repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
pratapvardhan/pandas
pandas/tests/io/msgpack/test_read_size.py
22
1870
"""Test Unpacker's read_array_header and read_map_header methods""" from pandas.io.msgpack import packb, Unpacker, OutOfData UnexpectedTypeException = ValueError def test_read_array_header(): unpacker = Unpacker() unpacker.feed(packb(['a', 'b', 'c'])) assert unpacker.read_array_header() == 3 assert unpacker.unpack() == b'a' assert unpacker.unpack() == b'b' assert unpacker.unpack() == b'c' try: unpacker.unpack() assert 0, 'should raise exception' except OutOfData: assert 1, 'okay' def test_read_map_header(): unpacker = Unpacker() unpacker.feed(packb({'a': 'A'})) assert unpacker.read_map_header() == 1 assert unpacker.unpack() == B'a' assert unpacker.unpack() == B'A' try: unpacker.unpack() assert 0, 'should raise exception' except OutOfData: assert 1, 'okay' def test_incorrect_type_array(): unpacker = Unpacker() unpacker.feed(packb(1)) try: unpacker.read_array_header() assert 0, 'should raise exception' except UnexpectedTypeException: assert 1, 'okay' def test_incorrect_type_map(): unpacker = Unpacker() unpacker.feed(packb(1)) try: unpacker.read_map_header() assert 0, 'should raise exception' except UnexpectedTypeException: assert 1, 'okay' def test_correct_type_nested_array(): unpacker = Unpacker() unpacker.feed(packb({'a': ['b', 'c', 'd']})) try: unpacker.read_array_header() assert 0, 'should raise exception' except UnexpectedTypeException: assert 1, 'okay' def test_incorrect_type_nested_map(): unpacker = Unpacker() unpacker.feed(packb([{'a': 'b'}])) try: unpacker.read_map_header() assert 0, 'should raise exception' except UnexpectedTypeException: assert 1, 'okay'
bsd-3-clause
HoerTech-gGmbH/openMHA
mha/doc/flowcharts/dc_simple_in_out.py
1
2870
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the HörTech Open Master Hearing Aid (openMHA) # Copyright © 2018 2020 HörTech gGmbH # # openMHA is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, version 3 of the License. # # openMHA is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License, version 3 for more details. # # You should have received a copy of the GNU Affero General Public License, # version 3 along with openMHA. If not, see <http://www.gnu.org/licenses/>. # This python file recreates the plot stored in file dc_simple_in_out.py. # It is not executed automatically by the build system builds because it needs # python-matplotlib installed on the build agents. To avoid creating more # build dependencies, the generated .png file is also stored in git. from matplotlib import pyplot as plt import numpy as np from math import atan2,atan def main(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) plt.xticks([20,50,80]) plt.yticks([50, 70, 80, 90, 100]) plt.xticks(fontsize=12) plt.yticks(fontsize=12) ax.set_yticklabels(['50', '', '80', '', 'MPO']) ax.set_xticklabels(['noise gate','50','80']) plt.ylabel(r'$\mathrm{L_{Out}}\,$/dB',size=14) plt.xlabel(r'$\mathrm{L_{In}}\,$/dB',size=14) ax.set_ylim([0,110]) ax.set_xlim([0,110]) x0=[0,20] y0=[110/3, 50] x1=[15, 20, 50, 80,95, 120 ] y1=[0, 50, 70, 90, 100, 100 ] x2=[0,x1[-1]] y2=x2 plt.vlines([50], 0, 70,linestyles='dotted') plt.vlines([80], 0, 90,linestyles='dotted') plt.hlines([50], 0, 50,linestyles='dotted') plt.hlines([70], 0, 50,linestyles='dotted') plt.hlines([80], 0, 80,linestyles='dotted') plt.hlines([90], 0, 80,linestyles='dotted') plt.hlines([100], 0, 120,linestyles='dotted') plt.vlines([20], 0, 50,linestyles='dotted') points=np.array((15,25)).reshape((1,2)) trans_angle=plt.gca().transData.transform_angles(np.array((atan2(50,5)*180/3.1415,)),points)[0] plt.annotate("expansion", xy=(19.5,45),va='top',ha='right',rotation=trans_angle) plt.annotate("", xy=(15,50), xytext=(15,70),arrowprops=dict(arrowstyle='<->')) plt.annotate("G50",xy=(14,60),va='center',ha='right') plt.annotate("", xy=(25,80), xytext=(25,90),arrowprops=dict(arrowstyle='<->')) plt.annotate("G80",xy=(24,85),va='center',ha='right') plt.plot(x0,y0,linestyle='dotted',color='black') plt.plot(x1,y1) plt.plot(x2,y2,color='black') plt.tight_layout() plt.savefig("dc_simple_in_out.png") plt.show() with plt.style.context(u'seaborn-paper'): main()
agpl-3.0
GuessWhoSamFoo/pandas
pandas/tests/series/test_constructors.py
1
46677
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from collections import OrderedDict from datetime import datetime, timedelta import numpy as np from numpy import nan import numpy.ma as ma import pytest from pandas._libs import lib from pandas._libs.tslib import iNaT from pandas.compat import PY36, long, lrange, range, zip from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64tz_dtype) import pandas as pd from pandas import ( Categorical, DataFrame, Index, IntervalIndex, MultiIndex, NaT, Series, Timestamp, date_range, isna, period_range, timedelta_range) from pandas.api.types import CategoricalDtype from pandas.core.arrays import period_array import pandas.util.testing as tm from pandas.util.testing import assert_series_equal class TestSeriesConstructors(): def test_invalid_dtype(self): # GH15520 msg = 'not understood' invalid_list = [pd.Timestamp, 'pd.Timestamp', list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name='time', dtype=dtype) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.])) == 1.0 assert int(Series([1.])) == 1 assert long(Series([1.])) == 1 def test_constructor(self, datetime_series, empty_series): assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(['hello', np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates assert not Series({}).index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = 'Series' rs = Series(mixed).name xp = 'Series' assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize('input_class', [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype='float64') empty2 = Series(input_class(), dtype='float64') assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype='category') empty2 = Series(input_class(), dtype='category') assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: empty = Series(index=lrange(10)) empty2 = Series(input_class(), index=lrange(10)) assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=lrange(10)) empty2 = Series(input_class(), index=lrange(10), dtype='float64') assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series('', dtype=str, index=range(3)) empty2 = Series('', index=range(3)) assert_series_equal(empty, empty2) @pytest.mark.parametrize('input_arg', [np.nan, float('nan')]) def test_constructor_nan(self, input_arg): empty = Series(dtype='float64', index=lrange(10)) empty2 = Series(input_arg, index=lrange(10)) assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize('dtype', [ 'f8', 'i8', 'M8[ns]', 'm8[ns]', 'category', 'object', 'datetime64[ns, UTC]', ]) @pytest.mark.parametrize('index', [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): result = pd.Series(index=['b', 'a', 'c']) assert result.index.tolist() == ['b', 'a', 'c'] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize('item', ['entry', 'ѐ', 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(['x', None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(['x', np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ['d', 'b', 'a', 'c'] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype='int64') result = Series(Iter(), dtype='int64') assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype='int64') result = Series(range(10), dtype='int64') assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(['abc']) result = Series('abc') assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype='int64') for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype='int64')]: result = Series(obj, index=[0, 1, 2]) assert_series_equal(result, expected) @pytest.mark.parametrize('input_vals', [ ([1, 2]), (['1', '2']), (list(pd.date_range('1/1/2011', periods=2, freq='H'))), (list(pd.date_range('1/1/2011', periods=2, freq='H', tz='US/Eastern'))), ([pd.Interval(left=0, right=5)]), ]) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements from a list are converted to strings # when dtype is str, 'str', or 'U' result = Series(input_vals, dtype=string_dtype) expected = Series(input_vals).astype(string_dtype) assert_series_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = Series([1.0, 2.0, np.nan], dtype=string_dtype) expected = Series(['1.0', '2.0', np.nan], dtype=object) assert_series_equal(result, expected) assert np.isnan(result[2]) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(lrange(10)) assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=lrange(10, 20)) exp.index = lrange(10, 20) assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(lrange(10)) assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=lrange(10, 20)) exp.index = lrange(10, 20) assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ['a', 'b', 'c'], fastpath=True) res = Series(cat) tm.assert_categorical_equal(res.values, cat) # can cast to a new dtype result = Series(pd.Categorical([1, 2, 3]), dtype='int64') expected = pd.Series([1, 2, 3], dtype='int64') tm.assert_series_equal(result, expected) # GH12574 cat = Series(pd.Categorical([1, 2, 3]), dtype='category') assert is_categorical_dtype(cat) assert is_categorical_dtype(cat.dtype) s = Series([1, 2, 3], dtype='category') assert is_categorical_dtype(s) assert is_categorical_dtype(s.dtype) def test_constructor_categorical_with_coercion(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) # test basic creation / coercion of categoricals s = Series(factor, name='A') assert s.dtype == 'category' assert len(s) == len(factor) str(s.values) str(s) # in a frame df = DataFrame({'A': factor}) result = df['A'] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) df = DataFrame({'A': s}) result = df['A'] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) # multiples df = DataFrame({'A': s, 'B': s, 'C': 1}) result1 = df['A'] result2 = df['B'] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) assert result2.name == 'B' assert len(df) == len(factor) str(df.values) str(df) # GH8623 x = DataFrame([[1, 'John P. Doe'], [2, 'Jane Dove'], [1, 'John P. Doe']], columns=['person_id', 'person_name']) x['person_name'] = Categorical(x.person_name ) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] assert result == expected result = x.person_name[0] assert result == expected result = x.person_name.loc[0] assert result == expected def test_constructor_categorical_dtype(self): result = pd.Series(['a', 'b'], dtype=CategoricalDtype(['a', 'b', 'c'], ordered=True)) assert is_categorical_dtype(result) is True tm.assert_index_equal(result.cat.categories, pd.Index(['a', 'b', 'c'])) assert result.cat.ordered result = pd.Series(['a', 'b'], dtype=CategoricalDtype(['b', 'a'])) assert is_categorical_dtype(result) tm.assert_index_equal(result.cat.categories, pd.Index(['b', 'a'])) assert result.cat.ordered is False # GH 19565 - Check broadcasting of scalar with Categorical dtype result = Series('a', index=[0, 1], dtype=CategoricalDtype(['a', 'b'], ordered=True)) expected = Series(['a', 'a'], index=[0, 1], dtype=CategoricalDtype(['a', 'b'], ordered=True)) tm.assert_series_equal(result, expected, check_categorical=True) def test_categorical_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = Series(cat, copy=True) assert s.cat is not cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = Series(cat) assert s.values is cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_unordered_compare_equal(self): left = pd.Series(['a', 'b', 'c'], dtype=CategoricalDtype(['a', 'b'])) right = pd.Series(pd.Categorical(['a', 'b', np.nan], categories=['a', 'b'])) tm.assert_series_equal(left, right) def test_constructor_maskedarray(self): data = ma.masked_all((3, ), dtype=float) result = Series(data) expected = Series([nan, nan, nan]) assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0.0, nan, 2.0], index=index) assert_series_equal(result, expected) data[1] = 1.0 result = Series(data, index=index) expected = Series([0.0, 1.0, 2.0], index=index) assert_series_equal(result, expected) data = ma.masked_all((3, ), dtype=int) result = Series(data) expected = Series([nan, nan, nan], dtype=float) assert_series_equal(result, expected) data[0] = 0 data[2] = 2 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0, nan, 2], index=index, dtype=float) assert_series_equal(result, expected) data[1] = 1 result = Series(data, index=index) expected = Series([0, 1, 2], index=index, dtype=int) assert_series_equal(result, expected) data = ma.masked_all((3, ), dtype=bool) result = Series(data) expected = Series([nan, nan, nan], dtype=object) assert_series_equal(result, expected) data[0] = True data[2] = False index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([True, nan, False], index=index, dtype=object) assert_series_equal(result, expected) data[1] = True result = Series(data, index=index) expected = Series([True, True, False], index=index, dtype=bool) assert_series_equal(result, expected) data = ma.masked_all((3, ), dtype='M8[ns]') result = Series(data) expected = Series([iNaT, iNaT, iNaT], dtype='M8[ns]') assert_series_equal(result, expected) data[0] = datetime(2001, 1, 1) data[2] = datetime(2001, 1, 3) index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([datetime(2001, 1, 1), iNaT, datetime(2001, 1, 3)], index=index, dtype='M8[ns]') assert_series_equal(result, expected) data[1] = datetime(2001, 1, 2) result = Series(data, index=index) expected = Series([datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], index=index, dtype='M8[ns]') assert_series_equal(result, expected) def test_constructor_maskedarray_hardened(self): # Check numpy masked arrays with hard masks -- from GH24574 data = ma.masked_all((3, ), dtype=float).harden_mask() result = pd.Series(data) expected = pd.Series([nan, nan, nan]) tm.assert_series_equal(result, expected) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = {k: 1 for k in rng} result = Series(data, index=rng) assert result.index is rng def test_constructor_default_index(self): s = Series([0, 1, 2]) tm.assert_index_equal(s.index, pd.Index(np.arange(3))) @pytest.mark.parametrize('input', [[1, 2, 3], (1, 2, 3), list(range(3)), pd.Categorical(['a', 'b', 'a']), (i for i in range(3)), map(lambda x: x, range(3))]) def test_constructor_index_mismatch(self, input): # GH 19342 # test that construction of a Series with an index of different length # raises an error msg = 'Length of passed values is 3, index implies 4' with pytest.raises(ValueError, match=msg): Series(input, index=np.arange(4)) def test_constructor_numpy_scalar(self): # GH 19342 # construction with a numpy scalar # should not raise result = Series(np.array(100), index=np.arange(4), dtype='int64') expected = Series(100, index=np.arange(4), dtype='int64') tm.assert_series_equal(result, expected) def test_constructor_broadcast_list(self): # GH 19342 # construction with single-element container and index # should raise msg = "Length of passed values is 1, index implies 3" with pytest.raises(ValueError, match=msg): Series(['foo'], index=['a', 'b', 'c']) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) assert isinstance(s, Series) def test_constructor_sanitize(self): s = Series(np.array([1., 1., 8.]), dtype='i8') assert s.dtype == np.dtype('i8') s = Series(np.array([1., 1., np.nan]), copy=True, dtype='i8') assert s.dtype == np.dtype('f8') def test_constructor_copy(self): # GH15125 # test dtype parameter has no side effects on copy=True for data in [[1.], np.array([1.])]: x = Series(data) y = pd.Series(x, copy=True, dtype=float) # copy=True maintains original data in Series tm.assert_series_equal(x, y) # changes to origin of copy does not affect the copy x[0] = 2. assert not x.equals(y) assert x[0] == 2. assert y[0] == 1. @pytest.mark.parametrize( "index", [ pd.date_range('20170101', periods=3, tz='US/Eastern'), pd.date_range('20170101', periods=3), pd.timedelta_range('1 day', periods=3), pd.period_range('2012Q1', periods=3, freq='Q'), pd.Index(list('abc')), pd.Int64Index([1, 2, 3]), pd.RangeIndex(0, 3)], ids=lambda x: type(x).__name__) def test_constructor_limit_copies(self, index): # GH 17449 # limit copies of input s = pd.Series(index) # we make 1 copy; this is just a smoke test here assert s._data.blocks[0].values is not index def test_constructor_pass_none(self): s = Series(None, index=lrange(5)) assert s.dtype == np.float64 s = Series(None, index=lrange(5), dtype=object) assert s.dtype == np.object_ # GH 7431 # inference on the index s = Series(index=np.array([None])) expected = Series(index=Index([None])) assert_series_equal(s, expected) def test_constructor_pass_nan_nat(self): # GH 13467 exp = Series([np.nan, np.nan], dtype=np.float64) assert exp.dtype == np.float64 tm.assert_series_equal(Series([np.nan, np.nan]), exp) tm.assert_series_equal(Series(np.array([np.nan, np.nan])), exp) exp = Series([pd.NaT, pd.NaT]) assert exp.dtype == 'datetime64[ns]' tm.assert_series_equal(Series([pd.NaT, pd.NaT]), exp) tm.assert_series_equal(Series(np.array([pd.NaT, pd.NaT])), exp) tm.assert_series_equal(Series([pd.NaT, np.nan]), exp) tm.assert_series_equal(Series(np.array([pd.NaT, np.nan])), exp) tm.assert_series_equal(Series([np.nan, pd.NaT]), exp) tm.assert_series_equal(Series(np.array([np.nan, pd.NaT])), exp) def test_constructor_cast(self): msg = "could not convert string to float" with pytest.raises(ValueError, match=msg): Series(["a", "b", "c"], dtype=float) def test_constructor_unsigned_dtype_overflow(self, uint_dtype): # see gh-15832 msg = 'Trying to coerce negative values to unsigned integers' with pytest.raises(OverflowError, match=msg): Series([-1], dtype=uint_dtype) def test_constructor_coerce_float_fail(self, any_int_dtype): # see gh-15832 msg = "Trying to coerce float values to integers" with pytest.raises(ValueError, match=msg): Series([1, 2, 3.5], dtype=any_int_dtype) def test_constructor_coerce_float_valid(self, float_dtype): s = Series([1, 2, 3.5], dtype=float_dtype) expected = Series([1, 2, 3.5]).astype(float_dtype) assert_series_equal(s, expected) def test_constructor_dtype_no_cast(self): # see gh-1572 s = Series([1, 2, 3]) s2 = Series(s, dtype=np.int64) s2[1] = 5 assert s[1] == 5 def test_constructor_datelike_coercion(self): # GH 9477 # incorrectly inferring on dateimelike looking when object dtype is # specified s = Series([Timestamp('20130101'), 'NOV'], dtype=object) assert s.iloc[0] == Timestamp('20130101') assert s.iloc[1] == 'NOV' assert s.dtype == object # the dtype was being reset on the slicing and re-inferred to datetime # even thought the blocks are mixed belly = '216 3T19'.split() wing1 = '2T15 4H19'.split() wing2 = '416 4T20'.split() mat = pd.to_datetime('2016-01-22 2019-09-07'.split()) df = pd.DataFrame( {'wing1': wing1, 'wing2': wing2, 'mat': mat}, index=belly) result = df.loc['3T19'] assert result.dtype == object result = df.loc['216'] assert result.dtype == object def test_constructor_datetimes_with_nulls(self): # gh-15869 for arr in [np.array([None, None, None, None, datetime.now(), None]), np.array([None, None, datetime.now(), None])]: result = Series(arr) assert result.dtype == 'M8[ns]' def test_constructor_dtype_datetime64(self): s = Series(iNaT, dtype='M8[ns]', index=lrange(5)) assert isna(s).all() # in theory this should be all nulls, but since # we are not specifying a dtype is ambiguous s = Series(iNaT, index=lrange(5)) assert not isna(s).all() s = Series(nan, dtype='M8[ns]', index=lrange(5)) assert isna(s).all() s = Series([datetime(2001, 1, 2, 0, 0), iNaT], dtype='M8[ns]') assert isna(s[1]) assert s.dtype == 'M8[ns]' s = Series([datetime(2001, 1, 2, 0, 0), nan], dtype='M8[ns]') assert isna(s[1]) assert s.dtype == 'M8[ns]' # GH3416 dates = [ np.datetime64(datetime(2013, 1, 1)), np.datetime64(datetime(2013, 1, 2)), np.datetime64(datetime(2013, 1, 3)), ] s = Series(dates) assert s.dtype == 'M8[ns]' s.iloc[0] = np.nan assert s.dtype == 'M8[ns]' # GH3414 related # msg = (r"cannot astype a datetimelike from \[datetime64\[ns\]\] to" # r" \[int32\]") # with pytest.raises(TypeError, match=msg): # Series(Series(dates).astype('int') / 1000000, dtype='M8[ms]') pytest.raises(TypeError, lambda x: Series( Series(dates).astype('int') / 1000000, dtype='M8[ms]')) msg = (r"The 'datetime64' dtype has no unit\. Please pass in" r" 'datetime64\[ns\]' instead\.") with pytest.raises(ValueError, match=msg): Series(dates, dtype='datetime64') # invalid dates can be help as object result = Series([datetime(2, 1, 1)]) assert result[0] == datetime(2, 1, 1, 0, 0) result = Series([datetime(3000, 1, 1)]) assert result[0] == datetime(3000, 1, 1, 0, 0) # don't mix types result = Series([Timestamp('20130101'), 1], index=['a', 'b']) assert result['a'] == Timestamp('20130101') assert result['b'] == 1 # GH6529 # coerce datetime64 non-ns properly dates = date_range('01-Jan-2015', '01-Dec-2015', freq='M') values2 = dates.view(np.ndarray).astype('datetime64[ns]') expected = Series(values2, index=dates) for dtype in ['s', 'D', 'ms', 'us', 'ns']: values1 = dates.view(np.ndarray).astype('M8[{0}]'.format(dtype)) result = Series(values1, dates) assert_series_equal(result, expected) # GH 13876 # coerce to non-ns to object properly expected = Series(values2, index=dates, dtype=object) for dtype in ['s', 'D', 'ms', 'us', 'ns']: values1 = dates.view(np.ndarray).astype('M8[{0}]'.format(dtype)) result = Series(values1, index=dates, dtype=object) assert_series_equal(result, expected) # leave datetime.date alone dates2 = np.array([d.date() for d in dates.to_pydatetime()], dtype=object) series1 = Series(dates2, dates) tm.assert_numpy_array_equal(series1.values, dates2) assert series1.dtype == object # these will correctly infer a datetime s = Series([None, pd.NaT, '2013-08-05 15:30:00.000001']) assert s.dtype == 'datetime64[ns]' s = Series([np.nan, pd.NaT, '2013-08-05 15:30:00.000001']) assert s.dtype == 'datetime64[ns]' s = Series([pd.NaT, None, '2013-08-05 15:30:00.000001']) assert s.dtype == 'datetime64[ns]' s = Series([pd.NaT, np.nan, '2013-08-05 15:30:00.000001']) assert s.dtype == 'datetime64[ns]' # tz-aware (UTC and other tz's) # GH 8411 dr = date_range('20130101', periods=3) assert Series(dr).iloc[0].tz is None dr = date_range('20130101', periods=3, tz='UTC') assert str(Series(dr).iloc[0].tz) == 'UTC' dr = date_range('20130101', periods=3, tz='US/Eastern') assert str(Series(dr).iloc[0].tz) == 'US/Eastern' # non-convertible s = Series([1479596223000, -1479590, pd.NaT]) assert s.dtype == 'object' assert s[2] is pd.NaT assert 'NaT' in str(s) # if we passed a NaT it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), pd.NaT]) assert s.dtype == 'object' assert s[2] is pd.NaT assert 'NaT' in str(s) # if we passed a nan it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), np.nan]) assert s.dtype == 'object' assert s[2] is np.nan assert 'NaN' in str(s) def test_constructor_with_datetime_tz(self): # 8260 # support datetime64 with tz dr = date_range('20130101', periods=3, tz='US/Eastern') s = Series(dr) assert s.dtype.name == 'datetime64[ns, US/Eastern]' assert s.dtype == 'datetime64[ns, US/Eastern]' assert is_datetime64tz_dtype(s.dtype) assert 'datetime64[ns, US/Eastern]' in str(s) # export result = s.values assert isinstance(result, np.ndarray) assert result.dtype == 'datetime64[ns]' exp = pd.DatetimeIndex(result) exp = exp.tz_localize('UTC').tz_convert(tz=s.dt.tz) tm.assert_index_equal(dr, exp) # indexing result = s.iloc[0] assert result == Timestamp('2013-01-01 00:00:00-0500', tz='US/Eastern', freq='D') result = s[0] assert result == Timestamp('2013-01-01 00:00:00-0500', tz='US/Eastern', freq='D') result = s[Series([True, True, False], index=s.index)] assert_series_equal(result, s[0:2]) result = s.iloc[0:1] assert_series_equal(result, Series(dr[0:1])) # concat result = pd.concat([s.iloc[0:1], s.iloc[1:]]) assert_series_equal(result, s) # short str assert 'datetime64[ns, US/Eastern]' in str(s) # formatting with NaT result = s.shift() assert 'datetime64[ns, US/Eastern]' in str(result) assert 'NaT' in str(result) # long str t = Series(date_range('20130101', periods=1000, tz='US/Eastern')) assert 'datetime64[ns, US/Eastern]' in str(t) result = pd.DatetimeIndex(s, freq='infer') tm.assert_index_equal(result, dr) # inference s = Series([pd.Timestamp('2013-01-01 13:00:00-0800', tz='US/Pacific'), pd.Timestamp('2013-01-02 14:00:00-0800', tz='US/Pacific')]) assert s.dtype == 'datetime64[ns, US/Pacific]' assert lib.infer_dtype(s, skipna=True) == 'datetime64' s = Series([pd.Timestamp('2013-01-01 13:00:00-0800', tz='US/Pacific'), pd.Timestamp('2013-01-02 14:00:00-0800', tz='US/Eastern')]) assert s.dtype == 'object' assert lib.infer_dtype(s, skipna=True) == 'datetime' # with all NaT s = Series(pd.NaT, index=[0, 1], dtype='datetime64[ns, US/Eastern]') expected = Series(pd.DatetimeIndex(['NaT', 'NaT'], tz='US/Eastern')) assert_series_equal(s, expected) @pytest.mark.parametrize("arr_dtype", [np.int64, np.float64]) @pytest.mark.parametrize("dtype", ["M8", "m8"]) @pytest.mark.parametrize("unit", ['ns', 'us', 'ms', 's', 'h', 'm', 'D']) def test_construction_to_datetimelike_unit(self, arr_dtype, dtype, unit): # tests all units # gh-19223 dtype = "{}[{}]".format(dtype, unit) arr = np.array([1, 2, 3], dtype=arr_dtype) s = Series(arr) result = s.astype(dtype) expected = Series(arr.astype(dtype)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('arg', ['2013-01-01 00:00:00', pd.NaT, np.nan, None]) def test_constructor_with_naive_string_and_datetimetz_dtype(self, arg): # GH 17415: With naive string result = Series([arg], dtype='datetime64[ns, CET]') expected = Series(pd.Timestamp(arg)).dt.tz_localize('CET') assert_series_equal(result, expected) def test_construction_interval(self): # construction from interval & array of intervals index = IntervalIndex.from_breaks(np.arange(3), closed='right') result = Series(index) repr(result) str(result) tm.assert_index_equal(Index(result.values), index) result = Series(index.values) tm.assert_index_equal(Index(result.values), index) def test_construction_consistency(self): # make sure that we are not re-localizing upon construction # GH 14928 s = Series(pd.date_range('20130101', periods=3, tz='US/Eastern')) result = Series(s, dtype=s.dtype) tm.assert_series_equal(result, s) result = Series(s.dt.tz_convert('UTC'), dtype=s.dtype) tm.assert_series_equal(result, s) result = Series(s.values, dtype=s.dtype) tm.assert_series_equal(result, s) def test_constructor_infer_period(self): data = [pd.Period('2000', 'D'), pd.Period('2001', 'D'), None] result = pd.Series(data) expected = pd.Series(period_array(data)) tm.assert_series_equal(result, expected) assert result.dtype == 'Period[D]' data = np.asarray(data, dtype=object) tm.assert_series_equal(result, expected) assert result.dtype == 'Period[D]' def test_constructor_period_incompatible_frequency(self): data = [pd.Period('2000', 'D'), pd.Period('2001', 'A')] result = pd.Series(data) assert result.dtype == object assert result.tolist() == data def test_constructor_periodindex(self): # GH7932 # converting a PeriodIndex when put in a Series pi = period_range('20130101', periods=5, freq='D') s = Series(pi) assert s.dtype == 'Period[D]' expected = Series(pi.astype(object)) assert_series_equal(s, expected) def test_constructor_dict(self): d = {'a': 0., 'b': 1., 'c': 2.} result = Series(d, index=['b', 'c', 'd', 'a']) expected = Series([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) assert_series_equal(result, expected) pidx = tm.makePeriodIndex(100) d = {pidx[0]: 0, pidx[1]: 1} result = Series(d, index=pidx) expected = Series(np.nan, pidx) expected.iloc[0] = 0 expected.iloc[1] = 1 assert_series_equal(result, expected) def test_constructor_dict_order(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6, else # order by value d = {'b': 1, 'a': 0, 'c': 2} result = Series(d) if PY36: expected = Series([1, 0, 2], index=list('bac')) else: expected = Series([0, 1, 2], index=list('abc')) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18480 d = {1: 'a', value: 'b', float('nan'): 'c', 4: 'd'} result = Series(d).sort_values() expected = Series(['a', 'b', 'c', 'd'], index=[1, value, np.nan, 4]) assert_series_equal(result, expected) # MultiIndex: d = {(1, 1): 'a', (2, np.nan): 'b', (3, value): 'c'} result = Series(d).sort_values() expected = Series(['a', 'b', 'c'], index=Index([(1, 1), (2, np.nan), (3, value)])) assert_series_equal(result, expected) def test_constructor_dict_datetime64_index(self): # GH 9456 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] values = [42544017.198965244, 1234565, 40512335.181958228, -1] def create_data(constructor): return dict(zip((constructor(x) for x in dates_as_str), values)) data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = Series(values, (Timestamp(x) for x in dates_as_str)) result_datetime64 = Series(data_datetime64) result_datetime = Series(data_datetime) result_Timestamp = Series(data_Timestamp) assert_series_equal(result_datetime64, expected) assert_series_equal(result_datetime, expected) assert_series_equal(result_Timestamp, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) assert list(s) == data def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) assert tuple(s) == data def test_constructor_dict_of_tuples(self): data = {(1, 2): 3, (None, 5): 6} result = Series(data).sort_values() expected = Series([3, 6], index=MultiIndex.from_tuples([(1, 2), (None, 5)])) tm.assert_series_equal(result, expected) def test_constructor_set(self): values = {1, 2, 3, 4, 5} with pytest.raises(TypeError, match="'set' type is unordered"): Series(values) values = frozenset(values) with pytest.raises(TypeError, match="'frozenset' type is unordered"): Series(values) # https://github.com/pandas-dev/pandas/issues/22698 @pytest.mark.filterwarnings("ignore:elementwise comparison:FutureWarning") def test_fromDict(self): data = {'a': 0, 'b': 1, 'c': 2, 'd': 3} series = Series(data) assert tm.is_sorted(series.index) data = {'a': 0, 'b': '1', 'c': '2', 'd': datetime.now()} series = Series(data) assert series.dtype == np.object_ data = {'a': 0, 'b': '1', 'c': '2', 'd': '3'} series = Series(data) assert series.dtype == np.object_ data = {'a': '0', 'b': '1'} series = Series(data, dtype=float) assert series.dtype == np.float64 def test_fromValue(self, datetime_series): nans = Series(np.NaN, index=datetime_series.index) assert nans.dtype == np.float_ assert len(nans) == len(datetime_series) strings = Series('foo', index=datetime_series.index) assert strings.dtype == np.object_ assert len(strings) == len(datetime_series) d = datetime.now() dates = Series(d, index=datetime_series.index) assert dates.dtype == 'M8[ns]' assert len(dates) == len(datetime_series) # GH12336 # Test construction of categorical series from value categorical = Series(0, index=datetime_series.index, dtype="category") expected = Series(0, index=datetime_series.index).astype("category") assert categorical.dtype == 'category' assert len(categorical) == len(datetime_series) tm.assert_series_equal(categorical, expected) def test_constructor_dtype_timedelta64(self): # basic td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == 'timedelta64[ns]' td = Series([timedelta(days=1)]) assert td.dtype == 'timedelta64[ns]' td = Series([timedelta(days=1), timedelta(days=2), np.timedelta64( 1, 's')]) assert td.dtype == 'timedelta64[ns]' # mixed with NaT td = Series([timedelta(days=1), NaT], dtype='m8[ns]') assert td.dtype == 'timedelta64[ns]' td = Series([timedelta(days=1), np.nan], dtype='m8[ns]') assert td.dtype == 'timedelta64[ns]' td = Series([np.timedelta64(300000000), pd.NaT], dtype='m8[ns]') assert td.dtype == 'timedelta64[ns]' # improved inference # GH5689 td = Series([np.timedelta64(300000000), NaT]) assert td.dtype == 'timedelta64[ns]' # because iNaT is int, not coerced to timedelta td = Series([np.timedelta64(300000000), iNaT]) assert td.dtype == 'object' td = Series([np.timedelta64(300000000), np.nan]) assert td.dtype == 'timedelta64[ns]' td = Series([pd.NaT, np.timedelta64(300000000)]) assert td.dtype == 'timedelta64[ns]' td = Series([np.timedelta64(1, 's')]) assert td.dtype == 'timedelta64[ns]' # these are frequency conversion astypes # for t in ['s', 'D', 'us', 'ms']: # pytest.raises(TypeError, td.astype, 'm8[%s]' % t) # valid astype td.astype('int64') # invalid casting msg = (r"cannot astype a timedelta from \[timedelta64\[ns\]\] to" r" \[int32\]") with pytest.raises(TypeError, match=msg): td.astype('int32') # this is an invalid casting msg = "Could not convert object to NumPy timedelta" with pytest.raises(ValueError, match=msg): Series([timedelta(days=1), 'foo'], dtype='m8[ns]') # leave as object here td = Series([timedelta(days=i) for i in range(3)] + ['foo']) assert td.dtype == 'object' # these will correctly infer a timedelta s = Series([None, pd.NaT, '1 Day']) assert s.dtype == 'timedelta64[ns]' s = Series([np.nan, pd.NaT, '1 Day']) assert s.dtype == 'timedelta64[ns]' s = Series([pd.NaT, None, '1 Day']) assert s.dtype == 'timedelta64[ns]' s = Series([pd.NaT, np.nan, '1 Day']) assert s.dtype == 'timedelta64[ns]' # GH 16406 def test_constructor_mixed_tz(self): s = Series([Timestamp('20130101'), Timestamp('20130101', tz='US/Eastern')]) expected = Series([Timestamp('20130101'), Timestamp('20130101', tz='US/Eastern')], dtype='object') assert_series_equal(s, expected) def test_NaT_scalar(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') val = series[3] assert isna(val) series[2] = val assert isna(series[2]) def test_NaT_cast(self): # GH10747 result = Series([np.nan]).astype('M8[ns]') expected = Series([NaT]) assert_series_equal(result, expected) def test_constructor_name_hashable(self): for n in [777, 777., 'name', datetime(2001, 11, 11), (1, ), u"\u05D0"]: for data in [[1, 2, 3], np.ones(3), {'a': 0, 'b': 1}]: s = Series(data, name=n) assert s.name == n def test_constructor_name_unhashable(self): msg = r"Series\.name must be a hashable type" for n in [['name_list'], np.ones(2), {1: 2}]: for data in [['name_list'], np.ones(2), {1: 2}]: with pytest.raises(TypeError, match=msg): Series(data, name=n) def test_auto_conversion(self): series = Series(list(date_range('1/1/2000', periods=10))) assert series.dtype == 'M8[ns]' def test_convert_non_ns(self): # convert from a numpy array of non-ns timedelta64 arr = np.array([1, 2, 3], dtype='timedelta64[s]') s = Series(arr) expected = Series(pd.timedelta_range('00:00:01', periods=3, freq='s')) assert_series_equal(s, expected) # convert from a numpy array of non-ns datetime64 # note that creating a numpy datetime64 is in LOCAL time!!!! # seems to work for M8[D], but not for M8[s] s = Series(np.array(['2013-01-01', '2013-01-02', '2013-01-03'], dtype='datetime64[D]')) assert_series_equal(s, Series(date_range('20130101', periods=3, freq='D'))) # s = Series(np.array(['2013-01-01 00:00:01','2013-01-01 # 00:00:02','2013-01-01 00:00:03'],dtype='datetime64[s]')) # assert_series_equal(s,date_range('20130101 # 00:00:01',period=3,freq='s')) @pytest.mark.parametrize( "index", [ date_range('1/1/2000', periods=10), timedelta_range('1 day', periods=10), period_range('2000-Q1', periods=10, freq='Q')], ids=lambda x: type(x).__name__) def test_constructor_cant_cast_datetimelike(self, index): # floats are not ok msg = "Cannot cast {}.*? to ".format( # strip Index to convert PeriodIndex -> Period # We don't care whether the error message says # PeriodIndex or PeriodArray type(index).__name__.rstrip("Index") ) with pytest.raises(TypeError, match=msg): Series(index, dtype=float) # ints are ok # we test with np.int64 to get similar results on # windows / 32-bit platforms result = Series(index, dtype=np.int64) expected = Series(index.astype(np.int64)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "index", [ date_range('1/1/2000', periods=10), timedelta_range('1 day', periods=10), period_range('2000-Q1', periods=10, freq='Q')], ids=lambda x: type(x).__name__) def test_constructor_cast_object(self, index): s = Series(index, dtype=object) exp = Series(index).astype(object) tm.assert_series_equal(s, exp) s = Series(pd.Index(index, dtype=object), dtype=object) exp = Series(index).astype(object) tm.assert_series_equal(s, exp) s = Series(index.astype(object), dtype=object) exp = Series(index).astype(object) tm.assert_series_equal(s, exp) @pytest.mark.parametrize("dtype", [ np.datetime64, np.timedelta64, ]) def test_constructor_generic_timestamp_no_frequency(self, dtype): # see gh-15524, gh-15987 msg = "dtype has no unit. Please pass in" with pytest.raises(ValueError, match=msg): Series([], dtype=dtype) @pytest.mark.parametrize("dtype,msg", [ ("m8[ps]", "cannot convert timedeltalike"), ("M8[ps]", "cannot convert datetimelike"), ]) def test_constructor_generic_timestamp_bad_frequency(self, dtype, msg): # see gh-15524, gh-15987 with pytest.raises(TypeError, match=msg): Series([], dtype=dtype) @pytest.mark.parametrize('dtype', [None, 'uint8', 'category']) def test_constructor_range_dtype(self, dtype): # GH 16804 expected = Series([0, 1, 2, 3, 4], dtype=dtype or 'int64') result = Series(range(5), dtype=dtype) tm.assert_series_equal(result, expected) def test_constructor_tz_mixed_data(self): # GH 13051 dt_list = [Timestamp('2016-05-01 02:03:37'), Timestamp('2016-04-30 19:03:37-0700', tz='US/Pacific')] result = Series(dt_list) expected = Series(dt_list, dtype=object) tm.assert_series_equal(result, expected)
bsd-3-clause
TheWylieStCoyote/gnuradio
gr-utils/plot_tools/plot_data.py
3
7076
# # Copyright 2007,2008,2011 Free Software Foundation, Inc. # # This file is part of GNU Radio # # SPDX-License-Identifier: GPL-3.0-or-later # # """ Utility to help plotting data from files. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals from argparse import ArgumentParser import numpy try: from pylab import Button, connect, draw, figure, figtext, get_current_fig_manager, show, plot, rcParams except ImportError: print("Please install Python Matplotlib (http://matplotlib.sourceforge.net/) and Python TkInter https://wiki.python.org/moin/TkInter to run this script") raise SystemExit(1) datatype_lookup = { "complex64": numpy.complex64, "float32": numpy.float32, "uint32": numpy.uint32, "int32": numpy.int32, "uint16": numpy.uint16, "int16": numpy.int16, "uint8": numpy.uint8, "int8": numpy.int8, } class plot_data(object): def __init__(self, datatype, filenames, options): self.hfile = list() self.legend_text = list() for f in filenames: self.hfile.append(open(f, "r")) self.legend_text.append(f) self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 9), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.40, 0.88, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = self.sp_f.get_xlim() self.manager = get_current_fig_manager() connect('key_press_event', self.click) show() def get_data(self, hfile): self.text_file_pos.set_text("File Position: %d" % (hfile.tell()//self.sizeof_data)) try: f = numpy.fromfile(hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print("End of File") else: self.f = numpy.array(f) self.time = numpy.array([i*(1 / self.sample_rate) for i in range(len(self.f))]) def make_plots(self): self.sp_f = self.fig.add_subplot(2,1,1, position=[0.075, 0.2, 0.875, 0.6]) self.sp_f.set_title(("Amplitude"), fontsize=self.title_font_size, fontweight="bold") self.sp_f.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_f.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") self.plot_f = list() maxval = -1e12 minval = 1e12 for hf in self.hfile: # if specified on the command-line, set file pointer hf.seek(self.sizeof_data*self.start, 1) self.get_data(hf) # Subplot for real and imaginary parts of signal self.plot_f += plot(self.time, self.f, 'o-') maxval = max(maxval, self.f.max()) minval = min(minval, self.f.min()) self.sp_f.set_ylim([1.5*minval, 1.5*maxval]) self.leg = self.sp_f.legend(self.plot_f, self.legend_text) draw() def update_plots(self): maxval = -1e12 minval = 1e12 for hf,p in zip(self.hfile,self.plot_f): self.get_data(hf) p.set_data([self.time, self.f]) maxval = max(maxval, self.f.max()) minval = min(minval, self.f.min()) self.sp_f.set_ylim([1.5*minval, 1.5*maxval]) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): self.update_plots() def step_backward(self): for hf in self.hfile: # Step back in file position if(hf.tell() >= 2*self.sizeof_data*self.block_length ): hf.seek(-2*self.sizeof_data*self.block_length, 1) else: hf.seek(-hf.tell(),1) self.update_plots() @staticmethod def setup_options(): description = "Takes a GNU Radio binary file and displays the samples versus time. You can set the block size to specify how many points to read in at a time and the start position in the file. By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples." parser = ArgumentParser(conflict_handler="resolve", description=description) parser.add_argument("-d", "--data-type", default="complex64", choices=("complex64", "float32", "uint32", "int32", "uint16", "int16", "uint8", "int8"), help="Specify the data type [default=%(default)r]") parser.add_argument("-B", "--block", type=int, default=1000, help="Specify the block size [default=%(default)r]") parser.add_argument("-s", "--start", type=int, default=0, help="Specify where to start in the file [default=%(default)r]") parser.add_argument("-R", "--sample-rate", type=float, default=1.0, help="Set the sampler rate of the data [default=%(default)r]") parser.add_argument("files", metavar="FILE", nargs='+', help="Input file with samples") return parser def find(item_in, list_search): try: return list_search.index(item_in) != None except ValueError: return False
gpl-3.0
bundgus/python-playground
matplotlib-playground/examples/api/patch_collection.py
1
1269
import numpy as np import matplotlib from matplotlib.patches import Circle, Wedge, Polygon from matplotlib.collections import PatchCollection import matplotlib.pyplot as plt fig, ax = plt.subplots() resolution = 50 # the number of vertices N = 3 x = np.random.rand(N) y = np.random.rand(N) radii = 0.1*np.random.rand(N) patches = [] for x1, y1, r in zip(x, y, radii): circle = Circle((x1, y1), r) patches.append(circle) x = np.random.rand(N) y = np.random.rand(N) radii = 0.1*np.random.rand(N) theta1 = 360.0*np.random.rand(N) theta2 = 360.0*np.random.rand(N) for x1, y1, r, t1, t2 in zip(x, y, radii, theta1, theta2): wedge = Wedge((x1, y1), r, t1, t2) patches.append(wedge) # Some limiting conditions on Wedge patches += [ Wedge((.3, .7), .1, 0, 360), # Full circle Wedge((.7, .8), .2, 0, 360, width=0.05), # Full ring Wedge((.8, .3), .2, 0, 45), # Full sector Wedge((.8, .3), .2, 45, 90, width=0.10), # Ring sector ] for i in range(N): polygon = Polygon(np.random.rand(N, 2), True) patches.append(polygon) colors = 100*np.random.rand(len(patches)) p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4) p.set_array(np.array(colors)) ax.add_collection(p) plt.colorbar(p) plt.show()
mit
pythonvietnam/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting.py
3
37680
