenir", "donning", "cecily", "sappho", "estancia", "wurden", "fama", "lustful", "guano", "presbyterians", "worshiped", "duque", "autem", "rebuked", "cloisters", "luella", "presumptuous", "toothache", "presage", "boars", "afore", "dour", "moistened", "kegs", "unadulterated", "reciprocate", "rade", "quia", "begat", "propelling", "ripen", "suffocating", "athos", "grasse", "cinq", "xxxiii", "brawn", "frowning", "gaius", "matchless", "boatman", "unconcerned", "dood", "orthography", "conjured", "assyrians", "selv", "vaulting", "fonte", "gossiping", "freshen", "tugged", "gog", "outdone", "detest", "paraded", "trifling", "undergrowth", "enamored", "carlotta", "ceux", "cuatro", "methode", "ulterior", "puro", "heracles", "whirled", "passim", "thei", "gebruik", "vraag", "jovial", "scoundrel", "romany", "xxxviii", "duplicity", "meddle", "exaltation", "handiwork", "andras", "joyously", "heaping", "strident", "oration", "grunted", "riche", "pilote", "wampum", "dreading", "humorist", "nourishes", "vite", "cun", "combative", "winked", "unhappily", "rube", "chronometer", "squaring", "wring", "apparitions", "shrieking", "graaf", "erst", "scurvy", "peacocks", "ophir", "wouldst", "pocketed", "enormity", "coarser", "hypnotism", "oeil", "dissociated", "exclaims", "ceaseless", "emblematic", "lerwick", "fertilize", "disengage", "commonest", "daj", "unreserved", "lessens", "judicially", "vend", "smattering", "taunts", "stealthily", "ripened", "cleverness", "roped", "sorcerers", "clang", "sardinian", "waltzes", "sunlit", "attests", "parched", "peaceable", "achtung", "stanzas", "infuriated", "dismounted", "incongruous", "kindest", "stam", "intervenes", "vieles", "bonnets", "bared", "frenchmen", "callow", "edicts", "lemuel", "inattentive", "transmutation", "sweeten", "confide", "voiceless", "sombrero", "isidore", "headdress", "nuestros", "tannin", "limite", "boughs", "naturel", "overseers", "presentment", "sprigs", "amiens", "diez", "prudently", "foresees", "patronizing", "presentable", "pales", "dais", "adornment", "precipitating", "hearken", "insolence", "blockhead", "einige", "patting", "hippocrates", "elaborately", "lundi", "gaslight", "presides", "divested", "pith", "eaux", "transvaal", "gaff", "disintegrating", "folie", "frock", "bleue", "flambeau", "fuming", "veel", "chattel", "wrest", "forgives", "waterless", "effectual", "unimproved", "paddled", "inkling", "vigils", "schoenen", "garcons", "gauntlets", "patria", "blacksmiths", "menor", "ploughing", "timon", "parsimony", "typified", "darting", "ashen", "blunted", "snarl", "comptoir", "echt", "pained", "inexcusable", "laud", "mutterings", "precipice", "geschrieben", "recalcitrant", "wos", "thoughtfulness", "harshness", "ailes", "neuve", "limping", "darum", "utters", "processions", "gluttony", "kneading", "etwas", "sait", "templars", "nineveh", "mesures", "enquired", "aphorisms", "compleat", "consumptive", "dalmatia", "noisily", "readjustment", "unaccountable", "weise", "trickling", "commoner", "reminiscence", "pouvoir", "yeux", "fui", "waned", "assented", "overcharged", "pucker", "sanctify", "messrs", "insolent", "octavio", "portes", "finis", "beastly", "fortresses", "matrons", "thun", "gawain", "guinevere", "heresies", "annihilated", "tardiness", "mangan", "mose", "specks", "futur", "incredulous", "dere", "calvinist", "suas", "buckler", "peal", "asunto", "adroit", "dilettante", "georgiana", "ecstacy", "peasantry", "oppressors", "boeken", "corns", "faring", "dama", "unos", "pinkish", "blurted", "tutelage", "merited", "hacia", "peculiarity", "decrepit", "encroaching", "solemnity", "equivocal", "lieb", "amass", "maketh", "ihrem", "disengaged", "distilling", "effigy", "saloons", "assailed", "incensed", "zachariah", "veneration", "broach", "miseries", "personification", "partes", "scuttle", "rougher", "supplanted", "sardonic", "aghast", "raiment", "disused", "vetter", "stooped", "dower", "andalusian", "wordy", "feudalism", "achille", "magister", "bolting", "lumbering", "fourfold", "forgave", "antonius", "indien", "replenishing", "immemorial", "indwelling", "seh", "jaunt", "genere", "ipso", "quartier", "wallow", "unabashed", "haf", "homeric", "overpower", "expounded", "downpour", "dumbfounded", "cubits", "outlast", "frothy", "macedonians", "labouring", "pouvez", "nothings", "kommen", "allgemein", "colonist", "sorbonne", "rares", "colla", "philippi", "adduced", "agli", "unrequited", "mangle", "alludes", "theseus", "commuted", "medan", "saracen", "annulled", "covertly", "dalle", "rapped", "foreboding", "fortuitous", "autumnal", "xxxv", "sepulchre", "kunt", "despotic", "dicky", "beholden", "celui", "apostate", "enda", "faltered", "queda", "entrar", "sicherheit", "gorse", "louse", "wilfully", "paralysed", "tillie", "distanced", "vespers", "scylla", "vats", "urchins", "implore", "kindle", "pricks", "tenements", "tithes", "thinnest", "sipped", "mando", "pulsation", "hitching", "xxxiv", "obediently", "calvinism", "milked", "vesuvius", "disembodied", "aylmer", "scoff", "confidant", "nape", "disparaging", "impolite", "bataille", "oia", "domine", "sluice", "darke", "whistled", "furor", "austrians", "craves", "soiree", "trouver", "enslave", "dimanche", "grimly", "espouse", "casks", "conjoined", "cabled", "muchos", "lightened", "spongy", "verner", "specious", "threshing", "infliction", "frederica", "entranced", "deprives", "onde", "scimitar", "holz", "uninterested", "cavalcade", "adulation", "loitering", "dastardly", "ludovic", "avarice", "sangen", "butchered", "pointedly", "ouverture", "rustle", "excitable", "hermanos", "alluding", "frere", "insipid", "unfathomable", "ingmar", "holiest", "arbre", "effeminate", "vainly", "straying", "venereal", "mercifully", "blatt", "pansies", "acceded", "dregs", "obscures", "millicent", "foresaw", "befriend", "anker", "malign", "abortive", "embarkation", "varnished", "zarathustra", "valent", "knoweth", "anemones", "sacre", "hunched", "buzzed", "pickets", "astringent", "soothed", "vins", "premeditated", "cherche", "aucune", "pueblos", "sentimentality", "tenable", "jumbled", "triumphantly", "leva", "vergessen", "scolded", "fetters", "vulgarity", "magasin", "perpetuation", "tafel", "pliny", "sewed", "jubilant", "sangamon", "continuo", "welche", "silesia", "staat", "amputated", "reappears", "enquiring", "masha", "redden", "kreis", "faccia", "gae", "sobbed", "omnium", "copie", "snuggled", "surest", "bribed", "alarmingly", "kosten", "bloodless", "basle", "sigurd", "tute", "obliterate", "dort", "perron", "pestle", "falsity", "sapling", "elapse", "myne", "enamelled", "torments", "tortuous", "oiseaux", "seafaring", "mooted", "repented", "infirmity", "corydon", "selfishly", "drudgery", "pacha", "shrubbery", "navies", "impartially", "imperfectly", "slanderous", "interminable", "ancien", "soins", "indomitable", "unseemly", "vix", "godlike", "scrambles", "arbeiten", "merriment", "rotted", "thetis", "repulsed", "garni", "brickwork", "soulless", "abbots", "frontispiece", "vivacious", "bloodshot", "salutations", "pela", "dogmas", "forsooth", "geordie", "orestes", "deathbed", "indefensible", "brutish", "trill", "venetia", "melchior", "xerxes", "poudre", "ramparts", "disband", "symmetrically", "reek", "hearers", "frigates", "availed", "externals", "principales", "damsels", "spielen", "monotheism", "menelaus", "morsels", "hatte", "skirmishes", "congratulatory", "zuletzt", "melodious", "baited", "veined", "kens", "norwegians", "imitates", "conjugal", "boldest", "hafen", "flaubert", "enunciated", "strictures", "flinging", "ferme", "discouragement", "werke", "vesper", "parapet", "filles", "usurp", "gerade", "traduire", "peremptory", "unrecorded", "seiner", "gallia", "hayne", "lorsque", "fronds", "interposed", "jugglers", "veri", "dessin", "weet", "naively", "nominative", "cleaves", "doivent", "avenging", "ploughed", "severing", "ety", "hev", "cremona", "martyred", "afflict", "crags", "mimicry", "intersected", "tomkins", "winced", "literati", "trotted", "hungrily", "scold", "chirping", "utan", "tress", "vaunted", "astride", "nostro", "ruy", "emancipated", "ordain", "rapt", "wirt", "sawed", "receded", "emboldened", "pessimist", "sedate", "stammered", "supposes", "genteel", "engulf", "huguenot", "epicurus", "gouverneur", "upu", "hankering", "normans", "enumerating", "toiling", "spiteful", "governess", "alternated", "colander", "croak", "abhor", "boek", "inexorable", "chercher", "harmoniously", "bijoux", "worshiping", "gewicht", "coolly", "accompli", "wann", "vieille", "ellos", "hecho", "verry", "rowed", "elfin", "ingots", "ridding", "tegen", "troppo", "meads", "exhaled", "demolishing", "pratique", "calabash", "brigantine", "zeb", "fitzhugh", "rioters", "persecutions", "arriva", "cramming", "chuckling", "disfigured", "mers", "chios", "muro", "oreille", "transcended", "xxxvi", "cuerpo", "tiel", "faintest", "bleek", "adela", "genitive", "civile", "haupt", "testy", "physiologist", "imprison", "repelled", "abend", "eran", "quem", "plundering", "abhorrent", "rebellions", "sympathizers", "scribbling", "phineas", "emissary", "inhumanity", "wem", "belittle", "repudiated", "divina", "leonie", "sympathetically", "permet", "elis", "liddy", "dabei", "rollicking", "offhand", "geraniums", "bashful", "doze", "currants", "absolve", "conjectured", "grandest", "kinsmen", "lier", "welk", "shipwrecked", "doen", "tacitly", "dint", "reverberation", "quickening", "waal", "mistook", "apprehensions", "aunque", "celestine", "schoolmaster", "impressionable", "gingerly", "apologised", "riven", "taketh", "cornfield", "fretting", "fetter", "jeers", "manufactory", "jarred", "theorie", "armen", "bewilderment", "loveliness", "ministered", "idiomatic", "scalping", "slav", "attics", "wilhelmina", "hermits", "gullies", "prerogatives", "banishment", "tempering", "kampf", "fallacious", "vestments", "morsel", "leniency", "scrupulous", "woodsman", "bocca", "dicta", "meisten", "aubert", "richtig", "clumsily", "catholique", "turpentine", "ells", "cussed", "evaded", "thickets", "clink", "personage", "cavallo", "vender", "daar", "bouche", "delinquents", "furlough", "angleterre", "snarling", "samedi", "creaking", "bequeath", "subjugation", "gape", "clase", "unquestionable", "prendre", "irritates", "whigs", "despatches", "titian", "arras", "fathoms", "printemps", "physic", "nuptial", "thickest", "bulbous", "whist", "mieux", "darauf", "expound", "eget", "exhilaration", "ziel", "lordships", "chanced", "fastenings", "ketch", "treeless", "adores", "aground", "splendidly", "feuille", "inattention", "discolored", "traf", "sinning", "jouer", "forestall", "vater", "moselle", "gnawing", "crudely", "saplings", "profuse", "dispelling", "attainments", "gane", "couched", "bestows", "sone", "particularity", "knighthood", "blesses", "dure", "sickened", "tali", "canteens", "thoroughfares", "donatello", "penniless", "abrogated", "druck", "kingship", "puis", "manes", "relapsing", "arcadian", "claud", "swart", "eschew", "vastness", "precipitous", "detachments", "arsenals", "hoofd", "tramping", "vieja", "thereabouts", "bloed", "resultat", "betrothed", "pourquoi", "dispelled", "pierrot", "duca", "sameness", "scruples", "gloved", "bete", "dowdy", "clamoring", "aguas", "visitations", "recklessness", "stirrups", "intimated", "allspice", "squirming", "thunderstruck", "pleiades", "surreptitiously", "finery", "langen", "eugenie", "sequestered", "hesitating", "stoops", "stiffening", "scrutinizing", "allude", "sprawled", "interesse", "tomar", "courted", "condoned", "unsavory", "deservedly", "blackbirds", "vowing", "plying", "gangrene", "purplish", "stille", "enliven", "hollowed", "graven", "lengua", "craved", "fracas", "envelop", "dismount", "grudgingly", "quae", "bole", "believeth", "unafraid", "stamens", "omnipotence", "irresponsibility", "zelf", "seaports", "conscientiously", "boomed", "jussi", "joust", "grander", "shackled", "weedy", "sacra", "ipsa", "grope", "suomen", "echte", "brightens", "muertos", "jailer", "gleich", "gladden", "sarcastically", "tuft", "quickened", "reverent", "braved", "jaune", "joli", "beckoned", "unquestioned", "scrawled", "savagely", "usurped", "monstrosity", "certains", "ravishing", "grumbled", "disheartening", "nobis", "stolz", "unavoidably", "blest", "govinda", "menial", "clayey", "delighting", "vielen", "conjuring", "dutiful", "absurdities", "cabeza", "ony", "gordian", "edification", "flinch", "xxxvii", "despot", "affaire", "insincere", "inger", "vuelta", "beckoning", "vivant", "vendre", "ignis", "begone", "lucidity", "feuds", "toque", "wille", "primi", "hiver", "lateness", "dier", "nunnery", "forefinger", "rudiments", "erwartet", "heathens", "celibate", "simul", "clatter", "werd", "faultless", "awkwardness", "praiseworthy", "mosca", "seigneur", "ails", "frage", "vapours", "jij", "delphine", "bruder", "remiss", "languishing", "entrails", "erreur", "cossack", "thrashed", "topsail", "modicum", "malte", "solange", "ethiopians", "rajah", "persuasions", "steppes", "sheathed", "derided", "encroach", "correlative", "maire", "diametrically", "fasted", "eunuch", "algunos", "gazes", "virginians", "negligently", "sistine", "higginson", "hadden", "unmoved", "glum", "perplexity", "particulier", "sabe", "sulky", "guarda", "skyward", "woeful", "grund", "droop", "neque", "dislodge", "voyageur", "waded", "flore", "unacknowledged", "quietest", "carven", "aptitudes", "bonnes", "confusions", "fara", "alimentary", "wus", "republik", "encroachments", "ineffable", "hearer", "awakes", "republique", "generis", "zit", "probity", "formas", "grubs", "unflinching", "murmuring", "gaan", "jungen", "kop", "triumphal", "affable", "hijo", "worshipers", "avons", "flail", "adulterated", "nicodemus", "ardor", "wissenschaften", "veo", "missive", "ascends", "splintered", "transacting", "vus", "nomine", "busen", "loafing", "talus", "republicanism", "foibles", "cose", "choses", "squatter", "waldemar", "colourless", "unyielding", "flabby", "enlarges", "apace", "doktor", "harbored", "bulwark", "stringy", "seront", "sonorous", "breastplate", "draughts", "heaved", "lazare", "uel", "fashioning", "churned", "correspondance", "dappled", "gallic", "tacking", "feigned", "dross", "solidity", "doge", "indecisive", "recurs", "dripped", "epicure", "levity", "journeying", "dito", "oppressor", "metrical", "kopf", "immeasurably", "tussle", "fiendish", "glorification", "wayfarer", "arabians", "expanses", "nuits", "dervish", "irrepressible", "leider", "joppa", "wilted", "emoluments", "egal", "conned", "mutes", "outwit", "magnesia", "patronize", "impassable", "serf", "koning", "buries", "vobis", "signor", "phlegm", "reste", "freedmen", "obliging", "hermetically", "gravestones", "uncommonly", "nudged", "inhospitable", "dissension", "intermingled", "dwarfed", "langs", "asters", "surmounted", "elspeth", "salutary", "bringt", "frosts", "ached", "defile", "odio", "ansehen", "effectually", "unprovoked", "apocryphal", "pallid", "sulphuric", "antipathy", "atone", "douce", "storeroom", "theodora", "paler", "lhe", "wereld", "offing", "infest", "dampier", "hardens", "frisk", "alister", "expelling", "obliges", "pertained", "beneficent", "luxuriant", "mulatto", "plausibly", "concubine", "complimenting", "courtly", "dampness", "zusammen", "platitudes", "pois", "porphyry", "deviating", "taunted", "ernestine", "bubbled", "tienes", "korte", "mortified", "upturned", "cordage", "hobbled", "loath", "gagner", "nibbling", "unsophisticated", "vexing", "longa", "digression", "astonish", "dynastic", "cognizance", "piquet", "loveliest", "nearness", "vif", "procurator", "plaintive", "exult", "claps", "disreputable", "seraph", "dressmaker", "fehler", "publican", "hoar", "movimiento", "kreuz", "rebuffs", "reichstag", "woche", "handmaid", "oir", "chemises", "consuelo", "impostor", "nomen", "ponderous", "maisons", "scrupulously", "plaisir", "intruding", "baptize", "fatigues", "asaph", "princesse", "franche", "plucky", "dessins", "eusebius", "untidy", "loggia", "tribesmen", "subsist", "tuin", "augen", "beholding", "scarfs", "leve", "shallows", "ersten", "unjustifiable", "growls", "sported", "quaking", "refraining", "commingled", "coasting", "logement", "kindern", "conciliatory", "stiffen", "showman", "officiated", "distemper", "subterfuge", "jede", "aspired", "mathilde", "pues", "lazaro", "mouvement", "beispiel", "penitent", "toyed", "anglaise", "lamentation", "tunc", "extol", "patrimony", "belgians", "knave", "functionaries", "croup", "broadcloth", "disuse", "reeled", "quire", "goeth", "fascinate", "garish", "baronet", "bombastic", "francie", "scoffed", "thieving", "minde", "thinke", "snarled", "unearthly", "predestination", "verbindung", "regulus", "vidi", "trouve", "rapides", "reviled", "coverlet", "lustig", "bringen", "fearfully", "musketeer", "fiddles", "furlongs", "fens", "ancienne", "arraigned", "liquide", "tanz", "whitewashed", "gilding", "twining", "explication", "violette", "humanely", "jungfrau", "verdad", "perrine", "gaiety", "alten", "uttermost", "aristophanes", "letitia", "overthrew", "lave", "frowns", "fabricius", "sheepish", "diferentes", "antic", "abed", "edifying", "dreadfully", "aun", "sadder", "ravage", "contemptible", "unfailing", "fowls", "untoward", "gloster", "venu", "clergymen", "fiel", "endeavouring", "dislodged", "casse", "obviate", "juster", "genom", "ueber", "primero", "saluting", "beguiling", "bayonets", "trompe", "flavius", "gie", "playfulness", "confluent", "orde", "deel", "lernen", "husks", "beckon", "raved", "herren", "anfang", "jewelled", "reaps", "fatto", "traum", "premonition", "recut", "sureties", "montre", "grunting", "baubles", "personages", "actes", "exigencies", "marveled", "peloponnesian", "gotha", "tasso", "waffen", "cultivator", "nihil", "quintus", "crucify", "unsaid", "fonctions", "untie", "instigator", "girt", "annul", "lanky", "illa", "blushes", "shewed", "outdo", "sycamores", "truant", "shrieked", "ermine", "corroboration", "juge", "circe", "capitulation", "aspirant", "germinal", "vindicate", "repelling", "gesucht", "fallible", "pantheism", "strutting", "incalculable", "tijd", "soliloquy", "mammy", "beaks", "caresses", "quello", "indolent", "ursus", "banns", "thistles", "idiosyncrasies", "inducements", "ennui", "abetted", "expending", "ista", "sweltering", "purer", "hedgerows", "narrowest", "disapproving", "meses", "interrogative", "squealing", "feverishly", "sneaked", "obras", "drowns", "nostri", "persuasively", "walloon", "squalor", "panelled", "ossian", "chaplet", "narrate", "peleus", "ebon", "hesiod", "maman", "bleat", "glorifying", "gleamed", "valiantly", "steeds", "elli", "infallibility", "voll", "altes", "franciscans", "comport", "malheur", "overdo", "ragusa", "sette", "radishes", "deeming", "flaccid", "eum", "putrid", "unguarded", "prodded", "fasts", "sterner", "tras", "womanly", "surmised", "northwards", "tiu", "mayest", "judiciously", "worshipper", "diderot", "ruts", "regretting", "scolding", "bosphorus", "dimpled", "massing", "offen", "leathery", "hjem", "caballos", "grimace", "bribing", "unbecoming", "bridles", "rinaldo", "dejected", "vosges", "comely", "prow", "sprig", "apulia", "squander", "swarmed", "wields", "dragoons", "brune", "landholders", "cradled", "dreads", "spurring", "sollte", "plaything", "pander", "stamm", "abominations", "viene", "reestablished", "strangling", "cultivators", "insignificance", "deceiver", "helle", "sputtered", "faites", "merrier", "simples", "ruggles", "miel", "subsides", "nobler", "michaelmas", "bildung", "howled", "blanched", "allemand", "unequalled", "cicely", "temperamental", "dally", "malays", "nauseous", "brandishing", "wags", "chronicler", "allem", "fais", "disproved", "justinian", "lutte", "dobbin", "riz", "coquette", "menge", "remarking", "cobweb", "punctually", "unwillingly", "cadeau", "undoubted", "formless", "shipmates", "englische", "plaats", "shorn", "doubtfully", "typhus", "reticent", "welter", "lande", "exertions", "insel", "sprachen", "eins", "retentive", "gerda", "plodding", "deserter", "rending", "gaillard", "consign", "mantles", "neatness", "adornments", "britannic", "becher", "unbeliever", "parading", "gamin", "confederated", "lume", "overwhelms", "embankments", "quanto", "speculator", "madmen", "listless", "wheaten", "deprecating", "faggots", "ducal", "downcast", "tedium", "seamanship", "gascoigne", "pomegranates", "sooth", "knie", "sportive", "hewson", "aout", "turan", "undeserved", "principalities", "aider", "excelling", "misadventure", "meiner", "rond", "dramatists", "servile", "rickety", "enchantments", "fuori", "secondo", "figura", "prosaic", "diadem", "pani", "outa", "bedeutung", "sincerest", "sagen", "tittle", "imprudent", "keer", "trou", "nannie", "laat", "deliberated", "snubbed", "suffocate", "applauding", "epithets", "toch", "floundering", "preserver", "revolts", "espy", "deren", "hallow", "wharves", "kunde", "canvassed", "chastisement", "unmitigated", "whined", "sashes", "assail", "flirtation", "unterhaltung", "courtiers", "carboniferous", "brillant", "equanimity", "agitators", "venerated", "curs", "neer", "assimilating", "proudest", "subjunctive", "harun", "perishing", "inaugurate", "slavs", "libres", "noiseless", "cayley", "worshipful", "geh", "spurned", "selim", "chastised", "zich", "forethought", "viscera", "excitability", "madder", "exterminated", "mette", "bronzed", "grimy", "lascivious", "ille", "dispassionate", "bonheur", "charmingly", "glimpsed", "partaking", "firebrand", "deprecation", "intimation", "chequered", "glimmering", "alphonso", "falla", "disbelieve", "brevet", "darf", "troyes", "exterminating", "revolted", "bunched", "besoin", "scrutinised", "allez", "herded", "athanasius", "gemacht", "deliberating", "humaines", "londoner", "aeschylus", "plantagenet", "episcopalian", "zwar", "soldat", "nisi", "thucydides", "tapa", "repudiate", "advisability", "lope", "festering", "relinquishing", "dessa", "mercia", "furies", "piqued", "jinks", "biddy", "compris", "theophilus", "crony", "sambo", "stellen", "professes", "wherewithal", "shrieks", "taas", "ominously", "caer", "ablution", "demure", "athene", "jist", "ipse", "parasols", "munition", "veered", "jonge", "serfdom", "gossips", "rawlinson", "scuffle", "uncritical", "infatuated", "rhythmically", "gaat", "riotous", "tenga", "embittered", "unleavened", "veces", "stockade", "parece", "bushmen", "babylonia", "tempts", "tempel", "uur", "devolve", "satyr", "fearlessly", "ajar", "pampas", "altra", "suppers", "fluttered", "untrustworthy", "exhorted", "ravines", "yokes", "howitzer", "interjection", "stocky", "bazaars", "himmel", "greate", "strenuously", "wildness", "compensations", "laxity", "deathly", "unloved", "balked", "fairyland", "balaam", "hamar", "rekindled", "drams", "entreat", "brainless", "souci", "cessing", "cocking", "railed", "abounding", "fount", "poacher", "invisibly", "lithe", "intercede", "tusks", "hatten", "ayrton", "courtier", "blotted", "impetuous", "grammes", "shrouds", "ambergris", "hellen", "clearness", "embroider", "hubbub", "robed", "unchangeable", "wunsch", "haya", "magisterial", "boor", "recites", "anguished", "ailleurs", "meteoric", "jacopo", "equalled", "palabra", "arithmetical", "royally", "molle", "plantes", "dishonorable", "thwarting", "venise", "scurrying", "subverted", "urbino", "effets", "broadsword", "blankly", "auras", "bonfires", "allt", "cloudless", "conflagration", "xenophon", "bevis", "dethroned", "chapitre", "vestige", "courrier", "cheerfulness", "egoism", "cataclysm", "harried", "transshipment", "cuore", "fatherless", "puedo", "groen", "seers", "cretan", "roumania", "blubber", "appeased", "coaxed", "pageantry", "disparage", "triste", "chimed", "phraseology", "verdienen", "memoire", "morass", "intimes", "righting", "moder", "tasse", "dessus", "striding", "panelling", "braving", "prayerful", "raad", "transfixed", "balle", "leaven", "lout", "tucking", "unwary", "herrings", "cubit", "begets", "groundless", "prancing", "amelioration", "wark", "beeld", "bezahlen", "mightier", "enthroned", "overburdened", "dwindle", "lindau", "beter", "sujets", "acquiesce", "alacrity", "drawbridge", "gude", "overhauling", "girle", "pulverized", "holier", "mauer", "everard", "uncivil", "nondescript", "employes", "temperaments", "consulter", "simpleton", "brutes", "howsoever", "unsympathetic", "jermyn", "dico", "rejoinder", "condescension", "dilate", "rasch", "tiber", "bekanntschaft", "feuer", "secours", "skilfully", "abolitionists", "flustered", "compactly", "lasses", "fus", "corsage", "hym", "laboured", "enumerates", "decir", "relinquishment", "ohg", "sall", "cession", "liken", "forfeits", "heeding", "fata", "revenu", "helder", "verder", "caesarea", "naturelle", "wordless", "sleepily", "prowling", "harmonie", "eludes", "revelry", "deface", "propensities", "mimicked", "mete", "algunas", "uninjured", "rivage", "populaire", "lief", "toddy", "disheartened", "ruinous", "spoor", "upanishads", "eigene", "bewitching", "mihi", "individu", "accusers", "sunshade", "cuir", "hals", "furrows", "throngs", "sarcophagus", "dozing", "siete", "chink", "likenesses", "pervading", "caxton", "soames", "fermenting", "beiden", "blithe", "paralyze", "kazi", "tilling", "hereunto", "daad", "languish", "feathery", "reasoner", "adorning", "gaily", "weib", "samt", "jubilation", "tels", "storks", "accoutrements", "abeyance", "ciudades", "enfin", "suivi", "iniquities", "nadie", "purring", "squinting", "strolls", "encuentra", "gradations", "conocer", "vsed", "molest", "appetizing", "encamped", "trifles", "sammlung", "langage", "importantes", "suiting", "hesitates", "paralytic", "eastwards", "parsimonious", "pinafore", "alwyn", "albertine", "disposer", "politische", "foreknowledge", "galleys", "sunning", "farcical", "weel", "toiled", "incited", "rhythmical", "rippled", "tresses", "agitating", "oriana", "frankness", "castilian", "bunsen", "buenas", "susa", "sulle", "fuera", "outlived", "anny", "repulse", "basaltic", "hinter", "middling", "minstrels", "personae", "wain", "englander", "gascoyne", "knighted", "torchlight", "teniendo", "emanated", "southerner", "persevered", "hounded", "butted", "longings", "galilean", "ayant", "dominicans", "helmsman", "meditated", "shuddering", "homesteads", "abrogation", "justicia", "jutting", "deliverer", "knecht", "aeneid", "vehemence", "befell", "ette", "klar", "neige", "sneered", "chattels", "brambles", "disembark", "secede", "unmixed", "grieves", "prises", "tumbles", "sogenannten", "parnassus", "debarred", "dandelions", "abyssinian", "maler", "bulgarians", "coaxing", "marshy", "terres", "inne", "preying", "grasps", "subsisting", "freunde", "bladders", "avions", "junto", "bloemen", "latium", "shuttered", "alchemists", "morose", "poore", "regretfully", "abbeys", "dutchmen", "agitate", "vien", "abdication", "discontents", "botanists", "bohemians", "blir", "foreheads", "narrating", "gering", "pedant", "stubbornness", "distantly", "humaine", "averting", "pyre", "faubourg", "wooed", "chalky", "teamster", "beached", "fringing", "glans", "thousandth", "sacrilege", "demagogue", "demean", "changement", "stipulating", "propping", "straighter", "weirdly", "broods", "rejoices", "limber", "hablar", "mahomet", "telegraphy", "lehre", "doeth", "verschiedenen", "chrysostom", "blackfeet", "waistcoats", "chalked", "mightiest", "marvelously", "apse", "bailiffs", "infirmities", "illum", "aboot", "jolted", "manne", "jacobite", "viendo", "freckled", "plenipotentiary", "philistine", "gambled", "chaleur", "unimaginative", "joyeux", "gratify", "meuse", "certainties", "zie", "fittingly", "gelatine", "undid", "quelque", "publick", "electioneering", "nette", "ressource", "betel", "moisten", "demoralized", "peopled", "suffi", "swooped", "doctored", "soured", "quieted", "albumen", "encircle", "carmelite", "anges", "exhort", "voyagers", "tendrils", "thal", "nullification", "ostensible", "malarial", "exasperation", "stumpy", "jeden", "whereon", "entente", "nala", "mainsail", "inom", "promptness", "retraite", "excommunicated", "scalding", "storekeeper", "muskets", "uglier", "witchery", "predilection", "wavered", "climes", "firelight", "contrivance", "anoint", "scatters", "wallowing", "hindrances", "braver", "repartee", "boggy", "vragen", "termes", "chiming", "modulations", "philanthropists", "urteil", "retaliated", "founds", "poplars", "knightly", "debater", "tarde", "millinery", "appian", "irresistibly", "endeavoring", "comically", "substratum", "porpoises", "snel", "persuades", "rapports", "foreshadowed", "meekness", "audibly", "dewy", "obliquely", "uneasily", "meted", "liveth", "outre", "agin", "phoenicia", "boven", "jaunty", "balthazar", "squeamish", "tono", "parmi", "eccentricities", "pasar", "potentialities", "anthea", "letzten", "airships", "presuppose", "hetty", "affectation", "abdicate", "creak", "archdeacon", "haciendo", "pretension", "descents", "vicissitudes", "dupes", "larks", "tormentor", "tagen", "postilion", "weal", "grudges", "perversity", "convulsive", "inflame", "zien", "eclat", "doric", "pathetically", "bluster", "witching", "depreciate", "bellum", "gendarme", "dionysius", "imperceptible", "fattest", "atolls", "tibi", "parley", "jessamine", "palatial", "prelate", "flippant", "libations", "convivial", "trat", "adorns", "kamer", "grubbing", "commoners", "cultivates", "thankfulness", "nich", "unturned", "workroom", "zukunft", "phoebus", "censured", "sache", "relished", "boers", "toils", "salles", "enorme", "instigation", "veuve", "indefatigable", "overthrowing", "maudlin", "excusable", "craggy", "gushed", "extricate", "provocations", "deplore", "defrauded", "laut", "aplomb", "centum", "cabbages", "epee", "truism", "employe", "fervour", "babylonians", "fabius", "despondent", "ostia", "cunningly", "bathers", "turbid", "sceptics", "pollyanna", "bort", "privateers", "knowe", "preoccupations", "ludovico", "besonders", "villainy", "feuilles", "diverses", "maladie", "hurtling", "squabble", "ravin", "seest", "omnes", "methodism", "mente", "luego", "overtakes", "predominates", "phillis", "startlingly", "couplet", "falta", "inimical", "imperious", "townsmen", "sondern", "revoir", "handfuls", "gratia", "formant", "gongs", "eigenen", "larga", "pentateuch", "immobility", "purifies", "sparkled", "interchanged", "lulled", "disrepute", "rechten", "implacable", "sert", "employments", "carinthia", "attired", "uncalled", "repels", "zat", "aika", "pliant", "reappearance", "urbain", "avocat", "emaciated", "gern", "vassal", "cantos", "manse", "pining", "unknowing", "blithely", "moderns", "fashionably", "virginal", "augur", "colonizing", "bodleian", "bicameral", "chapeau", "dramatized", "bringeth", "paquet", "regle", "broomstick", "suffocated", "voulez", "marauding", "cynically", "assuage", "estrangement", "versicherung", "limped", "yearned", "fondest", "parce", "frightens", "incontinent", "amante", "perpetrate", "nombres", "mientras", "fiercest", "coining", "invective", "sueur", "depose", "pacify", "sunder", "excommunication", "grizzled", "lade", "caballo", "loathed", "florid", "fatalism", "despises", "chanter", "quacks", "arme", "wend", "blackest", "reihe", "roubles", "relented", "meinung", "tarred", "beget", "mooi", "stenographer", "nipped", "disguising", "invulnerable", "flickered", "quiere", "kummer", "hideously", "motherly", "modele", "vexatious", "coachmen", "girlish", "reddening", "foremen", "shamefully", "herculean", "tormenting", "pleura", "bragged", "pester", "deputation", "oppressing", "domineering", "obtrusive", "wrinkling", "wiry", "labyrinths", "jealously", "beare", "welches", "footman", "pense", "chafe", "tapis", "schoolboys", "alexandrian", "sinless", "manche", "nobly", "absolutism", "hause", "grosser", "gudrun", "sharer", "confidences", "wakefulness", "monopolize", "gehen", "consoled", "mayores", "contrition", "diener", "resound", "unsuspected", "archbishops", "tarpaulin", "abajo", "mustapha", "cherokees", "peaceably", "exacted", "oddest", "purposed", "evince", "hyenas", "schoolmates", "luogo", "breathlessly", "hoarded", "naturalness", "flings", "irritably", "gorgeously", "helt", "noonday", "courteously", "sinuous", "availing", "meekly", "briefer", "serfs", "vives", "homburg", "wailed", "ippolito", "thunderbolts", "tule", "hustling", "milanese", "foran", "bloomed", "hortense", "scrawl", "manana", "sprechen", "foamed", "refectory", "yearns", "unaccustomed", "platoons", "unbelieving", "luminary", "quitter", "purser", "pratiques", "furtive", "renouncing", "accosted", "conning", "tiempos", "incantations", "enchantress", "parallelogram", "wonderment", "pasado", "groped", "warder", "morbidly", "palfrey", "persecuting", "feign", "swooping", "jackals", "niceties", "outlive", "dereliction", "exactness", "barbarossa", "dray", "silurian", "detaching", "sunburned", "spasmodic", "interlacing", "elegante", "corne", "quietude", "roundly", "monarchies", "trost", "rhododendrons", "flirted", "vraiment", "royalist", "untroubled", "aspirants", "sheepishly", "denk", "haft", "parisienne", "russie", "warily", "cadmus", "telle", "aflame", "gits", "aright", "windlass", "studious", "fineness", "estan", "setzen", "pharisee", "devenir", "cercle", "urania", "amicably", "tureen", "nuptials", "greif", "flints", "satirist", "visiter", "pone", "camillo", "hade", "extort", "staaten", "gleeful", "sprightly", "grindstone", "speaketh", "sacredness", "menton", "petticoats", "proffer", "haply", "pronounces", "fussing", "stragglers", "scowl", "tinder", "omniscience", "vot", "leaden", "advantageously", "kinderen", "pounced", "statt", "wollte", "bayeux", "tertullian", "pompe", "fastidious", "ensconced", "cyprian", "sagacity", "nipping", "fogs", "ausbildung", "protestations", "trickled", "lungo", "erde", "fondled", "poids", "wistfully", "abounded", "heureux", "disloyal", "paralyzing", "staggers", "contorted", "polemical", "neighborly", "dabbled", "villes", "piteous", "olen", "perfunctory", "pervaded", "doorsteps", "falsetto", "tatters", "whan", "puissance", "tunics", "lepers", "gloating", "dismembered", "hierro", "perfidy", "minne", "meaner", "propounded", "valois", "insubordination", "impious", "absolved", "dishonored", "vivir", "bathsheba", "klara", "stilted", "hastening", "dines", "capon", "stiffly", "folgenden", "cacher", "festivity", "grk", "thessaly", "folgende", "ayre", "afire", "sowed", "proprio", "brahmins", "gloat", "entanglements", "clawing", "wrangle", "autour", "immensity", "squabbling", "acquiesced", "rosamund", "deinen", "consecrate", "pursuers", "predestined", "gneiss", "gevonden", "rhin", "disobeyed", "firme", "dishonour", "lavished", "courtesan", "unkempt", "bassin", "zeichen", "jeder", "interjected", "humorously", "victoriously", "ascents", "hingegen", "retarding", "indiscretion", "undertone", "adot", "decease", "stigmatized", "tactful", "friable", "palatinate", "liegen", "fawning", "decoction", "resents", "orientals", "squeaking", "tinkling", "drie", "nostrum", "masterly", "dunce", "fera", "butchery", "wresting", "treacle", "frankrijk", "foolhardy", "bristling", "boreas", "cherubim", "nightcap", "massy", "consoling", "nues", "characterises", "antiochus", "cutlets", "hoofs", "drawl", "veux", "manoeuvring", "lances", "helfen", "rivier", "imogene", "impute", "dainties", "leghorn", "directness", "glutton", "laquelle", "unnaturally", "disquiet", "deerskin", "meest", "sufficed", "extolling", "wearied", "barbe", "pitied", "hame", "sibyl", "lignes", "victoire", "erring", "geschiedenis", "acclamation", "ypres", "gigante", "solamente", "berenice", "cisterns", "kist", "panoply", "credulity", "coiling", "capuchin", "verkehr", "sympathise", "piti", "sist", "noirs", "pitying", "twitched", "clefs", "actuel", "vem", "panted", "midshipman", "juda", "gondolas", "swiftness", "necessaries", "nullity", "tuli", "tenemos", "relishing", "unsuited", "gurgling", "imaginings", "hvis", "boatswain", "hearthstone", "fondle", "cuddled", "superintendence", "regeln", "betters", "joab", "corruptions", "persevering", "transversely", "abelard", "illusive", "octavius", "disquieting", "ripeness", "veering", "alguna", "tiere", "junker", "vapid", "hohe", "pieds", "unremitting", "rechnung", "clenching", "cordials", "bandaged", "evanescent", "fevered", "indignity", "pinches", "aglow", "midden", "sieg", "notamment", "bullocks", "peinture", "moyenne", "valerius", "chucked", "ransacked", "bugbear", "wreaked", "hogshead", "masques", "halfpenny", "fetes", "kneels", "reticence", "iambic", "lisbeth", "deplored", "icke", "unfashionable", "jacobean", "loveth", "sceptic", "vociferous", "eunuchs", "comed", "salz", "languished", "sneering", "coitus", "churchman", "lisette", "cocoons", "deserters", "ainda", "verre", "smallness", "esas", "remotest", "retorts", "housekeepers", "farewells", "conscript", "redder", "cria", "troupes", "tiptoe", "sociability", "idealists", "xlv", "crowing", "celles", "thankless", "avers", "hochzeit", "schuld", "quale", "sublimity", "birches", "crunched", "ratifications", "ringleader", "thundered", "fumed", "feste", "thereunto", "compatriot", "discontented", "droning", "yawned", "scuttled", "wochen", "inoffensive", "erudition", "bedsteads", "perrot", "strictness", "welke", "entretien", "frivolity", "gulped", "subtler", "vestidos", "inviolable", "toten", "riflemen", "insufferable", "clasping", "landen", "interjections", "usurpation", "brimmed", "subjugated", "unlearned", "prostrated", "kaffee", "excusing", "rejoining", "subir", "etiam", "slanting", "maisie", "detested", "overal", "dauntless", "pulsations", "frugality", "apprenticed", "reflexion", "vomited", "loth", "undisciplined", "signalized", "lunged", "alii", "vergil", "wiens", "verts", "opere", "pouting", "watling", "daher", "vrij", "creer", "cranny", "springy", "perplex", "lamentable", "signes", "besuchen", "rebelling", "destitution", "rummaging", "broached", "puckered", "squalid", "shunning", "erhalten", "cinders", "interrogatory", "syndic", "cleaving", "semicircular", "montant", "trow", "overwork", "kirche", "farben", "roches", "pommel", "intermixed", "logik", "rerum", "freemen", "mellan", "linnet", "heightening", "goede", "laddie", "bellowed", "tante", "sair", "questi", "entier", "timbered", "sxi", "unrighteousness", "shrilly", "catullus", "dulled", "nuestras", "interlocutor", "kingly", "chided", "turbans", "acquit", "tota", "choisir", "hvor", "singe", "stunden", "harping", "etwa", "akimbo", "beeches", "seule", "augmenter", "hieroglyphic", "aryans", "banishing", "unicameral", "clamour", "sopra", "alvar", "punkt", "dunkel", "erle", "unadorned", "prefaced", "wijn", "gleichen", "verband", "majesties", "endearment", "fealty", "disputation", "leicht", "whoso", "thracian", "forerunners", "exhalation", "investiture", "animates", "ruffian", "turkestan", "balthasar", "ourself", "invariable", "inclines", "southey", "patronising", "deciphered", "shudders", "voie", "gerne", "ardently", "granitic", "untried", "luise", "narada", "intruded", "marmaduke", "coppice", "autocracy", "backwardness", "undiminished", "caput", "connaissance", "discomforts", "clammy", "indisputably", "rifled", "meglio", "pomerania", "fane", "latterly", "flogged", "disadvantageous", "philological", "enamoured", "unpalatable", "shrugging", "disse", "persistency", "conscripts", "chimeras", "befits", "instants", "denunciations", "pervade", "entrapped", "suerte", "apaches", "archduke", "myriads", "physiologists", "egotism", "motherless", "cien", "tiberias", "chaldean", "comedie", "reciprocated", "squabbles", "buffoon", "tilled", "rumbled", "mittel", "ambos", "disobeying", "drusilla", "sidon", "acrid", "dijo", "trespasses", "conversed", "ingeniously", "howitt", "counterbalanced", "undertakers", "pricked", "coppers", "reddened", "exhortations", "wohnung", "againe", "hijos", "poulet", "degenerates", "demeanour", "broadsides", "closeted", "unceremoniously", "genuineness", "bungay", "poissons", "volte", "suoi", "wirklich", "iho", "crannies", "prospering", "dearer", "familles", "minutely", "seditious", "trotz", "inarticulate", "turba", "brust", "rameau", "silvered", "youse", "seno", "poche", "neuem", "fromage", "gunboat", "drippings", "voici", "alida", "messager", "asceticism", "reconciles", "disentangle", "bestowing", "belie", "ostend", "divining", "balustrade", "fortieth", "adulterous", "slyly", "shied", "plantains", "eveline", "deferential", "enlivened", "coterie", "magnanimous", "plait", "guttural", "prided", "anciens", "capsized", "breslau", "unreality", "weiteren", "murs", "lath", "encampments", "hindenburg", "whiten", "derniers", "entendre", "cuidado", "reynard", "remarque", "katrine", "perused", "refrains", "furrowed", "tabernacles", "virile", "poignancy", "detestable", "pouce", "certaines", "sombra", "narbonne", "voisin", "jilted", "centurions", "poring", "quivers", "flaunting", "peeped", "kiu", "ellas", "quer", "wails", "gild", "debonair", "indignantly", "invigorated", "bucolic", "disaffection", "grappled", "executioners", "belial", "harde", "blessedness", "courtesies", "misericordia", "apotheosis", "jette", "bettering", "tigress", "geworden", "occhi", "chante", "bleating", "stratagem", "squatted", "dagon", "hugues", "atalanta", "partage", "authoritatively", "unpleasantness", "bettered", "imbecile", "gravest", "defilement", "butting", "gobbled", "hispaniola", "conceives", "townsfolk", "afflicts", "thinness", "counteracting", "marilla", "ramshackle", "dullness", "syllogism", "wrenched", "giovane", "usurping", "arouses", "augustinian", "scald", "rois", "rodolphe", "heliotrope", "aquiline", "reapers", "uncouth", "allein", "whimpering", "eleazar", "portent", "fatten", "crossly", "hadst", "fier", "admonish", "battlements", "transgress", "leant", "lank", "governorship", "tolled", "zealously", "aen", "dowager", "werken", "squealed", "convents", "romane", "vertrag", "usurper", "recitations", "inculcate", "olla", "encumber", "blut", "golfe", "wier", "unimpaired", "liue", "heedless", "rancor", "trots", "providential", "freiheit", "daresay", "kapitel", "liberality", "principes", "semaines", "stort", "indulges", "unthinking", "tutta", "marcelle", "flossie", "inestimable", "whiles", "henne", "distrusted", "prie", "mohawks", "ignoble", "frankish", "jeroboam", "timidly", "lurked", "greyish", "imitative", "igual", "pagodas", "ganze", "hobble", "maan", "roten", "kannst", "tills", "repentant", "comite", "meanness", "wege", "biding", "unassailable", "sidan", "mutters", "singhalese", "mammon", "cavour", "discoverable", "letty", "tombe", "beltane", "whir", "afflicting", "posto", "biographers", "escrito", "hyacinths", "demandes", "freeholders", "ventre", "facetious", "tinkle", "wormed", "histoires", "weiber", "approche", "civilly", "unhurt", "incredulity", "yawns", "croker", "liisa", "proscription", "foretell", "hoards", "boccaccio", "whimpered", "businesslike", "egypte", "juba", "frill", "landward", "cripples", "amusingly", "cornices", "ostentatious", "vrai", "pocketing", "bereits", "shylock", "deseo", "paymaster", "canaanites", "carnac", "gnarled", "doce", "gnashing", "preuve", "plod", "damals", "covetousness", "dammed", "piebald", "unawares", "scornful", "crosswise", "tuneful", "hache", "girolamo", "quienes", "humdrum", "distended", "faun", "parler", "folgen", "fatness", "summe", "lente", "dangled", "fixedly", "feebly", "objekt", "vexation", "bastions", "bailly", "threadbare", "emissaries", "weh", "vertue", "subsiding", "hebe", "purred", "lieve", "contingents", "squirmed", "haren", "sangue", "cringing", "saal", "kleinen", "hys", "outstrip", "demerits", "highwayman", "contes", "hussars", "fatherly", "jehu", "southwards", "swerved", "unas", "recurred", "roams", "fuhr", "hemos", "terrify", "licentiate", "periode", "innerhalb", "inflammable", "freundin", "disowned", "parlement", "surmount", "hellenes", "unheeded", "siecle", "nicholl", "magis", "wolle", "apprendre", "habitations", "warf", "cowering", "overhear", "tawdry", "doublets", "saintes", "buona", "gaspard", "skall", "canonized", "solicitous", "findet", "vorbei", "hulking", "realidad", "seconde", "carcase", "caballeros", "unwound", "whiche", "progres", "reveille", "garrisons", "professeur", "shames", "schicken", "predominated", "wilden", "pittance", "gironde", "gosse", "escutcheon", "winging", "alcibiades", "schatten", "curds", "sinfulness", "recapitulation", "trudged", "junger", "hummed", "convalescence", "verite", "spada", "priam", "unceasing", "disdainful", "cackling", "blancs", "freres", "aimer", "parsnips", "trembles", "davon", "dryly", "ingratitude", "postes", "godt", "largesse", "humped", "mooie", "rowboat", "perfections", "restive", "hackneyed", "canticle", "peine", "naivete", "circuitous", "frieden", "imploring", "erebus", "abridge", "picardy", "glisten", "clubbed", "turnings", "unblemished", "trenchant", "lilla", "volleys", "hommage", "girlhood", "freshening", "rill", "andar", "lodgment", "clumsiness", "witless", "regale", "crus", "siya", "amuses", "pallor", "unwholesome", "parsifal", "copra", "journeymen", "filipinas", "hippolyte", "marsa", "galling", "vei", "quitted", "tomba", "musta", "brawny", "quella", "fueron", "prattle", "partakers", "climat", "ilium", "livy", "incorruptible", "puritanism", "carthaginian", "assiduously", "nibbled", "appeasing", "piquant", "grond", "magno", "leute", "unreservedly", "tattle", "baste", "manier", "willst", "inseparably", "anthers", "buttonhole", "uncivilized", "insensible", "seasick", "redouble", "theodosius", "liberte", "rostrum", "ejaculated", "eux", "sables", "pian", "admonitions", "shewing", "suelo", "cower", "erfahren", "inferiors", "singed", "gird", "territoire", "pierces", "jugend", "kleidung", "erfahrungen", "solicitude", "pawnbroker", "reverently", "deign", "eher", "hominy", "doting", "fuerza", "blistered", "glittered", "hanseatic", "pestered", "preeminence", "billows", "biens", "etten", "carted", "despots", "gnaw", "bandied", "liegt", "vinden", "rijk", "perversely", "bors", "transfigured", "dauer", "quizzical", "couper", "informers", "resentments", "bartered", "sugared", "spittle", "circumspect", "demerit", "shouldst", "roundness", "acrimonious", "pulpits", "warding", "unbuttoned", "brot", "feit", "frolics", "groat", "matins", "formes", "bellowing", "platon", "abhorrence", "verbo", "osten", "blackish", "emme", "aphorism", "emanation", "miscreants", "unction", "redan", "seguir", "noblemen", "barque", "deride", "kirke", "houseman", "sedges", "pitiless", "zwarte", "portly", "jangle", "jarl", "beauteous", "veld", "contrive", "huguenots", "estimable", "scowled", "ministration", "willet", "wriggle", "impudent", "xlii", "petted", "meist", "prude", "heroically", "phoenicians", "enjoining", "willen", "hustled", "jinny", "surreptitious", "petulant", "unfurled", "sauf", "lits", "chinaman", "nonchalant", "disloyalty", "laconic", "westwards", "nase", "paha", "askance", "misma", "binnen", "baronial", "charrette", "denouement", "belied", "obliquity", "satiric", "quivered", "sche", "sanctimonious", "natt", "ebbs", "obed", "ezek", "heet", "stammering", "waked", "logis", "foolscap", "sorte", "oases", "brach", "limites", "calma", "unmeasured", "statuettes", "nubes", "unga", "gegeben", "satz", "twinge", "cultus", "trudging", "narcisse", "feasted", "rebukes", "colquhoun", "quadrille", "inconnu", "lucretius", "sprach", "ihres", "docteur", "meubles", "whome", "repressing", "embroideries", "booke", "ingenio", "intellects", "brawling", "veut", "tient", "gelatinous", "meilleures", "figur", "gentlemanly", "underbrush", "bemoan", "norsemen", "forsaking", "souvent", "bobbed", "diversities", "gouden", "pontus", "unintelligent", "holies", "annexing", "vriend", "amas", "asylums", "satires", "coffer", "costliest", "ravaging", "rarefied", "nebel", "gleichzeitig", "leyes", "deprecate", "lvi", "serait", "esos", "chivalrous", "overruling", "gendarmerie", "konnte", "groene", "obstinacy", "caked", "delude", "similes", "seeme", "puertas", "recedes", "wroth", "emetic", "gestellt", "holde", "capitale", "steamboats", "naturelles", "towered", "fastness", "gautama", "alsatian", "unrighteous", "torpor", "leser", "desecrated", "transgressed", "publiques", "rawdon", "endeared", "arsene", "pecked", "colonne", "dozed", "outstripped", "chaldeans", "perdu", "repast", "annee", "majestically", "shapeless", "heen", "contrite", "pursed", "principio", "entreated", "heliopolis", "chel", "righteously", "marvelled", "seductions", "taga", "propitious", "domesticity", "dashwood", "veta", "chastise", "inveterate", "peacefulness", "extolled", "absently", "promis", "breit", "copse", "espada", "highwaymen", "orators", "incorrigible", "abating", "sonore", "feigning", "passant", "liveliest", "sixtieth", "reproof", "filets", "baiser", "credulous", "inflections", "lintel", "allora", "stak", "hereupon", "clod", "alaric", "beneficence", "impregnable", "poca", "dessen", "penmanship", "dese", "girded", "bessy", "inscribe", "adelante", "serenely", "nosing", "crowed", "vnto", "cooped", "overwrought", "vivacity", "incontrovertible", "forenoon", "clotted", "jolyon", "certitude", "marshalled", "approvingly", "waif", "ruder", "suffused", "fanden", "altijd", "artless", "morne", "cowed", "longueur", "deeps", "forger", "busied", "venir", "kith", "vrouwen", "valenciennes", "komt", "noblesse", "jostling", "satiety", "tolerably", "consanguinity", "wint", "convulsion", "slumbering", "heraclitus", "semicircle", "vient", "squinted", "exaggerations", "editorship", "rapturous", "unobtrusively", "sabes", "choicest", "tempestuous", "vaillant", "bamboos", "noticia", "signora", "flitting", "laboriously", "inmost", "jehan", "vorhanden", "poesie", "snuffed", "cannot", "vache", "sere", "slighted", "keinen", "maner", "stammer", "inordinately", "fidget", "borst", "comprehends", "gleams", "sieges", "magnifique", "pollux", "sieben", "muzzles", "peleg", "punic", "oser", "saman", "epirus", "fantastique", "tilbage", "astern", "pelted", "stoutly", "insinuating", "auge", "leib", "unequally", "profligate", "sated", "acht", "apprise", "bothe", "goda", "beady", "oberst", "abdicated", "reveries", "hauteur", "unerring", "arter", "euer", "denizen", "elegiac", "bivouac", "owain", "doggedly", "hermano", "ladyship", "kneeled", "longe", "rire", "marcha", "problematical", "tanden", "drapeau", "crackled", "defenceless", "pricking", "invalids", "eiland", "harbouring", "droite", "fastens", "igen", "paysage", "fleshly", "striven", "lurched", "blotches", "persoon", "herre", "pistil", "legen", "northumbrian", "apprehending", "werde", "insinuate", "deadening", "froid", "angele", "dolt", "propria", "schreef", "agreeably", "scouted", "intime", "splendors", "capstan", "feint", "muscovite", "pursuer", "letto", "wrappings", "daunted", "candido", "ske", "aurore", "couplets", "socialistic", "narrowness", "dwelleth", "mogelijk", "moustaches", "manzoni", "brushwood", "arrogantly", "traurig", "lieux", "barricaded", "pillaging", "vingt", "tief", "perles", "bungling", "impel", "schlecht", "expectantly", "perching", "solum", "broiling", "gangway", "tantalus", "rapacious", "uniquement", "debased", "concubines", "jogged", "sentido", "entangle", "steepness", "franchi", "puritanical", "capacious", "prefects", "clew", "biscay", "unrolled", "tambour", "watchword", "drummed", "verging", "interdict", "geplaatst", "scamper", "devoutly", "transmigration", "deshalb", "redoubt", "meus", "kerk", "revenant", "instil", "boastful", "bilious", "orsini", "despondency", "disheveled", "exclamations", "allegories", "entonces", "trudge", "mincing", "scurried", "setzt", "homesickness", "metamorphosed", "hussy", "stoicism", "congregated", "covetous", "ewer", "grootste", "doux", "directe", "hysterics", "procures", "stimme", "aceite", "concerne", "devours", "waists", "judaea", "leden", "quidam", "potentate", "barbarity", "extirpated", "charlatan", "slouching", "susceptibilities", "plaited", "floe", "surtout", "agonies", "misjudged", "writhed", "beine", "housemaid", "eurydice", "undeserving", "untruth", "directement", "preyed", "relent", "zillah", "verba", "horsehair", "seinem", "handelt", "gien", "mandarins", "sforza", "indifferently", "nevil", "shuns", "teile", "retinue", "hulda", "impostors", "stehen", "brawls", "derangement", "mesmo", "hinaus", "epictetus", "impertinent", "ouvrir", "buffeted", "physiognomy", "hecuba", "oiseau", "behooves", "misshapen", "scrubby", "jedoch", "unpolished", "vales", "steadiness", "ceaselessly", "irishmen", "charmes", "succor", "branche", "efecto", "ague", "sodden", "helpe", "changements", "unavailing", "vagabonds", "irreverence", "ditt", "chaises", "statesmanship", "papst", "popolo", "saner", "tendre", "halla", "demoralizing", "prest", "disillusion", "frocks", "poner", "thronged", "iets", "beseeching", "irksome", "burgesses", "abbess", "minuit", "uncounted", "schoolroom", "varus", "terrasse", "teufel", "teaspoonful", "rambled", "bertin", "monta", "kneaded", "fertilised", "rosse", "emanations", "veiling", "squandering", "wahrheit", "quiescence", "gilet", "widowhood", "eut", "swarthy", "abyssinia", "populaires", "poetically", "durance", "farnese", "chid", "menaces", "desir", "ambling", "perilously", "numbed", "acteurs", "regel", "bathes", "drover", "wees", "dogmatism", "chasseur", "grudging", "reciprocally", "effusions", "snared", "brogue", "passeth", "gret", "namn", "squeaked", "seance", "stilled", "bygones", "assez", "mentre", "contentedly", "roughest", "entreaties", "ridiculing", "alternations", "penitence", "discours", "avails", "velvets", "completer", "streit", "recevoir", "tactfully", "speake", "gericht", "borde", "drunkards", "danton", "hurries", "smolensk", "terreno", "tweede", "ouvert", "duchesse", "mingles", "strafe", "corrals", "rectitude", "semble", "engen", "erreichen", "encircles", "garratt", "jorden", "uncleanness", "viens", "pried", "supplications", "onely", "deportment", "marchandises", "invidious", "weten", "seraphic", "gedanken", "malevolence", "wetten", "alcalde", "judicature", "vigueur", "einzelne", "exhorting", "libation", "facit", "soient", "duas", "rechts", "bagatelle", "chaine", "nonchalantly", "drenching", "verhaal", "subi", "chiens", "prance", "lapsing", "suivre", "edifices", "gruel", "fing", "exasperating", "grievously", "hauts", "partout", "hesitancy", "courte", "chafed", "kennen", "interposition", "callings", "satisfactions", "distrustful", "incredulously", "zij", "obsequious", "moyens", "dissolute", "briefest", "lamplight", "sharpshooters", "druggist", "absolu", "unprincipled", "sweated", "lieth", "flinched", "zeer", "pacification", "nitrogenous", "sackcloth", "enraptured", "indique", "boeuf", "fidgety", "disown", "sophistry", "illumined", "thir", "agonized", "pickpocket", "warbling", "shriveled", "conformable", "imprisoning", "incongruity", "uselessly", "gallantly", "bended", "drang", "poignantly", "untiring", "hostelry", "slumbers", "forfeiting", "fertig", "humphry", "numberless", "intemperance", "definiteness", "reproved", "privation", "westen", "peevish", "tapio", "pedagogue", "soothsayer", "facings", "multiform", "peuple", "herculaneum", "carthaginians", "micheline", "indelibly", "ashy", "cependant", "cruelties", "unseren", "cadences", "slavish", "bawling", "awestruck", "bluer", "felicitous", "caravel", "calles", "plaudits", "schooners", "mycket", "chacun", "demander", "weniger", "eltern", "adepts", "clefts", "kapital", "underhand", "sophist", "heimat", "idolatrous", "secundum", "smouldering", "tradespeople", "untersuchung", "polytheism", "varias", "revellers", "rebuff", "appellations", "draughtsman", "boulet", "verandas", "pwh", "pindar", "iscariot", "bombast", "soyez", "bateaux", "impulsively", "cuarto", "seeth", "milch", "depredations", "dews", "kalt", "temerity", "mlle", "eluding", "adventitious", "interdit", "corked", "deluged", "fleecy", "antelopes", "daub", "unanswerable", "darkens", "excellencies", "strahl", "isak", "gedicht", "atque", "untainted", "eigenschaften", "slays", "crees", "whirring", "miserly", "troth", "contemptuously", "frequenting", "mannes", "celerity", "grottoes", "marthe", "milliner", "komma", "blase", "hoose", "exonerate", "righted", "sayd", "travailler", "imperishable", "degen", "spurn", "famished", "romping", "oozed", "cuanto", "contient", "devrait", "bidden", "tuileries", "samen", "contraire", "vasili", "monopolized", "abstruse", "stripling", "overshadowing", "succour", "whizzing", "headman", "saat", "mellowed", "ebenso", "contiguity", "morts", "retracing", "similitude", "servent", "verdure", "sward", "exclusiveness", "anwendung", "forse", "deines", "tira", "reclined", "throbbed", "divines", "prostration", "wretchedness", "admis", "festooned", "barest", "steadfastness", "boog", "digressions", "diocletian", "fellers", "begrudge", "xliii", "coxswain", "schriften", "counselled", "sentries", "reproaches", "pediment", "hayti", "geef", "cassio", "meinem", "wanneer", "baleful", "swifter", "timotheus", "hulp", "gelten", "miroir", "promesse", "apenas", "hillock", "fearlessness", "neben", "waggon", "unalterable", "beelzebub", "inexpressible", "indios", "cherishing", "crooning", "bref", "wist", "eius", "disavow", "peals", "mariette", "backsliding", "ziehen", "whisking", "wantonly", "samovar", "zweifel", "oppresses", "footstep", "stewing", "schnee", "acrimony", "bristly", "soever", "ruefully", "unfavorably", "slothful", "sitt", "diep", "exhorts", "moloch", "epigram", "wafted", "keepe", "expends", "golde", "reassuringly", "thwarts", "sitz", "staats", "jedenfalls", "abhorred", "zeigt", "sollten", "mene", "worketh", "phosphorescent", "sauntered", "foundling", "illiberal", "deserting", "onlooker", "deathless", "assurer", "scandinavians", "legate", "dissuaded", "paled", "ascribes", "hearths", "duller", "discoverers", "furled", "denken", "caminos", "esdras", "typify", "ganzen", "commissariat", "seele", "abydos", "cornfields", "ebbing", "evelina", "resta", "portents", "venetians", "unnerved", "demain", "participles", "harmlessly", "purty", "possessors", "mephistopheles", "pologne", "seene", "fortes", "liveliness", "godson", "passa", "peur", "conserver", "paling", "deur", "bisher", "schwester", "autocrat", "shouldering", "hovel", "gauls", "conforme", "honneur", "stirrings", "decider", "lusitania", "rustled", "unquenchable", "foreseeing", "indolence", "profundity", "lawe", "paru", "vostro", "turgid", "exigency", "exige", "necesario", "reined", "prend", "unenviable", "genau", "unfeeling", "cooing", "haine", "bishopric", "espoir", "severest", "lesse", "beautifying", "glistened", "encroached", "corriente", "suppleness", "irascible", "eigenes", "canute", "vibrated", "denuded", "rendre", "subjugate", "commissaire", "gulden", "naturaleza", "niobe", "incorporeal", "orderlies", "thrushes", "dient", "ferried", "wriggling", "crape", "mouldy", "amant", "merest", "wordes", "perpendicularly", "expounding", "nutzen", "gestern", "swaddling", "benighted", "hysteric", "robespierre", "tillbaka", "exultation", "fand", "blanke", "selfsame", "overcoats", "calvinists", "grovel", "soberly", "therfore", "mellem", "gayest", "vais", "fetid", "boatmen", "vespasian", "singleness", "kette", "yearnings", "remise", "unquiet", "einzige", "herbage", "adduce", "twaddle", "unitarians", "unutterable", "outshine", "parisians", "stellt", "patronized", "aldus", "pommes", "inelegant", "clambered", "histrionic", "subsists", "degenerating", "recommande", "sergius", "taciturn", "sways", "bristled", "flecked", "mustering", "allemande", "sophy", "paramaribo", "betrothal", "boorish", "posa", "queste", "sinon", "devoir", "hunde", "adjoined", "soumis", "pire", "vilest", "niin", "vassals", "throttled", "fonder", "entrancing", "elope", "seid", "nehmen", "welshman", "beguiled", "besoins", "violetta", "stillen", "sinew", "mordant", "clotilde", "ascribing", "zahl", "compter", "germanicus", "declension", "fawns", "damaris", "anodyne", "dearie", "verum", "voller", "lequel", "enigmas", "kinde", "bezoek", "humored", "befalls", "endlich", "yli", "primeros", "chere", "fussed", "anabaptists", "xliv", "disembarked", "burgundian", "telles", "pente", "thumped", "superbe", "conjectural", "tendance", "idlers", "eigentlich", "hoog", "contortions", "effusive", "heilig", "cloistered", "redoubled", "choristers", "bosoms", "flapped", "supernumerary", "aqueducts", "ngon", "reprobate", "despues", "indiscretions", "riper", "forsook", "hittites", "tatler", "prelates", "unserem", "ensigns", "sauve", "miei", "spendthrift", "antipodes", "chers", "grossest", "shanties", "ploughs", "lashings", "noemi", "loue", "persecutors", "averred", "valueless", "imperceptibly", "jaren", "uden", "dise", "crevasse", "hastens", "huizen", "davantage", "brilliancy", "gushes", "marechal", "surer", "frae", "traitorous", "hacen", "levite", "quieting", "candour", "pacified", "drin", "gored", "remunerative", "intricacy", "coralie", "pendulous", "eare", "mourner", "enfold", "wirst", "troubadours", "amours", "reentered", "paupers", "bludgeon", "welled", "naturae", "inconsiderable", "cotyledons", "cackle", "sallow", "gemaakt", "montagnes", "reformatory", "demeure", "ostentation", "ninguna", "cherishes", "souper", "wrathful", "thuis", "partook", "ehe", "familiars", "blacken", "zorg", "possibles", "vannes", "schemer", "lika", "actuellement", "deiner", "writhe", "friendless", "proboscis", "fitful", "sicut", "genii", "intrust", "illi", "dishonoured", "unquestioning", "desultory", "fabrique", "pitifully", "egen", "menacingly", "emmeline", "linken", "disinclined", "lackeys", "codicil", "puerile", "kleber", "journaux", "worthlessness", "oblation", "franziska", "caracalla", "civilizing", "conseiller", "corneille", "merken", "dorp", "palaver", "gorgias", "tribu", "unvarnished", "overran", "folies", "wretches", "hoarsely", "bonhomme", "hellenism", "statecraft", "familien", "propia", "flout", "studiously", "reveled", "confounds", "pitiable", "countrie", "reiteration", "corsairs", "indiscreet", "duelling", "pedantry", "lugged", "debilitated", "blazon", "gars", "looseness", "neglectful", "gamla", "pillaged", "voces", "reasonings", "vestido", "agathe", "niemand", "tost", "worthily", "passy", "verfahren", "insomuch", "anneke", "scruple", "steadied", "coolie", "honeyed", "recoiled", "comprendre", "disliking", "chinks", "unripe", "shipmate", "convulsed", "noce", "cleanness", "unmolested", "insistently", "fording", "linie", "telegraphs", "coverts", "transgressors", "redolent", "impudence", "ananias", "vied", "eulogies", "weakling", "griefs", "yoked", "steeples", "tares", "detto", "tottering", "grossen", "scalps", "despaired", "quails", "satiated", "plupart", "principaux", "lightnings", "repenting", "souldiers", "manliness", "churchmen", "parthian", "knowen", "chirped", "facta", "himselfe", "derisive", "imbibed", "hanoverian", "samma", "warton", "equipage", "prophesying", "abodes", "kring", "spouted", "clanging", "windpipe", "veronese", "guiltless", "burnings", "caractere", "estaba", "distresses", "retaken", "heere", "intermingling", "foundered", "mandat", "blinde", "dispensations", "irretrievably", "thralls", "crise", "connivance", "miscreant", "bitterest", "uncertainly", "resenting", "kingdome", "familiarly", "reviens", "scowling", "swaggering", "grandly", "publicans", "graciousness", "footlights", "smarting", "pueda", "hatreds", "imperil", "salamis", "supplie", "zweite", "censer", "surfeit", "schneller", "obeisance", "whelp", "fantaisie", "monnaie", "ignominious", "entschieden", "sulking", "keenest", "ungainly", "darstellung", "bauble", "circlet", "rouses", "dormir", "consolations", "enslaving", "medes", "deale", "odorous", "indefinable", "faits", "kenne", "ironical", "sympathized", "uncultivated", "functionary", "suppositions", "jehoshaphat", "chevaux", "elegies", "carbines", "richt", "kaffir", "livelier", "gervase", "grenadiers", "bruit", "acacias", "magnanimity", "aleck", "propio", "fiesole", "gallops", "dexterous", "connaissances", "hebt", "beaute", "hoor", "modernes", "undignified", "stesso", "conocimiento", "mord", "endear", "effigies", "folge", "counteracted", "planking", "blockhouse", "confiance", "urbanity", "lawgiver", "totter", "rumpled", "scalded", "importations", "laughingly", "prefaces", "tenue", "idolaters", "seducer", "haire", "tenaciously", "moonbeams", "inculcated", "monate", "verschiedene", "wohin", "generall", "reposed", "cicerone", "mustaches", "hasard", "leddy", "mildest", "restlessly", "uselessness", "lezen", "doet", "oaken", "endroit", "harlots", "conduite", "rouges", "humours", "humain", "voltaic", "derriere", "xlviii", "flot", "cudgel", "aurait", "multifarious", "runneth", "tenu", "llegar", "abhors", "minarets", "wrack", "bleiben", "vividness", "beatitude", "husbandman", "procureur", "stuk", "douleur", "heaves", "xlvii", "sagt", "passi", "subaltern", "appui", "bharata", "longingly", "apud", "bandes", "roseate", "ruffians", "servir", "contralto", "tenter", "rues", "dote", "valdemar", "curtly", "resuscitated", "exemples", "confidante", "rashly", "athen", "leering", "soudan", "clearings", "pleasantries", "louer", "uomini", "atoning", "insinuated", "xlvi", "warble", "prodigies", "herbes", "phrygia", "overige", "dardanelles", "familiarized", "fakir", "rato", "divinities", "ostracism", "magasins", "buttresses", "drovers", "obelisks", "vierge", "doggerel", "existences", "farre", "extravagantly", "hauptmann", "builded", "volle", "slandered", "demagogues", "cephas", "flighty", "opposer", "ejus", "gabled", "convient", "ofta", "enrage", "sinews", "flemings", "glanz", "serjeant", "shadrach", "shallowness", "ensnared", "loyally", "sneezed", "darkling", "subservience", "nightingales", "gaped", "subduing", "apoplexy", "poorhouse", "sunbeams", "kaan", "brigand", "jahrhundert", "chasms", "jealousies", "ditties", "dignitary", "wenches", "dite", "gesicht", "improbability", "shrewdly", "sneers", "bloodhounds", "meed", "impish", "menaced", "seneschal", "deafened", "hooting", "cyrene", "dejection", "economize", "prophetess", "hatchets", "witz", "spoonfuls", "unten", "ebene", "funereal", "wrested", "deceives", "plaint", "imperio", "demesne", "briny", "nimbly", "supped", "calumny", "sigismund", "herrn", "verger", "ludicrously", "portend", "reves", "spattered", "couloir", "straggling", "cochon", "berthe", "acadians", "comtesse", "jailers", "chaud", "disastrously", "intimations", "arzt", "xlix", "heterodox", "manque", "codfish", "debility", "shirking", "rustlers", "demas", "zaken", "aloes", "obliterating", "victuals", "certo", "dully", "leonore", "exalting", "chide", "entrap", "indignities", "nombreux", "rhymed", "whirls", "compassionately", "hussar", "scow", "voorbeeld", "beide", "honora", "remorseful", "obstinately", "zei", "peste", "aggrandizement", "jotted", "unpopularity", "deluding", "boileau", "naast", "charta", "royalists", "lachen", "hennes", "nej", "achaeans", "cravat", "genug", "pinions", "mindre", "praetor", "peche", "sunburnt", "superficie", "grotesquely", "mown", "soms", "vagrants", "transept", "patois", "atlee", "seuil", "petrograd", "aveva", "bulged", "bated", "seines", "thereat", "aise", "recours", "cloven", "apollyon", "intemperate", "confiding", "fleisch", "eares", "compunction", "bonum", "unceasingly", "herdsman", "haat", "frightfully", "reprises", "fierceness", "remodelled", "unpleasantly", "szene", "bouches", "aggressions", "spectacled", "telegraphed", "resounded", "mickle", "sagacious", "moralists", "abimelech", "gehe", "valise", "prompter", "provincials", "distaff", "imbibe", "hisses", "garcon", "doel", "freude", "gnawed", "sieht", "oog", "clattering", "traite", "bleus", "tente", "reverberating", "incomparably", "bearskin", "ripens", "darunter", "benares", "recitative", "factotum", "zoon", "screeched", "quare", "anticipations", "determinedly", "calamitous", "pria", "hughie", "egli", "mopped", "sacrilegious", "fatuous", "elocution", "cilicia", "retraced", "palliation", "kunne", "misanthropy", "protruded", "hanse", "incompetency", "mebbe", "plainer", "chambermaid", "sapping", "perfidious", "voyaging", "humiliations", "umbrage", "fatiguing", "awaking", "presencia", "portmanteau", "moralist", "farbe", "legere", "tormentors", "distinctness", "expiation", "insinuation", "indem", "alehouse", "practicability", "swindler", "standen", "inquisitors", "dreamily", "frobisher", "digo", "motivo", "gibbet", "exactitude", "promenades", "grise", "epitaphs", "jostled", "mannen", "globules", "herdsmen", "conmigo", "reprove", "heareth", "ipsi", "inviolate", "zoroaster", "orations", "vistula", "laten", "examina", "erster", "autant", "schrift", "resemblances", "termina", "cuales", "lordly", "complexions", "despising", "assiduous", "verstehen", "epigrams", "dagny", "thenceforth", "girths", "swerving", "surpris", "frappe", "pobre", "lebens", "muerto", "enfance", "gesetz", "portentous", "conjurer", "dramatis", "receiued", "sergent", "hurls", "habt", "couronne", "dullest", "erschienen", "venal", "gebe", "grete", "lauter", "gourmand", "wearisome", "sortir", "exaggerates", "gurgle", "antislavery", "laertes", "apologetically", "clime", "poultice", "ministrations", "gendarmes", "telemachus", "sommet", "remonstrance", "capitulated", "karna", "prettily", "reeking", "cheapside", "citie", "zuerst", "persuader", "epistolary", "flutters", "elemente", "maitresse", "reappearing", "dudgeon", "pilasters", "theban", "kennis", "unwisely", "grammarian", "figlio", "peruvians", "lateran", "sente", "reverberated", "plenitude", "faim", "unpardonable", "robarts", "volgens", "bowmen", "blundering", "dishevelled", "exorcise", "scurrilous", "squalls", "parla", "vaste", "jedes", "shewn", "hiki", "vasudeva", "objetos", "briefe", "valets", "corruptible", "pedlar", "impassive", "abasement", "faints", "vicomte", "pillory", "dieux", "inquirers", "orte", "brahmana", "toren", "prostituted", "quartering", "amorites", "disavowed", "undulations", "redressed", "waifs", "cuyo", "siegmund", "steg", "harangue", "liefde", "yeomanry", "lepanto", "matilde", "passepartout", "gentil", "ablest", "faveur", "dicho", "whitest", "bastante", "handmaiden", "humors", "sollen", "cooed", "knabe", "gunboats", "comradeship", "inopportune", "exhaling", "lurching", "plumed", "poesy", "cheapness", "scythian", "proche", "backe", "sapped", "starched", "tasche", "insieme", "undistinguished", "unes", "gayer", "seceded", "belligerents", "baser", "ribald", "coursed", "habitants", "brusque", "officious", "hert", "gorka", "flannels", "contrivances", "capitulate", "wayfaring", "kammer", "dejar", "disfavor", "staden", "umgebung", "liveries", "sieur", "devez", "anatomist", "laundress", "bugles", "manie", "swindlers", "clandestinely", "sitte", "avere", "fichte", "coolies", "edra", "briars", "tarentum", "chaude", "unfitness", "annihilating", "swathed", "extorted", "tanta", "avaricious", "entfernt", "waft", "popish", "darning", "pasos", "crois", "fidgeting", "resinous", "granit", "flayed", "paramour", "enunciation", "josue", "frailties", "haunches", "morea", "chastened", "dropsy", "impositions", "wriggled", "displease", "agit", "moneyed", "halten", "peligro", "armee", "langsam", "toutefois", "cloche", "neatest", "howitzers", "mantelpiece", "proclivities", "rache", "falkenberg", "imitator", "agonising", "maximilien", "tuer", "meerschaum", "impiety", "loiter", "actuelle", "schwer", "begot", "suddenness", "baneful", "templo", "wenden", "twirled", "furtively", "betrayer", "jingling", "arrowroot", "welcher", "readjusted", "assails", "priestesses", "jostle", "admonishing", "avocations", "allons", "humblest", "haec", "mohammedan", "solitudes", "insurrections", "lodgers", "kunna", "cacique", "exalts", "grec", "cajole", "mhw", "swooning", "wincing", "unswerving", "enjoyments", "thirsting", "savants", "kentuckians", "monarchical", "celebes", "divans", "immodest", "perquisites", "flatters", "gedichte", "herzen", "beurre", "meni", "sayest", "lutter", "heissen", "voeux", "juges", "papists", "jeer", "premeditation", "waken", "tearfully", "sagged", "pugnacious", "companie", "bedecked", "finalmente", "soin", "oftener", "motioning", "saunter", "universelle", "firmin", "llamado", "versant", "flaxen", "pseud", "soie", "tempter", "miscarried", "rivulets", "corde", "appertaining", "nostre", "prochaine", "lohn", "partridges", "qualche", "nooit", "swum", "dunkle", "staan", "brakeman", "regretful", "coasted", "democritus", "yawl", "endast", "permettre", "drooped", "mehrere", "exacts", "licentious", "antiguo", "fermer", "deadlier", "doest", "romanus", "agog", "ponts", "liii", "yeomen", "lothario", "maal", "charybdis", "wazir", "habituated", "doff", "fede", "jests", "brandished", "jeremias", "raisons", "gouty", "twined", "comprend", "resister", "stoics", "soldiering", "viso", "tyrannies", "natuur", "greenbacks", "puesto", "sullied", "calvinistic", "abridgment", "frequents", "faite", "hoffnung", "leipsic", "bekommen", "fiercer", "entreaty", "creaked", "disconcerted", "roule", "interpose", "saan", "neveu", "hearkened", "mournfully", "surprize", "tenanted", "kerchief", "marvellously", "allerdings", "unenforceability", "moralizing", "phantasmagoria", "glutinous", "pretexts", "recollecting", "omdat", "jemand", "hundredweight", "hags", "severities", "sobered", "fournir", "coiffure", "forasmuch", "lige", "aliment", "moeten", "salir", "caprices", "laufen", "blockaded", "ignominy", "tempests", "scythia", "recriminations", "olim", "geeft", "dismally", "insinuations", "smiting", "hapsburg", "bevor", "zeiten", "lulls", "pompeius", "peux", "misrule", "unasked", "illo", "kuka", "copiously", "freien", "wildernesses", "perpetration", "transmuted", "abideth", "blaspheme", "blacking", "quelled", "threescore", "sitteth", "keenness", "quickens", "scornfully", "puerperal", "multis", "worldliness", "croaking", "ignoramus", "howbeit", "sisterly", "briers", "ouvrage", "faible", "avidity", "gascon", "bergs", "accustom", "consiste", "venez", "prouder", "pleaseth", "cottonwoods", "dienste", "superintending", "spectres", "poetess", "moluccas", "leguminous", "brigands", "quarrelsome", "moine", "damnable", "etruscans", "poeta", "tottered", "theil", "disdained", "shrivel", "ouvrages", "avaient", "firstfruits", "sinne", "daran", "untying", "slights", "throbs", "whitened", "genoese", "inclosed", "couche", "dismounting", "procede", "fattened", "planche", "vasari", "freier", "enkel", "jupe", "heaths", "enjoins", "terrestre", "insuperable", "recapitulate", "vois", "drays", "rester", "enceinte", "starlit", "wohnen", "inauspicious", "prescience", "capitaine", "magnates", "predilections", "picketed", "knaves", "sware", "scampered", "imposible", "academical", "krank", "ploughman", "heilige", "mettez", "conscientiousness", "basilio", "morceau", "splendide", "arabes", "cire", "acceptation", "schlug", "novitiate", "humoured", "idolized", "rivulet", "seethed", "geest", "etruria", "geboren", "senti", "allayed", "pored", "perceval", "wagen", "antiquary", "muscovy", "shoemakers", "zullen", "diggings", "legte", "emancipate", "achter", "burghers", "ignorantly", "ancor", "erlaubt", "diviner", "laisser", "bleibt", "discoloured", "gooseberries", "jahres", "wolde", "quarreling", "enterprize", "augustan", "fruitfulness", "slanders", "quelli", "embalmed", "uprightness", "stephanus", "apposite", "milles", "slaveholders", "kansan", "parlez", "nimi", "arbres", "kloster", "zulus", "limpid", "bridled", "forecastle", "statuesque", "polyphemus", "knowed", "encouragingly", "harboured", "foole", "misschien", "dolorous", "benefice", "unenlightened", "sagte", "croaked", "symbolical", "magistracy", "alighting", "schritte", "foretaste", "porthos", "incoherently", "ladylike", "iphigenia", "pleine", "allured", "jahrhunderts", "lucilla", "constitue", "sogar", "palpably", "weder", "improbably", "expressionless", "bowstring", "sickens", "jolting", "soundless", "hadde", "freest", "unspeakably", "gestalten", "unconquerable", "contemplations", "foretells", "empor", "pasteboard", "mangy", "artaxerxes", "misapprehension", "perche", "reverential", "sledges", "schoolmate", "utiles", "denke", "befinden", "infallibly", "unbidden", "callousness", "bloss", "tooke", "prefatory", "herakles", "extirpation", "pantaloons", "noiselessly", "adventuress", "fluch", "commodious", "pincers", "freshened", "artificer", "animo", "entangling", "quarrelling", "blackening", "appeareth", "partakes", "regaled", "disputants", "freundlich", "junks", "ingenuous", "floundered", "entrer", "jeered", "strabo", "assignation", "kleider", "mismos", "sheeted", "beefsteak", "undervalue", "pensar", "reden", "particuliers", "oratorical", "sacerdotal", "baying", "dikke", "dieren", "fief", "poate", "repents", "cleverer", "scheiden", "recommandation", "nimmer", "goaded", "ecke", "mislaid", "rotund", "zenobia", "pickaxe", "babbled", "gentlest", "sibi", "besiege", "blandly", "hobbling", "myn", "miletus", "scythians", "mainspring", "dinge", "slake", "drame", "dirent", "jedem", "speared", "attaque", "galleons", "sensorial", "legation", "strutted", "leafless", "deigned", "slaver", "iseult", "recommence", "giue", "aventures", "hellespont", "anciennes", "dalliance", "youthfulness", "privations", "trouvez", "monstrosities", "assai", "goest", "bonbons", "chroniclers", "vitam", "erregt", "dignities", "livings", "ferryman", "mockingly", "caisses", "devolves", "perder", "chemins", "hoeing", "debauched", "doute", "parlons", "loquacious", "vore", "saada", "annat", "displeasing", "intrusted", "prudish", "pelting", "drizzling", "soothingly", "wayfarers", "englanders", "flouted", "worthies", "courtesans", "heavenward", "theodoric", "meget", "charmian", "bezit", "ustedes", "exhilarated", "ansicht", "clanking", "repugnance", "joyless", "execrable", "lucrezia", "loftier", "stolid", "unacquainted", "simonides", "pawing", "balcon", "visigoths", "titter", "otranto", "defraying", "mondes", "charlot", "deified", "grecians", "princeps", "sumptuously", "unemotional", "coarseness", "universel", "enormes", "piedi", "flamme", "selber", "flitted", "toen", "gants", "disproportion", "counterpane", "gulfs", "gewalt", "surnamed", "logique", "deare", "venerate", "tomahawks", "scoffs", "unsavoury", "zephyrs", "exemplification", "waarom", "pleader", "lieben", "bawl", "casque", "cleverest", "convolutions", "siendo", "verloren", "foretelling", "munched", "vrienden", "receiveth", "jene", "ostler", "waddling", "pencilled", "escalier", "drachm", "colline", "plebeian", "eintritt", "ionians", "bekannt", "grammarians", "pflanzen", "undefiled", "furred", "segun", "overhearing", "puissant", "donnez", "blundered", "meines", "congealed", "pierres", "pouvoirs", "maister", "yit", "blasphemies", "covenanted", "disparagement", "anstatt", "minut", "teint", "sachen", "pretences", "unimpeachable", "meditates", "cheerily", "faintness", "effaced", "meself", "beguile", "revenus", "dagar", "rearguard", "saide", "inextricable", "rameses", "popery", "trustful", "lewdness", "sanat", "satiate", "sorge", "stupefied", "treu", "caire", "brasses", "lethe", "secondes", "tepee", "euphemia", "joue", "measureless", "scandalized", "jerkin", "stunde", "aforetime", "reflectively", "trackless", "patroness", "impossibilities", "inconsolable", "shouldest", "explicable", "plucks", "wreathed", "criminel", "alexius", "marksmen", "enthusiasms", "slaven", "standeth", "geven", "lesbia", "quellen", "worte", "drave", "blowed", "vare", "canting", "propitiation", "sinewy", "gamekeeper", "dulcie", "agir", "maakt", "uproarious", "gebruikt", "penitential", "glinting", "seeketh", "condescend", "terrifies", "humbler", "expence", "cavaliere", "pettiness", "slackened", "heur", "hija", "predominating", "auftrag", "endureth", "unapproachable", "boons", "vouchsafed", "lunga", "gamle", "philibert", "cordiality", "billow", "relativement", "inconstant", "effete", "storehouses", "carcases", "crestfallen", "iemand", "gloomily", "pouted", "lunching", "wakened", "eerst", "sidled", "tartars", "ebbed", "steckte", "issachar", "astir", "reasserted", "trente", "hardi", "reeked", "dispirited", "insidiously", "divined", "revelling", "mazzini", "befahl", "lovelier", "odium", "fettered", "hustings", "rasping", "besotted", "charioteer", "papered", "primum", "clamber", "adroitly", "ferne", "descente", "holte", "alders", "tache", "unformed", "ducats", "watchfulness", "gottes", "kleines", "steamships", "hvad", "cime", "sundered", "irretrievable", "roguish", "tenir", "maand", "ovat", "rapacity", "sicken", "elopement", "ardente", "worke", "folles", "besuch", "rummaged", "peons", "incontestable", "languor", "israels", "frivolities", "mantilla", "instante", "slovenly", "ambled", "celebre", "clementina", "necesidad", "hesitations", "protagoras", "curtained", "purloined", "lounged", "rustics", "purposeless", "visites", "skirmishers", "flinching", "certaine", "trumpeters", "disbelieved", "anderes", "tableland", "plaatsen", "infini", "revile", "unselfishness", "burrowed", "prussians", "buttercups", "footfall", "cocoanut", "cajoled", "sublimely", "tribunes", "kraal", "meilen", "whizzed", "dritte", "multitudinous", "javelins", "grenzen", "beatific", "bigness", "artificiality", "jeering", "maltreated", "chaperon", "consorts", "stimmen", "priester", "muckle", "vergeten", "causer", "respecter", "bornes", "propter", "churlish", "treasonable", "stowing", "twinkled", "schal", "existenz", "swindled", "vasta", "ridicules", "deres", "wechsel", "gracchus", "undine", "timorous", "soeur", "rende", "ensnare", "spurted", "quarrelled", "beggarly", "mutineers", "schwert", "inseln", "monter", "keiner", "fascinations", "suum", "unhesitatingly", "vivere", "prieur", "treacherously", "repas", "fyra", "disengaging", "propres", "moping", "obviated", "roue", "kracht", "merveilles", "fuerzas", "lunettes", "pirandello", "blare", "historiques", "comest", "sullenly", "kurze", "oppressions", "steadier", "miedo", "trebled", "demurred", "conciliate", "contenant", "ransomed", "donnant", "bedchamber", "chevaliers", "aufs", "calme", "roughs", "drawled", "niets", "ruhe", "florins", "einheit", "sechs", "tagus", "lydian", "pointes", "ehren", "remis", "vele", "imputing", "endowing", "spangles", "peterkin", "armer", "simplement", "brillante", "servia", "disunion", "shepherdess", "sextus", "linge", "lucht", "rueful", "sterk", "unbending", "ideen", "anderer", "beispiele", "equinoctial", "constante", "varuna", "jugement", "inheritor", "ginevra", "tarried", "remorseless", "disputations", "querido", "apennines", "gesehen", "wirkung", "redoubtable", "interessant", "antechamber", "seasonable", "clarisse", "moche", "platina", "anden", "viande", "ravish", "dubiously", "battlement", "gamester", "byword", "warded", "stygian", "referable", "rigueur", "jangling", "parfois", "doleful", "baize", "debasement", "besieging", "shrewdness", "interstices", "mayst", "parried", "demanda", "principios", "elbowed", "zahlung", "landschaft", "furze", "neighbourly", "nahe", "haast", "sensitiveness", "gelesen", "gascony", "pawned", "outen", "mendicant", "exigences", "keepeth", "beginnen", "vindt", "giddiness", "gebruiken", "warders", "senat", "retributive", "pyrrhus", "vont", "flagon", "traduit", "innere", "geste", "barefooted", "chattered", "overhung", "demoralization", "pebbly", "stellan", "abashed", "samme", "aurelian", "sacristy", "charitably", "joka", "boutons", "folle", "brooded", "sylvanus", "guter", "dandies", "oracular", "undefended", "lecteurs", "kleid", "hizo", "humorists", "unities", "papiers", "rakish", "effervescence", "enthalten", "unworthiness", "isaias", "moraines", "dorrit", "unflagging", "wur", "corroborative", "komme", "ruffling", "voet", "hardihood", "bougie", "calleth", "greenness", "recrimination", "basked", "embarrassments", "aureole", "disgusts", "nombreuses", "tiden", "sledging", "igitur", "footmen", "recoils", "quadrupeds", "tahi", "bewailed", "morceaux", "roughened", "gewoon", "thinketh", "thoughtlessly", "depute", "besteht", "returne", "savours", "edes", "bulwarks", "clods", "maoris", "mantled", "encouragements", "unfaithfulness", "fenian", "boten", "eateth", "bedraggled", "chiffres", "readier", "ineradicable", "floes", "steadying", "cowered", "monseigneur", "grotte", "verschillende", "pluie", "dispassionately", "mirar", "holen", "slacken", "disgorge", "warre", "avantages", "clamouring", "attainder", "followeth", "communing", "mischievously", "communistic", "jongens", "thys", "zweiten", "chastising", "mouvements", "derisively", "lopped", "spoliation", "pleasantness", "meilleure", "montrer", "phosphorescence", "daba", "lustily", "avantage", "antediluvian", "irreligious", "vindicating", "objeto", "ascetics", "creuse", "scorns", "laggard", "vues", "jadis", "blockheads", "saddening", "llena", "malcontents", "gentes", "nane", "satins", "danser", "unmindful", "indescribably", "unruffled", "inclining", "aquellos", "drapeaux", "animosities", "inured", "pardoning", "weshalb", "somit", "conoce", "giorgione", "enfranchisement", "rebuking", "perceptibly", "cierto", "vitiated", "wizened", "wintered", "comique", "sympathizing", "beziehungen", "townsman", "continuer", "gorged", "mildness", "luckless", "maecenas", "caracteres", "gunwale", "indigestible", "jowl", "prinzessin", "unclosed", "warten", "causas", "inclosure", "voluptuousness", "solide", "paroxysm", "merchandize", "construire", "meester", "whetted", "seraglio", "scourges", "corroding", "lejos", "leadeth", "soupe", "jongen", "guiltily", "teaspoonfuls", "acquainting", "parapets", "twittering", "augurs", "admiringly", "illumine", "selten", "awfulness", "encamp", "henceforward", "scalped", "huddling", "erfolg", "combated", "evinces", "gewinnen", "deputed", "clambering", "surplice", "factitious", "fitfully", "vrede", "ascanio", "perishes", "oncle", "laisse", "blanches", "vieilles", "skulking", "demur", "monstrously", "imposts", "diaphanous", "theodosia", "wagged", "aske", "vilka", "peradventure", "surmounting", "satyrs", "grandsire", "evasions", "lumbered", "cortege", "rapidement", "countenances", "beholds", "contradistinction", "scampering", "easie", "tourna", "sainted", "inglorious", "contrario", "whereat", "discuter", "defrayed", "kirchen", "kaum", "trouverez", "repudiating", "insupportable", "undisguised", "discerns", "tantum", "juden", "deaden", "victime", "unalloyed", "venial", "widger", "griselda", "hansom", "nonchalance", "frapper", "regarde", "amoureux", "cypresses", "phrygian", "lamed", "workingman", "scoffing", "hulks", "sauvages", "breede", "ruminating", "honorius", "abjured", "jacobin", "communiquer", "nere", "insincerity", "persecutor", "dichter", "cloches", "crevasses", "singen", "burgher", "ferner", "unstained", "unflinchingly", "subsisted", "notaire", "tamen", "entro", "songer", "surprized", "rehoboam", "fromme", "deputations", "ringlets", "retourne", "scourged", "survivals", "mollify", "commonwealths", "blockading", "shakspeare", "triumphing", "ecstasies", "rends", "nahm", "bilden", "bedclothes", "impertinence", "commissaries", "languidly", "sedulously", "venne", "grimaces", "neger", "loftiest", "decembre", "recommenced", "stuhl", "pochi", "depopulated", "upraised", "formen", "whereunto", "fuit", "vorst", "unfruitful", "conceits", "shrivelled", "geschenk", "jesting", "begriff", "erfahrung", "tendril", "quoque", "dayes", "entendu", "ercole", "indes", "beareth", "sleighs", "pensiero", "licentiousness", "uren", "unshaken", "englishwoman", "limply", "hereward", "ahasuerus", "pythian", "compassed", "hablando", "unsettle", "proconsul", "coarsest", "jenseits", "woord", "gentility", "assizes", "devons", "serue", "quadruped", "honourably", "insbesondere", "chivalric", "helgi", "womankind", "streng", "penknife", "copyist", "eadem", "entwickelt", "solemnized", "palpitation", "haughtily", "valentinian", "kindreds", "counterfeited", "sweetmeats", "tousled", "unfastened", "venire", "courser", "flaunted", "canopied", "dethrone", "vouchsafe", "hereabouts", "blackguard", "unitarianism", "gegenwart", "garrulous", "eftersom", "controverted", "serviette", "venga", "amiably", "schreibt", "sowohl", "nappe", "fulsome", "terribles", "gauzy", "verie", "cornes", "noires", "echter", "mangel", "marcher", "beetje", "vostra", "patrie", "lvii", "dilatory", "unco", "jagd", "debase", "hoher", "alltid", "wollten", "distil", "cinna", "splendours", "fronte", "abreve", "clinking", "apposition", "maddened", "vaster", "florentin", "slouched", "remonter", "aguinaldo", "sorrowing", "revenir", "hohenzollern", "neere", "devient", "moeder", "exultant", "pilfering", "trousseau", "frisson", "kaikki", "unconquered", "farces", "connu", "perjured", "seeke", "eloped", "corpuscles", "obscurely", "dreamless", "dadurch", "lamely", "curdled", "haie", "schoon", "wonted", "gallants", "dasein", "respectably", "fixity", "zehn", "yelping", "vaine", "croesus", "obdurate", "ofte", "tuuli", "absolue", "christabel", "ransack", "belisarius", "schlag", "taler", "piously", "quaintly", "rationalistic", "usque", "partis", "seras", "schritt", "disinclination", "eingang", "aloofness", "arminius", "dilating", "parthia", "felucca", "premisses", "glibly", "putrefaction", "unfortunates", "pottage", "ligger", "tubercles", "herzlich", "manservant", "unluckily", "plumped", "disinherited", "resounds", "crut", "anciently", "tiens", "remaineth", "ratione", "begetting", "gurgled", "scheint", "hopefulness", "poil", "voiles", "hez", "citer", "dehors", "vindictiveness", "potest", "lolling", "aboue", "extorting", "adventured", "elkaar", "clattered", "pouvant", "oure", "unsteadily", "sufferance", "muu", "charmant", "mede", "raptures", "dinna", "barrenness", "placidly", "bawled", "enkele", "protoplasm", "dyspeptic", "gaue", "diffident", "affianced", "communs", "zeker", "guileless", "ebbe", "wery", "opprobrium", "geheime", "imputations", "marchioness", "pferd", "capriciously", "ganske", "superintend", "bantering", "indorsement", "perspiring", "dissensions", "baseness", "blotched", "implores", "gewesen", "digne", "hillocks", "jalousie", "straat", "nogle", "solche", "fretful", "geheimnis", "dresse", "inquisitorial", "circumspection", "unsullied", "spirituous", "garrisoned", "supercilious", "soldiery", "skirmishing", "profaned", "ordinaire", "prochain", "ebullition", "avowedly", "notwendig", "remoter", "reflexions", "clamorous", "sois", "scullery", "seemeth", "etait", "blasphemed", "disconsolate", "einde", "antiquaries", "quibus", "whimsically", "spinsters", "hohen", "fahren", "exactions", "cupful", "lugger", "bestimmt", "patricians", "atoned", "tourbillon", "causeth", "unpromising", "geluid", "caissons", "surcharged", "stoff", "quarreled", "suckled", "soort", "pulpy", "militaires", "partaker", "pigmy", "censures", "morir", "digged", "fust", "confessors", "kleur", "braut", "lacerated", "promptings", "vouched", "obligingly", "puo", "yerself", "jael", "tragen", "spinifex", "unexpressed", "lunched", "scourging", "haroun", "manfully", "vidare", "revolutionist", "kennt", "tracery", "ebers", "surmises", "torno", "bedingungen", "falle", "seemly", "catched", "saura", "habet", "preso", "naughtiness", "derecha", "fastidiousness", "demoniac", "penury", "wainscot", "supernal", "impelling", "cellule", "einzelnen", "modeste", "flits", "vacillating", "jocular", "galop", "jacobins", "forsyte", "fathomless", "chiding", "savoured", "algun", "marvelling", "plentifully", "wakeful", "conter", "dicen", "homelike", "swooned", "unsociable", "puisque", "allgemeinen", "fatta", "drear", "erreurs", "buffoonery", "rashness", "pensamiento", "impels", "dissembling", "consistence", "intimating", "dieth", "missis", "appeler", "possa", "aemilius", "slunk", "deswegen", "coadjutor", "footfalls", "lombards", "jego", "jewess", "endued", "sorrowfully", "iniquitous", "tramped", "ecclesiastic", "agriculturist", "hanc", "hildegarde", "waylaid", "blustering", "blauwe", "uniforme", "granaries", "ombres", "dolch", "estaban", "deras", "dishonourable", "bespeaks", "smilingly", "avow", "whar", "certa", "assize", "ducat", "suuri", "schrijven", "nachdem", "hundredfold", "poing", "knickerbockers", "hechos", "fiers", "betook", "caressingly", "hooted", "gjort", "instanced", "shet", "corpulent", "jacobites", "stumm", "veldt", "springen", "moros", "tierras", "mystification", "eorum", "recoiling", "pshaw", "erscheint", "ruban", "apoplectic", "lingvo", "basest", "fitly", "marchands", "flirtations", "conocido", "unctuous", "enlivening", "sentir", "mauvaise", "beaumarchais", "plaints", "entfernung", "startles", "colonnades", "theatricals", "hoogte", "intimacies", "remonstrated", "leichter", "braying", "nuages", "lassitude", "leibnitz", "moonless", "changeless", "sagely", "unfavourably", "valorous", "endurable", "leid", "prolix", "trespassed", "shews", "longtemps", "sidelong", "principalement", "clamored", "einigen", "scheldt", "perte", "idiosyncrasy", "clucking", "glaube", "cualquiera", "donjon", "messieurs", "goutte", "workingmen", "paleness", "festen", "alack", "trivialities", "tristesse", "discourteous", "dimness", "besetting", "daunt", "boue", "vorm", "indisposed", "rente", "drog", "strategical", "thermopylae", "ivanovna", "landet", "skola", "amidships", "meete", "garder", "buiten", "beeves", "nemen", "alwayes", "looke", "preternatural", "versuch", "conduce", "sien", "centimes", "feare", "retourner", "neder", "earldom", "indubitable", "juifs", "handsomest", "decorous", "chagrined", "gemeinde", "imbecility", "ouverte", "goud", "buffeting", "doorkeeper", "absolument", "schwarzenberg", "bushrangers", "bounteous", "steine", "lulling", "toucher", "steeled", "patronised", "whisperings", "detests", "haughtiness", "ilka", "defiling", "frenchwoman", "betide", "estime", "emolument", "rivalled", "prithee", "wisse", "expedients", "beautified", "precipices", "llevar", "walketh", "mutta", "diffidence", "tablespoonful", "meum", "bestowal", "tingled", "hangen", "conduire", "unrelieved", "morgon", "ariosto", "swindling", "saragossa", "gladiatorial", "parthians", "parer", "reichen", "bacchanal", "perplexities", "ablutions", "arten", "innan", "vallen", "tulla", "unkindly", "lovest", "stratagems", "carousing", "envies", "condescended", "freighted", "gange", "compagnies", "slackening", "pardner", "wondrously", "dingen", "teilen", "shimmered", "tror", "anteroom", "agriculturists", "marins", "slechts", "watermen", "citoyens", "sorti", "megara", "mayenne", "beardless", "cheerless", "tenido", "goot", "tuch", "wacht", "moistening", "unprejudiced", "explications", "dissimulation", "restes", "pined", "inculcating", "combien", "pensando", "oorlog", "plaits", "fleuve", "agrippina", "neen", "erit", "satt", "budded", "liest", "plaintively", "devenu", "threateningly", "profligacy", "gwendolen", "subtil", "meshach", "videre", "armie", "hoffe", "hungered", "pecho", "bluntness", "kuin", "lebe", "gesticulating", "pourraient", "athwart", "hermana", "shambling", "tenderest", "ordains", "propound", "immoderate", "acuteness", "hewed", "kindnesses", "douze", "unaccountably", "neun", "plainest", "boire", "sech", "pesar", "gavest", "subtlest", "racines", "partaken", "gruffly", "etes", "welkin", "breviary", "lineaments", "unburied", "insatiate", "intolerably", "discomfiture", "puso", "mirando", "threepence", "ebenfalls", "libanus", "unmercifully", "milord", "behandlung", "velours", "tochter", "itse", "noces", "lampes", "chary", "quas", "danach", "wouldest", "primroses", "manumission", "mortifying", "gondoliers", "krijgen", "ministres", "garbed", "adelheid", "memnon", "nuo", "desperadoes", "nuage", "sesterces", "coucher", "freunden", "civilize", "phial", "faute", "arrant", "offrir", "appealingly", "multe", "declamation", "miscarry", "complacently", "unmerited", "insubordinate", "feux", "assuaged", "dukedom", "efface", "dazzlingly", "peintre", "looketh", "whalebone", "minutest", "ungovernable", "wellnigh", "meuble", "ziet", "wittily", "schmerz", "foolery", "exulting", "habitant", "craned", "ennobled", "profundo", "arbeid", "apuleius", "pourtant", "wantonness", "scenting", "beziehung", "fik", "flinty", "comanches", "ordnung", "ceremoniously", "gloire", "wobei", "hollowness", "zeggen", "jardinier", "serai", "plw", "desierto", "fancying", "protuberance", "largeur", "divin", "portait", "tersely", "deploring", "sallies", "frontiersmen", "contraries", "armful", "envers", "extricated", "dissemble", "bouteille", "impost", "countenanced", "essayed", "findeth", "gesagt", "zustand", "pandavas", "vaguest", "fenetre", "passen", "feebleness", "plodded", "lesquels", "excellente", "gik", "nieder", "brise", "facilement", "inflaming", "prete", "augury", "diabolus", "revelled", "mayhap", "humbles", "poetes", "metier", "personnages", "demoiselle", "unhampered", "matelas", "puisse", "indissoluble", "netta", "nicety", "tablespoonfuls", "witticisms", "enfeebled", "surveiller", "revolutionists", "cozen", "middel", "penitents", "imprudence", "tiptoed", "reicher", "magyars", "civilities", "trussed", "dulcet", "sirrah", "rapporter", "festal", "couteau", "baronne", "heartrending", "devotedly", "plancher", "amies", "steeps", "salubrious", "spearmen", "houden", "marriageable", "imposture", "mutinous", "jabbering", "tyrian", "pourra", "peremptorily", "whirlwinds", "despoiled", "lugubrious", "ringleaders", "begriffe", "listlessly", "affronted", "debout", "probablement", "daintily", "pikemen", "deinem", "partager", "exaction", "unlighted", "washstand", "overspread", "losse", "piteously", "politischen", "tager", "largess", "weightier", "plenipotentiaries", "muka", "insensibly", "snart", "contento", "parchments", "uusi", "scotchman", "repousse", "ingratiating", "bairn", "poisoner", "prodigiously", "unerringly", "qualm", "aquel", "marseillaise", "uncharitable", "bestimmung", "shiftless", "visages", "subjoined", "pierrette", "befindet", "daubed", "ostentatiously", "unvarying", "choisi", "whereto", "cottagers", "voluble", "ingratiate", "helpmate", "ligt", "soldats", "gloaming", "adamantine", "weinig", "kansa", "rudest", "forcer", "einfluss", "brunnen", "oreilles", "varit", "braucht", "gutes", "irresolute", "mogen", "aarde", "smartness", "burthen", "attente", "bekend", "lleva", "unsparing", "bewegung", "paard", "alcide", "espied", "effrontery", "vacuity", "pillared", "queerest", "impolitic", "defiles", "byles", "indubitably", "mottoes", "molti", "questioningly", "generalship", "debasing", "victimes", "demurely", "talar", "donker", "peuples", "humains", "comun", "prettiness", "usurpations", "plebeians", "habia", "meurs", "philosophique", "sloops", "regierung", "savez", "gesang", "gick", "saturnine", "trinken", "hungering", "unreasoning", "morto", "thoughtlessness", "pobres", "rasped", "celestials", "florrie", "turneth", "childishness", "glauben", "revenged", "radiantly", "gefahr", "prohibitory", "destine", "forestalled", "converses", "commonplaces", "waggons", "interet", "duenna", "outwitted", "summat", "bespeak", "pocos", "waarde", "wheresoever", "compromis", "wyth", "obwohl", "partei", "meddlesome", "bustled", "neckerchief", "brahmanas", "misgiving", "farthings", "gebiet", "disfigure", "rancorous", "forsakes", "torpid", "doctrina", "atem", "canne", "intendant", "bereit", "fiere", "swiftest", "confidants", "unwonted", "astonishes", "joues", "recondite", "sightless", "blunderbuss", "besondere", "chiselled", "unconsidered", "hottentot", "tarda", "fausta", "beholders", "quelles", "vertes", "invitingly", "gloated", "wearying", "straitened", "disdainfully", "romish", "servitor", "ingrate", "unvisited", "officier", "bairns", "bedeutet", "sorgen", "autrement", "quinze", "entreating", "longues", "voisine", "insensibility", "washerwoman", "ufer", "caldron", "offert", "summum", "reiche", "irreproachable", "quels", "penser", "sentimentalist", "tenia", "avea", "sublimate", "mitad", "deutlich", "encima", "bowsprit", "antrag", "childishly", "envying", "austerities", "largeness", "hemlocks", "chiffre", "sadden", "passionless", "haunch", "signifie", "thronging", "plainness", "wolfish", "breakfasted", "quidem", "semblant", "ressort", "intrepidity", "pferde", "affectations", "filthiness", "rayons", "sommeil", "hateth", "spitze", "fomented", "opfer", "dietro", "iesus", "conjuncture", "vivante", "docility", "moravians", "wretchedly", "preciso", "nosegay", "fidgeted", "trooped", "deadened", "brimful", "antwoord", "mistrusted", "florentines", "circonstances", "bedarf", "commencer", "fevrier", "vyasa", "assailing", "unseasonable", "blod", "minstrelsy", "voies", "paunch", "sobriquet", "horatius", "serapis", "soeurs", "chaffing", "wahr", "unlettered", "prowled", "uninviting", "buttoning", "agesilaus", "entender", "jaunes", "tragical", "charakter", "vesture", "spricht", "richtung", "salver", "milliers", "profoundest", "reproachful", "petulance", "grovelling", "companionable", "kindliness", "convulsively", "laudanum", "residuum", "tombeau", "servility", "strew", "dites", "unendurable", "ennen", "cassock", "khasi", "aufgabe", "excommunicate", "erwarten", "zaal", "arabesques", "avowal", "interposing", "retirer", "pathless", "revers", "juist", "trooping", "rencontrer", "marteau", "stanch", "perspicacity", "pawed", "swains", "hinzu", "undulation", "versuchen", "highroad", "wesen", "gondolier", "douleurs", "ascendency", "sammen", "hasted", "sehnsucht", "stupefying", "pealed", "stets", "citoyen", "requite", "larges", "omnibuses", "windless", "hinc", "sanguinary", "mohammedans", "tyburn", "souhaite", "firmest", "neus", "dumbly", "allemands", "inquisitiveness", "fourni", "erkennen", "bethought", "debajo", "lebt", "slipshod", "rundt", "produire", "heeds", "tevens", "doted", "overmuch", "chastening", "waxen", "cadaverous", "stroom", "spielt", "croire", "contriving", "waddled", "circassian", "especie", "whin", "greediness", "preferment", "geschreven", "ziele", "remounted", "ontvangen", "strewed", "artifices", "assenting", "anaxagoras", "unge", "cousine", "presentiment", "sturdily", "falleth", "quitte", "censorious", "ouvre", "mekka", "noontide", "ewigkeit", "tausend", "pranced", "augenblick", "pudo", "glowering", "suppliants", "heare", "personnelle", "gezien", "schemed", "disentangled", "qualite", "husbandmen", "fruitlessly", "guerrier", "huntsmen", "photoplay", "dritten", "duchies", "cuirass", "flotte", "hireling", "overweening", "joies", "abruptness", "sieh", "moed", "warred", "nourriture", "niver", "conducteur", "regicide", "dedans", "roved", "remplacer", "ajoute", "auquel", "siller", "touchingly", "hisself", "bliver", "industriously", "confusedly", "eying", "befit", "edified", "profondeur", "portier", "malignity", "revient", "sibylla", "karakter", "becometh", "poort", "halloo", "pasturage", "loisir", "puits", "voort", "soixante", "voglia", "pandu", "geval", "pouvait", "smarted", "paroxysms", "coquin", "mirthful", "vergangenheit", "coeval", "pharao", "ceinture", "galvanometer", "finna", "graceless", "slinking", "enlever", "brocades", "ennobling", "prevenir", "harten", "pleasanter", "hindoo", "falseness", "drap", "betimes", "natuurlijk", "procurer", "malefactors", "lysias", "handmaids", "gefallen", "gaar", "straten", "dommage", "bewail", "rhenish", "twitter", "erano", "schar", "irreverently", "misjudge", "revengeful", "interdicted", "suppliant", "monotonously", "benignly", "certes", "averil", "sauntering", "zusammenhang", "gebracht", "inexpedient", "confiscations", "heartiest", "untutored", "forbears", "exulted", "uninfluenced", "gallies", "omne", "taches", "tourner", "marcius", "pealing", "campagnes", "quoniam", "leathern", "ecclesiastics", "interceded", "nimmt", "intelligibly", "craftily", "chaplets", "abends", "englischen", "bestaat", "makest", "nerved", "braccio", "philosophe", "couvert", "musketry", "caribs", "enfranchised", "maer", "casements", "eatable", "dets", "meanly", "profonde", "theyr", "aspecto", "disinterestedness", "soumettre", "plebe", "nier", "jeta", "blaspheming", "benutzt", "pantheistic", "slumbered", "hostler", "fous", "quartette", "hoed", "stettin", "brusquely", "rankled", "nonconformists", "intonations", "scandalously", "sirup", "exercer", "reproachfully", "pauvre", "rivalling", "obtenu", "eeuw", "howat", "existencia", "delusive", "sepulchral", "sarebbe", "fuor", "pareil", "remplir", "fourscore", "teacheth", "guld", "droned", "balles", "traiter", "rapporte", "wellen", "abler", "wallowed", "recompensed", "quil", "chamberlains", "disgracefully", "brung", "manches", "quei", "atteindre", "asuras", "lamentably", "achaean", "loups", "lowliest", "braggart", "somersetshire", "indisposition", "mithridates", "reconnu", "nutriment", "unkindness", "tranquille", "froh", "gardes", "talo", "rascally", "gardien", "sanoi", "strumpet", "zigzags", "discoursed", "erreicht", "haare", "accost", "manoeuvred", "libels", "blighting", "vileness", "blessures", "soldados", "abase", "outcries", "stampeded", "bithynia", "cupidity", "soundest", "consentement", "risings", "fervid", "truculent", "illimitable", "gayly", "forbearing", "kvar", "despatching", "potentates", "putteth", "impetuosity", "jutted", "encomium", "decke", "behoves", "querulous", "mener", "manchus", "pemmican", "discomfited", "dienen", "sidste", "steden", "mollified", "sulphurous", "entierement", "parterre", "subtile", "ziemlich", "quon", "enfolded", "gedacht", "belongeth", "parian", "emot", "nowise", "vaan", "verdient", "detestation", "theophrastus", "indiens", "sallied", "infinitude", "unchristian", "nachbar", "hubo", "quaff", "scuffling", "commotions", "belang", "numidia", "craning", "indistinctly", "aldrig", "zes", "houdt", "chiefest", "casuistry", "siis", "manchmal", "purposing", "justness", "hundert", "simpering", "soothsayers", "charwoman", "mittag", "facere", "aquella", "chasseurs", "countersign", "frem", "cambric", "thron", "spluttered", "leetle", "quos", "glinted", "facon", "coupable", "lowliness", "lesquelles", "turc", "trundled", "desolated", "kindles", "shineth", "woning", "falchion", "asperity", "pousse", "dran", "secretaire", "effulgence", "banisters", "extricating", "valt", "hesitatingly", "affray", "pensively", "meretricious", "promiscuously", "overset", "chuse", "ruido", "undefinable", "scorning", "multa", "lacedaemonians", "aristoteles", "friede", "censers", "aufgenommen", "tandis", "talke", "trifled", "intelligente", "delightedly", "chimerical", "kanske", "importunate", "disgraces", "zeg", "agitations", "piratical", "indigence", "acquirement", "mutely", "billowy", "querelle", "suzerainty", "imperturbable", "milliners", "pensa", "fecit", "gleiche", "vacillation", "innocente", "toilers", "snored", "heathenism", "rancour", "apercu", "facetiously", "riband", "pecado", "slaine", "vaut", "disdains", "gedaan", "hvem", "amain", "cavil", "kohta", "huskily", "unwarrantable", "glowered", "curates", "anent", "wenigen", "konnten", "worthier", "vooral", "leered", "palmy", "religieux", "truncheon", "hovels", "milliards", "unlovely", "abjure", "plenteous", "piedmontese", "debauch", "holocausts", "imperatively", "philadelphus", "darky", "ravening", "kentuckian", "methought", "fagot", "foulest", "rills", "gaven", "treize", "leise", "dragoman", "micht", "affrighted", "unsocial", "loger", "dejectedly", "tamely", "reposing", "ausdruck", "phlegmatic", "mightest", "dispossess", "cataloguers", "gibe", "drily", "languorous", "paire", "tode", "foulness", "zelfs", "calumnies", "scythes", "shirked", "disapprobation", "propitiate", "hilft", "usurpers", "lagen", "estis", "inspirer", "gainsay", "ambrosial", "atteinte", "intanto", "conciencia", "provender", "schulter", "navire", "matronly", "andern", "sourire", "ungracious", "overawed", "mukaan", "relenting", "bijna", "angesehen", "coude", "dickon", "vapeur", "maintenir", "sluices", "geweest", "erziehung", "zitten", "importe", "raisonnable", "canot", "grundlage", "hessians", "undreamed", "equable", "oppressively", "chacune", "zaak", "pourront", "indorsed", "kasteel", "indulgently", "takaisin", "superfluity", "pantalon", "gossiped", "generalissimo", "coquettish", "zegt", "konung", "accepter", "expiate", "commiseration", "voudrais", "counterpoise", "sawest", "inquiringly", "betes", "romanism", "northmen", "folgt", "cuya", "schicksal", "travaille", "thae", "leitung", "unfeigned", "impalpable", "murmurings", "conjointly", "excitements", "zambesi", "vilken", "comeliness", "verra", "hambre", "indiquer", "grossness", "cuivre", "noget", "countrey", "carefulness", "blijft", "douceur", "vaporous", "oarsmen", "seigneurs", "toilsome", "proprieties", "listlessness", "waarin", "pities", "tredje", "mortify", "gipsies", "neapel", "unhallowed", "injudicious", "gesetze", "remonstrances", "uninterruptedly", "revanche", "suam", "ither", "unmanly", "mazy", "forebodings", "fickleness", "tuvo", "gelukkig", "geschlecht", "unsheathed", "freilich", "heiligen", "palest", "impulsion", "empirische", "vano", "sitten", "illis", "votaries", "factious", "braw", "verdadero", "shabbily", "hollande", "camarades", "slighter", "yere", "homewards", "trous", "achten", "rapine", "materie", "snuffing", "schwarzen", "sterben", "bezig", "abnegation", "yeare", "vostre", "kerl", "widerstand", "betrachten", "erinnern", "betake", "arbeiter", "klaar", "outspread", "thim", "sendeth", "winde", "lichaam", "zetten", "whirr", "alarum", "doigt", "daarom", "liten", "declara", "gebrauch", "jambe", "paie", "unmerciful", "apporter", "demoiselles", "reprobation", "lache", "burgomaster", "camest", "sonder", "extravagances", "esset", "fellah", "verlassen", "gewinn", "wakening", "vacantly", "discoursing", "cablegram", "tourne", "attendre", "schlechte", "lauf", "injuriously", "spluttering", "felsen", "gloried", "argives", "paarden", "japhet", "cabane", "hende", "zacht", "promontories", "mignonette", "supplicate", "joindre", "freundschaft", "pattering", "unromantic", "sophistical", "frescoed", "sauver", "nobleness", "sealskin", "bewilder", "gwine", "zeven", "consulship", "aminta", "brauchen", "fuite", "unclouded", "affability", "affright", "recantation", "threshed", "malen", "gladdened", "weisen", "fausse", "ruses", "expostulation", "faisait", "heraus", "paille", "delawares", "devait", "tirer", "reines", "galled", "esel", "verres", "atteint", "slaveholder", "fuisse", "meddled", "soldaten", "protestation", "cambyses", "enmities", "becalmed", "genou", "verbunden", "hver", "muut", "leprous", "lambent", "wolken", "sacristan", "lavishing", "wending", "disquieted", "solchen", "benedictions", "niggardly", "herte", "teki", "ankunft", "solides", "gesetzt", "dangereux", "evincing", "vraie", "fauteuil", "naturels", "eue", "buckboard", "noisome", "veinte", "malades", "impassible", "oblations", "worten", "intoxicate", "prenant", "graue", "entweder", "exasperate", "curtsey", "bestimmten", "exclusivement", "babyhood", "sojourned", "censuring", "disrespectfully", "mesmeric", "apprehensively", "roofless", "despoil", "direst", "razones", "inroad", "terminer", "vainglorious", "wenige", "benevolently", "archbishopric", "hatchway", "eigenschaft", "pinnace", "slighting", "vorher", "falsch", "maintien", "ellinor", "sepulchres", "extirpate", "adrianople", "imposer", "schlimmer", "wies", "imperiously", "kuu", "rhetorician", "totta", "portefeuille", "unconcern", "toucheth", "requited", "geburt", "suffit", "peloponnesus", "postern", "irremediable", "hamilcar", "quavering", "unperceived", "leonine", "botte", "wonderingly", "haversack", "liet", "ennemi", "handen", "dawdling", "spiritless", "thorwald", "rejoindre", "inutile", "signally", "loitered", "benefices", "hewing", "abysses", "beginnt", "mouldering", "schmerzen", "everlastingly", "descried", "aquellas", "vosotros", "miten", "froward", "elend", "audaciously", "indelicate", "einrichtung", "umfang", "chinamen", "prostrating", "ceremonious", "slaveholding", "unworldly", "ideality", "fece", "fathomed", "boord", "waan", "plafond", "erzeugt", "gekommen", "tranquilly", "delectation", "honoria", "couldst", "prattling", "suivent", "terram", "prate", "submissively", "whithersoever", "parcourir", "assise", "soutenir", "girdled", "abased", "versucht", "niemals", "antient", "semblables", "despairingly", "alguno", "munificence", "throwed", "gervaise", "habitude", "impetuously", "providentially", "veulent", "coom", "harangued", "provincias", "wahren", "glorying", "cockade", "unfrequently", "inconstancy", "betrifft", "ninguno", "doun", "gratifications", "impenitent", "gayety", "arriver", "sagesse", "kwam", "foule", "turm", "bildet", "blijven", "sternness", "vede", "lames", "gunst", "complot", "knapsacks", "engross", "tristes", "appelle", "gracefulness", "communed", "calmest", "glutted", "largement", "dallying", "witticism", "fatted", "blauen", "hottentots", "penances", "brengen", "glimmered", "bretons", "servitors", "refus", "fehlt", "cxar", "ewig", "airily", "gegeven", "schluss", "maudit", "autoridad", "kinsfolk", "erinnerung", "essayer", "distrusting", "tartary", "genoeg", "fremde", "droops", "blandishments", "individus", "remonstrate", "improvident", "handsomer", "blazoned", "vatten", "plainte", "damps", "machten", "bonhomie", "adverted", "soweit", "sacerdote", "productiveness", "gestes", "druse", "quaver", "trouw", "ausgang", "versuche", "wrapt", "draweth", "prit", "tampoco", "versification", "sojourning", "acclamations", "aimez", "unfaltering", "loftiness", "emendation", "behandelt", "clownish", "criado", "tellement", "fordi", "remettre", "redound", "auront", "objektive", "moodily", "discords", "outworn", "honeycombed", "gedanke", "venant", "anspruch", "drauf", "trouvent", "allers", "superannuated", "schauen", "viands", "amiability", "kaisers", "victualling", "religieuse", "wirklichkeit", "envoie", "dicha", "strenge", "unwearied", "punctilious", "turne", "entscheidung", "egotist", "jouissance", "falsche", "schier", "ursprung", "importunity", "distractedly", "zele", "vexations", "seraient", "piastres", "boche", "bewitch", "allures", "frisking", "rottenness", "rufen", "sentimentalism", "clanged", "jupes", "rechter", "privily", "ungenerous", "asketh", "eigenlijk", "absented", "euboea", "fiefs", "honom", "sympathised", "upbraided", "thermidor", "ignominiously", "mischiefs", "appertain", "joko", "perd", "enviously", "wahrscheinlich", "joyed", "gegner", "einfache", "bhishma", "clairement", "eate", "maddest", "adresser", "cabalistic", "conventionality", "italiens", "aliquid", "lidt", "whiffs", "lleno", "manufactories", "twelvemonth", "undimmed", "gjorde", "heah", "parvenir", "faithlessness", "vilain", "contrives", "wistfulness", "genannt", "geleden", "munificent", "fortement", "glaive", "maggior", "convoked", "veste", "malefactor", "gelangen", "dotage", "palliate", "oxus", "pedants", "quaked", "malade", "affronts", "explique", "reproaching", "excellences", "venturesome", "roues", "severer", "fremd", "fusillade", "muita", "feareth", "endroits", "maanden", "bareheaded", "girding", "anzi", "taire", "kopje", "illud", "ilman", "maxence", "wrings", "ferma", "hummocks", "detraction", "dicht", "perdre", "charbon", "foure", "subserve", "cherubims", "toilettes", "liebhaber", "lenity", "songe", "respecte", "sabots", "podia", "insolently", "blik", "dimpling", "quiconque", "ehre", "littleness", "homines", "gammal", "highnesses", "awaked", "upbraid", "unsubstantial", "muren", "dezelfde", "proselyte", "authoress", "fabel", "grandee", "pleasantry", "setteth", "chaldea", "pensioned", "yeardley", "tiefe", "considerately", "gattung", "denkt", "poursuite", "teuton", "pestilent", "sofern", "bountifully", "desisted", "senecas", "jollity", "enrica", "inexpressibly", "sunshiny", "dicitur", "handeln", "begint", "oeufs", "amanuensis", "dreariness", "animi", "comprenant", "smites", "schlacht", "schauspieler", "bezeichnet", "orisons", "reposes", "vart", "hauses", "geduld", "fieri", "mischance", "koska", "hospitably", "metaphysician", "vulgarly", "construit", "invectives", "poitrine", "perdus", "blive", "voulu", "pompously", "discourtesy", "hazarded", "curtsy", "palpitating", "marido", "plaisirs", "ennoble", "dira", "unsought", "palsied", "sartin", "panegyric", "profanation", "unfitted", "halfe", "drinken", "imprecations", "virtuously", "inconceivably", "vouloir", "assiduity", "entstehen", "abschied", "asiatics", "artificers", "ohren", "murderess", "pouvons", "radicle", "volontaires", "villany", "forded", "superintended", "abominably", "zweck", "familier", "enervating", "tumults", "philippus", "pouces", "forswear", "astuteness", "heiter", "liebes", "kenntnis", "gehn", "molte", "lediglich", "musst", "hauberk", "domestique", "geluk", "unspotted", "altname", "legt", "bounden", "declaimed", "unexampled", "todes", "tearless", "basely", "vorstellung", "labios", "vond", "hubiera", "speakest", "teemed", "killeth", "preternaturally", "genommen", "pauvres", "negress", "seien", "haranguing", "quaintness", "verser", "stoical", "tyd", "aptness", "retrouve", "mehreren", "malediction", "givest", "discreditable", "brilliants", "unseeing", "connived", "connais", "mourir", "reicht", "crabbed", "obsequies", "perverseness", "latticed", "pleadingly", "besiegers", "busying", "brazo", "cudgels", "heisst", "paroisse", "befehl", "machte", "soldierly", "musste", "richten", "exhalations", "rapturously", "forelock", "luy", "esteems", "agonised", "hirelings", "hoogste", "jauntily", "erscheinen", "declivity", "vivants", "reviling", "sixe", "altid", "retrouver", "ailed", "garlanded", "abjectly", "vernunft", "churl", "vrijheid", "guds", "rendue", "erden", "erant", "telegraphing", "archly", "statesmanlike", "souverain", "yeares", "duft", "gezegd", "kust", "woorden", "quelconque", "dunghill", "declaim", "bucklers", "stouter", "seuls", "unpractical", "sehe", "reverenced", "derfor", "hominum", "voeten", "liveried", "disfavour", "genially", "gezeigt", "modish", "plomb", "gennem", "prier", "vorn", "deigns", "careering", "thenceforward", "trug", "hasdrubal", "kanssa", "hempen", "miltiades", "growed", "decrepitude", "thinkest", "effluvia", "ordres", "figurer", "grimness", "repassed", "meditatively", "sinecure", "mettent", "stopt", "riseth", "kanzler", "invloed", "verlust", "figger", "underrate", "laune", "jederzeit", "pardonable", "vnder", "choleric", "inclose", "bided", "beggary", "desto", "boeotia", "pleasantest", "deil", "gashed", "exordium", "tocsin", "alcun", "spitefully", "gehalten", "tonnerre", "abbia", "brocaded", "forwardness", "drawling", "testily", "gebunden", "ruhig", "unfasten", "tyran", "precocity", "resistless", "wangen", "spasmodically", "mesdames", "resignedly", "festoons", "aboute", "varlet", "viennent", "threatenings", "erkenntnis", "prevision", "dacht", "squaws", "cesse", "mahomed", "plunderers", "navires", "tremblement", "comfortless", "incautious", "luxuriance", "petto", "creditably", "jolies", "impressiveness", "cheyennes", "finit", "needeth", "superabundance", "precipitately", "unceremonious", "sidewise", "anacreon", "lisping", "sonna", "delante", "rideaux", "prig", "gezicht", "parfaite", "vituperation", "manifeste", "cabman", "fawned", "oever", "untaught", "juley", "einiger", "voorkomen", "gelijk", "forsworn", "imperilled", "sichtbar", "promptitude", "indiaman", "cantered", "allurements", "bataillon", "lasst", "omkring", "juicio", "noin", "distressful", "justifier", "bestimmungen", "verbinden", "bestimmte", "foremast", "bestaan", "stimmung", "meeste", "accorder", "thirsted", "irruption", "professedly", "geschwind", "groweth", "stupefaction", "lanterne", "larmes", "harangues", "remorselessly", "appartient", "naturall", "stupide", "dexterously", "extempore", "viscid", "abaft", "auraient", "reproving", "ottilie", "waer", "scandale", "turnus", "helpen", "begonnen", "pestilential", "schaffen", "merchantmen", "flammen", "atter", "ensi", "circumlocution", "queenly", "livest", "grandees", "devenue", "adjure", "allant", "obstreperous", "gnaden", "olet", "heedlessly", "soif", "lolled", "flatterer", "stube", "sentimentally", "gowned", "tutelary", "hindmost", "furent", "faibles", "monkish", "zouaves", "ineffectually", "contraste", "duidelijk", "turbaned", "guillotined", "conformably", "meane", "zugleich", "disdaining", "solcher", "ouvrier", "zieht", "lowness", "annoncer", "unpleasing", "disgracing", "disant", "begon", "heartiness", "recompence", "petulantly", "prinzip", "casteth", "rhetoricians", "sulkily", "minuteness", "solemnities", "vexes", "tomando", "impecunious", "avond", "menschlichen", "loob", "aliis", "snaky", "confessedly", "slecht", "wheedle", "hushing", "gxi", "corpore", "ungraceful", "queerly", "schwere", "parfaitement", "holdeth", "straggled", "picturesquely", "mainmast", "disquisition", "tiefer", "vorgestellt", "dulness", "pistoles", "unexceptionable", "finnes", "soumission", "liebt", "maie", "centaines", "havde", "mutinied", "terwijl", "palanquin", "contenir", "milesian", "poursuivre", "lacedaemonian", "volgen", "respire", "gehad", "untrammelled", "stentorian", "flatterers", "tomber", "cantering", "minces", "foible", "questionings", "choeur", "kehrt", "manacled", "haud", "thereabout", "contenta", "soone", "hauptstadt", "daheim", "heedlessness", "coquetry", "wended", "getan", "leggen", "onkel", "barbadoes", "wifely", "tantas", "cuius", "rouler", "expliquer", "mortel", "worthiest", "pusillanimous", "personnage", "swaggered", "accepte", "forbore", "gravelled", "publikum", "opportunely", "odoriferous", "insensate", "showeth", "causeless", "partem", "dennoch", "imprudently", "drollery", "makt", "uncongenial", "feront", "noght", "philosophes", "sententious", "reconnoitre", "doigts", "eatables", "intorno", "quiera", "sabines", "catholiques", "housetops", "rostro", "descry", "zouden", "dachte", "drona", "complaisance", "tinkled", "rappelle", "bewailing", "entrenchments", "llegado", "stilte", "sternest", "vijf", "vaches", "befitted", "preeminently", "enervated", "profiter", "ceremonials", "sedately", "choisis", "trone", "gabble", "searchingly", "somewheres", "patriotes", "tyrannous", "wigwams", "paysan", "blevet", "ooit", "suffisamment", "monosyllables", "sluggard", "gelegen", "dissembled", "verlieren", "ieder", "impudently", "jotka", "contrariety", "unprovided", "prinzen", "ruhm", "cerveau", "inclosing", "osaa", "supping", "anteil", "diplomatist", "barefaced", "plighted", "faudrait", "unterschied", "fermes", "verborgen", "ofttimes", "neemt", "steersman", "caitiff", "thebans", "keek", "aient", "seyn", "brumaire", "embroil", "pennon", "athirst", "gnashed", "neighing", "durchaus", "glaces", "magnanimously", "compagnon", "anchorite", "boisterously", "chancing", "dagegen", "tantos", "prenez", "momente", "sterke", "provinz", "withall", "lippen", "donnent", "consorted", "miry", "hollanders", "perh", "exactement", "exacte", "entend", "gewonnen", "moindre", "humeur", "souple", "proserpina", "fluss", "conclure", "dotter", "effectivement", "feelingly", "noised", "bondmen", "unseres", "bashfulness", "vaunt", "wollt", "greatcoat", "unmeaning", "turcs", "untrodden", "nerveless", "insurrectionary", "ruisseau", "refuser", "quondam", "zimmern", "raillery", "faciles", "accordant", "mixt", "ruft", "humide", "sensibles", "prudente", "indissolubly", "teils", "treten", "geschlossen", "extenuation", "favori", "compagnons", "merriest", "loftily", "pourrez", "placidity", "hicieron", "gueule", "regne", "doffed", "herodes", "quatorze", "tegenwoordig", "usurer", "voluntad", "geniality", "twopence", "froide", "rampe", "hearkening", "flippancy", "breastworks", "ruleth", "pellucid", "couvre", "frighted", "hearest", "evadne", "kreise", "oublier", "idees", "irreligion", "bruits", "waarschijnlijk", "prodigality", "bessere", "vuol", "enveloppe", "freshet", "stoutest", "takest", "livelong", "joyeuse", "serez", "citadelle", "appeare", "schaden", "sublimes", "verfassung", "opprobrious", "cnut", "propitiatory", "voyez", "acquirements", "drearily", "grenze", "estuvo", "violences", "hideousness", "drawed", "bewegen", "satte", "appartenant", "paquets", "synes", "parecer", "mechlin", "diciendo", "collines", "cabals", "scherz", "disait", "atli", "superscription", "lieue", "filched", "suffrages", "darkies", "maitres", "swineherd", "unworthily", "disturber", "foresaid", "redoubts", "boding", "ouvriers", "benumbed", "wenigstens", "carouse", "habere", "composedly", "paleis", "nilus", "eenvoudig", "heiresses", "schien", "pistolet", "ambuscade", "repine", "thinges", "geheel", "amants", "jingled", "autrefois", "breakfasting", "noeud", "regardez", "zufall", "drowsily", "religieuses", "voisins", "verfasser", "nogen", "engraven", "nahrung", "gaoler", "bancs", "waarop", "jolis", "evasively", "draps", "weisheit", "habitantes", "brouillard", "resentfully", "acquaintanceship", "declamatory", "elate", "juif", "halb", "geister", "quiso", "gleicher", "supplicating", "schlaf", "zahlreichen", "trembler", "wickedest", "bekannten", "adroitness", "bestir", "helst", "multitud", "wachten", "auxquels", "dropt", "schoolmistress", "obloquy", "profitless", "mourant", "wijze", "saidst", "flucht", "unconcealed", "mettant", "coursers", "disent", "mohammedanism", "finir", "abstemious", "krankheit", "cannonade", "otti", "brume", "grandmamma", "fahrt", "moeite", "tediousness", "verdadera", "ongeveer", "horreur", "licet", "ouvertes", "warbled", "genomen", "vuestra", "clamors", "complaisant", "votary", "hesper", "flossy", "zufrieden", "geloof", "luxuriantly", "loopt", "haled", "grizel", "certainement", "duquel", "inharmonious", "amatory", "todavia", "hindoos", "warme", "officiers", "meaneth", "videtur", "knavery", "dije", "blivit", "prennent", "harrowed", "appris", "podido", "stod", "mussulman", "unhesitating", "sybarite", "montrent", "leaue", "fulco", "irresolution", "geschickt", "schlagen", "proverbially", "waywardness", "maturer", "nennen", "treiben", "servius", "bepaald", "daraus", "faudra", "caresse", "bijzonder", "benignant", "appartiennent", "domestiques", "trifft", "arraign", "khoja", "cawing", "fragt", "gilds", "bottes", "antipathies", "afeard", "bishoprics", "marier", "bewegt", "teutons", "whelps", "bestehen", "victual", "healths", "heutigen", "kertaa", "benignity", "whitsuntide", "gesund", "coxcomb", "shrewdest", "couverts", "hecha", "jener", "undistinguishable", "satrap", "haen", "stateliness", "copses", "richesse", "poursuit", "adown", "brokenly", "coffre", "gilberte", "eddying", "couvent", "hawser", "circumstanced", "werry", "muratori", "heartlessness", "foully", "boors", "quailed", "esquimaux", "peint", "helas", "broils", "contenting", "troublous", "nulle", "kinswoman", "puissent", "bunten", "silencieux", "gegend", "quaffed", "fervency", "schuldig", "sortes", "courbe", "bethink", "eind", "comen", "serried", "careworn", "abstractedly", "besitzen", "unbent", "frolicsome", "foudre", "overrate", "directoire", "jambes", "betweene", "stolidly", "gerechtigkeit", "throned", "feind", "gnade", "saisir", "farine", "affably", "lendemain", "aristocracies", "hexameter", "volontaire", "pracht", "cravate", "aikana", "irgendwo", "fanns", "parricide", "strewing", "prosperously", "allurement", "curtsied", "mither", "recreant", "expiated", "bedienen", "roula", "blott", "allait", "reihen", "tournant", "entgegen", "bareness", "shamefaced", "bords", "perspicuity", "gegenstand", "visitant", "mulle", "organes", "kriege", "connue", "annos", "enow", "jocund", "unutterably", "entdeckt", "winna", "brahmanism", "appius", "inextinguishable", "batavian", "remarquable", "knaben", "betokened", "griechischen", "braccia", "merchantman", "habited", "betrachtet", "sympathising", "hvide", "rejoicings", "draga", "entreats", "conciliated", "foeman", "confute", "voulait", "unexpectedness", "indispensably", "gevoel", "endearments", "interj", "wheedling", "touchant", "aliud", "coyness", "quarante", "zuvor", "tirant", "teilnahme", "dirige", "mantling", "extenuate", "interessen", "battre", "quartiers", "bracht", "vormen", "disinherit", "restent", "aufenthalt", "calomel", "ouverts", "entsteht", "disquietude", "naething", "enormities", "kerchiefs", "helft", "remercie", "beruht", "genoux", "artillerymen", "hoeren", "flatteries", "unfading", "gehabt", "dight", "jouir", "waylay", "benefactions", "angenommen", "pitilessly", "pattered", "varandra", "assister", "daies", "cacha", "moest", "uncomplaining", "tulee", "pillowed", "courtes", "sayde", "saisi", "linien", "temor", "imploringly", "unsuspicious", "picturesqueness", "kende", "unresisting", "besitzt", "yez", "tronc", "begann", "musingly", "blieb", "protract", "connus", "disconcert", "argive", "profond", "choler", "pinioned", "tarrying", "hatless", "baith", "epigrammatic", "ilmarinen", "usurers", "boded", "dallied", "seekest", "couverte", "dettes", "schoot", "messire", "vorschlag", "semblent", "geschehen", "seelen", "traversa", "vassalage", "offenen", "manasses", "zuster", "breake", "auxquelles", "designedly", "whensoever", "conciliating", "frucht", "discouragements", "gingen", "semblable", "gegensatz", "inundations", "gelegenheit", "scandalised", "cinquante", "pudiera", "algonquins", "comported", "bange", "fasse", "servian", "stond", "unterschiede", "propitiated", "hogsheads", "contumely", "ollut", "connaitre", "provoquer", "herrschaft", "erinnert", "clamoured", "lacedaemon", "peines", "meint", "bourgeoise", "nerfs", "aiment", "begge", "possit", "nomme", "plis", "piquancy", "unpremeditated", "desirest", "declaiming", "bestimmen", "marchesa", "dizzily", "pauperism", "samnites", "schlief", "livrer", "sobald", "nettled", "allerede", "odeur", "comprends", "peroration", "preuves", "dahin", "verbergen", "aandacht", "vertreter", "daarna", "lourd", "wilfulness", "betrekking", "grunde", "retenir", "esteeming", "fallait", "ressemble", "klage", "hauing", "prolixity", "sonner", "subterfuges", "stof", "zahlreiche", "harer", "expostulated", "barbarities", "prudery", "bivouacked", "fusil", "langt", "passagers", "firesides", "vicissitude", "salido", "allerlei", "joyousness", "vorsicht", "behoved", "porticoes", "gebirge", "tragedian", "fastnesses", "nebst", "waarvan", "ruminated", "reprend", "commonalty", "lapset", "guerres", "indorse", "suffisante", "curst", "flounces", "upbraiding", "revenging", "feebler", "venger", "miteinander", "chaffed", "overstrained", "consolatory", "houre", "einzigen", "spreken", "contemporains", "heut", "augured", "verran", "sanscrit", "halfpence", "cutlasses", "cupfuls", "tremulously", "quavered", "puir", "governesses", "besluit", "hetzelfde", "veracious", "wesentlich", "readiest", "disconsolately", "squally", "captaine", "demandez", "inzwischen", "seules", "cumbrous", "palings", "satisfait", "geschikt", "devoirs", "rappeler", "croit", "orten", "habent", "didna", "demoniacal", "voraus", "distempers", "execration", "drest", "colonnes", "tabooed", "retenue", "guicciardini", "gaed", "vuestro", "cierta", "einfachen", "hundra", "belike", "saltpetre", "forborne", "cuyas", "tardily", "satisfaire", "dicere", "verbrechen", "zichzelf", "superabundant", "vilja", "versteht", "brengt", "scudding", "verschieden", "destinee", "deprecatory", "larboard", "keinem", "manuscrit", "shrubberies", "volkes", "pertinacity", "amabel", "parme", "herrlich", "hunc", "flurried", "avevano", "deferentially", "souviens", "mazarine", "infiniment", "overborne", "rempli", "goeden", "reinen", "engager", "jocose", "shawnees", "vaterland", "blessure", "restant", "maist", "ursache", "oublie", "eminences", "obscur", "afstand", "kepe", "cailloux", "enemigo", "toits", "weite", "pm", "video", "info", "ebay", "dvd", "website", "photos", "forums", "yahoo", "server", "pc", "feedback", "blog", "options", "audio", "fax", "rss", "porn", "faq", "sep", "powered", "electronics", "database", "microsoft", "url", "update", "downloads", "apr", "hosting", "videos", "tech", "linux", "jun", "listings", "sony", "google", "environmental", "pics", "sponsored", "eur", "pdf", "usr", "homepage", "lesbian", "logo", "airport", "phones", "cnet", "hp", "eg", "ip", "cameras", "ratings", "paypal", "thu", "rentals", "worldwide", "anti", "nokia", "tx", "anal", "interface", "technologies", "gmt", "xml", "input", "sexy", "mb", "multi", "graphics", "prev", "ads", "mini", "usb", "php", "trademarks", "phentermine", "keywords", "msn", "programming", "isbn", "az", "updates", "desktop", "pst", "fucking", "blogs", "evaluation", "implementation", "angeles", "networking", "australian", "kb", "connect", "dev", "vegas", "module", "pricing", "dvds", "documentation", "coverage", "automotive", "developing", "milf", "ringtones", "xbox", "www", "settings", "monitoring", "nc", "llc", "hardcore", "provider", "techniques", "rd", "websites", "servers", "keyword", "username", "fuck", "paperback", "classifieds", "providers", "upgrade", "auctions", "therapy", "samsung", "affiliate", "admin", "designated", "integrated", "cds", "ipod", "porno", "motorola", "strategies", "affiliates", "multimedia", "xp", "tits", "interactive", "developer", "sitemap", "lab", "cvs", "gamma", "weekend", "lcd", "dj", "parking", "ct", "hentai", "laser", "icon", "basketball", "stats", "hawaii", "nj", "clips", "rw", "vhs", "criteria", "pubmed", "logged", "laptop", "checkout", "tripadvisor", "zoom", "anime", "spam", "bytes", "gb", "bc", "consulting", "aa", "lingerie", "shemale", "parameters", "jazz", "profiles", "mom", "singles", "amounts", "usd", "mg", "pharmacy", "constitutes", "collectibles", "infrastructure", "intel", "soccer", "math", "healthcare", "preview", "devel", "rs", "voyeur", "cisco", "certification", "bookmark", "specials", "bbc", "avg", "panasonic", "permalink", "viagra", "src", "faqs", "trackback", "revised", "broadband", "pda", "dsl", "webmaster", "dna", "diff", "sql", "specs", "ss", "yeah", "sexo", "javascript", "gps", "acc", "euro", "encyclopedia", "interracial", "tn", "suppliers", "playstation", "annotation", "gnu", "lesbians", "aol", "modules", "backup", "personals", "kevin", "perl", "bike", "utc", "albums", "verzeichnis", "hosted", "developers", "kits", "variables", "agenda", "template", "investor", "wildlife", "elementary", "sponsors", "unlimited", "printable", "hardcover", "setup", "booking", "ericsson", "supplier", "bluetooth", "tm", "upcoming", "scores", "weblog", "nh", "alerts", "mysql", "offline", "lifestyle", "converter", "blowjob", "safari", "pdt", "parameter", "adapter", "processor", "node", "hockey", "micro", "laptops", "regulatory", "db", "ph", "epinions", "affordable", "databases", "psp", "ds", "discounts", "boobs", "jennifer", "demo", "lg", "gourmet", "nfl", "avatar", "dildo", "featuring", "misc", "calculator", "holdem", "awareness", "spyware", "packaging", "wallpaper", "biggest", "alumni", "hollywood", "wikipedia", "diabetes", "ml", "wow", "mapping", "indexed", "grid", "plasma", "voip", "consultants", "implemented", "sf", "blogger", "kg", "textbooks", "seminar", "latina", "nasa", "sexcam", "accessibility", "templates", "tab", "router", "concrete", "folder", "womens", "css", "upload", "milfhunter", "mc", "metro", "toshiba", "qty", "airline", "uniprotkb", "beastiality", "lp", "consultant", "researchers", "unsubscribe", "bio", "upskirt", "exam", "logos", "milfs", "sustainable", "pcs", "honda", "cinema", "ag", "blowjobs", "deluxe", "monitors", "sci", "edt", "pmid", "recruitment", "siemens", "expertise", "medline", "innovative", "tampa", "ks", "python", "tutorial", "cruises", "moderator", "tutorials", "collectables", "scripts", "abc", "stereo", "operational", "airlines", "livecam", "hobbies", "telecommunications", "bestiality", "biz", "voltage", "nintendo", "vinyl", "highlights", "designers", "ongoing", "imaging", "blackjack", "analyst", "reliability", "gcc", "ringtone", "oriented", "desktops", "semester", "cumshot", "applies", "casinos", "filters", "nv", "notebooks", "algorithm", "semi", "proteins", "exp", "debian", "epson", "terrorism", "cpu", "allocated", "anytime", "nr", "layout", "initiatives", "lol", "mp", "optimization", "genetic", "modem", "mph", "evaluate", "toyota", "nationwide", "vector", "limousines", "destinations", "pipeline", "ethernet", "postposted", "nba", "busty", "coordinator", "epa", "coupons", "cialis", "bb", "ron", "modeling", "memorabilia", "alberta", "org", "okay", "workplace", "wallpapers", "firefox", "eligibility", "clinic", "involvement", "placement", "vbulletin", "funded", "motorcycle", "presentations", "wiki", "radar", "citysearch", "nsw", "pci", "guestbook", "pizza", "rc", "bmw", "mpeg", "shoppers", "cst", "ceo", "twiki", "counseling", "medication", "shareware", "dicke", "configure", "institutional", "metabolism", "rm", "pdas", "outcomes", "sri", "thumbnail", "api", "acrobat", "thermal", "config", "urw", "regardless", "wishlist", "sms", "shit", "trailers", "syndrome", "iraqi", "foto", "tabs", "gm", "rt", "shopper", "nikon", "customize", "sensor", "telecom", "indicators", "thai", "emissions", "dd", "boost", "spanking", "supplements", "icons", "tranny", "catering", "aud", "camcorder", "implementing", "labs", "dynamics", "crm", "rf", "cumshots", "bukkake", "shorts", "td", "amp", "sm", "usc", "environments", "trembl", "blvd", "amd", "emails", "wv", "insider", "seminars", "ns", "vitamin", "processed", "functionality", "intermediate", "billing", "diesel", "bs", "promotional", "chevrolet", "compaq", "authentication", "showtimes", "sectors", "bandwidth", "img", "schedules", "cached", "rpm", "florist", "webcam", "nutten", "automated", "pee", "nipples", "tvs", "manga", "mhz", "orientation", "analog", "packard", "payday", "deadline", "robot", "assess", "gnome", "gadgets", "automation", "impacts", "cl", "ieee", "corp", "personalized", "gt", "conditioning", "teenage", "nyc", "partnerships", "slots", "toolbar", "basically", "genes", "firewall", "scanner", "occupational", "hs", "integer", "treatments", "camcorders", "basics", "rv", "struct", "genetics", "punk", "enrollment", "interfaces", "advertisers", "deleted", "rica", "inkjet", "peripherals", "brochure", "bestsellers", "eminem", "antenna", "bikini", "decor", "lookup", "harvard", "podcast", "interactions", "nike", "pissing", "plugin", "latinas", "customized", "dealtime", "temp", "intro", "zus", "fisting", "tramadol", "jeans", "fonts", "quiz", "mx", "sigma", "xhtml", "recordings", "ext", "minimal", "polyphonic", "outsourcing", "adjustable", "allocation", "michelle", "ts", "demonstrated", "handheld", "florists", "installing", "ncaa", "phd", "blogging", "cycling", "messaging", "pentium", "aka", "sampling", "refinance", "cookie", "goto", "calendars", "compatibility", "netscape", "rankings", "measuring", "tcp", "dv", "israeli", "medicare", "skiing", "hewlett", "flickr", "priorities", "bookstore", "timing", "parenting", "fotos", "britney", "freeware", "fucked", "pharmaceutical", "workforce", "nodes", "ghz", "targeted", "organizational", "skype", "gamecube", "rr", "titten", "excerpt", "halloween", "methodology", "housewares", "resistant", "recycling", "gbp", "coding", "slideshow", "tracker", "hiking", "jelsoft", "headset", "distributor", "archived", "photoshop", "jp", "bt", "diagnostic", "rfc", "downloaded", "sl", "seo", "isp", "nissan", "acoustic", "cassette", "initially", "hb", "jpg", "tc", "sunglasses", "planner", "stadium", "mins", "sequences", "coupon", "ssl", "gangbang", "opt", "flu", "mlb", "tagged", "bikes", "gp", "submissions", "oem", "lycos", "zdnet", "broadcasting", "artwork", "cosmetic", "terrorist", "informational", "ecommerce", "dildos", "coordination", "connector", "brad", "combo", "activation", "mitsubishi", "constraints", "dimensional", "mozilla", "toner", "latex", "anymore", "oclc", "locator", "pantyhose", "plc", "msg", "nylon", "palestinian", "trim", "pixels", "hispanic", "cv", "cb", "procurement", "espn", "untitled", "totals", "marriott", "starring", "referral", "nhl", "optimal", "protocols", "highlight", "reuters", "fc", "gel", "omega", "evaluated", "assignments", "fw", "doug", "saver", "grill", "gs", "aaa", "wanna", "macintosh", "projector", "std", "herbal", "retailer", "vitamins", "vid", "panties", "connectivity", "algorithms", "bbw", "collaborative", "fda", "turbo", "thats", "hdtv", "asin", "spotlight", "reset", "expansys", "connecting", "logistics", "kodak", "danish", "scenario", "fs", "approx", "symposium", "nn", "weekends", "screenshots", "deviant", "adapters", "macro", "mandatory", "syndication", "gym", "kde", "viewer", "signup", "cams", "receptor", "piss", "autos", "deployment", "proc", "directive", "fx", "dl", "starter", "upgrades", "tapes", "governing", "retailers", "ls", "cbs", "spec", "realty", "instructional", "phpbb", "permissions", "biotechnology", "outreach", "lopez", "upskirts", "debug", "boob", "exclude", "peeing", "equations", "bingo", "spatial", "respondents", "lt", "ceramic", "scanners", "atm", "xanax", "eq", "unavailable", "assessments", "cms", "footwear", "beijing", "utils", "phys", "sensitivity", "calgary", "dialog", "wellness", "antivirus", "previews", "pickup", "nascar", "mega", "moms", "addiction", "chrome", "ecology", "botswana", "nav", "cyber", "verizon", "enhancement", "clone", "dicks", "lambda", "baseline", "silicon", "beatles", "soundtrack", "lc", "cnn", "lil", "participant", "scholarships", "recreational", "electron", "motel", "sys", "solaris", "icq", "yamaha", "medications", "homework", "advertiser", "encryption", "downloadable", "scsi", "focuses", "toxic", "dns", "thumbnails", "pty", "ws", "bizrate", "sox", "gamespot", "wordpress", "vulnerability", "accountability", "celebrate", "zoophilia", "univ", "scheduling", "therapeutic", "travesti", "relocation", "np", "competitions", "tft", "jvc", "vibrator", "cosmetics", "concentrations", "vibrators", "estonia", "dt", "cgi", "showcase", "pixel", "focusing", "viruses", "gc", "stickers", "leasing", "lauren", "macromedia", "additionally", "nano", "copyrights", "mastercard", "updating", "kijiji", "conjunction", "cfr", "validation", "cholesterol", "slovenia", "folders", "routers", "starsmerchant", "arthritis", "bios", "pmc", "myspace", "theorem", "nb", "stylus", "topless", "structured", "jeep", "mba", "reload", "distributors", "levitra", "mono", "particles", "coordinate", "widescreen", "squirting", "rx", "apps", "gsm", "rebate", "meetup", "ddr", "rec", "forecasts", "sluts", "ciao", "ampland", "chem", "shopzilla", "payroll", "cookbook", "uploaded", "americas", "connectors", "twinks", "techno", "elvis", "latvia", "jd", "gpl", "irc", "dm", "bangkok", "photographers", "infections", "brisbane", "configured", "amino", "clinics", "mls", "saddam", "threesome", "handjob", "transexuales", "technician", "inline", "executives", "audi", "staffing", "cognitive", "closure", "ppc", "volt", "div", "playlist", "registrar", "jc", "cancellation", "plugins", "sensors", "freebsd", "acer", "prostores", "reseller", "dist", "intake", "relevance", "tucson", "swingers", "headers", "geek", "xnxx", "hormone", "childrens", "thumbzilla", "avi", "pichunter", "thehun", "columnists", "bdsm", "ide", "valium", "rpg", "cordless", "pd", "prot", "trivia", "adidas", "tgp", "retro", "livesex", "statewide", "semiconductor", "boolean", "diy", "interact", "olympics", "identifier", "worldsex", "jpeg", "startup", "suzuki", "ati", "calculators", "abs", "slovakia", "flip", "rna", "chrysler", "plumbing", "nuke", "projectors", "pharmacies", "ln", "introducing", "nicole", "latino", "uc", "asthma", "developmental", "zope", "regulated", "gmbh", "buf", "ld", "webshots", "sprint", "inputs", "genome", "documented", "paperbacks", "keyboards", "eco", "indie", "detector", "notifications", "msgid", "transexual", "mainstream", "evaluating", "subcommittee", "suse", "mf", "motels", "msgstr", "volleyball", "mw", "adipex", "toolbox", "ict", "browsers", "dp", "surfing", "creativity", "oops", "nipple", "behavioral", "bathrooms", "sku", "ht", "insights", "midwest", "karaoke", "nonprofit", "hereby", "containers", "integrate", "mobiles", "screenshot", "kelkoo", "consortium", "pts", "seafood", "rh", "rrp", "playboy", "fg", "mazda", "roster", "symantec", "wichita", "nasdaq", "ooo", "hz", "timer", "highs", "ipaq", "alignment", "masturbating", "comm", "nhs", "aye", "visibility", "reprints", "accessing", "midlands", "analysts", "dx", "sk", "locale", "biol", "oc", "fujitsu", "exams", "aj", "medicaid", "treo", "infrared", "tex", "cia", "sublimedirectory", "poly", "dod", "wp", "naturals", "neo", "motivation", "lenders", "pharmacology", "bloggers", "powerpoint", "surplus", "sonic", "obituaries", "belarus", "zoning", "guitars", "lightweight", "tp", "jm", "dpi", "scripting", "gis", "snapshot", "caring", "expo", "dominant", "specifics", "itunes", "cn", "newbie", "bali", "sponsorship", "headphones", "volkswagen", "marker", "strengths", "emirates", "terrorists", "airfare", "distributions", "vaccine", "crap", "viewpicture", "volvo", "bookings", "minolta", "gui", "rn", "abstracts", "pharmaceuticals", "andale", "remix", "thesaurus", "ecological", "cg", "appraisal", "maritime", "href", "benz", "wifi", "fwd", "homeland", "championships", "disco", "endif", "lexmark", "cleaners", "hwy", "cashiers", "guam", "preventing", "compliant", "hotmail", "refurbished", "activated", "conferencing", "trackbacks", "marilyn", "findlaw", "programmer", "vocals", "yrs", "foo", "gba", "bm", "nightlife", "footage", "howto", "entrepreneur", "freelance", "screensaver", "metallica", "headline", "str", "bahrain", "academics", "pubs", "shemales", "screensavers", "vip", "clicks", "mardi", "sustainability", "formatting", "nutritional", "weblogs", "timeline", "rj", "affiliation", "nudist", "ensures", "sync", "telephony", "realtors", "graphical", "aerospace", "meaningful", "shortcuts", "voyeurweb", "specifies", "logitech", "briefing", "belkin", "accreditation", "wav", "modular", "microphone", "moderators", "memo", "kazakhstan", "standings", "gratuit", "fbi", "qatar", "porsche", "cayman", "rp", "tba", "usgs", "kathy", "graphs", "surround", "lows", "controllers", "consultancy", "hc", "italiano", "rca", "fp", "sticker", "stakeholders", "hydrocodone", "gst", "cornell", "mailto", "promo", "jj", "schema", "catalogs", "quizzes", "obj", "myanmar", "metadata", "floppy", "handbags", "ev", "incurred", "questionnaire", "dept", "euros", "makeup", "troubleshooting", "uzbekistan", "indexes", "pac", "rl", "erp", "gl", "ui", "dh", "fragrances", "vpn", "fcc", "markers", "assessing", "eds", "roommate", "webcams", "webmasters", "df", "computational", "acdbentity", "handhelds", "reggae", "whats", "rides", "rehab", "allergy", "enzyme", "zshops", "condo", "pokemon", "amplifier", "ambien", "worldcat", "titanium", "contacted", "cdt", "recorders", "casio", "postings", "postcards", "dude", "transsexual", "pf", "informative", "girlfriend", "bloomberg", "beats", "scuba", "checklist", "bangbus", "lauderdale", "scenarios", "gazette", "hitachi", "divx", "batman", "hearings", "calibration", "eval", "anaheim", "ping", "prerequisite", "sao", "pontiac", "regression", "trainers", "muze", "enhancements", "renewable", "passwords", "celebs", "gmc", "hh", "adsl", "advisors", "finals", "fd", "acrylic", "tuner", "asn", "toddler", "acne", "listprice", "libs", "cadillac", "malawi", "pk", "sagem", "knowledgestorm", "ppm", "referenced", "gays", "exec", "warcraft", "catalyst", "vcr", "prepaid", "electro", "vietnamese", "lexus", "maui", "handjobs", "squirt", "plastics", "postcard", "tsunami", "internationally", "psi", "buses", "expedia", "pct", "wb", "smilies", "vids", "shakira", "qld", "dk", "findarticles", "routines", "issn", "podcasts", "sas", "ferrari", "outputs", "insulin", "mysimon", "ambient", "oecd", "prostate", "adaptor", "hyundai", "xerox", "merger", "softball", "referrals", "quad", "firewire", "mods", "nextel", "rwanda", "integrating", "vsnet", "msie", "wn", "liz", "ccd", "sv", "burlington", "researcher", "kruger", "viral", "aruba", "realtor", "chassis", "dubai", "llp", "pediatric", "boc", "dg", "asus", "techrepublic", "vg", "filme", "craps", "fuji", "brochures", "tmp", "alot", "benchmark", "highlighted", "antibody", "wiring", "ul", "js", "webpage", "hostels", "pn", "wendy", "diffs", "mumbai", "ozone", "disciplines", "nvidia", "pasta", "serum", "motherboard", "runtime", "inbox", "focal", "bibliographic", "incl", "hq", "propecia", "nbc", "samba", "inspections", "manually", "wt", "flex", "mv", "mpg", "retrieval", "cindy", "lolita", "carb", "importantly", "rb", "upc", "dui", "mh", "discrete", "sexuality", "polyester", "kinase", "televisions", "specializing", "pvc", "blah", "mime", "motorcycles", "thinkpad", "cunt", "feof", "bunny", "chevy", "longest", "tions", "dentists", "usda", "workstation", "flyer", "dosage", "urls", "customise", "marijuana", "adaptive", "enb", "gg", "fairfield", "invision", "emacs", "jackie", "cardiovascular", "ww", "sparc", "cardiac", "learners", "gd", "configuring", "guru", "convergence", "numeric", "kinda", "malpractice", "dylan", "rebates", "pix", "mic", "basename", "kyle", "obesity", "vertex", "bw", "hepatitis", "nationally", "andorra", "mj", "waiver", "specialties", "cingular", "bacterial", "lf", "ata", "bufing", "pam", "dryer", "nato", "funky", "secretariat", "scary", "mpegs", "brunei", "slovak", "mixer", "wc", "sbjct", "demographic", "washer", "springer", "evaluations", "helicopter", "hk", "powerseller", "ratios", "maximize", "cj", "workout", "mtv", "optimize", "leu", "namespace", "align", "peripheral", "confidentiality", "changelog", "orgasm", "condos", "greensboro", "tulsa", "fridge", "qc", "simpsons", "upgrading", "pgp", "frontpage", "trauma", "flashers", "subaru", "tf", "programmers", "pj", "monitored", "installations", "spank", "cw", "motivated", "wr", "fioricet", "rg", "bl", "vc", "wx", "figured", "currencies", "positioning", "heater", "promoted", "moldova", "paxil", "temporarily", "ntsc", "thriller", "apnic", "frequencies", "mariah", "usps", "bg", "planners", "intranet", "psychiatry", "conf", "wma", "aquarium", "cir", "looksmart", "modems", "paintball", "prozac", "acm", "glucose", "norm", "playback", "supervisors", "ips", "dsc", "neural", "hometown", "transcripts", "collectible", "handmade", "entrepreneurs", "robots", "keno", "gtk", "mailman", "sanyo", "nested", "biodiversity", "movers", "workflow", "voyuer", "subsidiaries", "tamil", "garmin", "ru", "fuzzy", "indonesian", "therapist", "mrna", "budgets", "toolkit", "erotica", "dts", "qt", "airplane", "istanbul", "sega", "viewers", "cdna", "harassment", "barbie", "soa", "smtp", "replication", "receptors", "optimum", "neon", "interventions", "internship", "snowboard", "beastality", "webcast", "evanescence", "coordinated", "maldives", "firmware", "lm", "canberra", "mambo", "bool", "cho", "jumping", "antibodies", "polymer", "immunology", "wiley", "bbs", "spas", "convicted", "indices", "roommates", "adware", "intl", "zoloft", "activists", "ultram", "cursor", "stuffed", "restructuring", "simulations", "cz", "cleanup", "crossword", "conceptual", "hl", "bhutan", "liechtenstein", "redhead", "tractor", "unwrap", "telecharger", "safer", "instrumentation", "ids", "groundwater", "gzip", "ricky", "ctrl", "theta", "lightbox", "swaziland", "mediawiki", "configurations", "ethnicity", "lesotho", "rfid", "retailing", "oscommerce", "nonfiction", "homeowners", "racism", "vaio", "gamers", "slr", "licensee", "bisexual", "rel", "ign", "installer", "powershot", "bestselling", "insure", "packaged", "behaviors", "clarify", "activate", "tg", "pv", "sandisk", "vitro", "cosponsors", "hyatt", "burundi", "demos", "btw", "psychiatric", "tittens", "teenagers", "grading", "valentines", "vonage", "wetlands", "quicktime", "underwater", "pbs", "vanuatu", "erotik", "supportive", "vw", "targeting", "preschool", "dw", "hm", "jl", "hg", "megapixel", "booklet", "cancun", "reimbursement", "turnover", "cheryl", "radeon", "italicized", "chromosome", "optimized", "ffl", "upgraded", "colorful", "popup", "mk", "garnet", "ppp", "oceania", "formulation", "fresno", "handbag", "bypass", "ies", "logout", "boyfriend", "hogtied", "wl", "clipart", "detectors", "newsgroups", "spectra", "mailbox", "athlon", "iq", "landscaping", "mol", "korn", "directv", "viable", "deviantart", "qa", "hunks", "appellant", "xsl", "lithium", "ctr", "planting", "alphabetically", "facials", "calories", "airways", "refill", "reagan", "kazaa", "einstein", "pornstar", "vcd", "jumper", "majors", "headsets", "toxicity", "sz", "denim", "greenville", "scat", "neighborhoods", "buick", "slipknot", "mst", "residual", "bf", "bash", "ngos", "storesshop", "postgraduate", "daytona", "wastewater", "constructor", "technicians", "debbie", "issuance", "sj", "mbps", "nationals", "ij", "alito", "waterfront", "diagnosed", "biotech", "turkmenistan", "woodland", "iranian", "unsecured", "kyoto", "cis", "eb", "barcode", "xd", "regulator", "txt", "postcode", "makefile", "ansi", "vicodin", "shawn", "suv", "lacrosse", "crafted", "eritrea", "bbq", "wh", "debit", "dmx", "edits", "unwanted", "xr", "bn", "noaa", "lemma", "kyrgyzstan", "sensing", "postgresql", "kbps", "trac", "dolby", "ecosystem", "pkg", "dashboard", "nikki", "technorati", "esl", "alzheimer", "jk", "wk", "handler", "semantic", "globalization", "atv", "vga", "atari", "sch", "reebok", "mfg", "jb", "blogthis", "inspirational", "wilmington", "faso", "sdram", "motherboards", "blk", "inherent", "jw", "tailored", "vodafone", "romanian", "xt", "ucla", "celeb", "assoc", "palo", "usability", "backyard", "novell", "refunds", "newsroom", "tina", "kia", "taxpayer", "fb", "cola", "boise", "bsd", "saab", "refinancing", "cert", "buffy", "doctoral", "backpack", "npr", "identities", "tajikistan", "sheraton", "snacks", "booster", "taxable", "imc", "ufo", "linksys", "dentistry", "renal", "fedora", "nyse", "guideline", "freezer", "pcr", "bnet", "binoculars", "demographics", "enroll", "daemon", "buddies", "kc", "crashes", "outlines", "steroids", "pogo", "konica", "hotline", "amps", "accountants", "coefficient", "transvestite", "upstream", "digg", "ladyboy", "hussein", "biochemistry", "duplication", "scottsdale", "ninja", "tj", "avalon", "voucher", "tw", "wheelchair", "gw", "epidemiology", "pentagon", "diabetic", "stressed", "libdevel", "dvi", "biomedical", "gameboy", "subset", "gucci", "https", "websphere", "cheney", "zombie", "recycled", "followup", "nih", "hdd", "bidders", "simulator", "exporters", "ninth", "mutant", "ssh", "authoring", "specializes", "irvine", "olds", "ramp", "jakarta", "tl", "pgsql", "malls", "jensen", "impairment", "scooter", "wap", "mcgraw", "lr", "cheerleader", "edu", "lotion", "substrate", "mmc", "ashanti", "homemade", "ukrainian", "freshwater", "topical", "rms", "isdn", "coded", "alcatel", "suriname", "parkway", "femdom", "palau", "duff", "ck", "bonuses", "scam", "biking", "microsystems", "timeout", "aerosmith", "resellers", "portfolios", "ops", "semantics", "scarface", "beige", "auditing", "rolex", "amplifiers", "coli", "executable", "pentax", "restart", "overstock", "eps", "hmm", "explores", "torque", "memberships", "renting", "icann", "ticketmaster", "cdc", "meridia", "hsn", "oncology", "nf", "woven", "bloglines", "audioslave", "wikimedia", "lipitor", "remodeling", "redhat", "enom", "haha", "coordinating", "holistic", "salsa", "encarta", "childcare", "dvr", "cdn", "soundtracks", "napster", "wong", "debugging", "rechargeable", "engineered", "jerseys", "pw", "superstore", "hex", "wg", "blogroll", "evite", "micronesia", "dreamweaver", "diets", "sauna", "multiplayer", "crt", "caicos", "qaeda", "shareholder", "kitts", "tivo", "deletion", "ptr", "macau", "mudvayne", "ceramics", "freestyle", "organizers", "smartphone", "cmd", "hypertension", "searchable", "aguilera", "servicing", "counselling", "ecards", "acura", "clit", "cops", "fedex", "snowboarding", "laserjet", "cooker", "lego", "microbiology", "internships", "sgh", "vectors", "craigslist", "hamas", "shane", "heaters", "rdf", "bj", "visualization", "newswire", "hf", "spermshack", "brokerage", "overtime", "staind", "wd", "sourcing", "filings", "boeing", "sizing", "exceeded", "presley", "godsmack", "labeling", "whois", "paradigm", "msc", "linguistics", "snmp", "standardized", "liu", "gta", "nutrients", "kosovo", "barbuda", "napa", "abt", "nickelback", "lj", "nazi", "jenna", "arrays", "syllabus", "rgb", "rodriguez", "animations", "activism", "fargo", "chairperson", "reged", "leverage", "sgt", "anguilla", "radisson", "apc", "hitler", "handset", "vulnerabilities", "pga", "activist", "palestinians", "ldap", "prerequisites", "maintainer", "benq", "lx", "bv", "knoxville", "mentoring", "pak", "mos", "didnt", "classrooms", "residency", "deadlines", "tk", "bookshop", "nonetheless", "hifi", "gf", "forex", "diagnostics", "ew", "dreamcast", "tumors", "vm", "kyocera", "nudes", "rationale", "hubs", "pasadena", "bissau", "subway", "hpa", "fgets", "citrus", "cameltoe", "reuse", "sightseeing", "therapies", "widget", "renault", "comoros", "suede", "selector", "gop", "diaper", "hotwire", "ngo", "pvt", "atp", "subtotal", "coefficients", "duplex", "mvp", "jh", "analyzer", "charset", "clin", "nutrient", "zhang", "underway", "govt", "cbc", "excerpts", "formatted", "gorillaz", "inhibitors", "uu", "prestigious", "deploy", "gameplay", "autism", "taxpayers", "martinez", "bombing", "wwe", "metrics", "winxp", "inability", "goo", "coronary", "bldg", "mediated", "prom", "scans", "vaginal", "isps", "rookie", "theatrical", "interdisciplinary", "kerala", "enzymes", "analytics", "jacuzzi", "lesbianas", "parser", "razr", "jt", "styling", "snack", "weezer", "randomly", "semiconductors", "coca", "acs", "peugeot", "bollywood", "mentally", "horoscopes", "noun", "xmas", "silicone", "cpa", "dn", "scoreboard", "proliferation", "squid", "hw", "customised", "trilogy", "hike", "imdb", "clic", "ars", "pharmacist", "marley", "typepad", "xs", "deliveries", "recruiters", "screaming", "cygwin", "gprs", "png", "pornography", "robotics", "chopped", "contexts", "init", "svn", "oslo", "foreclosures", "audits", "pesticides", "fave", "residues", "ashlee", "viet", "orbitz", "invasive", "helsinki", "hardback", "vuitton", "nextag", "inconsistent", "narnia", "alfa", "twp", "geoff", "rename", "atx", "markup", "breakthrough", "ietf", "beneficiaries", "copier", "uncategorized", "xm", "geforce", "defaults", "foreclosure", "clarification", "espresso", "hendrix", "homeowner", "mib", "tees", "glu", "winnt", "tec", "hydro", "nonlinear", "spokane", "playa", "gh", "csi", "radioactive", "desserts", "doi", "socio", "pcmcia", "grooming", "validate", "nederlands", "bst", "filmography", "outerwear", "parse", "dsp", "implementations", "attendees", "toc", "downstream", "webcasts", "accelerator", "masterbating", "flyers", "tacoma", "radiology", "locals", "mms", "tungsten", "typed", "desc", "datasheet", "shutdown", "xenical", "computerworld", "tattoos", "peptide", "sweatshirt", "hassle", "regents", "gn", "docket", "dll", "elsevier", "nordic", "privat", "geometric", "taxonomy", "deli", "intern", "nsf", "sata", "xxxx", "megan", "allergies", "bangalore", "clutter", "predator", "xlibs", "belgian", "adolescents", "djs", "coventry", "clamp", "pricegrabber", "cloning", "args", "madden", "smugmug", "visually", "alright", "laguna", "limo", "aligned", "pesticide", "transformers", "avid", "outpatient", "lam", "encrypted", "wholesalers", "coldfusion", "dcr", "shooter", "switchboard", "vince", "fluorescent", "cookware", "lavigne", "param", "environmentally", "gradient", "ncbi", "inserts", "kvm", "programmable", "bibtex", "chemotherapy", "vr", "dysfunction", "livejournal", "diazepam", "rodeo", "sampler", "jovi", "timetable", "corrosion", "positioned", "checker", "workstations", "cathy", "darren", "cmp", "udp", "sts", "milfseeker", "sbc", "midland", "synchronization", "informatics", "oakley", "rants", "tarot", "didrex", "brenda", "purdue", "figurines", "footer", "maternal", "jedi", "seamless", "ghetto", "thr", "panty", "subunit", "aires", "commercials", "regulators", "influential", "carlson", "yy", "benchmarks", "ug", "emi", "retrieving", "reactor", "kiribati", "telnet", "biker", "parked", "financials", "peanut", "converters", "nauru", "dishwasher", "rcs", "neurons", "ios", "feminist", "yds", "ive", "ecosystems", "gadget", "cctv", "leukemia", "deco", "ticker", "habitats", "remover", "incorporates", "brasil", "unicode", "prod", "spreadsheet", "lowering", "discography", "encoded", "researching", "pediatrics", "sushi", "asap", "onsite", "mapquest", "deleting", "compilations", "therapists", "appealing", "lifestyles", "dst", "swimwear", "applet", "pricetool", "threesomes", "quinn", "daewoo", "antigen", "ultrasound", "mgmt", "procedural", "cern", "macros", "msa", "aussie", "advisories", "lendingtree", "belmont", "acad", "bilingual", "barbecue", "localization", "customization", "gigs", "indexing", "lori", "spacecraft", "ivoire", "montserrat", "telecommunication", "coatings", "eureka", "pcb", "sdk", "preparedness", "systemic", "playoffs", "adaptors", "forecasting", "specialize", "drm", "enya", "masterbation", "tubing", "bloomington", "conditioner", "plaintiffs", "vanessa", "nucleotide", "bronx", "listmania", "middot", "netgear", "panda", "crc", "symbian", "emailed", "chf", "constants", "clr", "isuzu", "webring", "redirect", "interoperability", "msrp", "tuvalu", "shampoo", "neoplasms", "artifacts", "vac", "pseudo", "dinar", "carat", "microphones", "nobel", "galaxies", "verlag", "scrapbook", "dummies", "magnesium", "pagina", "kenwood", "roundup", "imac", "faxes", "plump", "uss", "wwii", "methyl", "campuses", "ramada", "tesco", "dba", "architectures", "acdbline", "getty", "cdr", "msi", "prog", "firewalls", "tester", "polling", "fifa", "bins", "consumables", "highbeam", "msdn", "statistically", "mps", "agp", "cont", "adverts", "programmed", "lohan", "unclear", "aromatherapy", "nederland", "stockton", "clearwater", "trustpass", "topology", "airborne", "antennas", "sundance", "lifecycle", "dhcp", "trucking", "iraqis", "shortcut", "racist", "profitability", "unc", "fairmont", "globally", "aaliyah", "reboot", "newsgroup", "audiovox", "phuket", "jf", "metabolic", "sarasota", "billed", "lim", "toons", "danielle", "exc", "relied", "mesothelioma", "trafficking", "eff", "bizjournals", "michele", "kk", "cutie", "creampie", "seoul", "printf", "columnist", "transplantation", "jerome", "nwt", "rammstein", "scrapbooking", "sequential", "uniquely", "goodies", "auth", "gina", "sugababes", "rsa", "rcw", "whistler", "airfares", "huntsville", "ths", "layouts", "servicemagic", "herpes", "newsgator", "contractual", "akron", "bh", "rebounds", "compressor", "samantha", "khz", "webmail", "carcinoma", "taipei", "stance", "aps", "kumar", "gemini", "kinky", "supervisory", "ostg", "kl", "chiropractic", "throughput", "netbsd", "misplace", "serviced", "opener", "vaccines", "jigsaw", "jumbo", "unspecified", "jsp", "turbine", "percentages", "lett", "maths", "probes", "frustration", "americana", "complexes", "varsity", "insurer", "croatian", "multicast", "certifications", "pradesh", "px", "proton", "allegedly", "kaplan", "linens", "roast", "testers", "debuginfo", "complainant", "inhibitor", "knowledgeable", "jimi", "hummer", "telefonsex", "putative", "hyperlink", "presario", "motorsports", "getaway", "robbins", "kimberly", "unsure", "dinosaur", "tac", "ashland", "dlp", "royce", "sophomore", "antibiotics", "landfill", "warehousing", "filesize", "celebrex", "verisign", "registrations", "wavelength", "slashdot", "transvestites", "cheerleaders", "friedman", "coolpix", "blocker", "tawnee", "hud", "mov", "entrepreneurship", "percentile", "linkage", "lh", "ripper", "afp", "kd", "accomodation", "mcafee", "counselors", "competitiveness", "burger", "microscopy", "hyper", "madthumbs", "linkin", "gmail", "utf", "scooters", "reserveamerica", "organisational", "ezine", "reactive", "clipboard", "gamer", "alexa", "pollutants", "directorate", "savvy", "uploads", "terri", "norms", "implants", "alibaba", "hormones", "hype", "addr", "nfs", "urinary", "institut", "condoms", "directives", "zelda", "fetal", "dong", "reportedly", "edi", "kudoz", "replay", "flavors", "ig", "quickcheck", "ziff", "placebo", "lotto", "textures", "pid", "dep", "seagate", "nanotechnology", "toggle", "emc", "spacing", "frameworks", "mergers", "filtration", "gpa", "cpus", "incremental", "corr", "sbin", "scalable", "ji", "intra", "wetland", "olson", "methodologies", "fremont", "someday", "sha", "exporter", "mri", "hum", "ifdef", "killers", "multicultural", "lasers", "dataset", "savers", "powerpc", "steelers", "enhances", "fucks", "relational", "graffiti", "cassettes", "pussies", "doesnt", "tiff", "cnc", "refrigeration", "houghton", "countdown", "decker", "natl", "extern", "enron", "codec", "broadcasts", "checksum", "directional", "breeders", "lethal", "decals", "macs", "archival", "seismic", "baccarat", "mommy", "teenager", "smokers", "declining", "lineup", "hotspot", "bellevue", "hj", "req", "gigabit", "worksheet", "allocate", "aftermath", "roach", "continuum", "feng", "pep", "nylons", "chipset", "msnbc", "hillary", "factual", "carisoprodol", "tutoring", "spectroscopy", "gemstone", "psc", "phonephone", "unregistered", "moto", "gonzalez", "dior", "pops", "osha", "goldberg", "preteen", "bonding", "insurers", "prototypes", "proactive", "issuer", "sponsoring", "malaysian", "easton", "sentencing", "bulldogs", "worthwhile", "ideology", "cervical", "tallahassee", "userpic", "attribution", "acta", "yep", "iec", "differs", "starters", "uml", "bur", "kris", "sizeof", "spi", "regs", "shinedown", "standby", "arin", "unisex", "wallets", "identifiable", "ethanol", "cannabis", "rsvp", "dynamically", "grenadines", "constr", "subtitle", "librarians", "manson", "autocad", "powerbook", "swinger", "infiniti", "ppl", "williamsburg", "supp", "snyder", "budgeting", "backpacks", "resale", "mikes", "scalar", "unresolved", "hep", "seiko", "electromagnetic", "arial", "tos", "zoofilia", "hcl", "validated", "sco", "annotate", "joomla", "helix", "sx", "env", "biomass", "phs", "hierarchical", "lesions", "financed", "surnames", "reconditioned", "allergic", "rk", "abn", "eliminates", "addict", "matte", "melanie", "secunia", "metering", "genetically", "zebra", "runway", "admits", "chennai", "ions", "asshole", "faroe", "glendale", "speedway", "sweatshirts", "yay", "activex", "logon", "recruiter", "popcorn", "espanol", "disadvantaged", "trong", "niue", "ux", "supermarket", "mfr", "boo", "hmmm", "genomic", "helpdesk", "refuses", "afb", "adhd", "avian", "exe", "visas", "matrices", "anyways", "xtreme", "etiology", "tcl", "mellon", "webmd", "personalised", "hospice", "zerodegrees", "qos", "exhibitor", "sportswear", "recap", "toddlers", "astro", "chanel", "jabber", "hgh", "hx", "rotate", "fema", "subwoofer", "amortization", "neurology", "ack", "radiator", "competencies", "hotspots", "trainee", "nielsen", "podcasting", "centennial", "tuna", "bluegrass", "wipe", "acronyms", "autographed", "loader", "latency", "themed", "messy", "dmc", "ments", "empowerment", "replacements", "subtitles", "gcse", "acupuncture", "workload", "highlighting", "grassroots", "gentoo", "redevelopment", "cellphone", "sax", "triggered", "frontgate", "routinely", "asc", "uploading", "managerial", "nsu", "celine", "finepix", "wks", "tonnes", "hypermail", "thunderbird", "investigative", "letras", "bylaws", "wmv", "lao", "facesitting", "breastfeeding", "mccartney", "anglo", "kathryn", "randomized", "motivational", "gratuite", "gerry", "kappa", "neuroscience", "blender", "blaster", "remediation", "decoder", "genocide", "heathrow", "indy", "pantera", "sidebar", "authored", "snoop", "winery", "rbi", "photon", "overlay", "rusty", "pharma", "fayetteville", "champaign", "fyi", "xc", "pakistani", "ics", "apa", "bitches", "urbana", "diagnose", "secsg", "franco", "announcing", "trivium", "amature", "showroom", "cx", "swarovski", "liter", "akon", "brendan", "condosaver", "amex", "classicvacations", "blackpool", "fh", "inuyasha", "nominees", "cuz", "viewsonic", "dryers", "fujifilm", "ams", "hallmark", "counterparts", "paced", "engl", "asians", "seether", "milestones", "parkinson", "mclean", "checkboxes", "lobbying", "mgm", "cinemas", "islander", "encoder", "importers", "impressum", "phe", "maroon", "kontakt", "ers", "kawasaki", "licences", "bose", "fountains", "clones", "crossover", "situ", "specificity", "runoff", "osteoporosis", "approvals", "bea", "jukebox", "nexus", "cancers", "tango", "melting", "garner", "aba", "karate", "qb", "optimizing", "switchfoot", "coldplay", "vioxx", "tty", "bsc", "celexa", "guitarist", "symmetric", "kuala", "bbb", "geeks", "jg", "repec", "insightful", "unrated", "diva", "adsense", "exemptions", "integrates", "csa", "bookstores", "cimel", "hvac", "leica", "agendas", "nws", "busch", "armani", "bipolar", "menopause", "inbound", "shortlist", "gainesville", "tiava", "eclectic", "headphone", "regimes", "readme", "binder", "xemacs", "helicopters", "ngc", "intercontinental", "workspace", "customizable", "softcover", "realtime", "electrons", "subsystem", "appl", "kinetic", "caffeine", "xf", "nib", "httpd", "slac", "calorie", "graphite", "stroller", "bowel", "sweaters", "mafia", "futuna", "predictable", "susceptible", "insest", "skyline", "sulfur", "scams", "lipid", "tao", "quot", "ritz", "networked", "localhost", "cabling", "stills", "perimeter", "biased", "cardiology", "playoff", "sti", "chiang", "payload", "merrill", "oldsmobile", "grilled", "misty", "conserved", "searchsearch", "rewrite", "vending", "keygen", "janeiro", "heh", "transexuals", "prentice", "cumbria", "diaz", "vegan", "congressman", "recombinant", "ubuntu", "superstar", "closeout", "corel", "kayaking", "synergy", "eta", "backpacking", "accidentally", "bonded", "sticking", "dudley", "osama", "oprah", "inflatable", "beers", "glassware", "amc", "kos", "coursework", "kayak", "mayotte", "repetitive", "gears", "orbital", "musicals", "lithuanian", "amatuer", "profiling", "reps", "hn", "sequencing", "panoramic", "deskjet", "rhino", "polynomial", "tau", "nsa", "stakeholder", "signifies", "stochastic", "psu", "santana", "kidding", "swansea", "airmail", "problematic", "roadmap", "ogg", "lesbo", "farrell", "acknowledgements", "tnt", "skincare", "heroin", "mandated", "workbook", "xslt", "hogan", "omg", "sulfate", "timeshare", "oldies", "complaining", "debra", "cdrom", "cle", "thrillers", "fortran", "timeless", "spouses", "vv", "ninety", "tyr", "cues", "bioinformatics", "chung", "subpart", "scheduler", "hypnosis", "kat", "cornerstone", "recycle", "sos", "lsu", "gao", "applicability", "volatility", "uid", "hoteles", "fav", "disneyland", "umd", "gdb", "bro", "offs", "listserv", "fab", "cond", "tokelau", "conformance", "diecast", "bittorrent", "frankie", "oa", "iu", "vf", "alprazolam", "collaborate", "positives", "hunk", "allocations", "lymphoma", "rpc", "freebies", "frontline", "thb", "tele", "imap", "winamp", "stoke", "idg", "polymers", "grills", "phat", "zz", "escrow", "lumpur", "dds", "infospace", "surfers", "kauai", "licensors", "cpc", "stresses", "webhosting", "peoria", "peek", "alr", "ipsec", "bournemouth", "sudoku", "undef", "campground", "sars", "cme", "predictive", "vlan", "aquaculture", "sendmail", "redesign", "nitro", "jackpot", "cortex", "entitlement", "secs", "mixers", "accountancy", "policing", "michaels", "ecc", "kj", "similarities", "kv", "hipaa", "neutron", "duluth", "dogg", "folklore", "dimm", "acoustics", "pensacola", "crs", "condominium", "wildcats", "exhibitors", "ssi", "redwood", "invoices", "tyres", "westwood", "gly", "estonian", "bomber", "songwriter", "shania", "coaster", "typedef", "strippers", "macmillan", "aac", "woodworking", "cbd", "pricerunner", "afl", "catalytic", "bethesda", "privatization", "sourceforge", "sanford", "membranes", "testosterone", "nunavut", "biochemical", "lennon", "suitability", "lara", "kx", "invitational", "handcrafted", "aftermarket", "fellowships", "freeway", "digitally", "hatchback", "rfp", "coa", "subclass", "rutgers", "sampled", "deploying", "interacting", "roanoke", "treadmill", "fiberglass", "osaka", "personalize", "broncos", "jorge", "classifications", "diggs", "rafting", "sle", "jv", "safaris", "contaminants", "scr", "mitch", "mailer", "liners", "asheville", "quinta", "kristin", "bistro", "lw", "voodoo", "caching", "volts", "excalibur", "bots", "sinatra", "interpersonal", "traumatic", "ringer", "zipper", "meds", "briefings", "siblings", "adversely", "pitcairn", "pdb", "onboard", "nucleic", "telecoms", "hehe", "celeron", "lynne", "invariant", "challenger", "redistributed", "uptake", "newsweek", "geared", "svc", "prada", "tycoon", "maxtor", "plone", "dcp", "biochem", "pte", "ors", "compactflash", "antibiotic", "vanderbilt", "cps", "overweight", "metasearch", "taliban", "maureen", "trekking", "coordinators", "digi", "shoreline", "westin", "middleware", "mips", "roundtable", "dementia", "levine", "ripencc", "shoppy", "filesystem", "pow", "docking", "guidebook", "atreyu", "kylie", "pilates", "backstreet", "packers", "localized", "lic", "docume", "xy", "fte", "stl", "yd", "archiving", "disconnect", "multilingual", "gsa", "immunization", "ciara", "cumming", "interviewing", "categorized", "cmos", "transmissions", "receivable", "ronnie", "implant", "playlists", "thematic", "brentwood", "correctional", "katz", "jojo", "buffers", "talkback", "servings", "kobe", "baylor", "otc", "frustrating", "ssa", "zeta", "dinnerware", "sclerosis", "emotionally", "carbohydrate", "estrogen", "odbc", "ipods", "openbsd", "federated", "shui", "rockford", "staging", "statistic", "torino", "schizophrenia", "predators", "mpi", "adhesives", "inventories", "uf", "brokeback", "dumping", "ow", "econ", "footjob", "warez", "magenta", "tagging", "overly", "triggers", "constructs", "impedance", "dragonfly", "underoath", "refundable", "hbo", "billboard", "huang", "sportsbook", "layered", "neurological", "subs", "watchdog", "starbucks", "ibook", "viability", "kh", "filler", "smiley", "genomics", "yi", "yum", "researched", "copiers", "ovarian", "airplanes", "cello", "wlan", "sweepstakes", "antigens", "midtown", "stabilization", "kinetics", "cocos", "impacted", "rumsfeld", "beanie", "thurs", "spaced", "freq", "segmentation", "soaps", "courthouse", "entrepreneurial", "lebanese", "psycho", "maharashtra", "ricoh", "nrc", "chavez", "asst", "overload", "vikings", "kanye", "bootstrap", "wtf", "humane", "scm", "travelocity", "fno", "twink", "nortel", "koh", "affiliations", "pussycat", "appropriated", "escherichia", "mallorca", "reversible", "spd", "oj", "unclassified", "bookshelf", "htdocs", "fps", "initialization", "expat", "raider", "farmington", "timers", "enrolment", "glibc", "lawmakers", "larson", "photosmart", "centrally", "acl", "luv", "dealership", "eyewear", "bakersfield", "decal", "addictive", "clarinet", "fiona", "vn", "gigabyte", "dbz", "rainforest", "federally", "macos", "multinational", "pornstars", "nope", "evo", "aspirin", "spoilers", "machining", "malibu", "gatwick", "shaun", "redundancy", "emo", "detox", "skateboard", "automate", "drosophila", "branson", "ortho", "appraisals", "flashes", "lakewood", "drupal", "prac", "carers", "kramer", "usaid", "idc", "keypad", "richland", "microbial", "adc", "caregivers", "quark", "zyban", "electronica", "mitochondrial", "grinder", "angie", "octet", "wj", "cre", "dinosaurs", "mccoy", "vibe", "snapshots", "ubc", "meth", "trendy", "inpatient", "filming", "fread", "backend", "cartier", "ageing", "containment", "keynes", "protections", "aliases", "maximizing", "handsfree", "tomcat", "walmart", "interestingly", "jules", "ernie", "elem", "organisers", "pissed", "nite", "mckenzie", "lenox", "darussalam", "genital", "mcse", "cajun", "csu", "algebraic", "astm", "kristen", "fsa", "sgd", "chromatography", "overdose", "nad", "gallagher", "mueller", "cao", "ladyboys", "orgasms", "plantronics", "ftd", "freezers", "ibiza", "reese", "digimon", "gastrointestinal", "inspiron", "pagerank", "asm", "smb", "contrib", "blu", "matlab", "netware", "bse", "megapixels", "retriever", "svalbard", "pixar", "dhtml", "winme", "func", "gamespy", "standalone", "antitrust", "equine", "bros", "proto", "jared", "tehran", "dal", "anesthesia", "filemaker", "libtool", "wrongful", "signage", "psy", "encode", "admins", "moc", "dau", "alvin", "accolades", "raton", "stefani", "infertility", "servlet", "collage", "aces", "depeche", "benchmarking", "xxl", "teleflora", "bankruptcies", "gauges", "blueprint", "mccain", "spiderman", "bridging", "flick", "datum", "canceled", "empowering", "ymca", "facilitator", "bos", "macworld", "wwf", "galveston", "rockville", "banff", "smc", "lq", "serv", "ipo", "tek", "ipc", "timestamp", "musica", "bib", "stevie", "rivera", "dermatology", "sandbox", "mdt", "pinkworld", "cambridgeshire", "premiership", "luton", "conftest", "recursive", "registerregister", "fluorescence", "kosher", "additives", "marketed", "mandrake", "camper", "cpr", "liquidity", "lasik", "galactic", "merchandising", "ombudsman", "registrant", "firefighters", "placements", "ih", "elec", "levin", "academia", "amiga", "descriptor", "pimp", "gimp", "cyclic", "swimsuit", "morphology", "versace", "printprinter", "condom", "westerns", "dodgers", "litre", "correlations", "textual", "handsets", "gandhi", "inks", "diarrhea", "seahawks", "mondays", "insertions", "itk", "kms", "couture", "ativan", "summarize", "savesave", "laminated", "citrix", "backups", "turismo", "animalsex", "mayhem", "washers", "grep", "xeon", "polymerase", "optimisation", "easyshare", "cvsroot", "joplin", "dialup", "nx", "thn", "afro", "biosynthesis", "prosecutors", "alloys", "getaways", "miquelon", "wonderland", "zine", "conn", "truman", "jin", "asynchronous", "carla", "messageslog", "clearinghouse", "dwi", "facilitates", "specialised", "ramones", "everquest", "bernstein", "skis", "calc", "marketers", "itc", "lipstick", "brennan", "kpx", "saturation", "stamford", "alamo", "comcast", "hyderabad", "attn", "spaghetti", "tues", "boogie", "abramoff", "ean", "fla", "utilizes", "lesbos", "fasteners", "sakai", "lk", "rajasthan", "committing", "inlog", "laminate", "earring", "aggregator", "datatype", "postnuke", "ergonomic", "dma", "sme", "kp", "refills", "ibis", "yyyy", "unidentified", "atl", "ims", "tractors", "vx", "spp", "coed", "audiobooks", "sheikh", "gk", "hernandez", "kiwi", "ohm", "truste", "acreage", "mfc", "fingerprint", "sorority", "audition", "mca", "plano", "nmr", "lortab", "leveraging", "psychotherapy", "mso", "htm", "stokes", "lakers", "ats", "saxophone", "cocktails", "steroid", "communicator", "horticulture", "dhs", "resets", "util", "ordinator", "bono", "acronym", "veritas", "breathtaking", "streamline", "crowne", "brunch", "pundit", "figurine", "mutants", "cyberspace", "expiry", "exif", "goldman", "msu", "inning", "fries", "initialize", "tlc", "sybase", "foundry", "toxicology", "mpls", "bodybuilding", "fta", "nostalgia", "acetate", "pls", "bmx", "saratoga", "terminator", "badminton", "cyan", "cory", "stacey", "serif", "portability", "fsb", "yearbook", "lubricants", "cns", "hv", "alameda", "aerosol", "mlm", "clemson", "goin", "philly", "coolers", "multilateral", "costello", "audited", "galore", "aloha", "dehydrogenase", "aq", "gx", "postfix", "fj", "altavista", "exponential", "shi", "gev", "secretarial", "todays", "toaster", "cater", "omb", "bac", "kart", "cpl", "sbs", "putin", "questionnaires", "profileprofile", "serials", "equivalence", "vaughn", "aviv", "condominiums", "schematic", "liposuction", "swf", "apoptosis", "pneumatic", "sniper", "vertices", "additive", "professionalism", "libertarian", "rus", "washable", "normalized", "uninstall", "scopes", "fundraiser", "troll", "teamwork", "auditions", "refrigerators", "redirected", "middletown", "widgets", "ontology", "timberland", "mags", "videogames", "concluding", "vallarta", "chopper", "pinball", "pharmacists", "surcharge", "tbd", "ipb", "latvian", "asu", "installs", "malware", "tsn", "nguyen", "horsepower", "algae", "sarbanes", "alcoholism", "bdd", "csc", "maximal", "prenatal", "documenting", "scooby", "moby", "leds", "mcbride", "scorecard", "gln", "beirut", "conditioners", "culturally", "ilug", "janitorial", "propane", "appendices", "collagen", "gj", "nigerian", "ect", "sto", "makeover", "esc", "dragonball", "chow", "stp", "cookbooks", "spoiler", "ari", "avr", "lamborghini", "polarized", "baroque", "ppt", "jihad", "sharepoint", "cts", "abit", "abnormalities", "qtr", "blogshares", "motorsport", "septic", "citroen", "gz", "predicts", "palmone", "expedited", "curricula", "wmd", "pms", "raped", "configurable", "denon", "sloan", "flawed", "cfs", "checkpoint", "rosenberg", "ffi", "iriver", "callaway", "tcm", "dorm", "lakeside", "marquette", "interconnection", "gilmore", "prc", "taxis", "hates", "gamefaqs", "cookers", "ultraviolet", "afc", "haitian", "dialing", "unicef", "identifiers", "mentors", "steiner", "licensure", "tammy", "tz", "dcs", "soybean", "affirmed", "posix", "brewers", "mci", "retractable", "quickbooks", "townhouse", "stormwater", "sgi", "coco", "pipelines", "rudy", "tia", "congrats", "msds", "arafat", "srl", "splitter", "wai", "standardization", "lakeland", "thiscategory", "classy", "acxiom", "triathlon", "kbytes", "thx", "textured", "doppler", "entropy", "snooker", "unleashed", "lux", "nairobi", "importer", "isl", "orioles", "rotor", "theres", "ttl", "dreamy", "backstage", "qq", "lubbock", "suvs", "bmp", "gasket", "firearm", "dss", "bam", "closures", "participatory", "micron", "budgetary", "pcos", "ssk", "pantie", "bombers", "spongebob", "markus", "ideological", "wellbutrin", "rheumatoid", "swindon", "cabernet", "sek", "dsm", "understandable", "shea", "doctorate", "binaries", "slovenian", "showdown", "simone", "spc", "potentials", "tempe", "hklm", "cores", "borrowers", "osx", "bouvet", "multifunction", "nifty", "unveils", "skeletal", "dems", "oahu", "rollover", "infos", "lds", "thanx", "anthrax", "shockwave", "westlife", "bpm", "tamiflu", "touchdown", "planar", "adequacy", "iomega", "xa", "fetisch", "eastman", "franchising", "coppermine", "ged", "ecard", "ue", "kn", "ferries", "faqfaq", "muller", "fudge", "extractor", "usergroupsusergroups", "svenska", "pcg", "myocardial", "everytime", "callback", "encompasses", "sander", "conductivity", "atc", "vicki", "danville", "sedona", "skateboarding", "lexisnexis", "deepthroat", "outback", "reiki", "biopsy", "peptides", "awakenings", "pim", "sediments", "appraiser", "smp", "gaussian", "hustler", "tensions", "linkages", "separator", "schultz", "adr", "concordia", "recon", "fileplanet", "royals", "globalisation", "borland", "pastel", "nottinghamshire", "strollers", "uninsured", "picasso", "mcgill", "discriminatory", "headquartered", "travelodge", "empower", "hurley", "pedals", "teak", "bitmap", "migraine", "sli", "enum", "lamar", "aes", "methane", "pager", "snp", "aclu", "westchester", "nimh", "quilting", "campgrounds", "adm", "densities", "isd", "tional", "turnaround", "navigational", "stargate", "saskatoon", "cen", "minh", "fingertips", "sba", "rockwell", "vl", "pepsi", "rea", "oversized", "snr", "sibling", "ecs", "burberry", "nrs", "cfa", "inhibit", "pps", "screenplay", "unabridged", "ntp", "endpoint", "labelling", "synchronous", "heartland", "cafeteria", "outfitters", "opp", "homelessness", "opengl", "efficiencies", "blowout", "tickboxes", "oversee", "thresholds", "isnt", "waveform", "deficits", "flair", "applegate", "whitewater", "tableware", "bernie", "workgroup", "clement", "cli", "robotic", "mana", "mississauga", "dialysis", "filmed", "staten", "carole", "schwarzenegger", "summarizes", "sludge", "crypto", "christensen", "heavyweight", "lps", "zach", "pdp", "phantomnode", "comptroller", "scalability", "creatine", "embl", "minimizing", "gpo", "dq", "relativity", "mojo", "econo", "shapiro", "rituals", "pq", "ub", "epoxy", "watercolor", "uncensored", "trainees", "tori", "effluent", "infousa", "storytelling", "polarization", "bombings", "smes", "ionamin", "fuckin", "charlottesville", "xu", "aniston", "barred", "equities", "feeders", "jboss", "mobil", "scrolling", "diode", "kaufman", "aloe", "buckinghamshire", "medford", "underlined", "whores", "gemstones", "bmi", "viewpoints", "exim", "appalachian", "dealings", "phillies", "ramblings", "janis", "centric", "optionally", "nightclub", "geophysical", "fictional", "golfing", "rubin", "handlers", "topeka", "openoffice", "bugzilla", "linus", "taco", "mcsg", "humboldt", "scarves", "mla", "repertoire", "emeritus", "macroeconomic", "gundam", "adaptec", "tailed", "voyer", "hostname", "excl", "bx", "arr", "typo", "merchantability", "autodesk", "jn", "winged", "attacker", "catcher", "haynes", "siyabona", "inverter", "abi", "motivate", "mackay", "bridgeport", "assessor", "fullerton", "cpp", "blockbuster", "dz", "amarillo", "pixmania", "pathfinder", "bonsai", "windshield", "tomtom", "spf", "croydon", "convection", "jdbc", "debugger", "boing", "ancillary", "pointless", "alibris", "factoring", "gyms", "inhalation", "faucet", "bitpipe", "arguably", "techs", "electives", "walkman", "midget", "quan", "commissioning", "experimentation", "saltwater", "cpi", "nis", "wacky", "sgml", "anemia", "biting", "reits", "savanna", "crn", "travestis", "mmf", "cancellations", "paging", "coe", "nudists", "fac", "asean", "airsoft", "bontril", "proliant", "keeling", "zh", "accesses", "jive", "bullshit", "casper", "libstdc", "xpress", "datasets", "webdesign", "nicotine", "comeback", "gannett", "curricular", "downtime", "takeover", "lolitas", "thessalonians", "upto", "joaquin", "transistor", "spotting", "wagering", "everest", "disregard", "hanger", "outkast", "pitbull", "rtf", "fairview", "hires", "alienware", "mainframe", "indo", "compilers", "guinness", "heartbeat", "blazer", "timezone", "merck", "tanya", "bmc", "eia", "colleen", "bbbonline", "participates", "syndicated", "lexicon", "integers", "zirconia", "shortages", "plumbers", "jfk", "raf", "igor", "hama", "patton", "pei", "surfer", "diapers", "eas", "waco", "physiol", "adp", "outbound", "breakout", "fakes", "stderr", "kev", "fomit", "injections", "remortgage", "yogurt", "complies", "workaround", "polytechnic", "uber", "shoppe", "berlios", "csr", "penthouse", "synthase", "pistons", "emule", "sauvignon", "bayer", "carrera", "dvb", "cation", "scientology", "cdma", "maxi", "msm", "rac", "feminism", "topps", "webinar", "dewalt", "turnout", "bruins", "clamps", "firefly", "tabletop", "monoclonal", "wholesaler", "typekey", "partnering", "mage", "sqrt", "israelis", "cdp", "headlights", "monophonic", "proquest", "sergio", "swapping", "mev", "particulate", "bedfordshire", "rockport", "nist", "negotiable", "subcategories", "quarterback", "sudbury", "hectares", "upscale", "scrabble", "sdn", "mta", "docbook", "kiosk", "firstgov", "hoodie", "hoodia", "payout", "clinically", "metacritic", "obligated", "decoding", "presenters", "teal", "epstein", "weblogic", "ity", "covington", "esd", "interconnect", "chinatown", "mindless", "purifier", "kz", "greedy", "rodgers", "gloryhole", "suppl", "hotjobs", "downing", "gnd", "libc", "societal", "astros", "halogen", "wyndham", "osu", "tuesdays", "utp", "superpages", "coaxial", "jpy", "liam", "sesso", "arabidopsis", "argv", "hanoi", "ccm", "faucets", "ballistic", "payouts", "rockin", "supermarkets", "bmg", "nacional", "csv", "telstra", "contraception", "polaroid", "underage", "cardio", "timeshares", "atk", "qi", "logger", "kool", "oki", "birding", "detainees", "indi", "lymph", "barrie", "pollutant", "closeouts", "tolkien", "undp", "jbl", "weekday", "homecoming", "increments", "kurdish", "chromium", "mccormick", "pcm", "confrontation", "shreveport", "grower", "frederic", "unpredictable", "dtd", "capacitor", "burnett", "hilfiger", "mda", "litres", "moroccan", "nightwish", "hess", "wheaton", "motorized", "subgroup", "chevelle", "vets", "assays", "ramon", "longhorn", "backdrop", "aerobic", "vgroup", "thursdays", "dansk", "tenerife", "mayen", "oldmedline", "dunlop", "caa", "modernization", "xe", "fourier", "businessman", "watersports", "lucent", "commuter", "orthopedic", "hhs", "tyrosine", "shenzhen", "initiating", "grabs", "erickson", "marlin", "casserole", "canoeing", "cca", "ophthalmology", "geile", "clubhouse", "licensees", "evaluates", "svg", "protesters", "fernandez", "mvc", "sleazydream", "patti", "mz", "sennheiser", "sheehan", "maven", "commute", "staged", "transgender", "customizing", "subroutine", "pong", "hertz", "myr", "bridgewater", "firefighter", "propulsion", "westfield", "catastrophic", "fuckers", "blower", "tata", "giclee", "groovy", "reusable", "actuarial", "helpline", "erectile", "timeliness", "obstetrics", "chaired", "agri", "repay", "prognosis", "colombian", "pandemic", "mpc", "fob", "dimage", "fetus", "determinants", "durango", "noncommercial", "opteron", "superannuation", "ifs", "haas", "wimbledon", "documentaries", "mpa", "rao", "remake", "arp", "braille", "physiopathology", "seperate", "econpapers", "arxiv", "pax", "kalamazoo", "taj", "sinus", "maverick", "anabolic", "allegra", "lexar", "videotape", "educ", "amplification", "larsen", "huron", "snippets", "conserv", "dustin", "wsop", "composites", "wolverhampton", "banning", "cpt", "gauteng", "ftc", "watertown", "pathogens", "mft", "uefa", "jacking", "radiohead", "ooh", "subsections", "definately", "bod", "yin", "tiki", "homepages", "handouts", "cpm", "marvelous", "bop", "asnblock", "stretches", "biloxi", "indymedia", "clapton", "beyonce", "smf", "nabble", "intracellular", "infoworld", "boyz", "waltham", "geisha", "dblp", "briefcase", "mcmahon", "cq", "mcgregor", "modal", "marlboro", "grafton", "phishing", "addendum", "foia", "kirsten", "yorker", "memberlistmemberlist", "gam", "intravenous", "ashcroft", "loren", "newsfeed", "carbs", "yakima", "realtones", "xtc", "vdata", "interpro", "engadget", "tracey", "wac", "darfur", "fragmentation", "behavioural", "kiev", "paranormal", "glossaries", "sonyericsson", "dex", "emoticons", "carbohydrates", "hms", "norwood", "appetizers", "webmin", "stylesheet", "goldstein", "wnba", "englewood", "asf", "hottie", "stripper", "pfc", "adrenaline", "mammalian", "opted", "meteorology", "analyzes", "pioneering", "ctx", "spreadsheets", "regain", "resize", "medically", "tweak", "mmm", "alicante", "graders", "shrek", "universidad", "tuners", "slider", "cymru", "fprintf", "irq", "dads", "sdl", "ebusiness", "hays", "cyrus", "courtroom", "baht", "relocating", "synth", "filthy", "subchapter", "ttf", "optimizations", "infocus", "bellsouth", "sweeney", "aca", "fpo", "layup", "laundering", "fre", "nazis", "cumfiesta", "newbies", "mds", "piles", "vaginas", "bezel", "avatars", "twiztid", "facilitation", "ncr", "xb", "voc", "rts", "applets", "pdfs", "cac", "teh", "undercover", "substrates", "evansville", "joystick", "knowledgebase", "forrester", "xoops", "rican", "uptime", "dooyoo", "spammers", "nuclei", "gupta", "tummy", "axial", "aest", "topographic", "westport", "majordomo", "wednesdays", "burgers", "rai", "watchlist", "campers", "phenotype", "countrywide", "affirm", "directx", "resistor", "bhd", "audubon", "commentsblog", "snowmobile", "publ", "cpg", "subparagraph", "weighting", "rectal", "mckinney", "hershey", "embryos", "garages", "sds", "urology", "aforementioned", "rihanna", "tackling", "obese", "melvin", "collaborations", "isolates", "velcro", "worksheets", "avaya", "srs", "wigan", "hua", "abba", "qd", "orig", "huskies", "frey", "iz", "loyola", "gartner", "xda", "strapon", "chaser", "astra", "expasy", "overdrive", "ripley", "phosphorylation", "cfo", "depletion", "neonatal", "qr", "mclaren", "rowling", "vhf", "flatbed", "golfers", "lira", "technics", "damien", "clippers", "spirited", "gv", "staa", "recharge", "openid", "sassy", "demux", "ribosomal", "tdk", "filmmakers", "transnational", "paralegal", "spokesperson", "fha", "teamed", "preset", "iptables", "pocketpc", "nox", "jams", "pancreatic", "tran", "manicures", "sca", "tls", "prweb", "holloway", "cdrw", "plz", "nadu", "underwriting", "rulemaking", "valentino", "prolyte", "millenium", "collectable", "stephan", "aries", "ramps", "tackles", "dsa", "walden", "catchment", "targus", "tactic", "ess", "partitioning", "voicemail", "acct", "shimano", "lingere", "parentheses", "contextual", "qwest", "jira", "cerevisiae", "dyson", "toxins", "camaro", "cryptography", "signalling", "daycare", "murakami", "merriam", "scorpio", "attr", "emp", "ultrasonic", "ashford", "intergovernmental", "paranoid", "dino", "xvid", "dmoz", "ivtools", "barron", "snorkeling", "chilean", "avs", "suny", "gifs", "qualifier", "hannover", "fungal", "ligand", "aust", "peoplesoft", "freelists", "coastline", "omit", "flamingo", "deformation", "orf", "pfizer", "assembler", "renovations", "genbank", "broadcasters", "employability", "noodles", "retardation", "supervising", "freeport", "lyme", "corning", "prov", "dishnetwork", "amg", "claremont", "moo", "cpe", "childs", "bizkit", "blogosphere", "endocrine", "resp", "carlsbad", "ammo", "bling", "chars", "mcguire", "utilisation", "rulings", "sst", "geophysics", "slater", "broccoli", "foreach", "oakwood", "mcgee", "kissimmee", "linker", "tetris", "tds", "synchronized", "hsbc", "shellfish", "astoria", "trajectory", "epsilon", "knowles", "astrophysics", "hansard", "lai", "authorisation", "vampires", "relocate", "nerd", "dac", "glazing", "provisioning", "mnt", "expandable", "maserati", "bender", "reliably", "fas", "sendo", "hasbro", "corba", "polski", "multidisciplinary", "ventricular", "petersen", "bans", "macquarie", "pta", "poy", "mao", "transferable", "yummy", "momma", "lehigh", "concordance", "greenberg", "trish", "electrodes", "svcd", "cron", "darth", "cramer", "yup", "ching", "melanoma", "thug", "yugoslav", "occ", "cpan", "bizjournalshire", "tco", "shaver", "grammy", "fibrosis", "opel", "hummingbird", "ported", "eeo", "polyethylene", "parametric", "awarding", "dkk", "superbowl", "sse", "haskell", "flatware", "skid", "eyeglasses", "fenton", "polaris", "formulations", "bgp", "parenthood", "latinos", "artworks", "doherty", "dnc", "bci", "allegheny", "arenas", "aaaa", "compressors", "exclusives", "lounges", "consultative", "lst", "ais", "conveyor", "normative", "surg", "rst", "longtime", "ecm", "mckay", "spe", "solver", "ani", "lacie", "solvents", "kudos", "jens", "creams", "poo", "handbooks", "agm", "shawnee", "crowley", "butalbital", "artifact", "mdot", "coldwell", "qs", "depts", "veterinarian", "merseyside", "cso", "krona", "disseminate", "puget", "coasters", "geologic", "fleetwood", "feldman", "endocrinology", "replicas", "polygon", "mcg", "kwazulu", "servo", "riparian", "guelph", "tenuate", "curator", "jaime", "mower", "gamestats", "lvl", "faxing", "meyers", "testsuite", "stressful", "extranet", "remastered", "teac", "neg", "rma", "eastwood", "handspring", "gerber", "duran", "aquarius", "stencil", "srp", "scifi", "redirection", "showcases", "hmv", "refinery", "abort", "drs", "schroeder", "indent", "chardonnay", "removals", "antrim", "accelerating", "guesthouse", "bz", "insiders", "duvet", "decode", "looney", "brigham", "mts", "jewelers", "juneau", "dilution", "veterinarians", "colourful", "grids", "sightings", "binutils", "spacer", "microprocessor", "deloitte", "claiborne", "clie", "cdm", "spills", "assistive", "chronograph", "refunded", "sunnyvale", "spamcop", "lovin", "embracing", "minimise", "salinity", "nbsp", "specialising", "handout", "routledge", "ramirez", "haiku", "paisley", "telemarketing", "cutoff", "visuals", "ccs", "breads", "seg", "martina", "mclaughlin", "headlight", "kemp", "sla", "pipermail", "sonneries", "clinicians", "entertainers", "tripp", "peterthoeny", "blockers", "stash", "jamaican", "semen", "endogenous", "memorex", "showtime", "narcotics", "oceanfront", "flange", "realplayer", "mcc", "mpaa", "gogh", "allentown", "romero", "bnwt", "predefined", "buzznet", "melodic", "isi", "naics", "transgenic", "axim", "brookfield", "endorsements", "viscosity", "cve", "bengals", "estimator", "cls", "concurrently", "leafs", "electrician", "mayfield", "ftse", "samui", "bleach", "unauthorised", "wolverine", "individualized", "ecn", "raffle", "shredder", "embedding", "hydrology", "mascot", "lube", "launcher", "mech", "primers", "caregiver", "lupus", "sachs", "qtek", "oy", "twn", "keane", "gator", "memberlist", "utd", "nordstrom", "roseville", "dishwashers", "walla", "remixes", "cozumel", "replicate", "taped", "mcgrath", "biometric", "incubation", "aggregates", "wrangler", "asymmetric", "cytochrome", "xfm", "sps", "shure", "mcs", "donating", "antec", "giveaway", "cmc", "alyssa", "cnt", "renter", "vmware", "patel", "honeywell", "nightclubs", "barrington", "luxor", "caterers", "capacitors", "rockefeller", "checkbox", "itineraries", "reagents", "christoph", "walkers", "eek", "ensembl", "weekdays", "computations", "wineries", "vdc", "booker", "mattel", "diversification", "wsdl", "matic", "xyz", "antioxidant", "esrb", "archos", "semesters", "naruto", "storyline", "melrose", "streamlined", "analysing", "airway", "iconv", "commas", "vicky", "helvetica", "ssp", "submitter", "cambria", "icp", "manifestation", "subsets", "blazers", "jupitermedia", "merritt", "triad", "webpages", "yp", "clinique", "fitch", "charting", "ugm", "fixation", "bsa", "lenovo", "alamos", "leach", "gravitational", "cyrillic", "prevacid", "designee", "sunni", "netflix", "monoxide", "groupee", "hardin", "colorectal", "outage", "chunky", "raptor", "ima", "coulter", "iain", "mtn", "pbx", "quantify", "dmesg", "elfwood", "substitutions", "lancome", "galleria", "inv", "hillsborough", "booklets", "pln", "cin", "msp", "gluten", "spanked", "orthopaedic", "medi", "nrt", "obispo", "minogue", "turbines", "notepad", "crappy", "golfer", "afs", "receivables", "scripps", "livermore", "cirque", "ost", "marxism", "escondido", "diffraction", "aha", "outlining", "subtract", "bosnian", "hydration", "havent", "preferential", "dre", "interns", "quotas", "methodological", "aarp", "gettysburg", "iseries", "menlo", "walkthrough", "bikinis", "aopen", "bookcrossing", "addicts", "epithelial", "drastically", "clarks", "groupware", "matchmaking", "dict", "descriptors", "aeronautics", "radiography", "norsk", "nps", "afr", "expr", "ejb", "refereed", "afi", "toxin", "poynter", "filmmaker", "grounding", "smartphones", "calvert", "fiduciary", "bayesian", "saccharomyces", "cfp", "humps", "osi", "zimmerman", "javier", "romantics", "trimmer", "bookkeeping", "hmo", "hikes", "kickoff", "magick", "hillsboro", "blm", "fractal", "mtg", "guildford", "twill", "therapeutics", "disruptive", "kicker", "protease", "abrams", "moreno", "newsforge", "timex", "duffy", "racers", "cma", "pairing", "kirkland", "gujarat", "dkny", "catfish", "doubletree", "brink", "transex", "tdd", "hotpoint", "anthologies", "retirees", "dcc", "btu", "investigates", "chelmsford", "anonymity", "gotham", "lyle", "pinot", "responsiveness", "gazetteer", "jacobson", "kda", "imitrex", "monash", "binghamton", "connolly", "homology", "rpms", "psychedelic", "gyn", "rhinestone", "ely", "quadratic", "philharmonic", "dynamical", "cantonese", "quran", "turnovr", "keychain", "shakers", "inhibited", "lexical", "openssl", "ugg", "mathematica", "karachi", "missoula", "abilene", "fdid", "snes", "swat", "pune", "trashy", "expended", "webct", "pvr", "handycam", "zn", "strategically", "dms", "anus", "dnr", "deputies", "emergent", "erika", "authenticate", "aligning", "nautilus", "doulton", "rtp", "dracula", "umm", "modding", "eap", "shaman", "letra", "mandriva", "seti", "extracellular", "jaipur", "stockport", "eiffel", "plywood", "dnp", "morbidity", "wimax", "effexor", "binders", "custodial", "combi", "integrator", "sonnerie", "teri", "sectoral", "trombone", "postsecondary", "rbd", "ambulatory", "lookin", "xff", "camouflage", "beckham", "dispensers", "firebird", "qu", "showbiz", "hbox", "waikiki", "lng", "pds", "antiqua", "boxers", "asics", "barbeque", "workouts", "ini", "mrc", "seamlessly", "ncc", "girlfriends", "songbook", "hepatic", "copeland", "swanson", "aquifer", "ldl", "pgs", "xga", "svensk", "stereotypes", "marlins", "shelly", "exiting", "saginaw", "polyurethane", "seks", "textus", "johansson", "spraying", "hamburger", "reactivity", "lieberman", "windchill", "storefront", "eof", "codeine", "tetex", "cheerleading", "wellbeing", "pkwy", "hairdryer", "punitive", "exon", "outsource", "thier", "siebel", "captions", "kf", "chromosomes", "emailing", "manic", "novotel", "ndp", "transmitters", "nicola", "minidv", "collaborating", "tuxedo", "receptus", "michelin", "bicycling", "itt", "blueberry", "schumacher", "socioeconomic", "hamster", "bushnell", "ergonomics", "finalize", "lumens", "sudanese", "softpedia", "iff", "faceplate", "packer", "ibs", "broward", "globus", "pir", "reco", "softcore", "referencing", "typ", "guangzhou", "nader", "militants", "resins", "cougar", "montrose", "surreal", "irradiation", "redesigned", "raster", "credential", "checklists", "quirky", "oscillator", "finalists", "encrypt", "mgt", "sneakers", "incontinence", "pajamas", "murdoch", "dali", "lubricant", "quests", "mgr", "outsourced", "jody", "plasmid", "schiavo", "unbeatable", "upstate", "lymphocytes", "repayments", "transsexuals", "fueled", "mex", "xanga", "sverige", "extrait", "pelvic", "monochrome", "activating", "antioxidants", "gynecology", "mythtv", "probabilistic", "cooperating", "calibrated", "phased", "godzilla", "eweek", "airbus", "simplex", "webhome", "aerobics", "sabrina", "condor", "gated", "gaap", "sasha", "ebayer", "hmc", "bitrate", "karnataka", "amish", "ffm", "duh", "hyperlinks", "clitoris", "hse", "cribs", "reliant", "subcontractor", "fendi", "giveaways", "wah", "psych", "hydrochloride", "magnification", "twelfth", "proponents", "priceline", "ecco", "backpackers", "kohler", "irb", "initialized", "ava", "silverado", "amr", "ecu", "psychiatrist", "lauder", "soldering", "phono", "crd", "daryl", "trp", "lehman", "daihatsu", "grantee", "enhancer", "anglers", "rottweiler", "filefront", "visualize", "psd", "adb", "hoses", "bidpay", "ias", "turntable", "screenings", "pivotal", "pai", "heuer", "fic", "nix", "lineno", "fdi", "provo", "checkins", "plating", "lycra", "planck", "yugioh", "reactors", "npc", "kingsley", "careerbuilder", "gillette", "fluoride", "stacking", "cochran", "suomi", "sissy", "trang", "calculates", "thunderstorms", "cip", "transcriptional", "finalized", "referees", "deerfield", "lsc", "cochrane", "eldorado", "esmtp", "conservancy", "otrs", "omim", "dielectric", "anand", "electrophoresis", "sprinkler", "imbalance", "cine", "scarlett", "xen", "novak", "backcountry", "artistdirect", "outboard", "pitches", "scc", "lockheed", "raj", "iana", "elmo", "unmatched", "scranton", "ixus", "pinpoint", "gabbana", "neumann", "outta", "dieting", "andhra", "ralf", "appraisers", "xenon", "hybridization", "anh", "abercrombie", "trax", "otherosfs", "ssc", "danbury", "nofx", "sharma", "rockers", "palliative", "recieve", "cufflinks", "queues", "relisted", "beep", "dunedin", "remanufactured", "staffed", "lightspeed", "grilling", "stalin", "kaye", "bps", "camo", "shoutbox", "toms", "homeschool", "ccg", "lifehouse", "windsurfing", "pattaya", "relocated", "untreated", "mkdir", "riaa", "divisional", "chihuahua", "mcconnell", "resell", "chandigarh", "centrino", "osbourne", "burnout", "classpath", "designations", "spl", "microwaves", "coliseum", "ephedra", "spawning", "endothelial", "citrate", "eduardo", "snowman", "edmonds", "potty", "microbiol", "shooters", "norwalk", "bacillus", "fk", "cla", "spooky", "belleville", "venezuelan", "cbr", "colby", "pab", "hom", "subpoena", "hons", "interpretive", "bareback", "extender", "glucosamine", "proj", "modesto", "designjet", "typhoon", "launchcast", "referrer", "zhejiang", "ricci", "superhero", "tooling", "tomography", "berman", "vocalist", "tidbits", "cystic", "pacifica", "kostenlos", "anniversaries", "infrastructures", "littleton", "commenters", "cali", "fairway", "postdoctoral", "prs", "fairchild", "ssb", "spinner", "evanston", "homeopathic", "ordinarily", "hines", "cpd", "braking", "ece", "platelet", "messageboard", "setback", "recipezaar", "installers", "subcategory", "markov", "factbook", "tuple", "fibromyalgia", "rootsweb", "culver", "bratz", "bucharest", "ntl", "lacoste", "renters", "timberlake", "zack", "markham", "gels", "iframes", "thinkgeek", "nafta", "advertisment", "mountaineering", "screwdriver", "hutch", "beckett", "homeschooling", "dealerships", "sakura", "byu", "jupiterweb", "phosphatase", "mahal", "killings", "robyn", "adirondack", "casablanca", "sdp", "pulaski", "mantra", "sourced", "carousel", "mpumalanga", "thermostat", "infarction", "polypropylene", "mailboxes", "southend", "maxell", "tundra", "vars", "youngstown", "farmland", "skater", "iep", "imho", "disrupt", "rampage", "fink", "jurassic", "gpg", "gnupg", "aliasing", "comix", "solves", "hiroshima", "jiang", "oscars", "boosting", "knownsite", "macarthur", "powerhouse", "deodorant", "youre", "compulsive", "perky", "reinforcing", "extensible", "mtb", "catheter", "practicum", "photocopy", "zipcode", "mcpherson", "saharan", "pixma", "hubbell", "lesbienne", "timeframe", "disarmament", "aed", "actin", "interviewer", "vms", "wno", "dbi", "waikato", "syslog", "orr", "gastroenterology", "travelmate", "composting", "mackie", "choi", "uva", "fga", "oceanography", "vastly", "stardust", "radiological", "commando", "bathtub", "urdu", "aedst", "greer", "motorway", "repositories", "freaky", "guangdong", "merlot", "civ", "spielberg", "lesley", "thom", "phoneid", "salinas", "legged", "unilateral", "dsn", "shri", "aegis", "colloquium", "matrox", "vk", "springsteen", "uhf", "fatalities", "supplementation", "embodied", "altec", "mohammad", "verbose", "marbella", "sth", "iterator", "recieved", "slc", "cfl", "deterministic", "nci", "predictor", "salmonella", "nga", "nantucket", "viewable", "subnet", "maximise", "lotr", "isn", "chalets", "reimbursed", "lau", "watermark", "totes", "mohamed", "dyslexia", "hubble", "thugs", "organics", "dearborn", "feds", "yiddish", "dopamine", "multiplier", "winzip", "sacd", "payoff", "spv", "sonar", "monticello", "flasher", "subcontractors", "evangelism", "abortions", "lesion", "akira", "progesterone", "ethyl", "earthlink", "caramel", "immunodeficiency", "washburn", "xtra", "capitalized", "ceos", "maint", "pancreas", "octopus", "xena", "neuro", "ara", "receptionist", "cessna", "tru", "zombies", "cambodian", "interagency", "activision", "synchronize", "jenn", "juegos", "titties", "tay", "hornets", "crossfire", "ankara", "spandex", "hdmi", "tamara", "ctc", "capcom", "cato", "peachtree", "handyman", "aeg", "ethic", "harlan", "taxon", "lcs", "indefinite", "slackware", "cougars", "earch", "ambience", "genet", "photopost", "uo", "infor", "neuronal", "carrollton", "checkers", "torrance", "yuma", "spokeswoman", "baccalaureate", "tripods", "logistic", "middlesbrough", "personalization", "enema", "easement", "goalie", "darkroom", "hydrocarbons", "gpm", "hoh", "hla", "donaldson", "tiscover", "recor", "mori", "adi", "rockland", "uniqueness", "hfs", "cascading", "metros", "hangers", "broadcaster", "musculus", "degraded", "topo", "viewcvs", "eisenhower", "flashlights", "myyahoo", "rosenthal", "affordability", "latham", "jailed", "depp", "grapefruit", "trna", "motorbikes", "verdana", "bonita", "nippon", "decorators", "dwl", "jizz", "pendleton", "psoriasis", "mavericks", "dianne", "earnhardt", "amtrak", "resid", "tostring", "lessee", "goodyear", "utica", "overclocking", "kitchenaid", "cbt", "peacekeeping", "oti", "interferon", "aas", "selectable", "chechnya", "rory", "woodbridge", "jas", "intersections", "sma", "capitalization", "epi", "responder", "qv", "thoracic", "phaser", "forensics", "infiltration", "serine", "bing", "schemas", "orthogonal", "ohms", "boosts", "stabilized", "wordperfect", "msgs", "zhou", "selenium", "grinders", "mpn", "cse", "assn", "punches", "masturbate", "parachute", "glider", "chesney", "taos", "tong", "lotions", "adrenal", "sixties", "booting", "cunts", "dri", "ozzy", "elearning", "zx", "valuations", "kidman", "jpn", "postoperative", "cytology", "nye", "biennial", "ifndef", "bq", "circuitry", "cdw", "robb", "kinja", "tweaks", "readership", "northstar", "dif", "worthington", "groundbreaking", "transducer", "serotonin", "complements", "isc", "params", "radiators", "beagle", "cadmium", "bodoni", "speedo", "detachable", "simplifies", "sleeveless", "motorists", "tbsp", "waivers", "forsyth", "ricerca", "agilent", "plumper", "uterine", "apartheid", "bnc", "businessweek", "morphological", "windham", "ellington", "ria", "cdi", "polio", "clp", "sharm", "alvarez", "regatta", "chatroom", "polarity", "overrides", "riff", "widths", "dest", "attenuation", "kluwer", "martins", "italiana", "telford", "shuman", "grapevine", "russo", "daunting", "topples", "futuristic", "autofocus", "chai", "obsessive", "transplants", "referrers", "junkie", "admitting", "alsa", "galactica", "wkh", "rotational", "withdrawals", "pageviews", "hartman", "finalist", "pornographic", "armageddon", "smallville", "selectively", "albans", "fallout", "brownsville", "galeria", "stalker", "kathmandu", "nyu", "kristina", "dps", "icmp", "sophistication", "wrt", "messed", "oceanside", "foxpro", "taiwanese", "officejet", "helens", "ppg", "sym", "combos", "cloned", "fulham", "dahl", "pla", "nfc", "mathews", "bestseller", "enrique", "minidisc", "downside", "malvinas", "honcode", "reissue", "striker", "memos", "tensor", "whitehead", "whoa", "brookings", "accomodations", "integra", "laredo", "nntp", "logiciel", "jaguars", "mga", "tracer", "frist", "lsd", "synthesizer", "ejaculating", "biodiesel", "mcleod", "waldorf", "microfilm", "lear", "subsidized", "simons", "optimizer", "zire", "pituitary", "sow", "repeater", "teamxbox", "bytecode", "mccall", "wiz", "autopsy", "joltsearch", "ym", "itv", "colo", "ying", "bce", "inode", "glenwood", "allstate", "horticultural", "hahaha", "spamming", "ssn", "wartime", "mou", "hpv", "jain", "geriatric", "mayan", "navman", "futon", "grannies", "hairstyles", "nays", "webspace", "rds", "mellitus", "multiples", "cryptographic", "disparate", "boardwalk", "ineligible", "homeopathy", "entrants", "rallies", "simplification", "abb", "insolvency", "roleplaying", "affective", "wilma", "compusa", "histogram", "wheelchairs", "usaf", "pennington", "lesbiana", "liberalization", "insensitive", "greenpeace", "genotype", "contaminant", "informa", "collaborators", "malvern", "proxies", "rewind", "issuers", "sinh", "kerberos", "schoolgirls", "hilo", "stratton", "idx", "astronaut", "instituto", "lowry", "constipation", "aec", "sheryl", "nashua", "ikea", "oswego", "gbr", "koi", "sues", "cba", "mckenna", "eudora", "candida", "sildenafil", "adjusts", "sqft", "pickups", "squaretrade", "chandra", "cheesecake", "oth", "porting", "lubrication", "shootout", "racine", "webserver", "vnu", "fragmented", "chevron", "reinsurance", "slated", "tera", "guantanamo", "reina", "energizer", "clarksville", "vandalism", "acpi", "acetaminophen", "wolfram", "ofthe", "contraceptive", "necrosis", "iva", "bonanza", "lumbar", "disparities", "umass", "flamenco", "osprey", "flammable", "biometrics", "buspar", "wasnt", "nds", "softwares", "dbm", "alchemist", "marr", "ssw", "mcdonalds", "hormonal", "vh", "calender", "distro", "virgo", "rink", "jesolo", "unrealistic", "rhonda", "pov", "pings", "pcp", "inxs", "desy", "teaser", "impairments", "courageous", "rho", "promos", "transceiver", "warhammer", "iterative", "catered", "callahan", "neuron", "xlibmesa", "pulsar", "enewsletter", "dav", "pedagogy", "bcc", "afrikaans", "ecb", "cinematic", "ugh", "malik", "tshirts", "fellowes", "illus", "telefon", "maguire", "nlm", "numeracy", "caviar", "popups", "sleepwear", "quads", "grady", "kelsey", "enforceable", "bouncy", "vcrs", "retinal", "sponsorships", "textrm", "screenwriter", "vendio", "otago", "ducati", "allele", "sylvania", "optio", "purifiers", "commuting", "hiphop", "kato", "kama", "bcs", "keating", "eczema", "northland", "icu", "veg", "roadster", "confetti", "fv", "raptors", "irda", "veggie", "dharma", "chameleon", "hooper", "luciano", "grp", "abrasive", "henti", "koruna", "edp", "ensembles", "backpacker", "bainbridge", "scs", "comfy", "assuring", "gettext", "registries", "eradication", "herefordshire", "ectaco", "doh", "jodi", "quintet", "groupwise", "ambiance", "chun", "damian", "bakeries", "dmr", "fucker", "polka", "wiper", "wrappers", "giochi", "iterations", "svs", "ntfs", "namespaces", "mismatch", "fdic", "icd", "vj", "oxides", "qualifiers", "battered", "wellesley", "smokey", "passwd", "vacuums", "falun", "precip", "lagos", "rapper", "hooters", "calligraphy", "advantageous", "mustek", "monique", "fearless", "ortiz", "pref", "morningstar", "recessed", "fmt", "palladium", "totaled", "levitt", "vd", "shipper", "darryl", "hobo", "nys", "merrell", "cra", "sly", "reductase", "raul", "shenandoah", "harnesses", "wtc", "loma", "oshkosh", "multivariate", "geil", "kitchenware", "unigene", "lans", "immunoglobulin", "silverstone", "uniden", "telechargement", "remstats", "unitary", "getnetwise", "hospitalization", "clubbing", "microelectronics", "observational", "waverly", "crashers", "schwab", "deregulation", "vba", "carpentry", "steinberg", "sweetie", "mideast", "hispanics", "podium", "paranoia", "faceted", "sito", "gecko", "fullscreen", "interchangeable", "rollins", "scp", "hst", "starship", "miele", "seeded", "cyclists", "fey", "cmt", "nurturing", "enzymology", "amadeus", "usm", "galapagos", "uconn", "picker", "xls", "mulder", "lesbicas", "dialer", "mooney", "syntactic", "envision", "jetta", "downey", "codex", "lsb", "userid", "cosmology", "noodle", "gromit", "sargent", "bangle", "humping", "donnie", "privatisation", "tofu", "rq", "unhcr", "battlestar", "intuit", "adoptive", "cda", "minimized", "partnered", "twat", "filibuster", "glamorgan", "adwords", "tulane", "usp", "facet", "behaviours", "redneck", "imax", "xpath", "synthesized", "encapsulation", "samsonite", "accordion", "rooney", "minimally", "webpreferences", "skoda", "matchups", "ucc", "mailings", "ono", "beachfront", "cem", "crosswords", "pubchem", "integrative", "kelowna", "embed", "gurus", "allotted", "shutterfly", "gerhard", "watersheds", "trimester", "clickable", "spyder", "electricians", "nexium", "capricorn", "dipped", "perm", "rte", "spectrometry", "snippet", "pha", "permeability", "waukesha", "igg", "scart", "wsu", "normalization", "skillet", "neoprene", "vlc", "offeror", "thermo", "huber", "jarrett", "farechase", "maintainers", "maarten", "ginseng", "blackout", "detergent", "rosetta", "grenade", "occured", "karin", "lana", "fontana", "kang", "crafting", "ivillage", "mowers", "bratislava", "policymakers", "sienna", "watford", "misco", "givenchy", "reimburse", "esperanto", "modalities", "pcc", "lighters", "shutting", "endemic", "spr", "carly", "hydrologic", "stansted", "nep", "huddersfield", "aimee", "davey", "csp", "helpsearchmemberscalendar", "ait", "transduction", "silverman", "clarifying", "aortic", "drc", "hoa", "starcraft", "martens", "ficken", "structuring", "konami", "lipids", "jurisdictional", "desi", "cellphones", "cordoba", "xj", "sheppard", "dpkg", "folsom", "triggering", "mapa", "aip", "rackmount", "binocular", "eda", "specialise", "rar", "remortgages", "mckinley", "hanks", "dosing", "strobe", "waffle", "detectable", "pmi", "arrowhead", "nigga", "mcfarlane", "paycheck", "sweeper", "freelancers", "seinfeld", "tdm", "shen", "responders", "keepsake", "birthdate", "gettin", "upbeat", "ayes", "amenity", "donuts", "salty", "interacial", "cuisinart", "nautica", "estradiol", "hanes", "noticias", "gmp", "schaefer", "prototyping", "mth", "zeros", "sporty", "tumour", "fpic", "pdc", "atpase", "pooled", "bora", "shu", "stabilize", "subwoofers", "tcs", "clueless", "sofitel", "woodruff", "southport", "walkthroughs", "radiotherapy", "minifig", "transfusion", "sams", "zend", "newtown", "mcmillan", "csf", "lyn", "witt", "mcd", "unep", "newsflash", "recombination", "messing", "budgeted", "slogans", "flashback", "photometry", "sutter", "inr", "knicks", "ingestion", "mindset", "banda", "adulthood", "inject", "prolog", "dunk", "goofy", "mcintyre", "aga", "guilford", "raglan", "photonics", "cdf", "celtics", "heterosexual", "mappings", "jel", "snip", "fascism", "galerias", "audiovisual", "diagnosing", "neutrino", "wouldnt", "mq", "codecs", "certifying", "dvp", "traduzca", "csb", "subj", "asymptotic", "isotope", "moblog", "locales", "preventative", "brampton", "temperate", "lott", "srv", "meier", "crore", "deserving", "banco", "diagnoses", "thermaltake", "ultracet", "cortical", "itchy", "glaucoma", "homosexuals", "mhc", "estee", "wysiwyg", "oversees", "odp", "categorised", "thelist", "diss", "cta", "diamondbacks", "nzd", "subtype", "psx", "thessaloniki", "dmv", "leafstaff", "literate", "ayp", "bikers", "harcourt", "bubba", "mutt", "orwell", "mietwagen", "bakeware", "cleanser", "lonsdale", "velocities", "renewals", "tsx", "dnl", "mtu", "salford", "ephedrine", "longview", "closeup", "venous", "hereunder", "ouch", "teflon", "cys", "debadmin", "cleans", "fpga", "everton", "rosters", "herbicide", "marlene", "futura", "smd", "cheddar", "ql", "tucows", "regex", "bukake", "chs", "mcclellan", "gopher", "distal", "zar", "frommer", "joss", "shortfall", "harmonica", "geothermal", "texmf", "atlases", "kohl", "lorazepam", "hosp", "lewiston", "stowe", "fluke", "khi", "estes", "hdr", "caches", "stomp", "acidic", "anc", "doin", "tld", "gangster", "deliverables", "censored", "fascist", "lido", "matchbox", "trl", "businessmen", "bpo", "incubator", "experiential", "eraser", "jordanian", "jiwire", "libra", "rtl", "iea", "uniprot", "statystyki", "pkgsrc", "nonprofits", "desnudos", "czk", "ethylene", "slows", "opm", "inhibits", "exploratory", "spectrometer", "outsole", "lista", "tmc", "inset", "polynomials", "elegans", "openers", "shasta", "dob", "inet", "cov", "fallon", "sidekick", "tcb", "dmca", "rewriting", "bahama", "idl", "loretta", "lingvosoft", "dax", "allocating", "newell", "juveniles", "gamermetrics", "lcds", "ortholog", "tasmanian", "hydrocarbon", "lobbyist", "kelvin", "secondhand", "xo", "cheatscodesguides", "mdl", "clientele", "technica", "gratuito", "hts", "arkon", "hort", "bureaucratic", "cooperatives", "raceway", "sopranos", "hotties", "gq", "terrell", "yc", "closings", "registrars", "strlen", "faye", "cto", "lakeview", "ospf", "tunneling", "methamphetamine", "murals", "bangs", "asic", "knockout", "radon", "avantgo", "asl", "obi", "timelines", "roget", "cristina", "visio", "autoimmune", "coder", "replicated", "pom", "timetables", "kline", "anorexia", "errno", "workplaces", "harpercollins", "clk", "heartburn", "empathy", "ica", "motivating", "clockwise", "frisco", "mitzvah", "chong", "bashing", "boosters", "cyl", "grupo", "mikhail", "denominator", "changeset", "cec", "jovencitas", "texttt", "islamabad", "freestanding", "resilient", "eyewitness", "spartanburg", "hippo", "trung", "tenancy", "offsite", "realaudio", "clements", "dogsex", "ticketing", "heterogeneity", "bodied", "dudes", "maytag", "norco", "altos", "sleeved", "overs", "watercraft", "scully", "cellulose", "cathode", "monographs", "nra", "digitized", "rotated", "gaia", "motown", "pryor", "sato", "greeley", "ccr", "agro", "ramos", "quizilla", "citibank", "scotty", "pvp", "meridien", "taxa", "brunettes", "bic", "irl", "mfa", "endo", "unhelpful", "microorganisms", "twister", "krakow", "sequoia", "emt", "activator", "incredibles", "familial", "marquee", "resilience", "thermodynamics", "seton", "makita", "subgroups", "catchy", "aia", "tig", "synaptic", "bobcats", "zappa", "eec", "chicas", "swahili", "nlp", "dzwonki", "enrolling", "commercialization", "smt", "cataloging", "snowboards", "sami", "tesla", "elan", "csd", "ingrid", "longman", "unleaded", "mesquite", "kroner", "frm", "javadoc", "hotbot", "denali", "inhibitory", "phonics", "dbs", "refs", "smh", "thaliana", "meningitis", "motivations", "rees", "asteroid", "donegal", "endings", "mwf", "unlisted", "philippians", "conductive", "sooo", "echostar", "microscopes", "kenmore", "reagent", "achievable", "dla", "glamorous", "interacts", "litchfield", "lavoro", "hobbynutten", "chomsky", "venezia", "yamamoto", "zhu", "interleukin", "flashcards", "homologene", "interception", "voltages", "assignee", "kip", "bla", "algarve", "valance", "stc", "pisces", "cpanel", "orc", "hemingway", "gti", "hdl", "rendition", "danmark", "yun", "sourcebook", "hui", "matador", "smut", "nac", "dang", "bradenton", "meetups", "bilbao", "ewan", "cwa", "akai", "deletes", "adjudication", "autoconf", "rasmussen", "bibliographies", "milne", "fsc", "unplugged", "ttc", "currie", "torvalds", "neff", "tailgate", "hollis", "lanier", "overseeing", "escalation", "polymorphism", "semitism", "sevenfold", "colocation", "woodbury", "tshirt", "epidemiological", "medic", "grail", "espana", "horne", "nostalgic", "aldrich", "tabled", "farsi", "excelsior", "rial", "greenspan", "dhabi", "chobe", "tafe", "pz", "andrei", "frazier", "criminology", "jeanette", "constel", "talkin", "dup", "syd", "permittee", "hangover", "capitalize", "fsu", "motocross", "boomers", "wedgwood", "mcdermott", "youngs", "lep", "grossman", "pecan", "freshmeat", "fnal", "benzene", "mcp", "topper", "ittoolbox", "manny", "arse", "osteoarthritis", "westlake", "czechoslovakia", "addictions", "taxonomic", "judo", "mizuno", "palmetto", "telco", "ltc", "microarray", "electrolux", "elephantlist", "sparked", "qualcomm", "whitaker", "opc", "connelly", "conner", "hospitalized", "fec", "opml", "cana", "ation", "entitlements", "wingate", "healey", "jabra", "qmail", "soybeans", "awd", "electrostatic", "topological", "coz", "oversize", "westinghouse", "unk", "reb", "rios", "craftsmanship", "cic", "pyle", "seuss", "cheetah", "ldp", "competed", "fridges", "hatchery", "judgements", "msr", "zr", "corbett", "asx", "curr", "fingerprints", "conv", "cheesy", "ahmedabad", "dimlist", "winfield", "pinto", "gallerys", "jana", "martindale", "webstatistics", "dhl", "mays", "risc", "hcv", "oboe", "tzu", "hurd", "geotrack", "kolkata", "imation", "hematology", "expressway", "steelhead", "ahh", "turntables", "lindholm", "clooney", "facilitators", "mcnamara", "shiva", "toners", "kenyan", "wynn", "hsa", "motorbike", "niles", "zippo", "sergei", "upfront", "battlefront", "gosh", "fansite", "colossians", "addicting", "gerd", "copa", "gtp", "zlib", "whitespace", "tektronix", "doesn", "mccullough", "cnr", "microfiber", "mdc", "tsa", "deployments", "stearns", "insurgency", "boyer", "behringer", "akg", "ttm", "perceptual", "fz", "midlothian", "follando", "instr", "ott", "bsn", "rambler", "drywall", "suzy", "dekalb", "sumo", "topsites", "hsc", "tse", "refurbishment", "pfam", "tdi", "grassland", "jeffery", "councilman", "swaps", "unbranded", "astronauts", "lockers", "lookups", "attackers", "actuator", "reston", "sftp", "reinstall", "lander", "coby", "methanol", "miscellany", "simplifying", "slowdown", "bridesmaid", "transistors", "marys", "colgate", "lousy", "pharm", "foreseeable", "nutritionists", "techweb", "berkley", "resistors", "blondie", "drwxr", "cfc", "isu", "stm", "villanova", "iw", "tif", "cbi", "cesar", "heuristic", "archivist", "gallup", "valtrex", "usn", "antimicrobial", "biologist", "cobol", "homolog", "fruity", "stratus", "fips", "urea", "bumpers", "lumix", "wildcard", "rvs", "desnudas", "plextor", "oxidative", "brits", "healy", "pliers", "kayaks", "ibanez", "marxist", "couldnt", "naperville", "diplomas", "fieldwork", "damping", "immunol", "regan", "wwwroot", "bootleg", "intellectuals", "winslow", "minis", "rhs", "leftist", "tequila", "limoges", "wildwood", "oop", "germantown", "bergman", "gmac", "pulitzer", "tapered", "mollige", "toothbrush", "delegations", "plutonium", "factsheet", "squarepants", "subsurface", "guadalupe", "halliburton", "underscore", "borg", "glutamine", "slutty", "mcphee", "doa", "herbicides", "usgenweb", "inscribed", "chainsaw", "tablature", "fertilization", "glitch", "gearbox", "stang", "alejandro", "tensile", "varchar", "intercom", "ase", "osg", "mckee", "envisaged", "splice", "splicing", "campfire", "cardbus", "hubby", "graphing", "biologists", "improv", "hempstead", "exilim", "xlr", "debuts", "esi", "diskette", "ubs", "commend", "contender", "southland", "spie", "globals", "diaspora", "anu", "moratorium", "safes", "goodnight", "alcoholics", "asme", "gatlinburg", "cai", "pharmacol", "swe", "xorg", "newsquest", "wavelengths", "unclaimed", "racquet", "cout", "cytoplasmic", "qaida", "kpmg", "lanarkshire", "steakhouse", "stubs", "solarium", "sedo", "fillmore", "shox", "greenhouses", "spotlights", "perks", "harlow", "morrissey", "igp", "lutz", "capacitance", "birthstone", "primitives", "bong", "lingual", "unframed", "iter", "vibes", "tmdl", "programa", "republication", "zap", "veneto", "zhao", "hippie", "acyclovir", "benoit", "organizes", "unaudited", "rz", "summertime", "airbag", "lal", "sweetwater", "bjc", "cfm", "internationale", "krystal", "expansions", "gms", "correlate", "linkout", "poc", "pittsburg", "bylaw", "kenyon", "trims", "epiphany", "pny", "devin", "viewfinder", "homewood", "mcrae", "hind", "renaming", "plainfield", "maxon", "sprintf", "armagh", "livechat", "pdr", "bhp", "lyman", "notfound", "pho", "pathogen", "zagreb", "gayle", "ust", "overwrite", "revitalization", "camry", "postmodern", "jayne", "hci", "kuhn", "typos", "glutamate", "melton", "oneworld", "realtone", "mikey", "telephoto", "pooling", "jy", "drury", "ctw", "tbs", "sct", "custer", "borderline", "surgeries", "lobbyists", "sfo", "zionist", "gaskets", "photoblog", "cushing", "nonstop", "hummel", "corgi", "ellie", "citigroup", "seasonally", "uci", "bizwomen", "dti", "malkin", "adbrite", "psychosocial", "butthole", "ellsworth", "cline", "backlog", "thema", "filmmaking", "wwi", "townhomes", "usf", "instapundit", "mcmaster", "bayside", "thinkcentre", "cea", "biophys", "hodgkin", "vhosts", "laughlin", "congresses", "electrically", "ophthalmic", "yz", "prong", "unreleased", "ipa", "chaplin", "dfw", "histology", "gilman", "klamath", "atrial", "equalizer", "vbscript", "helmut", "lynda", "vax", "yak", "silt", "councilmember", "endorses", "expos", "cherish", "aap", "undead", "pto", "critters", "blob", "kurds", "ela", "ical", "macleod", "devry", "rahman", "fundamentalist", "subtraction", "superstars", "chmod", "leveling", "piggy", "stadiums", "playable", "uz", "sunos", "lancia", "perf", "interconnected", "tunning", "whitepaper", "platt", "lexis", "virology", "csm", "purcell", "vidal", "svcs", "subsystems", "oxfam", "johnstown", "beading", "robustness", "ifn", "interplay", "ayurveda", "mainline", "folic", "vallejo", "ratchet", "cee", "yl", "yee", "wicca", "cygnus", "depiction", "jpl", "tiered", "optima", "seward", "photons", "transactional", "lhc", "doggy", "anodized", "exxon", "hurdle", "donnelly", "metastatic", "encyclopaedia", "errata", "divas", "ong", "trey", "thankyou", "alerting", "insofar", "smileys", "surrogate", "breathable", "differed", "dickies", "gonzo", "programmatic", "trs", "teammates", "barrymore", "ddd", "barracuda", "accesskey", "appellants", "usergroups", "initiates", "pwd", "mation", "aiwa", "whiting", "grizzlies", "okidata", "methadone", "offsets", "tryin", "jodie", "jdk", "tallinn", "descarga", "monterrey", "harrogate", "lotteries", "bozeman", "coauthor", "cybershot", "airflow", "thur", "oper", "stn", "unattached", "maher", "karlsruhe", "yuri", "cheung", "honeymooners", "cheaptickets", "howie", "dieter", "centerpiece", "mplayer", "unwind", "outings", "crotch", "wavelet", "nothin", "pathogenesis", "diodes", "realestate", "reinstatement", "botox", "nge", "dipole", "cleo", "norge", "kata", "tangled", "giga", "walsall", "burnaby", "lilo", "adf", "majorca", "agribusiness", "validator", "jax", "pixie", "proofing", "clits", "keyring", "vehicular", "workbench", "deph", "landscaped", "aziz", "lula", "nucl", "farber", "impala", "commenter", "celsius", "flicks", "hardwear", "prefixes", "racquetball", "endl", "flavours", "pundits", "unset", "murano", "optimised", "bariatric", "hitchhiker", "isotopes", "entrez", "erich", "conduction", "grabber", "orch", "peridot", "produc", "skechers", "pacers", "salvatore", "nts", "rbc", "neurosci", "parton", "apec", "centerville", "mcl", "ebuyer", "dermatitis", "roxio", "nagoya", "sfc", "snowfall", "sss", "fundraisers", "fecal", "vorbis", "hazzard", "lbp", "gorman", "validating", "healthday", "newsstand", "dossier", "psion", "tcc", "corbin", "songwriting", "ecg", "hinton", "nighttime", "fluxes", "kombat", "finders", "dictated", "darlene", "westcott", "dca", "lua", "lpg", "opti", "proximal", "canciones", "irix", "qp", "peroxide", "bryn", "erm", "rfi", "outages", "complemented", "finley", "thanh", "backlash", "gallo", "agence", "zs", "kjv", "jonny", "biblio", "qm", "opacity", "userland", "townsville", "turing", "veggies", "centenary", "barclays", "eid", "drexel", "pedagogical", "lockhart", "fishnet", "combinatorial", "unintended", "raman", "rochdale", "prnewswire", "sthn", "smog", "ucl", "poa", "mics", "punjabi", "prem", "katalog", "kettering", "hayek", "brookline", "montpelier", "titty", "ntt", "fart", "oxidase", "qw", "caterer", "pregnancies", "fiori", "dateline", "stdout", "unassigned", "adriana", "lyndon", "groupings", "mems", "midterm", "campsite", "dropdown", "marketer", "huntingdon", "jcpenney", "gelatin", "qvc", "adenosine", "milliseconds", "swatch", "redefine", "backdoor", "jazeera", "envisioned", "pws", "extrem", "automating", "sempron", "cursors", "divert", "phnom", "tbc", "kanji", "vod", "recreate", "smackdown", "dropout", "jrst", "fallujah", "lockout", "moron", "tnf", "townhouses", "horrific", "abacus", "lifeline", "gto", "torquay", "dao", "conjugate", "winch", "elektra", "webtrends", "shes", "sabotage", "blueprints", "limos", "fraunhofer", "warhol", "suppressor", "dogpile", "birt", "rensselaer", "jocks", "unzip", "floss", "sarge", "endnote", "leland", "telugu", "midwifery", "huff", "pornos", "primates", "rmi", "tangerine", "amoxicillin", "graz", "basingstoke", "crawler", "angled", "comin", "longhorns", "doha", "ebsco", "lynchburg", "overriding", "wilshire", "ard", "wachovia", "groff", "ects", "lok", "invicta", "dongle", "ecumenical", "tanaka", "internacional", "kwan", "cdl", "archiv", "placid", "lenin", "marsha", "gradients", "ritalin", "retrieves", "ferrous", "dhaka", "zillion", "chino", "ltr", "caveat", "gangbangs", "toiletries", "bedrock", "clio", "zines", "multipart", "forklift", "repurchase", "orthopedics", "wsw", "vnc", "nfpa", "dnf", "badgers", "chp", "kinh", "appetizer", "disbursement", "weblinks", "telemetry", "consumable", "winn", "depressive", "stabilizer", "ovary", "rune", "accrual", "creatively", "amateure", "abd", "interfaith", "cay", "automata", "northwood", "payers", "gritty", "dewitt", "rect", "ipx", "sebring", "reborn", "bia", "lagrange", "treadmills", "bebop", "streamlining", "trainings", "seeding", "ulysses", "industrialized", "botanic", "bronco", "moodle", "chased", "cti", "intermediaries", "tei", "rotations", "knoppix", "montessori", "biomed", "murine", "entomology", "rodent", "paradigms", "lms", "putter", "fonda", "recursion", "flops", "initiator", "hsu", "pobox", "zeiss", "ferc", "tanf", "sunscreen", "llvm", "antidepressants", "decentralized", "freaking", "whittier", "elmira", "bassist", "oakville", "skaters", "luminosity", "emulators", "toefl", "keychains", "karat", "modis", "ginny", "egan", "posh", "bangles", "stereos", "submittal", "bnib", "moh", "mink", "simulators", "nagar", "zorro", "ecran", "ealing", "ozark", "pfeiffer", "miers", "vickers", "interactivity", "corso", "constructors", "doj", "ipm", "rnd", "jama", "lsi", "malfunction", "magma", "smithfield", "gtr", "canucks", "hammersmith", "sdi", "cricos", "blum", "parkland", "pcbs", "werewolf", "wnw", "midwestern", "ezboard", "charisma", "chilli", "iac", "suspensions", "nss", "smi", "malnutrition", "logcheck", "layton", "gaines", "inbred", "intercultural", "skateboards", "mainboard", "goshen", "functionally", "rabies", "catalysts", "datetime", "readability", "dakar", "dspace", "cappuccino", "modulus", "krause", "cuisines", "maclean", "tuscaloosa", "boosted", "sprayed", "gearing", "glutathione", "adoptions", "tweaking", "angina", "geeky", "rnb", "coupler", "lexapro", "aig", "paisapay", "zanussi", "minimizes", "hillsdale", "balboa", "penh", "wainwright", "agc", "guadalajara", "pinellas", "umts", "zappos", "daimler", "spo", "tadalafil", "everglades", "chipping", "montage", "geelong", "ionization", "broome", "biases", "sprawl", "marantz", "alfredo", "haunt", "hedging", "insulating", "mcclure", "vbr", "qed", "waterfowl", "adress", "reacting", "virtualization", "itat", "collide", "syst", "mankato", "segregated", "ests", "avengers", "technologist", "pigments", "impacting", "lamont", "aquariums", "rigs", "arginine", "moot", "pleasanton", "televised", "giftshealth", "acd", "simplistic", "hepa", "amphibians", "encapsulated", "injector", "kessler", "gardenjewelrykids", "leung", "edo", "impl", "grained", "relatos", "newsday", "gmat", "dani", "announcer", "barnsley", "cyclobenzaprine", "polycarbonate", "dvm", "marlow", "thq", "osce", "hackett", "divider", "cortez", "associative", "cmo", "rsync", "minivan", "victorinox", "chimp", "flashcoders", "giraffe", "pia", "stroud", "lefty", "cmg", "westside", "heres", "azimuth", "logistical", "firenze", "okavango", "jansen", "tween", "payback", "hydraulics", "endpoints", "perrin", "quantification", "coolant", "nanaimo", "yahooligans", "prilosec", "hutchison", "parsed", "shamrock", "schmitt", "korg", "warmers", "newt", "frontend", "itanium", "alleles", "weiner", "ola", "halftime", "frye", "albright", "wmf", "clemente", "handwritten", "whsle", "launceston", "wembley", "sandman", "mejores", "scoops", "dwg", "truetype", "eigenvalues", "airbrush", "ppb", "comms", "regexp", "quickstart", "beaverton", "trucker", "willamette", "chiropractors", "tyco", "mirroring", "massively", "aeronautical", "lasalle", "pwr", "wordlet", "hanford", "plac", "exhibitionism", "riser", "redux", "gaim", "audiobook", "compensatory", "couplings", "jeezy", "monsanto", "cleric", "rfq", "contactos", "esri", "equiv", "macrophages", "yao", "npt", "computes", "pickett", "oid", "charismatic", "lda", "teleconference", "mma", "whitepapers", "polycom", "tux", "asymmetry", "xpass", "cfd", "barbour", "tijuana", "niv", "hamiltonian", "cdg", "algebras", "quotient", "wildcat", "inlay", "peta", "paco", "avocado", "octets", "dubuque", "evaluator", "gid", "jumpers", "edmunds", "lerner", "manifolds", "awg", "napoli", "kristy", "variances", "pki", "objectivity", "sistema", "massager", "incubated", "feedster", "federer", "turnovers", "bev", "eai", "changers", "frs", "hereto", "osc", "clinician", "alltel", "gss", "curacao", "rapporteur", "arcserve", "gump", "powerline", "aspell", "avp", "safeguarding", "paxton", "herbie", "yabb", "chromosomal", "hickman", "runescape", "salesperson", "superfamily", "tupac", "cassini", "tobin", "zoos", "activates", "hibernate", "ning", "extremists", "montego", "rohs", "cyclical", "cytokines", "improvisation", "mmorpg", "toured", "tpc", "flatts", "cmf", "archiver", "rainer", "rsc", "covariance", "bobble", "vargas", "gulfport", "airfield", "flipping", "disrupted", "restocking", "lgbt", "extremetech", "citrine", "neoplasm", "rethinking", "xfn", "orientations", "calumet", "pellet", "doggie", "inflow", "msw", "lymphocyte", "weinberg", "saigon", "whiteboard", "wic", "brody", "invertebrates", "elliptic", "ffa", "agonist", "hyperion", "partypoker", "rockingham", "sandler", "schweiz", "grundig", "rethink", "musculoskeletal", "aggies", "prereq", "nikita", "aetna", "truckers", "giro", "laserdisc", "kaspersky", "dor", "determinant", "morpheus", "ayers", "junkies", "ccna", "jacquard", "assesses", "okinawa", "autoscan", "quantified", "pnp", "uppsala", "distortions", "subclasses", "glo", "condolences", "hitter", "livelihoods", "psf", "cala", "telluride", "apnea", "mkt", "floodplain", "valera", "wenger", "crusader", "backlinks", "alphabetic", "delonghi", "tailoring", "shavers", "mcdonnell", "aborted", "blenders", "symphonic", "asker", "huffman", "alistair", "navarro", "modernity", "wep", "uab", "olp", "booties", "cancels", "newsblog", "gangsta", "mgp", "foodservice", "teton", "newline", "prioritize", "clashes", "crohn", "bao", "quicklinks", "ethos", "hauppauge", "solenoid", "stis", "underdog", "fredericton", "tep", "bextra", "copywriting", "technol", "mdr", "asteroids", "continous", "hplc", "ovulation", "doggystyle", "quasar", "euthanasia", "schulz", "okanagan", "liters", "tarrant", "blacklist", "clermont", "rooftop", "ebert", "goldfish", "witherspoon", "slimline", "animator", "barbra", "irreversible", "flanagan", "encyclopedias", "csiro", "downtempo", "campsites", "graco", "lighthouses", "xg", "adt", "hemoglobin", "tung", "svga", "postpartum", "condi", "yoda", "jst", "dalai", "xn", "nytimes", "kenzo", "alden", "trampoline", "zi", "restricts", "gees", "intakes", "dogfart", "swearing", "ith", "montel", "ubbcode", "yw", "ninemsn", "lgpl", "jsf", "psychotic", "allyn", "higgs", "pulsed", "ignite", "hornet", "atypical", "contraceptives", "slimming", "dispatcher", "devoid", "jms", "maricopa", "mbs", "northfield", "idf", "elites", "fifo", "correlates", "casters", "heisse", "easygals", "mandalay", "haircare", "climbers", "atty", "madera", "calibex", "mailbag", "smartmedia", "vilnius", "dbl", "doping", "postwar", "strat", "bsp", "barebone", "thrombosis", "smarty", "whitley", "lse", "windermere", "curtin", "dilemmas", "cci", "gwynedd", "edwardian", "hppa", "saunas", "horowitz", "cna", "undergrad", "mocha", "escada", "knockers", "jitter", "supernova", "loughborough", "directtv", "feminization", "extremist", "tuttle", "aoc", "medway", "hobbit", "hetatm", "multipurpose", "dword", "herbalife", "ocala", "cohesive", "bjorn", "dutton", "eich", "tonne", "lifebook", "caster", "critiquer", "glycol", "manicure", "medial", "neopets", "accesories", "faxed", "bloomsbury", "mccabe", "ennis", "colossal", "karting", "mcdaniel", "aci", "brio", "baskerville", "syndromes", "kinney", "northridge", "acr", "emea", "trimble", "webinars", "triples", "boutiques", "freeview", "gro", "screener", "janine", "hanukkah", "caf", "adsorption", "sro", "underwriters", "foxx", "ppi", "noc", "brunton", "mendocino", "pima", "actuators", "internationalization", "wht", "pixies", "pancake", "transmembrane", "photostream", "guerrero", "firth", "hathaway", "emf", "beatty", "andersson", "lunchtime", "miro", "slams", "looping", "crates", "undated", "takahashi", "ramadan", "lowercase", "technologically", "anaerobic", "satelite", "pioneered", "tabloid", "pred", "solubility", "troubleshoot", "etf", "hatcher", "coders", "insecticides", "electrolyte", "watanabe", "firestone", "writeshield", "sph", "descargar", "letterhead", "polypeptide", "velour", "bachelorette", "nurs", "geospatial", "zoned", "pubic", "pizzeria", "mirc", "henning", "acf", "bae", "nitrous", "airspace", "santorini", "vdr", "tms", "convertor", "brahms", "genomes", "workable", "ordinate", "seminal", "rodents", "ytd", "xin", "precursors", "relevancy", "koala", "discus", "giftware", "realistically", "hol", "polska", "loci", "nanotech", "subunits", "awsome", "hula", "laramie", "toothpaste", "maxine", "mennonite", "subtitled", "qms", "maidstone", "abr", "sda", "jcb", "wpa", "fastener", "ctf", "foxy", "sexiest", "jupiterimages", "categorization", "inclusions", "fosters", "conc", "transsexuel", "limbaugh", "cassie", "altman", "lethbridge", "peng", "fillers", "symposia", "nia", "templeton", "stds", "hav", "typography", "ebitda", "eliminator", "accu", "saf", "gardenjewelrykidsmore", "gazebo", "preprint", "htc", "naxos", "bobbi", "cocker", "steph", "protonix", "systemax", "retry", "radford", "implantation", "telex", "humberside", "globalspec", "gsi", "kofi", "musharraf", "detoxification", "ree", "mcnally", "pma", "aureus", "informationweek", "chm", "bonneville", "hpc", "beltway", "epicor", "arrl", "iscsi", "grosse", "dfi", "penang", "zippered", "simi", "brownies", "lessor", "kinases", "panelists", "charlene", "autistic", "riu", "equalization", "corvallis", "reused", "volokh", "vari", "fordham", "hydroxy", "technologists", "snd", "dempsey", "httpdocs", "speakerphone", "reissues", "shalom", "khmer", "recordable", "dlt", "dredging", "dtv", "extrusion", "rtn", "preggo", "defamation", "theron", "proteomics", "spawned", "cep", "phendimetrazine", "wiener", "theorems", "samplers", "rfa", "pasco", "hilbert", "tamworth", "itmj", "msd", "etfs", "cde", "praha", "zona", "landry", "crackdown", "lifespan", "maybach", "cysteine", "responsibly", "slideshows", "aceh", "techtarget", "geotechnical", "fantasia", "camisole", "atoll", "shredders", "gags", "rips", "futurama", "hari", "ironman", "ducts", "marmot", "remand", "hawkes", "spoof", "spammer", "presets", "separations", "penicillin", "amman", "davos", "maturation", "internals", "bungalows", "beckinsale", "refractive", "grader", "ecd", "transducers", "ctxt", "doxygen", "rtd", "akc", "cgc", "intercollegiate", "zithromax", "onkyo", "niosh", "rainier", "furman", "newsfeeds", "larkin", "biztalk", "snapper", "hefty", "ipr", "valdosta", "ulead", "delaney", "hairless", "lactation", "innsbruck", "offbeat", "teenie", "protons", "machined", "holman", "eviction", "dic", "pio", "regionally", "thurman", "canaria", "showcasing", "afa", "certifies", "primes", "renton", "lambeth", "frappr", "liturgical", "easements", "aida", "openafs", "assword", "rving", "exogenous", "sram", "sault", "trolls", "flor", "rfe", "oleg", "smo", "analyzers", "scorer", "swami", "oilers", "nik", "mandela", "listers", "ordinated", "arlene", "dividers", "recoverable", "gators", "intraday", "cruces", "hollister", "enews", "lactose", "gifford", "competitively", "rockstar", "hampstead", "chrono", "nahum", "raja", "nextlast", "xinhua", "ltl", "lofts", "feral", "neurosurgery", "ringgit", "ukranian", "parmesan", "kiosks", "pnt", "hooking", "wip", "rawlings", "physiotherapy", "wrexham", "billabong", "prepayment", "jonesboro", "bangers", "handgun", "miscategorized", "itp", "desoto", "innovator", "mitochondria", "mewn", "sername", "usmc", "amicus", "vijay", "redirecting", "gma", "shih", "cervix", "biblia", "cosby", "lufthansa", "msnshopping", "sewerage", "ele", "mantis", "alerted", "lsp", "intron", "bri", "remodel", "carpal", "natalia", "cjk", "specialises", "condiments", "adventist", "eggplant", "coun", "ctv", "wycombe", "monaghan", "blogarama", "undocumented", "esb", "vaccinations", "gutierrez", "bernd", "needham", "inuit", "wordnet", "wedi", "keyes", "photocopying", "tca", "avn", "dressage", "cafepress", "phylogenetic", "kurtz", "morbid", "inno", "refresher", "freakonomics", "impreza", "cheeky", "arco", "proponent", "brasileiro", "kar", "rojo", "perscription", "aic", "streisand", "eastside", "bioethics", "redo", "piranha", "rps", "cmu", "uncompressed", "vps", "pseudomonas", "sotheby", "avionics", "minimization", "ascot", "linearly", "dolan", "titleist", "genesee", "grays", "fdc", "psychiatrists", "bom", "multiplex", "srt", "bradbury", "babysitting", "asd", "beehive", "aeon", "livin", "leblanc", "shorty", "injecting", "discontinuity", "littlewoods", "enquirer", "downturn", "fission", "modulator", "spybot", "hrc", "worldview", "choreography", "sfx", "nth", "buffering", "denison", "killarney", "scoping", "srm", "mammography", "epc", "nepalese", "communicable", "enzymatic", "melanogaster", "extravaganza", "kamloops", "spss", "tftp", "rotherham", "underestimate", "hana", "mycareer", "pra", "cooley", "gratuitement", "eriksson", "schaumburg", "exponentially", "chechen", "carribean", "bunnies", "choppers", "psyc", "pedersen", "earphones", "outflow", "scarab", "toasters", "skiers", "eax", "jamal", "raunchy", "biologically", "nbr", "ptc", "qe", "zyrtec", "riyadh", "pell", "quicksearch", "coates", "octane", "mtl", "krabi", "funders", "apj", "kal", "fai", "ccp", "environmentalists", "fatah", "ifa", "ackerman", "gbc", "soooo", "soapbox", "newberry", "deanna", "bestellen", "elongation", "webcrawler", "wanking", "ofsted", "yb", "dortmund", "boardroom", "nico", "taping", "mro", "atleast", "somatic", "fcs", "niki", "malloc", "lanzarote", "slump", "nerds", "laude", "mec", "simulating", "enrol", "bts", "cflags", "xps", "datafieldname", "wycliffe", "dda", "apts", "aikido", "slo", "batches", "dap", "ssr", "kournikova", "moshe", "fsbo", "shippers", "mtc", "cav", "rrr", "wildflowers", "polygons", "delimited", "noncompliance", "upi", "sna", "vidsvidsvids", "herts", "bellagio", "webapp", "haryana", "eeg", "dlls", "babysitter", "linotype", "produkte", "lesbica", "pes", "mediators", "hone", "riggs", "jockeys", "seater", "brightstor", "deliverable", "sanding", "buffered", "orton", "indesign", "lakeshore", "ctl", "aland", "clarins", "pelham", "huf", "ronin", "comps", "mgi", "greco", "kontakte", "edema", "leaderboard", "mce", "hsv", "geocities", "argc", "palos", "ori", "carotid", "citi", "squish", "cny", "gorham", "calphalon", "blasen", "midwives", "nara", "nab", "netbeans", "cyclones", "tapety", "snowflake", "blackhawk", "weinstein", "sterilization", "assessors", "chenille", "dehydration", "haircut", "fhwa", "misconceptions", "alternet", "undeclared", "bari", "songwriters", "tolerances", "incarceration", "hierarchies", "redondo", "lactating", "aquamarine", "yg", "edm", "sedimentation", "optometry", "mobilize", "attendee", "bmd", "dialogs", "rpt", "viktor", "trajectories", "federico", "openvms", "ppo", "pag", "precio", "leapfrog", "thermoplastic", "sexchat", "kingman", "deterrent", "ghraib", "duplicating", "tuba", "encodes", "garamond", "cirrus", "alanis", "kilometer", "ballarat", "wacom", "nsta", "actionscript", "ivf", "modifiers", "hijack", "thomasville", "accorded", "fryer", "namco", "xmms", "dammit", "produkter", "motorhome", "ade", "mfrs", "editable", "greats", "milosevic", "marcy", "boron", "creighton", "wolfenstein", "bolivian", "rowbox", "pauls", "phobia", "superfund", "vcc", "sadler", "piercings", "riffs", "briana", "geronimo", "tetra", "freakin", "alb", "retrofit", "cytokine", "stylesheets", "coalitions", "tactile", "cinematography", "vivitar", "wannabe", "blogwise", "amador", "skier", "storyteller", "bpa", "pelicula", "ischemia", "fms", "comput", "wristbands", "livecams", "hibiscus", "rheumatology", "edn", "somers", "cray", "iol", "waterbury", "selectivity", "carlow", "maxx", "haggai", "demonstrators", "raiser", "sanger", "mullen", "periphery", "predictors", "woodwind", "snl", "modblog", "repo", "burnley", "antispyware", "sumter", "rcd", "woodside", "tylenol", "megabytes", "backlight", "naturist", "zephaniah", "airbags", "plethora", "cabriolet", "yh", "retiree", "atol", "sonet", "anthropological", "mikasa", "iverson", "cae", "buckeye", "dollhouse", "stereotype", "uship", "ubisoft", "escalade", "breakaway", "produkt", "sealants", "montclair", "dinghy", "gnus", "melia", "feedbacks", "concurrency", "healthgrades", "hoya", "revista", "lrc", "flied", "tvr", "joliet", "ped", "chappell", "wollongong", "peo", "blowers", "doubleday", "guidant", "remodeled", "eea", "bcp", "situational", "nasd", "chakra", "dfa", "jammu", "wetsuits", "edc", "birkenstock", "vivendi", "emulsion", "fielder", "sorta", "courseware", "biosphere", "skb", "plumpers", "muschi", "qcd", "ollie", "gurgaon", "rwxr", "federalism", "gizmodo", "laminating", "coltrane", "colitis", "unincorporated", "liang", "blogged", "cryogenic", "antispam", "homologous", "hassles", "symptomatic", "rtc", "trademanager", "bipartisan", "rhodium", "exchanger", "preseason", "januar", "bumble", "intimidating", "randi", "placenta", "abbotsford", "upn", "dulles", "brainstorming", "wea", "dougherty", "sarcoma", "sniffer", "rotorua", "bahasa", "iona", "bioscience", "tricia", "residuals", "gforge", "copd", "homie", "leesburg", "afm", "xref", "flashpoint", "mobygames", "cortland", "mailers", "tented", "nicholls", "skew", "mahoney", "infoplease", "budd", "acn", "hollands", "muni", "modernism", "elizabethtown", "dunhill", "eee", "didn", "guidebooks", "scotts", "wye", "wsj", "biosciences", "macgregor", "atms", "habakkuk", "depaul", "binge", "cyst", "hexadecimal", "scissor", "progra", "smyth", "mott", "jazzy", "headboard", "diflucan", "bronson", "standardised", "cations", "cics", "ecole", "centos", "hysterectomy", "housings", "wrc", "movado", "mcdonough", "krista", "pharmacokinetics", "chantal", "morristown", "riverview", "loopback", "torsion", "ultrastructure", "lucida", "leftover", "sykes", "anecdotal", "rheims", "integrators", "unlv", "arboretum", "sharealike", "lowepro", "erc", "ischemic", "illustrators", "plugging", "macbook", "bjp", "arent", "vignette", "qf", "homebrew", "altoona", "pheromone", "fireball", "decorator", "franken", "netpbm", "antalya", "harmonious", "nne", "recordkeeping", "modernisation", "myx", "sdr", "muskegon", "daley", "modality", "liberalisation", "utilise", "arturo", "appellee", "granules", "multidimensional", "rollout", "homegrown", "datamonitor", "reinforces", "dirham", "leahy", "myc", "esophageal", "kira", "approximations", "forzieri", "intermediates", "kgs", "albumin", "grantees", "loveland", "maloney", "sativa", "paramedic", "trademarked", "edgewood", "stressing", "potable", "limpopo", "intensities", "oncogene", "antidepressant", "ballpark", "powys", "orca", "mascara", "proline", "molina", "nema", "wipers", "snoopy", "informationen", "esf", "riverdale", "unleash", "juelz", "bls", "noarch", "koss", "captioned", "paq", "summarizing", "ucsd", "gleason", "baritone", "independant", "chlamydia", "relativistic", "rotors", "driscoll", "andalucia", "mulher", "bagels", "subliminal", "insecticide", "segal", "spline", "undisclosed", "noni", "letterman", "almeria", "bryson", "wtb", "towson", "htaccess", "malayalam", "crue", "loo", "pinoy", "pallets", "uplink", "sheboygan", "terrence", "ghc", "gateshead", "probationary", "abducted", "warlock", "breakup", "fiche", "juror", "bowden", "goggle", "metabolites", "brainstorm", "smu", "ahl", "bateman", "egcs", "chirac", "museo", "coffeehouse", "scitech", "gcn", "trolling", "elmore", "grads", "lz", "andi", "localpref", "kayla", "ccl", "smeg", "donut", "libido", "fuselage", "diabetics", "ballerina", "crp", "morgantown", "paseo", "ptsd", "redheads", "curran", "diam", "ragnarok", "hkd", "summarised", "jx", "caitlin", "conscientious", "bandai", "hobs", "eft", "endometriosis", "cushioning", "mcneil", "belvedere", "nar", "acetyl", "boomer", "perinatal", "idm", "automake", "multichannel", "petr", "daredevil", "corcoran", "mrp", "holliday", "daimlerchrysler", "bowes", "mcgowan", "agfa", "mep", "goss", "mulch", "jvm", "harwood", "ranma", "marinas", "mobipocket", "streptococcus", "murcia", "landfills", "mcknight", "edd", "baud", "mcfarland", "designline", "undies", "prepay", "kodiak", "printout", "nonresident", "marysville", "curso", "palmos", "dorsey", "roo", "soulful", "websearch", "infotrac", "mpgs", "fouls", "openssh", "bravenet", "etsi", "serendipity", "tq", "sequentially", "yogi", "landslide", "howtos", "skool", "evolves", "iberia", "anakin", "duffel", "goodrich", "subfamily", "perennials", "ary", "matchmaker", "sagittarius", "locates", "dysfunctional", "maastricht", "bulletproof", "mcr", "uga", "stenosis", "chg", "recentchanges", "abrasion", "eindhoven", "opportunistic", "pcl", "analogs", "bba", "hillcrest", "cantor", "econometric", "trafford", "opie", "cro", "elkhart", "ringers", "diced", "fairgrounds", "cuyahoga", "plt", "cartons", "mustangs", "enc", "addons", "wstrict", "gow", "pharmacological", "headwear", "paediatric", "genitals", "hendricks", "ivr", "telemedicine", "judi", "icom", "academically", "chilton", "cbo", "amaya", "flickrblog", "fulbright", "foaf", "cllr", "xh", "fulltext", "centrum", "tecra", "kinks", "unisys", "preschools", "mcallen", "contoured", "aberdeenshire", "icm", "schenectady", "schematics", "dojo", "eserver", "nin", "interfacing", "borrowings", "hrt", "heparin", "universiteit", "hardcopy", "connective", "nihon", "oso", "adkins", "dunlap", "nsc", "irr", "clonazepam", "wikiname", "gaithersburg", "biophysics", "chromatin", "mathis", "bulova", "roxanne", "fca", "drg", "refurb", "wasteland", "plotter", "findlay", "cymraeg", "alc", "meek", "phonebook", "doodle", "arb", "wabash", "chronologically", "wms", "whitfield", "mchenry", "eide", "assy", "dusseldorf", "mmol", "shabbat", "nclb", "accommodates", "cmi", "stacker", "msf", "touchdowns", "plasmas", "barbell", "awk", "bibs", "sneaky", "smarts", "lankan", "synthetase", "lightwave", "alignments", "coached", "jac", "framingham", "opensource", "restroom", "videography", "lcr", "spatially", "doanh", "preprocessor", "cohn", "aon", "marginally", "ocs", "bak", "cavalli", "ddc", "grunge", "invoicing", "bigtits", "carney", "braintree", "southside", "vca", "flipped", "cabrera", "mindy", "surfaced", "glam", "cowgirl", "loginlogin", "mtr", "nakamura", "layoffs", "matures", "cty", "apm", "iggy", "margarine", "sneaker", "glycoprotein", "gcs", "queued", "sab", "hydroxide", "hanley", "cellulite", "hwang", "mtd", "mcqueen", "passat", "fluff", "shifter", "cartography", "firstprevious", "vito", "predicates", "bcl", "douay", "zeitgeist", "nickelodeon", "dru", "apar", "tending", "hernia", "preisvergleich", "britton", "stabilizing", "socom", "wsis", "anil", "midsize", "pullover", "lpn", "hoodwinked", "photoes", "beastie", "yucca", "harvester", "emmett", "shay", "obstructive", "pacman", "retroactive", "briefed", "bebe", "krusell", "clickz", "kermit", "gizmo", "atherosclerosis", "demography", "migraines", "wallingford", "newborns", "ljubljana", "restarted", "rnc", "meow", "thayer", "kilograms", "packager", "populate", "pembrokeshire", "arcane", "impractical", "tcg", "decentralization", "honeymoons", "authoritarian", "alu", "judaica", "tropicana", "tyan", "cardholder", "peavey", "gothenburg", "geocaching", "ident", "fluoxetine", "tipton", "teva", "lsa", "effortlessly", "failover", "cysts", "primetime", "kenosha", "kokomo", "penney", "snorkel", "amin", "iridium", "dwyer", "conserving", "toppers", "cfg", "tvc", "alternator", "nysgrc", "underwriter", "springhill", "panhandle", "joann", "isoform", "borden", "bombed", "elt", "halton", "guaranteeing", "fasta", "gonzaga", "boobies", "nadine", "breitling", "nutr", "ingersoll", "sandia", "pacs", "azur", "helms", "beos", "srcdir", "sherpa", "tuff", "ligands", "smalltalk", "sorghum", "nucleotides", "mmv", "ebi", "sbd", "lmao", "enhancers", "collaborated", "produ", "lila", "slotted", "nnw", "fila", "decking", "boz", "accelerators", "howstuffworks", "neighbourhoods", "michal", "rab", "hideaway", "dwayne", "coda", "cyanide", "kostenlose", "grotesk", "marek", "interlibrary", "provenance", "sra", "sog", "zinkle", "fanfare", "mapper", "boyce", "mlk", "dystrophy", "infomation", "footballs", "emailemail", "bathurst", "fof", "duracell", "feinstein", "magnavox", "evra", "servlets", "tss", "neill", "epithelium", "thc", "webbing", "bef", "jaya", "mame", "ppe", "emusic", "tso", "epp", "glencoe", "untested", "overviews", "affleck", "flinders", "informationhide", "hearst", "verifies", "reverb", "kays", "commuters", "rcp", "welivetogether", "crit", "sdm", "durbin", "riken", "canceling", "brookhaven", "gauss", "artistry", "phpnuke", "falkirk", "pitts", "dtp", "kwon", "rubric", "headlamp", "operand", "kristi", "yasmin", "gnl", "acdbvertex", "illini", "macho", "ningbo", "staphylococcus", "busting", "foss", "gfp", "yhoo", "sloane", "wooster", "delong", "mdi", "nilsson", "substring", "gac", "smelly", "gallatin", "hangar", "ephemera", "heli", "choo", "testicular", "miramar", "wearable", "carling", "buildup", "weaponry", "swann", "lian", "landline", "entrees", "corpora", "priv", "geeklog", "antiviral", "profiler", "lodi", "minimalist", "wolverines", "bbcode", "protagonist", "rata", "freephone", "plm", "raytheon", "refseq", "kingfisher", "numark", "moline", "esac", "takers", "gts", "amana", "worldcom", "hiroyuki", "procter", "pragma", "winkler", "walleye", "icf", "bagel", "asbury", "alpharetta", "syncmaster", "wists", "xfx", "wicklow", "tsr", "baer", "yf", "cmr", "chil", "leftfield", "lettings", "walkway", "coos", "petrochemical", "fia", "chula", "zalman", "carer", "humankind", "cmms", "hawley", "inverters", "mccormack", "pdu", "faceplates", "yeats", "motorhomes", "cie", "icts", "mcmurray", "zucchini", "lanai", "pwc", "chiral", "fermi", "newsreader", "multiculturalism", "cuddly", "listinfo", "shp", "primedia", "chl", "estrada", "pricey", "shekel", "apn", "diocesan", "readout", "clarifies", "klm", "dimes", "revlon", "dtr", "cranky", "paparazzi", "zheng", "merida", "bambi", "interceptor", "rox", "jamster", "noritake", "banding", "nonstick", "origami", "marketwatch", "yeti", "arf", "umbilical", "linz", "donates", "foursome", "lawrenceville", "azul", "springdale", "moisturizing", "loeb", "isr", "huston", "gatos", "disqualification", "suunto", "angiotensin", "spitfire", "wfp", "realnetworks", "summation", "plame", "querying", "gpc", "autonomic", "fq", "pathname", "novartis", "ufos", "manatee", "qh", "restructure", "larval", "zeu", "socal", "resettlement", "mistakenly", "radiative", "drapes", "intimately", "koreans", "realy", "womans", "groin", "greenway", "spamassassin", "mata", "gigagalleries", "algerian", "frat", "egullet", "electrics", "joni", "stencils", "reinventing", "reqs", "latte", "shaolin", "shopped", "beattie", "hrm", "hypnotherapy", "muppet", "abp", "checkpoints", "tpa", "derechos", "pieter", "timesselect", "viacom", "strcmp", "kardon", "sideshow", "classifier", "westbrook", "repro", "moser", "studi", "sdf", "colonialism", "supermicro", "scorers", "sitcom", "pastries", "aldo", "azim", "authorizations", "holsters", "neuropathy", "backorder", "humphreys", "metroid", "vcs", "nikkor", "mcf", "jacobsen", "conjugated", "lcc", "unethical", "vacances", "whos", "asr", "alphanumeric", "grumpy", "fixedhf", "holm", "sirens", "lfs", "benelux", "caters", "slp", "prasad", "kirkpatrick", "jamahiriya", "tol", "coagulation", "girly", "bnp", "archdiocese", "orbiter", "edgewater", "lem", "keyless", "repatriation", "tortilla", "dissociation", "industrie", "watercolour", "ucb", "waite", "madsen", "mnh", "opticians", "nop", "newmap", "mse", "bottleneck", "regressions", "linton", "sio", "buckeyes", "bodywork", "applique", "jewell", "gef", "hornby", "redefined", "empowers", "informix", "tots", "goalkeeper", "startseite", "blurb", "feedburner", "dominatrix", "norcross", "compiles", "bancorp", "encoders", "pmp", "boomerang", "temecula", "ghg", "structurally", "caveats", "homeownership", "birdie", "disseminating", "lanyard", "horst", "interlock", "pagers", "esophagus", "ocz", "sexshow", "jackpots", "optometrists", "zak", "krueger", "hickey", "erode", "unlicensed", "termite", "ibuprofen", "drugstore", "audiology", "gannon", "integrals", "fremantle", "lysine", "sizzling", "macroeconomics", "tors", "thule", "gtx", "eeprom", "kaleidoscope", "dmitry", "thawte", "busters", "officemax", "absorber", "nessus", "imager", "cebu", "kannada", "sailboat", "hectare", "netball", "furl", "holographic", "defra", "salaam", "respirator", "countertop", "gla", "installments", "hogg", "partying", "weatherford", "sav", "exited", "crispy", "coffees", "knowhere", "sequin", "bendigo", "unis", "bandwagon", "janssen", "myst", "polymerization", "byval", "nozzles", "labview", "snitz", "rpi", "hcc", "unbelievably", "pasting", "butyl", "ppd", "forested", "unrivaled", "roadways", "varna", "maidenhead", "almanacs", "gfx", "randomness", "middlebury", "muon", "ringo", "svr", "caliper", "lmb", "woolf", "innovators", "anode", "microprocessors", "tps", "stk", "siting", "misinformation", "aneurysm", "closeups", "kinsey", "prp", "cnbc", "eroded", "tris", "lonnie", "hartlepool", "bol", "alastair", "agr", "fafsa", "javac", "uclibc", "fodor", "afrikaanse", "colognes", "contestant", "snell", "prescreened", "believable", "anesthesiology", "elmhurst", "misha", "melatonin", "bongo", "rmb", "mdf", "terr", "xw", "bloke", "avc", "oxnard", "cess", "cedex", "electrochemical", "brevard", "brw", "brenner", "slalom", "waterhouse", "calif", "acces", "aquatics", "cari", "lurker", "buffett", "chews", "hoodies", "phony", "vila", "fsf", "gmake", "nikko", "grasslands", "monolithic", "polifoniczne", "bugtraq", "cpage", "engr", "subcontract", "prophylaxis", "texinfo", "ings", "cotswold", "guillermo", "unstructured", "boop", "hitman", "tla", "mercier", "restated", "nukes", "duplicator", "mehta", "macomb", "fundamentalism", "australasian", "isk", "rerun", "moda", "segmented", "cranberries", "leas", "pleated", "handshake", "digests", "innovate", "goode", "erisa", "jeb", "dismantling", "ferrell", "hellometro", "leavenworth", "snowmobiling", "fora", "fdr", "gaba", "vfs", "dlc", "byers", "codon", "webnotify", "sfr", "pylori", "loomis", "acidity", "gershwin", "formaldehyde", "welder", "cyp", "kendra", "switcher", "ocaml", "goldie", "mab", "gooshing", "mockingbird", "ponte", "xlt", "hogwarts", "juicer", "lloyds", "echelon", "gabba", "arranger", "umbro", "metallurgy", "baa", "neq", "liteon", "queuing", "vsize", "shiite", "valuing", "argon", "coheed", "hooray", "flightplan", "carefree", "souza", "kershaw", "millar", "biotin", "salter", "testicles", "morph", "econometrics", "remo", "msec", "marconi", "ote", "receiverdvb", "expatriate", "tantra", "codified", "ncs", "overlays", "thingy", "comforters", "conservatories", "ruskin", "dpf", "cyndi", "germination", "lipoprotein", "ayurvedic", "planetarium", "tribeca", "bihar", "keenan", "discos", "eastbourne", "robles", "gianni", "dxf", "homebuyers", "nogroup", "freescale", "wiccan", "sess", "merrimack", "groton", "billboards", "searcher", "uttar", "mailinglist", "metacrawler", "priser", "osceola", "bioterrorism", "tourmaline", "leatherman", "microns", "unifying", "anaesthesia", "videogame", "aws", "dtc", "chc", "intranets", "escalating", "bluebird", "iucn", "gls", "mahjong", "interstellar", "kenton", "underestimated", "groupsex", "loudspeakers", "flexi", "vst", "junctions", "redman", "transferase", "bvlgari", "hampden", "nls", "selby", "wausau", "stoppers", "snowshoeing", "uppercase", "cirrhosis", "publib", "metrology", "connexion", "stoneware", "moncton", "traci", "krumble", "pathogenic", "rasmus", "raritan", "riverfront", "humanist", "usefull", "pompano", "skewed", "cleary", "nepa", "ludacris", "sequenced", "xiao", "teaming", "flatshare", "aromas", "positional", "alesis", "glycine", "vee", "breakthroughs", "cashback", "throwback", "charlestown", "nexrad", "gestation", "powering", "magee", "osnews", "logins", "sadism", "emb", "muncie", "panoramas", "plenum", "ato", "aotearoa", "foro", "hydrolysis", "flac", "labia", "immunizations", "existential", "umc", "sweaty", "segond", "addis", "beasley", "breached", "rounder", "rectum", "nha", "perched", "jah", "dsr", "lta", "videoconferencing", "cytoplasm", "makin", "sedimentary", "laurier", "aachen", "wnd", "olney", "massimo", "chlorophyll", "scop", "shipyard", "centering", "manley", "sunroof", "dvorak", "etch", "answerer", "briefcases", "gwent", "bogart", "amit", "kaufen", "untranslated", "raffles", "reconnect", "teeny", "benthic", "mcmanus", "infotech", "carlin", "lithograph", "ure", "stoner", "repost", "iras", "resurfacing", "kelli", "spitzer", "jae", "dunne", "hyperbolic", "pstn", "bisque", "anzeigen", "standoff", "westbury", "solano", "kailua", "acoustical", "photovoltaic", "orchestras", "redline", "reggaeton", "qstring", "declan", "tama", "wank", "virol", "iy", "solvers", "linuxworld", "canadiens", "rockabilly", "smokin", "tumours", "loudspeaker", "handicapping", "tatu", "evangelion", "excretion", "breakage", "negra", "horsham", "jing", "petro", "notations", "midgets", "comprar", "homemaker", "neverwinter", "ddt", "categorize", "geophys", "loa", "tga", "foreskin", "jornada", "inetpub", "premierguide", "reflexology", "sophos", "helphelp", "foundries", "registrants", "sweats", "atvs", "capstone", "adecco", "sensei", "publicized", "transessuale", "federalist", "objectweb", "portrays", "postgres", "fesseln", "hidalgo", "prosthetic", "kristine", "microfiche", "dce", "watergate", "setbacks", "karan", "cdata", "kfc", "grandview", "amerisuites", "aural", "gatekeeper", "heinemann", "decommissioning", "nq", "gestion", "thermodynamic", "patrice", "profiled", "disambiguation", "mmmm", "bittersweet", "mul", "gustavo", "isolating", "xine", "bigfoot", "nrw", "mycobacterium", "yamada", "coldwater", "whitehouse", "cultivars", "santorum", "mugabe", "margo", "rundown", "carbondale", "gizmos", "effingham", "beastility", "agus", "ucd", "dowling", "mitac", "steels", "oakdale", "nda", "mystique", "cortislim", "oes", "disp", "loaders", "trouser", "oai", "hoboken", "sepia", "differentials", "sabi", "dancehall", "sarajevo", "brava", "underscores", "roadshow", "fbo", "sabah", "russel", "nephrology", "squamous", "mvn", "wz", "malden", "mita", "orissa", "ise", "vfr", "chianti", "minsk", "coffey", "domestically", "qantas", "brandi", "artefacts", "solihull", "tation", "tchaikovsky", "refineries", "ronan", "pricewaterhousecoopers", "swimsuits", "automates", "wylie", "whomever", "sidelines", "shaffer", "toolbars", "preservatives", "wagga", "kenai", "bobs", "mortensen", "unplanned", "characterisation", "ppa", "mip", "peering", "fopen", "vgn", "wmissing", "csn", "rudd", "bourke", "pelvis", "goodmans", "potluck", "ioffer", "cial", "davidoff", "creamer", "tsc", "gfs", "contax", "columbine", "portables", "fledged", "aquinas", "kidz", "edonkey", "hourglass", "pagetop", "paloma", "gunmen", "disables", "ssangyong", "antiretroviral", "moschino", "hoyt", "okc", "lockport", "pittsfield", "pollack", "hoyle", "arousal", "inhibiting", "reo", "mammary", "trampolines", "hillman", "trimmers", "bridgestone", "muvo", "wcities", "boi", "diddy", "conveyancing", "apl", "echinacea", "rok", "phish", "frigidaire", "oxo", "hah", "halibut", "penrith", "brno", "silverware", "teoma", "rcra", "mlo", "ideologies", "feminists", "fff", "sculpted", "uq", "rta", "embo", "rollin", "contraindications", "einai", "ssrn", "oup", "rebuttal", "underside", "alumnus", "archeology", "preise", "ontologies", "fenders", "frisbee", "hmmmm", "tipo", "hyperactivity", "seagull", "nanotubes", "polos", "bonaire", "hehehe", "fim", "reece", "elsif", "spinners", "annealing", "maximizes", "pld", "ctp", "eurasia", "dickey", "ako", "carpeting", "yorkers", "ltte", "eukaryotic", "bexley", "sions", "bremer", "marisa", "frustrations", "delgado", "resection", "dioxin", "islamist", "brant", "hss", "kubrick", "fft", "touchscreen", "layoff", "facelift", "decoded", "gry", "shitty", "dodger", "ihs", "lessig", "zaf", "revell", "sched", "rpgs", "euphoria", "acuity", "popper", "lockdown", "nsp", "transmittal", "heatsink", "assholes", "hayman", "novi", "equilibria", "requester", "allrecipes", "serialized", "hangzhou", "bjork", "stringer", "nanjing", "milligrams", "jab", "snohomish", "strathclyde", "yoko", "intramural", "curated", "finalised", "tania", "cdd", "gund", "tascam", "noam", "hardstyle", "arun", "cga", "waistband", "fibroblasts", "leandro", "metastasis", "userpics", "greenbelt", "leuven", "printk", "reachable", "pss", "radioactivity", "caine", "gyfer", "boch", "howdy", "cocksucking", "marlon", "timmy", "liga", "gregorian", "reorder", "aerosols", "archeological", "logarithmic", "sexape", "robby", "completions", "yearning", "transporters", "sandalwood", "megs", "idp", "rapidshare", "tsb", "omnibook", "gamepro", "bca", "decontamination", "tamiya", "euclidean", "salina", "woodford", "formalism", "aching", "nbs", "audigy", "libexec", "eyepiece", "bibl", "bobcat", "freehand", "guo", "ltsn", "itil", "nugent", "esr", "sce", "killeen", "jamming", "applicator", "icrc", "mezzanine", "meghan", "cupertino", "logfile", "zed", "humidifier", "padilla", "susanne", "collapses", "yung", "longwood", "krw", "mainstay", "descr", "dtm", "atcc", "tasman", "accessoires", "mucosa", "dachshund", "zf", "syringes", "breakpoint", "telus", "stoney", "nepali", "regimens", "wok", "canola", "slicing", "reproducible", "experi", "skydiving", "sof", "bogota", "discogs", "datagram", "videographers", "cag", "nicks", "platelets", "trannies", "pamper", "nineties", "bracknell", "disinfection", "perfusion", "postseason", "tigerdirect", "smoothie", "punisher", "tabbed", "tcu", "alene", "lismore", "coquitlam", "auctioneers", "somethin", "daniela", "dials", "enhydra", "kyrgyz", "iia", "bianchi", "iata", "zim", "buscador", "roadrunner", "blackhawks", "jsr", "misfits", "quiksilver", "nwn", "sqlite", "siu", "tarantino", "addi", "jkt", "buyout", "replays", "wcs", "adrenergic", "bottling", "caldera", "baseman", "botanicals", "techie", "farr", "vtech", "donde", "beyer", "versiontracker", "pse", "hashcode", "tradeshow", "lewisville", "aster", "transparencies", "bloomingdale", "northrop", "revo", "overkill", "nlrb", "lazio", "enr", "diag", "chiapas", "freedict", "disponible", "morissette", "effortless", "hydroelectric", "cranial", "hindsight", "orientated", "abrasives", "fpc", "brl", "vpns", "feingold", "thunderbirds", "dha", "wot", "geog", "harrah", "wxga", "nmfs", "boynton", "cashing", "spousal", "abusers", "twinlab", "vick", "aml", "sodimm", "copley", "mallard", "twikipreferences", "airman", "configurator", "clc", "neurobiology", "diamante", "dreamworks", "corsets", "dowd", "escrituras", "bureaucrats", "songtext", "wham", "phpgroupware", "cyclin", "conyers", "youll", "kowloon", "fairytale", "pickens", "bybel", "mln", "wres", "barm", "amplitudes", "nmap", "nvq", "ocd", "ryu", "microcontroller", "premiered", "institutionalized", "hamm", "gyno", "bhopal", "circulatory", "centerline", "chairmen", "guerlain", "pedo", "hussain", "portlet", "proscar", "histone", "opioid", "totalling", "pyobject", "translational", "lehmann", "keaton", "elkins", "jamison", "interstitial", "inest", "tanzanite", "helical", "redlands", "sagradas", "fondue", "windscreen", "adderall", "othello", "supersonic", "pocatello", "maniacs", "sysadmin", "foothill", "earmarked", "highspeed", "uncheck", "rapes", "vlad", "cif", "photosynthesis", "junit", "remotes", "epo", "mcm", "ucf", "nacl", "sfa", "empirically", "dfes", "addon", "pon", "feelin", "callmanager", "deteriorating", "statenvertaling", "cypriot", "entert", "fascia", "woburn", "jalan", "fryers", "cally", "layering", "geriatrics", "picky", "conley", "boces", "barth", "lvm", "mooring", "mcdonell", "expats", "bizarr", "loadavg", "perla", "micheal", "bok", "friendster", "endoscopy", "msx", "buzzwords", "lumen", "airwaves", "jagger", "setups", "inman", "schindler", "limewire", "drawstring", "midrange", "frodo", "superpower", "recliner", "trisha", "trium", "utm", "grimsby", "wyeth", "urs", "kds", "adjuster", "impeccable", "shari", "marketplaces", "tefl", "sudo", "technische", "characterizing", "gawker", "gagging", "cyclist", "atg", "generics", "richey", "magneto", "crunchy", "teletext", "drwxrwxr", "crabtree", "underfull", "hemscott", "webmasterworld", "objc", "musicmatch", "sealant", "timberwolves", "harriers", "shangri", "robo", "roto", "mnem", "nnn", "aidan", "fidel", "executables", "concertos", "vob", "extracurricular", "haverhill", "squirters", "hbp", "tonal", "atr", "ashtray", "gpu", "payton", "psychoanalysis", "hesitant", "poco", "nedstat", "rcmp", "microchip", "eroticos", "fea", "kors", "susquehanna", "userinfo", "modulo", "antler", "bangladeshi", "desking", "nikolai", "nuys", "ludhiana", "rdr", "spankings", "chatrooms", "pretreatment", "brittney", "jer", "tianjin", "qj", "winnebago", "mcfadden", "notecards", "tix", "murfreesboro", "quaternary", "subtracted", "tropez", "mcgovern", "olivetti", "hikers", "vivaldi", "cuties", "lnb", "gilchrist", "preheat", "bernadette", "microdrive", "rookies", "overton", "potpourri", "neiman", "seb", "sigs", "jarhead", "momo", "uzbek", "ttt", "dubya", "signatory", "cim", "energized", "brite", "shs", "minimums", "needlepoint", "deng", "camargo", "oems", "bolle", "webrings", "ehrlich", "azz", "firefighting", "icalendar", "disallow", "exch", "mclachlan", "zaragoza", "brixton", "efi", "kilo", "tcmseq", "moisturizer", "suonerie", "remanded", "empresa", "shoebox", "disagrees", "lowdown", "trove", "filer", "apologetics", "englisch", "texarkana", "threonine", "metart", "siti", "encephalitis", "tomatometer", "arias", "kenner", "anamorphic", "subspace", "cleats", "ifp", "circ", "pressured", "peppermill", "sml", "clarifications", "zionism", "pti", "retin", "klicken", "disjoint", "ema", "openldap", "koenig", "carats", "hijacked", "tch", "burlingame", "checkbook", "candice", "coworkers", "eno", "karla", "cus", "gio", "statm", "haifa", "reincarnation", "budweiser", "heuristics", "tunisian", "hologram", "macular", "eral", "refinishing", "chia", "celestron", "leyland", "reloading", "hombre", "munch", "basf", "rolleyes", "bidirectional", "ahhh", "chica", "starfish", "kurdistan", "boro", "heartbreak", "preps", "irina", "mylar", "congestive", "dmd", "schilling", "twikivariables", "battleground", "tectonic", "equate", "corbis", "inflatables", "naacp", "pathologist", "minnetonka", "langston", "memoriam", "underserved", "rectifi", "elmwood", "fukuoka", "glbt", "rsi", "parr", "pob", "ods", "welles", "gujarati", "sportsline", "leno", "healthwise", "vrml", "sida", "azres", "sapporo", "jscript", "predictability", "pajama", "paddlesports", "adenocarcinoma", "toning", "gestational", "kravitz", "ptcldy", "snowball", "adl", "travelogues", "crl", "zocor", "ecotourism", "leadtek", "hkcu", "morehead", "niro", "fueling", "orthopaedics", "crayons", "tikes", "revamped", "olap", "curfew", "hamlin", "brandeis", "bree", "stylistic", "corneal", "beckman", "crusher", "riva", "prefs", "militaria", "marshfield", "elo", "swank", "matisse", "villeroy", "proactively", "mccarty", "zas", "acdbcircle", "horney", "modeler", "progressives", "grosvenor", "linger", "creationism", "dork", "claritin", "psychosis", "fei", "firsthand", "gigi", "cranston", "hayley", "ags", "muted", "turbidity", "mountable", "kiki", "vz", "avondale", "oceanographic", "zzz", "tsg", "epl", "nonzero", "iwork", "scavenger", "touted", "candace", "kava", "kronos", "adjuvant", "tyneside", "travolta", "sari", "preventable", "bumpy", "aleph", "lga", "conroy", "mastermind", "vaccinated", "coburn", "rawk", "acceptability", "stryker", "surcharges", "noticeboard", "chapin", "permutation", "colpo", "ucsc", "mulligan", "fod", "ketchup", "alimony", "tng", "viscous", "skk", "cmm", "unambiguous", "emphysema", "epistemology", "grantham", "avila", "solana", "toolkits", "soloist", "rejuvenation", "chn", "jse", "anaconda", "bsnl", "carfax", "leveraged", "wega", "scanjet", "ibc", "meng", "burley", "efa", "freesex", "plasmids", "steffen", "xz", "woofer", "lada", "hinckley", "millimeter", "snape", "rollercoaster", "tdc", "connery", "newswatch", "roundups", "keylogger", "parka", "scouse", "unists", "timo", "hea", "spock", "ffs", "bmj", "farrar", "decompression", "draco", "mika", "galena", "msft", "inactivation", "metafilter", "mbna", "lymphatic", "ofc", "gian", "berks", "hdv", "wirral", "boxset", "ashrae", "ilford", "allman", "kroon", "gmo", "sdc", "builtin", "lisboa", "coc", "rollback", "westgate", "thd", "bobo", "crockpot", "weaning", "snowshoe", "hijackthis", "backside", "fetchmail", "candlewood", "angelfire", "ucsf", "painkiller", "nutty", "fenway", "restrooms", "myeloma", "scallops", "osteopathic", "vividly", "rmit", "countermeasures", "ofertas", "gwinnett", "dirs", "duvall", "wildflower", "stackable", "greensburg", "barebones", "merino", "stooges", "chatsworth", "jello", "mtime", "barium", "toric", "looting", "kiefer", "agg", "mauro", "shearer", "decca", "hydrophobic", "unsw", "millard", "btn", "terraserver", "returnable", "ohs", "resuscitation", "cancelling", "rns", "nrg", "stratification", "oliveira", "cahill", "grumman", "webdav", "adagio", "sunburst", "ayumi", "sev", "zt", "bela", "swt", "startups", "ranting", "udaipur", "tonya", "erupted", "ghostscript", "meltdown", "rainwater", "gellar", "alm", "vy", "cnrs", "redefining", "shar", "vesicles", "piccolo", "scalia", "resizing", "showrooms", "verifiable", "lobo", "nunn", "boyds", "havens", "bacterium", "zb", "sideline", "bushing", "ligament", "penpals", "translocation", "costco", "serialization", "wst", "playgrounds", "universidade", "fong", "hbs", "zips", "ntot", "eigenvalue", "conductance", "albemarle", "mudd", "dvs", "niels", "explodes", "lindy", "coimbatore", "panzer", "audioscrobbler", "keri", "soviets", "tweeter", "poncho", "sids", "faerie", "oooh", "oceana", "ayn", "wakeboarding", "stinger", "yuba", "chipsets", "anastacia", "collapsing", "yaoi", "gwyneth", "kuwaiti", "jalbum", "storageworks", "duplicators", "cubicle", "rana", "winfrey", "avanti", "iop", "blige", "papaya", "auger", "macclesfield", "mongoose", "crossfade", "instrumentals", "iconic", "sulfide", "dawg", "mahler", "maurer", "auschwitz", "gambit", "accom", "stb", "uxbridge", "baan", "baumatic", "slt", "landis", "fredrick", "jogger", "occlusion", "jz", "charlize", "covent", "reinvestment", "ssdasdas", "chatterbox", "neutrons", "fss", "silo", "polystyrene", "amon", "jodhpur", "intelligencer", "dundas", "netmag", "molokai", "pluralism", "kobayashi", "tetanus", "bcd", "neuromuscular", "fkq", "caribe", "iit", "nphase", "multifamily", "timres", "nrcs", "farnham", "coors", "execs", "hauser", "citeseer", "hiker", "manuf", "strategist", "electroclash", "outlays", "ktm", "zloty", "osmosis", "mojave", "renova", "hsp", "soothe", "mariposa", "bir", "advancements", "franck", "bock", "fsm", "leary", "slurry", "ker", "dte", "soulmates", "marissa", "sga", "beretta", "chiropractor", "vibrational", "sandusky", "obsidian", "dressers", "winger", "endeavours", "argonne", "runnin", "bfi", "gaye", "colfax", "logics", "camedia", "ctd", "optimise", "ernesto", "voeg", "adamson", "coeds", "subdirectories", "asain", "guilder", "comparator", "sealer", "sleazy", "onstage", "todas", "waterproofing", "devlin", "riel", "pinky", "lewisham", "mints", "wdm", "avocent", "invertebrate", "brea", "rebellious", "carnitine", "trib", "webex", "pairings", "guesthouses", "yikes", "exorcism", "grilles", "mim", "cultivar", "orson", "teammate", "idn", "hrvatska", "sequencer", "grandparent", "demonic", "wonka", "prezzo", "opto", "collaboratively", "oberlin", "nrl", "gorda", "newburgh", "alcoa", "mums", "facs", "lossless", "mmp", "beasteality", "imbalances", "andean", "superconducting", "spectroscopic", "armpit", "dect", "mew", "worsening", "symp", "igf", "metalworking", "groundhog", "clomid", "ginkgo", "decedent", "dimethyl", "retval", "openurl", "baku", "telescopic", "vespa", "phasing", "lactate", "poughkeepsie", "dodson", "monorail", "bookworm", "enero", "sabbatical", "ced", "skeptic", "backlit", "smr", "kentech", "lamette", "gita", "itm", "ath", "hennepin", "foucault", "onshore", "acls", "pwm", "florals", "millimeters", "krauss", "asca", "wicks", "pathologists", "fanfiction", "pathol", "toxics", "ipcc", "kinesiology", "potions", "tern", "squirts", "delmar", "storybook", "grenades", "rls", "etrex", "contrasted", "opting", "hauled", "taupe", "renta", "grd", "odeo", "jiangsu", "osd", "hookup", "myron", "atb", "ctg", "doreen", "altima", "keepsakes", "seawater", "ecko", "zarqawi", "contenders", "conveyors", "accenture", "iagora", "haier", "crutchfield", "fulfills", "rota", "kelso", "petaluma", "ifrs", "servicios", "printmaking", "miata", "julianne", "dotnet", "reconstructive", "metcalf", "vicksburg", "gri", "bookshelves", "supermodels", "glycerol", "wiseman", "sliders", "carhartt", "redford", "itemized", "rsp", "defamatory", "eir", "matheson", "amalfi", "currentversion", "renminbi", "yap", "mangas", "bottlenecks", "pyrex", "huffington", "sculpting", "sedans", "dpt", "hoobastank", "launchers", "finishers", "psychologically", "ssm", "schaeffer", "northside", "interdependence", "microfinance", "droplets", "inducted", "fos", "uninitialized", "conor", "repercussions", "woking", "longmont", "medion", "monika", "hydrological", "runes", "hobbyhuren", "ents", "ortega", "breweries", "landon", "burrell", "forecaster", "quickie", "stephane", "parabolic", "boreal", "bankroll", "bioassay", "martinsville", "ldem", "interventional", "teensex", "tabulation", "joop", "creampies", "trier", "arbitrage", "dogwood", "convergent", "enviar", "hutt", "majoring", "techwr", "glitches", "dugg", "qwerty", "equivalency", "rela", "sedation", "quik", "rosemont", "xk", "harmonics", "devi", "highschool", "orvis", "centimeters", "lavatory", "destructor", "accelerates", "opts", "relocations", "wilco", "tricare", "beckley", "ryde", "januari", "kee", "blacksburg", "anova", "midfielder", "tornadoes", "nand", "ladd", "docklands", "mgs", "tanzanian", "padi", "msl", "clamav", "megastore", "xander", "eon", "winelands", "syllabi", "elif", "lorne", "noida", "visalia", "mykonos", "wcc", "krieger", "safeway", "sheri", "prosite", "wikis", "mozzarella", "glenda", "uta", "dqg", "waterville", "yonkers", "republish", "endoscopic", "dilbert", "vfd", "transen", "konqueror", "feliz", "biscayne", "sexocean", "debconf", "disproportionately", "taskbar", "libero", "synchrotron", "tet", "memorize", "marquez", "williston", "muppets", "volumetric", "umpires", "shuttles", "jumpstart", "motogp", "hyperplasia", "nber", "donahue", "parodies", "prado", "legit", "humax", "scrapped", "ingo", "dillard", "orphanage", "disruptions", "erasure", "preamp", "pde", "mcallister", "ziegler", "loewe", "dowload", "msb", "iptv", "bondi", "freelancer", "felton", "dpp", "umax", "radars", "dmg", "materiel", "megadeth", "cooperstown", "sdh", "staffers", "mawr", "daw", "comptia", "teddies", "upsilon", "sizable", "coenzyme", "enzo", "afterlife", "mather", "ncurses", "harddrive", "cml", "counterpoint", "batesville", "skywalker", "franke", "takashi", "wristband", "jimenez", "esque", "chiller", "barra", "ales", "worthing", "zna", "jonathon", "psr", "sump", "breadcrumb", "sucrose", "amro", "portege", "neogeo", "renewables", "filipina", "sgs", "mbas", "ihop", "cortisol", "banshee", "supersedes", "bullseye", "prezzi", "rbs", "pacino", "cajon", "downloader", "seabrook", "leif", "jrr", "iwc", "taranaki", "chronically", "merkel", "megaman", "setq", "preschoolers", "vcl", "unenforceable", "lto", "busi", "noone", "rotc", "fisheye", "oaxaca", "gerontology", "microsano", "predation", "gaas", "kilimanjaro", "exacerbated", "emr", "infestation", "yarra", "volker", "linearity", "huey", "aerials", "stylist", "porosity", "schofield", "alam", "sprayer", "tirol", "sfu", "gliders", "corby", "wenatchee", "prognostic", "unregulated", "mult", "pittman", "bbl", "hadith", "ots", "kdelibs", "jayhawks", "teesside", "rav", "lobos", "reportable", "dickerson", "carotene", "filesystems", "enrollees", "cena", "sanjay", "compaction", "juicers", "gemm", "methionine", "lala", "toplist", "holyoke", "dewpoint", "rdiff", "osp", "delimiter", "forsaken", "richfield", "hangout", "striptease", "jhi", "amf", "sonicwall", "burgeoning", "unicast", "amnesia", "cipro", "cherie", "klip", "libxt", "menswear", "inthevip", "wrenches", "actuate", "capote", "cvd", "flexeril", "molar", "databank", "montevideo", "sunglass", "lhs", "kassel", "followings", "shipley", "accretion", "asha", "bullpen", "mamas", "schreiber", "gnc", "dysplasia", "freeroll", "efl", "igs", "utopian", "kota", "iden", "dil", "wia", "sosa", "negril", "hyped", "epidermal", "autopilot", "garza", "decrypt", "batik", "crain", "subd", "utilising", "dsu", "fermanagh", "idr", "interoperable", "mam", "delano", "sonja", "plex", "compat", "replaceable", "forint", "nudism", "netcom", "formulary", "irvin", "galery", "hounslow", "fosamax", "striping", "excavating", "recoveries", "mrsa", "mainstreaming", "awt", "hola", "hoody", "dci", "geri", "seasonings", "marcelo", "pantech", "fcp", "scaricare", "roxbury", "clamping", "whiplash", "dildoes", "takeoff", "wiggle", "truely", "henna", "cartesian", "gamezone", "yank", "llewellyn", "shag", "asymmetrical", "universitat", "williamstown", "trolleys", "interlocking", "doped", "headband", "internetweek", "outperform", "ncp", "harmonization", "hamid", "differentiating", "hitters", "konrad", "wickets", "restarting", "bcm", "xilinx", "wideband", "tmobile", "rocha", "pbox", "aea", "stevenage", "moorhead", "directorio", "restructured", "aerodynamic", "hopewell", "evaluative", "zuma", "annuaire", "subtracting", "bram", "kuna", "logbook", "xor", "louth", "pict", "truetones", "gabor", "rotates", "ezcontentobjecttreenode", "leanne", "bgcolor", "rescues", "wim", "corsa", "causality", "tiling", "ethnographic", "waffles", "doubly", "fandango", "powermac", "catalysis", "annexes", "lisle", "pushj", "naylor", "wrongdoing", "paducah", "gunter", "iranians", "aat", "commandos", "abcd", "repeatable", "deh", "epiphone", "scf", "weekender", "milner", "schott", "welders", "semifinals", "quantization", "surfacing", "vegetarians", "hagerstown", "polyclonal", "transponder", "gottlieb", "withdrawl", "geneid", "tierney", "glock", "guatemalan", "iguana", "glaring", "cifras", "salman", "choker", "ecologically", "scoreboards", "mohr", "dpa", "spaceship", "digimax", "moremi", "btc", "technologie", "tunica", "powerbuilder", "aorta", "unconfirmed", "dimitri", "degenerative", "delve", "torrey", "celica", "beloit", "nir", "substr", "lowrance", "ballantine", "crimp", "bss", "mousepad", "umbria", "oregano", "rashid", "microtek", "geary", "boaters", "soyo", "visualisation", "brianna", "handlebars", "weightloss", "interconnects", "playtime", "enrollments", "gyllenhaal", "criticality", "geoscience", "mhonarc", "golive", "deville", "meh", "moseley", "spacers", "unido", "deferral", "hersh", "hilliard", "vlsi", "keegan", "feces", "uy", "bute", "activewear", "transcriptions", "metered", "bugfixes", "cami", "interna", "quintessential", "babycenter", "gardena", "cultura", "stockpile", "psychics", "pediatr", "williamsport", "westlaw", "hetero", "meteorite", "extruded", "lakh", "starware", "phage", "laszlo", "hernando", "vogt", "wolfpack", "lags", "eldridge", "wray", "hajj", "edirectory", "longstanding", "knitwear", "apocalyptic", "fatties", "darmstadt", "mco", "ucsb", "fillings", "marti", "aberystwyth", "infineon", "fdd", "inflows", "tmpl", "estuarine", "lita", "nubuck", "socialization", "estock", "mbit", "valign", "caving", "vec", "alkyl", "artichoke", "leasehold", "directgov", "ubiquitin", "fuerteventura", "hairdressing", "dhhs", "fecha", "nio", "wsi", "quigley", "yellowpages", "pretec", "biomechanics", "microcomputer", "discipleship", "hella", "womack", "magnifier", "acdbtext", "pitney", "esters", "haan", "ofcom", "ablation", "nutcracker", "dosages", "prn", "zm", "dfs", "multiplexing", "indentation", "hazmat", "eac", "dalhousie", "ahem", "retardant", "shankar", "overheads", "southfield", "iee", "gnustep", "spm", "azkaban", "dermal", "metar", "sizeable", "aftershave", "lahaina", "earners", "tenderloin", "dji", "ipp", "chee", "hamburgers", "oliva", "gaultier", "cios", "margie", "nms", "wandsworth", "caltech", "stapleton", "gsc", "francophone", "sqm", "xoxo", "coord", "mocking", "nri", "serengeti", "raccoon", "shrinkage", "prd", "uris", "hamsters", "codphentermine", "thrashers", "calibrate", "gilmour", "rambo", "cleburne", "serrano", "niacin", "strawberrynet", "wesson", "ormond", "oxycontin", "bibliographical", "wynne", "glyph", "nagios", "marinated", "marko", "sfas", "genotypes", "conde", "alford", "madurai", "evacuees", "urbanization", "kilgore", "unwired", "elseif", "pneumoniae", "skyscraper", "ebags", "gnn", "tooled", "intermec", "charlottetown", "submersible", "condensate", "matchup", "undefeated", "krs", "movin", "kino", "vidio", "photographing", "pocono", "footjobs", "trackers", "kinkade", "unify", "dissident", "sperry", "iframe", "tur", "commu", "xterm", "swapped", "stent", "vermillion", "angiography", "areaconnect", "brockton", "daz", "abcdefghijklmnopqrstuvwxyz", "dunst", "livonia", "specialisation", "nsi", "walgreens", "plasticity", "crux", "nhra", "armband", "leamington", "mosley", "iga", "stemmed", "appleby", "grayscale", "labonte", "lek", "cartoonist", "flotation", "geol", "deterrence", "cardin", "aardvark", "cosmological", "dothan", "isotopic", "hadleionov", "langford", "ssg", "understated", "obit", "unt", "randomised", "amphetamine", "shia", "grout", "reba", "wrx", "rsgi", "bharat", "sls", "slg", "kilometre", "tristar", "gippsland", "pastels", "stallions", "paramedics", "fishbase", "rolla", "curie", "bootable", "skit", "sourcewatch", "decimals", "boe", "catania", "countertops", "paola", "elwood", "hocking", "prerelease", "seqtype", "femoral", "anz", "visceral", "fructose", "edta", "silverstein", "broderick", "zooming", "hamasaki", "keswick", "extinguisher", "subpoenas", "spiele", "rincon", "pll", "donny", "vitale", "fledgling", "boinc", "traversal", "bagder", "erick", "kcal", "midfield", "hypersensitivity", "redshift", "glaser", "sado", "cusco", "imagemagick", "uic", "fernandes", "prosthesis", "jsc", "omron", "alberghi", "electricals", "kelp", "taker", "placeholder", "moulton", "yall", "npdes", "massages", "catalist", "metarating", "tupelo", "syriana", "batt", "dbms", "asb", "videotapes", "backseat", "kauffman", "manipulations", "accomodate", "tioga", "aylesbury", "submenu", "kwacha", "chondroitin", "sandpiper", "vamp", "overarching", "janes", "selectors", "condoleezza", "internationals", "estuaries", "schulze", "osti", "paleontology", "emporio", "stepper", "reykjavik", "waterskiing", "renfrewshire", "superheroes", "marg", "leftovers", "mariano", "bangboat", "guestrooms", "urethane", "stoughton", "paphos", "sprinklers", "accum", "bms", "datsun", "sainsbury", "chefmoz", "helo", "yvette", "procmail", "midsole", "ayuda", "geochemistry", "reflectivity", "moog", "anth", "durand", "linea", "butterworth", "datagrid", "metetra", "rodrigues", "apprenticeships", "oncol", "dop", "asymptomatic", "retails", "offroad", "simpletech", "gandalf", "minot", "evidentiary", "kpa", "whelan", "synthesize", "doan", "localisation", "laparoscopic", "pem", "hotelguide", "bayview", "overridden", "sorensen", "hinds", "managment", "racially", "stinky", "riverton", "expertly", "mgc", "langkawi", "ftpd", "colloidal", "guarantor", "imperialist", "suc", "veneers", "reaffirmed", "zambezi", "tibia", "raquel", "wpt", "kiddie", "tulare", "venturi", "sundries", "linebacker", "danzig", "neurol", "beanies", "irreducible", "trixie", "ridgeway", "henckels", "srb", "verifier", "dimensionname", "eurasian", "galbraith", "pesky", "underwire", "salvia", "aep", "radioshack", "sportstar", "alana", "upd", "duma", "osh", "ddbj", "stah", "scripted", "ated", "mutagenesis", "posada", "vocalists", "tiburon", "lpc", "geiger", "cmyk", "everlast", "obits", "jekyll", "sportsbooks", "andaman", "hallam", "spoofing", "rockhampton", "reauthorization", "poolside", "xiamen", "trc", "pita", "chopard", "skeptics", "nast", "motorist", "kwik", "peritoneal", "jaffe", "freebie", "harare", "tunbridge", "spycam", "lowes", "lineto", "ncaab", "publicize", "neohapsis", "sanibel", "bulimia", "newquay", "intros", "ladybug", "analyser", "armando", "conwy", "algorithmic", "rectifier", "banknotes", "aem", "bookshot", "bassoon", "scrapbooks", "hydropower", "clearances", "denominational", "dominguez", "meas", "tamron", "dfid", "vlans", "spreader", "deu", "otolaryngology", "ezines", "vbseo", "snowmobiles", "oca", "phen", "educa", "lagrangian", "dubrovnik", "idt", "eases", "hippocampus", "crim", "repeaters", "longoria", "matsushita", "reimbursements", "kotor", "encodings", "yuen", "eqs", "eca", "actionable", "gangbangsquad", "cornea", "overfull", "southgate", "minibar", "kitchenette", "ols", "liberian", "tuc", "hth", "repairers", "liczniki", "rcc", "numerology", "armitage", "brac", "barware", "corsi", "normalize", "gsp", "bcr", "krt", "buffs", "tamoxifen", "phenotypes", "kinross", "kieran", "informatie", "mccallum", "triplet", "geosciences", "sonics", "timmins", "django", "pllc", "lotta", "upg", "nhtsa", "swissprot", "archaeologists", "voss", "pussys", "moveto", "tentacle", "stx", "iaudio", "prednisone", "salespeople", "motility", "dengue", "gaiman", "incineration", "dumont", "shanks", "bissell", "organza", "centralised", "unbreakable", "supersized", "depictions", "wml", "sexcams", "kaffe", "karim", "aww", "gtc", "pbl", "cael", "separators", "informatique", "resetting", "indepth", "funnies", "cumin", "chicagoland", "keystrokes", "setters", "inertial", "payless", "ona", "pec", "payee", "cinematographer", "preorder", "oig", "teenies", "ppv", "ventilator", "annonces", "camelbak", "klear", "micrograms", "pediatrician", "cymbal", "convective", "haymarket", "nosed", "bre", "shogun", "rescheduled", "bala", "sidestep", "readline", "preemption", "microbiological", "corticosteroids", "pseudoephedrine", "stockholder", "engnet", "quanta", "sturgis", "synapse", "cwd", "innostream", "airplay", "uppers", "sib", "pitman", "bodrum", "leathers", "embossing", "redirects", "fuzz", "roscommon", "meryl", "izmir", "meticulous", "multiplexer", "menorca", "dendritic", "minima", "wstnsand", "naproxen", "operands", "mikael", "conceptually", "crichton", "cct", "nics", "hardwoods", "clarita", "xfs", "capping", "parisian", "humanism", "hiroshi", "hipster", "accel", "annualized", "sandi", "npa", "becca", "basildon", "khoa", "testis", "uclinux", "unusable", "tigger", "approximated", "dhea", "consulates", "wonkette", "versioning", "breakdowns", "dbh", "periodontal", "macmall", "iphoto", "uncredited", "recordi", "lacroix", "rupiah", "bullish", "hippy", "klik", "northerner", "xsd", "mackintosh", "kenney", "fabricators", "mutated", "layne", "moonstone", "scilly", "sheng", "fsp", "yk", "strep", "offical", "hps", "tampere", "testo", "synergies", "fundamentalists", "amyloid", "emachines", "understandably", "icarus", "appletalk", "goff", "dialed", "geoxtrack", "bemidji", "harcore", "intermodal", "spx", "catalunya", "baymont", "niall", "mitts", "rik", "nappy", "diario", "khalid", "fuchsia", "chowhound", "muscat", "ffff", "kmart", "handover", "knott", "butterfield", "hialeah", "finney", "salamander", "driveways", "ummm", "ayres", "lukas", "cavan", "aswell", "skippy", "marginalized", "sooners", "cityguide", "maritimes", "permanente", "texaco", "bookmakers", "speci", "hgtv", "contacto", "mbc", "marston", "newsline", "coverages", "bap", "specialities", "loca", "systematics", "renderer", "matsui", "rework", "snowmass", "deq", "rosh", "coffs", "cleansers", "acu", "webby", "footbed", "inicio", "moretrade", "apogee", "allergens", "worsen", "mlc", "applica", "tankers", "whopping", "issey", "rtr", "bes", "cust", "brookes", "anim", "tull", "informatica", "computeractive", "finline", "permissionrole", "quickcam", "shunt", "rodeway", "scrollbar", "breen", "voyuerweb", "mbe", "kenshin", "dpm", "clackamas", "synch", "patten", "leppard", "allis", "estimators", "functionalities", "rmt", "downes", "koffice", "evidences", "mux", "dbx", "fetishes", "isaacs", "outrigger", "enclave", "fibrillation", "licorice", "statically", "ipl", "dixons", "goldmine", "lhasa", "developmentally", "ziggy", "ingles", "senders", "steamy", "atf", "madhya", "marinade", "passwort", "extinguishers", "stratosphere", "tbilisi", "updater", "geico", "fld", "cabos", "companys", "tinputimage", "ggg", "nicaraguan", "icn", "wanganui", "sconces", "insulator", "endometrial", "mohan", "hegemony", "focussing", "gallerie", "bioperl", "eprint", "tennant", "ebp", "tryptophan", "checkin", "gilroy", "extensibility", "aei", "qg", "mcculloch", "thang", "lorem", "seng", "bianco", "salma", "consortia", "asimov", "renato", "bungee", "murdock", "hokkaido", "alternates", "brdrs", "configures", "multilevel", "mvs", "pce", "albertson", "renoir", "getclass", "perthshire", "mucus", "suspenders", "realtek", "morons", "dismantle", "pharos", "obp", "zovirax", "twikiguest", "reimplemented", "eavesdropping", "orgs", "numerator", "gds", "nme", "resurgence", "metastases", "gino", "timings", "mecha", "carburetor", "merges", "lightboxes", "icra", "jeopardize", "ltp", "loews", "fanlisting", "flet", "bds", "hyland", "experian", "screenwriting", "svp", "keyrings", "hca", "hdc", "hydrolase", "koa", "mobilized", "accutane", "zonealarm", "sexkontakte", "canaveral", "flagler", "someplace", "vcard", "antibacterial", "rund", "extremism", "edgy", "fluctuate", "tasked", "nagpur", "funroll", "tema", "flips", "petsmart", "libuclibc", "chaney", "aventis", "macrophage", "palmas", "useable", "ferndale", "saipan", "councilor", "tcr", "myinfo", "jellyfish", "newington", "reissued", "mpv", "noa", "airconditioning", "wiggles", "bho", "synths", "kennesaw", "rubbermaid", "spector", "medica", "ayer", "incumbents", "ashok", "vern", "writable", "usepa", "reflectance", "mobo", "bunn", "chiba", "uint", "tgb", "yj", "coliform", "selena", "olmsted", "broomfield", "darpa", "nonpoint", "realignment", "undermines", "ferreira", "sasl", "defibrillators", "kraus", "certs", "nwa", "jstor", "aarhus", "supercomputer", "bouncer", "phenol", "jigs", "loudoun", "lifetimes", "grundy", "histamine", "byline", "mbox", "mustafa", "bedlam", "ioexception", "abdel", "bothell", "synergistic", "aur", "lippincott", "maplewood", "tillman", "maints", "rhp", "handball", "shandong", "cch", "stylized", "folate", "lenoir", "manitou", "cytometry", "goofs", "wokingham", "connors", "musc", "ripon", "nypd", "plexus", "systolic", "hyman", "unreachable", "deepak", "desarrollo", "tian", "jisc", "merc", "covina", "noonan", "ufc", "modernist", "waring", "janie", "fams", "yasser", "weathering", "totalitarian", "putters", "waypoint", "prx", "interrelated", "delray", "lifedrive", "santander", "southbound", "solidworks", "cronin", "averatec", "huren", "patios", "firebox", "synopses", "venta", "sadr", "tuples", "brdrnone", "diarrhoea", "sonatas", "barbecues", "walther", "deadwood", "mancini", "rpmlib", "milpitas", "commonsense", "bsi", "piii", "romford", "emporia", "digidesign", "violators", "phrasebook", "reconfiguration", "sledding", "lakefront", "excision", "traceability", "yangon", "booktitle", "lemony", "recursively", "ney", "kilda", "auctioned", "hennessy", "basset", "antwerpen", "paltrow", "rda", "limiter", "imtoo", "jmp", "cornwell", "dah", "blueberries", "notting", "comprehensively", "amar", "deftones", "apg", "zyxel", "kno", "limelight", "schmid", "alg", "bme", "solis", "cdx", "mju", "hoosiers", "criss", "glynn", "aerotek", "unmet", "toa", "competes", "olathe", "ciw", "compositional", "sez", "trig", "taylormade", "catawba", "mbytes", "ordinal", "tth", "inglewood", "gila", "magnitudes", "downed", "firstname", "metairie", "polluting", "wellcome", "pedicure", "duplexes", "edgewall", "webchanges", "backplane", "daschle", "transceivers", "disrupting", "biodegradable", "spore", "meps", "phpmyadmin", "bloodrayne", "tessa", "unrealized", "hei", "artistas", "roomate", "acetone", "alanine", "elko", "dvdrw", "spt", "ries", "inthe", "blitzkrieg", "nickels", "banbury", "igm", "snf", "optra", "choctaw", "issaquah", "interactively", "fredrik", "aventura", "ewa", "dpic", "mufflers", "quarks", "refactoring", "monrovia", "forman", "marrakech", "optoma", "walkways", "heineken", "shelbyville", "oxidized", "bugfix", "sharif", "bloodstream", "yx", "underpinning", "resistivity", "hollinger", "conformal", "racquets", "sherri", "dbd", "nevermind", "moa", "tenchi", "potters", "detergents", "cheri", "bombardier", "subsp", "cytotoxic", "frag", "eseminars", "colophon", "morin", "ico", "tatum", "unforgiven", "thesauri", "gaffney", "harrell", "toowoomba", "friendfinder", "uts", "bootsnall", "relais", "allocates", "freecom", "yoo", "kabbalah", "dgs", "punks", "chorley", "ivanov", "unannotated", "endian", "dari", "patchy", "haters", "mutex", "worldnow", "giuliani", "hina", "millennia", "pathophysiology", "frith", "pao", "doran", "remixed", "hypoxia", "newyork", "penile", "hemi", "positron", "metallurgical", "ordinating", "caregiving", "molybdenum", "easley", "plo", "psn", "hexagonal", "throated", "contravention", "bacteriol", "healers", "superbike", "biosafety", "binomial", "engels", "staybridge", "mullet", "canfield", "hardball", "orem", "scholl", "renovate", "dvdr", "phenterminebuy", "metformin", "actuary", "addressbook", "xquery", "csl", "purdy", "rattus", "xian", "latches", "ardmore", "cosmetology", "emitter", "wif", "grils", "yom", "ralston", "estados", "begining", "apartamentos", "sassoon", "tna", "hotlog", "duquesne", "oclug", "formatter", "rhinestones", "shootings", "splitters", "gdm", "pizzas", "contig", "whittaker", "trafic", "winders", "walkie", "adorama", "uucp", "postmarked", "devolution", "avion", "innes", "reunification", "izumi", "caenorhabditis", "moderating", "gadsden", "cthulhu", "eurostar", "dooley", "diebold", "unsaturated", "hotsync", "ryerson", "bfd", "nonexistent", "liquidated", "decoders", "validates", "dae", "jackman", "biophysical", "mendes", "lasagna", "landers", "belton", "qing", "docu", "tapas", "calla", "curriculums", "supermodel", "rezoning", "schumer", "exclusivity", "motivates", "debuted", "lifeguard", "chrissy", "havasu", "kei", "danforth", "kilmarnock", "bignaturals", "hendersonville", "poweredge", "sequels", "licensor", "pantone", "granby", "laboratoire", "headteacher", "viajes", "etosha", "ndc", "coexistence", "leona", "dpr", "brownfield", "aguilar", "supervises", "orthologs", "pataki", "redistricting", "jil", "amritsar", "lpi", "pram", "acqua", "mekong", "anesthetic", "dsi", "maduras", "pfi", "paperless", "perc", "fansites", "sherbrooke", "egyptienne", "hyn", "anisotropy", "heaton", "rennie", "sno", "redox", "cladding", "seaworld", "hotlist", "trumbull", "retransmission", "luau", "tiscali", "overlaps", "meticulously", "sitka", "ucs", "lsr", "hellboy", "jakub", "hanselman", "rangemaster", "interceptions", "rrc", "dyna", "appt", "nonviolent", "evangelicals", "cunny", "goddamn", "wolfowitz", "epping", "accra", "bimbo", "jamboree", "multicolor", "tritium", "ptfe", "leaching", "sauer", "cricinfo", "isomorphism", "lsat", "estab", "stockbridge", "invariants", "jillian", "islip", "egp", "didier", "capistrano", "yardage", "neve", "enviro", "gte", "bodybuilders", "ranchers", "bremerton", "wbc", "radii", "schwinn", "expander", "regt", "referer", "electrolysis", "signatories", "wetsuit", "flatrate", "vendita", "nazionale", "peroxidase", "folkestone", "angkor", "delcampe", "taylors", "rahul", "mmr", "zp", "vserver", "neurologic", "chd", "opac", "cmv", "macabre", "neurontin", "popeye", "gruber", "excerpted", "spotter", "pyongyang", "hmos", "beltonen", "chamonix", "recycler", "declarative", "semaphore", "dprk", "carmarthenshire", "tristate", "standardize", "recyclable", "knickers", "overloading", "angioplasty", "fanboy", "sharapova", "moen", "irin", "deseret", "eastbay", "bfa", "androgen", "parkes", "kilogram", "pacemaker", "duarte", "evaluators", "tarball", "nears", "kapoor", "pah", "allard", "mog", "tures", "standout", "lll", "holley", "ogs", "ptt", "sfs", "transamerica", "bdrm", "comparability", "buckhead", "industrialization", "cabana", "mbr", "yoshi", "skokie", "catwalk", "homesite", "pecos", "stinson", "blurry", "etrust", "minibus", "coty", "denby", "openbook", "unfunded", "jobsite", "dls", "levinson", "kasey", "disbursed", "cristian", "ballooning", "nats", "antineoplastic", "amplify", "shitting", "coden", "congressmen", "dft", "xsp", "strapless", "qualitatively", "struc", "whitefish", "flourished", "ejection", "puyallup", "bonham", "miu", "cosplay", "gazduire", "dodgy", "parasitology", "thymus", "handlebar", "sanborn", "beale", "lesbianism", "locators", "belive", "mnogosearch", "aoa", "childress", "pppoe", "phytoplankton", "wireline", "handpainted", "suprise", "neath", "casseroles", "generational", "coppola", "burrito", "sandton", "spylog", "biltmore", "coriander", "edtv", "chopra", "streamflow", "montoya", "lesbien", "manipulative", "hypnotize", "liaisons", "backers", "evocative", "mcclelland", "centerfold", "burch", "chesterton", "warlord", "guage", "powerball", "snider", "creuset", "wildland", "oster", "conti", "sichuan", "wrigley", "bollinger", "sensitivities", "offshoring", "uiq", "bayes", "vipix", "amphibian", "substation", "optically", "ceasefire", "haag", "alj", "swartz", "nanoparticles", "affine", "sitios", "woot", "obo", "uname", "employmentnew", "sepa", "asrock", "hijacking", "blurbs", "downsizing", "subcutaneous", "creatinine", "factorization", "netbios", "fleshlight", "reliever", "ender", "indenture", "arlen", "trailblazer", "coney", "avenida", "ern", "shocker", "barnstable", "ioctl", "bronte", "refrigerant", "caterham", "bajar", "movei", "barkley", "datacenter", "presidio", "transfection", "fung", "legg", "moyer", "roux", "rectangles", "caseload", "catharines", "pdx", "wget", "collaborator", "cruzer", "eeoc", "tnc", "cnw", "sausalito", "clas", "xenopus", "reflectors", "endorsing", "qingdao", "kiwanis", "onlinephentermine", "replicator", "assertive", "aldershot", "weirdness", "oblast", "townhall", "sunnyside", "datos", "pham", "glycogen", "tain", "selangor", "detainee", "brd", "hoosier", "balearic", "toluene", "jini", "tubal", "longford", "johansen", "photocopies", "haccp", "narconon", "dyno", "blakely", "klonopin", "photonic", "kyiv", "tami", "hijackers", "buell", "informazioni", "mccracken", "ultrasonography", "cale", "alyson", "taupo", "possum", "milligan", "rosacea", "transgendered", "thos", "toxicological", "mackey", "ristorante", "obama", "dvc", "jermaine", "platypus", "breakbeat", "karina", "jang", "thereunder", "kink", "winton", "holla", "multilayer", "strcpy", "xzibit", "mohair", "chore", "agb", "prt", "abm", "kgb", "preemptive", "guzman", "subcontracting", "counterterrorism", "communicators", "embodiments", "sociedad", "taskforce", "gatineau", "pertussis", "concentrator", "astrophysical", "apap", "pairwise", "nagy", "hofstra", "kbs", "filmstrip", "shortcake", "hsm", "chilliwack", "bidorbuy", "tetracycline", "lovett", "motorhead", "salam", "hofmann", "paramilitary", "flipper", "eyeball", "outfitter", "rsl", "minden", "hardwick", "immunological", "wifes", "phenyl", "telefax", "giao", "famously", "hattiesburg", "telematics", "tsai", "maier", "lca", "bossier", "franchisees", "falco", "armin", "ique", "controllable", "surfactant", "telecommuting", "culvert", "prescriptive", "wcag", "hott", "spanner", "mchugh", "firehouse", "currys", "diadora", "laporte", "wgbh", "telekom", "puri", "factsheets", "karts", "orthodontic", "visors", "leste", "lithography", "bonobo", "hamptons", "proofreading", "rmx", "evokes", "jdm", "dehydrated", "whyte", "interop", "initializing", "manfrotto", "waveguide", "pnc", "aussies", "murtha", "reinhard", "permaculture", "suburbia", "kamal", "catwoman", "optimally", "darko", "windstar", "polymorphisms", "sexist", "mdm", "embryology", "styrene", "alumnae", "inducible", "riesling", "triage", "ees", "krugman", "mrt", "mazatlan", "silencer", "foreclosed", "chernobyl", "rigby", "allergen", "crystallography", "frosting", "gallbladder", "photogallery", "nightwear", "sconce", "vgc", "drivetrain", "skelton", "ovaries", "mamob", "phenterminecheap", "daddies", "impressionist", "tourisme", "hpi", "clif", "fairways", "watercolors", "klipsch", "tekken", "lactic", "bydd", "katana", "ameriquest", "boson", "culo", "milled", "mcarthur", "analgesic", "mya", "btec", "geez", "crocheted", "acetylcholine", "modblogs", "pud", "firsts", "ferrets", "enlight", "wop", "twas", "menzies", "agonists", "eisner", "staroffice", "acg", "photometric", "fokus", "ntc", "buzzer", "tok", "trams", "vickie", "tinnitus", "vectra", "benidorm", "gerrard", "marketworks", "libertarians", "downers", "kevlar", "sequestration", "yoshida", "inositol", "praia", "follicle", "itemsshow", "brunner", "indore", "inspectorate", "ultralight", "toutputimage", "saudis", "octal", "debilitating", "twd", "keypress", "notifyall", "hdf", "corrs", "turku", "centrifuge", "curators", "multipoint", "quang", "marla", "mths", "caffe", "projective", "fandom", "cws", "kao", "debacle", "argh", "tts", "plantings", "landmines", "kes", "sdd", "khaled", "kimmel", "famc", "tva", "arbitrators", "deakin", "instock", "gilligan", "unh", "unpossible", "waldron", "kihei", "daq", "bronchial", "emg", "nanoscale", "hmong", "brownfields", "emmylou", "antcn", "unilaterally", "hypoglycemia", "sodomy", "bukakke", "bigpond", "famosas", "nsync", "zd", "revaluation", "conditionally", "moira", "tenured", "padd", "amato", "debentures", "rfcs", "acyl", "rehoboth", "lmc", "dht", "drucker", "lmi", "tham", "cigna", "dlr", "nifl", "sealy", "axa", "carrey", "ige", "dde", "foy", "evesham", "mcneill", "manitowoc", "baguette", "haves", "erections", "overpriced", "grantor", "sux", "orbiting", "soares", "gsl", "ihep", "resubmit", "bader", "gymboree", "kyo", "yunnan", "miyake", "rah", "saggy", "subtypes", "moultrie", "vasquez", "iogear", "merch", "uplinked", "cognos", "northbound", "cardigans", "ket", "rasa", "taglines", "usernames", "gpsmap", "ngn", "midweek", "pirelli", "rialto", "tvw", "durations", "bustle", "trawl", "shredding", "reiner", "risers", "taekwondo", "ebxml", "unedited", "inhaler", "granularity", "albatross", "pez", "formalized", "retraining", "naa", "nervosa", "jit", "catv", "certificated", "spicer", "karsten", "surfboard", "scl", "garfunkel", "handguns", "ideograph", "papillon", "dmn", "citywide", "stingray", "bmo", "toscana", "analsex", "larsson", "franchisee", "puente", "epr", "twikiusers", "tustin", "physik", "savute", "slinky", "cubase", "weatherproof", "parkplatz", "roadsidethoughts", "oxy", "pthread", "postmenopausal", "mixtape", "tuxedos", "fujian", "batters", "gogo", "nca", "minivans", "yerevan", "duffle", "scraper", "posner", "bwv", "technet", "sdsu", "decl", "lombardi", "musi", "unger", "gophers", "brando", "ksc", "multifunctional", "noes", "relist", "webjay", "vtr", "haworth", "transfected", "dockers", "swg", "screwdrivers", "tir", "guitarists", "manta", "christa", "sff", "moffat", "surfboards", "deteriorate", "compo", "roos", "eesti", "caulfield", "midpoint", "orland", "malagasy", "shoplocal", "standardisation", "matlock", "nair", "polymorphic", "emd", "phenomenology", "substantiated", "slk", "phong", "bandera", "cred", "lorry", "recaps", "fet", "resolver", "kagan", "chiu", "anthropologist", "opcode", "jugg", "revamp", "herbarium", "grb", "readonly", "arista", "barcelo", "unknowns", "kean", "coq", "cpo", "brosnan", "chamomile", "tgf", "mobilizing", "anya", "allo", "geddes", "wayland", "cerro", "methylation", "ecol", "clanlib", "jayson", "prostatic", "uj", "metcalfe", "oppenheimer", "mcclintock", "android", "primaries", "converges", "lation", "anisotropic", "voorraad", "ucr", "mxn", "ambrosia", "springboard", "rubella", "eisenberg", "bif", "constitutive", "vesa", "signoff", "guggenheim", "sapphic", "killington", "otr", "intec", "xem", "instawares", "kearns", "showcased", "summerfield", "cooperatively", "oshawa", "targa", "triplets", "hec", "billionaire", "leucine", "jobless", "slingshot", "cutout", "disgruntled", "coker", "selinux", "crosslinks", "resurrected", "skyscrapers", "spamalot", "sfp", "noob", "crb", "moviefone", "beecher", "goog", "mdgs", "democratization", "biostatistics", "sakaiproject", "cilantro", "equ", "xilisoft", "zc", "terracotta", "garvey", "harford", "pcie", "dartford", "dicaprio", "rosso", "onlinebuy", "gilliam", "certiorari", "walkin", "contributory", "applescript", "esol", "giggles", "suture", "jacobi", "fark", "autoblog", "glaxosmithkline", "dof", "sextoys", "tice", "accor", "buford", "uspto", "balfour", "calipers", "penalized", "pyruvate", "loggers", "envi", "kissinger", "rmc", "whew", "orchestrated", "conformational", "choreographer", "mcsa", "impressionism", "bucknell", "martino", "cranbrook", "taz", "ocp", "subdomain", "precios", "simcoe", "abnormality", "varicose", "newtonian", "genova", "libor", "infomatics", "hyannis", "howland", "federations", "syed", "urination", "bewertung", "broadcom", "cautionary", "escalate", "spotters", "kucinich", "noosa", "sider", "mitral", "dafa", "verdes", "inproceedings", "crestwood", "takingitglobal", "dmz", "antisocial", "baz", "gangsters", "daemons", "foundational", "probs", "huntley", "kanpur", "uah", "elven", "isotropic", "adodb", "enlaces", "edelman", "rubinstein", "flier", "griswold", "ome", "carcinogenic", "micr", "rrna", "goverment", "mercado", "lum", "dekker", "supercharged", "magicyellow", "primavera", "timescale", "fico", "overwritten", "marcinho", "kor", "erb", "keanu", "edina", "perle", "lebron", "terminally", "bundaberg", "lbo", "breyer", "kochi", "pirated", "leavers", "vpl", "pubsulike", "aquifers", "nittany", "dakine", "rescuers", "amsoil", "revitalize", "messageboards", "lakeville", "apotheon", "eukaryota", "permeable", "rsm", "lastname", "pxi", "faxless", "napalm", "annuncio", "usmle", "racetrack", "atenolol", "riveting", "cbbc", "absorbers", "xseries", "biweekly", "parkside", "rez", "hows", "posi", "derailed", "shoebuy", "ashworth", "keira", "meadville", "skynyrd", "threechannel", "fid", "rua", "monologues", "subroutines", "subspecies", "penton", "eoc", "figleaves", "bab", "ketchikan", "immagini", "shafer", "qca", "broiler", "ctn", "lickers", "akbar", "cbl", "skimpy", "fisa", "reflexive", "drool", "godin", "exchangers", "interbase", "sepsis", "appli", "boxdata", "laing", "oscillators", "choline", "doolittle", "trikes", "pdm", "joerg", "removers", "grisham", "diffuser", "indesit", "rouble", "kamasutra", "camila", "belo", "zac", "postnatal", "koizumi", "tallied", "ikezoe", "niggas", "lorain", "tko", "keying", "ballpoint", "kq", "lupin", "eidos", "computerised", "maf", "rsv", "munson", "ftm", "munoz", "hbv", "jeffersonville", "willfully", "orienteering", "eoe", "cavs", "humphries", "puss", "ngs", "podiatry", "truffle", "taka", "beal", "kalahari", "blockage", "hallo", "abo", "recv", "obstet", "bulma", "chicos", "cliche", "sadc", "tolar", "screenname", "chlorinated", "hypothesized", "upbringing", "fmc", "newry", "zonal", "defun", "unsustainable", "maas", "ghostbusters", "interdependent", "rockwood", "dbe", "asda", "civics", "literals", "unanticipated", "seminoles", "plist", "tabulated", "workloads", "chemo", "vhdl", "pretrial", "fermilab", "hotplug", "rotator", "krups", "myosin", "mtx", "carpool", "honky", "matsumoto", "armpits", "clug", "gasolina", "caruso", "fsh", "joysticks", "visualized", "bosworth", "soic", "clitoral", "bers", "carsten", "riverwalk", "convertibles", "literotica", "pgm", "ringetoner", "tpm", "floorplan", "oscilloscope", "getz", "mgd", "dictators", "levees", "annandale", "hillel", "jeffries", "pacheco", "slacker", "miva", "sns", "gca", "xchange", "kraftwerk", "bandana", "pentecostal", "extrapolation", "fennel", "telemark", "spg", "quy", "datasheets", "smit", "flywheel", "futons", "interviewees", "mosfet", "maryville", "oskar", "ital", "quarkxpress", "nondiscrimination", "republika", "icici", "fixings", "leith", "kickboxing", "deming", "deactivated", "caliente", "oligonucleotide", "crtc", "golgi", "channeling", "stopwatch", "maroc", "lemieux", "subscript", "starfleet", "odi", "substandard", "phenterminephentermine", "phoned", "ncl", "gmtime", "convener", "becuase", "dailies", "dansguardian", "miramax", "busta", "maury", "cng", "jizzshot", "moya", "nackt", "commercialisation", "cunni", "cardinality", "machado", "insurances", "qn", "tinting", "epidemiologic", "isset", "burnie", "bushings", "radionuclide", "typeface", "changeover", "jian", "termites", "dotnetnuke", "decryption", "etnies", "subsec", "cxx", "grinnell", "alexei", "helly", "protestors", "signings", "parnell", "gretna", "guida", "abl", "farscape", "hdtvs", "sde", "cyborg", "yanks", "hematopoietic", "clot", "imprints", "opensolaris", "inflationary", "elie", "traceroute", "fgm", "cuddle", "workbooks", "fallback", "permutations", "downer", "abelian", "cabela", "transferee", "quantitatively", "sheepdog", "cameraman", "pinochet", "replicating", "tci", "slashes", "streetpilot", "renovating", "paralympic", "dwarves", "cakewalk", "pyro", "phenterminediscount", "tye", "bna", "uwa", "stinks", "trx", "behav", "blackfoot", "kuo", "schaffer", "kemper", "glycemic", "plesk", "slicer", "joshi", "realtytrac", "sandburg", "dnb", "nwi", "reza", "operable", "wargames", "guerrillas", "saito", "tce", "fullsize", "auc", "anzac", "kulkarni", "rabbis", "mendelssohn", "investigational", "photojournalism", "anaal", "christiansen", "centaur", "rubio", "transando", "rapist", "ert", "pratchett", "climatology", "baise", "labtec", "prioritization", "pinhole", "hdpe", "bioengineering", "dirac", "mcu", "alveolar", "westmeath", "lewinsky", "webx", "acco", "soya", "moz", "exorcist", "biofeedback", "atrios", "honduran", "seaview", "douche", "rsh", "soundcard", "resistive", "sylvain", "chubb", "snooper", "atn", "dbase", "katja", "icr", "firepower", "agu", "ges", "cissp", "mangalore", "laois", "ime", "unmodified", "keystroke", "zell", "parkersburg", "yoon", "gillmor", "joyner", "vinnie", "ccf", "grocers", "simulates", "flathead", "castellano", "sigia", "vesting", "misspelled", "prono", "headcount", "panache", "inu", "hallelujah", "joes", "cayuga", "nob", "tpb", "glug", "zodb", "gubernatorial", "goran", "bauhaus", "sarawak", "sparky", "sebastien", "wirelessly", "wpi", "sysop", "factored", "eula", "ohh", "bsb", "polymeric", "salivary", "mfi", "ftaa", "async", "dnd", "kristian", "circadian", "analgesics", "flintshire", "prakash", "productos", "phenotypic", "pelagic", "agronomy", "vss", "aironet", "weightlifting", "yugo", "audiophile", "unidos", "motorcycling", "raine", "testbed", "pediatricians", "fingerprinting", "bunbury", "tasking", "gmd", "emulated", "tweaked", "phonological", "barco", "gomes", "osf", "faridabad", "aprs", "snappy", "opa", "colonic", "jeroen", "qin", "zircon", "svt", "dansko", "caspase", "encinitas", "tuo", "remoting", "ploy", "achat", "freefind", "spellings", "canopus", "dme", "gaulle", "maplin", "dutchess", "wattage", "puke", "distinfo", "leia", "expeditionary", "amortized", "truckee", "albury", "humanistic", "travelogue", "triglycerides", "gstreamer", "leavitt", "shotguns", "discounting", "etoys", "thirties", "swipe", "dionne", "ebscohost", "tns", "geoquote", "upkeep", "truncation", "gdi", "bausch", "pomeroy", "harrods", "downgrade", "roomates", "biliary", "dumpster", "universalist", "acdbarc", "ywca", "oceanview", "fazendo", "shayne", "tomy", "resized", "yorkie", "qx", "matteo", "shanahan", "japonica", "froogle", "rehnquist", "megabyte", "ginsberg", "vivienne", "penticton", "inseam", "csh", "pressurized", "sld", "faves", "edf", "massagers", "ente", "timesheet", "anniston", "sigur", "toughbook", "histological", "clays", "pcx", "suzie", "honeycomb", "denier", "udo", "etcetera", "reopening", "herrmann", "ifr", "quantifying", "qigong", "cbn", "kurzweil", "chanukah", "programas", "fumbles", "jobseekers", "nitrite", "catchers", "mouser", "rrs", "knysna", "arti", "andrey", "textarea", "weis", "pesto", "ilm", "ponderosa", "kroatien", "transitioning", "whoops", "catamaran", "preoperative", "cbe", "verilog", "helios", "qz", "wheelbase", "narayan", "voyforums", "csg", "unctad", "monomer", "refueling", "ilife", "biennium", "coho", "pellepennan", "quartile", "anwar", "infobank", "hexagon", "ceu", "geodetic", "anda", "emporis", "ahmadinejad", "lubes", "consensual", "altimeter", "nmi", "psm", "lawler", "sharpener", "stellenbosch", "soundex", "setenv", "mpt", "goldfinger", "asahi", "ascorbic", "himachal", "dichotomy", "communigate", "covalent", "cantrell", "tarpon", "bluffton", "radix", "orthologous", "taichi", "borealis", "nerf", "rosedale", "policyholders", "nst", "racecourse", "extraterrestrial", "kok", "servicemen", "starwood", "asco", "nui", "phylogeny", "jis", "tiesto", "ameri", "plankton", "pkt", "seamus", "sublets", "unthreaded", "microstrategy", "cleanups", "fitchburg", "flowchart", "tacky", "sauk", "supercomputing", "antiwar", "illawarra", "benetton", "menopausal", "workgroups", "relive", "ketchum", "nieuws", "mirago", "reproducibility", "abalone", "ashmore", "ssx", "eachother", "gsx", "juggs", "ded", "geometries", "petzl", "edie", "quirks", "sbe", "bundy", "pina", "crayola", "acceptor", "iri", "precondition", "padova", "indica", "roddick", "teasers", "beveled", "consumerism", "flr", "yeovil", "boneless", "intracranial", "kbd", "tatoo", "gameday", "solute", "tupperware", "ridgefield", "gce", "quadro", "mumps", "trucos", "mopar", "haggis", "electromechanical", "styli", "whipple", "fpm", "arcata", "perego", "guwahati", "loudon", "legolas", "rockaway", "exhibitionist", "woolley", "msps", "toolset", "ferragamo", "bott", "godiva", "nsn", "vfw", "masculinity", "schrader", "bld", "lightfoot", "capitalizing", "rucker", "browsed", "hcg", "freenet", "bundling", "cannondale", "mcat", "blt", "mencken", "commerical", "dagenham", "codename", "nesgc", "profess", "rearrange", "warfarin", "stdin", "rohan", "overheating", "condon", "inflate", "npd", "gunnison", "hhh", "sfmt", "devonport", "copywriter", "bodybuilder", "poss", "psigate", "ecp", "airforce", "fleischer", "atmel", "rasta", "ravel", "jupiterresearch", "flycatcher", "cusack", "jenni", "gbps", "bombshell", "llbean", "arnie", "subdomains", "kale", "pcd", "shemp", "findtech", "huck", "vouyer", "horrendous", "complainants", "addy", "ehs", "fabricating", "mmo", "verdate", "cyberpunk", "enotes", "pecans", "ababa", "whitehorse", "barak", "juke", "schnauzer", "hairdressers", "prioritized", "rainforests", "exo", "rabin", "workday", "eared", "earphone", "passaic", "vme", "hypermedia", "udb", "jinx", "illiteracy", "carcinogens", "offres", "addressee", "thefreedictionary", "informants", "tics", "sublimation", "harnessing", "extenders", "fishman", "hmi", "tsk", "inj", "wvu", "zimmermann", "dupage", "belarusian", "maia", "lynyrd", "messianic", "mexicana", "generalist", "gastronomy", "ugs", "huckleberry", "ridgewood", "pii", "dua", "phan", "lightsaber", "vivanco", "catheters", "azerbaijani", "whitmore", "footy", "joinery", "wasatch", "octagon", "equates", "sorenson", "eames", "tacos", "misspellings", "trivandrum", "kingsville", "magnetics", "rce", "halide", "metabolite", "clo", "genders", "headgear", "gretzky", "harming", "insole", "colvin", "kano", "thurrock", "cardstock", "journaling", "univers", "aragorn", "principled", "namibian", "slacks", "mcsd", "wmp", "fairmount", "physica", "subtropical", "sager", "trk", "bowflex", "subcommittees", "jia", "ramesh", "sitepoint", "prawn", "phylum", "mephisto", "prf", "mundial", "waveforms", "algal", "schafer", "riddell", "gimmicks", "reparations", "injectable", "sher", "trondheim", "mhs", "libwww", "phenix", "tlv", "rena", "tcpdump", "quinlan", "ecampus", "kaya", "ethically", "sity", "fkk", "freeradius", "nmh", "puffin", "freeride", "ahern", "shaper", "locksmiths", "lichfield", "cheater", "tora", "hsi", "bootcamp", "torus", "mondeo", "cotta", "oac", "evi", "jre", "vignettes", "aculaser", "waxman", "raping", "oryza", "leashes", "babydoll", "srgb", "practicality", "winer", "thon", "battelle", "inp", "europcar", "pancreatitis", "americus", "immunohistochemistry", "woodlawn", "filigree", "forecasted", "bypassing", "chock", "chocolat", "messier", "gravis", "edson", "nathalie", "calendario", "blenheim", "clarksburg", "trigonometry", "virusscan", "flanges", "bowlers", "tsi", "ipos", "harlingen", "keypads", "sosui", "campanile", "vassar", "regress", "ghosh", "iab", "hao", "ntu", "ivey", "techdirt", "pmt", "minutemen", "pias", "celiac", "hough", "ingested", "hypothyroidism", "boyfriends", "jeong", "equifax", "baroda", "cybernetics", "tissot", "daf", "prefered", "rappers", "discontinuation", "mpe", "elgar", "cumulus", "brltty", "klan", "goku", "offsetting", "airmen", "halliwell", "ionizing", "angebote", "morphy", "bookmaker", "curio", "hookers", "amalgam", "notional", "webactive", "bechtel", "zambian", "reinhardt", "bridgend", "bendix", "dists", "magnetometer", "populist", "mimo", "bsu", "renfrew", "hesperia", "chautauqua", "mnemonic", "interviewers", "garageband", "invariance", "meriden", "aspartate", "aramis", "pleural", "tsu", "mediating", "gabriele", "resonator", "provincetown", "afx", "surpluses", "ertl", "holger", "castlevania", "vaniqa", "finisher", "ead", "quartets", "heber", "muschis", "anthropogenic", "thermos", "macroscopic", "torrington", "gillingham", "geopolitical", "flaherty", "varietal", "assfucked", "engle", "gorillas", "ihc", "shatner", "euc", "juarez", "helicobacter", "epidural", "luisa", "teardrop", "anion", "glosspost", "numeral", "mdx", "orthodontics", "tabby", "cyngor", "onl", "claddagh", "abf", "therm", "myeloid", "pugs", "sprocket", "roh", "unilever", "ctu", "genomebrowser", "sima", "hants", "maclaren", "chairmans", "yim", "workflows", "adn", "ansel", "dragostea", "hrvatski", "ayala", "bfg", "tonawanda", "imovie", "regionals", "kami", "jansport", "fanfic", "tasha", "nikkei", "snm", "lynnwood", "glucophage", "bicentennial", "arl", "radiologic", "kts", "agosto", "mineralogy", "corsicana", "harrier", "sciencedirect", "krugerpark", "oireachtas", "esposito", "adjusters", "olympiad", "fname", "iar", "allende", "ldc", "sited", "surry", "strainer", "paragliding", "whitetail", "pagemaker", "astrid", "tripled", "gwar", "atwater", "overpayment", "faeroe", "wisenut", "nagel", "blatantly", "chicano", "chongqing", "corporates", "applicators", "erasing", "svetlana", "fleer", "bossa", "deuces", "fud", "dalian", "anycom", "gunfire", "mcnair", "subtilis", "hdi", "percutaneous", "cursos", "cols", "urth", "northbrook", "rmk", "mgf", "voli", "leann", "pixmaps", "gigablast", "metronome", "blackman", "fliers", "rdbms", "imprimir", "grouper", "negate", "roessler", "intrastate", "manawatu", "blass", "ainsworth", "denzel", "tfl", "moped", "appointees", "bunkers", "refrigerate", "ligase", "otp", "beleive", "warlords", "hatteras", "symlink", "almeida", "blogcritics", "cochlear", "janelle", "alphabets", "atta", "foldable", "hydroponics", "precast", "univer", "purest", "fatboy", "cei", "westerners", "camarillo", "kelty", "volunteerism", "pdq", "openacs", "hor", "newham", "energie", "radiographic", "kinematics", "errol", "otabletest", "isobaric", "hba", "gratuitos", "innd", "eads", "personalise", "tbl", "fso", "patenting", "reciprocating", "rto", "subcellular", "crosbie", "harmonisation", "dunfermline", "janesville", "egroupware", "caritas", "tsm", "egf", "roa", "debhelper", "nsaids", "milt", "burleson", "pba", "ragtime", "adopters", "impor", "philo", "backseatbangers", "rushville", "saitek", "synthesizers", "vulva", "arapahoe", "posey", "minuteman", "zinfandel", "mayoral", "fortis", "medicina", "gallary", "honeys", "pinus", "interlink", "greening", "tesol", "artnet", "crw", "bansko", "brien", "silvery", "guevara", "thinkin", "sedu", "automakers", "igmp", "overtake", "semicolon", "bubbly", "edwardsville", "ques", "homebuyer", "nodal", "mpo", "unbeaten", "rawls", "ocx", "ork", "sheeting", "hallways", "alzheimers", "snooze", "kestrel", "nadh", "americorps", "prawns", "nonpartisan", "naps", "domina", "eldon", "palomar", "riedel", "hoppers", "onscreen", "gdk", "distillers", "uploader", "caltrans", "tyra", "cocksuckers", "mtbe", "hypertensive", "xie", "chinchilla", "bucs", "transformational", "sailboats", "heisman", "grn", "jct", "exemplifies", "arrhythmia", "astrometric", "workwear", "tolstoy", "asperger", "koop", "newydd", "transpose", "lpr", "xray", "ferrer", "microeconomics", "kafka", "telly", "grandstand", "toyo", "slurp", "allocator", "islas", "ila", "westland", "instantiated", "lewisburg", "stylists", "blackwater", "vivi", "hippies", "pul", "larkspur", "kea", "lesben", "motherwell", "ahs", "cappella", "neocon", "getname", "coyle", "rudi", "departamento", "winrar", "mussel", "britax", "diwali", "raines", "dso", "wyse", "geourl", "etheridge", "docomo", "webindex", "accrediting", "stapler", "pheromones", "woodson", "imm", "volcom", "telewest", "lcp", "bisexuals", "ozzie", "kitsap", "oic", "cutest", "hoon", "mpp", "cte", "dymo", "yolo", "quinton", "jorgensen", "printouts", "tempt", "credentialing", "scalloped", "sealey", "galvin", "etudes", "gurney", "bluefly", "schweitzer", "jawa", "geochemical", "allegany", "aldridge", "digitizing", "aki", "organically", "chatboard", "lomb", "uddi", "yng", "roleplay", "pavillion", "barstow", "patna", "rootkit", "spearhead", "leonid", "sunnis", "reticulum", "dulcimer", "unl", "kalman", "npl", "coronal", "rendell", "transparently", "mfs", "freeform", "gianfranco", "tantric", "reif", "woodhouse", "lifter", "seymore", "ogle", "sayin", "cpas", "videographer", "gpe", "stallone", "uams", "pula", "trudeau", "buss", "ouest", "korner", "fatherhood", "debussy", "qsl", "reflexes", "hlth", "wyman", "kingsport", "gauthier", "vadim", "magnetization", "trd", "aitken", "millers", "titted", "clerics", "busses", "trai", "underpin", "ajc", "dumbledore", "vinny", "delicately", "webroot", "yip", "producti", "teksty", "pullout", "dmi", "yellowcard", "sbi", "dmt", "nce", "birdhouse", "bnd", "neko", "chillicothe", "peacekeepers", "schmitz", "rimming", "solent", "propylene", "supercross", "zsh", "multnomah", "foxconn", "fuelled", "biohazard", "horrifying", "parque", "toffee", "fpl", "riemann", "horsesex", "mahatma", "mubarak", "bachmann", "caswell", "chiron", "hailey", "pippin", "nbp", "ramallah", "isoforms", "dictyostelium", "tauranga", "hawkeyes", "maxxum", "eire", "knowit", "topanga", "geller", "parliamentarians", "inadvertent", "utes", "boardman", "denham", "rofl", "homophobia", "winches", "uptodate", "centralia", "eschaton", "hoaxes", "hillingdon", "buble", "hairspray", "acdsee", "offerte", "urb", "intellicast", "minn", "frc", "antisense", "pelosi", "shader", "gisborne", "grafts", "hillbilly", "intifada", "carina", "fon", "ehow", "vpi", "brunel", "rtx", "roald", "externalities", "metzger", "balsamic", "classically", "calorimeter", "necked", "idiopathic", "lileks", "tahoma", "ogc", "unidirectional", "westbound", "layla", "galeries", "cabinetry", "suarez", "stipulates", "towertalk", "optimizes", "serializable", "universite", "ald", "ringsurf", "toques", "rayleigh", "dropouts", "fws", "gamecocks", "gazprom", "braden", "amet", "sinusitis", "rusk", "fractals", "depressants", "clec", "tryouts", "rushmore", "shel", "adapts", "farlex", "emac", "phl", "remax", "wizbang", "endnotes", "rodman", "dissidents", "iterate", "conair", "ember", "vsa", "neolithic", "mgx", "acuvue", "vetoed", "uruguayan", "corrigan", "libxml", "etronics", "simian", "atmos", "msk", "iib", "multimode", "teensforcash", "annu", "sunbury", "girardeau", "dbg", "morrisville", "netmeeting", "asso", "estore", "universes", "ganglia", "ghanaian", "resonances", "subjectivity", "microarrays", "easypic", "abbeville", "newsre", "cobble", "flightgear", "spode", "berea", "mckinnon", "bucky", "plunger", "xing", "siggraph", "bookends", "klingon", "moreland", "lowery", "histograms", "moll", "floorplans", "netherland", "frasier", "rossignol", "polyline", "laroche", "cytosol", "disposals", "xforms", "mosul", "motu", "amersham", "chordata", "crafters", "kingsbury", "yoox", "hyphen", "dermalogica", "moreton", "glycoproteins", "aristide", "unsorted", "rambus", "ptf", "scorsese", "patricks", "microwarehouse", "bch", "blyth", "grampian", "livedaily", "nces", "alizee", "detain", "andrzej", "optimus", "alfie", "immunisation", "pfaltzgraff", "eyelets", "swordfish", "legals", "hendry", "homogeneity", "hartland", "recreated", "leaded", "hunan", "supersonics", "amstrad", "vinaigrette", "scd", "mch", "nintendogs", "dvx", "unreadable", "plattsburgh", "balsa", "aya", "brasserie", "gcl", "salton", "paulson", "dvdplayer", "silverton", "enduro", "peepshow", "givens", "bristow", "pecuniary", "vintages", "ozarks", "johor", "zia", "mucosal", "prehistory", "histidine", "mti", "drape", "tectonics", "lorentz", "distributive", "sharps", "seguridad", "ghd", "gilberto", "doomsday", "otters", "gervais", "mews", "scarring", "daydream", "gooding", "snicket", "bicarbonate", "boggs", "wps", "dietitian", "itf", "harriman", "paprika", "haviland", "novato", "dyn", "hornsby", "biden", "disallowed", "zahn", "jordi", "correo", "frida", "chappelle", "resourcing", "methuen", "zoneinfo", "adelphi", "orbison", "geffen", "informatik", "novella", "brie", "galeon", "silos", "lrwxrwxrwx", "shortstop", "cua", "dordrecht", "permissive", "creston", "prec", "nco", "nehru", "bromwich", "disposables", "estrogens", "mulholland", "rui", "haz", "eol", "odometer", "tooltip", "ibb", "mosby", "druids", "aggregators", "herfirstbigcock", "rti", "arvada", "fixme", "rodger", "tively", "gizmondo", "cucina", "ivo", "griddle", "pricelist", "juventus", "conroe", "multipliers", "aparthotel", "kitesurfing", "couplers", "aftershaves", "rehabilitate", "patina", "scansoft", "quadra", "sousa", "phonology", "dunkin", "deat", "plasmodium", "bums", "undersea", "aretha", "lts", "boxster", "staf", "bcg", "overexpression", "vanadium", "wilkerson", "riverboat", "voa", "kohn", "bgl", "jiu", "ipi", "contl", "ottumwa", "gynecologic", "unstoppable", "pedometer", "shortfalls", "ksa", "bookmarking", "ingham", "yoder", "esu", "vbs", "barbershop", "drinkware", "idiosyncratic", "googlebot", "floppies", "tashkent", "foxboro", "allstar", "hervey", "fes", "kilowatt", "evga", "nikos", "tance", "varian", "mops", "coughlin", "commutative", "lansdowne", "bcbg", "syrah", "affx", "angiogenesis", "nicosia", "nematode", "kegg", "pkr", "enso", "administratively", "tma", "capa", "ronaldo", "leverages", "cco", "cancerous", "banderas", "gmane", "vq", "gabriela", "secretory", "mmx", "pinehurst", "nro", "reassessment", "ippp", "chillers", "elbert", "sunil", "yuki", "periodicity", "trypsin", "bursary", "dependability", "overdraft", "deirdre", "colonia", "mycoplasma", "lesbains", "adelphia", "scribner", "aro", "activites", "uaw", "frankel", "cacti", "bugaboo", "palmdale", "aeration", "kita", "muscletech", "watersport", "paf", "nxt", "uscg", "yitp", "gibb", "gener", "nak", "unm", "zhong", "chowder", "expatriates", "centerpieces", "freaked", "curbs", "tdp", "gruppensex", "triphosphate", "acronis", "wcw", "prostaglandin", "completo", "darwinports", "abiword", "hippocampal", "atlassian", "technik", "vineland", "commentaires", "ters", "stuttering", "forcefully", "depo", "edinburg", "kwanzaa", "kzsu", "mascots", "harrisonburg", "cadbury", "scoble", "aor", "conundrum", "bullard", "aiff", "comedic", "apical", "synoptic", "miyazaki", "beryllium", "disinfectant", "sentra", "joi", "jokers", "wci", "piglet", "wildcards", "tresor", "sketchbook", "bbd", "halliday", "manolo", "tifton", "repre", "hendrickson", "windhoek", "lomond", "atapi", "hbh", "eccles", "ofa", "dcu", "spatula", "intergenerational", "epub", "cates", "featurette", "gotcha", "kindersley", "drifter", "cvsnt", "ogy", "lagerfeld", "lewin", "youve", "unaids", "larue", "stardom", "assad", "glenview", "brantford", "kelis", "nola", "lxr", "toastmasters", "appr", "recs", "ranchi", "exotics", "articulating", "jiffy", "goodall", "gconf", "verkaufen", "scalextric", "ryobi", "qname", "immerse", "farris", "joinwelcome", "cce", "wittenberg", "capone", "mtp", "busines", "rebounding", "usborne", "hirsute", "prelim", "prepress", "rop", "militias", "ttd", "commodores", "ecnext", "dbf", "goldsboro", "ashburn", "roslyn", "neverland", "coolio", "lindbergh", "freeciv", "indice", "vertebral", "ectopic", "abcs", "lge", "bnl", "coulomb", "minton", "oban", "restatement", "wakeboard", "unscheduled", "dbc", "visser", "clipland", "thermocouple", "masala", "clt", "drw", "rosas", "rdram", "mcclain", "maki", "rosenbaum", "eagan", "slv", "sunburn", "pleistocene", "nips", "sfi", "canisters", "kas", "waddell", "solvency", "lynette", "plainview", "fielded", "blowfish", "zyprexa", "altrincham", "workin", "afton", "topologies", "touts", "pino", "xelibri", "lora", "mendez", "undelete", "samuels", "rajesh", "soros", "unjustified", "nfo", "crf", "digitale", "sitcoms", "analogues", "leukaemia", "ukulele", "paperboard", "fied", "cobain", "trillian", "offaly", "girlie", "ilcs", "friggin", "wq", "davinci", "oxon", "expressionengine", "bains", "rse", "callbacks", "cdv", "hannity", "replicates", "sidewinder", "queueing", "slugger", "humidifiers", "desai", "watermarks", "hingis", "vacanze", "onenote", "montebello", "streetcar", "stoker", "fulcrum", "sadistic", "cassiopeia", "corwin", "qut", "martingale", "saucony", "winslet", "criticizes", "baytown", "synchronizing", "reclassification", "woohoo", "htl", "caithness", "takeaway", "timeouts", "reit", "dietz", "devo", "morgage", "koo", "ducky", "bola", "mdb", "multimodal", "recenter", "hematite", "hensley", "asterix", "hokies", "blumenthal", "multinationals", "aag", "debs", "playin", "emeril", "mcalester", "adria", "shipman", "burzi", "incinerator", "muenchen", "convening", "unorthodox", "fibroblast", "gloryholes", "carrick", "immersive", "darmowe", "catagory", "glob", "cisplatin", "rpa", "fertiliser", "nuova", "halstead", "voids", "vig", "reinvent", "pender", "bellied", "oilfield", "afrique", "ream", "mila", "roundtrip", "mpl", "kickin", "hiatt", "droid", "addenda", "restorations", "boll", "knightley", "worksite", "lcg", "typename", "aris", "isv", "doctype", "balinese", "sportster", "dence", "lesbi", "saversoftware", "bursaries", "cuny", "cardiopulmonary", "biologic", "wanadoo", "shiatsu", "homewares", "dpc", "qk", "schizophrenic", "unplug", "albergo", "pressroom", "gingrich", "basra", "greenbrier", "superoxide", "porcine", "oldfield", "wxdxh", "luder", "shim", "manx", "understatement", "geda", "tormented", "immanuel", "whistleblower", "hopi", "idd", "gol", "bayswater", "lyne", "epox", "kennewick", "subtree", "inshore", "ibd", "hepnames", "benn", "kettler", "clots", "reducer", "naturists", "lvd", "flonase", "sympa", "hinsdale", "trav", "spina", "meatballs", "underrepresented", "bpl", "etb", "brane", "tightness", "tracklisting", "horizonte", "rgd", "concatenation", "suffixes", "kilmer", "cloverdale", "barbera", "seascape", "amdt", "linings", "horseradish", "telepharmacy", "itasca", "varbusiness", "paulsen", "cortina", "ides", "hazelnut", "ashfield", "chaco", "reintegration", "pampering", "boland", "airtime", "surrealism", "imi", "eit", "clamshell", "tonk", "luminance", "ixtapa", "gryphon", "ecos", "cair", "rochas", "farnsworth", "synchronisation", "suresh", "minnow", "bloor", "gumbo", "faqforum", "kunal", "jossey", "rci", "upa", "melamine", "wonwinglo", "episodic", "xcel", "jurys", "descendents", "ezmlm", "twikiaccesscontrol", "tonos", "lated", "montero", "divisive", "soci", "guia", "gastonia", "inappropriately", "valentina", "lubricating", "itworld", "deca", "branford", "kody", "accruals", "epitope", "jdj", "crenshaw", "perlman", "medallions", "rokr", "usg", "microtel", "rsx", "graff", "jcsg", "fds", "cooney", "whittle", "gmthttp", "rayburn", "etat", "suppressant", "hecht", "sportsnation", "sso", "ccnp", "reworked", "etl", "catapult", "vries", "procurve", "cbot", "elitist", "convoluted", "iberian", "optoelectronics", "mailscanner", "kazakh", "stimulator", "schoolchildren", "commweb", "thornhill", "tweezers", "lani", "ouvir", "filetype", "bearcats", "fanclub", "boehringer", "brasileira", "webservices", "kinematic", "chemie", "inoue", "unsupervised", "norvegicus", "copycat", "orrin", "snooping", "hashem", "telesyn", "mcb", "imple", "dorms", "elist", "laminates", "ingalls", "checksums", "tandberg", "iirc", "mackinnon", "roddy", "margolis", "erotaste", "pimps", "mcdougall", "smg", "mpx", "fhm", "travelzoo", "thermally", "teleconferencing", "albino", "cargill", "hyd", "visualizing", "mothercare", "sprinter", "isomorphic", "pepperdine", "cvc", "mahon", "conjugation", "macally", "anklets", "impasse", "disinformation", "beavis", "delicatessens", "intensively", "echocardiography", "pav", "amok", "riddick", "sexism", "ordinates", "gallaries", "baldur", "elon", "beasty", "arty", "leukocyte", "chau", "cotter", "peptidase", "fsi", "postmodernism", "osm", "squeaky", "silicate", "alcohols", "zydeco", "testi", "trujillo", "predictably", "weider", "shareholding", "giordano", "cardiomyopathy", "aprilia", "mcnabb", "lenz", "homeencarta", "disconnection", "scada", "spacetime", "trb", "awol", "espa", "bionic", "batista", "bookshops", "feynman", "captioning", "sibelius", "obstetric", "marigold", "ostsee", "martel", "hcfa", "ino", "ctm", "whi", "typesetting", "ervin", "chroma", "steinbeck", "pusy", "biblioteca", "neutrophils", "dunbartonshire", "lollipop", "brash", "avl", "opi", "declaratory", "corus", "elph", "naf", "htp", "hydrate", "ubb", "littlefield", "neutrinos", "aso", "bric", "subways", "tui", "leominster", "ncsa", "snipsnap", "negativity", "arcview", "picasa", "tortillas", "awww", "dara", "ragga", "innova", "doorbell", "ebc", "sgl", "unsettling", "snps", "explicito", "phila", "bugger", "persson", "embolism", "iip", "silverplate", "lats", "ovc", "roebuck", "sbp", "lipton", "starling", "coreldraw", "haney", "globemedia", "adrenalin", "murphys", "nicklaus", "yardley", "afghani", "tst", "hrd", "haulers", "energize", "prohibitive", "sydd", "nida", "barcodes", "dlink", "includ", "orgie", "macnn", "danni", "imaged", "sprayers", "lindberg", "filesharing", "calibrations", "atorvastatin", "teague", "vantec", "lattices", "cucamonga", "warne", "derwent", "hospitls", "flintstones", "rotisserie", "orcs", "scallop", "biostar", "computationally", "jobseeker", "siem", "sunbathing", "ronda", "npg", "cerritos", "kaz", "chard", "pershing", "clotting", "zhi", "programm", "singlet", "morningside", "simm", "egr", "hackensack", "taf", "kinshasa", "availablity", "lrd", "lugs", "kiddies", "cpsc", "hebert", "asta", "gato", "cimarron", "crowell", "fanart", "nagin", "gfi", "collapsible", "helsing", "haringey", "phu", "stes", "prophylactic", "rosenfeld", "cityscape", "tradeoff", "sask", "instill", "ypsilanti", "lifes", "imate", "firestorm", "homestay", "inept", "peet", "shiseido", "steves", "sascha", "reconstructing", "okt", "droplet", "dhe", "lakota", "revises", "ipt", "macrae", "parlay", "bdt", "woodville", "xlarge", "proform", "gothamist", "coexist", "advisement", "fulltime", "macosx", "metra", "cyg", "turtleneck", "aquos", "hcs", "tsar", "isbl", "gigabytes", "triangulation", "burleigh", "anarchism", "stabilizers", "gbic", "ciba", "activa", "cgt", "terrance", "smoothies", "orsay", "belling", "bnsf", "opps", "representational", "kagome", "snark", "woodard", "malignancy", "makati", "cbm", "bwi", "farah", "sitewide", "newfound", "collider", "candi", "lgf", "boylston", "swi", "rizzo", "wristwatch", "owensboro", "papas", "subscribes", "lah", "wining", "cies", "ganesh", "castleton", "zippers", "decaf", "emphasises", "cbp", "crx", "shakur", "rso", "euroffice", "roush", "caloric", "plaintext", "ofm", "daniele", "nucleoside", "xsi", "buttercup", "oakes", "searle", "shuppan", "lanyards", "cushman", "admissibility", "courtenay", "aspartame", "sleuth", "trudy", "neem", "magix", "cosh", "aurangabad", "golding", "ethnography", "yamaguchi", "bhs", "bulkhead", "kain", "abta", "herzegowina", "minas", "paradiso", "cityscapes", "oit", "replenishment", "autobytel", "kroger", "dexamethasone", "strunk", "yoghurt", "nationalists", "tfs", "definable", "bruin", "psychoanalytic", "reserva", "nasser", "simp", "zmailer", "birthing", "collinsville", "dimer", "powells", "abebooks", "stemware", "landsat", "peebles", "dewar", "docked", "burp", "radioisotopes", "obstetricians", "vinson", "efx", "naia", "idb", "fahey", "multisync", "worley", "oms", "kerri", "arith", "democratically", "datasource", "mcelroy", "cze", "shopgenie", "udev", "nicol", "camara", "degas", "benassi", "prefabricated", "gastro", "accessor", "meteorites", "notts", "lipoproteins", "attleboro", "parenteral", "biosystems", "cerebrovascular", "fsn", "bahraini", "actuaries", "delicatessen", "rng", "marianna", "creatas", "kidderminster", "waukegan", "antifungal", "promulgate", "mvr", "socorro", "maximized", "bde", "dlx", "erythromycin", "dtg", "nady", "leibniz", "flix", "cusp", "homers", "crandall", "holcomb", "beaulieu", "tct", "abington", "pointy", "hamradio", "meso", "monmouthshire", "danvers", "tpl", "baptisms", "backprevious", "carnaval", "recompile", "mainboards", "fclose", "melodias", "cliquez", "doberman", "installshield", "fasb", "estas", "htpc", "stover", "cerruti", "brainerd", "oxycodone", "istituto", "revs", "maha", "compressive", "wombat", "antenne", "patek", "zippy", "neteller", "odeon", "sbir", "backslash", "townhome", "victorville", "amityville", "arpa", "trannys", "goers", "chipper", "gulfstream", "modulate", "xserver", "infosec", "agt", "underwired", "ambiguities", "khai", "norepinephrine", "kundalini", "elkton", "carcassonne", "saygrace", "appending", "marathi", "songbooks", "islamists", "recursos", "newcomb", "stampa", "newscast", "vtp", "stockwell", "nederlandse", "outtakes", "boos", "lavie", "fina", "retinopathy", "deportes", "tremont", "barrio", "buggies", "zacks", "exercisable", "speedup", "holl", "efc", "cibc", "ontological", "thinkstock", "flashbacks", "kennett", "dentures", "eckerd", "xetra", "stg", "reimbursable", "informit", "cdbg", "yeltsin", "nitrates", "aeruginosa", "rpath", "archaeologist", "mitotic", "generalised", "outliers", "sug", "frac", "cowon", "semifinal", "deactivate", "studie", "kazakstan", "sva", "citesummary", "kubota", "chroot", "falciparum", "shifters", "undetected", "mepis", "caries", "microstructure", "ringwood", "pleaser", "compuserve", "disassembly", "miter", "propositional", "javaworld", "ssd", "writeups", "hoskins", "buytop", "frome", "talkie", "loy", "exxonmobil", "emeryville", "gamepad", "metazoa", "kml", "maul", "taoiseach", "siskiyou", "censuses", "offseason", "scienze", "shelved", "etd", "carryover", "fagan", "jada", "wholeheartedly", "polyps", "avast", "northport", "inelastic", "puebla", "idps", "warrenton", "traffickers", "neckline", "aerodynamics", "eto", "satcodx", "leviathan", "dfg", "classico", "harvmac", "wrinkled", "minimising", "bifurcation", "kimi", "npcs", "astrazeneca", "poetics", "jef", "miniseries", "yesterdays", "dcm", "issa", "toxicol", "libdir", "angolan", "waynesboro", "relayed", "fcst", "ulcerative", "bgs", "airlift", "downlink", "endothelium", "suppresses", "weinberger", "appointee", "darcs", "hashes", "nuff", "anza", "borehole", "flt", "htdig", "hain", "nodules", "bowdoin", "tunable", "memcpy", "ucp", "panelist", "opr", "transsexuelle", "mailroom", "nijmegen", "medalist", "ryman", "gmos", "recessive", "putas", "abou", "encrypting", "enola", "rippers", "steyn", "redefinition", "infield", "reformat", "atchison", "yangtze", "zw", "peels", "preterm", "mindfulness", "hwnd", "stances", "synapses", "hashing", "gere", "lrg", "unmounted", "armoires", "archetypes", "behemoth", "stereophonics", "obsessions", "piosenek", "mhp", "thrower", "prana", "trike", "bmps", "distillery", "estudios", "ceredigion", "funnier", "rickard", "disengagement", "gratuita", "gifting", "lpga", "esse", "maglite", "iodide", "bakker", "hariri", "digitization", "fistula", "campaigners", "kel", "acca", "lauri", "rockwall", "kellysearch", "crawfish", "tigi", "symbolizes", "liverishome", "thay", "ecuadorian", "injectors", "natick", "mornington", "booklist", "centrist", "inria", "torbay", "femur", "methotrexate", "landslides", "separatist", "jelinek", "darwen", "aung", "outlooks", "matrimonials", "busybox", "openview", "lifeboat", "hara", "tuskegee", "aly", "ciprofloxacin", "gul", "reconfigure", "ahn", "instantiation", "trw", "spambayes", "shelburne", "programma", "lbl", "escalated", "lucasarts", "eastbound", "grits", "apoptotic", "pulldown", "redditch", "trendnet", "iupui", "nsr", "treehouse", "payson", "jaz", "hedrick", "lineman", "streamlines", "reengineering", "cleaver", "prodotti", "inflight", "tracksuit", "polyphonics", "skidmore", "catia", "overuse", "mge", "newsprint", "visakhapatnam", "miko", "hemorrhoids", "haulage", "torrie", "usergroup", "poms", "mostrar", "convolution", "endtime", "maura", "hefce", "abbie", "mfp", "galician", "golem", "conifer", "phenylalanine", "wareham", "nonpublic", "henk", "inversely", "beebe", "dancefloor", "eyelet", "immunologic", "chengdu", "beeswax", "lanham", "crosswalk", "lecken", "kitsch", "scand", "sweeteners", "farnborough", "jalandhar", "publi", "visioneer", "sprints", "reinhold", "emptive", "compa", "hrk", "faked", "manilow", "burnsville", "banyan", "opinionated", "quirk", "hnl", "caterina", "blinks", "fiore", "rationing", "tellers", "jrnl", "waterborne", "astron", "nity", "gree", "tradeoffs", "goldeneye", "occuring", "calientes", "recomend", "functor", "trowbridge", "niu", "mmvi", "obe", "gyro", "technews", "shampoos", "unfiltered", "sabha", "bundesliga", "enix", "communique", "cantina", "cafta", "polyamide", "selectmen", "lncs", "luge", "necromancer", "carcinomas", "subcontinent", "dodds", "seaton", "transcriptase", "balmoral", "specifier", "subsidize", "icl", "galaxie", "ldflags", "hiya", "nappies", "crippling", "xul", "nti", "aspherical", "misheard", "ecw", "sundial", "odom", "flaky", "schlesinger", "kryptonite", "typology", "hydrangea", "preamps", "aesthetically", "vrs", "alvaro", "htg", "heston", "ghia", "sophomores", "binh", "allrefer", "dcf", "scarica", "chorale", "ooc", "fredonia", "tiaras", "sdio", "distr", "dscp", "cogeneration", "flite", "harddisk", "kennedys", "telefono", "saleen", "bosco", "cyclase", "dreamcatcher", "csw", "braddock", "ethnically", "wbt", "morro", "smurf", "yeager", "gelding", "blurring", "deva", "fom", "mastectomy", "cassell", "sarnia", "jaundice", "lastest", "asterisks", "nympho", "jeffers", "hyun", "cooktop", "fddi", "aspergillus", "agric", "kdc", "medics", "mwh", "photosite", "gip", "affirmations", "variational", "socializing", "crankshaft", "isls", "mensaje", "tagline", "airframe", "beater", "preowned", "dietetic", "storedge", "redacted", "rittenhouse", "stereotypical", "klass", "fpa", "treks", "victimization", "parallax", "zante", "splices", "imagenes", "rete", "akita", "nonresidential", "hellman", "durex", "robison", "tof", "lpd", "seri", "freetype", "nexis", "ldv", "collegefuckfest", "aiu", "molloy", "carcinogen", "brs", "catalyzed", "heatwave", "yv", "spindles", "herron", "sita", "watchtower", "fabrizio", "unmanaged", "gtg", "preteens", "heme", "renumbered", "omr", "cowell", "hyip", "crossbow", "speciation", "tfc", "whidbey", "betta", "imt", "emmet", "jewelery", "lumina", "statistician", "symmetries", "observatories", "bupropion", "telligent", "fungicide", "aiptek", "crosstalk", "mello", "deepsand", "litas", "haart", "worx", "coyne", "adenovirus", "hakim", "countywide", "gnucash", "puree", "stott", "sdg", "mandeville", "portugese", "maurizio", "tachycardia", "aja", "eaa", "warrick", "cosine", "veb", "patong", "ballina", "summarise", "accrington", "rnas", "haddon", "xpc", "swath", "azeri", "wta", "ulf", "kleen", "cvm", "meehan", "jenifer", "infiltrate", "mapinfo", "knightsbridge", "renounce", "jesper", "blairsville", "copilot", "koontz", "fma", "northgate", "phobias", "metaframe", "nutritionist", "effector", "bumsen", "rcm", "hairstyle", "nesbitt", "diuretics", "cemetary", "iap", "discards", "basie", "discontinuous", "iqbal", "uncorrected", "stillman", "chloro", "bighorn", "heartbreaking", "xxxvogue", "leitrim", "prg", "justifications", "gimmick", "brasilia", "recordin", "abra", "trn", "zg", "acrylics", "recensione", "fouled", "wiretap", "dvrs", "vocs", "moniker", "scholes", "sharpeners", "calida", "nse", "calloway", "tpicd", "prods", "hfc", "ltda", "snk", "waypoints", "nrm", "underscored", "herrick", "starwars", "smbs", "unreported", "phelan", "guarani", "tampon", "easels", "sxga", "webform", "artista", "elkhorn", "ventana", "sublet", "chiltern", "antares", "peaking", "stichting", "forall", "menuitem", "marshmallow", "hawai", "nfa", "cals", "seltzer", "utep", "homeostasis", "swp", "akamai", "goodie", "milkshake", "thrasher", "switchers", "brussel", "hartwell", "aup", "electrolytes", "machu", "unshaved", "gor", "ilya", "maneuvering", "gaby", "softwood", "ajay", "croupier", "hausa", "compacts", "similiar", "elev", "egos", "rhinitis", "dreamhack", "aop", "beastialty", "whedon", "microcontrollers", "dreamhost", "overcrowding", "retractions", "pinging", "catheterization", "holton", "smears", "jmd", "melo", "exons", "mariachi", "igi", "bday", "reseal", "compositing", "oskaloosa", "coopers", "psone", "versione", "storys", "escher", "hotfix", "rmp", "gaynor", "biota", "dossiers", "arpt", "winsor", "hairdryers", "axon", "morrowind", "puter", "chubbyland", "deflation", "pdo", "dreyfus", "worsened", "darlin", "treme", "reconstituted", "aveda", "legge", "kasper", "mugler", "yorks", "ddi", "badlands", "deploys", "pols", "internets", "backstroke", "resultados", "spooner", "musicmoz", "toothbrushes", "bugatti", "abrahams", "comentarios", "brandywine", "callaghan", "diskettes", "resonate", "intellivision", "castelle", "advertises", "fives", "titusville", "plas", "royston", "nace", "digitaladvisor", "adesso", "geekbuddy", "lipoic", "hazelwood", "gravatar", "outfield", "carcinogenesis", "gdr", "phenolic", "incrementally", "pqi", "lenght", "acompanhante", "orm", "terrapins", "daria", "vander", "ccie", "mathml", "legalization", "allendale", "modernize", "orl", "gert", "restarts", "juris", "brookside", "streamer", "rollei", "accumulator", "picchu", "abril", "crocus", "zl", "citizenry", "accountemps", "swenson", "unfpa", "ewido", "centreville", "alisa", "kingsway", "erlangen", "offtopic", "laundromat", "redeemable", "maxillofacial", "slutsfree", "glp", "baumann", "revolutionaries", "chillin", "cardomain", "creamed", "tarp", "schering", "aten", "bikaner", "chimpanzee", "petco", "flurries", "rau", "miki", "meson", "parathyroid", "cmb", "analgesia", "nqa", "theyre", "elp", "altera", "jeddah", "nannies", "pawtucket", "bimonthly", "senna", "wardrobes", "surgically", "nongovernmental", "inge", "rmdir", "miso", "itx", "hydrostatic", "attrib", "cheaters", "hagan", "canlii", "leong", "koehler", "clostridium", "nerdy", "mcnulty", "megastores", "imperatives", "bpd", "archetype", "kkk", "oren", "halsey", "artic", "techworld", "vnd", "shamanism", "numara", "csx", "reiserfs", "roussillon", "cheadle", "crea", "alcorn", "ences", "bowser", "fizz", "rationalize", "karoo", "unearth", "biopsies", "inconclusive", "hookups", "herrin", "thermostats", "canoscan", "moldovan", "jamiroquai", "xerces", "subclause", "classname", "makefiles", "bettie", "sheesh", "birdwatching", "speakeasy", "harpers", "hayashi", "epitopes", "drivel", "blandford", "foci", "toppings", "cantilever", "biloba", "pth", "tweety", "initializes", "keck", "fisica", "macromolecular", "eic", "skagit", "kimura", "baca", "pareto", "lymphoid", "apacer", "forklifts", "pvs", "refuges", "jal", "habana", "stateless", "virtua", "cerebellum", "vtk", "breville", "statehood", "dct", "palgrave", "bledsoe", "insanely", "inglese", "aidable", "bubblegum", "aphex", "wroclaw", "rajkot", "taxidermy", "esubscribe", "cartagena", "juergen", "itravel", "pashmina", "gustafson", "jacqui", "salim", "barnum", "anthropologists", "glues", "undercut", "eci", "cstv", "watsonville", "roaster", "redbridge", "hypertrophy", "raza", "duron", "xserve", "wobble", "fergie", "bohr", "boilermakers", "counterstrike", "hinterland", "sufi", "milfcruiser", "afdc", "niggaz", "housewarming", "regenerative", "corre", "liquidators", "clegg", "bagless", "bleachers", "deodorants", "bacteriophage", "sheena", "prez", "brasileiros", "transect", "thumbshots", "soloists", "borges", "sinusoidal", "manpage", "lazer", "babys", "crossovers", "parsers", "lsl", "chuan", "hauler", "cataloguing", "oralsex", "storia", "fotosearch", "usfs", "leappad", "interesdting", "headroom", "fortnightly", "yerba", "kuta", "clearfield", "huggins", "washoe", "srg", "stabilisation", "sayers", "publis", "intangibles", "tameside", "summerville", "uvm", "whalen", "kusadasi", "hcp", "flak", "ual", "cubed", "yuck", "concacaf", "textbox", "erythrocytes", "dinky", "divo", "injunctive", "honed", "coincidentally", "kolb", "kruse", "microm", "portugues", "pil", "tht", "deathmatch", "publica", "mde", "pollination", "ews", "synchro", "etobicoke", "midori", "chutney", "jrs", "naturopathic", "dermatologist", "thumbnailpost", "casein", "chillout", "stefanie", "chewable", "direc", "quintana", "normals", "villeneuve", "scrum", "everyman", "lopes", "eastland", "footballers", "xviewg", "metropole", "swarthmore", "multicenter", "fett", "sagebrush", "convenor", "pco", "proteome", "warheads", "radiologist", "liao", "westview", "optus", "medicinenet", "hitches", "britten", "palettes", "vma", "depauw", "gunman", "agassi", "panoz", "uwb", "movi", "scanlon", "nutri", "mitra", "guilders", "filmpje", "indexer", "ofdm", "ullman", "coachella", "localised", "recom", "downgraded", "ncep", "lalique", "weill", "jeez", "varadero", "chicco", "athabasca", "redd", "azusa", "unbuffered", "phoning", "rtty", "spacey", "fmla", "albatron", "breakpoints", "sperma", "aran", "ciencias", "mortage", "legato", "agarose", "avoca", "reservados", "russellville", "oneonta", "badass", "cfi", "pesca", "carvalho", "nass", "mainpage", "mccord", "kellie", "allstars", "darwinism", "tariq", "workarounds", "omia", "flannery", "rediff", "lecithin", "okmulgee", "lates", "recertification", "phosphorylated", "fusing", "nerc", "avermedia", "abuser", "sevens", "mukherjee", "anatomic", "watercooler", "gatsby", "litho", "mischa", "bangla", "menard", "rattling", "artes", "vacaville", "teo", "enermax", "hypo", "hadron", "gosford", "legalize", "millbrook", "epinephrine", "transom", "liebherr", "mwc", "biel", "vcu", "mils", "oreal", "picayune", "rabanne", "gorbachev", "norelco", "playset", "massacration", "frontman", "garvin", "autologous", "wiretaps", "duggan", "jrc", "chantelle", "liddell", "enraged", "gir", "adrien", "blotter", "jq", "menubar", "gagnon", "sitters", "rdc", "jod", "meteo", "cept", "bih", "programing", "humpback", "fournier", "alquiler", "reprocessing", "chaz", "bartending", "sshd", "opodo", "patiala", "jaques", "glc", "fantastico", "schiffer", "preclinical", "sfn", "conklin", "wheelers", "deductive", "cunard", "pygmy", "jewett", "environnement", "biddle", "basu", "tachometer", "bks", "nonproliferation", "cacharel", "elysees", "orchestration", "adipose", "usu", "freeservers", "potting", "uncomplicated", "piaa", "progs", "ues", "tobey", "sife", "wenzel", "debi", "baez", "tana", "gedcom", "uvc", "puccini", "seca", "ligation", "deconstruction", "inductance", "topicparent", "zanaflex", "medicus", "dmitri", "reallocation", "kalispell", "haight", "teleport", "skylights", "rehabilitative", "swab", "latimer", "boombox", "prorated", "bbr", "pansy", "reassignment", "hydrodynamic", "confirmations", "postulated", "unlabeled", "tosca", "brentford", "integrin", "ranlib", "differentiates", "skelaxin", "velo", "multiprocessor", "tabla", "celluloid", "identically", "saddlery", "whiteside", "eurail", "endicott", "dingo", "sessional", "pagination", "webtopiclist", "infopop", "accc", "iie", "burl", "truncate", "hightower", "polygraph", "allianz", "digress", "overseen", "scg", "thotlib", "bluetake", "cowes", "mailorder", "fetuses", "lowndes", "shr", "childbearing", "aaj", "crayfish", "minotaur", "heist", "mayne", "repaint", "asq", "contr", "zool", "spastic", "suprised", "illuminati", "piezoelectric", "rfps", "cutouts", "ilc", "vinton", "enw", "meir", "tanita", "tpr", "subsidised", "arcsec", "wrestlemania", "fhs", "getter", "mimics", "watermarking", "aftercare", "coombs", "wolfson", "sefton", "compu", "bonaventure", "appz", "ecl", "gview", "temperatura", "diastolic", "defaulted", "cesarean", "dialling", "rescinded", "chitika", "tsvn", "discoloration", "chelan", "morel", "iles", "kashmiri", "stacie", "collages", "enabler", "ogo", "mowbray", "schuler", "finlay", "gezondheid", "ylang", "lufkin", "tenge", "acosta", "turbotax", "herbals", "moderates", "piotr", "chairmanship", "covad", "comunidad", "moores", "hurghada", "malformed", "mks", "seatbelt", "dumbbell", "chasers", "hamer", "sherwin", "redissemination", "stine", "mcmullen", "skopje", "gpx", "supplementing", "lowrider", "liaise", "citric", "opentype", "jpmorgan", "nitride", "achievers", "unbonded", "cowen", "subdir", "rehearing", "balmain", "crissy", "nake", "wtp", "scn", "mendota", "makoto", "alloc", "ultradev", "viaggio", "cig", "scipy", "depositary", "redhill", "caveman", "nunez", "starfire", "whitlock", "pelletier", "lanark", "yada", "sandro", "jervis", "placemats", "pathologic", "darden", "bunnyteens", "gordo", "otitis", "ordinators", "bma", "leningrad", "harkin", "eatery", "peony", "economia", "cytosolic", "glycerin", "tailings", "shirtless", "darla", "rayman", "boardhost", "frontera", "crumpler", "hargreaves", "mkportal", "nucleon", "pkc", "dov", "ndt", "hideout", "lrs", "calcite", "fpu", "fts", "spud", "mang", "nology", "luiz", "belden", "lense", "hendrick", "publicati", "unverified", "untapped", "vario", "pmsa", "recensioni", "xq", "tev", "batty", "briscoe", "dwr", "fingernails", "ocarina", "camus", "mackinac", "itis", "saks", "hahahaha", "romenesko", "croc", "ftes", "keyspan", "aoe", "reposted", "cgs", "moduli", "mra", "ery", "payoffs", "tpi", "maywood", "buchan", "roberson", "defrost", "ecr", "coleraine", "arianna", "biomarkers", "consecutively", "bongs", "loox", "idrc", "pretzels", "anmelden", "vdd", "underdeveloped", "mktg", "yancey", "feta", "peres", "assemblyman", "enforcer", "suk", "customarily", "cillin", "jett", "bility", "mingw", "ltv", "sarees", "aaas", "bloopers", "framemaker", "piscataway", "cytoskeleton", "wuhan", "maximising", "hoists", "fichier", "amitriptyline", "sgr", "scrubber", "gratuites", "reentry", "playtex", "communi", "buisness", "freepics", "kbit", "marmaris", "logarithm", "granola", "inefficiencies", "monocular", "kankakee", "tandy", "ferrite", "formato", "gaysex", "dbus", "autorun", "nivel", "ayatollah", "undifferentiated", "flowershop", "evp", "vazquez", "reaffirm", "dynix", "pictur", "collette", "oooo", "dian", "doxycycline", "weblogging", "cluttered", "sportsmanship", "relievers", "hwa", "vikram", "booktopia", "lampoon", "airtight", "firming", "mrtg", "shoreham", "annular", "hallmarks", "sparking", "anale", "ikon", "lanl", "gfdl", "commandline", "usfws", "adic", "nns", "pmd", "rfd", "ized", "rsd", "guardianfilms", "gryffindor", "ror", "blogspot", "thao", "obsolescence", "linguists", "blogads", "xinjiang", "recode", "onus", "heinlein", "oks", "kimble", "reservists", "blaupunkt", "statins", "descendancy", "obsoleted", "phim", "betacam", "mlp", "rearrangement", "disulfide", "myer", "bypassed", "onefit", "interp", "neutralizing", "tirana", "occupiers", "kingpin", "bnm", "relaying", "bga", "amilo", "overlord", "daffodil", "ukiah", "devotionals", "figueroa", "imd", "warenkorb", "dfo", "habib", "archivos", "lymphocytic", "kala", "deering", "undetectable", "infact", "vermeil", "silage", "ejaculate", "smithers", "gaeilge", "swr", "goudy", "inkl", "bilge", "texto", "satb", "prolactin", "bejeweled", "bastrop", "sunbelt", "chewy", "paginas", "decimation", "coen", "hypotension", "stateful", "pypy", "busby", "gaither", "tta", "patterning", "rdp", "cheep", "ldr", "denbighshire", "wittgenstein", "preexisting", "coffeemaker", "braveheart", "pbr", "ctt", "ginsburg", "superconductivity", "eurostat", "kyi", "amygdala", "corrie", "lonestar", "dueling", "challengers", "reshape", "photoset", "electrolytic", "hasegawa", "gainers", "calidad", "tinkerbell", "aldara", "poway", "physiologic", "optimality", "riyal", "hwn", "dremel", "cerebellar", "dth", "dancin", "summarises", "choy", "heartwarming", "unwin", "strider", "eastlake", "hyp", "cannonball", "mathcad", "skipton", "patently", "bitmaps", "biopharmaceutical", "analytically", "sll", "aramaic", "bogged", "incremented", "homem", "valorem", "publicist", "acb", "muzik", "tempera", "recyclers", "pillsbury", "seach", "intermediation", "lacing", "aggregating", "soundboard", "teapots", "rif", "neb", "archivo", "smartdisk", "boho", "titration", "tschechien", "sef", "boney", "oxidoreductase", "lino", "lcm", "skimmer", "mccullagh", "gats", "extrinsic", "erlbaum", "sketchy", "gooseneck", "bof", "tiffin", "pacer", "battersea", "noname", "gung", "asv", "sasaki", "outboards", "owings", "xue", "tbi", "interlaken", "kampala", "jcc", "tentec", "kilpatrick", "pixmap", "bitty", "pge", "dtmf", "prosser", "ojai", "stethoscope", "monotonic", "ebookmall", "perot", "medien", "kahuna", "washroom", "jacoby", "neurotransmitter", "intercity", "broadview", "micros", "straus", "flack", "amortisation", "pfu", "tonite", "vonnegut", "distros", "teething", "subsector", "mechanistic", "orbis", "flawlessly", "lidar", "frp", "whatnot", "tripartite", "studebaker", "cartographic", "rwd", "preconditions", "gardenia", "adland", "miembro", "irland", "linwood", "biotic", "kowalski", "marymount", "zathura", "highgate", "fudforum", "takeshi", "taro", "mpd", "crowder", "socialize", "scunthorpe", "deepwater", "clickbank", "ruleset", "viscose", "perso", "novica", "manhunt", "pavers", "elks", "aalborg", "occupier", "lunchbox", "euchre", "proporta", "mitosis", "paychecks", "bellaire", "suitcases", "postel", "mdg", "tutu", "paisa", "wbs", "slidell", "psb", "vocab", "mmhg", "clocking", "sks", "hemorrhagic", "plein", "hitchens", "fone", "crores", "classifiers", "novosibirsk", "greenwald", "rtt", "copacabana", "videorecording", "kickstart", "biggie", "neutralization", "pvm", "ksu", "kph", "pdl", "preprocessing", "particulates", "skylark", "llandudno", "squirrelmail", "oviedo", "pauly", "bromsgrove", "starsky", "prion", "simfree", "pennywise", "grier", "apd", "diphosphate", "lbj", "interscan", "pipers", "tronic", "surfside", "tsunamis", "dordogne", "hotlinks", "neely", "jeri", "proteasome", "transl", "goulburn", "vtkusers", "energizing", "butane", "stf", "bluebonnet", "htf", "stmt", "inked", "novatech", "iid", "elektronik", "maturities", "nameserver", "tomlin", "jigsaws", "distorting", "kamikaze", "quaid", "juggernaut", "gordonii", "latrobe", "bboard", "consultancies", "handley", "gramercy", "ccb", "derrida", "mgb", "bioavailability", "ucas", "tdr", "nochex", "lilith", "foreplay", "waas", "mccaffrey", "privatized", "uncovers", "gargoyle", "stockists", "ostream", "lenmar", "mamiya", "mildura", "insn", "bodega", "hardworking", "dockets", "dedham", "ered", "stomping", "kottayam", "carle", "eest", "pondicherry", "mpr", "fiddling", "panamanian", "buyitnow", "bungie", "goya", "superclass", "categoria", "buyback", "uhh", "gigolo", "tmj", "vangelis", "kingwood", "arn", "dorling", "maximization", "wls", "absenteeism", "quantifiable", "pion", "sliver", "leptin", "sxsw", "bummer", "isometric", "retraction", "amboy", "dunning", "grinch", "okeechobee", "shouldnt", "teeniefiles", "gcj", "whatcom", "bbe", "unb", "sws", "hydrocortisone", "cerebrospinal", "susana", "rumba", "bouchard", "yesteryear", "orthotics", "spunk", "superdrive", "jolene", "jalapeno", "propellant", "touchpad", "raisers", "mdma", "confocal", "jochen", "caddo", "dcl", "expatica", "bitstream", "igo", "bartenders", "refilling", "modell", "keighley", "rangefinder", "nostdinc", "oficial", "lanparty", "monza", "sportfishing", "rlc", "exacerbate", "beckwith", "anemone", "equivalently", "duxbury", "zhen", "cordele", "ebel", "ninjas", "milla", "incase", "mva", "zinn", "comercial", "segfault", "wisden", "maingate", "costner", "powerpuff", "gsfc", "lycoming", "regula", "lastminute", "winbook", "talladega", "optiplex", "syrups", "chiles", "estimations", "jaxx", "cercla", "slb", "absolutly", "guesswork", "tradeshows", "javascripts", "irritant", "warcry", "optura", "combinatorics", "graceland", "encino", "disconnects", "castello", "monolith", "mct", "geos", "hls", "intrusions", "glories", "prelims", "kanawha", "yglesias", "squibb", "memset", "edirol", "mandala", "alexey", "homecare", "dugan", "calmodulin", "ameritech", "umar", "timepieces", "nonfarm", "anklet", "wsp", "byrnes", "determinism", "addams", "moeller", "normality", "wiesbaden", "deflect", "taoism", "ikeda", "chakras", "samara", "unsung", "gargoyles", "massaging", "ajmer", "lossy", "mitogen", "hurwitz", "gulliver", "bul", "aerodrome", "darkside", "intensification", "raya", "ruger", "rba", "gennaio", "seaford", "ungarn", "vincenzo", "warszawa", "dillinger", "bandon", "odell", "riddim", "perforation", "cida", "annika", "uart", "tryout", "proxima", "fst", "lladro", "parameterized", "assfucking", "manageability", "crystalspace", "pandas", "choiceshirts", "taa", "servertime", "fmii", "nepean", "tracklist", "indio", "tino", "bernal", "hbr", "homogenous", "policyholder", "distributional", "tidewater", "ngfl", "erlang", "starz", "follicular", "grupos", "oq", "gonorrhea", "blaqboard", "listeria", "afaik", "lawmaker", "datatypes", "arie", "flavorful", "apu", "fyrom", "refunding", "subcontracts", "moissanite", "finchley", "mediates", "polyacrylamide", "bizzare", "standish", "conus", "competences", "jtag", "compatability", "millville", "coches", "biathlon", "mico", "moxie", "biff", "paulette", "chania", "suu", "backspace", "aways", "fugue", "dissonance", "medicated", "initio", "bestality", "hypothermia", "carman", "timberline", "defenselink", "sunfire", "mckean", "smithville", "mtf", "rebooting", "storytellers", "lamisil", "morphing", "chua", "sevenoaks", "haplotypes", "fiskars", "speer", "lathes", "refillable", "yearbooks", "engin", "kyushu", "tricycle", "penne", "amphetamines", "systemworks", "keele", "afficher", "trillium", "nena", "bulfinch", "transients", "hil", "concedes", "swot", "howarth", "andante", "farmingdale", "bitching", "overtly", "rateitall", "tubulin", "gmx", "bannister", "omer", "humanoid", "infringements", "stylebox", "tiredness", "branden", "panning", "wasabi", "morecambe", "hawkesbury", "cocksucker", "sak", "kilobytes", "breather", "slu", "adjudicated", "methylene", "wholeness", "gnue", "gynecol", "uas", "nacogdoches", "simcity", "hummingbirds", "garnier", "kath", "cppflags", "educause", "cotswolds", "heifers", "sephora", "joao", "tremblay", "gynaecology", "vertebrata", "blackcomb", "ffxi", "ottomans", "rodin", "ecac", "actu", "nde", "lockable", "dslr", "evaporator", "antihistamines", "uninstaller", "airliner", "bibdate", "unwrapped", "dumbass", "brc", "arrhythmias", "netweaver", "sateen", "rtos", "eip", "moteur", "fotopage", "uhm", "birr", "autosomal", "protec", "purim", "rhododendron", "canadienne", "profes", "pjm", "ddl", "underlay", "granule", "setfont", "cookin", "gillett", "rocklin", "welland", "ageless", "nuernberg", "bleep", "emedia", "regensburg", "gama", "xfree", "sills", "berwyn", "howler", "hardtop", "carded", "lipo", "zandt", "reformatted", "internment", "dominick", "mahmood", "avent", "swaying", "igloo", "ambler", "voyeurism", "bachman", "referential", "hydrating", "adaware", "dewpt", "repressor", "galego", "neilson", "scorecards", "newlines", "arcana", "aau", "transworld", "nmc", "discoideum", "wairarapa", "fogerty", "beit", "heidegger", "backhoe", "leftists", "quinnipiac", "mannequin", "malloy", "enviroment", "mako", "anl", "noyes", "eprom", "trashed", "ryanair", "betsey", "rath", "lobbies", "silvertone", "cupcakes", "artest", "netfilter", "voldemort", "oldenburg", "bazooka", "gerbera", "cient", "psg", "mittal", "camellia", "pronouncements", "fonseca", "rescind", "asps", "asheron", "mance", "viggo", "qar", "hepatocellular", "styrofoam", "malfunctions", "lindner", "linc", "salida", "dunwoody", "dioxins", "shaq", "epmi", "excavator", "adolescente", "redcar", "urac", "oncolink", "cartoonstock", "cwm", "bibb", "gymnast", "inexpensively", "isystem", "evol", "nmda", "hazen", "davide", "forceps", "motherfucker", "ccw", "mainframes", "sapulpa", "costas", "searcy", "labelle", "adjoint", "mclennan", "killa", "lipscomb", "monocytes", "requestor", "cyn", "splint", "digitech", "mrnas", "llamas", "multifaceted", "gamez", "voorhees", "boas", "solvay", "thorsten", "yeo", "terk", "privatevoyeur", "coolmax", "rebooted", "toskana", "unidiff", "radionuclides", "tilburg", "decoys", "pariah", "offerors", "wmi", "darnell", "meaty", "gages", "zapata", "supt", "bartleby", "vermeer", "pinstripe", "hemodialysis", "artis", "tov", "amateursex", "dailey", "egret", "cornhuskers", "fontconfig", "jordans", "guildhall", "hasselblad", "piney", "unbundled", "kusastro", "onclick", "functioned", "toca", "houseware", "kdebase", "ysgol", "griggs", "nicd", "mdp", "umi", "fullmetal", "pappas", "aransas", "tacacs", "movem", "abundances", "oulu", "fractionation", "cdb", "blitzer", "ruc", "karte", "cashflow", "retouching", "brattleboro", "eprops", "cya", "ubud", "fmri", "infosys", "displacements", "jerez", "dhc", "ielts", "fellas", "mno", "picturemate", "unicorns", "playroom", "dandruff", "albers", "discworld", "leaved", "existance", "unionists", "bloodlines", "follett", "irn", "ramsar", "woodburn", "efs", "auk", "lockergnome", "oocytes", "armadillo", "bsr", "captiva", "rinehart", "brom", "tlp", "gensat", "filers", "lle", "retrievers", "pacifier", "thurmond", "stroudsburg", "dominik", "vivek", "nla", "inmarsat", "unprofessional", "hydrographic", "mcadams", "wailea", "nforce", "scones", "paediatrics", "nzdt", "ilog", "finkelstein", "candylist", "appalachia", "marist", "musgrave", "vakantie", "varanasi", "yushchenko", "relativism", "jardine", "schuylkill", "ericson", "schweizer", "stravinsky", "keds", "ananda", "nsx", "jud", "tripwire", "aves", "rediscovered", "headstone", "depleting", "junkyard", "perma", "copthorne", "multitasking", "distrib", "byob", "tunstall", "hager", "spearheaded", "nacho", "underlining", "heshe", "jcr", "catalogued", "rawlins", "springville", "differentially", "powwows", "tsui", "inductor", "chalabi", "encephalopathy", "grote", "ebs", "raipur", "custodians", "guardia", "jlo", "khalil", "overstated", "webtv", "insulators", "kass", "weds", "servizi", "quicklink", "qso", "dumbest", "prowler", "loadings", "epos", "sizzle", "desalination", "copolymer", "duplo", "lawnmower", "skf", "nontraditional", "piet", "ghaziabad", "dredged", "vct", "marcasite", "kamp", "scoliosis", "arwen", "artie", "fifths", "austell", "fernie", "carport", "dubbing", "weblist", "maximo", "bax", "searls", "scuk", "uiuc", "crustaceans", "yorkville", "wayback", "gcg", "ural", "calibur", "girona", "haig", "perk", "zander", "samir", "freee", "avia", "developement", "pptp", "beac", "urbanized", "trentino", "marzo", "dfl", "lpa", "jiri", "mccollum", "affymetrix", "bevan", "ichiro", "dtt", "cofe", "loyalist", "verma", "daybed", "rimes", "quimby", "barone", "thomasnet", "koeln", "endocrinol", "evaporative", "gwybodaeth", "preshrunk", "hezbollah", "naga", "mmu", "februar", "finalizing", "printhead", "blanton", "zellweger", "manhole", "eroding", "emap", "searchgals", "typewriters", "tabasco", "cpb", "coffman", "lsm", "rhodesia", "halpern", "purebred", "netapp", "masochism", "millington", "bergamot", "shutout", "willson", "chown", "prosthetics", "proms", "zk", "karol", "underlines", "mosh", "bakelite", "kirkby", "intermountain", "holtz", "prensa", "vegf", "galesburg", "lba", "klondike", "webstat", "reeder", "neoplastic", "applesauce", "fibreglass", "kenji", "gluon", "feisty", "hynes", "clogging", "nonverbal", "etoile", "orangeburg", "ladybird", "concat", "milliken", "byproduct", "specializations", "chaintech", "swa", "porterville", "kbyte", "bizwiz", "congruent", "boehm", "selva", "rainey", "aphis", "rfs", "tarantula", "egovernment", "udf", "snuggle", "shang", "batten", "inop", "lough", "vigrx", "trios", "bvi", "unallocated", "nau", "condiciones", "wss", "modi", "componentartscstamp", "dyk", "maldon", "xantrex", "dlg", "edx", "karzai", "navi", "brockport", "cort", "softgels", "engravers", "wether", "hangin", "handicaps", "associazione", "khu", "nfb", "dohc", "clu", "capps", "vijayawada", "griffon", "biologics", "bluescript", "instantiate", "paperweight", "dilation", "izzy", "bedspread", "knudsen", "jabberwacky", "kiowa", "overtones", "gsr", "faithfull", "quezon", "pragmatism", "rct", "usi", "wiretapping", "fabricate", "exabyte", "pitty", "kcl", "pendragon", "opment", "kva", "meeker", "bootlegs", "jimbo", "jarrow", "mullin", "gridsphere", "activesync", "macwarehouse", "vela", "wikiusername", "hessen", "eyelash", "gob", "antifreeze", "beamer", "feedblitz", "harvick", "clicker", "immobilized", "dalmatian", "hemodynamic", "reshaping", "contessa", "elc", "stagecoach", "googling", "maxpreps", "jessup", "faisal", "ruddy", "magazzino", "jippii", "academe", "fjord", "flybase", "alpena", "psl", "junebug", "grissom", "shiki", "knockoff", "kommentar", "westpac", "gosling", "novosti", "mendel", "adtran", "wasserman", "transexuais", "aslan", "hoge", "fouling", "macfarlane", "hideshow", "trailhead", "edg", "bayshore", "preprints", "grs", "duction", "anesthetics", "nalgene", "iaf", "khao", "berhad", "savedrop", "magnifiers", "chitty", "goldwater", "lesbiens", "jumpin", "payables", "victimized", "tabu", "inactivated", "respirators", "ataxia", "mssql", "storylines", "camaraderie", "carpark", "internetworking", "gawk", "planing", "termini", "avaliable", "scho", "buysafe", "hds", "iad", "pleasantville", "fabrications", "wtd", "loh", "jamshedpur", "denture", "gaudi", "bluefield", "telesales", "vpc", "ppr", "jetsons", "protagonists", "fjd", "anoka", "boliviano", "curtiss", "wagoner", "storyboard", "trol", "rajiv", "xfce", "axons", "dmso", "immunotherapy", "namorada", "neva", "zakynthos", "weitz", "quercus", "nhhs", "amara", "microcosm", "raia", "bizarro", "mehmet", "christos", "categorically", "autoresponder", "aad", "adolfo", "welwyn", "nzlug", "vci", "catnip", "whittington", "sorel", "boned", "vittorio", "seta", "tomasz", "annes", "tonka", "nath", "toth", "tomaso", "ascap", "livedoor", "schlampen", "altamonte", "scotweb", "pillowcases", "medlineplus", "ambiente", "masterson", "nlc", "fibonacci", "bridgeton", "wmds", "tyrrell", "junky", "ballasts", "jbuilder", "cnf", "nagano", "hardman", "roadmate", "interleaved", "peirce", "pusher", "egm", "thetford", "rtm", "gnostic", "coreutils", "uninstalling", "heft", "ambivalent", "startpage", "difranco", "mmi", "typist", "estudio", "seiu", "moisturizers", "cardiol", "lamination", "bibi", "mof", "carpe", "scottie", "blackrock", "pons", "fistful", "somethings", "itl", "staffer", "rhiannon", "linspire", "cornucopia", "newsfactor", "countering", "worldpay", "catan", "almaty", "appraise", "runny", "braunfels", "reorg", "icg", "javax", "sema", "albumlist", "heraklion", "stressors", "shg", "collocation", "mccauley", "vesicle", "stuffers", "prego", "ichat", "lubricated", "sinha", "pharmacia", "aggiungi", "shakin", "cyr", "vce", "vigilante", "gauging", "lipase", "constabulary", "biochim", "epcot", "cricketer", "defibrillator", "rcn", "drooling", "stoll", "staines", "tnd", "adversarial", "tbn", "softwa", "pbc", "ptp", "demonstrator", "boingo", "voyeurs", "aoki", "banerjee", "hondo", "hysteresis", "workspaces", "campion", "lugano", "mobilisation", "pruitt", "foals", "aciphex", "sculpt", "iskin", "soledad", "bagpipes", "devaluation", "beastyality", "segway", "mineralization", "grc", "trafficked", "stedman", "gurl", "mcginnis", "dvips", "klee", "garber", "wizardry", "fervent", "headrest", "dermatol", "chaperone", "huygens", "eurythmics", "transboundary", "reclassified", "delusional", "tosh", "pimpin", "husqvarna", "faxpress", "tinkering", "unneeded", "babar", "pago", "hussey", "officeconnect", "mickelson", "leukocytes", "wesnoth", "hydride", "npp", "zondervan", "pele", "opeth", "kottke", "hometwat", "ogm", "mauna", "kilns", "bpi", "kst", "harbin", "assemblers", "karst", "wada", "selfless", "gynecologists", "enewsletters", "willi", "bip", "nami", "guestbooks", "sharjah", "aguirre", "krug", "dongs", "drv", "schoolers", "kidnappers", "lemmon", "ilan", "gnutella", "deutsches", "liquidator", "evers", "uniross", "grassley", "stowaway", "brainer", "organiza", "cellog", "channeled", "tastings", "deccan", "aiaa", "neurosciences", "factorial", "librarianship", "texmacs", "vocabularies", "blasters", "livable", "tifa", "nant", "libjava", "ramblers", "counterproductive", "catskill", "environmentalism", "ufs", "gwalior", "ubl", "kilts", "balenciaga", "alamitos", "newsburst", "septum", "animators", "signifi", "neoclassical", "mediaeval", "piezo", "escudo", "pineville", "botanica", "petter", "adenine", "fren", "lysis", "pastas", "helicase", "dredd", "efinancialcareers", "diehl", "kiley", "kwd", "ihousing", "yoruba", "malformations", "embarassed", "alexia", "checkup", "commited", "nanotube", "becta", "trados", "portofino", "lifesaving", "danh", "sctp", "tayside", "rani", "playmobil", "tualatin", "razorbacks", "ionized", "perodua", "trg", "subst", "cpap", "molex", "vitara", "fostex", "zmk", "placental", "parses", "saic", "newsmakers", "dshield", "homocysteine", "juego", "metamorphic", "cld", "otcbb", "moet", "rado", "watchguard", "sugarland", "singularities", "trophic", "ekg", "dacia", "reversi", "insemination", "houma", "quetzal", "shoshone", "linder", "homing", "highbury", "eizo", "podiatrists", "conch", "crossref", "hda", "poppins", "chaim", "cytotoxicity", "xugana", "weevil", "integrations", "clarkston", "ritek", "morgue", "unpatched", "kickers", "referers", "kitt", "servizio", "biosecurity", "leviton", "twl", "etx", "electrification", "peninsular", "juggle", "yeshiva", "sociologist", "wsc", "sartre", "finitely", "spect", "kathie", "ards", "corny", "brazilians", "lundy", "histocompatibility", "woolwich", "irp", "handango", "cosgrove", "sulfuric", "renderings", "msh", "trt", "ldcs", "lect", "kollam", "edgerton", "bulleted", "acupressure", "thotbool", "hiawatha", "nhfb", "ahps", "operon", "ugandan", "paton", "suspends", "categorie", "stratigraphy", "howes", "surfed", "steins", "babu", "andrade", "agarwal", "ncd", "surefire", "cori", "planetside", "snorkelling", "waterworks", "luk", "headlamps", "anaesthetic", "isomerase", "fdisk", "dunstable", "awb", "hendon", "accreditations", "doral", "nta", "macadamia", "takin", "marriot", "bfs", "disqualify", "ttp", "sixt", "beazley", "rashes", "najaf", "hwg", "bukit", "antiaging", "psychol", "dfe", "bedingfield", "equated", "swig", "lightscribe", "unionist", "lytham", "clocked", "duced", "complementing", "keycode", "pennants", "camas", "eamon", "zaurus", "qnx", "srx", "delux", "uli", "grrl", "bookie", "boggling", "skewers", "richman", "photodisc", "oto", "uav", "cnhi", "umberto", "bautista", "zooms", "newsdesk", "roadblocks", "klum", "goh", "goebel", "pou", "homophobic", "diamondback", "foosball", "rept", "spurgeon", "lumberjack", "marv", "epidermis", "mobley", "oktoberfest", "photoshoot", "rhinoplasty", "peptic", "bauman", "tannins", "psychotropic", "tilley", "malaya", "hypothalamus", "shostakovich", "scherer", "tsh", "manipulator", "calabasas", "coromandel", "pliner", "timestamps", "pango", "edexcel", "snc", "nim", "gwaith", "breaststroke", "oroville", "mitsumi", "ichi", "mobius", "deductibles", "nikola", "berrien", "peacemaker", "ilia", "bookmarked", "letterbox", "halal", "agl", "noor", "noll", "filenet", "freeland", "kirsch", "roadhouse", "charted", "microtubule", "cubicles", "blau", "ladysmith", "gatti", "ection", "switchable", "mcminnville", "hcm", "interactives", "altus", "phospholipase", "transformative", "samuelson", "completly", "anhydrous", "germplasm", "gradzone", "gdansk", "jenner", "parkin", "unmoderated", "wagers", "beliefnet", "hotbar", "canis", "ravioli", "enrolments", "walling", "marblehead", "dvt", "cameltoes", "ribosome", "carnivals", "srf", "speedman", "instrume", "moffett", "augustana", "topsoil", "latifah", "isomers", "pettit", "lemans", "telescoping", "gamedesire", "koha", "balancer", "picton", "underhill", "dinghies", "chooser", "argentinian", "ahrq", "apparels", "timescales", "cef", "athenian", "mcewan", "sexshop", "zermatt", "mha", "geert", "bugging", "trento", "lyndhurst", "nex", "wdc", "symbiotic", "wds", "dyslexic", "nomic", "tecnica", "mmap", "wishbone", "mcad", "prm", "bashir", "licenced", "larissa", "collab", "squirter", "infecting", "penetrations", "protea", "argento", "polyvinyl", "ganglion", "ruud", "bunt", "solgar", "lipper", "chimpanzees", "jdo", "testcases", "tda", "hamza", "meeks", "athol", "centimeter", "excreted", "paros", "azzaro", "nappa", "sirna", "sexvideos", "nonprescription", "lyd", "firework", "crlf", "localize", "tablatures", "jndi", "vigorish", "dcd", "schulte", "gioco", "chested", "universit", "thrivent", "jie", "hydrothermal", "smalley", "hoke", "ramen", "coleoptera", "intensifying", "copyleft", "llb", "outfitted", "khtml", "chatterjee", "adoptee", "augusto", "resnick", "intersects", "grandmaster", "nusa", "deadball", "cksum", "historiography", "amistad", "bellacor", "trcdsembl", "campagnolo", "downgrades", "sexbilder", "scrapping", "pdoc", "haskins", "bullhead", "rhett", "mimosa", "wildfires", "ellyn", "hryvnia", "halved", "cfml", "vatu", "ecademy", "dolore", "shauna", "multilink", "funchal", "ximian", "bergamo", "quarterfinals", "hobbyist", "reardon", "homozygous", "glyn", "popset", "torsten", "puller", "mathworks", "namm", "dena", "mdksa", "dcom", "danskin", "bexar", "dinning", "pfd", "misfit", "hamden", "hardie", "redfield", "scotus", "quotable", "cranfield", "asides", "beacuse", "musicstrands", "kla", "unternehmen", "teg", "roseland", "pgbuildfarm", "volo", "zirconium", "noelle", "httpwww", "agement", "guan", "tcf", "opencube", "shao", "mears", "rectification", "omc", "duisburg", "pows", "hsphere", "entertai", "keeler", "highpoint", "stratospheric", "newegg", "preeminent", "nonparametric", "mistral", "percocet", "zeroes", "kth", "divisor", "wanderlust", "ugc", "cleat", "decentralisation", "shite", "verna", "immediacy", "trak", "swingin", "eckert", "casco", "olivet", "resi", "bergeron", "felonies", "gasification", "vibrio", "animale", "leda", "artesia", "casebook", "nhc", "gruppo", "fotokasten", "yaw", "searing", "detonation", "gse", "approximating", "hollingsworth", "obasanjo", "pinewood", "tangential", "ridgway", "headhunter", "ero", "sharkey", "clwyd", "bretton", "bustier", "apologizes", "manoj", "muskogee", "pismo", "resortquest", "diskeeper", "lathrop", "pala", "glebe", "xterra", "pml", "seahorse", "geneve", "wpointer", "softener", "breaching", "maelstrom", "prioritizing", "jsa", "annunci", "modelos", "seraphim", "raymarine", "dodgeball", "munity", "assfuck", "alopecia", "singaporean", "nowak", "keyboarding", "beachside", "sparco", "robeson", "navbar", "fsr", "contribs", "lineages", "sumitomo", "dermatologists", "marbled", "probleme", "irv", "blackmore", "bothersome", "draconian", "troup", "approver", "pcgs", "saville", "srinivasan", "poldek", "perfor", "articular", "gwynn", "trackball", "asis", "mansell", "unf", "werewolves", "magazin", "sible", "vla", "autocorrelation", "waltrip", "mombasa", "schroder", "alachua", "hks", "duns", "ornl", "cabrio", "guanine", "bridgetown", "rhsa", "luka", "cpf", "roadstar", "creditcard", "frf", "michaela", "willett", "brews", "baskin", "hamel", "zoids", "semantically", "cagliari", "eggert", "valkyrie", "airlie", "salas", "gnomemeeting", "benji", "nent", "cashew", "unproven", "myocardium", "kap", "gini", "prek", "cypher", "paraiso", "nightline", "cursive", "organises