""" Testing for the gradient boosting module (sklearn.ensemble.gradient_boosting). """ import warnings import numpy as np from sklearn import datasets from sklearn.base import clone from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.gradient_boosting import ZeroEstimator from sklearn.metrics import mean_squared_error from sklearn.utils import check_random_state, tosequence from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.validation import DataConversionWarning from sklearn.utils.validation import NotFittedError # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] rng = np.random.RandomState(0) # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset. for loss in ('deviance', 'exponential'): clf = GradientBoostingClassifier(loss=loss, n_estimators=10, random_state=1) assert_raises(ValueError, clf.predict, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf.estimators_)) deviance_decrease = (clf.train_score_[:-1] - clf.train_score_[1:]) assert np.any(deviance_decrease >= 0.0), \ "Train deviance does not monotonically decrease." def test_parameter_checks(): # Check input parameter validation. assert_raises(ValueError, GradientBoostingClassifier(n_estimators=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(n_estimators=-1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='foobar').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=0.6).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=1.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(init={}).fit, X, y) # test fit before feature importance assert_raises(ValueError, lambda: GradientBoostingClassifier().feature_importances_) # deviance requires ``n_classes >= 2``. assert_raises(ValueError, lambda X, y: GradientBoostingClassifier( loss='deviance').fit(X, y), X, [0, 0, 0, 0]) def test_loss_function(): assert_raises(ValueError, GradientBoostingClassifier(loss='ls').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='lad').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='quantile').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='huber').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='deviance').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='exponential').fit, X, y) def test_classification_synthetic(): # Test GradientBoostingClassifier on synthetic dataset used by # Hastie et al. in ESLII Example 12.7. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] for loss in ('deviance', 'exponential'): gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=1, max_depth=1, loss=loss, learning_rate=1.0, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert error_rate < 0.09, \ "GB(loss={}) failed with error {}".format(loss, error_rate) gbrt = GradientBoostingClassifier(n_estimators=200, min_samples_split=1, max_depth=1, learning_rate=1.0, subsample=0.5, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert error_rate < 0.08, ("Stochastic GradientBoostingClassifier(loss={}) " "failed with error {}".format(loss, error_rate)) def test_boston(): # Check consistency on dataset boston house prices with least squares # and least absolute deviation. for loss in ("ls", "lad", "huber"): for subsample in (1.0, 0.5): last_y_pred = None for i, sample_weight in enumerate( (None, np.ones(len(boston.target)), 2 * np.ones(len(boston.target)))): clf = GradientBoostingRegressor(n_estimators=100, loss=loss, max_depth=4, subsample=subsample, min_samples_split=1, random_state=1) assert_raises(ValueError, clf.predict, boston.data) clf.fit(boston.data, boston.target, sample_weight=sample_weight) y_pred = clf.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert mse < 6.0, "Failed with loss %s and " \ "mse = %.4f" % (loss, mse) if last_y_pred is not None: np.testing.assert_array_almost_equal( last_y_pred, y_pred, err_msg='pred_%d doesnt match last pred_%d for loss %r and subsample %r. ' % (i, i - 1, loss, subsample)) last_y_pred = y_pred def test_iris(): # Check consistency on dataset iris. for subsample in (1.0, 0.5): for sample_weight in (None, np.ones(len(iris.target))): clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=subsample) clf.fit(iris.data, iris.target, sample_weight=sample_weight) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with subsample %.1f " \ "and score = %f" % (subsample, score) def test_regression_synthetic(): # Test on synthetic regression datasets used in Leo Breiman, # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). random_state = check_random_state(1) regression_params = {'n_estimators': 100, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.1, 'loss': 'ls'} # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=random_state, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor() clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 5.0, "Failed on Friedman1 with mse = %.4f" % mse # Friedman2 X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 1700.0, "Failed on Friedman2 with mse = %.4f" % mse # Friedman3 X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 0.015, "Failed on Friedman3 with mse = %.4f" % mse def test_feature_importances(): X = np.array(boston.data, dtype=np.float32) y = np.array(boston.target, dtype=np.float32) clf = GradientBoostingRegressor(n_estimators=100, max_depth=5, min_samples_split=1, random_state=1) clf.fit(X, y) #feature_importances = clf.feature_importances_ assert_true(hasattr(clf, 'feature_importances_')) X_new = clf.transform(X, threshold="mean") assert_less(X_new.shape[1], X.shape[1]) feature_mask = clf.feature_importances_ > clf.feature_importances_.mean() assert_array_almost_equal(X_new, X[:, feature_mask]) # true feature importance ranking # true_ranking = np.array([3, 1, 8, 2, 10, 9, 4, 11, 0, 6, 7, 5, 12]) # assert_array_equal(true_ranking, feature_importances.argsort()) def test_probability_log(): # Predict probabilities. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert np.all(y_proba >= 0.0) assert np.all(y_proba <= 1.0) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_check_inputs(): # Test input checks (shape and type of X and y). clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y + [0, 1]) from scipy import sparse X_sparse = sparse.csr_matrix(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(TypeError, clf.fit, X_sparse, y) clf = GradientBoostingClassifier().fit(X, y) assert_raises(TypeError, clf.predict, X_sparse) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y, sample_weight=([1] * len(y)) + [0, 1]) def test_check_inputs_predict(): # X has wrong shape clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, rng.rand(len(X))) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) def test_check_max_features(): # test if max_features is valid. clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=0) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=(len(X[0]) + 1)) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=-0.1) assert_raises(ValueError, clf.fit, X, y) def test_max_feature_regression(): # Test to make sure random state is set properly. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=5, max_depth=2, learning_rate=.1, max_features=2, random_state=1) gbrt.fit(X_train, y_train) deviance = gbrt.loss_(y_test, gbrt.decision_function(X_test)) assert_true(deviance < 0.5, "GB failed with deviance %.4f" % deviance) def test_max_feature_auto(): # Test if max features is set properly for floats and str. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) _, n_features = X.shape X_train = X[:2000] y_train = y[:2000] gbrt = GradientBoostingClassifier(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, n_features) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.3) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(n_features * 0.3)) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='sqrt') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='log2') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.log2(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.01 / X.shape[1]) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, 1) def test_staged_predict(): # Test whether staged decision function eventually gives # the same prediction. X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test = X[200:] clf = GradientBoostingRegressor() # test raise ValueError if not fitted assert_raises(ValueError, lambda X: np.fromiter( clf.staged_predict(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # test if prediction for last stage equals ``predict`` for y in clf.staged_predict(X_test): assert_equal(y.shape, y_pred.shape) assert_array_equal(y_pred, y) def test_staged_predict_proba(): # Test whether staged predict proba eventually gives # the same prediction. X, y = datasets.make_hastie_10_2(n_samples=1200, random_state=1) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingClassifier(n_estimators=20) # test raise NotFittedError if not fitted assert_raises(NotFittedError, lambda X: np.fromiter( clf.staged_predict_proba(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) # test if prediction for last stage equals ``predict`` for y_pred in clf.staged_predict(X_test): assert_equal(y_test.shape, y_pred.shape) assert_array_equal(clf.predict(X_test), y_pred) # test if prediction for last stage equals ``predict_proba`` for staged_proba in clf.staged_predict_proba(X_test): assert_equal(y_test.shape[0], staged_proba.shape[0]) assert_equal(2, staged_proba.shape[1]) assert_array_equal(clf.predict_proba(X_test), staged_proba) def test_staged_functions_defensive(): # test that staged_functions make defensive copies rng = np.random.RandomState(0) X = rng.uniform(size=(10, 3)) y = (4 * X[:, 0]).astype(np.int) + 1 # don't predict zeros for estimator in [GradientBoostingRegressor(), GradientBoostingClassifier()]: estimator.fit(X, y) for func in ['predict', 'decision_function', 'predict_proba']: staged_func = getattr(estimator, "staged_" + func, None) if staged_func is None: # regressor has no staged_predict_proba continue with warnings.catch_warnings(record=True): staged_result = list(staged_func(X)) staged_result[1][:] = 0 assert_true(np.all(staged_result[0] != 0)) def test_serialization(): # Check model serialization. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) try: import cPickle as pickle except ImportError: import pickle serialized_clf = pickle.dumps(clf, protocol=pickle.HIGHEST_PROTOCOL) clf = None clf = pickle.loads(serialized_clf) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_degenerate_targets(): # Check if we can fit even though all targets are equal. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) # classifier should raise exception assert_raises(ValueError, clf.fit, X, np.ones(len(X))) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, np.ones(len(X))) clf.predict([rng.rand(2)]) assert_array_equal(np.ones((1,), dtype=np.float64), clf.predict([rng.rand(2)])) def test_quantile_loss(): # Check if quantile loss with alpha=0.5 equals lad. clf_quantile = GradientBoostingRegressor(n_estimators=100, loss='quantile', max_depth=4, alpha=0.5, random_state=7) clf_quantile.fit(boston.data, boston.target) y_quantile = clf_quantile.predict(boston.data) clf_lad = GradientBoostingRegressor(n_estimators=100, loss='lad', max_depth=4, random_state=7) clf_lad.fit(boston.data, boston.target) y_lad = clf_lad.predict(boston.data) assert_array_almost_equal(y_quantile, y_lad, decimal=4) def test_symbol_labels(): # Test with non-integer class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) symbol_y = tosequence(map(str, y)) clf.fit(X, symbol_y) assert_array_equal(clf.predict(T), tosequence(map(str, true_result))) assert_equal(100, len(clf.estimators_)) def test_float_class_labels(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) float_y = np.asarray(y, dtype=np.float32) clf.fit(X, float_y) assert_array_equal(clf.predict(T), np.asarray(true_result, dtype=np.float32)) assert_equal(100, len(clf.estimators_)) def test_shape_y(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) y_ = np.asarray(y, dtype=np.int32) y_ = y_[:, np.newaxis] # This will raise a DataConversionWarning that we want to # "always" raise, elsewhere the warnings gets ignored in the # later tests, and the tests that check for this warning fail assert_warns(DataConversionWarning, clf.fit, X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_mem_layout(): # Test with different memory layouts of X and y X_ = np.asfortranarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) X_ = np.ascontiguousarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.ascontiguousarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.asfortranarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_oob_improvement(): # Test if oob improvement has correct shape and regression test. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=0.5) clf.fit(X, y) assert clf.oob_improvement_.shape[0] == 100 # hard-coded regression test - change if modification in OOB computation assert_array_almost_equal(clf.oob_improvement_[:5], np.array([0.19, 0.15, 0.12, -0.12, -0.11]), decimal=2) def test_oob_improvement_raise(): # Test if oob improvement has correct shape. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=1.0) clf.fit(X, y) assert_raises(AttributeError, lambda: clf.oob_improvement_) def test_oob_multilcass_iris(): # Check OOB improvement on multi-class dataset. clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=0.5) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with subsample %.1f " \ "and score = %f" % (0.5, score) assert clf.oob_improvement_.shape[0] == clf.n_estimators # hard-coded regression test - change if modification in OOB computation # FIXME: the following snippet does not yield the same results on 32 bits # assert_array_almost_equal(clf.oob_improvement_[:5], # np.array([12.68, 10.45, 8.18, 6.43, 5.13]), # decimal=2) def test_verbose_output(): # Check verbose=1 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=1, subsample=0.8) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # with OOB true_header = ' '.join(['%10s'] + ['%16s'] * 3) % ( 'Iter', 'Train Loss', 'OOB Improve', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # one for 1-10 and then 9 for 20-100 assert_equal(10 + 9, n_lines) def test_more_verbose_output(): # Check verbose=2 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=2) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # no OOB true_header = ' '.join(['%10s'] + ['%16s'] * 2) % ( 'Iter', 'Train Loss', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # 100 lines for n_estimators==100 assert_equal(100, n_lines) def test_warm_start(): # Test if warm start equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_n_estimators(): # Test if warm start equals fit - set n_estimators. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=300, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=300) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_max_depth(): # Test if possible to fit trees of different depth in ensemble. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, max_depth=2) est.fit(X, y) # last 10 trees have different depth assert est.estimators_[0, 0].max_depth == 1 for i in range(1, 11): assert est.estimators_[-i, 0].max_depth == 2 def test_warm_start_clear(): # Test if fit clears state. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est_2 = Cls(n_estimators=100, max_depth=1, warm_start=True) est_2.fit(X, y) # inits state est_2.set_params(warm_start=False) est_2.fit(X, y) # clears old state and equals est assert_array_almost_equal(est_2.predict(X), est.predict(X)) def test_warm_start_zero_n_estimators(): # Test if warm start with zero n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=0) assert_raises(ValueError, est.fit, X, y) def test_warm_start_smaller_n_estimators(): # Test if warm start with smaller n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=99) assert_raises(ValueError, est.fit, X, y) def test_warm_start_equal_n_estimators(): # Test if warm start with equal n_estimators does nothing X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est2 = clone(est) est2.set_params(n_estimators=est.n_estimators, warm_start=True) est2.fit(X, y) assert_array_almost_equal(est2.predict(X), est.predict(X)) def test_warm_start_oob_switch(): # Test if oob can be turned on during warm start. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, subsample=0.5) est.fit(X, y) assert_array_equal(est.oob_improvement_[:100], np.zeros(100)) # the last 10 are not zeros assert_array_equal(est.oob_improvement_[-10:] == 0.0, np.zeros(10, dtype=np.bool)) def test_warm_start_oob(): # Test if warm start OOB equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1, subsample=0.5, random_state=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, subsample=0.5, random_state=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.oob_improvement_[:100], est.oob_improvement_[:100]) def early_stopping_monitor(i, est, locals): """Returns True on the 10th iteration. """ if i == 9: return True else: return False def test_monitor_early_stopping(): # Test if monitor return value works. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) # this is not altered assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.train_score_.shape[0], 30) est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5, warm_start=True) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30, warm_start=False) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.train_score_.shape[0], 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.oob_improvement_.shape[0], 30) def test_complete_classification(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 est = GradientBoostingClassifier(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, k) assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_complete_regression(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF k = 4 est = GradientBoostingRegressor(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(boston.data, boston.target) tree = est.estimators_[-1, 0].tree_ assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_zero_estimator_reg(): # Test if ZeroEstimator works for regression. est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, boston.data, boston.target) def test_zero_estimator_clf(): # Test if ZeroEstimator works for classification. X = iris.data y = np.array(iris.target) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(X, y) assert est.score(X, y) > 0.96 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert est.score(X, y) > 0.96 # binary clf mask = y != 0 y[mask] = 1 y[~mask] = 0 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert est.score(X, y) > 0.96 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test preceedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [GradientBoostingRegressor, GradientBoostingClassifier] k = 4 for GBEstimator in all_estimators: est = GBEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_greater(tree.max_depth, 1) est = GBEstimator(max_depth=1).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, 1) def test_warm_start_wo_nestimators_change(): # Test if warm_start does nothing if n_estimators is not changed. # Regression test for #3513. clf = GradientBoostingClassifier(n_estimators=10, warm_start=True) clf.fit([[0, 1], [2, 3]], [0, 1]) assert clf.estimators_.shape[0] == 10 clf.fit([[0, 1], [2, 3]], [0, 1]) assert clf.estimators_.shape[0] == 10 def test_probability_exponential(): # Predict probabilities. clf = GradientBoostingClassifier(loss='exponential', n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert np.all(y_proba >= 0.0) assert np.all(y_proba <= 1.0) score = clf.decision_function(T).ravel() assert_array_almost_equal(y_proba[:, 1], 1.0 / (1.0 + np.exp(-2 * score))) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_non_uniform_weights_toy_edge_case_reg(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('huber', 'ls', 'lad', 'quantile'): gb = GradientBoostingRegressor(learning_rate=1.0, n_estimators=2, loss=loss) gb.fit(X, y, sample_weight=sample_weight) assert_greater(gb.predict([[1, 0]])[0], 0.5) def test_non_uniform_weights_toy_min_weight_leaf(): # Regression test for issue #4447 X = [[1, 0], [1, 0], [1, 0], [0, 1], ] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] gb = GradientBoostingRegressor(n_estimators=5, min_weight_fraction_leaf=0.1) gb.fit(X, y, sample_weight=sample_weight) assert_true(gb.predict([[1, 0]])[0] > 0.5) assert_almost_equal(gb.estimators_[0, 0].splitter.min_weight_leaf, 0.2) def test_non_uniform_weights_toy_edge_case_clf(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('deviance', 'exponential'): gb = GradientBoostingClassifier(n_estimators=5) gb.fit(X, y, sample_weight=sample_weight) assert_array_equal(gb.predict([[1, 0]]), [1])
bsd-3-clause
xidus/ted
ted/sdss/cas.py
1
34382
#!/usr/bin/env python # -*- coding: utf-8 -*- # Version: Sat 27 Apr 2013 # Initial build. # """ Scripts for dealing with the SDSS Catalogue Archive Server (CAS) and the results obtained herefrom. """ import os import sys import time # Will mechanize work with proxies? # Maybe I should create a wrapper or use socksipy to have all connections use the proxy server. import mechanize # .. : ted from .. import env from ..time import format_HHMMSS_diff from . import load_SNe_candidate_list _path_data = env.paths.get('data') _path_das = env.paths.get('das') _path_cas = env.paths.get('cas') _proxies = env.proxies """ Content ------- __Functions:__ * get_galaxies * create_galaxy_list * plot_gxlist * build_tlist * get_fields * get_field_result * create_unique_field_list * filter_invalid_from_unique_field_list * count_field_records * query * field_clean_local_dir """ def get_galaxies(): """ This query takes too long? """ ipath = env.paths.get('sql') fn_sql_galaxies = os.path.join(ipath, 'cas', 'stripe82_galaxies.sql') with open(fn_sql_galaxies, 'r') as fsock: sql_galaxies = fsock.read() print sql_galaxies print '' print 'Downloading galaxy objects from PhotoObjAll' time_total_beg = time.time() galaxies = query(sql_galaxies) time_total_end = time.time() print 'Query executed in {:.0f} seconds'.format( time_total_end - time_total_beg ) if 'error' in galaxies.lower(): print('ERROR: {}: CAS says something is wrong ...'.format( sys._getframe().f_code.co_name) ) print '\nContent of returned result:\n\n{}'.format(galaxies) with open(env.files.get('galaxies'), 'w+') as fsock: fsock.write(galaxies) def create_galaxy_list(): """ Create a list of galaxy coordinates `gxlist.csv` by filtering response from SDSS Skyserver in the following way: 0. Exclude duplicate coordinates. 1. Exclude coordinates that are not within covered stripe area. 2. Exclude coordinates that are too close to any supernova coordinate. Returns ------- None Side effects ------------ File `gxlist.csv` in env.paths.get('cas') """ from .cutouts import get_covering_fields import numpy as np import pandas as pd # Manipulation and analysis of geometric objects in the Cartesian plane. # from shapely.geometry import Polygon, Point # from shapely.ops import cascaded_union from IPython import embed print 'Loading data ...' cols = dict(usecols=['Ra', 'Dec']) fcols = dict(usecols=['raMin', 'raMax', 'decMin', 'decMax']) galaxies = pd.read_csv(env.files.get('galaxies'), sep=',', **cols) snlist = pd.read_csv(env.files.get('snlist'), sep=';', **cols) fields = pd.read_csv(env.files.get('fields'), sep=',', **fcols) # Step 0 # ------ print 'Step 0 : Exclude duplicate coordinates ...' gra = galaxies.Ra.values gdec = galaxies.Dec.values # coords = np.zeros_like(gra).astype(str) coords = [] for i in np.arange(galaxies.shape[0]): # coords[i] = '{},{}'.format(gra[i], gdec[i]) coords.append('{},{}'.format(gra[i], gdec[i])) u_coords, uix = np.unique(coords, return_index=True) print 'Reducing data for the next step ...' u_galaxies = galaxies.iloc[uix] u_gra = gra[uix] u_gdec = gdec[uix] # Step 1 # ------ print 'Step 1 : Exclude coordinates that are not within covered stripe area ...' ipath = os.path.dirname(env.files.get('gxlist')) ifname = os.path.join(ipath, 'cu_gxlist.csv') if not os.path.isfile(ifname): """This step takes ~40 minutes on my laptop.""" ramin, ramax = fields.raMin.values, fields.raMax.values decmin, decmax = fields.decMin.values, fields.decMax.values N_gx = u_galaxies.shape[0] N_fields = fields.shape[0] # How many times can I have an array of <N_rows> rows by N_rows = 100 N_gx_eee = N_gx // N_rows N_gx_rem = N_gx % N_rows cix = np.array([]).astype(bool) # Create vectors and matrices that are repeatedly used N_fields_ZEROS = np.zeros(N_fields)[None, :] RAMIN = np.zeros(N_rows)[:, None] + ramin[None, :] RAMAX = np.zeros(N_rows)[:, None] + ramax[None, :] DECMIN = np.zeros(N_rows)[:, None] + decmin[None, :] DECMAX = np.zeros(N_rows)[:, None] + decmax[None, :] for n in range(N_gx_eee): # How far are we? beg = n * N_rows end = (n + 1) * N_rows print 'n = {: >4d}; {: >6d}; {: >6d};'.format(n, beg, end) # Create matrices GRA = u_gra[beg:end, None] + N_fields_ZEROS GDEC = u_gdec[beg:end, None] + N_fields_ZEROS CMP = np.ones((N_rows, N_fields)).astype(bool) CMP &= (GRA > RAMIN) CMP &= (GRA < RAMAX) CMP &= (GDEC > DECMIN) CMP &= (GDEC < DECMAX) # Append the booleans to my master index file cix = np.append(cix, np.any(CMP, axis=1)) # Clean up del GRA, GDEC, CMP if N_gx_rem > 0: # Finally, the remaining less than <N_rows> coordinates beg = (n + 1) * N_rows end = beg + N_gx_rem # Create matrices GRA = u_gra[beg:end, None] + N_fields_ZEROS GDEC = u_gdec[beg:end, None] + N_fields_ZEROS RAMIN = np.zeros(N_gx_rem)[:, None] + ramin[None, :] RAMAX = np.zeros(N_gx_rem)[:, None] + ramax[None, :] DECMIN = np.zeros(N_gx_rem)[:, None] + decmin[None, :] DECMAX = np.zeros(N_gx_rem)[:, None] + decmax[None, :] CMP = np.ones((N_gx_rem, N_fields)).astype(bool) CMP &= (GRA > RAMIN) CMP &= (GRA < RAMAX) CMP &= (GDEC > DECMIN) CMP &= (GDEC < DECMAX) # Append the booleans to my master index file cix = np.append(cix, np.any(CMP, axis=1)) # Check print '' print 'N_gx =', N_gx print 'cix.size =', cix.size print 'cix.dtype =', cix.dtype # Embed so that I do not need to re-do this step again... embed() print 'Reducing data for the next step ...' cu_galaxies = u_galaxies.iloc[cix] cu_gra = u_gra[cix] cu_gdec = u_gdec[cix] else: print 'Step 1. already performed. Loading result ...' cu_galaxies = pd.read_csv(ifname, sep=',') cu_gra = cu_galaxies.Ra.values cu_gdec = cu_galaxies.Dec.values # Step 2 # ------ print 'Step 2 : Exclude coordinates that are too close to any supernova coordinate ...' # Criteria? # Unknown, but for now it should just lie # outside the range of the cutout extent, i.e. more than 101 px away. # 101 px in the SDSS frames correspond to about 10 ** -2 degrees. criteria_distance = .001 # [deg] # Count how many rows that are left at this step N_gx = cu_galaxies.shape[0] N_sn = snlist.shape[0] # How many times can I have an array of <N_rows> rows by N_rows = 10000 N_gx_eee = N_gx // N_rows N_gx_rem = N_gx % N_rows dix = np.array([]).astype(bool) # Create repeatedly used vectors N_sn_ZEROS = np.zeros(N_sn)[None, :] RA_sn = np.zeros(N_rows)[:, None] + snlist.Ra.values[None, :] DEC_sn = np.zeros(N_rows)[:, None] + snlist.Dec.values[None, :] print 'Creating matrices that can calculate all distances simultaneously ...' # Loop for as many times as needed for n in range(N_gx_eee): beg = n * N_rows end = (n + 1) * N_rows # How far are we? print 'n = {: >4d}; {: >6d}; {: >6d};'.format(n, beg, end) # Create matrices # Broadcast shapes to get a N_gx-by-N_sn RA_gx = cu_gra[beg:end, None] + N_sn_ZEROS DEC_gx = cu_gdec[beg:end, None] + N_sn_ZEROS # print 'Calculating differences for each coordinate type ...' # Differences dRA = RA_gx - RA_sn dDEC = DEC_gx - DEC_sn # print 'Calculating the distances between every possible set of coordinates ...' # Distances from each coordinate to each supernova dS = np.sqrt(dRA ** 2 + dDEC ** 2) # print 'Creating boolean vector for each coordinate ...' # Are there any SNe too close for a given coordinate? # Check along the columns, i.e .return boolean vector of rows (galaxies) # that met the criteria of being far enough away that it should be outside # a cutout which also has a known SDSS supernova candidate within it. # distance indices dix = np.append(dix, np.any(dS > criteria_distance, axis=1)) if N_gx_rem > 0: # Finally, the remaining less than <N_rows> coordinates beg = (n + 1) * N_rows end = beg + N_gx_rem # Create matrices RA_gx = cu_gra[beg:end, None] + N_sn_ZEROS DEC_gx = cu_gdec[beg:end, None] + N_sn_ZEROS RA_sn = np.zeros(N_gx_rem)[:, None] + snlist.Ra.values[None, :] DEC_sn = np.zeros(N_gx_rem)[:, None] + snlist.Dec.values[None, :] # print 'Calculating differences for each coordinate type ...' # Differences dRA = RA_gx - RA_sn dDEC = DEC_gx - DEC_sn # print 'Calculating the distances between every possible set of coordinates ...' # Distances from each coordinate to each supernova dS = np.sqrt(dRA ** 2 + dDEC ** 2) # print 'Creating boolean vector for each coordinate ...' # Append the booleans to my master index file dix = np.append(dix, np.any(dS > criteria_distance, axis=1)) # Check print 'N_gx =', N_gx print 'dix.size =', dix.size print 'Reducing data for the next step ...' dcu_galaxies = cu_galaxies.iloc[dix] # Step 3: # ------- print 'Step 3 : Exclude coordinates that are too close to other non-events ...' """ Rationale --------- When I discovered that I had not checked that the distance between the galaxy coordinates themselves were not too close to essentially stay out of each other's cutouts, I realised that I never made sure that I could order them by observation date and then use only the first-observed object (or it could be the same, but it would make no difference for my algorithm to begin with), so that I could argue that I should keep the first one. As it is (2014-02-26), I do not have any means to use observation dates, since I do not have the luxury of starting over and begin with Step 0. Also, More importantly, I do not have time to spend on finding out how to obtain observation dates from the SDSS database. As this is basically just a proof of concept, where I just need enough coordinates that as far as the merged snlists are concerned do not have any known transient events happening in them that are classified as SNe. There does not seem to be any reason why I should not just choose arbitrarily between two coordinates whose cutouts (101x101) will overlap. Algorithm --------- 1. I go through the list from the top. 2. For each coordinate I calculate the distance to all other coordinates. 3. I get an array of the same length, containing the distances. 4. Entries with coordinates too close to be outside the given coordinate's cutout `view` will be removed from the list. 5. The now potentially reduced list is used in the next step. Since we start from the top, the previous coordinate entries will all be there in the reduced list. 6. Increase the entry index and repeat from step 3. until the end of the final entry is reached (no more remaining possibly too close coordinates left). """ i = 0 ddcu_galaxies = dcu_galaxies.copy() while i < ddcu_galaxies.shape[0]: if i and not i % 1000: print 'i = {: >5d}'.format(i) templist = ddcu_galaxies.copy() entry = templist[i:i + 1] dRa = entry.Ra.values[0] - templist.Ra.values dDec = entry.Dec.values[0] - templist.Dec.values dS = np.sqrt(dRa ** 2 + dDec ** 2) dix = (dS > criteria_distance) dix[i] = True ddcu_galaxies = templist.iloc[dix].copy() del templist # Yikes :O !!! This turned out to be important :D i += 1 # print 'Final size of gxlist: {:,.0f}'.format(ddcu_galaxies.shape[0]) # Step 4: # ------- print 'Step 4 : Exclude coordinates that are covered by too few fields ...' """ This was determined from the coordinates that were in the first tlist made before this step, where I discovered that some of the choden coordintes had as little as 1 field covering it. With fewer fields covering, the chance of getting a number of cutouts in a sequence that matches the average number of cutouts for the coordinates in snlist is smaller. There could be a bias here. """ # Lowest frame count 69.0 # Highest frame count 162.0 MIN_NUMBER_OF_FIELDS = 69 MAX_NUMBER_OF_FIELDS = 162 # Check if enough covering fields # If not enough, exclude the coordinate. n_fields = np.array([]) for i in range(ddcu_galaxies.shape[0]): print '{: >5d}'.format(i), Ra, Dec = ddcu_galaxies.iloc[i] N = get_covering_fields(np.array([Ra, Dec])[None, :]).shape[0] n_fields = np.append(n_fields, N) print '- Fields: {: >3d}'.format(N) fix = ( (n_fields >= MIN_NUMBER_OF_FIELDS) & (n_fields <= MAX_NUMBER_OF_FIELDS) ) fddcu_galaxies = ddcu_galaxies.iloc[fix] print 'Final size of gxlist: {:,.0f}'.format(fddcu_galaxies.shape[0]) # Finalise # -------- print 'Step finalise : save the resulting list to disk.' fddcu_galaxies.to_csv(env.files.get('gxlist'), index=False, header=True) def plot_gxlist(): """ Generate figure showing the galaxy coordinates within the stripe plotted over the regions covered by the fields that are available. """ pass ############################################################################### def build_tlist(): """ Build the event/non-event data set and save it as a file. """ import numpy as np import pandas as pd from ..parse import ra2deg, dec2deg if 1: snlist = pd.read_csv(env.files.get('snlist'), sep=';') else: snid_sortable = lambda SDSS_id: 'SN{:0>5d}'.format(int(SDSS_id[2:])) s2valornan = lambda s: s or np.nan conv = dict(SDSS_id=snid_sortable, Ra=ra2deg, Dec=dec2deg, redshift=s2valornan, Peak_MJD=s2valornan) lkw = dict(sep=';', converters=conv) snlist = pd.read_csv(env.files.get('snlist_1030'), **lkw) gxlist = pd.read_csv(env.files.get('gxlist'), sep=',') # print gxlist.info() # print gxlist.head(10) print snlist.info() print snlist.head(10) # How many needed in total N_sne = snlist.shape[0] N_gx = gxlist.shape[0] N_needed = np.round(N_sne, decimals=-2) * 2 N_gx_c = N_needed - N_sne gx_ix = np.unique(np.random.randint(0, N_gx, size=N_gx_c)) while gx_ix.size != N_gx_c: N_cur = gx_ix.size N_left = N_gx_c - N_cur gx_ix = np.unique( np.append( gx_ix, np.random.randint(0, N_gx, size=N_left) ) ) gx_chosen = gxlist.iloc[gx_ix] # print gx_chosen.info() # print gx_chosen.head(10) # raise SystemExit # Build data set ra = np.append(snlist.Ra.values, gx_chosen.Ra.values) dec = np.append(snlist.Dec.values, gx_chosen.Dec.values) is_sn = np.append(np.ones(N_sne), np.zeros(N_gx_c)).astype(bool) # Collect and shuffle the lines, so that I only need to split # the data set N-fold, when using the data. dataset = np.array([ra, dec, is_sn]).T # Do in-place shuffle """ This is an in-place operation on a view of the original array. It does not create a new, shuffled array, so there's no need to transpose the result. REF: https://stackoverflow.com/questions/20546419/shuffle-columns-of-an-array-with-numpy """ np.random.shuffle(dataset) if 0: coords = np.array([]) # for i in range(dataset.shape[0]): # coords = np.append(coords, '{:014.9f}_{:014.9f}'.format( # dataset[i, 0], dataset[i, 1]) # ) for i in range(snlist.shape[0]): coords = np.append(coords, '{:014.9f}_{:014.9f}'.format( snlist.Ra.values[i], snlist.Dec.values[i]) ) ucoords, indices = np.unique(coords, return_inverse=True) print ucoords.size, np.unique(snlist.SDSS_id.values).size, np.unique(snlist.Peak_MJD.values).size raise SystemExit # tlist = pd.DataFrame(data=dict(Ra=ra, Dec=dec, is_sn=is_sn)) tlist = pd.DataFrame( data=dataset, columns=['Ra', 'Dec', 'is_sn'] ) print tlist.info() print tlist.head(10) tlist.to_csv(env.files.get('tlist'), index=False, header=True) ############################################################################### def build_tlist_sample(N=5): """ Build *SAMPLE* event data set and save it as a file. """ import numpy as np import pandas as pd snlist = pd.read_csv(env.files.get('snlist'), sep=';') ra = snlist.Ra.values[:N] dec = snlist.Dec.values[:N] is_sn = np.ones(N).astype(bool) dataset = np.array([ra, dec, is_sn]).T tlist = pd.DataFrame( data=dataset, columns=['Ra', 'Dec', 'is_sn'] ) print tlist.info() print tlist.head(N) tlist.to_csv(env.files.get('tlist'), index=False, header=True) ############################################################################### def check_snlist(): """ Check for duplicates in snlist_1030 """ import numpy as np import pandas as pd from ..parse import ra2deg, dec2deg # Converters snid_sortable = lambda SDSS_id: 'SN{:0>5d}'.format(int(SDSS_id[2:])) s2valornan = lambda s: s or np.nan if 0: ifname = env.files.get('snlist_1030') conv = dict(SDSS_id=snid_sortable, Ra=ra2deg, Dec=dec2deg, redshift=s2valornan, Peak_MJD=s2valornan) else: ifname = env.files.get('snlist') conv = dict(SDSS_id=snid_sortable, redshift=s2valornan, Peak_MJD=s2valornan) lkw = dict(sep=';', converters=conv) snlist = pd.read_csv(ifname, **lkw) # Check for duplicate coordinate pairs coords = np.array([]) for i in range(snlist.shape[0]): coords = np.append(coords, '{:014.9f}_{:014.9f}'.format( snlist.Ra.values[i], snlist.Dec.values[i]) ) ucoords, indices = np.unique(coords, return_inverse=True) print 'Number of list entries: {: >4d}'.format(snlist.shape[0]) print 'Number of unique entries: {: >4d}'.format(ucoords.size) # print 'Number of unique entry IDs: {: >4d}'.format(np.unique(snlist.SDSS_id.values).size) duplicates = [] for ix in np.unique(indices): if (indices == ix).sum() > 1: duplicates.append(ix) if duplicates: coord_indices = [] for ix in duplicates: print '' for i, uc in enumerate(ucoords[indices[indices == ix]]): if i == 0: coord_indices.append((coords == uc).nonzero()[0]) print uc print '\nIndices of the original list:', duplicates print coord_indices print '' print 'Entries from snlist:' for cices in coord_indices: print print snlist.iloc[cices] else: print 'No duplicates found ...' ############################################################################### def check_tlist(): """ For each entry in `tlist.csv`, find out how many fields cover it. """ from .cutouts import get_covering_fields import numpy as np import pandas as pd ifname = env.files.get('tlist') tlist = pd.read_csv(ifname) sn_fields = [] gx_fields = [] for i in range(tlist.shape[0]): print '{: >4d} -'.format(i), Ra, Dec, is_sn = tlist.iloc[i] n_fields = get_covering_fields(np.array([Ra, Dec])[None, :]).shape[0] if is_sn: sn_fields.append(n_fields) print 'SN', else: gx_fields.append(n_fields) print 'GX', print '- Fields: {: >3d}'.format(n_fields) for data, name in zip([sn_fields, gx_fields], ['SN', 'GX']): ofname = os.path.join( env.paths.get('data'), 'nfieldrecords_{}.csv'.format(name) ) with open(ofname, 'w+') as fsock: fsock.write('\n'.join(np.array(data).astype(str))) if 0: import matplotlib as mpl mpl.use('pdf') import matplotlib.pyplot as plt from mplconf import mplrc from mplconf import rmath mplrc('publish_digital') fig, ax = plt.subplots(figsize=(12.5, 4)) ax.hist(sn_fields, bins=100) ax.hist(gx_fields, bins=100) ax.set_xlabel(rmath('Number of fields for a coordinate')) ax.set_ylabel(rmath('Counts')) fig.tight_layout() ofname_fig = os.path.join( env.paths.get('data'), 'tlist_nfieldrecords.pdf' ) plt.savefig(ofname_fig) ############################################################################### def get_fields(skip_if_exists=True): """For each coordinate in the SNe file, get the frames from the Field table that cover that coordinate. Saves each result in a seperate file named <SDSS_ID>.csv . """ # Clean up local cas directory # field_clean_local_dir() # Do it manually from the main program instead # This way, if the program is interrupted, it does not need to begin all # over, since the single-field-getter skips requests that have already been made. # with open('template_fields_that_cover_SN.sql', 'r') as fsock: # sql_fields_fstr = fsock.read() sql_fields_fstr = """\ SELECT fieldID, -- skyVersion, run, rerun, camcol, field, -- nObjects, -- numStars_r, -- nCR_r, -- nBrightObj_r, -- nFaintObj_r, quality, -- Quality of field in terms of acceptance mjd_r, -- Julian Date when row 0 was read -- Do I need Astrometric transformation constants? -- Do I need Airmass measurements? raMin, raMax, decMin, decMax FROM -- Stripe82..Field Field WHERE raMin < {obj_ra} AND {obj_ra} < raMax AND decMin < {obj_dec} AND {obj_dec} < decMax AND (raMax - raMin) > {dra_min} AND (raMax - raMin) < {dra_max} ORDER BY run ASC, rerun ASC, camcol ASC, field ASC, raMin ASC, decMin ASC """ opath = os.path.join(_path_cas, 'fields') if not os.path.exists(opath): os.makedirs(opath) df = load_SNe_candidate_list() SNe_len = df.count().max() print 'Beginning search through all confirmed SNe ...' time_total_beg = time.time() for i, (ra, dec, SDSS_id) in enumerate(zip(df.Ra, df.Dec, df.SDSS_id)): sql_fields = sql_fields_fstr.format(obj_ra=ra, obj_dec=dec, dra_min=.1, dra_max=1.) # get_field_result(sql_fields, SDSS_id) # Define output structure ofname = os.path.join(opath, '{}.csv'.format(SDSS_id)) # Don't bother requesting anything if the file already exists if os.path.isfile(ofname) and skip_if_exists: return # Update progress output s = 'Downloading: SN {: >4d} out of {: >4d}, {} ...\r'.format( (i + 1), SNe_len, format_HHMMSS_diff(time_total_beg, time.time()) ) sys.stdout.write(s) sys.stdout.flush() # Request the data fields = query(sql_fields) if 'error' in fields.lower(): sys.exit('ERROR: {}: CAS says something is wrong ...'.format( sys._getframe().f_code.co_name) ) # And save it with open(ofname, 'w+') as fsock: fsock.write(fields) sys.stdout.write('\n') sys.stdout.flush() time_total_end = time.time() time_total = format_HHMMSS_diff(time_total_beg, time_total_end) print 'Done downloading field catalogue ... in {}'.format(time_total) # print 'Downloaded field catalogues for {} SNe'.format(i+1) def get_field_result(sql_fields, SDSS_id): """Get query results from a *single* request for fields.""" # Define output structure opath = os.path.join(_path_cas, 'fields') ofname = os.path.join(opath, '{}.csv'.format(SDSS_id)) # Don't bother requesting anything if the file already exists if os.path.isfile(ofname): return # If the file does not exists, make sure that the path does if not os.path.exists(opath): os.makedirs(opath) # Request the data fields = query(sql_fields) if 'error' in fields.lower(): sys.exit('ERROR: {}: CAS says something is wrong ...'.format( sys._getframe().f_code.co_name) ) # And save it with open(ofname, 'w+') as fsock: fsock.write(fields) def create_unique_field_list(): """ Creates a file containing all results from *get_fields()* and saves it in the CAS root directory. Looks through folder `fields` in the CAS root directory and loads all .csv files one at the time and adds the lines in each file to a list. This list is then sorted and only unique entries are kept before the list is saved in the CAS root directory. """ ipath = os.path.join(_path_cas, 'fields') iglob = os.path.join(ipath, '*.csv') ofname = env.files.get('fields') tfname = os.path.join(_path_cas, 'fields.tmp') # Clean up first, since the file is only appended to in the following if os.path.isfile(ofname): os.remove(ofname) commands = [ # Build one big file with all the results 'cat {iglob} >> {t}'.format(iglob=iglob, t=tfname), # Sort and remove duplicates 'cat {t} | sort | uniq > {o}'.format(t=tfname, o=ofname), # Remove the temporary file 'rm {t}'.format(t=tfname), ] for cmd in commands: print cmd os.system(cmd) # Move last line (with the CSV headers) to the top with open(ofname, 'r') as fsock: lines = fsock.readlines() lines = [lines[-1]] + lines[:-1] with open(ofname, 'w') as fsock: fsock.write(''.join(lines)) def filter_invalid_from_unique_field_list(dra_min=.1, dra_max=1.): """ Remove invalid entries from the unique field list created by *create_unique_field_list()*. Parameters ---------- dra_min : float the minimum allowable angle separating the RA start and end coordinate for a given field in the unique field list. dra_max : float the maximum allowable angle separating the RA start and end coordinate for a given field in the unique field list. Side effects ------------ <del>Creates a backup of the original field list.</del> Saves the results back into the original destination. """ import pandas as pd import shutil fname = env.files.get('fields') # fn_valid = os.path.splitext(fname)[0] + '_valid.csv' fn_invalid = os.path.splitext(fname)[0] + '_invalid.csv' shutil.copyfile(fname, '{}.orig'.format(fname)) df = pd.read_csv(fname, sep=',') """ 2014-07-28 ---------- There is an error in this procedure, but the result is the intended: to remove fields for which the physical extent---as given by the coordinates raMax, raMin, decMax, decMin---gives too small or even negative side lengths. This problem is only observed in the RA coordinates. The are five observed cases for where the RA coordinate extents land. Case 1: raMax \in [ 0; 60] and raMin \in [ 0; 60] Case 2: raMax \in [ 0; 60] and raMin \in [300; 360] Case 3: raMax \in [300; 360] and raMin \in [300; 360] Case 4: raMax \in [ 0; 60] and raMin \in [300; 360] Case 5: raMax > 360 and raMin \in [ 0; 60] Case 4 should not occur, since this means that the field is obtained end-first and beginning-last. These fields are considered invalid. Case 5 is OK, if subtracting 360 deg from raMax, the value is larger than raMin. Otherwise, the coordinate difference produces a negative side length again. It turns out that this is the case, so these fields are also invalid. The procedure below removes all fields for which the coordinate difference raMax - raMin < dra_min = .1 (default). Since this also removes all Case-4 and Case-5 records above, the result is what is intended; but with wrong assumptions. Since this is the way that my data were processed, I leave it at that, if I need to reproduce the field list again. """ dra = df.raMax - df.raMin dra_too_small_ix = (dra < dra_min) dra_too_large_ix = (dra > dra_max) df_invalid = df.loc[dra_too_small_ix | dra_too_large_ix] df_valid = df.loc[(~dra_too_small_ix) & (~dra_too_large_ix)] df_valid.to_csv(fname, index=False, header=True) df_invalid.to_csv(fn_invalid, index=False, header=True) def count_field_records(): """ Count the number for field records obtained for each SN, and save those numbers for later plotting. """ import glob import pandas as pd iglob = os.path.join(_path_cas, 'fields', '*.csv') filenames = sorted(glob.glob(iglob)) df_fields = pd.read_csv(env.files.get('fields'), sep=',') counts = [] beg = time.time() for i, ifname in enumerate(filenames): df_results = pd.read_csv(ifname, sep=',') count = 0 for j in range(df_results.shape[0]): count += (df_fields['fieldID'] == df_results.iloc[j]['fieldID']).sum() step = time.time() dt_str = format_HHMMSS_diff(beg, step) print '{: >4d}, {: >3d}, {}'.format(i, count, dt_str) counts.append(str(count)) # print len(filenames), len(counts) with open(env.files.get('nrecords'), 'w+') as fsock: fsock.write('\n'.join(counts)) def count_field_records_by_quality(): """ Count the number for field records obtained for each SN, and save those numbers for later plotting. """ import glob import pandas as pd iglob = os.path.join(_path_cas, 'fields', '*.csv') filenames = sorted(glob.glob(iglob)) df_fields = pd.read_csv(env.files.get('fields'), sep=',') print 'Number of fields:', df_fields.shape[0] # FieldQuality Data values # name value description # BAD 1 Not acceptable for the survey # ACCEPTABLE 2 Barely acceptable for the survey # GOOD 3 Fully acceptable -- no desire for better data # MISSING 4 No objects in the field, because data is missing. # We accept the field into the survey as a HOLE # HOLE 5 Data in this field is not acceptable, but we will # put the field into the survey as a HOLE, meaning # none of the objects in the field are part of the # survey. # See: http://cas.sdss.org/stripe82/en/help/browser/enum.asp?n=FieldQuality qualities = range(1, 4) qices = [(df_fields.quality.values == q) for q in qualities] fdict = {q: df_fields.iloc[qix] for (q, qix) in zip(qualities, qices)} cdict = {q: [] for q in qualities} for i, qix in enumerate(qices): print 'Number of fields with quality {:d}: {: >3d}'.format( i + 1, qix.sum()) print 'For qualities 4 and 5, there were not present in my filtered dataset' beg = time.time() for i, ifname in enumerate(filenames): df_results = pd.read_csv(ifname, sep=',') counts = [0] * len(qualities) for j in range(df_results.shape[0]): for k, q in enumerate(qualities): ices = (fdict[q]['fieldID'] == df_results.iloc[j]['fieldID']) counts[k] += ices.sum() step = time.time() Dt = format_HHMMSS_diff(beg, step) print '{: >4d}, {}: {: >3d}, {: >3d}, {: >3d}'.format(i, Dt, *counts) for k, q in enumerate(qualities): cdict[q].append(counts[k]) list_of_lists = [cdict[q] for q in qualities] with open(env.files.get('nrecords_q'), 'w+') as fsock: for row in zip(*list_of_lists): fsock.write('{},{},{}\n'.format(*row)) def query(sql_raw): """Sends SQL query to the CAS and returns the raw text of the response.""" # form_data_receive_only_url = 'http://cas.sdss.org/astro/en/tools/search/x_sql.asp' form_url = 'http://cas.sdss.org/stripe82/en/tools/search/sql.asp' return_format = 'csv' sql_filtered = '' for line in sql_raw.split('\n'): sql_filtered += line.split('--')[0] + ' ' + os.linesep # Browser br = mechanize.Browser() # User-Agent br.addheaders = [ ( 'User-agent', 'Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:21.0) Gecko/20100101 Firefox/21.0' ) ] br.open(form_url) br.select_form(nr=0) # User credentials br.form['cmd'] = sql_filtered br.form['format'] = [return_format] # Search and return the content of the resulting CSV-file return br.submit().read() def field_clean_local_dir(): """ Todo ---- Make it possible to supply paths to folders that should have stuff removed. """ opath = os.path.join(_path_cas, 'fields') if not os.path.exists(opath): return oglob = os.path.join(opath, '*') cmd = 'rm {}'.format(oglob) print cmd if not oglob == '/': os.system(cmd) else: print 'Clean-up command not executed ...'
bsd-3-clause
boknilev/nmt-repr-analysis
utils/analysis-dpr.py
1
2896
import itertools import pdb import argparse import pandas as pd PRONOUNS = set(("he", "they", "she", "it", "him", "her")) def get_data(args): lbls_file = open(args.gold) src_file = open(args.src) pred_file = open(args.pred) idx = {} for i, trip in enumerate(itertools.izip(lbls_file, pred_file, src_file)): idx[i] = trip[0], trip[1], trip[2] return idx def get_sents_by_word(data, word): ids = [] for key,val in data.items(): if word in set(val[2].split()): ids.append(key) return ids def get_pair_by_pronoun(data): pronoun_to_lbl = {} total_pairs = 0 missed_pronouns = set() for pronoun in PRONOUNS: pronoun_to_lbl[pronoun] = {'correct': {'entailed': [], 'not-entailed': []}, 'incorrect': {'entailed': [], 'not-entailed': []} } for idx, trip in data.items(): src = trip[2].split("|||") context = src[0] hyp = src[1] if pronoun in context.lower() and pronoun not in hyp.lower(): total_pairs += 1 gold = trip[0].strip() pred = trip[1].strip() if gold == pred: pronoun_to_lbl[pronoun]['correct'][gold].append(trip[2]) else: #incorrect is based off of the gold label, not pred label pronoun_to_lbl[pronoun]['incorrect'][gold].append(trip[2]) else: set_diff = set(context.split()).difference(set(hyp.split())) assert (len(set_diff) == 1, "more than one word difference") word = list(set_diff)[0] if word not in PRONOUNS: missed_pronouns.add(word) return pronoun_to_lbl def convert_to_df(pronoun_to_lbl): data = pd.DataFrame(columns=["Pronoun", "label", "incorrect", "correct"]) for pronoun in pronoun_to_lbl: for label in pronoun_to_lbl[pronoun]['correct']: correct_count = len(pronoun_to_lbl[pronoun]['correct'][label]) incorrect_count = len(pronoun_to_lbl[pronoun]['incorrect'][label]) if correct_count == 0 and incorrect_count == 0: continue data = data.append({"Pronoun":pronoun, "label":label, "incorrect": incorrect_count, "correct": correct_count}, ignore_index=True) return data def main(args): data = get_data(args) #args.src, args.gold, args.pred) pronoun_to_lbl = get_pair_by_pronoun(data) df = convert_to_df(pronoun_to_lbl) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Analysis on dpr.') parser.add_argument('--src', help="path to source file") parser.add_argument('--gold', help="path to gold labels file") parser.add_argument('--pred', help="path to pred labels file") args = parser.parse_args() main(args) #python analysis-dpr.py --src /export/ssd/apoliak/nmt-repr-anaysis-sem/data/rte/cl_dpr_val_source_file --gold /export/ssd/apoliak/nmt-repr-anaysis-sem/data/rte/cl_dpr_val_lbl_file --pred /export/ssd/apoliak/nmt-repr-anaysis-sem/output/dpr-dpr/linear_classifier/en-de/pred_file.epoch2
mit
JPFrancoia/scikit-learn
benchmarks/bench_plot_svd.py
325
2899
"""Benchmarks of Singular Value Decomposition (Exact and Approximate) The data is mostly low rank but is a fat infinite tail. """ import gc from time import time import numpy as np from collections import defaultdict from scipy.linalg import svd from sklearn.utils.extmath import randomized_svd from sklearn.datasets.samples_generator import make_low_rank_matrix def compute_bench(samples_range, features_range, n_iter=3, rank=50): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') X = make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2) gc.collect() print("benchmarking scipy svd: ") tstart = time() svd(X, full_matrices=False) results['scipy svd'].append(time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=0") tstart = time() randomized_svd(X, rank, n_iter=0) results['scikit-learn randomized_svd (n_iter=0)'].append( time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=%d " % n_iter) tstart = time() randomized_svd(X, rank, n_iter=n_iter) results['scikit-learn randomized_svd (n_iter=%d)' % n_iter].append(time() - tstart) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(2, 1000, 4).astype(np.int) features_range = np.linspace(2, 1000, 4).astype(np.int) results = compute_bench(samples_range, features_range) label = 'scikit-learn singular value decomposition benchmark results' fig = plt.figure(label) ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbg', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.legend() plt.show()
bsd-3-clause
uberscientist/activetick_http
setup.py
1
1311
from activetick_http import __version__ from os import path try: from setuptools import setup except ImportError: from distutils.core import setup with open(path.join(path.dirname(__file__), 'README.rst')) as f: long_description = f.read() setup( name='activetick_http', version=__version__, description='Pandas wrapper for ActiveTick HTTP Proxy', long_description=long_description, url='https://github.com/uberscientist/activetick_http', author='Christopher Toledo', author_email='[email protected]', keywords=['activetick', 'finance', 'quant', 'pandas'], license='MIT', packages=['activetick_http'], tests_require=['pytest', 'tabulate', 'redis' ], package_dir={'activetick_http': 'activetick_http'}, install_requires=[ 'pandas', 'requests', 'numpy', 'redis' ], classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5' ] )
mit
DaveBackus/Data_Bootcamp
Code/Lab/IMF_historical_debt.py
1
2700
""" IMF historical debt data https://www.imf.org/External/pubs/cat/longres.aspx?sk=24332.0 rows are countries, columns are dates (1692-2012) Prepared for Data Bootcamp course at NYU * https://github.com/DaveBackus/Data_Bootcamp * https://github.com/DaveBackus/Data_Bootcamp/Code/Python Written by Hersh Iyer and Itamar Snir, November 2015 Created with Python 3.5 """ import pandas as pd import matplotlib.pyplot as plt import pandas as pd import matplotlib.pyplot as plt # data input excelFilePath = '../Temp/Debt Database Fall 2013 Vintage.xlsx' debt = pd.read_excel(excelFilePath, sheetname=1, na_values=['…', '….', '']) debt = debt.drop([debt.columns[1], debt.columns[2]], axis=1) countries = ['Greece', 'United Kingdom ', 'United States'] some = debt[debt['country'].isin(countries)] some = some.set_index('country').T ax = some[countries[1]].plot(color='red') some[countries[0]].dropna().plot(color='blue') some[countries[2]].dropna().plot(color='green') ax.set_title('Ratio of government debt to GDP', fontsize=14, loc='left') ax.set_ylabel('Percent') ax.legend(['Greece', 'United Kingdom', 'United States'], loc='upperleft', fontsize=10) #%% ax = some.dropna().plot() #%% # OLD VERSION BELOW # data input excelFilePath = '../Temp/Debt Database Fall 2013 Vintage.xlsx' df = pd.read_excel(excelFilePath, sheetname=1, na_values=['…', '….', '']) #, index_col=-1, #encoding='utf-8') #%% """ plots """ ### UK debt to GDP since 1800 #construct the years for the x-axis values years = [year for year in range(1800,2013)] #get a list of the debt to GDP for the y-axis values # next line fails, not sure why dbt_UK = df[df.country=='United Kingdom '][years] #note the extra spaces in 'United Kingdom ' dbt_uk_list = dbt_UK.values.tolist()[0] #note the conversion to a list (required to convert data to be 1 dimensional) #%% #plot the data plt.plot(years,dbt_uk_list) #use graph in default color plt.ylabel ("debt to GDP") plt.xlim((1800, 2012)) #for aesthetics, make sure x-axis shows only the relevant years plt.title("United Kingdom Debt to GDP Between 1800 and 2012") plt.show() #%% ### Greece debt to GDP since 1980 #get most recent year in the data (instead of 2013): max_year = max(df.columns.values[4:].tolist()) #get a list of the years for the x-axis values years = [year for year in range(1980,max_year+1)] #get a list of the debt to GDP for the y-axis values dbt_greece = df[df.country=='Greece'][years] dbt_greece_list = dbt_greece.values.tolist()[0] #plot the data plt.plot(years,dbt_greece_list, color='red') #set graph color plt.ylabel('Debt to GDP') plt.title ('Greece Debt to GDP Between 1980 and '+ str(max_year)) plt.show()
mit
Eric89GXL/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
7
1768
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model from sklearn.tree import DecisionTreeRegressor clf_1 = DecisionTreeRegressor(max_depth=2) clf_2 = DecisionTreeRegressor(max_depth=5) clf_3 = DecisionTreeRegressor(max_depth=8) clf_1.fit(X, y) clf_2.fit(X, y) clf_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = clf_1.predict(X_test) y_2 = clf_2.predict(X_test) y_3 = clf_3.predict(X_test) # Plot the results import pylab as pl pl.figure() pl.scatter(y[:, 0], y[:, 1], c="k", label="data") pl.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") pl.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") pl.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") pl.xlim([-6, 6]) pl.ylim([-6, 6]) pl.xlabel("data") pl.ylabel("target") pl.title("Multi-output Decision Tree Regression") pl.legend() pl.show()
bsd-3-clause
lin-credible/scikit-learn
examples/ensemble/plot_adaboost_twoclass.py
347
3268
""" ================== Two-class AdaBoost ================== This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two "Gaussian quantiles" clusters (see :func:`sklearn.datasets.make_gaussian_quantiles`) and plots the decision boundary and decision scores. The distributions of decision scores are shown separately for samples of class A and B. The predicted class label for each sample is determined by the sign of the decision score. Samples with decision scores greater than zero are classified as B, and are otherwise classified as A. The magnitude of a decision score determines the degree of likeness with the predicted class label. Additionally, a new dataset could be constructed containing a desired purity of class B, for example, by only selecting samples with a decision score above some value. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_gaussian_quantiles # Construct dataset X1, y1 = make_gaussian_quantiles(cov=2., n_samples=200, n_features=2, n_classes=2, random_state=1) X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5, n_samples=300, n_features=2, n_classes=2, random_state=1) X = np.concatenate((X1, X2)) y = np.concatenate((y1, - y2 + 1)) # Create and fit an AdaBoosted decision tree bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1), algorithm="SAMME", n_estimators=200) bdt.fit(X, y) plot_colors = "br" plot_step = 0.02 class_names = "AB" plt.figure(figsize=(10, 5)) # Plot the decision boundaries plt.subplot(121) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis("tight") # Plot the training points for i, n, c in zip(range(2), class_names, plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, cmap=plt.cm.Paired, label="Class %s" % n) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.legend(loc='upper right') plt.xlabel('x') plt.ylabel('y') plt.title('Decision Boundary') # Plot the two-class decision scores twoclass_output = bdt.decision_function(X) plot_range = (twoclass_output.min(), twoclass_output.max()) plt.subplot(122) for i, n, c in zip(range(2), class_names, plot_colors): plt.hist(twoclass_output[y == i], bins=10, range=plot_range, facecolor=c, label='Class %s' % n, alpha=.5) x1, x2, y1, y2 = plt.axis() plt.axis((x1, x2, y1, y2 * 1.2)) plt.legend(loc='upper right') plt.ylabel('Samples') plt.xlabel('Score') plt.title('Decision Scores') plt.tight_layout() plt.subplots_adjust(wspace=0.35) plt.show()
bsd-3-clause
arnabgho/sklearn-theano
examples/plot_overfeat_layer1_filters.py
9
1724
""" ==================================== Visualization of first layer filters ==================================== The first layers of convolutional neural networks often have very "human interpretable" values, as seen in these example plots. Visually, these filters are similar to other filters used in computer vision, such as Gabor filters. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn_theano.feature_extraction import fetch_overfeat_weights_and_biases def make_visual(layer_weights): max_scale = layer_weights.max(axis=-1).max(axis=-1)[..., np.newaxis, np.newaxis] min_scale = layer_weights.min(axis=-1).min(axis=-1)[..., np.newaxis, np.newaxis] return (255 * (layer_weights - min_scale) / (max_scale - min_scale)).astype('uint8') def make_mosaic(layer_weights): # Dirty hack (TM) lw_shape = layer_weights.shape lw = make_visual(layer_weights).reshape(8, 12, *lw_shape[1:]) lw = lw.transpose(0, 3, 1, 4, 2) lw = lw.reshape(8 * lw_shape[-1], 12 * lw_shape[-2], lw_shape[1]) return lw def plot_filters(layer_weights, title=None, show=False): mosaic = make_mosaic(layer_weights) plt.imshow(mosaic, interpolation='nearest') ax = plt.gca() ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) if title is not None: plt.title(title) if show: plt.show() weights, biases = fetch_overfeat_weights_and_biases(large_network=True) plot_filters(weights[0]) weights, biases = fetch_overfeat_weights_and_biases(large_network=False) plt.figure() plot_filters(weights[0]) plt.show()
bsd-3-clause
yavalvas/yav_com
build/matplotlib/examples/pylab_examples/anscombe.py
9
1656
#!/usr/bin/env python from __future__ import print_function """ Edward Tufte uses this example from Anscombe to show 4 datasets of x and y that have the same mean, standard deviation, and regression line, but which are qualitatively different. matplotlib fun for a rainy day """ from pylab import * x = array([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]) y1 = array([8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]) y2 = array([9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]) y3 = array([7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73]) x4 = array([8,8,8,8,8,8,8,19,8,8,8]) y4 = array([6.58,5.76,7.71,8.84,8.47,7.04,5.25,12.50,5.56,7.91,6.89]) def fit(x): return 3+0.5*x xfit = array( [amin(x), amax(x) ] ) subplot(221) plot(x,y1,'ks', xfit, fit(xfit), 'r-', lw=2) axis([2,20,2,14]) setp(gca(), xticklabels=[], yticks=(4,8,12), xticks=(0,10,20)) text(3,12, 'I', fontsize=20) subplot(222) plot(x,y2,'ks', xfit, fit(xfit), 'r-', lw=2) axis([2,20,2,14]) setp(gca(), xticklabels=[], yticks=(4,8,12), yticklabels=[], xticks=(0,10,20)) text(3,12, 'II', fontsize=20) subplot(223) plot(x,y3,'ks', xfit, fit(xfit), 'r-', lw=2) axis([2,20,2,14]) text(3,12, 'III', fontsize=20) setp(gca(), yticks=(4,8,12), xticks=(0,10,20)) subplot(224) xfit = array([amin(x4),amax(x4)]) plot(x4,y4,'ks', xfit, fit(xfit), 'r-', lw=2) axis([2,20,2,14]) setp(gca(), yticklabels=[], yticks=(4,8,12), xticks=(0,10,20)) text(3,12, 'IV', fontsize=20) #verify the stats pairs = (x,y1), (x,y2), (x,y3), (x4,y4) for x,y in pairs: print ('mean=%1.2f, std=%1.2f, r=%1.2f'%(mean(y), std(y), corrcoef(x,y)[0][1])) show()
mit
ycaihua/scikit-learn
sklearn/decomposition/base.py
313
5647
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause
RondaStrauch/landlab
landlab/ca/examples/turbulent_suspension_with_settling_and_bleaching.py
4
16830
#!/usr/env/python """ isotropic_turbulent_suspension_with_settling_and_bleaching.py Example of a continuous-time, stochastic, pair-based cellular automaton model, which simulates the diffusion of suspended particles in a turbulent fluid. Particles start with an accumulated luminescence signal L = 1, and are bleached by exposure to light at a rate that depends on distance below the upper surface. Written by Greg Tucker, July 2015 """ from __future__ import print_function # for both python 2 and 3 compability import time import matplotlib from pylab import figure, show, clf from numpy import where, exp, amin from landlab import RasterModelGrid, ModelParameterDictionary from landlab.plot.imshow import imshow_node_grid from landlab.components.cellular_automata.celllab_cts import Transition, CAPlotter from landlab.components.cellular_automata.oriented_raster_cts import OrientedRasterCTS class TurbulentSuspensionAndBleachingModel(OrientedRasterCTS): """ Examples --------- >>> from six import StringIO >>> p = StringIO(''' ... model_grid_row__count: number of rows in grid ... 4 ... model_grid_column__count: number of columns in grid ... 4 ... plot_interval: interval for plotting to display, s ... 2.0 ... model__run_time: duration of model run, s ... 1.0 ... model__report_interval: time interval for reporting progress, real-time seconds ... 1.0e6 ... surface_bleaching_time_scale: time scale for OSL bleaching, s ... 2.42 ... light_attenuation_length: length scale for light attenuation, cells (1 cell = 1 mm) ... 2.0 ... ''') >>> tsbm = TurbulentSuspensionAndBleachingModel(p) >>> tsbm.node_state array([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]) >>> tsbm.grid.at_node['osl'] array([ 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> tsbm.n_xn array([0, 1, 1, 0, 0, 1, 1, 0]) >>> tsbm.fluid_surface_height 3.5 """ def __init__(self, input_stream): """ Reads in parameters and initializes the model. Examples -------- >>> from six import StringIO >>> p = StringIO(''' ... model_grid_row__count: number of rows in grid ... 4 ... model_grid_column__count: number of columns in grid ... 4 ... plot_interval: interval for plotting to display, s ... 2.0 ... model__run_time: duration of model run, s ... 1.0 ... model__report_interval: time interval for reporting progress, real-time seconds ... 1.0e6 ... surface_bleaching_time_scale: time scale for OSL bleaching, s ... 2.42 ... light_attenuation_length: length scale for light attenuation, cells (1 cell = 1 mm) ... 2.0 ... ''') >>> tsbm = TurbulentSuspensionAndBleachingModel(p) >>> tsbm.node_state array([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]) >>> tsbm.grid.at_node['osl'] array([ 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> tsbm.n_xn array([0, 1, 1, 0, 0, 1, 1, 0]) >>> tsbm.fluid_surface_height 3.5 """ # Get a source for input parameters. params = ModelParameterDictionary(input_stream) # Read user-defined parameters nr = params.read_int('model_grid_row__count') # number of rows (CSDMS Standard Name [CSN]) nc = params.read_int('model_grid_column__count') # number of cols (CSN) self.plot_interval = params.read_float('plot_interval') # interval for plotting output, s self.run_duration = params.read_float('model__run_time') # duration of run, sec (CSN) self.report_interval = params.read_float('model__report_interval') # report interval, in real-time seconds self.bleach_T0 = params.read_float('surface_bleaching_time_scale') # time scale for bleaching at fluid surface, s self.zstar = params.read_float('light_attenuation_length') # length scale for light attenuation in fluid, CELLS # Derived parameters self.fluid_surface_height = nr-0.5 # Calculate when we next want to report progress. self.next_report = time.time() + self.report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) # Make the boundaries be walls mg.set_closed_boundaries_at_grid_edges(True, True, True, True) # Set up the states and pair transitions. ns_dict = { 0 : 'fluid', 1 : 'particle' } xn_list = self.setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int) # For visual display purposes, set all boundary nodes to fluid node_state_grid[mg.closed_boundary_nodes] = 0 # Initialize the node-state array: here, the initial condition is a pile of # resting grains at the bottom of a container. bottom_rows = where(mg.node_y<0.4*nr)[0] node_state_grid[bottom_rows] = 1 # Create a data array for bleaching. # Here, osl=optically stimulated luminescence, normalized to the original # signal (hence, initially all unity). Over time this signal may get # bleached out due to exposure to light. self.osl = mg.add_zeros('node', 'osl') self.osl[bottom_rows] = 1.0 self.osl_display = mg.add_zeros('node', 'osl_display') self.osl_display[bottom_rows] = 1.0 # We'll need an array to track the last time any given node was # updated, so we can figure out the duration of light exposure between # update events self.last_update_time = mg.add_zeros('node','last_update_time') # Call the base class (RasterCTS) init method super(TurbulentSuspensionAndBleachingModel, \ self).__init__(mg, ns_dict, xn_list, node_state_grid, prop_data=self.osl) # Set up plotting (if plotting desired) if self.plot_interval <= self.run_duration: self.initialize_plotting() def initialize_plotting(self): """ Creates a CA plotter object, sets its colormap, and plots the initial model state. """ # Set up some plotting information grain = '#5F594D' bleached_grain = '#CC0000' fluid = '#D0E4F2' clist = [fluid,bleached_grain,grain] my_cmap = matplotlib.colors.ListedColormap(clist) # Create a CAPlotter object for handling screen display self.ca_plotter = CAPlotter(self, cmap=my_cmap) # Plot the initial grid self.ca_plotter.update_plot() # Make a colormap for use in showing the bleaching of each grain clist = [(0.0, (1.0, 1.0, 1.0)), (0.49, (0.8, 0.8, 0.8)), (1.0, (0.0, 0.0, 0.0))] self.cmap_for_osl = matplotlib.colors.LinearSegmentedColormap.from_list('osl_cmap', clist) def setup_transition_list(self): """ Creates and returns a list of Transition() objects to represent state transitions for a biased random walk, in which the rate of downward motion is greater than the rate in the other three directions. Parameters ---------- (none) Returns ------- xn_list : list of Transition objects List of objects that encode information about the link-state transitions. Notes ----- State 0 represents fluid and state 1 represents a particle (such as a sediment grain, tea leaf, or dissolved heavy particle). The states and transitions are as follows: Pair state Transition to Process Rate (cells/s) ========== ============= ======= ============== 0 (0-0) (none) - - 1 (0-1) 2 (1-0) left motion 10.0 2 (1-0) 1 (0-1) right motion 10.0 3 (1-1) (none) - - 4 (0-0) (none) - - 5 (0-1) 2 (1-0) down motion 10.55 6 (1-0) 1 (0-1) up motion 9.45 7 (1-1) (none) - - """ # Create an empty transition list xn_list = [] # Append four transitions to the list. # Note that the arguments to the Transition() object constructor are: # - Tuple representing starting pair state # (left cell, right cell, orientation [0=horizontal]) # - Tuple representing new pair state # (bottom cell, top cell, orientation [1=vertical]) # - Transition rate (cells per time step, in this case 1 sec) # - Name for transition # - Flag indicating that the transition involves an exchange of properties # - Function to be called after each transition, to update a property # (in this case, to simulate bleaching of the luminescence signal) xn_list.append( Transition((0,1,0), (1,0,0), 10., 'left motion', True, self.update_bleaching) ) xn_list.append( Transition((1,0,0), (0,1,0), 10., 'right motion', True, self.update_bleaching) ) xn_list.append( Transition((0,1,1), (1,0,1), 10.55, 'down motion', True, self.update_bleaching) ) xn_list.append( Transition((1,0,1), (0,1,1), 9.45, 'up motion', True, self.update_bleaching) ) return xn_list def bleach_grain(self, node, dt): """ Updates the luminescence signal at node. Examples -------- >>> from six import StringIO >>> p = StringIO(''' ... model_grid_row__count: number of rows in grid ... 10 ... model_grid_column__count: number of columns in grid ... 3 ... plot_interval: interval for plotting to display, s ... 2.0 ... model__run_time: duration of model run, s ... 1.0 ... model__report_interval: time interval for reporting progress, real-time seconds ... 1.0e6 ... surface_bleaching_time_scale: time scale for OSL bleaching, s ... 2.42 ... light_attenuation_length: length scale for light attenuation, cells (1 cell = 1 mm) ... 6.5 ... ''') >>> tsbm = TurbulentSuspensionAndBleachingModel(p) >>> tsbm.bleach_grain(10, 1.0) >>> int(tsbm.prop_data[tsbm.propid[10]]*1000) 858 """ depth = self.fluid_surface_height - self.grid.node_y[node] T_bleach = self.bleach_T0*exp( depth/self.zstar) self.prop_data[self.propid[node]] *= exp( -dt/T_bleach ) def update_bleaching(self, ca_unused, node1, node2, time_now): """ Updates the luminescence signal at a pair of nodes that have just undergone a transition, if either or both nodes is a grain. Examples -------- >>> from six import StringIO >>> p = StringIO(''' ... model_grid_row__count: number of rows in grid ... 10 ... model_grid_column__count: number of columns in grid ... 3 ... plot_interval: interval for plotting to display, s ... 2.0 ... model__run_time: duration of model run, s ... 1.0 ... model__report_interval: time interval for reporting progress, real-time seconds ... 1.0e6 ... surface_bleaching_time_scale: time scale for OSL bleaching, s ... 2.42 ... light_attenuation_length: length scale for light attenuation, cells (1 cell = 1 mm) ... 6.5 ... ''') >>> tsbm = TurbulentSuspensionAndBleachingModel(p) >>> tsbm.update_bleaching(tsbm, 10, 13, 1.0) >>> int(tsbm.prop_data[tsbm.propid[10]]*1000) 858 >>> tsbm.prop_data[tsbm.propid[13]] 0.0 """ if self.node_state[node1]==1: dt = time_now - self.last_update_time[self.propid[node1]] self.bleach_grain(node1, dt) self.last_update_time[self.propid[node1]] = time_now if self.node_state[node2]==1: dt = time_now - self.last_update_time[self.propid[node2]] self.bleach_grain(node2, dt) self.last_update_time[self.propid[node2]] = time_now def synchronize_bleaching(self, sync_time): """ Brings all nodes up to the same time, sync_time, by applying bleaching up to this time, and updating last_update_time. Notes ----- In a CellLab-CTS model, the "time" is usually different for each node: some will have only just recently undergone a transition and had their properties (in this case, OSL bleaching) updated, while others will have last been updated a long time ago, and some may never have had a transition. If we want to plot the properties at a consistent time, we need to bring all node properties (again, in this case, OSL) up to date. This method does so. We multiply elapsed time (between last update and "sync time") by the node state, because we only want to update the solid particles--- because the state of a particle is 1 and fluid 0, this multiplication masks out the fluid nodes. We don't call bleach_grain(), because we want to take advantage of numpy array operations rather than calling a method for each node. Examples -------- >>> from six import StringIO >>> p = StringIO(''' ... model_grid_row__count: number of rows in grid ... 10 ... model_grid_column__count: number of columns in grid ... 3 ... plot_interval: interval for plotting to display, s ... 2.0 ... model__run_time: duration of model run, s ... 1.0 ... model__report_interval: time interval for reporting progress, real-time seconds ... 1.0e6 ... surface_bleaching_time_scale: time scale for OSL bleaching, s ... 2.42 ... light_attenuation_length: length scale for light attenuation, cells (1 cell = 1 mm) ... 6.5 ... ''') >>> tsbm = TurbulentSuspensionAndBleachingModel(p) >>> tsbm.synchronize_bleaching(1.0) >>> int(tsbm.osl[10]*100000) 85897 """ dt = (sync_time - self.last_update_time[self.propid])*self.node_state assert (amin(dt)>=0.0), 'sync_time must be >= 0 everywhere' depth = self.fluid_surface_height - self.grid.node_y T_bleach = self.bleach_T0*exp( depth/self.zstar) self.prop_data[self.propid] *= exp( -dt/T_bleach ) self.last_update_time[self.propid] = sync_time*self.node_state def go(self): """ Runs the model. """ # RUN while self.current_time < self.run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= self.next_report: print('Current sim time',self.current_time,'(',100*self.current_time/self.run_duration,'%)') self.next_report = current_real_time + self.report_interval # Run the model forward in time until the next output step self.run(self.current_time+self.plot_interval, self.node_state, plot_each_transition=False) self.current_time += self.plot_interval self.synchronize_bleaching(self.current_time) if self.plot_interval <= self.run_duration: # Plot the current grid self.ca_plotter.update_plot() # Display the OSL content of grains figure(3) clf() self.osl_display[:] = self.osl[self.propid]+self.node_state imshow_node_grid(self.grid, 'osl_display', limits=(0.0, 2.0), cmap=self.cmap_for_osl) show() figure(1) def finalize(self): # FINALIZE # Plot self.ca_plotter.finalize() # If user runs this file, activate the main() function. if __name__ == "__main__": # Parse command-line argument, if any import sys if len(sys.argv)>1: input_file_name = sys.argv[1] else: input_file_name = 'tsbm_inputs.txt' # Instantiate the model ca_model = TurbulentSuspensionAndBleachingModel(input_file_name) # Run the model ca_model.go() # Clean up ca_model.finalize()
mit
zorojean/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
206
1800
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
denniszollo/MAVProxy
MAVProxy/mavproxy.py
1
38949
#!/usr/bin/env python ''' mavproxy - a MAVLink proxy program Copyright Andrew Tridgell 2011 Released under the GNU GPL version 3 or later ''' import sys, os, time, socket, signal import fnmatch, errno, threading import serial, Queue, select import traceback import select from MAVProxy.modules.lib import textconsole from MAVProxy.modules.lib import rline from MAVProxy.modules.lib import mp_module from MAVProxy.modules.lib import dumpstacks # adding all this allows pyinstaller to build a working windows executable # note that using --hidden-import does not work for these modules try: from multiprocessing import freeze_support from pymavlink import mavwp, mavutil import matplotlib, HTMLParser try: import readline except ImportError: import pyreadline as readline except Exception: pass if __name__ == '__main__': freeze_support() class MPStatus(object): '''hold status information about the mavproxy''' def __init__(self): self.gps = None self.msgs = {} self.msg_count = {} self.counters = {'MasterIn' : [], 'MasterOut' : 0, 'FGearIn' : 0, 'FGearOut' : 0, 'Slave' : 0} self.setup_mode = opts.setup self.mav_error = 0 self.altitude = 0 self.last_altitude_announce = 0.0 self.last_distance_announce = 0.0 self.exit = False self.flightmode = 'MAV' self.last_mode_announce = 0 self.logdir = None self.last_heartbeat = 0 self.last_message = 0 self.heartbeat_error = False self.last_apm_msg = None self.last_apm_msg_time = 0 self.highest_msec = 0 self.have_gps_lock = False self.lost_gps_lock = False self.last_gps_lock = 0 self.watch = None self.last_streamrate1 = -1 self.last_streamrate2 = -1 self.last_seq = 0 self.armed = False def show(self, f, pattern=None): '''write status to status.txt''' if pattern is None: f.write('Counters: ') for c in self.counters: f.write('%s:%s ' % (c, self.counters[c])) f.write('\n') f.write('MAV Errors: %u\n' % self.mav_error) f.write(str(self.gps)+'\n') for m in sorted(self.msgs.keys()): if pattern is not None and not fnmatch.fnmatch(str(m).upper(), pattern.upper()): continue f.write("%u: %s\n" % (self.msg_count[m], str(self.msgs[m]))) def write(self): '''write status to status.txt''' f = open('status.txt', mode='w') self.show(f) f.close() def say_text(text, priority='important'): '''text output - default function for say()''' mpstate.console.writeln(text) def say(text, priority='important'): '''text and/or speech output''' mpstate.functions.say(text, priority) def add_input(cmd, immediate=False): '''add some command input to be processed''' if immediate: process_stdin(cmd) else: mpstate.input_queue.put(cmd) class MAVFunctions(object): '''core functions available in modules''' def __init__(self): self.process_stdin = add_input self.param_set = param_set self.get_mav_param = get_mav_param self.say = say_text # input handler can be overridden by a module self.input_handler = None class MPState(object): '''holds state of mavproxy''' def __init__(self): self.console = textconsole.SimpleConsole() self.map = None self.map_functions = {} self.vehicle_type = None self.vehicle_name = None from MAVProxy.modules.lib.mp_settings import MPSettings, MPSetting self.settings = MPSettings( [ MPSetting('link', int, 1, 'Primary Link', tab='Link', range=(0,4), increment=1), MPSetting('streamrate', int, 4, 'Stream rate link1', range=(-1,20), increment=1), MPSetting('streamrate2', int, 4, 'Stream rate link2', range=(-1,20), increment=1), MPSetting('heartbeat', int, 1, 'Heartbeat rate', range=(0,5), increment=1), MPSetting('mavfwd', bool, True, 'Allow forwarded control'), MPSetting('mavfwd_rate', bool, False, 'Allow forwarded rate control'), MPSetting('shownoise', bool, True, 'Show non-MAVLink data'), MPSetting('baudrate', int, opts.baudrate, 'baudrate for new links', range=(0,10000000), increment=1), MPSetting('rtscts', bool, opts.rtscts, 'enable flow control'), MPSetting('select_timeout', float, 0.01, 'select timeout'), MPSetting('altreadout', int, 10, 'Altitude Readout', range=(0,100), increment=1, tab='Announcements'), MPSetting('distreadout', int, 200, 'Distance Readout', range=(0,10000), increment=1), MPSetting('moddebug', int, opts.moddebug, 'Module Debug Level', range=(0,3), increment=1, tab='Debug'), MPSetting('compdebug', int, 0, 'Computation Debug Mask', range=(0,3), tab='Debug'), MPSetting('flushlogs', bool, False, 'Flush logs on every packet'), MPSetting('requireexit', bool, False, 'Require exit command'), MPSetting('wpupdates', bool, True, 'Announce waypoint updates'), MPSetting('basealt', int, 0, 'Base Altitude', range=(0,30000), increment=1, tab='Altitude'), MPSetting('wpalt', int, 100, 'Default WP Altitude', range=(0,10000), increment=1), MPSetting('rallyalt', int, 90, 'Default Rally Altitude', range=(0,10000), increment=1), MPSetting('terrainalt', str, 'Auto', 'Use terrain altitudes', choice=['Auto','True','False']), MPSetting('rally_breakalt', int, 40, 'Default Rally Break Altitude', range=(0,10000), increment=1), MPSetting('rally_flags', int, 0, 'Default Rally Flags', range=(0,10000), increment=1), MPSetting('source_system', int, 255, 'MAVLink Source system', range=(0,255), increment=1, tab='MAVLink'), MPSetting('source_component', int, 0, 'MAVLink Source component', range=(0,255), increment=1), MPSetting('target_system', int, 0, 'MAVLink target system', range=(0,255), increment=1), MPSetting('target_component', int, 0, 'MAVLink target component', range=(0,255), increment=1), MPSetting('state_basedir', str, None, 'base directory for logs and aircraft directories') ]) self.completions = { "script" : ["(FILENAME)"], "set" : ["(SETTING)"], "status" : ["(VARIABLE)"], "module" : ["list", "load (AVAILMODULES)", "<unload|reload> (LOADEDMODULES)"] } self.status = MPStatus() # master mavlink device self.mav_master = None # mavlink outputs self.mav_outputs = [] # SITL output self.sitl_output = None self.mav_param = mavparm.MAVParmDict() self.modules = [] self.public_modules = {} self.functions = MAVFunctions() self.select_extra = {} self.continue_mode = False self.aliases = {} import platform self.system = platform.system() def module(self, name): '''Find a public module (most modules are private)''' if name in self.public_modules: return self.public_modules[name] return None def master(self): '''return the currently chosen mavlink master object''' if len(self.mav_master) == 0: return None if self.settings.link > len(self.mav_master): self.settings.link = 1 # try to use one with no link error if not self.mav_master[self.settings.link-1].linkerror: return self.mav_master[self.settings.link-1] for m in self.mav_master: if not m.linkerror: return m return self.mav_master[self.settings.link-1] def get_mav_param(param, default=None): '''return a EEPROM parameter value''' return mpstate.mav_param.get(param, default) def param_set(name, value, retries=3): '''set a parameter''' name = name.upper() return mpstate.mav_param.mavset(mpstate.master(), name, value, retries=retries) def cmd_script(args): '''run a script''' if len(args) < 1: print("usage: script <filename>") return run_script(args[0]) def cmd_set(args): '''control mavproxy options''' mpstate.settings.command(args) def cmd_status(args): '''show status''' if len(args) == 0: mpstate.status.show(sys.stdout, pattern=None) else: for pattern in args: mpstate.status.show(sys.stdout, pattern=pattern) def cmd_setup(args): mpstate.status.setup_mode = True mpstate.rl.set_prompt("") def cmd_reset(args): print("Resetting master") mpstate.master().reset() def cmd_watch(args): '''watch a mavlink packet pattern''' if len(args) == 0: mpstate.status.watch = None return mpstate.status.watch = args[0] print("Watching %s" % mpstate.status.watch) def load_module(modname, quiet=False): '''load a module''' modpaths = ['MAVProxy.modules.mavproxy_%s' % modname, modname] for (m,pm) in mpstate.modules: if m.name == modname: if not quiet: print("module %s already loaded" % modname) return False for modpath in modpaths: try: m = import_package(modpath) reload(m) module = m.init(mpstate) if isinstance(module, mp_module.MPModule): mpstate.modules.append((module, m)) if not quiet: print("Loaded module %s" % (modname,)) return True else: ex = "%s.init did not return a MPModule instance" % modname break except ImportError as msg: ex = msg if mpstate.settings.moddebug > 1: import traceback print(traceback.format_exc()) print("Failed to load module: %s. Use 'set moddebug 3' in the MAVProxy console to enable traceback" % ex) return False def unload_module(modname): '''unload a module''' for (m,pm) in mpstate.modules: if m.name == modname: if hasattr(m, 'unload'): m.unload() mpstate.modules.remove((m,pm)) print("Unloaded module %s" % modname) return True print("Unable to find module %s" % modname) return False def cmd_module(args): '''module commands''' usage = "usage: module <list|load|reload|unload>" if len(args) < 1: print(usage) return if args[0] == "list": for (m,pm) in mpstate.modules: print("%s: %s" % (m.name, m.description)) elif args[0] == "load": if len(args) < 2: print("usage: module load <name>") return load_module(args[1]) elif args[0] == "reload": if len(args) < 2: print("usage: module reload <name>") return modname = args[1] pmodule = None for (m,pm) in mpstate.modules: if m.name == modname: pmodule = pm if pmodule is None: print("Module %s not loaded" % modname) return if unload_module(modname): import zipimport try: reload(pmodule) except ImportError: clear_zipimport_cache() reload(pmodule) if load_module(modname, quiet=True): print("Reloaded module %s" % modname) elif args[0] == "unload": if len(args) < 2: print("usage: module unload <name>") return modname = os.path.basename(args[1]) unload_module(modname) else: print(usage) def cmd_alias(args): '''alias commands''' usage = "usage: alias <add|remove|list>" if len(args) < 1 or args[0] == "list": if len(args) >= 2: wildcard = args[1].upper() else: wildcard = '*' for a in sorted(mpstate.aliases.keys()): if fnmatch.fnmatch(a.upper(), wildcard): print("%-15s : %s" % (a, mpstate.aliases[a])) elif args[0] == "add": if len(args) < 3: print(usage) return a = args[1] mpstate.aliases[a] = ' '.join(args[2:]) elif args[0] == "remove": if len(args) != 2: print(usage) return a = args[1] if a in mpstate.aliases: mpstate.aliases.pop(a) else: print("no alias %s" % a) else: print(usage) return def clear_zipimport_cache(): """Clear out cached entries from _zip_directory_cache. See http://www.digi.com/wiki/developer/index.php/Error_messages""" import sys, zipimport syspath_backup = list(sys.path) zipimport._zip_directory_cache.clear() # load back items onto sys.path sys.path = syspath_backup # add this too: see https://mail.python.org/pipermail/python-list/2005-May/353229.html sys.path_importer_cache.clear() # http://stackoverflow.com/questions/211100/pythons-import-doesnt-work-as-expected # has info on why this is necessary. def import_package(name): """Given a package name like 'foo.bar.quux', imports the package and returns the desired module.""" import zipimport try: mod = __import__(name) except ImportError: clear_zipimport_cache() mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod command_map = { 'script' : (cmd_script, 'run a script of MAVProxy commands'), 'setup' : (cmd_setup, 'go into setup mode'), 'reset' : (cmd_reset, 'reopen the connection to the MAVLink master'), 'status' : (cmd_status, 'show status'), 'set' : (cmd_set, 'mavproxy settings'), 'watch' : (cmd_watch, 'watch a MAVLink pattern'), 'module' : (cmd_module, 'module commands'), 'alias' : (cmd_alias, 'command aliases') } def process_stdin(line): '''handle commands from user''' if line is None: sys.exit(0) # allow for modules to override input handling if mpstate.functions.input_handler is not None: mpstate.functions.input_handler(line) return line = line.strip() if mpstate.status.setup_mode: # in setup mode we send strings straight to the master if line == '.': mpstate.status.setup_mode = False mpstate.status.flightmode = "MAV" mpstate.rl.set_prompt("MAV> ") return if line != '+++': line += '\r' for c in line: time.sleep(0.01) mpstate.master().write(c) return if not line: return args = line.split() cmd = args[0] while cmd in mpstate.aliases: line = mpstate.aliases[cmd] args = line.split() + args[1:] cmd = args[0] if cmd == 'help': k = command_map.keys() k.sort() for cmd in k: (fn, help) = command_map[cmd] print("%-15s : %s" % (cmd, help)) return if cmd == 'exit' and mpstate.settings.requireexit: mpstate.status.exit = True return if not cmd in command_map: for (m,pm) in mpstate.modules: if hasattr(m, 'unknown_command'): try: if m.unknown_command(args): return except Exception as e: print("ERROR in command: %s" % str(e)) print("Unknown command '%s'" % line) return (fn, help) = command_map[cmd] try: fn(args[1:]) except Exception as e: print("ERROR in command %s: %s" % (args[1:], str(e))) if mpstate.settings.moddebug > 1: traceback.print_exc() def process_master(m): '''process packets from the MAVLink master''' try: s = m.recv(16*1024) except Exception: time.sleep(0.1) return # prevent a dead serial port from causing the CPU to spin. The user hitting enter will # cause it to try and reconnect if len(s) == 0: time.sleep(0.1) return if (mpstate.settings.compdebug & 1) != 0: return if mpstate.logqueue_raw: mpstate.logqueue_raw.put(str(s)) if mpstate.status.setup_mode: if mpstate.system == 'Windows': # strip nsh ansi codes s = s.replace("\033[K","") sys.stdout.write(str(s)) sys.stdout.flush() return if m.first_byte and opts.auto_protocol: m.auto_mavlink_version(s) msgs = m.mav.parse_buffer(s) if msgs: for msg in msgs: if getattr(m, '_timestamp', None) is None: m.post_message(msg) if msg.get_type() == "BAD_DATA": if opts.show_errors: mpstate.console.writeln("MAV error: %s" % msg) mpstate.status.mav_error += 1 def process_mavlink(slave): '''process packets from MAVLink