", "hydrated", "csk", "schwanz", "martinsburg", "liguria", "hsieh", "forties", "pgc", "sayre", "photosynthetic", "pips", "tongued", "lifetips", "walcott", "cname", "unapproved", "emm", "nematodes", "jaclyn", "kell", "gremlins", "bolero", "togethers", "dicom", "paroxetine", "vivien", "gpr", "bru", "ilt", "lished", "tortola", "mav", "powertrain", "telkom", "immunized", "nuneaton", "fica", "trulia", "ricochet", "kurosawa", "aberrant", "nld", "ukr", "wyandotte", "odpm", "pgk", "dumber", "ruptured", "insoles", "starlet", "earner", "kem", "radiologists", "polydor", "nutraceuticals", "zoomed", "groupie", "brinkmann", "thrombin", "aco", "laminar", "immunoglobulins", "jamnagar", "camber", "vxi", "colliery", "incubators", "procimagem", "sweeties", "landfall", "seanad", "intramurals", "kwok", "borderless", "methyltransferase", "suwannee", "lgs", "cjd", "hyperlinked", "birkenhead", "torrevieja", "purposefully", "gutted", "serveur", "grr", "morrell", "ouachita", "imran", "slat", "freeways", "multithreaded", "newlyweds", "documentum", "ebm", "xiang", "burnin", "reelection", "hales", "rutter", "uunet", "vitreous", "noord", "centrelink", "lempicka", "iru", "countable", "dolomite", "salvaged", "soyuz", "frick", "lwp", "afterglow", "ferent", "maes", "mandi", "secunderabad", "millwork", "sampo", "takedown", "colostrum", "cfnm", "judeo", "wisc", "lata", "sexi", "homies", "tarmac", "customisation", "conservator", "pipettes", "goon", "artefact", "expository", "complementarity", "cosco", "mercosur", "tfm", "benzodiazepines", "mii", "netmask", "stalling", "molnar", "hmso", "huw", "aliso", "decors", "oldman", "nuevos", "acis", "somthing", "zabasearch", "steuben", "minicom", "hausfrau", "goldfields", "rickey", "minichamps", "usagi", "bisexuales", "rothman", "shana", "srivastava", "oemig", "beefy", "senha", "pica", "pucci", "skits", "shenyang", "mussolini", "kootenay", "ethnology", "donohue", "cyc", "childers", "mahjongg", "davao", "tajik", "codemasters", "mydd", "charade", "arnhem", "bobbin", "istudy", "rugrats", "dancewear", "mechanized", "ject", "mayes", "canmore", "reassigned", "nnnn", "crema", "bursa", "cfu", "svm", "riccardo", "realvideo", "lites", "krall", "centrifugation", "welds", "braunschweig", "coptic", "securityfocus", "reorganisation", "conglomerates", "dehumidifiers", "dumper", "hamill", "halston", "iau", "wfc", "spiny", "arezzo", "mbeki", "invisionfree", "dropkick", "elastomer", "wahoo", "anagram", "fogdog", "finnegan", "gof", "newsworthy", "defs", "sensitization", "hyperactive", "sidi", "antenatal", "elektro", "nordsee", "yuna", "pluggable", "hemophilia", "kola", "revitalizing", "seepage", "alitalia", "orale", "wri", "ory", "bcf", "wooten", "nonviolence", "baume", "berkman", "ashdown", "diciembre", "purports", "fcuk", "shillong", "mondial", "brushless", "technicolor", "narragansett", "barenaked", "pandagon", "rehabilitated", "outdoorliving", "expendable", "ponca", "tigard", "soulmate", "kaine", "maxis", "poppers", "allposters", "commercio", "dods", "tsl", "volusia", "iic", "thm", "elibrary", "datebook", "rapists", "ultrasparc", "seabed", "orly", "complicating", "suzi", "texturing", "correspondences", "groomsmen", "avo", "latour", "manipur", "arnett", "suzhou", "headboards", "cil", "palomino", "kol", "pomeranian", "diptera", "gericom", "steiff", "cordis", "erythrocyte", "myelin", "fragility", "drucken", "reso", "hov", "tsukuba", "kustom", "invoiced", "hannigan", "hangul", "montauk", "modulators", "irvington", "tsang", "brownian", "mousepads", "saml", "archivists", "herringbone", "bodom", "harrahs", "daiwa", "juanes", "nids", "moorcock", "ccu", "eyeliner", "totalled", "syp", "woken", "aphids", "cutthroat", "coincidental", "lepidoptera", "buda", "tarrytown", "vaseline", "bluewater", "strontium", "burdick", "crustal", "hackman", "shopnbc", "aicpa", "psal", "albicans", "seduces", "epps", "kroll", "unambiguously", "staley", "cutbacks", "hemet", "ariana", "pch", "cgmp", "mcas", "multimeter", "anubis", "htr", "analyte", "peseta", "enh", "glitz", "kewl", "bidi", "winsock", "lvs", "moldings", "peltier", "iod", "ior", "trackmania", "ballets", "doylestown", "spaceflight", "quicklist", "proportionality", "overruns", "yadav", "sordid", "qpf", "mentorship", "lyx", "tained", "oligonucleotides", "bbci", "spidey", "videotaped", "regnow", "jukeboxes", "xpdf", "portishead", "irt", "splunk", "kommentare", "citywire", "crud", "nev", "febs", "adu", "ird", "ribeiro", "abrahamsson", "epidemiol", "coms", "vdo", "outro", "pneumococcal", "tilton", "brookstone", "apic", "avenge", "alleviating", "sportif", "inservice", "punts", "tives", "sora", "tgs", "daugherty", "yarrow", "wakeup", "meatloaf", "mumford", "datafile", "buchen", "zzzz", "objectclass", "polices", "dogging", "cursus", "plasminogen", "kinsella", "lindgren", "asymptotically", "duce", "wonderwall", "crick", "pvd", "enveloped", "mnfrs", "caseiro", "instabilities", "muskoka", "jeni", "thalia", "apac", "reforestation", "paradoxically", "dren", "dubbo", "inductors", "opin", "symlinks", "gamestracker", "secam", "gatorade", "irm", "cava", "rupp", "wacker", "lanta", "cres", "yue", "oligo", "chairpersons", "incesto", "spca", "zapper", "materialized", "accolade", "memorized", "squidoo", "interpretative", "roping", "rauch", "oxymoron", "reciever", "maryann", "pentagram", "viv", "infusions", "slvr", "choppy", "robotech", "spb", "servic", "saya", "univeristy", "bahamian", "gos", "fwy", "nocd", "stipends", "stirlingshire", "caerphilly", "riboflavin", "fiu", "kalb", "ubiquity", "vandal", "romper", "bitumen", "nolo", "shimizu", "postpost", "rummy", "paleo", "unrhyw", "pinscher", "constructively", "sufjan", "christiane", "spliced", "finca", "gpf", "iaa", "iesg", "brecon", "kiran", "trekearth", "repeatability", "gunning", "byblos", "tadpole", "mitsui", "storytime", "berserk", "wellman", "cardiologist", "jammin", "leis", "hirst", "fellatio", "ggc", "terran", "breadcrumbs", "lorena", "remaster", "tpg", "cifrada", "curvy", "envisage", "boneca", "basements", "sharpton", "crucially", "lfn", "imao", "antonin", "soundgarden", "carrara", "bron", "decoupling", "monroeville", "environmentalist", "msha", "eastenders", "adultfriendfinder", "bein", "stef", "fpgas", "mistreatment", "rbl", "qlogic", "shona", "sutcliffe", "previousprevious", "infective", "estrella", "gans", "shards", "vcds", "acadian", "kahului", "phonetics", "comittment", "blix", "biocompare", "whimsy", "frameset", "kot", "nyack", "lolo", "carboxylic", "pkgconfig", "dipartimento", "traceback", "svlug", "microdermabrasion", "waterbody", "jeeps", "tiverton", "wundef", "spay", "gilmer", "ceqa", "bodog", "followups", "internat", "biarritz", "gurps", "bessemer", "iceman", "pegged", "liberator", "rediscover", "lovecraft", "wavefront", "bhangra", "zuni", "epm", "meningococcal", "ketone", "glazer", "yashica", "geodesic", "congruence", "tenkaichi", "omani", "tenuous", "reuter", "surfactants", "cohomology", "epicenter", "toke", "dwf", "santas", "kutcher", "christo", "lucio", "phenomenological", "debriefing", "miniskirts", "ansmann", "mfps", "lentil", "kannur", "backer", "albedo", "flsa", "pauli", "mcewen", "danner", "angora", "redstone", "lxwxh", "informacion", "phyto", "libpam", "blo", "cocky", "pitchfork", "stratocaster", "mohegan", "brazzaville", "broussard", "beano", "interconnections", "willa", "toiletry", "sats", "beko", "exchangeable", "colm", "arabe", "stretchy", "starburst", "dzd", "neurologist", "leonards", "kitties", "dottie", "rspb", "fwrite", "homicides", "forde", "ipf", "travelpro", "haemophilus", "ronny", "hubris", "bottomline", "kosova", "neuropsychological", "genitalia", "waiving", "swirls", "dampers", "comhairle", "cheech", "eigenvectors", "extrapolated", "chaining", "defected", "yurasov", "gakkai", "justia", "campylobacter", "northumbria", "seidel", "kenseth", "pmr", "kare", "dumbo", "holocene", "jwin", "superconductors", "yeung", "polygram", "egon", "distillate", "unweighted", "gramm", "safeco", "bentonville", "ishikawa", "vuv", "strachan", "bayard", "escalator", "periwinkle", "breakin", "rsmo", "publishi", "darmowy", "outfile", "choreographed", "obrazki", "accross", "yag", "gravesend", "lovemaking", "boucheron", "farrow", "annulment", "kwai", "tubbs", "bartow", "tonbridge", "lesbico", "panerai", "spate", "belladonna", "lexi", "sobering", "carcinogenicity", "djf", "semis", "pcv", "suppressors", "leachate", "dingle", "mbendi", "celina", "hydroponic", "hoyer", "xia", "kovacs", "recalculate", "maltreatment", "hitchin", "medtronic", "meerut", "whsmith", "fontsize", "relaxes", "kis", "halos", "cracow", "saco", "webcomics", "ife", "sauder", "dioceses", "uct", "postdoc", "biceps", "leela", "hydrant", "hamstring", "darrow", "tinderbox", "sify", "naw", "ganguly", "streetwise", "imprinting", "dandenong", "colecovision", "gnuplot", "nucleation", "werbung", "prb", "blr", "croce", "deviance", "goldfrapp", "tetrahedron", "materialize", "homeworld", "foodborne", "baixar", "stagg", "fondness", "ellicott", "merchandiser", "ler", "djia", "eastleigh", "blacklisted", "freetext", "wxhxd", "multiplicative", "metis", "urethra", "dalrymple", "retroactively", "hartnett", "gcd", "kilos", "multivitamin", "vientiane", "koji", "scran", "bwp", "emoticon", "mercator", "lyricist", "macromolecules", "fungicides", "amines", "karcher", "cssa", "freetown", "beneficially", "tugrik", "monotype", "ishii", "kempinski", "pigmented", "mipsel", "ridership", "athenaeum", "twikiweb", "mpm", "faking", "clsid", "kenobi", "endoplasmic", "motorised", "lomax", "geraldton", "eck", "cssrule", "auerbach", "metlife", "apocalyptica", "masa", "risotto", "follicles", "ashtabula", "sussman", "exmouth", "melua", "cvss", "pana", "stimulators", "gnf", "uvic", "asustek", "dieta", "famvir", "conflicted", "retirements", "sixers", "metab", "gregoire", "burris", "creat", "rajan", "brainwashed", "berenstain", "crittenden", "antoni", "gbs", "associ", "yankovic", "gnvq", "rogaine", "kek", "gridlock", "integrable", "chalkboard", "dopod", "unranked", "karlsson", "anaemia", "natur", "permian", "bartley", "unaffiliated", "slrs", "montreux", "partici", "starbuck", "infractions", "karon", "treviso", "backdrops", "turkmen", "standups", "sowell", "aktuelle", "gleeson", "lss", "globulin", "woah", "nte", "midob", "violator", "boxcar", "sagan", "aviso", "pounder", "vieira", "kronor", "tocopherol", "keiko", "newsrx", "lesbe", "pharmacokinetic", "intercepts", "tirelessly", "adsorbed", "ksh", "plunkett", "guenther", "penta", "phospholipid", "reiterates", "wuc", "oversaw", "arraylist", "qy", "outsourcer", "eyeshadow", "pushbutton", "doujinshi", "catagories", "pilar", "paltz", "viaduct", "pugster", "elastomers", "evenflo", "mmk", "wadi", "secularism", "cellspacing", "trekker", "llm", "pakistanis", "glyphs", "neuroblastoma", "loftus", "gigli", "thorp", "seeley", "producten", "glandular", "aligns", "rejuvenate", "grt", "northants", "ifconfig", "sherrill", "wintasks", "xenia", "whangarei", "hra", "expres", "nadir", "recoup", "rnai", "fyr", "franchised", "batchelor", "relocatable", "warhead", "backfill", "fascists", "kedar", "adjacency", "iberostar", "mancha", "gorton", "insta", "jni", "cellpadding", "larnaca", "carmarthen", "endgame", "streamlight", "golan", "thomann", "totten", "curbside", "samhsa", "howrah", "planer", "hermaphrodite", "gavel", "bassinets", "footjoy", "fairtrade", "gah", "prestwick", "paoli", "alben", "laconia", "berkowitz", "inputting", "dimming", "indiatimes", "arcgis", "goof", "landmine", "boracay", "appro", "notifier", "wirth", "valerian", "bucher", "wts", "saad", "weisz", "enrollee", "authenticating", "wheatland", "zildjian", "revisor", "faauto", "profs", "pheonix", "seitz", "administrivia", "foams", "leh", "orbitals", "hammerhead", "dotcom", "xof", "klezmer", "fosgate", "walworth", "niguel", "quickfind", "isakmp", "facia", "stalemate", "multimediacard", "motrin", "glx", "classifies", "ischia", "ankh", "mohali", "incurs", "feist", "ldb", "netzero", "rationalization", "eef", "brokering", "viewport", "isas", "masterbate", "geneseo", "grammer", "garantie", "sanofi", "malignancies", "yaesu", "jpegs", "spitz", "chea", "limassol", "lobbied", "splat", "nostradamus", "gallium", "mobb", "mannered", "dorada", "nalin", "sorbet", "lunenburg", "phc", "tdma", "bodycare", "jobsearch", "sharia", "topiary", "cataloged", "camsex", "avm", "kimber", "extendable", "ager", "pella", "optometrist", "tinh", "bogey", "kana", "pipette", "bln", "coveralls", "teng", "stayz", "isolator", "wicking", "cph", "zany", "umatilla", "austral", "applauds", "taks", "interferometer", "barbican", "ohana", "rebs", "cerf", "criminally", "mkv", "adio", "psychopathology", "lkr", "leyton", "cartoonists", "appellees", "indira", "redraw", "pictbridge", "mahesh", "beng", "ncar", "gord", "nanometer", "faceless", "moyers", "oregonian", "aftershock", "gena", "leggett", "wsdot", "classique", "menon", "spiro", "whiteboards", "strategists", "dnv", "loti", "kaos", "hydrotherapy", "marionette", "islay", "myv", "typeof", "igt", "nitty", "ddb", "quintile", "freightliner", "monkees", "lindley", "dehumidifier", "industrials", "bouncers", "transfered", "mages", "dmb", "roseanne", "chk", "trigraphs", "rer", "bettis", "cyberlink", "browsable", "workhorse", "iterated", "mcfly", "kyd", "pooping", "preferentially", "fraternities", "diuretic", "octubre", "castell", "emerg", "sampras", "gephardt", "zimbabwean", "unexpired", "westmorland", "biscotti", "mavica", "everyones", "shaikh", "nampa", "youngblood", "plana", "refractor", "bouldering", "flemington", "dysphagia", "redesigning", "milken", "xsel", "zooplankton", "gsd", "philatelic", "modularity", "parkview", "keto", "marrone", "wallmounting", "tias", "marengo", "quiche", "epoc", "resales", "maduro", "murrieta", "fairplay", "ddp", "woodinville", "registro", "transcriber", "notarized", "neocons", "franchisor", "diab", "vying", "morehouse", "lauper", "bedspreads", "pooch", "morphism", "gripper", "tavistock", "negated", "javabeans", "nashik", "atomki", "musicianship", "viaggi", "bbn", "cady", "adios", "purview", "bosque", "xxxl", "dyfed", "biomaterials", "overpass", "berners", "goaltender", "speedometer", "ultrium", "carteret", "fatwa", "bottomed", "superscript", "rwandan", "proteinase", "coolermaster", "maca", "haircuts", "crewneck", "discriminant", "bayfield", "mishra", "morey", "multiplexers", "pcga", "stade", "carnivore", "codingsequence", "knowledgealert", "egalitarian", "pombe", "yamato", "jenson", "mortgagee", "middlefield", "iiyama", "schell", "midler", "nags", "caplan", "anyplace", "haridwar", "sternberg", "ventilating", "retreating", "shopsafe", "mohave", "brion", "immun", "zapf", "mingus", "prolly", "trichy", "microform", "olsson", "jdc", "dosimetry", "smelter", "rayovac", "takeda", "mbt", "ied", "dynamism", "fileattachment", "rabat", "devs", "mellor", "manmade", "somaliland", "hashtable", "sdb", "conto", "furtado", "statics", "saleh", "puja", "kamera", "eport", "killian", "rucksack", "janette", "powerware", "phenylephrine", "cupcake", "karp", "bodum", "celular", "zamora", "qian", "dws", "psig", "polycystic", "titts", "krzysztof", "parsippany", "raggedy", "eason", "epg", "bsg", "payloads", "alon", "cebit", "wedgewood", "daten", "pbi", "annexe", "cyclen", "customizations", "stunningly", "hugger", "junio", "jtc", "xcd", "prequel", "strathmore", "champloo", "billerica", "talley", "estoppel", "ameritrade", "torr", "cytomegalovirus", "bpel", "domus", "madigan", "supercool", "ysl", "contaminate", "rxlist", "sailormoon", "ubid", "plovdiv", "mcsweeney", "govideo", "bassinet", "taillights", "typhimurium", "dez", "fci", "visionaries", "salesmen", "nicki", "skagen", "hibernation", "ponders", "rrsp", "middleburg", "innkeepers", "mcauliffe", "gardasee", "pcn", "asce", "aromatics", "interplanetary", "landcare", "towneplace", "downloaden", "discontinuing", "bork", "sealers", "weybridge", "wusthof", "interbank", "hullabaloo", "erratum", "contreras", "sandwell", "novgorod", "earbud", "jds", "coastlines", "echolist", "guntur", "lmp", "trunking", "foxtrot", "rosanna", "patchouli", "inequities", "testes", "defaulting", "alpert", "securitization", "nsfw", "borer", "originators", "postid", "phx", "censoring", "hashimoto", "oriole", "chipotle", "slocum", "ipeople", "rdg", "reusing", "saeed", "wetzel", "mensa", "shiner", "chal", "rhesus", "streptomyces", "datagrams", "invalidated", "shenanigans", "mkii", "sandford", "lennart", "pract", "npi", "travelguide", "championed", "biosolids", "billable", "givers", "tmdls", "cockroaches", "testcase", "faraway", "cfengine", "umbc", "underwritten", "biofuels", "cyberhome", "dinh", "zegna", "tarps", "sociologists", "ellesmere", "ostomy", "vso", "sena", "ingest", "gazebos", "sirloin", "cyclophosphamide", "bitdefender", "catz", "bpp", "giancarlo", "kategorie", "arjan", "valery", "kmc", "insp", "recomended", "dataport", "pfaff", "manuale", "rog", "niven", "mahi", "ghs", "atsdr", "rangeland", "commonality", "xid", "midis", "cwc", "regrettably", "navidad", "yahoogroups", "kaw", "ston", "ves", "pulau", "playbook", "digipak", "jetblue", "kavanagh", "exhibitionists", "armidale", "arquette", "copland", "namib", "cne", "cheapflights", "wyvern", "lucene", "muffled", "vincennes", "inlays", "lockets", "whitey", "brin", "wharfedale", "guyanese", "laryngeal", "outfielder", "nonattainment", "softimage", "cellgroupdata", "literatura", "myoplex", "yorba", "bct", "pva", "slapstick", "cottrell", "dialers", "subculture", "cmx", "modded", "skids", "roselle", "klub", "marathons", "tgt", "skeet", "toucan", "masterclass", "nnp", "calcio", "oxidizing", "alo", "kennebec", "zj", "intergalactic", "biomolecular", "cii", "powweb", "mcwilliams", "phosphorous", "photocopiers", "obligor", "matcher", "listbox", "voigt", "fdl", "dawley", "scribus", "lessors", "npn", "luminaries", "karats", "bridger", "slm", "hadronic", "fairport", "piecewise", "recharging", "dmm", "unionville", "intermedia", "goetz", "urinal", "joystiq", "grosso", "sobaka", "payphone", "rockfish", "duodenal", "uninstalled", "leiter", "coworker", "escuela", "cyclades", "longterm", "taber", "screenplays", "gpt", "shiites", "ntop", "farcry", "jitsu", "lactobacillus", "uniontown", "cloner", "otaku", "hoyas", "kandahar", "kerrville", "akers", "neuropsychology", "multimap", "allston", "femininity", "trask", "accuweather", "deferment", "wam", "fmp", "portlets", "glsa", "westmont", "waders", "cellulare", "homehome", "frogger", "hass", "rya", "seqres", "hellfire", "havering", "montfort", "chokes", "eharmony", "knowsley", "bordellchat", "cvsweb", "houdini", "umr", "canarias", "babyshambles", "bridgette", "cinque", "drezner", "hsin", "alcan", "stas", "outlier", "naira", "neverending", "masson", "khanna", "systeme", "hillsong", "camshaft", "exotica", "milburn", "bijou", "destdir", "innervation", "gga", "oqo", "cunha", "reefer", "techspot", "hibernia", "alpina", "iarc", "constraining", "nym", "dard", "estefan", "fuser", "lepton", "pergamon", "wiktionary", "razer", "poznan", "netscreen", "manda", "npv", "xmb", "kingstown", "topix", "batsman", "wavelets", "cogs", "bigtitsroundasses", "barnhart", "scofield", "ebrd", "desorption", "bellflower", "watertight", "stevia", "photocopier", "haverford", "talc", "penises", "gwendolyn", "buynow", "nairn", "prolab", "lundberg", "backordered", "coh", "mononuclear", "unocal", "brunson", "greenlee", "emer", "txdot", "prichard", "conferees", "renata", "ternary", "footballer", "sisyphus", "directfb", "foolproof", "chastain", "lakshmi", "dsb", "megane", "cdo", "someones", "rebelde", "morrigan", "mymovies", "tiananmen", "immunosuppressive", "mcveigh", "stylin", "brower", "mpltext", "aibo", "pdd", "depositor", "ofcourse", "ecdl", "redenvelope", "acidophilus", "deci", "defensively", "analytica", "cnd", "hrp", "tnr", "tryon", "forgo", "barca", "pahrump", "foros", "pickabook", "hellraiser", "lithographs", "educates", "ediets", "gopal", "signers", "digext", "netbackup", "dimensionality", "triax", "rnase", "aman", "angell", "bochum", "eyepieces", "earbuds", "americablog", "makeovers", "unprocessed", "pfa", "widctlpar", "clausen", "punbb", "centra", "monson", "infogrames", "azt", "xalan", "hydroxyl", "medpix", "interacted", "gpi", "polishes", "canoga", "numismatic", "avoidable", "brantley", "adenoma", "aah", "prostaglandins", "powercolor", "beaconsfield", "lakhs", "mhd", "lesbisch", "flammability", "truancy", "jharkhand", "channelweb", "givn", "flatiron", "midlife", "guerin", "indianola", "unavailability", "rooter", "wanaka", "lompoc", "widener", "cll", "kmail", "websense", "vmi", "residencies", "cablevision", "pye", "disrupts", "onetime", "kenzie", "gating", "boingboing", "sevier", "eberhard", "chek", "edr", "kharagpur", "fotze", "cvp", "deflated", "infestations", "judgmental", "meiji", "antipsychotic", "uwm", "infn", "slaughterhouse", "stix", "asg", "bagging", "brainwashing", "dmp", "disconnecting", "thera", "mclellan", "rong", "telcos", "wilmer", "sphincter", "orgys", "newsom", "infill", "fairhaven", "etude", "stereotyping", "talib", "dreamstime", "rearranging", "geographies", "tipp", "programmatically", "handicapper", "plantar", "ogaming", "xss", "academie", "quarrying", "approachable", "sweetener", "braised", "knut", "tibco", "fseek", "vided", "burk", "spigot", "skilling", "hunterdon", "nailer", "roxette", "hepatocytes", "coupes", "universitet", "mauricio", "lov", "hnd", "roseburg", "berlusconi", "chloroplast", "charing", "kansai", "buzzword", "nepad", "pistachio", "arv", "lanvin", "riverbank", "lilypond", "predominately", "metalware", "saugus", "nmac", "giza", "lancs", "culpepper", "rohm", "pretzel", "warping", "twc", "raitt", "iyer", "connotations", "iiia", "wilber", "yardstick", "neutrophil", "supernatant", "solu", "segmental", "multitudes", "imperium", "radley", "supercharger", "imagen", "thicknesses", "brk", "spew", "vestibular", "klausner", "riba", "witten", "orth", "calaveras", "naep", "deceleration", "bcn", "consignee", "aldehyde", "pronged", "baring", "jacked", "bigalow", "gyd", "centerfolds", "ortofon", "cropland", "wnt", "nazism", "kingswood", "operationally", "trix", "testicle", "rioja", "bhi", "technolo", "lindstrom", "pinter", "minox", "wofford", "guaifenesin", "hup", "bifida", "stratigraphic", "dundalk", "snipers", "kshirsagar", "ridgecrest", "placerville", "gosport", "sjc", "ircd", "rubrics", "kerouac", "ebx", "harken", "foc", "cooperated", "nwo", "cano", "kearny", "shopinfo", "tlb", "etp", "obie", "greaves", "versity", "amoco", "inzest", "msdos", "gabby", "dumbbells", "ncaaf", "ximage", "homotopy", "ironwood", "adiabatic", "pend", "licznik", "cck", "sabian", "saxton", "patties", "hopkinton", "biotherm", "ethno", "videochat", "cantwell", "accelerometer", "filip", "whl", "productio", "milli", "pdi", "bedava", "penobscot", "grav", "llcs", "fmr", "pimsleur", "micky", "setcl", "johnathan", "alisha", "gambier", "enterta", "crosley", "usace", "byrds", "sgm", "darrel", "isola", "laminator", "krazy", "diaryland", "bhubaneshwar", "quadrature", "summerland", "alessandra", "gsn", "dentry", "catskills", "tablecloths", "herder", "gec", "cinematical", "outfall", "unzipped", "plcc", "osb", "interchangeably", "concurs", "wef", "deformations", "farting", "nonspecific", "mek", "ohhh", "atopic", "harker", "culling", "limon", "murata", "zealot", "arca", "jmc", "toot", "rino", "sisley", "iveco", "gooey", "bielefeld", "parrott", "veillard", "lisinopril", "nprm", "tookie", "shanti", "burkett", "wemon", "turmeric", "carnelian", "zea", "geom", "dorman", "hmac", "abstracting", "parietal", "glyphosate", "underpants", "appleseed", "mandating", "prequalification", "macross", "kondo", "muzi", "bidet", "grubb", "redif", "oam", "domenici", "transdermal", "abramson", "recreating", "snot", "ductile", "dimensionless", "carex", "contractually", "kippur", "fibroids", "courtyards", "calderon", "dogster", "flattening", "sterilized", "pkcs", "unformatted", "cvr", "insulate", "afd", "tuolumne", "cobblestone", "showplace", "stockpiles", "mandir", "autore", "ashish", "meijer", "camberley", "babson", "fiennes", "meteorologist", "colonoscopy", "lofi", "tryp", "duromine", "alkaloids", "quesnel", "ake", "initrd", "centrality", "pisses", "campaigned", "twinning", "imag", "taster", "greenlight", "musicbrainz", "sourdough", "warrantless", "mzm", "croat", "arbors", "canwest", "homedics", "anydvd", "jnr", "odm", "dnn", "ashtrays", "punters", "dropper", "sarkar", "szabo", "wack", "ecx", "fette", "axl", "yoy", "spyro", "kendo", "surinam", "suze", "xenophobia", "krypton", "heisenberg", "dvcam", "nary", "ninn", "csis", "reconfigurable", "smil", "courchevel", "kittie", "lipman", "doz", "bsl", "chucky", "schlampe", "webdev", "doubleclick", "bushman", "pornofilm", "ood", "conexant", "hydroxylase", "rme", "multipass", "woodwinds", "telefoon", "ricotta", "motorways", "gandhinagar", "nsg", "edelweiss", "frampton", "humidor", "vacationing", "naturalizer", "dinesh", "techassist", "airdrie", "schiphol", "bruner", "tangy", "cfe", "gurnee", "bogdan", "farina", "gant", "cokin", "tricity", "cutaway", "artsy", "severability", "transferor", "cliches", "nosferatu", "indycar", "klimt", "onetouch", "dooney", "oconee", "smartbargains", "prl", "sackville", "camberwell", "hotlines", "hazelton", "nlg", "reaffirms", "anleitung", "webalizer", "libboost", "golds", "pfs", "imei", "corante", "recipesource", "ranching", "seguin", "calderdale", "anzeige", "toothpick", "volser", "westcoast", "forwarders", "aab", "likable", "ashburton", "natrol", "sonstiges", "shoestring", "vsx", "hosa", "brads", "winsite", "whirling", "doghouse", "displaytime", "bda", "ranitidine", "elit", "grebe", "standup", "playgirl", "flexion", "ibex", "geomagnetic", "lowestoft", "blobs", "footers", "reiss", "lewistown", "droppings", "designator", "causative", "brt", "woolrich", "gwasanaethau", "keefe", "tfp", "loveseat", "diethylpropion", "karyn", "handedly", "uncontested", "fov", "doxorubicin", "nerja", "cardiologists", "militarily", "fsus", "inflating", "sputnik", "barometric", "joburg", "assertequals", "gladwell", "regrowth", "lusaka", "lampwork", "adultos", "cybersex", "banca", "doughnut", "martz", "cribbage", "mela", "rondo", "tigr", "personel", "wcpo", "activ", "uiconstraints", "typescript", "inetd", "scuola", "piste", "pppd", "enos", "ondemand", "altamont", "steubenville", "rur", "danielson", "barfly", "vegetarianism", "extractors", "dictaphone", "callsign", "martinis", "envisions", "flexibly", "nakd", "natwest", "wilsons", "ccn", "reposition", "msci", "orginal", "hobbyists", "anat", "fleshbot", "weta", "sindh", "pcf", "glick", "obsoletes", "mammogram", "sani", "webcasting", "soggy", "apha", "ecologist", "ararat", "narrowband", "bph", "webstore", "maus", "reinstalling", "gendered", "relateddiagram", "kingsland", "ssid", "rackets", "litigants", "shimon", "ducted", "ebsq", "crisps", "modelle", "wristwatches", "xenadrine", "linac", "identifications", "dressy", "authenticator", "arash", "cristobal", "stewie", "depositories", "pcre", "setpoint", "rockdale", "evita", "ballmer", "hemphill", "taormina", "plath", "pickers", "boardgamegeek", "serbo", "oci", "noviembre", "mappoint", "surn", "minisd", "madmums", "mosher", "digitallife", "grahame", "forecasters", "linoleum", "shearling", "stockster", "firstcall", "dorint", "wmc", "culverts", "cuticle", "codebase", "rdfs", "lter", "pimples", "hdb", "shorted", "loghi", "spunky", "razz", "komatsu", "bietet", "madisonville", "readies", "jovenes", "deuterium", "totalitarianism", "trigonometric", "selmer", "popcap", "verbosity", "aashto", "pavarotti", "syncing", "vanden", "majeure", "beret", "fallbrook", "audiovideo", "muay", "longshot", "rollaway", "yor", "nonstandard", "tbr", "manoa", "laundries", "whoo", "tefal", "tothe", "crv", "amx", "falign", "goleta", "holst", "ebola", "redbook", "rangel", "consolidates", "disaggregated", "chromatographic", "supersport", "golly", "flumotion", "seagrass", "congratulates", "anais", "grievant", "reinstalled", "entreprises", "clemons", "eurovision", "airplus", "panchkula", "shahid", "phospholipids", "elsinore", "opendocument", "ankeny", "canzoni", "wakeman", "moana", "wobbly", "seagulls", "megawatts", "denning", "temas", "illuminator", "marylebone", "symbolically", "erotico", "linx", "randle", "nhu", "unsubstantiated", "centroid", "monogrammed", "gambian", "tailgating", "colville", "vpu", "russische", "sgp", "soccernet", "zing", "downunder", "snips", "allawi", "lockup", "cholinergic", "lhr", "barthelemy", "babymint", "benning", "implantable", "ligo", "haddad", "univariate", "katia", "motorcross", "sangha", "shn", "myfonts", "usuarios", "caml", "resiliency", "barossa", "astrobiology", "disinfectants", "kawai", "uktv", "dreamtime", "berkshires", "inhumane", "trobe", "unlocks", "auctex", "pogues", "panicked", "developerworks", "bullitt", "toed", "smartcard", "kushner", "hardcoresex", "crump", "gunderson", "paramus", "cepr", "lma", "politica", "randomization", "rinsing", "reschedule", "tob", "hostal", "preempt", "resold", "cyclo", "phosphor", "frontenac", "wipeout", "mambots", "unscented", "ipfw", "ergonomically", "roosters", "homologues", "loring", "ionosphere", "belvidere", "trotsky", "airworthiness", "sistemas", "devsource", "retroviral", "llnl", "keyloggers", "amgen", "marci", "willey", "yau", "groucho", "foreshore", "gusset", "dissapointed", "dtds", "mibs", "metalwork", "refering", "punting", "triphasil", "scab", "bhavnagar", "creedence", "musee", "wellstone", "lleol", "gpib", "tidbit", "allyson", "teriyaki", "impoundment", "interrelationships", "gres", "coffeecup", "maru", "joon", "josephus", "ulong", "maputo", "chev", "krispy", "dogtown", "abernathy", "raz", "fermion", "weltweit", "fluor", "bergstrom", "inoperable", "esrc", "asdf", "gollum", "ceus", "macintyre", "srd", "cyclonic", "cft", "unsubscribing", "shawna", "pinyin", "ipac", "ramone", "fethiye", "multipath", "hakusho", "tein", "treeview", "atd", "wonderswan", "eugenics", "dustjacket", "emmanuelle", "dlocaledir", "molotov", "sandpaper", "hbc", "fannin", "interscope", "eba", "melayu", "hardiness", "liss", "phew", "furuno", "moynihan", "johnsons", "heng", "dro", "carbonated", "waives", "wraparound", "jfs", "ejackulation", "reboots", "headliner", "sqr", "bustin", "powernetworker", "vul", "superposition", "supremes", "insite", "fanzine", "laney", "purportedly", "antigenic", "rurouni", "dietetics", "assembles", "veracruz", "hausfrauen", "wsf", "benzo", "vietcong", "chairwoman", "petrochemicals", "pata", "cntr", "nettime", "techies", "bentyxxo", "xango", "radish", "gatto", "checkmate", "gantt", "valli", "tuv", "starlets", "plavix", "roomba", "aficionado", "motivator", "bijan", "riv", "storrs", "tabula", "reigate", "emmons", "sandstorm", "laci", "taoist", "nameplate", "axp", "wcb", "mothering", "billard", "chrysanthemum", "reconstructions", "innodb", "sunspot", "aisha", "fluorine", "healdsburg", "retype", "fishin", "likud", "cyberread", "pme", "rothwell", "kmf", "creationist", "wth", "setlist", "scrollbars", "bocelli", "zuckerman", "vtd", "ampicillin", "arcy", "wasn", "cowbell", "rater", "everson", "angebot", "cezanne", "tamagotchi", "earpiece", "franca", "thymidine", "disa", "gearlog", "tranche", "volum", "prsp", "openvpn", "mcentire", "londra", "kaur", "unconstrained", "datadirect", "souter", "redfern", "tulum", "nyy", "pagesize", "osteopathy", "stavanger", "cated", "autry", "fip", "rooftops", "findpage", "discourages", "benitez", "boater", "shackleton", "weirdo", "congresswoman", "dalek", "tass", "itrip", "myob", "helloween", "reperfusion", "fieldhouse", "manukau", "libname", "eucharistic", "mong", "homeware", "ckt", "winmx", "mobic", "farts", "rourke", "lackawanna", "villiers", "comercio", "huy", "brooksville", "falwell", "gwb", "donwload", "wrth", "attrs", "knockoffs", "esm", "bionicle", "hygienist", "nichole", "quidditch", "dartmoor", "rowlett", "stapled", "gardenweb", "butternut", "nummer", "groban", "asw", "arora", "yatsura", "warr", "hainan", "esg", "logoff", "cockroach", "xanadu", "computable", "occup", "playgroup", "tintin", "ethnicities", "webposition", "crafter", "roby", "disassemble", "boltzmann", "caos", "abidjan", "anise", "grainy", "hospitalizations", "notizie", "zoek", "sepultura", "walkabout", "pepperoni", "optimising", "cityreview", "boathouse", "katt", "weissman", "siri", "herkimer", "namecite", "refreshingly", "aph", "ryland", "sculptural", "neurophysiology", "gsk", "hermanus", "mocldy", "ngage", "annexure", "ipchains", "yosef", "tlds", "gozo", "pso", "helton", "outflows", "saas", "asthmatic", "guillemot", "realizations", "linguistically", "jaco", "mckinsey", "dezember", "hylafax", "reconstitution", "amateurwebcam", "lumberton", "interviewee", "intereco", "portola", "hematologic", "sgc", "rebbe", "pinup", "transcendence", "surah", "brendon", "farberware", "statisticians", "swatches", "perioperative", "maoist", "henkel", "lilangeni", "trapeze", "lemmings", "extents", "spams", "omagh", "workcentre", "sunbird", "cellophane", "deland", "blevins", "sacha", "cardholders", "dddd", "accessori", "qo", "araujo", "mylist", "pcu", "kloczek", "enet", "seperated", "clusty", "rolfe", "cuttack", "provantage", "dominio", "hyperbaric", "nannofossil", "logansport", "bulldozer", "blacksonblondes", "subprime", "overpayments", "sharpie", "modutils", "whitehaven", "whaley", "currier", "taproot", "topsite", "delorme", "rayner", "aio", "rossum", "urbanism", "colloquia", "ewr", "capillaries", "mountainside", "menthol", "blackouts", "starkey", "eves", "hpux", "canby", "dragonflies", "montrail", "findfont", "aigner", "urusei", "soundblaster", "beatle", "webzine", "propranolol", "inescapable", "swabs", "absorbance", "lbw", "audiofile", "simba", "mohd", "redgoldfish", "cornbread", "jcaho", "appendixes", "aod", "crestview", "keynotes", "fotolia", "subnets", "cau", "espanola", "busnes", "froggy", "decarboxylase", "elfman", "throughs", "prioritise", "oreck", "schottland", "bagpipe", "terns", "erythematosus", "ftrs", "excitatory", "mcevoy", "fujita", "niagra", "yq", "dribble", "hardwired", "hosta", "grambling", "exten", "seeger", "ringgold", "sondheim", "interconnecting", "inkjets", "ebv", "underpinnings", "lazar", "laxatives", "mythos", "soname", "colloid", "hiked", "defrag", "zanesville", "oxidant", "umbra", "poppin", "trebuchet", "pyrite", "partido", "drunks", "submitters", "branes", "mahdi", "agoura", "manchesteronline", "blunkett", "lapd", "kidder", "hotkey", "tirupur", "parkville", "crediting", "tmo"]
gpl-3.0
grundgruen/zipline
zipline/utils/data_source_tables_gen.py
40
7380
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import getopt import traceback import numpy as np import pandas as pd import datetime import logging import tables import gzip import glob import os import random import csv import time from six import print_ FORMAT = "%(asctime)-15s -8s %(message)s" logging.basicConfig(format=FORMAT, level=logging.INFO) class Usage(Exception): def __init__(self, msg): self.msg = msg OHLCTableDescription = {'sid': tables.StringCol(14, pos=2), 'dt': tables.Int64Col(pos=1), 'open': tables.Float64Col(dflt=np.NaN, pos=3), 'high': tables.Float64Col(dflt=np.NaN, pos=4), 'low': tables.Float64Col(dflt=np.NaN, pos=5), 'close': tables.Float64Col(dflt=np.NaN, pos=6), "volume": tables.Int64Col(dflt=0, pos=7)} def process_line(line): dt = np.datetime64(line["dt"]).astype(np.int64) sid = line["sid"] open_p = float(line["open"]) high_p = float(line["high"]) low_p = float(line["low"]) close_p = float(line["close"]) volume = int(line["volume"]) return (dt, sid, open_p, high_p, low_p, close_p, volume) def parse_csv(csv_reader): previous_date = None data = [] dtype = [('dt', 'int64'), ('sid', '|S14'), ('open', float), ('high', float), ('low', float), ('close', float), ('volume', int)] for line in csv_reader: row = process_line(line) current_date = line["dt"][:10].replace("-", "") if previous_date and previous_date != current_date: rows = np.array(data, dtype=dtype).view(np.recarray) yield current_date, rows data = [] data.append(row) previous_date = current_date def merge_all_files_into_pytables(file_dir, file_out): """ process each file into pytables """ start = None start = datetime.datetime.now() out_h5 = tables.openFile(file_out, mode="w", title="bars", filters=tables.Filters(complevel=9, complib='zlib')) table = None for file_in in glob.glob(file_dir + "/*.gz"): gzip_file = gzip.open(file_in) expected_header = ["dt", "sid", "open", "high", "low", "close", "volume"] csv_reader = csv.DictReader(gzip_file) header = csv_reader.fieldnames if header != expected_header: logging.warn("expected header %s\n" % (expected_header)) logging.warn("header_found %s" % (header)) return for current_date, rows in parse_csv(csv_reader): table = out_h5.createTable("/TD", "date_" + current_date, OHLCTableDescription, expectedrows=len(rows), createparents=True) table.append(rows) table.flush() if table is not None: table.flush() end = datetime.datetime.now() diff = (end - start).seconds logging.debug("finished it took %d." % (diff)) def create_fake_csv(file_in): fields = ["dt", "sid", "open", "high", "low", "close", "volume"] gzip_file = gzip.open(file_in, "w") dict_writer = csv.DictWriter(gzip_file, fieldnames=fields) current_dt = datetime.date.today() - datetime.timedelta(days=2) current_dt = pd.Timestamp(current_dt).replace(hour=9) current_dt = current_dt.replace(minute=30) end_time = pd.Timestamp(datetime.date.today()) end_time = end_time.replace(hour=16) last_price = 10.0 while current_dt < end_time: row = {} row["dt"] = current_dt row["sid"] = "test" last_price += random.randint(-20, 100) / 10000.0 row["close"] = last_price row["open"] = last_price - 0.01 row["low"] = last_price - 0.02 row["high"] = last_price + 0.02 row["volume"] = random.randint(10, 1000) * 10 dict_writer.writerow(row) current_dt += datetime.timedelta(minutes=1) if current_dt.hour > 16: current_dt += datetime.timedelta(days=1) current_dt = current_dt.replace(hour=9) current_dt = current_dt.replace(minute=30) gzip_file.close() def main(argv=None): """ This script cleans minute bars into pytables file data_source_tables_gen.py [--tz_in] sets time zone of data only reasonably fast way to use time.tzset() [--dir_in] iterates through directory provided of csv files in gzip form in form: dt, sid, open, high, low, close, volume 2012-01-01T12:30:30,1234HT,1, 2,3,4.0 [--fake_csv] creates a fake sample csv to iterate through [--file_out] determines output file """ if argv is None: argv = sys.argv try: dir_in = None file_out = "./all.h5" fake_csv = None try: opts, args = getopt.getopt(argv[1:], "hdft", ["help", "dir_in=", "debug", "tz_in=", "fake_csv=", "file_out="]) except getopt.error as msg: raise Usage(msg) for opt, value in opts: if opt in ("--help", "-h"): print_(main.__doc__) if opt in ("-d", "--debug"): logging.basicConfig(format=FORMAT, level=logging.DEBUG) if opt in ("-d", "--dir_in"): dir_in = value if opt in ("-o", "--file_out"): file_out = value if opt in ("--fake_csv"): fake_csv = value if opt in ("--tz_in"): os.environ['TZ'] = value time.tzset() try: if dir_in: merge_all_files_into_pytables(dir_in, file_out) if fake_csv: create_fake_csv(fake_csv) except Exception: error = "An unhandled error occured in the" error += "data_source_tables_gen.py script." error += "\n\nTraceback:\n" error += '-' * 70 + "\n" error += "".join(traceback.format_tb(sys.exc_info()[2])) error += repr(sys.exc_info()[1]) + "\n" error += str(sys.exc_info()[1]) + "\n" error += '-' * 70 + "\n" print_(error) except Usage as err: print_(err.msg) print_("for help use --help") return 2 if __name__ == "__main__": sys.exit(main())
apache-2.0
mtat76/atm-py
atmPy/aerosols/size_distr/sizedistribution.py
6
80435
import datetime import warnings from copy import deepcopy import numpy as np import pandas as pd import pylab as plt import scipy.optimize as optimization from matplotlib.colors import LogNorm from scipy import integrate from scipy import stats from atmPy.atmos import vertical_profile, timeseries from atmPy.aerosols import hygroscopic_growth as hg from atmPy.for_removal.mie import bhmie from atmPy.tools import pandas_tools from atmPy.tools import plt_tools, math_functions, array_tools # Todo: rotate the plots of the layerseries (e.g. plot_particle_concentration) to have the altitude as the y-axes # TODO: Fix distrTypes so they are consistent with our understanding. distTypes = {'log normal': ['dNdlogDp', 'dSdlogDp', 'dVdlogDp'], 'natural': ['dNdDp', 'dSdDp', 'dVdDp'], 'number': ['dNdlogDp', 'dNdDp'], 'surface': ['dSdlogDp', 'dSdDp'], 'volume': ['dVdlogDp', 'dVdDp']} axes_types = ('AxesSubplot', 'AxesHostAxes') def fit_normal_dist(x, y, log=True, p0=[10, 180, 0.2]): """Fits a normal distribution to a """ param = p0[:] x = x[~ np.isnan(y)] y = y[~ np.isnan(y)] if log: x = np.log10(x) param[1] = np.log10(param[1]) # todo: write a bug report for the fact that I have to call the y.max() function to make the fit to work!!!!! y.max() ############ para = optimization.curve_fit(math_functions.gauss, x, y, p0=param) amp = para[0][0] sigma = para[0][2] if log: pos = 10 ** para[0][1] sigma_high = 10 ** (para[0][1] + para[0][2]) sigma_low = 10 ** (para[0][1] - para[0][2]) else: pos = para[0][1] sigma_high = (para[0][1] + para[0][2]) sigma_low = (para[0][1] - para[0][2]) return [amp, pos, sigma, sigma_high, sigma_low] def read_csv(fname, fixGaps=True): headerNo = 50 rein = open(fname, 'r') nol = ['distributionType', 'objectType'] outDict = {} for i in range(headerNo): split = rein.readline().split('=') variable = split[0].strip() if split[0][0] == '#': break value = split[1].strip() if variable in nol: outDict[variable] = value else: outDict[variable] = np.array(eval(value)) if i == headerNo - 1: raise TypeError('Sure this is a size distribution?') rein.close() data = pd.read_csv(fname, header=i + 1, index_col=0) data.index = pd.to_datetime(data.index) if outDict['objectType'] == 'SizeDist_TS': distRein = SizeDist_TS(data, outDict['bins'], outDict['distributionType'], fixGaps=fixGaps) elif outDict['objectType'] == 'SizeDist': distRein = SizeDist(data, outDict['bins'], outDict['distributionType'], fixGaps=fixGaps) elif outDict['objectType'] == 'SizeDist_LS': distRein = SizeDist_LS(data, outDict['bins'], outDict['distributionType'], fixGaps=fixGaps) else: raise TypeError('not a valid object type') return distRein def read_hdf(f_name, keep_open = False, populate_namespace = False): hdf = pd.HDFStore(f_name) content = hdf.keys() out = [] for i in content: # print(i) storer = hdf.get_storer(i) attrs = storer.attrs.atmPy_attrs if not attrs: continue elif attrs['type'].__name__ == 'SizeDist_TS': dist_new = SizeDist_TS(hdf[i], attrs['bins'], attrs['distributionType']) elif attrs['type'].__name__ == 'SizeDist': dist_new = SizeDist(hdf[i], attrs['bins'], attrs['distributionType']) elif attrs['type'].__name__ == 'SizeDist_LS': dist_new = SizeDist_LS(hdf[i], attrs['bins'], attrs['distributionType'], attrs['layerbounderies']) else: txt = 'Unknown data type: %s'%attrs['type'].__name__ raise TypeError(txt) fit_res = i+'/data_fit_normal' if fit_res in content: dist_new.data_fit_normal = hdf[fit_res] if populate_namespace: if attrs['variable_name']: populate_namespace[attrs['variable_name']] = dist_new out.append(dist_new) if keep_open: return hdf,out else: hdf.close() return out def get_label(distType): """ Return the appropriate label for a particular distribution type """ if distType == 'dNdDp': label = '$\mathrm{d}N\,/\,\mathrm{d}D_{P}$ (nm$^{-1}\,$cm$^{-3}$)' elif distType == 'dNdlogDp': label = '$\mathrm{d}N\,/\,\mathrm{d}log(D_{P})$ (cm$^{-3}$)' elif distType == 'dSdDp': label = '$\mathrm{d}S\,/\,\mathrm{d}D_{P}$ (nm$\,$cm$^{-3}$)' elif distType == 'dSdlogDp': label = '$\mathrm{d}S\,/\,\mathrm{d}log(D_{P})$ (nm$^2\,$cm$^{-3}$)' elif distType == 'dVdDp': label = '$\mathrm{d}V\,/\,\mathrm{d}D_{P}$ (nm$^2\,$cm$^{-3}$)' elif distType == 'dVdlogDp': label = '$\mathrm{d}V\,/\,\mathrm{d}log(D_{P})$ (nm$^3\,$cm$^{-3}$)' elif distType == 'calibration': label = '$\mathrm{d}N\,/\,\mathrm{d}Amp$ (bin$^{-1}\,$cm$^{-3}$)' elif distType == 'numberConcentration': label = 'Particle number in bin' else: raise ValueError('%s is not really an option!?!' % distType) return label # Todo: Docstring is wrong # Todo: implement into the Layer Series def _calculate_optical_properties(sd, wavelength, n, aod=False, noOfAngles=100): """ !!!Tis Docstring need fixn Calculates the extinction crossection, AOD, phase function, and asymmetry Parameter for each layer. plotting the layer and diameter dependent extinction coefficient gives you an idea what dominates the overall AOD. Parameters ---------- wavelength: float. wavelength of the scattered light, unit: nm n: float. Index of refraction of the scattering particles noOfAngles: int, optional. Number of scattering angles to be calculated. This mostly effects calculations which depend on the phase function. Returns ------- OpticalProperty instance """ out = {} out['n'] = n out['wavelength'] = wavelength sdls = sd.convert2numberconcentration() index = sdls.data.index if isinstance(n, pd.DataFrame): n_multi = True else: n_multi = False if not n_multi: mie, angular_scatt_func = _perform_Miecalculations(np.array(sdls.bincenters / 1000.), wavelength / 1000., n, noOfAngles=noOfAngles) if aod: AOD_layer = np.zeros((len(sdls.layercenters))) extCoeffPerLayer = np.zeros((len(sdls.data.index.values), len(sdls.bincenters))) angular_scatt_func_effective = pd.DataFrame() asymmetry_parameter_LS = np.zeros((len(sdls.data.index.values))) # print('\n oben mie.extinction_crossection: %s \n'%(mie.extinction_crossection)) for i, lc in enumerate(sdls.data.index.values): laydata = sdls.data.iloc[i].values # print('laydata: ',laydata.shape) # print(laydata) if n_multi: mie, angular_scatt_func = _perform_Miecalculations(np.array(sdls.bincenters / 1000.), wavelength / 1000., n.iloc[i].values[0], noOfAngles=noOfAngles) extinction_coefficient = _get_coefficients(mie.extinction_crossection, laydata) # print('\n oben ext_coef %s \n'%extinction_coefficient) # print('mie.extinction_crossection ', mie.extinction_crossection.shape) # print('extinction_coefficient: ', extinction_coefficient.shape) # scattering_coefficient = _get_coefficients(mie.scattering_crossection, laydata) if aod: layerThickness = sdls.layerbounderies[i][1] - sdls.layerbounderies[i][0] AOD_perBin = extinction_coefficient * layerThickness AOD_layer[i] = AOD_perBin.values.sum() extCoeffPerLayer[i] = extinction_coefficient # return laydata, mie.scattering_crossection scattering_cross_eff = laydata * mie.scattering_crossection pfe = (laydata * angular_scatt_func).sum(axis=1) # sum of all angular_scattering_intensities # pfe2 = pfe.copy() # angular_scatt_func_effective[lc] = pfe # asymmetry_parameter_LS[i] = (pfe.values*np.cos(pfe.index.values)).sum()/pfe.values.sum() x_2p = pfe.index.values y_2p = pfe.values # limit to [0,pi] y_1p = y_2p[x_2p < np.pi] x_1p = x_2p[x_2p < np.pi] # integ = integrate.simps(y_1p*np.sin(x_1p),x_1p) # y_phase_func = y_1p/integ y_phase_func = y_1p * 4 * np.pi / scattering_cross_eff.sum() asymmetry_parameter_LS[i] = .5 * integrate.simps(np.cos(x_1p) * y_phase_func * np.sin(x_1p), x_1p) # return mie,phase_fct, laydata, scattering_cross_eff, phase_fct_effective[lc], y_phase_func, asymmetry_parameter_LS[i] angular_scatt_func_effective[ lc] = pfe * 1e-12 * 1e6 # equivalent to extCoeffPerLayer # similar to _get_coefficients (converts everthing to meter) # return mie.extinction_crossection, angular_scatt_func, laydata, layerThickness # correct integrales match # return extinction_coefficient, angular_scatt_func_effective # return AOD_layer, pfe, angular_scatt_func_effective[lc] # print(mie.extinction_crossection) if aod: out['AOD'] = AOD_layer[~ np.isnan(AOD_layer)].sum() out['AOD_layer'] = pd.DataFrame(AOD_layer, index=sdls.layercenters, columns=['AOD per Layer']) out['AOD_cum'] = out['AOD_layer'].iloc[::-1].cumsum().iloc[::-1] extCoeff_perrow_perbin = pd.DataFrame(extCoeffPerLayer, index=index, columns=sdls.data.columns) out['extCoeff_perrow_perbin'] = extCoeff_perrow_perbin extCoeff_perrow = pd.DataFrame(extCoeff_perrow_perbin.sum(axis=1), columns=['ext_coeff']) if index.dtype == '<M8[ns]': out['extCoeff_perrow'] = timeseries.TimeSeries(extCoeff_perrow) else: out['extCoeff_perrow'] = extCoeff_perrow out['asymmetry_param'] = pd.DataFrame(asymmetry_parameter_LS, index=index, columns=['asymmetry_param']) # out['asymmetry_param_alt'] = pd.DataFrame(asymmetry_parameter_LS_alt, index=sdls.layercenters, columns = ['asymmetry_param_alt']) # out['OptPropInstance']= OpticalProperties(out, self.bins) out['wavelength'] = wavelength out['index_of_refraction'] = n out['bin_centers'] = sdls.bincenters out['angular_scatt_func'] = angular_scatt_func_effective # opt_properties = OpticalProperties(out, self.bins) # opt_properties.wavelength = wavelength # opt_properties.index_of_refractio = n # opt_properties.angular_scatt_func = angular_scatt_func_effective # This is the formaer phase_fct, but since it is the angular scattering intensity, i changed the name # opt_properties.parent_dist_LS = self return out class SizeDist(object): """ Object defining a log normal aerosol size distribution Arguments ---------- bincenters: NumPy array, optional this is if you actually want to pass the bincenters, if False they will be calculated distributionType: log normal: 'dNdlogDp','dSdlogDp','dVdlogDp' natural: 'dNdDp','dSdDp','dVdDp' number: 'dNdlogDp', 'dNdDp', 'numberConcentration' surface: 'dSdlogDp','dSdDp' volume: 'dVdlogDp','dVdDp' data: pandas dataFrame, optional None, will generate an empty pandas data frame with columns defined by bins - pandas dataFrame with - column names (each name is something like this: '150-200') - index is time (at some point this should be arbitrary, convertable to altitude for example?) unit conventions: - diameters: nanometers - flowrates: cc (otherwise, axis label need to be adjusted an caution needs to be taken when dealing is AOD) Notes ------ * Diameters are specified in nanometers """ # todo: write setters and getters for bins and bincenter, so when one is changed the otherone is automatically # changed too def __init__(self, data, bins, distrType, # bincenters=False, fixGaps=True): if type(data).__name__ == 'NoneType': self.data = pd.DataFrame() else: self.data = data self.bins = bins self.__index_of_refraction = None self.__growth_factor = None # if type(bincenters) == np.ndarray: # self.bincenters = bincenters # else: # self.bincenters = (bins[1:] + bins[:-1]) / 2. # self.binwidth = (bins[1:] - bins[:-1]) self.distributionType = distrType if fixGaps: self.fillGaps() @property def bins(self): return self.__bins @bins.setter def bins(self,array): bins_st = array.astype(int).astype(str) col_names = [] for e,i in enumerate(bins_st): if e == len(bins_st) - 1: break col_names.append(bins_st[e] + '-' + bins_st[e+1]) self.data.columns = col_names self.__bins = array self.__bincenters = (array[1:] + array[:-1]) / 2. self.__binwidth = (array[1:] - array[:-1]) @property def bincenters(self): return self.__bincenters @property def binwidth(self): return self.__binwidth @property def index_of_refraction(self): return self.__index_of_refraction @index_of_refraction.setter def index_of_refraction(self,n): # if not self.__index_of_refraction: self.__index_of_refraction = n # elif self.__index_of_refraction: # txt = """Security stop. This is to prevent you from unintentionally changing this value. # The index of refraction is already set to %.2f, either by you or by another function, e.g. apply_hygro_growth. # If you really want to change the value do it by setting the __index_of_refraction attribute."""%self.index_of_refraction # raise ValueError(txt) @property def growth_factor(self): return self.__growth_factor def apply_hygro_growth(self, kappa, RH, how = 'shift_bins'): """ how: string ['shift_bins', 'shift_data'] If the shift_bins the growth factor has to be the same for all lines in data (important for timeseries and vertical profile. If gf changes (as probably the case in TS and LS) you want to use 'shift_data' """ if not self.index_of_refraction: txt = '''The index_of_refraction attribute of this sizedistribution has not been set yet, please do so first!''' raise ValueError(txt) # out_I = {} dist_g = self.copy() dist_g.convert2numberconcentration() gf,n_mix = hg.kappa_simple(kappa, RH, n = dist_g.index_of_refraction) # out_I['growth_factor'] = gf nat = ['int', 'float'] if type(kappa).__name__ in nat or type(RH).__name__ in nat: if how != 'shift_bins': txt = "When kappa or RH ar not arrays 'how' has to be equal to 'shift_bins'" raise ValueError(txt) if how == 'shift_bins': if not isinstance(gf, (float,int)): txt = '''If how is equal to 'shift_bins' RH has to be of type int or float. It is %s'''%(type(RH).__name__) raise TypeError(txt) dist_g.bins = dist_g.bins * gf dist_g.__index_of_refraction = n_mix elif how == 'shift_data': test = dist_g._hygro_growht_shift_data(dist_g.data.values[0],dist_g.bins,gf.max()) bin_num = test['data'].shape[0] data_new = np.zeros((dist_g.data.shape[0],bin_num)) for e,i in enumerate(dist_g.data.values): out = dist_g._hygro_growht_shift_data(i,dist_g.bins,gf[e]) dt = out['data'] diff = bin_num - dt.shape[0] dt = np.append(dt, np.zeros(diff)) data_new[e] = dt df = pd.DataFrame(data_new) df.index = dist_g.data.index # return df dist_g = SizeDist(df, test['bins'], dist_g.distributionType) df = pd.DataFrame(n_mix, columns = ['index_of_refraction']) df.index = dist_g.data.index dist_g.index_of_refraction = df else: txt = '''How has to be either 'shift_bins' or 'shift_data'.''' raise ValueError(txt) dist_g.__growth_factor = pd.DataFrame(gf, index = dist_g.data.index, columns = ['Growth_factor']) # out_I['size_distribution'] = dist_g return dist_g def _hygro_growht_shift_data(self, data, bins, gf): """data: 1D array bins: 1D array gf: float""" bins = bins.copy() if np.any(gf < 1): txt = 'Growth factor must be equal or larger than 1. No shrinking!!' raise ValueError(txt) shifted = bins*gf ml = array_tools.find_closest(bins, shifted, how='closest_low') mh = array_tools.find_closest(bins, shifted, how='closest_high') if np.any((mh - ml) > 1): raise ValueError('shifted bins spans over more than two of the original bins, programming required ;-)') no_extra_bins = bins[ml].shape[0] - np.unique(bins[ml]).shape[0] + 1 ######### Ad bins to shift data into last_two = np.log10(bins[- (no_extra_bins + 1):]) step_width = last_two[-1] - last_two[-2] new_bins = np.zeros(no_extra_bins) for i in range(no_extra_bins): new_bins[i] = np.log10(bins[-1]) + ((i + 1) * step_width) newbins = 10**new_bins bins = np.append(bins,newbins) shifted = (bins * gf)[:-no_extra_bins] ######## and again ######################## ml = array_tools.find_closest(bins, shifted, how='closest_low') mh = array_tools.find_closest(bins, shifted, how='closest_high') if np.any((mh - ml) > 1): raise ValueError('shifted bins spans over more than two of the original bins, programming required ;-)') ##### percentage of particles moved to next bin ...') shifted_w = shifted[1:] - shifted[:-1] fract_first = (bins[mh] - shifted)[:-1]/shifted_w fract_last = (shifted - bins[ml])[1:]/shifted_w data_new = np.zeros(data.shape[0]+ no_extra_bins) data_new[no_extra_bins - 1:-1] += fract_first * data data_new[no_extra_bins:] += fract_last * data # data = np.append(data, np.zeros(no_extra_bins)) out = {} out['bins'] = bins out['data'] = data_new out['num_extr_bins'] = no_extra_bins return out # def grow_particles(self, shift=1): # """This function shifts the data by "shift" columns to the right # Argurments # ---------- # shift: int. # number of columns to shift. # # Returns # ------- # New dist_LS instance # Growth ratio (mean,std) """ # # dist_grow = self.copy() # gf = dist_grow.bincenters[shift:] / dist_grow.bincenters[:-shift] # gf_mean = gf.mean() # gf_std = gf.std() # # shape = dist_grow.data.shape[1] # dist_grow.data[:] = 0 # dist_grow.data.iloc[:, shift:] = self.data.values[:, :shape - shift] # # return dist_grow, (gf_mean, gf_std) def calculate_optical_properties(self, wavelength, n): out = _calculate_optical_properties(self, wavelength, n) return out def fillGaps(self, scale=1.1): """ Finds gaps in dataset (e.g. when instrument was shut of) and fills them with zeros. It adds one line of zeros to the beginning and one to the end of the gap. Therefore the gap is visible as zeros instead of the interpolated values Parameters ---------- scale: float, optional This is a scale. """ diff = self.data.index[1:].values - self.data.index[0:-1].values threshold = np.median(diff) * scale where = np.where(diff > threshold)[0] if len(where) != 0: warnings.warn('The dataset provided had %s gaps' % len(where)) gap_start = self.data.index[where] gap_end = self.data.index[where + 1] for gap_s in gap_start: self.data.loc[gap_s + threshold] = np.zeros(self.bincenters.shape) for gap_e in gap_end: self.data.loc[gap_e - threshold] = np.zeros(self.bincenters.shape) self.data = self.data.sort_index() return def fit_normal(self, log=True, p0=[10, 180, 0.2]): """ Fits a single normal distribution to each line in the data frame. Returns ------- pandas DataFrame instance (also added to namespace as data_fit_normal) """ sd = self.copy() if sd.distributionType != 'dNdlogDp': if sd.distributionType == 'calibration': pass else: warnings.warn( "Size distribution is not in 'dNdlogDp'. I temporarily converted the distribution to conduct the fitting. If that is not what you want, change the code!") sd = sd.convert2dNdlogDp() n_lines = sd.data.shape[0] amp = np.zeros(n_lines) pos = np.zeros(n_lines) sigma = np.zeros(n_lines) sigma_high = np.zeros(n_lines) sigma_low = np.zeros(n_lines) for e, lay in enumerate(sd.data.values): try: fit_res = fit_normal_dist(sd.bincenters, lay, log=log, p0=p0) except (ValueError, RuntimeError): fit_res = [np.nan, np.nan, np.nan, np.nan, np.nan] amp[e] = fit_res[0] pos[e] = fit_res[1] sigma[e] = fit_res[2] sigma_high[e] = fit_res[3] sigma_low[e] = fit_res[4] df = pd.DataFrame() df['Amp'] = pd.Series(amp) df['Pos'] = pd.Series(pos) df['Sigma'] = pd.Series(sigma) df['Sigma_high'] = pd.Series(sigma_high) df['Sigma_low'] = pd.Series(sigma_low) # df.index = self.layercenters self.data_fit_normal = df return self.data_fit_normal def get_particle_concentration(self): """ Returns the sum of particles per line in data Returns ------- int: if data has only one line pandas.DataFrame: else """ sd = self.convert2numberconcentration() particles = np.zeros(sd.data.shape[0]) for e, line in enumerate(sd.data.values): particles[e] = line.sum() if sd.data.shape[0] == 1: return particles[0] else: df = pd.DataFrame(particles, index=sd.data.index, columns=['Count_rate']) return df def plot(self, showMinorTickLabels=True, removeTickLabels=["700", "900"], fit_res=True, fit_res_scale = 'log', ax=None, ): """ Plots and returns f,a (figure, axis). Arguments --------- showMinorTickLabels: bool [True], optional if minor tick labels are labled removeTickLabels: list of string ["700", "900"], optional list of tick labels aught to be removed (in case there are overlapping) fit_res: bool [True], optional allows plotting of fitresults if fit_normal was previously executed fit_res: string If fit_normal was done using log = False, you want to set this to linear! ax: axis object [None], optional option to provide axis to plot on Returns ------- Handles to the figure and axes of the figure. """ if type(ax).__name__ in axes_types: a = ax f = a.get_figure() else: f, a = plt.subplots() g, = a.plot(self.bincenters, self.data.loc[0], color=plt_tools.color_cycle[0], linewidth=2, label='exp.') g.set_drawstyle('steps-mid') a.set_xlabel('Particle diameter (nm)') label = get_label(self.distributionType) a.set_ylabel(label) a.set_xscale('log') if fit_res: if 'data_fit_normal' in dir(self): amp, pos, sigma = self.data_fit_normal.values[0, :3] if fit_res_scale == 'log': normal_dist = math_functions.gauss(np.log10(self.bincenters), amp, np.log10(pos), sigma) elif fit_res_scale =='linear': normal_dist = math_functions.gauss(self.bincenters, amp, pos, sigma) else: txt = '"fit_res_scale has to be either log or linear' raise ValueError(txt) a.plot(self.bincenters, normal_dist, color=plt_tools.color_cycle[1], linewidth=2, label='fit with norm. dist.') a.legend() return f, a def convert2dNdDp(self): return self._convert2otherDistribution('dNdDp') def convert2dNdlogDp(self): return self._convert2otherDistribution('dNdlogDp') def convert2dSdDp(self): return self._convert2otherDistribution('dSdDp') def convert2dSdlogDp(self): return self._convert2otherDistribution('dSdlogDp') def convert2dVdDp(self): return self._convert2otherDistribution('dVdDp') def convert2dVdlogDp(self): return self._convert2otherDistribution('dVdlogDp') def convert2numberconcentration(self): return self._convert2otherDistribution('numberConcentration') def copy(self): return deepcopy(self) def save_csv(self, fname, header=True): if header: raus = open(fname, 'w') raus.write('bins = %s\n' % self.bins.tolist()) raus.write('distributionType = %s\n' % self.distributionType) raus.write('objectType = %s\n' % (type(self).__name__)) raus.write('#\n') raus.close() self.data.to_csv(fname, mode='a') return def save_hdf(self, hdf, variable_name = None, info = '', force = False): if variable_name: table_name = '/atmPy/aerosols/sizedistribution/'+variable_name if table_name in hdf.keys(): if not force: txt = 'Table name (variable_name) exists. If you want to overwrite it set force to True.' raise KeyError(txt) else: e = 0 while 1: table_name = '/atmPy/aerosols/sizedistribution/'+ type(self).__name__ + '_%.3i'%e if table_name in hdf.keys(): e+=1 else: break hdf.put(table_name, self.data) storer = hdf.get_storer(table_name) attrs = {} attrs['variable_name'] = variable_name attrs['info'] = info attrs['type'] = type(self) attrs['bins'] = self.bins attrs['index_of_refraction'] = self.index_of_refraction attrs['distributionType'] = self.distributionType if 'layerbounderies' in dir(self): attrs['layerbounderies'] = self.layerbounderies storer.attrs.atmPy_attrs = attrs if 'data_fit_normal' in dir(self): table_name = table_name + '/data_fit_normal' hdf.put(table_name, self.data_fit_normal) storer = hdf.get_storer(table_name) storer.attrs.atmPy_attrs = None return hdf def zoom_diameter(self, start=None, end=None): sd = self.copy() if start: startIdx = array_tools.find_closest(sd.bins, start) else: startIdx = 0 if end: endIdx = array_tools.find_closest(sd.bins, end) else: endIdx = len(self.bincenters) # size_distr.binwidth = self.binwidth[startIdx:endIdx] sd.data = self.data.iloc[:, startIdx:endIdx] sd.bins = self.bins[startIdx:endIdx + 1] # size_distr.bincenters = self.bincenters[startIdx:endIdx] return sd def _normal2log(self): trans = (self.bincenters * np.log(10.)) return trans def _2Surface(self): trans = 4. * np.pi * (self.bincenters / 2.) ** 2 return trans def _2Volume(self): trans = 4. / 3. * np.pi * (self.bincenters / 2.) ** 3 return trans def _convert2otherDistribution(self, distType, verbose=False): dist = self.copy() if dist.distributionType == distType: if verbose: warnings.warn( 'Distribution type is already %s. Output is an unchanged copy of the distribution' % distType) return dist if dist.distributionType == 'numberConcentration': pass elif distType == 'numberConcentration': pass elif dist.distributionType in distTypes['log normal']: if distType in distTypes['log normal']: if verbose: print('both log normal') else: dist.data = dist.data / self._normal2log() elif dist.distributionType in distTypes['natural']: if distType in distTypes['natural']: if verbose: print('both natural') else: dist.data = dist.data * self._normal2log() else: raise ValueError('%s is not an option' % distType) if dist.distributionType == 'numberConcentration': pass elif distType == 'numberConcentration': pass elif dist.distributionType in distTypes['number']: if distType in distTypes['number']: if verbose: print('both number') else: if distType in distTypes['surface']: dist.data *= self._2Surface() elif distType in distTypes['volume']: dist.data *= self._2Volume() else: raise ValueError('%s is not an option' % distType) elif dist.distributionType in distTypes['surface']: if distType in distTypes['surface']: if verbose: print('both surface') else: if distType in distTypes['number']: dist.data /= self._2Surface() elif distType in distTypes['volume']: dist.data *= self._2Volume() / self._2Surface() else: raise ValueError('%s is not an option' % distType) elif dist.distributionType in distTypes['volume']: if distType in distTypes['volume']: if verbose: print('both volume') else: if distType in distTypes['number']: dist.data /= self._2Volume() elif distType in distTypes['surface']: dist.data *= self._2Surface() / self._2Volume() else: raise ValueError('%s is not an option' % distType) else: raise ValueError('%s is not an option' % distType) if distType == 'numberConcentration': dist = dist.convert2dNdDp() dist.data *= self.binwidth elif dist.distributionType == 'numberConcentration': dist.data = dist.data / self.binwidth dist.distributionType = 'dNdDp' dist = dist._convert2otherDistribution(distType) dist.distributionType = distType if verbose: print('converted from %s to %s' % (self.distributionType, dist.distributionType)) return dist class SizeDist_TS(SizeDist): """Returns a SizeDistribution_TS instance. Parameters: ----------- data: pandas dataFrame with - column names (each name is something like this: '150-200') - index is time (at some point this should be arbitrary, convertable to altitude for example?) unit conventions: - diameters: nanometers - flowrates: cc (otherwise, axis label need to be adjusted an caution needs to be taken when dealing is AOD) distributionType: log normal: 'dNdlogDp','dSdlogDp','dVdlogDp' natural: 'dNdDp','dSdDp','dVdDp' number: 'dNdlogDp', 'dNdDp', 'numberConcentration' surface: 'dSdlogDp','dSdDp' volume: 'dVdlogDp','dVdDp' """ def fit_normal(self, log=True, p0=[10, 180, 0.2]): """ Fits a single normal distribution to each line in the data frame. Returns ------- pandas DataFrame instance (also added to namespace as data_fit_normal) """ super(SizeDist_TS, self).fit_normal(log=log, p0=p0) self.data_fit_normal.index = self.data.index return self.data_fit_normal def _getXYZ(self): """ This will create three arrays, so when plotted with pcolor each pixel will represent the exact bin width """ binArray = np.repeat(np.array([self.bins]), self.data.index.shape[0], axis=0) timeArray = np.repeat(np.array([self.data.index.values]), self.bins.shape[0], axis=0).transpose() ext = np.array([np.zeros(self.data.index.values.shape)]).transpose() Z = np.append(self.data.values, ext, axis=1) return timeArray, binArray, Z def get_timespan(self): return self.data.index.min(), self.data.index.max() # TODO: Fix plot options such as showMinorTickLabels def plot(self, vmax=None, vmin=None, norm='linear', showMinorTickLabels=True, # removeTickLabels=["700", "900"], ax=None, fit_pos=True, cmap=plt_tools.get_colorMap_intensity(), colorbar=True): """ plots an intensity plot of all data Arguments --------- scale (optional): ('log',['linear']) - defines how the z-direction is scaled vmax vmin show_minor_tickLabels: cma: fit_pos: bool[True]. Optional plots the position of a fitted normal distribution onto the plot. in order for this to work execute fit_normal ax (optional): axes instance [None] - option to plot on existing axes Returns ------- f,a,pc,cb (figure, axis, pcolormeshInstance, colorbar) """ X, Y, Z = self._getXYZ() Z = np.ma.masked_invalid(Z) if type(ax).__name__ in axes_types: a = ax f = a.get_figure() else: f, a = plt.subplots() f.autofmt_xdate() if norm == 'log': norm = LogNorm() elif norm == 'linear': norm = None pc = a.pcolormesh(X, Y, Z, vmin=vmin, vmax=vmax, norm=norm, cmap=cmap) a.set_yscale('log') a.set_ylim((self.bins[0], self.bins[-1])) a.set_xlabel('Time (UTC)') a.get_yaxis().set_tick_params(direction='out', which='both') a.get_xaxis().set_tick_params(direction='out', which='both') if self.distributionType == 'calibration': a.set_ylabel('Amplitude (digitizer bins)') else: a.set_ylabel('Diameter (nm)') if colorbar: cb = f.colorbar(pc) label = get_label(self.distributionType) cb.set_label(label) else: cb = get_label(self.distributionType) # if self.distributionType != 'calibration': # a.yaxis.set_major_formatter(plt.FormatStrFormatter("%i")) # f.canvas.draw() # this is important, otherwise the ticks (at least in case of minor ticks) are not created yet if showMinorTickLabels: minf = plt_tools.get_formatter_minor_log() a.yaxis.set_minor_formatter(minf) # a.yaxis.set_minor_formatter(plt.FormatStrFormatter("%i")) # ticks = a.yaxis.get_minor_ticks() # for i in ticks: # if i.label.get_text() in removeTickLabels: # i.label.set_visible(False) if fit_pos: if 'data_fit_normal' in dir(self): a.plot(self.data.index, self.data_fit_normal.Pos, color='m', linewidth=2, label='normal dist. center') leg = a.legend(fancybox=True, framealpha=0.5) leg.draw_frame(True) return f, a, pc, cb def plot_fitres(self): """ Plots the results from fit_normal""" f, a = plt.subplots() data = self.data_fit_normal.dropna() a.fill_between(data.index, data.Sigma_high, data.Sigma_low, color=plt_tools.color_cycle[0], alpha=0.5, ) a.plot(data.index.values, data.Pos.values, color=plt_tools.color_cycle[0], linewidth=2, label='center') # data.Pos.plot(ax=a, color=plt_tools.color_cycle[0], linewidth=2, label='center') a.legend(loc=2) a.set_ylabel('Particle diameter (nm)') a.set_xlabel('Altitude (m)') a2 = a.twinx() # data.Amp.plot(ax=a2, color=plt_tools.color_cycle[1], linewidth=2, label='amplitude') a2.plot(data.index.values, data.Amp.values, color=plt_tools.color_cycle[1], linewidth=2, label='amplitude') a2.legend() a2.set_ylabel('Amplitude - %s' % (get_label(self.distributionType))) f.autofmt_xdate() return f, a, a2 def plot_particle_concentration(self, ax=None, label=None): """Plots the particle rate as a function of time. Parameters ---------- ax: matplotlib.axes instance, optional perform plot on these axes. Returns ------- matplotlib.axes instance """ if type(ax).__name__ in axes_types: color = plt_tools.color_cycle[len(ax.get_lines())] f = ax.get_figure() else: f, ax = plt.subplots() color = plt_tools.color_cycle[0] # layers = self.convert2numberconcentration() particles = self.get_particle_concentration().dropna() ax.plot(particles.index.values, particles.Count_rate.values, color=color, linewidth=2) if label: ax.get_lines()[-1].set_label(label) ax.legend() ax.set_xlabel('Time (UTC)') ax.set_ylabel('Particle number concentration (cm$^{-3})$') if particles.index.dtype.type.__name__ == 'datetime64': f.autofmt_xdate() return ax def zoom_time(self, start=None, end=None): """ 2014-11-24 16:02:30 """ dist = self.copy() dist.data = dist.data.truncate(before=start, after=end) return dist def average_overTime(self, window='1S'): """returns a copy of the sizedistribution_TS with reduced size by averaging over a given window Arguments --------- window: str ['1S']. Optional window over which to average. For aliases see http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases Returns ------- SizeDistribution_TS instance copy of current instance with resampled data frame """ dist = self.copy() window = window dist.data = dist.data.resample(window, closed='right', label='right') if dist.distributionType == 'calibration': dist.data.values[np.where(np.isnan(self.data.values))] = 0 return dist def average_overAllTime(self): """ averages over the entire dataFrame and returns a single sizedistribution (numpy.ndarray) """ singleHist = np.zeros(self.data.shape[1]) for i in range(self.data.shape[1]): line = self.data.values[:, i] singleHist[i] = np.average(line[~np.isnan(line)]) data = pd.DataFrame(np.array([singleHist]), columns=self.data.columns) avgDist = SizeDist(data, self.bins, self.distributionType) return avgDist def convert2layerseries(self, hk, layer_thickness=10, force=False): """convertes the time series to a layer series. Note ---- nan values are excluded when an average is taken over a the time that corresponds to the particular layer (altitude). If there are only nan values nan is returned and there is a gap in the Layerseries. The the housekeeping instance has to have a column called "Altitude" and which is monotonicly in- or decreasing Arguments --------- hk: housekeeping instance layer_thickness (optional): [10] thickness of each generated layer in meter""" if any(np.isnan(hk.data.Altitude)): txt = """The Altitude contains nan values. Either fix this first, eg. with pandas interpolate function""" raise ValueError(txt) if ((hk.data.Altitude.values[1:] - hk.data.Altitude.values[:-1]).min() < 0) and ( (hk.data.Altitude.values[1:] - hk.data.Altitude.values[:-1]).max() > 0): if force: hk.data = hk.data.sort(columns='Altitude') else: txt = '''Given altitude data is not monotonic. This is not possible (yet). Use force if you know what you are doing''' raise ValueError(txt) start_h = round(hk.data.Altitude.values.min() / layer_thickness) * layer_thickness end_h = round(hk.data.Altitude.values.max() / layer_thickness) * layer_thickness layer_edges = np.arange(start_h, end_h, layer_thickness) empty_frame = pd.DataFrame(columns=self.data.columns) lays = SizeDist_LS(empty_frame, self.bins, self.distributionType, None) for e, end_h_l in enumerate(layer_edges[1:]): start_h_l = layer_edges[e] layer = hk.data.Altitude.iloc[ np.where(np.logical_and(start_h_l < hk.data.Altitude.values, hk.data.Altitude.values < end_h_l))] start_t = layer.index.min() end_t = layer.index.max() dist_tmp = self.zoom_time(start=start_t, end=end_t) avrg = dist_tmp.average_overAllTime() # return avrg,lays lays.add_layer(avrg, (start_h_l, end_h_l)) lays.parent_dist_TS = self lays.parent_timeseries = hk data = hk.data.copy() data['Time_UTC'] = data.index data.index = data.Altitude data = data.sort_index() if not data.index.is_unique: #this is needed in case there are duplicate indeces grouped = data.groupby(level = 0) data = grouped.last() lays.housekeeping = data data = data.reindex(lays.layercenters,method = 'nearest') lays.housekeeping = vertical_profile.VerticalProfile(data) return lays class SizeDist_LS(SizeDist): """ Parameters ---------- data: pandas DataFrame ... bins: array distributionType: str layerbounderies: array shape(n_layers,2) OLD --- data: pandas dataFrame with - column names (each name is something like this: '150-200') - altitude (at some point this should be arbitrary, convertable to altitude for example?) unit conventions: - diameters: nanometers - flowrates: cc (otherwise, axis label need to be adjusted an caution needs to be taken when dealing is AOD) distributionType: log normal: 'dNdlogDp','dSdlogDp','dVdlogDp' natural: 'dNdDp','dSdDp','dVdDp' number: 'dNdlogDp', 'dNdDp', 'numberConcentration' surface: 'dSdlogDp','dSdDp' volume: 'dVdlogDp','dVdDp' """ def __init__(self, data, bins, distributionType, layerbounderies, fixGaps=True): super(SizeDist_LS, self).__init__(data, bins, distributionType, fixGaps=True) if type(layerbounderies).__name__ == 'NoneType': self.layerbounderies = np.empty((0, 2)) # self.layercenters = np.array([]) else: self.layerbounderies = layerbounderies @property def layercenters(self): return self.__layercenters @property def layerbounderies(self): return self.__layerbouderies @layerbounderies.setter def layerbounderies(self,lb): self.__layerbouderies = lb # newlb = np.unique(self.layerbounderies.flatten()) # the unique is sorting the data, which is not reallyt what we want! # self.__layercenters = (newlb[1:] + newlb[:-1]) / 2. self.__layercenters = (self.layerbounderies[:,0] + self.layerbounderies[:,1]) / 2. self.data.index = self.layercenters def apply_hygro_growth(self, kappa, RH = None, how='shift_data'): """ see docstring of atmPy.sizedistribution.SizeDist for more information Parameters ---------- kappa: float RH: bool, float, or array. If None, RH from self.housekeeping will be taken""" if not np.any(RH): pandas_tools.ensure_column_exists(self.housekeeping.data, 'Relative_humidity') RH = self.housekeeping.data.Relative_humidity.values # return kappa,RH,how sd = super(SizeDist_LS,self).apply_hygro_growth(kappa,RH,how = how) # size_distr = out['size_distribution'] # gf = out['growth_factor'] sd_LS = SizeDist_LS(sd.data, sd.bins, sd.distributionType, self.layerbounderies, fixGaps=False) sd_LS.index_of_refraction = sd.index_of_refraction sd_LS._SizeDist__growth_factor = sd.growth_factor # out['size_distribution'] = sd_LS return sd_LS def calculate_angstromex(self, wavelengths=[460.3, 550.4, 671.2, 860.7], n=1.455): """Calculates the Anstrome coefficience (overall, layerdependent) Parameters ---------- wavelengths: array-like, optional. the angstrom coefficient will be calculated based on the AOD of these wavelength values (in nm) n: float, optional. index of refraction used in the underlying mie calculation. Returns ------- Angstrom exponent, float List containing the OpticalProperties instances for the different wavelengths New Attributes -------------- angstromexp: float the resulting angstrom exponent angstromexp_fit: pandas instance. AOD and fit result as a function of wavelength angstromexp_LS: pandas instance. angstrom exponent as a function of altitude """ AOD_list = [] AOD_dict = {} for w in wavelengths: AOD = self.calculate_optical_properties(w, n) # calculate_AOD(wavelength=w, n=n) # opt= sizedistribution.OpticalProperties(AOD, dist_LS.bins) AOD_list.append({'wavelength': w, 'opt_inst': AOD}) AOD_dict['%.1f' % w] = AOD eg = AOD_dict[list(AOD_dict.keys())[0]] wls = AOD_dict.keys() wls_a = np.array(list(AOD_dict.keys())).astype(float) ang_exp = [] ang_exp_std = [] ang_exp_r_value = [] for e, el in enumerate(eg.layercenters): AODs = np.array([AOD_dict[wl].data_orig['AOD_layer'].values[e][0] for wl in wls]) slope, intercept, r_value, p_value, std_err = stats.linregress(np.log10(wls_a), np.log10(AODs)) ang_exp.append(-slope) ang_exp_std.append(std_err) ang_exp_r_value.append(r_value) # break ang_exp = np.array(ang_exp) ang_exp_std = np.array(ang_exp_std) ang_exp_r_value = np.array(ang_exp_r_value) tmp = np.array([[float(i), AOD_dict[i].AOD] for i in AOD_dict.keys()]) wavelength, AOD = tmp[np.argsort(tmp[:, 0])].transpose() slope, intercept, r_value, p_value, std_err = stats.linregress(np.log10(wavelength), np.log10(AOD)) self.angstromexp = -slope aod_fit = np.log10(wavelengths) * slope + intercept self.angstromexp_fit = pd.DataFrame(np.array([AOD, 10 ** aod_fit]).transpose(), index=wavelength, columns=['data', 'fit']) self.angstromexp_LS = pd.DataFrame(np.array([ang_exp, ang_exp_std, ang_exp_r_value]).transpose(), index=self.layercenters, columns=['ang_exp', 'standard_dif', 'correlation_coef']) self.angstromexp_LS.index.name = 'layercenter' return -slope, AOD_dict def calculate_optical_properties(self, wavelength, n = None, noOfAngles=100): if not n: n = self.index_of_refraction if not n: txt = 'Refractive index is not specified. Either set self.index_of_refraction or set optional parameter n.' raise ValueError(txt) out = _calculate_optical_properties(self, wavelength, n, aod = True, noOfAngles=noOfAngles) opt_properties = OpticalProperties(out, self.bins) opt_properties.wavelength = wavelength opt_properties.index_of_refractio = n opt_properties.angular_scatt_func = out['angular_scatt_func'] # This is the formaer phase_fct, but since it is the angular scattering intensity, i changed the name opt_properties.parent_dist_LS = self return opt_properties def add_layer(self, sd, layerboundery): """ Adds a sizedistribution instance to the layerseries. layerboundery Parameters ---------- sd: layerboundary: """ if len(layerboundery) != 2: raise ValueError('layerboundery has to be of length 2') sd = sd._convert2otherDistribution(self.distributionType) layerbounderies = np.append(self.layerbounderies, np.array([layerboundery]), axis=0) layerbounderiesU = np.unique(layerbounderies) if (np.where(layerbounderiesU == layerboundery[1])[0] - np.where(layerbounderiesU == layerboundery[0])[0])[ 0] != 1: raise ValueError('The new layer is overlapping with an existing layer!') self.data = self.data.append(sd.data) self.layerbounderies = layerbounderies # self.layerbounderies.sort(axis=0) # # layercenter = np.array(layerboundery).sum() / 2. # self.layercenters = np.append(self.layercenters, layercenter) # self.layercenters.sort() # size_distr.data.index = np.array([layercenter]) # self.data = self.data.append(size_distr.data) return def _getXYZ(self): """ This will create three arrays, so when plotted with pcolor each pixel will represent the exact bin width """ binArray = np.repeat(np.array([self.bins]), self.data.index.shape[0], axis=0) layerArray = np.repeat(np.array([self.data.index.values]), self.bins.shape[0], axis=0).transpose() ext = np.array([np.zeros(self.data.index.values.shape)]).transpose() Z = np.append(self.data.values, ext, axis=1) return layerArray, binArray, Z def plot_eachLayer(self, a=None, normalize=False): """ Plots the distribution of each layer in one plot. Returns ------- Handles to the figure and axes of the plot """ if not a: f, a = plt.subplots() else: f = None pass for iv in self.data.index.values: if normalize: a.plot(self.bincenters, self.data.loc[iv, :] / self.data.loc[iv, :].max(), label='%i' % iv) else: a.plot(self.bincenters, self.data.loc[iv, :], label='%i' % iv) a.set_xlabel('Particle diameter (nm)') a.set_ylabel(get_label(self.distributionType)) a.legend() a.semilogx() return f, a def plot(self, vmax=None, vmin=None, scale='linear', show_minor_tickLabels=True, removeTickLabels=["500", "700", "800", "900"], plotOnTheseAxes=False, cmap=plt_tools.get_colorMap_intensity(), fit_pos=True, ax=None, colorbar = True): """ plots and returns f,a,pc,cb (figure, axis, pcolormeshInstance, colorbar) Arguments --------- scale (optional): ('log',['linear']) - defines how the z-direction is scaled vmax vmin show_minor_tickLabels: cma: fit_pos (optional): bool [True] - plots the position of a fitted normal distribution onto the plot. in order for this to work execute fit_normal ax (optional): axes instance [None] - option to plot on existing axes """ X, Y, Z = self._getXYZ() Z = np.ma.masked_invalid(Z) if type(ax).__name__ in axes_types: a = ax f = a.get_figure() else: f, a = plt.subplots() # f.autofmt_xdate() if scale == 'log': scale = LogNorm() elif scale == 'linear': scale = None pc = a.pcolormesh(Y, X, Z, vmin=vmin, vmax=vmax, norm=scale, cmap=cmap) a.set_yscale('linear') a.set_xscale('log') a.set_xlim((self.bins[0], self.bins[-1])) a.set_ylabel('Altitude (m)') a.set_ylim((self.layercenters[0], self.layercenters[-1])) a.set_xlabel('Diameter (nm)') a.get_yaxis().set_tick_params(direction='out', which='both') a.get_xaxis().set_tick_params(direction='out', which='both') if colorbar: cb = f.colorbar(pc) label = get_label(self.distributionType) cb.set_label(label) else: cb = None if self.distributionType != 'calibration': a.xaxis.set_minor_formatter(plt.FormatStrFormatter("%i")) a.xaxis.set_major_formatter(plt.FormatStrFormatter("%i")) f.canvas.draw() # this is important, otherwise the ticks (at least in case of minor ticks) are not created yet ticks = a.xaxis.get_minor_ticks() for i in ticks: if i.label.get_text() in removeTickLabels: i.label.set_visible(False) if fit_pos: if 'data_fit_normal' in dir(self): a.plot(self.data_fit_normal.Pos, self.layercenters, color='m', linewidth=2, label='normal dist. center') leg = a.legend(fancybox=True, framealpha=0.5) leg.draw_frame(True) return f, a, pc, cb #todo: when you want to plot one plot on existing one it will rotated it twice! def plot_particle_concentration(self, ax=None, label=None): """Plots the particle concentration as a function of altitude. Parameters ---------- ax: matplotlib.axes instance, optional perform plot on these axes. rotate: bool. When True the y-axes is the Altitude. Returns ------- matplotlib.axes instance """ # ax = SizeDist_TS.plot_particle_concetration(self, ax=ax, label=label) # ax.set_xlabel('Altitude (m)') # # if rotate: # g = ax.get_lines()[-1] # x, y = g.get_xydata().transpose() # xlim = ax.get_xlim() # ylim = ax.get_ylim() # ax.set_xlim(ylim) # ax.set_ylim(xlim) # g.set_xdata(y) # g.set_ydata(x) # xlabel = ax.get_xlabel() # ylabel = ax.get_ylabel() # ax.set_xlabel(ylabel) # ax.set_ylabel(xlabel) if type(ax).__name__ in axes_types: color = plt_tools.color_cycle[len(ax.get_lines())] f = ax.get_figure() else: f, ax = plt.subplots() color = plt_tools.color_cycle[0] # layers = self.convert2numberconcentration() particles = self.get_particle_concentration().dropna() ax.plot(particles.Count_rate.values, particles.index.values, color=color, linewidth=2) if label: ax.get_lines()[-1].set_label(label) ax.legend() ax.set_ylabel('Altitude (m)') ax.set_xlabel('Particle number concentration (cm$^{-3})$') return ax def plot_fitres(self, amp=True, rotate=True): """ Plots the results from fit_normal Arguments --------- amp: bool. if the amplitude is to be plotted """ f, a = plt.subplots() a.fill_between(self.layercenters, self.data_fit_normal.Sigma_high, self.data_fit_normal.Sigma_low, color=plt_tools.color_cycle[0], alpha=0.5, ) self.data_fit_normal.Pos.plot(ax=a, color=plt_tools.color_cycle[0], linewidth=2) g = a.get_lines()[-1] g.set_label('Center of norm. dist.') a.legend(loc=2) a.set_ylabel('Particle diameter (nm)') a.set_xlabel('Altitude (m)') if amp: a2 = a.twinx() self.data_fit_normal.Amp.plot(ax=a2, color=plt_tools.color_cycle[1], linewidth=2) g = a2.get_lines()[-1] g.set_label('Amplitude of norm. dist.') a2.legend() a2.set_ylabel('Amplitude - %s' % (get_label(self.distributionType))) else: a2 = False return f, a, a2 def plot_angstromex_fit(self): if 'angstromexp_fit' not in dir(self): raise ValueError('Execute function calculate_angstromex first!') f, a = plt.subplots() a.plot(self.angstromexp_fit.index, self.angstromexp_fit.data, 'o', color=plt_tools.color_cycle[0], label='exp. data') a.plot(self.angstromexp_fit.index, self.angstromexp_fit.fit, color=plt_tools.color_cycle[1], label='fit', linewidth=2) a.set_xlim((self.angstromexp_fit.index.min() * 0.95, self.angstromexp_fit.index.max() * 1.05)) a.set_ylim((self.angstromexp_fit.data.min() * 0.95, self.angstromexp_fit.data.max() * 1.05)) a.set_xlabel('Wavelength (nm)') a.set_ylabel('AOD') a.loglog() a.xaxis.set_minor_formatter(plt.FormatStrFormatter("%i")) a.yaxis.set_minor_formatter(plt.FormatStrFormatter("%.2f")) return a def plot_angstromex_LS(self, corr_coeff=False, std=False): if 'angstromexp_fit' not in dir(self): raise ValueError('Execute function calculate_angstromex first!') f, a = plt.subplots() a.plot(self.angstromexp_LS.index, self.angstromexp_LS.ang_exp, color=plt_tools.color_cycle[0], linewidth=2, label='Angstrom exponent') a.set_xlabel('Altitude (m)') a.set_ylabel('Angstrom exponent') if corr_coeff: a.legend(loc=2) a2 = a.twinx() a2.plot(self.angstromexp_LS.index, self.angstromexp_LS.correlation_coef, color=plt_tools.color_cycle[1], linewidth=2, label='corr_coeff') a2.set_ylabel('Correlation coefficiant') a2.legend(loc=1) if std: a.legend(loc=2) a2 = a.twinx() a2.plot(self.angstromexp_LS.index, self.angstromexp_LS.standard_dif, color=plt_tools.color_cycle[1], linewidth=2, label='corr_coeff') a2.set_ylabel('Standard deviation') a2.legend(loc=1) tmp = (self.angstromexp_LS.index.max() - self.angstromexp_LS.index.min()) * 0.05 a.set_xlim((self.angstromexp_LS.index.min() - tmp, self.angstromexp_LS.index.max() + tmp)) return a def zoom_altitude(self, bottom, top): """'2014-11-24 16:02:30'""" dist = self.copy() dist.data = dist.data.truncate(before=bottom, after=top) where = np.where(np.logical_and(dist.layercenters < top, dist.layercenters > bottom)) # dist.layercenters = dist.layercenters[where] dist.layerbounderies = dist.layerbounderies[where] if 'data_fit_normal' in dir(dist): dist.data_fit_normal = dist.data_fit_normal.iloc[where] return dist # dist = self.copy() # dist.data = dist.data.truncate(before=start, after = end) # return dist # def average_overAltitude(self, window='1S'): print('need fixn') return False # window = window # self.data = self.data.resample(window, closed='right',label='right') # if self.distributionType == 'calibration': # self.data.values[np.where(np.isnan(self.data.values))] = 0 # return def average_overAllAltitudes(self): dataII = self.data.mean(axis=0) out = pd.DataFrame(dataII).T return SizeDist(out, self.bins, self.distributionType) def fit_normal(self): """ Fits a single normal distribution to each line in the data frame. Returns ------- pandas DataFrame instance (also added to namespace as data_fit_normal) """ super(SizeDist_LS, self).fit_normal() self.data_fit_normal.index = self.layercenters return self.data_fit_normal # singleHist = np.zeros(self.data.shape[1]) # for i in xrange(self.data.shape[1]): # line = self.data.values[:,i] # singleHist[i] = np.average(line[~np.isnan(line)]) # return singleHist #Todo: bins are redundand # Todo: some functions should be switched of class OpticalProperties(object): def __init__(self, data, bins): # self.data = data['extCoeffPerLayer'] self.data = data['extCoeff_perrow_perbin'] self.data_orig = data self.AOD = data['AOD'] self.bins = bins self.layercenters = self.data.index.values self.asymmetry_parameter_LS = data['asymmetry_param'] # self.asymmetry_parameter_LS_alt = data['asymmetry_param_alt'] # ToDo: to define a distribution type does not really make sence ... just to make the stolen plot function happy self.distributionType = 'dNdlogDp' def get_extinction_coeff_verticle_profile(self): """ Creates a verticle profile of the extinction coefficient. """ ext = self.data.sum(axis=1) ext = pd.DataFrame(ext, columns=['ext. coeff.']) ext.index.name = 'Altitude' out = ExtinctionCoeffVerticlProfile(ext, self, self.wavelength, self.index_of_refractio) # out.wavelength = self.wavelength # out.n = self.index_of_refractio # out.parent = self return out def plot_AOD_cum(self, color=plt_tools.color_cycle[0], linewidth=2, ax=None, label='cumulative AOD', extra_info=True): if not ax: f,a = plt.subplots() else: a = ax # a = self.data_orig['AOD_cum'].plot(color=color, linewidth=linewidth, ax=ax, label=label) g, = a.plot(self.data_orig['AOD_cum']['AOD per Layer'], self.data_orig['AOD_cum'].index, color=color, linewidth=linewidth, label=label) # g = a.get_lines()[-1] g.set_label(label) a.legend() # a.set_xlim(0, 3000) a.set_ylabel('Altitude (m)') a.set_xlabel('AOD') txt = '''$\lambda = %s$ nm n = %s AOD = %.4f''' % (self.data_orig['wavelength'], self.data_orig['n'], self.data_orig['AOD']) if extra_info: a.text(0.7, 0.7, txt, transform=a.transAxes) return a def _getXYZ(self): out = SizeDist_LS._getXYZ(self) return out def plot_extCoeffPerLayer(self, vmax=None, vmin=None, scale='linear', show_minor_tickLabels=True, removeTickLabels=['500', '700', '800', '900'], plotOnTheseAxes=False, cmap=plt_tools.get_colorMap_intensity(), fit_pos=True, ax=None): f, a, pc, cb = SizeDist_LS.plot(self, vmax=vmax, vmin=vmin, scale=scale, show_minor_tickLabels=show_minor_tickLabels, removeTickLabels=removeTickLabels, plotOnTheseAxes=plotOnTheseAxes, cmap=cmap, fit_pos=fit_pos, ax=ax) cb.set_label('Extinction coefficient ($m^{-1}$)') return f, a, pc, cb class ExtinctionCoeffVerticlProfile(vertical_profile.VerticalProfile): def __init__(self, ext, parent, wavelength, index_of_refraction): super(ExtinctionCoeffVerticlProfile, self).__init__(ext) self.parent = parent self.wavelength = wavelength self.index_of_refraction = index_of_refraction def plot(self, *args, **kwargs): a = super(ExtinctionCoeffVerticlProfile, self).plot(*args, **kwargs) a.set_xlabel('Extinction coefficient (m$^{-1}$)') return a def simulate_sizedistribution(diameter=[10, 2500], numberOfDiameters=100, centerOfAerosolMode=200, widthOfAerosolMode=0.2, numberOfParticsInMode=1000): """generates a numberconcentration of an aerosol layer which has a gaussian shape when plottet in dN/log(Dp). However, returned is a numberconcentrations (simply the number of particles in each bin, no normalization) Returns Number concentration (#) bin edges (nm)""" start = diameter[0] end = diameter[1] noOfD = numberOfDiameters centerDiameter = centerOfAerosolMode width = widthOfAerosolMode bins = np.linspace(np.log10(start), np.log10(end), noOfD) binwidth = bins[1:] - bins[:-1] bincenters = (bins[1:] + bins[:-1]) / 2. dNDlogDp = plt.mlab.normpdf(bincenters, np.log10(centerDiameter), width) extraScale = 1 scale = 1 while 1: NumberConcent = dNDlogDp * binwidth * scale * extraScale if scale != 1: break else: scale = float(numberOfParticsInMode) / NumberConcent.sum() binEdges = 10 ** bins diameterBinwidth = binEdges[1:] - binEdges[:-1] cols = [] for e, i in enumerate(binEdges[:-1]): cols.append(str(i) + '-' + str(binEdges[e + 1])) data = pd.DataFrame(np.array([NumberConcent / diameterBinwidth]), columns=cols) return SizeDist(data, binEdges, 'dNdDp') def simulate_sizedistribution_timeseries(diameter=[10, 2500], numberOfDiameters=100, centerOfAerosolMode=200, widthOfAerosolMode=0.2, numberOfParticsInMode=1000, startDate='2014-11-24 17:00:00', endDate='2014-11-24 18:00:00', frequency=10): delta = datetime.datetime.strptime(endDate, '%Y-%m-%d %H:%M:%S') - datetime.datetime.strptime(startDate, '%Y-%m-%d %H:%M:%S') periods = delta.total_seconds() / float(frequency) rng = pd.date_range(startDate, periods=periods, freq='%ss' % frequency) noOfOsz = 5 ampOfOsz = 100 oszi = np.linspace(0, noOfOsz * 2 * np.pi, periods) sdArray = np.zeros((periods, numberOfDiameters - 1)) for e, i in enumerate(rng): sdtmp = simulate_sizedistribution(diameter=diameter, numberOfDiameters=numberOfDiameters, centerOfAerosolMode=centerOfAerosolMode + (ampOfOsz * np.sin(oszi[e]))) sdArray[e] = sdtmp.data sdts = pd.DataFrame(sdArray, index=rng, columns=sdtmp.data.columns) return SizeDist_TS(sdts, sdtmp.bins, sdtmp.distributionType) def simulate_sizedistribution_layerseries(diameter=[10, 2500], numberOfDiameters=100, heightlimits=[0, 6000], noOflayers=100, layerHeight=[500., 4000.], layerThickness=[100., 300.], layerDensity=[1000., 5000.], layerModecenter=[200., 800.], widthOfAerosolMode = 0.2 ): gaussian = lambda x, mu, sig: np.exp(-(x - mu) ** 2 / (2 * sig ** 2)) lbt = np.linspace(heightlimits[0], heightlimits[1], noOflayers + 1) layerbounderies = np.array([lbt[:-1], lbt[1:]]).transpose() layercenter = (lbt[1:] + lbt[:-1]) / 2. # strata = np.linspace(heightlimits[0],heightlimits[1],noOflayers+1) layerArray = np.zeros((noOflayers, numberOfDiameters - 1)) for e, stra in enumerate(layercenter): for i, lay in enumerate(layerHeight): sdtmp = simulate_sizedistribution(diameter=diameter, numberOfDiameters=numberOfDiameters, widthOfAerosolMode=widthOfAerosolMode, centerOfAerosolMode=layerModecenter[i], numberOfParticsInMode=layerDensity[i]) layerArray[e] += sdtmp.data.values[0] * gaussian(stra, layerHeight[i], layerThickness[i]) sdls = pd.DataFrame(layerArray, index=layercenter, columns=sdtmp.data.columns) return SizeDist_LS(sdls, sdtmp.bins, sdtmp.distributionType, layerbounderies) def generate_aerosolLayer(diameter=[.01, 2.5], numberOfDiameters=30, centerOfAerosolMode=0.6, widthOfAerosolMode=0.2, numberOfParticsInMode=10000, layerBoundery=[0., 10000], ): """Probably deprecated!?! generates a numberconcentration of an aerosol layer which has a gaussian shape when plottet in dN/log(Dp). However, returned is a numberconcentrations (simply the number of particles in each bin, no normalization) Returns Number concentration (#) bin edges (nm)""" layerBoundery = np.array(layerBoundery) start = diameter[0] end = diameter[1] noOfD = numberOfDiameters centerDiameter = centerOfAerosolMode width = widthOfAerosolMode bins = np.linspace(np.log10(start), np.log10(end), noOfD) binwidth = bins[1:] - bins[:-1] bincenters = (bins[1:] + bins[:-1]) / 2. dNDlogDp = plt.mlab.normpdf(bincenters, np.log10(centerDiameter), width) extraScale = 1 scale = 1 while 1: NumberConcent = dNDlogDp * binwidth * scale * extraScale if scale != 1: break else: scale = float(numberOfParticsInMode) / NumberConcent.sum() binEdges = 10 ** bins # diameterBinCenters = (binEdges[1:] + binEdges[:-1])/2. diameterBinwidth = binEdges[1:] - binEdges[:-1] cols = [] for e, i in enumerate(binEdges[:-1]): cols.append(str(i) + '-' + str(binEdges[e + 1])) layerBoundery = np.array([0., 10000.]) # layerThickness = layerBoundery[1:] - layerBoundery[:-1] layerCenter = [5000.] data = pd.DataFrame(np.array([NumberConcent / diameterBinwidth]), index=layerCenter, columns=cols) # return data # atmosAerosolNumberConcentration = pd.DataFrame() # atmosAerosolNumberConcentration['bin_center'] = pd.Series(diameterBinCenters) # atmosAerosolNumberConcentration['bin_start'] = pd.Series(binEdges[:-1]) # atmosAerosolNumberConcentration['bin_end'] = pd.Series(binEdges[1:]) # atmosAerosolNumberConcentration['numberConcentration'] = pd.Series(NumberConcent) # return atmosAerosolNumberConcentration return SizeDist_LS(data, binEdges, 'dNdDp', layerBoundery) def test_generate_numberConcentration(): """result should look identical to Atmospheric Chemistry and Physis page 422""" nc = generate_aerosolLayer(diameter=[0.01, 10], centerOfAerosolMode=0.8, widthOfAerosolMode=0.3, numberOfDiameters=100, numberOfParticsInMode=1000, layerBoundery=[0.0, 10000]) plt.plot(nc.bincenters, nc.data.values[0].transpose() * nc.binwidth, label='numberConc') plt.plot(nc.bincenters, nc.data.values[0].transpose(), label='numberDist') ncLN = nc.convert2dNdlogDp() plt.plot(ncLN.bincenters, ncLN.data.values[0].transpose(), label='LogNormal') plt.legend() plt.semilogx() def _perform_Miecalculations(diam, wavelength, n, noOfAngles=100.): """ Performs Mie calculations Parameters ---------- diam: NumPy array of floats Array of diameters over which to perform Mie calculations; units are um wavelength: float Wavelength of light in um for which to perform calculations n: complex Ensemble complex index of refraction Returns panda DataTable with the diameters as the index and the mie results in the different collumns total_extinction_coefficient: this takes the sum of all particles crossections of the particular diameter in a qubic meter. This is in principle the AOD of an L """ diam = np.asarray(diam) extinction_efficiency = np.zeros(diam.shape) scattering_efficiency = np.zeros(diam.shape) absorption_efficiency = np.zeros(diam.shape) extinction_crossection = np.zeros(diam.shape) scattering_crossection = np.zeros(diam.shape) absorption_crossection = np.zeros(diam.shape) # phase_function_natural = pd.DataFrame() angular_scattering_natural = pd.DataFrame() # extinction_coefficient = np.zeros(diam.shape) # scattering_coefficient = np.zeros(diam.shape) # absorption_coefficient = np.zeros(diam.shape) # Function for calculating the size parameter for wavelength l and radius r sp = lambda r, l: 2. * np.pi * r / l for e, d in enumerate(diam): radius = d / 2. # print('sp(radius, wavelength)', sp(radius, wavelength)) # print('n', n) # print('d', d) mie = bhmie.bhmie_hagen(sp(radius, wavelength), n, noOfAngles, diameter=d) values = mie.return_Values_as_dict() extinction_efficiency[e] = values['extinction_efficiency'] # print("values['extinction_crosssection']",values['extinction_crosssection']) scattering_efficiency[e] = values['scattering_efficiency'] absorption_efficiency[e] = values['extinction_efficiency'] - values['scattering_efficiency'] extinction_crossection[e] = values['extinction_crosssection'] scattering_crossection[e] = values['scattering_crosssection'] absorption_crossection[e] = values['extinction_crosssection'] - values['scattering_crosssection'] # phase_function_natural[d] = values['phaseFct_natural']['Phase_function_natural'].values angular_scattering_natural[d] = mie.get_angular_scatt_func().natural.values # print('\n') # phase_function_natural.index = values['phaseFct_natural'].index angular_scattering_natural.index = mie.get_angular_scatt_func().index out = pd.DataFrame(index=diam) out['extinction_efficiency'] = pd.Series(extinction_efficiency, index=diam) out['scattering_efficiency'] = pd.Series(scattering_efficiency, index=diam) out['absorption_efficiency'] = pd.Series(absorption_efficiency, index=diam) out['extinction_crossection'] = pd.Series(extinction_crossection, index=diam) out['scattering_crossection'] = pd.Series(scattering_crossection, index=diam) out['absorption_crossection'] = pd.Series(absorption_crossection, index=diam) return out, angular_scattering_natural def _get_coefficients(crossection, cn): """ Calculates the extinction, scattering or absorbtion coefficient Parameters ---------- crosssection: float Units are um^2 cn: float Particle concentration in cc^-1 Returns -------- coefficient in m^-1. This is the differential AOD. """ crossection = crossection.copy() cn = cn.copy() crossection *= 1e-12 # conversion from um^2 to m^2 cn *= 1e6 # conversion from cm^-3 to m^-3 coefficient = cn * crossection # print('cn',cn) # print('crossection', crossection) # print('coeff',coefficient) # print('\n') return coefficient def test_ext_coeff_vertical_profile(): #todo: make this a real test dist = simulate_sizedistribution_layerseries(layerHeight=[3000.0, 3000.0], layerDensity=[1000.0, 100.0], layerModecenter=[100.0, 100.0], layerThickness=[6000, 6000], widthOfAerosolMode = 0.01, noOflayers=3, numberOfDiameters=1000) dist.plot() dist = dist.zoom_diameter(99,101) avg = dist.average_overAllAltitudes() f,a = avg.plot() a.set_xscale('linear') opt = dist.calculate_optical_properties(550, n = 1.455) opt_II = dist.calculate_optical_properties(550, n = 1.1) opt_III = dist.calculate_optical_properties(550, n = 4.) ext = opt.get_extinction_coeff_verticle_profile() ext_II = opt_II.get_extinction_coeff_verticle_profile() ext_III = opt_III.get_extinction_coeff_verticle_profile() tvI_is = (ext_III.data/ext.data).values[0][0] tvI_want = 14.3980239083 tvII_is = (ext_II.data/ext.data).values[0][0] tvII_want = 0.05272993413 print('small deviations could come from averaging over multiple bins with slightly different diameter') print('test values 1 is/should_be: %s/%s'%(tvI_is,tvI_want)) print('test values 2 is/should_be: %s/%s'%(tvII_is,tvII_want)) return False
mit
levinsamuel/rand
python/scripts/unsorted-recursion-search.py
1
1626
#!/usr/bin/env python # coding: utf-8 # In[498]: import sys, math, random, logging, time import numpy as np import pandas as pd # global tracker for recursive depth level = 0 # binary-search-like algorithm def unsorted_search(arr, num): global level level = 0 return _us(arr, num, 0, len(arr)-1, 0) def _us(arr, num, l, r, lev): global level level = max(lev, level) if l > r: return -1 m = (l+r)//2 if arr[m] == num: return m else: step1 = _us(arr, num, l, m-1, lev+1) if step1 == -1: step2 = _us(arr, num, m+1, r, lev+1) return max(step1, step2) else: return step1 # linear search def recSearch(arr, x): global level level = 0 return _recSearch(arr, 0, len(arr)-1, x, 0) def _recSearch( arr, l, r, x, lev): global level level = max(level, lev) if r < l: return -1 if arr[l] == x: return l if arr[r] == x: return r return _recSearch(arr, l+1, r-1, x, lev+1) la = np.random.randint(10000, size=990000) # log.debug("array: %s", la) times = [time.time()] print('Binary-like search:') print(unsorted_search(la, 50)) print("max level:", level) times.append(time.time()) print('\nLinear recursive search:') try: print(recSearch(la, 50)) except RecursionError: print('Execution failed with recursion error') print("max level:", level) times.append(time.time()) # construct times df = pd.DataFrame({'starts': times[0:2], 'ends': times[1:3]}) df['diffs'] = df['ends'] - df['starts'] print('\nExecution times') print(df)
mit
elvandy/nltools
nltools/data/brain_data.py
1
61693
from __future__ import division ''' NeuroLearn Brain Data ===================== Classes to represent brain image data. ''' # Notes: # Need to figure out how to speed up loading and resampling of data __author__ = ["Luke Chang"] __license__ = "MIT" from nilearn.signal import clean from scipy.stats import ttest_1samp from scipy.stats import t as t_dist from scipy.signal import detrend import os import shutil import nibabel as nib import matplotlib.pyplot as plt import numpy as np import pandas as pd import warnings import tempfile from copy import deepcopy import six from sklearn.metrics.pairwise import pairwise_distances, cosine_similarity from sklearn.utils import check_random_state from pynv import Client from joblib import Parallel, delayed from nltools.mask import expand_mask from nltools.analysis import Roc from nilearn.input_data import NiftiMasker from nilearn.plotting import plot_stat_map from nilearn.image import resample_img from nilearn.masking import intersect_masks from nilearn.regions import connected_regions, connected_label_regions from nltools.utils import (get_resource_path, set_algorithm, get_anatomical, attempt_to_import, concatenate, _bootstrap_apply_func, set_decomposition_algorithm) from nltools.cross_validation import set_cv from nltools.plotting import (scatterplot, roc_plot, plot_stacked_adjacency, plot_silhouette) from nltools.stats import (pearson, fdr, threshold, fisher_r_to_z, correlation_permutation, one_sample_permutation, two_sample_permutation, downsample, upsample, zscore, make_cosine_basis, transform_pairwise, summarize_bootstrap, procrustes) from nltools.stats import regress as regression from .adjacency import Adjacency from nltools.prefs import MNI_Template, resolve_mni_path from nltools.external.srm import DetSRM, SRM # Optional dependencies nx = attempt_to_import('networkx', 'nx') mne_stats = attempt_to_import('mne.stats',name='mne_stats', fromlist= ['spatio_temporal_cluster_1samp_test', 'ttest_1samp_no_p']) MAX_INT = np.iinfo(np.int32).max class Brain_Data(object): """ Brain_Data is a class to represent neuroimaging data in python as a vector rather than a 3-dimensional matrix.This makes it easier to perform data manipulation and analyses. Args: data: nibabel data instance or list of files Y: Pandas DataFrame of training labels X: Pandas DataFrame Design Matrix for running univariate models mask: binary nifiti file to mask brain data output_file: Name to write out to nifti file **kwargs: Additional keyword arguments to pass to the prediction algorithm """ def __init__(self, data=None, Y=None, X=None, mask=None, output_file=None, **kwargs): if mask is not None: if not isinstance(mask, nib.Nifti1Image): if isinstance(mask, six.string_types): if os.path.isfile(mask): mask = nib.load(mask) else: raise ValueError("mask is not a nibabel instance or a " "valid file name") self.mask = mask else: self.mask = nib.load(resolve_mni_path(MNI_Template)['mask']) self.nifti_masker = NiftiMasker(mask_img=self.mask) if data is not None: if isinstance(data, six.string_types): if 'http://' in data: from nltools.datasets import download_nifti tmp_dir = os.path.join(tempfile.gettempdir(), str(os.times()[-1])) os.makedirs(tmp_dir) data = nib.load(download_nifti(data, data_dir=tmp_dir)) else: data = nib.load(data) self.data = self.nifti_masker.fit_transform(data) elif isinstance(data, list): if isinstance(data[0], Brain_Data): tmp = concatenate(data) for item in ['data', 'Y', 'X', 'mask', 'nifti_masker', 'file_name']: setattr(self, item, getattr(tmp,item)) else: if all([isinstance(x,data[0].__class__) for x in data]): self.data = [] for i in data: if isinstance(i, six.string_types): self.data.append(self.nifti_masker.fit_transform( nib.load(i))) elif isinstance(i, nib.Nifti1Image): self.data.append(self.nifti_masker.fit_transform(i)) self.data = np.concatenate(self.data) else: raise ValueError('Make sure all objects in the list are the same type.') elif isinstance(data, nib.Nifti1Image): self.data = np.array(self.nifti_masker.fit_transform(data)) else: raise ValueError("data is not a nibabel instance") # Collapse any extra dimension if any([x == 1 for x in self.data.shape]): self.data = self.data.squeeze() else: self.data = np.array([]) if Y is not None: if isinstance(Y, six.string_types): if os.path.isfile(Y): Y = pd.read_csv(Y, header=None, index_col=None) if isinstance(Y, pd.DataFrame): if self.data.shape[0] != len(Y): raise ValueError("Y does not match the correct size " "of data") self.Y = Y else: raise ValueError("Make sure Y is a pandas data frame.") else: self.Y = pd.DataFrame() if X is not None: if isinstance(X, six.string_types): if os.path.isfile(X): X = pd.read_csv(X, header=None, index_col=None) if isinstance(X, pd.DataFrame): if self.data.shape[0] != X.shape[0]: raise ValueError("X does not match the correct size " "of data") self.X = X else: raise ValueError("Make sure X is a pandas data frame.") else: self.X = pd.DataFrame() if output_file is not None: self.file_name = output_file else: self.file_name = [] def __repr__(self): return '%s.%s(data=%s, Y=%s, X=%s, mask=%s, output_file=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.shape(), len(self.Y), self.X.shape, os.path.basename(self.mask.get_filename()), self.file_name ) def __getitem__(self, index): new = deepcopy(self) if isinstance(index, int): new.data = np.array(self.data[index, :]).flatten() else: if isinstance(index, slice): new.data = self.data[index, :] else: index = np.array(index).flatten() new.data = np.array(self.data[index, :]) if not self.Y.empty: new.Y = self.Y.iloc[index] new.Y.reset_index(inplace=True, drop=True) if not self.X.empty: new.X = self.X.iloc[index] new.X.reset_index(inplace=True, drop=True) return new def __setitem__(self, index, value): if not isinstance(value, Brain_Data): raise ValueError("Make sure the value you are trying to set is a " "Brain_Data() instance.") self.data[index, :] = value.data if not value.Y.empty: self.Y.values[index] = value.Y if not value.X.empty: if self.X.shape[1] != value.X.shape[1]: raise ValueError("Make sure self.X is the same size as " "value.X.") self.X.values[index] = value.X def __len__(self): return self.shape()[0] def __add__(self, y): new = deepcopy(self) if isinstance(y, (int, float)): new.data = new.data + y if isinstance(y, Brain_Data): if self.shape() != y.shape(): raise ValueError("Both Brain_Data() instances need to be the " "same shape.") new.data = new.data + y.data return new def __sub__(self, y): new = deepcopy(self) if isinstance(y, (int, float)): new.data = new.data - y if isinstance(y, Brain_Data): if self.shape() != y.shape(): raise ValueError('Both Brain_Data() instances need to be the ' 'same shape.') new.data = new.data - y.data return new def __mul__(self, y): new = deepcopy(self) if isinstance(y, (int, float)): new.data = new.data * y if isinstance(y, Brain_Data): if self.shape() != y.shape(): raise ValueError("Both Brain_Data() instances need to be the " "same shape.") new.data = np.multiply(new.data, y.data) return new def __iter__(self): for x in range(len(self)): yield self[x] def shape(self): """ Get images by voxels shape. """ return self.data.shape def mean(self): """ Get mean of each voxel across images. """ out = deepcopy(self) if len(self.shape()) > 1: out.data = np.mean(self.data, axis=0) out.X = pd.DataFrame() out.Y = pd.DataFrame() else: out = np.mean(self.data) return out def std(self): """ Get standard deviation of each voxel across images. """ out = deepcopy(self) if len(self.shape()) > 1: out.data = np.std(self.data, axis=0) out.X = pd.DataFrame() out.Y = pd.DataFrame() else: out = np.std(self.data) return out def sum(self): """ Sum over voxels.""" out = deepcopy(self) if len(self.shape()) > 1: out.data = np.sum(out.data, axis=0) out.X = pd.DataFrame() out.Y = pd.DataFrame() else: out = np.sum(self.data) return out def to_nifti(self): """ Convert Brain_Data Instance into Nifti Object """ return self.nifti_masker.inverse_transform(self.data) def write(self, file_name=None): """ Write out Brain_Data object to Nifti File. Args: file_name: name of nifti file """ self.to_nifti().to_filename(file_name) def scale(self, scale_val=100.): """ Scale all values such that theya re on the range 0 - scale_val, via grand-mean scaling. This is NOT global-scaling/intensity normalization. This is useful for ensuring that data is on a common scale (e.g. good for multiple runs, participants, etc) and if the default value of 100 is used, can be interpreted as something akin to (but not exactly) "percent signal change." This is consistent with default behavior in AFNI and SPM. Change this value to 10000 to make consistent with FSL. Args: scale_val (int/float): what value to send the grand-mean to; default 100 """ out = deepcopy(self) out.data = out.data / out.data.mean() * scale_val return out def plot(self, limit=5, anatomical=None, **kwargs): """ Create a quick plot of self.data. Will plot each image separately Args: limit: max number of images to return anatomical: nifti image or file name to overlay """ if anatomical is not None: if not isinstance(anatomical, nib.Nifti1Image): if isinstance(anatomical, six.string_types): anatomical = nib.load(anatomical) else: raise ValueError("anatomical is not a nibabel instance") else: anatomical = nib.load(resolve_mni_path(MNI_Template)['plot']) if self.data.ndim == 1: f, a = plt.subplots(nrows=1, figsize=(15, 2)) plot_stat_map(self.to_nifti(), anatomical, cut_coords=range(-40, 50, 10), display_mode='z', black_bg=True, colorbar=True, draw_cross=False, axes=a, **kwargs) else: n_subs = np.minimum(self.data.shape[0], limit) f, a = plt.subplots(nrows=n_subs, figsize=(15, len(self)*2)) for i in range(n_subs): plot_stat_map(self[i].to_nifti(), anatomical, cut_coords=range(-40, 50, 10), display_mode='z', black_bg=True, colorbar=True, draw_cross=False, axes = a[i], **kwargs) return f def regress(self, mode='ols', **kwargs): """ Run a mass-univariate regression across voxels. Three types of regressions can be run: 1) Standard OLS (default) 2) Robust OLS (heteroscedasticty and/or auto-correlation robust errors), i.e. OLS with "sandwich estimators" 3) ARMA (auto-regressive and moving-average lags = 1 by default; experimental) For more information see the help for nltools.stats.regress ARMA notes: This experimental mode is similar to AFNI's 3dREMLFit but without spatial smoothing of voxel auto-correlation estimates. It can be **very computationally intensive** so parallelization is used by default to try to speed things up. Speed is limited because a unique ARMA model is fit to *each voxel* (like AFNI/FSL), but unlike SPM, which assumes the same AR parameters (~0.2) at each voxel. While coefficient results are typically very similar to OLS, std-errors and so t-stats, dfs and and p-vals can differ greatly depending on how much auto-correlation is explaining the response in a voxel relative to other regressors in the design matrix. Args: mode (str): kind of model to fit; must be one of 'ols' (default), 'robust', or 'arma' kwargs (dict): keyword arguments to nltools.stats.regress Returns: out: dictionary of regression statistics in Brain_Data instances {'beta','t','p','df','residual'} """ if not isinstance(self.X, pd.DataFrame): raise ValueError('Make sure self.X is a pandas DataFrame.') if self.X.empty: raise ValueError('Make sure self.X is not empty.') if self.data.shape[0] != self.X.shape[0]: raise ValueError("self.X does not match the correct size of " "self.data") b,t,p,_,res = regression(self.X,self.data,mode=mode,**kwargs) # Prevent copy of all data in self multiple times; instead start with an empty instance and copy only needed attributes from self, and use this as a template for other outputs b_out = self.