slaves, forwarding to the master''' try: buf = slave.recv() except socket.error: return try: if slave.first_byte and opts.auto_protocol: slave.auto_mavlink_version(buf) msgs = slave.mav.parse_buffer(buf) except mavutil.mavlink.MAVError as e: mpstate.console.error("Bad MAVLink slave message from %s: %s" % (slave.address, e.message)) return if msgs is None: return if mpstate.settings.mavfwd and not mpstate.status.setup_mode: for m in msgs: if mpstate.status.watch is not None: if fnmatch.fnmatch(m.get_type().upper(), mpstate.status.watch.upper()): mpstate.console.writeln('> '+ str(m)) mpstate.master().write(m.get_msgbuf()) mpstate.status.counters['Slave'] += 1 def mkdir_p(dir): '''like mkdir -p''' if not dir: return if dir.endswith("/"): mkdir_p(dir[:-1]) return if os.path.isdir(dir): return mkdir_p(os.path.dirname(dir)) os.mkdir(dir) def log_writer(): '''log writing thread''' while True: mpstate.logfile_raw.write(mpstate.logqueue_raw.get()) while not mpstate.logqueue_raw.empty(): mpstate.logfile_raw.write(mpstate.logqueue_raw.get()) while not mpstate.logqueue.empty(): mpstate.logfile.write(mpstate.logqueue.get()) if mpstate.settings.flushlogs: mpstate.logfile.flush() mpstate.logfile_raw.flush() # If state_basedir is NOT set then paths for logs and aircraft # directories are relative to mavproxy's cwd def log_paths(): '''Returns tuple (logdir, telemetry_log_filepath, raw_telemetry_log_filepath)''' if opts.aircraft is not None: if opts.mission is not None: print(opts.mission) dirname = "%s/logs/%s/Mission%s" % (opts.aircraft, time.strftime("%Y-%m-%d"), opts.mission) else: dirname = "%s/logs/%s" % (opts.aircraft, time.strftime("%Y-%m-%d")) # dirname is currently relative. Possibly add state_basedir: if mpstate.settings.state_basedir is not None: dirname = os.path.join(mpstate.settings.state_basedir,dirname) mkdir_p(dirname) highest = None for i in range(1, 10000): fdir = os.path.join(dirname, 'flight%u' % i) if not os.path.exists(fdir): break highest = fdir if mpstate.continue_mode and highest is not None: fdir = highest elif os.path.exists(fdir): print("Flight logs full") sys.exit(1) logname = 'flight.tlog' logdir = fdir else: logname = os.path.basename(opts.logfile) dir_path = os.path.dirname(opts.logfile) if not os.path.isabs(dir_path) and mpstate.settings.state_basedir is not None: dir_path = os.path.join(mpstate.settings.state_basedir,dir_path) logdir = dir_path mkdir_p(logdir) return (logdir, os.path.join(logdir, logname), os.path.join(logdir, logname + '.raw')) def open_telemetry_logs(logpath_telem, logpath_telem_raw): '''open log files''' if opts.append_log or opts.continue_mode: mode = 'a' else: mode = 'w' mpstate.logfile = open(logpath_telem, mode=mode) mpstate.logfile_raw = open(logpath_telem_raw, mode=mode) print("Log Directory: %s" % mpstate.status.logdir) print("Telemetry log: %s" % logpath_telem) # use a separate thread for writing to the logfile to prevent # delays during disk writes (important as delays can be long if camera # app is running) t = threading.Thread(target=log_writer, name='log_writer') t.daemon = True t.start() def set_stream_rates(): '''set mavlink stream rates''' if (not msg_period.trigger() and mpstate.status.last_streamrate1 == mpstate.settings.streamrate and mpstate.status.last_streamrate2 == mpstate.settings.streamrate2): return mpstate.status.last_streamrate1 = mpstate.settings.streamrate mpstate.status.last_streamrate2 = mpstate.settings.streamrate2 for master in mpstate.mav_master: if master.linknum == 0: rate = mpstate.settings.streamrate else: rate = mpstate.settings.streamrate2 if rate != -1: master.mav.request_data_stream_send(mpstate.settings.target_system, mpstate.settings.target_component, mavutil.mavlink.MAV_DATA_STREAM_ALL, rate, 1) def check_link_status(): '''check status of master links''' tnow = time.time() if mpstate.status.last_message != 0 and tnow > mpstate.status.last_message + 5: say("no link") mpstate.status.heartbeat_error = True for master in mpstate.mav_master: if not master.linkerror and (tnow > master.last_message + 5 or master.portdead): say("link %u down" % (master.linknum+1)) master.linkerror = True def send_heartbeat(master): if master.mavlink10(): master.mav.heartbeat_send(mavutil.mavlink.MAV_TYPE_GCS, mavutil.mavlink.MAV_AUTOPILOT_INVALID, 0, 0, 0) else: MAV_GROUND = 5 MAV_AUTOPILOT_NONE = 4 master.mav.heartbeat_send(MAV_GROUND, MAV_AUTOPILOT_NONE) def periodic_tasks(): '''run periodic checks''' if mpstate.status.setup_mode: return if (mpstate.settings.compdebug & 2) != 0: return if mpstate.settings.heartbeat != 0: heartbeat_period.frequency = mpstate.settings.heartbeat if heartbeat_period.trigger() and mpstate.settings.heartbeat != 0: mpstate.status.counters['MasterOut'] += 1 for master in mpstate.mav_master: send_heartbeat(master) if heartbeat_check_period.trigger(): check_link_status() set_stream_rates() # call optional module idle tasks. These are called at several hundred Hz for (m,pm) in mpstate.modules: if hasattr(m, 'idle_task'): try: m.idle_task() except Exception as msg: if mpstate.settings.moddebug == 1: print(msg) elif mpstate.settings.moddebug > 1: exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback, limit=2, file=sys.stdout) # also see if the module should be unloaded: if m.needs_unloading: unload_module(m.name) def main_loop(): '''main processing loop''' if not mpstate.status.setup_mode and not opts.nowait: for master in mpstate.mav_master: send_heartbeat(master) if master.linknum == 0: master.wait_heartbeat() set_stream_rates() while True: if mpstate is None or mpstate.status.exit: return while not mpstate.input_queue.empty(): line = mpstate.input_queue.get() mpstate.input_count += 1 cmds = line.split(';') if len(cmds) == 1 and cmds[0] == "": mpstate.empty_input_count += 1 for c in cmds: process_stdin(c) for master in mpstate.mav_master: if master.fd is None: if master.port.inWaiting() > 0: process_master(master) periodic_tasks() rin = [] for master in mpstate.mav_master: if master.fd is not None and not master.portdead: rin.append(master.fd) for m in mpstate.mav_outputs: rin.append(m.fd) if rin == []: time.sleep(0.0001) continue for fd in mpstate.select_extra: rin.append(fd) try: (rin, win, xin) = select.select(rin, [], [], mpstate.settings.select_timeout) except select.error: continue if mpstate is None: return for fd in rin: if mpstate is None: return for master in mpstate.mav_master: if fd == master.fd: process_master(master) if mpstate is None: return continue for m in mpstate.mav_outputs: if fd == m.fd: process_mavlink(m) if mpstate is None: return continue # this allow modules to register their own file descriptors # for the main select loop if fd in mpstate.select_extra: try: # call the registered read function (fn, args) = mpstate.select_extra[fd] fn(args) except Exception as msg: if mpstate.settings.moddebug == 1: print(msg) # on an exception, remove it from the select list mpstate.select_extra.pop(fd) def input_loop(): '''wait for user input''' while mpstate.status.exit != True: try: if mpstate.status.exit != True: line = raw_input(mpstate.rl.prompt) except EOFError: mpstate.status.exit = True sys.exit(1) mpstate.input_queue.put(line) def run_script(scriptfile): '''run a script file''' try: f = open(scriptfile, mode='r') except Exception: return mpstate.console.writeln("Running script %s" % scriptfile) for line in f: line = line.strip() if line == "" or line.startswith('#'): continue if line.startswith('@'): line = line[1:] else: mpstate.console.writeln("-> %s" % line) process_stdin(line) f.close() if __name__ == '__main__': from optparse import OptionParser parser = OptionParser("mavproxy.py [options]") parser.add_option("--master", dest="master", action='append', metavar="DEVICE[,BAUD]", help="MAVLink master port and optional baud rate", default=[]) parser.add_option("--out", dest="output", action='append', metavar="DEVICE[,BAUD]", help="MAVLink output port and optional baud rate", default=[]) parser.add_option("--baudrate", dest="baudrate", type='int', help="default serial baud rate", default=57600) parser.add_option("--sitl", dest="sitl", default=None, help="SITL output port") parser.add_option("--streamrate",dest="streamrate", default=4, type='int', help="MAVLink stream rate") parser.add_option("--source-system", dest='SOURCE_SYSTEM', type='int', default=255, help='MAVLink source system for this GCS') parser.add_option("--source-component", dest='SOURCE_COMPONENT', type='int', default=0, help='MAVLink source component for this GCS') parser.add_option("--target-system", dest='TARGET_SYSTEM', type='int', default=0, help='MAVLink target master system') parser.add_option("--target-component", dest='TARGET_COMPONENT', type='int', default=0, help='MAVLink target master component') parser.add_option("--logfile", dest="logfile", help="MAVLink master logfile", default='mav.tlog') parser.add_option("-a", "--append-log", dest="append_log", help="Append to log files", action='store_true', default=False) parser.add_option("--quadcopter", dest="quadcopter", help="use quadcopter controls", action='store_true', default=False) parser.add_option("--setup", dest="setup", help="start in setup mode", action='store_true', default=False) parser.add_option("--nodtr", dest="nodtr", help="disable DTR drop on close", action='store_true', default=False) parser.add_option("--show-errors", dest="show_errors", help="show MAVLink error packets", action='store_true', default=False) parser.add_option("--speech", dest="speech", help="use text to speach", action='store_true', default=False) parser.add_option("--aircraft", dest="aircraft", help="aircraft name", default=None) parser.add_option("--cmd", dest="cmd", help="initial commands", default=None, action='append') parser.add_option("--console", action='store_true', help="use GUI console") parser.add_option("--map", action='store_true', help="load map module") parser.add_option( '--load-module', action='append', default=[], help='Load the specified module. Can be used multiple times, or with a comma separated list') parser.add_option("--mav09", action='store_true', default=False, help="Use MAVLink protocol 0.9") parser.add_option("--auto-protocol", action='store_true', default=False, help="Auto detect MAVLink protocol version") parser.add_option("--nowait", action='store_true', default=False, help="don't wait for HEARTBEAT on startup") parser.add_option("-c", "--continue", dest='continue_mode', action='store_true', default=False, help="continue logs") parser.add_option("--dialect", default="ardupilotmega", help="MAVLink dialect") parser.add_option("--rtscts", action='store_true', help="enable hardware RTS/CTS flow control") parser.add_option("--moddebug", type=int, help="module debug level", default=0) parser.add_option("--mission", dest="mission", help="mission name", default=None) parser.add_option("--daemon", action='store_true', help="run in daemon mode, do not start interactive shell") parser.add_option("--profile", action='store_true', help="run the Yappi python profiler") parser.add_option("--state-basedir", default=None, help="base directory for logs and aircraft directories") parser.add_option("--version", action='store_true', help="version information") (opts, args) = parser.parse_args() # warn people about ModemManager which interferes badly with APM and Pixhawk if os.path.exists("/usr/sbin/ModemManager"): print("WARNING: You should uninstall ModemManager as it conflicts with APM and Pixhawk") if opts.mav09: os.environ['MAVLINK09'] = '1' from pymavlink import mavutil, mavparm mavutil.set_dialect(opts.dialect) #version information if opts.version: import pkg_resources version = pkg_resources.require("mavproxy")[0].version print "MAVProxy is a modular ground station using the mavlink protocol" print "MAVProxy Version: " + version sys.exit(1) # global mavproxy state mpstate = MPState() mpstate.status.exit = False mpstate.command_map = command_map mpstate.continue_mode = opts.continue_mode # queues for logging mpstate.logqueue = Queue.Queue() mpstate.logqueue_raw = Queue.Queue() if opts.speech: # start the speech-dispatcher early, so it doesn't inherit any ports from # modules/mavutil load_module('speech') if not opts.master: serial_list = mavutil.auto_detect_serial(preferred_list=['*FTDI*',"*Arduino_Mega_2560*", "*3D_Robotics*", "*USB_to_UART*", '*PX4*', '*FMU*']) print('Auto-detected serial ports are:') for port in serial_list: print("%s" % port) # container for status information mpstate.settings.target_system = opts.TARGET_SYSTEM mpstate.settings.target_component = opts.TARGET_COMPONENT mpstate.mav_master = [] mpstate.rl = rline.rline("MAV> ", mpstate) def quit_handler(signum = None, frame = None): #print 'Signal handler called with signal', signum if mpstate.status.exit: print 'Clean shutdown impossible, forcing an exit' sys.exit(0) else: mpstate.status.exit = True # Listen for kill signals to cleanly shutdown modules fatalsignals = [signal.SIGTERM] try: fatalsignals.append(signal.SIGHUP) fatalsignals.append(signal.SIGQUIT) except Exception: pass if opts.daemon: # SIGINT breaks readline parsing - if we are interactive, just let things die fatalsignals.append(signal.SIGINT) for sig in fatalsignals: signal.signal(sig, quit_handler) load_module('link', quiet=True) mpstate.settings.source_system = opts.SOURCE_SYSTEM mpstate.settings.source_component = opts.SOURCE_COMPONENT # open master link for mdev in opts.master: if not mpstate.module('link').link_add(mdev): sys.exit(1) if not opts.master and len(serial_list) == 1: print("Connecting to %s" % serial_list[0]) mpstate.module('link').link_add(serial_list[0].device) elif not opts.master: wifi_device = '0.0.0.0:14550' mpstate.module('link').link_add(wifi_device) # open any mavlink output ports for port in opts.output: mpstate.mav_outputs.append(mavutil.mavlink_connection(port, baud=int(opts.baudrate), input=False)) if opts.sitl: mpstate.sitl_output = mavutil.mavudp(opts.sitl, input=False) mpstate.settings.streamrate = opts.streamrate mpstate.settings.streamrate2 = opts.streamrate if opts.state_basedir is not None: mpstate.settings.state_basedir = opts.state_basedir msg_period = mavutil.periodic_event(1.0/15) heartbeat_period = mavutil.periodic_event(1) heartbeat_check_period = mavutil.periodic_event(0.33) mpstate.input_queue = Queue.Queue() mpstate.input_count = 0 mpstate.empty_input_count = 0 if opts.setup: mpstate.rl.set_prompt("") # call this early so that logdir is setup based on --aircraft (mpstate.status.logdir, logpath_telem, logpath_telem_raw) = log_paths() if not opts.setup: # some core functionality is in modules standard_modules = ['log', 'wp', 'rally','fence','param','relay', 'tuneopt','arm','mode','calibration','rc','auxopt','misc','cmdlong', 'battery','terrain','output'] for m in standard_modules: load_module(m, quiet=True) if 'HOME' in os.environ and not opts.setup: start_script = os.path.join(os.environ['HOME'], ".mavinit.scr") if os.path.exists(start_script): run_script(start_script) if 'LOCALAPPDATA' in os.environ and not opts.setup: start_script = os.path.join(os.environ['LOCALAPPDATA'], "MAVProxy", "mavinit.scr") if os.path.exists(start_script): run_script(start_script) if opts.aircraft is not None: start_script = os.path.join(opts.aircraft, "mavinit.scr") if os.path.exists(start_script): run_script(start_script) else: print("no script %s" % start_script) if opts.console: process_stdin('module load console') if opts.map: process_stdin('module load map') for module in opts.load_module: modlist = module.split(',') for mod in modlist: process_stdin('module load %s' % mod) if opts.cmd is not None: for cstr in opts.cmd: cmds = cstr.split(';') for c in cmds: process_stdin(c) if opts.profile: import yappi # We do the import here so that we won't barf if run normally and yappi not available yappi.start() # log all packets from the master, for later replay open_telemetry_logs(logpath_telem, logpath_telem_raw) # run main loop as a thread mpstate.status.thread = threading.Thread(target=main_loop, name='main_loop') mpstate.status.thread.daemon = True mpstate.status.thread.start() # use main program for input. This ensures the terminal cleans # up on exit while (mpstate.status.exit != True): try: if opts.daemon: time.sleep(0.1) else: input_loop() except KeyboardInterrupt: if mpstate.settings.requireexit: print("Interrupt caught. Use 'exit' to quit MAVProxy.") #Just lost the map and console, get them back: for (m,pm) in mpstate.modules: if m.name in ["map", "console"]: if hasattr(m, 'unload'): try: m.unload() except Exception: pass reload(m) m.init(mpstate) else: mpstate.status.exit = True sys.exit(1) if opts.profile: yappi.get_func_stats().print_all() yappi.get_thread_stats().print_all() #this loop executes after leaving the above loop and is for cleanup on exit for (m,pm) in mpstate.modules: if hasattr(m, 'unload'): print("Unloading module %s" % m.name) m.unload() sys.exit(1)
gpl-3.0
meduz/scikit-learn
examples/neighbors/plot_nearest_centroid.py
58
1803
""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for shrinkage in [None, .2]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis('tight') plt.show()
bsd-3-clause
amirkdv/biseqt
experiments/num_seeds.py
1
14075
#!/usr/bin/env python from matplotlib import pyplot as plt from matplotlib import gridspec import sys from time import time import numpy as np from biseqt.sequence import Alphabet from biseqt.stochastics import rand_seq, MutationProcess from biseqt.seeds import SeedIndex from biseqt.blot import band_radius, band_radii, H0_moments, H1_moments from util import seq_pair, color_code from util import plot_with_sd, with_dumpfile, log, savefig from logging import WARN @with_dumpfile def sim_count_seeds(**kw): ns, n_samples = kw['ns'], kw['n_samples'] gap, subst, wordlen = kw['gap'], kw['subst'], kw['wordlen'] log('simulating # of seeds (%d samples), lengths = %s' % (n_samples, str(ns))) def _zero(): return np.zeros((len(ns), n_samples)) A = Alphabet('ACGT') seed_index_kw = { 'alphabet': A, 'wordlen': wordlen, 'path': kw.get('path', ':memory:'), 'log_level': WARN, } sim_data = { 'time': {'pos': _zero(), 'neg': _zero()}, 'n_seeds': {'all': {'pos': _zero(), 'neg': _zero()}, 'band': {'pos': _zero(), 'neg': _zero()}}, 'gap': gap, 'match': (1 - gap) * (1 - subst), 'ns': ns, 'seed_index_kw': seed_index_kw, } M = MutationProcess(A, go_prob=gap, ge_prob=gap, subst_probs=subst) for n_idx, n in enumerate(ns): radius = band_radius(n, .4, 1 - 1e-4) log('n = %d ' % n, newline=False) for idx in range(n_samples): sys.stderr.write('.') S_rel, T_rel = seq_pair(n, A, mutation_process=M) S_urel, T_urel = rand_seq(A, n), rand_seq(A, n) for key, (S, T) in zip(['pos', 'neg'], [(S_rel, T_rel), (S_urel, T_urel)]): t = time() seed_index = SeedIndex(S, T, **seed_index_kw) n_seeds = seed_index.seed_count() sim_data['time'][key][n_idx][idx] = time() - t sim_data['n_seeds']['all'][key][n_idx][idx] = n_seeds n_seeds = seed_index.seed_count(d_band=(-radius, radius)) sim_data['n_seeds']['band'][key][n_idx][idx] = n_seeds sys.stderr.write('\n') return sim_data def plot_count_seeds_moments(sim_data, K=None, suffix=''): ns, wordlen = sim_data['ns'], sim_data['seed_index_kw']['wordlen'] match = sim_data['match'] def _zero(): return {'all': [], 'band': []} mus_H0, mus_H1, sds_H0, sds_H1 = _zero(), _zero(), _zero(), _zero() for n in ns: for mode in ['all', 'band']: if mode == 'all': area = n ** 2 else: radius = band_radius(n, .4, 1 - 1e-4) area = n * 2 * radius mu_H0, sd_H0 = H0_moments(4, wordlen, area) mus_H0[mode].append(mu_H0) sds_H0[mode].append(sd_H0) mu_H1, sd_H1 = H1_moments(4, wordlen, area, n, match) mus_H1[mode].append(mu_H1) sds_H1[mode].append(sd_H1) fig = plt.figure(figsize=(11, 5)) ax_t = fig.add_subplot(1, 3, 1) ax_mu = fig.add_subplot(1, 3, 2) ax_sd = fig.add_subplot(1, 3, 3) # time to find all seeds kw = {'marker': 'o', 'markersize': 4, 'lw': 1, 'alpha': .8} plot_with_sd(ax_t, ns, 1000 * sim_data['time']['neg'], axis=1, color='r', label='unrelated', **kw) plot_with_sd(ax_t, ns, 1000 * sim_data['time']['pos'], axis=1, color='g', label='related', **kw) kw = {'markersize': 3, 'lw': 1.2} for mode, marker, alpha in zip(['all', 'band'], 'ox', [.7, .5]): kw['alpha'] = alpha kw['marker'] = marker pos = sim_data['n_seeds'][mode]['pos'] neg = sim_data['n_seeds'][mode]['neg'] # average no. of seeds kw['color'] = 'r' ax_mu.plot(ns, neg.mean(axis=1), label='unrelated (%s)' % mode, **kw) ax_mu.plot(ns, mus_H0[mode], ls='--', **kw) kw['color'] = 'g' ax_mu.plot(ns, pos.mean(axis=1), label='related (%s)' % mode, **kw) ax_mu.plot(ns, mus_H1[mode], ls='--', **kw) # std dev. of no of seeds kw['color'] = 'r' sds_emp = np.sqrt(neg.var(axis=1)) ax_sd.plot(ns, sds_emp, label='unrelated (%s)' % mode, **kw) ax_sd.plot(ns, sds_H0[mode], ls='--', **kw) kw['color'] = 'g' sds_emp = np.sqrt(pos.var(axis=1)) ax_sd.plot(ns, sds_emp, label='related (%s)' % mode, **kw) ax_sd.plot(ns, sds_H1[mode], ls='--', **kw) _ns = np.arange(min(ns), max(ns)) ax_mu.plot(_ns, _ns, color='k', alpha=.9, lw=.5, ls='--') ax_t.plot(_ns, _ns, color='k', alpha=.9, lw=.5, ls='--') for ax in [ax_sd, ax_mu, ax_t]: # ax.set_xlim(None, 1.1 * max(ns)) ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('sequence length') ax.set_xticks(ns) ax.set_xticklabels(ns, rotation=90) ax.legend(loc='lower right', fontsize=8) ax_sd.set_ylabel('standard deviation of no. of matching %d-mers' % wordlen) ax_mu.set_ylabel('average no. of matching %d-mers' % wordlen) ax_t.set_ylabel('time to find matching %d-mers (ms)' % wordlen) # n_samples = pos.shape[1] savefig(fig, 'num_seeds_moments%s.png' % suffix) def exp_count_seeds(): """Shows theoretical and simulation results for the mean and variance of the number of exactly matching kmers between related and unrelated sequences as a function of sequence length. Theoretical predictions are based on *m-dependent Central Limit Theorem* which suggests a limiting Normal distribution with mean and variance given by :func:`biseqt.blot.H0_moments` and :func:`biseqt.blot.H1_moments`. **Supported Claims** * The theoretical calculations of mean and variance for the number of seeds, given by :func:`biseqt.blot.H0_moments` and :func:`biseqt.blot.H1_moments` agree with simulations at least upto 25kbp sequence lengths. * Although the expected number of seeds is technically quadratic, the highest order coefficient is so small that it can be considered effectively linear in sequence length. Furthermore, we note that word length provides expoenentially strong control on the number of seeds as sequence lengths increase; hence maintaining a small quadratic coefficient across biologically relevant sequence lengths (up to 1 Gbp) is feasible with reasonable word lenghts (up to 30) .. figure:: https://www.dropbox.com/s/fkd6u6gec6rzrjm/ num_seeds_moments%5Bw%3D8%5D.png?raw=1 :target: https://www.dropbox.com/s/fkd6u6gec6rzrjm/ num_seeds_moments%5Bw%3D8%5D.png?raw=1 :alt: lightbox Time to find all exactly matching 8-mers (*left*) for related (*green*) and unrelated (*red*) sequences of varying lengths (n=50 samples for each length; shaded regions show one standard deviation). Related sequences are mutations of each other with substitution and gap probabilities both equal to 0.1. For the same simulations, mean (*middle*) and standard deviation (*right*) of the number of seeds as a function of sequence length are shown (solid lines) with theoretical predictions for each case (dashed lines). All axes are in log scale, and the dotted black lines in the left and middle plots are y=x lines for comparison. """ ns = [200 * 2 ** i for i in range(8)] gap = .1 subst = .1 n_samples = 50 wordlen = 8 suffix = '[w=%d]' % wordlen dumpfile = 'num_seeds%s.txt' % suffix sim_data = sim_count_seeds( ns=ns, n_samples=n_samples, gap=gap, subst=subst, wordlen=wordlen, dumpfile=dumpfile, ignore_existing=False) plot_count_seeds_moments(sim_data, suffix=suffix) @with_dumpfile def sim_count_seeds_segment(**kw): Ks, g_radii, n_samples = kw['Ks'], kw['g_radii'], kw['n_samples'] gap, subst, wordlen = kw['gap'], kw['subst'], kw['wordlen'] def _zero(): return np.zeros((len(Ks), len(g_radii), n_samples)) A = Alphabet('ACGT') seed_index_kw = { 'alphabet': A, 'wordlen': wordlen, 'path': kw.get('path', ':memory:'), 'log_level': WARN, } sim_data = { 'n_seeds': {'pos': _zero(), 'neg': _zero()}, 'p_hat': {'pos': _zero(), 'neg': _zero()}, 'gap': gap, 'match': (1 - gap) * (1 - subst), 'Ks': Ks, 'g_radii': g_radii, 'seed_index_kw': seed_index_kw, } M = MutationProcess(A, go_prob=gap, ge_prob=gap, subst_probs=subst) for K_idx, K in enumerate(Ks): log('K = %d' % K, newline=False) for idx in range(n_samples): sys.stderr.write('.') S_rel, T_rel = seq_pair(K, A, mutation_process=M) S_urel, T_urel = rand_seq(A, K), rand_seq(A, K) for key, (S, T) in zip(['pos', 'neg'], [(S_rel, T_rel), (S_urel, T_urel)]): seed_index = SeedIndex(S, T, **seed_index_kw) for g_idx, g_max in enumerate(g_radii): radius = band_radius(K, g_max, 1 - 1e-4) d_band = (-radius, radius) n_seeds = seed_index.seed_count(d_band=d_band) sim_data['n_seeds'][key][K_idx, g_idx, idx] = n_seeds area = 2 * radius * K word_p_null = (1./len(A)) ** wordlen word_p = (n_seeds - area * word_p_null) / K try: p_hat = np.exp(np.log(word_p) / wordlen) except Warning: # presumably this happened because word_p was too small p_hat = 0 p_hat = min(p_hat, 1) sim_data['p_hat'][key][K_idx, g_idx, idx] = p_hat sys.stderr.write('\n') return sim_data def plot_count_seeds_segment(sim_data, suffix=''): Ks, g_radii = sim_data['Ks'], sim_data['g_radii'] match = sim_data['match'] fig = plt.figure(figsize=(10, 4)) grids = gridspec.GridSpec(1, 2, width_ratios=[5, 3]) ax_p = fig.add_subplot(grids[0]) ax_rad = fig.add_subplot(grids[1]) pad = min(Ks) / 3 colors = color_code(g_radii) arrow_kw = {'marker': '>', 'c': 'k', 'markevery': 2, 'markersize': 2, 'lw': 1, 'alpha': .8} ax_p.plot([Ks[0] - .2 * pad, Ks[0] - .9 * pad], [match, match], **arrow_kw) ax_p.plot([Ks[0] - .2 * pad, Ks[0] - .9 * pad], [.25, .25], ls='--', **arrow_kw) kw_rad = {'marker': 'o', 'markersize': 3, 'lw': 1, 'alpha': .8} kw_p = {'marker': 'o', 'markersize': 5, 'lw': 3, 'alpha': .5} for g_idx, (g_max, color) in enumerate(zip(g_radii, colors)): label = '$g_{\max} = %.2f$' % g_max pos = sim_data['p_hat']['pos'][:, g_idx, :] neg = sim_data['p_hat']['neg'][:, g_idx, :] plot_with_sd(ax_p, Ks, neg, axis=1, color=color, ls='--', **kw_p) plot_with_sd(ax_p, Ks, pos, axis=1, color=color, label=label, **kw_p) ax_rad.plot(Ks, band_radii(Ks, g_max, 1 - 1e-4), color=color, label=label, **kw_rad) ax_p.set_ylim(-.2, 1.1) for ax in [ax_p, ax_rad]: ax.set_xlim(Ks[0] - pad, Ks[-1] + pad) ax.set_xscale('log') ax.set_xlabel('similarity length') ax.set_xticks(Ks) ax.set_xticklabels(Ks) ax.legend(loc='best') ax_p.set_ylabel('estimated match probability') ax_rad.set_ylabel('diagonal band radius') # n_samples = pos.shape[1] savefig(fig, 'num_seeds_segment%s.png' % suffix) def exp_count_seeds_segment(): """Shows simulation results for alignment-free estimated match probability for globally homologous sequence pairs of length up to 25kbp. **Supported Claims** * The match probability estimator provided by :func:`biseqt.blot.WordBlot.estimate_match_probability` using the band radius provided by :func:`biseqt.blot.band_radius` are accurate for similarities of lengths up to 25kbp regardless of gap probability upper bound. Therefore, we can justify using generous overestimates of gap probability (e.g. :math:`g_{\max}=0.4`) in typical contexts. * For unrelated sequences our estimator reports a number close to .25 (one standard deviation range :math:`[0, .4]`). .. figure:: https://www.dropbox.com/s/gnvb8eiiezyysuq/ num_seeds_segment%5Bw%3D6%5D.png?raw=1 :target: https://www.dropbox.com/s/gnvb8eiiezyysuq/ num_seeds_segment%5Bw%3D6%5D.png?raw=1 :alt: lightbox For multiple values of maximum allowed gap probability :math:`g_{\max}` (which dictates diagonal band radius), estimated match probability (using word length 6) is shown as a function of sequence length (*left*) for globally homologous sequences (solid lines) and unrelated sequences (dashed lines), n=50 samples, shaded regions show one standard deviation. Homologous sequences were simulated by mutations with gap probability 0.1 and substitution probability 0.15 (hence a match probability of 0.77 indicated by a solid arrow (note agreement with Word-Blot estimation), the dashed arrow shows the 0.25 point). For each value of :math:`g_{\max}`, the corresponding band radius is shown as a function of similarity length (right). Horizontal axes in both plots is in log scale. """ Ks = [200 * 2 ** i for i in range(8)] g_radii = [.05, .1, .2, .4] gap = .1 subst = .15 n_samples = 50 wordlen = 6 suffix = '[w=%d]' % wordlen dumpfile = 'num_seeds_segment%s.txt' % suffix sim_data = sim_count_seeds_segment( Ks=Ks, g_radii=g_radii, n_samples=n_samples, gap=gap, subst=subst, wordlen=wordlen, dumpfile=dumpfile) plot_count_seeds_segment(sim_data, suffix=suffix) if __name__ == '__main__': exp_count_seeds() exp_count_seeds_segment()
bsd-3-clause
reychil/project-alpha-1
code/utils/scripts/pca_script.py
1
1857
""" Script to identify outliers for each subject. Compares the mean MRSS values from running GLM on the basic np.convolve convolved time course, before and after dropping the outliers. """ import numpy as np import nibabel as nib import os import sys import pandas as pd from sklearn.decomposition import PCA import matplotlib.pyplot as plt # Relative paths to project and data. project_path = "../../../" path_to_data = project_path+"data/ds009/" location_of_images = project_path+"images/" location_of_functions = project_path+"code/utils/functions/" behav_suffix = "/behav/task001_run001/behavdata.txt" sys.path.append(location_of_functions) from event_related_fMRI_functions import hrf_single, convolution_specialized from noise_correction import mean_underlying_noise, fourier_predict_underlying_noise sub_list = os.listdir(path_to_data)[0:2] # saving to compare number of cuts in the beginning num_cut=np.zeros(len(sub_list)) i=0 # Loop through all the subjects. for name in sub_list: # amount of beginning TRs not standardized at 6 behav=pd.read_table(path_to_data+name+behav_suffix,sep=" ") num_TR = float(behav["NumTRs"]) # Load image data. img = nib.load(path_to_data+ name+ "/BOLD/task001_run001/bold.nii.gz") data = img.get_data() # Drop the appropriate number of volumes from the beginning. first_n_vols=data.shape[-1] num_TR_cut=int(first_n_vols-num_TR) num_cut[i]=num_TR_cut i+=1 data = data[...,num_TR_cut:] data_2d = data.reshape((-1,data.shape[-1])) # Run PCA on the covariance matrix and plot explained variance. pca = PCA(n_components=20) pca.fit(data_2d.T.dot(data_2d)) exp_var = pca.explained_variance_ratio_ plt.plot(range(1,21), exp_var) plt.savefig(location_of_images+'pca'+name+'.png') plt.close()
bsd-3-clause
fabianp/scikit-learn
sklearn/preprocessing/__init__.py
268
1319
""" The :mod:`sklearn.preprocessing` module includes scaling, centering, normalization, binarization and imputation methods. """ from ._function_transformer import FunctionTransformer from .data import Binarizer from .data import KernelCenterer from .data import MinMaxScaler from .data import MaxAbsScaler from .data import Normalizer from .data import RobustScaler from .data import StandardScaler from .data import add_dummy_feature from .data import binarize from .data import normalize from .data import scale from .data import robust_scale from .data import maxabs_scale from .data import minmax_scale from .data import OneHotEncoder from .data import PolynomialFeatures from .label import label_binarize from .label import LabelBinarizer from .label import LabelEncoder from .label import MultiLabelBinarizer from .imputation import Imputer __all__ = [ 'Binarizer', 'FunctionTransformer', 'Imputer', 'KernelCenterer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'PolynomialFeatures', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', 'label_binarize', ]
bsd-3-clause
MadsJensen/RP_scripts
graph_pagerank_ada_post.py
1
2154
import numpy as np import bct from sklearn.externals import joblib from my_settings import (bands, source_folder) from sklearn.ensemble import AdaBoostClassifier from sklearn.cross_validation import (StratifiedKFold, cross_val_score) from sklearn.grid_search import GridSearchCV subjects = [ "0008", "0009", "0010", "0012", "0014", "0015", "0016", "0017", "0018", "0019", "0020", "0021", "0022" ] cls_all = [] pln_all = [] scores_all = np.empty([4, 6]) for subject in subjects: cls = np.load(source_folder + "graph_data/%s_classic_pow_post.npy" % subject).item() pln = np.load(source_folder + "graph_data/%s_plan_pow_post.npy" % subject).item() cls_all.append(cls) pln_all.append(pln) for k, band in enumerate(bands.keys()): data_cls = [] for j in range(len(cls_all)): tmp = cls_all[j][band] data_cls.append( np.asarray( [bct.centrality.pagerank_centrality( g, d=0.85) for g in tmp]).mean(axis=0)) data_pln = [] for j in range(len(pln_all)): tmp = pln_all[j][band] data_pln.append( np.asarray( [bct.centrality.pagerank_centrality( g, d=0.85) for g in tmp]).mean(axis=0)) data_cls = np.asarray(data_cls) data_pln = np.asarray(data_pln) X = np.vstack([data_cls, data_pln]) y = np.concatenate([np.zeros(len(data_cls)), np.ones(len(data_pln))]) cv = StratifiedKFold(y, n_folds=6, shuffle=True) cv_params = { "learning_rate": np.arange(0.1, 1.1, 0.1), 'n_estimators': np.arange(1, 80, 2) } grid = GridSearchCV( AdaBoostClassifier(), cv_params, scoring='accuracy', cv=cv, n_jobs=1, verbose=1) grid.fit(X, y) ada_cv = grid.best_estimator_ scores = cross_val_score(ada_cv, X, y, cv=cv) scores_all[k, :] = scores # save the classifier joblib.dump( ada_cv, source_folder + "graph_data/sk_models/pagerank_ada_post_%s.plk" % band) np.save(source_folder + "graph_data/pagerank_scores_all_post.npy", scores_all)
bsd-3-clause
zooniverse/aggregation
experimental/algorithms/jungle3.py
1
5210
__author__ = 'ggdhines' import matplotlib matplotlib.use('WXAgg') import aggregation_api import cv2 import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import DBSCAN from scipy.spatial import distance ref = [[234,218,209],] def analyze(f_name,display=False): image = cv2.imread(f_name) x_lim,y_lim,_ = image.shape a = image.reshape(x_lim*y_lim,3) dist = distance.cdist(a,ref).reshape(x_lim,y_lim) y_pts,x_pts = np.where(dist>50) pts = zip(x_pts,y_pts) pts.sort(key = lambda p:p[0]) print "here" current_x = pts[0][0] # clusters = [[pts[0][1],],] to_plot = {} to_cluster_y = [] for (x,y) in pts: if x == current_x: to_cluster_y.append(y) else: to_cluster_y.sort() to_plot[current_x] = [[to_cluster_y[0]],] for p in to_cluster_y[1:]: # print to_plot if (p - to_plot[current_x][-1][-1]) > 2: to_plot[current_x].append([p]) else: to_plot[current_x][-1].append(p) to_cluster_y = [] current_x = x filtered_x = [] filtered_y = [] for x in to_plot: # print to_plot[x] values = [] for c in to_plot[x]: # values.extend(c) if 1 < len(c) < 10: plt.plot([x for _ in c],c,".") filtered_x.extend([x for _ in c]) filtered_y.extend([[i,] for i in c]) plt.ylim((max(y_pts),0)) plt.show() filtered_x = np.asarray(filtered_x) filtered_y = np.asarray(filtered_y) db = DBSCAN(eps=1, min_samples=15).fit(filtered_y) labels = db.labels_ unique_labels = set(labels) colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) print len(unique_labels) for k, col in zip(unique_labels, colors): if k == -1: continue index_filter = np.where(labels == k) x_val = filtered_x[index_filter] # print len(x_val) # if len(x_val) < 20: # continue percentage = len(x_val)/float(max(x_val)-min(x_val)) # if percentage <0.1: # continue # # if len(x_val) < 3: # continue y_val = [f[0] for f in filtered_y[index_filter]] plt.plot(x_val, y_val, 'o', markerfacecolor=col) plt.ylim((max(y_pts),0)) plt.show() # for x in range(min(x_pts),max(x_pts)): # print x # id_ = np.where(x_pts==x) # # restricted_y = [[p,] for p in y_pts[id_]] # restricted_y = y_pts[id_] # # clusters = [[restricted_y[0],],] # for y in restricted_y[1:]: # if y-clusters[-1][-1] <= 2: # clusters[-1].append(y) # else: # clusters.append([y]) # # for c in clusters: # plt.plot([x for _ in c],c,"o") # continue # # db = DBSCAN(eps=4, min_samples=1).fit(restricted_y) # labels = db.labels_ # # unique_labels = set(labels) # colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) # for k, col in zip(unique_labels, colors): # if k == -1: # continue # # class_member_mask = (labels == k) # # print class_member_mask # # # y_cluster = temp_y[class_member_mask] # # if len(y_cluster) < 20: # plt.plot([x for _ in range(len(y_cluster))], y_cluster, 'o', markerfacecolor=col) # # xPts.extend([x for _ in range(len(y))]) # # yPts.extend(y) # plt.show() # # if display: # plt.plot(x,y,".") # plt.ylim((y_lim,0)) # plt.show() # # return # # n, bins, patches = plt.hist(y,range(min(y),max(y)+1)) # med = np.median(n) # # # peaks = [i for i,count in enumerate(n) if count > 2*med] # buckets = [[peaks[0]]] # # # # # for j,p in list(enumerate(peaks))[1:]: # if (p-1) != (peaks[j-1]): # buckets.append([p]) # else: # buckets[-1].append(p) # # bucket_items = list(enumerate(buckets)) # bucket_items.sort(key = lambda x:len(x[1]),reverse=True) # # a = bucket_items[0][0] # b = bucket_items[1][0] # # # vert = [] # for x,p in bucket_items: # if (a <= x <= b) or (b <= x <= a): # vert.extend(p) # # print vert # print min(vert) # print max(vert) # # if display: # plt.plot((min(y),max(y)+1),(2*med,2*med)) # plt.show() # # n, bins, patches = plt.hist(x,range(min(x),max(x)+1)) # med = np.median(n) # # plt.plot((min(x),max(x)+1),(2*med,2*med)) # plt.plot((min(x),max(x)+1),(1*med,1*med),color="red") # plt.xlim((0,max(x)+1)) # plt.show() if __name__ == "__main__": # project = aggregation_api.AggregationAPI(153,"development") # f_name = project.__image_setup__(1125393) f_name = "/home/ggdhines/Databases/images/e1d11279-e515-42f4-a4d9-8e8a40a28425.jpeg" analyze(f_name,display=True)
apache-2.0
zuku1985/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <[email protected] # Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
giacomov/astromodels
setup.py
2
10628
#!/usr/bin/env python import ctypes.util import glob import sys import os import re from setuptools import setup, Extension from setuptools.command.build_ext import build_ext as _build_ext # This is needed to use numpy in this module, and should work whether or not numpy is # already installed. If it's not, it will trigger an installation class My_build_ext(_build_ext): def finalize_options(self): _build_ext.finalize_options(self) # Prevent numpy from thinking it is still in its setup process: __builtins__.__NUMPY_SETUP__ = False import numpy self.include_dirs.append(numpy.get_include()) self.include_dirs.append('astromodels/xspec/include') def sanitize_lib_name(library_path): """ Get a fully-qualified library name, like /usr/lib/libgfortran.so.3.0, and returns the lib name needed to be passed to the linker in the -l option (for example gfortran) :param library_path: :return: """ lib_name = os.path.basename(library_path) # Some regexp magic needed to extract in a system-independent (mac/linux) way the library name tokens = re.findall("lib(.+)(\.so|\.dylib|\.a)(.+)?", lib_name) if not tokens: raise RuntimeError('Attempting to find %s in directory %s but there are no libraries in this directory'%(lib_name,library_path)) return tokens[0][0] def find_library(library_root, additional_places=None): """ Returns the name of the library without extension :param library_root: root of the library to search, for example "cfitsio_" will match libcfitsio_1.2.3.4.so :return: the name of the library found (NOTE: this is *not* the path), and a directory path if the library is not in the system paths (and None otherwise). The name of libcfitsio_1.2.3.4.so will be cfitsio_1.2.3.4, in other words, it will be what is needed to be passed to the linker during a c/c++ compilation, in the -l option """ # find_library searches for all system paths in a system independent way (but NOT those defined in # LD_LIBRARY_PATH or DYLD_LIBRARY_PATH) first_guess = ctypes.util.find_library(library_root) if first_guess is not None: # Found in one of the system paths if sys.platform.lower().find("linux") >= 0: # On linux the linker already knows about these paths, so we # can return None as path return sanitize_lib_name(first_guess), None elif sys.platform.lower().find("darwin") >= 0: # On Mac we still need to return the path, because the linker sometimes # does not look into it return sanitize_lib_name(first_guess), os.path.dirname(first_guess) else: # Windows is not supported raise NotImplementedError("Platform %s is not supported" % sys.platform) else: # could not find it. Let's examine LD_LIBRARY_PATH or DYLD_LIBRARY_PATH # (if they sanitize_lib_name(first_guess), are not defined, possible_locations will become [""] which will # be handled by the next loop) if sys.platform.lower().find("linux") >= 0: # Unix / linux possible_locations = os.environ.get("LD_LIBRARY_PATH", "").split(":") elif sys.platform.lower().find("darwin") >= 0: # Mac possible_locations = os.environ.get("DYLD_LIBRARY_PATH", "").split(":") else: raise NotImplementedError("Platform %s is not supported" % sys.platform) if additional_places is not None: possible_locations.extend(additional_places) # Now look into the search paths library_name = None library_dir = None for search_path in possible_locations: if search_path == "": # This can happen if there are more than one :, or if nor LD_LIBRARY_PATH # nor DYLD_LIBRARY_PATH are defined (because of the default use above for os.environ.get) continue results = glob.glob(os.path.join(search_path, "lib%s*" % library_root)) if len(results) >= 1: # Results contain things like libXS.so, libXSPlot.so, libXSpippo.so # If we are looking for libXS.so, we need to make sure that we get the right one! for result in results: if re.match("lib%s[\-_\.]" % library_root, os.path.basename(result)) is None: continue else: # FOUND IT # This is the full path of the library, like /usr/lib/libcfitsio_1.2.3.4 library_name = result library_dir = search_path break else: continue if library_name is not None: break if library_name is None: return None, None else: # Sanitize the library name to get from the fully-qualified path to just the library name # (/usr/lib/libgfortran.so.3.0 becomes gfortran) return sanitize_lib_name(library_name), library_dir # Get the version number vfilename = "astromodels/version.py" exec(compile(open(vfilename, "rb").read(), vfilename, 'exec')) #execfile('astromodels/version.py') def setup_xspec(): headas_root = os.environ.get("HEADAS") if headas_root is None: # See, maybe we are running in Conda conda_prefix = os.environ.get("CONDA_PREFIX") if conda_prefix is None: # Maybe this is a Conda build conda_prefix = os.environ.get("PREFIX") if conda_prefix is not None: # Yes, this is Conda # Let's see if the package xspec-modelsonly has been installed by checking whether one of the Xspec # libraries exists within conda conda_lib_path = os.path.join(conda_prefix, 'lib') this_lib, this_lib_path = find_library('XSFunctions', additional_places=[conda_lib_path]) if this_lib is None: # No, there is no library in Conda print("No xspec-modelsonly package has been installed in Conda. Xspec support will not be installed") print("Was looking into %s" % conda_lib_path) return None else: print("The xspec-modelsonly package has been installed in Conda. Xspec support will be installed") # Set up the HEADAS variable so that the following will find the libraries headas_root = conda_prefix else: print("No HEADAS env. variable set. Xspec support will not be installed ") return None else: print("\n Xspec is detected. Will compile the Xspec extension.\n") # Make sure these libraries exist and are linkable right now # (they need to be in LD_LIBRARY_PATH or DYLD_LIBRARY_PATH or in one of the system paths) libraries_root = ['XSFunctions', 'XSModel', 'XSUtil', 'XS', 'cfitsio', 'CCfits', 'wcs', 'gfortran'] libraries = [] library_dirs = [] for lib_root in libraries_root: this_library, this_library_path = find_library(lib_root, additional_places=[os.path.join(headas_root, 'lib')]) if this_library is None: raise IOError("Could not find library %s. Impossible to compile Xspec" % lib_root) else: print("Found library %s in %s" % (this_library, this_library_path)) libraries.append(this_library) if this_library_path is not None: # This library is not in one of the system path library, we need to add # it to the -L flag during linking. Let's put it in the library_dirs list # which will be used in the Extension class library_dirs.append(this_library_path) # Remove duplicates from library_dirs library_dirs = list(set(library_dirs)) # Configure the variables to build the external module with the C/C++ wrapper ext_modules_configuration = [ Extension("astromodels.xspec._xspec", ["astromodels/xspec/src/_xspec.cc", ], libraries=libraries, library_dirs=library_dirs, runtime_library_dirs=library_dirs, extra_compile_args=[])] return ext_modules_configuration # Normal packages packages = ['astromodels', 'astromodels/core', 'astromodels/functions', 'astromodels/functions/dark_matter', 'astromodels/sources', 'astromodels/utils', 'astromodels/xspec', 'astromodels/tests' ] # Check whether we can compile Xspec support ext_modules_configuration = setup_xspec() # Add the node_ctype module # This defines the external module node_ctype_ext = Extension('astromodels.core.node_ctype', sources = ['astromodels/core/node_ctype/node_ctype.cxx'], extra_compile_args=[]) # '-UNDEBUG' for debugging if ext_modules_configuration is None: # No Xspec ext_modules_configuration = [node_ctype_ext] else: ext_modules_configuration.append(node_ctype_ext) setup( name="astromodels", setup_requires=['numpy'], cmdclass={'build_ext': My_build_ext}, packages=packages, data_files=[('astromodels/data/functions', glob.glob('astromodels/data/functions/*.yaml'))], # The __version__ comes from the exec at the top version=__version__, description="Astromodels contains models to be used in likelihood or Bayesian analysis in astronomy", author='Giacomo Vianello', author_email='[email protected]', url='https://github.com/giacomov/astromodels', download_url='https://github.com/giacomov/astromodels/archive/v0.1', keywords=['Likelihood', 'Models', 'fit'], classifiers=[], install_requires=[ 'numpy >= 1.6', 'PyYAML', 'astropy >= 1.2', 'scipy>=0.14', 'numdifftools', 'tables', 'pandas', 'dill'], extras_require={ 'tests': [ 'pytest', ], 'docs': [ 'sphinx >= 1.4', 'sphinx_rtd_theme', 'nbsphinx', 'sphinx-autoapi']}, ext_modules=ext_modules_configuration, package_data={ 'astromodels': ['data/dark_matter/*'], }, include_package_data=True, )
bsd-3-clause
drpngx/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator_input_test.py
46
13101
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator input.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np from tensorflow.python.training import training_util from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner_impl _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def boston_input_fn_with_queue(num_epochs=None): features, labels = boston_input_fn(num_epochs=num_epochs) # Create a minimal queue runner. fake_queue = data_flow_ops.FIFOQueue(30, dtypes.int32) queue_runner = queue_runner_impl.QueueRunner(fake_queue, [constant_op.constant(0)]) queue_runner_impl.add_queue_runner(queue_runner) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat([labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' class EstimatorInputTest(test.TestCase): def testContinueTrainingDictionaryInput(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=50) scores = est.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) del est # Create another estimator object with the same output dir. est2 = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) # Check we can evaluate and predict. scores2 = est2.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) self.assertAllClose(scores2['MSE'], scores['MSE']) predictions = np.array(list(est2.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, float64_target['labels']) self.assertAllClose(other_score, scores['MSE']) def testBostonAll(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=100) scores = est.score( x=boston.data, y=float64_labels, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) predictions = np.array(list(est.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(scores['MSE'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testBostonAllDictionaryInput(self): boston = base.load_boston() est = estimator.Estimator(model_fn=linear_model_fn) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=100) scores = est.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) predictions = np.array(list(est.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(other_score, scores['MSE']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisAll(self): iris = base.load_iris() est = estimator.SKCompat( estimator.Estimator(model_fn=logistic_model_no_mode_fn)) est.fit(iris.data, iris.target, steps=100) scores = est.score( x=iris.data, y=iris.target, metrics={ ('accuracy', 'class'): metric_ops.streaming_accuracy }) predictions = est.predict(x=iris.data) predictions_class = est.predict(x=iris.data, outputs=['class'])['class'] self.assertEqual(predictions['prob'].shape[0], iris.target.shape[0]) self.assertAllClose(predictions['class'], predictions_class) self.assertAllClose(predictions['class'], np.argmax(predictions['prob'], axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions['class']) self.assertAllClose(scores['accuracy'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testIrisAllDictionaryInput(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) iris_data = {'input': iris.data} iris_target = {'labels': iris.target} est.fit(iris_data, iris_target, steps=100) scores = est.evaluate( x=iris_data, y=iris_target, metrics={ ('accuracy', 'class'): metric_ops.streaming_accuracy }) predictions = list(est.predict(x=iris_data)) predictions_class = list(est.predict(x=iris_data, outputs=['class'])) self.assertEqual(len(predictions), iris.target.shape[0]) classes_batch = np.array([p['class'] for p in predictions]) self.assertAllClose(classes_batch, np.array([p['class'] for p in predictions_class])) self.assertAllClose(classes_batch, np.argmax( np.array([p['prob'] for p in predictions]), axis=1)) other_score = _sklearn.accuracy_score(iris.target, classes_batch) self.assertAllClose(other_score, scores['accuracy']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisInputFn(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisInputFnLabelsDict(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn_labels_dict, steps=100) _ = est.evaluate( input_fn=iris_input_fn_labels_dict, steps=1, metrics={ 'accuracy': metric_spec.MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='class', label_key='labels') }) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testTrainInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_eval_fn, steps=1) def testPredictInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testPredictInputFnWithQueue(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn_with_queue, num_epochs=2) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0] * 2) def testPredictConstInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) def input_fn(): features = array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) if __name__ == '__main__': test.main()
apache-2.0
vavuq/vavuq
VAVUQ.py
1
57168
#!/usr/bin/env python """ VAVUQ (Verification And Validation and Uncertainty Quantification) can be used as a general purpose program for verification, validation, and uncertainty quantification. The motivation for the creation of and continued development of the program is to provide a cost effective and easy way to assess the quality of computational approximations. The hope is that the methods used in this program can be applied to fields such as civil engineering where they are currently often underutilized. This code was created through efforts from Bombardelli's group and Dr. Bill Fleenor at the University of California Davis. The creators belong to the Civil & Environmental Engineering (CEE) Department, the Center for Watershed Sciences (CWS), and the Delta Solution Team (DST). The main code development is headed by Kaveh Zamani and James E. Courtney. ============================================================================== Reference: please see "Verification and Validation in Scintific Computing" by William L. Oberkampf and Chistopher J. Roy. Chapter 8, or Zamani, K., Bombardelli, F. A. (2014) "Analytical solutions of nonlinear and variable-parameter transport equations for verification of numerical solvers." Environmental Fluid Mechanics. ============================================================================== This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ # This code uses: Scipy, Pandas, Numpy, Math, Matplotlib, Tkinter # plot options [1:on, 0:off] popt = [None]*8 popt[0] = 0 # 3D surface plot (user interaction) popt[1] = 0 # Triangular 2D surface plot popt[2] = 0 # Interpolated triangular 2D surface plot popt[3] = 0 # Image plot (suppressed if unstructured mesh) popt[4] = 0 # 3D scatter plot (user interaction) popt[5] = 1 # Rect surface plot popt[6] = 0 # 2D scatter popt[7] = 0 # 2D Contour # execute plot options def plotmain(popt,x,y,z,titl): if popt[0]: surfplot(x,y,z,titl) if popt[1]: trisurfplot(x,y,z,titl) if popt[2]: triconplot(x,y,z,titl) if popt[3]: plotim(x,y,z,titl) if popt[4]: scatplot(x,y,z,titl) if popt[5]: sqsurfplot(x,y,z,titl) if popt[6]: scat2d(x,y,z,titl) if popt[7]: cont2d(x,y,z,titl) # This function is based on Equation 8.73 in 'Verification and Validation # in Scientific Computing' by W. Oberkampf and C. Roy on page 320. # NCS: No Converged Solution def calc_con(Lcoarse, Lfine, rc, rf): import numpy as np import math p = 0.5 AA = math.log10(rf*rc) if Lfine == 0.: return 0. # NCS BB = abs(Lcoarse/Lfine) if math.isnan(BB): return 0. # NCS i = 1 while True: if i > 10000: return 0. # NCS i += 1 x = (rf**p - 1.0)*BB + rf**p if x < 0.: return 0. # NCS o = p p = math.log10(x)/AA if abs(o-p) < 1e-12: break return p ''' The coarse grid convergence index (GCI) is calculated based on Roache, P.J. 1994. "Perspective: A Method for Uniform Reporting of Grid Refinement Studies. Journal of Fluids Engineering. September 1994, Vol. 116/405" fe: fractional error f1: fine grid solution f2: coarse gride solution r: refinment p: order of accuracy''' def GCI_coarse(f1,f2,r,p): return r**p * GCI_fine(f1,f2,r,p) ''' The fine grid convergence index (GCI) is calculated based on ASME V&V 20-2009 ''' def GCI_fine(f1,f2,r,p,fs): # calculate extrapolated value ex = (r**p*f1 - f2) / (r**p - 1.) # calculate error estimate ee = abs((f1 - f2) / (f1 + 1e-12)) # calculate extrapolated relative error er = abs((ex - f1) / (ex + 1e-12)) # calculate GCI GCI = (fs*ee) / (r**p - 1.) return (GCI,er) """ Calculates Statistics Validation ---------------------------------------------------- M is model data or prediction data O is benchmark or measured data (observed data) Paper: "Comparison of different effciency criteria for hydrological model assesment by Krause, Boyle and Base (2005) Nash_Sutcliffe efficiency E Nash, J. E. and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I -A discussion of principles, Journal of Hydrology, 10 (3), 282-290 """ def statistics_validation(M,O): import numpy as np from scipy.stats import ks_2samp, chisquare M, O = M.ravel(), O.ravel() wn = '' if abs(np.mean(M)) < 0.001: M, O = M + 1., O + 1. eo = '***Results are shifted one unit to avoid division by zero***' wn = ''.join([wn, eo+'\n']) bias = np.sum(M - O) / O.size rms = np.sqrt(np.mean(np.square(M - O))) SI = rms/np.mean(M) x2 = O - np.mean(M) y2 = O - np.mean(O) R2 = (np.sum(np.multiply(x2, y2)) / \ (np.sum(np.square(x2)) * np.sum(np.square(y2)))**0.5)**2 E = 1. - np.sum(np.square(M-O)) / np.sum(np.square(y2)) KS = ks_2samp(M.A.squeeze(),O.A.squeeze()) CH = chisquare(M.A.squeeze(), f_exp = O.A.squeeze()) eo = 'Bias = %(bias)s \n' \ 'Scatter Index = %(SI)s \n' \ 'RMSE = %(rms)s \n' \ 'Coefficient of Determination = %(R2)s \n' \ 'NSE = %(E)s \n' % locals() eo += 'K-S(stat, p-value) = (%0.4e, %0.4e)\n' % (KS[0],KS[1]) eo += 'Chi Sq(stat, p-value) = (%0.4e, %0.4e)' % (CH[0],CH[1]) wn = ''.join([wn, eo+'\n']) return wn # read input file def odat(fname): import numpy as np ex = fname.split('.')[-1].lower() try: if (ex == 'xlsx') | (ex == 'xls'): from pandas import ExcelFile with ExcelFile(fname) as sn: x = [np.matrix(sn.parse(i, header=None).values) for i, n in enumerate(sn.sheet_names)] elif ex == 'h5': from pandas import HDFStore, read_hdf with HDFStore(fname) as df: x = [np.matrix(read_hdf(fname, k).values) for k in df.keys()] elif ex == 'csv': from pandas import read_csv df = read_csv(fname, header=None) x = [] j = 0 for i in range(len(df.columns)/3): z = np.asarray(df.values)[:,j:j+3] z = z[~np.any(np.isnan(z), axis=1)] x.append(np.matrix(z)) j += 3 elif (ex == 'txt') | (ex == 'dat'): with open(fname) as fn: icom = fn.readline() if ',' in icom: com = True else: com = False with open(fname) as fn: if not com: from pandas import read_table df = read_table(fn, sep='\t', header=None) else: from pandas import read_csv df = read_csv(fn, header=None) x = [] j = 0 for i in range(len(df.columns)/3): z = np.asarray(df.values)[:,j:j+3] z = z[~np.any(np.isnan(z), axis=1)] x.append(np.matrix(z)) j += 3 except: wrng('\nFile format error during read',rw) return x # structured interpolation def inter_fun(x,y,z,XI,YI,interp_method): import numpy as np XI, YI = np.asarray(XI), np.asarray(YI) x, y = (w.ravel().tolist()[0] for w in [x, y]) if interp_method == 'Spline': from scipy.interpolate import RectBivariateSpline x, y = np.sort(np.unique(x)), np.sort(np.unique(y)) if len(x) != len(y): spl = RectBivariateSpline(x,y,z.H) else: spl = RectBivariateSpline(x,y,z) imat = spl.ev(XI, YI) elif interp_method == 'Cubic': from scipy.interpolate import griddata z = z.ravel().tolist()[0] imat = griddata((x, y), z, (XI, YI), method = 'cubic') elif interp_method == 'Linear': from scipy.interpolate import griddata z = z.ravel().tolist()[0] imat = griddata((x, y), z, (XI, YI), method = 'linear') return imat # unstructured interpolation def inter_fun_un(x,y,z,XI,YI,interp_method): import numpy as np XI, YI = np.asarray(XI), np.asarray(YI) x, y = (w.ravel().tolist()[0] for w in [x, y]) if interp_method == 'Spline': from scipy.interpolate import SmoothBivariateSpline spl = SmoothBivariateSpline(x,y,z) imat = spl.ev(XI, YI) elif interp_method == 'Cubic': from scipy.interpolate import Rbf rbf = Rbf(x, y, z, function='cubic') imat = rbf(XI, YI) elif interp_method == 'Linear': from scipy.interpolate import Rbf rbf = Rbf(x, y, z, function='linear') imat = rbf(XI, YI) return imat # return number of unique values def unval(x): import numpy as np return len(np.unique(x.ravel().tolist()[0])) # image plot def plotim(x,y,z,titl): import matplotlib.pyplot as plt im = plt.imshow(z, cmap='jet', interpolation='none') plt.colorbar(im, orientation='horizontal') plt.title(titl) titl += '(img).png' plt.savefig(titl, bbox_inches='tight') plt.close() # surface plot def sqsurfplot(x,y,z,titl): from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import warnings fig = plt.figure(facecolor="white") warnings.simplefilter("ignore") ax = fig.gca(projection='3d') surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0.5, antialiased=True) #ax.zaxis.set_major_locator(LinearLocator(10)) #if np.max(z) < 0.0001: # ax.zaxis.set_major_formatter(FormatStrFormatter('%.03e')) ax.set_xlabel('x') ax.set_ylabel('y') #ax.zaxis.set_major_formatter(FormatStrFormatter('%.0e')) #ax.set_zlabel('Head (m)') fig.colorbar(surf, shrink=0.5, aspect=5) with warnings.catch_warnings(): plt.title(titl) plt.tight_layout() plt.show() plt.close() # triange surface plot def surfplot(x,y,z,titl): import matplotlib.pyplot as plt import numpy as np import warnings x,y,z = (np.squeeze(np.asarray(np.reshape(w,(w.size,1)))) for w in [x,y,z]) fig = plt.figure() warnings.simplefilter("ignore") ax = fig.gca(projection='3d') ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.2) with warnings.catch_warnings(): plt.title(titl) plt.tight_layout() plt.show() plt.close() # scatter plot def scatplot(x,y,z,titl): import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import warnings from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D x,y,z = (np.squeeze(np.asarray(np.reshape(w,(w.size,1)))) for w in [x,y,z]) fig = plt.figure(facecolor="white") warnings.simplefilter("ignore") ax = fig.add_subplot(111, projection='3d') ax.scatter(x, y, z, c=z, cmap=mpl.cm.gray) ax.set_xlabel('x') ax.set_ylabel('y') with warnings.catch_warnings(): plt.title(titl) plt.tight_layout() plt.show() plt.close() # trisurface plot def trisurfplot(x,y,z,titl): import matplotlib.pyplot as plt import matplotlib.tri as tri import numpy as np from matplotlib import cm from matplotlib.tri import Triangulation x,y,z = (np.squeeze(np.asarray(np.reshape(w,(w.size,1)))) for w in [x,y,z]) triang = tri.Triangulation(x, y) plt.figure() plt.gca().set_aspect('equal') plt.tripcolor(triang, z, shading='flat', cmap=plt.cm.rainbow, edgecolors='k') plt.colorbar() plt.title(titl) plt.autoscale(tight=True) plt.tight_layout() plt.savefig(titl+'(tri).png', bbox_inches='tight') plt.close() # interpolated trisurface plot def triconplot(x,y,z,titl): import matplotlib.pyplot as plt import numpy as np import warnings from matplotlib import cm from matplotlib.tri import Triangulation from matplotlib.tri import UniformTriRefiner x,y,z = (np.squeeze(np.asarray(np.reshape(w,(w.size,1)))) for w in [x,y,z]) triang = Triangulation(x, y) refiner = UniformTriRefiner(triang) with warnings.catch_warnings(): warnings.simplefilter("ignore") tri_refi, z_test_refi = refiner.refine_field(z, subdiv=3) plt.figure() plt.gca().set_aspect('equal') plt.triplot(triang, lw=0.5, color='black') levels = np.arange(min(z), max(z), (max(z)-min(z))/100.) cmap = cm.get_cmap(name='jet', lut=None) plt.tricontourf(tri_refi, z_test_refi, levels=levels, cmap=cmap) plt.colorbar() plt.title(titl) plt.autoscale(tight=True) plt.tight_layout() plt.savefig(titl+'(interp).png', bbox_inches='tight') plt.close() # 2D scatter plot def scat2d(x,y,z,titl): import matplotlib.pyplot as plt import numpy as np x,y,z = (np.squeeze(np.asarray(np.reshape(w,(w.size,1)))) for w in [x,y,z]) plt.scatter(x, y) plt.show() # 2D contour plot (structured) def cont2d(x,y,z,titl): import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import warnings from scipy.interpolate import griddata XI, YI = np.linspace(x.min(),x.max(),100),np.linspace(y.min(),y.max(),100) XI, YI = np.meshgrid(XI, YI) x,y,z = (np.squeeze(np.asarray(np.reshape(w,(w.size,1)))) for w in [x,y,z]) warnings.simplefilter("ignore") mpl.rcParams['xtick.direction'] = 'out' mpl.rcParams['ytick.direction'] = 'out' with warnings.catch_warnings(): imat = griddata( (x, y), z, (XI, YI), method = 'cubic') CS = plt.contour(XI, YI, imat) plt.clabel(CS, inline=1, fontsize=10) plt.title(titl) plt.show() # calculate convergence accross entire mesh def matcon(errc,errf,rc,rf): import numpy as np con = np.matrix([[calc_con(errc[i,j],errf[i,j],rc,rf) for j in range(errc.shape[1]) ] for i in range(errc.shape[0])]) return con #check number of elements in mesh class ArrayLengthError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def arrdimch(ny,nx,x,det): mul = ny*nx al = len(x) if mul != al: eo = '%(det)s Mesh: Number of unique x and y values ' \ '(%(nx)s, %(ny)s) do not multiply to the array length of the ' \ 'input. \n (%(mul)s /= %(al)s)!' % locals() raise ArrayLengthError(eo) # cut values outside of analysis area def excut(x,y,p,xmin,xmax,ymin,ymax): import numpy as np exc = np.where((x<xmin) | (x>xmax) | (y<ymin) | (y>ymax)) exc = np.unique(np.asarray(exc)) x,y,p = (np.delete(w,exc,0) for w in [x,y,p]) return x,y,p ################ # Main Program # ################ def Validation(pd2, pd1): # Validation Calculations global var4_1 import numpy as np from numpy import linalg as LA i = 0 x = odat(fname) num = x[0] # 1st tab: numerical data benchmark = x[1] # 2nd tab: benchmark data eo = 'Validation data is loaded: %s' % (fname,) i += 1 # text format tags txt.tag_config("n", background="#e7efff", foreground="red") txt.tag_config("a", foreground="black") txt.tag_config("w", background="#ffffff", foreground="red") label = tk.Label(root, text="T") font = tkFont.Font(font=label['font']) txt.tag_config("b", foreground="black", font=(font.actual()['family'], '-'+str(font.actual()['size']),"bold")) txt.tag_raise("sel") txt.insert(str(i)+'.0',eo+'\n', ("n", "a")) txt.mark_set(tk.INSERT,str(i)+'.0') if np.asarray(num).shape[1] > 1: num,benchmark = (np.asarray(w).ravel() for w in [num,benchmark]) # full i += 1 txt.insert(str(i)+'.0','***Full***\n', ("w", "b")) eo = statistics_validation(num,benchmark) i += 1 txt.insert(str(i)+'.0',eo) if var4_1.get() == 'Yes': def ctwt(url,num,benchmark,ndat,fmt): # calc and write sections url = np.unique(np.asarray(url)) if (url.shape[0] >= 0) & (url.shape[0] < len(num)): eo = '%s of %s data points used' % (len(num)-url.shape[0], len(num)) if fmt: txt.insert(tk.END,eo,fmt) else: txt.insert(tk.END,eo) urb,urn = (np.delete(w,url) for w in [benchmark,num]) eo = statistics_validation(urn,urb) if fmt: txt.insert(tk.END,'\n'+eo,fmt) else: txt.insert(tk.END,'\n'+eo) else: if fmt: txt.insert(tk.END,ndat+'\n',fmt) else: txt.insert(tk.END,ndat+'\n') brk = 16*'-'+'\n' # middle txt.insert(tk.END,'\n') txt.insert(tk.END,'***Middle***\n', ("n", "b")) rng = max(max(benchmark),max(num)) - min(min(benchmark),min(num)) urc = min(min(benchmark),min(num)) + pd1*rng lrc = min(min(benchmark),min(num)) + pd2*rng url = np.where((benchmark < urc) | (benchmark > lrc)) ndat = 'There are no data in this range to analyze' ctwt(url,num,benchmark,ndat,("n", "a")) # upper txt.insert(tk.END,'\n',("n", "a")) txt.insert(tk.END,'***Upper***\n', ("w", "b")) lrc = min(min(benchmark),min(num)) + pd2*rng url = np.where(benchmark <= lrc) ctwt(url,num,benchmark,ndat,False) # lower txt.insert(tk.END,'\n') txt.insert(tk.END,'***Lower***\n', ("n", "b")) urc = min(min(benchmark),min(num)) + pd1*rng url = np.where(benchmark >= urc) ctwt(url,num,benchmark,ndat,("n", "a")) txt.insert(tk.END,'\n',("n", "a")) def ValidationPlt(): # Validation Plots global Obwc,Obmc,Obvc import matplotlib.pyplot as plt import numpy as np x = odat(fname) num = x[0]# 1st tab: numerical data benchmark = x[1] # 2nd tab: benchmark data if np.asarray(num).shape[1] > 1: num,benchmark= (np.asarray(w).ravel() for w in [num,benchmark]) with plt.style.context(('grayscale')): # plot Numerical and Benchmark data if Obwc.get(): fig, ax = plt.subplots() ax.plot(num, label='Numerical') ax.plot(benchmark, label='Benchmark') plt.xlabel('Data Points') plt.ylabel('State') ax.set_xlim((0, len(num))) ax.set_ylim((min(min(num),min(benchmark)),max(max(num), max(benchmark)))) plt.legend(prop={'size':12}) #plt.legend() plt.show() # plot Benchmark verus Numerical if Obvc.get(): fig, ax = plt.subplots() ax.plot([0,max(max(num),max(benchmark))],[0,max(max(num), max(benchmark))],'r') ax.scatter(benchmark,num, s=10) ax.set_xlim((min(benchmark), max(benchmark))) ax.set_ylim((min(num),max(num))) plt.xlabel('Benchmark') plt.ylabel('Numerical') plt.show() # plot Benchmark minus Numerical data if Obmc.get(): fig, ax = plt.subplots() ax.plot(benchmark-num, '#0072B2', label='Benchmark - Numerical') plt.xlabel('Data Points') plt.ylabel('State Difference') ax.set_xlim((0, len(num))) ax.set_ylim((min(benchmark-num),max(benchmark-num))) plt.legend(prop={'size':12}) #plt.legend() plt.show() def Verification(interp_method,log_flag,runopt,*args): # Verification global imat,book,Surf,Scat,Cont,Imag,popt,varc1,varc2,varc3,varc4,specifar import numpy as np import math import xlwt from numpy import linalg as LA if 'figures' in log_flag: popt = [0]*len(popt) if Cont.get(): popt[7] = 1 if Surf.get(): popt[5] = 1 if Scat.get(): popt[4] = 1 if Imag.get(): popt[3] = 1 # text format tags txt.tag_config("n", background="#e7efff", foreground="red") txt.tag_config("a", foreground="black") txt.tag_config("w", background="#ffffff", foreground="red") label = tk.Label(root, text="T") font = tkFont.Font(font=label['font']) txt.tag_config("b", foreground="black", font=(font.actual()['family'], '-'+str(font.actual()['size']),"bold")) txt.tag_raise("sel") eo = 'Interpolation method is: %(interp_method)s \n' \ 'The method for the results is: %(log_flag)s' % locals() txt.insert('1.0',eo+'\n',("n", "a")) txt.mark_set(tk.INSERT,'1.0') if 'Uncertainty' in runopt: if ('95' in args[0]) & ('Str' in args[0]): fs = 1.25 elif ('95' in args[0]) & ('Uns' in args[0]): fs = 3.0 elif ('99' in args[0]) & ('Str' in args[0]): fs = 1.65 elif ('99' in args[0]) & ('Uns' in args[0]): fs = 4.0 eo = 'Factor of safety: %s \n' % (fs,) txt.insert(tk.END,eo,("n", "a")) # load data x = odat(fname) eo = 'Data is loaded: %s \n' % (fname,) txt.insert(tk.END,eo) # sort mesh qualities smq = [(i, x[i].shape[0]) for i in range(3)] smq = sorted(smq, key=lambda shape: shape[1]) coarse,mid,fine = [x[smq[i][0]] for i in range(3)] # manage data xc,zc,pc = (coarse[:,w] for w in range(3)) xm,zm,pm = (mid[:,w] for w in range(3)) xf,zf,pf = (fine[:,w] for w in range(3)) # record exact solution if 'Code' in runopt: pce, pme, pfe = (w[:,3] for w in [coarse,mid,fine]) pc,pm,pf = pc-pce, pm-pme, pf-pfe hc,hf = (np.sqrt(1. / len(w)) for w in [xc,xf]) # convert integer values to floats def conf(*args): for w in args: yield w.astype('float') xc,zc,pc = conf(xc,zc,pc) xm,zm,pm = conf(xm,zm,pm) xf,zf,pf = conf(xf,zf,pf) # exclue values outside of user specified ranges if specifar.get(): xc,zc,pc = excut(xc,zc,pc,varc1.get(),varc2.get(),varc3.get(), varc4.get()) def vspa(x): x = np.unique(x.ravel().tolist()[0]) x = abs(x[1] - x[0]) return x xsp,zsp = vspa(xm),vspa(zm) xm,zm,pm = excut(xm,zm,pm,varc1.get()-xsp,varc2.get()+xsp, varc3.get()-zsp,varc4.get()+zsp) xsp,zsp = vspa(xf),vspa(zf) xf,zf,pf = excut(xf,zf,pf,varc1.get()-xsp,varc2.get()+xsp, varc3.get()-zsp,varc4.get()+zsp) # determin number of unique values num_c_x,num_c_y,num_m_x,num_m_y,num_f_x,num_f_y \ = (unval(w) for w in [xc,zc,xm,zm,xf,zf]) # check if unstructured ustruc = False if (num_c_x * num_c_y > len(xc) and num_m_x * num_m_y > len(xm) and num_f_x * num_f_y > len(xf)): ustruc = True eo = 'Unstructured Input Mesh' txt.insert(tk.END,'\n'+eo,("n", "a")) # don't plot image popt[3] = 0 else: eo = 'Structured Input Mesh' txt.insert(tk.END,eo+'\n',("n", "a")) if ustruc: rf = (float(num_m_x)/float(num_c_x))**(1./2.) rc = (float(num_f_x)/float(num_m_x))**(1./2.) else: # refinement ratios by mesh spacing # calculate rc x,y = (np.unique(w.ravel().tolist()[0]) for w in [xc,xm]) rc = abs(x[1]-x[0])/abs(y[1]-y[0]) x,y = (np.unique(w.ravel().tolist()[0]) for w in [zc,zm]) rc = (rc*abs(x[1]-x[0])/abs(y[1]-y[0]))**0.5 # calculate rf x,y = (np.unique(w.ravel().tolist()[0]) for w in [xm,xf]) rf = abs(x[1]-x[0])/abs(y[1]-y[0]) x,y = (np.unique(w.ravel().tolist()[0]) for w in [zm,zf]) rf = (rf*abs(x[1]-x[0])/abs(y[1]-y[0]))**0.5 # refinement ratios by numbers of nodes in meshes #rf = math.sqrt(float(num_f_x)*float(num_f_y)/float(num_m_x)/ \ #float(num_m_y)) #rc = math.sqrt(float(num_m_x)*float(num_m_y)/float(num_c_x)/ \ #float(num_c_y)) eo = 'rc = %(rc)s\nrf = %(rf)s' % locals() txt.insert(tk.END,eo+'\n') # this limit (4/3) is suggested by ASME V&V 20-2009, Roache and Ghia if rf<4./3. or rc<4./3.: eo = 'Refinment ratio must be greater than 4/3! \n' \ 'rc =%(rc)0.3f\n' \ 'rf =%(rf)0.3f' % locals() txt.insert(tk.END,eo+'\n') if not ustruc: # arrange into matracies # coarse mesh arrdimch(num_c_y, num_c_x, xc,'Coarse') xc,zc,pc = (np.reshape(w,(num_c_y,num_c_x)) for w in [xc,zc,pc]) # medium mesh arrdimch(num_m_y, num_m_x, xm,'Medium') xm,zm,pm = (np.reshape(w,(num_m_y,num_m_x)) for w in [xm,zm,pm]) # fine mesh arrdimch(num_f_y, num_f_x, xf,'Fine') xf,zf,pf = (np.reshape(w,(num_f_y,num_f_x)) for w in [xf,zf,pf]) if 'figures' in log_flag: plotmain(popt,xc,zc,pc,'Coarse mesh') plotmain(popt,xm,zm,pm,'Medium mesh') plotmain(popt,xf,zf,pf,'Fine mesh') book = xlwt.Workbook(encoding="utf-8") sheet1 = book.add_sheet("Coarse mesh") for i in range(xc.shape[0]): for j in range(xc.shape[1]): sheet1.write(i, j, pc[i,j]) XI, YI = np.asarray(xc), np.asarray(zc) #interpolate refined calculations to locations of coarse mesh if ustruc: pmc = inter_fun_un(xm,zm,pm,XI,YI,interp_method) if runopt == 'Code': pfc = inter_fun_un(xf,zf,pf,xm,zm,interp_method) else: pfc = inter_fun_un(xf,zf,pf,XI,YI,interp_method) else: pmc = inter_fun(xm,zm,pm,XI,YI,interp_method) if runopt == 'Code': pfc = inter_fun(xf,zf,pf,xm,zm,interp_method) else: pfc = inter_fun(xf,zf,pf,XI,YI,interp_method) if 'figures' in log_flag: ptx = 'Interpolations Corresponding to' plotmain(popt,xc,zc,pmc,'Mid %s Coarse' % (ptx,)) if runopt == 'Code': plotmain(popt,xm,zm,pfc,'Fine %s Mid' % (ptx,)) else: plotmain(popt,xc,zc,pfc,'Fine %s Coarse' % (ptx,)) sheet2 = book.add_sheet("Interpolated Mid") sheet3 = book.add_sheet("Interpolated Fine") for i in range(pmc.shape[0]): for j in range(pmc.shape[1]): sheet2.write(i, j, pmc[i,j]) for i in range(pfc.shape[0]): for j in range(pfc.shape[1]): sheet3.write(i, j, pfc[i,j]) if ('Solution' in runopt) | ('Uncertainty' in runopt): # global norms errc = pmc - pc errf = pfc - pmc if 'figures' in log_flag: plotmain(popt,xc,zc,errc,'Difference Between Mid and Coarse') plotmain(popt,xc,zc,errf,'Difference Between Fine and Mid') sheet4 = book.add_sheet("Mid - Coarse") sheet5 = book.add_sheet("Fine - Mid") for i in range(errc.shape[0]): for j in range(errc.shape[1]): sheet4.write(i, j, errc[i,j]) sheet5.write(i, j, errf[i,j]) # calculate convergence accross entire mesh if ustruc: con_p = [con_p.append(calc_con(errc[i],errf[i],rc,rf)) for i in range(xc.shape[0])] else: if rf == rc: con_p = np.log(abs(errf)/abs(errc))/np.log(rf) con_p = abs(con_p) NanLoc = np.isnan(con_p) con_p[NanLoc] = 0. # force nans to zero else: con_p = matcon(errc,errf,rc,rf) if 'Solution' in runopt: if 'figures' in log_flag: # plot values equal to and below 4 ccon_p = con_p.copy() ccon_p[ccon_p > 4] = 4 plotmain(popt,xc,zc,np.array(ccon_p),'Order of Accuracy') sheet6 = book.add_sheet('Order of Accuracy') for i in range(con_p.shape[0]): for j in range(con_p.shape[1]): sheet6.write(i, j, con_p[i,j]) # reduce extreme convergence values to 10. con_p[con_p > 10.] = 10. if not ustruc: # calculate relative error if runopt == 'Code': p_exact = (np.multiply(np.power(rf,con_p),pfc) - pmc) / \ (np.power(rf,con_p) - 1.) relative_err = abs((p_exact - pfc) / (p_exact + 1e-12)) if 'figures' in log_flag: plotmain(popt,xc,zc,np.array(relative_err),'Relative Error') sheet6 = book.add_sheet("Relative Error") for i in range(relative_err.shape[0]): for j in range(relative_err.shape[1]): sheet6.write(i, j, relative_err[i,j]) # calculate GCI if 'Uncertainty' in runopt: Gcon_p = con_p.copy() Gcon_p[Gcon_p < 1.] = 1. # assume order of accuracy of at least one GCI = np.matrix([[abs(GCI_fine(pfc[i,j],pmc[i,j],rf,Gcon_p[i,j],fs)[0]) for j in range(pmc.shape[1]) ]for i in range(pmc.shape[0])]) p_up = np.multiply(pfc,(1. + GCI)) p_down = np.multiply(pfc,(1. - GCI)) gci_error = np.multiply(pfc,GCI) sheet7 = book.add_sheet("Upper band error") sheet8 = book.add_sheet("Lower band error") sheet9 = book.add_sheet("Order of Accuracy") for i in range(p_up.shape[0]): for j in range(p_up.shape[1]): sheet7.write(i, j, p_up[i,j]) sheet8.write(i, j, p_down[i,j]) sheet9.write(i, j, con_p[i,j]) if 'figures' in log_flag: plotmain(popt,xc,zc,gci_error, 'Absolute error based on Roache GCI') plotmain(popt,xc,zc,p_up, 'Upper band of calculation error based on Roache GCI') plotmain(popt,xc,zc,p_down, 'Lower band of calculation error based on Roache GCI') else: pass if 'Solution' in runopt: sheet6 = book.add_sheet("Order of Accuracy") for i in range(con_p.shape[0]): for j in range(con_p.shape[1]): sheet6.write(i, j, con_p[i,j]) # norms global def verot(nm,fmt,L1c,L2c,Linfc,L1f,L2f,Linff): txt.insert(tk.END,32*'='+' \n',(fmt, "a")) txt.insert(tk.END,nm + ' Domain Norms \n',(fmt, "b")) eo = 'L1P1 = %(L1c)E \n' \ 'L2P1 = %(L2c)E \n' \ 'LinfP1 = %(Linfc)E \n' \ 'L1P2 = %(L1f)E \n' \ 'L2P2 = %(L2f)E \n' \ 'LinfP2 = %(Linff)E' % locals() txt.insert(tk.END,eo+'\n',(fmt, "a")) def conot(nm,L1_con,L2_con,L_inf_con,*args): eo = '%(nm)sL1 convergence: %(L1_con)0.4f \n' \ '%(nm)sL2 convergence: %(L2_con)0.4f \n' \ '%(nm)sL_inf convergence: %(L_inf_con)0.4f' % locals() try: eo += '\n' + nm + 'Median convergence: '+ str('%0.4f' %args[0]) \ + '\n' + nm + 'Average convergence: '+ str('%0.4f' %args[1]) except: pass return eo def domcals(nm,fmt,L1c,L2c,Linfc,L1f,L2f,Linff,med_con,ave_con): if 'Long log' in log_flag: # OP norms if ('Solution' in runopt) | ('Uncertainty' in runopt): txt.insert(tk.END,32*'='+' \n',(fmt, "a")) txt.insert(tk.END,nm + ' Domain Norms \n',(fmt, "b")) eo = 'L1c = %(L1c)0.4e \n' \ 'L2c = %(L2c)0.4e \n' \ 'Linfc = %(Linfc)0.4e \n' \ 'L1f = %(L1f)0.4e \n' \ 'L2f = %(L2f)0.4e \n' \ 'Linff = %(Linff)0.4e' % locals() txt.insert(tk.END,eo+'\n',(fmt, "a")) if 'Solution' in runopt: # global convergence L1_con = calc_con(L1c,L1f,rc,rf) L2_con = calc_con(L2c,L2f,rc,rf) L_inf_con = calc_con(Linfc,Linff,rc,rf) txt.insert(tk.END,24*'-'+' \n',(fmt, "a")) txt.insert(tk.END,'Order of Accuracy \n',(fmt, "b")) eo = conot('',L1_con,L2_con,L_inf_con,med_con,ave_con) txt.insert(tk.END,eo+'\n',(fmt, "a")) def vdomcals(nm,fmt,L1_ec,L2_ec,Linf_ec,L1c,L2c,Linfc,L1f,L2f,Linff): if 'Long log' in log_flag: # OP norms eo = verot(nm,fmt,L1c,L2c,Linfc,L1f,L2f,Linff) # global convergence def obcon(mt,L1_con,L2_con,L_inf_con): txt.insert(tk.END,24*'-'+' \n',(fmt, "a")) txt.insert(tk.END,'Order of Accuracy \n',(fmt, "b")) txt.insert(tk.END,conot(mt,L1_con,L2_con,L_inf_con)+'\n', (fmt, "a")) L1_con,L2_con,L_inf_con = \ (np.log(w)/np.log(rf) for w in [L1c/L1f,L2c/L2f,Linfc/Linff]) obcon('P1 ',L1_con,L2_con,L_inf_con) L1_con,L2_con,L_inf_con = \ (np.log(w)/np.log(rc) for w in [L1_ec/L1c,L2_ec/L2c,Linf_ec/Linfc]) obcon('P2 ',L1_con,L2_con,L_inf_con) if ('Solution' in runopt) | ('Uncertainty' in runopt): # Global Domain L1c,L2c,Linfc = (LA.norm(np.asarray(errc.ravel())[0],w) for w in [1,2,np.inf]) L1f,L2f,Linff = (LA.norm(errf.ravel(),w) for w in [1,2,np.inf]) med_con = np.median(np.asarray(con_p.ravel())) ave_con = np.average(np.asarray(con_p.ravel())) domcals('Global',"n",L1c,L2c,Linfc,L1f,L2f,Linff,med_con,ave_con) # Inner Domain if not ustruc: L1c,L2c,Linfc = (LA.norm(np.asarray(errc[1:-1,1:-1].ravel())[0],w) for w in [1,2,np.inf]) L1f,L2f,Linff = (LA.norm(errf[1:-1,1:-1].ravel(),w) for w in [1,2,np.inf]) med_con = np.median(np.asarray(con_p[1:-1,1:-1].ravel())) ave_con = np.average(np.asarray(con_p[1:-1,1:-1].ravel())) domcals('Inner',"a",L1c,L2c,Linfc,L1f,L2f,Linff,med_con,ave_con) # Boundary Domain errc[1:-1,1:-1] = 0. errf[1:-1,1:-1] = 0. con_p[1:-1,1:-1] = 999. icon = np.sort(np.asarray(con_p.ravel())) L1c,L2c,Linfc = (LA.norm(np.asarray(errc.ravel())[0],w) for w in [1,2,np.inf]) L1f,L2f,Linff = (LA.norm(errf.ravel(),w) for w in [1,2,np.inf]) icon = icon.ravel() med_con = np.median(icon[0:np.max(np.where(icon<999.))].ravel()) ave_con = np.average(icon[0:np.max(np.where(icon<999.))].ravel()) domcals('Boundary',"n",L1c,L2c,Linfc,L1f,L2f,Linff,med_con,ave_con) else: # Global Domain L1_ec,L2_ec,Linf_ec = (LA.norm(np.asarray(pc.ravel())[0],w) for w in [1,2,np.inf]) L1c,L2c,Linfc = (LA.norm(pmc.ravel(),w) for w in [1,2,np.inf]) L1f,L2f,Linff = (LA.norm(pfc.ravel(),w) for w in [1,2,np.inf]) vdomcals('Global',"n",L1_ec,L2_ec,Linf_ec,L1c,L2c,Linfc,L1f,L2f,Linff) # Inner Domain if not ustruc: L1_ec,L2_ec,Linf_ec = \ (LA.norm(np.asarray(pc[1:-1,1:-1].ravel())[0],w) for w in [1,2,np.inf]) L1c,L2c,Linfc = (LA.norm(pmc[1:-1,1:-1].ravel(),w) for w in [1,2,np.inf]) L1f,L2f,Linff = (LA.norm(pfc[1:-1,1:-1].ravel(),w) for w in [1,2,np.inf]) vdomcals('Inner',"a",L1_ec,L2_ec,Linf_ec,L1c,L2c,Linfc,L1f,L2f, Linff) # Boundary Domain pc[1:-1,1:-1] = 0. pmc[1:-1,1:-1] = 0. pfc[1:-1,1:-1] = 0. L1_ec,L2_ec,Linf_ec = (LA.norm(np.asarray(pc.ravel())[0],w) for w in [1,2,np.inf]) L1c,L2c,Linfc = (LA.norm(pmc.ravel(),w) for w in [1,2,np.inf]) L1f,L2f,Linff = (LA.norm(pfc.ravel(),w) for w in [1,2,np.inf]) vdomcals('Boundary',"n",L1_ec,L2_ec,Linf_ec,L1c,L2c,Linfc,L1f,L2f, Linff) ####################### # Graphical Interface # ####################### import Tkinter as tk import ttk import tkFont def rmrw(self,r): for label in self.grid_slaves(): if int(label.grid_info()['row']) > r: label.destroy() return self def wrng(wrn,pl): rmrw(root,pl) butttons(root,pl+1,'nm') txt = tk.Text(relief=tk.SUNKEN) txt.config(width=30,height=3,background="#dd4e4c") txt.grid(row=pl,column=0,columnspan=2,sticky=tk.W+tk.E+tk.N+tk.S,padx=5) txt.tag_config("r", background="#dd4e4c", foreground="#dd4e4c") txt.tag_config("e", foreground="black", justify="center") txt.insert('1.0',wrn, ("r", "e")) def addmenu(): global rw,var1, var2, var3, var4, tools, Tmen rmrw(root,rw-1) if 'Uncertainty' in var1.get(): rw += 4 # GCI Confidence Level w4 = ttk.Label(root, text="GCI Confidence Level:") w4.grid(row=5,column=0,sticky=tk.E,padx=5) var4 = tk.StringVar() opt4 = ttk.Combobox(root,textvariable=var4,state='readonly', foreground='blue',width=32) opt4['values'] = ('95% [1.25] (Structured Refinement)', '95% [3.00] (Unstructured Refinement)', '99% [1.65] (Structured Refinement)', '99% [4.00] (Unstructured Refinement)') opt4.grid(row=5,column=1,sticky=tk.W) var4.set(20*' ') else: rw += 2 butttons(root,rw,'nm') # Interpolation w2 = ttk.Label(root, text="Interpolation:") w2.grid(row=rw-2,column=0,sticky=tk.E,padx=5) var2 = tk.StringVar() opt2 = ttk.Combobox(root,textvariable=var2,state='readonly', foreground='blue') opt2['values'] = ('Linear', 'Spline', 'Cubic') opt2.grid(row=rw-2,column=1,sticky=tk.W) var2.set(20*' ') # Output Options w3 = ttk.Label(root, text="Output Options:") w3.grid(row=rw-1,column=0,sticky=tk.E,padx=5) var3 = tk.StringVar() opt3 = ttk.Combobox(root,textvariable=var3,state='readonly', foreground='blue') opt3['values'] = ('Short log', 'Short log and figures', 'Long log', 'Long log and figures') opt3.grid(row=rw-1,column=1,sticky=tk.W) var3.set(20*' ') def addmenu0_1(): global rw, var3_1, var4_1, spcu rmrw(root,3) rw += 2 butttons(root,rw,'nm') # Generate Plots var3_1 = tk.StringVar() rad1 = ttk.Frame(root) rad1.grid(row=4,column=1,sticky=tk.W) opt3 = ttk.Radiobutton(rad1, text='Yes', variable=var3_1, value='Yes') opt3.pack(side=tk.LEFT) opt4 = ttk.Radiobutton(rad1, text='No', variable=var3_1, value='No') var3_1.set('No') opt4.pack(side=tk.LEFT) w3 = ttk.Label(root, text=" Generate Plots:") w3.grid(row=4,column=0,sticky=tk.E,padx=5) # Specify Cutoff var4_1 = tk.StringVar() rad2 = ttk.Frame(root) rad2.grid(row=5,column=1,sticky=tk.W) opt3 = ttk.Radiobutton(rad2, command=addmenu2_1, text='Yes', variable=var4_1, value='Yes') opt3.pack(side=tk.LEFT) opt4 = ttk.Radiobutton(rad2, command=addmenu2_1, text='No', variable=var4_1, value='No') var4_1.set('No') opt4.pack(side=tk.LEFT) w3 = ttk.Label(root, text="Specify Cutoff:") w3.grid(row=5,column=0,sticky=tk.E,padx=5) spcu = False def addmenu2_1(): global rw, var5_1, var6_1, spcu, var4_1 if not spcu and 'Yes' in var4_1.get() and cont: spcu = True rmrw(root,5) rw += 1 butttons(root,rw,'nm') var5_1 = tk.StringVar() w3 = ttk.Label(root, text="Upper Cut (%):") w3.grid(row=6,column=0,sticky=tk.E,padx=5) opt3 = ttk.Entry(root,textvariable=var5_1,foreground='blue') var5_1.set('100') opt3.grid(row=6,column=1,sticky=tk.W) for label in root.grid_slaves(): if int(label.grid_info()['row'])>6: label.grid_forget() rw += 1 butttons(root,rw,'nm') var6_1 = tk.StringVar() w4 = ttk.Label(root, text="Lower Cut (%):") w4.grid(row=7,column=0,sticky=tk.E,padx=5) opt4 = ttk.Entry(root,textvariable=var6_1,foreground='blue') var6_1.set('0') opt4.grid(row=7,column=1,sticky=tk.W) if spcu and 'No' in var4_1.get() and cont: spcu = False rw += -2 