__class__() b_out.mask = deepcopy(self.mask) b_out.nifti_masker = deepcopy(self.nifti_masker) # Use this as template for other outputs before setting data t_out = b_out.copy() p_out = b_out.copy() sigma_out = b_out.copy() res_out = b_out.copy() b_out.data,t_out.data,p_out.data,sigma_out.data,res_out.data = (b,t,p,sigma_out,res) return {'beta': b_out, 't': t_out, 'p': p_out, 'sigma': sigma_out, 'residual': res_out} def ttest(self, threshold_dict=None): """ Calculate one sample t-test across each voxel (two-sided) Args: threshold_dict: a dictionary of threshold parameters {'unc':.001} or {'fdr':.05} or {'permutation':tcfe, n_permutation:5000} Returns: out: dictionary of regression statistics in Brain_Data instances {'t','p'} """ t = deepcopy(self) p = deepcopy(self) if threshold_dict is not None: if 'permutation' in threshold_dict: # Convert data to correct shape (subjects, time, space) data_convert_shape = deepcopy(self.data) data_convert_shape = np.expand_dims(data_convert_shape, axis=1) if 'n_permutations' in threshold_dict: n_permutations = threshold_dict['n_permutations'] else: n_permutations = 1000 warnings.warn("n_permutations not set: running with 1000 " "permutations") if 'connectivity' in threshold_dict: connectivity = threshold_dict['connectivity'] else: connectivity = None if 'n_jobs' in threshold_dict: n_jobs = threshold_dict['n_jobs'] else: n_jobs = 1 if threshold_dict['permutation'] is 'tfce': perm_threshold = dict(start=0, step=0.2) else: perm_threshold = None if 'stat_fun' in threshold_dict: stat_fun = threshold_dict['stat_fun'] else: stat_fun = mne_stats.ttest_1samp_no_p t.data, clusters, p_values, _ = mne_stats.spatio_temporal_cluster_1samp_test( data_convert_shape, tail=0, threshold=perm_threshold, stat_fun=stat_fun, connectivity=connectivity, n_permutations=n_permutations, n_jobs=n_jobs) t.data = t.data.squeeze() p = deepcopy(t) for cl, pval in zip(clusters, p_values): p.data[cl[1][0]] = pval else: t.data, p.data = ttest_1samp(self.data, 0, 0) else: t.data, p.data = ttest_1samp(self.data, 0, 0) if threshold_dict is not None: if isinstance(threshold_dict, dict): if 'unc' in threshold_dict: thr = threshold_dict['unc'] elif 'fdr' in threshold_dict: thr = fdr(p.data, q=threshold_dict['fdr']) elif 'permutation' in threshold_dict: thr = .05 thr_t = threshold(t, p, thr) out = {'t': t, 'p': p, 'thr_t': thr_t} else: raise ValueError("threshold_dict is not a dictionary. " "Make sure it is in the form of {'unc': .001} " "or {'fdr': .05}") else: out = {'t': t, 'p': p} return out def append(self, data, **kwargs): """ Append data to Brain_Data instance Args: data: Brain_Data instance to append kwargs: optional inputs to Design_Matrix append Returns: out: new appended Brain_Data instance """ if not isinstance(data, Brain_Data): raise ValueError('Make sure data is a Brain_Data instance') if self.isempty(): out = deepcopy(data) else: error_string = ("Data to append has different number of voxels " "then Brain_Data instance.") if len(self.shape()) == 1 & len(data.shape()) == 1: if self.shape()[0] != data.shape()[0]: raise ValueError(error_string) elif len(self.shape()) == 1 & len(data.shape()) > 1: if self.shape()[0] != data.shape()[1]: raise ValueError(error_string) elif len(self.shape()) > 1 & len(data.shape()) == 1: if self.shape()[1] != data.shape()[0]: raise ValueError(error_string) elif self.shape()[1] != data.shape()[1]: raise ValueError(error_string) out = deepcopy(self) out.data = np.vstack([self.data, data.data]) if out.Y.size: out.Y = self.Y.append(data.Y) if self.X.size: if isinstance(self.X, pd.DataFrame): out.X = self.X.append(data.X,**kwargs) else: out.X = np.vstack([self.X, data.X]) return out def empty(self, data=True, Y=True, X=True): """ Initalize Brain_Data.data as empty """ tmp = deepcopy(self) if data: tmp.data = np.array([]) if Y: tmp.Y = pd.DataFrame() if X: tmp.X = pd.DataFrame() return tmp def isempty(self): """ Check if Brain_Data.data is empty """ if isinstance(self.data, np.ndarray): if self.data.size: boolean = False else: boolean = True if isinstance(self.data, list): if not self.data: boolean = True else: boolean = False return boolean def similarity(self, image, method='correlation'): """ Calculate similarity of Brain_Data() instance with single Brain_Data or Nibabel image Args: image: Brain_Data or Nibabel instance of weight map method: (str) Type of similarity ['correlation','dot_product','cosine'] Returns: pexp: Outputs a vector of pattern expression values """ if not isinstance(image, Brain_Data): if isinstance(image, nib.Nifti1Image): image = Brain_Data(image, mask=self.mask) else: raise ValueError("Image is not a Brain_Data or nibabel " "instance") # Check to make sure masks are the same for each dataset and if not # create a union mask # This might be handy code for a new Brain_Data method if np.sum(self.nifti_masker.mask_img.get_data() == 1) != np.sum(image.nifti_masker.mask_img.get_data()==1): new_mask = intersect_masks([self.nifti_masker.mask_img, image.nifti_masker.mask_img], threshold=1, connected=False) new_nifti_masker = NiftiMasker(mask_img=new_mask) data2 = new_nifti_masker.fit_transform(self.to_nifti()) image2 = new_nifti_masker.fit_transform(image.to_nifti()) else: data2 = self.data image2 = image.data def vector2array(data): if len(data.shape) == 1: return data.reshape(-1,1).T else: return data def flatten_array(data): if np.any(np.array(data.shape)==1): data = data.flatten() if len(data)==1 & data.shape[0]==1: data = data[0] return data else: return data # Calculate pattern expression if method is 'dot_product': if len(image2.shape) > 1: if image2.shape[0] > 1: pexp = [] for i in range(image2.shape[0]): pexp.append(np.dot(data2, image2[i, :])) pexp = np.array(pexp) else: pexp = np.dot(data2, image2) else: pexp = np.dot(data2, image2) elif method is 'correlation': if len(image2.shape) > 1: if image2.shape[0] > 1: pexp = [] for i in range(image2.shape[0]): pexp.append(pearson(image2[i, :], data2)) pexp = np.array(pexp) else: pexp = pearson(image2, data2) else: pexp = pearson(image2, data2) elif method is 'cosine': image2 = vector2array(image2) data2 = vector2array(data2) if image2.shape[1] > 1: pexp = [] for i in range(image2.shape[0]): pexp.append(cosine_similarity(image2[i, :].reshape(-1,1).T, data2).flatten()) pexp = np.array(pexp) else: pexp = cosine_similarity(image2, data2).flatten() else: raise ValueError('Method must be one of: correlation, dot_product, cosine') return flatten_array(pexp) def distance(self, method='euclidean', **kwargs): """ Calculate distance between images within a Brain_Data() instance. Args: method: type of distance metric (can use any scikit learn or sciypy metric) Returns: dist: Outputs a 2D distance matrix. """ return Adjacency(pairwise_distances(self.data, metric=method, **kwargs), matrix_type='Distance') def multivariate_similarity(self, images, method='ols'): """ Predict spatial distribution of Brain_Data() instance from linear combination of other Brain_Data() instances or Nibabel images Args: self: Brain_Data instance of data to be applied images: Brain_Data instance of weight map Returns: out: dictionary of regression statistics in Brain_Data instances {'beta','t','p','df','residual'} """ # Notes: Should add ridge, and lasso, elastic net options options if len(self.shape()) > 1: raise ValueError("This method can only decompose a single brain " "image.") if not isinstance(images, Brain_Data): raise ValueError("Images are not a Brain_Data instance") # Check to make sure masks are the same for each dataset and if not create a union mask # This might be handy code for a new Brain_Data method if np.sum(self.nifti_masker.mask_img.get_data() == 1) != np.sum(images.nifti_masker.mask_img.get_data()==1): new_mask = intersect_masks([self.nifti_masker.mask_img, images.nifti_masker.mask_img], threshold=1, connected=False) new_nifti_masker = NiftiMasker(mask_img=new_mask) data2 = new_nifti_masker.fit_transform(self.to_nifti()) image2 = new_nifti_masker.fit_transform(images.to_nifti()) else: data2 = self.data image2 = images.data # Add intercept and transpose image2 = np.vstack((np.ones(image2.shape[1]), image2)).T # Calculate pattern expression if method is 'ols': b = np.dot(np.linalg.pinv(image2), data2) res = data2 - np.dot(image2, b) sigma = np.std(res, axis=0) stderr = np.dot(np.matrix(np.diagonal(np.linalg.inv(np.dot(image2.T, image2)))**.5).T, np.matrix(sigma)) t_out = b / stderr df = image2.shape[0]-image2.shape[1] p = 2*(1-t_dist.cdf(np.abs(t_out), df)) else: raise NotImplementedError return {'beta': b, 't': t_out, 'p': p, 'df': df, 'sigma': sigma, 'residual': res} def predict(self, algorithm=None, cv_dict=None, plot=True, **kwargs): """ Run prediction Args: algorithm: Algorithm to use for prediction. Must be one of 'svm', 'svr', 'linear', 'logistic', 'lasso', 'ridge', 'ridgeClassifier','pcr', or 'lassopcr' cv_dict: Type of cross_validation to use. A dictionary of {'type': 'kfolds', 'n_folds': n}, {'type': 'kfolds', 'n_folds': n, 'stratified': Y}, {'type': 'kfolds', 'n_folds': n, 'subject_id': holdout}, or {'type': 'loso', 'subject_id': holdout} where 'n' = number of folds, and 'holdout' = vector of subject ids that corresponds to self.Y plot: Boolean indicating whether or not to create plots. **kwargs: Additional keyword arguments to pass to the prediction algorithm Returns: output: a dictionary of prediction parameters """ # Set algorithm if algorithm is not None: predictor_settings = set_algorithm(algorithm, **kwargs) else: # Use SVR as a default predictor_settings = set_algorithm('svr', **{'kernel': "linear"}) # Initialize output dictionary output = {} output['Y'] = np.array(self.Y).flatten() # Overall Fit for weight map predictor = predictor_settings['predictor'] predictor.fit(self.data, output['Y']) output['yfit_all'] = predictor.predict(self.data) if predictor_settings['prediction_type'] == 'classification': if predictor_settings['algorithm'] not in ['svm', 'ridgeClassifier', 'ridgeClassifierCV']: output['prob_all'] = predictor.predict_proba(self.data)[:, 1] else: output['dist_from_hyperplane_all'] = predictor.decision_function(self.data) if predictor_settings['algorithm'] == 'svm' and predictor.probability: output['prob_all'] = predictor.predict_proba(self.data)[:, 1] # Intercept if predictor_settings['algorithm'] == 'pcr': output['intercept'] = predictor_settings['_regress'].intercept_ elif predictor_settings['algorithm'] == 'lassopcr': output['intercept'] = predictor_settings['_lasso'].intercept_ else: output['intercept'] = predictor.intercept_ # Weight map output['weight_map'] = self.empty() if predictor_settings['algorithm'] == 'lassopcr': output['weight_map'].data = np.dot(predictor_settings['_pca'].components_.T, predictor_settings['_lasso'].coef_) elif predictor_settings['algorithm'] == 'pcr': output['weight_map'].data = np.dot(predictor_settings['_pca'].components_.T, predictor_settings['_regress'].coef_) else: output['weight_map'].data = predictor.coef_.squeeze() # Cross-Validation Fit if cv_dict is not None: cv = set_cv(Y=self.Y, cv_dict=cv_dict) predictor_cv = predictor_settings['predictor'] output['yfit_xval'] = output['yfit_all'].copy() output['intercept_xval'] = [] output['weight_map_xval'] = output['weight_map'].copy() output['cv_idx'] = [] wt_map_xval = [] if predictor_settings['prediction_type'] == 'classification': if predictor_settings['algorithm'] not in ['svm', 'ridgeClassifier', 'ridgeClassifierCV']: output['prob_xval'] = np.zeros(len(self.Y)) else: output['dist_from_hyperplane_xval'] = np.zeros(len(self.Y)) if predictor_settings['algorithm'] == 'svm' and predictor_cv.probability: output['prob_xval'] = np.zeros(len(self.Y)) for train, test in cv: predictor_cv.fit(self.data[train], self.Y.loc[train]) output['yfit_xval'][test] = predictor_cv.predict(self.data[test]).ravel() if predictor_settings['prediction_type'] == 'classification': if predictor_settings['algorithm'] not in ['svm', 'ridgeClassifier', 'ridgeClassifierCV']: output['prob_xval'][test] = predictor_cv.predict_proba(self.data[test])[:, 1] else: output['dist_from_hyperplane_xval'][test] = predictor_cv.decision_function(self.data[test]) if predictor_settings['algorithm'] == 'svm' and predictor_cv.probability: output['prob_xval'][test] = predictor_cv.predict_proba(self.data[test])[:, 1] # Intercept if predictor_settings['algorithm'] == 'pcr': output['intercept_xval'].append(predictor_settings['_regress'].intercept_) elif predictor_settings['algorithm'] == 'lassopcr': output['intercept_xval'].append(predictor_settings['_lasso'].intercept_) else: output['intercept_xval'].append(predictor_cv.intercept_) output['cv_idx'].append((train,test)) # Weight map if predictor_settings['algorithm'] == 'lassopcr': wt_map_xval.append(np.dot(predictor_settings['_pca'].components_.T, predictor_settings['_lasso'].coef_)) elif predictor_settings['algorithm'] == 'pcr': wt_map_xval.append(np.dot(predictor_settings['_pca'].components_.T, predictor_settings['_regress'].coef_)) else: wt_map_xval.append(predictor_cv.coef_.squeeze()) output['weight_map_xval'].data = np.array(wt_map_xval) # Print Results if predictor_settings['prediction_type'] == 'classification': output['mcr_all'] = np.mean(output['yfit_all'] == np.array(self.Y).flatten()) print('overall accuracy: %.2f' % output['mcr_all']) if cv_dict is not None: output['mcr_xval'] = np.mean(output['yfit_xval'] == np.array(self.Y).flatten()) print('overall CV accuracy: %.2f' % output['mcr_xval']) elif predictor_settings['prediction_type'] == 'prediction': output['rmse_all'] = np.sqrt(np.mean((output['yfit_all']-output['Y'])**2)) output['r_all'] = np.corrcoef(output['Y'], output['yfit_all'])[0, 1] print('overall Root Mean Squared Error: %.2f' % output['rmse_all']) print('overall Correlation: %.2f' % output['r_all']) if cv_dict is not None: output['rmse_xval'] = np.sqrt(np.mean((output['yfit_xval']-output['Y'])**2)) output['r_xval'] = np.corrcoef(output['Y'],output['yfit_xval'])[0, 1] print('overall CV Root Mean Squared Error: %.2f' % output['rmse_xval']) print('overall CV Correlation: %.2f' % output['r_xval']) # Plot if plot: if cv_dict is not None: if predictor_settings['prediction_type'] == 'prediction': scatterplot(pd.DataFrame({'Y': output['Y'], 'yfit_xval': output['yfit_xval']})) elif predictor_settings['prediction_type'] == 'classification': if predictor_settings['algorithm'] not in ['svm', 'ridgeClassifier', 'ridgeClassifierCV']: output['roc'] = Roc(input_values=output['prob_xval'], binary_outcome=output['Y'].astype('bool')) else: output['roc'] = Roc(input_values=output['dist_from_hyperplane_xval'], binary_outcome=output['Y'].astype('bool')) if predictor_settings['algorithm'] == 'svm' and predictor_cv.probability: output['roc'] = Roc(input_values=output['prob_xval'], binary_outcome=output['Y'].astype('bool')) output['roc'].plot() output['weight_map'].plot() return output def apply_mask(self, mask): """ Mask Brain_Data instance Args: mask: mask (Brain_Data or nifti object) """ if isinstance(mask, Brain_Data): mask = mask.to_nifti() # convert to nibabel if not isinstance(mask, nib.Nifti1Image): if isinstance(mask, six.string_types): if os.path.isfile(mask): mask = nib.load(mask) if not ((self.mask.get_affine() == mask.get_affine()).all()) & (self.mask.shape[0:3] == mask.shape[0:3]): mask = resample_img(mask, target_affine=self.mask.get_affine(), target_shape=self.mask.shape) else: raise ValueError("Mask is not a nibabel instance, Brain_Data " "instance, or a valid file name.") masked = deepcopy(self) nifti_masker = NiftiMasker(mask_img=mask) masked.data = nifti_masker.fit_transform(self.to_nifti()) masked.nifti_masker = nifti_masker if (len(masked.shape()) > 1) & (masked.shape()[0] == 1): masked.data = masked.data.flatten() return masked def extract_roi(self, mask, method='mean'): """ Extract activity from mask Args: mask: nibabel mask can be binary or numbered for different rois method: type of extraction method (default=mean) Returns: out: mean within each ROI across images """ if not isinstance(mask, Brain_Data): if isinstance(mask, nib.Nifti1Image): mask = Brain_Data(mask) else: raise ValueError('Make sure mask is a Brain_Data or nibabel ' 'instance') ma = mask.copy() if len(np.unique(ma.data)) == 2: if method is 'mean': out = np.mean(self.data[:, np.where(ma.data)].squeeze(), axis=1) elif len(np.unique(ma.data)) > 2: # make sure each ROI id is an integer ma.data = np.round(ma.data).astype(int) all_mask = expand_mask(ma) out = [] for i in range(all_mask.shape()[0]): if method is 'mean': out.append(np.mean(self.data[:, np.where(all_mask[i].data)].squeeze(),axis=1)) out = np.array(out) return out def icc(self, icc_type='icc2'): ''' Calculate intraclass correlation coefficient for data within Brain_Data class ICC Formulas are based on: Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater reliability. Psychological bulletin, 86(2), 420. icc1: x_ij = mu + beta_j + w_ij icc2/3: x_ij = mu + alpha_i + beta_j + (ab)_ij + epsilon_ij Code modifed from nipype algorithms.icc https://github.com/nipy/nipype/blob/master/nipype/algorithms/icc.py Args: icc_type: type of icc to calculate (icc: voxel random effect, icc2: voxel and column random effect, icc3: voxel and column fixed effect) Returns: ICC: intraclass correlation coefficient ''' Y = self.data.T [n, k] = Y.shape # Degrees of Freedom dfc = k - 1 dfe = (n - 1) * (k-1) dfr = n - 1 # Sum Square Total mean_Y = np.mean(Y) SST = ((Y - mean_Y) ** 2).sum() # create the design matrix for the different levels x = np.kron(np.eye(k), np.ones((n, 1))) # sessions x0 = np.tile(np.eye(n), (k, 1)) # subjects X = np.hstack([x, x0]) # Sum Square Error predicted_Y = np.dot(np.dot(np.dot(X, np.linalg.pinv(np.dot(X.T, X))), X.T), Y.flatten('F')) residuals = Y.flatten('F') - predicted_Y SSE = (residuals ** 2).sum() MSE = SSE / dfe # Sum square column effect - between colums SSC = ((np.mean(Y, 0) - mean_Y) ** 2).sum() * n MSC = SSC / dfc / n # Sum Square subject effect - between rows/subjects SSR = SST - SSC - SSE MSR = SSR / dfr if icc_type == 'icc1': # ICC(2,1) = (mean square subject - mean square error) / # (mean square subject + (k-1)*mean square error + # k*(mean square columns - mean square error)/n) # ICC = (MSR - MSRW) / (MSR + (k-1) * MSRW) NotImplementedError("This method isn't implemented yet.") elif icc_type == 'icc2': # ICC(2,1) = (mean square subject - mean square error) / # (mean square subject + (k-1)*mean square error + # k*(mean square columns - mean square error)/n) ICC = (MSR - MSE) / (MSR + (k-1) * MSE + k * (MSC - MSE) / n) elif icc_type == 'icc3': # ICC(3,1) = (mean square subject - mean square error) / # (mean square subject + (k-1)*mean square error) ICC = (MSR - MSE) / (MSR + (k-1) * MSE) return ICC def detrend(self, method='linear'): """ Remove linear trend from each voxel Args: type: {'linear','constant'} optional Returns: out: detrended Brain_Data instance """ if len(self.shape()) == 1: raise ValueError('Make sure there is more than one image in order ' 'to detrend.') out = deepcopy(self) out.data = detrend(out.data, type=method, axis=0) return out def copy(self): """ Create a copy of a Brain_Data instance. """ return deepcopy(self) def upload_neurovault(self, access_token=None, collection_name=None, collection_id=None, img_type=None, img_modality=None, **kwargs): """ Upload Data to Neurovault. Will add any columns in self.X to image metadata. Index will be used as image name. Args: access_token: (Required) Neurovault api access token collection_name: (Optional) name of new collection to create collection_id: (Optional) neurovault collection_id if adding images to existing collection img_type: (Required) Neurovault map_type img_modality: (Required) Neurovault image modality Returns: collection: neurovault collection information """ if access_token is None: raise ValueError('You must supply a valid neurovault access token') api = Client(access_token=access_token) # Check if collection exists if collection_id is not None: collection = api.get_collection(collection_id) else: try: collection = api.create_collection(collection_name) except ValueError: print('Collection Name already exists. Pick a ' 'different name or specify an existing collection id') tmp_dir = os.path.join(tempfile.gettempdir(), str(os.times()[-1])) os.makedirs(tmp_dir) def add_image_to_collection(api, collection, dat, tmp_dir, index_id=0, **kwargs): '''Upload image to collection Args: api: pynv Client instance collection: collection information dat: Brain_Data instance to upload tmp_dir: temporary directory index_id: (int) index for file naming ''' if (len(dat.shape()) > 1) & (dat.shape()[0] > 1): raise ValueError('"dat" must be a single image.') if not dat.X.empty: if isinstance(dat.X.name, six.string_types): img_name = dat.X.name else: img_name = collection['name'] + '_' + str(index_id) + '.nii.gz' else: img_name = collection['name'] + '_' + str(index_id) + '.nii.gz' f_path = os.path.join(tmp_dir, img_name) dat.write(f_path) if not dat.X.empty: kwargs.update(dict([(k, dat.X.loc[k]) for k in dat.X.keys()])) api.add_image(collection['id'], f_path, name=img_name, modality=img_modality, map_type=img_type, **kwargs) if len(self.shape()) == 1: add_image_to_collection(api, collection, self, tmp_dir, index_id=0, **kwargs) else: for i, x in enumerate(self): add_image_to_collection(api, collection, x, tmp_dir, index_id=i, **kwargs) shutil.rmtree(tmp_dir, ignore_errors=True) return collection def r_to_z(self): ''' Apply Fisher's r to z transformation to each element of the data object.''' out = self.copy() out.data = fisher_r_to_z(out.data) return out def filter(self,sampling_freq=None, high_pass=None,low_pass=None,**kwargs): ''' Apply 5th order butterworth filter to data. Wraps nilearn functionality. Does not default to detrending and standardizing like nilearn implementation, but this can be overridden using kwargs. Args: sampling_freq: sampling freq in hertz (i.e. 1 / TR) high_pass: high pass cutoff frequency low_pass: low pass cutoff frequency kwargs: other keyword arguments to nilearn.signal.clean Returns: Brain_Data: Filtered Brain_Data instance ''' if sampling_freq is None: raise ValueError("Need to provide sampling rate (TR)!") if high_pass is None and low_pass is None: raise ValueError("high_pass and/or low_pass cutoff must be" "provided!") if sampling_freq is None: raise ValueError("Need to provide TR!") standardize = kwargs.get('standardize',False) detrend = kwargs.get('detrend',False) out = self.copy() out.data = clean(out.data,t_r= 1. / sampling_freq,detrend=detrend,standardize=standardize,high_pass=high_pass,low_pass=low_pass,**kwargs) return out def dtype(self): ''' Get data type of Brain_Data.data.''' return self.data.dtype def astype(self, dtype): ''' Cast Brain_Data.data as type. Args: dtype: datatype to convert Returns: Brain_Data: Brain_Data instance with new datatype ''' out = self.copy() out.data = out.data.astype(dtype) return out def standardize(self, method='center'): ''' Standardize Brain_Data() instance. Args: method: ['center','zscore'] Returns: Brain_Data Instance ''' out = self.copy() if method is 'center': out.data = out.data - np.repeat(np.array([np.mean(out.data, axis=0)]).T, len(out), axis=1).T elif method is 'zscore': out.data = out.data - np.repeat(np.array([np.mean(out.data, axis=0)]).T, len(out), axis=1).T out.data = out.data/np.repeat(np.array([np.std(out.data, axis=0)]).T, len(out), axis=1).T else: raise ValueError('method must be ["center","zscore"') return out def groupby(self, mask): '''Create groupby instance''' return Groupby(self, mask) def aggregate(self, mask, func): '''Create new Brain_Data instance that aggregages func over mask''' dat = self.groupby(mask) values = dat.apply(func) return dat.combine(values) def threshold(self, upper=None, lower=None, binarize=False): '''Threshold Brain_Data instance. Provide upper and lower values or percentages to perform two-sided thresholding. Binarize will return a mask image respecting thresholds if provided, otherwise respecting every non-zero value. Args: upper: (float or str) Upper cutoff for thresholding. If string will interpret as percentile; can be None for one-sided thresholding. lower: (float or str) Lower cutoff for thresholding. If string will interpret as percentile; can be None for one-sided thresholding. binarize (bool): return binarized image respecting thresholds if provided, otherwise binarize on every non-zero value; default False Returns: Thresholded Brain_Data object. ''' b = self.copy() if isinstance(upper, six.string_types): if upper[-1] is '%': upper = np.percentile(b.data, float(upper[:-1])) if isinstance(lower, six.string_types): if lower[-1] is '%': lower = np.percentile(b.data, float(lower[:-1])) if upper and lower: b.data[(b.data < upper) & (b.data > lower)] = 0 elif upper and not lower: b.data[b.data < upper] = 0 elif lower and not upper: b.data[b.data > lower] = 0 if binarize: b.data[b.data != 0] = 1 return b def regions(self, min_region_size=1350, extract_type='local_regions', smoothing_fwhm=6, is_mask=False): ''' Extract brain connected regions into separate regions. Args: min_region_size (int): Minimum volume in mm3 for a region to be kept. extract_type (str): Type of extraction method ['connected_components', 'local_regions']. If 'connected_components', each component/region in the image is extracted automatically by labelling each region based upon the presence of unique features in their respective regions. If 'local_regions', each component/region is extracted based on their maximum peak value to define a seed marker and then using random walker segementation algorithm on these markers for region separation. smoothing_fwhm (scalar): Smooth an image to extract more sparser regions. Only works for extract_type 'local_regions'. is_mask (bool): Whether the Brain_Data instance should be treated as a boolean mask and if so, calls connected_label_regions instead. Returns: Brain_Data: Brain_Data instance with extracted ROIs as data. ''' if is_mask: regions, _ = connected_label_regions(self.to_nifti()) else: regions, _ = connected_regions(self.to_nifti(), min_region_size, extract_type, smoothing_fwhm) return Brain_Data(regions, mask=self.mask) def transform_pairwise(self): ''' Extract brain connected regions into separate regions. Args: Returns: Brain_Data: Brain_Data instance tranformed into pairwise comparisons ''' out = self.copy() out.data, new_Y = transform_pairwise(self.data,self.Y) out.Y = pd.DataFrame(new_Y) out.Y.replace(-1,0,inplace=True) return out def bootstrap(self, function, n_samples=5000, save_weights=False, n_jobs=-1, random_state=None, *args, **kwargs): '''Bootstrap a Brain_Data method. Example Useage: b = dat.bootstrap('mean', n_samples=5000) b = dat.bootstrap('predict', n_samples=5000, algorithm='ridge') b = dat.bootstrap('predict', n_samples=5000, save_weights=True) Args: function: (str) method to apply to data for each bootstrap n_samples: (int) number of samples to bootstrap with replacement save_weights: (bool) Save each bootstrap iteration (useful for aggregating many bootstraps on a cluster) n_jobs: (int) The number of CPUs to use to do the computation. -1 means all CPUs.Returns: output: summarized studentized bootstrap output ''' random_state = check_random_state(random_state) seeds = random_state.randint(MAX_INT, size=n_samples) bootstrapped = Parallel(n_jobs=n_jobs)( delayed(_bootstrap_apply_func)(self, function, random_state=seeds[i], *args, **kwargs) for i in range(n_samples)) if function is 'predict': bootstrapped = [x['weight_map'] for x in bootstrapped] bootstrapped = Brain_Data(bootstrapped) return summarize_bootstrap(bootstrapped, save_weights=save_weights) def decompose(self, algorithm='pca', axis='voxels', n_components=None, *args, **kwargs): ''' Decompose Brain_Data object Args: algorithm: (str) Algorithm to perform decomposition types=['pca','ica','nnmf','fa'] axis: dimension to decompose ['voxels','images'] n_components: (int) number of components. If None then retain as many as possible. Returns: output: a dictionary of decomposition parameters ''' out = {} out['decomposition_object'] = set_decomposition_algorithm( algorithm=algorithm, n_components=n_components, *args, **kwargs) if axis is 'images': out['decomposition_object'].fit(self.data.T) out['components'] = self.empty() out['components'].data = out['decomposition_object'].transform( self.data.T).T out['weights'] = out['decomposition_object'].components_.T if axis is 'voxels': out['decomposition_object'].fit(self.data) out['weights'] = out['decomposition_object'].transform(self.data) out['components'] = self.empty() out['components'].data = out['decomposition_object'].components_ return out def align(self, target, method='procrustes', n_features=None, axis=0, *args, **kwargs): ''' Align Brain_Data instance to target object Can be used to hyperalign source data to target data using Hyperalignemnt from Dartmouth (i.e., procrustes transformation; see nltools.stats.procrustes) or Shared Response Model from Princeton (see nltools.external.srm). (see nltools.stats.align for aligning many data objects together). Common Model is shared response model or centered target data.Transformed data can be back projected to original data using Tranformation matrix. Examples: Hyperalign using procrustes transform: out = data.align(target, method='procrustes') Align using shared response model: out = data.align(target, method='probabilistic_srm', n_features=None) Project aligned data into original data: original_data = np.dot(out['transformed'].data,out['transformation_matrix'].T) Args: target: (Brain_Data) object to align to. method: (str) alignment method to use ['probabilistic_srm','deterministic_srm','procrustes'] n_features: (int) number of features to align to common space. If None then will select number of voxels axis: (int) axis to align on Returns: out: (dict) a dictionary containing transformed object, transformation matrix, and the shared response matrix ''' source = self.copy() common = target.copy() if not isinstance(target, Brain_Data): raise ValueError("Target must be Brain_Data instance.") if method not in ['probabilistic_srm', 'deterministic_srm','procrustes']: raise ValueError("Method must be ['probabilistic_srm','deterministic_srm','procrustes']") data1 = source.data.T data2 = target.data.T if axis == 1: data1 = data1.T data2 = data2.T out = dict() if method in ['deterministic_srm', 'probabilistic_srm']: if n_features is None: n_features = data1.shape[0] if method == 'deterministic_srm': srm = DetSRM(features=n_features, *args, **kwargs) elif method == 'probabilistic_srm': srm = SRM(features=n_features, *args, **kwargs) srm.fit([data1, data2]) source.data = srm.transform([data1, data2])[0].T common.data = srm.s_.T out['transformed'] = source out['common_model'] = common out['transformation_matrix'] = srm.w_[0] elif method == 'procrustes': if n_features != None: raise NotImplementedError('Currently must use all voxels.' 'Eventually will add a PCA' 'reduction, must do this manually' 'for now.') mtx1, mtx2, out['disparity'], t, out['scale'] = procrustes(data2.T, data1.T) source.data = mtx2 common.data = mtx1 out['transformed'] = source out['common_model'] = common out['transformation_matrix'] = t if axis == 1: out['transformed'].data = out['transformed'].data.T out['common_model'].data = out['common_model'].data.T return out class Groupby(object): def __init__(self, data, mask): if not isinstance(data, Brain_Data): raise ValueError('Groupby requires a Brain_Data instance.') if not isinstance(mask, Brain_Data): if isinstance(mask, nib.Nifti1Image): mask = Brain_Data(mask) else: raise ValueError('mask must be a Brain_Data instance.') mask.data = np.round(mask.data).astype(int) if len(mask.shape()) <= 1: if len(np.unique(mask.data)) > 2: mask = expand_mask(mask) else: raise ValueError('mask does not have enough groups.') self.mask = mask self.split(data, mask) def __repr__(self): return '%s.%s(len=%s)' % ( self.__class__.__module__, self.__class__.__name__, len(self), ) def __len__(self): return len(self.data) def __iter__(self): for x in self.data: yield (x, self.data[x]) def __getitem__(self, index): if isinstance(index, int): return self.data[index] else: raise ValueError('Groupby currently only supports integer indexing') def split(self, data, mask): '''Split Brain_Data instance into separate masks and store as a dictionary. ''' self.data = {} for i, m in enumerate(mask): self.data[i] = data.apply_mask(m) def apply(self, method): '''Apply Brain_Data instance methods to each element of Groupby object. ''' return dict([(i, getattr(x, method)()) for i, x in self]) def combine(self, value_dict): '''Combine value dictionary back into masks''' out = self.mask.copy().astype(float) for i in iter(value_dict.keys()): if isinstance(value_dict[i], Brain_Data): if value_dict[i].shape()[0] == np.sum(self.mask[i].data): out.data[i, out.data[i, :] == 1] = value_dict[i].data else: raise ValueError('Brain_Data instances are different ' 'shapes.') elif isinstance(value_dict[i], (float, int, bool, np.number)): out.data[i, :] = out.data[i, :]*value_dict[i] else: raise ValueError('No method for aggregation implented for %s ' 'yet.' % type(value_dict[i])) return out.sum()
mit
sharafcode/EM-Algorithm-for-Text-clustering-using-sickit-learn-
em_utilities.py
1
5403
from scipy.sparse import csr_matrix from scipy.sparse import spdiags from scipy.stats import multivariate_normal #import graphlab import numpy as np import sys import time from copy import deepcopy from sklearn.metrics import pairwise_distances from sklearn.preprocessing import normalize , OneHotEncoder def sframe_to_scipy(x, column_name): ''' Convert a dictionary column of an SFrame into a sparse matrix format where each (row_id, column_id, value) triple corresponds to the value of x[row_id][column_id], where column_id is a key in the dictionary. Example >>> sparse_matrix, map_key_to_index = sframe_to_scipy(sframe, column_name) ''' assert x[column_name].dtype() == dict, \ 'The chosen column must be dict type, representing sparse data.' # Create triples of (row_id, feature_id, count). # 1. Add a row number. x = x.add_row_number() # 2. Stack will transform x to have a row for each unique (row, key) pair. x = x.stack(column_name, ['feature', 'value']) # Map words into integers using a OneHotEncoder feature transformation. f = OneHotEncoder(features=['feature']) # 1. Fit the transformer using the above data. f.fit(x) # 2. The transform takes 'feature' column and adds a new column 'feature_encoding'. x = f.transform(x) # 3. Get the feature mapping. mapping = f['feature_encoding'] # 4. Get the feature id to use for each key. x['feature_id'] = x['encoded_features'].dict_keys().apply(lambda x: x[0]) # Create numpy arrays that contain the data for the sparse matrix. i = np.array(x['id']) j = np.array(x['feature_id']) v = np.array(x['value']) width = x['id'].max() + 1 height = x['feature_id'].max() + 1 # Create a sparse matrix. mat = csr_matrix((v, (i, j)), shape=(width, height)) return mat, mapping def diag(array): n = len(array) return spdiags(array, 0, n, n) def logpdf_diagonal_gaussian(x, mean, cov): ''' Compute logpdf of a multivariate Gaussian distribution with diagonal covariance at a given point x. A multivariate Gaussian distribution with a diagonal covariance is equivalent to a collection of independent Gaussian random variables. x should be a sparse matrix. The logpdf will be computed for each row of x. mean and cov should be given as 1D numpy arrays mean[i] : mean of i-th variable cov[i] : variance of i-th variable''' n = x.shape[0] dim = x.shape[1] assert(dim == len(mean) and dim == len(cov)) # multiply each i-th column of x by (1/(2*sigma_i)), where sigma_i is sqrt of variance of i-th variable. scaled_x = x.dot( diag(1./(2*np.sqrt(cov))) ) # multiply each i-th entry of mean by (1/(2*sigma_i)) scaled_mean = mean/(2*np.sqrt(cov)) # sum of pairwise squared Eulidean distances gives SUM[(x_i - mean_i)^2/(2*sigma_i^2)] return -np.sum(np.log(np.sqrt(2*np.pi*cov))) - pairwise_distances(scaled_x, [scaled_mean], 'euclidean').flatten()**2 def log_sum_exp(x, axis): '''Compute the log of a sum of exponentials''' x_max = np.max(x, axis=axis) if axis == 1: return x_max + np.log( np.sum(np.exp(x-x_max[:,np.newaxis]), axis=1) ) else: return x_max + np.log( np.sum(np.exp(x-x_max), axis=0) ) def EM_for_high_dimension(data, means, covs, weights, cov_smoothing=1e-5, maxiter=int(1e3), thresh=1e-4, verbose=False): # cov_smoothing: specifies the default variance assigned to absent features in a cluster. # If we were to assign zero variances to absent features, we would be overconfient, # as we hastily conclude that those featurese would NEVER appear in the cluster. # We'd like to leave a little bit of possibility for absent features to show up later. n = data.shape[0] dim = data.shape[1] mu = deepcopy(means) Sigma = deepcopy(covs) K = len(mu) weights = np.array(weights) ll = None ll_trace = [] for i in range(maxiter): # E-step: compute responsibilities logresp = np.zeros((n,K)) for k in xrange(K): logresp[:,k] = np.log(weights[k]) + logpdf_diagonal_gaussian(data, mu[k], Sigma[k]) ll_new = np.sum(log_sum_exp(logresp, axis=1)) if verbose: print(ll_new) sys.stdout.flush() logresp -= np.vstack(log_sum_exp(logresp, axis=1)) resp = np.exp(logresp) counts = np.sum(resp, axis=0) # M-step: update weights, means, covariances weights = counts / np.sum(counts) for k in range(K): mu[k] = (diag(resp[:,k]).dot(data)).sum(axis=0)/counts[k] mu[k] = mu[k].A1 Sigma[k] = diag(resp[:,k]).dot( data.multiply(data)-2*data.dot(diag(mu[k])) ).sum(axis=0) \ + (mu[k]**2)*counts[k] Sigma[k] = Sigma[k].A1 / counts[k] + cov_smoothing*np.ones(dim) # check for convergence in log-likelihood ll_trace.append(ll_new) if ll is not None and (ll_new-ll) < thresh and ll_new > -np.inf: ll = ll_new break else: ll = ll_new out = {'weights':weights,'means':mu,'covs':Sigma,'loglik':ll_trace,'resp':resp} return out
mit
ltiao/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
67
9084
import numpy as np from sklearn.utils import check_array from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import TempMemmap from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_lassocd_readonly_data(): n_components = 12 with TempMemmap(X) as X_read_only: dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X_read_only).transform(X_read_only) assert_array_almost_equal(np.dot(code, dico.components_), X_read_only, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[np.newaxis, 1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[np.newaxis, 1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample[np.newaxis, :]) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_input(): n_components = 100 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] Xf = check_array(X, order='F') for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): a = sparse_encode(X, V, algorithm=algo) b = sparse_encode(Xf, V, algorithm=algo) assert_array_almost_equal(a, b) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
openpathsampling/openpathsampling
openpathsampling/analysis/tis/flux.py
3
14062
import collections import openpathsampling as paths from openpathsampling.netcdfplus import StorableNamedObject import pandas as pd import numpy as np from .core import MultiEnsembleSamplingAnalyzer def flux_matrix_pd(flux_matrix, sort_method="default"): """Convert dict form of flux to a pandas.Series Parameters ---------- flux_matrix : dict of {(state, interface): flux} the output of a flux calculation; flux out of state and through interface sort_method : callable or str method that takes a list of 2-tuple key from flux_matrix and returns a sorted list. Strings can be used to select internally-defined methods. Currently implemented: "default" (:meth:`.default_flux_sort`). Returns ------- :class:`pandas.Series` : The flux represented in a pandas series """ keys = list(flux_matrix.keys()) known_method_names = { 'default': default_flux_sort } if isinstance(sort_method, str): try: sort_method = known_method_names[sort_method.lower()] except KeyError: raise KeyError("Unknown sort_method name: " + str(sort_method)) if sort_method is not None: ordered = sort_method(keys) else: ordered = keys values = [flux_matrix[k] for k in ordered] index_vals = [(k[0].name, k[1].name) for k in ordered] index = pd.MultiIndex.from_tuples(list(index_vals), names=["State", "Interface"]) return pd.Series(values, index=index, name="Flux") def default_flux_sort(tuple_list): """Default sort for flux pairs. Flux results are reported in terms of flux pairs like ``(state, interface)``. This sorts them using the ``.name`` strings for the volumes. """ name_to_volumes = {(t[0].name, t[1].name): t for t in tuple_list} sorted_results = sorted(name_to_volumes.keys()) return [name_to_volumes[key] for key in sorted_results] class MinusMoveFlux(MultiEnsembleSamplingAnalyzer): """ Calculating the flux from the minus move. Raises ------ ValueError if the number of interface sets per minus move is greater than one. Cannot use Minus Move flux calculation with multiple interface set TIS. Parameters ---------- scheme: :class:`.MoveScheme` move scheme that was used (includes information on the minus movers and on the network) flux_pairs: list of 2-tuple of :class:`.Volume` pairs of (state, interface) for calculating the flux out of the volume and through the state. Default is `None`, in which case the state and innermost interface are used. """ def __init__(self, scheme, flux_pairs=None): super(MinusMoveFlux, self).__init__() # error string we'll re-use in a few places mistis_err_str = ("Cannot use minus move flux with multiple " + "interface sets. ") self.scheme = scheme self.network = scheme.network self.minus_movers = scheme.movers['minus'] for mover in self.minus_movers: n_innermost = len(mover.innermost_ensembles) if n_innermost != 1: raise ValueError( mistis_err_str + "Mover " + str(mover) + " does not " + "have exactly one innermost ensemble. Found " + str(len(mover.innermost_ensembles)) + ")." ) if flux_pairs is None: # get flux_pairs from network flux_pairs = [] minus_ens_to_trans = self.network.special_ensembles['minus'] for minus_ens in self.network.minus_ensembles: n_trans = len(minus_ens_to_trans[minus_ens]) if n_trans > 1: # pragma: no cover # Should have been caught be the previous ValueError. If # you hit this, something unexpected happened. raise ValueError(mistis_err_str + "Ensemble " + repr(minus_ens) + " connects " + str(n_trans) + " transitions.") trans = minus_ens_to_trans[minus_ens][0] innermost = trans.interfaces[0] state = trans.stateA # a couple assertions as a sanity check assert minus_ens.state_vol == state assert minus_ens.innermost_vol == innermost flux_pairs.append((state, innermost)) self.flux_pairs = flux_pairs def _get_minus_steps(self, steps): """ Selects steps that used this object's minus movers """ return [s for s in steps if s.change.canonical.mover in self.minus_movers and s.change.accepted] def trajectory_transition_flux_dict(self, minus_steps): """ Main minus move-based flux analysis routine. Parameters ---------- minus_steps: list of :class:`.MCStep` steps that used the minus movers Returns ------- dict of {(:class:`.Volume, :class:`.Volume`): dict} keys are (state, interface); values are the result dict from :meth:`.TrajectoryTransitionAnalysis.analyze_flux` (keys are strings 'in' and 'out', mapping to :class:`.TrajectorySegmentContainer` with appropriate frames. """ # set up a few mappings that make it easier set up other things flux_pair_to_transition = { (trans.stateA, trans.interfaces[0]): trans for trans in self.network.sampling_transitions } flux_pair_to_minus_mover = { (m.minus_ensemble.state_vol, m.minus_ensemble.innermost_vol): m for m in self.minus_movers } minus_mover_to_flux_pair = {flux_pair_to_minus_mover[k]: k for k in flux_pair_to_minus_mover} flux_pair_to_minus_ensemble = { (minus_ens.state_vol, minus_ens.innermost_vol): minus_ens for minus_ens in self.network.minus_ensembles } # sanity checks -- only run once per analysis, so keep them in for pair in self.flux_pairs: assert pair in flux_pair_to_transition.keys() assert pair in flux_pair_to_minus_mover.keys() assert len(self.flux_pairs) == len(minus_mover_to_flux_pair) # organize the steps by mover used mover_to_steps = collections.defaultdict(list) for step in minus_steps: mover_to_steps[step.change.canonical.mover].append(step) # create the actual TrajectoryTransitionAnalysis objects to use transition_flux_calculators = { k: paths.TrajectoryTransitionAnalysis( transition=flux_pair_to_transition[k], dt=flux_pair_to_minus_mover[k].engine.snapshot_timestep ) for k in self.flux_pairs } # do the analysis results = {} flux_pairs = self.progress(self.flux_pairs, desc="Flux") for flux_pair in flux_pairs: (state, innermost) = flux_pair mover = flux_pair_to_minus_mover[flux_pair] calculator = transition_flux_calculators[flux_pair] minus_ens = flux_pair_to_minus_ensemble[flux_pair] # TODO: this won't work for SR minus, I don't think # (but neither would our old version) trajectories = [s.active[minus_ens].trajectory for s in mover_to_steps[mover]] mover_trajs = self.progress(trajectories, leave=False) results[flux_pair] = calculator.analyze_flux( trajectories=mover_trajs, state=state, interface=innermost ) return results @staticmethod def from_trajectory_transition_flux_dict(flux_dicts): """Load from existing TrajectoryTransitionAnalysis calculations. Parameters ---------- flux_dicts: dict of {(:class:`.Volume`, :class:`.Volume`): dict} keys are (state, interface); values are the result dict from :meth:`.TrajectoryTransitionAnalysis.analyze_flux` (keys are strings 'in' and 'out', mapping to :class:`.TrajectorySegmentContainer` with appropriate frames. Returns ------- dict of {(:class:`.Volume, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ TTA = paths.TrajectoryTransitionAnalysis # readability on 80 col return {k: TTA.flux_from_flux_dict(flux_dicts[k]) for k in flux_dicts} def from_weighted_trajectories(self, input_dict): """Not implemented for flux calculation.""" # this can't be done, e.g., in the case of the single replica minus # mover, where the minus trajectory isn't in the active samples raise NotImplementedError( "Can not calculate minus move from weighted trajectories." ) def calculate(self, steps): """Perform the analysis, using `steps` as input. Parameters ---------- steps : iterable of :class:`.MCStep` the steps to use as input for this analysis Returns ------- dict of {(:class:`.Volume`, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ intermediates = self.intermediates(steps) return self.calculate_from_intermediates(*intermediates) def intermediates(self, steps): """Calculate intermediates, using `steps` as input. Parameters ---------- steps : iterable of :class:`.MCStep` the steps to use as input for this analysis Returns ------- list (len 1) of dict of {(:class:`.Volume`, :class:`.Volume`): dict} keys are (state, interface); values are the result dict from :meth:`.TrajectoryTransitionAnalysis.analyze_flux` (keys are strings 'in' and 'out', mapping to :class:`.TrajectorySegmentContainer` with appropriate frames. """ minus_steps = self._get_minus_steps(steps) return [self.trajectory_transition_flux_dict(minus_steps)] def calculate_from_intermediates(self, *intermediates): """Perform the analysis, using intermediates as input. Parameters ---------- intermediates : output of :meth:`.intermediates` Returns ------- dict of {(:class:`.Volume, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ flux_dicts = intermediates[0] return self.from_trajectory_transition_flux_dict(flux_dicts) class DictFlux(MultiEnsembleSamplingAnalyzer): """Pre-calculated flux, provided as a dict. Parameters ---------- flux_dict: dict of {(:class:`.Volume`, :class:`.Volume`): float} keys are (state, interface) pairs; values are associated flux """ def __init__(self, flux_dict): super(DictFlux, self).__init__() self.flux_dict = flux_dict def calculate(self, steps): """Perform the analysis, using `steps` as input. Parameters ---------- steps : iterable of :class:`.MCStep` the steps to use as input for this analysis Returns ------- dict of {(:class:`.Volume`, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ return self.flux_dict def from_weighted_trajectories(self, input_dict): """Calculate results from weighted trajectories dictionary. For :class:`.DictFlux`, this ignores the input. Parameters ---------- input_dict : dict of {:class:`.Ensemble`: collections.Counter} ensemble as key, and a counter mapping each trajectory associated with that ensemble to its counter of time spent in the ensemble. Returns ------- dict of {(:class:`.Volume`, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ return self.flux_dict def intermediates(self, steps): """Calculate intermediates, using `steps` as input. Parameters ---------- steps : iterable of :class:`.MCStep` the steps to use as input for this analysis Returns ------- list empty list; the method is a placeholder for this class """ return [] def calculate_from_intermediates(self, *intermediates): """Perform the analysis, using intermediates as input. Parameters ---------- intermediates : output of :meth:`.intermediates` Returns ------- dict of {(:class:`.Volume, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ return self.flux_dict @staticmethod def combine_results(result_1, result_2): """Combine two sets of results from this analysis. For :class:`.DictFlux`, the results must be identical. Parameters ---------- result_1 : dict of {(:class:`.Volume, :class:`.Volume`): float} first set of results from a flux calculation result_2 : dict of {(:class:`.Volume, :class:`.Volume`): float} second set of results from a flux calculation Returns ------- dict of {(:class:`.Volume, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ if result_1 != result_2: raise RuntimeError("Combining results from different DictFlux") return result_1
mit
jforbess/pvlib-python
pvlib/solarposition.py
2
24131
""" Calculate the solar position using a variety of methods/packages. """ # Contributors: # Rob Andrews (@Calama-Consulting), Calama Consulting, 2014 # Will Holmgren (@wholmgren), University of Arizona, 2014 # Tony Lorenzo (@alorenzo175), University of Arizona, 2015 from __future__ import division import os import logging pvl_logger = logging.getLogger('pvlib') import datetime as dt try: from importlib import reload except ImportError: try: from imp import reload except ImportError: pass import numpy as np import pandas as pd from pvlib.tools import localize_to_utc, datetime_to_djd, djd_to_datetime def get_solarposition(time, location, method='nrel_numpy', pressure=101325, temperature=12, **kwargs): """ A convenience wrapper for the solar position calculators. Parameters ---------- time : pandas.DatetimeIndex location : pvlib.Location object method : string 'pyephem' uses the PyEphem package: :func:`pyephem` 'nrel_c' uses the NREL SPA C code [3]: :func:`spa_c` 'nrel_numpy' uses an implementation of the NREL SPA algorithm described in [1] (default): :func:`spa_python` 'nrel_numba' uses an implementation of the NREL SPA algorithm described in [1], but also compiles the code first: :func:`spa_python` 'ephemeris' uses the pvlib ephemeris code: :func:`ephemeris` pressure : float Pascals. temperature : float Degrees C. Other keywords are passed to the underlying solar position function. References ---------- [1] I. Reda and A. Andreas, Solar position algorithm for solar radiation applications. Solar Energy, vol. 76, no. 5, pp. 577-589, 2004. [2] I. Reda and A. Andreas, Corrigendum to Solar position algorithm for solar radiation applications. Solar Energy, vol. 81, no. 6, p. 838, 2007. [3] NREL SPA code: http://rredc.nrel.gov/solar/codesandalgorithms/spa/ """ method = method.lower() if isinstance(time, dt.datetime): time = pd.DatetimeIndex([time, ]) if method == 'nrel_c': ephem_df = spa_c(time, location, pressure, temperature, **kwargs) elif method == 'nrel_numba': ephem_df = spa_python(time, location, pressure, temperature, how='numba', **kwargs) elif method == 'nrel_numpy': ephem_df = spa_python(time, location, pressure, temperature, how='numpy', **kwargs) elif method == 'pyephem': ephem_df = pyephem(time, location, pressure, temperature, **kwargs) elif method == 'ephemeris': ephem_df = ephemeris(time, location, pressure, temperature, **kwargs) else: raise ValueError('Invalid solar position method') return ephem_df def spa_c(time, location, pressure=101325, temperature=12, delta_t=67.0, raw_spa_output=False): """ Calculate the solar position using the C implementation of the NREL SPA code The source files for this code are located in './spa_c_files/', along with a README file which describes how the C code is wrapped in Python. Due to license restrictions, the C code must be downloaded seperately and used in accordance with it's license. Parameters ---------- time : pandas.DatetimeIndex location : pvlib.Location object pressure : float Pressure in Pascals temperature : float Temperature in C delta_t : float Difference between terrestrial time and UT1. USNO has previous values and predictions. raw_spa_output : bool If true, returns the raw SPA output. Returns ------- DataFrame The DataFrame will have the following columns: elevation, azimuth, zenith, apparent_elevation, apparent_zenith. References ---------- NREL SPA code: http://rredc.nrel.gov/solar/codesandalgorithms/spa/ USNO delta T: http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term See also -------- pyephem, spa_python, ephemeris """ # Added by Rob Andrews (@Calama-Consulting), Calama Consulting, 2014 # Edited by Will Holmgren (@wholmgren), University of Arizona, 2014 # Edited by Tony Lorenzo (@alorenzo175), University of Arizona, 2015 try: from pvlib.spa_c_files.spa_py import spa_calc except ImportError: raise ImportError('Could not import built-in SPA calculator. ' + 'You may need to recompile the SPA code.') pvl_logger.debug('using built-in spa code to calculate solar position') time_utc = localize_to_utc(time, location) spa_out = [] for date in time_utc: spa_out.append(spa_calc(year=date.year, month=date.month, day=date.day, hour=date.hour, minute=date.minute, second=date.second, timezone=0, # tz corrections handled above latitude=location.latitude, longitude=location.longitude, elevation=location.altitude, pressure=pressure / 100, temperature=temperature, delta_t=delta_t )) spa_df = pd.DataFrame(spa_out, index=time_utc).tz_convert(location.tz) if raw_spa_output: return spa_df else: dfout = pd.DataFrame({'azimuth': spa_df['azimuth'], 'apparent_zenith': spa_df['zenith'], 'apparent_elevation': spa_df['e'], 'elevation': spa_df['e0'], 'zenith': 90 - spa_df['e0']}) return dfout def _spa_python_import(how): """Compile spa.py appropriately""" from pvlib import spa # check to see if the spa module was compiled with numba using_numba = spa.USE_NUMBA if how == 'numpy' and using_numba: # the spa module was compiled to numba code, so we need to # reload the module without compiling # the PVLIB_USE_NUMBA env variable is used to tell the module # to not compile with numba os.environ['PVLIB_USE_NUMBA'] = '0' pvl_logger.debug('Reloading spa module without compiling') spa = reload(spa) del os.environ['PVLIB_USE_NUMBA'] elif how == 'numba' and not using_numba: # The spa module was not compiled to numba code, so set # PVLIB_USE_NUMBA so it does compile to numba on reload. os.environ['PVLIB_USE_NUMBA'] = '1' pvl_logger.debug('Reloading spa module, compiling with numba') spa = reload(spa) del os.environ['PVLIB_USE_NUMBA'] elif how != 'numba' and how != 'numpy': raise ValueError("how must be either 'numba' or 'numpy'") return spa def spa_python(time, location, pressure=101325, temperature=12, delta_t=None, atmos_refract=None, how='numpy', numthreads=4): """ Calculate the solar position using a python implementation of the NREL SPA algorithm described in [1]. If numba is installed, the functions can be compiled to machine code and the function can be multithreaded. Without numba, the function evaluates via numpy with a slight performance hit. Parameters ---------- time : pandas.DatetimeIndex location : pvlib.Location object pressure : int or float, optional avg. yearly air pressure in Pascals. temperature : int or float, optional avg. yearly air temperature in degrees C. delta_t : float, optional Difference between terrestrial time and UT1. The USNO has historical and forecasted delta_t [3]. atmos_refrac : float, optional The approximate atmospheric refraction (in degrees) at sunrise and sunset. how : str, optional Options are 'numpy' or 'numba'. If numba >= 0.17.0 is installed, how='numba' will compile the spa functions to machine code and run them multithreaded. numthreads : int, optional Number of threads to use if how == 'numba'. Returns ------- DataFrame The DataFrame will have the following columns: apparent_zenith (degrees), zenith (degrees), apparent_elevation (degrees), elevation (degrees), azimuth (degrees), equation_of_time (minutes). References ---------- [1] I. Reda and A. Andreas, Solar position algorithm for solar radiation applications. Solar Energy, vol. 76, no. 5, pp. 577-589, 2004. [2] I. Reda and A. Andreas, Corrigendum to Solar position algorithm for solar radiation applications. Solar Energy, vol. 81, no. 6, p. 838, 2007. [3] USNO delta T: http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term See also -------- pyephem, spa_c, ephemeris """ # Added by Tony Lorenzo (@alorenzo175), University of Arizona, 2015 pvl_logger.debug('Calculating solar position with spa_python code') lat = location.latitude lon = location.longitude elev = location.altitude pressure = pressure / 100 # pressure must be in millibars for calculation delta_t = delta_t or 67.0 atmos_refract = atmos_refract or 0.5667 if not isinstance(time, pd.DatetimeIndex): try: time = pd.DatetimeIndex(time) except (TypeError, ValueError): time = pd.DatetimeIndex([time, ]) unixtime = localize_to_utc(time, location).astype(np.int64)/10**9 spa = _spa_python_import(how) app_zenith, zenith, app_elevation, elevation, azimuth, eot = spa.solar_position( unixtime, lat, lon, elev, pressure, temperature, delta_t, atmos_refract, numthreads) result = pd.DataFrame({'apparent_zenith': app_zenith, 'zenith': zenith, 'apparent_elevation': app_elevation, 'elevation': elevation, 'azimuth': azimuth, 'equation_of_time': eot}, index=time) try: result = result.tz_convert(location.tz) except TypeError: result = result.tz_localize(location.tz) return result def get_sun_rise_set_transit(time, location, how='numpy', delta_t=None, numthreads=4): """ Calculate the sunrise, sunset, and sun transit times using the NREL SPA algorithm described in [1]. If numba is installed, the functions can be compiled to machine code and the function can be multithreaded. Without numba, the function evaluates via numpy with a slight performance hit. Parameters ---------- time : pandas.DatetimeIndex Only the date part is used location : pvlib.Location object delta_t : float, optional Difference between terrestrial time and UT1. By default, use USNO historical data and predictions how : str, optional Options are 'numpy' or 'numba'. If numba >= 0.17.0 is installed, how='numba' will compile the spa functions to machine code and run them multithreaded. numthreads : int, optional Number of threads to use if how == 'numba'. Returns ------- DataFrame The DataFrame will have the following columns: sunrise, sunset, transit References ---------- [1] Reda, I., Andreas, A., 2003. Solar position algorithm for solar radiation applications. Technical report: NREL/TP-560- 34302. Golden, USA, http://www.nrel.gov. """ # Added by Tony Lorenzo (@alorenzo175), University of Arizona, 2015 pvl_logger.debug('Calculating sunrise, set, transit with spa_python code') lat = location.latitude lon = location.longitude delta_t = delta_t or 67.0 if not isinstance(time, pd.DatetimeIndex): try: time = pd.DatetimeIndex(time) except (TypeError, ValueError): time = pd.DatetimeIndex([time, ]) # must convert to midnight UTC on day of interest utcday = pd.DatetimeIndex(time.date).tz_localize('UTC') unixtime = utcday.astype(np.int64)/10**9 spa = _spa_python_import(how) transit, sunrise, sunset = spa.transit_sunrise_sunset( unixtime, lat, lon, delta_t, numthreads) # arrays are in seconds since epoch format, need to conver to timestamps transit = pd.to_datetime(transit, unit='s', utc=True).tz_convert( location.tz).tolist() sunrise = pd.to_datetime(sunrise, unit='s', utc=True).tz_convert( location.tz).tolist() sunset = pd.to_datetime(sunset, unit='s', utc=True).tz_convert( location.tz).tolist() result = pd.DataFrame({'transit': transit, 'sunrise': sunrise, 'sunset': sunset}, index=time) try: result = result.tz_convert(location.tz) except TypeError: result = result.tz_localize(location.tz) return result def _ephem_setup(location, pressure, temperature): import ephem # initialize a PyEphem observer obs = ephem.Observer() obs.lat = str(location.latitude) obs.lon = str(location.longitude) obs.elevation = location.altitude obs.pressure = pressure / 100. # convert to mBar obs.temp = temperature # the PyEphem sun sun = ephem.Sun() return obs, sun def pyephem(time, location, pressure=101325, temperature=12): """ Calculate the solar position using the PyEphem package. Parameters ---------- time : pandas.DatetimeIndex location : pvlib.Location object pressure : int or float, optional air pressure in Pascals. temperature : int or float, optional air temperature in degrees C. Returns ------- DataFrame The DataFrame will have the following columns: apparent_elevation, elevation, apparent_azimuth, azimuth, apparent_zenith, zenith. See also -------- spa_python, spa_c, ephemeris """ # Written by Will Holmgren (@wholmgren), University of Arizona, 2014 try: import ephem except ImportError: raise ImportError('PyEphem must be installed') pvl_logger.debug('using PyEphem to calculate solar position') time_utc = localize_to_utc(time, location) sun_coords = pd.DataFrame(index=time_utc) obs, sun = _ephem_setup(location, pressure, temperature) # make and fill lists of the sun's altitude and azimuth # this is the pressure and temperature corrected apparent alt/az. alts = [] azis = [] for thetime in sun_coords.index: obs.date = ephem.Date(thetime) sun.compute(obs) alts.append(sun.alt) azis.append(sun.az) sun_coords['apparent_elevation'] = alts sun_coords['apparent_azimuth'] = azis # redo it for p=0 to get no atmosphere alt/az obs.pressure = 0 alts = [] azis = [] for thetime in sun_coords.index: obs.date = ephem.Date(thetime) sun.compute(obs) alts.append(sun.alt) azis.append(sun.az) sun_coords['elevation'] = alts sun_coords['azimuth'] = azis # convert to degrees. add zenith sun_coords = np.rad2deg(sun_coords) sun_coords['apparent_zenith'] = 90 - sun_coords['apparent_elevation'] sun_coords['zenith'] = 90 - sun_coords['elevation'] try: return sun_coords.tz_convert(location.tz) except TypeError: return sun_coords.tz_localize(location.tz) def ephemeris(time, location, pressure=101325, temperature=12): """ Python-native solar position calculator. The accuracy of this code is not guaranteed. Consider using the built-in spa_c code or the PyEphem library. Parameters ---------- time : pandas.DatetimeIndex location : pvlib.Location pressure : float or Series Ambient pressure (Pascals) temperature : float or Series Ambient temperature (C) Returns ------- DataFrame with the following columns: * apparent_elevation : apparent sun elevation accounting for atmospheric refraction. * elevation : actual elevation (not accounting for refraction) of the sun in decimal degrees, 0 = on horizon. The complement of the zenith angle. * azimuth : Azimuth of the sun in decimal degrees East of North. This is the complement of the apparent zenith angle. * apparent_zenith : apparent sun zenith accounting for atmospheric refraction. * zenith : Solar zenith angle * solar_time : Solar time in decimal hours (solar noon is 12.00). References ----------- Grover Hughes' class and related class materials on Engineering Astronomy at Sandia National Laboratories, 1985. See also -------- pyephem, spa_c, spa_python """ # Added by Rob Andrews (@Calama-Consulting), Calama Consulting, 2014 # Edited by Will Holmgren (@wholmgren), University of Arizona, 2014 # Most comments in this function are from PVLIB_MATLAB or from # pvlib-python's attempt to understand and fix problems with the # algorithm. The comments are *not* based on the reference material. # This helps a little bit: # http://www.cv.nrao.edu/~rfisher/Ephemerides/times.html pvl_logger.debug('location={}, temperature={}, pressure={}'.format( location, temperature, pressure)) # the inversion of longitude is due to the fact that this code was # originally written for the convention that positive longitude were for # locations west of the prime meridian. However, the correct convention (as # of 2009) is to use negative longitudes for locations west of the prime # meridian. Therefore, the user should input longitude values under the # correct convention (e.g. Albuquerque is at -106 longitude), but it needs # to be inverted for use in the code. Latitude = location.latitude Longitude = -1 * location.longitude Abber = 20 / 3600. LatR = np.radians(Latitude) # the SPA algorithm needs time to be expressed in terms of # decimal UTC hours of the day of the year. # first convert to utc time_utc = localize_to_utc(time, location) # strip out the day of the year and calculate the decimal hour DayOfYear = time_utc.dayofyear DecHours = (time_utc.hour + time_utc.minute/60. + time_utc.second/3600. + time_utc.microsecond/3600.e6) UnivDate = DayOfYear UnivHr = DecHours Yr = time_utc.year - 1900 YrBegin = 365 * Yr + np.floor((Yr - 1) / 4.) - 0.5 Ezero = YrBegin + UnivDate T = Ezero / 36525. # Calculate Greenwich Mean Sidereal Time (GMST) GMST0 = 6 / 24. + 38 / 1440. + ( 45.836 + 8640184.542 * T + 0.0929 * T ** 2) / 86400. GMST0 = 360 * (GMST0 - np.floor(GMST0)) GMSTi = np.mod(GMST0 + 360 * (1.0027379093 * UnivHr / 24.), 360) # Local apparent sidereal time LocAST = np.mod((360 + GMSTi - Longitude), 360) EpochDate = Ezero + UnivHr / 24. T1 = EpochDate / 36525. ObliquityR = np.radians( 23.452294 - 0.0130125 * T1 - 1.64e-06 * T1 ** 2 + 5.03e-07 * T1 ** 3) MlPerigee = 281.22083 + 4.70684e-05 * EpochDate + 0.000453 * T1 ** 2 + ( 3e-06 * T1 ** 3) MeanAnom = np.mod((358.47583 + 0.985600267 * EpochDate - 0.00015 * T1 ** 2 - 3e-06 * T1 ** 3), 360) Eccen = 0.01675104 - 4.18e-05 * T1 - 1.26e-07 * T1 ** 2 EccenAnom = MeanAnom E = 0 while np.max(abs(EccenAnom - E)) > 0.0001: E = EccenAnom EccenAnom = MeanAnom + np.degrees(Eccen)*np.sin(np.radians(E)) TrueAnom = ( 2 * np.mod(np.degrees(np.arctan2(((1 + Eccen) / (1 - Eccen)) ** 0.5 * np.tan(np.radians(EccenAnom) / 2.), 1)), 360)) EcLon = np.mod(MlPerigee + TrueAnom, 360) - Abber EcLonR = np.radians(EcLon) DecR = np.arcsin(np.sin(ObliquityR)*np.sin(EcLonR)) RtAscen = np.degrees(np.arctan2(np.cos(ObliquityR)*np.sin(EcLonR), np.cos(EcLonR))) HrAngle = LocAST - RtAscen HrAngleR = np.radians(HrAngle) HrAngle = HrAngle - (360 * ((abs(HrAngle) > 180))) SunAz = np.degrees(np.arctan2(-np.sin(HrAngleR), np.cos(LatR)*np.tan(DecR) - np.sin(LatR)*np.cos(HrAngleR))) SunAz[SunAz < 0] += 360 SunEl = np.degrees(np.arcsin( np.cos(LatR) * np.cos(DecR) * np.cos(HrAngleR) + np.sin(LatR) * np.sin(DecR))) SolarTime = (180 + HrAngle) / 15. # Calculate refraction correction Elevation = SunEl TanEl = pd.Series(np.tan(np.radians(Elevation)), index=time_utc) Refract = pd.Series(0, index=time_utc) Refract[(Elevation > 5) & (Elevation <= 85)] = ( 58.1/TanEl - 0.07/(TanEl**3) + 8.6e-05/(TanEl**5)) Refract[(Elevation > -0.575) & (Elevation <= 5)] = ( Elevation * (-518.2 + Elevation*(103.4 + Elevation*(-12.79 + Elevation*0.711))) + 1735) Refract[(Elevation > -1) & (Elevation <= -0.575)] = -20.774 / TanEl Refract *= (283/(273. + temperature)) * (pressure/101325.) / 3600. ApparentSunEl = SunEl + Refract # make output DataFrame DFOut = pd.DataFrame(index=time_utc).tz_convert(location.tz) DFOut['apparent_elevation'] = ApparentSunEl DFOut['elevation'] = SunEl DFOut['azimuth'] = SunAz DFOut['apparent_zenith'] = 90 - ApparentSunEl DFOut['zenith'] = 90 - SunEl DFOut['solar_time'] = SolarTime return DFOut def calc_time(lower_bound, upper_bound, location, attribute, value, pressure=101325, temperature=12, xtol=1.0e-12): """ Calculate the time between lower_bound and upper_bound where the attribute is equal to value. Uses PyEphem for solar position calculations. Parameters ---------- lower_bound : datetime.datetime upper_bound : datetime.datetime location : pvlib.Location object attribute : str The attribute of a pyephem.Sun object that you want to solve for. Likely options are 'alt' and 'az' (which must be given in radians). value : int or float The value of the attribute to solve for pressure : int or float, optional Air pressure in Pascals. Set to 0 for no atmospheric correction. temperature : int or float, optional Air temperature in degrees C. xtol : float, optional The allowed error in the result from value Returns ------- datetime.datetime Raises ------ ValueError If the value is not contained between the bounds. AttributeError If the given attribute is not an attribute of a PyEphem.Sun object. """ try: import scipy.optimize as so except ImportError: raise ImportError('The calc_time function requires scipy') obs, sun = _ephem_setup(location, pressure, temperature) def compute_attr(thetime, target, attr): obs.date = thetime sun.compute(obs) return getattr(sun, attr) - target lb = datetime_to_djd(lower_bound) ub = datetime_to_djd(upper_bound) djd_root = so.brentq(compute_attr, lb, ub, (value, attribute), xtol=xtol) return djd_to_datetime(djd_root, location.tz) def pyephem_earthsun_distance(time): """ Calculates the distance from the earth to the sun using pyephem. Parameters ---------- time : pd.DatetimeIndex Returns ------- pd.Series. Earth-sun distance in AU. """ pvl_logger.debug('solarposition.pyephem_earthsun_distance()') import ephem sun = ephem.Sun() earthsun = [] for thetime in time: sun.compute(ephem.Date(thetime)) earthsun.append(sun.earth_distance) return pd.Series(earthsun, index=time)
bsd-3-clause
dsm054/pandas
pandas/io/common.py
1
19663
"""Common IO api utilities""" import codecs from contextlib import closing, contextmanager import csv import mmap import os import zipfile import pandas.compat as compat from pandas.compat import BytesIO, StringIO, string_types, text_type from pandas.errors import ( # noqa AbstractMethodError, DtypeWarning, EmptyDataError, ParserError, ParserWarning) from pandas.core.dtypes.common import is_file_like, is_number from pandas.io.formats.printing import pprint_thing # gh-12665: Alias for now and remove later. CParserError = ParserError # common NA values # no longer excluding inf representations # '1.#INF','-1.#INF', '1.#INF000000', _NA_VALUES = {'-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A N/A', '#N/A', 'N/A', 'n/a', 'NA', '#NA', 'NULL', 'null', 'NaN', '-NaN', 'nan', '-nan', ''} if compat.PY3: from urllib.request import urlopen, pathname2url _urlopen = urlopen from urllib.parse import urlparse as parse_url from urllib.parse import (uses_relative, uses_netloc, uses_params, urlencode, urljoin) from urllib.error import URLError from http.client import HTTPException # noqa else: from urllib2 import urlopen as _urlopen from urllib import urlencode, pathname2url # noqa from urlparse import urlparse as parse_url from urlparse import uses_relative, uses_netloc, uses_params, urljoin from urllib2 import URLError # noqa from httplib import HTTPException # noqa from contextlib import contextmanager, closing # noqa from functools import wraps # noqa # @wraps(_urlopen) @contextmanager def urlopen(*args, **kwargs): with closing(_urlopen(*args, **kwargs)) as f: yield f _VALID_URLS = set(uses_relative + uses_netloc + uses_params) _VALID_URLS.discard('') class BaseIterator(object): """Subclass this and provide a "__next__()" method to obtain an iterator. Useful only when the object being iterated is non-reusable (e.g. OK for a parser, not for an in-memory table, yes for its iterator).""" def __iter__(self): return self def __next__(self): raise AbstractMethodError(self) if not compat.PY3: BaseIterator.next = lambda self: self.__next__() def _is_url(url): """Check to see if a URL has a valid protocol. Parameters ---------- url : str or unicode Returns ------- isurl : bool If `url` has a valid protocol return True otherwise False. """ try: return parse_url(url).scheme in _VALID_URLS except Exception: return False def _expand_user(filepath_or_buffer): """Return the argument with an initial component of ~ or ~user replaced by that user's home directory. Parameters ---------- filepath_or_buffer : object to be converted if possible Returns ------- expanded_filepath_or_buffer : an expanded filepath or the input if not expandable """ if isinstance(filepath_or_buffer, string_types): return os.path.expanduser(filepath_or_buffer) return filepath_or_buffer def _validate_header_arg(header): if isinstance(header, bool): raise TypeError("Passing a bool to header is invalid. " "Use header=None for no header or " "header=int or list-like of ints to specify " "the row(s) making up the column names") def _stringify_path(filepath_or_buffer): """Attempt to convert a path-like object to a string. Parameters ---------- filepath_or_buffer : object to be converted Returns ------- str_filepath_or_buffer : maybe a string version of the object Notes ----- Objects supporting the fspath protocol (python 3.6+) are coerced according to its __fspath__ method. For backwards compatibility with older pythons, pathlib.Path and py.path objects are specially coerced. Any other object is passed through unchanged, which includes bytes, strings, buffers, or anything else that's not even path-like. """ try: import pathlib _PATHLIB_INSTALLED = True except ImportError: _PATHLIB_INSTALLED = False try: from py.path import local as LocalPath _PY_PATH_INSTALLED = True except ImportError: _PY_PATH_INSTALLED = False if hasattr(filepath_or_buffer, '__fspath__'): return filepath_or_buffer.__fspath__() if _PATHLIB_INSTALLED and isinstance(filepath_or_buffer, pathlib.Path): return text_type(filepath_or_buffer) if _PY_PATH_INSTALLED and isinstance(filepath_or_buffer, LocalPath): return filepath_or_buffer.strpath return filepath_or_buffer def is_s3_url(url): """Check for an s3, s3n, or s3a url""" try: return parse_url(url).scheme in ['s3', 's3n', 's3a'] except Exception: return False def is_gcs_url(url): """Check for a gcs url""" try: return parse_url(url).scheme in ['gcs', 'gs'] except Exception: return False def get_filepath_or_buffer(filepath_or_buffer, encoding=None, compression=None, mode=None): """ If the filepath_or_buffer is a url, translate and return the buffer. Otherwise passthrough. Parameters ---------- filepath_or_buffer : a url, filepath (str, py.path.local or pathlib.Path), or buffer encoding : the encoding to use to decode py3 bytes, default is 'utf-8' mode : str, optional Returns ------- tuple of ({a filepath_ or buffer or S3File instance}, encoding, str, compression, str, should_close, bool) """ filepath_or_buffer = _stringify_path(filepath_or_buffer) if _is_url(filepath_or_buffer): req = _urlopen(filepath_or_buffer) content_encoding = req.headers.get('Content-Encoding', None) if content_encoding == 'gzip': # Override compression based on Content-Encoding header compression = 'gzip' reader = BytesIO(req.read()) req.close() return reader, encoding, compression, True if is_s3_url(filepath_or_buffer): from pandas.io import s3 return s3.get_filepath_or_buffer(filepath_or_buffer, encoding=encoding, compression=compression, mode=mode) if is_gcs_url(filepath_or_buffer): from pandas.io import gcs return gcs.get_filepath_or_buffer(filepath_or_buffer, encoding=encoding, compression=compression, mode=mode) if isinstance(filepath_or_buffer, (compat.string_types, compat.binary_type, mmap.mmap)): return _expand_user(filepath_or_buffer), None, compression, False if not is_file_like(filepath_or_buffer): msg = "Invalid file path or buffer object type: {_type}" raise ValueError(msg.format(_type=type(filepath_or_buffer))) return filepath_or_buffer, None, compression, False def file_path_to_url(path): """ converts an absolute native path to a FILE URL. Parameters ---------- path : a path in native format Returns ------- a valid FILE URL """ return urljoin('file:', pathname2url(path)) _compression_to_extension = { 'gzip': '.gz', 'bz2': '.bz2', 'zip': '.zip', 'xz': '.xz', } def _infer_compression(filepath_or_buffer, compression): """ Get the compression method for filepath_or_buffer. If compression='infer', the inferred compression method is returned. Otherwise, the input compression method is returned unchanged, unless it's invalid, in which case an error is raised. Parameters ---------- filepath_or_buffer : a path (str) or buffer compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None} If 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no compression). Returns ------- string or None : compression method Raises ------ ValueError on invalid compression specified """ # No compression has been explicitly specified if compression is None: return None # Infer compression if compression == 'infer': # Convert all path types (e.g. pathlib.Path) to strings filepath_or_buffer = _stringify_path(filepath_or_buffer) if not isinstance(filepath_or_buffer, compat.string_types): # Cannot infer compression of a buffer, assume no compression return None # Infer compression from the filename/URL extension for compression, extension in _compression_to_extension.items(): if filepath_or_buffer.endswith(extension): return compression return None # Compression has been specified. Check that it's valid if compression in _compression_to_extension: return compression msg = 'Unrecognized compression type: {}'.format(compression) valid = ['infer', None] + sorted(_compression_to_extension) msg += '\nValid compression types are {}'.format(valid) raise ValueError(msg) def _get_handle(path_or_buf, mode, encoding=None, compression=None, memory_map=False, is_text=True): """ Get file handle for given path/buffer and mode. Parameters ---------- path_or_buf : a path (str) or buffer mode : str mode to open path_or_buf with encoding : str or None compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default None If 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no compression). memory_map : boolean, default False See parsers._parser_params for more information. is_text : boolean, default True whether file/buffer is in text format (csv, json, etc.), or in binary mode (pickle, etc.) Returns ------- f : file-like A file-like object handles : list of file-like objects A list of file-like object that were opened in this function. """ try: from s3fs import S3File need_text_wrapping = (BytesIO, S3File) except ImportError: need_text_wrapping = (BytesIO,) handles = list() f = path_or_buf # Convert pathlib.Path/py.path.local or string path_or_buf = _stringify_path(path_or_buf) is_path = isinstance(path_or_buf, compat.string_types) if is_path: compression = _infer_compression(path_or_buf, compression) if compression: if compat.PY2 and not is_path and encoding: msg = 'compression with encoding is not yet supported in Python 2' raise ValueError(msg) # GZ Compression if compression == 'gzip': import gzip if is_path: f = gzip.open(path_or_buf, mode) else: f = gzip.GzipFile(fileobj=path_or_buf) # BZ Compression elif compression == 'bz2': import bz2 if is_path: f = bz2.BZ2File(path_or_buf, mode) elif compat.PY2: # Python 2's bz2 module can't take file objects, so have to # run through decompress manually f = StringIO(bz2.decompress(path_or_buf.read())) path_or_buf.close() else: f = bz2.BZ2File(path_or_buf) # ZIP Compression elif compression == 'zip': zf = BytesZipFile(path_or_buf, mode) # Ensure the container is closed as well. handles.append(zf) if zf.mode == 'w': f = zf elif zf.mode == 'r': zip_names = zf.namelist() if len(zip_names) == 1: f = zf.open(zip_names.pop()) elif len(zip_names) == 0: raise ValueError('Zero files found in ZIP file {}' .format(path_or_buf)) else: raise ValueError('Multiple files found in ZIP file.' ' Only one file per ZIP: {}' .format(zip_names)) # XZ Compression elif compression == 'xz': lzma = compat.import_lzma() f = lzma.LZMAFile(path_or_buf, mode) # Unrecognized Compression else: msg = 'Unrecognized compression type: {}'.format(compression) raise ValueError(msg) handles.append(f) elif is_path: if compat.PY2: # Python 2 mode = "wb" if mode == "w" else mode f = open(path_or_buf, mode) elif encoding: # Python 3 and encoding f = open(path_or_buf, mode, encoding=encoding, newline="") elif is_text: # Python 3 and no explicit encoding f = open(path_or_buf, mode, errors='replace', newline="") else: # Python 3 and binary mode f = open(path_or_buf, mode) handles.append(f) # in Python 3, convert BytesIO or fileobjects passed with an encoding if (compat.PY3 and is_text and (compression or isinstance(f, need_text_wrapping))): from io import TextIOWrapper f = TextIOWrapper(f, encoding=encoding) handles.append(f) if memory_map and hasattr(f, 'fileno'): try: g = MMapWrapper(f) f.close() f = g except Exception: # we catch any errors that may have occurred # because that is consistent with the lower-level # functionality of the C engine (pd.read_csv), so # leave the file handler as is then pass return f, handles class BytesZipFile(zipfile.ZipFile, BytesIO): """ Wrapper for standard library class ZipFile and allow the returned file-like handle to accept byte strings via `write` method. BytesIO provides attributes of file-like object and ZipFile.writestr writes bytes strings into a member of the archive. """ # GH 17778 def __init__(self, file, mode, compression=zipfile.ZIP_DEFLATED, **kwargs): if mode in ['wb', 'rb']: mode = mode.replace('b', '') super(BytesZipFile, self).__init__(file, mode, compression, **kwargs) def write(self, data): super(BytesZipFile, self).writestr(self.filename, data) @property def closed(self): return self.fp is None class MMapWrapper(BaseIterator): """ Wrapper for the Python's mmap class so that it can be properly read in by Python's csv.reader class. Parameters ---------- f : file object File object to be mapped onto memory. Must support the 'fileno' method or have an equivalent attribute """ def __init__(self, f): self.mmap = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) def __getattr__(self, name): return getattr(self.mmap, name) def __iter__(self): return self def __next__(self): newline = self.mmap.readline() # readline returns bytes, not str, in Python 3, # but Python's CSV reader expects str, so convert # the output to str before continuing if compat.PY3: newline = compat.bytes_to_str(newline) # mmap doesn't raise if reading past the allocated # data but instead returns an empty string, so raise # if that is returned if newline == '': raise StopIteration return newline if not compat.PY3: MMapWrapper.next = lambda self: self.__next__() class UTF8Recoder(BaseIterator): """ Iterator that reads an encoded stream and reencodes the input to UTF-8 """ def __init__(self, f, encoding): self.reader = codecs.getreader(encoding)(f) def read(self, bytes=-1): return self.reader.read(bytes).encode("utf-8") def readline(self): return self.reader.readline().encode("utf-8") def next(self): return next(self.reader).encode("utf-8") if compat.PY3: # pragma: no cover def UnicodeReader(f, dialect=csv.excel, encoding="utf-8", **kwds): # ignore encoding return csv.reader(f, dialect=dialect, **kwds) def UnicodeWriter(f, dialect=csv.excel, encoding="utf-8", **kwds): return csv.writer(f, dialect=dialect, **kwds) else: class UnicodeReader(BaseIterator): """ A CSV reader which will iterate over lines in the CSV file "f", which is encoded in the given encoding. On Python 3, this is replaced (below) by csv.reader, which handles unicode. """ def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds): f = UTF8Recoder(f, encoding) self.reader = csv.reader(f, dialect=dialect, **kwds) def __next__(self): row = next(self.reader) return [compat.text_type(s, "utf-8") for s in row] class UnicodeWriter(object): """ A CSV writer which will write rows to CSV file "f", which is encoded in the given encoding. """ def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds): # Redirect output to a queue self.queue = StringIO() self.writer = csv.writer(self.queue, dialect=dialect, **kwds) self.stream = f self.encoder = codecs.getincrementalencoder(encoding)() self.quoting = kwds.get("quoting", None) def writerow(self, row): def _check_as_is(x): return (self.quoting == csv.QUOTE_NONNUMERIC and is_number(x)) or isinstance(x, str) row = [x if _check_as_is(x) else pprint_thing(x).encode("utf-8") for x in row] self.writer.writerow([s for s in row]) # Fetch UTF-8 output from the queue ... data = self.queue.getvalue() data = data.decode("utf-8") # ... and re-encode it into the target encoding data = self.encoder.encode(data) # write to the target stream self.stream.write(data) # empty queue self.queue.truncate(0) def writerows(self, rows): def _check_as_is(x): return (self.quoting == csv.QUOTE_NONNUMERIC and is_number(x)) or isinstance(x, str) for i, row in enumerate(rows): rows[i] = [x if _check_as_is(x) else pprint_thing(x).encode("utf-8") for x in row] self.writer.writerows([[s for s in row] for row in rows]) # Fetch UTF-8 output from the queue ... data = self.queue.getvalue() data = data.decode("utf-8") # ... and re-encode it into the target encoding data = self.encoder.encode(data) # write to the target stream self.stream.write(data) # empty queue self.queue.truncate(0)
bsd-3-clause
apapadopoulos/MultiCoreMigrationSimulator
libs/Tests.py
1
3591
import numpy as np import scipy as sp import matplotlib.pyplot as plt import sys import libs.Process as proc import libs.Controller as ctrl import libs.Scheduler as sched import libs.Utils as ut def testInnerLoop(tFin): G = proc.Process(ident=1,alpha=1,stdDev=0.01) G.viewProcess() R = ctrl.I(ident=G.getID(), Ki=0.25) tauto = 0.5 vtauto = np.zeros((tFin,1)) vtaut = np.zeros((tFin,1)) for kk in xrange(1,tFin+1): taut = G.getY() u = R.computeU(tauto,taut) G.setU(u) # Store variables vtauto[kk-1,0] = tauto vtaut[kk-1,0] = taut plt.plot(xrange(0,tFin),vtaut,'b') plt.plot(xrange(0,tFin),vtauto,'k--') plt.show() def testSchedulerAddRemoveThreads(tFin,numThreads): # Creating numThreads threads Threads = [] alphas = [] for i in xrange(0,numThreads): alpha = 0.1 Threads.append(proc.Process(ident=i,alpha=alpha, stdDev = 0.0)) Threads[i].viewProcess() scheduler = sched.IplusPI(ident=0, Kiin=0.25, Kpout=2.0, Kiout=0.25) tauro = 1 vtauro = np.zeros((tFin,1)) vtaur = np.zeros((tFin,1)) vtauto = [] vtaut = [] for kk in xrange(1,tFin+1): if kk == 100: print 'Adding a process...' numThreads = ut.addProcess(Threads,alpha=0.5,ident=100) if kk == 200: print 'Removing a process...' numThreads = ut.removeProcess(Threads,100) if kk == 300: print 'Adding a process...' numThreads = ut.addProcess(Threads,alpha=0.6,ident=100,stdDev=0) if kk == 400: print 'Removing a process...' numThreads = ut.removeProcess(Threads,90) if kk == 410: print 'Removing a process...' numThreads = ut.removeProcess(Threads,100) taur, taut, tauto = scheduler.schedule(Threads,tauro) scheduler.viewUtilization() # Store variables vtauro[kk-1,0] = tauro vtaur[kk-1,0] = taur vtauto.append(tauto) vtaut.append(taut) plt.plot(xrange(0,tFin),vtaur,'b') plt.plot(xrange(0,tFin),vtauro,'k--') plt.show() def testSchedulerWithInternalDataPlot(tFin,numThreads): # Creating numThreads threads Threads = [] alphas = [] for i in xrange(0,numThreads): alpha = 1.0/(i+1) Threads.append(proc.Process(ident=i,alpha=alpha, stdDev = 0.01)) Threads[i].viewProcess() scheduler = sched.IplusPI(ident=0, Kiin=0.25, Kpout=2.0, Kiout=0.25) tauro = 1 vtauro = np.zeros((tFin,1)) vtaur = np.zeros((tFin,1)) vtauto = np.zeros((tFin,numThreads)) vtaut = np.zeros((tFin,numThreads)) for kk in xrange(1,tFin+1): taur, taut, tauto = scheduler.schedule(Threads,tauro) scheduler.viewUtilization() # Store variables vtauro[kk-1,0] = tauro vtaur[kk-1,0] = taur vtauto[kk-1,:] = tauto vtaut[kk-1,:] = taut plt.figure(1) plt.plot(xrange(0,tFin),vtaur,'b') plt.plot(xrange(0,tFin),vtauro,'k--') plt.figure(2) plt.plot(xrange(0,tFin),vtaut) plt.plot(xrange(0,tFin),vtauto,'--') plt.show() def testSchedulerNoThreads(tFin): # Creating numThreads threads Threads = [] alphas = [] scheduler = sched.IplusPI(ident=0, Kiin=0.25, Kpout=2.0, Kiout=0.25) tauro = 1 vtauro = np.zeros((tFin,1)) vtaur = np.zeros((tFin,1)) vtauto = [] vtaut = [] for kk in xrange(1,tFin+1): if kk == 100: print 'Adding a process...' numThreads = ut.addProcess(Threads,alpha=0.5,ident=100) if kk == 200: print 'Removing a process...' numThreads = ut.removeProcess(Threads,100) taur, taut, tauto = scheduler.schedule(Threads,tauro) scheduler.viewUtilization() # Store variables vtauro[kk-1,0] = tauro vtaur[kk-1,0] = taur vtauto.append(tauto) vtaut.append(taut) plt.plot(xrange(0,tFin),vtaur,'b') plt.plot(xrange(0,tFin),vtauro,'k--') plt.show()
gpl-2.0
FrancoisRheaultUS/dipy
tools/make_examples.py
3
5749
#!/usr/bin/env python """Run the py->rst conversion and run all examples. Steps are: analyze example index file for example py filenames check for any filenames in example directory not included do py to rst conversion, writing into build directory run """ # ----------------------------------------------------------------------------- # Library imports # ----------------------------------------------------------------------------- # Stdlib imports import os import os.path as op import sys import shutil import io from subprocess import check_call from glob import glob from time import time # Third-party imports # We must configure the mpl backend before making any further mpl imports import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib._pylab_helpers import Gcf import dipy # ----------------------------------------------------------------------------- # Function defintions # ----------------------------------------------------------------------------- # These global variables let show() be called by the scripts in the usual # manner, but when generating examples, we override it to write the figures to # files with a known name (derived from the script name) plus a counter figure_basename = None # We must change the show command to save instead def show(): allfm = Gcf.get_all_fig_managers() for fcount, fm in enumerate(allfm): fm.canvas.figure.savefig('%s_%02i.png' % (figure_basename, fcount + 1)) _mpl_show = plt.show plt.show = show # ----------------------------------------------------------------------------- # Main script # ----------------------------------------------------------------------------- # Where things are DOC_PATH = op.abspath('..') EG_INDEX_FNAME = op.join(DOC_PATH, 'examples_index.rst') EG_SRC_DIR = op.join(DOC_PATH, 'examples') # Work in examples directory # os.chdir(op.join(DOC_PATH, 'examples_built')) if not os.getcwd().endswith(op.join('doc', 'examples_built')): raise OSError('This must be run from the doc directory') # Copy the py files; check they are in the examples list and warn if not with io.open(EG_INDEX_FNAME, 'rt', encoding="utf8") as f: eg_index_contents = f.read() # Here I am adding an extra step. The list of examples to be executed need # also to be added in the following file (valid_examples.txt). This helps # with debugging the examples and the documentation only a few examples at # the time. flist_name = op.join(op.dirname(os.getcwd()), 'examples', 'valid_examples.txt') with io.open(flist_name, "r", encoding="utf8") as flist: validated_examples = flist.readlines() # Parse "#" in lines validated_examples = [line.split("#", 1)[0] for line in validated_examples] # Remove leading and trailing white space from example names validated_examples = [line.strip() for line in validated_examples] # Remove blank lines validated_examples = list(filter(None, validated_examples)) for example in validated_examples: fullpath = op.join(EG_SRC_DIR, example) if not example.endswith(".py"): print("%s not a python file, skipping." % example) continue elif not op.isfile(fullpath): print("Cannot find file, %s, skipping." % example) continue shutil.copyfile(fullpath, example) # Check that example file is included in the docs file_root = example[:-3] if file_root not in eg_index_contents: msg = "Example, %s, not in index file %s." msg = msg % (example, EG_INDEX_FNAME) print(msg) # Run the conversion from .py to rst file check_call('{} ../../tools/ex2rst --project dipy --outdir . .'.format(sys.executable), shell=True) # added the path so that scripts can import other scripts on the same directory sys.path.insert(0, os.getcwd()) if not op.isdir('fig'): os.mkdir('fig') use_xvfb = os.environ.get('TEST_WITH_XVFB', False) use_memprof = os.environ.get('TEST_WITH_MEMPROF', False) if use_xvfb: try: from xvfbwrapper import Xvfb except ImportError: raise RuntimeError("You are trying to run a documentation build", "with 'TEST_WITH_XVFB' set to True, but ", "xvfbwrapper is not available. Please install", "xvfbwrapper and try again") display = Xvfb(width=1920, height=1080) display.start() if use_memprof: try: import memory_profiler except ImportError: raise RuntimeError("You are trying to run a documentation build", "with 'TEST_WITH_MEMPROF' set to True, but ", "memory_profiler is not available. Please install", "memory_profiler and try again") name = '' def run_script(): namespace = {} t1 = time() with io.open(script, encoding="utf8") as f: exec(f.read(), namespace) t2 = time() print("That took %.2f seconds to run" % (t2 - t1)) plt.close('all') del namespace # Execute each python script in the directory: for script in validated_examples: figure_basename = op.join('fig', op.splitext(script)[0]) if use_memprof: print("memory profiling ", script) memory_profiler.profile(run_script)() else: print('*************************************************************') print(script) print('*************************************************************') run_script() if use_xvfb: display.stop() # clean up stray images, pickles, npy files, etc for globber in ('*.nii.gz', '*.dpy', '*.npy', '*.pkl', '*.mat', '*.img', '*.hdr'): for fname in glob(globber): os.unlink(fname)
bsd-3-clause
lavakyan/mstm-spectrum
mstm_studio/mstm_spectrum.py
1
34171
# -*- coding: utf-8 -*- # # ----------------------------------------------------- # # # # This code is a part of T-matrix fitting project # # Contributors: # # L. Avakyan <[email protected]> # # K. Yablunovskiy <[email protected]> # # # # ----------------------------------------------------- # """ Based on heaviliy rewritten MSTM-GUI code <URL:https://github.com/dmayerich/mstm-gui> <https://git.stim.ee.uh.edu/optics/mstm-gui.git> by Dr. David Mayerich Optimized for spectral calculations (for many wavelengths) in order to use for fitting to experiment """ from __future__ import print_function from __future__ import division import numpy as np from numpy.random import lognormal from scipy import interpolate import subprocess import os # to delete files after calc. import sys # to check whether running on Linux or Windows import datetime try: import matplotlib.pyplot as plt except ImportError: pass import time import tempfile # to run mstm in temporary directory # use input in both python2 and python3 try: input = raw_input except NameError: pass # use xrange in both python2 and python3 try: xrange except NameError: xrange = range class Profiler(object): """ This class for benchmarking is from http://onesteptospace.blogspot.pt/2013/01/python.html Usage: >>> with Profiler() as p: >>> // your code to be profiled here """ def __enter__(self): self._startTime = time.time() def __exit__(self, type, value, traceback): print('Elapsed time: {:.3f} sec'.format(time.time() - self._startTime)) class SpheresOverlapError(Exception): pass class SPR(object): """ Class for calculation of surface plasmin resonance (SPR), running MSTM external code. The MSTM executable should be set in MSTM_BIN environment variable. Default is ~/bin/mstm.x """ environment_material = 'Air' paramDict = { 'number_spheres': 0, 'sphere_position_file': '', # radius, X,Y,Z [nm], n ,k 'length_scale_factor': 1.0, # 2π/λ[nm] 'real_ref_index_scale_factor': 1.0, # multiplier for spheres 'imag_ref_index_scale_factor': 1.0, 'real_chiral_factor': 0.0, # chiral passive spheres 'imag_chiral_factor': 0.0, 'medium_real_ref_index': 1.0, # refraction index of the environment 'medium_imag_ref_index': 0.0, 'medium_real_chiral_factor': 0.0, 'medium_imag_chiral_factor': 0.0, 'target_euler_angles_deg': [0.0, 0.0, 0.0], # ignored for random orient. calc. 'mie_epsilon': 1.0E-12, # Convergence criterion for determining the number of orders # in the Mie expansions. Negative value - number of orders. 'translation_epsilon': 1.0E-8, # Convergence criterion for estimating the maximum order of the cluster T matrix 'solution_epsilon': 1.0E-8, # Precision of linear equation system solution 't_matrix_convergence_epsilon': 1.0E-6, 'plane_wave_epsilon': 1E-3, # Precision of expansion of incedent field (both for palne and gaussian waves) 'iterations_per_correction': 20, # ignored for big 'near_field_translation_distance' 'max_number_iterations': 2000, # with account of all iterations 'near_field_translation_distance': 1.0E6, # can be big real, small real or negative. TWEAK FOR PERFORMANCE 'store_translation_matrix': 0, 'fixed_or_random_orientation': 1, # 0 - fixed, 1 - random 'gaussian_beam_constant': 0, # CB = 1/(k ω0). CB = 0 - plane wave 'gaussian_beam_focal_point': [0.0, 0.0, 0.0], # does not alters results for plane wave and random orientations 'run_print_file': '', # if balnk will use stdout 'write_sphere_data': 0, # 1 - detail, 0 - concise 'output_file': 'test.dat', # should change for each run 'incident_or_target_frame': 0, # Integer switch, relevant only for # fixed orientation calculations 'min_scattering_angle_deg': 0.0, 'max_scattering_angle_deg': 180.0, 'min_scattering_plane_angle_deg': 0.0, # selects a plane for fixed orient. 'max_scattering_plane_angle_deg': 0.0, # selects a plane for fixed orient. 'delta_scattering_angle_deg': 1.0, 'calculate_near_field': 0, # no near field calculations 'calculate_t_matrix': 1, # 1 - new calc., 0 - use old, 2 - continue calc 't_matrix_file': 'tmatrix-temp.dat', 'sm_number_processors': 10, # actual number of procesors is # minimum to this value and provided by mpi } local_keys = ['output_file', 'length_scale_factor', 'medium_real_ref_index', 'medium_imag_ref_index', 't_matrix_file'] def __init__(self, wavelengths): ''' Parameter: wavelengths: numpy array Wavelegths in nm ''' self.wavelengths = wavelengths self.command = os.environ.get('MSTM_BIN', '~/bin/mstm.x') def set_spheres(self, spheres): self.spheres = spheres # count spheres with positive radius: self.paramDict['number_spheres'] = np.sum(self.spheres.a > 0) def simulate(self, outfn=None): ''' Start the simulation. The inpuit parameters are read from object dictionary `paramDict`. Routine will prepare input file `scriptParams.inp` in the temporary folder, which will be deleted after calculation. After calculation the result depends on the polarization setting. For polarized light the object fields will be filled: extinction_par, extinction_ort, absorbtion_par, absorbtion_ort, scattering_par, scattering_ort. While for orientation-averaged calculation just: extinction, absorbtion and scattering. ''' if self.paramDict['number_spheres'] == 0: # np spheres return self.wavelengths, np.zeros_like(self.wavelengths) if self.spheres.check_overlap(): raise SpheresOverlapError('Spheres overlapping!') if isinstance(self.environment_material, Material): material = self.environment_material else: print(self.environment_material) material = Material(self.environment_material) with tempfile.TemporaryDirectory() as tmpdir: print('Using temporary directory: %s' % tmpdir) outFID = open(os.path.join(tmpdir, 'scriptParams.inp'), 'w') outFID.write('begin_comment\n') outFID.write('**********************************\n') outFID.write(' MSTM input for SPR calculation\n') outFID.write(' Generated by python script\n') outFID.write(' %s\n' % datetime.datetime.now().strftime('%Y-%m-%d %H:%M')) outFID.write('**********************************\n') outFID.write('end_comment\n') for key in self.paramDict.keys(): if key not in self.local_keys: outFID.write(key + '\n') if isinstance(self.paramDict[key], str): svalue = self.paramDict[key] else: if isinstance(self.paramDict[key], list): svalue = ' '.join(map(str, self.paramDict[key])) else: svalue = str(self.paramDict[key]) # replace exponent symbol svalue = svalue.replace('e', 'd', 1) outFID.write('%s \n' % svalue) for l in self.wavelengths: outFID.write('begin_comment\n') outFID.write('**********************************\n') outFID.write(' Wavelength %.3f \n' % l) outFID.write('**********************************\n') outFID.write('end_comment\n') outFID.write('output_file\n') outFID.write('mstm_l%.0f.out\n' % (l * 1000)) outFID.write('length_scale_factor\n') outFID.write(' %.6f\n' % (2.0 * 3.14159 / l)) outFID.write('medium_real_ref_index\n') outFID.write(' %f\n' % material.get_n(l)) outFID.write('medium_imag_ref_index\n') outFID.write(' %f\n' % material.get_k(l)) outFID.write('sphere_sizes_and_positions\n') for i in xrange(len(self.spheres)): a = self.spheres.a[i] if a > 0: # consider only positive radii x = self.spheres.x[i] y = self.spheres.y[i] z = self.spheres.z[i] self.spheres.materials[i].D = 2 * a n = self.spheres.materials[i].get_n(l) k = self.spheres.materials[i].get_k(l) outFID.write(' %.4f %.4f %.4f %.4f %.3f %.3f \n' % (a, x, y, z, n, k)) outFID.write('new_run\n') outFID.write('end_of_options\n') outFID.close() # run the binary if sys.platform == 'win32': si = subprocess.STARTUPINFO() si.dwFlags |= subprocess.STARTF_USESHOWWINDOW subprocess.call('%s scriptParams.inp > NUL' % self.command, shell=True, startupinfo=si, cwd=tmpdir) else: subprocess.call('%s scriptParams.inp > /dev/null' % self.command, shell=True, cwd=tmpdir) # parse the simulation results if self.paramDict['fixed_or_random_orientation'] == 0: # fixed orientation self.extinction_par = [] # parallel polarization (\hat \alpha) self.absorbtion_par = [] self.scattering_par = [] self.extinction_ort = [] # perpendicular polarization (\hat \beta) self.absorbtion_ort = [] self.scattering_ort = [] for l in self.wavelengths: inFID = open(os.path.join(tmpdir, 'mstm_l%.0f.out' % (l * 1000)), 'r') while True: line = inFID.readline() if 'scattering matrix elements' in line: break elif 'parallel total ext, abs, scat efficiencies' in line: values = map(float, inFID.readline().strip().split()) values = list(values) self.extinction_par.append(float(values[0])) self.absorbtion_par.append(float(values[1])) self.scattering_par.append(float(values[2])) elif 'perpendicular total ext' in line: values = map(float, inFID.readline().strip().split()) values = list(values) self.extinction_ort.append(float(values[0])) self.absorbtion_ort.append(float(values[1])) self.scattering_ort.append(float(values[2])) inFID.close() os.remove(os.path.join(tmpdir, 'mstm_l%.0f.out' % (l * 1000))) self.extinction_par = np.array(self.extinction_par) self.absorbtion_par = np.array(self.absorbtion_par) self.scattering_par = np.array(self.scattering_par) self.extinction_ort = np.array(self.extinction_ort) self.absorbtion_ort = np.array(self.absorbtion_ort) self.scattering_ort = np.array(self.scattering_ort) return (self.wavelengths, (self.extinction_par + self.extinction_ort)) else: # random orientation self.extinction = [] self.absorbtion = [] self.scattering = [] for l in self.wavelengths: inFID = open(os.path.join(tmpdir, 'mstm_l%.0f.out' % (l * 1000)), 'r') while True: line = inFID.readline() if 'scattering matrix elements' in line: break elif 'total ext, abs, scat efficiencies' in line: values = map(float, inFID.readline().strip().split()) values = list(values) # python3 is evil self.extinction.append(float(values[0])) self.absorbtion.append(float(values[1])) self.scattering.append(float(values[2])) inFID.close() os.remove(os.path.join(tmpdir, 'mstm_l%.0f.out' % (l * 1000))) self.extinction = np.array(self.extinction) self.absorbtion = np.array(self.absorbtion) self.scattering = np.array(self.scattering) if outfn is not None: self.write(outfn) return self.wavelengths, self.extinction def plot(self): ''' Plot results with matplotlib.pyplot ''' plt.plot(self.wavelengths, self.extinction, 'r-', label='extinction') plt.show() return plt def write(self, filename): ''' Save results to file ''' if self.paramDict["fixed_or_random_orientation"] == 1: # random fout = open(filename, 'w') fout.write('#Wavel.\tExtinct.\n') for i in range(len(self.wavelengths)): fout.write('%.4f\t%.8f\r\n' % (self.wavelengths[i], self.extinction[i])) fout.close() else: # fixed fout = open(filename, 'w') fout.write('#Wavel.\tExt_par\tExt_ort\n') for i in range(len(self.wavelengths)): fout.write('%.4f\t%.8f\t%.8f\r\n' % (self.wavelengths[i], self.extinction_par[i], self.extinction_ort[i])) fout.close() def set_incident_field(self, fixed=False, azimuth_angle=0.0, polar_angle=0.0, polarization_angle=0.0): """ Set the parameters of incident wave Parameters: fixed: bool True - fixed orientation and polarized light False - average over all orientations and polarizations azimuth_angle, polar_angle: float (degrees) polarization_angle: float (degrees) polarization angle relative to the `k-z` palne. 0 - X-polarized, 90 - Y-polarized (if `azimuth` and `polar` angles are zero). """ if not fixed: self.paramDict['fixed_or_random_orientation'] = 1 # random else: self.paramDict['fixed_or_random_orientation'] = 0 # fixed self.paramDict['incident_azimuth_angle_deg'] = polarization_angle self.paramDict['incident_polar_angle_deg'] = polar_angle self.paramDict['polarization_angle_deg'] = polarization_angle class Material(object): r""" Material class. Use `get_n()` and `get_k()` methods to obtain values of refraction index at arbitraty wavelength (in nm). """ def __init__(self, file_name, wls=None, nk=None, eps=None): r""" Parameters: file_name: 1. complex value, written in numpy format or as string; 2. one of the predefined strings (air, water, glass); 3. filename with optical constants. File header should state `lambda`, `n` and `k` columns If either `nk= n + 1j*k` or `eps = re + 1j*im` arrays are specified, then the data from one of them will be used and filename content will be ignored. wls: float array array of wavelengths (in nm) used for data interpolation. If None then ``np.linspace(300, 800, 500)`` will be used. """ if isinstance(file_name, str): self.__name__ = 'Mat_%s' % os.path.basename(file_name) else: self.__name__ = 'Mat_%.3f' % file_name if wls is None: wl_min = 200 # 149.9 wl_max = 1200 # 950.1 wls = np.array([wl_min, wl_max]) k = np.array([0.0, 0.0]) if nk is not None: n = np.real(nk) k = np.imag(nk) elif eps is not None: mod = np.absolute(eps) n = np.sqrt((mod + np.real(eps)) / 2) k = np.sqrt((mod - np.real(eps)) / 2) else: try: np.complex(file_name) is_complex = True except ValueError: is_complex = False if is_complex: nk = np.complex(file_name) n = np.array([np.real(nk), np.real(nk)]) k = np.array([np.imag(nk), np.imag(nk)]) else: if file_name.lower() == 'air': n = np.array([1.0, 1.0]) elif file_name.lower() == 'water': n = np.array([1.33, 1.33]) elif file_name.lower() == 'glass': n = np.array([1.66, 1.66]) else: optical_constants = np.genfromtxt(file_name, names=True) wls = optical_constants['lambda'] if np.max(wls) < 100: # wavelengths are in micrometers wls = wls * 1000 # convert to nm n = optical_constants['n'] k = optical_constants['k'] if wls[0] > wls[1]: # form bigger to smaller wls = np.flipud(wls) # reverse order n = np.flipud(n) k = np.flipud(k) n = n[wls > wl_min] k = k[wls > wl_min] wls = wls[wls > wl_min] n = n[wls < wl_max] k = k[wls < wl_max] wls = wls[wls < wl_max] wl_step = np.abs(wls[1] - wls[0]) if (wl_step > 1.1) and (wl_step < 500): interp_kind = 'cubic' # cubic interpolation else: # too dense or too sparse mesh, linear interpolation is needed interp_kind = 'linear' # print('Interpolation kind : %s'%interp_kind) self._get_n_interp = interpolate.interp1d(wls, n, kind=interp_kind) self._get_k_interp = interpolate.interp1d(wls, k, kind=interp_kind) def get_n(self, wl): return self._get_n_interp(wl) def get_k(self, wl): return self._get_k_interp(wl) def __str__(self): return self.__name__ def plot(self, wls=None, fig=None, axs=None): r""" plot ``n`` and ``k`` dependence from wavelength Parameters: wls: float array array of wavelengths (in nm). If None then ``np.linspace(300, 800, 500)`` will be used. fig: matplotlib figure axs: matplotlib axes Return: filled/created fig and axs objects """ if wls is None: wls = np.linspace(300, 800, 501) flag = fig is None if flag: fig = plt.figure() axs = fig.add_subplot(111) axs.plot(wls, self.get_n(wls), label='Real') axs.plot(wls, self.get_k(wls), label='Imag') axs.set_ylabel('Refraction index') axs.set_xlabel('Wavelength, nm') axs.legend() if flag: plt.show() return fig, axs # class MaterialManager(): # """ # Cache for materials, to decrease file i/o # """ # def __init__(self, wavelengths): # self.materials = {} class Spheres(object): """ Abstract collection of spheres Object fields: N: int number of spheres x, y, z: numpy arrays coordinates of spheres centers a: list or arrray spheres radii materials: numpy array Material objects or strings """ def __init__(self): """ Creates empty collection of spheres. Use child classes for non-empty! """ self.N = 0 self.x = [] self.y = [] self.z = [] self.a = [] # radius self.materials = [] def __len__(self): return self.N def check_overlap(self, eps=0.001): """ Check if spheres are overlapping """ result = False n = len(self.x) for i in xrange(n): for j in xrange(i + 1, n): dx = abs(self.x[j] - self.x[i]) dy = abs(self.y[j] - self.y[i]) dz = abs(self.z[j] - self.z[i]) Ri = self.a[i] Rj = self.a[j] dist = np.sqrt(dx * dx + dy * dy + dz * dz) if dist < Ri + Rj + eps: # distance between spheres is less than sum of thier radii # but there still can be nested spheres, check it if Ri > Rj: result = Ri < dist + Rj + eps else: # Rj < Ri result = Rj < dist + Ri + eps if result: # avoid unneeded steps return True return result def append(self, sphere): """ Append by data from SingleSphere object Parameter: sphere: SingleSphere """ self.a = np.append(self.a, sphere.a[0]) self.x = np.append(self.x, sphere.x[0]) self.y = np.append(self.y, sphere.y[0]) self.z = np.append(self.z, sphere.z[0]) self.materials.append(sphere.materials[0]) self.N += 1 def delete(self, i): """ Delete element with index `i` """ self.a = np.delete(self.a, i) self.x = np.delete(self.x, i) self.y = np.delete(self.y, i) self.z = np.delete(self.z, i) self.materials.pop(i) self.N -= 1 def extend(self, spheres): """ Append by all items from object `spheres` """ for i in xrange(len(spheres)): self.append(SingleSphere(spheres.x[i], spheres.y[i], spheres.z[i], spheres.a[i], spheres.materials[i])) def get_center(self, method=''): """ calculate center of masses in assumption of uniform density Parameter: method: string {''|'mass'} If method == 'mass' then center of masses (strictly speaking, volumes) is calculated. Otherwise all spheres are averaged evenly. """ weights = np.ones(self.N) if method.lower() == 'mass': weights = self.a**3 Xc = np.sum(np.dot(self.x, weights)) / np.sum(weights) Yc = np.sum(np.dot(self.y, weights)) / np.sum(weights) Zc = np.sum(np.dot(self.z, weights)) / np.sum(weights) return np.array((Xc, Yc, Zc)) def load(self, filename, mat_filename='etaGold.txt', units='nm'): """ Reads spheres coordinates and radii from file. Parameters: filename: string file to be read from mat_filename: string all spheres will have this material (sphere-material storaging is not yet implemented) units: string {'mum'|'nm'} distance units. If 'mum' then coordinated will be scaled (x1000) """ x = [] y = [] z = [] a = [] try: f = open(filename, 'r') text = f.readlines() for line in text: if line[0] != '#': # skip comment and header words = [w.strip() for w in line.replace(',', '.').split()] data = [float(w) for w in words] a.append(data[0]) x.append(data[1]) y.append(data[2]) z.append(data[3]) f.close() except Exception as err: print('Load failed \n %s' % err) self.N = len(a) self.x = np.array(x) self.y = np.array(y) self.z = np.array(z) self.a = np.array(a) if units == 'mum': self.x = self.x * 1000.0 self.y = self.y * 1000.0 self.z = self.z * 1000.0 self.a = self.a * 1000.0 self._set_material(mat_filename) def save(self, filename): """ Saves spheres coordinates and radii to file. Parameter: filename: string """ try: f = open(filename, 'w') f.write('#radius\tx\ty\tz\tn\tk\r\n') for i in xrange(self.N): wl = 555 a = self.a[i] x = self.x[i] y = self.y[i] z = self.z[i] n = self.materials[i].get_n(wl) k = self.materials[i].get_k(wl) f.write('%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\r\n' % (a, x, y, z, n, k)) except Exception as err: print('Save failed \n %s' % err) finally: f.close() class SingleSphere(Spheres): """ Collection of spheres with only one sphere """ def __init__(self, x, y, z, a, mat_filename='etaGold.txt'): """ Parameters: x, y, z: float coordinates of spheres centers a: float spheres radii mat_filename: string, float, complex value or Material object material specification """ self.N = 1 self.x = np.array([x]) self.y = np.array([y]) self.z = np.array([z]) self.a = np.array([a]) if isinstance(mat_filename, Material): self.materials = [mat_filename] else: self.materials = [Material(mat_filename)] class LogNormalSpheres(Spheres): """ The set of spheres positioned on the regular mesh with random Log-Normal distributed sizes. In the case overlapping of the spheres the sizes should(?) be regenerated. """ def __init__(self, N, mu, sigma, d, mat_filename='etaGold.txt'): """ Parameters: N: int number of spheres mu, sigma: floats parameters of Log-Normal distribution d: float average empty space between spheres centers mat_filename: string or Material object specification of spheres material """ # estimate the box size: a = mu # average sphere radius A = (N**(1. / 3) + 1) * (d + 2 * a) print('Box size estimated as: %.1f nm' % A) # A = A*1.5 Xc = [] Yc = [] Zc = [] x = -A / 2.0 while x < A / 2.0: y = -A / 2.0 while y < A / 2.0: z = -A / 2.0 while z < A / 2.0: if (x * x + y * y + z * z < A * A / 4.0): Xc.append(x) Yc.append(y) Zc.append(z) z = z + (2 * a + d) y = y + (2 * a + d) x = x + (2 * a + d) print('Desired number of particles: %i' % N) print('Number of particles in a box: %i' % len(Xc)) self.N = min([N, len(Xc)]) print('Resulted number of particles: %i' % self.N) self.x = np.array(Xc) self.y = np.array(Yc) self.z = np.array(Zc) random_a = lognormal(np.log(mu), sigma, self.N) # nm random_a = random_a self.a = np.array(random_a) if isinstance(mat_filename, Material): mat = mat_filename else: mat = Material(mat_filename) self.materials = [mat for i in xrange(self.N)] class ExplicitSpheres (Spheres): def __init__(self, N=0, Xc=[], Yc=[], Zc=[], a=[], mat_filename='etaGold.txt'): """ Create explicitely defined spheres Parameters: N: int number of spheres Xc, Yc, Zc: lists or numpy arrays coordinates of the spheres centers a: list or numpy array radii of the spheres mat_filename: string, list of strings, Material or list of Materials specification of spheres material Note: If only first array Xc is supplied, than all data is assumed zipped in it, i.e.: `Xc = [X1, Y1, Z1, a1, ..., XN, YN, ZN, aN]` """ super(ExplicitSpheres, self).__init__() self.N = N if N == 0: # special case of empty object self.x = [] self.y = [] self.z = [] self.a = [] return if N < len(Xc): # data is zipped in Xc assert(4 * N == len(Xc)) self.x = np.zeros(N) self.y = np.zeros(N) self.z = np.zeros(N) self.a = np.zeros(N) i = 0 while i < len(Xc): self.x[i // 4] = Xc[i + 0] self.y[i // 4] = Xc[i + 1] self.z[i // 4] = Xc[i + 2] self.a[i // 4] = abs(Xc[i + 3]) i = i + 4 else: self.x = np.array(Xc) self.y = np.array(Yc) self.z = np.array(Zc) self.a = np.abs(np.array(a)) if isinstance(mat_filename, (Material, str)): # one material filename for all spheres self._set_material(mat_filename) elif isinstance(mat_filename, list): # list of material filenames for all spheres if len(mat_filename) == 1: self._set_material(mat_filename[0]) else: assert(len(mat_filename) == self.N) for mat_fn in mat_filename: # TODO: use material manager to avoid re-creating # and extra file reads if isinstance(mat_fn, Material): self.materials.append(mat_fn) else: self.materials.append(Material(mat_fn)) else: raise Exception('Bad material variable: %s' % str(mat_filename)) # if self.check_overlap(): # print('Warning: Spheres are overlapping!') def _set_material(self, mat_filename): if isinstance(mat_filename, Material): mat = mat_filename else: mat = Material(mat_filename) self.materials = [mat for i in xrange(self.N)] if __name__ == '__main__': print('Overlap tests') spheres = Spheres() print(' Test not overlapped... ') spheres.x = [-5, 5] spheres.y = [0, 0] spheres.z = [0, 0] spheres.a = [4, 4] assert(not spheres.check_overlap()) print(' Test overlapped... ') spheres.a = [5, 5] assert(spheres.check_overlap()) print(' Test nested... ') spheres.x = [0, 0] spheres.a = [2, 5] assert(not spheres.check_overlap()) spheres.a = [5, 3] assert(not spheres.check_overlap()) # input('Press enter') print('Materials test') mat = Material(os.path.join('nk', 'etaGold.txt')) # mat.plot() mat1 = Material(os.path.join('nk', 'etaSilver.txt')) mat3 = Material('glass') mat5 = Material(1.5) mat6 = Material('2.0+0.5j') mat7 = Material('mat7', wls=np.linspace(300, 800, 100), nk=np.linspace(-10, 5, 100) + 1j * np.linspace(0, 10, 100)) mat8 = Material('mat7', wls=np.linspace(300, 800, 100), eps=np.linspace(-10, 5, 100) + 1j * np.linspace(0, 10, 100)) print('etaGold ', mat.get_n(800)) print('etaSilver ', mat1.get_n(800)) print('Glass (constant) ', mat3.get_n(800), mat3.get_k(800)) print('n=1.5 material ', mat5.get_n(550)) print('n=2.0+0.5j material ', mat6.get_n(550), mat6.get_k(550)) print('nk material ', mat7.get_n(550), mat7.get_k(550)) print('eps material ', mat8.get_n(550), mat8.get_k(550)) # input('Press enter') with Profiler() as p: wls = np.linspace(300, 800, 100) # create SPR object spr = SPR(wls) spr.environment_material = 'glass' # spr.set_spheres(SingleSphere(0.0, 0.0, 0.0, 25.0, 'etaGold.txt')) spheres = ExplicitSpheres(2, [0, 0, 0, 10, 0, 0, 0, 12], mat_filename=['nk/etaGold.txt', 'nk/etaSilver.txt']) # spheres = ExplicitSpheres(2, [0,0,0,20,0,0,0,21], # mat_filename='etaGold.txt') spr.set_spheres(spheres) # spr.set_spheres(LogNormalSpheres(27, 0.020, 0.9, 0.050 )) # calculate! # spr.command = '' spr.simulate() spr.plot() # ~ input('Press enter')
gpl-3.0
glennq/scikit-learn
examples/manifold/plot_lle_digits.py
138
8594
""" ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= An illustration of various embeddings on the digits dataset. The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-separable. t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting. It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization. """ # Authors: Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, discriminant_analysis, random_projection) digits = datasets.load_digits(n_class=6) X = digits.data y = digits.target n_samples, n_features = X.shape n_neighbors = 30 #---------------------------------------------------------------------- # Scale and visualize the embedding vectors def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(digits.data.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) #---------------------------------------------------------------------- # Plot images of the digits n_img_per_row = 20 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) plt.imshow(img, cmap=plt.cm.binary) plt.xticks([]) plt.yticks([]) plt.title('A selection from the 64-dimensional digits dataset') #---------------------------------------------------------------------- # Random 2D projection using a random unitary matrix print("Computing random projection") rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X) plot_embedding(X_projected, "Random Projection of the digits") #---------------------------------------------------------------------- # Projection on to the first 2 principal components print("Computing PCA projection") t0 = time() X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X) plot_embedding(X_pca, "Principal Components projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Projection on to the first 2 linear discriminant components print("Computing Linear Discriminant Analysis projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible t0 = time() X_lda = discriminant_analysis.LinearDiscriminantAnalysis(n_components=2).fit_transform(X2, y) plot_embedding(X_lda, "Linear Discriminant projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Isomap projection of the digits dataset print("Computing Isomap embedding") t0 = time() X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X) print("Done.") plot_embedding(X_iso, "Isomap projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Locally linear embedding of the digits dataset print("Computing LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='standard') t0 = time() X_lle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_lle, "Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Modified Locally linear embedding of the digits dataset print("Computing modified LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='modified') t0 = time() X_mlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_mlle, "Modified Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # HLLE embedding of the digits dataset print("Computing Hessian LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='hessian') t0 = time() X_hlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_hlle, "Hessian Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # LTSA embedding of the digits dataset print("Computing LTSA embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='ltsa') t0 = time() X_ltsa = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_ltsa, "Local Tangent Space Alignment of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # MDS embedding of the digits dataset print("Computing MDS embedding") clf = manifold.MDS(n_components=2, n_init=1, max_iter=100) t0 = time() X_mds = clf.fit_transform(X) print("Done. Stress: %f" % clf.stress_) plot_embedding(X_mds, "MDS embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Random Trees embedding of the digits dataset print("Computing Totally Random Trees embedding") hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) t0 = time() X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) plot_embedding(X_reduced, "Random forest embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Spectral embedding of the digits dataset print("Computing Spectral embedding") embedder = manifold.SpectralEmbedding(n_components=2, random_state=0, eigen_solver="arpack") t0 = time() X_se = embedder.fit_transform(X) plot_embedding(X_se, "Spectral embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # t-SNE embedding of the digits dataset print("Computing t-SNE embedding") tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) t0 = time() X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne, "t-SNE embedding of the digits (time %.2fs)" % (time() - t0)) plt.show()
bsd-3-clause
kashif/scikit-learn
sklearn/tests/test_kernel_approximation.py
78
7586
import numpy as np from scipy.sparse import csr_matrix from sklearn.utils.testing import assert_array_equal, assert_equal, assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal, assert_raises from sklearn.utils.testing import assert_less_equal from sklearn.metrics.pairwise import kernel_metrics from sklearn.kernel_approximation import RBFSampler from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.kernel_approximation import SkewedChi2Sampler from sklearn.kernel_approximation import Nystroem from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel # generate data rng = np.random.RandomState(0) X = rng.random_sample(size=(300, 50)) Y = rng.random_sample(size=(300, 50)) X /= X.sum(axis=1)[:, np.newaxis] Y /= Y.sum(axis=1)[:, np.newaxis] def test_additive_chi2_sampler(): # test that AdditiveChi2Sampler approximates kernel on random data # compute exact kernel # abbreviations for easier formula X_ = X[:, np.newaxis, :] Y_ = Y[np.newaxis, :, :] large_kernel = 2 * X_ * Y_ / (X_ + Y_) # reduce to n_samples_x x n_samples_y by summing over features kernel = (large_kernel.sum(axis=2)) # approximate kernel mapping transform = AdditiveChi2Sampler(sample_steps=3) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) X_sp_trans = transform.fit_transform(csr_matrix(X)) Y_sp_trans = transform.transform(csr_matrix(Y)) assert_array_equal(X_trans, X_sp_trans.A) assert_array_equal(Y_trans, Y_sp_trans.A) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) # test error on invalid sample_steps transform = AdditiveChi2Sampler(sample_steps=4) assert_raises(ValueError, transform.fit, X) # test that the sample interval is set correctly sample_steps_available = [1, 2, 3] for sample_steps in sample_steps_available: # test that the sample_interval is initialized correctly transform = AdditiveChi2Sampler(sample_steps=sample_steps) assert_equal(transform.sample_interval, None) # test that the sample_interval is changed in the fit method transform.fit(X) assert_not_equal(transform.sample_interval_, None) # test that the sample_interval is set correctly sample_interval = 0.3 transform = AdditiveChi2Sampler(sample_steps=4, sample_interval=sample_interval) assert_equal(transform.sample_interval, sample_interval) transform.fit(X) assert_equal(transform.sample_interval_, sample_interval) def test_skewed_chi2_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel c = 0.03 # abbreviations for easier formula X_c = (X + c)[:, np.newaxis, :] Y_c = (Y + c)[np.newaxis, :, :] # we do it in log-space in the hope that it's more stable # this array is n_samples_x x n_samples_y big x n_features log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) - np.log(X_c + Y_c)) # reduce to n_samples_x x n_samples_y by summing over features in log-space kernel = np.exp(log_kernel.sum(axis=2)) # approximate kernel mapping transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) def test_rbf_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel gamma = 10. kernel = rbf_kernel(X, Y, gamma=gamma) # approximate kernel mapping rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) X_trans = rbf_transform.fit_transform(X) Y_trans = rbf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased np.abs(error, out=error) assert_less_equal(np.max(error), 0.1) # nothing too far off assert_less_equal(np.mean(error), 0.05) # mean is fairly close def test_input_validation(): # Regression test: kernel approx. transformers should work on lists # No assertions; the old versions would simply crash X = [[1, 2], [3, 4], [5, 6]] AdditiveChi2Sampler().fit(X).transform(X) SkewedChi2Sampler().fit(X).transform(X) RBFSampler().fit(X).transform(X) X = csr_matrix(X) RBFSampler().fit(X).transform(X) def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel linear_kernel = lambda X, Y: np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert_true(np.all(np.isfinite(Y))) def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
bsd-3-clause
alexsavio/scikit-learn
examples/model_selection/grid_search_text_feature_extraction.py
99
4163
""" ========================================================== Sample pipeline for text feature extraction and evaluation ========================================================== The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached and reused for the document classification example. You can adjust the number of categories by giving their names to the dataset loader or setting them to None to get the 20 of them. Here is a sample output of a run on a quad-core machine:: Loading 20 newsgroups dataset for categories: ['alt.atheism', 'talk.religion.misc'] 1427 documents 2 categories Performing grid search... pipeline: ['vect', 'tfidf', 'clf'] parameters: {'clf__alpha': (1.0000000000000001e-05, 9.9999999999999995e-07), 'clf__n_iter': (10, 50, 80), 'clf__penalty': ('l2', 'elasticnet'), 'tfidf__use_idf': (True, False), 'vect__max_n': (1, 2), 'vect__max_df': (0.5, 0.75, 1.0), 'vect__max_features': (None, 5000, 10000, 50000)} done in 1737.030s Best score: 0.940 Best parameters set: clf__alpha: 9.9999999999999995e-07 clf__n_iter: 50 clf__penalty: 'elasticnet' tfidf__use_idf: True vect__max_n: 2 vect__max_df: 0.75 vect__max_features: 50000 """ # Author: Olivier Grisel <[email protected]> # Peter Prettenhofer <[email protected]> # Mathieu Blondel <[email protected]> # License: BSD 3 clause from __future__ import print_function from pprint import pprint from time import time import logging from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.linear_model import SGDClassifier from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) data = fetch_20newsgroups(subset='train', categories=categories) print("%d documents" % len(data.filenames)) print("%d categories" % len(data.target_names)) print() ############################################################################### # define a pipeline combining a text feature extractor with a simple # classifier pipeline = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', SGDClassifier()), ]) # uncommenting more parameters will give better exploring power but will # increase processing time in a combinatorial way parameters = { 'vect__max_df': (0.5, 0.75, 1.0), #'vect__max_features': (None, 5000, 10000, 50000), 'vect__ngram_range': ((1, 1), (1, 2)), # unigrams or bigrams #'tfidf__use_idf': (True, False), #'tfidf__norm': ('l1', 'l2'), 'clf__alpha': (0.00001, 0.000001), 'clf__penalty': ('l2', 'elasticnet'), #'clf__n_iter': (10, 50, 80), } if __name__ == "__main__": # multiprocessing requires the fork to happen in a __main__ protected # block # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1) print("Performing grid search...") print("pipeline:", [name for name, _ in pipeline.steps]) print("parameters:") pprint(parameters) t0 = time() grid_search.fit(data.data, data.target) print("done in %0.3fs" % (time() - t0)) print() print("Best score: %0.3f" % grid_search.best_score_) print("Best parameters set:") best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): print("\t%s: %r" % (param_name, best_parameters[param_name]))
bsd-3-clause
RayMick/scikit-learn
sklearn/__check_build/__init__.py
345
1671
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/__check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError("""%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
msultan/msmbuilder
msmbuilder/project_templates/0-test-install.py
9
2531
"""This script tests your python installation as it pertains to running project templates. MSMBuilder supports Python 2.7 and 3.3+ and has some necessary dependencies like numpy, scipy, and scikit-learn. This templated project enforces some more stringent requirements to make sure all the users are more-or-less on the same page and to allow developers to exploit more helper libraries. You can modify the template scripts to work for your particular set-up, but it's probably easier to install `conda` and get the packages we recommend. {{header}} """ import textwrap # Show intro text paragraphs = __doc__.split('\n\n') for p in paragraphs: print(textwrap.fill(p)) print() warnings = 0 ## Test for python 3.5 import sys if sys.version_info < (3, 5): print(textwrap.fill( "These scripts were all developed on Python 3.5, " "which is the current, stable release of Python. " "In particular, we use subprocess.run " "(and probably some other new features). " "You can easily modify the scripts to work on older versions " "of Python, but why not just upgrade? We like Continuum's " "Anaconda Python distribution for a simple install (without root)." )) print() warnings += 1 ## Test for matplotlib try: import matplotlib as plt except ImportError: print(textwrap.fill( "These scripts try to make some mildly intesting plots. " "That requires `matplotlib`." )) print() warnings += 1 ## Test for seaborn try: import seaborn as sns except ImportError: print(textwrap.fill( "The default matplotlib styling is a little ugly. " "By default, these scripts try to use `seaborn` to make prettier " "plots. You can remove all the seaborn imports if you don't want " "to install this library, but why not just install it? Try " "`conda install seaborn`" )) print() warnings += 1 ## Test for xdg-open try: import subprocess subprocess.check_call(['xdg-open', '--version']) except: print(textwrap.fill( "For convenience, the plotting scripts can try to use `xdg-open` " "to pop up the result of the plot. Use the --display flag on " "msmb TemplateProject to enable this behavior." )) warnings += 1 ## Report results if warnings == 0: print("I didn't find any problems with your installation! Good job.") print() else: print("I found {} warnings, see above. Good luck!".format(warnings)) print()
lgpl-2.1
spallavolu/scikit-learn
examples/ensemble/plot_bias_variance.py
357
7324
""" ============================================================ Single estimator versus bagging: bias-variance decomposition ============================================================ This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single estimator against a bagging ensemble. In regression, the expected mean squared error of an estimator can be decomposed in terms of bias, variance and noise. On average over datasets of the regression problem, the bias term measures the average amount by which the predictions of the estimator differ from the predictions of the best possible estimator for the problem (i.e., the Bayes model). The variance term measures the variability of the predictions of the estimator when fit over different instances LS of the problem. Finally, the noise measures the irreducible part of the error which is due the variability in the data. The upper left figure illustrates the predictions (in dark red) of a single decision tree trained over a random dataset LS (the blue dots) of a toy 1d regression problem. It also illustrates the predictions (in light red) of other single decision trees trained over other (and different) randomly drawn instances LS of the problem. Intuitively, the variance term here corresponds to the width of the beam of predictions (in light red) of the individual estimators. The larger the variance, the more sensitive are the predictions for `x` to small changes in the training set. The bias term corresponds to the difference between the average prediction of the estimator (in cyan) and the best possible model (in dark blue). On this problem, we can thus observe that the bias is quite low (both the cyan and the blue curves are close to each other) while the variance is large (the red beam is rather wide). The lower left figure plots the pointwise decomposition of the expected mean squared error of a single decision tree. It confirms that the bias term (in blue) is low while the variance is large (in green). It also illustrates the noise part of the error which, as expected, appears to be constant and around `0.01`. The right figures correspond to the same plots but using instead a bagging ensemble of decision trees. In both figures, we can observe that the bias term is larger than in the previous case. In the upper right figure, the difference between the average prediction (in cyan) and the best possible model is larger (e.g., notice the offset around `x=2`). In the lower right figure, the bias curve is also slightly higher than in the lower left figure. In terms of variance however, the beam of predictions is narrower, which suggests that the variance is lower. Indeed, as the lower right figure confirms, the variance term (in green) is lower than for single decision trees. Overall, the bias- variance decomposition is therefore no longer the same. The tradeoff is better for bagging: averaging several decision trees fit on bootstrap copies of the dataset slightly increases the bias term but allows for a larger reduction of the variance, which results in a lower overall mean squared error (compare the red curves int the lower figures). The script output also confirms this intuition. The total error of the bagging ensemble is lower than the total error of a single decision tree, and this difference indeed mainly stems from a reduced variance. For further details on bias-variance decomposition, see section 7.3 of [1]_. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning", Springer, 2009. """ print(__doc__) # Author: Gilles Louppe <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import BaggingRegressor from sklearn.tree import DecisionTreeRegressor # Settings n_repeat = 50 # Number of iterations for computing expectations n_train = 50 # Size of the training set n_test = 1000 # Size of the test set noise = 0.1 # Standard deviation of the noise np.random.seed(0) # Change this for exploring the bias-variance decomposition of other # estimators. This should work well for estimators with high variance (e.g., # decision trees or KNN), but poorly for estimators with low variance (e.g., # linear models). estimators = [("Tree", DecisionTreeRegressor()), ("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor()))] n_estimators = len(estimators) # Generate data def f(x): x = x.ravel() return np.exp(-x ** 2) + 1.5 * np.exp(-(x - 2) ** 2) def generate(n_samples, noise, n_repeat=1): X = np.random.rand(n_samples) * 10 - 5 X = np.sort(X) if n_repeat == 1: y = f(X) + np.random.normal(0.0, noise, n_samples) else: y = np.zeros((n_samples, n_repeat)) for i in range(n_repeat): y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples) X = X.reshape((n_samples, 1)) return X, y X_train = [] y_train = [] for i in range(n_repeat): X, y = generate(n_samples=n_train, noise=noise) X_train.append(X) y_train.append(y) X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat) # Loop over estimators to compare for n, (name, estimator) in enumerate(estimators): # Compute predictions y_predict = np.zeros((n_test, n_repeat)) for i in range(n_repeat): estimator.fit(X_train[i], y_train[i]) y_predict[:, i] = estimator.predict(X_test) # Bias^2 + Variance + Noise decomposition of the mean squared error y_error = np.zeros(n_test) for i in range(n_repeat): for j in range(n_repeat): y_error += (y_test[:, j] - y_predict[:, i]) ** 2 y_error /= (n_repeat * n_repeat) y_noise = np.var(y_test, axis=1) y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2 y_var = np.var(y_predict, axis=1) print("{0}: {1:.4f} (error) = {2:.4f} (bias^2) " " + {3:.4f} (var) + {4:.4f} (noise)".format(name, np.mean(y_error), np.mean(y_bias), np.mean(y_var), np.mean(y_noise))) # Plot figures plt.subplot(2, n_estimators, n + 1) plt.plot(X_test, f(X_test), "b", label="$f(x)$") plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$") for i in range(n_repeat): if i == 0: plt.plot(X_test, y_predict[:, i], "r", label="$\^y(x)$") else: plt.plot(X_test, y_predict[:, i], "r", alpha=0.05) plt.plot(X_test, np.mean(y_predict, axis=1), "c", label="$\mathbb{E}_{LS} \^y(x)$") plt.xlim([-5, 5]) plt.title(name) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.subplot(2, n_estimators, n_estimators + n + 1) plt.plot(X_test, y_error, "r", label="$error(x)$") plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"), plt.plot(X_test, y_var, "g", label="$variance(x)$"), plt.plot(X_test, y_noise, "c", label="$noise(x)$") plt.xlim([-5, 5]) plt.ylim([0, 0.1]) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.show()
bsd-3-clause
shrtCKT/simple-dnn
simple_dnn/dcgan_example.py
1
3138