butttons(root,rw,'nm') def addmenu3(): global rw try: Verification(var2.get(),var3.get(),var1.get(),var4.get()) except ImportError: wrng('\nImport Error. Check for missing dependencies',rw) except ArrayLengthError as e: wrng(e.value,rw) except: wrng('\nFile input error',rw) else: rmrw(root,rw-1) rw += 1 if 'Uncertainty' in var1.get(): ht,wd = 15,55 else: ht,wd = 25,55 sb = ttk.Scrollbar() sb.config(command=txt.yview) txt.config(yscrollcommand=sb.set,width=wd,height=ht) sb.grid(row=rw-1,column=2,sticky=tk.W+tk.N+tk.S) txt.grid(row=rw-1,column=0,columnspan=2,sticky=tk.W+tk.E+tk.N+tk.S, padx=5) root.resizable(tk.TRUE,tk.TRUE) butttons(root,rw,'en') root.columnconfigure(0, weight=1) root.columnconfigure(1, weight=1) root.rowconfigure(rw-1, weight=1) def addmenu3_1(): global rw,txt,var3_1,var4_1,var5_1,var6_1,Validation,ValidationPlt if var3_1.get() == 'Yes': ValidationPlt() if var4_1.get() == 'Yes': ht,wd = 20,55 else: ht,wd = 11,55 sb = ttk.Scrollbar() txt = tk.Text(relief=tk.SUNKEN) sb.config(command=txt.yview) txt.config(yscrollcommand=sb.set,width=wd,height=ht) try: if len(var5_1.get()) > 0: Validation(float(var5_1.get())/100.,float(var6_1.get())/100.) else: Validation(0.,0.) except ImportError: wrng('\nImport Error. Check for missing dependencies',rw) except: wrng('\nFile format error during read',rw) else: if var4_1.get() == 'Yes': rmrw(root,7) rw += 1 else: rmrw(root,5) rw += 3 sb.grid(row=8,column=2,sticky=tk.W+tk.N+tk.S) txt.grid(row=8,column=0,columnspan=2,sticky=tk.W+tk.E+tk.N+tk.S,padx=5) root.columnconfigure(0, weight=1) root.columnconfigure(1, weight=1) root.rowconfigure(rw-1, weight=1) root.resizable(tk.TRUE,tk.TRUE) butttons(root,rw,'en') def openfl(): from tkFileDialog import askopenfilename global fname, rw rmrw(root,2) rw += 1 butttons(root,rw,'nm') w3 = ttk.Label(root, text="Input File:") w3.grid(row=3,column=0,sticky=tk.E,padx=5) fltp = ('*.xlsx','*.xls','*.h5','*.csv','*.txt','*.dat') fname = askopenfilename(filetypes=[('Input',fltp)], title='Select Run File') if len(fname) > 0: w4 = ttk.Label(root, text=fname.split('/')[-1], foreground='blue') w4.grid(row=3,column=1,sticky=tk.W) if 'Validation' in var1.get(): addmenu0_1() else: addmenu() else: wrng('\nAn input file must be selected',rw) def svtext():# write output to text file from tkFileDialog import asksaveasfilename fname = asksaveasfilename(filetypes=[('Text',('*.txt'))], title='Text Output Save As') if fname: with open(fname,'w') as file: file.write(txt.get(1.0,tk.END)) def svmesh():# write meshes to spreadsheet file from tkFileDialog import asksaveasfilename fname = asksaveasfilename(filetypes=[('Workbook',('*.xls'))], title='Mesh Output Save As') if fname: book.save(fname) def about():# VAVUQ short description abo = tk.Toplevel(root,background='white') abo.title('About VAVUQ') mtxt = 'VAVUQ' msg = ttk.Label(abo,text=mtxt,justify='center',font='TkCaptionFont', background='white') msg.pack() mtxt = 'Version: 2.4' msg = ttk.Label(abo,text=mtxt,justify='center',font='TkHeadingFont', background='white') msg.pack() mtxt = """ VAVUQ (Verification And Validation and Uncertainty Quantification) can be used as a general purpose program for verification, validation, and uncertainty quantification. The motivation for the creation of and continued development of the program is to provide a cost effective and easy way to assess the quality of computational approximations. The hope is that the methods used in this program can be applied to fields such as civil engineering where they are currently often underutilized. This code was created through efforts from Bombardelli's group and Dr. Bill Fleenor at the University of California Davis. The creators belong to the Civil & Environmental Engineering (CEE) Department, the Center for Watershed Sciences (CWS), and the Delta Solution Team (DST). The main code development is headed by Kaveh Zamani and James E. Courtney. """ msg = ttk.Label(abo,text=mtxt,background='white') #msg.config(bg='white',font=('times',12,'italic')) x = (root.winfo_screenwidth() - root.winfo_reqwidth()) / 2 y = (root.winfo_screenheight() - root.winfo_reqheight()) / 2 abo.geometry("+%d+%d" % (x, y)) msg.pack() def state(): global var1,var2,var3,var3_1,var5_1,var6_1,clr,rw,txt for label in root.grid_slaves(): if (int(label.grid_info()['row'])<rw and int(label.grid_info()['column']) == 1): try: label['state'] = 'disabled' except: pass if clr: # Clear event clr = False openfl() else: if 'Validation' in var1.get(): if not fname: openfl() elif len(var3_1.get()) == 0: addmenu0_1() elif 'Yes' in var4_1.get(): if len(var5_1.get()) > 0: if var5_1.get() > var6_1.get(): butttons(root,rw,'lb') root.after(10,addmenu3_1) else: wrng('\nUpper cut must be greater than the lower',8) else: addmenu2_1() else: rmrw(root,rw) butttons(root,rw,'lb') root.after(10,addmenu3_1) else: # Verification if not fname: openfl() else: txt = tk.Text(relief=tk.SUNKEN) rmrw(root,rw) butttons(root,rw,'lb') root.after(10,addmenu3) def stpr(): root.destroy() def clear(): global clr,var2,var3,var3_1,var4_1,var5_1,var6_1,rw,cont opt1['state'] = 'readonly' clr = True rmrw(root,2) var2,var3,var3_1,var4_1,var5_1,var6_1 = (tk.StringVar() for _ in xrange(6)) root.resizable(tk.FALSE, tk.FALSE) butttons(root,3,'nm') rw = 3 for i in range(7): root.rowconfigure(i, weight=0) root.winfo_toplevel().wm_geometry("") cont = True if specifar: specifar.set(0) for i in range(10): root.columnconfigure(i, weight=0) root.rowconfigure(i, weight=0) def szgr(self,rw): self.sz = ttk.Sizegrip() self.sz.grid(row=rw,column=2,sticky=tk.SE) def butttons(self,rw,o): global cont style = ttk.Style() style.configure("E.TButton", width = 7) style.map("E.TButton", foreground=[('!active', 'black'), ('pressed', 'red'), ('active', 'blue')], background=[('!active', '#71ee6d'),('pressed', 'disabled', 'black'), ('active', '#71ee6d')] ) style.configure("C.TButton", width = 7) style.map("C.TButton", foreground=[('!active', 'black'),('pressed', 'red'), ('active', 'blue')], background=[('!active', '#b8fff3'),('pressed', 'disabled', 'black'), ('active', '#b8fff3')] ) style.configure("X.TButton", width = 7) style.map("X.TButton", foreground=[('!active', 'black'),('pressed', 'red'), ('active', 'blue')], background=[('!active', '#e2664c'),('pressed', 'disabled', 'black'), ('active', '#e2664c')] ) rmrw(self,rw-1) ttk.Button(self, command=clear, text='Clear', style="C.TButton").grid(row=rw,column=1,sticky=tk.W,padx=5, pady=5) ttk.Button(self, command=stpr, text='Exit', style="X.TButton").grid(row=rw,column=0,sticky=tk.E) if o == 'lb': ttk.Label(self, text="Processing...").grid(row=rw,column=1,sticky=tk.E, padx=5) elif o == 'nm': ebutton = ttk.Button(self, command=state, text='Enter', style="E.TButton") ebutton.grid(row=rw,column=1,sticky=tk.E,padx=5) elif o == 'en': ttk.Button(self, command=state, text='Enter', state=tk.DISABLED).grid(row=rw,column=1,sticky=tk.E,padx=5) szgr(self,rw) cont = False def bug(): def cbug(event): import webbrowser import warnings with warnings.catch_warnings(): site = 'https://github.com/VAVUQ/VAVUQ' webbrowser.open_new(site) abo.destroy() abo = tk.Toplevel(root) abo.title('Contribute/Report Bug...') mtxt = 'Please report any bugs or contribute to VAVUQ by visiting the' \ ' following repository:' msg = tk.Message(abo,text=mtxt, width=250) msg.config(font=('times',12)) link = ttk.Label(abo, text="VAVUQ Repository",foreground="blue", font=('times',12,'italic'), cursor="hand2") msg.pack() link.pack() link.bind("<Button-1>", cbug) x = (root.winfo_screenwidth() - root.winfo_reqwidth()) / 2 y = (root.winfo_screenheight() - root.winfo_reqheight()) / 2 abo.geometry("+%d+%d" % (x, y)) def doc(): def cdoc(event): import webbrowser import warnings with warnings.catch_warnings(): site = 'http://vavuq.org' webbrowser.open_new(site) abo.destroy() abo = tk.Toplevel(root) abo.title('Documentation') mtxt = 'Visit the following web page for the VAVUQ documentation:' msg = tk.Message(abo,text=mtxt, width=250) msg.config(font=('times',12)) link = ttk.Label(abo, text="Vavuq.org",foreground="blue", font=('times',12,'italic'), cursor="hand2") msg.pack() link.pack() link.bind("<Button-1>", cdoc) x = (root.winfo_screenwidth() - root.winfo_reqwidth()) / 2 y = (root.winfo_screenheight() - root.winfo_reqheight()) / 2 abo.geometry("+%d+%d" % (x, y)) def copt(): global rw,varc1,varc2,varc3,varc4 if specifar.get() and cont: rmrw(root,rw-1) varc1,varc2,varc3,varc4 = (tk.DoubleVar() for _ in xrange(4)) opt = ttk.Label(root, text="X min | X max:") opt.grid(row=rw,column=0,sticky=tk.E,padx=5) cent = ttk.Frame(root) cent.grid(row=rw,column=1,sticky=tk.W) op1 = ttk.Entry(cent,textvariable=varc1,width=11,foreground='blue') op1.pack(side=tk.LEFT) op2 = ttk.Entry(cent,textvariable=varc2,width=11,foreground='blue') op2.pack(side=tk.LEFT) opt = ttk.Label(root, text="Y min | Y max:") opt.grid(row=rw+1,column=0,sticky=tk.E,padx=5) cent2 = ttk.Frame(root) cent2.grid(row=rw+1,column=1,sticky=tk.W) op3 = ttk.Entry(cent2,textvariable=varc3,width=11,foreground='blue') op3.pack(side=tk.LEFT) op4 = ttk.Entry(cent2,textvariable=varc4,width=11,foreground='blue') op4.pack(side=tk.LEFT) rw += 2 butttons(root,rw,'nm') elif cont: rmrw(root,rw-3) rw += -2 butttons(root,rw,'nm') global cont cont = True root = tk.Tk() root.title("VAVUQ") menubar = ttk.Frame(root) menubar.grid(row=0,column=0,columnspan=2,sticky=tk.W) Fmen = tk.Menubutton(menubar, text='File', underline=0) Fmen.pack(side=tk.LEFT) fle = tk.Menu(Fmen,tearoff=0) fle.add_command(command=clear,label='Clear', underline=0) fle.add_separator() fle.add_command(command=svtext, label='Save Output Text As..', underline=12) fle.add_command(command=svmesh, label='Save Output Meshes As..', underline=12) fle.add_separator() fle.add_command(command=stpr, label='Quit', underline=0) Fmen.config(menu=fle) Pmen = tk.Menubutton(menubar, text='Plotting', underline=0) Pmen.pack(side=tk.LEFT) plm = tk.Menu(Pmen, tearoff=0) Pmen.config(menu=plm) #Verification plotting submenu vasub = tk.Menu(Pmen, tearoff=0) Surf,Scat,Cont,Imag = (tk.BooleanVar() for _ in xrange(4)) Surf.set(True) vasub.add_checkbutton(label='Surface Plot', onvalue=1, offvalue=0, variable=Surf) vasub.add_checkbutton(label='Scatter Plot', onvalue=1, offvalue=0, variable=Scat) vasub.add_checkbutton(label='Contour Plot', onvalue=1, offvalue=0, variable=Cont) vasub.add_checkbutton(label='Image Plot', onvalue=1, offvalue=0, variable=Imag) plm.add_cascade(label='Verification', menu=vasub, underline=0) # Validation plotting submenu vesub = tk.Menu(Pmen, tearoff=0) Obvc,Obwc,Obmc = (tk.BooleanVar() for _ in xrange(3)) Obvc.set(True) vesub.add_checkbutton(label='Observed V.S. Calc Plot', onvalue=1, offvalue=0, variable=Obvc) vesub.add_checkbutton(label='Observed W/ Calc Plot', onvalue=1, offvalue=0, variable=Obwc) vesub.add_checkbutton(label='Observed - Calc Plot', onvalue=1, offvalue=0, variable=Obmc) plm.add_cascade(label='Validation', menu=vesub, underline=0) specifar = tk.BooleanVar() Tmen = tk.Menubutton(menubar, text='Tools', underline=0) Tmen.pack(side=tk.LEFT) tools = tk.Menu(Tmen,tearoff=0) tools.add_checkbutton(command=copt, label='Cut Mesh', onvalue=1, offvalue=0, variable=specifar) Tmen.config(menu=tools) Hmen = tk.Menubutton(menubar, text='Help', underline=0) Hmen.pack(side=tk.LEFT) hlp = tk.Menu(Hmen,tearoff=0) hlp.add_command(command=doc, label='Documentation', underline=0) hlp.add_command(command=bug, label='Contribute/Report Bug...', underline=0) hlp.add_command(command=about, label='About VAVUQ', underline=0) Hmen.config(menu=hlp) root.sp = ttk.Separator(orient=tk.HORIZONTAL) root.sp.grid(row=1,column=0,columnspan=3, sticky=tk.EW) rw = 2 var1,var2,var3,var4,var3_1,var4_1,var5_1,var6_1 = (tk.StringVar() for _ in xrange(8)) clr,fname,fname = False, False, False w1 = ttk.Label(root, text=" Run Option:") w1.grid(row=rw,column=0,sticky=tk.E,padx=5) def kpr(evt): if cont: state() opt1 = ttk.Combobox(root,textvariable=var1,state='readonly',foreground='blue', width=34) opt1['values'] = ('Validation', 'Code Verification (MMS, MES, or DM)', 'Solution Verification', 'Uncertainty Quantification') opt1.bind('<<ComboboxSelected>>', kpr) opt1.grid(row=rw,column=1,sticky=tk.W) var1.set(55*' ') rw += 1 butttons(root,rw,'nm') root.withdraw() root.update_idletasks() x = (root.winfo_screenwidth() - root.winfo_reqwidth()) / 2 y = (root.winfo_screenheight() - root.winfo_reqheight()) / 2 - 250 root.geometry("+%d+%d" % (x, y)) root.deiconify() root.resizable(tk.FALSE, tk.FALSE) root.bind("<Return>", kpr) root.focus_set() root.mainloop()
gpl-3.0
bsipocz/bokeh
sphinx/source/docs/tutorials/exercises/boxplot.py
22
2576
import numpy as np import pandas as pd from bokeh.plotting import figure, output_file, show # Generate some synthetic time series for six different categories cats = list("abcdef") score = np.random.randn(2000) g = np.random.choice(cats, 2000) for i, l in enumerate(cats): score[g == l] += i // 2 df = pd.DataFrame(dict(score=score, group=g)) # Find the quartiles, IQR, and outliers for each category groups = df.groupby('group') q1 = groups.quantile(q=0.25) q2 = groups.quantile(q=0.5) q3 = groups.quantile(q=0.75) iqr = q3 - q1 upper = q3 + 1.5*iqr lower = q1 - 1.5*iqr def outliers(group): cat = group.name return group[(group.score > upper.loc[cat][0]) | (group.score < lower.loc[cat][0])]['score'] out = groups.apply(outliers).dropna() # Prepare outlier data for plotting, we need and x (categorical) and y (numeric) # coordinate for every outlier. outx = [] outy = [] for cat in cats: # only add outliers if they exist if not out.loc[cat].empty: for value in out[cat]: outx.append(cat) outy.append(value) # EXERCISE: output static HTML file # create a figure with the categories as the default x-range p = figure(title="", tools="", background_fill="#EFE8E2", x_range=cats) # If no outliers, shrink lengths of stems to be no longer than the minimums or maximums qmin = groups.quantile(q=0.00) qmax = groups.quantile(q=1.00) upper.score = [min([x,y]) for (x,y) in zip(list(qmax.iloc[:,0]),upper.score) ] lower.score = [max([x,y]) for (x,y) in zip(list(qmin.iloc[:,0]),lower.score) ] # Draw the upper segment extending from the box plot using `p.segment` which # takes x0, x1 and y0, y1 as data p.segment(cats, upper.score, cats, q3.score, line_width=2, line_color="black") # EXERCISE: use `p.segment` to draw the lower segment # Draw the upper box of the box plot using `p.rect` p.rect(cats, (q3.score+q2.score)/2, 0.7, q3.score-q2.score, fill_color="#E08E79", line_width=2, line_color="black") # EXERCISE: use `p.rect` to draw the bottom box with a different color # OK here we use `p.rect` to draw the whiskers. It's slightly cheating, but it's # easier than using segments or lines, since we can specify widths simply with # categorical percentage units p.rect(cats, lower.score, 0.2, 0.01, line_color="black") p.rect(cats, upper.score, 0.2, 0.01, line_color="black") # EXERCISE: use `p.circle` to draw the outliers # EXERCISE: use `p.grid`, `p.axis`, etc. to style the plot. Some suggestions: # - remove the X grid lines, change the Y grid line color # - make the tick labels bigger show(p)
bsd-3-clause
oshikiri/shirimas
src/ShiriMas.py
1
8070
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'oshikiri' __email__ = '[email protected]' __date__ = '2015-02-19' import os import sys import re import string import MeCab import pandas as pd import sqlite3 from SlackBot.SlackBot import SlackBot columns = ['type', 'subtype', 'purpose', 'channel', 'ts', 'user', 'username', 'text'] small_kana = 'ァィゥェォャュョッ' large_kana = 'アイウエオヤユヨツ' re_hiragana = re.compile('[ぁ-ゔ]', re.U) def katakana(text): '''ひらがなをカタカナに置換 以下のページを参考にした: http://d.hatena.ne.jp/mohayonao/20101213/1292237816 ''' return re_hiragana.sub(lambda x: chr(ord(x.group(0)) + 0x60), text) def get_yomi(text): '''MeCabが出力したtextの読みを返す ''' tagger = MeCab.Tagger("-Ochasen") result = tagger.parse(text) yomi_list = [] for r in result.split('\n')[0:-2]: r_list = r.split('\t') yomi_list.append(r_list[1]) return ''.join(yomi_list) def yomi_shiritori(text): '''textのしりとり用の読みを返す関数 textの読みに以下の処理を適用したものを返す: 1 カタカナに正規化 2 伸ばす棒などを削除 3 小さいカタカナを大きくする Args =========== text : string 読みを取得したい単語 ''' # カッコとその中身と改行を無視 text = re.sub(r'(<[^>]+>|\([^)]+\)|\n)', '', text) yomi0 = get_yomi(text) yomi0 = katakana(yomi0) yomi0 = re.sub(r'[^ァ-ヴ]*', '', yomi0) yomi0 = yomi0.translate(str.maketrans(small_kana, large_kana)) return yomi0 class ShiriMas(SlackBot): '''shiritori bot for Slack shiritori-master ''' def __init__(self, botname, db_path, table_name, channel_name='shiritori'): super().__init__(botname) self.botname = botname self.table_name = table_name self.set_channel(channel_name) ## もともとSQLiteのファイルが存在しない場合, ## 初期化する必要があると判定 to_initialize = not os.path.exists(db_path) self.connect = sqlite3.connect(db_path) self.cursor = self.connect.cursor() if to_initialize: print('DBを初期化') self.initialize_db() def set_channel(self, channel_name): '''ShiriMasが投稿するchannelを指定する. 複数のchannelに投稿することは想定しにくいので, こうしておく. Args =========== channel_name: string 投稿するchannelの名前 (idではない) を指定する. とりあえず不正な値が設定されることは想定していない. ''' self.channel = super().get_channel_dict()[channel_name] def get_messages(self, count=1): '''Slackから最新のメッセージ(count)件を取得する Args =========== count : int, optional (default=1) 取得する件数 ''' return super().get_messages(channel=self.channel, count=count) def post_message(self, message): '''メッセージをpostする Args =========== message: string postするメッセージ ''' super().post_message(message, self.channel) def get_slack_newest_message(self): '''channelの中で最新のメッセージを取ってくる ''' return self.get_messages(count=1)[0] def get_db_newest_message(self): '''DBの中で最新のメッセージを取ってくる ''' query = ('SELECT * FROM {0} ' 'WHERE ts = (SELECT max(ts) FROM {0}) ' 'LIMIT 1').format(self.table_name) return pd.read_sql(query, self.connect).ix[0,:].to_dict() def initialize_db(self): '''DBの初期化 最新1000件のメッセージを取得してDBに追加する ''' messages = self.get_messages(count=1000) df = pd.DataFrame(messages, columns=columns) df['username'] = df.user.map(super().get_users_list()) df['yomi'] = df.text.map(yomi_shiritori) df.to_sql(self.table_name, self.connect, index=False) def append_messages(self, slack_newest_message, db_newest_message): '''DBに格納していないメッセージがある場合,それをDBに追加 Args =========== slack_newest_message : Slackの中で最新のメッセージのデータのdict db_newest_message : DBの中で最新のメッセージのデータのdict ''' slack_newest_ts = float(slack_newest_message['ts']) db_newest_ts = float(db_newest_message['ts']) if slack_newest_ts > db_newest_ts: messages = self.get_messages(count=100) df = pd.DataFrame(messages, columns=columns) df['username'] = df.user.map(super().get_users_list()) df['yomi'] = df.text.map(yomi_shiritori) additional_df = df.ix[df.ts.map(float) > db_newest_ts, :] additional_df.to_sql(self.table_name, self.connect, index=False, if_exists='append') def get_candidate(self, prev_yomi): '''prev_yomiにつながる単語の候補を返す Args =========== prev_yomi : string 前の単語の読み ''' df = pd.DataFrame.from_csv('wikidata.csv', sep=' ', header=None, index_col=None) if prev_yomi: cand_index = df.ix[:, 1] == prev_yomi[-1] else: print('前のtextが読めません') sys.exit() if not cand_index.any(): print('候補がありません') sys.exit() return df.ix[cand_index, :] def get_proper_candidate(self, candidates): '''単語の候補の中から適切な単語を探して1つ返す Args =========== candidates : pd.DataFrame 単語の候補 ''' for i_cand in candidates.index: cand_tmp = candidates.ix[i_cand, ] cand_yomi = yomi_shiritori(str(cand_tmp[2])) ## cand_yomiを読みに含んでいる単語が無かったか調べる query = ('SELECT count(*) ' 'FROM ' + self.table_name + ' ' 'WHERE yomi = \'' + cand_yomi + '\';') self.cursor.execute(query) res_shape = self.cursor.fetchall()[0] if res_shape == (0,): ## 読みに含んでいる単語が1つも無かった場合 cand = cand_tmp break else: ## 使える候補単語が無かった場合 sys.exit() return cand def get_ans(self, prev_yomi): '''prev_yomiにつながる既出でない単語を返す Args =========== prev_yomi : string 前の単語の読み ''' candidates = self.get_candidate(prev_yomi) return self.get_proper_candidate(candidates) def post_shiritori(self, cand, prev_user, prev_yomi): '''slackにしりとりの回答をpostする Args =========== cand : pd.Series 前の単語の読み prev_user : string 直前に発言したユーザー名 prev_yomi : string 直前の単語の読み ''' name = cand[0] yomi = cand[2] url = 'http://ja.wikipedia.org' + cand[3] ## 連投しないようにする if not prev_user or prev_user != self.botname: postmessage = name + '\n\n' + url self.post_message(postmessage) print(prev_yomi) print(name, yomi)
mit
pydsigner/naev
utils/heatsim/heatsim.py
20
7285
#!/usr/bin/env python ####################################################### # # SIM CODE # ####################################################### # Imports from frange import * import math import matplotlib.pyplot as plt def clamp( a, b, x ): return min( b, max( a, x ) ) class heatsim: def __init__( self, shipname = "llama", weapname = "laser", simulation = [ 60., 120. ] ): # Sim parameters self.STEFAN_BOLZMANN = 5.67e-8 self.SPACE_TEMP = 250. self.STEEL_COND = 54. self.STEEL_CAP = 0.49 self.STEEL_DENS = 7.88e3 self.ACCURACY_LIMIT = 500 self.FIRERATE_LIMIT = 800 self.shipname = shipname self.weapname = weapname # Sim info self.sim_dt = 1./50. # Delta tick self.setSimulation( simulation ) # Load some data self.ship_mass, self.ship_weaps = self.loadship( shipname ) self.weap_mass, self.weap_delay, self.weap_energy = self.loadweap( weapname ) def setSimulation( self, simulation ): self.simulation = simulation self.sim_total = simulation[-1] def loadship( self, shipname ): "Returns mass, number of weaps." if shipname == "llama": return 80., 2 elif shipname == "lancelot": return 180., 4 elif shipname == "pacifier": return 730., 5 elif shipname == "hawking": return 3750., 7 elif shipname == "peacemaker": return 6200., 8 else: raise ValueError def loadweap( self, weapname ): "Returns mass, delay, energy." if weapname == "laser": return 2., 0.9, 4.25 elif weapname == "plasma": return 4., 0.675, 3.75 elif weapname == "ion": return 6., 1.440, 15. elif weapname == "laser turret": return 16., 0.540, 6.12 elif weapname == "ion turret": return 42., 0.765, 25. elif weapname == "railgun turret": return 60., 1.102, 66. else: raise ValueError def prepare( self ): # Time stuff self.time_data = [] # Calculate ship parameters ship_kg = self.ship_mass * 1000. self.ship_emis = 0.8 self.ship_cond = self.STEEL_COND self.ship_C = self.STEEL_CAP * ship_kg #self.ship_area = pow( ship_kg / self.STEEL_DENS, 2./3. ) self.ship_area = 4.*math.pi*pow( 3./4.*ship_kg/self.STEEL_DENS/math.pi, 2./3. ) self.ship_T = self.SPACE_TEMP self.ship_data = [] # Calculate weapon parameters weap_kg = self.weap_mass * 1000. self.weap_C = self.STEEL_CAP * weap_kg #self.weap_area = pow( weap_kg / self.STEEL_DENS, 2./3. ) self.weap_area = 2.*math.pi*pow( 3./4.*weap_kg/self.STEEL_DENS/math.pi, 2./3. ) self.weap_list = [] self.weap_T = [] self.weap_data = [] for i in range(self.ship_weaps): self.weap_list.append( i*self.weap_delay / self.ship_weaps ) self.weap_T.append( self.SPACE_TEMP ) self.weap_data.append( [] ) def __accMod( self, T ): return clamp( 0., 1., (T-500.)/600. ) def __frMod( self, T ): return clamp( 0., 1., (1100.-T)/300. ) def simulate( self ): "Begins the simulation." # Prepare it self.prepare() # Run simulation weap_on = True sim_index = 0 dt = self.sim_dt sim_elapsed = 0. while sim_elapsed < self.sim_total: Q_cond = 0. # Check weapons for i in range(len(self.weap_list)): # Check if we should start/stop shooting if self.simulation[ sim_index ] < sim_elapsed: weap_on = not weap_on sim_index += 1 # Check if shot if weap_on: self.weap_list[i] -= dt * self.__frMod( self.weap_T[i] ) if self.weap_list[i] < 0.: self.weap_T[i] += 1e4 * self.weap_energy / self.weap_C self.weap_list[i] += self.weap_delay # Do heat movement (conduction) Q = -self.ship_cond * (self.weap_T[i] - self.ship_T) * self.weap_area * dt self.weap_T[i] += Q / self.weap_C Q_cond += Q self.weap_data[i].append( self.weap_T[i] ) # Do ship heat (radiation) Q_rad = self.STEFAN_BOLZMANN * self.ship_area * self.ship_emis * (pow(self.SPACE_TEMP,4.) - pow(self.ship_T,4.)) * dt Q = Q_rad - Q_cond self.ship_T += Q / self.ship_C self.time_data.append( sim_elapsed ) self.ship_data.append( self.ship_T ) # Elapsed time sim_elapsed += dt; def save( self, filename ): "Saves the results to a file." f = open( self.filename, 'w' ) for i in range(self.time_data): f.write( str(self.time_data[i])+' '+str(self.ship_data[i])) for j in range(self.weap_data): f.write( ' '+str(self.weap_data[i][j]) ) f.write( '\n' ) f.close() def display( self ): print("Ship Temp: "+str(hs.ship_T)+" K") for i in range(len(hs.weap_list)): print("Outfit["+str(i)+"] Temp: "+str(hs.weap_T[i])+" K") def plot( self, filename=None ): plt.hold(False) plt.figure(1) # Plot 1 Data plt.subplot(211) plt.plot( self.time_data, self.ship_data, '-' ) # Plot 1 Info plt.axis( [0, self.sim_total, 0, 1100] ) plt.title( 'NAEV Heat Simulation ('+self.shipname+' with '+self.weapname+')' ) plt.legend( ('Ship', 'Accuracy Limit', 'Fire Rate Limit'), loc='upper left') plt.ylabel( 'Temperature [K]' ) plt.grid( True ) # Plot 1 Data plt.subplot(212) plt.plot( self.time_data, self.weap_data[0], '-' ) plt.hold(True) plt_data = [] for i in range(len(self.weap_data[0])): plt_data.append( self.ACCURACY_LIMIT ) plt.plot( self.time_data, plt_data, '--' ) plt_data = [] for i in range(len(self.weap_data[0])): plt_data.append( self.FIRERATE_LIMIT ) plt.plot( self.time_data, plt_data, '-.' ) plt.hold(False) # Plot 2 Info plt.axis( [0, self.sim_total, 0, 1100] ) plt.legend( ('Weapon', 'Accuracy Limit', 'Fire Rate Limit'), loc='upper right') plt.ylabel( 'Temperature [K]' ) plt.xlabel( 'Time [s]' ) plt.grid( True ) if filename == None: plt.show() else: plt.savefig( filename ) if __name__ == "__main__": print("NAEV HeatSim\n") shp_lst = { 'llama' : 'laser', 'lancelot' : 'ion', 'pacifier' : 'laser turret', 'hawking' : 'ion turret', 'peacemaker' : 'railgun turret' } for shp,wpn in shp_lst.items(): hs = heatsim( shp, wpn, (60., 120.) ) #hs = heatsim( shp, wpn, frange( 30., 600., 30. ) ) hs.simulate() hs.plot( shp+'_'+wpn+'_60_60.png' ) hs.setSimulation( (30., 90.) ) hs.simulate() hs.plot( shp+'_'+wpn+'_30_60.png' ) hs.setSimulation( (30., 90., 120., 180.) ) hs.simulate() hs.plot( shp+'_'+wpn+'_30_60_30_60.png' ) print( ' '+shp+' with '+wpn+' done!' )
gpl-3.0
nonsk131/USRP2016
generate_tests.py
1
3175
from isochrones.dartmouth import Dartmouth_Isochrone from isochrones.utils import addmags import numpy as np import pandas as pd file = open('true_params.txt','w') for n in range(0,100,1): if n < 10: index = '0' + str(n) else: index = str(n) file.write('test: ' + index + '\n') dar = Dartmouth_Isochrone() array = np.random.rand(2) + 0.5 if array[0] > array[1]: M1 = array[0] M2 = array[1] else: M1 = array[1] M2 = array[0] age1 = np.log10(5e8) age2 = np.log10(1e9) feh1 = 0.0 array = 900*np.random.rand(2) + 100 if array[0] > array[1]: distance1 = array[0] distance2 = array[1] else: distance1 = array[1] distance2 = array[0] AV1 = 0.1 feh2 = 0.0 AV2 = 0.1 params = (M1,M2,age1,age2,feh1,feh2,distance1,distance2,AV1,AV2) params = str(params) file.write('(M1,M2,age1,age2,feh1,feh2,distance1,distance2,AV1,AV2) = ' + params + '\n') file.write('\n') #Simulate true magnitudes unresolved_bands = ['J','H','K'] resolved_bands = ['i','K'] args1 = (age1, feh1, distance1, AV1) args2 = (age2, feh2, distance2, AV2) unresolved = {b:addmags(dar.mag[b](M1, *args1), dar.mag[b](M2, *args2)) for b in unresolved_bands} resolved_1 = {b:dar.mag[b](M1, *args1) for b in resolved_bands} resolved_2 = {b:dar.mag[b](M2, *args2) for b in resolved_bands} #print dar.mag['K'](M2, *args2) #print unresolved, resolved_1, resolved_2 instruments = ['twomass','RAO'] bands = {'twomass':['J','H','K'], 'RAO':['i','K']} mag_unc = {'twomass': 0.02, 'RAO':0.1} resolution = {'twomass':4.0, 'RAO':0.1} relative = {'twomass':False, 'RAO':True} separation = 0.5 PA = 100. columns = ['name', 'band', 'resolution', 'relative', 'separation', 'pa', 'mag', 'e_mag'] df = pd.DataFrame(columns=columns) i=0 for inst in ['twomass']: #Unresolved observations for b in bands[inst]: row = {} row['name'] = inst row['band'] = b row['resolution'] = resolution[inst] row['relative'] = relative[inst] row['separation'] = 0. row['pa'] = 0. row['mag'] = unresolved[b] row['e_mag'] = mag_unc[inst] df = df.append(pd.DataFrame(row, index=[i])) i += 1 for inst in ['RAO']: #Resolved observations for b in bands[inst]: mags = [resolved_1[b], resolved_2[b]] pas = [0, PA] seps = [0., separation] for mag,sep,pa in zip(mags,seps,pas): row = {} row['name'] = inst row['band'] = b row['resolution'] = resolution[inst] row['relative'] = relative[inst] row['separation'] = sep row['pa'] = pa row['mag'] = mag row['e_mag'] = mag_unc[inst] df = df.append(pd.DataFrame(row, index=[i])) i += 1 #print df df.to_csv(path_or_buf='df_binary_test{}.csv'.format(index)) file.close()
mit
amirkdv/biseqt
experiments/blot_sv.py
1
15152
#!/usr/bin/env python import logging from itertools import combinations, product import sys import numpy as np import igraph from time import time from matplotlib import pyplot as plt from biseqt.blot import WordBlotLocalRef from biseqt.sequence import Alphabet from biseqt.stochastics import rand_seq, rand_read, MutationProcess from util import plot_with_sd, savefig, with_dumpfile, log def gen_data_set(**kw): alphabet, sv_type = kw['alphabet'], kw['sv_type'] ref_len, sv_len, sv_pos = kw['ref_len'], kw['sv_len'], kw['sv_pos'] gap, subst = kw['gap'], kw['subst'] coverage, margin = kw['coverage'], kw['margin'] sequencing_kw = { 'len_mean': sv_len * 2, 'len_sd': sv_len * .1, 'expected_coverage': coverage, } ref = rand_seq(alphabet, ref_len) if sv_type == 'insertion': indiv = ref[:sv_pos] + rand_seq(alphabet, sv_len) + ref[sv_pos:] elif sv_type == 'deletion': indiv = ref[:sv_pos] + ref[sv_pos + sv_len:] elif sv_type == 'duplication': sv_src = kw['sv_src'], kw['sv_src'] + sv_len indiv = ref[:sv_pos] + ref[sv_src[0]:sv_src[1]] + ref[sv_pos:] else: raise ValueError('unknown SV type %s' % sv_type) M = MutationProcess(alphabet, subst_probs=subst, ge_prob=gap, go_prob=gap) reads = [(M.mutate(read)[0], pos) for read, pos in rand_read(indiv, **sequencing_kw)] labels = [False] * len(reads) for idx, (read, start_pos) in enumerate(reads): overlap_with_sv = min(start_pos + len(read), sv_pos + sv_len) - \ max(start_pos, sv_pos) if overlap_with_sv < margin: continue start_overlap = start_pos < sv_pos end_overlap = start_pos + len(read) > sv_pos + sv_len if sv_type == 'insertion': labels[idx] = start_overlap and end_overlap elif sv_type == 'deletion': labels[idx] = start_overlap elif sv_type == 'duplication': labels[idx] = start_overlap or end_overlap else: raise ValueError('unknown SV type %s' % sv_type) reads = [read for read, pos in reads] return {'ref': ref, 'indiv': indiv, 'reads': reads, 'labels': labels} def chain_paths_on_read(read, sims, **kw): margin = kw['margin'] seg_graph = igraph.Graph() for sim in sims: seg_graph.add_vertex(rec=sim) seg_graph.add_vertex(name='start') seg_graph.add_vertex(name='end') for idx, sim in enumerate(sims): if sim['read'][0] < margin: seg_graph.add_edge('start', idx) if sim['read'][1] > len(read) - margin: seg_graph.add_edge(idx, 'end') for (idx0, sim0), (idx1, sim1) in combinations(enumerate(sims), 2): from0, to0 = sim0['read'] from1, to1 = sim1['read'] overlap_len = min(to0, to1) - max(from0, from1) if overlap_len > -margin: # HACK what to do with direction? if from0 <= from1: seg_graph.add_edge(idx0, idx1) else: seg_graph.add_edge(idx1, idx0) return seg_graph.get_all_shortest_paths('start', to='end', mode='out') def chain_paths_on_ref(read, sims, **kw): margin = kw['margin'] seg_graph = igraph.Graph() for sim in sims: seg_graph.add_vertex(rec=sim) seg_graph.add_vertex(name='start') seg_graph.add_vertex(name='end') min_start = min(sim['ref'][0] for sim in sims) max_end = max(sim['ref'][1] for sim in sims) for idx, sim in enumerate(sims): if sim['ref'][0] == min_start: seg_graph.add_edge('start', idx) if sim['ref'][1] == max_end: seg_graph.add_edge(idx, 'end') for (idx0, sim0), (idx1, sim1) in combinations(enumerate(sims), 2): from0, to0 = sim0['ref'] from1, to1 = sim1['ref'] overlap_len = min(to0, to1) - max(from0, from1) if overlap_len > -margin: # HACK what to do with direction? if from0 <= from1: seg_graph.add_edge(idx0, idx1) else: seg_graph.add_edge(idx1, idx0) return seg_graph.get_all_shortest_paths('start', to='end', mode='out') # mode tells us whether the path is on read or on ref def sv_coords(sims, path, mode='read'): assert len(path) == 4 segs_in_order = sorted(path[1:-1], key=lambda i: sims[i]['ref'][0]) coord0 = sims[segs_in_order[0]]['ref'] coord1 = sims[segs_in_order[1]]['ref'] if mode == 'read': return coord0[1], coord1[0] else: return (coord0[1] + coord1[0]) / 2 def call_svs(ref, reads, margin=50, K_min=200, p_min=.8, **WB_kw): """Calls structural variants based on single read mappings. For each read, the algorithm proceeds as follows: .. figure:: https://www.dropbox.com/s/rjqobtkp60snte7/SV-schematic.png?raw=1 :target: https://www.dropbox.com/s/rjqobtkp60snte7/SV-schematic.png?raw=1 :alt: lightbox Schematic representation of the chain graphs used to call structural variants. Each read (vertical axis) is compared against the reference sequence (horizontal axis) and in each case two chain graphs are created on each of the read and reference axes where two similar segments are connected with an edge if their projections on the corresponding axis can be consistently chained. * all local similarities are found via Word-Blot (:func:`biseqt.blot.WordBlotLocalRef.similar_segments` with given :math:`K_{\min}, p_{\min}`). * Two chain graphs are built based on the projections of similarities on the read and on the reference genome, henceforth the *read graph* and the *reference graph*. * Reads containining SVs are identified using the following rules: * Normal reads are characterized by a shortest path in both the read and reference graphs with exactly two edges between the start and the end of projections. * deletions and duplications produce shortest paths with four edges in the read graph. * insertions produce shortest paths with four edges in the reference graph. """ WB = WordBlotLocalRef(ref, **WB_kw) label_hats = [{'I': [False, []], # insertion 'D': [False, []]} # deletion / duplication for _ in reads] for read_idx, read in enumerate(reads): sims = list( WB.similar_segments(read, K_min, p_min) ) for sim_idx, sim in enumerate(sims): ref_pos, read_pos = WB.to_ij_coordinates_seg(sim['segment']) sims[sim_idx]['read'] = read_pos sims[sim_idx]['ref'] = ref_pos # for duplication or deletion d_paths = chain_paths_on_read(read, sims, margin=margin) if d_paths: d_path = d_paths[0] label_hats[read_idx]['D'][0] = len(d_path) > 3 if len(d_path) == 4: label_hats[read_idx]['D'][1] = sv_coords(sims, d_path, mode='read') i_paths = chain_paths_on_ref(read, sims, margin=margin) if i_paths: i_path = i_paths[0] label_hats[read_idx]['I'][0] = len(i_path) > 3 if len(i_path) == 4: label_hats[read_idx]['I'][1] = sv_coords(sims, i_path, mode='ref') sys.stderr.write('.') return label_hats @with_dumpfile def sim_structural_variants(**kw): sv_len, ps, wordlen = kw['sv_len'], kw['ps'], kw['wordlen'] n_samples, coverage, margin = kw['n_samples'], kw['coverage'], kw['margin'] sv_types = ['insertion', 'deletion', 'duplication'] # maps sv types to sv call types sv_type_dict = {'insertion': 'I', 'duplication': 'D', 'deletion': 'D'} A = Alphabet('ACGT') WB_kw = {'g_max': .2, 'sensitivity': .9, 'alphabet': A, 'wordlen': wordlen, 'log_level': logging.WARN} def _zero(): return np.zeros((len(ps), n_samples)) sim_data = { 'coverage': coverage, 'n_samples': n_samples, 'sv_len': sv_len, 'ps': ps, 'WB_kw': WB_kw, 'coords': {sv_type: {p_idx: {idx: [] for idx in range(n_samples)} for p_idx in range(len(ps))} for sv_type in sv_types}, 'stats': {stat: {sv_type: _zero() for sv_type in sv_types} for stat in ['tpr', 'fpr']}, 'times': _zero(), } for sv_type, (p_idx, p_match) in product(sv_types, enumerate(ps)): ref_len = sv_len * 5 sv_src = sv_len sv_pos = sv_len * 3 # distribute p_match evenly over gap and subst subst = gap = 1 - np.sqrt(p_match) log('SV: %s, p = %.2f (n=%d rounds)' % (sv_type, p_match, n_samples)) for sample_idx in range(n_samples): dataset = gen_data_set( sv_type=sv_type, alphabet=A, ref_len=ref_len, sv_len=sv_len, sv_src=sv_src, sv_pos=sv_pos, gap=gap, subst=subst, coverage=coverage, margin=margin, ) labels = dataset['labels'] K_min = 200 p_min = .6 t_start = time() label_hats = call_svs(dataset['ref'], dataset['reads'], K_min=K_min, p_min=p_min, **WB_kw) sim_data['times'][p_idx, sample_idx] = time() - t_start tp, fp, tn, fn = 0, 0, 0, 0 for label, label_hat in zip(labels, label_hats): key = sv_type_dict[sv_type] if label and label_hat[key][0]: tp += 1 elif label and not label_hat[key][0]: fn += 1 elif not label and label_hat[key][0]: fp += 1 elif not label and not label_hat[key][0]: tn += 1 if label_hat[key][0]: sim_data['coords'][sv_type][p_idx][sample_idx].append( label_hat[key][1]) # almost imposible that tn + fp = 0, but tp + fn can be zero: if tp + fn == 0: tpr = 1. else: tpr = 1. * tp / (tp + fn) fpr = 1. * fp / (tn + fp) sim_data['stats']['tpr'][sv_type][p_idx, sample_idx] = tpr sim_data['stats']['fpr'][sv_type][p_idx, sample_idx] = fpr sys.stderr.write(' tpr = %.2f, fpr = %.2f' % (tpr, fpr)) sys.stderr.write('\n') return sim_data def plot_structural_variants(sim_data, suffix=''): ps = sim_data['ps'] sv_types = ['duplication', 'deletion', 'insertion'] fig = plt.figure(figsize=(11, 4)) ax_stats = {} # ax_coord = {} for idx, sv_type in enumerate(sv_types): ax_stats[sv_type] = fig.add_subplot(1, 3, idx + 1) kw = {'markersize': 5, 'marker': 'o', 'alpha': .7} ls = {'tpr': '-', 'fpr': '--'} label = {'tpr': 'TPR (sensitivity)', 'fpr': 'FPR (1 - specificity)'} for sv_type in sv_types: for stat, values in sim_data['stats'].items(): plot_with_sd(ax_stats[sv_type], ps, sim_data['stats'][stat][sv_type][:, :], axis=1, ls=ls[stat], label=label[stat], **kw) ax_stats[sv_type].set_ylim(-.1, 1.3) ax_stats[sv_type].set_title(sv_type) ax_stats[sv_type].legend(loc='upper left') ax_stats[sv_type].set_xlabel('match probability') ax_stats[sv_type].set_xticks(ps) ax_stats[sv_type].set_xticklabels(ps) times = sim_data['times'].flatten() print 'time: %.2f s (%.2f)' % (times.mean(), np.sqrt(times.var())) savefig(fig, 'structural_variants%s.png' % suffix) def exp_structural_variants(): """Performance of Word-Blot in detecting structural variations (SV) in *simulations*: * Given a single read containing part of a SV and a reference sequence, one can deduce the presence of a SV from the topological arrangement of local similarities. The simple algorithm used here, :func:`call_svs`, simply pays attention to shortest paths in either of two directed graphs obtained by chaining projected similarities on either the reference or the read sequences. * For each of three copy number variation SVs, *insertion, deletion, duplication*, similar segments detected by Word-Blot are used to detect whether each read contains an SV. In each case the true positive rate and false positive rate are plotted as a function of similarity between individual and reference sequences. **Supported Claims** * The simple topological algorithm in :func:`call_svs` can accurately distinguish normal reads from those containing a SV. * The crux of our simple, single-read SV calling algorithm is that, roughly, SVs can be detected in a single read whenever there are more than one read/reference local similarities that, when chained, span the entire read (for duplication and deletion) or a whole region on reference (for insertion). This shows that Word-Blot accurately recovers local similarities at their maximal length without producing unnecessary fragmentation. * Since Word-Blot is a general purpose local similarity search and thus makes no assumption of collinearity it can accurately identify simple SVs (copy number variations) by simply looking at mapping of individual reads to a reference sequence. .. figure:: https://www.dropbox.com/s/ase6z7wzlbc6dy0/ structural_variants%5Bw%3D8%5D.png?raw=1 :target: https://www.dropbox.com/s/ase6z7wzlbc6dy0/ structural_variants%5Bw%3D8%5D.png?raw=1 :alt: lightbox True positive rate (solid) and false positive rate (dashed) for discriminating normal reads from those containing evidence for SV, duplications (*left*), deletion (*middle*), insertion (*right*) using the simple algorithm based on Word-Blot local similarities. SV length is 500nt, reference sequence length is 2500nt, sequencing coverage is 10, word length is 8, and each condition (match probability and SV type) is repeated n=5 times, average computation time for each read is 0.8 seconds. """ wordlen = 8 # kept in memory; don't go too high up sv_len = 500 margin = 50 ps = [round(.98 - .03 * i, 2) for i in range(6)] coverage = 10 n_samples = 5 suffix = '[w=%d]' % wordlen dumpfile = 'sv_calling%s.txt' % suffix sim_data = sim_structural_variants( sv_len=sv_len, ps=ps, wordlen=wordlen, n_samples=n_samples, margin=margin, coverage=coverage, dumpfile=dumpfile, ignore_existing=False, ) plot_structural_variants(sim_data, suffix=suffix) if __name__ == '__main__': exp_structural_variants()
bsd-3-clause
harisbal/pandas
pandas/tests/generic/test_frame.py
8
9766
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from operator import methodcaller from copy import deepcopy from distutils.version import LooseVersion import pytest import numpy as np import pandas as pd from pandas import Series, DataFrame, date_range, MultiIndex from pandas.compat import range from pandas.util.testing import (assert_series_equal, assert_frame_equal, assert_almost_equal) import pandas.util.testing as tm import pandas.util._test_decorators as td from .test_generic import Generic try: import xarray _XARRAY_INSTALLED = True except ImportError: _XARRAY_INSTALLED = False class TestDataFrame(Generic): _typ = DataFrame _comparator = lambda self, x, y: assert_frame_equal(x, y) def test_rename_mi(self): df = DataFrame([ 11, 21, 31 ], index=MultiIndex.from_tuples([("A", x) for x in ["a", "B", "c"]])) df.rename(str.lower) def test_set_axis_name(self): df = pd.DataFrame([[1, 2], [3, 4]]) funcs = ['_set_axis_name', 'rename_axis'] for func in funcs: result = methodcaller(func, 'foo')(df) assert df.index.name is None assert result.index.name == 'foo' result = methodcaller(func, 'cols', axis=1)(df) assert df.columns.name is None assert result.columns.name == 'cols' def test_set_axis_name_mi(self): df = DataFrame( np.empty((3, 3)), index=MultiIndex.from_tuples([("A", x) for x in list('aBc')]), columns=MultiIndex.from_tuples([('C', x) for x in list('xyz')]) ) level_names = ['L1', 'L2'] funcs = ['_set_axis_name', 'rename_axis'] for func in funcs: result = methodcaller(func, level_names)(df) assert result.index.names == level_names assert result.columns.names == [None, None] result = methodcaller(func, level_names, axis=1)(df) assert result.columns.names == ["L1", "L2"] assert result.index.names == [None, None] def test_nonzero_single_element(self): # allow single item via bool method df = DataFrame([[True]]) assert df.bool() df = DataFrame([[False]]) assert not df.bool() df = DataFrame([[False, False]]) pytest.raises(ValueError, lambda: df.bool()) pytest.raises(ValueError, lambda: bool(df)) def test_get_numeric_data_preserve_dtype(self): # get the numeric data o = DataFrame({'A': [1, '2', 3.]}) result = o._get_numeric_data() expected = DataFrame(index=[0, 1, 2], dtype=object) self._compare(result, expected) def test_metadata_propagation_indiv(self): # groupby df = DataFrame( {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) result = df.groupby('A').sum() self.check_metadata(df, result) # resample df = DataFrame(np.random.randn(1000, 2), index=date_range('20130101', periods=1000, freq='s')) result = df.resample('1T') self.check_metadata(df, result) # merging with override # GH 6923 _metadata = DataFrame._metadata _finalize = DataFrame.__finalize__ np.random.seed(10) df1 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=['a', 'b']) df2 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=['c', 'd']) DataFrame._metadata = ['filename'] df1.filename = 'fname1.csv' df2.filename = 'fname2.csv' def finalize(self, other, method=None, **kwargs): for name in self._metadata: if method == 'merge': left, right = other.left, other.right value = getattr(left, name, '') + '|' + getattr(right, name, '') object.__setattr__(self, name, value) else: object.__setattr__(self, name, getattr(other, name, '')) return self DataFrame.__finalize__ = finalize result = df1.merge(df2, left_on=['a'], right_on=['c'], how='inner') assert result.filename == 'fname1.csv|fname2.csv' # concat # GH 6927 DataFrame._metadata = ['filename'] df1 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=list('ab')) df1.filename = 'foo' def finalize(self, other, method=None, **kwargs): for name in self._metadata: if method == 'concat': value = '+'.join([getattr( o, name) for o in other.objs if getattr(o, name, None) ]) object.__setattr__(self, name, value) else: object.__setattr__(self, name, getattr(other, name, None)) return self DataFrame.__finalize__ = finalize result = pd.concat([df1, df1]) assert result.filename == 'foo+foo' # reset DataFrame._metadata = _metadata DataFrame.__finalize__ = _finalize def test_set_attribute(self): # Test for consistent setattr behavior when an attribute and a column # have the same name (Issue #8994) df = DataFrame({'x': [1, 2, 3]}) df.y = 2 df['y'] = [2, 4, 6] df.y = 5 assert df.y == 5 assert_series_equal(df['y'], Series([2, 4, 6], name='y')) @pytest.mark.skipif(not _XARRAY_INSTALLED or _XARRAY_INSTALLED and LooseVersion(xarray.__version__) < LooseVersion('0.10.0'), reason='xarray >= 0.10.0 required') @pytest.mark.parametrize( "index", ['FloatIndex', 'IntIndex', 'StringIndex', 'UnicodeIndex', 'DateIndex', 'PeriodIndex', 'CategoricalIndex', 'TimedeltaIndex']) def test_to_xarray_index_types(self, index): from xarray import Dataset index = getattr(tm, 'make{}'.format(index)) df = DataFrame({'a': list('abc'), 'b': list(range(1, 4)), 'c': np.arange(3, 6).astype('u1'), 'd': np.arange(4.0, 7.0, dtype='float64'), 'e': [True, False, True], 'f': pd.Categorical(list('abc')), 'g': pd.date_range('20130101', periods=3), 'h': pd.date_range('20130101', periods=3, tz='US/Eastern')} ) df.index = index(3) df.index.name = 'foo' df.columns.name = 'bar' result = df.to_xarray() assert result.dims['foo'] == 3 assert len(result.coords) == 1 assert len(result.data_vars) == 8 assert_almost_equal(list(result.coords.keys()), ['foo']) assert isinstance(result, Dataset) # idempotency # categoricals are not preserved # datetimes w/tz are not preserved # column names are lost expected = df.copy() expected['f'] = expected['f'].astype(object) expected['h'] = expected['h'].astype('datetime64[ns]') expected.columns.name = None assert_frame_equal(result.to_dataframe(), expected, check_index_type=False, check_categorical=False) @td.skip_if_no('xarray', min_version='0.7.0') def test_to_xarray(self): from xarray import Dataset df = DataFrame({'a': list('abc'), 'b': list(range(1, 4)), 'c': np.arange(3, 6).astype('u1'), 'd': np.arange(4.0, 7.0, dtype='float64'), 'e': [True, False, True], 'f': pd.Categorical(list('abc')), 'g': pd.date_range('20130101', periods=3), 'h': pd.date_range('20130101', periods=3, tz='US/Eastern')} ) df.index.name = 'foo' result = df[0:0].to_xarray() assert result.dims['foo'] == 0 assert isinstance(result, Dataset) # available in 0.7.1 # MultiIndex df.index = pd.MultiIndex.from_product([['a'], range(3)], names=['one', 'two']) result = df.to_xarray() assert result.dims['one'] == 1 assert result.dims['two'] == 3 assert len(result.coords) == 2 assert len(result.data_vars) == 8 assert_almost_equal(list(result.coords.keys()), ['one', 'two']) assert isinstance(result, Dataset) result = result.to_dataframe() expected = df.copy() expected['f'] = expected['f'].astype(object) expected['h'] = expected['h'].astype('datetime64[ns]') expected.columns.name = None assert_frame_equal(result, expected, check_index_type=False) def test_deepcopy_empty(self): # This test covers empty frame copying with non-empty column sets # as reported in issue GH15370 empty_frame = DataFrame(data=[], index=[], columns=['A']) empty_frame_copy = deepcopy(empty_frame) self._compare(empty_frame_copy, empty_frame)
bsd-3-clause
wronk/mne-python
examples/inverse/plot_lcmv_beamformer.py
3
3197
""" ====================================== Compute LCMV beamformer on evoked data ====================================== Compute LCMV beamformer solutions on evoked dataset for three different choices of source orientation and stores the solutions in stc files for visualisation. """ # Author: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt import numpy as np import mne from mne.datasets import sample from mne.beamformer import lcmv print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif' fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif' label_name = 'Aud-lh' fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name subjects_dir = data_path + '/subjects' ############################################################################### # Get epochs event_id, tmin, tmax = 1, -0.2, 0.5 # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname, preload=True, proj=True) raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels events = mne.read_events(event_fname) # Set up pick list: EEG + MEG - bad channels (modify to your needs) left_temporal_channels = mne.read_selection('Left-temporal') picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True, exclude='bads', selection=left_temporal_channels) # Pick the channels of interest raw.pick_channels([raw.ch_names[pick] for pick in picks]) # Re-normalize our empty-room projectors, so they are fine after subselection raw.info.normalize_proj() # Read epochs proj = False # already applied epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline=(None, 0), preload=True, proj=proj, reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6)) evoked = epochs.average() forward = mne.read_forward_solution(fname_fwd, surf_ori=True) # Compute regularized noise and data covariances noise_cov = mne.compute_covariance(epochs, tmin=tmin, tmax=0, method='shrunk') data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15, method='shrunk') plt.close('all') pick_oris = [None, 'normal', 'max-power'] names = ['free', 'normal', 'max-power'] descriptions = ['Free orientation', 'Normal orientation', 'Max-power ' 'orientation'] colors = ['b', 'k', 'r'] for pick_ori, name, desc, color in zip(pick_oris, names, descriptions, colors): stc = lcmv(evoked, forward, noise_cov, data_cov, reg=0.01, pick_ori=pick_ori) # View activation time-series label = mne.read_label(fname_label) stc_label = stc.in_label(label) plt.plot(1e3 * stc_label.times, np.mean(stc_label.data, axis=0), color, hold=True, label=desc) plt.xlabel('Time (ms)') plt.ylabel('LCMV value') plt.ylim(-0.8, 2.2) plt.title('LCMV in %s' % label_name) plt.legend() plt.show() # Plot last stc in the brain in 3D with PySurfer if available brain = stc.plot(hemi='lh', subjects_dir=subjects_dir) brain.set_data_time_index(180) brain.show_view('lateral')
bsd-3-clause
jchodera/LiquidBenchmark
src/munge_output_amber.py
2
2349
import chemistry from openmoltools import cirpy import mdtraj as md import pymbar import os import pandas as pd import glob import dipole_errorbars from density_simulation_parameters import DATA_PATH num_bootstrap = 100 fixed_block_length = 20 # 200 ps blocks for dielectric error bar block averaging. prmtop_filenames = glob.glob(DATA_PATH + "/tleap/*.prmtop") filename_munger = lambda filename: os.path.splitext(os.path.split(filename)[1])[0].split("_") data = [] for prmtop_filename in prmtop_filenames: cas, n_molecules, temperature = filename_munger(prmtop_filename) print(cas, temperature) dcd_filename = DATA_PATH + "/production/%s_%s_%s_production.dcd" % (cas, n_molecules, temperature) csv_filename = DATA_PATH + "/production/%s_%s_%s_production.csv" % (cas, n_molecules, temperature) try: traj = md.load(dcd_filename, top=prmtop_filename) except IOError: continue if traj.unitcell_lengths is None: continue rho = pd.read_csv(csv_filename)["Density (g/mL)"].values * 1000. # g / mL -> kg /m3 initial_traj_length = len(traj) initial_density_length = len(rho) [t0, g, Neff] = pymbar.timeseries.detectEquilibration(rho) mu = rho[t0:].mean() sigma = rho[t0:].std() * Neff ** -0.5 prmtop = chemistry.load_file(prmtop_filename) charges = prmtop.to_dataframe().charge.values temperature = float(temperature) traj = traj[t0 * len(traj) / len(rho):] dielectric = md.geometry.static_dielectric(traj, charges, temperature) dielectric_sigma_fixedblock = dipole_errorbars.bootstrap_old(traj, charges, temperature, fixed_block_length)[1] block_length = dipole_errorbars.find_block_size(traj, charges, temperature) dielectric_sigma = dipole_errorbars.bootstrap(traj, charges, temperature, block_length, num_bootstrap) formula = cirpy.resolve(cas, "formula") data.append(dict(cas=cas, temperature=temperature, n_trimmed=t0, inefficiency=g, initial_traj_length=initial_traj_length, initial_density_length=initial_density_length, density=mu, density_sigma=sigma, Neff=Neff, n_frames=traj.n_frames, dielectric=dielectric, dielectric_sigma=dielectric_sigma, dielectric_sigma_fixedblock=dielectric_sigma_fixedblock, block_length=block_length, formula=formula)) print(data[-1]) data = pd.DataFrame(data) data.to_csv("./tables/predictions.csv")
gpl-2.0
spectre007/CCParser
ParserData.py
1
11735
from . import constants as c import numpy as np import json class Struct(object): """ Struct-like container object """ def __init__(self, **kwds): # keyword args define attribute names and values self.__dict__.update(**kwds) class ParseContainer(object): """ Generic container object which keeps track of the parsed quantities. It allows to parse the same quantity several times. There should be one instance/parsed quantity. """ def __init__(self): self.nversion = 0 self.data = [] self.lines = [] self.serializable = False @classmethod def from_obj(cls, line, parsed_obj): """Alternative constructor. Initialize directly with line and parsed object. Parameters ---------- line : int line number parsed_obj : any parsed object """ pc = cls() pc.add(line, parsed_obj) return pc def add(self, hook_line, new_obj): #self.data[hook_line] = new_pvalue self.data.append(new_obj) self.lines.append(hook_line) self.nversion += 1 def get_first(self): idx = self.lines.index(min(self.lines))#not needed if assuming ordered parsing (line by line) #return self.data[0] return self.data[idx] def get_last(self): idx = self.lines.index(max(self.lines))#not needed if assuming ordered parsing (line by line) # return self.data[-1] return self.data[idx] def get_data(self): return self.data def get_lines(self): return self.lines def make_serializable(self): """Turn fancy data types into sth that json.dump can recognize. """ try: dt = type(self.data[0]) except IndexError: raise ParserDataError(("ParseContainer not serializable (data list" " empty).")) # take care of numpy data types if dt.__module__ == "numpy" or "numpy." in dt.__module__: encoder = NumpyEncoder() self.data = [encoder.default(obj) for obj in self.data] # CCParser data types elif dt == MolecularOrbitals or dt == Amplitudes: self.data = [obj.encode() for obj in self.data] # assume other datatypes are serializable self.serializable = True def to_tuple(self): if self.serializable: return tuple(zip(self.data, self.lines)) else: self.make_serializable() return tuple(zip(self.data, self.lines)) def to_list(self): if self.serializable: return list(zip(self.data, self.lines)) else: self.make_serializable() return list(zip(self.data, self.lines)) def __len__(self): assert len(self.data) == len(self.lines) return len(self.data) def __getitem__(self, idx): if isinstance(idx, slice): return self.data[idx.start : idx.stop : idx.step] else: if idx >= len(self.data) or abs(idx) > len(self.data): raise IndexError("ParseContainer: Index out of range") return self.data[idx] def __setitem__(self, idx, value): """ Setter method which expects value tuple (line, parsed_obj) """ self.lines[idx] = value[0] self.data[idx] = value[1] def __delitem__(self, idx): self.data.remove(idx) self.lines.remove(idx) def __iter__(self): return iter(self.data) # def __next__(self): # if self.n <= self.nversion: # return self.data[self.n] # else: # raise StopIteration def __contains__(self, line): if type(line) == str: line = int(line) return True if line in self.lines else False def __str__(self): s = "\n" s+= "Line" + 3*" " + "Parsed Value\n" for i in range(self.nversion): s+= str(self.lines[i]) + 3*" " + str(self.data[i]) + "\n" return s class ParserDataError(Exception): """Raise for ParserData related errors. """ class StructEncoder(json.JSONEncoder): def default(self, struct): if isinstance(struct, Struct): results = {} for label, pc in struct.__dict__.items(): results[label] = pc.to_list() return results else: super().default(self, struct) class NumpyEncoder(json.JSONEncoder): """ Special json encoder for numpy types """ def default(self, obj): if isinstance(obj, (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)): return int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): return float(obj) elif isinstance(obj, (np.ndarray,)): #### This is the fix return obj.tolist() else: super().default(self, obj) class MolecularOrbitals(object): # TODO: change name? "OrbitalEnergies" # TODO: add symmetries """ General molecular orbital class, which has more functionality than simple arrays. """ N_ORB_PER_LINE = 10 def __init__(self, o, v): self.occ = list(map(float, o)) self.virt = list(map(float, v)) self.n_occ = len(o) self.n_virt = len(v) self.n_mo = self.n_occ + self.n_virt self.homo = max(self.occ ) if self.n_occ > 0 else 0 self.lumo = min(self.virt) if self.n_virt > 0 else 0 @classmethod def from_dict(cls, d): try: return cls(d["occ"], d["virt"]) except (KeyError, TypeError) as e: raise ParserDataError(("Dictionary not suitable to create " "MolecularOrbitals object.")) #TODO: from_string method as implicit list conversion is not great @classmethod def from_tuples(cls, t): # find first occurrence of virt idx = next(t.index(i) for i in t if i[1] == "virt" or i[1] == "v") # create lists using the index o, dummy = zip(*t[:idx]) v, dummy = zip(*t[idx:]) return cls(o, v) def __str__(self): n1 = [i for i in range(1, self.n_occ+1)] n2 = [i for i in range(self.n_occ +1, self.n_mo+1)] s = "\n" for i in range(0, len(self.occ), self.N_ORB_PER_LINE): s += 4*" " + " ".join("{:>8}".format(j) for j in n1[i:i+self.N_ORB_PER_LINE])+"\n" if i == 0: s += " occ: " +' '.join("{:8.3f}".format(j) for j in self.occ[i:i+self.N_ORB_PER_LINE])+"\n" else: s += 6*" "+' '.join("{:8.3f}".format(j) for j in self.occ[i:i+self.N_ORB_PER_LINE])+"\n" s += 7*" "+88*"-"+"\n" for i in range(0, len(self.virt), self.N_ORB_PER_LINE): s += 4*" " + " ".join("{:>8}".format(j) for j in n2[i:i+self.N_ORB_PER_LINE])+"\n" if i == 0: s += " virt:" +' '.join("{:8.3f}".format(j) for j in self.virt[i:i+self.N_ORB_PER_LINE])+"\n" else: s += 6*" "+' '.join("{:8.3f}".format(j) for j in self.virt[i:i+self.N_ORB_PER_LINE])+"\n" return s def RVS(self, gap): """ Determine amount of virtual orbitals to freeze based on energy gap (in eV) """ if gap <= 0: raise ValueError("Negative or Zero energy gap not allowed for restriction of virtual space.") else: thr = gap/c.Hartree2eV + self.homo # print("THR: ",thr) # print("N_VIRT: ", self.n_virt) idx = min(range(len(self.virt)), key=lambda i: abs(self.virt[i]-thr)) freeze = self.n_virt - (idx +1) part_of_v = float(freeze)/float(self.n_virt) s = "Index: {0:3d}, Number of frozen virtuals: {1:3d}, ({2:.1%})".format(idx, freeze, part_of_v) print(s) def to_dict(self): return {"occ" : self.occ, "virt" : self.virt} def to_tuples(self): return list(zip(self.occ, ["occ" for i in range(self.n_occ )])) \ + list(zip(self.virt, ["virt" for i in range(self.n_virt)])) def encode(self, fmt=tuple): if fmt == tuple: return self.to_tuples() elif fmt == dict: return self.to_dict() else: raise ValueError("Export format not recognized.") class Amplitudes(object): """ General container for amplitudes of one state for easier access to and export of amplitude data """ def __init__(self, occ, virt, v, factor=1.0): self.occ = occ # list of lists, even if only single int in sublist self.virt= virt self.v = v self.factor = factor self.weights = list(map(lambda x: self.factor * x**2, self.v)) self.print_thr = 0.05 def __str__(self): s = "Amplitudes: Weights > {0:.0%}\n".format(self.print_thr) for i in range(len(self.occ)): if self.weights[i] > self.print_thr: if len(self.occ[i]) == 1: s += "{0:>4} -> {1:>4} : {2:.1f}\n".format(self.occ[i][0], self.virt[i][0], 100*self.weights[i]) elif len(self.occ[i]) == 2: s += "{0:>4}, {1:>4} -> {2:>4}, {3:>4} : {4:.1f}\n".format( self.occ[i][0], self.occ[i][1], self.virt[i][0], self.virt[i][1], 100*self.weights[i]) return s @classmethod def from_list(cls, allinone, factor=1.0): """ Alternative constructor which expects single list. Format: [[occ_i, occ_j,..., virt_a, virt_b,..., ampl], ...] """ occ, virt, v = [], [], [] for transition in allinone: assert(len(transition) % 2 != 0) n_mo = int((len(transition)-1)/2) occ.append(transition[0:n_mo])# slices yield list, even if only one element virt.append(transition[n_mo:-1]) v.append(transition[-1])# index yields float return cls(occ, virt, v, factor) def to_dataframe(self, thresh=0.05): """ Converts the amplitude data to handy pandas.DataFrame object """ try: import pandas as pd except ImportError: raise ImportError("Module 'pandas' needed for 'Amplitudes.to_dataframe()' ") # TODO: improve this clunky part max_exc = max(list(map(len,self.occ))) occ, virt = [], [] for i in range(len(self.occ)): occ.append(self.occ[i] + [0]*(max_exc - len(self.occ[i]))) virt.append(self.virt[i] + [0]*(max_exc - len(self.virt[i]))) idx_o = list(map(lambda x: "occ_"+str(x), [n for n in range(1,max_exc+1)])) idx_v = list(map(lambda x: "virt_"+str(x), [n for n in range(1,max_exc+1)])) df = pd.concat([pd.DataFrame(occ, columns=idx_o), pd.DataFrame(virt, columns=idx_v), pd.Series(self.weights, name="weight")], axis=1) return df[(df["weight"] > thresh)] # trim DataFrame based on awesome function def to_list(self): """ Return single list of amplitude data in the format: [[occ_i, occ_j,..., virt_a, virt_b,..., ampl], ...] """ ampl = [] for i, v in enumerate(self.v): ampl.append(self.occ[i] + self.virt[i] + [v]) return ampl def encode(self, fmt=list): if fmt == list: return self.to_list() # elif fmt == pd.DataFrame: # return self.to_dataframe() else: raise ValueError("Export format not recognized.")
mit
Ldpe2G/mxnet
example/kaggle-ndsb1/submission_dsb.py
15
4287
from __future__ import print_function import pandas as pd import os import time as time ## Receives an array with probabilities for each class (columns) X images in test set (as listed in test.lst) and formats in Kaggle submission format, saves and compresses in submission_path def gen_sub(predictions,test_lst_path="test.lst",submission_path="submission.csv"): ## append time to avoid overwriting previous submissions ## submission_path=time.strftime("%Y%m%d%H%M%S_")+submission_path ### Make submission ## check sampleSubmission.csv from kaggle website to view submission format header = "acantharia_protist_big_center,acantharia_protist_halo,acantharia_protist,amphipods,appendicularian_fritillaridae,appendicularian_s_shape,appendicularian_slight_curve,appendicularian_straight,artifacts_edge,artifacts,chaetognath_non_sagitta,chaetognath_other,chaetognath_sagitta,chordate_type1,copepod_calanoid_eggs,copepod_calanoid_eucalanus,copepod_calanoid_flatheads,copepod_calanoid_frillyAntennae,copepod_calanoid_large_side_antennatucked,copepod_calanoid_large,copepod_calanoid_octomoms,copepod_calanoid_small_longantennae,copepod_calanoid,copepod_cyclopoid_copilia,copepod_cyclopoid_oithona_eggs,copepod_cyclopoid_oithona,copepod_other,crustacean_other,ctenophore_cestid,ctenophore_cydippid_no_tentacles,ctenophore_cydippid_tentacles,ctenophore_lobate,decapods,detritus_blob,detritus_filamentous,detritus_other,diatom_chain_string,diatom_chain_tube,echinoderm_larva_pluteus_brittlestar,echinoderm_larva_pluteus_early,echinoderm_larva_pluteus_typeC,echinoderm_larva_pluteus_urchin,echinoderm_larva_seastar_bipinnaria,echinoderm_larva_seastar_brachiolaria,echinoderm_seacucumber_auricularia_larva,echinopluteus,ephyra,euphausiids_young,euphausiids,fecal_pellet,fish_larvae_deep_body,fish_larvae_leptocephali,fish_larvae_medium_body,fish_larvae_myctophids,fish_larvae_thin_body,fish_larvae_very_thin_body,heteropod,hydromedusae_aglaura,hydromedusae_bell_and_tentacles,hydromedusae_h15,hydromedusae_haliscera_small_sideview,hydromedusae_haliscera,hydromedusae_liriope,hydromedusae_narco_dark,hydromedusae_narco_young,hydromedusae_narcomedusae,hydromedusae_other,hydromedusae_partial_dark,hydromedusae_shapeA_sideview_small,hydromedusae_shapeA,hydromedusae_shapeB,hydromedusae_sideview_big,hydromedusae_solmaris,hydromedusae_solmundella,hydromedusae_typeD_bell_and_tentacles,hydromedusae_typeD,hydromedusae_typeE,hydromedusae_typeF,invertebrate_larvae_other_A,invertebrate_larvae_other_B,jellies_tentacles,polychaete,protist_dark_center,protist_fuzzy_olive,protist_noctiluca,protist_other,protist_star,pteropod_butterfly,pteropod_theco_dev_seq,pteropod_triangle,radiolarian_chain,radiolarian_colony,shrimp_caridean,shrimp_sergestidae,shrimp_zoea,shrimp-like_other,siphonophore_calycophoran_abylidae,siphonophore_calycophoran_rocketship_adult,siphonophore_calycophoran_rocketship_young,siphonophore_calycophoran_sphaeronectes_stem,siphonophore_calycophoran_sphaeronectes_young,siphonophore_calycophoran_sphaeronectes,siphonophore_other_parts,siphonophore_partial,siphonophore_physonect_young,siphonophore_physonect,stomatopod,tornaria_acorn_worm_larvae,trichodesmium_bowtie,trichodesmium_multiple,trichodesmium_puff,trichodesmium_tuft,trochophore_larvae,tunicate_doliolid_nurse,tunicate_doliolid,tunicate_partial,tunicate_salp_chains,tunicate_salp,unknown_blobs_and_smudges,unknown_sticks,unknown_unclassified".split(',') # read first line to know the number of columns and column to use img_lst = pd.read_csv(test_lst_path,sep="/",header=None, nrows=1) columns = img_lst.columns.tolist() # get the columns cols_to_use = columns[len(columns)-1] # drop the last one cols_to_use= map(int, str(cols_to_use)) ## convert scalar to list img_lst= pd.read_csv(test_lst_path,sep="/",header=None, usecols=cols_to_use) ## reads lst, use / as sep to goet last column with filenames img_lst=img_lst.values.T.tolist() df = pd.DataFrame(predictions,columns = header, index=img_lst) df.index.name = 'image' print("Saving csv to %s" % submission_path) df.to_csv(submission_path) print("Compress with gzip") os.system("gzip -f %s" % submission_path) print(" stored in %s.gz" % submission_path)
apache-2.0
ephes/scikit-learn
sklearn/covariance/tests/test_graph_lasso.py
272
5245
""" Test the graph_lasso module. """ import sys import numpy as np from scipy import linalg from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_less from sklearn.covariance import (graph_lasso, GraphLasso, GraphLassoCV, empirical_covariance) from sklearn.datasets.samples_generator import make_sparse_spd_matrix from sklearn.externals.six.moves import StringIO from sklearn.utils import check_random_state from sklearn import datasets def test_graph_lasso(random_state=0): # Sample data from a sparse multivariate normal dim = 20 n_samples = 100 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.95, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) emp_cov = empirical_covariance(X) for alpha in (0., .1, .25): covs = dict() icovs = dict() for method in ('cd', 'lars'): cov_, icov_, costs = graph_lasso(emp_cov, alpha=alpha, mode=method, return_costs=True) covs[method] = cov_ icovs[method] = icov_ costs, dual_gap = np.array(costs).T # Check that the costs always decrease (doesn't hold if alpha == 0) if not alpha == 0: assert_array_less(np.diff(costs), 0) # Check that the 2 approaches give similar results assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4) assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4) # Smoke test the estimator model = GraphLasso(alpha=.25).fit(X) model.score(X) assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4) assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4) # For a centered matrix, assume_centered could be chosen True or False # Check that this returns indeed the same result for centered data Z = X - X.mean(0) precs = list() for assume_centered in (False, True): prec_ = GraphLasso(assume_centered=assume_centered).fit(Z).precision_ precs.append(prec_) assert_array_almost_equal(precs[0], precs[1]) def test_graph_lasso_iris(): # Hard-coded solution from R glasso package for alpha=1.0 # The iris datasets in R and sklearn do not match in a few places, these # values are for the sklearn version cov_R = np.array([ [0.68112222, 0.0, 0.2651911, 0.02467558], [0.00, 0.1867507, 0.0, 0.00], [0.26519111, 0.0, 3.0924249, 0.28774489], [0.02467558, 0.0, 0.2877449, 0.57853156] ]) icov_R = np.array([ [1.5188780, 0.0, -0.1302515, 0.0], [0.0, 5.354733, 0.0, 0.0], [-0.1302515, 0.0, 0.3502322, -0.1686399], [0.0, 0.0, -0.1686399, 1.8123908] ]) X = datasets.load_iris().data emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R) assert_array_almost_equal(icov, icov_R) def test_graph_lasso_iris_singular(): # Small subset of rows to test the rank-deficient case # Need to choose samples such that none of the variances are zero indices = np.arange(10, 13) # Hard-coded solution from R glasso package for alpha=0.01 cov_R = np.array([ [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149], [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222], [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009], [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222] ]) icov_R = np.array([ [24.42244057, -16.831679593, 0.0, 0.0], [-16.83168201, 24.351841681, -6.206896552, -12.5], [0.0, -6.206896171, 153.103448276, 0.0], [0.0, -12.499999143, 0.0, 462.5] ]) X = datasets.load_iris().data[indices, :] emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=0.01, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R, decimal=5) assert_array_almost_equal(icov, icov_R, decimal=5) def test_graph_lasso_cv(random_state=1): # Sample data from a sparse multivariate normal dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) # Capture stdout, to smoke test the verbose mode orig_stdout = sys.stdout try: sys.stdout = StringIO() # We need verbose very high so that Parallel prints on stdout GraphLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X) finally: sys.stdout = orig_stdout # Smoke test with specified alphas GraphLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X)
bsd-3-clause
jampp/airflow
airflow/hooks/dbapi_hook.py
17
5081
from builtins import str from past.builtins import basestring from datetime import datetime import numpy import logging from airflow.hooks.base_hook import BaseHook from airflow.utils import AirflowException class DbApiHook(BaseHook): """ Abstract base class for sql hooks. """ # Override to provide the connection name. conn_name_attr = None # Override to have a default connection id for a particular dbHook default_conn_name = 'default_conn_id' # Override if this db supports autocommit. supports_autocommit = False # Override with the object that exposes the connect method connector = None # Whether the db supports a special type of autocmmit supports_autocommit = False def __init__(self, *args, **kwargs): if not self.conn_name_attr: raise AirflowException("conn_name_attr is not defined") elif len(args) == 1: setattr(self, self.conn_name_attr, args[0]) elif self.conn_name_attr not in kwargs: setattr(self, self.conn_name_attr, self.default_conn_name) else: setattr(self, self.conn_name_attr, kwargs[self.conn_name_attr]) def get_conn(self): """Returns a connection object""" db = self.get_connection(getattr(self, self.conn_name_attr)) return self.connector.connect( host=db.host, port=db.port, username=db.login, schema=db.schema) def get_pandas_df(self, sql, parameters=None): ''' Executes the sql and returns a pandas dataframe ''' import pandas.io.sql as psql conn = self.get_conn() df = psql.read_sql(sql, con=conn) conn.close() return df def get_records(self, sql, parameters=None): ''' Executes the sql and returns a set of records. ''' conn = self.get_conn() cur = self.get_cursor() cur.execute(sql) rows = cur.fetchall() cur.close() conn.close() return rows def get_first(self, sql, parameters=None): ''' Executes the sql and returns a set of records. ''' conn = self.get_conn() cur = conn.cursor() cur.execute(sql) rows = cur.fetchone() cur.close() conn.close() return rows def run(self, sql, autocommit=False, parameters=None): """ Runs a command or a list of commands. Pass a list of sql statements to the sql parameter to get them to execute sequentially :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list """ conn = self.get_conn() if isinstance(sql, basestring): sql = [sql] if self.supports_autocommit: self.set_autocommit(conn, autocommit) cur = conn.cursor() for s in sql: cur.execute(s) conn.commit() cur.close() conn.close() def set_autocommit(self, conn, autocommit): conn.autocommit = autocommit def get_cursor(self): """Returns a cursor""" return self.get_conn().cursor() def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ A generic way to insert a set of tuples into a table, the whole set of inserts is treated as one transaction """ if target_fields: target_fields = ", ".join(target_fields) target_fields = "({})".format(target_fields) else: target_fields = '' conn = self.get_conn() cur = conn.cursor() if self.supports_autocommit: cur.execute('SET autocommit = 0') conn.commit() i = 0 for row in rows: i += 1 l = [] for cell in row: if isinstance(cell, basestring): l.append("'" + str(cell).replace("'", "''") + "'") elif cell is None: l.append('NULL') elif isinstance(cell, numpy.datetime64): l.append("'" + str(cell) + "'") elif isinstance(cell, datetime): l.append("'" + cell.isoformat() + "'") else: l.append(str(cell)) values = tuple(l) sql = "INSERT INTO {0} {1} VALUES ({2});".format( table, target_fields, ",".join(values)) cur.execute(sql) if i % commit_every == 0: conn.commit() logging.info( "Loaded {i} into {table} rows so far".format(**locals())) conn.commit() cur.close() conn.close() logging.info( "Done loading. Loaded a total of {i} rows".format(**locals())) def get_conn(self): """ Retuns a sql connection that can be used to retrieve a cursor. """ raise NotImplemented()
apache-2.0
anntzer/scikit-learn
examples/svm/plot_oneclass.py
95
2419
""" ========================================== One-class SVM with non-linear kernel (RBF) ========================================== An example using a one-class SVM for novelty detection. :ref:`One-class SVM <svm_outlier_detection>` is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate train data X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_train = y_pred_train[y_pred_train == -1].size n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the line, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='darkred') plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='palevioletred') s = 40 b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=s, edgecolors='k') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='blueviolet', s=s, edgecolors='k') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='gold', s=s, edgecolors='k') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a.collections[0], b1, b2, c], ["learned frontier", "training observations", "new regular observations", "new abnormal observations"], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11)) plt.xlabel( "error train: %d/200 ; errors novel regular: %d/40 ; " "errors novel abnormal: %d/40" % (n_error_train, n_error_test, n_error_outliers)) plt.show()
bsd-3-clause
samuel1208/scikit-learn
sklearn/utils/multiclass.py
92
13986
# Author: Arnaud Joly, Joel Nothman, Hamzeh Alsalhi # # License: BSD 3 clause """ Multi-class / multi-label utility function ========================================== """ from __future__ import division from collections import Sequence from itertools import chain import warnings from scipy.sparse import issparse from scipy.sparse.base import spmatrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix import numpy as np from ..externals.six import string_types from .validation import check_array from ..utils.fixes import bincount def _unique_multiclass(y): if hasattr(y, '__array__'): return np.unique(np.asarray(y)) else: return set(y) def _unique_sequence_of_sequence(y): if hasattr(y, '__array__'): y = np.asarray(y) return set(chain.from_iterable(y)) def _unique_indicator(y): return np.arange(check_array(y, ['csr', 'csc', 'coo']).shape[1]) _FN_UNIQUE_LABELS = { 'binary': _unique_multiclass, 'multiclass': _unique_multiclass, 'multilabel-sequences': _unique_sequence_of_sequence, 'multilabel-indicator': _unique_indicator, } def unique_labels(*ys): """Extract an ordered array of unique labels We don't allow: - mix of multilabel and multiclass (single label) targets - mix of label indicator matrix and anything else, because there are no explicit labels) - mix of label indicator matrices of different sizes - mix of string and integer labels At the moment, we also don't allow "multiclass-multioutput" input type. Parameters ---------- *ys : array-likes, Returns ------- out : numpy array of shape [n_unique_labels] An ordered array of unique labels. Examples -------- >>> from sklearn.utils.multiclass import unique_labels >>> unique_labels([3, 5, 5, 5, 7, 7]) array([3, 5, 7]) >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4]) array([1, 2, 3, 4]) >>> unique_labels([1, 2, 10], [5, 11]) array([ 1, 2, 5, 10, 11]) """ if not ys: raise ValueError('No argument has been passed.') # Check that we don't mix label format ys_types = set(type_of_target(x) for x in ys) if ys_types == set(["binary", "multiclass"]): ys_types = set(["multiclass"]) if len(ys_types) > 1: raise ValueError("Mix type of y not allowed, got types %s" % ys_types) label_type = ys_types.pop() # Check consistency for the indicator format if (label_type == "multilabel-indicator" and len(set(check_array(y, ['csr', 'csc', 'coo']).shape[1] for y in ys)) > 1): raise ValueError("Multi-label binary indicator input with " "different numbers of labels") # Get the unique set of labels _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None) if not _unique_labels: raise ValueError("Unknown label type: %r" % ys) ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys)) # Check that we don't mix string type with number type if (len(set(isinstance(label, string_types) for label in ys_labels)) > 1): raise ValueError("Mix of label input types (string and number)") return np.array(sorted(ys_labels)) def _is_integral_float(y): return y.dtype.kind == 'f' and np.all(y.astype(int) == y) def is_label_indicator_matrix(y): """ Check if ``y`` is in the label indicator matrix format (multilabel). Parameters ---------- y : numpy array of shape [n_samples] or sequence of sequences Target values. In the multilabel case the nested sequences can have variable lengths. Returns ------- out : bool, Return ``True``, if ``y`` is in a label indicator matrix format, else ``False``. Examples -------- >>> import numpy as np >>> from sklearn.utils.multiclass import is_label_indicator_matrix >>> is_label_indicator_matrix([0, 1, 0, 1]) False >>> is_label_indicator_matrix([[1], [0, 2], []]) False >>> is_label_indicator_matrix(np.array([[1, 0], [0, 0]])) True >>> is_label_indicator_matrix(np.array([[1], [0], [0]])) False >>> is_label_indicator_matrix(np.array([[1, 0, 0]])) True """ if hasattr(y, '__array__'): y = np.asarray(y) if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1): return False if issparse(y): if isinstance(y, (dok_matrix, lil_matrix)): y = y.tocsr() return (len(y.data) == 0 or np.ptp(y.data) == 0 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(np.unique(y.data)))) else: labels = np.unique(y) return len(labels) < 3 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(labels)) def is_sequence_of_sequences(y): """ Check if ``y`` is in the sequence of sequences format (multilabel). This format is DEPRECATED. Parameters ---------- y : sequence or array. Returns ------- out : bool, Return ``True``, if ``y`` is a sequence of sequences else ``False``. """ # the explicit check for ndarray is for forward compatibility; future # versions of Numpy might want to register ndarray as a Sequence try: if hasattr(y, '__array__'): y = np.asarray(y) out = (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence) and not isinstance(y[0], string_types)) except (IndexError, TypeError): return False if out: warnings.warn('Direct support for sequence of sequences multilabel ' 'representation will be unavailable from version 0.17. ' 'Use sklearn.preprocessing.MultiLabelBinarizer to ' 'convert to a label indicator representation.', DeprecationWarning) return out def is_multilabel(y): """ Check if ``y`` is in a multilabel format. Parameters ---------- y : numpy array of shape [n_samples] or sequence of sequences Target values. In the multilabel case the nested sequences can have variable lengths. Returns ------- out : bool, Return ``True``, if ``y`` is in a multilabel format, else ```False``. Examples -------- >>> import numpy as np >>> from sklearn.utils.multiclass import is_multilabel >>> is_multilabel([0, 1, 0, 1]) False >>> is_multilabel(np.array([[1, 0], [0, 0]])) True >>> is_multilabel(np.array([[1], [0], [0]])) False >>> is_multilabel(np.array([[1, 0, 0]])) True """ return is_label_indicator_matrix(y) or is_sequence_of_sequences(y) def type_of_target(y): """Determine the type of data indicated by target `y` Parameters ---------- y : array-like Returns ------- target_type : string One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-sequences': `y` is a sequence of sequences, a 1d array-like of objects that are sequences of labels. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, or an array of non-sequence objects. Examples -------- >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__')) and not isinstance(y, string_types)) if not valid: raise ValueError('Expected array-like (array or non-string sequence), ' 'got %r' % y) if is_sequence_of_sequences(y): return 'multilabel-sequences' elif is_label_indicator_matrix(y): return 'multilabel-indicator' try: y = np.asarray(y) except ValueError: # known to fail in numpy 1.3 for array of arrays return 'unknown' if y.ndim > 2 or (y.dtype == object and len(y) and not isinstance(y.flat[0], string_types)): return 'unknown' if y.ndim == 2 and y.shape[1] == 0: return 'unknown' elif y.ndim == 2 and y.shape[1] > 1: suffix = '-multioutput' else: # column vector or 1d suffix = '' # check float and contains non-integer float values: if y.dtype.kind == 'f' and np.any(y != y.astype(int)): return 'continuous' + suffix if len(np.unique(y)) <= 2: assert not suffix, "2d binary array-like should be multilabel" return 'binary' else: return 'multiclass' + suffix def _check_partial_fit_first_call(clf, classes=None): """Private helper function for factorizing common classes param logic Estimators that implement the ``partial_fit`` API need to be provided with the list of possible classes at the first call to partial_fit. Subsequent calls to partial_fit should check that ``classes`` is still consistent with a previous value of ``clf.classes_`` when provided. This function returns True if it detects that this was the first call to ``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also set on ``clf``. """ if getattr(clf, 'classes_', None) is None and classes is None: raise ValueError("classes must be passed on the first call " "to partial_fit.") elif classes is not None: if getattr(clf, 'classes_', None) is not None: if not np.all(clf.classes_ == unique_labels(classes)): raise ValueError( "`classes=%r` is not the same as on last call " "to partial_fit, was: %r" % (classes, clf.classes_)) else: # This is the first call to partial_fit clf.classes_ = unique_labels(classes) return True # classes is None and clf.classes_ has already previously been set: # nothing to do return False def class_distribution(y, sample_weight=None): """Compute class priors from multioutput-multiclass target data Parameters ---------- y : array like or sparse matrix of size (n_samples, n_outputs) The labels for each example. sample_weight : array-like of shape = (n_samples,), optional Sample weights. Returns ------- classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. n_classes : list of integrs of size n_outputs Number of classes in each column class_prior : list of size n_outputs of arrays of size (n_classes,) Class distribution of each column. """ classes = [] n_classes = [] class_prior = [] n_samples, n_outputs = y.shape if issparse(y): y = y.tocsc() y_nnz = np.diff(y.indptr) for k in range(n_outputs): col_nonzero = y.indices[y.indptr[k]:y.indptr[k + 1]] # separate sample weights for zero and non-zero elements if sample_weight is not None: nz_samp_weight = np.asarray(sample_weight)[col_nonzero] zeros_samp_weight_sum = (np.sum(sample_weight) - np.sum(nz_samp_weight)) else: nz_samp_weight = None zeros_samp_weight_sum = y.shape[0] - y_nnz[k] classes_k, y_k = np.unique(y.data[y.indptr[k]:y.indptr[k + 1]], return_inverse=True) class_prior_k = bincount(y_k, weights=nz_samp_weight) # An explicit zero was found, combine its wieght with the wieght # of the implicit zeros if 0 in classes_k: class_prior_k[classes_k == 0] += zeros_samp_weight_sum # If an there is an implict zero and it is not in classes and # class_prior, make an entry for it if 0 not in classes_k and y_nnz[k] < y.shape[0]: classes_k = np.insert(classes_k, 0, 0) class_prior_k = np.insert(class_prior_k, 0, zeros_samp_weight_sum) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior.append(class_prior_k / class_prior_k.sum()) else: for k in range(n_outputs): classes_k, y_k = np.unique(y[:, k], return_inverse=True) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior_k = bincount(y_k, weights=sample_weight) class_prior.append(class_prior_k / class_prior_k.sum()) return (classes, n_classes, class_prior)
bsd-3-clause