# --------------------------------------------------------------------------------------- # Example Usage # --------------------------------------------------------------------------------------- import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from generative.discriminator import DiscriminatorDC from generative.gan import MultiClassGAN from generative.generator import GeneratorDC from util.format import UnitPosNegScale, reshape_pad from util.sample_writer import ImageGridWriter mnist = input_data.read_data_sets("../../data/MNIST_data/", one_hot=True) print mnist.train.images.shape print mnist.train.labels.shape discriminator = DiscriminatorDC(10, # y_dim [16,32,64], # conv_units hidden_units=None, kernel_sizes=[5,5], strides=[2, 2], paddings='SAME', d_activation_fn=tf.contrib.keras.layers.LeakyReLU, f_activation_fns=tf.nn.relu, dropout=False, keep_prob=0.5) generator = GeneratorDC([32, 32],#x_dims 1, # x_ch [64,32,16], # g_conv_units g_kernel_sizes=[5,5], g_strides=[2, 2], g_paddings='SAME', g_activation_fn=tf.nn.relu) dcgan = MultiClassGAN([32, 32], # x_dim 1, # x_ch 10, # y_dim z_dim=100, generator=generator, # Generator Net discriminator=discriminator, # Discriminator Net x_reshape=reshape_pad([28,28], [32,32], 1, pad=True, pad_value=-1), x_scale=UnitPosNegScale.scale, x_inverse_scale=UnitPosNegScale.inverse_scale, d_optimizer=tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5), g_optimizer=tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5), g_loss_fn='default', d_label_smooth=0.75, ## Training config batch_size=128, iterations=5, display_step=1, save_step=500, sample_writer= ImageGridWriter('../../data/figs/closed', grid_size=[6, 6], img_dims=[32, 32]) # model_directory='../data/models/closed' ) dcgan.fit(mnist.train.images, mnist.train.labels, val_x=mnist.validation.images, val_y=mnist.validation.labels) n_samples = 36 # ys_gen = np.zeros([n_samples, mnist.train.labels.shape[1] + 1]) # ys_gen[:, np.random.randint(0, mnist.train.labels.shape[1], size=n_samples)] = 1 gen_xs = dcgan.generate(n_samples) gen_imgs = ImageGridWriter.merge_img(np.reshape(gen_xs[0:n_samples],[n_samples, dcgan.x_dims[0], dcgan.x_dims[1]])) plt.imshow(gen_imgs, cmap='gray') plt.show()
gpl-3.0
pompiduskus/scikit-learn
sklearn/decomposition/tests/test_kernel_pca.py
155
8058
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import (assert_array_almost_equal, assert_less, assert_equal, assert_not_equal, assert_raises) from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.metrics.pairwise import rbf_kernel def test_kernel_pca(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() for eigen_solver in ("auto", "dense", "arpack"): for kernel in ("linear", "rbf", "poly", histogram): # histogram kernel produces singular matrix inside linalg.solve # XXX use a least-squares approximation? inv = not callable(kernel) # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # non-regression test: previously, gamma would be 0 by default, # forcing all eigenvalues to 0 under the poly kernel assert_not_equal(X_fit_transformed, []) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform if inv: X_pred2 = kpca.inverse_transform(X_pred_transformed) assert_equal(X_pred2.shape, X_pred.shape) def test_invalid_parameters(): assert_raises(ValueError, KernelPCA, 10, fit_inverse_transform=True, kernel='precomputed') def test_kernel_pca_sparse(): rng = np.random.RandomState(0) X_fit = sp.csr_matrix(rng.random_sample((5, 4))) X_pred = sp.csr_matrix(rng.random_sample((2, 4))) for eigen_solver in ("auto", "arpack"): for kernel in ("linear", "rbf", "poly"): # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=False) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform # X_pred2 = kpca.inverse_transform(X_pred_transformed) # assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_linear_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) # for a linear kernel, kernel PCA should find the same projection as PCA # modulo the sign (direction) # fit only the first four components: fifth is near zero eigenvalue, so # can be trimmed due to roundoff error assert_array_almost_equal( np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)), np.abs(PCA(4).fit(X_fit).transform(X_pred))) def test_kernel_pca_n_components(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): for c in [1, 2, 4]: kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver) shape = kpca.fit(X_fit).transform(X_pred).shape assert_equal(shape, (2, c)) def test_remove_zero_eig(): X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]]) # n_components=None (default) => remove_zero_eig is True kpca = KernelPCA() Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) kpca = KernelPCA(n_components=2) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 2)) kpca = KernelPCA(n_components=2, remove_zero_eig=True) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) def test_kernel_pca_precomputed(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\ fit(X_fit).transform(X_pred) X_kpca2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T)) X_kpca_train = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T)) X_kpca_train2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T)) assert_array_almost_equal(np.abs(X_kpca), np.abs(X_kpca2)) assert_array_almost_equal(np.abs(X_kpca_train), np.abs(X_kpca_train2)) def test_kernel_pca_invalid_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((2, 4)) kpca = KernelPCA(kernel="tototiti") assert_raises(ValueError, kpca.fit, X_fit) def test_gridsearch_pipeline(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="rbf", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) grid_search.fit(X, y) assert_equal(grid_search.best_score_, 1) def test_gridsearch_pipeline_precomputed(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model using a precomputed kernel. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="precomputed", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(Perceptron__n_iter=np.arange(1, 5)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) X_kernel = rbf_kernel(X, gamma=2.) grid_search.fit(X_kernel, y) assert_equal(grid_search.best_score_, 1) def test_nested_circles(): # Test the linear separability of the first 2D KPCA transform X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) # 2D nested circles are not linearly separable train_score = Perceptron().fit(X, y).score(X, y) assert_less(train_score, 0.8) # Project the circles data into the first 2 components of a RBF Kernel # PCA model. # Note that the gamma value is data dependent. If this test breaks # and the gamma value has to be updated, the Kernel PCA example will # have to be updated too. kpca = KernelPCA(kernel="rbf", n_components=2, fit_inverse_transform=True, gamma=2.) X_kpca = kpca.fit_transform(X) # The data is perfectly linearly separable in that space train_score = Perceptron().fit(X_kpca, y).score(X_kpca, y) assert_equal(train_score, 1.0)
bsd-3-clause
dcherian/tools
ROMS/pmacc/tools/post_tools/rompy/tags/rompy-0.1/rompy/utils.py
1
15659
import numpy as np from matplotlib.mlab import griddata __version__ = '0.1' def interp_2d_latlon(lat,lon,data,lati,loni): return griddata(lat.reshape(lat.size),lon.reshape(lon.size),data.reshape(data.size),lati,loni) def interp_2d_xy(x,y,data,xi,yi): try: di = griddata(x.reshape(x.size),y.reshape(y.size),data.reshape(data.size),xi,yi) except TypeError: di = np.zeros(xi.size) if x.ndim ==2 and y.ndim ==2: x_vec = x[0,:] y_vec = y[:,0] elif x.ndim == 3 and y.ndim == 3: x_vec = x[0,0,:] y_vec = y[0,:,0] else: x_vec = x y_vec = y xl = np.nonzero(x_vec <= xi)[0][-1] xh = np.nonzero(xi <= x_vec)[0][0] yl = np.nonzero(y_vec <= yi)[0][-1] yh = np.nonzero(yi <= y_vec)[0][0] if not x_vec[xl] == x_vec[xh]: xd = (xi-x_vec[xh])/(x_vec[xl]-x_vec[xh]) else: xd = 1. if not y_vec[yl] == y_vec[yh]: yd = (yi-y_vec[yh])/(y_vec[yl]-y_vec[yh]) else: yd = 1. w0 = data[yl,xl]*(1-yd) + data[yh,xl]*yd w1 = data[yl,xh]*(1-yd) + data[yh,xh]*yd di = w0*(1-xd) + w1*xd return di def interp_2d_point(x,y,d,xi,yi): if not x.ndim == 1 or not y.ndim == 1: raise(TypeError,'interp_2d_from_point needs the x and y to be vectors') if not xi.size == 1 or not yi.size == 1: print(xi,yi,zi) raise(TypeError, 'interp_2d_from_point needs xi and yi to be a single value') try: xl = np.nonzero(x <= xi)[0][-1] xh = np.nonzero(xi <= x)[0][0] yl = np.nonzero(y <= yi)[0][-1] yh = np.nonzero(yi <= y)[0][0] except IndexError, e: print('x, xi') print(x,xi) print('y, yi') print(y,yi) if not x[xl] == x[xh]: xd = (xi-x[xh])/(x[xl]-x[xh]) else: xd = 1. if not y[yl] == y[yh]: yd = (yi-y[yh])/(y[yl]-y[yh]) else: yd = 1. w0 = d[yl,xl]*(1-yd) + d[yh,xl]*yd w1 = d[yl,xh]*(1-yd) + d[yh,xh]*yd return w0*(1-xd) + w1*xd def interp_2d_from_list_of_points(x,y,z,d,p_list): di = np.zeros(len(p_list),1) for i in range(len(p_list)): di[i] = interp_2d_point(x,y,d,p_list[i][0],p_list[i][1]) return di def interp_2d(x,y,data,xi,yi): if x.shape == y.shape and x.shape == data.shape: # assume x and y are the same everywhere in their respective dimension if x.ndim == 2: x_vec = x[0,:] else: x_vec = x if y.ndim == 2: y_vec = y[:,0] else: y_vec = y # assume xi and yi are vectors if xi.ndim == 1 and yi.ndim == 1: di = np.zeros((len(yi),len(xi))) for i in range(len(xi)): for j in range(len(yi)): di[j,i] = interp_2d_point(x_vec,y_vec,data,xi[i],yi[j]) # if xi and yi are not vectors, then lets just do everything on a point by point basis. elif xi.shape == yi.shape: di = np.zeros(xi.shape) for i in range(xi.size): di.flat[i] = interp_2d_point(x_vec,y_vec,data,xi.flat[i],yi.flat[i]) return di else:#elif (len(x),len(y)) == data.shape: print('Do this the other way') def interp_3d_point(x,y,z,d,xi,yi,zi): if not x.ndim == 1 or not y.ndim == 1 or not z.ndim == 1: raise(TypeError,'interp_3d_from_point needs the x, y, and z to be vectors') if not xi.size == 1 or not yi.size == 1 or not zi.size ==1: print(xi,yi,zi) raise(TypeError, 'interp_3d_from_point needs xi, yi, and zi to be a single value') try: xl = np.nonzero(x <= xi)[0][-1] xh = np.nonzero(xi <= x)[0][0] yl = np.nonzero(y <= yi)[0][-1] yh = np.nonzero(yi <= y)[0][0] zl = np.nonzero(z <= zi)[0][-1] zh = np.nonzero(zi <= z)[0][0] except IndexError, e: print('x, xi') print(x,xi) print('y, yi') print(y,yi) print('z, zi') print(z,zi) # print((xl,xi, xh),(yl, yi, yh),( zl, zi, zh)) if not x[xl] == x[xh]: xd = (xi-x[xh])/(x[xl]-x[xh]) else: xd = 1. if not y[yl] == y[yh]: yd = (yi-y[yh])/(y[yl]-y[yh]) else: yd = 1. if not z[zl] == z[zh]: zd = (zi-z[zh])/(z[zl]-z[zh]) else: zd = 1. i0 = d[zl,yl,xl]*(1-zd) + d[zh,yl,xl]*zd i1 = d[zl,yh,xl]*(1-zd) + d[zh,yh,xl]*zd j0 = d[zl,yl,xh]*(1-zd) + d[zh,yl,xh]*zd j1 = d[zl,yh,xh]*(1-zd) + d[zh,yh,xh]*zd w0 = i0*(1-yd) + i1*yd w1 = j0*(1-yd) + j1*yd # cludge alert if np.abs(w0) > 1.0e35 or np.abs(w1) > 1.0e35: return np.nan else: return w0*(1-xd) + w1*xd def interp_3d_from_list_of_points(x,y,z,d,p_list): di = np.zeros(len(p_list),1) for i in range(len(p_list)): di[i] = interp_3d_point(x,y,z,d,p_list[i][0],p_list[i][1],p_list[i][2]) return di def interp_3d(x,y,z,data,xi,yi,zi): # we make a lot of assumptions about the incoming data. this is not a universal interpn if x.shape == y.shape and x.shape == z.shape and x.shape == data.shape: #print('Do this the hard way') # assume x, y, and z are the same everywhere in their respective dimension if x.ndim == 3: x_vec = x[0,0,:] else: x_vec = x if y.ndim == 3: y_vec = y[0,:,0] else: y_vec = y if z.ndim == 3: z_vec = z[:,0,0] else: z_vec = z # assume xi, yi, and zi are vectors if xi.ndim == 1 and yi.ndim == 1 and zi.ndim == 1: di = np.zeros((len(zi), len(yi),len(xi))) for i in range(len(xi)): for j in range(len(yi)): for k in range(len(zi)): di[k,j,i] = interp_3d_point(x_vec,y_vec,z_vec,data,xi[i],yi[j],zi[k]) # if xi, yi, and zi are not vectors, then lets just do everything on a point by point basis. elif xi.shape == yi.shape and xi.shape == zi.shape: #print("I'm in the right place") di = np.zeros(xi.shape) for i in range(xi.size): di.flat[i] = interp_3d_point(x_vec,y_vec,z_vec,data,xi.flat[i],yi.flat[i],zi.flat[i]) return di elif (len(x),len(y),len(z)) == data.shape: print('Do this the other way') def meshgrid(*xi,**kwargs): """ Return coordinate matrices from one or more coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn. Parameters ---------- x1, x2,..., xn : array_like 1-D arrays representing the coordinates of a grid. indexing : 'xy' or 'ij' (optional) cartesian ('xy', default) or matrix ('ij') indexing of output sparse : True or False (default) (optional) If True a sparse grid is returned in order to conserve memory. copy : True (default) or False (optional) If False a view into the original arrays are returned in order to conserve memory Returns ------- X1, X2,..., XN : ndarray For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' with the elements of `xi` repeated to fill the matrix along the first dimension for `x1`, the second for `x2` and so on. See Also -------- index_tricks.mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" using indexing notation. Examples -------- >>> x = np.linspace(0,1,3) # coordinates along x axis >>> y = np.linspace(0,1,2) # coordinates along y axis >>> xv, yv = meshgrid(x,y) # extend x and y for a 2D xy grid >>> xv array([[ 0. , 0.5, 1. ], [ 0. , 0.5, 1. ]]) >>> yv array([[ 0., 0., 0.], [ 1., 1., 1.]]) >>> xv, yv = meshgrid(x,y, sparse=True) # make sparse output arrays >>> xv array([[ 0. , 0.5, 1. ]]) >>> yv array([[ 0.], [ 1.]]) >>> meshgrid(x,y,sparse=True,indexing='ij') # change to matrix indexing [array([[ 0. ], [ 0.5], [ 1. ]]), array([[ 0., 1.]])] >>> meshgrid(x,y,indexing='ij') [array([[ 0. , 0. ], [ 0.5, 0.5], [ 1. , 1. ]]), array([[ 0., 1.], [ 0., 1.], [ 0., 1.]])] >>> meshgrid(0,1,5) # just a 3D point [array([[[0]]]), array([[[1]]]), array([[[5]]])] >>> map(np.squeeze,meshgrid(0,1,5)) # just a 3D point [array(0), array(1), array(5)] >>> meshgrid(3) array([3]) >>> meshgrid(y) # 1D grid; y is just returned array([ 0., 1.]) `meshgrid` is very useful to evaluate functions on a grid. >>> x = np.arange(-5, 5, 0.1) >>> y = np.arange(-5, 5, 0.1) >>> xx, yy = meshgrid(x, y, sparse=True) >>> z = np.sin(xx**2+yy**2)/(xx**2+yy**2) """ copy = kwargs.get('copy',True) args = np.atleast_1d(*xi) if not isinstance(args, list): if args.size>0: return args.copy() if copy else args else: raise TypeError('meshgrid() take 1 or more arguments (0 given)') sparse = kwargs.get('sparse',False) indexing = kwargs.get('indexing','xy') # 'ij' ndim = len(args) s0 = (1,)*ndim output = [x.reshape(s0[:i]+(-1,)+s0[i+1::]) for i, x in enumerate(args)] shape = [x.size for x in output] if indexing == 'xy': # switch first and second axis output[0].shape = (1,-1) + (1,)*(ndim-2) output[1].shape = (-1, 1) + (1,)*(ndim-2) shape[0],shape[1] = shape[1],shape[0] if sparse: if copy: return [x.copy() for x in output] else: return output else: # Return the full N-D matrix (not only the 1-D vector) if copy: mult_fact = np.ones(shape,dtype=int) return [x*mult_fact for x in output] else: return np.broadcast_arrays(*output) def ndgrid(*args,**kwargs): """ Same as calling meshgrid with indexing='ij' (see meshgrid for documentation). """ kwargs['indexing'] = 'ij' return meshgrid(*args,**kwargs) def station_to_lat_lon(station_list): lat_dict = {} lon_dict = {} lat_dict[4] = 48.2425 lon_dict[4] = -122.542 # lat_dict[6] = 47.925 # lon_dict[6] = -122.4685 lat_dict[6] = 47.9298 lon_dict[6] = -122.4932 lat_dict[7] = 47.9835 lon_dict[7] = -122.6201 lat_dict[7.5] = 47.9269 lon_dict[7.5] = -122.6418 lat_dict[8] = 47.8967 lon_dict[8] = -122.6053 lat_dict[8.5] = 47.8708 lon_dict[8.5] = -122.5848 lat_dict[9] = 47.8333 lon_dict[9] = -122.6673 lat_dict[10] = 47.8001 lon_dict[10] = -122.7198 lat_dict[11] = 47.3751 lon_dict[11] = -123.1375 lat_dict[11.1] = 47.36176418802982 lon_dict[11.1] = -123.063768617271 lat_dict[11.2] = 47.3550 lon_dict[11.2] = -123.0305 lat_dict[12] = 47.4272 lon_dict[12] = -123.1142 lat_dict[13] = 47.5471 lon_dict[13] = -123.008 lat_dict[14] = 47.6068 lon_dict[14] = -122.9399 lat_dict[15] = 47.6616 lon_dict[15] = -122.8601 # true station 16 lat lon # lat_dict[16] = 47.6917 # lon_dict[16] = -122.6074 # fake station 16 lat lon lat_dict[16] = 47.6793 lon_dict[16] = -122.7578 lat_dict[17] = 47.7356 lon_dict[17] = -122.7614 lat_dict[18] = 48.0303 lon_dict[18] = -122.6169 lat_dict[19] = 48.0915 lon_dict[19] = -122.6318 lat_dict[20] = 48.142 lon_dict[20] = -122.6848 lat_dict[21] = 48.1883 lon_dict[21] = -122.8504 lat_dict[22] = 48.2717 lon_dict[22] = -123.0189 lat_dict[24] = 48.3416 lon_dict[24] = -123.1249 # lat_dict[27] = 47.8133 # lon_dict[27] = -122.4050 lat_dict[27] = 47.7403 lon_dict[27] = -122.4103 lat_dict[28] = 47.7034 lon_dict[28] = -122.4544 lat_dict[29] = 47.5568 lon_dict[29] = -122.4433 lat_dict[30] = 47.4565 lon_dict[30] = -122.4084 # lat_dict[31] = 47.3937 # lon_dict[31] = -122.3601 lat_dict[31] = 47.3811 lon_dict[31] = -122.3487 lat_dict[32] = 47.3329 lon_dict[32] = -122.4427 lat_dict[33] = 47.3198 lon_dict[33] = -122.5008 lat_dict[33.5] = 47.3235 lon_dict[33.5] = -122.5621 lat_dict[34] = 47.28636086132807 lon_dict[34] = -122.5372204355572 lat_dict[34.5] = 47.19570992132258 lon_dict[34.5] = -122.6043449761104 lat_dict[35] = 47.1755994508588 lon_dict[35] = -122.6519213323306 lat_dict[35.5] = 47.1124942780185 lon_dict[35.5] = -122.6858130539733 lat_dict[35.6] = 47.11563089257614 lon_dict[35.6] = -122.7313463437406 lat_dict[36] = 47.20101267057353 lon_dict[36] = -122.825703220149 lat_dict[36.1] = 47.1670 lon_dict[36.1] = -122.8573269666242 lat_dict[36.2] = 47.14631182649271 lon_dict[36.2] = -122.9157302320745 lat_dict[36.3] = 47.07516793450768 lon_dict[36.3] = -122.9127057495704 lat_dict[401] = 47.49 lon_dict[401] = -123.0567 lat_dict[402] = 47.3635 lon_dict[402] = -123.0167366137608 lat_dict[402.1] = 47.37605785194047 lon_dict[402.1] = -123.0013100422375 lat_dict[403] = 47.40338787905921 lon_dict[403] = -122.9112721092632 lat_dict[403.1] = 47.42062136686801 lon_dict[403.1] = -122.8790276962233 lat_dict['admiralty inlet'] = 48.1734 lon_dict['admiralty inlet'] = -122.7557 lat = [] lon = [] for s in station_list: lat.append(lat_dict[s]) lon.append(lon_dict[s]) return np.array(lon), np.array(lat) def high_res_station_to_lat_lon(station_list,n=5): lon, lat = station_to_lat_lon(station_list) hr_lat = [] hr_lon = [] for i in range(len(lat)-1): for j in range(n): frac = float(j)/float(n) hr_lat.append(lat[i]*(1-frac) + lat[i+1]*frac) hr_lon.append(lon[i]*(1-frac) + lon[i+1]*frac) hr_lat.append(lat[-1]) hr_lon.append(lon[-1]) return np.array(hr_lon), np.array(hr_lat) def hood_canal_station_list(): # return [24,22,21,20,19,18,7,7.5,8,8.5,9,10,17,16,15,14,13,401,12,11,402] return [7.5,8,8.5,9,10,17,16,15,14,13,401,12,11,11.1,11.2,402,402.1,403,403.1] # return [11,11.1,11.2,402,402.1,403,403.1] # This is a close up of the nasty bits at the end of Hood Canal that are difficult to get right def main_basin_station_list(): return [24,22,21,20,19,18,7,6,27,28,29,30,31,32,33,33.5,34,34.5,35,35.5,35.6,36, 36.1, 36.2, 36.3] # return [7,6,27,28,29,30,31,32,33,33.5,34] def hood_canal_xy(): return station_to_lat_lon(hood_canal_station_list()) def main_basin_xy(): return station_to_lat_lon(main_basin_station_list()) def high_res_hood_canal_xy(n=1): if n == 1: return station_to_lat_lon(hood_canal_station_list()) else: return high_res_station_to_lat_lon(hood_canal_station_list(),n) def high_res_main_basin_xy(n=1): if n == 1: return station_to_lat_lon(main_basin_station_list()) else: return high_res_station_to_lat_lon(main_basin_station_list(),n) def latlon_to_km(lat1,lon1,lat2,lon2): RADIUS = 6378.0 # d=2*asin(sqrt((sin((lat1-lat2)/2))^2 + cos(lat1)*cos(lat2)*(sin((lon1-lon2)/2))^2)) lat1r = np.radians(lat1) lon1r = np.radians(lon1) lat2r = np.radians(lat2) lon2r = np.radians(lon2) rads=2*(np.arcsin(np.sqrt(np.power(np.sin((lat1r-lat2r)/2.0),2.0) + np.cos(lat1r)*np.cos(lat2r)*np.power(np.sin((lon1r-lon2r)/2.0),2.0)))) d = RADIUS*rads return d def coords_to_km(coords): lon_list = coords['xm'] lat_list = coords['ym'] km_list = [0.0] for i in range(len(lon_list)-1): km_list.append(latlon_to_km(lat_list[i+1],lon_list[i+1],lat_list[i],lon_list[i]) + km_list[i]) return km_list def station_list_to_km(sl): lat,lon = station_to_lat_lon(sl) return coords_to_km({'xm':lon,'ym':lat}) def offset_calc(x1,y1,x2,y2,x3,y3,x4,y4): a = x2 - x1 b = x3 - x4 c = y2 - y1 d = y3 - y4 e = x3 - x1 f = y3 - y1 t = (d*e - b*f)/(a*d - b*c) if t >= 0.0 and t < 1.0: return t else: return None def offset_region(coords,region='Admiralty Inlet'): if region == 'Admiralty Inlet': lon3 = -122.7090 lat3 = 48.1931 lon4 = -122.7774 lat4 = 48.1267 distances = coords_to_km(coords) lat = coords['ym'] lon = coords['xm'] rval = 0.0 for i in range(len(lat)-1): lat1 = lat[i] lat2 = lat[i+1] lon1 = lon[i] lon2 = lon[i+1] t = offset_calc(lon1,lat1,lon2,lat2,lon3,lat3,lon4,lat4) if t >= 0.0 and t < 1.0: rval = distances[i] + t*(distances[i+1] - distances[i]) return rval
mit
tjctw/PythonNote
thinkstat/hypothesis.py
2
6341
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import Cdf import cumulative import math import myplot import random import thinkstats import matplotlib.pyplot as pyplot def RunTest(root, pool, actual1, actual2, iters=1000, trim=False, partition=False): """Computes the distributions of delta under H0 and HA. Args: root: string filename root for the plots pool: sequence of values from the pooled distribution actual1: sequence of values in group 1 actual2: sequence of values in group 2 iters: how many resamples trim: whether to trim the sequences partition: whether to cross-validate by partitioning the data """ if trim: pool.sort() actual1.sort() actual2.sort() pool = thinkstats.Trim(pool) actual1 = thinkstats.Trim(actual1) actual2 = thinkstats.Trim(actual2) if partition: n = len(actual1) m = len(actual2) actual1, model1 = Partition(actual1, n/2) actual2, model2 = Partition(actual2, m/2) pool = model1 + model2 else: model1 = actual1 model2 = actual2 # P(E|H0) peh0 = Test(root + '_deltas_cdf', actual1, actual2, pool, pool, iters, plot=True) # P(E|Ha) peha = Test(root + '_deltas_ha_cdf', actual1, actual2, model1, model2, iters) prior = 0.5 pe = prior*peha + (1-prior)*peh0 posterior = prior*peha / pe print 'Posterior', posterior def Test(root, actual1, actual2, model1, model2, iters=1000, plot=False): """Estimates p-values based on differences in the mean. Args: root: string filename base for plots actual1: actual2: sequences of observed values for groups 1 and 2 model1: model2: sequences of values from the hypothetical distributions iters: how many resamples plot: whether to plot the distribution of differences in the mean """ n = len(actual1) m = len(actual2) mu1, mu2, delta = DifferenceInMean(actual1, actual2) delta = abs(delta) cdf, pvalue = PValue(model1, model2, n, m, delta, iters) print 'n:', n print 'm:', m print 'mu1', mu1 print 'mu2', mu2 print 'delta', delta print 'p-value', pvalue if plot: PlotCdf(root, cdf, delta) return pvalue def DifferenceInMean(actual1, actual2): """Computes the difference in mean between two groups. Args: actual1: sequence of float actual2: sequence of float Returns: tuple of (mu1, mu2, mu1-mu2) """ mu1 = thinkstats.Mean(actual1) mu2 = thinkstats.Mean(actual2) delta = mu1 - mu2 return mu1, mu2, delta def PValue(model1, model2, n, m, delta, iters=1000): """Computes the distribution of deltas with the model distributions. And the p-value of the observed delta. Args: model1: model2: sequences of values from the hypothetical distributions n: sample size from model1 m: sample size from model2 delta: the observed difference in the means iters: how many samples to generate """ deltas = [Resample(model1, model2, n, m) for i in range(iters)] mean_var = thinkstats.MeanVar(deltas) print '(Mean, Var) of resampled deltas', mean_var cdf = Cdf.MakeCdfFromList(deltas) # compute the two tail probabilities left = cdf.Prob(-delta) right = 1.0 - cdf.Prob(delta) pvalue = left + right print 'Tails (left, right, total):', left, right, left+right return cdf, pvalue def PlotCdf(root, cdf, delta): """Draws a Cdf with vertical lines at the observed delta. Args: root: string used to generate filenames cdf: Cdf object delta: float observed difference in means """ def VertLine(x): """Draws a vertical line at x.""" xs = [x, x] ys = [0, 1] pyplot.plot(xs, ys, linewidth=2, color='0.7') VertLine(-delta) VertLine(delta) xs, ys = cdf.Render() pyplot.subplots_adjust(bottom=0.11) pyplot.plot(xs, ys, linewidth=2, color='blue') myplot.Save(root, title='Resampled differences', xlabel='difference in means (weeks)', ylabel='CDF(x)', legend=False) def Resample(t1, t2, n, m): """Draws samples and computes the difference in mean. Args: t1: sequence of values t2: sequence of values n: size of the sample to draw from t1 m: size of the sample to draw from t2 """ sample1 = SampleWithReplacement(t1, n) sample2 = SampleWithReplacement(t2, m) mu1, mu2, delta = DifferenceInMean(sample1, sample2) return delta def Partition(t, n): """Splits a sequence into two random partitions. Side effect: shuffles t Args: t: sequence of values n: size of the first partition Returns: two lists of values """ random.shuffle(t) return t[:n], t[n:] def SampleWithReplacement(t, n): """Generates a sample with replacement. Args: t: sequence of values n: size of the sample Returns: list of values """ return [random.choice(t) for i in range(n)] def SampleWithoutReplacement(t, n): """Generates a sample without replacement. Args: t: sequence of values n: size of the sample Returns: list of values """ return random.sample(t, n) def main(): random.seed(1) # get the data pool, firsts, others = cumulative.MakeTables() mean_var = thinkstats.MeanVar(pool.lengths) print '(Mean, Var) of pooled data', mean_var # run the test RunTest('length', pool.lengths, firsts.lengths, others.lengths, iters=1000, trim=False, partition=False) if __name__ == "__main__": main()
cc0-1.0
jereze/scikit-learn
sklearn/utils/tests/test_random.py
230
7344
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_poluation < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case proabilites 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given proabilites don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
dongjoon-hyun/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_test.py
30
60826
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { embedding_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) model_ops = dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') wire_var = dnn_linear_combined._get_embedding_variable( embedding_wire, 'dnn', 'dnn/input_from_feature_columns') for _ in range(2): _, language_value, wire_value = sess.run( [model_ops.train_op, language_var, wire_var]) initial_value = np.full_like(language_value, 0.1) self.assertTrue(np.all(np.isclose(language_value, initial_value))) self.assertFalse(np.all(np.isclose(wire_value, initial_value))) class ActivationFunctionTest(test.TestCase): def _getModelForActivation(self, activation_fn): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'feature_columns': [embedding_language], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], 'activation_fn': activation_fn, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) return dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testValidActivation(self): _ = self._getModelForActivation('relu') def testRaisesOnBadActivationName(self): with self.assertRaisesRegexp(ValueError, 'Activation name should be one of'): self._getModelForActivation('max_pool') class DNNEstimatorTest(test.TestCase): def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNEstimator) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels dnn_estimator = dnn.DNNEstimator( head=head_lib.multi_class_head(2, weight_column_name='w'), feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) dnn_estimator.fit(input_fn=_input_fn_train, steps=5) scores = dnn_estimator.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) class DNNClassifierTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNClassifier) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn.DNNClassifier( feature_columns=[embedding_language], hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertEqual(1, classifier.params['input_layer_min_slice_size']) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn classifier.fit(input_fn=input_fn, steps=5) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=5) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def _assertBinaryPredictions(self, expected_len, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, (0, 1)) def _assertClassificationPredictions( self, expected_len, n_classes, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, range(n_classes)) def _assertProbabilities(self, expected_batch_size, expected_n_classes, probabilities): self.assertEqual(expected_batch_size, len(probabilities)) for b in range(expected_batch_size): self.assertEqual(expected_n_classes, len(probabilities[b])) for i in range(expected_n_classes): self._assertInRange(0.0, 1.0, probabilities[b][i]) def testEstimatorWithCoreFeatureColumns(self): def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = fc_core.categorical_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ fc_core.embedding_column(language_column, dimension=1), fc_core.numeric_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes(input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_TensorData(self): """Tests binary classification using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_FloatLabel(self): """Tests binary classification with float labels.""" def _input_fn_float_label(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[50], [20], [10]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_float_label, steps=50) predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predictions_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self._assertProbabilities(3, 2, predictions_proba) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=200) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but label shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=200) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[10, 10], label_keys=label_keys, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn.DNNClassifier( n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testPredict_AsIterableFalse(self): """Tests predict and predict_prob methods with as_iterable=False.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] n_classes = 3 classifier = dnn.DNNClassifier( n_classes=n_classes, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predicted_classes = classifier.predict_classes( input_fn=_input_fn, as_iterable=False) self._assertClassificationPredictions(3, n_classes, predicted_classes) predictions = classifier.predict(input_fn=_input_fn, as_iterable=False) self.assertAllEqual(predicted_classes, predictions) probabilities = classifier.predict_proba( input_fn=_input_fn, as_iterable=False) self._assertProbabilities(3, n_classes, probabilities) def testPredict_AsIterable(self): """Tests predict and predict_prob methods with as_iterable=True.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] n_classes = 3 classifier = dnn.DNNClassifier( n_classes=n_classes, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=300) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertClassificationPredictions(3, n_classes, predicted_classes) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predicted_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self._assertProbabilities(3, n_classes, predicted_proba) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) labels = math_ops.cast(labels, predictions.dtype) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn.DNNClassifier( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] model_dir = tempfile.mkdtemp() classifier = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions1 = classifier.predict_classes(input_fn=predict_input_fn) del classifier classifier2 = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = classifier2.predict_classes(input_fn=predict_input_fn) self.assertEqual(list(predictions1), list(predictions2)) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) feature_columns = [ feature_column.real_valued_column('age'), feature_column.embedding_column( language, dimension=1) ] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=5) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertIn('dnn/multi_class_head/centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) class DNNRegressorTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNRegressor( feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn regressor.fit(input_fn=input_fn, steps=200) scores = regressor.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores) def testRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(x=train_x, y=train_y, steps=200) scores = regressor.evaluate(x=train_x, y=train_y, steps=1) self.assertIn('loss', scores) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def _assertRegressionOutputs( self, predictions, expected_shape): predictions_nparray = np.array(predictions) self.assertAllEqual(expected_shape, predictions_nparray.shape) self.assertTrue(np.issubdtype(predictions_nparray.dtype, np.floating)) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self._assertRegressionOutputs(predicted_scores, [3]) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self._assertRegressionOutputs(predicted_scores, [3]) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics that use MetricSpec.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertIn('dnn/regression_head/centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertNotIn('centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = dnn.DNNRegressor(feature_columns=feature_columns, hidden_units=[3, 3]) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
apache-2.0
supertuxkart/stk-stats
userreport/views/usercount.py
2
1862
import logging from userreport.models import UserReport from django.http import HttpResponse from django.views.decorators.cache import cache_page from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.dates import DateFormatter import matplotlib.artist LOG = logging.getLogger(__name__) @cache_page(60 * 120) def report_user_count(request): reports = UserReport.objects.order_by('upload_date') users_by_date = {} for report in reports: t = report.upload_date.date() # group by day users_by_date.setdefault(t, set()).add(report.user_id_hash) seen_users = set() data_scatter = ([], [], []) for date, users in sorted(users_by_date.items()): data_scatter[0].append(date) data_scatter[1].append(len(users)) data_scatter[2].append(len(users - seen_users)) seen_users |= users fig = Figure(figsize=(12, 6)) ax = fig.add_subplot(111) fig.subplots_adjust(left=0.08, right=0.95, top=0.95, bottom=0.2) ax.plot(data_scatter[0], data_scatter[1], marker='o') ax.plot(data_scatter[0], data_scatter[2], marker='o') ax.legend(('Total users', 'New users'), 'upper left', frameon=False) matplotlib.artist.setp(ax.get_legend().get_texts(), fontsize='small') ax.set_ylabel('Number of users per day') for label in ax.get_xticklabels(): label.set_rotation(90) label.set_fontsize(9) ax.xaxis.set_major_formatter(DateFormatter('%d-%m-%Y')) canvas = FigureCanvas(fig) response = HttpResponse(content_type='image/png') try: canvas.print_png(response, dpi=80) except ValueError: LOG.warning('On displaying usercount data(possible empty stats)') return HttpResponse('<h1>Warning: No stats data available</h1>') return response
mit
shenzebang/scikit-learn
sklearn/setup.py
225
2856
import os from os.path import join import warnings def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration from numpy.distutils.system_info import get_info, BlasNotFoundError import numpy libraries = [] if os.name == 'posix': libraries.append('m') config = Configuration('sklearn', parent_package, top_path) config.add_subpackage('__check_build') config.add_subpackage('svm') config.add_subpackage('datasets') config.add_subpackage('datasets/tests') config.add_subpackage('feature_extraction') config.add_subpackage('feature_extraction/tests') config.add_subpackage('cluster') config.add_subpackage('cluster/tests') config.add_subpackage('covariance') config.add_subpackage('covariance/tests') config.add_subpackage('cross_decomposition') config.add_subpackage('decomposition') config.add_subpackage('decomposition/tests') config.add_subpackage("ensemble") config.add_subpackage("ensemble/tests") config.add_subpackage('feature_selection') config.add_subpackage('feature_selection/tests') config.add_subpackage('utils') config.add_subpackage('utils/tests') config.add_subpackage('externals') config.add_subpackage('mixture') config.add_subpackage('mixture/tests') config.add_subpackage('gaussian_process') config.add_subpackage('gaussian_process/tests') config.add_subpackage('neighbors') config.add_subpackage('neural_network') config.add_subpackage('preprocessing') config.add_subpackage('manifold') config.add_subpackage('metrics') config.add_subpackage('semi_supervised') config.add_subpackage("tree") config.add_subpackage("tree/tests") config.add_subpackage('metrics/tests') config.add_subpackage('metrics/cluster') config.add_subpackage('metrics/cluster/tests') # add cython extension module for isotonic regression config.add_extension( '_isotonic', sources=['_isotonic.c'], include_dirs=[numpy.get_include()], libraries=libraries, ) # some libs needs cblas, fortran-compiled BLAS will not be sufficient blas_info = get_info('blas_opt', 0) if (not blas_info) or ( ('NO_ATLAS_INFO', 1) in blas_info.get('define_macros', [])): config.add_library('cblas', sources=[join('src', 'cblas', '*.c')]) warnings.warn(BlasNotFoundError.__doc__) # the following packages depend on cblas, so they have to be build # after the above. config.add_subpackage('linear_model') config.add_subpackage('utils') # add the test directory config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
frank-tancf/scikit-learn
sklearn/cross_decomposition/pls_.py
34
30531
""" The :mod:`sklearn.pls` module implements Partial Least Squares (PLS). """ # Author: Edouard Duchesnay <[email protected]> # License: BSD 3 clause from distutils.version import LooseVersion from sklearn.utils.extmath import svd_flip from ..base import BaseEstimator, RegressorMixin, TransformerMixin from ..utils import check_array, check_consistent_length from ..externals import six import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import linalg from ..utils import arpack from ..utils.validation import check_is_fitted, FLOAT_DTYPES __all__ = ['PLSCanonical', 'PLSRegression', 'PLSSVD'] import scipy pinv2_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): # check_finite=False is an optimization available only in scipy >=0.12 pinv2_args = {'check_finite': False} def _nipals_twoblocks_inner_loop(X, Y, mode="A", max_iter=500, tol=1e-06, norm_y_weights=False): """Inner loop of the iterative NIPALS algorithm. Provides an alternative to the svd(X'Y); returns the first left and right singular vectors of X'Y. See PLS for the meaning of the parameters. It is similar to the Power method for determining the eigenvectors and eigenvalues of a X'Y. """ y_score = Y[:, [0]] x_weights_old = 0 ite = 1 X_pinv = Y_pinv = None eps = np.finfo(X.dtype).eps # Inner loop of the Wold algo. while True: # 1.1 Update u: the X weights if mode == "B": if X_pinv is None: # We use slower pinv2 (same as np.linalg.pinv) for stability # reasons X_pinv = linalg.pinv2(X, **pinv2_args) x_weights = np.dot(X_pinv, y_score) else: # mode A # Mode A regress each X column on y_score x_weights = np.dot(X.T, y_score) / np.dot(y_score.T, y_score) # 1.2 Normalize u x_weights /= np.sqrt(np.dot(x_weights.T, x_weights)) + eps # 1.3 Update x_score: the X latent scores x_score = np.dot(X, x_weights) # 2.1 Update y_weights if mode == "B": if Y_pinv is None: Y_pinv = linalg.pinv2(Y, **pinv2_args) # compute once pinv(Y) y_weights = np.dot(Y_pinv, x_score) else: # Mode A regress each Y column on x_score y_weights = np.dot(Y.T, x_score) / np.dot(x_score.T, x_score) # 2.2 Normalize y_weights if norm_y_weights: y_weights /= np.sqrt(np.dot(y_weights.T, y_weights)) + eps # 2.3 Update y_score: the Y latent scores y_score = np.dot(Y, y_weights) / (np.dot(y_weights.T, y_weights) + eps) # y_score = np.dot(Y, y_weights) / np.dot(y_score.T, y_score) ## BUG x_weights_diff = x_weights - x_weights_old if np.dot(x_weights_diff.T, x_weights_diff) < tol or Y.shape[1] == 1: break if ite == max_iter: warnings.warn('Maximum number of iterations reached') break x_weights_old = x_weights ite += 1 return x_weights, y_weights, ite def _svd_cross_product(X, Y): C = np.dot(X.T, Y) U, s, Vh = linalg.svd(C, full_matrices=False) u = U[:, [0]] v = Vh.T[:, [0]] return u, v def _center_scale_xy(X, Y, scale=True): """ Center X, Y and scale if the scale parameter==True Returns ------- X, Y, x_mean, y_mean, x_std, y_std """ # center x_mean = X.mean(axis=0) X -= x_mean y_mean = Y.mean(axis=0) Y -= y_mean # scale if scale: x_std = X.std(axis=0, ddof=1) x_std[x_std == 0.0] = 1.0 X /= x_std y_std = Y.std(axis=0, ddof=1) y_std[y_std == 0.0] = 1.0 Y /= y_std else: x_std = np.ones(X.shape[1]) y_std = np.ones(Y.shape[1]) return X, Y, x_mean, y_mean, x_std, y_std class _PLS(six.with_metaclass(ABCMeta), BaseEstimator, TransformerMixin, RegressorMixin): """Partial Least Squares (PLS) This class implements the generic PLS algorithm, constructors' parameters allow to obtain a specific implementation such as: - PLS2 regression, i.e., PLS 2 blocks, mode A, with asymmetric deflation and unnormalized y weights such as defined by [Tenenhaus 1998] p. 132. With univariate response it implements PLS1. - PLS canonical, i.e., PLS 2 blocks, mode A, with symmetric deflation and normalized y weights such as defined by [Tenenhaus 1998] (p. 132) and [Wegelin et al. 2000]. This parametrization implements the original Wold algorithm. We use the terminology defined by [Wegelin et al. 2000]. This implementation uses the PLS Wold 2 blocks algorithm based on two nested loops: (i) The outer loop iterate over components. (ii) The inner loop estimates the weights vectors. This can be done with two algo. (a) the inner loop of the original NIPALS algo. or (b) a SVD on residuals cross-covariance matrices. n_components : int, number of components to keep. (default 2). scale : boolean, scale data? (default True) deflation_mode : str, "canonical" or "regression". See notes. mode : "A" classical PLS and "B" CCA. See notes. norm_y_weights: boolean, normalize Y weights to one? (default False) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, the maximum number of iterations (default 500) of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 The tolerance used in the iterative algorithm. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effects. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm given is "svd". References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In French but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSRegression CCA PLS_SVD """ @abstractmethod def __init__(self, n_components=2, scale=True, deflation_mode="regression", mode="A", algorithm="nipals", norm_y_weights=False, max_iter=500, tol=1e-06, copy=True): self.n_components = n_components self.deflation_mode = deflation_mode self.mode = mode self.norm_y_weights = norm_y_weights self.scale = scale self.algorithm = algorithm self.max_iter = max_iter self.tol = tol self.copy = copy def fit(self, X, Y): """Fit model to data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples in the number of samples and n_features is the number of predictors. Y : array-like of response, shape = [n_samples, n_targets] Target vectors, where n_samples in the number of samples and n_targets is the number of response variables. """ # copy since this will contains the residuals (deflated) matrices check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) n = X.shape[0] p = X.shape[1] q = Y.shape[1] if self.n_components < 1 or self.n_components > p: raise ValueError('Invalid number of components: %d' % self.n_components) if self.algorithm not in ("svd", "nipals"): raise ValueError("Got algorithm %s when only 'svd' " "and 'nipals' are known" % self.algorithm) if self.algorithm == "svd" and self.mode == "B": raise ValueError('Incompatible configuration: mode B is not ' 'implemented with svd algorithm') if self.deflation_mode not in ["canonical", "regression"]: raise ValueError('The deflation mode is unknown') # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ = ( _center_scale_xy(X, Y, self.scale)) # Residuals (deflated) matrices Xk = X Yk = Y # Results matrices self.x_scores_ = np.zeros((n, self.n_components)) self.y_scores_ = np.zeros((n, self.n_components)) self.x_weights_ = np.zeros((p, self.n_components)) self.y_weights_ = np.zeros((q, self.n_components)) self.x_loadings_ = np.zeros((p, self.n_components)) self.y_loadings_ = np.zeros((q, self.n_components)) self.n_iter_ = [] # NIPALS algo: outer loop, over components for k in range(self.n_components): if np.all(np.dot(Yk.T, Yk) < np.finfo(np.double).eps): # Yk constant warnings.warn('Y residual constant at iteration %s' % k) break # 1) weights estimation (inner loop) # ----------------------------------- if self.algorithm == "nipals": x_weights, y_weights, n_iter_ = \ _nipals_twoblocks_inner_loop( X=Xk, Y=Yk, mode=self.mode, max_iter=self.max_iter, tol=self.tol, norm_y_weights=self.norm_y_weights) self.n_iter_.append(n_iter_) elif self.algorithm == "svd": x_weights, y_weights = _svd_cross_product(X=Xk, Y=Yk) # Forces sign stability of x_weights and y_weights # Sign undeterminacy issue from svd if algorithm == "svd" # and from platform dependent computation if algorithm == 'nipals' x_weights, y_weights = svd_flip(x_weights, y_weights.T) y_weights = y_weights.T # compute scores x_scores = np.dot(Xk, x_weights) if self.norm_y_weights: y_ss = 1 else: y_ss = np.dot(y_weights.T, y_weights) y_scores = np.dot(Yk, y_weights) / y_ss # test for null variance if np.dot(x_scores.T, x_scores) < np.finfo(np.double).eps: warnings.warn('X scores are null at iteration %s' % k) break # 2) Deflation (in place) # ---------------------- # Possible memory footprint reduction may done here: in order to # avoid the allocation of a data chunk for the rank-one # approximations matrix which is then subtracted to Xk, we suggest # to perform a column-wise deflation. # # - regress Xk's on x_score x_loadings = np.dot(Xk.T, x_scores) / np.dot(x_scores.T, x_scores) # - subtract rank-one approximations to obtain remainder matrix Xk -= np.dot(x_scores, x_loadings.T) if self.deflation_mode == "canonical": # - regress Yk's on y_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, y_scores) / np.dot(y_scores.T, y_scores)) Yk -= np.dot(y_scores, y_loadings.T) if self.deflation_mode == "regression": # - regress Yk's on x_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, x_scores) / np.dot(x_scores.T, x_scores)) Yk -= np.dot(x_scores, y_loadings.T) # 3) Store weights, scores and loadings # Notation: self.x_scores_[:, k] = x_scores.ravel() # T self.y_scores_[:, k] = y_scores.ravel() # U self.x_weights_[:, k] = x_weights.ravel() # W self.y_weights_[:, k] = y_weights.ravel() # C self.x_loadings_[:, k] = x_loadings.ravel() # P self.y_loadings_[:, k] = y_loadings.ravel() # Q # Such that: X = TP' + Err and Y = UQ' + Err # 4) rotations from input space to transformed space (scores) # T = X W(P'W)^-1 = XW* (W* : p x k matrix) # U = Y C(Q'C)^-1 = YC* (W* : q x k matrix) self.x_rotations_ = np.dot( self.x_weights_, linalg.pinv2(np.dot(self.x_loadings_.T, self.x_weights_), **pinv2_args)) if Y.shape[1] > 1: self.y_rotations_ = np.dot( self.y_weights_, linalg.pinv2(np.dot(self.y_loadings_.T, self.y_weights_), **pinv2_args)) else: self.y_rotations_ = np.ones(1) if True or self.deflation_mode == "regression": # FIXME what's with the if? # Estimate regression coefficient # Regress Y on T # Y = TQ' + Err, # Then express in function of X # Y = X W(P'W)^-1Q' + Err = XB + Err # => B = W*Q' (p x q) self.coef_ = np.dot(self.x_rotations_, self.y_loadings_.T) self.coef_ = (1. / self.x_std_.reshape((p, 1)) * self.coef_ * self.y_std_) return self def transform(self, X, Y=None, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy, dtype=FLOAT_DTYPES) # Normalize X -= self.x_mean_ X /= self.x_std_ # Apply rotation x_scores = np.dot(X, self.x_rotations_) if Y is not None: Y = check_array(Y, ensure_2d=False, copy=copy, dtype=FLOAT_DTYPES) if Y.ndim == 1: Y = Y.reshape(-1, 1) Y -= self.y_mean_ Y /= self.y_std_ y_scores = np.dot(Y, self.y_rotations_) return x_scores, y_scores return x_scores def predict(self, X, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Notes ----- This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy, dtype=FLOAT_DTYPES) # Normalize X -= self.x_mean_ X /= self.x_std_ Ypred = np.dot(X, self.coef_) return Ypred + self.y_mean_ def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ return self.fit(X, y, **fit_params).transform(X, y) class PLSRegression(_PLS): """PLS regression PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional response. This class inherits from _PLS with mode="A", deflation_mode="regression", norm_y_weights=False and algorithm="nipals". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2) Number of components to keep. scale : boolean, (default True) whether to scale the data max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real Tolerance used in the iterative algorithm default 1e-06. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- Matrices:: T: x_scores_ U: y_scores_ W: x_weights_ C: y_weights_ P: x_loadings_ Q: y_loadings__ Are computed such that:: X = T P.T + Err and Y = U Q.T + Err T[:, k] = Xk W[:, k] for k in range(n_components) U[:, k] = Yk C[:, k] for k in range(n_components) x_rotations_ = W (P.T W)^(-1) y_rotations_ = C (Q.T C)^(-1) where Xk and Yk are residual matrices at iteration k. `Slides explaining PLS <http://www.eigenvector.com/Docs/Wise_pls_properties.pdf>` For each component k, find weights u, v that optimizes: ``max corr(Xk u, Yk v) * std(Xk u) std(Yk u)``, such that ``|u| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS regression known as PLS2. This mode is prediction oriented. This implementation provides the same results that 3 PLS packages provided in the R language (R-project): - "mixOmics" with function pls(X, Y, mode = "regression") - "plspm " with function plsreg2(X, Y) - "pls" with function oscorespls.fit(X, Y) Examples -------- >>> from sklearn.cross_decomposition import PLSRegression >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> pls2 = PLSRegression(n_components=2) >>> pls2.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSRegression(copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> Y_pred = pls2.predict(X) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): super(PLSRegression, self).__init__( n_components=n_components, scale=scale, deflation_mode="regression", mode="A", norm_y_weights=False, max_iter=max_iter, tol=tol, copy=copy) class PLSCanonical(_PLS): """ PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204, referred as PLS-C2A in [Wegelin 2000]. This class inherits from PLS with mode="A" and deflation_mode="canonical", norm_y_weights=True and algorithm="nipals", but svd should provide similar results up to numerical errors. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- scale : boolean, scale data? (default True) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 the tolerance used in the iterative algorithm copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect n_components : int, number of components to keep. (default 2). Attributes ---------- x_weights_ : array, shape = [p, n_components] X block weights vectors. y_weights_ : array, shape = [q, n_components] Y block weights vectors. x_loadings_ : array, shape = [p, n_components] X block loadings vectors. y_loadings_ : array, shape = [q, n_components] Y block loadings vectors. x_scores_ : array, shape = [n_samples, n_components] X scores. y_scores_ : array, shape = [n_samples, n_components] Y scores. x_rotations_ : array, shape = [p, n_components] X block to latents rotations. y_rotations_ : array, shape = [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm provided is "svd". Notes ----- Matrices:: T: x_scores_ U: y_scores_ W: x_weights_ C: y_weights_ P: x_loadings_ Q: y_loadings__ Are computed such that:: X = T P.T + Err and Y = U Q.T + Err T[:, k] = Xk W[:, k] for k in range(n_components) U[:, k] = Yk C[:, k] for k in range(n_components) x_rotations_ = W (P.T W)^(-1) y_rotations_ = C (Q.T C)^(-1) where Xk and Yk are residual matrices at iteration k. `Slides explaining PLS <http://www.eigenvector.com/Docs/Wise_pls_properties.pdf>` For each component k, find weights u, v that optimize:: max corr(Xk u, Yk v) * std(Xk u) std(Yk u), such that ``|u| = |v| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling. This implementation provides the same results that the "plspm" package provided in the R language (R-project), using the function plsca(X, Y). Results are equal or collinear with the function ``pls(..., mode = "canonical")`` of the "mixOmics" package. The difference relies in the fact that mixOmics implementation does not exactly implement the Wold algorithm since it does not normalize y_weights to one. Examples -------- >>> from sklearn.cross_decomposition import PLSCanonical >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> plsca = PLSCanonical(n_components=2) >>> plsca.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> X_c, Y_c = plsca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- CCA PLSSVD """ def __init__(self, n_components=2, scale=True, algorithm="nipals", max_iter=500, tol=1e-06, copy=True): super(PLSCanonical, self).__init__( n_components=n_components, scale=scale, deflation_mode="canonical", mode="A", norm_y_weights=True, algorithm=algorithm, max_iter=max_iter, tol=tol, copy=copy) class PLSSVD(BaseEstimator, TransformerMixin): """Partial Least Square SVD Simply perform a svd on the crosscovariance matrix: X'Y There are no iterative deflation here. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, default 2 Number of components to keep. scale : boolean, default True Whether to scale X and Y. copy : boolean, default True Whether to copy X and Y, or perform in-place computations. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. See also -------- PLSCanonical CCA """ def __init__(self, n_components=2, scale=True, copy=True): self.n_components = n_components self.scale = scale self.copy = copy def fit(self, X, Y): # copy since this will contains the centered data check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) if self.n_components > max(Y.shape[1], X.shape[1]): raise ValueError("Invalid number of components n_components=%d" " with X of shape %s and Y of shape %s." % (self.n_components, str(X.shape), str(Y.shape))) # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ = ( _center_scale_xy(X, Y, self.scale)) # svd(X'Y) C = np.dot(X.T, Y) # The arpack svds solver only works if the number of extracted # components is smaller than rank(X) - 1. Hence, if we want to extract # all the components (C.shape[1]), we have to use another one. Else, # let's use arpacks to compute only the interesting components. if self.n_components >= np.min(C.shape): U, s, V = linalg.svd(C, full_matrices=False) else: U, s, V = arpack.svds(C, k=self.n_components) # Deterministic output U, V = svd_flip(U, V) V = V.T self.x_scores_ = np.dot(X, U) self.y_scores_ = np.dot(Y, V) self.x_weights_ = U self.y_weights_ = V return self def transform(self, X, Y=None): """Apply the dimension reduction learned on the train data.""" check_is_fitted(self, 'x_mean_') X = check_array(X, dtype=np.float64) Xr = (X - self.x_mean_) / self.x_std_ x_scores = np.dot(Xr, self.x_weights_) if Y is not None: if Y.ndim == 1: Y = Y.reshape(-1, 1) Yr = (Y - self.y_mean_) / self.y_std_ y_scores = np.dot(Yr, self.y_weights_) return x_scores, y_scores return x_scores def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ return self.fit(X, y, **fit_params).transform(X, y)
bsd-3-clause
crichardson17/starburst_atlas
Low_resolution_sims/Dusty_LowRes/Geneva_cont_Rot/Geneva_cont_Rot_6/fullgrid/UV2.py
31
9339
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith("1.grd"): gridfile1 = file for file in os.listdir('.'): if file.endswith("2.grd"): gridfile2 = file for file in os.listdir('.'): if file.endswith("3.grd"): gridfile3 = file # ------------------------ for file in os.listdir('.'): if file.endswith("1.txt"): Elines1 = file for file in os.listdir('.'): if file.endswith("2.txt"): Elines2 = file for file in os.listdir('.'): if file.endswith("3.txt"): Elines3 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine def add_sub_plot(sub_num): numplots = 16 plt.subplot(numplots/4.,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12,14,15,16]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8,9,10,11,12]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 13: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 16 : plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid1 = []; grid2 = []; grid3 = []; with open(gridfile1, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid1.append(row); grid1 = asarray(grid1) with open(gridfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid2.append(row); grid2 = asarray(grid2) with open(gridfile3, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid3.append(row); grid3 = asarray(grid3) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines1 = []; dataEmissionlines2 = []; dataEmissionlines3 = []; with open(Elines1, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines1.append(row); dataEmissionlines1 = asarray(dataEmissionlines1) with open(Elines2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers2 = csvReader.next() for row in csvReader: dataEmissionlines2.append(row); dataEmissionlines2 = asarray(dataEmissionlines2) with open(Elines3, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers3 = csvReader.next() for row in csvReader: dataEmissionlines3.append(row); dataEmissionlines3 = asarray(dataEmissionlines3) print "import files complete" # --------------------------------------------------- #for concatenating grid #pull the phi and hdens values from each of the runs. exclude header lines grid1new = zeros((len(grid1[:,0])-1,2)) grid1new[:,0] = grid1[1:,6] grid1new[:,1] = grid1[1:,7] grid2new = zeros((len(grid2[:,0])-1,2)) x = array(17.00000) grid2new[:,0] = repeat(x,len(grid2[:,0])-1) grid2new[:,1] = grid2[1:,6] grid3new = zeros((len(grid3[:,0])-1,2)) grid3new[:,0] = grid3[1:,6] grid3new[:,1] = grid3[1:,7] grid = concatenate((grid1new,grid2new,grid3new)) hdens_values = grid[:,1] phi_values = grid[:,0] # --------------------------------------------------- #for concatenating Emission lines data Emissionlines = concatenate((dataEmissionlines1[:,1:],dataEmissionlines2[:,1:],dataEmissionlines3[:,1:])) #for lines headers = headers[1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(concatenated_data[0]),4)) # --------------------------------------------------- #constructing grid by scaling #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = concatenated_data[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 # --------------------------------------------------- #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(concatenated_data),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] # --------------------------------------------------- #change desired lines here! line = [18, #1549 19, #1640 20, #1665 21, #1671 23, #1750 24, #1860 25, #1888 26, #1907 27, #2297 28, #2321 29, #2471 30, #2326 31, #2335 32, #2665 33, #2798 34] #2803 #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("Dusty UV Lines Continued", fontsize=14) # --------------------------------------------------- for i in range(16): add_sub_plot(i) ax1 = plt.subplot(4,4,1) add_patches(ax1) print "complete" plt.savefig('Dusty_UV_Lines_cntd.pdf') plt.clf() print "figure saved"
gpl-2.0
Ledoux/ShareYourSystem
Pythonlogy/draft/Simulaters/Brianer/draft/01_ExampleCell copy 4.py
2
2372
#ImportModules import ShareYourSystem as SYS from ShareYourSystem.Specials.Simulaters import Populater,Brianer #Definition MyBrianer=Brianer.BrianerClass( ).update( { #Set here the global net parameters 'StimulatingStepTimeFloat':0.1 } ).produce( ['E','I'], Populater.PopulaterClass, { #Here are defined the brian classic shared arguments between pops 'brian.NeuronGroupInspectDict':SYS.InspectDict().update( { 'LiargVariablesList':[ 0, ''' dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt dge/dt = -ge/(5*ms) : volt dgi/dt = -gi/(10*ms) : volt ''' ], 'KwargVariablesDict': { 'threshold':'v>-50*mV' 'reset':'v=-60*mV' } } ), #Here are the settig of future brian monitors 'push': { 'LiargVariablesList': [ [ Moniter.MoniterClass.update( { 'brian.SpikeMonitorInspectDict':SYS.InspectDict() } ) ], ], 'KwargVariablesDict':{'CollectingCollectionStr':'Monitome'} }, #Init conditions 'PopulatingInitDict': { 'v':-60. } }, **{'CollectingCollectionStr':'Populatome'} ).__setitem__( 'Dis_<Populatome>', #Here are defined the brian classic specific arguments for each pop [ { 'Exec_NeuronGroupInspectDict["LiargVariablesList"][0]':3200, 'ConnectingGraspClueVariablesList': [ SYS.GraspDictClass( { 'HintVariable':'/NodePointDeriveNoder/<Populatome>IPopulater', 'SynapseArgumentVariable': { 'pre':'ge+=1.62*mV' 'connect':{'p':0.02} } } ) ] }, { 'Exec_NeuronGroupInspectDict["LiargVariablesList"][0]':800, 'ConnectingGraspClueVariablesList': [ SYS.GraspDictClass( { 'HintVariable':'/NodePointDeriveNoder/<Populatome>EPopulater', 'SynapseArgumentVariable': { 'pre':'gi-=9*mV' 'connect':{'p':0.02} } } ) ] } ] ).brian() #Definition the AttestedStr SYS._attest( [ 'MyBrianer is '+SYS._str( MyBrianer, **{ 'RepresentingBaseKeyStrsList':False, 'RepresentingAlineaIsBool':False } ), ] ) #SYS._print(MyBrianer.BrianedMonitorsList[0].__dict__) #SYS._print( # MyBrianer.BrianedNeuronGroupsList[0].__dict__ #) #import matplotlib #plot(MyBrianer['<Connectome>FirstRater'].) #Print
mit
ecell/bioimaging
scopyon/analysis/hmm.py
1
18269
import numpy from hmmlearn.base import _BaseHMM from hmmlearn.hmm import _check_and_set_gaussian_n_features from hmmlearn import _utils class FullPTHMM(_BaseHMM): r"""Hidden Markov Model for Particle Tracking. Args: n_components (int): Number of states. min_var (float, optional): Floor on the variance to prevent overfitting. Defaults to 1e-5. startprob_prior (array, optional): shape (n_components, ). Parameters of the Dirichlet prior distribution for :attr:`startprob_`. transmat_prior (array, optional): shape (n_components, n_components). Parameters of the Dirichlet prior distribution for each row of the transition probabilities :attr:`transmat_`. algorithm (string, optional): Decoder algorithm. Must be one of "viterbi" or`"map". Defaults to "viterbi". random_state (RandomState or an int seed, optional): A random number generator instance. n_iter (int, optional): Maximum number of iterations to perform. tol (float, optional): Convergence threshold. EM will stop if the gain in log-likelihood is below this value. verbose (bool, optional): When ``True`` per-iteration convergence reports are printed to :data:`sys.stderr`. You can diagnose convergence via the :attr:`monitor_` attribute. params (string, optional): Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'd' for diffusivities, 'm' for intensity means and 'v' for intensity variances. Defaults to all parameters. init_params (string, optional): Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'd' for diffusivities, 'm' for intensity means and 'v' for intensity variances. Defaults to all parameters. Attributes: monitor\_ (ConvergenceMonitor): Monitor object used to check the convergence of EM. startprob\_ (array): shape (n_components, ). Initial state occupation distribution. transmat\_ (array): shape (n_components, n_components). Matrix of transition probabilities between states. diffusivities\_ (array): shape (n_components, 1). Diffusion constants for each state. intensity_means\_ (array): shape (n_components, 1). Mean parameters of intensity distribution for each state. intensity_vars\_ (array): shape (n_components, 1). Variance parameters of intensity distribution for each state. """ def __init__(self, n_components=1, min_var=1e-5, startprob_prior=1.0, transmat_prior=1.0, algorithm="viterbi", random_state=None, n_iter=10, tol=1e-2, verbose=False, params="stdmv", init_params="stdmv"): _BaseHMM.__init__(self, n_components, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, tol=tol, params=params, verbose=verbose, init_params=init_params) self.min_var = min_var def _check(self): super()._check() self.diffusivities_ = numpy.asarray(self.diffusivities_) assert self.diffusivities_.shape == (self.n_components, 1) self.intensity_means_ = numpy.asarray(self.intensity_means_) assert self.intensity_means_.shape == (self.n_components, 1) self.intensity_vars_ = numpy.asarray(self.intensity_vars_) assert self.intensity_vars_.shape == (self.n_components, 1) self.n_features = 1 def _generate_sample_from_state(self, state, random_state=None): D = self.diffusivities_[state] mean = self.intensity_means_[state] var = self.intensity_vars_[state] return numpy.hstack([ numpy.sqrt(numpy.power(random_state.normal(scale=numpy.sqrt(2 * D), size=2), 2).sum(keepdims=True)), random_state.normal(loc=mean, scale=numpy.sqrt(var), size=(1, )), ]) def _get_n_fit_scalars_per_param(self): nc = self.n_components nf = self.n_features return { "s": nc - 1, "t": nc * (nc - 1), "d": nc * nf, "m": nc * nf, "v": nc * nf, } def _init(self, X, lengths=None): _check_and_set_gaussian_n_features(self, X) super()._init(X, lengths=lengths) _, n_features = X.shape if hasattr(self, 'n_features') and self.n_features != n_features: raise ValueError('Unexpected number of dimensions, got %s but ' 'expected %s' % (n_features, self.n_features)) self.n_features = n_features if 'd' in self.init_params or not hasattr(self, "diffusivities_"): diffusivity_means = numpy.mean(X[:, [0]], axis=0) * 0.25 variations = numpy.arange(1, self.n_components + 1) variations = variations / variations.sum() self.diffusivities_ = diffusivity_means * variations[:, numpy.newaxis] if 'm' in self.init_params or not hasattr(self, "intensity_means_"): from sklearn import cluster kmeans = cluster.KMeans(n_clusters=self.n_components, random_state=self.random_state) kmeans.fit(X[:, [1]]) self.intensity_means_ = kmeans.cluster_centers_ if 'v' in self.init_params or not hasattr(self, "intensity_vars_"): var = numpy.var(X[:, [1]].T) + self.min_var self.intensity_vars_ = numpy.tile([var], (self.n_components, 1)) def _initialize_sufficient_statistics(self): stats = super()._initialize_sufficient_statistics() stats['post'] = numpy.zeros(self.n_components) stats['obs1**2'] = numpy.zeros((self.n_components, 1)) stats['obs2'] = numpy.zeros((self.n_components, 1)) stats['obs2**2'] = numpy.zeros((self.n_components, 1)) return stats def _compute_log_likelihood(self, X): D = self.diffusivities_ mean = self.intensity_means_ var = self.intensity_vars_ # print("D=", D) # print("mean=", mean) # print("var=", var) if not all(var > 0): raise ValueError(f'Variance must be positive [{var}]') q1 = numpy.log(X[:, [0]] / (2 * D[:, 0])) - (X[:, [0]] ** 2 / (4 * D[:, 0])) q2 = -0.5 * numpy.log(2 * numpy.pi * var[:, 0]) - (X[:, [1]] - mean[:, 0]) ** 2 / (2 * var[:, 0]) return q1 + q2 def _accumulate_sufficient_statistics(self, stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice): super()._accumulate_sufficient_statistics( stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice) if any(param in self.params for param in 'dmv'): stats['post'] += posteriors.sum(axis=0) if 'd' in self.params: stats['obs1**2'] += numpy.dot(posteriors.T, obs[:, [0]] ** 2) if 'm' in self.params: stats['obs2'] += numpy.dot(posteriors.T, obs[:, [1]]) if 'v' in self.params: stats['obs2**2'] += numpy.dot(posteriors.T, obs[:, [1]] ** 2) def _do_mstep(self, stats): super()._do_mstep(stats) denom = stats['post'][:, numpy.newaxis] if 'd' in self.params: self.diffusivities_ = 0.25 * stats['obs1**2'] / denom if 'm' in self.params: self.intensity_means_ = stats['obs2'] / denom if 'v' in self.params: self.intensity_vars_ = ( stats['obs2**2'] - 2 * self.intensity_means_ * stats['obs2'] + self.intensity_means_ ** 2 * denom) / denom class PTHMM(_BaseHMM): r"""Hidden Markov Model for Particle Tracking. Args: n_diffusivities (int): Number of diffusivity states. n_oligomers (int): Number of oligomeric states. n_components is equal to (n_diffusivities * n_oliogmers). min_var (float, optional): Floor on the variance to prevent overfitting. Defaults to 1e-5. startprob_prior (array, optional): shape (n_components, ). Parameters of the Dirichlet prior distribution for :attr:`startprob_`. transmat_prior (array, optional): shape (n_components, n_components). Parameters of the Dirichlet prior distribution for each row of the transition probabilities :attr:`transmat_`. algorithm (string, optional): Decoder algorithm. Must be one of "viterbi" or`"map". Defaults to "viterbi". random_state (RandomState or an int seed, optional): A random number generator instance. n_iter (int, optional): Maximum number of iterations to perform. tol (float, optional): Convergence threshold. EM will stop if the gain in log-likelihood is below this value. verbose (bool, optional): When ``True`` per-iteration convergence reports are printed to :data:`sys.stderr`. You can diagnose convergence via the :attr:`monitor_` attribute. params (string, optional): Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'd' for diffusivities, 'm' for intensity means and 'v' for intensity variances. Defaults to all parameters. init_params (string, optional): Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'd' for diffusivities, 'm' for intensity means and 'v' for intensity variances. Defaults to all parameters. Attributes: monitor\_ (ConvergenceMonitor): Monitor object used to check the convergence of EM. startprob\_ (array): shape (n_components, ). Initial state occupation distribution. transmat\_ (array): shape (n_components, n_components). Matrix of transition probabilities between states. diffusivities\_ (array): shape (n_diffusivities, 1). Diffusion constants for each state. intensity_means\_ (array): shape (1, 1). Base mean parameter of intensity distributions. intensity_vars\_ (array): shape (1, 1). Base Variance parameter of intensity distributions. """ def __init__(self, n_diffusivities=3, n_oligomers=4, min_var=1e-5, startprob_prior=1.0, transmat_prior=1.0, algorithm="viterbi", random_state=None, n_iter=10, tol=1e-2, verbose=False, params="stdmv", init_params="stdmv"): _BaseHMM.__init__(self, n_diffusivities * n_oligomers, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, tol=tol, params=params, verbose=verbose, init_params=init_params) self.min_var = min_var self.n_diffusivities = n_diffusivities self.n_oligomers = n_oligomers assert self.n_components == self.n_diffusivities * self.n_oligomers def _check(self): super()._check() self.diffusivities_ = numpy.asarray(self.diffusivities_) assert self.diffusivities_.shape == (self.n_diffusivities, 1) self.intensity_means_ = numpy.asarray(self.intensity_means_) assert self.intensity_means_.shape == (1, 1) self.intensity_vars_ = numpy.asarray(self.intensity_vars_) assert self.intensity_vars_.shape == (1, 1) self.n_features = 2 def _generate_sample_from_state(self, state, random_state=None): m = state // self.n_oligomers n = state % self.n_oligomers mean = self.intensity_means_[0] * (n + 1) var = self.intensity_vars_[0] * (n + 1) D = self.diffusivities_[m] return numpy.hstack([ numpy.sqrt(numpy.power(random_state.normal(scale=numpy.sqrt(2 * D), size=2), 2).sum(keepdims=True)), random_state.normal(loc=mean, scale=numpy.sqrt(var), size=(1, )), ]) def _get_n_fit_scalars_per_param(self): return { "s": self.n_components - 1, "t": self.n_components * (self.n_components - 1), "d": self.n_diffusivities, "m": 1, "v": 1, } def _init(self, X, lengths=None): _check_and_set_gaussian_n_features(self, X) super()._init(X, lengths=lengths) _, n_features = X.shape assert n_features == 2 if hasattr(self, 'n_features') and self.n_features != n_features: raise ValueError('Unexpected number of dimensions, got %s but ' 'expected %s' % (n_features, self.n_features)) self.n_features = n_features if 'd' in self.init_params or not hasattr(self, "diffusivities_"): diffusivity_means = numpy.mean(X[:, [0]], axis=0) * 0.25 variations = numpy.arange(1, self.n_diffusivities + 1) variations = variations / variations.sum() self.diffusivities_ = diffusivity_means * variations[:, numpy.newaxis] if 'm' in self.init_params or not hasattr(self, "intensity_means_"): # kmeans = cluster.KMeans(n_clusters=self.n_components, # random_state=self.random_state) # kmeans.fit(X[:, [1]]) # self.intensity_means_ = kmeans.cluster_centers_ self.intensity_means_ = numpy.array([[numpy.average(X[:, 1]) * 0.5]]) if 'v' in self.init_params or not hasattr(self, "intensity_vars_"): var = numpy.var(X[:, [1]].T) + self.min_var self.intensity_vars_ = numpy.array([[var]]) def _initialize_sufficient_statistics(self): stats = super()._initialize_sufficient_statistics() stats['post'] = numpy.zeros(self.n_components) stats['obs1**2'] = numpy.zeros((self.n_components, 1)) stats['obs2'] = numpy.zeros((self.n_components, 1)) stats['obs2**2'] = numpy.zeros((self.n_components, 1)) return stats def _compute_log_likelihood(self, X): # D = self.diffusivities_ D = numpy.repeat(self.diffusivities_, self.n_oligomers, axis=0) mean = self.intensity_means_[0, 0] mean *= numpy.tile(numpy.arange(1, self.n_oligomers + 1), (1, self.n_diffusivities)).T var = self.intensity_vars_[0, 0] var *= numpy.tile(numpy.arange(1, self.n_oligomers + 1), (1, self.n_diffusivities)).T if any(var <= 0.0): raise ValueError(f'Variance must be positive [{var}]') q1 = numpy.log(X[:, [0]] / (2 * D[:, 0])) - (X[:, [0]] ** 2 / (4 * D[:, 0])) q2 = -0.5 * numpy.log(2 * numpy.pi * var[:, 0]) - (X[:, [1]] - mean[:, 0]) ** 2 / (2 * var[:, 0]) # print("mean=", mean) # print("var=", var) # print("self.intensity_means_.shape=", self.intensity_means_.shape) # print("self.intensity_vars_.shape=", self.intensity_vars_.shape) # print("q1.shape=", q1.shape) # print("q2.shape=", q2.shape) return q1 + q2 def _accumulate_sufficient_statistics(self, stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice): super()._accumulate_sufficient_statistics( stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice) if any(param in self.params for param in 'dmv'): stats['post'] += posteriors.sum(axis=0) if 'd' in self.params: stats['obs1**2'] += numpy.dot(posteriors.T, obs[:, [0]] ** 2) if 'm' in self.params: stats['obs2'] += numpy.dot(posteriors.T, obs[:, [1]]) if 'v' in self.params: stats['obs2**2'] += numpy.dot(posteriors.T, obs[:, [1]] ** 2) # print("posteriors=", posteriors.shape) # print("obs=", obs.shape) # print("stats['post']=", stats['post'].shape) # print("stats['obs1**2']=", stats['obs1**2'].shape) # print("stats['obs2']=", stats['obs2'].shape) # print("stats['obs2**2']=", stats['obs2**2'].shape) # assert False def _do_mstep(self, stats): super()._do_mstep(stats) denom = stats['post'][:, numpy.newaxis] # print("denom=", denom.shape) # print("stats['post']=", stats['post'].shape) # print("stats['obs1**2']=", stats['obs1**2'].shape) # print("stats['obs2']=", stats['obs2'].shape) # print("stats['obs2**2']=", stats['obs2**2'].shape) # print("diffusivities_=", self.diffusivities_) # print("intensity_means_=", self.intensity_means_) # print("intensity_vars_=", self.intensity_vars_) if 'd' in self.params: k = numpy.repeat(numpy.identity(self.n_diffusivities), self.n_oligomers, axis=1) self.diffusivities_ = 0.25 * numpy.dot(k, stats['obs1**2']) / numpy.dot(k, denom) if 'm' in self.params: post = denom x = stats['obs2'] k = numpy.tile(numpy.arange(1, self.n_oligomers + 1), (1, self.n_diffusivities)) self.intensity_means_ = x.sum(axis=0) / numpy.dot(k, post) if 'v' in self.params: post = denom x = stats['obs2'] x2 = stats['obs2**2'] mu = self.intensity_means_ k = numpy.tile(numpy.arange(1, self.n_oligomers + 1), (1, self.n_diffusivities)) self.intensity_vars_ = (numpy.dot(1 / k, x2) - 2 * mu * x.sum(axis=0) + mu ** 2 * numpy.dot(k, post)) / post.sum(axis=0)
bsd-3-clause
jcchin/Hyperloop_v2
paper/images/trade_scripts/boundary_layer_length_plot.py
4
1027
import numpy as np import matplotlib.pyplot as plt L_pod = np.loadtxt('../data_files/boundary_layer_length_trades/L_pod.txt', delimiter = '\t') A_tube = np.loadtxt('../data_files/boundary_layer_length_trades/A_tube.txt', delimiter = '\t') fig = plt.figure(figsize = (3.25,3.5), tight_layout = True) ax = plt.axes() plt.setp(ax.get_xticklabels(), fontsize=8) plt.setp(ax.get_yticklabels(), fontsize=8) line1, = plt.plot(L_pod, A_tube[0,:], 'b-', linewidth = 2.0, label = 'A_pod = 2.0 $m^2$') line2, = plt.plot(L_pod, A_tube[1,:], 'r-', linewidth = 2.0, label = 'A_pod = 2.5 $m^2$') line3, = plt.plot(L_pod, A_tube[2,:], 'g-', linewidth = 2.0, label = 'A_pod = 3.0 $m^2$') plt.xlabel('Pod Length (m)', fontsize = 10, fontweight = 'bold') plt.ylabel('Tube Area ($m^2$)', fontsize = 10, fontweight = 'bold') plt.ylim([15,45]) plt.legend(handles = [line1, line2, line3], loc = 2, fontsize = 8) plt.grid('on') plt.savefig('../graphs/boundary_layer_length_trades/Tube_Area_vs_pod_length.png', format = 'png', dpi = 300) plt.show()
apache-2.0
theflofly/tensorflow
tensorflow/python/client/notebook.py
61
4779
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Notebook front-end to TensorFlow. When you run this binary, you'll see something like below, which indicates the serving URL of the notebook: The IPython Notebook is running at: http://127.0.0.1:8888/ Press "Shift+Enter" to execute a cell Press "Enter" on a cell to go into edit mode. Press "Escape" to go back into command mode and use arrow keys to navigate. Press "a" in command mode to insert cell above or "b" to insert cell below. Your root notebooks directory is FLAGS.notebook_dir """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import socket import sys from tensorflow.python.platform import app # pylint: disable=g-import-not-at-top # Official recommended way of turning on fast protocol buffers as of 10/21/14 os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "cpp" os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION_VERSION"] = "2" FLAGS = None ORIG_ARGV = sys.argv # Main notebook process calls itself with argv[1]="kernel" to start kernel # subprocesses. IS_KERNEL = len(sys.argv) > 1 and sys.argv[1] == "kernel" def main(unused_argv): sys.argv = ORIG_ARGV if not IS_KERNEL: # Drop all flags. sys.argv = [sys.argv[0]] # NOTE(sadovsky): For some reason, putting this import at the top level # breaks inline plotting. It's probably a bug in the stone-age version of # matplotlib. from IPython.html.notebookapp import NotebookApp # pylint: disable=g-import-not-at-top notebookapp = NotebookApp.instance() notebookapp.open_browser = True # password functionality adopted from quality/ranklab/main/tools/notebook.py # add options to run with "password" if FLAGS.password: from IPython.lib import passwd # pylint: disable=g-import-not-at-top notebookapp.ip = "0.0.0.0" notebookapp.password = passwd(FLAGS.password) else: print("\nNo password specified; Notebook server will only be available" " on the local machine.\n") notebookapp.initialize(argv=["--notebook-dir", FLAGS.notebook_dir]) if notebookapp.ip == "0.0.0.0": proto = "https" if notebookapp.certfile else "http" url = "%s://%s:%d%s" % (proto, socket.gethostname(), notebookapp.port, notebookapp.base_project_url) print("\nNotebook server will be publicly available at: %s\n" % url) notebookapp.start() return # Drop the --flagfile flag so that notebook doesn't complain about an # "unrecognized alias" when parsing sys.argv. sys.argv = ([sys.argv[0]] + [z for z in sys.argv[1:] if not z.startswith("--flagfile")]) from IPython.kernel.zmq.kernelapp import IPKernelApp # pylint: disable=g-import-not-at-top kernelapp = IPKernelApp.instance() kernelapp.initialize() # Enable inline plotting. Equivalent to running "%matplotlib inline". ipshell = kernelapp.shell ipshell.enable_matplotlib("inline") kernelapp.start() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--password", type=str, default=None, help="""\ Password to require. If set, the server will allow public access. Only used if notebook config file does not exist.\ """) parser.add_argument( "--notebook_dir", type=str, default="experimental/brain/notebooks", help="root location where to store notebooks") # When the user starts the main notebook process, we don't touch sys.argv. # When the main process launches kernel subprocesses, it writes all flags # to a tmpfile and sets --flagfile to that tmpfile, so for kernel # subprocesses here we drop all flags *except* --flagfile, then call # app.run(), and then (in main) restore all flags before starting the # kernel app. if IS_KERNEL: # Drop everything except --flagfile. sys.argv = ( [sys.argv[0]] + [x for x in sys.argv[1:] if x.startswith("--flagfile")]) FLAGS, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
radajin/naver_news
web/recommend.py
1
6032
from flask import Flask, render_template, jsonify, session, request import pickle, operator, itertools import numpy as np import scipy as sp from scipy import spatial import pandas as pd app = Flask(__name__) def load_datas(date="2016-06-01"): # load article df file = open("../data/article_" + date + ".plk", 'rb') article_df = pickle.load(file) article_df = article_df[np.invert(article_df.duplicated(subset="newsid"))] # remove duplication article_df = article_df[article_df["comment"] > 500] file.close() # load commend df file = open("../data/comment_" + date + ".plk", 'rb') comment_df = pickle.load(file) comment_df = comment_df[(comment_df["good"] > 0) & (comment_df["bad"] > 0)].reset_index(drop=True) # remove good:0, bad:0 comment_df = comment_df[comment_df["userIdNo"].str.len() < 10] # remove userIdNo > 10 comment_df["aid"] = comment_df["aid"].apply(lambda aid: int(aid)) # change aid data type to int file.close() return article_df, comment_df def analytics_comments(comments): category_dict = {"0":0,"1":0,"2":0,"3":0,"4":0,"5":0} classification_model = pickle.load(open("./models/classification_model.plk", "rb")) category_list = [] for comment in comments: category = str(classification_model.predict([comment])[0]) category_list.append(category) category_dict[str(category)] += 1 max_category = max(category_dict.items(), key=operator.itemgetter(1))[0] return category_dict, max_category, category_list def category_recommend(category): article_df, comment_df = load_datas() return article_df[article_df["category"] == int(category)].sort_values(by="comment", ascending=False) def recommend(userId): def remove_duplicate(list1, list2): for idx in list2: list1 = [x for x in list1 if x != idx] return list1 # load model & aritcle, comment dataframe recommend_model = pickle.load(open("./models/recommend_model.plk", "rb")) article_df, comment_df = load_datas() # set data from model unique_user = recommend_model['unique_user'] article_list = recommend_model['article_list'] datas = recommend_model['datas'] predict = recommend_model['predict'] # find user index idx = list(unique_user).index(userId) # set recommend article & recommend predict point recomend_article = article_list[datas[idx, :] == 0] recomend_predict = predict[idx, :][datas[idx, :] == 0] recomend_article = recomend_article[recomend_predict > 0] recomend_predict = recomend_predict[recomend_predict > 0] # set return datas recommend_article_list = [] comments = list(comment_df[comment_df["userIdNo"] == userId]["contents"]) category_dict, max_category, category_list = analytics_comments(comments) # article list aritcle_list = list(category_recommend(max_category)["newsid"]) # comment list tmp_df = comment_df[comment_df["userIdNo"] == userId] comment_list = list(set(tmp_df["aid"])) # remove duplication aritcle_list = remove_duplicate(aritcle_list, comment_list)[:5] if len(recomend_article) != 0: # recommend article sorting result_list = [] for i in range(len(recomend_article)): result_list.append((recomend_article[i], recomend_predict[i])) sorted_recommend_article = sorted(result_list, key=lambda tup: tup[1]) recommend_aritcle_list, dist_list = zip(*sorted_recommend_article) recommend_aritcle_list = recommend_aritcle_list[::-1] # remove duplicate aritcle_list = remove_duplicate(aritcle_list, recommend_aritcle_list) # concat recommend_article + category_recommend_article aritcle_list = list(recommend_aritcle_list) + list(article_list) aritcle_list = aritcle_list[:5] else: print("No Recomend") # set result recomend article list for aritcle in aritcle_list: article = article_df[article_df["newsid"] == int(aritcle)] recommend_dict = { 'newspaper': article['newspaper'].values[0], 'title': article['title'].values[0], 'link': article['link'].values[0], 'content': article['content'].values[0], } recommend_article_list.append(recommend_dict) return recommend_article_list, comments, category_dict, max_category, category_list def userList(): recommend_model = pickle.load(open("./models/recommend_model.plk", "rb")) # set data from model return list(recommend_model['unique_user']) # userList = ['28qA1', '7G80r', '85fbU', '3EQjn', 'Iqis', 'jE62', '5UM3g', '6j7iu', '3Bpiw', '6ij6t'] # return userList def mae_mean(): def mae(data, predict): delta = data[data > 0] - predict[data > 0] return np.absolute(delta).sum()/len(delta) recommend_model = pickle.load(open("./models/recommend_model.plk", "rb")) # set data from model datas = recommend_model['datas'] predict = recommend_model['predict'] unique_user = recommend_model['unique_user'] article_list = recommend_model['article_list'] mae_list = [] for idx in range(len(datas)): result_mae = mae(datas[idx,:], predict[idx,:]) mae_list.append(result_mae) return np.array(mae_list).mean(), len(unique_user), len(article_list) # HTML webpage @app.route('/') def user(): return render_template('index.html') # retruns a piece of data in JSON format @app.route('/api/<command>', methods=['GET', 'POST']) def api(command): result = {} # recommend if command == "recommend": userId = request.args.get('userId', '') recommend_article_list, comments, category_dict, max_category, category_list = recommend(userId) result = { 'recommend_article_list': recommend_article_list, 'comments':comments, 'category_dict':category_dict, 'max_category':max_category, 'category_list':category_list, 'status_code': 200, } elif command == "userList": result = { 'user': userList(), 'status_code': 200, } elif command == "evaluation": mae, user_num, article_num = mae_mean() result = { 'mae_mean' : mae, 'article': article_num, 'user': user_num, 'status_code': 200, } return jsonify(result) if __name__ == '__main__': app.run(host='127.0.0.1', port=80, debug=True)
mit
petroniocandido/pyFTS
pyFTS/tests/transformations.py
1
5449
#!/usr/bin/python # -*- coding: utf8 -*- import os import numpy as np import matplotlib.pylab as plt import pandas as pd from pyFTS.common import Util as cUtil, FuzzySet from pyFTS.partitioners import Grid, Entropy, Util as pUtil, Simple from pyFTS.benchmarks import benchmarks as bchmk, Measures from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei, ifts from pyFTS.models.ensemble import ensemble from pyFTS.common import Membership, Util from pyFTS.benchmarks import arima, quantreg, BSTS, gaussianproc, knn from pyFTS.common import Transformations tdiff = Transformations.Differential(1) boxcox = Transformations.BoxCox(0) from pyFTS.data import Enrollments, AirPassengers ''' data = AirPassengers.get_data() roi = Transformations.ROI() #plt.plot(data) _roi = roi.apply(data) #plt.plot(_roi) plt.plot(roi.inverse(_roi, data)) ''' ''' data = AirPassengers.get_dataframe() data['Month'] = pd.to_datetime(data['Month'], format='%Y-%m') trend = Transformations.LinearTrend(data_field='Passengers', index_field='Month', index_type='datetime', datetime_mask='%Y-%d') trend.train(data) plt.plot(data['Passengers'].values) plt.plot(trend.trend(data)) detrend = trend.apply(data) plt.plot(trend.inverse(detrend, data, date_offset=pd.DateOffset(months=1))) ''' ''' data = Enrollments.get_dataframe() trend = Transformations.LinearTrend(data_field='Enrollments', index_field='Year') trend.train(data) plt.plot(data['Enrollments'].values) plt.plot(trend.trend(data)) #) detrend = trend.apply(data) plt.plot(trend.inverse(detrend, data)) ''' #dataset = pd.read_csv('https://query.data.world/s/nxst4hzhjrqld4bxhbpn6twmjbwqk7') #dataset['data'] = pd.to_datetime([str(y)+'-'+str(m) for y,m in zip(dataset['Ano'].values, dataset['Mes'].values)], # format='%Y-%m') roi = Transformations.ROI() ''' train = dataset['Total'].values[:30] test = dataset['Total'].values[30:] fs = Grid.GridPartitioner(data=train, npart=5, transformation=roi) from pyFTS.models import hofts, pwfts model = pwfts.ProbabilisticWeightedFTS(partitioner=fs, order=2) #model = hofts.WeightedHighOrderFTS(partitioner=fs, order=1) model.append_transformation(roi) model.fit(train) fig, ax = plt.subplots(nrows=1, ncols=1, figsize=[10,5]) ax.plot(test) ''' ''' train = dataset.iloc[:30] test = dataset.iloc[30:] from pyFTS.models.multivariate import common, variable, mvfts, wmvfts, granular from pyFTS.partitioners import Grid, Entropy from pyFTS.models.seasonal.common import DateTime from pyFTS.models.seasonal import partitioner as seasonal sp = {'seasonality': DateTime.month , 'names': ['Jan','Fev','Mar','Abr','Mai','Jun','Jul', 'Ago','Set','Out','Nov','Dez']} vmonth = variable.Variable("Month", data_label="data", partitioner=seasonal.TimeGridPartitioner, npart=12, data=train, partitioner_specific=sp) vtur = variable.Variable("Turistas", data_label="Total", alias='tur', partitioner=Grid.GridPartitioner, npart=20, transformation=roi, data=train) #model = wmvfts.WeightedMVFTS(explanatory_variables=[vmonth, vtur], target_variable=vtur) model = granular.GranularWMVFTS(explanatory_variables=[vmonth, vtur], target_variable=vtur, order=2, knn=1) model.fit(train) fig, ax = plt.subplots(nrows=1, ncols=1, figsize=[10,5]) ax.plot(test['Total'].values) forecast = model.predict(test) for k in np.arange(model.order): forecast.insert(0,None) ax.plot(forecast) plt.show() print(dataset) ''' eto = pd.read_csv('https://raw.githubusercontent.com/PatriciaLucas/Evapotranspiracao/master/ETo_setelagoas.csv', sep=',') eto['Data'] = pd.to_datetime(eto["Data"], format='%Y-%m-%d') from pyFTS.models.multivariate import common, variable, mvfts, wmvfts, granular from pyFTS.models import hofts, pwfts from pyFTS.partitioners import Grid, Entropy from pyFTS.common import Membership from pyFTS.models.seasonal.common import DateTime from pyFTS.models.seasonal import partitioner as seasonal from pyFTS.benchmarks import Measures from pyFTS.benchmarks import arima, quantreg, knn, benchmarks as bchmk variables = { "Month": dict(data_label="Data", partitioner=seasonal.TimeGridPartitioner, npart=6), "Eto": dict(data_label="Eto", alias='eto', partitioner=Grid.GridPartitioner, npart=50) } methods = [mvfts.MVFTS, wmvfts.WeightedMVFTS, granular.GranularWMVFTS] time_generator = lambda x : pd.to_datetime(x) + pd.to_timedelta(1, unit='d') parameters = [ {},{}, dict(fts_method=pwfts.ProbabilisticWeightedFTS, fuzzyfy_mode='both', order=1, knn=3) ] bchmk.multivariate_sliding_window_benchmarks2(eto, 2000, train=0.8, inc=0.2, methods=methods, methods_parameters=parameters, variables=variables, target_variable='Eto', type='point', steps_ahead=[7], file="hyperparam.db", dataset='Eto', tag="experiments", generators= {'Data': time_generator} )
gpl-3.0
Cophy08/ggplot
tests.py
13
1099
#!/usr/bin/env python # # This allows running the ggplot tests from the command line: e.g. # # $ python tests.py -v -d # # The arguments are identical to the arguments accepted by nosetests. # # See https://nose.readthedocs.org/ for a detailed description of # these options. import os import time import matplotlib matplotlib.use('agg') import nose from matplotlib.testing.noseclasses import KnownFailure from matplotlib import font_manager # Make sure the font caches are created before starting any possibly # parallel tests if font_manager._fmcache is not None: while not os.path.exists(font_manager._fmcache): time.sleep(0.5) plugins = [KnownFailure] # Nose doesn't automatically instantiate all of the plugins in the # child processes, so we have to provide the multiprocess plugin with # a list. from nose.plugins import multiprocess multiprocess._instantiate_plugins = plugins from ggplot.tests import default_test_modules def run(): nose.main(addplugins=[x() for x in plugins], defaultTest=default_test_modules) if __name__ == '__main__': run()
bsd-2-clause
weissercn/MLTools
Dalitz_simplified/optimisation/dt/classifier_eval_wrapper.py
1
1299
import numpy as np import math import sys sys.path.insert(0,'../..') import os import classifier_eval_simplified from sklearn import tree # Write a function like this called 'main' def main(job_id, params): print 'Anything printed here will end up in the output directory for job #%d' % job_id print params comp_file_list=[(os.environ['MLToolsDir']+"/Dalitz/dpmodel/data/data_optimisation.0.0.txt",os.environ['MLToolsDir']+"/Dalitz/dpmodel/data/data_optimisation.200.1.txt")] #comp_file_list=[(os.environ['MLToolsDir']+"/Dalitz/gaussian_samples/higher_dimensional_gauss/gauss_data/data_high4Dgauss_optimisation_10000_0.5_0.1_0.0_1.txt",os.environ['MLToolsDir']+"/Dalitz/gaussian_samples/higher_dimensional_gauss/gauss_data/data_high4Dgauss_optimisation_10000_0.5_0.1_0.01_1.txt")] clf = tree.DecisionTreeClassifier('gini','best',params['max_depth'], params['min_samples_split'], 1, 0.0, None) args=["dalitz","particle","antiparticle",100,comp_file_list,2,clf,np.logspace(-2, 10, 13),np.logspace(-9, 3, 13)] result= classifier_eval_simplified.classifier_eval(2,0,args) with open("dt_optimisation_values.txt", "a") as myfile: myfile.write(str(params['max_depth'][0])+"\t"+ str(params['min_samples_split'][0])+"\t"+str(result)+"\n") return result
mit
RomainBrault/scikit-learn
sklearn/tests/test_cross_validation.py
79
47914
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from scipy import stats from sklearn.exceptions import ConvergenceWarning from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame with warnings.catch_warnings(): warnings.simplefilter('ignore') from sklearn import cross_validation as cval from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.datasets import make_multilabel_classification from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) # avoid StratifiedKFold's Warning about least populated class in y y = np.arange(10) % 3 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 3] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Check that errors are raised if all n_labels for individual # classes are less than n_folds. y = [3, 3, -1, -1, 2] assert_raises(ValueError, cval.StratifiedKFold, y, 3) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) error_string = ("k-fold cross validation requires at least one" " train / test split") assert_raise_message(ValueError, error_string, cval.StratifiedKFold, y, 0) assert_raise_message(ValueError, error_string, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: assert_true(np.any(np.arange(100) != ind[test])) assert_true(np.any(np.arange(100, 200) != ind[test])) assert_true(np.any(np.arange(200, 300) != ind[test])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_label_kfold(): rng = np.random.RandomState(0) # Parameters of the test n_labels = 15 n_samples = 1000 n_folds = 5 # Construct the test data tolerance = 0.05 * n_samples # 5 percent error allowed labels = rng.randint(0, n_labels, n_samples) folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split labels = np.asarray(labels, dtype=object) for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Construct the test data labels = ['Albert', 'Jean', 'Bertrand', 'Michel', 'Jean', 'Francis', 'Robert', 'Michel', 'Rachel', 'Lois', 'Michelle', 'Bernard', 'Marion', 'Laura', 'Jean', 'Rachel', 'Franck', 'John', 'Gael', 'Anna', 'Alix', 'Robert', 'Marion', 'David', 'Tony', 'Abel', 'Becky', 'Madmood', 'Cary', 'Mary', 'Alexandre', 'David', 'Francis', 'Barack', 'Abdoul', 'Rasha', 'Xi', 'Silvia'] labels = np.asarray(labels, dtype=object) n_labels = len(np.unique(labels)) n_samples = len(labels) n_folds = 5 tolerance = 0.05 * n_samples # 5 percent error allowed folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Should fail if there are more folds than labels labels = np.array([1, 1, 1, 2, 2]) assert_raises(ValueError, cval.LabelKFold, labels, n_folds=3) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2] * 2), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) test_size = np.ceil(0.33 * len(y)) train_size = len(y) - test_size for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(len(train) + len(test), y.size) assert_equal(len(train), train_size) assert_equal(len(test), test_size) assert_array_equal(np.lib.arraysetops.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_stratified_shuffle_split_overlap_train_test_bug(): # See https://github.com/scikit-learn/scikit-learn/issues/6121 for # the original bug report labels = [0, 1, 2, 3] * 3 + [4, 5] * 5 splits = cval.StratifiedShuffleSplit(labels, n_iter=1, test_size=0.5, random_state=0) train, test = next(iter(splits)) assert_array_equal(np.intersect1d(train, test), []) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = cval.PredefinedSplit(folds) for train_ind, test_ind in ps: ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_label_shuffle_split(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), ] for y in ys: n_iter = 6 test_size = 1. / 3 slo = cval.LabelShuffleSplit(y, n_iter, test_size=test_size, random_state=0) # Make sure the repr works repr(slo) # Test that the length is correct assert_equal(len(slo), n_iter) y_unique = np.unique(y) for train, test in slo: # First test: no train label is in the test set and vice versa y_train_unique = np.unique(y[train]) y_test_unique = np.unique(y[test]) assert_false(np.any(np.in1d(y[train], y_test_unique))) assert_false(np.any(np.in1d(y[test], y_train_unique))) # Second test: train and test add up to all the data assert_equal(y[train].size + y[test].size, y.size) # Third test: train and test are disjoint assert_array_equal(np.intersect1d(train, test), []) # Fourth test: # unique train and test labels are correct, # +- 1 for rounding error assert_true(abs(len(y_test_unique) - round(test_size * len(y_unique))) <= 1) assert_true(abs(len(y_train_unique) - round((1.0 - test_size) * len(y_unique))) <= 1) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling __iter__ labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_indices = cval.KFold(len(y), 5) cv_masks = [] for train, test in cv_indices: mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) with warnings.catch_warnings(record=True): split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = cval.train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative neg_mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="neg_mean_squared_error") expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ps = cval.PredefinedSplit([1, 1, 2, 2]) ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ss = cval.ShuffleSplit(2) ps = cval.PredefinedSplit([1, 1, 2, 2]) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval.check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval.check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval.check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]] cv = cval.check_cv(3, X, y_multilabel, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval.check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y with ignore_warnings(category=ConvergenceWarning): predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y with ignore_warnings(category=ConvergenceWarning): predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100)) def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cval.cross_val_predict(classif, X, y, cv=10) preds_sparse = cval.cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds)
bsd-3-clause
agarciamontoro/TFG
Software/Raytracer/raytracer.py
1
14968
from .universe import universe from .Utils.logging_utils import LoggingClass import os import numpy as np from numpy import pi as Pi from matplotlib import pyplot as plt from matplotlib.patches import Circle import mpl_toolkits.mplot3d.art3d as art3d from pycuda import driver, compiler, gpuarray import jinja2 # When importing this module we are initializing the device. # Now, we can call the device and send information using # the apropiate tools in the pycuda module. import pycuda.autoinit __logmodule__ = True # Set directories for correct handling of paths selfDir = os.path.dirname(os.path.abspath(__file__)) softwareDir = os.path.abspath(os.path.join(selfDir, os.pardir)) def spher2cart(points): # Retrieve the actual data r = points[:, 0] theta = points[:, 1] phi = points[:, 2] cosT = np.cos(theta) sinT = np.sin(theta) cosP = np.cos(phi) sinP = np.sin(phi) x = r * sinT * cosP y = r * sinT * sinP z = r * cosT return x, y, z SPHERE = 0 DISK = 1 HORIZON = 2 STRAIGHT = 3 class RayTracer(metaclass=LoggingClass): """Relativistic spacetime ray tracer. This class generates images of what an observer would see near a rotating black hole. This is an abstraction layer over the CUDA kernel that integrates the ODE system specified in equations (A.15) of Thorne's paper. It integrates, backwards in time, a set of rays near a Kerr black hole, computing its trajectories from the focal point of a camera located near the black hole. The RayTracer class hides all the black magic behind the CUDA code, giving a nice and simple interface to the user that just wants some really cool, and scientifically accurate, images. Given a scene composed by a camera, a Kerr metric and a black hole, the RayTracer just expects a time :math:`x_{end}` to solve the system. Example: Define the characteristics of the black hole and build it:: spin = 0.9999999999 innerDiskRadius = 9 outerDiskRadius = 20 blackHole = BlackHole(spin, innerDiskRadius, outerDiskRadius) Define the specifications of the camera and build it:: camR = 30 camTheta = 1.511 camPhi = 0 camFocalLength = 3 camSensorShape = (1000, 1000) # (Rows, Columns) camSensorSize = (2, 2) # (Height, Width) camera = Camera(camR, camTheta, camPhi, camFocalLength, camSensorShape, camSensorSize) Create a Kerr metric with the previous two objects:: kerr = KerrMetric(camera, blackHole) Set the speed of the camera once the Kerr metric and the black hole are created: it needs some info from both of these objects:: camera.setSpeed(kerr, blackHole) Finally, build the raytracer with the camera, the metric and the black hole...:: rayTracer = RayTracer(camera, kerr, blackHole) ...and generate the image!:: rayTracer.rayTrace(-90) rayTracer.synchronise() rayTracer.plotImage() """ def __init__(self, camera, debug=False): self.debug = debug self.systemSize = 5 # Set up the necessary objects self.camera = camera # Get the number of rows and columns of the final image self.imageRows = self.camera.sensorShape[0] self.imageCols = self.camera.sensorShape[1] self.numPixels = self.imageRows * self.imageCols # Compute the block and grid sizes: given a fixed block dimension of 64 # threads (in an 8x8 shape), the number of blocks are computed to get # at least as much threads as pixels # Fixed size block dimension: 8x8x1 self.blockDimCols = 8 self.blockDimRows = 8 self.blockDim = (self.blockDimCols, self.blockDimRows, 1) # Grid dimension computed to cover all the pixels with a thread (there # will be some idle threads) self.gridDimCols = int(((self.imageCols - 1) / self.blockDimCols) + 1) self.gridDimRows = int(((self.imageRows - 1) / self.blockDimRows) + 1) self.gridDim = (self.gridDimCols, self.gridDimRows, 1) print(self.blockDim, self.gridDim) # Render the kernel self._kernelRendering() # Compute the initial conditions self._setUpInitCond() # Create two timers to measure the time self.start = driver.Event() self.end = driver.Event() # Initialise a variatble to store the total time of computation between # all calls self.totalTime = 0. def _kernelRendering(self): # We must construct a FileSystemLoader object to load templates off # the filesystem templateLoader = jinja2.FileSystemLoader(searchpath=selfDir) # An environment provides the data necessary to read and # parse our templates. We pass in the loader object here. templateEnv = jinja2.Environment(loader=templateLoader) # Read the template file using the environment object. # This also constructs our Template object. templatePath = os.path.join('Kernel', 'common.jj') template = templateEnv.get_template(templatePath) codeType = "double" # Specify any input variables to the template as a dictionary. templateVars = { "IMG_ROWS": self.imageRows, "IMG_COLS": self.imageCols, "NUM_PIXELS": self.imageRows*self.imageCols, # Camera constants "D": self.camera.focalLength, "CAM_R": self.camera.r, "CAM_THETA": self.camera.theta, "CAM_PHI": self.camera.phi, "CAM_BETA": self.camera.speed, # Black hole constants "SPIN": universe.spin, "SPIN2": universe.spinSquared, "B1": universe.b1, "B2": universe.b2, "HORIZON_RADIUS": universe.horizonRadius, "INNER_DISK_RADIUS": universe.accretionDisk.innerRadius, "OUTER_DISK_RADIUS": universe.accretionDisk.outerRadius, # Kerr metric constants "RO": self.camera.metric.ro, "DELTA": self.camera.metric.delta, "POMEGA": self.camera.metric.pomega, "ALPHA": self.camera.metric.alpha, "OMEGA": self.camera.metric.omega, # Camera rotation angles "PITCH": np.float64(self.camera.pitch), "ROLL": np.float64(self.camera.roll), "YAW": np.float64(self.camera.yaw), # RK45 solver constants "R_TOL_I": 1e-6, "A_TOL_I": 1e-12, "SAFE": 0.9, "SAFE_INV": 1/0.9, "FAC_1": 0.2, "FAC_1_INV": 1 / 0.2, "FAC_2": 10.0, "FAC_2_INV": 1 / 10.0, "BETA": 0.04, "UROUND": 2.3e-16, "MIN_RESOL": -0.1, "MAX_RESOL": -2.0, # Constants for the alternative version of the solver "SOLVER_DELTA": 0.03125, "SOLVER_EPSILON": 1e-6, # Convention for ray status "SPHERE": SPHERE, # A ray that has not yet collide with anything. "DISK": DISK, # A ray that has collided with the disk. "HORIZON": HORIZON, # A ray that has collided with the black hole. # Data type "REAL": codeType, # Number of equations "SYSTEM_SIZE": self.systemSize, "DATA_SIZE": 2, # Debug switch "DEBUG": "#define DEBUG" if self.debug else "" } # Finally, process the template to produce our final text. kernel = template.render(templateVars) # Store it in the file that will be included by all the other compiled # files filePath = os.path.join(selfDir, 'Kernel', 'common.cu') with open(filePath, 'w') as outputFile: outputFile.write(kernel) # ======================= KERNEL COMPILATION ======================= # # Compile the kernel code using pycuda.compiler kernelFile = os.path.join(selfDir, "Kernel", "raytracer.cu") mod = compiler.SourceModule(open(kernelFile, "r").read(), include_dirs=[selfDir, softwareDir]) # Get the initial kernel function from the compiled module self._setInitialConditions = mod.get_function("setInitialConditions") # Get the solver function from the compiled module self._solve = mod.get_function("kernel") # Get the image generation function from the compiled module self.generateImage = mod.get_function("generate_image") # # Get the collision detection function from the compiled module # self._detectCollisions = mod.get_function("detectCollisions") def _setUpInitCond(self): # Array to compute the ray's initial conditions self.systemState = np.empty((self.imageRows, self.imageCols, self.systemSize)) # Array to compute the ray's constants self.constants = np.empty((self.imageRows, self.imageCols, 2)) # Array to store the rays status: # 0: A ray that has not yet collide with anything. # 1: A ray that has collided with the horizon. # 2: A ray that has collided with the black hole. self.rayStatus = np.zeros((self.imageRows, self.imageCols), dtype=np.int32) # Send them to the GPU self.systemStateGPU = gpuarray.to_gpu(self.systemState) self.constantsGPU = gpuarray.to_gpu(self.constants) self.rayStatusGPU = gpuarray.to_gpu(self.rayStatus) # Compute the initial conditions self._setInitialConditions( self.systemStateGPU, self.constantsGPU, np.float64(self.camera.pixelWidth), np.float64(self.camera.pixelHeight), # Grid definition -> number of blocks x number of blocks. # Each block computes the direction of one pixel grid=self.gridDim, # Block definition -> number of threads x number of threads # Each thread in the block computes one RK4 step for one equation block=self.blockDim ) # TODO: Remove this copy, inefficient! # Retrieve the computed initial conditions self.systemState = self.systemStateGPU.get() self.constants = self.constantsGPU.get() def callKernel(self, x, xEnd): self._solve( np.float64(x), np.float64(xEnd), self.systemStateGPU, np.float64(-0.001), np.float64(xEnd - x), self.constantsGPU, self.rayStatusGPU, # Grid definition -> number of blocks x number of blocks. # Each block computes the direction of one pixel grid=self.gridDim, # Block definition -> number of threads x number of threads # Each thread in the block computes one RK4 step for one # equation block=self.blockDim ) def rayTrace(self, xEnd, kernelCalls=1): """ Args: xEnd (float): Time in which the system will be integrated. After this method finishes, the value of the rays at t=xEnd will be known stepsPerKernel (integer): The number of steps each kernel call will compute; i.e., the host will call the kernel xEnd / (resolution*stepsPerKernel) times. resolution (float): The size of the interval that will be used to compute one solver step between successive calls to the collision detection method. """ # Initialize current time x = np.float64(0) # Compute iteration interval interval = xEnd / kernelCalls # Send the rays to the outer space! for _ in range(kernelCalls): print(x, x+interval) # Start timing self.start.record() # Call the kernel! self.callKernel(x, x + interval) # Update time x += interval # End timing self.end.record() self.end.synchronize() # Calculate the run length self.totalTime += self.start.time_till(self.end)*1e-3 self.synchronise() return self.rayStatus, self.systemState def slicedRayTrace(self, xEnd, numSteps=100): stepSize = xEnd / numSteps # Initialize plotData with the initial position of the rays self.plotData = np.zeros((self.imageRows, self.imageCols, 3, numSteps+1)) self.plotData[:, :, :, 0] = self.systemState[:, :, :3] # Initialize plotStatus with a matriz full of zeros self.plotStatus = np.empty((self.imageRows, self.imageCols, numSteps+1), dtype=np.int32) self.plotStatus[:, :, 0] = 0 x = 0 for step in range(numSteps): # Solve the system self.callKernel(x, x + stepSize) # Advance the step and synchronise x += stepSize self.synchronise() # Get the data and store it for future plot self.plotData[:, :, :, step + 1] = self.systemState[:, :, :3] self.plotStatus[:, :, step + 1] = self.rayStatus return self.plotStatus, self.plotData def synchronise(self): self.rayStatus = self.rayStatusGPU.get() self.systemState = self.systemStateGPU.get() def texturedImage(self, disk, sphere): """Image should be a 2D array where each entry is a 3-tuple of Reals between 0.0 and 1.0 """ diskGPU = gpuarray.to_gpu(disk) sphereGPU = gpuarray.to_gpu(sphere) self.image = np.empty((self.imageRows, self.imageCols, 3), dtype=np.float64) imageGPU = gpuarray.to_gpu(self.image) self.generateImage( self.systemStateGPU, self.rayStatusGPU, diskGPU, np.int32(disk.shape[0]), np.int32(disk.shape[1]), sphereGPU, np.int32(sphere.shape[0]), np.int32(sphere.shape[1]), imageGPU, # Grid definition -> number of blocks x number of blocks. # Each block computes the direction of one pixel grid=self.gridDim, # Block definition -> number of threads x number of threads # Each thread in the block computes one RK4 step for one equation block=self.blockDim ) self.image = imageGPU.get() return self.image
gpl-2.0
mjudsp/Tsallis
sklearn/ensemble/tests/test_voting_classifier.py
25
8160
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raise_message from sklearn.exceptions import NotFittedError from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.model_selection import GridSearchCV from sklearn import datasets from sklearn.model_selection import cross_val_score from sklearn.datasets import make_multilabel_classification from sklearn.svm import SVC from sklearn.multiclass import OneVsRestClassifier # Load the iris dataset and randomly permute it iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target def test_estimator_init(): eclf = VotingClassifier(estimators=[]) msg = ('Invalid `estimators` attribute, `estimators` should be' ' a list of (string, estimator) tuples') assert_raise_message(AttributeError, msg, eclf.fit, X, y) clf = LogisticRegression(random_state=1) eclf = VotingClassifier(estimators=[('lr', clf)], voting='error') msg = ('Voting must be \'soft\' or \'hard\'; got (voting=\'error\')') assert_raise_message(ValueError, msg, eclf.fit, X, y) eclf = VotingClassifier(estimators=[('lr', clf)], weights=[1, 2]) msg = ('Number of classifiers and weights must be equal' '; got 2 weights, 1 estimators') assert_raise_message(ValueError, msg, eclf.fit, X, y) def test_predictproba_hardvoting(): eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()), ('lr2', LogisticRegression())], voting='hard') msg = "predict_proba is not available when voting='hard'" assert_raise_message(AttributeError, msg, eclf.predict_proba, X) def test_notfitted(): eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()), ('lr2', LogisticRegression())], voting='soft') msg = ("This VotingClassifier instance is not fitted yet. Call \'fit\'" " with appropriate arguments before using this method.") assert_raise_message(NotFittedError, msg, eclf.predict_proba, X) def test_majority_label_iris(): """Check classification by majority label on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') scores = cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.95, decimal=2) def test_tie_situation(): """Check voting classifier selects smaller class label in tie situation.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)], voting='hard') assert_equal(clf1.fit(X, y).predict(X)[73], 2) assert_equal(clf2.fit(X, y).predict(X)[73], 1) assert_equal(eclf.fit(X, y).predict(X)[73], 1) def test_weights_iris(): """Check classification by average probabilities on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 2, 10]) scores = cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.93, decimal=2) def test_predict_on_toy_problem(): """Manually check predicted class labels for toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]]) y = np.array([1, 1, 1, 2, 2, 2]) assert_equal(all(clf1.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf2.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf3.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) def test_predict_proba_on_toy_problem(): """Calculate predicted probabilities on toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) clf1_res = np.array([[0.59790391, 0.40209609], [0.57622162, 0.42377838], [0.50728456, 0.49271544], [0.40241774, 0.59758226]]) clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]]) clf3_res = np.array([[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0., 1.], [0., 1.]]) t00 = (2*clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4 t11 = (2*clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4 t21 = (2*clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4 t31 = (2*clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4 eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[2, 1, 1]) eclf_res = eclf.fit(X, y).predict_proba(X) assert_almost_equal(t00, eclf_res[0][0], decimal=1) assert_almost_equal(t11, eclf_res[1][1], decimal=1) assert_almost_equal(t21, eclf_res[2][1], decimal=1) assert_almost_equal(t31, eclf_res[3][1], decimal=1) try: eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') eclf.fit(X, y).predict_proba(X) except AttributeError: pass else: raise AssertionError('AttributeError for voting == "hard"' ' and with predict_proba not raised') def test_multilabel(): """Check if error is raised for multilabel classification.""" X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123) clf = OneVsRestClassifier(SVC(kernel='linear')) eclf = VotingClassifier(estimators=[('ovr', clf)], voting='hard') try: eclf.fit(X, y) except NotImplementedError: return def test_gridsearch(): """Check GridSearch support.""" clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft') params = {'lr__C': [1.0, 100.0], 'voting': ['soft', 'hard'], 'weights': [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]]} grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5) grid.fit(iris.data, iris.target)
bsd-3-clause
muxiaobai/CourseExercises
python/tianchi/20180201yancheng/201802/model20180223.py
1
2398
#!/usr/bin/python # -*- coding: UTF-8 -*- #https://www.kaggle.com/dansbecker/selecting-and-filtering-in-pandas import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn import cross_validation from sklearn import svm from sklearn.learning_curve import learning_curve from sklearn.grid_search import GridSearchCV from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_squared_error from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.externals import joblib train = pd.read_table('../train_20171215.txt') test= pd.read_table('../test_A_20171225.txt') #test= pd.read_table('../answer_top_A_20180225.txt') #print train_data.describe() actions1 = train.groupby(['date','day_of_week'], as_index=False)['cnt'].agg({'count1':np.sum}) df_train_target = actions1['count1'].values df_train_data = actions1.drop(['count1'],axis = 1).values # 切分数据(训练集和测试集) cv = cross_validation.ShuffleSplit(len(df_train_data), n_iter=5,test_size=0.2,random_state=0) ''' print "GradientBoostingRegressor" for train, test in cv: gbdt = GradientBoostingRegressor().fit(df_train_data[train], df_train_target[train]) result1 = gbdt.predict(df_train_data[test]) print(mean_squared_error(result1,df_train_target[test])) print '......' ''' predict_cons = ['date','day_of_week'] X = train[predict_cons] y = train.cnt train_x,val_x,train_y,val_y = train_test_split(X,y,test_size = 0.2,random_state= 0) print "GradientBoostingRegressor" gbdt = GradientBoostingRegressor(n_estimators = 1000,max_leaf_nodes = 400) gbdt.fit(X, y)#17083 #RandomForestRegressor 93 16938 #GradientBoostingRegressor 90 16866 print mean_absolute_error(val_y,gbdt.predict(val_x)) print(mean_squared_error(val_y,gbdt.predict(val_x))) # predict and save output #print ("The predictions are") predicted_test_prices = gbdt.predict(test[predict_cons]) int_cnt = np.around(predicted_test_prices) my_submission = pd.DataFrame({'date':test.date,'cnt':int_cnt.astype(int)}) my_submission.to_csv('submission20180223.csv',index = False,header = False,columns = ['date','cnt']) my_submission.to_csv('result20180223.txt',index=False,header=False,columns = ['date','cnt'],sep='\t')
gpl-2.0
pablocarderam/genetargeter
gRNAScores/Rule_Set_2_scoring_v1/analysis/models/ensembles.py
1
6362
from __future__ import print_function from __future__ import division from builtins import range import numpy as np import sklearn.linear_model import sklearn.ensemble as en from sklearn.model_selection import GridSearchCV import sklearn from sklearn.linear_model import LinearRegression import scipy as sp from gRNAScores.Rule_Set_2_scoring_v1.analysis.models.regression import linreg_on_fold import sklearn import sklearn.tree as tree from sklearn import svm def spearman_scoring(clf, X, y): y_pred = clf.predict(X).flatten() return sp.stats.spearmanr(y_pred, y.flatten())[0] def adaboost_on_fold(feature_sets, train, test, y, y_all, X, dim, dimsum, learn_options): ''' AdaBoostRegressor from scikitlearn. ''' if learn_options['adaboost_version'] == 'python': if not learn_options['adaboost_CV']: clf = en.GradientBoostingRegressor(loss=learn_options['adaboost_loss'], learning_rate=learn_options['adaboost_learning_rate'], n_estimators=learn_options['adaboost_n_estimators'], alpha=learn_options['adaboost_alpha'], subsample=1.0, min_samples_split=2, min_samples_leaf=1, max_depth=learn_options['adaboost_max_depth'], init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False) clf.fit(X[train], y[train].flatten()) y_pred = clf.predict(X[test])[:, None] else: print("Adaboost with GridSearch") from sklearn.grid_search import GridSearchCV param_grid = {'learning_rate': [0.1, 0.05, 0.01], 'max_depth': [4, 5, 6, 7], 'min_samples_leaf': [5, 7, 10, 12, 15], 'max_features': [1.0, 0.5, 0.3, 0.1]} label_encoder = sklearn.preprocessing.LabelEncoder() label_encoder.fit(y_all['Target gene'].values[train]) gene_classes = label_encoder.transform(y_all['Target gene'].values[train]) n_folds = len(np.unique(gene_classes)) cv = sklearn.cross_validation.StratifiedKFold(gene_classes, n_folds=n_folds, shuffle=True) est = en.GradientBoostingRegressor(loss=learn_options['adaboost_loss'], n_estimators=learn_options['adaboost_n_estimators']) clf = GridSearchCV(est, param_grid, n_jobs=20, verbose=1, cv=cv, scoring=spearman_scoring, iid=False).fit(X[train], y[train].flatten()) print(clf.best_params_) y_pred = clf.predict(X[test])[:, None] else: raise NotImplementedError return y_pred, clf def LASSOs_ensemble_on_fold(feature_sets, train, test, y, y_all, X, dim, dimsum, learn_options): train_indices = np.where(train)[0] sel = len(train_indices)*0.10 permuted_ind = np.random.permutation(train_indices) valid_indices = permuted_ind[:sel] train_indices = permuted_ind[sel:] train_sub = np.zeros_like(train, dtype=bool) valid_sub = np.zeros_like(train, dtype=bool) train_sub[train_indices] = True valid_sub[valid_indices] = True validations = np.zeros((len(valid_indices), len(list(feature_sets.keys())))) predictions = np.zeros((test.sum(), len(list(feature_sets.keys())))) for i, feature_name in enumerate(feature_sets.keys()): X_feature = feature_sets[feature_name].values y_pred, m = linreg_on_fold(feature_sets, train_sub, valid_sub, y, y_all, X_feature, dim, dimsum, learn_options) predictions[:, i] = m.predict(X_feature[test]).flatten() validations[:, i] = y_pred.flatten() clf = LinearRegression() clf.fit(validations, y[valid_sub]) y_pred = clf.predict(predictions) return y_pred, None def randomforest_on_fold(feature_sets, train, test, y, y_all, X, dim, dimsum, learn_options): ''' RandomForestRegressor from scikitlearn. ''' clf = en.RandomForestRegressor(oob_score=True) clf.fit(X[train], y[train][:, 0]) y_pred = clf.predict(X[test])[:, None] return y_pred, clf def decisiontree_on_fold(feature_sets, train, test, y, y_all, X, dim, dimsum, learn_options): ''' DecisionTreeRegressor from scikitlearn. ''' clf = tree.DecisionTreeRegressor() clf.fit(X[train], y[train][:, 0]) y_pred = clf.predict(X[test])[:, None] return y_pred, clf def linear_stacking(y_train, X_train, X_test): clf = sklearn.linear_model.LinearRegression() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) return y_pred.flatten() def pairwise_majority_voting(y): N = y.shape[0] y_pred = np.zeros((N, N)) for i in range(N): for j in range(N): if i == j: continue y_pred[i, j] = (y[i] > y[j]).sum() > old_div(y.shape[1],2) return old_div(y_pred.sum(1),y_pred.sum(1).max()) def median(y): return np.median(y, axis=1) def GBR_stacking(y_train, X_train, X_test): param_grid = {'learning_rate': [0.1, 0.05, 0.01], 'max_depth': [2, 3, 4, 5], # [2, 3, 4, 6], 'min_samples_leaf': [1, 2, 3], # ,5, 7], 'max_features': [1.0, 0.5, 0.3, 0.1]} est = en.GradientBoostingRegressor(loss='ls', n_estimators=100) clf = GridSearchCV(est, param_grid, n_jobs=3, verbose=1, cv=20, scoring=spearman_scoring).fit(X_train, y_train.flatten()) # clf.fit(X_train, y_train.flatten()) return clf.predict(X_test) def GP_stacking(y_train, X_train, X_test): import GPy m = GPy.models.SparseGPRegression(X_train, y_train, num_inducing=20, kernel=GPy.kern.RBF(X_train.shape[1])) m.optimize('bfgs', messages=0) y_pred = m.predict(X_test)[0] return y_pred.flatten() def SVM_stacking(y_train, X_train, X_test): parameters = {'kernel': ('linear', 'rbf'), 'C': np.linspace(1, 10, 10), 'gamma': np.linspace(1e-3, 1., 10)} svr = svm.SVR() clf = GridSearchCV(svr, parameters, n_jobs=3, verbose=1, cv=10, scoring=spearman_scoring) clf.fit(X_train, y_train.flatten()) return clf.predict(X_test)
mit
TomAugspurger/pandas
doc/make.py
1
11462
#!/usr/bin/env python3 """ Python script for building documentation. To build the docs you must have all optional dependencies for pandas installed. See the installation instructions for a list of these. Usage ----- $ python make.py clean $ python make.py html $ python make.py latex """ import argparse import csv import importlib import os import shutil import subprocess import sys import webbrowser import docutils import docutils.parsers.rst DOC_PATH = os.path.dirname(os.path.abspath(__file__)) SOURCE_PATH = os.path.join(DOC_PATH, "source") BUILD_PATH = os.path.join(DOC_PATH, "build") REDIRECTS_FILE = os.path.join(DOC_PATH, "redirects.csv") class DocBuilder: """ Class to wrap the different commands of this script. All public methods of this class can be called as parameters of the script. """ def __init__( self, num_jobs=0, include_api=True, single_doc=None, verbosity=0, warnings_are_errors=False, ): self.num_jobs = num_jobs self.verbosity = verbosity self.warnings_are_errors = warnings_are_errors if single_doc: single_doc = self._process_single_doc(single_doc) include_api = False os.environ["SPHINX_PATTERN"] = single_doc elif not include_api: os.environ["SPHINX_PATTERN"] = "-api" self.single_doc_html = None if single_doc and single_doc.endswith(".rst"): self.single_doc_html = os.path.splitext(single_doc)[0] + ".html" elif single_doc: self.single_doc_html = f"reference/api/pandas.{single_doc}.html" def _process_single_doc(self, single_doc): """ Make sure the provided value for --single is a path to an existing .rst/.ipynb file, or a pandas object that can be imported. For example, categorial.rst or pandas.DataFrame.head. For the latter, return the corresponding file path (e.g. reference/api/pandas.DataFrame.head.rst). """ base_name, extension = os.path.splitext(single_doc) if extension in (".rst", ".ipynb"): if os.path.exists(os.path.join(SOURCE_PATH, single_doc)): return single_doc else: raise FileNotFoundError(f"File {single_doc} not found") elif single_doc.startswith("pandas."): try: obj = pandas # noqa: F821 for name in single_doc.split("."): obj = getattr(obj, name) except AttributeError as err: raise ImportError(f"Could not import {single_doc}") from err else: return single_doc[len("pandas.") :] else: raise ValueError( f"--single={single_doc} not understood. " "Value should be a valid path to a .rst or .ipynb file, " "or a valid pandas object " "(e.g. categorical.rst or pandas.DataFrame.head)" ) @staticmethod def _run_os(*args): """ Execute a command as a OS terminal. Parameters ---------- *args : list of str Command and parameters to be executed Examples -------- >>> DocBuilder()._run_os('python', '--version') """ subprocess.check_call(args, stdout=sys.stdout, stderr=sys.stderr) def _sphinx_build(self, kind: str): """ Call sphinx to build documentation. Attribute `num_jobs` from the class is used. Parameters ---------- kind : {'html', 'latex'} Examples -------- >>> DocBuilder(num_jobs=4)._sphinx_build('html') """ if kind not in ("html", "latex"): raise ValueError(f"kind must be html or latex, not {kind}") cmd = ["sphinx-build", "-b", kind] if self.num_jobs: cmd += ["-j", str(self.num_jobs)] if self.warnings_are_errors: cmd += ["-W", "--keep-going"] if self.verbosity: cmd.append(f"-{'v' * self.verbosity}") cmd += [ "-d", os.path.join(BUILD_PATH, "doctrees"), SOURCE_PATH, os.path.join(BUILD_PATH, kind), ] return subprocess.call(cmd) def _open_browser(self, single_doc_html): """ Open a browser tab showing single """ url = os.path.join("file://", DOC_PATH, "build", "html", single_doc_html) webbrowser.open(url, new=2) def _get_page_title(self, page): """ Open the rst file `page` and extract its title. """ fname = os.path.join(SOURCE_PATH, f"{page}.rst") option_parser = docutils.frontend.OptionParser( components=(docutils.parsers.rst.Parser,) ) doc = docutils.utils.new_document("<doc>", option_parser.get_default_values()) with open(fname) as f: data = f.read() parser = docutils.parsers.rst.Parser() # do not generate any warning when parsing the rst with open(os.devnull, "a") as f: doc.reporter.stream = f parser.parse(data, doc) section = next( node for node in doc.children if isinstance(node, docutils.nodes.section) ) title = next( node for node in section.children if isinstance(node, docutils.nodes.title) ) return title.astext() def _add_redirects(self): """ Create in the build directory an html file with a redirect, for every row in REDIRECTS_FILE. """ with open(REDIRECTS_FILE) as mapping_fd: reader = csv.reader(mapping_fd) for row in reader: if not row or row[0].strip().startswith("#"): continue path = os.path.join(BUILD_PATH, "html", *row[0].split("/")) + ".html" try: title = self._get_page_title(row[1]) except Exception: # the file can be an ipynb and not an rst, or docutils # may not be able to read the rst because it has some # sphinx specific stuff title = "this page" if os.path.exists(path): raise RuntimeError( f"Redirection would overwrite an existing file: {path}" ) with open(path, "w") as moved_page_fd: html = f"""\ <html> <head> <meta http-equiv="refresh" content="0;URL={row[1]}.html"/> </head> <body> <p> The page has been moved to <a href="{row[1]}.html">{title}</a> </p> </body> <html>""" moved_page_fd.write(html) def html(self): """ Build HTML documentation. """ ret_code = self._sphinx_build("html") zip_fname = os.path.join(BUILD_PATH, "html", "pandas.zip") if os.path.exists(zip_fname): os.remove(zip_fname) if ret_code == 0: if self.single_doc_html is not None: self._open_browser(self.single_doc_html) else: self._add_redirects() return ret_code def latex(self, force=False): """ Build PDF documentation. """ if sys.platform == "win32": sys.stderr.write("latex build has not been tested on windows\n") else: ret_code = self._sphinx_build("latex") os.chdir(os.path.join(BUILD_PATH, "latex")) if force: for i in range(3): self._run_os("pdflatex", "-interaction=nonstopmode", "pandas.tex") raise SystemExit( "You should check the file " '"build/latex/pandas.pdf" for problems.' ) else: self._run_os("make") return ret_code def latex_forced(self): """ Build PDF documentation with retries to find missing references. """ return self.latex(force=True) @staticmethod def clean(): """ Clean documentation generated files. """ shutil.rmtree(BUILD_PATH, ignore_errors=True) shutil.rmtree(os.path.join(SOURCE_PATH, "reference", "api"), ignore_errors=True) def zip_html(self): """ Compress HTML documentation into a zip file. """ zip_fname = os.path.join(BUILD_PATH, "html", "pandas.zip") if os.path.exists(zip_fname): os.remove(zip_fname) dirname = os.path.join(BUILD_PATH, "html") fnames = os.listdir(dirname) os.chdir(dirname) self._run_os("zip", zip_fname, "-r", "-q", *fnames) def main(): cmds = [method for method in dir(DocBuilder) if not method.startswith("_")] joined = ",".join(cmds) argparser = argparse.ArgumentParser( description="pandas documentation builder", epilog=f"Commands: {joined}", ) joined = ", ".join(cmds) argparser.add_argument( "command", nargs="?", default="html", help=f"command to run: {joined}", ) argparser.add_argument( "--num-jobs", type=int, default=0, help="number of jobs used by sphinx-build" ) argparser.add_argument( "--no-api", default=False, help="omit api and autosummary", action="store_true" ) argparser.add_argument( "--single", metavar="FILENAME", type=str, default=None, help=( "filename (relative to the 'source' folder) of section or method name to " "compile, e.g. 'development/contributing.rst', " "'ecosystem.rst', 'pandas.DataFrame.join'" ), ) argparser.add_argument( "--python-path", type=str, default=os.path.dirname(DOC_PATH), help="path" ) argparser.add_argument( "-v", action="count", dest="verbosity", default=0, help=( "increase verbosity (can be repeated), " "passed to the sphinx build command" ), ) argparser.add_argument( "--warnings-are-errors", "-W", action="store_true", help="fail if warnings are raised", ) args = argparser.parse_args() if args.command not in cmds: joined = ", ".join(cmds) raise ValueError(f"Unknown command {args.command}. Available options: {joined}") # Below we update both os.environ and sys.path. The former is used by # external libraries (namely Sphinx) to compile this module and resolve # the import of `python_path` correctly. The latter is used to resolve # the import within the module, injecting it into the global namespace os.environ["PYTHONPATH"] = args.python_path sys.path.insert(0, args.python_path) globals()["pandas"] = importlib.import_module("pandas") # Set the matplotlib backend to the non-interactive Agg backend for all # child processes. os.environ["MPLBACKEND"] = "module://matplotlib.backends.backend_agg" builder = DocBuilder( args.num_jobs, not args.no_api, args.single, args.verbosity, args.warnings_are_errors, ) return getattr(builder, args.command)() if __name__ == "__main__": sys.exit(main())
bsd-3-clause
kagayakidan/scikit-learn
examples/plot_multioutput_face_completion.py
330
3019
""" ============================================== Face completion with a multi-output estimators ============================================== This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a face given its upper half. The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest neighbors, linear regression and ridge regression complete the lower half of those faces. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.utils.validation import check_random_state from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV # Load the faces datasets data = fetch_olivetti_faces() targets = data.target data = data.images.reshape((len(data.images), -1)) train = data[targets < 30] test = data[targets >= 30] # Test on independent people # Test on a subset of people n_faces = 5 rng = check_random_state(4) face_ids = rng.randint(test.shape[0], size=(n_faces, )) test = test[face_ids, :] n_pixels = data.shape[1] X_train = train[:, :np.ceil(0.5 * n_pixels)] # Upper half of the faces y_train = train[:, np.floor(0.5 * n_pixels):] # Lower half of the faces X_test = test[:, :np.ceil(0.5 * n_pixels)] y_test = test[:, np.floor(0.5 * n_pixels):] # Fit estimators ESTIMATORS = { "Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), "K-nn": KNeighborsRegressor(), "Linear regression": LinearRegression(), "Ridge": RidgeCV(), } y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) # Plot the completed faces image_shape = (64, 64) n_cols = 1 + len(ESTIMATORS) plt.figure(figsize=(2. * n_cols, 2.26 * n_faces)) plt.suptitle("Face completion with multi-output estimators", size=16) for i in range(n_faces): true_face = np.hstack((X_test[i], y_test[i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1, title="true faces") sub.axis("off") sub.imshow(true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") for j, est in enumerate(sorted(ESTIMATORS)): completed_face = np.hstack((X_test[i], y_test_predict[est][i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j, title=est) sub.axis("off") sub.imshow(completed_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") plt.show()
bsd-3-clause
roshantha9/AbstractManycoreSim
src/libApplicationModel/WorkflowGenerator.py
1
22269
import pprint import sys import math, random import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import scipy.stats from matplotlib.colors import ListedColormap, NoNorm from matplotlib import mlab from itertools import cycle # for automatic markers import matplotlib.cm as cm from matplotlib.font_manager import FontProperties import pickle ## local imports import Task import libBuffer.Buffer from SimParams import SimParams from TaskSet import TaskSet from Task import TaskModel class WorkflowGenerator(): def __init__(self, env, max_wf, min_videos_per_wf, max_videos_per_wf, min_gops_per_video, max_gops_per_video, min_inter_video_gap, max_inter_video_gap, min_interarrival, max_interarrival): self.env = env self.max_wf = max_wf self.min_videos = min_videos_per_wf self.max_videos = max_videos_per_wf self.min_gops_per_video = min_gops_per_video self.max_gops_per_video = max_gops_per_video self.max_inter_video_gap = max_inter_video_gap self.min_inter_video_gap = min_inter_video_gap self.min_interarrival = min_interarrival self.max_interarrival = max_interarrival self.workflows = {} # for later use self.max_task_priority = None self.used_pri_values = [] self.workflows_summary = {} ################## # getters/setters ################## def get_max_task_priority(self): return self.max_task_priority def get_used_pri_values(self): return self.used_pri_values def generate_workflows(self): task_start_id = 0 unique_job_start_id = 0 priority_offset = 0 #print "random.randint(2,100000) : " + str(random.randint(2,100000)) #print "np.random.randint(2,100000) : " + str(np.random.randint(2,100000)) for each_wf_id in xrange(self.max_wf): num_vids = random.randint(self.min_videos, self.max_videos) # determine number of videos for this workflow #initial_gap = random.uniform(SimParams.TASKDISPATCHER_RESET_DELAY, self.max_inter_video_gap*1.5) # initially we want a gap, we don't want all streams to start at once #initial_gap = 0.00001 if(SimParams.WFGEN_INITIAL_VID_EQUAL_FOR_ALL_VIDS == True): # all wfs have the same initial start rules initial_gap = 0.00001 + random.uniform(SimParams.WFGEN_INITIAL_VID_GAP_MIN, SimParams.WFGEN_INITIAL_VID_GAP_MAX) else: if(each_wf_id == 0): # wfs have a sequential start offset initial_gap = 0.00001 + random.uniform(SimParams.WFGEN_INITIAL_VID_GAP_MIN, SimParams.WFGEN_INITIAL_VID_GAP_MAX) else: # offset = pre wf initial start time offset = self.workflows_summary[each_wf_id-1][0]['starttime'] initial_gap = offset + random.uniform(SimParams.WFGEN_INITIAL_VID_GAP_MIN, SimParams.WFGEN_INITIAL_VID_GAP_MAX) jobs_start_time = initial_gap self.workflows[each_wf_id] = [] self.workflows_summary[each_wf_id] = {} for each_vid in xrange(num_vids): # determine video stream resolution if(SimParams.DVB_RESOLUTIONS_SELECTED_RANDOM == True): #pprint.pprint(SimParams.DVB_RESOLUTIONS) ridx = np.random.choice(range(len(SimParams.DVB_RESOLUTIONS))) resolution = SimParams.DVB_RESOLUTIONS[ridx] else: if(self.max_wf <= len(SimParams.DVB_RESOLUTIONS_FIXED)): # only when there is one vid per wf resolution = SimParams.DVB_RESOLUTIONS_FIXED[each_wf_id] else: print self.max_wf print len(SimParams.DVB_RESOLUTIONS_FIXED) sys.exit('Error: generate_workflows: Error - not enough elements in SimParams.DVB_RESOLUTIONS_FIXED') # determine frame rate for the video if SimParams.USE_VIDSTRM_SPECIFIC_FRAMERATE == True: res_total_pixels = resolution[0]*resolution[1] if res_total_pixels in SimParams.RESOLUTION_SPECIFIC_FRAME_RATE: frame_rate = np.random.choice(SimParams.RESOLUTION_SPECIFIC_FRAME_RATE[res_total_pixels]) else: sys.exit("Error - resolution not in SimParams.RESOLUTION_SPECIFIC_FRAME_RATE:" + pprint.pformat(resolution)) else: frame_rate = SimParams.FRAME_RATE # generate jobs/gops for the video stream job_start_id = 0 (jobs_list, job_endtime, num_jobs, avg_dt, min_dt) = self._generate_jobs(job_start_id, unique_job_start_id, task_start_id, self.min_gops_per_video, self.max_gops_per_video, each_vid, each_wf_id, SimParams.GOP_STRUCTURE, jobs_start_time, resolution[1], resolution[0], frame_rate ) print str(resolution[1]) + "x" + str(resolution[0]) temp_frames = {} temp_gops = [] for each_task in jobs_list: if(each_task.get_unique_gop_id() not in temp_frames): temp_frames[each_task.get_unique_gop_id()] = [each_task.get_id()] temp_gops.append(each_task.get_unique_gop_id()) else: temp_frames[each_task.get_unique_gop_id()].append(each_task.get_id()) self.workflows_summary[each_wf_id][each_vid] = {} self.workflows_summary[each_wf_id][each_vid]={ 'starttime' : jobs_start_time, 'endtime' : job_endtime, 'framerate' : jobs_list[0].get_framerate(), 'avg_dispatch_rate' : avg_dt, 'min_dispatch_rate' : min_dt, 'gop_len' : len(jobs_list[0].get_gopstructure()), 'numgops' : num_jobs, 'resolution' : resolution, 'frames' : temp_frames, 'gops' : temp_gops } # reset times and ids gap = random.uniform(self.min_inter_video_gap, self.max_inter_video_gap) jobs_start_time = job_endtime + gap #job_start_id += 1 unique_job_start_id = jobs_list[len(jobs_list)-1].get_unique_gop_id() + 1 task_start_id += len(jobs_list) self.workflows[each_wf_id].extend(jobs_list) # save workflow summary if(SimParams.TRACK_WFSUMMARY_PPRINT == True): workflow_logfile=open('workflow_summary.js', 'w') pprint.pprint(self.workflows_summary, workflow_logfile, width=128) print '%f'%self.env.now + "," + "WorkflowGenerator::, finished generating wf_id = " + str(each_wf_id) def getLastScheduledTask(self): tmptasks = [] for each_wf_key, each_wf_val in self.workflows.iteritems(): tmptasks.append(each_wf_val[len(each_wf_val)-1]) sorted_tmptasks = sorted(tmptasks, key=lambda x: x.get_scheduledDispatchTime(), reverse=True) return sorted_tmptasks[0] def getLastScheduledVideoStream(self): vs_admission_times = {} for each_wf_key, each_wf_val in self.workflows_summary.iteritems(): for each_vid_k, each_vid_v in each_wf_val.iteritems(): vid_start_time = each_vid_v['starttime'] temp_k = str(each_wf_key) + "_" + str(each_vid_k) vs_admission_times[temp_k] = vid_start_time # find max starttime max_st = max(vs_admission_times.values()) max_st_k = [vs_k for vs_k, vs_v in vs_admission_times.iteritems() if vs_v == max_st][0] wf_id = int(max_st_k.split("_")[0]) vs_id = int(max_st_k.split("_")[1]) return (wf_id, vs_id) def getFirstScheduledTask(self): tmptasks = [] for each_wf_key, each_wf_val in self.workflows.iteritems(): tmptasks.append(each_wf_val[0]) sorted_tmptasks = sorted(tmptasks, key=lambda x: x.get_scheduledDispatchTime(), reverse=False) return sorted_tmptasks[0] def setTaskPriorities_AllUnique(self): # how many tasks have been created in total ? task_count = 0 for each_wf in self.workflows.itervalues(): task_count += len(each_wf) # generate unique random numbers, enough for every task generated random_unique_pri_list = random.sample(range(1,task_count+1), task_count) # apply unique priorities for each task in the workflow i=0 for each_wf in self.workflows.itervalues(): for each_task in each_wf: each_task.set_priority(random_unique_pri_list[i]) i+=1 # whats the max priority set ? self.max_task_priority = max(random_unique_pri_list) def setTaskPriorities_GroupedByJobs(self): i=1 def setTaskPriorities_GroupedByVids(self): i=1 # generate all the gops for a video stream def _generate_jobs(self, job_start_id, unique_job_start_id, task_start_id, min_jobs, max_jobs, video_stream_id, wf_id, gop_struct, jobs_dispatchtime_start, frame_h, frame_w, fps): num_gops = random.randint(min_jobs, max_jobs) # therefore the end-time ? job_end_time = jobs_dispatchtime_start + ((float(num_gops) * float(len(gop_struct))) / (float(fps) * 60.0)) taskset = TaskSet(self.env) # generate new priorities, excluding the ones already in the pool pri_range = self._genRandomNumList(SimParams.GOP_LENGTH,self.used_pri_values) # generate multiple gops if SimParams.TASKSET_MODEL == TaskModel.TASK_MODEL_MHEG2_FRAME_ET_LEVEL_INTERRELATEDGOPS: final_dispatch_time, avg_dt, min_dt = taskset.generateMPEG2FrameInterRelatedGOPTaskSet(num_gops, task_start_id , job_start_id, unique_job_start_id, taskset_dispatch_start_time = jobs_dispatchtime_start, video_stream_id = video_stream_id, wf_id = wf_id, frame_w=frame_w, frame_h=frame_h, frame_rate=fps, priority_range = pri_range) elif(SimParams.TASKSET_MODEL == TaskModel.TASK_MODEL_MHEG2_FRAME_ET_LEVEL): final_dispatch_time, avg_dt, min_dt = taskset.generateMPEG2FrameTaskSet(num_gops, task_start_id , job_start_id, unique_job_start_id, taskset_dispatch_start_time = jobs_dispatchtime_start, video_stream_id = video_stream_id, wf_id = wf_id, frame_w=frame_w, frame_h=frame_h, frame_rate=fps, priority_range = pri_range) # adaptive gop, slices/tiles, task splitting, pulevel cc elif(SimParams.TASKSET_MODEL in [TaskModel.TASK_MODEL_HEVC_FRAME_LEVEL, TaskModel.TASK_MODEL_HEVC_TILE_LEVEL] ): pri_range = np.random.randint(10000,size=50) final_dispatch_time, avg_dt, min_dt = taskset.generateHEVCFrameTaskSet(num_gops, task_start_id , job_start_id, unique_job_start_id, taskset_dispatch_start_time = jobs_dispatchtime_start, video_stream_id = video_stream_id, wf_id = wf_id, frame_w=frame_w, frame_h=frame_h, frame_rate = fps, priority_range = pri_range, ) # set the worst-case exuction time for all tasks in the task_pool taskset.set_worstCaseComputationTime_alltasks() # if(final_dispatch_time > job_end_time): # job_end_time = final_dispatch_time job_end_time = final_dispatch_time return (taskset.taskList, job_end_time, num_gops, avg_dt, min_dt) def _remove_dups(self,seq): seen = set() seen_add = seen.add return [ x for x in seq if x not in seen and not seen_add(x)] def dumpWorkflowsToFile(self, fname="workflows.xml"): file = open(fname, "w") file.write("<Workflows>") for each_wf_key, each_wf_values in self.workflows.iteritems(): file.write("<workflow id='%d'>" % each_wf_key) for each_task in each_wf_values : #pprint.pprint(each_task) file.write( each_task._debugLongXML() ) file.write("\n") file.write("</workflow>") file.write("</Workflows>") file.close() def showTaskTimeLine(self, num_wfs, simon_wf_results_summary = None, fname = 'showTaskTimeLine.png', show_vid_blocks = False): print "showTaskTimeLine: Enter" num_workflows = len(self.workflows.items()) print "num_workflows=" + str(num_workflows) fig = plt.figure(dpi=100, figsize=(20.0, float(num_workflows)*1.5)) #fig = plt.figure() annot_text = { "wf_vid_id": [], "x": [], "y" : [], "text" : [], "colour" : [] } for each_wf_key, each_wf_values in self.workflows.iteritems(): #ax = plt.subplot(1,num_workflows,each_wf_key) dispatch_times = [] vid_count = 0 video_start_end_pos = {} for each_task in each_wf_values : sdt = each_task.get_scheduledDispatchTime() dispatch_times.append(round(sdt,2)) if(show_vid_blocks == True): if(each_task.get_isHeadVideoGop() == True): if vid_count not in video_start_end_pos: video_start_end_pos[vid_count] = { 'start_x' : round(sdt,2), 'end_x' : None } elif(each_task.get_isTailVideoGop() == True): video_start_end_pos[vid_count]['end_x'] = round(sdt,2) if(each_task.get_parentGopId() == 0 and each_task.get_frameIXinGOP() == 0): annot_text["wf_vid_id"].append((each_wf_key, vid_count)) annot_text["x"].append(round(sdt,2)) annot_text["y"].append(each_wf_key+0.16) text = str(each_task.get_frame_w()) + "x" + str(each_task.get_frame_h()) + "\n" + \ str(round(self.workflows_summary[each_wf_key][vid_count]['avg_dispatch_rate'],3)) + "\n" + \ str(each_task.get_scheduledDispatchTime()) #str(round(self.workflows_summary[each_wf_key][vid_count]['min_dispatch_rate'],3)) annot_text["text"].append(text) if(simon_wf_results_summary != None): try: if(simon_wf_results_summary[each_wf_key][vid_count]['result'] == True): annot_text["colour"].append('green') else: if(len(simon_wf_results_summary[each_wf_key][vid_count]['gops_in_outbuff']) > 0): annot_text["colour"].append('#FF00AA') else: annot_text["colour"].append('#ff0000') except: annot_text["colour"].append("black") vid_count = vid_count + 1 x = np.round(np.arange(0.0, max(dispatch_times), 0.01), 2) ## setting y-axis i = 0 y = [-1] * len(x) for each_x in x: if(each_x in dispatch_times): y[i] = each_wf_key i = i+1 # plot plt.scatter(x,y, s=2) plt.hold(True) # for key,val in video_start_end_pos.iteritems(): # plt.hlines(each_wf_key, val['start_x'], val['end_x'], linewidth=5, alpha=0.5, color='b') # plt.hold(True) #plt.hold(True) plt.minorticks_on() plt.grid(True, which='major', color='b', linestyle='-', alpha=0.2) plt.grid(True, which='minor', color='b', linestyle='--', alpha=0.2) #pprint.pprint(annot_text) if(simon_wf_results_summary != None): for i, x in enumerate(annot_text["x"]): plt.annotate(annot_text["text"][i], (annot_text["x"][i],annot_text["y"][i]), color=annot_text["colour"][i], fontsize=6) else: for i, x in enumerate(annot_text["x"]): plt.annotate(annot_text["text"][i], (annot_text["x"][i],annot_text["y"][i]), fontsize=6) print "showTaskTimeLine: saving image : " + fname plt.savefig(fname, bbox_inches='tight', dpi=100) plt.close(fig) #plt.show() @staticmethod def plot_show(): plt.show() ###################### ## helper functions ## ###################### def _weightedChoice(self, weights, objects): #http://stackoverflow.com/questions/10803135/weighted-choice-short-and-simple """Return a random item from objects, with the weighting defined by weights (which must sum to 1).""" cs = np.cumsum(weights) #An array of the weights, cumulatively summed. idx = sum(cs < np.random.rand()) #Find the index of the first weight over a random value. return objects[idx] def _genRandomNumList(self, list_len, exclusion_list): count = 0 result = [] max_int = (SimParams.NUM_WORKFLOWS * SimParams.WFGEN_MAX_VIDS_PER_WF * SimParams.GOP_LENGTH) + \ (SimParams.NUM_WORKFLOWS * SimParams.WFGEN_MAX_VIDS_PER_WF) while (count < list_len): random_num = random.randint(1,max_int) if(random_num not in exclusion_list): result.append(random_num) count += 1 if (len(result) < SimParams.GOP_LENGTH): sys.exit('Error: _genRandomNumList:: error generating priorities') else: self.used_pri_values.extend(result) return result
gpl-3.0
arjoly/scikit-learn
sklearn/exceptions.py
4
4328
""" The :mod:`sklearn.exceptions` module includes all custom warnings and error classes used across scikit-learn. """ __all__ = ['NotFittedError', 'ChangedBehaviorWarning', 'ConvergenceWarning', 'DataConversionWarning', 'DataDimensionalityWarning', 'EfficiencyWarning', 'FitFailedWarning', 'NonBLASDotWarning', 'UndefinedMetricWarning'] class NotFittedError(ValueError, AttributeError): """Exception class to raise if estimator is used before fitting. This class inherits from both ValueError and AttributeError to help with exception handling and backward compatibility. Examples -------- >>> from sklearn.svm import LinearSVC >>> from sklearn.exceptions import NotFittedError >>> try: ... LinearSVC().predict([[1, 2], [2, 3], [3, 4]]) ... except NotFittedError as e: ... print(repr(e)) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS NotFittedError('This LinearSVC instance is not fitted yet',) """ class ChangedBehaviorWarning(UserWarning): """Warning class used to notify the user of any change in the behavior.""" class ConvergenceWarning(UserWarning): """Custom warning to capture convergence problems""" class DataConversionWarning(UserWarning): """Warning used to notify implicit data conversions happening in the code. This warning occurs when some input data needs to be converted or interpreted in a way that may not match the user's expectations. For example, this warning may occur when the the user - passes an integer array to a function which expects float input and will convert the input - requests a non-copying operation, but a copy is required to meet the implementation's data-type expectations; - passes an input whose shape can be interpreted ambiguously. """ class DataDimensionalityWarning(UserWarning): """Custom warning to notify potential issues with data dimensionality. For example, in random projection, this warning is raised when the number of components, which quantifes the dimensionality of the target projection space, is higher than the number of features, which quantifies the dimensionality of the original source space, to imply that the dimensionality of the problem will not be reduced. """ class EfficiencyWarning(UserWarning): """Warning used to notify the user of inefficient computation. This warning notifies the user that the efficiency may not be optimal due to some reason which may be included as a part of the warning message. This may be subclassed into a more specific Warning class. """ class FitFailedWarning(RuntimeWarning): """Warning class used if there is an error while fitting the estimator. This Warning is used in meta estimators GridSearchCV and RandomizedSearchCV and the cross-validation helper function cross_val_score to warn when there is an error while fitting the estimator. Examples -------- >>> from sklearn.grid_search import GridSearchCV >>> from sklearn.svm import LinearSVC >>> from sklearn.exceptions import FitFailedWarning >>> import warnings >>> warnings.simplefilter('always', FitFailedWarning) >>> gs = GridSearchCV(LinearSVC(), {'C': [-1, -2]}, error_score=0) >>> X, y = [[1, 2], [3, 4], [5, 6], [7, 8], [8, 9]], [0, 0, 0, 1, 1] >>> with warnings.catch_warnings(record=True) as w: ... try: ... gs.fit(X, y) # This will raise a ValueError since C is < 0 ... except ValueError: ... pass ... print(repr(w[-1].message)) ... # doctest: +NORMALIZE_WHITESPACE FitFailedWarning("Classifier fit failed. The score on this train-test partition for these parameters will be set to 0.000000. Details: \\nValueError('Penalty term must be positive; got (C=-2)',)",) """ class NonBLASDotWarning(EfficiencyWarning): """Warning used when the dot operation does not use BLAS. This warning is used to notify the user that BLAS was not used for dot operation and hence the efficiency may be affected. """ class UndefinedMetricWarning(UserWarning): """Warning used when the metric is invalid"""
bsd-3-clause
jkarnows/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
249
1982
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, label='Elastic net coefficients') plt.plot(lasso.coef_, label='Lasso coefficients') plt.plot(coef, '--', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
rbiswas4/utils
binningutils.py
1
2816
#!/usr/bin/env python import numpy as np import math as pm verbose = False def nbinarray(numpyarray , binningcol , binsize , binmin , binmax ): """ bins a numpy array in equal bins in the variable in the column of the array indexed by the integer binningcol. args: binningcol: integer, mandatory integer indexing the column of the array holding the variable wrt which we are binning binsize : float, mandatory binmins : float, mandatory binmax : float, mandatory returns: a numpy array of elements x corresponding to the bins. Each element x is an array of the elements of in input numpyarray that are assigned to the bin example usage: notes: """ #First define the bins: numrows , numcols = np.shape(numpyarray) numbins = int(pm.floor((binmax - binmin )/binsize)) binningcolbins = np.linspace(binmin , binmax ,numbins+1) digitizedindex = np.digitize(numpyarray[:,binningcol], bins = binningcolbins) binnedarray = [] for i in range(numbins): binnedarray.append(numpyarray[digitizedindex==i+1]) ret= np.array(binnedarray) if verbose : print "size of bins" , map(len, ret) return ret def ngetbinnedvec( nbinnedarray , col): """Given an array of 2d numpy arrays (ie. having shape (numrows, numcols), returns an array of 1d numpy arrays composed of the col th column of the 2d arrays. example useage : """ numbins = len(nbinnedarray) binnedvec = [] for i in range(numbins): binnedvec.append(nbinnedarray[i][:,col]) return binnedvec if __name__ == "__main__": import sys import numpy as np import matplotlib.pyplot as plt num = 10 #basic model: x is independent variable, y, z are dependent np.random.seed = -4 x = np.random.random(size = num) x.sort() y = 2.0 * x z = 0.5 * x * x + 1.5 * x + 3.0 #Set up a numpy array adding noise to y and z a = np.zeros (shape = (num,3)) a [:,0 ] = x a [:,1 ] = y + np.random.normal(size = num) a [:,2 ] = z + np.random.normal(size = num) #bin the array according to values of x which is in the col 0 #using uniform size bins from 0. to 1. of size 0.1 binnedarray = nbinarray ( a, binningcol = 0, binmin = 0., binmax = 1.0, binsize = 0.1) print binnedarray print type(binnedarray) sys.exit() print "\n-------------------------\n" xbinned= ngetbinnedvec (binnedarray, 0) ybinned= ngetbinnedvec (binnedarray, 1) #print xbinned xavg = map (np.average , xbinned) yavg = map (np.average , ybinned) #xavg = map( lambda x : np.average(x ) , xbinned ) #yavg = map( lambda x : np.average(x) , ybinned) #print map( lambda x , w : np.average(x, w), xbinned, ybinned) plt.plot(x, y, 'k-') plt.plot(a[:,0] , a[:,1], 'ks') plt.plot(a[:,0], a[:,2], 'ro') plt.plot(x,z , 'r--') plt.plot( xavg, yavg, 'bd') plt.show()
mit
BubuLK/sfepy
script/plot_times.py
5
1722
#!/usr/bin/env python """ Plot time steps, times of time steps and time deltas in a HDF5 results file. """ from __future__ import absolute_import import sys sys.path.append('.') from argparse import ArgumentParser import numpy as nm import matplotlib.pyplot as plt from sfepy.postprocess.time_history import extract_times helps = { 'logarithmic' : 'plot time steps in logarithmic scale', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-l', '--logarithmic', action='store_true', dest='logarithmic', default=False, help=helps['logarithmic']) parser.add_argument('filename') options = parser.parse_args() filename = options.filename plt.rcParams['lines.linewidth'] = 3 plt.rcParams['lines.markersize'] = 9 fontsize = 16 steps, times, nts, dts = extract_times(filename) dts[-1] = nm.nan ax = plt.subplot(211) if options.logarithmic: l1, = ax.semilogy(steps, dts, 'b') else: l1, = ax.plot(steps, dts, 'b') ax.set_xlabel('step', fontsize=fontsize) ax.set_ylabel(r'$\Delta t$', fontsize=fontsize) ax.grid(True) ax = ax.twinx() l2, = ax.plot(steps, times, 'g') ax.set_ylabel(r'$t$', fontsize=fontsize) ax.legend([l1, l2], [r'$\Delta t$', r'$t$'], loc=0) ax = plt.subplot(212) if options.logarithmic: ax.semilogy(times, dts, 'b+') else: ax.plot(times, dts, 'b+') ax.set_xlabel(r'$t$', fontsize=fontsize) ax.set_ylabel(r'$\Delta t$', fontsize=fontsize) ax.grid(True) plt.show() if __name__ == '__main__': main()
bsd-3-clause
saiwing-yeung/scikit-learn
sklearn/metrics/regression.py
31
17366
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # Manoj Kumar <[email protected]> # Michael Eickenberg <[email protected]> # Konstantin Shmelkov <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d from ..externals.six import string_types import warnings __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred, multioutput): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None None is accepted due to backward compatibility of r2_score(). Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by 'utils.multiclass.type_of_target' y_true : array-like of shape = (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples, n_outputs) Estimated target values. multioutput : array-like of shape = (n_outputs) or string in ['raw_values', uniform_average', 'variance_weighted'] or None Custom output weights if ``multioutput`` is array-like or just the corresponding argument if ``multioutput`` is a correct keyword. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) n_outputs = y_true.shape[1] multioutput_options = (None, 'raw_values', 'uniform_average', 'variance_weighted') if multioutput not in multioutput_options: multioutput = check_array(multioutput, ensure_2d=False) if n_outputs == 1: raise ValueError("Custom weights are useful only in " "multi-output cases.") elif n_outputs != len(multioutput): raise ValueError(("There must be equally many custom weights " "(%d) as outputs (%d).") % (len(multioutput), n_outputs)) y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput' return y_type, y_true, y_pred, multioutput def mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute error regression loss Read more in the :ref:`User Guide <mean_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') array([ 0.5, 1. ]) >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.849... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) if isinstance(multioutput, string_types): if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared error regression loss Read more in the :ref:`User Guide <mean_squared_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.416..., 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.824... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) if isinstance(multioutput, string_types): if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Read more in the :ref:`User Guide <median_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, 'uniform_average') if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Read more in the :ref:`User Guide <explained_variance_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- score : float or ndarray of floats The explained variance or ndarray if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) numerator = np.average((y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0) y_true_avg = np.average(y_true, weights=sample_weight, axis=0) denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if isinstance(multioutput, string_types): if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing to np.average() None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights) def r2_score(y_true, y_pred, sample_weight=None, multioutput=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or None or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default value corresponds to 'variance_weighted', this behaviour is deprecated since version 0.17 and will be changed to 'uniform_average' starting from 0.19. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- z : float or ndarray of floats The R^2 score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <https://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, multioutput='variance_weighted') # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y_true.shape[1]]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput is None and y_true.shape[1] != 1: warnings.warn("Default 'multioutput' behavior now corresponds to " "'variance_weighted' value which is deprecated since " "0.17, it will be changed to 'uniform_average' " "starting from 0.19.", DeprecationWarning) multioutput = 'variance_weighted' if isinstance(multioutput, string_types): if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator # avoid fail on constant y or one-element arrays if not np.any(nonzero_denominator): if not np.any(nonzero_numerator): return 1.0 else: return 0.0 else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
bsd-3-clause
quaquel/EMAworkbench
ema_workbench/examples/flu_pairsplot.py
1
1444
''' Created on 20 sep. 2011 .. codeauthor:: jhkwakkel <j.h.kwakkel (at) tudelft (dot) nl> ''' import matplotlib.pyplot as plt import numpy as np from ema_workbench import load_results, ema_logging from ema_workbench.analysis.pairs_plotting import (pairs_lines, pairs_scatter, pairs_density) ema_logging.log_to_stderr(level=ema_logging.DEFAULT_LEVEL) # load the data fh = './data/1000 flu cases no policy.tar.gz' experiments, outcomes = load_results(fh) # transform the results to the required format # that is, we want to know the max peak and the casualties at the end of the # run tr = {} # get time and remove it from the dict time = outcomes.pop('TIME') for key, value in outcomes.items(): if key == 'deceased population region 1': tr[key] = value[:, -1] # we want the end value else: # we want the maximum value of the peak max_peak = np.max(value, axis=1) tr['max peak'] = max_peak # we want the time at which the maximum occurred # the code here is a bit obscure, I don't know why the transpose # of value is needed. This however does produce the appropriate results logical = value.T == np.max(value, axis=1) tr['time of max'] = time[logical.T] pairs_scatter(experiments, tr, filter_scalar=False) pairs_lines(experiments, outcomes) pairs_density(experiments, tr, filter_scalar=False) plt.show()
bsd-3-clause
nekrut/tools-iuc
tools/fsd/fsd_beforevsafter.py
17
15642
#!/usr/bin/env python # Family size distribution of DCS from various steps of the Galaxy pipeline # # Author: Monika Heinzl & Gundula Povysil, Johannes-Kepler University Linz (Austria) # Contact: [email protected] # # Takes a TXT file with tags of reads that were aligned to certain regions of the reference genome (optional), # a TABULAR file with tags before the alignment to the SSCS, a FASTA file with reads that were part of the DCS and # a FASTA file with tags after trimming as input (optional). # The program produces a plot which shows the distribution of family sizes of the DCS from the input files and # a CSV file with the data of the plot. # USAGE: python FSD before vs after_no_refF1.3_FINAL.py --inputFile_SSCS filenameSSCS --inputName1 filenameSSCS --makeDCS filenameMakeDCS --afterTrimming filenameAfterTrimming --alignedTags DCSbamFile # --output_tabular outputfile_name_tabular --output_pdf outputfile_name_pdf import argparse import sys from collections import Counter import matplotlib.pyplot as plt import numpy import pysam from Bio import SeqIO from matplotlib.backends.backend_pdf import PdfPages plt.switch_backend('agg') def readFileReferenceFree(file, delim): with open(file, 'r') as dest_f: data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter=delim, comments='#', dtype=str) return data_array def readFasta(file): tag_consensus = [] fs_consensus = [] with open(file, "r") as consFile: for record in SeqIO.parse(consFile, "fasta"): tag_consensus.append(record.id) line = record.description a, b = line.split(" ") fs1, fs2 = b.split("-") fs_consensus.extend([fs1, fs2]) fs_consensus = numpy.array(fs_consensus).astype(int) return (tag_consensus, fs_consensus) def make_argparser(): parser = argparse.ArgumentParser(description='Analysis of read loss in duplex sequencing data') parser.add_argument('--inputFile_SSCS', help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName1') parser.add_argument('--makeDCS', help='FASTA File with information about tag and family size in the header.') parser.add_argument('--afterTrimming', default=None, help='FASTA File with information about tag and family size in the header.') parser.add_argument('--bamFile', help='BAM file with aligned reads.') parser.add_argument('--output_pdf', default="data.pdf", type=str, help='Name of the pdf and tabular file.') parser.add_argument('--output_tabular', default="data.tabular", type=str, help='Name of the pdf and tabular file.') return parser def compare_read_families_read_loss(argv): parser = make_argparser() args = parser.parse_args(argv[1:]) SSCS_file = args.inputFile_SSCS SSCS_file_name = args.inputName1 makeConsensus = args.makeDCS afterTrimming = args.afterTrimming ref_genome = args.bamFile title_file = args.output_tabular title_file2 = args.output_pdf sep = "\t" with open(title_file, "w") as output_file, PdfPages(title_file2) as pdf: # PLOT plt.rc('figure', figsize=(11.69, 8.27)) # A4 format plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 14 plt.rcParams['patch.edgecolor'] = "black" fig = plt.figure() plt.subplots_adjust(bottom=0.3) list1 = [] colors = [] labels = [] # data with tags of SSCS data_array = readFileReferenceFree(SSCS_file, "\t") seq = numpy.array(data_array[:, 1]) tags = numpy.array(data_array[:, 2]) quant = numpy.array(data_array[:, 0]).astype(int) # split data with all tags of SSCS after ab and ba strands all_ab = seq[numpy.where(tags == "ab")[0]] all_ba = seq[numpy.where(tags == "ba")[0]] quant_ab_sscs = quant[numpy.where(tags == "ab")[0]] quant_ba_sscs = quant[numpy.where(tags == "ba")[0]] seqDic_ab = dict(zip(all_ab, quant_ab_sscs)) seqDic_ba = dict(zip(all_ba, quant_ba_sscs)) # get tags of the SSCS which form a DCS # group large family sizes bigFamilies = numpy.where(quant > 20)[0] quant[bigFamilies] = 22 maximumX = numpy.amax(quant) # find all unique tags and get the indices for ALL tags (ab AND ba) u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True) d = u[c > 1] # get family sizes, tag for the duplicates duplTags_double = quant[numpy.in1d(seq, d)] list1.append(duplTags_double) colors.append("#0000FF") labels.append("before SSCS building") duplTags = duplTags_double[0::2] # ab of DCS duplTagsBA = duplTags_double[1::2] # ba of DCS d2 = d[(duplTags >= 3) & (duplTagsBA >= 3)] # ab and ba FS>=3 # all SSCSs FS>=3 seq_unique, seqUnique_index = numpy.unique(seq, return_index=True) seq_unique_FS = quant[seqUnique_index] seq_unique_FS3 = seq_unique_FS[seq_unique_FS >= 3] legend1 = "\ntotal nr. of tags (unique, FS>=1):\nDCS (before SSCS building, FS>=1):\ntotal nr. of tags (unique, FS>=3):\nDCS (before SSCS building, FS>=3):" legend2 = "total numbers * \n{:,}\n{:,}\n{:,}\n{:,}".format(len(seq_unique_FS), len(duplTags), len(seq_unique_FS3), len(d2)) plt.text(0.55, 0.14, legend1, size=11, transform=plt.gcf().transFigure) plt.text(0.88, 0.14, legend2, size=11, transform=plt.gcf().transFigure) # data make DCS tag_consensus, fs_consensus = readFasta(makeConsensus) # group large family sizes in the plot of fasta files bigFamilies = numpy.where(fs_consensus > 20)[0] fs_consensus[bigFamilies] = 22 list1.append(fs_consensus) colors.append("#298A08") labels.append("after DCS building") legend3 = "after DCS building:" legend4 = "{:,}".format(len(tag_consensus)) plt.text(0.55, 0.11, legend3, size=11, transform=plt.gcf().transFigure) plt.text(0.88, 0.11, legend4, size=11, transform=plt.gcf().transFigure) # data after trimming if afterTrimming is not None: tag_trimming, fs_trimming = readFasta(afterTrimming) bigFamilies = numpy.where(fs_trimming > 20)[0] fs_trimming[bigFamilies] = 22 list1.append(fs_trimming) colors.append("#DF0101") labels.append("after trimming") legend5 = "after trimming:" legend6 = "{:,}".format(len(tag_trimming)) plt.text(0.55, 0.09, legend5, size=11, transform=plt.gcf().transFigure) plt.text(0.88, 0.09, legend6, size=11, transform=plt.gcf().transFigure) # data of tags aligned to reference genome if ref_genome is not None: pysam.index(ref_genome) bam = pysam.AlignmentFile(ref_genome, "rb") seq_mut = [] for read in bam.fetch(): if not read.is_unmapped: if '_' in read.query_name: tags = read.query_name.split('_')[0] else: tags = read.query_name seq_mut.append(tags) # use only unique tags that were alignment to the reference genome seq_mut = numpy.array(seq_mut) seq_mut, seqMut_index = numpy.unique(seq_mut, return_index=True) # get family sizes for each tag in the BAM file quant_ab = [] quant_ba = [] for i in seq_mut: quant_ab.append(seqDic_ab.get(i)) quant_ba.append(seqDic_ba.get(i)) quant_ab_ref = numpy.array(quant_ab) quant_ba_ref = numpy.array(quant_ba) quant_all_ref = numpy.concatenate((quant_ab_ref, quant_ba_ref)) bigFamilies = numpy.where(quant_all_ref > 20)[0] # group large family sizes quant_all_ref[bigFamilies] = 22 list1.append(quant_all_ref) colors.append("#04cec7") labels.append("after alignment\nto reference") legend7 = "after alignment to reference:" length_DCS_ref = len(quant_ba_ref) # count of duplex tags that were aligned to reference genome legend8 = "{:,}".format(length_DCS_ref) plt.text(0.55, 0.07, legend7, size=11, transform=plt.gcf().transFigure) plt.text(0.88, 0.07, legend8, size=11, transform=plt.gcf().transFigure) counts = plt.hist(list1, bins=range(-1, maximumX + 1), stacked=False, label=labels, color=colors, align="left", alpha=1, edgecolor="black", linewidth=1) ticks = numpy.arange(0, maximumX, 1) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" plt.xticks(numpy.array(ticks), ticks1) if ref_genome is not None: count = numpy.array([v for k, v in sorted(Counter(quant_ab_ref).items())]) # count all family sizes from all ab strands legend = "max. family size:\nabsolute frequency:\nrelative frequency:\n\ntotal nr. of reads:\n(before SSCS building)" plt.text(0.1, 0.085, legend, size=11, transform=plt.gcf().transFigure) legend = "AB\n{}\n{}\n{:.5f}\n\n{:,}" \ .format(max(quant_ab_ref), count[len(count) - 1], float(count[len(count) - 1]) / sum(count), sum(numpy.array(data_array[:, 0]).astype(int))) plt.text(0.35, 0.105, legend, size=11, transform=plt.gcf().transFigure) count2 = numpy.array( [v for k, v in sorted(Counter(quant_ba_ref).items())]) # count all family sizes from all ba strands legend = "BA\n{}\n{}\n{:.5f}" \ .format(max(quant_ba_ref), count2[len(count2) - 1], float(count2[len(count2) - 1]) / sum(count2)) plt.text(0.45, 0.1475, legend, size=11, transform=plt.gcf().transFigure) legend4 = "* In the plot, the family sizes of ab and ba strands and of both duplex tags were used.\nWhereas the total numbers indicate only the single count of the formed duplex tags." plt.text(0.1, 0.02, legend4, size=11, transform=plt.gcf().transFigure) plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True) plt.title("Family size distribution of tags from various steps of the Du Novo pipeline", fontsize=14) plt.xlabel("Family size", fontsize=14) plt.ylabel("Absolute Frequency", fontsize=14) plt.grid(b=True, which="major", color="#424242", linestyle=":") plt.margins(0.01, None) pdf.savefig(fig, bbox_inch="tight") plt.close() # write information about plot into a csv file output_file.write("Dataset:{}{}\n".format(sep, SSCS_file_name)) if ref_genome is not None: output_file.write("{}AB{}BA\n".format(sep, sep)) output_file.write("max. family size:{}{}{}{}\n".format(sep, max(quant_ab_ref), sep, max(quant_ba_ref))) output_file.write( "absolute frequency:{}{}{}{}\n".format(sep, count[len(count) - 1], sep, count2[len(count2) - 1])) output_file.write( "relative frequency:{}{:.3f}{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count), sep, float(count2[len(count2) - 1]) / sum(count2))) output_file.write("\ntotal nr. of reads before SSCS building{}{}\n".format(sep, sum(numpy.array(data_array[:, 0]).astype(int)))) output_file.write("\n\nValues from family size distribution\n") if afterTrimming is None and ref_genome is None: if afterTrimming is None: output_file.write("{}before SSCS building{}after DCS building\n".format(sep, sep)) elif ref_genome is None: output_file.write("{}before SSCS building{}atfer DCS building\n".format(sep, sep)) for fs, sscs, dcs in zip(counts[1][2:len(counts[1])], counts[0][0][2:len(counts[0][0])], counts[0][1][2:len(counts[0][1])]): if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}{}{}{}\n".format(fs, sep, int(sscs), sep, int(dcs))) output_file.write("sum{}{}{}{}\n".format(sep, int(sum(counts[0][0])), sep, int(sum(counts[0][1])))) elif afterTrimming is None or ref_genome is None: if afterTrimming is None: output_file.write("{}before SSCS building{}after DCS building{}after alignment to reference\n".format(sep, sep, sep)) elif ref_genome is None: output_file.write("{}before SSCS building{}atfer DCS building{}after trimming\n".format(sep, sep, sep)) for fs, sscs, dcs, reference in zip(counts[1][2:len(counts[1])], counts[0][0][2:len(counts[0][0])], counts[0][1][2:len(counts[0][1])], counts[0][2][2:len(counts[0][2])]): if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}{}{}{}{}{}\n".format(fs, sep, int(sscs), sep, int(dcs), sep, int(reference))) output_file.write("sum{}{}{}{}{}{}\n".format(sep, int(sum(counts[0][0])), sep, int(sum(counts[0][1])), sep, int(sum(counts[0][2])))) else: output_file.write("{}before SSCS building{}after DCS building{}after trimming{}after alignment to reference\n".format(sep, sep, sep, sep)) for fs, sscs, dcs, trim, reference in zip(counts[1][2:len(counts[1])], counts[0][0][2:len(counts[0][0])], counts[0][1][2:len(counts[0][1])], counts[0][2][2:len(counts[0][2])], counts[0][3][2:len(counts[0][3])]): if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}{}{}{}{}{}{}{}\n".format(fs, sep, int(sscs), sep, int(dcs), sep, int(trim), sep, int(reference))) output_file.write("sum{}{}{}{}{}{}{}{}\n".format(sep, int(sum(counts[0][0])), sep, int(sum(counts[0][1])), sep, int(sum(counts[0][2])), sep, int(sum(counts[0][3])))) output_file.write("\n\nIn the plot, the family sizes of ab and ba strands and of both duplex tags were used.\nWhereas the total numbers indicate only the single count of the formed duplex tags.\n") output_file.write("total nr. of tags (unique, FS>=1){}{}\n".format(sep, len(seq_unique_FS))) output_file.write("DCS (before SSCS building, FS>=1){}{}\n".format(sep, len(duplTags))) output_file.write("total nr. of tags (unique, FS>=3){}{}\n".format(sep, len(seq_unique_FS3))) output_file.write("DCS (before SSCS building, FS>=3){}{}\n".format(sep, len(d2))) output_file.write("after DCS building{}{}\n".format(sep, len(tag_consensus))) if afterTrimming is not None: output_file.write("after trimming{}{}\n".format(sep, len(tag_trimming))) if ref_genome is not None: output_file.write("after alignment to reference{}{}\n".format(sep, length_DCS_ref)) print("Files successfully created!") if __name__ == '__main__': sys.exit(compare_read_families_read_loss(sys.argv))
mit
eteq/astropy-helpers
astropy_helpers/sphinx/ext/tests/test_docscrape.py
2
18105
# -*- encoding:utf-8 -*- from __future__ import division, absolute_import, print_function import sys, textwrap from ..docscrape import NumpyDocString, FunctionDoc, ClassDoc from ..docscrape_sphinx import SphinxDocString, SphinxClassDoc if sys.version_info[0] >= 3: sixu = lambda s: s else: sixu = lambda s: unicode(s, 'unicode_escape') doc_txt = '''\ numpy.multivariate_normal(mean, cov, shape=None, spam=None) Draw values from a multivariate normal distribution with specified mean and covariance. The multivariate normal or Gaussian distribution is a generalisation of the one-dimensional normal distribution to higher dimensions. Parameters ---------- mean : (N,) ndarray Mean of the N-dimensional distribution. .. math:: (1+2+3)/3 cov : (N, N) ndarray Covariance matrix of the distribution. shape : tuple of ints Given a shape of, for example, (m,n,k), m*n*k samples are generated, and packed in an m-by-n-by-k arrangement. Because each sample is N-dimensional, the output shape is (m,n,k,N). Returns ------- out : ndarray The drawn samples, arranged according to `shape`. If the shape given is (m,n,...), then the shape of `out` is is (m,n,...,N). In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. list of str This is not a real return value. It exists to test anonymous return values. Other Parameters ---------------- spam : parrot A parrot off its mortal coil. Raises ------ RuntimeError Some error Warns ----- RuntimeWarning Some warning Warnings -------- Certain warnings apply. Notes ----- Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0,0] >>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis >>> x,y = multivariate_normal(mean,cov,5000).T >>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show() Note that the covariance matrix must be symmetric and non-negative definite. References ---------- .. [1] A. Papoulis, "Probability, Random Variables, and Stochastic Processes," 3rd ed., McGraw-Hill Companies, 1991 .. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification," 2nd ed., Wiley, 2001. See Also -------- some, other, funcs otherfunc : relationship Examples -------- >>> mean = (1,2) >>> cov = [[1,0],[1,0]] >>> x = multivariate_normal(mean,cov,(3,3)) >>> print x.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> print list( (x[0,0,:] - mean) < 0.6 ) [True, True] .. index:: random :refguide: random;distributions, random;gauss ''' doc = NumpyDocString(doc_txt) def test_signature(): assert doc['Signature'].startswith('numpy.multivariate_normal(') assert doc['Signature'].endswith('spam=None)') def test_summary(): assert doc['Summary'][0].startswith('Draw values') assert doc['Summary'][-1].endswith('covariance.') def test_extended_summary(): assert doc['Extended Summary'][0].startswith('The multivariate normal') def test_parameters(): assert len(doc['Parameters']) == 3 assert [n for n,_,_ in doc['Parameters']] == ['mean','cov','shape'] arg, arg_type, desc = doc['Parameters'][1] assert arg_type == '(N, N) ndarray' assert desc[0].startswith('Covariance matrix') assert doc['Parameters'][0][-1][-2] == ' (1+2+3)/3' def test_other_parameters(): assert len(doc['Other Parameters']) == 1 assert [n for n,_,_ in doc['Other Parameters']] == ['spam'] arg, arg_type, desc = doc['Other Parameters'][0] assert arg_type == 'parrot' assert desc[0].startswith('A parrot off its mortal coil') def test_returns(): assert len(doc['Returns']) == 2 arg, arg_type, desc = doc['Returns'][0] assert arg == 'out' assert arg_type == 'ndarray' assert desc[0].startswith('The drawn samples') assert desc[-1].endswith('distribution.') arg, arg_type, desc = doc['Returns'][1] assert arg == 'list of str' assert arg_type == '' assert desc[0].startswith('This is not a real') assert desc[-1].endswith('anonymous return values.') def test_notes(): assert doc['Notes'][0].startswith('Instead') assert doc['Notes'][-1].endswith('definite.') assert len(doc['Notes']) == 17 def test_references(): assert doc['References'][0].startswith('..') assert doc['References'][-1].endswith('2001.') def test_examples(): assert doc['Examples'][0].startswith('>>>') assert doc['Examples'][-1].endswith('True]') def test_index(): assert doc['index']['default'] == 'random' assert len(doc['index']) == 2 assert len(doc['index']['refguide']) == 2 def non_blank_line_by_line_compare(a,b): a = textwrap.dedent(a) b = textwrap.dedent(b) a = [l.rstrip() for l in a.split('\n') if l.strip()] b = [l.rstrip() for l in b.split('\n') if l.strip()] for n,line in enumerate(a): if not line == b[n]: raise AssertionError("Lines %s of a and b differ: " "\n>>> %s\n<<< %s\n" % (n,line,b[n])) def test_str(): non_blank_line_by_line_compare(str(doc), """numpy.multivariate_normal(mean, cov, shape=None, spam=None) Draw values from a multivariate normal distribution with specified mean and covariance. The multivariate normal or Gaussian distribution is a generalisation of the one-dimensional normal distribution to higher dimensions. Parameters ---------- mean : (N,) ndarray Mean of the N-dimensional distribution. .. math:: (1+2+3)/3 cov : (N, N) ndarray Covariance matrix of the distribution. shape : tuple of ints Given a shape of, for example, (m,n,k), m*n*k samples are generated, and packed in an m-by-n-by-k arrangement. Because each sample is N-dimensional, the output shape is (m,n,k,N). Returns ------- out : ndarray The drawn samples, arranged according to `shape`. If the shape given is (m,n,...), then the shape of `out` is is (m,n,...,N). In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. list of str This is not a real return value. It exists to test anonymous return values. Other Parameters ---------------- spam : parrot A parrot off its mortal coil. Raises ------ RuntimeError Some error Warns ----- RuntimeWarning Some warning Warnings -------- Certain warnings apply. See Also -------- `some`_, `other`_, `funcs`_ `otherfunc`_ relationship Notes ----- Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0,0] >>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis >>> x,y = multivariate_normal(mean,cov,5000).T >>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show() Note that the covariance matrix must be symmetric and non-negative definite. References ---------- .. [1] A. Papoulis, "Probability, Random Variables, and Stochastic Processes," 3rd ed., McGraw-Hill Companies, 1991 .. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification," 2nd ed., Wiley, 2001. Examples -------- >>> mean = (1,2) >>> cov = [[1,0],[1,0]] >>> x = multivariate_normal(mean,cov,(3,3)) >>> print x.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> print list( (x[0,0,:] - mean) < 0.6 ) [True, True] .. index:: random :refguide: random;distributions, random;gauss""") def test_sphinx_str(): sphinx_doc = SphinxDocString(doc_txt) non_blank_line_by_line_compare(str(sphinx_doc), """ .. index:: random single: random;distributions, random;gauss Draw values from a multivariate normal distribution with specified mean and covariance. The multivariate normal or Gaussian distribution is a generalisation of the one-dimensional normal distribution to higher dimensions. :Parameters: **mean** : (N,) ndarray Mean of the N-dimensional distribution. .. math:: (1+2+3)/3 **cov** : (N, N) ndarray Covariance matrix of the distribution. **shape** : tuple of ints Given a shape of, for example, (m,n,k), m*n*k samples are generated, and packed in an m-by-n-by-k arrangement. Because each sample is N-dimensional, the output shape is (m,n,k,N). :Returns: **out** : ndarray The drawn samples, arranged according to `shape`. If the shape given is (m,n,...), then the shape of `out` is is (m,n,...,N). In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. list of str This is not a real return value. It exists to test anonymous return values. :Other Parameters: **spam** : parrot A parrot off its mortal coil. :Raises: **RuntimeError** Some error :Warns: **RuntimeWarning** Some warning .. warning:: Certain warnings apply. .. seealso:: :obj:`some`, :obj:`other`, :obj:`funcs` :obj:`otherfunc` relationship .. rubric:: Notes Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0,0] >>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis >>> x,y = multivariate_normal(mean,cov,5000).T >>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show() Note that the covariance matrix must be symmetric and non-negative definite. .. rubric:: References .. [1] A. Papoulis, "Probability, Random Variables, and Stochastic Processes," 3rd ed., McGraw-Hill Companies, 1991 .. [2] R.O. Duda, P.E. Hart, and D.G. Stork, "Pattern Classification," 2nd ed., Wiley, 2001. .. only:: latex [1]_, [2]_ .. rubric:: Examples >>> mean = (1,2) >>> cov = [[1,0],[1,0]] >>> x = multivariate_normal(mean,cov,(3,3)) >>> print x.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> print list( (x[0,0,:] - mean) < 0.6 ) [True, True] """) doc2 = NumpyDocString(""" Returns array of indices of the maximum values of along the given axis. Parameters ---------- a : {array_like} Array to look in. axis : {None, integer} If None, the index is into the flattened array, otherwise along the specified axis""") def test_parameters_without_extended_description(): assert len(doc2['Parameters']) == 2 doc3 = NumpyDocString(""" my_signature(*params, **kwds) Return this and that. """) def test_escape_stars(): signature = str(doc3).split('\n')[0] signature == 'my_signature(\*params, \*\*kwds)' doc4 = NumpyDocString( """a.conj() Return an array with all complex-valued elements conjugated.""") def test_empty_extended_summary(): assert doc4['Extended Summary'] == [] doc5 = NumpyDocString( """ a.something() Raises ------ LinAlgException If array is singular. Warns ----- SomeWarning If needed """) def test_raises(): assert len(doc5['Raises']) == 1 name,_,desc = doc5['Raises'][0] assert name == 'LinAlgException' assert desc == ['If array is singular.'] def test_warns(): assert len(doc5['Warns']) == 1 name,_,desc = doc5['Warns'][0] assert name == 'SomeWarning' assert desc == ['If needed'] def test_see_also(): doc6 = NumpyDocString( """ z(x,theta) See Also -------- func_a, func_b, func_c func_d : some equivalent func foo.func_e : some other func over multiple lines func_f, func_g, :meth:`func_h`, func_j, func_k :obj:`baz.obj_q` :class:`class_j`: fubar foobar """) assert len(doc6['See Also']) == 12 for func, desc, role in doc6['See Also']: if func in ('func_a', 'func_b', 'func_c', 'func_f', 'func_g', 'func_h', 'func_j', 'func_k', 'baz.obj_q'): assert(not desc) else: assert(desc) if func == 'func_h': assert role == 'meth' elif func == 'baz.obj_q': assert role == 'obj' elif func == 'class_j': assert role == 'class' else: assert role is None if func == 'func_d': assert desc == ['some equivalent func'] elif func == 'foo.func_e': assert desc == ['some other func over', 'multiple lines'] elif func == 'class_j': assert desc == ['fubar', 'foobar'] def test_see_also_print(): class Dummy(object): """ See Also -------- func_a, func_b func_c : some relationship goes here func_d """ pass obj = Dummy() s = str(FunctionDoc(obj, role='func')) assert(':func:`func_a`, :func:`func_b`' in s) assert(' some relationship' in s) assert(':func:`func_d`' in s) doc7 = NumpyDocString(""" Doc starts on second line. """) def test_empty_first_line(): assert doc7['Summary'][0].startswith('Doc starts') def test_no_summary(): str(SphinxDocString(""" Parameters ----------""")) def test_unicode(): doc = SphinxDocString(""" öäöäöäöäöåååå öäöäöäööäååå Parameters ---------- ååå : äää ööö Returns ------- ååå : ööö äää """) assert isinstance(doc['Summary'][0], str) assert doc['Summary'][0] == 'öäöäöäöäöåååå' def test_plot_examples(): cfg = dict(use_plots=True) doc = SphinxDocString(""" Examples -------- >>> import matplotlib.pyplot as plt >>> plt.plot([1,2,3],[4,5,6]) >>> plt.show() """, config=cfg) assert 'plot::' in str(doc), str(doc) doc = SphinxDocString(""" Examples -------- .. plot:: import matplotlib.pyplot as plt plt.plot([1,2,3],[4,5,6]) plt.show() """, config=cfg) assert str(doc).count('plot::') == 1, str(doc) def test_class_members(): class Dummy(object): """ Dummy class. """ def spam(self, a, b): """Spam\n\nSpam spam.""" pass def ham(self, c, d): """Cheese\n\nNo cheese.""" pass @property def spammity(self): """Spammity index""" return 0.95 class Ignorable(object): """local class, to be ignored""" pass for cls in (ClassDoc, SphinxClassDoc): doc = cls(Dummy, config=dict(show_class_members=False)) assert 'Methods' not in str(doc), (cls, str(doc)) assert 'spam' not in str(doc), (cls, str(doc)) assert 'ham' not in str(doc), (cls, str(doc)) assert 'spammity' not in str(doc), (cls, str(doc)) assert 'Spammity index' not in str(doc), (cls, str(doc)) doc = cls(Dummy, config=dict(show_class_members=True)) assert 'Methods' in str(doc), (cls, str(doc)) assert 'spam' in str(doc), (cls, str(doc)) assert 'ham' in str(doc), (cls, str(doc)) assert 'spammity' in str(doc), (cls, str(doc)) if cls is SphinxClassDoc: assert '.. autosummary::' in str(doc), str(doc) else: assert 'Spammity index' in str(doc), str(doc) def test_duplicate_signature(): # Duplicate function signatures occur e.g. in ufuncs, when the # automatic mechanism adds one, and a more detailed comes from the # docstring itself. doc = NumpyDocString( """ z(x1, x2) z(a, theta) """) assert doc['Signature'].strip() == 'z(a, theta)' class_doc_txt = """ Foo Parameters ---------- f : callable ``f(t, y, *f_args)`` Aaa. jac : callable ``jac(t, y, *jac_args)`` Bbb. Attributes ---------- t : float Current time. y : ndarray Current variable values. Methods ------- a b c Examples -------- For usage examples, see `ode`. """ def test_class_members_doc(): doc = ClassDoc(None, class_doc_txt) non_blank_line_by_line_compare(str(doc), """ Foo Parameters ---------- f : callable ``f(t, y, *f_args)`` Aaa. jac : callable ``jac(t, y, *jac_args)`` Bbb. Examples -------- For usage examples, see `ode`. Attributes ---------- t : float Current time. y : ndarray Current variable values. Methods ------- a b c .. index:: """) def test_class_members_doc_sphinx(): doc = SphinxClassDoc(None, class_doc_txt) non_blank_line_by_line_compare(str(doc), """ Foo :Parameters: **f** : callable ``f(t, y, *f_args)`` Aaa. **jac** : callable ``jac(t, y, *jac_args)`` Bbb. .. rubric:: Examples For usage examples, see `ode`. .. rubric:: Attributes === ========== t (float) Current time. y (ndarray) Current variable values. === ========== .. rubric:: Methods === ========== a b c === ========== """)
bsd-3-clause
duaneloh/ExpandMaximizeCompress
utils/autoplot_unstable.py
2
15792
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import sys import Tkinter as Tk import os from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import matplotlib.gridspec as gridspec import matplotlib.patches as patches import time from glob import glob import re class Plotter: def __init__(self, master, size=200): self.master = master self.size = size self.center = self.size/2 self.max_iter = 0 self.fname = Tk.StringVar() self.logfname = Tk.StringVar() self.rangestr = Tk.StringVar() self.imagename = Tk.StringVar() self.log_imagename = Tk.StringVar() self.layernum = Tk.IntVar() self.ifcheck = Tk.IntVar() self.iter = Tk.IntVar() self.orientnum = set() self.orient = [] self.log_txt = "" self.fname.set('data/output/intens_001.bin') self.logfname.set('EMC.log') self.imagename.set('images/' + os.path.splitext(os.path.basename(self.fname.get()))[0] + '.png') self.log_imagename.set('images/log_fig.png') self.image_exists = False self.rangestr.set(str(1.)) self.layernum.set(self.center) self.ifcheck.set(0) self.iter.set(0) self.fig = plt.figure(figsize=(14,5)) self.fig.subplots_adjust(left=0.0, bottom=0.00, right=0.99, wspace=0.0) self.canvas = FigureCanvasTkAgg(self.fig, self.master) self.canvas.get_tk_widget().grid(row=0,column=0) self.log_fig = plt.figure(figsize=(14,5), facecolor='white') #self.log_fig.subplots_adjust(left=0.0, bottom=0.00, right=0.99, wspace=0.0) self.plotcanvas = FigureCanvasTkAgg(self.log_fig, self.master) self.plotcanvas.get_tk_widget().grid(row=1,column=0) self.options = Tk.Frame(self.master,relief=Tk.GROOVE,borderwidth=5,width=400, height=200) #self.options.grid(row=0,column=1,rowspan=2,sticky=Tk.N+Tk.S) self.options.grid(row=0,column=1,sticky=Tk.N) self.log_display = Tk.Frame(self.master,relief=Tk.GROOVE,borderwidth=5,width=400, height=200) self.log_display.grid(row=1,column=1,sticky=Tk.N) self.old_fname = self.fname.get() self.old_rangestr = self.rangestr.get() self.master.bind('<Return>', self.parse_and_plot) self.master.bind('<KP_Enter>', self.parse_and_plot) self.master.bind('<Control-s>', self.save_plot) self.master.bind('<Control-q>', self.quit_) self.master.bind('<Up>', self.increment_layer) self.master.bind('<Down>', self.decrement_layer) self.init_UI() def init_UI(self): line = Tk.Frame(self.options) line.pack(fill=Tk.X) Tk.Label(line,text="Log Filename: ").pack(side=Tk.LEFT) Tk.Entry(line,textvariable=self.logfname,width=20).pack(side=Tk.LEFT, fill=Tk.X, expand=1) Tk.Label(line,text="PlotMax: ").pack(side=Tk.LEFT, fill=Tk.X) Tk.Entry(line,textvariable=self.rangestr,width=10).pack(side=Tk.LEFT) line = Tk.Frame(self.options) line.pack(fill=Tk.X) Tk.Label(line,text="Filename: ").pack(side=Tk.LEFT) Tk.Entry(line,textvariable=self.fname,width=45).pack(side=Tk.LEFT, fill=Tk.X, expand=1) line = Tk.Frame(self.options) line.pack(fill=Tk.X) Tk.Label(line,text="Image name: ").pack(side=Tk.LEFT) Tk.Entry(line,textvariable=self.imagename,width=30).pack(side=Tk.LEFT, fill=Tk.X, expand=1) Tk.Button(line,text="Save",command=self.save_plot).pack(side=Tk.LEFT) line = Tk.Frame(self.options) line.pack(fill=Tk.X) Tk.Label(line,text="Log image name: ").pack(side=Tk.LEFT) Tk.Entry(line,textvariable=self.log_imagename,width=30).pack(side=Tk.LEFT, fill=Tk.X, expand=1) Tk.Button(line,text="Save",command=self.save_log_plot).pack(side=Tk.LEFT) line = Tk.Frame(self.options) line.pack(fill=Tk.BOTH, expand=1) Tk.Label(line,text='Layer no. ').pack(side=Tk.LEFT) Tk.Button(line,text="-",command=self.decrement_layer).pack(side=Tk.LEFT,fill=Tk.Y) self.layerSlider = Tk.Scale(line,from_=0,to=int(self.size),orient=Tk.HORIZONTAL,length=250,width=20, variable=self.layernum,command=self.change_iter) self.layerSlider.pack(side=Tk.LEFT, expand=1, fill=Tk.BOTH) Tk.Button(line,text="+",command=self.increment_layer).pack(side=Tk.LEFT,fill=Tk.Y) line = Tk.Frame(self.options) line.pack(fill=Tk.BOTH, expand=1) Tk.Label(line,text='Iteration: ').pack(side=Tk.LEFT) Tk.Button(line,text="-",command=self.decrement_iter).pack(side=Tk.LEFT,fill=Tk.Y) self.slider = Tk.Scale(line,from_=0,to=self.max_iter,orient=Tk.HORIZONTAL,length=250,width=20, variable=self.iter,command=None) self.slider.pack(side=Tk.LEFT, expand=1, fill=Tk.BOTH) Tk.Button(line,text="+",command=self.increment_iter).pack(side=Tk.LEFT,fill=Tk.Y) line = Tk.Frame(self.options) line.pack(fill=Tk.X) Tk.Button(line,text="Check",command=self.check_for_new).pack(side=Tk.LEFT) Tk.Checkbutton(line,text="Keep checking",variable=self.ifcheck,command=self.keep_checking).pack(side=Tk.LEFT) line = Tk.Frame(self.options) line.pack(fill=Tk.X) Tk.Button(line,text="Quit",command=self.master.quit).pack(side=Tk.RIGHT) Tk.Button(line,text="Reparse",command=self.force_plot).pack(side=Tk.RIGHT) Tk.Button(line,text="Plot",command=self.parse_and_plot).pack(side=Tk.RIGHT) if os.path.exists('recon.log'): with open("recon.log", 'r') as f: all_lines = ''.join(f.readlines()) else: all_lines = '' scroll2 = Tk.Scrollbar(self.options) self.txt2 = Tk.Text(self.options, height=10, width=70, font=("Arial",8)) scroll2.pack(side=Tk.RIGHT, fill=Tk.Y, expand=1) self.txt2.pack(side=Tk.LEFT, fill=Tk.Y, expand=1) scroll2.config(command=self.txt2.yview) self.txt2.config(yscrollcommand=scroll2.set) self.txt2.insert(Tk.END, all_lines) scroll = Tk.Scrollbar(self.log_display) self.txt = Tk.Text(self.log_display, height=28, width=70, font=("Arial",8)) scroll.pack(side=Tk.RIGHT, fill=Tk.Y, expand=1) self.txt.pack(side=Tk.LEFT, fill=Tk.Y, expand=1) scroll.config(command=self.txt.yview) self.txt.config(yscrollcommand=scroll.set) self.txt.insert(Tk.END, self.log_txt) def plot_vol(self, num): self.imagename.set('images/' + os.path.splitext(os.path.basename(self.fname.get()))[0] + '.png') rangemax = float(self.rangestr.get()) a = self.vol[num,:,:]**0.2 b = self.vol[:,num,:]**0.2 c = self.vol[:,:,num]**0.2 self.fig.clf() grid = gridspec.GridSpec(1,3, wspace=0., hspace=0.) s1 = plt.Subplot(self.fig, grid[:,0]) s1.imshow(a, vmin=0, vmax=rangemax, cmap='jet', interpolation='none') s1.set_title("YZ plane", y=1.01) s1.axis('off') self.fig.add_subplot(s1) s2 = plt.Subplot(self.fig, grid[:,1]) s2.matshow(b, vmin=0, vmax=rangemax, cmap='jet', interpolation='none') s2.set_title("XZ plane", y=1.01) s2.axis('off') self.fig.add_subplot(s2) s3 = plt.Subplot(self.fig, grid[:,2]) s3.matshow(c, vmin=0, vmax=rangemax, cmap='jet', interpolation='none') s3.set_title("XY plane", y=1.01) s3.axis('off') self.fig.add_subplot(s3) self.canvas.show() self.image_exists = True self.old_rangestr = self.rangestr.get() def parse(self): s = int(self.size) fname = self.fname.get() if os.path.isfile(fname): f = open(fname, "r") else: print "Unable to open", fname return self.vol = np.fromfile(f, dtype='f8') self.size = int(np.ceil(np.power(len(self.vol), 1./3.))) self.vol = self.vol.reshape(self.size, self.size, self.size) self.center = self.size/2 if not self.image_exists: self.layernum.set(self.center) self.layerSlider.configure(to=int(self.size)) self.old_fname = fname def plot_log(self): with open(self.logfname.get(), 'r') as f: all_lines = f.readlines() self.log_txt = ''.join(all_lines) self.txt.delete('1.0', Tk.END) self.txt.insert(Tk.END, self.log_txt) lines = [l.rstrip().split() for l in all_lines] flag = False loglines = [] for l in lines: if len(l) < 1: continue if flag is True: loglines.append(l) elif l[0] == 'Iter': flag = True # Read orientation files only if they haven't already been read o_files = sorted(glob("data/orientations/*.bin")) if len(o_files) > 0: for p in o_files: fn = os.path.split(p)[-1] label = int(re.search("orientations_(\d+).bin", fn).groups(1)[0]) if label not in self.orientnum: self.orientnum.add(label) with open(p, 'r') as f: #self.orient.append(np.asarray([int(l.rstrip()) for l in f.readlines()])) self.orient.append(np.fromfile(f, sep="", dtype='int32')) else: #print "skipping", label pass else: o_files = sorted(glob("data/orientations/*.dat")) for p in o_files: fn = os.path.split(p)[-1] label = int(re.search("orientations_(\d+).dat", fn).groups(1)[0]) if label not in self.orientnum: print "reading ASCII file", fn self.orientnum.add(label) with open(p, 'r') as f: self.orient.append(np.asarray([int(l.rstrip()) for l in f.readlines()])) else: #print "skipping", label pass o_array = np.asarray(self.orient) ord = o_array[-1].argsort() for index in range(len(o_array)): o_array[index] = o_array[index][ord] o_array = o_array.T loglines = np.array(loglines) if len(loglines) == 0: return iter = loglines[:,0].astype(np.int32) change = loglines[:,2].astype(np.float64) info = loglines[:,3].astype(np.float64) like = loglines[:,4].astype(np.float64) num_rot = loglines[:,5].astype(np.int32) beta = loglines[:,6].astype(np.float64) num_rot_change = np.append(np.where(np.diff(num_rot)>0)[0], num_rot.shape[0]) beta_change = np.where(np.diff(beta)>0.)[0] o_array = np.asarray(self.orient) istart = 0 for i in range(len(num_rot_change)): istop = num_rot_change[i] ord = o_array[istop-1].argsort() for index in np.arange(istart,istop): o_array[index] = o_array[index][ord] istart = istop o_array = o_array.T self.log_fig.clf() grid = gridspec.GridSpec(2,3, wspace=0.3, hspace=0.2) grid.update(left=0.05, right=0.99, hspace=0.0, wspace=0.2) s1 = plt.Subplot(self.log_fig, grid[:,0]) s1.plot(iter, change, 'o-') s1.set_yscale('log') s1.set_xlabel('Iteration') s1.set_ylabel('RMS change') s1_lim = s1.get_ylim() s1.set_ylim(s1_lim) for i in beta_change: s1.plot([i+1,i+1], s1_lim,'k--',lw=1) for i in num_rot_change[:-1]: s1.plot([i+1,i+1], s1_lim,'r--',lw=1) self.log_fig.add_subplot(s1) s2 = plt.Subplot(self.log_fig, grid[0,1]) s2.plot(iter, info, 'o-') s2.set_xlabel('Iteration') s2.set_ylabel(r'Mutual info. $I(K,\Omega)$') s2_lim = s2.get_ylim() s2.set_ylim(s2_lim) for i in beta_change: s2.plot([i+1,i+1], s2_lim,'k--',lw=1) for i in num_rot_change[:-1]: s2.plot([i+1,i+1], s2_lim,'r--',lw=1) self.log_fig.add_subplot(s2) s3 = plt.Subplot(self.log_fig, grid[1,1]) s3.plot(iter[1:], like[1:], 'o-') s3.set_xlabel('Iteration') s3.set_ylabel('Avg log-likelihood') s3_lim = s3.get_ylim() s3.set_ylim(s3_lim) for i in beta_change: s3.plot([i+1,i+1], s3_lim,'k--',lw=1) for i in num_rot_change[:-1]: s3.plot([i+1,i+1], s3_lim,'r--',lw=1) self.log_fig.add_subplot(s3) s4 = plt.Subplot(self.log_fig, grid[:,2]) sh = o_array.shape s4.imshow(o_array**0.5, aspect=(1.*sh[1]/sh[0]), extent=[1,sh[1],sh[0],0]) s4.get_yaxis().set_ticks([]) s4.set_xlabel('Iteration') s4.set_ylabel('Most likely orientations of data\n(sorted/colored by last iteration\'s quat)') self.log_fig.add_subplot(s4) grid.tight_layout(self.log_fig) self.plotcanvas.show() def parse_and_plot(self, event=None): if not self.image_exists: self.parse() self.plot_vol(self.layernum.get()) elif self.old_fname == self.fname.get() and self.old_rangestr != self.rangestr.get(): self.plot_vol(self.layernum.get()) else: self.parse() self.plot_vol(self.layernum.get()) def check_for_new(self, event=None): with open(self.logfname.get(), 'r') as f: last_line = f.readlines()[-1].rstrip().split() try: iter = int(last_line[0]) except ValueError: iter = 0 if iter > 0 and self.max_iter != iter: self.fname.set('data/output/intens_%.3d.bin' % iter) self.max_iter = iter self.slider.configure(to=self.max_iter) self.iter.set(iter) self.plot_log() self.parse_and_plot() def keep_checking(self, event=None): if self.ifcheck.get() is 1: self.check_for_new() self.master.after(5000, self.keep_checking) def force_plot(self, event=None): self.parse() self.plot_vol(self.layernum.get()) def increment_layer(self, event=None): self.layernum.set(min(self.layernum.get()+1, self.size-1)) self.plot_vol(self.layernum.get()) def decrement_layer(self, event=None): self.layernum.set(max(self.layernum.get()-1, 0)) self.plot_vol(self.layernum.get()) def increment_iter(self, event=None): self.iter.set(min(self.iter.get()+1, self.max_iter)) if self.iter.get() >= 0: self.fname.set('data/output/intens_%.3d.bin' % self.iter.get()) self.parse_and_plot() def decrement_iter(self, event=None): self.iter.set(max(self.iter.get()-1, 0)) if self.iter.get() >= 0: self.fname.set('data/output/intens_%.3d.bin' % self.iter.get()) self.parse_and_plot() def change_iter(self, event=None): if self.iter.get() >= 0: self.fname.set('data/output/intens_%.3d.bin' % self.iter.get()) def save_plot(self, event=None): self.fig.savefig(self.imagename.get(), bbox_inches='tight') print "Saved to", self.imagename.get() def save_log_plot(self, event=None): self.log_fig.savefig(self.log_imagename.get(), bbox_inches='tight') print "Saved to", self.log_imagename.get() def quit_(self, event=None): self.master.quit() root = Tk.Tk() plotter = Plotter(root) root.mainloop()
gpl-3.0
anjsimmo/simple-ml-pipeline
learners/traveltime_linearvol.py
1
2019
from sklearn import linear_model import json import pickle import numpy as np import pandas as pd import numpy as np import datatables.traveltime def write_model(regr, model_file): """ Write linear model to file regr -- trained sklearn.linear_model output_file -- file """ model_params = { 'coef': list(regr.coef_), 'intercept': regr.intercept_ } model_str = json.dumps(model_params) with open(model_file, 'w') as out_f: out_f.write(model_str) def load_model(model_file): """ Load linear model from file model_file -- file returns -- trained sklearn.linear_model """ with open(model_file, 'r') as model_f: model_str = model_f.read() model_params = json.loads(model_str) regr = linear_model.LinearRegression() regr.coef_ = np.array(model_params['coef']) regr.intercept_ = model_params['intercept'] return regr def train(train_data_file, model_file): data = datatables.traveltime.read_xs(train_data_file) # Extract Features # We create the feature $volume^2$, in order to allow the regression algorithm to find quadratic fits. # Turn list into a n*1 design matrix. At this stage, we only have a single feature in each row. vol = data['volume'].values[:, np.newaxis] # Add x^2 as feature to allow quadratic regression xs = np.hstack([vol, vol**2]) y = data['y'].values # travel times regr = linear_model.LinearRegression() regr.fit(xs, y) write_model(regr, model_file) def predict(model_file, test_xs_file, output_file): regr = load_model(model_file) data = datatables.traveltime.read_xs(test_xs_file) # Turn list into a n*1 design matrix. At this stage, we only have a single feature in each row. vol = data['volume'].values[:, np.newaxis] # Add x^2 as feature to allow quadratic regression xs = np.hstack([vol, vol**2]) y_pred = regr.predict(xs) data['pred'] = y_pred datatables.traveltime.write_pred(data, output_file)
mit
nuclear-wizard/moose
test/tests/variables/fe_hermite_convergence/plot.py
12
1471
#!/usr/bin/env python3 #* This file is part of the MOOSE framework #* https://www.mooseframework.org #* #* All rights reserved, see COPYRIGHT for full restrictions #* https://github.com/idaholab/moose/blob/master/COPYRIGHT #* #* Licensed under LGPL 2.1, please see LICENSE for details #* https://www.gnu.org/licenses/lgpl-2.1.html import matplotlib.pyplot as plt import numpy as np """ This script makes log-log plots of the error vs. h for the tests in this directory. """ filenames = ['hermite_converge_dirichlet_out.csv', 'hermite_converge_periodic_out.csv'] for filename in filenames: fig = plt.figure() ax1 = fig.add_subplot(111) # passing names=True option is supposed to treat first row as column # header names, and then everything is stored by column name in data. data = np.genfromtxt(filename, delimiter=',', names=True) log_h1_error = np.log10(data['H1error']) log_l2_error = np.log10(data['L2error']) logh = np.log10(data['h']) h1_fit = np.polyfit(logh, log_h1_error, 1) l2_fit = np.polyfit(logh, log_l2_error, 1) ax1.plot(logh, log_h1_error, linewidth=2, marker='o', label=r'$H^1$ error') ax1.text(-0.4, -2., '{:.2f}'.format(h1_fit[0])) ax1.plot(logh, log_l2_error, linewidth=2, marker='o', label=r'$L^2$ error') ax1.text(-0.4, -3.5, '{:.2f}'.format(l2_fit[0])) ax1.set_xlabel('log(h)') ax1.legend(loc='upper left') plt.savefig(filename.rsplit( ".", 1)[0] + '.pdf')
lgpl-2.1
TomAugspurger/pandas
pandas/tests/indexes/multi/test_reindex.py
4
3745
import numpy as np import pytest import pandas as pd from pandas import Index, MultiIndex import pandas._testing as tm def test_reindex(idx): result, indexer = idx.reindex(list(idx[:4])) assert isinstance(result, MultiIndex) assert result.names == ["first", "second"] assert [level.name for level in result.levels] == ["first", "second"] result, indexer = idx.reindex(list(idx)) assert isinstance(result, MultiIndex) assert indexer is None assert result.names == ["first", "second"] assert [level.name for level in result.levels] == ["first", "second"] def test_reindex_level(idx): index = Index(["one"]) target, indexer = idx.reindex(index, level="second") target2, indexer2 = index.reindex(idx, level="second") exp_index = idx.join(index, level="second", how="right") exp_index2 = idx.join(index, level="second", how="left") assert target.equals(exp_index) exp_indexer = np.array([0, 2, 4]) tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False) assert target2.equals(exp_index2) exp_indexer2 = np.array([0, -1, 0, -1, 0, -1]) tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False) with pytest.raises(TypeError, match="Fill method not supported"): idx.reindex(idx, method="pad", level="second") with pytest.raises(TypeError, match="Fill method not supported"): index.reindex(index, method="bfill", level="first") def test_reindex_preserves_names_when_target_is_list_or_ndarray(idx): # GH6552 idx = idx.copy() target = idx.copy() idx.names = target.names = [None, None] other_dtype = pd.MultiIndex.from_product([[1, 2], [3, 4]]) # list & ndarray cases assert idx.reindex([])[0].names == [None, None] assert idx.reindex(np.array([]))[0].names == [None, None] assert idx.reindex(target.tolist())[0].names == [None, None] assert idx.reindex(target.values)[0].names == [None, None] assert idx.reindex(other_dtype.tolist())[0].names == [None, None] assert idx.reindex(other_dtype.values)[0].names == [None, None] idx.names = ["foo", "bar"] assert idx.reindex([])[0].names == ["foo", "bar"] assert idx.reindex(np.array([]))[0].names == ["foo", "bar"] assert idx.reindex(target.tolist())[0].names == ["foo", "bar"] assert idx.reindex(target.values)[0].names == ["foo", "bar"] assert idx.reindex(other_dtype.tolist())[0].names == ["foo", "bar"] assert idx.reindex(other_dtype.values)[0].names == ["foo", "bar"] def test_reindex_lvl_preserves_names_when_target_is_list_or_array(): # GH7774 idx = pd.MultiIndex.from_product([[0, 1], ["a", "b"]], names=["foo", "bar"]) assert idx.reindex([], level=0)[0].names == ["foo", "bar"] assert idx.reindex([], level=1)[0].names == ["foo", "bar"] def test_reindex_lvl_preserves_type_if_target_is_empty_list_or_array(): # GH7774 idx = pd.MultiIndex.from_product([[0, 1], ["a", "b"]]) assert idx.reindex([], level=0)[0].levels[0].dtype.type == np.int64 assert idx.reindex([], level=1)[0].levels[1].dtype.type == np.object_ def test_reindex_base(idx): idx = idx expected = np.arange(idx.size, dtype=np.intp) actual = idx.get_indexer(idx) tm.assert_numpy_array_equal(expected, actual) with pytest.raises(ValueError, match="Invalid fill method"): idx.get_indexer(idx, method="invalid") def test_reindex_non_unique(): idx = pd.MultiIndex.from_tuples([(0, 0), (1, 1), (1, 1), (2, 2)]) a = pd.Series(np.arange(4), index=idx) new_idx = pd.MultiIndex.from_tuples([(0, 0), (1, 1), (2, 2)]) msg = "cannot handle a non-unique multi-index!" with pytest.raises(ValueError, match=msg): a.reindex(new_idx)
bsd-3-clause
vonholst/deeplearning_example_kog
lib/helpers.py
1
5392
from keras.preprocessing.image import ImageDataGenerator, DirectoryIterator import json import numpy as np from keras.models import model_from_json from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import MaxPooling2D, Conv2D from keras.constraints import maxnorm import matplotlib.pyplot as plt from keras.utils.generic_utils import CustomObjectScope # from keras.models import load_model def get_training_parameters(rows=128, cols=128): img_rows, img_cols = rows, cols input_shape = (img_rows, img_cols, 3) image_gen_batch_size = 256 image_scale = 1. / 255.0 epochs = 500 samples_per_epoch = 1000 options = dict(img_rows=img_rows, img_cols=img_cols, input_shape=input_shape, image_gen_batch_size=image_gen_batch_size, image_scale=image_scale, epochs=epochs, samples_per_epoch=samples_per_epoch, ) return options def calculate_training_weights(image_generator): assert isinstance(image_generator, DirectoryIterator), 'Wrong class' training_examples = dict() max_training_examples = 0 for class_name in image_generator.class_indices: class_identifier = image_generator.class_indices[class_name] number_of_class = np.sum(image_generator.classes == class_identifier) if number_of_class > max_training_examples: max_training_examples = number_of_class training_examples[class_identifier] = number_of_class training_weights = dict() for class_identifier in training_examples: training_weights[class_identifier] = float(max_training_examples) / training_examples[class_identifier] return training_weights def generate_images(image_path, target_path): pass def create_model(input_shape, number_of_classes): # Define model architecture # 1x100 -> (3) 32x100 ,(3) 32x100, [4] 25, (3) 25, (3) 25, [2] 12, (3) 12, (3) 12, [2] 6, FC... model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=input_shape, activation='relu', padding='same')) model.add(Dropout(0.2)) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(4, 4))) model.add(Conv2D(64, (3, 3), activation='relu', padding='same')) model.add(Dropout(0.2)) model.add(Conv2D(64, (3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), activation='relu', padding='same')) model.add(Dropout(0.2)) model.add(Conv2D(128, (3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dropout(0.2)) model.add(Dense(128, activation='relu', kernel_constraint=maxnorm(3))) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu', kernel_constraint=maxnorm(3))) model.add(Dropout(0.5)) model.add(Dense(number_of_classes, activation='sigmoid')) return model def create_coreml_model(model, options, class_indices): import coremltools sorted_classes = sorted(class_indices.items(), key=lambda item: item[1]) class_labels_sorted = [str(label) for label, index in sorted_classes] coreml_model = coremltools.converters.keras.convert(model, input_names='image', image_input_names='image', class_labels=class_labels_sorted, image_scale=options["image_scale"]) return coreml_model def save_model(model, class_indices, training_history=None): model_json = model.to_json() with open("./model/keras_model.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 # model.save_weights("./model/keras_model.h5") model.save("./model/keras_model.h5") print("Saved model to disk") with open("./model/keras_model_classes.json", 'w') as outfile: json.dump(class_indices, outfile) if training_history is not None: with open("./model/keras_model_training_history.json", 'w') as outfile: json.dump(training_history.history, outfile) def load_model(model_path="./model/keras_model.h5"): # load json and create model with open('./model/keras_model.json', 'r') as json_file: loaded_model_json = json_file.read() # model = load_model(model_path) model = model_from_json(loaded_model_json) # load weights into new model model.load_weights("./model/keras_model.h5") with open('./model/keras_model_classes.json') as data_file: class_indices = json.load(data_file) return model, class_indices def plot_training_history(history_dict): # summarize history for accuracy plt.subplot(211) plt.plot(history_dict['acc']) plt.plot(history_dict['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') # summarize history for loss plt.subplot(212) plt.plot(history_dict['loss']) plt.plot(history_dict['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
mit
treycausey/scikit-learn
sklearn/linear_model/stochastic_gradient.py
2
42996
# Authors: Peter Prettenhofer <[email protected]> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np import scipy.sparse as sp from abc import ABCMeta, abstractmethod import warnings from ..externals.joblib import Parallel, delayed from .base import LinearClassifierMixin, SparseCoefMixin from ..base import BaseEstimator, RegressorMixin from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import (atleast2d_or_csr, check_arrays, check_random_state, column_or_1d) from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..externals import six from .sgd_fast import plain_sgd from ..utils.seq_dataset import ArrayDataset, CSRDataset from ..utils import compute_class_weight from .sgd_fast import Hinge from .sgd_fast import SquaredHinge from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredLoss from .sgd_fast import Huber from .sgd_fast import EpsilonInsensitive from .sgd_fast import SquaredEpsilonInsensitive LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} SPARSE_INTERCEPT_DECAY = 0.01 """For sparse data intercept updates are scaled by this decay factor to avoid intercept oscillation.""" DEFAULT_EPSILON = 0.1 """Default value of ``epsilon`` parameter. """ class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=False, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self._validate_params() self.coef_ = None # iteration count for learning rate schedule # must not be int (e.g. if ``learning_rate=='optimal'``) self.t_ = None def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _init_t(self, loss_function): """Initialize iteration counter attr ``t_``. If ``self.learning_rate=='optimal'`` initialize ``t_`` such that ``eta`` at first sample equals ``self.eta0``. """ self.t_ = 1.0 if self.learning_rate == "optimal": typw = np.sqrt(1.0 / np.sqrt(self.alpha)) # computing eta0, the initial learning rate eta0 = typw / max(1.0, loss_function.dloss(-typw, 1.0)) # initialize t such that eta at first sample equals eta0 self.t_ = 1.0 / (eta0 * self.alpha) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided coef_ does not match dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") def _check_fit_data(X, y): """Check if shape of input data matches. """ n_samples, _ = X.shape if n_samples != y.shape[0]: raise ValueError("Shapes of X and y do not match.") def _make_dataset(X, y_i, sample_weight): """Create ``Dataset`` abstraction for sparse and dense inputs. This also returns the ``intercept_decay`` which is different for sparse datasets. """ if sp.issparse(X): dataset = CSRDataset(X.data, X.indptr, X.indices, y_i, sample_weight) intercept_decay = SPARSE_INTERCEPT_DECAY else: dataset = ArrayDataset(X, y_i, sample_weight) intercept_decay = 1.0 return dataset, intercept_decay def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 if len(est.classes_) == 2: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.coef_[i] intercept = est.intercept_[i] return y_i, coef, intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ y_i, coef, intercept = _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = _make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) return plain_sgd(coef, intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=False, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start) self.class_weight = class_weight self.classes_ = None self.n_jobs = int(n_jobs) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X = atleast2d_or_csr(X, dtype=np.float64, order="C") y = column_or_1d(y, warn=True) n_samples, n_features = X.shape _check_fit_data(X, y) self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments y_ind = np.searchsorted(self.classes_, y) # XXX use a LabelBinarizer? self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y_ind) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) self.loss_function = self._get_loss_function(loss) if self.t_ is None: self._init_t(self.loss_function) # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") self.t_ += n_iter * n_samples return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X = atleast2d_or_csr(X, dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) # need to be 2d self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of the training data y : numpy array of shape [n_samples] Subset of the target values classes : array, shape = [n_classes] Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, class_weight=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_classes,n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [n_classes] The initial intercept to warm-start the optimization. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier, _LearntSelectorMixin): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'l2' or 'l1' or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept: bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter: int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle: bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to False. random_state: int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose: integer, optional The verbosity level epsilon: float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs: integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate: constant: eta = eta0 optimal: eta = 1.0 / (t + t0) [default] invscaling: eta = eta0 / pow(t, power_t) eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label : weight} or "auto" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "auto" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- `coef_` : array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features. `intercept_` : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=False, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=False, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start) def _check_proba(self): if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Returns ------- array, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=False, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_arrays(X, y, sparse_format="csr", copy=False, check_ccontiguous=True, dtype=np.float64) y = column_or_1d(y, warn=True) n_samples, n_features = X.shape _check_fit_data(X, y) self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) self.t_ += n_iter * n_samples return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of training data y : numpy array of shape [n_samples] Subset of target values sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [1] The initial intercept to warm-start the optimization. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) def decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Returns ------- array, shape = [n_samples] Predicted target values per element in X. """ X = atleast2d_or_csr(X) scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Returns ------- array, shape = [n_samples] Predicted target values per element in X. """ return self.decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = _make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if self.t_ is None: self._init_t(loss_function) random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) self.coef_, intercept = plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.intercept_ = np.atleast_1d(intercept) class SGDRegressor(BaseSGDRegressor, _LearntSelectorMixin): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'l2' or 'l1' or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' migh bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept: bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter: int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle: bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to False. random_state: int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose: integer, optional The verbosity level. epsilon: float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate: constant: eta = eta0 optimal: eta = 1.0/(t+t0) invscaling: eta = eta0 / pow(t, power_t) [default] eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- `coef_` : array, shape = [n_features] Weights asigned to the features. `intercept_` : array, shape = [1] The intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) SGDRegressor(alpha=0.0001, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=False, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=False, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start)
bsd-3-clause
appapantula/scikit-learn
examples/ensemble/plot_adaboost_hastie_10_2.py
355
3576
""" ============================= Discrete versus Real AdaBoost ============================= This example is based on Figure 10.2 from Hastie et al 2009 [1] and illustrates the difference in performance between the discrete SAMME [2] boosting algorithm and real SAMME.R boosting algorithm. Both algorithms are evaluated on a binary classification task where the target Y is a non-linear function of 10 input features. Discrete SAMME AdaBoost adapts based on errors in predicted class labels whereas real SAMME.R uses the predicted class probabilities. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]>, # Noel Dawe <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import zero_one_loss from sklearn.ensemble import AdaBoostClassifier n_estimators = 400 # A learning rate of 1. may not be optimal for both SAMME and SAMME.R learning_rate = 1. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_test, y_test = X[2000:], y[2000:] X_train, y_train = X[:2000], y[:2000] dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1) dt_stump.fit(X_train, y_train) dt_stump_err = 1.0 - dt_stump.score(X_test, y_test) dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1) dt.fit(X_train, y_train) dt_err = 1.0 - dt.score(X_test, y_test) ada_discrete = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME") ada_discrete.fit(X_train, y_train) ada_real = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME.R") ada_real.fit(X_train, y_train) fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-', label='Decision Stump Error') ax.plot([1, n_estimators], [dt_err] * 2, 'k--', label='Decision Tree Error') ada_discrete_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_test)): ada_discrete_err[i] = zero_one_loss(y_pred, y_test) ada_discrete_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_train)): ada_discrete_err_train[i] = zero_one_loss(y_pred, y_train) ada_real_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_test)): ada_real_err[i] = zero_one_loss(y_pred, y_test) ada_real_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_train)): ada_real_err_train[i] = zero_one_loss(y_pred, y_train) ax.plot(np.arange(n_estimators) + 1, ada_discrete_err, label='Discrete AdaBoost Test Error', color='red') ax.plot(np.arange(n_estimators) + 1, ada_discrete_err_train, label='Discrete AdaBoost Train Error', color='blue') ax.plot(np.arange(n_estimators) + 1, ada_real_err, label='Real AdaBoost Test Error', color='orange') ax.plot(np.arange(n_estimators) + 1, ada_real_err_train, label='Real AdaBoost Train Error', color='green') ax.set_ylim((0.0, 0.5)) ax.set_xlabel('n_estimators') ax.set_ylabel('error rate') leg = ax.legend(loc='upper right', fancybox=True) leg.get_frame().set_alpha(0.7) plt.show()
bsd-3-clause
DTMilodowski/EOlab
src/potentialAGB_Brazil_app_v4.py
1
7366
""" potentialAGB_Brazil_app_v4.py ================================================================================ Produce layers for restoration opportunity cross-comparison against other data layers (e.g. WRI world of opportunity maps) """ # Import general libraries import os import sys import numpy as np import xarray as xr import pandas as pd import rasterio import rasterio.mask import fiona from copy import deepcopy # import plotting libraries import matplotlib as mpl import matplotlib.cm as cm import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import seaborn as sns # import custom libraries import prepare_EOlab_layers as EO sys.path.append('/home/dmilodow/DataStore_DTM/FOREST2020/PotentialBiomassRFR/src') import useful as useful # set default cmap plt.set_cmap('viridis') plt.register_cmap(name='divergent', cmap=sns.diverging_palette(275,150,l=66,s=90,as_cmap=True)) #sns.light_palette('seagreen',as_cmap=True) """ #=============================================================================== PART A: DEFINE PATHS AND LOAD IN DATA - Potential biomass maps (from netcdf file) - Biome boundaries (Mapbiomas) - WRI opportunity map #------------------------------------------------------------------------------- """ country_code = 'BRA' country = 'Brazil' version = '013' path2data = '/disk/scratch/local.2/PotentialBiomass/processed/%s/' % country_code path2model = '/home/dmilodow/DataStore_DTM/FOREST2020/PotentialBiomassRFR/output/' path2output = '/home/dmilodow/DataStore_DTM/EOlaboratory/EOlab/BrazilPotentialAGB/' boundaries_shp = '/home/dmilodow/DataStore_DTM/EOlaboratory/Areas/ne_50m_admin_0_tropical_countries_small_islands_removed.shp' source = ['globbiomass', 'avitabile'] source = ['avitabile'] # create and apply national boundary mask # - load template raster template = rasterio.open('%s/agb/Avitabile_AGB_%s_1km.tif' % (path2data,country_code)) # - load shapefile boundaries = fiona.open(boundaries_shp) # - for country of interest, make mask mask = np.zeros(template.shape) for feat in boundaries: name = feat['properties']['admin'] if name==country: image,transform = rasterio.mask.mask(template,[feat['geometry']],crop=False) mask[image[0]>=0]=1 # load opportunity map opportunity = xr.open_rasterio('%sWRI_restoration/WRI_restoration_opportunities_%s.tif' % (path2data, country_code))[0] # Load MapBiomas data for 2005 mb2005 = deepcopy(opportunity) mb2005.values=useful.load_mapbiomas('BRA',timestep=20,aggregate=1)-1 for ss in source: # load potential biomass models from netdf file dataset = xr.open_dataset('%s%s_%s_AGB_potential_RFR_%s_worldclim_soilgrids_final.nc' % (path2model, country_code,version, ss)) # Convert to C dataset['AGBpot'].values*=0.48 dataset['AGBobs'].values*=0.48 dataset['AGBpot_min'].values*=0.48 dataset['AGBobs_min'].values*=0.48 dataset['AGBpot_max'].values*=0.48 dataset['AGBobs_max'].values*=0.48 # calculate deficit aka sequestration potential dataset['AGBseq'] = (dataset['AGBpot']-dataset['AGBobs']) dataset['AGBseq_min'] = (dataset['AGBpot_min']-dataset['AGBobs_min']) dataset['AGBseq_max'] = (dataset['AGBpot_max']-dataset['AGBobs_max']) # Create potential and sequestration layers with settlements # maintained at original AGB (i.e. feasible restoration) people_mask = (mb2005.values==5) dataset['AGBpot_natural']=deepcopy(dataset['AGBpot']) dataset['AGBpot_natural'].values[people_mask]=dataset['AGBobs'].values[people_mask] dataset['AGBseq_natural']=deepcopy(dataset['AGBseq']) dataset['AGBseq_natural'].values[people_mask]=0 """ PART B: Create data and display layers - AGBobs - AGBpot - AGBseq - WRI restoration opportunity - landcover """ file_prefix = path2output + country.lower() + '_' vars = ['AGBobs','AGBpot','AGBseq','AGBpot_natural','AGBseq_natural'] cmaps = ['viridis','viridis','divergent','viridis','divergent'] axis_labels = ['AGB$_{obs}$ / Mg C ha$^{-1}$', 'AGB$_{potential}$ / Mg C ha$^{-1}$', 'Sequestration potential / Mg C ha$^{-1}$', 'AGB$_{potential}$ / Mg C ha$^{-1}$', 'Sequestration potential / Mg C ha$^{-1}$'] ulims = [200,200,100,200,200] llims = [0,0,-100,0,-100] for vv,var in enumerate(vars): print(var) if var in dataset.keys(): file_prefix = '%s%s_%s_%s' % (path2output, country.lower(), var, ss) # delete existing dataset if present if '%s_%s_%s_data.tif' % (country.lower(),var, ss) in os.listdir(path2output): os.system("rm %s" % ('%s_data.tif' % (file_prefix))) if '%s_%s_%s_display.tif' % (country.lower(),var, ss) in os.listdir(path2output): os.system("rm %s" % ('%s_display.tif' % (file_prefix))) # apply country mask if ss != 'oda': dataset[var].values[mask==0] = np.nan # write display layers EO.plot_legend(cmaps[vv],ulims[vv],llims[vv],axis_labels[vv], file_prefix) EO.write_xarray_to_display_layer_GeoTiff(dataset[vars[vv]], file_prefix, cmaps[vv], ulims[vv], llims[vv]) # WRI opportunity map opportunity.values=opportunity.values.astype('float') opportunity.values[mask==0]=np.nan id = np.arange(0,5) labels = np.asarray( ['existing natural cover','wide-scale','mosaic','remote','urban-agriculture']) colours = np.asarray(['#67afde', '#00883b', '#00c656', '#004c21', "#6a3b00"]) id_temp,idx_landcover,idx_id = np.intersect1d(opportunity,id,return_indices=True) id = id[idx_id] labels=labels[idx_id] colours=colours[idx_id] wri_cmap = ListedColormap(sns.color_palette(colours).as_hex()) file_prefix = '%s%s_wri' % (path2output, country.lower()) EO.plot_legend_listed(wri_cmap,labels,'',file_prefix,figsize=[2,1]) if '%s_wri_data.tif' % (country.lower()) in os.listdir(path2output): os.system("rm %s" % ('%s_data.tif' % (file_prefix))) if '%s_wri_display.tif' % (country.lower()) in os.listdir(path2output): os.system("rm %s" % ('%s_display.tif' % (file_prefix))) EO.write_xarray_to_display_layer_GeoTiff(opportunity, file_prefix, wri_cmap, 4, 0) # Mapbiomas land cover data lc_class = np.array(['Natural Forest','Natural Non-Forest','Plantation','Pasture','Agriculture','Urban','Other']) colours = np.asarray(['#1f4423', '#bbfcac', '#935132', '#ffd966', '#e974ed','#af2a2a','#d5d5e5']) lc_id = np.arange(0,7) id_temp,idx_landcover,idx_id = np.intersect1d(mb2005,lc_id,return_indices=True) lc_id = lc_id[idx_id] lc_class=lc_class[idx_id] colours=colours[idx_id] mb_cmap = ListedColormap(sns.color_palette(colours).as_hex()) mb_cmap_rev = ListedColormap(sns.color_palette(colours[::-1]).as_hex()) file_prefix = '%s%s_mapbiomas' % (path2output, country.lower()) EO.plot_legend_listed(mb_cmap_rev,lc_class[::-1],'',file_prefix,figsize=[2,2]) file_prefix = '%s%s_mapbiomas_lc_2005' % (path2output, country.lower()) if '%s_mapbiomas_lc_2005_data.tif' % (country.lower()) in os.listdir(path2output): os.system("rm %s" % ('%s%s_data.tif' % (file_prefix,country.lower()))) if '%s_mapbiomas_lc_2005_display.tif' % (country.lower()) in os.listdir(path2output): os.system("rm %s" % ('%s%s_display.tif' % (file_prefix,country.lower()))) EO.write_xarray_to_display_layer_GeoTiff(mb2005, file_prefix, mb_cmap, 6, 0)
gpl-3.0
mrawls/APO-1m-phot
MWstarplotter.py
1
7490
from __future__ import print_function import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D #import matplotlib.image as mpimg import mpl_toolkits.mplot3d.art3d as art3d import astropy.units as u import astropy.coordinates as coord from astropy.coordinates import SkyCoord from astropy.coordinates import Distance ''' Reads in RA, Dec, and distance (with error bars) for a set of stars. Makes plots of where those stars are in the galaxy. ''' infile = 'RGEB_distinfo.txt' target_col = 0 RA_col = 3 Dec_col = 4 dist_col = 7 derr_col = 8 FeH_col = 6 usecols = (target_col, RA_col, Dec_col, dist_col, derr_col, FeH_col) # Read in target information from a text file targets, RAs, Decs, dists, derrs, FeHs = np.loadtxt(infile, comments='#', usecols=usecols, dtype={'names': ('targets', 'RAs', 'Decs', 'dists', 'derrs', 'FeHs'), 'formats': (np.int, '|S11','|S11', np.float64, np.float64, np.float64)}, unpack=True) # Put the RAs, Decs, and distances in a more useful format RAs = coord.Angle(RAs, unit=u.hour) RAs_plot = RAs.wrap_at(180*u.degree) # for reasons Decs = coord.Angle(Decs, unit=u.degree) dists = dists*u.pc derrs = derrs*u.pc # Define a SkyCoord object for each target starlocs = [] for target, RA, Dec, dist, derr in zip(targets, RAs, Decs, dists, derrs): starlocs.append( SkyCoord(ra=RA, dec=Dec, distance=dist) ) #print(starlocs) #IT WORKS! (but no way to include distance uncertainty, I don't think) # Plot the target locations on a sky plane projection? Maybe useful? #fig = plt.figure(figsize=(8,6)) #ax = fig.add_subplot(111, projection='mollweide') #ax.scatter(RAs_plot.radian, Decs.radian) ##ax.set_xticklabels(['14h','16h','18h','20h','22h','0h','2h','4h','6h','8h','10h']) #ax.grid(True) #plt.show() # Make a figure fig = plt.figure() # First subplot: galactic (l,b) coordinates in an Aitoff projection ax = fig.add_subplot(2,1,1, projection='aitoff') for star in starlocs: if star.distance > 0: # only consider the targets with distance info #print(star.galactic) lrad = star.galactic.l.radian #if lrad > np.pi: # lrad = lrad - 2.*np.pi brad = star.galactic.b.radian ax.scatter(lrad, brad) ax.grid(True) ax.set_title('Galactic (l,b)') #ax.set_xlim(360., 0.) #ax.set_ylim(-90., 90.) #ax.set_xlabel('Galactic Longitude') #ax.set_ylabel('Galactic Latitude') # Second subplot: cartesian heliocentric coordinates in an X, Y slice ax2 = fig.add_subplot(2,2,3, aspect='equal') for star in starlocs: if star.distance > 0: xcart = star.cartesian.x ycart = star.cartesian.y zcart = star.cartesian.z ax2.scatter(xcart, ycart) #star.representation = 'cylindrical' #print(xcart, ycart, zcart) ax2.set_xlim(-2500., 2500.) ax2.set_ylim(-3000., 3000.) ax2.set_xlabel('X (pc)') ax2.set_ylabel('Y (pc)') plt.plot(0, 0, marker='*', color='y', ms=20) # Third subplot: cartesian heliocentric coordinates in an X, Z slice ax3 = fig.add_subplot(2,2,4, aspect='equal') ax3.set_xlim(-2500., 2500.) # really x ax3.set_ylim(-3000., 3000.) # actually z for star in starlocs: if star.distance > 0: xcart = star.cartesian.x ycart = star.cartesian.y zcart = star.cartesian.z #print(xcart, ycart, zcart) ax3.scatter(xcart, zcart) ax3.set_xlabel('X (pc)') ax3.set_ylabel('Z (pc)') plt.plot(0, 0, marker='*', color='y', ms=20) #plt.show() # Make a second figure fig2 = plt.figure() # Transform stars to galactocentric coordinates (cartesian) # Set a color scheme as a function of metallicity (different color for every 0.2 dex) star_galcens = [] colorlist = [] for star, FeH in zip(starlocs, FeHs): if star.distance > 0: star_galcens.append(star.transform_to(coord.Galactocentric)) if FeH < -0.8: color='#ffffb2' #yellowest elif FeH >= -0.8 and FeH < -0.6: color='#fed976' elif FeH >= -0.6 and FeH < -0.4: color='#feb24c' elif FeH >= -0.4 and FeH < -0.2: color='#fd8d3c' elif FeH >= -0.2 and FeH < 0.0: color='#fc4e2a' elif FeH >= 0.0 and FeH < 0.2: color='#e31a1c' elif FeH >= 0.2: color='#b10026' #reddest colorlist.append(color) #print(star_galcens) axnew1 = fig2.add_subplot(1,1,1, projection='3d', aspect='equal') axnew1.set_axis_off() axnew1.grid(False) axnew1.xaxis.set_ticklabels([]) axnew1.yaxis.set_ticklabels([]) axnew1.zaxis.set_ticklabels([]) axnew1.xaxis.set_ticks([]) axnew1.yaxis.set_ticks([]) axnew1.zaxis.set_ticks([]) for i, star in enumerate(star_galcens): #print(star.x, star.y, star.z) axnew1.scatter(star.x, star.y, star.z, c=colorlist[i], edgecolors='k', s=150) axnew1.scatter(0, 0, 0, marker='o', c='k', edgecolors='k', s=50) # galactic center axnew1.scatter(-8300, 0, 27, marker='*', c='k', edgecolors='k', s=150) # Sun # Contour-type circles that radiate out from the galactic center for reference circle1 = plt.Circle((0,0), 2000, color='0.75', fill=False) circle2 = plt.Circle((0,0), 4000, color='0.75', fill=False) circle3 = plt.Circle((0,0), 6000, color='0.75', fill=False) circle4 = plt.Circle((0,0), 8000, color='0.75', fill=False) circle5 = plt.Circle((0,0), 10000, color='0.75', fill=False) axnew1.add_patch(circle1) axnew1.add_patch(circle2) axnew1.add_patch(circle3) axnew1.add_patch(circle4) axnew1.add_patch(circle5) art3d.pathpatch_2d_to_3d(circle1, z=0, zdir='z') art3d.pathpatch_2d_to_3d(circle2, z=0, zdir='z') art3d.pathpatch_2d_to_3d(circle3, z=0, zdir='z') art3d.pathpatch_2d_to_3d(circle4, z=0, zdir='z') art3d.pathpatch_2d_to_3d(circle5, z=0, zdir='z') # Colorbar key axnew2 = fig2.add_subplot(12,1,10) cmap = mpl.colors.ListedColormap(['#fed976', '#feb24c', '#fd8d3c', '#fc4e2a', '#e31a1c']) cmap.set_over('#b10026') #reddest, high Fe/H cmap.set_under('#ffffb2') #yellowest, low Fe/H bounds = [-0.8, -0.6, -0.4, -0.2, 0.0, 0.2] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) cb = mpl.colorbar.ColorbarBase(axnew2, cmap=cmap, norm=norm, ticks=bounds, extend='both', boundaries=[-1.0]+bounds+[0.4], spacing='proportional', orientation='horizontal') cb.set_label('[Fe/H]', size=26) # manually make a key? #fig2.text(0.7, 0.7, 'Testing words here', ha='center', va='center', size=26) # Attempt to plot an image of the Milky Way in the X-Y plane? #img = mpimg.imread('../../MWimage.png') #stretch = 1. #ximg, yimg = np.ogrid[-img.shape[0]/2.*stretch:img.shape[0]/2.*stretch, -img.shape[1]/2.*stretch:img.shape[1]/2.*stretch] #axnew1.plot_surface(ximg, yimg, 0, rstride=100000, cstride=100000, facecolors=img) ##axnew1.imshow(img) fig3 = plt.figure() ax3main = fig3.add_subplot(3,1,2, aspect='equal') for i, star in enumerate(star_galcens): rkpc = np.sqrt(star.x*star.x + star.y*star.y)/1000. zkpc = star.z/1000. ax3main.scatter(rkpc, zkpc, c=colorlist[i], edgecolor='k', s=150) #ax3main.scatter(0, 0, marker='o', c='k', edgecolors='k', s=50) # galactic center ax3main.scatter(8.3, 0.027, marker='*', c='k', edgecolors='k', s=150) # Sun ax3main.set_xlabel('Galactic radius $R$ (kpc)', size=26) ax3main.set_ylabel('Height $z$ (kpc)', size=26) ax3main.set_xlim(6, 9) #ax3main.set_ylim(-0.1, 0.9) #plt.xticks( (-8, -6, -4, -2, 0), ('8', '6', '4', '2', '0') ) ax3cb = fig3.add_subplot(15,1,13) cb3 = mpl.colorbar.ColorbarBase(ax3cb, cmap=cmap, norm=norm, ticks=bounds, extend='both', boundaries=[-1.0]+bounds+[0.4], spacing='proportional', orientation='horizontal') cb3.set_label('[Fe/H]', size=26) plt.show()
mit
vkscool/nupic
nupic/research/monitor_mixin/monitor_mixin_base.py
7
5503
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2014, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ MonitorMixinBase class used in monitor mixin framework. """ import abc import numpy from prettytable import PrettyTable from nupic.research.monitor_mixin.plot import Plot class MonitorMixinBase(object): """ Base class for MonitorMixin. Each subclass will be a mixin for a particular algorithm. All arguments, variables, and methods in monitor mixin classes should be prefixed with "mm" (to avoid collision with the classes they mix in to). """ __metaclass__ = abc.ABCMeta def __init__(self, *args, **kwargs): """ Note: If you set the kwarg "mmName", then pretty-printing of traces and metrics will include the name you specify as a tag before every title. """ self.mmName = kwargs.get("mmName") if "mmName" in kwargs: del kwargs["mmName"] super(MonitorMixinBase, self).__init__(*args, **kwargs) # Mapping from key (string) => trace (Trace) self._mmTraces = None self._mmData = None self.mmClearHistory() def mmClearHistory(self): """ Clears the stored history. """ self._mmTraces = {} self._mmData = {} @staticmethod def mmPrettyPrintTraces(traces, breakOnResets=None): """ Returns pretty-printed table of traces. @param traces (list) Traces to print in table @param breakOnResets (BoolsTrace) Trace of resets to break table on @return (string) Pretty-printed table of traces. """ assert len(traces) > 0, "No traces found" table = PrettyTable(["#"] + [trace.prettyPrintTitle() for trace in traces]) for i in xrange(len(traces[0].data)): if breakOnResets and breakOnResets.data[i]: table.add_row(["<reset>"] * (len(traces) + 1)) table.add_row([i] + [trace.prettyPrintDatum(trace.data[i]) for trace in traces]) return table.get_string().encode("utf-8") @staticmethod def mmPrettyPrintMetrics(metrics, sigFigs=5): """ Returns pretty-printed table of metrics. @param metrics (list) Traces to print in table @param sigFigs (int) Number of significant figures to print @return (string) Pretty-printed table of metrics. """ assert len(metrics) > 0, "No metrics found" table = PrettyTable(["Metric", "mean", "standard deviation", "min", "max", "sum", ]) for metric in metrics: table.add_row([metric.prettyPrintTitle()] + metric.getStats()) return table.get_string().encode("utf-8") def mmGetDefaultTraces(self, verbosity=1): """ Returns list of default traces. (To be overridden.) @param verbosity (int) Verbosity level @return (list) Default traces """ return [] def mmGetDefaultMetrics(self, verbosity=1): """ Returns list of default metrics. (To be overridden.) @param verbosity (int) Verbosity level @return (list) Default metrics """ return [] def mmGetCellTracePlot(self, cellTrace, cellCount, activityType, title="", showReset=False, resetShading=0.25): """ Returns plot of the cell activity. Note that if many timesteps of activities are input, matplotlib's image interpolation may omit activities (columns in the image). @param cellTrace (list) a temporally ordered list of sets of cell activities @param cellCount (int) number of cells in the space being rendered @param activityType (string) type of cell activity being displayed @param title (string) an optional title for the figure @param showReset (bool) if true, the first set of cell activities after a reset will have a grayscale background @param resetShading (float) applicable if showReset is true, specifies the intensity of the reset background with 0.0 being white and 1.0 being black @return (Plot) plot """ plot = Plot(self, title) resetTrace = self.mmGetTraceResets().data data = numpy.zeros((cellCount, 1)) for i in xrange(len(cellTrace)): # Set up a "background" vector that is shaded or blank if showReset and resetTrace[i]: activity = numpy.ones((cellCount, 1)) * resetShading else: activity = numpy.zeros((cellCount, 1)) activeIndices = cellTrace[i] activity[list(activeIndices)] = 1 data = numpy.concatenate((data, activity), 1) plot.add2DArray(data, xlabel="Time", ylabel=activityType) return plot
gpl-3.0
anntzer/scikit-learn
examples/ensemble/plot_gradient_boosting_quantile.py
2
12181
""" ===================================================== Prediction Intervals for Gradient Boosting Regression ===================================================== This example shows how quantile regression can be used to create prediction intervals. """ # %% # Generate some data for a synthetic regression problem by applying the # function f to uniformly sampled random inputs. import numpy as np from sklearn.model_selection import train_test_split def f(x): """The function to predict.""" return x * np.sin(x) rng = np.random.RandomState(42) X = np.atleast_2d(rng.uniform(0, 10.0, size=1000)).T expected_y = f(X).ravel() # %% # To make the problem interesting, we generate observations of the target y as # the sum of a deterministic term computed by the function f and a random noise # term that follows a centered `log-normal # <https://en.wikipedia.org/wiki/Log-normal_distribution>`_. To make this even # more interesting we consider the case where the amplitude of the noise # depends on the input variable x (heteroscedastic noise). # # The lognormal distribution is non-symmetric and long tailed: observing large # outliers is likely but it is impossible to observe small outliers. sigma = 0.5 + X.ravel() / 10 noise = rng.lognormal(sigma=sigma) - np.exp(sigma ** 2 / 2) y = expected_y + noise # %% # Split into train, test datasets: X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # %% # Fitting non-linear quantile and least squares regressors # -------------------------------------------------------- # # Fit gradient boosting models trained with the quantile loss and # alpha=0.05, 0.5, 0.95. # # The models obtained for alpha=0.05 and alpha=0.95 produce a 90% confidence # interval (95% - 5% = 90%). # # The model trained with alpha=0.5 produces a regression of the median: on # average, there should be the same number of target observations above and # below the predicted values. from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_pinball_loss, mean_squared_error all_models = {} common_params = dict( learning_rate=0.05, n_estimators=250, max_depth=2, min_samples_leaf=9, min_samples_split=9, ) for alpha in [0.05, 0.5, 0.95]: gbr = GradientBoostingRegressor(loss='quantile', alpha=alpha, **common_params) all_models["q %1.2f" % alpha] = gbr.fit(X_train, y_train) # %% # For the sake of comparison, also fit a baseline model trained with the usual # least squares loss (ls), also known as the mean squared error (MSE). gbr_ls = GradientBoostingRegressor(loss='ls', **common_params) all_models["ls"] = gbr_ls.fit(X_train, y_train) # %% # Create an evenly spaced evaluation set of input values spanning the [0, 10] # range. xx = np.atleast_2d(np.linspace(0, 10, 1000)).T # %% # Plot the true conditional mean function f, the prediction of the conditional # mean (least squares loss), the conditional median and the conditional 90% # interval (from 5th to 95th conditional percentiles). import matplotlib.pyplot as plt y_pred = all_models['ls'].predict(xx) y_lower = all_models['q 0.05'].predict(xx) y_upper = all_models['q 0.95'].predict(xx) y_med = all_models['q 0.50'].predict(xx) fig = plt.figure(figsize=(10, 10)) plt.plot(xx, f(xx), 'g:', linewidth=3, label=r'$f(x) = x\,\sin(x)$') plt.plot(X_test, y_test, 'b.', markersize=10, label='Test observations') plt.plot(xx, y_med, 'r-', label='Predicted median', color="orange") plt.plot(xx, y_pred, 'r-', label='Predicted mean') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill_between(xx.ravel(), y_lower, y_upper, alpha=0.4, label='Predicted 90% interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 25) plt.legend(loc='upper left') plt.show() # %% # Comparing the predicted median with the predicted mean, we note that the # median is on average below the mean as the noise is skewed towards high # values (large outliers). The median estimate also seems to be smoother # because of its natural robustness to outliers. # # Also observe that the inductive bias of gradient boosting trees is # unfortunately preventing our 0.05 quantile to fully capture the sinoisoidal # shape of the signal, in particular around x=8. Tuning hyper-parameters can # reduce this effect as shown in the last part of this notebook. # # Analysis of the error metrics # ----------------------------- # # Measure the models with :func:`mean_squared_error` and # :func:`mean_pinball_loss` metrics on the training dataset. import pandas as pd def highlight_min(x): x_min = x.min() return ['font-weight: bold' if v == x_min else '' for v in x] results = [] for name, gbr in sorted(all_models.items()): metrics = {'model': name} y_pred = gbr.predict(X_train) for alpha in [0.05, 0.5, 0.95]: metrics["pbl=%1.2f" % alpha] = mean_pinball_loss( y_train, y_pred, alpha=alpha) metrics['MSE'] = mean_squared_error(y_train, y_pred) results.append(metrics) pd.DataFrame(results).set_index('model').style.apply(highlight_min) # %% # One column shows all models evaluated by the same metric. The minimum number # on a column should be obtained when the model is trained and measured with # the same metric. This should be always the case on the training set if the # training converged. # # Note that because the target distribution is asymmetric, the expected # conditional mean and conditional median are signficiantly different and # therefore one could not use the least squares model get a good estimation of # the conditional median nor the converse. # # If the target distribution were symmetric and had no outliers (e.g. with a # Gaussian noise), then median estimator and the least squares estimator would # have yielded similar predictions. # # We then do the same on the test set. results = [] for name, gbr in sorted(all_models.items()): metrics = {'model': name} y_pred = gbr.predict(X_test) for alpha in [0.05, 0.5, 0.95]: metrics["pbl=%1.2f" % alpha] = mean_pinball_loss( y_test, y_pred, alpha=alpha) metrics['MSE'] = mean_squared_error(y_test, y_pred) results.append(metrics) pd.DataFrame(results).set_index('model').style.apply(highlight_min) # %% # Errors are higher meaning the models slightly overfitted the data. It still # shows that the best test metric is obtained when the model is trained by # minimizing this same metric. # # Note that the conditional median estimator is competitive with the least # squares estimator in terms of MSE on the test set: this can be explained by # the fact the least squares estimator is very sensitive to large outliers # which can cause significant overfitting. This can be seen on the right hand # side of the previous plot. The conditional median estimator is biased # (underestimation for this asymetric noise) but is also naturally robust to # outliers and overfits less. # # Calibration of the confidence interval # -------------------------------------- # # We can also evaluate the ability of the two extreme quantile estimators at # producing a well-calibrated conditational 90%-confidence interval. # # To do this we can compute the fraction of observations that fall between the # predictions: def coverage_fraction(y, y_low, y_high): return np.mean(np.logical_and(y >= y_low, y <= y_high)) coverage_fraction(y_train, all_models['q 0.05'].predict(X_train), all_models['q 0.95'].predict(X_train)) # %% # On the training set the calibration is very close to the expected coverage # value for a 90% confidence interval. coverage_fraction(y_test, all_models['q 0.05'].predict(X_test), all_models['q 0.95'].predict(X_test)) # %% # On the test set, the estimated confidence interval is slightly too narrow. # Note, however, that we would need to wrap those metrics in a cross-validation # loop to assess their variability under data resampling. # # Tuning the hyper-parameters of the quantile regressors # ------------------------------------------------------ # # In the plot above, we observed that the 5th percentile regressor seems to # underfit and could not adapt to sinusoidal shape of the signal. # # The hyper-parameters of the model were approximately hand-tuned for the # median regressor and there is no reason than the same hyper-parameters are # suitable for the 5th percentile regressor. # # To confirm this hypothesis, we tune the hyper-parameters of a new regressor # of the 5th percentile by selecting the best model parameters by # cross-validation on the pinball loss with alpha=0.05: # %% from sklearn.model_selection import RandomizedSearchCV from sklearn.metrics import make_scorer from pprint import pprint param_grid = dict( learning_rate=[0.01, 0.05, 0.1], n_estimators=[100, 150, 200, 250, 300], max_depth=[2, 5, 10, 15, 20], min_samples_leaf=[1, 5, 10, 20, 30, 50], min_samples_split=[2, 5, 10, 20, 30, 50], ) alpha = 0.05 neg_mean_pinball_loss_05p_scorer = make_scorer( mean_pinball_loss, alpha=alpha, greater_is_better=False, # maximize the negative loss ) gbr = GradientBoostingRegressor(loss="quantile", alpha=alpha, random_state=0) search_05p = RandomizedSearchCV( gbr, param_grid, n_iter=10, # increase this if computational budget allows scoring=neg_mean_pinball_loss_05p_scorer, n_jobs=2, random_state=0, ).fit(X_train, y_train) pprint(search_05p.best_params_) # %% # We observe that the search procedure identifies that deeper trees are needed # to get a good fit for the 5th percentile regressor. Deeper trees are more # expressive and less likely to underfit. # # Let's now tune the hyper-parameters for the 95th percentile regressor. We # need to redefine the `scoring` metric used to select the best model, along # with adjusting the alpha parameter of the inner gradient boosting estimator # itself: from sklearn.base import clone alpha = 0.95 neg_mean_pinball_loss_95p_scorer = make_scorer( mean_pinball_loss, alpha=alpha, greater_is_better=False, # maximize the negative loss ) search_95p = clone(search_05p).set_params( estimator__alpha=alpha, scoring=neg_mean_pinball_loss_95p_scorer, ) search_95p.fit(X_train, y_train) pprint(search_95p.best_params_) # %% # This time, shallower trees are selected and lead to a more constant piecewise # and therefore more robust estimation of the 95th percentile. This is # beneficial as it avoids overfitting the large outliers of the log-normal # additive noise. # # We can confirm this intuition by displaying the predicted 90% confidence # interval comprised by the predictions of those two tuned quantile regressors: # the prediction of the upper 95th percentile has a much coarser shape than the # prediction of the lower 5th percentile: y_lower = search_05p.predict(xx) y_upper = search_95p.predict(xx) fig = plt.figure(figsize=(10, 10)) plt.plot(xx, f(xx), 'g:', linewidth=3, label=r'$f(x) = x\,\sin(x)$') plt.plot(X_test, y_test, 'b.', markersize=10, label='Test observations') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill_between(xx.ravel(), y_lower, y_upper, alpha=0.4, label='Predicted 90% interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 25) plt.legend(loc='upper left') plt.title("Prediction with tuned hyper-parameters") plt.show() # %% # The plot looks qualitatively better than for the untuned models, especially # for the shape of the of lower quantile. # # We now quantitatively evaluate the joint-calibration of the pair of # estimators: coverage_fraction(y_train, search_05p.predict(X_train), search_95p.predict(X_train)) # %% coverage_fraction(y_test, search_05p.predict(X_test), search_95p.predict(X_test)) # %% # The calibration of the tuned pair is sadly not better on the test set: the # width of the estimated confidence interval is still too narrow. # # Again, we would need to wrap this study in a cross-validation loop to # better assess the variability of those estimates.
bsd-3-clause
anntzer/scikit-learn
asv_benchmarks/benchmarks/datasets.py
11
5351
import numpy as np import scipy.sparse as sp from joblib import Memory from pathlib import Path from sklearn.decomposition import TruncatedSVD from sklearn.datasets import (make_blobs, fetch_20newsgroups, fetch_openml, load_digits, make_regression, make_classification, fetch_olivetti_faces) from sklearn.preprocessing import MaxAbsScaler, StandardScaler from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split # memory location for caching datasets M = Memory(location=str(Path(__file__).resolve().parent / 'cache')) @M.cache def _blobs_dataset(n_samples=500000, n_features=3, n_clusters=100, dtype=np.float32): X, _ = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_clusters, random_state=0) X = X.astype(dtype, copy=False) X, X_val = train_test_split(X, test_size=0.1, random_state=0) return X, X_val, None, None @M.cache def _20newsgroups_highdim_dataset(n_samples=None, ngrams=(1, 1), dtype=np.float32): newsgroups = fetch_20newsgroups(random_state=0) vectorizer = TfidfVectorizer(ngram_range=ngrams, dtype=dtype) X = vectorizer.fit_transform(newsgroups.data[:n_samples]) y = newsgroups.target[:n_samples] X, X_val, y, y_val = train_test_split(X, y, test_size=0.1, random_state=0) return X, X_val, y, y_val @M.cache def _20newsgroups_lowdim_dataset(n_components=100, ngrams=(1, 1), dtype=np.float32): newsgroups = fetch_20newsgroups() vectorizer = TfidfVectorizer(ngram_range=ngrams) X = vectorizer.fit_transform(newsgroups.data) X = X.astype(dtype, copy=False) svd = TruncatedSVD(n_components=n_components) X = svd.fit_transform(X) y = newsgroups.target X, X_val, y, y_val = train_test_split(X, y, test_size=0.1, random_state=0) return X, X_val, y, y_val @M.cache def _mnist_dataset(dtype=np.float32): X, y = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False) X = X.astype(dtype, copy=False) X = MaxAbsScaler().fit_transform(X) X, X_val, y, y_val = train_test_split(X, y, test_size=0.1, random_state=0) return X, X_val, y, y_val @M.cache def _digits_dataset(n_samples=None, dtype=np.float32): X, y = load_digits(return_X_y=True) X = X.astype(dtype, copy=False) X = MaxAbsScaler().fit_transform(X) X = X[:n_samples] y = y[:n_samples] X, X_val, y, y_val = train_test_split(X, y, test_size=0.1, random_state=0) return X, X_val, y, y_val @M.cache def _synth_regression_dataset(n_samples=100000, n_features=100, dtype=np.float32): X, y = make_regression(n_samples=n_samples, n_features=n_features, n_informative=n_features // 10, noise=50, random_state=0) X = X.astype(dtype, copy=False) X = StandardScaler().fit_transform(X) X, X_val, y, y_val = train_test_split(X, y, test_size=0.1, random_state=0) return X, X_val, y, y_val @M.cache def _synth_regression_sparse_dataset(n_samples=10000, n_features=10000, density=0.01, dtype=np.float32): X = sp.random(m=n_samples, n=n_features, density=density, format='csr', random_state=0) X.data = np.random.RandomState(0).randn(X.getnnz()) X = X.astype(dtype, copy=False) coefs = sp.random(m=n_features, n=1, density=0.5, random_state=0) coefs.data = np.random.RandomState(0).randn(coefs.getnnz()) y = X.dot(coefs.toarray()).reshape(-1) y += 0.2 * y.std() * np.random.randn(n_samples) X, X_val, y, y_val = train_test_split(X, y, test_size=0.1, random_state=0) return X, X_val, y, y_val @M.cache def _synth_classification_dataset(n_samples=1000, n_features=10000, n_classes=2, dtype=np.float32): X, y = make_classification(n_samples=n_samples, n_features=n_features, n_classes=n_classes, random_state=0, n_informative=n_features, n_redundant=0) X = X.astype(dtype, copy=False) X = StandardScaler().fit_transform(X) X, X_val, y, y_val = train_test_split(X, y, test_size=0.1, random_state=0) return X, X_val, y, y_val @M.cache def _olivetti_faces_dataset(): dataset = fetch_olivetti_faces(shuffle=True, random_state=42) faces = dataset.data n_samples, n_features = faces.shape faces_centered = faces - faces.mean(axis=0) # local centering faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1) X = faces_centered X, X_val = train_test_split(X, test_size=0.1, random_state=0) return X, X_val, None, None @M.cache def _random_dataset(n_samples=1000, n_features=1000, representation='dense', dtype=np.float32): if representation == 'dense': X = np.random.RandomState(0).random_sample((n_samples, n_features)) X = X.astype(dtype, copy=False) else: X = sp.random(n_samples, n_features, density=0.05, format='csr', dtype=dtype, random_state=0) X, X_val = train_test_split(X, test_size=0.1, random_state=0) return X, X_val, None, None
bsd-3-clause
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/userdemo/anchored_box04.py
1
1929
""" ============== Anchored Box04 ============== """ from matplotlib.patches import Ellipse import matplotlib.pyplot as plt from matplotlib.offsetbox import (AnchoredOffsetbox, DrawingArea, HPacker, TextArea) # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end fig, ax = plt.subplots(figsize=(3, 3)) box1 = TextArea(" Test : ", textprops=dict(color="k")) box2 = DrawingArea(60, 20, 0, 0) el1 = Ellipse((10, 10), width=16, height=5, angle=30, fc="r") el2 = Ellipse((30, 10), width=16, height=5, angle=170, fc="g") el3 = Ellipse((50, 10), width=16, height=5, angle=230, fc="b") box2.add_artist(el1) box2.add_artist(el2) box2.add_artist(el3) box = HPacker(children=[box1, box2], align="center", pad=0, sep=5) anchored_box = AnchoredOffsetbox(loc=3, child=box, pad=0., frameon=True, bbox_to_anchor=(0., 1.02), bbox_transform=ax.transAxes, borderpad=0., ) ax.add_artist(anchored_box) fig.subplots_adjust(top=0.8) pltshow(plt)
mit
marcocaccin/scikit-learn
sklearn/manifold/isomap.py
229
7169
"""Isomap for manifold learning""" # Author: Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) 2011 import numpy as np from ..base import BaseEstimator, TransformerMixin from ..neighbors import NearestNeighbors, kneighbors_graph from ..utils import check_array from ..utils.graph import graph_shortest_path from ..decomposition import KernelPCA from ..preprocessing import KernelCenterer class Isomap(BaseEstimator, TransformerMixin): """Isomap Embedding Non-linear dimensionality reduction through Isometric Mapping Read more in the :ref:`User Guide <isomap>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kernel_pca_ : object `KernelPCA` object used to implement the embedding. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. nbrs_ : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. dist_matrix_ : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. References ---------- .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500) """ def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'): self.n_neighbors = n_neighbors self.n_components = n_components self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.path_method = path_method self.neighbors_algorithm = neighbors_algorithm self.nbrs_ = NearestNeighbors(n_neighbors=n_neighbors, algorithm=neighbors_algorithm) def _fit_transform(self, X): X = check_array(X) self.nbrs_.fit(X) self.training_data_ = self.nbrs_._fit_X self.kernel_pca_ = KernelPCA(n_components=self.n_components, kernel="precomputed", eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter) kng = kneighbors_graph(self.nbrs_, self.n_neighbors, mode='distance') self.dist_matrix_ = graph_shortest_path(kng, method=self.path_method, directed=False) G = self.dist_matrix_ ** 2 G *= -0.5 self.embedding_ = self.kernel_pca_.fit_transform(G) def reconstruction_error(self): """Compute the reconstruction error for the embedding. Returns ------- reconstruction_error : float Notes ------- The cost function of an isomap embedding is ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel: ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` """ G = -0.5 * self.dist_matrix_ ** 2 G_center = KernelCenterer().fit_transform(G) evals = self.kernel_pca_.lambdas_ return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0] def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X: {array-like, sparse matrix, BallTree, KDTree} Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X: array-like, shape (n_samples, n_features) Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = check_array(X) distances, indices = self.nbrs_.kneighbors(X, return_distance=True) #Create the graph of shortest distances from X to self.training_data_ # via the nearest neighbors of X. #This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: G_X = np.zeros((X.shape[0], self.training_data_.shape[0])) for i in range(X.shape[0]): G_X[i] = np.min((self.dist_matrix_[indices[i]] + distances[i][:, None]), 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
bsd-3-clause
bhargav/scikit-learn
examples/linear_model/plot_sgd_separating_hyperplane.py
84
1221
""" ========================================= SGD: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector Machines classifier trained using SGD. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.datasets.samples_generator import make_blobs # we create 50 separable points X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) # fit the model clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane xx = np.linspace(-1, 5, 10) yy = np.linspace(-1, 5, 10) X1, X2 = np.meshgrid(xx, yy) Z = np.empty(X1.shape) for (i, j), val in np.ndenumerate(X1): x1 = val x2 = X2[i, j] p = clf.decision_function([[x1, x2]]) Z[i, j] = p[0] levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
sumeetsk/NEXT-1
next/apps/AppDashboard.py
1
10726
import json import numpy import numpy.random from datetime import datetime from datetime import timedelta import next.utils as utils import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import mpld3 MAX_SAMPLES_PER_PLOT = 100 class AppDashboard(object): def __init__(self, db, ell): self.db = db self.ell = ell def basic_info(self,app,butler): """ returns basic statistics like number of queries, participants, etc. """ experiment_dict = butler.experiment.get() #git_hash = rm.get_git_hash_for_exp_uid(exp_uid) git_hash = experiment_dict.get('git_hash','None') # start_date = utils.str2datetime(butler.admin.get(uid=app.exp_uid)['start_date']) start_date = experiment_dict.get('start_date','Unknown')+' UTC' # participant_uids = rm.get_participant_uids(exp_uid) participants = butler.participants.get(pattern={'exp_uid':app.exp_uid}) num_participants = len(participants) queries = butler.queries.get(pattern={'exp_uid':app.exp_uid}) num_queries = len(queries) return_dict = {'git_hash':git_hash, 'exp_start_data':start_date, 'num_participants':num_participants, 'num_queries':num_queries, 'meta':{'last_dashboard_update':'<1 minute ago'}} return return_dict def api_activity_histogram(self, app, butler): """ Description: returns the data to plot all API activity (for all algorithms) in a histogram with respect to time for any task in {getQuery,processAnswer,predict} Expected output (in dict): (dict) MPLD3 plot dictionary """ queries = butler.queries.get(pattern={'exp_uid':app.exp_uid}) #self.db.get_docs_with_filter(app_id+':queries',{'exp_uid':exp_uid}) start_date = utils.str2datetime(butler.admin.get(uid=app.exp_uid)['start_date']) numerical_timestamps = [(utils.str2datetime(item['timestamp_query_generated'])-start_date).total_seconds() for item in queries] fig, ax = plt.subplots(subplot_kw=dict(axisbg='#FFFFFF'),figsize=(12,1.5)) ax.hist(numerical_timestamps,min(int(1+4*numpy.sqrt(len(numerical_timestamps))),300),alpha=0.5,color='black') ax.set_frame_on(False) ax.get_xaxis().set_ticks([]) ax.get_yaxis().set_ticks([]) ax.get_yaxis().set_visible(False) ax.set_xlim(0, max(numerical_timestamps)) plot_dict = mpld3.fig_to_dict(fig) plt.close() return plot_dict def compute_duration_multiline_plot(self, app, butler, task): """ Description: Returns multiline plot where there is a one-to-one mapping lines to algorithms and each line indicates the durations to complete the task (wrt to the api call) Expected input: (string) task : must be in {'getQuery','processAnswer','predict'} Expected output (in dict): (dict) MPLD3 plot dictionary """ alg_list = butler.experiment.get(key='args')['alg_list'] x_min = numpy.float('inf') x_max = -numpy.float('inf') y_min = numpy.float('inf') y_max = -numpy.float('inf') list_of_alg_dicts = [] for algorithm in alg_list: alg_label = algorithm['alg_label'] list_of_log_dict,didSucceed,message = butler.ell.get_logs_with_filter(app.app_id+':ALG-DURATION', {'exp_uid':app.exp_uid,'alg_label':alg_label,'task':task}) list_of_log_dict = sorted(list_of_log_dict, key=lambda item: utils.str2datetime(item['timestamp']) ) x = [] y = [] t = [] k=0 for item in list_of_log_dict: k+=1 x.append(k) y.append( item.get('app_duration',0.) + item.get('duration_enqueued',0.) ) t.append(str(item['timestamp'])[:-3]) x = numpy.array(x) y = numpy.array(y) t = numpy.array(t) num_items = len(list_of_log_dict) multiplier = min(num_items,MAX_SAMPLES_PER_PLOT) incr_inds = [ r*num_items/multiplier for r in range(multiplier)] max_inds = list(numpy.argsort(-y)[0:multiplier]) final_inds = sorted(set(incr_inds + max_inds)) x = list(x[final_inds]) y = list(y[final_inds]) t = list(t[final_inds]) alg_dict = {} alg_dict['legend_label'] = alg_label alg_dict['x'] = x alg_dict['y'] = y alg_dict['t'] = t try: x_min = min(x_min,min(x)) x_max = max(x_max,max(x)) y_min = min(y_min,min(y)) y_max = max(y_max,max(y)) except: pass list_of_alg_dicts.append(alg_dict) return_dict = {} return_dict['data'] = list_of_alg_dicts return_dict['plot_type'] = 'multi_line_plot' return_dict['x_label'] = 'API Call' return_dict['x_min'] = x_min return_dict['x_max'] = x_max return_dict['y_label'] = 'Duration (s)' return_dict['y_min'] = y_min return_dict['y_max'] = y_max fig, ax = plt.subplots(subplot_kw=dict(axisbg='#EEEEEE')) for alg_dict in list_of_alg_dicts: ax.plot(alg_dict['x'],alg_dict['y'],label=alg_dict['legend_label']) ax.set_xlabel('API Call') ax.set_ylabel('Duration (s)') ax.set_xlim([x_min,x_max]) ax.set_ylim([y_min,y_max]) ax.grid(color='white', linestyle='solid') ax.set_title(task, size=14) legend = ax.legend(loc=2,ncol=3,mode="expand") for label in legend.get_texts(): label.set_fontsize('small') plot_dict = mpld3.fig_to_dict(fig) plt.close() return plot_dict def compute_duration_detailed_stacked_area_plot(self,app,butler,task,alg_label,detailedDB=False): """ Description: Returns stacked area plot for a particular algorithm and task where the durations are broken down into compute,db_set,db_get (for cpu, database_set, database_get) Expected input: (string) task : must be in {'getQuery','processAnswer','predict'} (string) alg_label : must be a valid alg_label contained in alg_list list of dicts Expected output (in dict): (dict) MPLD3 plot dictionary """ list_of_log_dict,didSucceed,message = butler.ell.get_logs_with_filter(app.app_id+':ALG-DURATION', {'exp_uid':app.exp_uid,'alg_label':alg_label,'task':task}) list_of_log_dict = sorted(list_of_log_dict, key=lambda item: utils.str2datetime(item['timestamp']) ) y = [] for item in list_of_log_dict: y.append( item.get('app_duration',0.) + item.get('duration_enqueued',0.) ) y = numpy.array(y) num_items = len(list_of_log_dict) multiplier = min(num_items,MAX_SAMPLES_PER_PLOT) incr_inds = [ k*num_items/multiplier for k in range(multiplier)] max_inds = list(numpy.argsort(-y)[0:multiplier]) final_inds = sorted(set(incr_inds + max_inds)) x = [] t = [] enqueued = [] admin = [] dbGet = [] dbSet = [] compute = [] max_y_value = 0. min_y_value = float('inf') for idx in final_inds: item = list_of_log_dict[idx] x.append(idx+1) t.append(str(item.get('timestamp',''))) _alg_duration = item.get('duration',0.) _alg_duration_dbGet = item.get('duration_dbGet',0.) _alg_duration_dbSet = item.get('duration_dbSet',0.) _duration_enqueued = item.get('duration_enqueued',0.) _app_duration = item.get('app_duration',0.) if (_app_duration+_duration_enqueued) > max_y_value: max_y_value = _app_duration + _duration_enqueued if (_app_duration+_duration_enqueued) < min_y_value: min_y_value = _app_duration + _duration_enqueued enqueued.append(_duration_enqueued) admin.append(_app_duration-_alg_duration) dbSet.append(_alg_duration_dbSet) dbGet.append(_alg_duration_dbGet) compute.append( _alg_duration - _alg_duration_dbSet - _alg_duration_dbGet ) try: min_x = min(x) max_x = max(x) except: min_x = 0. max_x = 0. fig, ax = plt.subplots(subplot_kw=dict(axisbg='#EEEEEE')) stack_coll = ax.stackplot(x,compute,dbGet,dbSet,admin,enqueued, alpha=.5) ax.set_xlabel('API Call') ax.set_ylabel('Duration (s)') ax.set_xlim([min_x,max_x]) ax.set_ylim([0.,max_y_value]) ax.grid(color='white', linestyle='solid') ax.set_title(alg_label+' - '+task, size=14) proxy_rects = [plt.Rectangle((0, 0), 1, 1, alpha=.5,fc=pc.get_facecolor()[0]) for pc in stack_coll] legend = ax.legend(proxy_rects, ['compute','dbGet','dbSet','admin','enqueued'],loc=2,ncol=3,mode="expand") for label in legend.get_texts(): label.set_fontsize('small') plot_dict = mpld3.fig_to_dict(fig) plt.close() return plot_dict def response_time_histogram(self,app,butler,alg_label): """ Description: returns the data to plot response time histogram of processAnswer for each algorithm Expected input: (string) alg_label : must be a valid alg_label contained in alg_list list of dicts Expected output (in dict): (dict) MPLD3 plot dictionary """ list_of_query_dict,didSucceed,message = self.db.get_docs_with_filter(app.app_id+':queries',{'exp_uid':app.exp_uid,'alg_label':alg_label}) t = [] for item in list_of_query_dict: try: t.append(item['response_time']) except: pass fig, ax = plt.subplots(subplot_kw=dict(axisbg='#FFFFFF')) ax.hist(t, bins=min(len(t), MAX_SAMPLES_PER_PLOT), range=(0,30),alpha=0.5,color='black') ax.set_xlim(0, 30) ax.set_axis_off() ax.set_xlabel('Durations (s)') ax.set_ylabel('Count') ax.set_title(alg_label + " - response time", size=14) plot_dict = mpld3.fig_to_dict(fig) plt.close() return plot_dict def network_delay_histogram(self, app, butler, alg_label): """ Description: returns the data to network delay histogram of the time it takes to getQuery+processAnswer for each algorithm Expected input: (string) alg_label : must be a valid alg_label contained in alg_list list of dicts Expected output (in dict): (dict) MPLD3 plot dictionary """ list_of_query_dict,didSucceed,message = self.db.get_docs_with_filter(app.app_id+':queries',{'exp_uid':app.exp_uid,'alg_label':alg_label}) t = [] for item in list_of_query_dict: try: t.append(item['network_delay']) except: pass fig, ax = plt.subplots(subplot_kw=dict(axisbg='#FFFFFF')) ax.hist(t,MAX_SAMPLES_PER_PLOT,range=(0,5),alpha=0.5,color='black') ax.set_xlim(0, 5) ax.set_axis_off() ax.set_xlabel('Durations (s)') ax.set_ylabel('Count') ax.set_title(alg_label + " - network delay", size=14) plot_dict = mpld3.fig_to_dict(fig) plt.close() return plot_dict
apache-2.0
sannecottaar/burnman
contrib/CHRU2014/paper_fit_data.py
5
4849
# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences # Copyright (C) 2012 - 2015 by the BurnMan team, released under the GNU # GPL v2 or later. """ paper_fit_data -------------- This script reproduces :cite:`Cottaar2014` Figure 4. This example demonstrates BurnMan's functionality to fit thermoelastic data to both 2nd and 3rd orders using the EoS of the user's choice at 300 K. User's must create a file with :math:`P, T` and :math:`V_s`. See input_minphys/ for example input files. requires: - compute seismic velocities teaches: - averaging """ from __future__ import absolute_import from __future__ import print_function import os import sys import numpy as np import matplotlib.pyplot as plt if not os.path.exists('burnman') and os.path.exists('../../burnman'): sys.path.insert(1, os.path.abspath('../..')) import scipy.optimize as opt import burnman import misc.colors as colors # hack to allow scripts to be placed in subdirectories next to burnman: if not os.path.exists('burnman') and os.path.exists('../burnman'): sys.path.insert(1, os.path.abspath('..')) figsize = (6, 5) prop = {'size': 12} plt.rc('text', usetex=True) plt.rcParams['text.latex.preamble'] = r'\usepackage{relsize}' plt.rc('font', family='sans-serif') figure = plt.figure(dpi=100, figsize=figsize) def calc_shear_velocities(G_0, Gprime_0, mineral, pressures): mineral.params['G_0'] = G_0 mineral.params['Gprime_0'] = Gprime_0 shear_velocities = np.empty_like(pressures) for i in range(len(pressures)): mineral.set_state(pressures[i], 0.0) # set state with dummy temperature shear_velocities[i] = mineral.v_s return shear_velocities def error(guess, test_mineral, pressures, obs_vs): vs = calc_shear_velocities(guess[0], guess[1], test_mineral, pressures) vs_l2 = [(vs[i] - obs_vs[i]) * (vs[i] - obs_vs[i]) for i in range(len(obs_vs))] l2_error = sum(vs_l2) return l2_error if __name__ == "__main__": mg_perovskite_data = np.loadtxt("Murakami_perovskite.txt") obs_pressures = mg_perovskite_data[:, 0] * 1.e9 obs_vs = mg_perovskite_data[:, 2] * 1000. pressures = np.linspace(25.e9, 135.e9, 100) # make the mineral to fit guess = [200.e9, 2.0] mg_perovskite_test = burnman.Mineral() mg_perovskite_test.params['V_0'] = 24.45e-6 mg_perovskite_test.params['K_0'] = 281.e9 mg_perovskite_test.params['Kprime_0'] = 4.1 mg_perovskite_test.params['molar_mass'] = .10227 # first, do the second-order fit mg_perovskite_test.set_method("bm2") func = lambda x: error(x, mg_perovskite_test, obs_pressures, obs_vs) sol = opt.fmin(func, guess) print("2nd order fit: G = ", sol[0] / 1.e9, "GPa\tG' = ", sol[1]) model_vs_2nd_order_correct = calc_shear_velocities( sol[0], sol[1], mg_perovskite_test, pressures) mg_perovskite_test.set_method("bm3") model_vs_2nd_order_incorrect = calc_shear_velocities( sol[0], sol[1], mg_perovskite_test, pressures) # now do third-order fit mg_perovskite_test.set_method("bm3") func = lambda x: error(x, mg_perovskite_test, obs_pressures, obs_vs) sol = opt.fmin(func, guess) print("3rd order fit: G = ", sol[0] / 1.e9, "GPa\tG' = ", sol[1]) model_vs_3rd_order_correct = calc_shear_velocities( sol[0], sol[1], mg_perovskite_test, pressures) mg_perovskite_test.set_method("bm2") model_vs_3rd_order_incorrect = calc_shear_velocities( sol[0], sol[1], mg_perovskite_test, pressures) plt.plot( pressures / 1.e9, model_vs_2nd_order_correct / 1000., color=colors.color(3), linestyle='-', marker='x', markevery=7, linewidth=1.5, label="Correct 2nd order extrapolation") plt.plot( pressures / 1.e9, model_vs_2nd_order_incorrect / 1000., color=colors.color(3), linestyle='--', marker='x', markevery=7, linewidth=1.5, label="2nd order fit, 3rd order extrapolation") plt.plot( pressures / 1.e9, model_vs_3rd_order_correct / 1000., color=colors.color(1), linestyle='-', linewidth=1.5, label="Correct 3rd order extrapolation") plt.plot( pressures / 1.e9, model_vs_3rd_order_incorrect / 1000., color=colors.color(1), linestyle='--', linewidth=1.5, label="3rd order fit, 2nd order extrapolation") plt.scatter(obs_pressures / 1.e9, obs_vs / 1000., zorder=1000, marker='o', c='w') plt.ylim([6.7, 8]) plt.xlim([25., 135.]) if "RUNNING_TESTS" not in globals(): plt.ylabel( r'Shear velocity ${V}_{\mathlarger{\mathlarger{\mathlarger{s}}}}$ (km/s)') plt.xlabel("Pressure (GPa)") plt.legend(loc="lower right", prop=prop) if "RUNNING_TESTS" not in globals(): plt.savefig("example_fit_data.pdf", bbox_inches='tight') plt.show()
gpl-2.0
tleonhardt/CodingPlayground
dataquest/SQL_and_Databases/next_steps.py
1
2113
#!/usr/bin/env python """ Example looking at answering a few interesting questions using the SQLite database from the CIA World Factbook: * Which countries will lose population over the next 35 years? * Which countries have the lowest/highest population density? * Which countries receive the most immigrants? Which countries lose the most emigrants? """ import pandas as pd import sqlite3 # Create a connection to the SQLite database conn = sqlite3.connect('../data/factbook.db') # Read the facts table into a Pandas DataFrame query = 'select * from facts;' facts = pd.read_sql_query(query, conn) # Which countries will lose population over the next 35 years? # Sort by population growth and print lose_pop = facts[facts['population_growth'] < 0] print("There are {} countries that will lose population!".format(len(lose_pop))) # If this is true, it is a staggering fact, that NO countries have a negative population growth. # Actually there is no way this should be true and leads me to believe that whoever extracted the # data from the original HTML version of the CIA World Factbook didn't do it correctly, and perhaps # didn't deal with negative numbers. # Countries like Syria which have been torn by war most definitely have a negative population # growth rate in recent years, due in part to an increased death rate and in part to an increased # emmigration rate. # Which countries have the lowest/highest population density? # Assumption: population density = population / land_area # First we need to drop any countries with a NaN or 0 land area_land facts = facts[facts['area_land'].notnull() & facts['area_land'] != 0] facts['pop_density'] = facts['population'] / facts['area_land'] lowest_density = facts.sort_values(by='pop_density', ascending=True) highest_density = facts.sort_values(by='pop_density', ascending=False) cols = ['name', 'pop_density'] N = 5 print("\nThe countries with the lowest population density are:\n{}".format(lowest_density[cols].head(N))) print("\nThe countries with the highest population density are:\n{}".format(highest_density[cols].head(N)))
mit
Bobeye/LinkMechanismStewartGouph
OFWTP/configure.py
1
30594
import math import time import random import matplotlib.pyplot as plt import numpy as np from numpy.linalg import inv # Mechanical Parameters BOTTOM_RADIUS = 119.3649864910141897009273117677145601037135856257366363864 # distance from the center of the bottom plate to the servo center TOP_RADIUS = 74.33034373659252761306004106965698325724492756860430780281 # distance from the center of the top plate to the top joint BOTTOM_ANGLE = 0.546166563433787740559629712911971244663191407124391241530 TOP_ANGLE = 0.343023940420703397073528599413809616687563147674740286598 LINKA = 75.22 # length of the body link connected to the servo, the first part of the link-mechanism leg LINKB = 120.00# length of the body link connected to the top plate, the second part of the link-mechanism leg ZEROHEIGHT = 200.0 SERVOHEIGHT = 41.5 # COORDINATS & NUMBER TAG: # The space origin is always following the right-handed coordinats system. The origin is located at the center of the bottom plate. # Num 0 tag is always referring to the servo located within the third angle projection. The tagging sequence is following the direcion of anti-clockwise, # which means the tag 1 is reffering to the servo locating on the right side of the servo 0. class CONFIGURE: # data check def PositiveDataCheck(self): if BOTTOM_RADIUS <= 0 or TOP_RADIUS <= 0 or BOTTOM_ANGLE <= 0 or TOP_ANGLE <= 0 or LINKA <= 0 or LINKB <= 0: print("Warning! Strcture dimensions must be positive!") def OriginPosition(self): BottomCoordinates = [[BOTTOM_RADIUS * math.cos(BOTTOM_ANGLE), -BOTTOM_RADIUS * math.sin(BOTTOM_ANGLE), 0], [BOTTOM_RADIUS * math.cos(BOTTOM_ANGLE), BOTTOM_RADIUS * math.sin(BOTTOM_ANGLE), 0], [-BOTTOM_RADIUS * math.sin(math.radians(30)-BOTTOM_ANGLE), BOTTOM_RADIUS * math.cos(math.radians(30)-BOTTOM_ANGLE), 0], [-BOTTOM_RADIUS * math.sin(math.radians(30)+BOTTOM_ANGLE), BOTTOM_RADIUS * math.cos(math.radians(30)+BOTTOM_ANGLE), 0], [-BOTTOM_RADIUS * math.sin(math.radians(30)+BOTTOM_ANGLE), -BOTTOM_RADIUS * math.cos(math.radians(30)+BOTTOM_ANGLE), 0], [-BOTTOM_RADIUS * math.sin(math.radians(30)-BOTTOM_ANGLE), -BOTTOM_RADIUS * math.cos(math.radians(30)-BOTTOM_ANGLE), 0]] # print('BottomCoordinates = ',BottomCoordinates) TopCoordinates = [[TOP_RADIUS * math.cos(TOP_ANGLE), -TOP_RADIUS * math.sin(TOP_ANGLE), ZEROHEIGHT], [TOP_RADIUS * math.cos(TOP_ANGLE), TOP_RADIUS * math.sin(TOP_ANGLE), ZEROHEIGHT], [-TOP_RADIUS * math.sin(math.radians(30)-TOP_ANGLE), TOP_RADIUS * math.cos(math.radians(30)-TOP_ANGLE), ZEROHEIGHT], [-TOP_RADIUS * math.sin(math.radians(30)+TOP_ANGLE), TOP_RADIUS * math.cos(math.radians(30)+TOP_ANGLE), ZEROHEIGHT], [-TOP_RADIUS * math.sin(math.radians(30)+TOP_ANGLE), -TOP_RADIUS * math.cos(math.radians(30)+TOP_ANGLE), ZEROHEIGHT], [-TOP_RADIUS * math.sin(math.radians(30)-TOP_ANGLE), -TOP_RADIUS * math.cos(math.radians(30)-TOP_ANGLE), ZEROHEIGHT]] # print('TopCoordinates = ',TopCoordinates) ServoCoordinates = BottomCoordinates for i in range(6): ServoCoordinates[i][2] = SERVOHEIGHT # print('ServoCoordinates',ServoCoordinates) InitialCoordinates = [BottomCoordinates, TopCoordinates, ServoCoordinates] return InitialCoordinates def TopplateMotion(self, TopCoordinates, TopMotion): TempTop = TopCoordinates temptopz = TempTop[0][2] for i in range(6): TempTop[i][2] = 0.0 Top = TempTop deltaX = TopMotion[0] deltaY = TopMotion[1] deltaZ = TopMotion[2] alpha = TopMotion[3] belta = TopMotion[4] gamma = TopMotion[5] def S(angle): return math.sin(angle) def C(angle): return math.cos(angle) RotationM = [[C(gamma) * C(belta) , -S(gamma) * C(alpha) + C(gamma) * S(belta) * S(alpha) , S(gamma) * S(alpha) + C(gamma) * S(belta) * C(alpha)], [S(gamma) * C(belta) , C(gamma) * C(alpha) + S(gamma) * S(belta) * S(alpha) , -C(gamma) * S(alpha) + S(gamma) * S(belta) * C(alpha)], [-S(belta) , C(belta) * S(alpha) , C(belta) * C(alpha)]] TranslationM = [deltaX , deltaY, deltaZ] for i in range(6): for j in range(3): Top[i][j] = RotationM[j][0] * TempTop[i][0] + RotationM[j][1] * TempTop[i][1] + RotationM[j][2] * TempTop[i][2] + TranslationM[j] Top[i][2] = Top[i][2] + temptopz # print('After-Motion Top plate Coordinates', Top) return Top def LegLength(self, AimTopplate, ServoCoordinates): # Calculate leg length LegLength = [0.0,1.0,2.0,3.0,4.0,5.0] for i in range(6): TempDistance = 0.0 for j in range(3): TempDistance = TempDistance + ((AimTopplate[i][j]-ServoCoordinates[i][j])**2) LegLength[i] = math.sqrt(TempDistance) # print('Leglength = ', LegLength) return LegLength def InverseKinematics(self, AimTopplate, ServoCoordinates, LinkA, LinkB): # Calculate leg length LegLength = [0.0,1.0,2.0,3.0,4.0,5.0] for i in range(6): TempDistance = 0.0 for j in range(3): TempDistance = TempDistance + ((AimTopplate[i][j]-ServoCoordinates[i][j])**2) LegLength[i] = math.sqrt(TempDistance) # print('Leglength = ', LegLength) # Calculate leg direction LegAngle = AimTopplate TempLegAngle = AimTopplate for i in range(6): for j in range(3): LegAngle[i][j] = AimTopplate[i][j] - ServoCoordinates[i][j] TempLegAngle[i][j] = LegAngle[i][j] # LegAngle[i][0], LegAngle[i][1] = LegAngle[i][1], -LegAngle[i][0] # Switch the coordinates system from the right-handed to a standard 2D coordinates # print('LegAngle', LegAngle) YT = range(6) ZT = range(6) for i in range(6): ZT[i] = LegAngle[i][2] if i <= 1: YT[i] = LegAngle[i][1] elif i == 2: axisrot = math.pi*2/3 ca = math.cos(axisrot) sa = math.sin(axisrot) x0 = LegAngle[i][0] y0 = LegAngle[i][1] YT[i] = y0 * ca - x0 * sa elif i == 3: axisrot = math.pi*2/3 ca = math.cos(axisrot) sa = math.sin(axisrot) x0 = LegAngle[i][0] y0 = LegAngle[i][1] YT[i] = y0 * ca - x0 * sa elif i == 4: axisrot = -math.pi*2/3 ca = math.cos(axisrot) sa = math.sin(axisrot) x0 = LegAngle[i][0] y0 = LegAngle[i][1] YT[i] = y0 * ca - x0 * sa elif i == 5: axisrot = -math.pi*2/3 ca = math.cos(axisrot) sa = math.sin(axisrot) x0 = LegAngle[i][0] y0 = LegAngle[i][1] YT[i] = y0 * ca - x0 * sa # print('YT', YT) # print('ZT', ZT) ALPHA = [0.0,1.0,2.0,3.0,4.0,5.0] AimServoAngle = [0.0,1.0,2.0,3.0,4.0,5.0] # Motion Planning for i in range(6): M = ((LegLength[i] ** 2) + (LinkA ** 2) - (LinkB ** 2)) / (2 * LinkA * ZT[i]) N = YT[i] / ZT[i] # print('M', M) # print('N', N) # cos(alpha) has two results alpha = 0 if i % 2 == 1: Alphaa = (M * N + (math.sqrt((N**2) - (M**2) + 1.0))) / (N**2 + 1.0) Alphab = (M * N - (math.sqrt((N**2) - (M**2) + 1.0))) / (N**2 + 1.0) alphaa = math.acos(Alphaa) alphab = math.acos(Alphab) # print('a', alphaa) # print('b', alphab) if abs(alphaa) <= 1.5708: alpha = alphaa elif abs(alphab) <= 1.5708: alpha = alphab ALPHA[i] = alpha AimServoAngle[i] = 90 - math.degrees(ALPHA[i]) else: Alphaa = (-(M * N) + (math.sqrt((N**2) - (M**2) + 1.0))) / (N**2 + 1.0) Alphab = (-(M * N) - (math.sqrt((N**2) - (M**2) + 1.0))) / (N**2 + 1.0) alphaa = math.acos(Alphaa) alphab = math.acos(Alphab) # print('a', alphaa) # print('b', alphab) if abs(alphaa) <= 1.5708: alpha = alphaa elif abs(alphab) <= 1.5708: alpha = alphab ALPHA[i] = alpha AimServoAngle[i] = 90 - math.degrees(ALPHA[i]) # print('ALPHA', ALPHA) # print('AimServoAngle = ', AimServoAngle) return AimServoAngle def MonteCarlo(self): sampleResolution = 12.0 sampleStep = 4.0 sampleNum = int((sampleResolution*2+1)/sampleStep)**6 # Error range set # deltaTopplate = [0.1,0.1,0.1,0.1,0.1,0.1] # angls are in degree!!!!! # deltaTopplate = [1.0,0.0,0.0,0.0,0.0,0.0] # angls are in degree!!!!! # deltaTopplate = [0.0,1.0,0.0,0.0,0.0,0.0] # angls are in degree!!!!! # deltaTopplate = [0.0,0.0,1.0,0.0,0.0,0.0] # angls are in degree!!!!! deltaTopplate = [0.19,0.28,0.29,0.063,0.063,0.2] # angls are in degree!!!!! # Random sampleList = [[0],[0],[0],[0],[0],[0]] sampleTopplate = [0,0,0,0,0,0] tempsampleList = [0] for i in range(6): tempsampleList = np.random.uniform(-deltaTopplate[i],deltaTopplate[i],sampleNum) for j in range(sampleNum): sampleList[i].append(tempsampleList[j]) sampleList[i].pop for i in [3,4,5]: for j in range(len(sampleList[i])): sampleList[i][j] = math.radians(sampleList[i][j]) # print('sampleList',sampleList) print('MonteCarlo sampleNum:', sampleNum) return sampleList def ForwardKinematics(sefl, ServoAngle, ServoCoordinates, TopCoordinates, ZeroTopplate, LinkA, LinkB, DBP): # Degree to radius for i in range(6): ServoAngle[i] = math.radians(ServoAngle[i]) # Define the position of the universal joint between LINKA and LINKB UniversalJointAB = ServoCoordinates UniversalJointAB = [ [ServoCoordinates[0][0] , ServoCoordinates[0][1]-(LINKA*math.sin(ServoAngle[0])) , ServoCoordinates[0][2]+(LINKA*math.cos(ServoAngle[0]))], [ServoCoordinates[1][0] , ServoCoordinates[1][1]+(LINKA*math.sin(ServoAngle[1])) , ServoCoordinates[1][2]+(LINKA*math.cos(ServoAngle[1]))], [ServoCoordinates[2][0]+(LINKA*math.sin(ServoAngle[2])*math.cos(BOTTOM_ANGLE)) , ServoCoordinates[2][1]+(LINKA*math.sin(ServoAngle[2])*math.sin(BOTTOM_ANGLE)) , ServoCoordinates[2][2]+(LINKA*math.cos(ServoAngle[2]))], [ServoCoordinates[3][0]-(LINKA*math.sin(ServoAngle[3])*math.cos(BOTTOM_ANGLE)) , ServoCoordinates[3][1]-(LINKA*math.sin(ServoAngle[3])*math.sin(BOTTOM_ANGLE)) , ServoCoordinates[3][2]+(LINKA*math.cos(ServoAngle[3]))], [ServoCoordinates[4][0]-(LINKA*math.sin(ServoAngle[4])*math.cos(BOTTOM_ANGLE)) , ServoCoordinates[4][1]+(LINKA*math.sin(ServoAngle[4])*math.sin(BOTTOM_ANGLE)) , ServoCoordinates[4][2]+(LINKA*math.cos(ServoAngle[4]))], [ServoCoordinates[5][0]+(LINKA*math.sin(ServoAngle[5])*math.cos(BOTTOM_ANGLE)) , ServoCoordinates[5][1]-(LINKA*math.sin(ServoAngle[5])*math.sin(BOTTOM_ANGLE)) , ServoCoordinates[5][2]+(LINKA*math.cos(ServoAngle[5]))]] # print('UniversalJointAB:', UniversalJointAB) # Check LINKA's working range def CrossProduct(V1,V2): # cross product of two vectors for i in range(3): crossproduct = [V1[1]*V2[2]-V2[1]*V1[2],V1[0]*V2[2]-V2[0]*V1[2],V1[0]*V2[1]-V1[1]*V2[0]] return crossproduct def CCW(A,B,C): # See if three points are listed counter clock wise SegAB = [0,0,0] SegAC = [0,0,0] for i in range(3): SegAB[i] = B[i] - A[i] SegAC[i] = C[i] - A[i] if CrossProduct(SegAB,SegAC)[2] > 0: return True else: return False def Intersect(PA1,PA2,PB1,PB2): # See if line segment PA1-PA2 and PB1-PB2 interacts, TRUE for intersect return CCW(PA1,PB1,PB2) != CCW(PA2,PB1,PB2) and CCW(PA1,PA2,PB1) != CCW(PA1,PA2,PB2) def Coplanar(A,B,C,D): # See if four points are coplanar SegAB = [0,0,0] SegAC = [0,0,0] SegAD = [0,0,0] for i in range(3): SegAB[i] = B[i] - A[i] SegAC[i] = C[i] - A[i] SegAD[i] = D[i] - A[i] coplanarVec = CrossProduct(CrossProduct(SegAB,SegAC),CrossProduct(SegAB,SegAD)) if coplanarVec[0] == 0 and coplanarVec[1] == 0 and coplanarVec[2] == 0: return True else: return False # first, see if the segment points of the two links are coplanar, second, see if the two links are interacting for i in range(6): if i < 5: if Coplanar(ServoCoordinates[i],UniversalJointAB[i],ServoCoordinates[i+1],UniversalJointAB[i+1]) == True: if Intersect(ServoCoordinates[i],UniversalJointAB[i],ServoCoordinates[i+1],UniversalJointAB[i+1]) == True: print("Warning! Links have intersetions!!!") else: print("Links are safe to go!") else: if Coplanar(ServoCoordinates[5],UniversalJointAB[5],ServoCoordinates[0],UniversalJointAB[0]) == True: if Intersect(ServoCoordinates[5],UniversalJointAB[5],ServoCoordinates[0],UniversalJointAB[0]) == True: print("Warning! Links have intersetions!!!") else: print("Links are safe to go!") # Newton-Raphson Method print('Newton-Raphson is on!!!') print('Initial Top Plate = ', TopCoordinates) print('Initial Servo Plate = ', ServoCoordinates) print('Given servo angle = ', ServoAngle) print('UniversalJointAB pos = ', UniversalJointAB) def F(TopCoordinates,TopMotion,UniversalJointAB,LinkB): F = [0.00000000,0.000000000,0.0000000000,0.00000000000,0.0000000000,0.0000000000] TempTop = TopCoordinates Top = TopCoordinates deltaX = TopMotion[0] deltaY = TopMotion[1] deltaZ = TopMotion[2] alpha = TopMotion[3] belta = TopMotion[4] gamma = TopMotion[5] def S(angle): return math.sin(angle) def C(angle): return math.cos(angle) RotationM = [[C(gamma) * C(belta) , -S(gamma) * C(alpha) + C(gamma) * S(belta) * S(alpha) , S(gamma) * S(alpha) + C(gamma) * S(belta) * C(alpha)], [S(gamma) * C(belta) , C(gamma) * C(alpha) + S(gamma) * S(belta) * S(alpha) , -C(gamma) * S(alpha) + S(gamma) * S(belta) * C(alpha)], [-S(belta) , C(belta) * S(alpha) , C(belta) * C(alpha)]] TranslationM = [deltaX , deltaY, deltaZ] for i in range(6): for j in range(3): Top[i][j] = RotationM[j][0] * TempTop[i][0] + RotationM[j][1] * TempTop[i][1] + RotationM[j][2] * TempTop[i][2] + TranslationM[j] - UniversalJointAB[i][j] F[i] = math.sqrt(Top[i][0] ** 2 + Top[i][1] ** 2 + Top[i][2] ** 2) - LinkB return F # TopMotion = [0.0,0.0,0.0,0.0,0.0,0.0] # Angle in radius # F = F(TopCoordinates,TopMotion,UniversalJointAB,LinkB) # print('text F result', F) def f(TopCoordinates,TopMotion,UniversalJointAB,LinkB): TempTop = TopCoordinates Top = TopCoordinates deltaX = TopMotion[0] deltaY = TopMotion[1] deltaZ = TopMotion[2] alpha = TopMotion[3] belta = TopMotion[4] gamma = TopMotion[5] def S(angle): return math.sin(angle) def C(angle): return math.cos(angle) RotationM = [[C(gamma) * C(belta) , -S(gamma) * C(alpha) + C(gamma) * S(belta) * S(alpha) , S(gamma) * S(alpha) + C(gamma) * S(belta) * C(alpha)], [S(gamma) * C(belta) , C(gamma) * C(alpha) + S(gamma) * S(belta) * S(alpha) , -C(gamma) * S(alpha) + S(gamma) * S(belta) * C(alpha)], [-S(belta) , C(belta) * S(alpha) , C(belta) * C(alpha)]] TranslationM = [deltaX , deltaY, deltaZ] for i in range(6): for j in range(3): Top[i][j] = RotationM[j][0] * TempTop[i][0] + RotationM[j][1] * TempTop[i][1] + RotationM[j][2] * TempTop[i][2] + TranslationM[j] - UniversalJointAB[i][j] f = Top return f def dF(TopCoordinates,TopMotion): dF = [[[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]]], [[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]]], [[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]]], [[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]]], [[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]]], [[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]],[[0.0],[0.0],[0.0]]],] Top = TopCoordinates deltaX = TopMotion[0] deltaY = TopMotion[1] deltaZ = TopMotion[2] alpha = TopMotion[3] belta = TopMotion[4] gamma = TopMotion[5] def S(angle): return math.sin(angle) def C(angle): return math.cos(angle) for i in range(6): # d(f)/d(deltaX) Y Z dF[i][0] = [1.0,0.0,0.0] dF[i][1] = [0.0,1.0,0.0] dF[i][2] = [0.0,0.0,1.0] # d(f)/d(alpha) dF[i][3] = [S(gamma)*S(alpha)*Top[i][1] + C(gamma)*S(belta)*C(alpha)*Top[i][1] + S(gamma)*C(alpha)*Top[i][2] - C(gamma)*S(belta)*S(alpha)*Top[i][2], -C(gamma)*S(alpha)*Top[i][1] + S(gamma)*S(belta)*C(alpha)*Top[i][1] - C(gamma)*C(alpha)*Top[i][2] - S(gamma)*S(belta)*S(alpha)*Top[i][2], C(belta)*C(alpha)*Top[i][1] - C(belta)*S(alpha)*Top[i][2]] # d(f)/d(belta) dF[i][4] = [-C(gamma)*S(belta)*Top[i][0] + C(gamma)*C(belta)*S(alpha)*Top[i][1] + C(gamma)*C(belta)*C(alpha)*Top[i][2], -S(gamma)*S(belta)*Top[i][0] + S(gamma)*C(belta)*S(alpha)*Top[i][1] + S(gamma)*C(belta)*C(alpha)*Top[i][2], -C(belta)*Top[i][0] - S(belta)*S(alpha)*Top[i][1] - S(belta)*C(alpha)*Top[i][2]] # d(f)/d(gamma) dF[i][5] = [-S(gamma)*C(belta)*Top[i][0] - C(gamma)*C(alpha)*Top[i][1] - S(gamma)*S(belta)*S(alpha)*Top[i][1] + C(gamma)*S(alpha)*Top[i][2] - S(gamma)*S(belta)*C(alpha)*Top[i][2], C(gamma)*C(belta)*Top[i][0] - S(gamma)*C(alpha)*Top[i][1] + C(gamma)*S(belta)*S(alpha)*Top[i][1] + S(gamma)*S(alpha)*Top[i][2] + C(gamma)*S(belta)*C(alpha)*Top[i][2], 0] return dF # TopMotion = [0.0,0.0,0.0,0.0,0.0,0.0] # Angle in radius # dF = dF(TopCoordinates,TopMotion) # print('text dF result', dF) # NewtonRaphson: # Xn+1 = Xn - f(Xn)/df(Xn) resolution = 0.1 count = 1 start = time.time() CurrentTopMotion = [0.0,0.0,0.0,0.0,0.0,0.0] NextTopMotion = [0.0,0.0,0.0,0.0,0.0,0.0] TopCoordinates = [[70.0000000000026, -24.999999999992898, 208.79999999999063], [69.9999999999976, 25.000000000007095, 208.79999999999563], [-13.349364905396241, 73.12177826490947, 208.80000000000877], [-56.65063509461567, 48.12177826490514, 208.80000000001058], [-56.65063509460605, -48.121778264916266, 208.80000000000098], [-13.349364905381618, -73.12177826491194, 208.79999999999416]] F0 = F(TopCoordinates,CurrentTopMotion,UniversalJointAB,LinkB) TopCoordinates = [[70.0000000000026, -24.999999999992898, 208.79999999999063], [69.9999999999976, 25.000000000007095, 208.79999999999563], [-13.349364905396241, 73.12177826490947, 208.80000000000877], [-56.65063509461567, 48.12177826490514, 208.80000000001058], [-56.65063509460605, -48.121778264916266, 208.80000000000098], [-13.349364905381618, -73.12177826491194, 208.79999999999416]] dF0 = dF(TopCoordinates,CurrentTopMotion) TopCoordinates = [[70.0000000000026, -24.999999999992898, 208.79999999999063], [69.9999999999976, 25.000000000007095, 208.79999999999563], [-13.349364905396241, 73.12177826490947, 208.80000000000877], [-56.65063509461567, 48.12177826490514, 208.80000000001058], [-56.65063509460605, -48.121778264916266, 208.80000000000098], [-13.349364905381618, -73.12177826491194, 208.79999999999416]] f0 = f(TopCoordinates,CurrentTopMotion,UniversalJointAB,LinkB) TopCoordinates = [[70.0000000000026, -24.999999999992898, 208.79999999999063], [69.9999999999976, 25.000000000007095, 208.79999999999563], [-13.349364905396241, 73.12177826490947, 208.80000000000877], [-56.65063509461567, 48.12177826490514, 208.80000000001058], [-56.65063509460605, -48.121778264916266, 208.80000000000098], [-13.349364905381618, -73.12177826491194, 208.79999999999416]] for i in range(6): # [deltaX, deltaY, deltaZ, alpha, belta, gamma] Sum = 0.0 for j in range(6): # leg 0 ,1 ,2 3 4 5 Sum = Sum + ( F0[j] / (2 * (dF0[j][i][0] * f0[j][0] + dF0[j][i][1] * f0[j][1] + dF0[j][i][2] * f0[j][2])) ) NextTopMotion[i] = CurrentTopMotion[i] - Sum print ('NextTopMotion = ', NextTopMotion) print ('TP', TopCoordinates) F1 = F(TopCoordinates,NextTopMotion,UniversalJointAB,LinkB) print('PreviousF: ', F0) print('NextF: ', F1) # Permit = 0 # for i in range(6): # if abs(F1[i]) <= resolution: # Permit = Permit + 1 # while Permit < 6: Sum = 0.0 for i in range(6): Sum = Sum + F1[i] while Sum >= resolution: count = count + 1 CurrentTopMotion = NextTopMotion TopCoordinates = [[70.0000000000026, -24.999999999992898, 208.79999999999063], [69.9999999999976, 25.000000000007095, 208.79999999999563], [-13.349364905396241, 73.12177826490947, 208.80000000000877], [-56.65063509461567, 48.12177826490514, 208.80000000001058], [-56.65063509460605, -48.121778264916266, 208.80000000000098], [-13.349364905381618, -73.12177826491194, 208.79999999999416]] F0 = F(TopCoordinates,CurrentTopMotion,UniversalJointAB,LinkB) TopCoordinates = [[70.0000000000026, -24.999999999992898, 208.79999999999063], [69.9999999999976, 25.000000000007095, 208.79999999999563], [-13.349364905396241, 73.12177826490947, 208.80000000000877], [-56.65063509461567, 48.12177826490514, 208.80000000001058], [-56.65063509460605, -48.121778264916266, 208.80000000000098], [-13.349364905381618, -73.12177826491194, 208.79999999999416]] dF0 = dF(TopCoordinates,CurrentTopMotion) TopCoordinates = [[70.0000000000026, -24.999999999992898, 208.79999999999063], [69.9999999999976, 25.000000000007095, 208.79999999999563], [-13.349364905396241, 73.12177826490947, 208.80000000000877], [-56.65063509461567, 48.12177826490514, 208.80000000001058], [-56.65063509460605, -48.121778264916266, 208.80000000000098], [-13.349364905381618, -73.12177826491194, 208.79999999999416]] f0 = f(TopCoordinates,CurrentTopMotion,UniversalJointAB,LinkB) TopCoordinates = [[70.0000000000026, -24.999999999992898, 208.79999999999063], [69.9999999999976, 25.000000000007095, 208.79999999999563], [-13.349364905396241, 73.12177826490947, 208.80000000000877], [-56.65063509461567, 48.12177826490514, 208.80000000001058], [-56.65063509460605, -48.121778264916266, 208.80000000000098], [-13.349364905381618, -73.12177826491194, 208.79999999999416]] for i in range(6): # [deltaX, deltaY, deltaZ, alpha, belta, gamma] Sum = 0.0 for j in range(6): # leg 0 ,1 ,2 3 4 5 Sum = Sum + ( F0[j] / (2 * (dF0[j][i][0] * f0[j][0] + dF0[j][i][1] * f0[j][1] + dF0[j][i][2] * f0[j][2])) ) NextTopMotion[i] = CurrentTopMotion[i] - Sum print ('NextTopMotion = ', NextTopMotion) print ('TP', TopCoordinates) F1 = F(TopCoordinates,NextTopMotion,UniversalJointAB,LinkB) print('PreviousF: ', F0) print('NextF: ', F1) Sum = 0.0 for i in range(6): Sum = Sum + F1[i] # Permit = 0 # for i in range(6): # if F1[i] <= resolution: # Permit = Permit + 1 end = time.time() print ('Iteration Period: ', count, 'Total Time', end-start) print ('Aim Topplate Motion: ', NextTopMotion) def main(): # 1 # initial the configure class configure = CONFIGURE() # 2 # Initial coordinates setup InitialCordinates=configure.OriginPosition() BottomCoordinates=InitialCordinates[0] TopCoordinates=InitialCordinates[1] ServoCoordinates=InitialCordinates[2] # # 3 # # # Move the TOP PLATE # # TopMotion = [0.0,0.0,0.0,0.0,0.0,0.0] # Angle in radius # # AimTopplate = configure.TopplateMotion(TopCoordinates, TopMotion) # # 4 # # Inverse Kinematics # InitialCordinates=configure.OriginPosition() # BottomCoordinates=InitialCordinates[0] # TopCoordinates=InitialCordinates[1] # ServoCoordinates=InitialCordinates[2] # TopMotion = [0.0,0.0,0.0,0.0,0.0,-0.36] # Angle in radius, given desired topplate motion # AimTopplate = configure.TopplateMotion(TopCoordinates, TopMotion) # AimServoPos = configure.InverseKinematics(AimTopplate, ServoCoordinates, LINKA, LINKB) # print(AimServoPos) # in degrees # # 5 # # MonteCarlo Accuracy Analysis # # Move top to zero # # ZeroTopMotion = [0.1,0.1,0.1,0.0,0.0,0.0] # Angle in radius # # ZeroAimTopplate = configure.TopplateMotion(TopCoordinates, ZeroTopMotion) # # ZeroAimServoPos = configure.InverseKinematics(ZeroAimTopplate, ServoCoordinates, LINKA, LINKB) # InitialCordinates=configure.OriginPosition() # BottomCoordinates=InitialCordinates[0] # TopCoordinates=InitialCordinates[1] # ServoCoordinates=InitialCordinates[2] # print('top',TopCoordinates) # ZeroTopMotion = [0.1,0.0,0.0,0.0,0.0,0.0] # Angle in radius # ZeroAimTopplate = configure.TopplateMotion(TopCoordinates, ZeroTopMotion) # ZeroLegLength = configure.LegLength(ZeroAimTopplate, ServoCoordinates) # ZeroAimTopplate = configure.TopplateMotion(TopCoordinates, ZeroTopMotion) # ZeroAimServoPos = configure.InverseKinematics(ZeroAimTopplate, ServoCoordinates, LINKA, LINKB) # print('ZeroPos', ZeroAimServoPos) # # ZeroTopMotion = [0.1,0.1,0.1,0.0,0.0,0.0] # Angle in radius # # ZeroAimTopplate = configure.TopplateMotion(TopCoordinates, ZeroTopMotion) # # ZeroAimServoPos = configure.InverseKinematics(ZeroAimTopplate, ServoCoordinates, LINKA, LINKB) # # print(ZeroAimServoPos) # # Monte Carlo # sampleTopplate = configure.MonteCarlo() # for i in range(len(sampleTopplate)): # for j in range(6): # sampleTopplate[i][j] = sampleTopplate[i][j] + ZeroTopMotion[j] # sampleLegLength = [ZeroLegLength] # TopMotionList = [ZeroTopMotion] # AimTopplateList = [ZeroAimTopplate] # AimServoPosList = [ZeroAimServoPos] # for i in range(len(sampleTopplate[0])): # TopMotion = [sampleTopplate[0][i],sampleTopplate[1][i],sampleTopplate[2][i],sampleTopplate[3][i],sampleTopplate[4][i],sampleTopplate[5][i]] # TopMotionList.append(TopMotion) # TopCoordinates = [[70.0000000000026, -24.999999999992898, 208.79999999999063], [69.9999999999976, 25.000000000007095, 208.79999999999563], [-13.349364905396241, 73.12177826490947, 208.80000000000877], [-56.65063509461567, 48.12177826490514, 208.80000000001058], [-56.65063509460605, -48.121778264916266, 208.80000000000098], [-13.349364905381618, -73.12177826491194, 208.79999999999416]] # for i in range(len(TopMotionList)): # TopCoordinates = [[70.0000000000026, -24.999999999992898, 208.79999999999063], [69.9999999999976, 25.000000000007095, 208.79999999999563], [-13.349364905396241, 73.12177826490947, 208.80000000000877], [-56.65063509461567, 48.12177826490514, 208.80000000001058], [-56.65063509460605, -48.121778264916266, 208.80000000000098], [-13.349364905381618, -73.12177826491194, 208.79999999999416]] # AimTopplate = configure.TopplateMotion(TopCoordinates, TopMotionList[i]) # InitialCordinates=configure.OriginPosition() # TopCoordinates=InitialCordinates[1] # AimTopplateList.append(AimTopplate) # # Leg Length Analysis # for i in range(len(AimTopplateList)): # LegLength = configure.LegLength(AimTopplateList[i], ServoCoordinates) # sampleLegLength.append(LegLength) # # Servo Angle Analysis # for i in range(1,len(AimTopplateList)): # AimServoPos = configure.InverseKinematics(AimTopplateList[i], ServoCoordinates, LINKA, LINKB) # TopCoordinates = [[70.0000000000026, -24.999999999992898, 208.79999999999063], [69.9999999999976, 25.000000000007095, 208.79999999999563], [-13.349364905396241, 73.12177826490947, 208.80000000000877], [-56.65063509461567, 48.12177826490514, 208.80000000001058], [-56.65063509460605, -48.121778264916266, 208.80000000000098], [-13.349364905381618, -73.12177826491194, 208.79999999999416]] # InitialCordinates=configure.OriginPosition() # ServoCoordinates=InitialCordinates[2] # AimServoPosList.append(AimServoPos) # # print('Aim Servo Position', AimServoPosList) # sampleServoAngle = [[0],[0],[0],[0],[0],[0]] # for i in range(len(AimServoPosList)): # for j in range(6): # sampleServoAngle[j].append(AimServoPosList[i][j]) # # print('Aim Servo Angle Position for each leg', sampleServoAngle) # TempsampleServoAngle = sampleServoAngle # for i in range(6): # sampleServoAngle[i] = sorted(sampleServoAngle[i]) # # MC accuracy data analysis # goodCount = [0.0,0.0,0.0,0.0,0.0,0.0] # goodRatio = [0.0,0.0,0.0,0.0,0.0,0.0] # for i in range(6): # for angle in sampleServoAngle[i]: # if angle <= ZeroAimServoPos[i] + 0.5 and angle >= ZeroAimServoPos[i] - 0.5: # goodCount[i] = goodCount[i] + 1.0 # goodRatio[i] = goodCount[i] / len(sampleServoAngle[i]) # print('Accuracy rate is:' ,goodRatio) # for i in range(6): # sampleServoAngle[i] = sampleServoAngle[i][1:len(sampleServoAngle[i])-1] # # leg 0 handle # minl0 = sampleServoAngle[0][0] # maxl0 = sampleServoAngle[0][len(sampleServoAngle[0])-1] # resolution = (maxl0-minl0) / 1000 # leglist = [0] # legcount = [0] # l0 = minl0 # i = 0 # while l0 < maxl0 and i < len(sampleServoAngle[0])-10: # countl0 = 0 # # print(sampleServoAngle[0][i]) # while sampleServoAngle[0][i] < (l0 + resolution): # countl0 = countl0+1 # i = i + 1 # legcount.append(countl0) # leglist.append(l0) # l0 = l0 + resolution # print(len(legcount)) # print(len(leglist)) # # # Normal distribution # # Scount = [0] # # Mlength = np.median(sampleServoAngle[0]) # # resolution = 0.01 # # limit = 0.6 # # Slength = [0] # # print(sampleServoAngle[0][0]) # # for i in range(len(sampleServoAngle[0])): # # if sampleServoAngle[0][i] <= # plt.figure(1) # MC accuracy analysis figure # plt.title('MonteCarlo Accuracy Analysis -- Leg Length Accuracy') # plt.subplot(211) # plt.grid(True) # plt.ylabel('Topplate Position') # plt.xlabel('Sample Number') # samplePoints = plt.plot(TopMotionList,'.') # plt.setp(samplePoints, color='y') # # plt.axis([170,185,0, len(sampleLegLength)]) # plt.subplot(212) # plt.grid(True) # plt.ylabel('Sample Number') # plt.xlabel('Leg Length/mm') # samplePoints = plt.plot(sampleLegLength,range(len(sampleLegLength)),'.') # plt.setp(samplePoints, color='g') # plt.axis([np.median(sampleLegLength)*0.98,np.median(sampleLegLength)*1.02,0, len(sampleLegLength)]) # plt.figure(2) # MC accuracy analysis figure # plt.title('MonteCarlo Accuracy Analysis -- Servo Angle Accuracy') # for i in range(6): # plt.subplot(611 + i) # plt.grid(True) # plt.xlabel('Angle-Leg/degree') # samplePoints = plt.plot(sampleServoAngle[i],range(len(sampleServoAngle[i])),'.') # plt.setp(samplePoints, color='r') # plt.axis([sampleServoAngle[i][0], sampleServoAngle[i][len(sampleServoAngle[0])-1], 0, len(sampleServoAngle[i])]) # plt.figure(3) # plt.title('Monte-Carlo Accuracy Analysis -- #0 Servo Angle Accuracy') # plt.grid(True) # plt.ylabel('SampleNumber') # plt.xlabel('Servo Angle') # samplePoints = plt.plot(leglist,legcount,'*') # plt.setp(samplePoints, color='r') # plt.axis([minl0, maxl0, 0, max(legcount)*1.01]) # plt.show() # # 6 # # # Forward Kinematics Calculation # # InitialCordinates=configure.OriginPosition() # # BottomCoordinates=InitialCordinates[0] # # TopCoordinates=InitialCordinates[1] # # ServoCoordinates=InitialCordinates[2] # # ZeroTopplate = AimTopplate # # ServoAngle = [25.4388,25.4388,25.4388,25.4388,25.4388,25.4388] # degree # # # ServoAngle = [0.0,0.0,0.0,0.0,0.0,0.0] # degree # # configure.ForwardKinematics(ServoAngle, ServoCoordinates, TopCoordinates, ZeroTopplate, LINKA, LINKB, BOTTOM_ANGLE) if __name__=='__main__': main()
gpl-3.0
MohammedWasim/scikit-learn
sklearn/decomposition/tests/test_pca.py
199
10949
import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA from sklearn.decomposition import RandomizedPCA from sklearn.decomposition.pca import _assess_dimension_ from sklearn.decomposition.pca import _infer_dimension_ iris = datasets.load_iris() def test_pca(): # PCA on dense arrays pca = PCA(n_components=2) X = iris.data X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], 2) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) pca = PCA() pca.fit(X) assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3) X_r = pca.transform(X) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: pca.n_components = n_components pca.fit(X) cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12) def test_whitening(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 n_components = 30 rank = 50 # some low rank data with correlated features X = np.dot(rng.randn(n_samples, rank), np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features))) # the component-wise variance of the first 50 features is 3 times the # mean component-wise variance of the remaingin 30 features X[:, :50] *= 3 assert_equal(X.shape, (n_samples, n_features)) # the component-wise variance is thus highly varying: assert_almost_equal(X.std(axis=0).std(), 43.9, 1) for this_PCA, copy in [(x, y) for x in (PCA, RandomizedPCA) for y in (True, False)]: # whiten the data while projecting to the lower dim subspace X_ = X.copy() # make sure we keep an original across iterations. pca = this_PCA(n_components=n_components, whiten=True, copy=copy) # test fit_transform X_whitened = pca.fit_transform(X_.copy()) assert_equal(X_whitened.shape, (n_samples, n_components)) X_whitened2 = pca.transform(X_) assert_array_almost_equal(X_whitened, X_whitened2) assert_almost_equal(X_whitened.std(axis=0), np.ones(n_components)) assert_almost_equal(X_whitened.mean(axis=0), np.zeros(n_components)) X_ = X.copy() pca = this_PCA(n_components=n_components, whiten=False, copy=copy).fit(X_) X_unwhitened = pca.transform(X_) assert_equal(X_unwhitened.shape, (n_samples, n_components)) # in that case the output components still have varying variances assert_almost_equal(X_unwhitened.std(axis=0).std(), 74.1, 1) # we always center, so no test for non-centering. def test_explained_variance(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 X = rng.randn(n_samples, n_features) pca = PCA(n_components=2).fit(X) rpca = RandomizedPCA(n_components=2, random_state=42).fit(X) assert_array_almost_equal(pca.explained_variance_, rpca.explained_variance_, 1) assert_array_almost_equal(pca.explained_variance_ratio_, rpca.explained_variance_ratio_, 3) # compare to empirical variances X_pca = pca.transform(X) assert_array_almost_equal(pca.explained_variance_, np.var(X_pca, axis=0)) X_rpca = rpca.transform(X) assert_array_almost_equal(rpca.explained_variance_, np.var(X_rpca, axis=0)) def test_pca_check_projection(): # Test that the projection of data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = PCA(n_components=2).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_pca_inverse(): # Test that the projection of data can be inverted rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) pca = PCA(n_components=2).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) # same as above with whitening (approximate reconstruction) pca = PCA(n_components=2, whiten=True) pca.fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_pca_validation(): X = [[0, 1], [1, 0]] for n_components in [-1, 3]: assert_raises(ValueError, PCA(n_components).fit, X) def test_randomized_pca_check_projection(): # Test that the projection by RandomizedPCA on dense data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = RandomizedPCA(n_components=2, random_state=0).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_randomized_pca_check_list(): # Test that the projection by RandomizedPCA on list data is correct X = [[1.0, 0.0], [0.0, 1.0]] X_transformed = RandomizedPCA(n_components=1, random_state=0).fit(X).transform(X) assert_equal(X_transformed.shape, (2, 1)) assert_almost_equal(X_transformed.mean(), 0.00, 2) assert_almost_equal(X_transformed.std(), 0.71, 2) def test_randomized_pca_inverse(): # Test that RandomizedPCA is inversible on dense data rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed signal # (since the data is almost of rank n_components) pca = RandomizedPCA(n_components=2, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=2) # same as above with whitening (approximate reconstruction) pca = RandomizedPCA(n_components=2, whiten=True, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) relative_max_delta = (np.abs(X - Y_inverse) / np.abs(X).mean()).max() assert_almost_equal(relative_max_delta, 0.11, decimal=2) def test_pca_dim(): # Check automated dimensionality setting rng = np.random.RandomState(0) n, p = 100, 5 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) pca = PCA(n_components='mle').fit(X) assert_equal(pca.n_components, 'mle') assert_equal(pca.n_components_, 1) def test_infer_dim_1(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = (rng.randn(n, p) * .1 + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2]) + np.array([1, 0, 7, 4, 6])) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ ll = [] for k in range(p): ll.append(_assess_dimension_(spect, k, n, p)) ll = np.array(ll) assert_greater(ll[1], ll.max() - .01 * n) def test_infer_dim_2(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 1) def test_infer_dim_3(): n, p = 100, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) X[30:40] += 2 * np.array([-1, 1, -1, 1, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 2) def test_infer_dim_by_explained_variance(): X = iris.data pca = PCA(n_components=0.95) pca.fit(X) assert_equal(pca.n_components, 0.95) assert_equal(pca.n_components_, 2) pca = PCA(n_components=0.01) pca.fit(X) assert_equal(pca.n_components, 0.01) assert_equal(pca.n_components_, 1) rng = np.random.RandomState(0) # more features than samples X = rng.rand(5, 20) pca = PCA(n_components=.5).fit(X) assert_equal(pca.n_components, 0.5) assert_equal(pca.n_components_, 2) def test_pca_score(): # Test that probabilistic PCA scoring yields a reasonable score n, p = 1000, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p np.testing.assert_almost_equal(ll1 / h, 1, 0) def test_pca_score2(): # Test that probabilistic PCA correctly separated different datasets n, p = 100, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5])) assert_greater(ll1, ll2) # Test that it gives the same scores if whiten=True pca = PCA(n_components=2, whiten=True) pca.fit(X) ll2 = pca.score(X) assert_almost_equal(ll1, ll2) def test_pca_score3(): # Check that probabilistic PCA selects the right model n, p = 200, 3 rng = np.random.RandomState(0) Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) ll = np.zeros(p) for k in range(p): pca = PCA(n_components=k) pca.fit(Xl) ll[k] = pca.score(Xt) assert_true(ll.argmax() == 1)
bsd-3-clause
nmayorov/scikit-learn
examples/applications/wikipedia_principal_eigenvector.py
16
7819
""" =============================== Wikipedia principal eigenvector =============================== A classical way to assert the relative importance of vertices in a graph is to compute the principal eigenvector of the adjacency matrix so as to assign to each vertex the values of the components of the first eigenvector as a centrality score: http://en.wikipedia.org/wiki/Eigenvector_centrality On the graph of webpages and links those values are called the PageRank scores by Google. The goal of this example is to analyze the graph of links inside wikipedia articles to rank articles by relative importance according to this eigenvector centrality. The traditional way to compute the principal eigenvector is to use the power iteration method: http://en.wikipedia.org/wiki/Power_iteration Here the computation is achieved thanks to Martinsson's Randomized SVD algorithm implemented in the scikit. The graph data is fetched from the DBpedia dumps. DBpedia is an extraction of the latent structured data of the Wikipedia content. """ # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from bz2 import BZ2File import os from datetime import datetime from pprint import pprint from time import time import numpy as np from scipy import sparse from sklearn.decomposition import randomized_svd from sklearn.externals.joblib import Memory from sklearn.externals.six.moves.urllib.request import urlopen from sklearn.externals.six import iteritems print(__doc__) ############################################################################### # Where to download the data, if not already on disk redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2" redirects_filename = redirects_url.rsplit("/", 1)[1] page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2" page_links_filename = page_links_url.rsplit("/", 1)[1] resources = [ (redirects_url, redirects_filename), (page_links_url, page_links_filename), ] for url, filename in resources: if not os.path.exists(filename): print("Downloading data from '%s', please wait..." % url) opener = urlopen(url) open(filename, 'wb').write(opener.read()) print() ############################################################################### # Loading the redirect files memory = Memory(cachedir=".") def index(redirects, index_map, k): """Find the index of an article name after redirect resolution""" k = redirects.get(k, k) return index_map.setdefault(k, len(index_map)) DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/") SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1) def short_name(nt_uri): """Remove the < and > URI markers and the common URI prefix""" return nt_uri[SHORTNAME_SLICE] def get_redirects(redirects_filename): """Parse the redirections and build a transitively closed map out of it""" redirects = {} print("Parsing the NT redirect file") for l, line in enumerate(BZ2File(redirects_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue redirects[short_name(split[0])] = short_name(split[2]) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) # compute the transitive closure print("Computing the transitive closure of the redirect relation") for l, source in enumerate(redirects.keys()): transitive_target = None target = redirects[source] seen = set([source]) while True: transitive_target = target target = redirects.get(target) if target is None or target in seen: break seen.add(target) redirects[source] = transitive_target if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) return redirects # disabling joblib as the pickling of large dicts seems much too slow #@memory.cache def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None): """Extract the adjacency graph as a scipy sparse matrix Redirects are resolved first. Returns X, the scipy sparse adjacency matrix, redirects as python dict from article names to article names and index_map a python dict from article names to python int (article indexes). """ print("Computing the redirect map") redirects = get_redirects(redirects_filename) print("Computing the integer index map") index_map = dict() links = list() for l, line in enumerate(BZ2File(page_links_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue i = index(redirects, index_map, short_name(split[0])) j = index(redirects, index_map, short_name(split[2])) links.append((i, j)) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) if limit is not None and l >= limit - 1: break print("Computing the adjacency matrix") X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32) for i, j in links: X[i, j] = 1.0 del links print("Converting to CSR representation") X = X.tocsr() print("CSR conversion done") return X, redirects, index_map # stop after 5M links to make it possible to work in RAM X, redirects, index_map = get_adjacency_matrix( redirects_filename, page_links_filename, limit=5000000) names = dict((i, name) for name, i in iteritems(index_map)) print("Computing the principal singular vectors using randomized_svd") t0 = time() U, s, V = randomized_svd(X, 5, n_iter=3) print("done in %0.3fs" % (time() - t0)) # print the names of the wikipedia related strongest components of the the # principal singular vector which should be similar to the highest eigenvector print("Top wikipedia pages according to principal singular vectors") pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]]) pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]]) def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10): """Power iteration computation of the principal eigenvector This method is also known as Google PageRank and the implementation is based on the one from the NetworkX project (BSD licensed too) with copyrights by: Aric Hagberg <[email protected]> Dan Schult <[email protected]> Pieter Swart <[email protected]> """ n = X.shape[0] X = X.copy() incoming_counts = np.asarray(X.sum(axis=1)).ravel() print("Normalizing the graph") for i in incoming_counts.nonzero()[0]: X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i] dangle = np.asarray(np.where(X.sum(axis=1) == 0, 1.0 / n, 0)).ravel() scores = np.ones(n, dtype=np.float32) / n # initial guess for i in range(max_iter): print("power iteration #%d" % i) prev_scores = scores scores = (alpha * (scores * X + np.dot(dangle, prev_scores)) + (1 - alpha) * prev_scores.sum() / n) # check convergence: normalized l_inf norm scores_max = np.abs(scores).max() if scores_max == 0.0: scores_max = 1.0 err = np.abs(scores - prev_scores).max() / scores_max print("error: %0.6f" % err) if err < n * tol: return scores return scores print("Computing principal eigenvector score using a power iteration method") t0 = time() scores = centrality_scores(X, max_iter=100, tol=1e-10) print("done in %0.3fs" % (time() - t0)) pprint([names[i] for i in np.abs(scores).argsort()[-10:]])
bsd-3-clause
diegocavalca/Studies
phd-thesis/benchmarkings/cs446 project-electric-load-identification-using-machine-learning/src/TestClassifiers.py
1
7262
# -*- coding: utf-8 -*- """ Created on Fri Apr 03 19:28:12 2015 Non Intrusive Load Monitoring for Energy Disaggregation for the REDD data Class project for CS446: Machine Learning @ University of Illinois at Urbana-Champaign REDD Reference: "J. Zico Kolter and Matthew J. Johnson. REDD: A public data set for energy disaggregation research. In proceedings of the SustKDD workshop on Data Mining Applications in Sustainability, 2011." @authors: Anand Deshmukh, Danny Lohan University of Illinois at Urbana-Champaign """ import numpy as np import matplotlib.pyplot as plt import csv import time from scipy import interpolate from MLData import createInstances, deviceErrors from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.svm import SVR from sklearn.lda import LDA from sklearn.ensemble import RandomForestClassifier from energyCalcs import actDevEnergy,appDevEnergy,energyComp from sklearn.cluster import KMeans for i in range (1,6): classify = i if classify == 1: cLabel = 'Naive Bayes' clf = MultinomialNB() MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True) train_instances = np.load('data11.npy') train_labels = np.load('data12.npy') train_labels_binary = np.load('data13.npy') test_instances = np.load('data14.npy') test_labels = np.load('data15.npy') test_labels_binary = np.load('data16.npy') use_idx = np.load('data17.npy') device_power = np.load('data18.npy') device_timer = np.load('data19.npy') device_power_test = np.load('data110.npy') device_timer_test = np.load('data111.npy') else: train_instances = np.load('data21.npy') train_labels = np.load('data22.npy') train_labels_binary = np.load('data23.npy') test_instances = np.load('data24.npy') test_labels = np.load('data25.npy') test_labels_binary = np.load('data26.npy') use_idx = np.load('data27.npy') device_power = np.load('data28.npy') device_timer = np.load('data29.npy') device_power_test = np.load('data210.npy') device_timer_test = np.load('data211.npy') if classify == 2: cLabel = 'Logistic Regression' clf = LogisticRegression() LogisticRegression(C = 10, penalty = 'l2', tol=1e-6) elif classify == 3: cLabel = 'SVM' clf = SVC() elif classify == 4: cLabel = 'Linear Discriminant Analysis' clf = LDA() elif classify == 5: cLabel = 'Random Forest Classifier' clf = RandomForestClassifier(n_estimators=5) #SVR(C = 1.0, epsilon=0.2) elif classify ==6: cLabel = 'K-means clustering' clf = KMeans(n_clusters=512, init='random') t0 = time.time() clf.fit(train_instances, train_labels) t1 = time.time() nd = len(use_idx) # prediction on training and test data accuracyTr, dev_acc_train, predicted_labels_binary_train = deviceErrors(clf,nd,train_instances,train_labels,train_labels_binary) accuracyTs, dev_acc_test, predicted_labels_binary_test = deviceErrors(clf,nd,test_instances,test_labels,test_labels_binary) # prediction of device energy consumption agg_energy_train = train_instances[:,5] actEnergy_train = actDevEnergy(device_power,device_timer,nd) appEnergy_train = appDevEnergy(train_labels_binary,agg_energy_train,nd) preEnergy_train = appDevEnergy(predicted_labels_binary_train,agg_energy_train,nd) acTap_train, acTpre_train, apTde_train = energyComp(actEnergy_train, appEnergy_train, preEnergy_train) t2 = time.time() agg_energy_test = test_instances[:,5] actEnergy_test = actDevEnergy(device_power_test,device_timer_test,nd) appEnergy_test = appDevEnergy(test_labels_binary,agg_energy_test,nd) preEnergy_test = appDevEnergy(predicted_labels_binary_test,agg_energy_test,nd) acTap_test, acTpre_test, apTde_test = energyComp(actEnergy_test, appEnergy_test, preEnergy_test) t3 = time.time() trainTime = t1-t0 test1Time = t2-t1 test2Time = t3-t2 print '================================================================================' print 'Classifier = ' + cLabel print 'Computational Expense for Training Classifier = ' + str(trainTime) + 's' print '------------------------- Results for Traning Data -----------------------------' print 'Percent Accuracy on Training Data = ' + str(accuracyTr) + '%' print 'Percent Accuracy per device on Training Data = ' + str(dev_acc_train) + '%' print 'Actual Device Energy on Training Data = ' + str(actEnergy_train) print 'Approx Device Energy on Training Data = ' + str(appEnergy_train) print 'Predicted Device Energy on Training Data = ' + str(preEnergy_train) print 'Computational Expense Classifying Training Data = ' + str(test1Time) + 's' print 'Device Accuracy Approx. vs Actual = ' + str(acTap_train) print 'Device Accuracy Pre. vs. Actual = ' + str(acTpre_train) print 'Device Accuracy Pre. vs. approx. = ' + str(apTde_train) print '------------------------- Results for Test Data -----------------------------' print 'Percent Accuracy on Test Data = ' + str(accuracyTs) + '%' print 'Percent Accuracy per device on Test Data = ' + str(dev_acc_test) + '%' print 'Actual Device Energy on Test Data = ' + str(actEnergy_test) print 'Approx Device Energy on Test Data = ' + str(appEnergy_test) print 'Predicted Device Energy on Test Data = ' + str(preEnergy_test) print 'Computational Expense Classifying Test Data = ' + str(test2Time) + 's' print 'Device Accuracy Approx. vs Actual = ' + str(acTap_test) print 'Device Accuracy Pre. vs. Actual = ' + str(acTpre_test) print 'Device Accuracy Pre. vs. approx. = ' + str(apTde_test) # compute the energy consumption of each device. ################################################################ # plot 4 of the devices for illustration #fig = plt.figure(0) #lendev = len(device_timer[:,0]) #ax1 = plt.subplot(221) #plt.plot((device_timer[:,0]-device_timer[0,0])/(device_timer[lendev-1,0]-device_timer[0,0]),device_power[:,0]) #ax1.set_title('Electronics') #plt.ylabel('Device Power (W)') # #ax2 = plt.subplot(222) #plt.plot((device_timer[:,0]-device_timer[0,0])/(device_timer[lendev-1,0]-device_timer[0,0]),device_power[:,1]) #ax2.set_title('Refrigerator') ##plt.ylabel('Device Power (W)') # #ax3 = plt.subplot(223) #plt.plot((device_timer[:,0]-device_timer[0,0])/(device_timer[lendev-1,0]-device_timer[0,0]),device_power[:,3]) #ax3.set_title('Furnace') #plt.xlabel('Normalized Time') #plt.ylabel('Device Power (W)') # #ax4 = plt.subplot(224) #plt.plot((device_timer[:,0]-device_timer[0,0])/(device_timer[lendev-1,0]-device_timer[0,0]),device_power[:,5]) #ax4.set_title('Washer Dryer 2') #plt.xlabel('Normalized Time') ##plt.ylabel('Device Power (W)') # #fig = plt.figure(1) #plt.plot((device_timer[0:288,0]-device_timer[0,0])/(device_timer[288-1,0]-device_timer[0,0]),device_power[0:288,0]) # # #plt.show() #plt.ylabel('Mains Power Consumption (W)') #plt.xlabel('time (s)')
cc0-1.0
bobbymckinney/seebeck_measurement
programs/SeebeckProcessingManual.py
1
10085
#! /usr/bin/python # -*- coding: utf-8 -*- """ Created: 2016-02-09 @author: Bobby McKinney ([email protected]) """ import os import numpy as np import matplotlib.pyplot as plt import minimalmodbus as modbus # For communicating with the cn7500s import time from datetime import datetime # for getting the current date and time import exceptions #============================================================================== version = '1.0 (2016-02-09)' ############################################################################### class SeebeckProcessing: def __init__(self,filepath,datafile,measureList): #self.Get_User_Input() #self.filePath = "/Users/tobererlab1/Desktop/Skutt_0p010_PID" self.filePath = filepath os.chdir(self.filePath) self.open_files(datafile) #self.measureList = [50,75,100,125,150,175,200,225,250,275,300,325,350,375,350,325,300,275,250,225,200,175,150,125,100,75,50] self.measureList = measureList self.get_data() self.plotnumber = 0 self.tolerance = 4.0 index = 0 for temp in self.measureList: print 'measure temp: ', temp self.timecalclist = [] self.avgTcalclist = [] self.dTcalclist = [] self.Vchromelcalclist = [] self.Valumelcalclist = [] # bin around an average temp and calculate seebeck for i in range(index,len(self.time)): if (self.avgT[i] > (temp-self.tolerance)) and (self.avgT[i] < (temp+self.tolerance)): index = i while (self.avgT[index] > (temp-self.tolerance)) and (self.avgT[index] < (temp+self.tolerance)): self.timecalclist.append(self.time[index]) self.avgTcalclist.append(self.avgT[index]) self.dTcalclist.append(self.dT[index]) self.Vchromelcalclist.append(self.Vch[index]) self.Valumelcalclist.append(self.Val[index]) index += 1 #end while self.process_data() self.plotnumber += 1 break #end if #end for #end for self.save_file() #end def #-------------------------------------------------------------------------- def Get_User_Input(self): self.measureList = input("Please enter the temperatures to measure as a list (example: [50, 75, ...]): ") print "Your data will be saved to Desktop automatically" self.folder_name = raw_input("Please enter name for folder: ") self.folder_name = str(self.folder_name) if self.folder_name == '': date = str(datetime.now()) self.folder_name = 'Seebeck_Processed_Data %s.%s.%s' % (date[0:13], date[14:16], date[17:19]) #end if self.make_new_folder(self.folder_name) #end def #-------------------------------------------------------------------------- def make_new_folder(self, folder_name): self.filePath = "/Users/tobererlab1/Desktop/" + folder_name found = False if not os.path.exists(self.filePath): os.makedirs(self.filePath) os.chdir(self.filePath) #end if else: n = 1 while found == False: path = self.filePath + ' - ' + str(n) if os.path.exists(path): n = n + 1 #end if else: os.makedirs(path) os.chdir(path) n = 1 found = True #end else #end while #end else if found == True: self.filePath = path #end if #end def #-------------------------------------------------------------------------- def open_files(self,datafile): self.datafile = open(datafile, 'r') # opens file for writing/overwriting self.seebeckfile = open('Seebeck.csv', 'w') seebeckheaders = 'time(s),temperature (C),seebeck_chromel (uV/K),offset_chromel (uV),R^2_chromel,seebeck_alumel (uV/K),offset_alumel (uV),R^2_alumel\n' self.seebeckfile.write(seebeckheaders) #end def #-------------------------------------------------------------------------- def get_data(self): self.data = self.datafile.readlines() self.start = self.data.pop(0) self.quantities = self.data.pop(0).split(',') self.time = [] self.tempA = [] self.tempB = [] self.avgT = [] self.dT = [] self.Vch = [] self.Val = [] for d in self.data: self.time.append( float(d.split(',')[0]) ) self.tempA.append( float(d.split(',')[1]) ) self.tempB.append( float(d.split(',')[2]) ) self.avgT.append( float(d.split(',')[3]) ) self.dT.append( float(d.split(',')[4]) ) self.Vch.append( float(d.split(',')[5]) ) self.Val.append( float(d.split(',')[6]) ) #end for print "length of data: ", len(self.avgT) #end def #-------------------------------------------------------------------------- def process_data(self): print '\n***\n' print 'process data to get seebeck coefficient' time = np.average(self.timecalclist) avgT = np.average(self.avgTcalclist) dTchromellist = self.dTcalclist dTalumellist = self.dTcalclist results_chromel = {} results_alumel = {} coeffs_chromel = np.polyfit(dTchromellist, self.Vchromelcalclist, 1) coeffs_alumel = np.polyfit(dTalumellist,self.Valumelcalclist,1) # Polynomial Coefficients polynomial_chromel = coeffs_chromel.tolist() polynomial_alumel = coeffs_alumel.tolist() seebeck_chromel = polynomial_chromel[0] offset_chromel = polynomial_chromel[1] seebeck_alumel = polynomial_alumel[0] offset_alumel = polynomial_alumel[1] print 'seebeck (chromel): %.3f uV/K'%(seebeck_chromel) print 'seebeck (alumel): %.3f uV/K'%(seebeck_alumel) print '\n***\n' # Calculate coefficient of determination (r-squared): p_chromel = np.poly1d(coeffs_chromel) p_alumel = np.poly1d(coeffs_alumel) # fitted values: yhat_chromel = p_chromel(dTchromellist) yhat_alumel = p_alumel(dTalumellist) # mean of values: ybar_chromel = np.sum(self.Vchromelcalclist)/len(self.Vchromelcalclist) ybar_alumel = np.sum(self.Valumelcalclist)/len(self.Valumelcalclist) # regression sum of squares: ssreg_chromel = np.sum((yhat_chromel-ybar_chromel)**2) # or sum([ (yihat - ybar)**2 for yihat in yhat]) ssreg_alumel = np.sum((yhat_alumel-ybar_alumel)**2) # total sum of squares: sstot_chromel = np.sum((self.Vchromelcalclist - ybar_chromel)**2) sstot_alumel = np.sum((self.Valumelcalclist - ybar_alumel)**2) # or sum([ (yi - ybar)**2 for yi in y]) rsquared_chromel = ssreg_chromel / sstot_chromel rsquared_alumel = ssreg_alumel / sstot_alumel self.seebeckfile.write('%.3f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f\n'%(time,avgT,seebeck_chromel,offset_chromel,rsquared_chromel,seebeck_alumel,offset_alumel,rsquared_alumel)) fitchromel = {} fitalumel = {} fitchromel['polynomial'] = polynomial_chromel fitalumel['polynomial'] = polynomial_alumel fitchromel['r-squared'] = rsquared_chromel fitalumel['r-squared'] = rsquared_alumel celsius = u"\u2103" self.create_plot(dTalumellist,dTchromellist,self.Valumelcalclist,self.Vchromelcalclist,fitalumel,fitchromel,str(self.plotnumber)+'_'+str(avgT)+ 'C') #end def #-------------------------------------------------------------------------- def create_plot(self, xalumel, xchromel, yalumel, ychromel, fitalumel, fitchromel, title): print 'create seebeck plot' dpi = 400 plt.ioff() # Create Plot: fig = plt.figure(self.plotnumber, dpi=dpi) ax = fig.add_subplot(111) ax.grid() ax.set_title(title) ax.set_xlabel("dT (K)") ax.set_ylabel("dV (uV)") # Plot data points: ax.scatter(xalumel, yalumel, color='r', marker='.', label="alumel Voltage") ax.scatter(xchromel, ychromel, color='b', marker='.', label="chromel Voltage") # Overlay linear fits: coeffsalumel = fitalumel['polynomial'] coeffschromel = fitchromel['polynomial'] p_alumel = np.poly1d(coeffsalumel) p_chromel = np.poly1d(coeffschromel) xp = np.linspace(min(xalumel+xchromel), max(xalumel+xchromel), 5000) alumel_eq = 'dV = %.2f*(dT) + %.2f' % (coeffsalumel[0], coeffsalumel[1]) chromel_eq = 'dV = %.2f*(dT) + %.2f' % (coeffschromel[0], coeffschromel[1]) ax.plot(xp, p_alumel(xp), '-', c='#FF9900', label="alumel Voltage Fit\n %s" % alumel_eq) ax.plot(xp, p_chromel(xp), '-', c='g', label="chromel Voltage Fit\n %s" % chromel_eq) ax.legend(loc='upper left', fontsize='10') # Save: plot_folder = self.filePath + '/Seebeck Plots/' if not os.path.exists(plot_folder): os.makedirs(plot_folder) fig.savefig('%s.png' % (plot_folder + title) , dpi=dpi) plt.close() #end def #-------------------------------------------------------------------------- def save_file(self): print('\nSave Files\n') self.seebeckfile.close() #end def #end class ############################################################################### #============================================================================== if __name__=='__main__': runprogram = SeebeckProcessing("/Users/tobererlab1/Desktop/Skutt_0p010_PID") #end if
gpl-3.0
nof20/BitcoinModel
Signals/BitcoinData.py
1
2795
""" Module to download Bitcoin prices from Quandl. See https://www.quandl.com/data/GDAX/USD-BTC-USD-Exchange-Rate """ import configparser import datetime import quandl import pandas as pd import numpy as np from couchdb.mapping import Document, FloatField, DateField, TextField from Tools.DBCache import DBCache class BitcoinData(object): #TODO: Define an abc (interface) for these common methods. TICKER = "GDAX/USD" def __init__(self): self.config = configparser.ConfigParser() self.config.read("config.ini") self.db = DBCache() def get(self, start_date, end_date, cached=True): if cached: df = self.get_db(start_date, end_date) else: df = self.get_ws(start_date, end_date) self.set_db(df) return df def get_ws(self, start_date, end_date): """Return DataFrame of prices between selected dates.""" start_date = DBCache.datetime_string(start_date) end_date = DBCache.datetime_string(end_date) series = quandl.get( self.TICKER, api_key=self.config['Quandl']['authtoken'], start_date=start_date, end_date=end_date) return series def get_db(self, start_date, end_date): view = self.db.get_view("DBCache_views/BitcoinData") start_date = DBCache.datetime_string(start_date) end_date = DBCache.datetime_string(end_date) rows = view[start_date:end_date] df = BitcoinDoc.get_df_from_rows(rows) return df def set_db(self, df): doclist = BitcoinDoc.get_doclist_from_df(df) # TODO: Prevent saving of duplicates self.db.save_doc_list(doclist) class BitcoinDoc(Document): """ORM for CouchDB.""" Type = TextField() Open = FloatField() High = FloatField() Low = FloatField() Volume = FloatField() Date = DateField() @staticmethod def get_doclist_from_df(df): df2 = df.reset_index() ll = [] for row in df2.itertuples(): doc = BitcoinDoc() doc.Type = "BitcoinData" if ~np.isnan(row.Open): doc.Open = row.Open if ~np.isnan(row.High): doc.High = row.High if ~np.isnan(row.Low): doc.Low = row.Low if ~np.isnan(row.Volume): doc.Volume = row.Volume doc.Date = row.Date.to_pydatetime() ll.append(doc) return ll @staticmethod def get_df_from_rows(rows): ll = [row.value for row in rows] df = pd.DataFrame(ll) df.drop(["Type", "_id", "_rev"], axis=1, inplace=True) df['Date'] = pd.to_datetime(df['Date']) df.set_index("Date", inplace=True) return df
gpl-3.0