mattgiguere/scikit-learn
sklearn/metrics/regression.py
27
9558
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by ``utils.multiclass.type_of_target`` y_true : array-like of shape = [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples, n_outputs] Estimated target values. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) y_type = 'continuous' if y_true.shape[1] == 1 else 'continuous-multioutput' return y_type, y_true, y_pred def _average_and_variance(values, sample_weight=None): """ Compute the (weighted) average and variance. Parameters ---------- values : array-like of shape = [n_samples] or [n_samples, n_outputs] sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- average : float The weighted average variance : float The weighted variance """ values = np.asarray(values) if values.ndim == 1: values = values.reshape((-1, 1)) if sample_weight is not None: sample_weight = np.asarray(sample_weight) if sample_weight.ndim == 1: sample_weight = sample_weight.reshape((-1, 1)) average = np.average(values, weights=sample_weight) variance = np.average((values - average)**2, weights=sample_weight) return average, variance def mean_absolute_error(y_true, y_pred, sample_weight=None): """Mean absolute error regression loss Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) return np.average(np.abs(y_pred - y_true).mean(axis=1), weights=sample_weight) def mean_squared_error(y_true, y_pred, sample_weight=None): """Mean squared error regression loss Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) return np.average(((y_pred - y_true) ** 2).mean(axis=1), weights=sample_weight) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Parameters ---------- y_true : array-like Ground truth (correct) target values. y_pred : array-like Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float The explained variance. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) if y_type != "continuous": raise ValueError("{0} is not supported".format(y_type)) _, numerator = _average_and_variance(y_true - y_pred, sample_weight) _, denominator = _average_and_variance(y_true, sample_weight) if denominator == 0.0: if numerator == 0.0: return 1.0 else: # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway return 0.0 return 1 - numerator / denominator def r2_score(y_true, y_pred, sample_weight=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0, lower values are worse. Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- z : float The R^2 score. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(dtype=np.float64) if denominator == 0.0: if numerator == 0.0: return 1.0 else: # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway return 0.0 return 1 - numerator / denominator
bsd-3-clause
allisony/triangle.py
tests.py
3
3274
# -*- coding: utf-8 -*- from __future__ import division, print_function __all__ = ["test_hist2d", "test_corner"] import os import numpy as np import pandas as pd import matplotlib.pyplot as pl import triangle FIGURE_PATH = "test_figures" def _run_hist2d(nm, N=50000, seed=1234, **kwargs): print(" .. {0}".format(nm)) if not os.path.exists(FIGURE_PATH): os.makedirs(FIGURE_PATH) # Generate some fake data. np.random.seed(seed) x = np.random.randn(N) y = np.random.randn(N) fig, ax = pl.subplots(1, 1, figsize=(8, 8)) triangle.hist2d(x, y, ax=ax, **kwargs) fig.savefig(os.path.join(FIGURE_PATH, "hist2d_{0}.png".format(nm))) pl.close(fig) def test_hist2d(): _run_hist2d("cutoff", range=[(0, 4), (0, 2.5)]) _run_hist2d("cutoff2", range=[(-4, 4), (-0.1, 0.1)], N=100000, fill_contours=True, smooth=1) _run_hist2d("basic") _run_hist2d("color", color="g") _run_hist2d("levels1", levels=[0.68, 0.95]) _run_hist2d("levels2", levels=[0.5, 0.75]) _run_hist2d("filled", fill_contours=True) _run_hist2d("smooth1", bins=50) _run_hist2d("smooth2", bins=50, smooth=(1.0, 1.5)) _run_hist2d("philsplot", plot_datapoints=False, fill_contours=True, levels=[0.68, 0.95], color="g", bins=50, smooth=1.) def _run_corner(nm, pandas=False, N=10000, seed=1234, ndim=3, ret=False, factor=None, **kwargs): print(" .. {0}".format(nm)) if not os.path.exists(FIGURE_PATH): os.makedirs(FIGURE_PATH) np.random.seed(seed) data1 = np.random.randn(ndim*4*N/5.).reshape([4*N/5., ndim]) data2 = (5 * np.random.rand(ndim)[None, :] + np.random.randn(ndim*N/5.).reshape([N/5., ndim])) data = np.vstack([data1, data2]) if factor is not None: data[:, 0] *= factor data[:, 1] /= factor if pandas: data = pd.DataFrame.from_items(zip(map("d{0}".format, range(ndim)), data.T)) fig = triangle.corner(data, **kwargs) fig.savefig(os.path.join(FIGURE_PATH, "triangle_{0}.png".format(nm))) if ret: return fig else: pl.close(fig) def test_corner(): _run_corner("basic") _run_corner("labels", labels=["a", "b", "c"]) _run_corner("quantiles", quantiles=[0.16, 0.5, 0.84]) _run_corner("color", color="g") fig = _run_corner("color-filled", color="g", fill_contours=True, ret=True) _run_corner("overplot", seed=15, color="b", fig=fig, fill_contours=True) _run_corner("smooth1", bins=50) _run_corner("smooth2", bins=50, smooth=1.0) _run_corner("smooth1d", bins=50, smooth=1.0, smooth1d=1.0) _run_corner("titles1", show_titles=True) _run_corner("top-ticks", top_ticks=True) _run_corner("pandas", pandas=True) _run_corner("truths", truths=[0.0, None, 0.15]) _run_corner("no-fill-contours", no_fill_contours=True) # _run_corner("mathtext", factor=1e8, use_math_text=True) fig = _run_corner("tight", ret=True) pl.tight_layout() fig.savefig(os.path.join(FIGURE_PATH, "triangle_tight.png")) pl.close(fig) if __name__ == "__main__": print("Testing 'hist2d'") test_hist2d() print("Testing 'corner'") test_corner()
bsd-2-clause
tlee753/stock-market-analysis
python/pandasTest.py
1
1046
from pandas_datareader import data import pandas as pd # Define the instruments to download. We would like to see Apple, Microsoft and the S&P500 index. tickers = ['AAPL', 'MSFT', 'SPY'] # Define which online source one should use data_source = 'google' # We would like all available data from 01/01/2000 until 12/31/2016. start_date = '2010-01-01' end_date = '2016-12-31' # User pandas_reader.data.DataReader to load the desired data. As simple as that. panel_data = data.DataReader(tickers, data_source, start_date, end_date) # Getting just the adjusted closing prices. This will return a Pandas DataFrame # The index in this DataFrame is the major index of the panel_data. close = panel_data.ix['Close'] # Getting all weekdays between 01/01/2000 and 12/31/2016 all_weekdays = pd.date_range(start=start_date, end=end_date, freq='B') # How do we align the existing prices in adj_close with our new set of dates? # All we need to do is reindex close using all_weekdays as the new index close = close.reindex(all_weekdays) close.head(10)
mit
timothydmorton/qa_explorer
explorer/dataset.py
1
30548
import numpy as np import pandas as pd import holoviews as hv from functools import partial import pickle import tempfile import os, shutil import fastparquet import dask.dataframe as dd from holoviews.operation.datashader import dynspread, datashade from .functors import Functor, CompositeFunctor, Column, RAColumn, DecColumn, Mag from .functors import StarGalaxyLabeller from .catalog import MatchedCatalog, MultiMatchedCatalog, IDMatchedCatalog, MultiBandCatalog from .plots import filter_dset class QADataset(object): """Container to coordinate and visualize function calculations on catalogs The fundamental thing that a `QADataset` does is compute a `pandas.DataFrame` containing the results of evaluating the desired functors on the desired `Catalog`: the `.df` attribute. In addition to containing a column for the result of each `Functor` calculation, `.df` also always contains columns for coordinates (`ra`, `dec`), object type label (`label`), x-coordinate of scatter plots (`x`, by default psfMag), an "id" column that will be either `ccdId` or `patchId`, depending on which is relevant, and columns for any desired boolean flags. In addition to the `.df` attribute, a `QADataset` also puts together a `holoviews.Dataset` object that wraps this data, in the `.ds` attribute. This is the object that can get passed to various plotting functions from `explorer.plots`. A `QADataset` can take different kinds of `Catalog` objects, and the the computed `.df` and `.ds` attributes will look slightly different in each case: * With a normal single `Catalog`, the dataframe will contain the functor computations in columns keyed by the keys of the functor dictionary, and `.ds` will just be a simple wrapper of this. * With a `MatchedCatalog`, the columns will have the same names but will contain the *difference* of the computations between the two catalogs (unless a functor has `allow_difference=False`). * With a `MultiMatchedCatalog`, the columns of `.df` will be multi-level indexed, containing the full information of each quantity calculated on each catalog (this is where the memeory footprint can begin to climb). In this case, `.ds` contains the standard deviation of each measurement among all the catalogs; also, a `_ds_dict` attribute is created, where a `holoviews.Dataset` object can be accessed for each individual catalog (keyed by visit name or 'coadd'). * Using a `MultiBandCatalog`, the `.df` attribute contains functor computations for each band, in a multi-level column index, and in addition contains color columns for all magnitude functors provided. In this case, a special `.color_ds` attribute This object is pickleable, and can be dumped to file using the `.save()` method. Especially when using `MultiMatchedCatalog` catalogs, the dataframe computations can take a long time, so this can be desirable. Note that the `client` object cannot get saved though, so client must be re-initialized on load, which you can do with the `.load()` classmethod. Parameters ---------- catalog : explorer.Catalog Catalog on which to perform calculations. May be any type of catalog. funcs : dict or list Dictionary or list of functors. If list, then the names of the `Functor` columns will be `y0, y1, y2, ...`. flags : list List of flags to load from catalog xFunc : explorer.Functor Functor to treat as the abscissa for the scatter plots. Default is `Mag('base_PsfFlux')`. labeller : explorer.functors.Labeller Functor to assign labels to sources. Default is `explorer.functors.StarGalaxyLabeller()`. query : str [Not implemented fully or tested. Do not use.] client : distributed.Client Dask cluster client to be passed to evaluation of functors. cachedir : str Directory to which to write dataframe if `self.oom` is True. oom : bool Whether to store computed dataframe out of memory. Future to-be-implemented feature; not really used yet. """ def __init__(self, catalog, funcs, flags=None, xFunc=Mag('base_PsfFlux', allow_difference=False), labeller=StarGalaxyLabeller(), query=None, client=None, cachedir=None, oom=False): self._set_catalog(catalog) self._set_funcs(funcs, xFunc, labeller) self._set_flags(flags) self.client = client self._query = query if cachedir is None: cachedir = tempfile.gettempdir() self._cachedir = cachedir self._df_file = None self.oom = oom def save(self, filename, protocol=4): """Write to file Parameters ---------- filename : str Filename to write pickle file to. By convention, should end with ".pkl" """ pickle.dump(self, open(filename, 'wb'), protocol=protocol) @classmethod def load(cls, filename, client=None): """Restore from a saved file Parameters ---------- filename : str Filename to load previously saved `QADataset` from. client : distributed.Client Client object, if desired. Note that any client previously set was not saved, so this must be re-initialized if desired. """ new = pickle.load(open(filename, 'rb')) new.client = client return new def __getstate__(self): odict = self.__dict__ client = self.client odict['client'] = None return odict def __setstate__(self, d): self.__dict__ = d def __del__(self): if self._df_computed and self.oom: os.remove(self.df_file) def _set_catalog(self, catalog): """Change catalog Sets catalog to be a new `Catalog`, and resets data structures. Parameters ---------- catalog : explorer.Catalog New catalog. """ self.catalog = catalog self._reset() def _set_funcs(self, funcs, xFunc, labeller): """Initialize functions Parameters ---------- funcs : dict or list Dictionary or list of functors. If list, then will be converted into dictionary keyed by `y0, y1, y2, ...`. xFunc : explorer.functors.Functor `Functor` to function as the x-coordinate of the scatter plots. labeller : explorer.functors.Labeller `Functor` to label points. """ if isinstance(funcs, list) or isinstance(funcs, tuple): self.funcs = {'y{}'.format(i):f for i,f in enumerate(funcs)} elif isinstance(funcs, Functor): self.funcs = {'y0':funcs} else: self.funcs = funcs self.xFunc = xFunc self.labeller = labeller self._reset() def _set_flags(self, flags): if flags is None: self.flags = [] else: self.flags = flags # TODO: check to make sure flags are valid self._reset() def _reset(self): """Sets state such that data structurs need to be recomputed Necessary after changing catalog, or query, for example. """ self._df_computed = False self._ds = None @property def query(self): return self._query @query.setter def query(self, new): self._query = new self._reset() @property def allfuncs(self): """Dictionary of all functors to be computed from catalog In addition to the ones provided upon initialization of the `QADataset`, this also contains `ra`, `dec`, `x`, `label`, `ccdId`/`patchId`, and all flags. """ allfuncs = self.funcs.copy() # Set coordinates and x value allfuncs.update({'ra':RAColumn(), 'dec': DecColumn(), 'x':self.xFunc}) if self.id_name is not None: allfuncs.update({self.id_name : Column(self.id_name)}) # Include flags allfuncs.update({f:Column(f) for f in self.flags}) if self.labeller is not None: allfuncs.update({'label':self.labeller}) return allfuncs @property def df(self): """Dataframe containing results of computation """ if not self._df_computed: self._make_df() return self._df # Save below for when trying to do more out-of-memory # df = pd.read_hdf(self.df_file, 'df') df = pd.read_parquet(self.df_file) # wait for pandas 0.22 # df = dd.read_parquet(self.df_file) return df @property def is_matched(self): return isinstance(self.catalog, MatchedCatalog) @property def is_multi_matched(self): return isinstance(self.catalog, MultiMatchedCatalog) @property def is_idmatched(self): return isinstance(self.catalog, IDMatchedCatalog) @property def is_multiband(self): return isinstance(self.catalog, MultiBandCatalog) @property def id_name(self): """patchId or ccdId, as appropriate Necessary in order to know which image to load to inspect object. """ if self.is_idmatched: name = 'patchId' elif self.is_multi_matched: name = 'ccdId' elif self.is_matched and not self.is_multi_matched: if 'ccdId' in self.catalog.cat1.columns: name = 'ccdId' elif 'patchId' in self.catalog.cat1.columns: name = 'patchId' else: logging.warning('No id name available (looked for ccdId, patchId)?') name = None elif 'ccdId' in self.catalog.columns: name = 'ccdId' elif 'patchId' in self.catalog.columns: name = 'patchId' else: logging.warning('No id name available (looked for ccdId, patchId)?') name = None return name @property def mag_names(self): """Names of magnitude functors. Used in order to calculate color information if catalog is a `MultiBandCatalog`. """ return [name for name, fn in self.funcs.items() if isinstance(fn, Mag)] @property def df_file(self): """File to store out-of-memory df in [Not really used yet, but placeholder] """ if self._df_file is None: self._df_file = os.path.join(self._cachedir, next(tempfile._get_candidate_names())) return self._df_file def _make_df(self, **kwargs): """Compute dataframe. This is called if the `.df` attribute is accessed but `._df_computed` is False. """ f = CompositeFunctor(self.allfuncs) if self.is_multi_matched: kwargs.update(how='all') df = f(self.catalog, query=self.query, client=self.client, dropna=False, **kwargs) if self.is_matched and not self.is_idmatched: df = pd.concat([df, self.catalog.match_distance.dropna(how='all')], axis=1) if not self.is_matched: df = df.dropna(how='any') df = df.replace([-np.inf, np.inf], np.nan) # Add color columns if catalog is a MultiBandCatalog if self.is_multiband: cat = self.catalog color_dfs = [] filters = cat.filters n_filts = len(filters) cols_to_difference = cat.color_groups for mag in self.mag_names: col_names = [('{}_color'.format(mag), color) for color in cat.colors] mags = df[mag] color_df = pd.DataFrame({c : mags[c1] - mags[c2] for c, (c1, c2) in zip(col_names, cols_to_difference)}) color_df.dropna(how='any', inplace=True) df = pd.concat([df, color_df], axis=1) if self.oom: # df.to_hdf(self.df_file, 'df') #must be format='table' if categoricals included df.to_parquet(self.df_file) # wait for pandas 0.22 # fastparquet.write(self.df_file, df) # Doesn't work with multiindexing self._df_computed = True self._df = df @property def ds(self): """Holoviews Dataset wrapper of the underlying dataframe """ if self._ds is None: self._make_ds() return self._ds def get_ds(self, key): """Get holoviews dataset corresponding to specific catalog This is relevant for `MultiMatchedCatalogs`, where multiple `holoviews.Dataset` objects are created and saved in the `_ds_dict` attribute. """ if self._ds is None: self._make_ds() return self._ds_dict[key] def get_color_ds(self, key): """Get holoviews "color" dataset corresponding to particular magnitude This is relevant for `MultiBandCatalog`, where multiple `holoviews.Dataset` objects are created and saved in the `_color_ds_dict` attribute, keyed by magnitude name. """ if self._ds is None: self._make_ds() return self._color_ds_dict[key] def _get_kdims(self): """Get key dimensions, for generating holoviews Datasets Key dimensions are ra, dec, x, label, ccdId/patchId, and all flags """ kdims = ['ra', 'dec', hv.Dimension('x', label=self.xFunc.name), 'label'] if self.id_name is not None: kdims.append(self.id_name) kdims += self.flags return kdims def _make_ds(self, **kwargs): """Create holoviews.Dataset objects needed to generate plots. """ kdims = self._get_kdims() vdims = [] for k,v in self.allfuncs.items(): if k in ('ra', 'dec', 'x', 'label', self.id_name) or k in self.flags: continue label = v.name if v.allow_difference and not self.is_multiband: if self.is_multi_matched: label = 'std({})'.format(label) elif self.is_matched: label = 'diff({})'.format(label) vdims.append(hv.Dimension(k, label=label)) if self.is_matched and not self.is_idmatched: vdims += [hv.Dimension('match_distance', label='Match Distance [arcsec]')] if self.is_multiband: self._color_ds_dict = {} for mag in self.mag_names: self._color_ds_dict[mag] = self.color_ds(mag) df = self.df.dropna(how='any') elif self.is_multi_matched: # reduce df appropriately here coadd_cols = ['ra', 'dec', 'x', 'label'] + self.flags visit_cols = list(set(self.df.columns.levels[0]) - set(coadd_cols)) df_swap = self.df.swaplevel(axis=1) coadd_df = df_swap.loc[:, 'coadd'][coadd_cols] visit_df = self.df[visit_cols].drop('coadd', axis=1, level=1) dfs = [coadd_df, visit_df.std(axis=1, level=0).dropna(how='any')] # This dropna thing is a problem when there are NaNs in flags. # Solution: use subset=[...] to define the subset of columns to look for NaNs subset_to_check = [c for c in df_swap['coadd'].columns if c not in [self.id_name] + self.flags] df_dict = {k:df_swap[k].dropna(how='any', subset=subset_to_check).reset_index() for k in ['coadd'] + self.catalog.visit_names} self._ds_dict = {k:hv.Dataset(df_dict[k], kdims=kdims, vdims=vdims) for k in df_dict} # Keep only rows that aren't nan in visit values df = pd.concat(dfs, axis=1, join='inner') else: df = self.df.dropna(how='any') ds = hv.Dataset(df.reset_index(), kdims=kdims, vdims=vdims) self._ds = ds def color_ds(self, mag): """Calculate holoviews.Dataset object containing colors for a given magnitude type * Functor values and 'x' values come from catalog's reference filter. * Flags are computed as the "or" of all bands. * Labels are re-determined as follows: * If object is a star in all bands, it is called a "star" * If it is a star in zero bands, it is called a "noStar" * If it is called a star in some bands but not all, it is called a "maybe" """ if not self.is_multiband: return NotImplementedError('Can only get color_ds if catalog is a MultiBandCatalog') if not isinstance(self.allfuncs[mag], Mag): raise ValueError('Requested column must be a magnitude: {} requested'.format(mag)) color_df = self.df[['ra', 'dec']] color_df.columns = color_df.columns.get_level_values(0) filt = self.catalog.reference_filt swap_df = self.df.swaplevel(axis=1) # Get values for functors and 'x' from reference filter func_keys = list(self.funcs.keys()) + ['x'] + [self.id_name] color_df = pd.concat([color_df, swap_df[filt][func_keys]], axis=1) # Compute flags as the "or" of all flag_cols = [pd.Series(self.df[flag].max(axis=1).astype(bool), name=flag) for flag in self.flags] color_df = pd.concat([color_df] + flag_cols, axis=1) # Calculate group label n = self.catalog.n_filters n_star = (self.df['label']=='star').sum(axis=1) label = pd.Series(pd.cut(n_star, [-1, 0, n-1 , n], labels=['noStar', 'maybe', 'star']), index=n_star.index, name='label') color_df['label'] = label color_df = pd.concat([color_df, self.df['{}_color'.format(mag)]], axis=1) # color_df = pd.concat([self.df[['ra', 'dec']], # swap_df[filt], # self.df['{}_color'.format(mag)]], axis=1) # color_df = color_df.rename(columns={('ra', 'ra'):'ra', ('dec', 'dec'): 'dec'}) return hv.Dataset(color_df, kdims=self._get_kdims()) def visit_points(self, vdim, visit, x_max, label, filter_range=None, flags=None, bad_flags=None): """Companion function to visit_explore that returns Points object Parameters ---------- vdim : str Name of dimension whose value gets colormapped. visit, x_max, label : int, float, str Parameters that become kdims in the holoviews.DynamicMap of `visit_explore`. filter_range, flags, bad_flags : dict, list, list Parameters controlled by the `filter_stream` parameter of `visit_explore`. """ if self.is_multi_matched: try: dset = self.get_ds(visit) except KeyError: dset = self.get_ds(str(visit)) else: if visit != 'coadd': raise ValueError('visit name must be "coadd"!') dset = self.ds dset = dset.select(x=(None, x_max), label=label) # filter_range = {} if filter_range is None else filter_range # flags = [] if flags is None else flags # bad_flags = [] if bad_flags is None else bad_flags dset = filter_dset(dset, filter_range=filter_range, flags=flags, bad_flags=bad_flags) # dset = dset.redim(**{vdim:'y'}) vdims = [vdim, 'id', 'x'] if self.id_name is not None: vdims.append(self.id_name) pts = hv.Points(dset, kdims=['ra', 'dec'], vdims=vdims) return pts.opts(plot={'color_index':vdim}) def visit_explore(self, vdim, x_range=np.arange(15,24.1,0.5), filter_stream=None, range_override=None): """Dynamic map of values of a particular dimension, scrollable through visits Parameters ---------- vdim : str Name of dimension to explore. x_range : array Values of faint magnitude limit. Only points up to this limit will be plotted. Beware of scrolling to too faint a limit; it might give you too many points! filter_stream : explorer.plots.FilterStream, optional Stream of constraints that controls what data to display. Useful to link multiple plots together range_override : (min, max), optional By default the colormap will be scalled between the 0.005 to 0.995 quantiles of the *entire* set of visits. Sometimes this is not a useful range to view, so this parameter allows a custom colormap range to be set. """ if filter_stream is not None: streams = [filter_stream] else: streams = [] fn = partial(QADataset.visit_points, self=self, vdim=vdim) dmap = hv.DynamicMap(fn, kdims=['visit', 'x_max', 'label'], streams=streams) y_min = self.df[vdim].drop('coadd', axis=1).quantile(0.005).min() y_max = self.df[vdim].drop('coadd', axis=1).quantile(0.995).max() ra_min, ra_max = self.catalog.coadd_cat.ra.quantile([0, 1]) dec_min, dec_max = self.catalog.coadd_cat.dec.quantile([0, 1]) ranges = {vdim : (y_min, y_max), 'ra' : (ra_min, ra_max), 'dec' : (dec_min, dec_max)} if range_override is not None: ranges.update(range_override) # Force visit names to be integers, if possible try: visit_names = [int(v) for v in self.catalog.visit_names] visit_names.sort() except: visit_names = self.catalog.visit_names dmap = dmap.redim.values(visit=visit_names, # vdim=list(self.funcs.keys()) + ['match_distance'], # vdim=[vdim], label=['galaxy', 'star'], x_max=x_range).redim.range(**ranges) return dmap def coadd_points(self, vdim, x_max, label, **kwargs): """Same as visit_points, but for coadd image. """ return self.visit_points(vdim, 'coadd', x_max, label, **kwargs) def coadd_explore(self, vdim, x_range=np.arange(15,24.1,0.5), filter_stream=None, range_override=None): """Dynamic map of coadd values Parameters ---------- vdim : str Name of dimension to explore. x_range : array Values of faint magnitude limit. Only points up to this limit will be plotted. Beware of scrolling to too faint a limit; it might give you too many points! filter_stream : explorer.plots.FilterStream, optional Stream of constraints that controls what data to display. Useful to link multiple plots together range_override : (min, max), optional By default the colormap will be scalled between the 0.005 to 0.995 quantiles of the *entire* set of visits. Sometimes this is not a useful range to view, so this parameter allows a custom colormap range to be set. """ if filter_stream is not None: streams = [filter_stream] else: streams = [] fn = partial(QADataset.coadd_points, self=self, vdim=vdim) dmap = hv.DynamicMap(fn, kdims=['x_max', 'label'], streams=streams) if self.is_multi_matched: y_min = self.df[(vdim, 'coadd')].quantile(0.005) y_max = self.df[(vdim, 'coadd')].quantile(0.995) ra_min, ra_max = self.catalog.coadd_cat.ra.quantile([0, 1]) dec_min, dec_max = self.catalog.coadd_cat.dec.quantile([0, 1]) else: y_min = self.df[vdim].quantile(0.005) y_max = self.df[vdim].quantile(0.995) ra_min, ra_max = self.catalog.ra.quantile([0, 1]) dec_min, dec_max = self.catalog.dec.quantile([0, 1]) ranges = {vdim : (y_min, y_max), 'ra' : (ra_min, ra_max), 'dec' : (dec_min, dec_max)} if range_override is not None: ranges.update(range_override) # Force visit names to be integers, if possible dmap = dmap.redim.values(label=['galaxy', 'star'], x_max=x_range).redim.range(**ranges) return dmap def color_points(self, mag=None, xmax=21, label='star', filter_range=None, flags=None, bad_flags=None, x_range=None, y_range=None): """Datashaded layout of color-color plots Parameters ---------- mag : str Name of magnitude to get color info from (e.g., name of mag functor). xmax : float faint magnitude limit. label : str Desired label of points filter_range, flags, bad_flags : dict, list, list Parameters controlled by the `filter_stream` parameter of `color_explore`. x_range, y_range : Arguments required for datashaded map to be dynamic when passed to a DynamicMap """ if mag is None: mag = self.mag_names[0] colors = self.catalog.colors pts_list = [] for c1,c2 in zip(colors[:-1], colors[1:]): dset = self.get_color_ds(mag).select(x=(0,xmax), label=label) if filter_range is not None: dset = filter_dset(dset, filter_range=filter_range, flags=flags, bad_flags=bad_flags) pts_list.append(dset.to(hv.Points, kdims=[c1, c2], groupby=[]).redim.range(**{c1:(-0.2,1.5), c2:(-0.2,1.5)})) return hv.Layout([dynspread(datashade(pts, dynamic=False, x_range=x_range, y_range=y_range)) for pts in pts_list]).cols(2) def color_explore(self, xmax_range=np.arange(18,26.1,0.5), filter_stream=None): """Dynamic map of color-color plots Parameters ---------- xmax_range : array Array of max magnitude values for slider widget filter_stream : explorer.plots.FilterStream Stream of constraints that controls what data to display. Useful to link multiple plots together """ streams = [hv.streams.RangeXY()] if filter_stream is not None: streams += [filter_stream] dmap = hv.DynamicMap(partial(QADataset.color_points, self=self), kdims=['mag', 'xmax', 'label'], streams=streams) dmap = dmap.redim.values(mag=self.mag_names, xmax=xmax_range, label=['star', 'maybe', 'noStar']) return dmap def color_points_fit(self, mag=None, colors='GRI', xmax=21, label='star', filter_range=None, flags=None, bad_flags=None, x_range=None, y_range=None, bounds=None, order=3): """Simple points + polynomial fit of selected range This is more a simple proof-of-concept than anything particularly useful at this point. Parameters ---------- mag : str Name of magnitude from which colors are desired. colors : str Color-color group desired (e.g., 'GRI', 'RIZ', 'IZY'). xmax : float Maximum magnitude to allow label : str Desired label of points. filter_range, flags, bad_flags : dict, list, list Parameters controlled by the `filter_stream` parameter of `color_fit_explore`. x_range, y_range : Arguments required for datashaded map to be dynamic when passed to a DynamicMap (though right now this particular element does not get datashaded) bounds : (l,b,r,t) Bounds of selection box. order : int Order of polynomial fit """ if mag is None: mag = self.mag_names[0] c1 = '{}_{}'.format(*colors[0:2]) c2 = '{}_{}'.format(*colors[1:3]) dset = self.get_color_ds(mag).select(x=(0,xmax), label=label) if filter_range is not None: dset = filter_dset(dset, filter_range=filter_range, flags=flags, bad_flags=bad_flags) pts = dset.to(hv.Points, kdims=[c1, c2], groupby=[]).redim.range(**{c1:(-0.2,1.5), c2:(-0.2,1.5)}) # Fit selected region to polynomial and plot if bounds is None: fit = hv.Curve([]) else: l,b,r,t = bounds subdf = pts.data.query('({0} < {4} < {2}) and ({1} < {5} < {3})'.format(l,b,r,t,c1,c2)) coeffs = np.polyfit(subdf[c1], subdf[c2], order) x_grid = np.linspace(subdf[c1].min(), subdf[c1].max(), 100) y_grid = np.polyval(coeffs, x_grid) # print(x_grid, y_grid) fit = hv.Curve(np.array([x_grid, y_grid]).T).opts(style={'color':'black', 'width':3}) print(fit) return pts * fit # return dynspread(datashade(pts, dynamic=False, x_range=x_range, y_range=y_range)) * fit def color_fit_explore(self, xmax_range=np.arange(18,26.1,0.5), filter_stream=None): """Dynamic map exploring polynomial fit to selected range of color-color plot Parameters ---------- xmax_range : array Array of max magnitude values for slider widget filter_stream : explorer.plots.FilterStream Stream of constraints that controls what data to display. Useful to link multiple plots together """ streams = [hv.streams.RangeXY(), hv.streams.BoundsXY()] if filter_stream is not None: streams += [filter_stream] dmap = hv.DynamicMap(partial(QADataset.color_points_fit, self=self), kdims=['colors','mag', 'xmax', 'label'], streams=streams) dmap = dmap.redim.values(mag=self.mag_names, xmax=xmax_range, label=['star', 'maybe', 'noStar'], colors=self.catalog.color_colors) return dmap
mit
clingsz/GAE
main.py
1
1502
# -*- coding: utf-8 -*- """ Created on Wed May 10 12:38:40 2017 @author: cling """ def summarizing_cross_validation(): import misc.cv.collect_ND5_3 as cv cv.fig_boxplot_cverr() def test_trainer(): import misc.data_gen as dg import gae.model.trainer as tr data = dg.get_training_data() model = tr.build_gae() model.train(data['X'],data['Y']) def plot_immune_age(): import test.visualizations as vis vis.plot_immune_age() def plot_MIGS(): import test.visualizations as vis vis.plot_cyto_age(cyto_name = 'IL6') # vis.plot_cyto_age(cyto_name = 'IL1B') # vis.Jacobian_analysis() def distribution_test(): import immuAnalysis.distribution_test as dt dt.show_hist(range(3,53),'dist_cyto.pdf') dt.show_hist(range(53,78),'dist_cell.pdf') def cell_cluster(): import immuAnalysis.cytokine_clustering as cc ## cc.main() ## cc.pvclust_main() cc.agclust_main() # B = [10,20,50,100,1000] ## cc.gap_stats(B) # import gfmatplotlib.pyplot as plt # plt.figure(figsize=[5*4,5]) # for i in range(5): # plt.subplot(1,5,i+1) # cc.show_gapstats(B[i]) # plt.tight_layout() # plt.show() # cc.generate_data_for_pvclust() # cc.choose_cluster() #import immuAnalysis.module_genes as mg if __name__ == '__main__': test_trainer() # summarizing_cross_validation() # import immuAnalysis.clustering as c ## # c.test() # import immuAnalysis.gene_analysis_ann as g # g.summarize()
gpl-3.0
bennlich/scikit-image
skimage/io/manage_plugins.py
7
10329
"""Handle image reading, writing and plotting plugins. To improve performance, plugins are only loaded as needed. As a result, there can be multiple states for a given plugin: available: Defined in an *ini file located in `skimage.io._plugins`. See also `skimage.io.available_plugins`. partial definition: Specified in an *ini file, but not defined in the corresponding plugin module. This will raise an error when loaded. available but not on this system: Defined in `skimage.io._plugins`, but a dependent library (e.g. Qt, PIL) is not available on your system. This will raise an error when loaded. loaded: The real availability is determined when it's explicitly loaded, either because it's one of the default plugins, or because it's loaded explicitly by the user. """ try: from configparser import ConfigParser # Python 3 except ImportError: from ConfigParser import ConfigParser # Python 2 import os.path from glob import glob from .collection import imread_collection_wrapper __all__ = ['use_plugin', 'call_plugin', 'plugin_info', 'plugin_order', 'reset_plugins', 'find_available_plugins', 'available_plugins'] # The plugin store will save a list of *loaded* io functions for each io type # (e.g. 'imread', 'imsave', etc.). Plugins are loaded as requested. plugin_store = None # Dictionary mapping plugin names to a list of functions they provide. plugin_provides = {} # The module names for the plugins in `skimage.io._plugins`. plugin_module_name = {} # Meta-data about plugins provided by *.ini files. plugin_meta_data = {} # For each plugin type, default to the first available plugin as defined by # the following preferences. preferred_plugins = { # Default plugins for all types (overridden by specific types below). 'all': ['pil', 'matplotlib', 'qt', 'freeimage'], 'imshow': ['matplotlib'] } def _clear_plugins(): """Clear the plugin state to the default, i.e., where no plugins are loaded """ global plugin_store plugin_store = {'imread': [], 'imsave': [], 'imshow': [], 'imread_collection': [], '_app_show': []} _clear_plugins() def _load_preferred_plugins(): # Load preferred plugin for each io function. io_types = ['imsave', 'imshow', 'imread_collection', 'imread'] for p_type in io_types: _set_plugin(p_type, preferred_plugins['all']) plugin_types = (p for p in preferred_plugins.keys() if p != 'all') for p_type in plugin_types: _set_plugin(p_type, preferred_plugins[p_type]) def _set_plugin(plugin_type, plugin_list): for plugin in plugin_list: if plugin not in available_plugins: continue try: use_plugin(plugin, kind=plugin_type) break except (ImportError, RuntimeError, OSError): pass def reset_plugins(): _clear_plugins() _load_preferred_plugins() def _parse_config_file(filename): """Return plugin name and meta-data dict from plugin config file.""" parser = ConfigParser() parser.read(filename) name = parser.sections()[0] meta_data = {} for opt in parser.options(name): meta_data[opt] = parser.get(name, opt) return name, meta_data def _scan_plugins(): """Scan the plugins directory for .ini files and parse them to gather plugin meta-data. """ pd = os.path.dirname(__file__) config_files = glob(os.path.join(pd, '_plugins', '*.ini')) for filename in config_files: name, meta_data = _parse_config_file(filename) plugin_meta_data[name] = meta_data provides = [s.strip() for s in meta_data['provides'].split(',')] valid_provides = [p for p in provides if p in plugin_store] for p in provides: if not p in plugin_store: print("Plugin `%s` wants to provide non-existent `%s`." " Ignoring." % (name, p)) # Add plugins that provide 'imread' as provider of 'imread_collection'. need_to_add_collection = ('imread_collection' not in valid_provides and 'imread' in valid_provides) if need_to_add_collection: valid_provides.append('imread_collection') plugin_provides[name] = valid_provides plugin_module_name[name] = os.path.basename(filename)[:-4] _scan_plugins() def find_available_plugins(loaded=False): """List available plugins. Parameters ---------- loaded : bool If True, show only those plugins currently loaded. By default, all plugins are shown. Returns ------- p : dict Dictionary with plugin names as keys and exposed functions as values. """ active_plugins = set() for plugin_func in plugin_store.values(): for plugin, func in plugin_func: active_plugins.add(plugin) d = {} for plugin in plugin_provides: if not loaded or plugin in active_plugins: d[plugin] = [f for f in plugin_provides[plugin] if not f.startswith('_')] return d available_plugins = find_available_plugins() def call_plugin(kind, *args, **kwargs): """Find the appropriate plugin of 'kind' and execute it. Parameters ---------- kind : {'imshow', 'imsave', 'imread', 'imread_collection'} Function to look up. plugin : str, optional Plugin to load. Defaults to None, in which case the first matching plugin is used. *args, **kwargs : arguments and keyword arguments Passed to the plugin function. """ if not kind in plugin_store: raise ValueError('Invalid function (%s) requested.' % kind) plugin_funcs = plugin_store[kind] if len(plugin_funcs) == 0: msg = ("No suitable plugin registered for %s.\n\n" "You may load I/O plugins with the `skimage.io.use_plugin` " "command. A list of all available plugins can be found using " "`skimage.io.plugins()`.") raise RuntimeError(msg % kind) plugin = kwargs.pop('plugin', None) if plugin is None: _, func = plugin_funcs[0] else: _load(plugin) try: func = [f for (p, f) in plugin_funcs if p == plugin][0] except IndexError: raise RuntimeError('Could not find the plugin "%s" for %s.' % (plugin, kind)) return func(*args, **kwargs) def use_plugin(name, kind=None): """Set the default plugin for a specified operation. The plugin will be loaded if it hasn't been already. Parameters ---------- name : str Name of plugin. kind : {'imsave', 'imread', 'imshow', 'imread_collection'}, optional Set the plugin for this function. By default, the plugin is set for all functions. See Also -------- available_plugins : List of available plugins Examples -------- To use Matplotlib as the default image reader, you would write: >>> from skimage import io >>> io.use_plugin('matplotlib', 'imread') To see a list of available plugins run ``io.available_plugins``. Note that this lists plugins that are defined, but the full list may not be usable if your system does not have the required libraries installed. """ if kind is None: kind = plugin_store.keys() else: if not kind in plugin_provides[name]: raise RuntimeError("Plugin %s does not support `%s`." % (name, kind)) if kind == 'imshow': kind = [kind, '_app_show'] else: kind = [kind] _load(name) for k in kind: if not k in plugin_store: raise RuntimeError("'%s' is not a known plugin function." % k) funcs = plugin_store[k] # Shuffle the plugins so that the requested plugin stands first # in line funcs = [(n, f) for (n, f) in funcs if n == name] + \ [(n, f) for (n, f) in funcs if n != name] plugin_store[k] = funcs def _inject_imread_collection_if_needed(module): """Add `imread_collection` to module if not already present.""" if not hasattr(module, 'imread_collection') and hasattr(module, 'imread'): imread = getattr(module, 'imread') func = imread_collection_wrapper(imread) setattr(module, 'imread_collection', func) def _load(plugin): """Load the given plugin. Parameters ---------- plugin : str Name of plugin to load. See Also -------- plugins : List of available plugins """ if plugin in find_available_plugins(loaded=True): return if not plugin in plugin_module_name: raise ValueError("Plugin %s not found." % plugin) else: modname = plugin_module_name[plugin] plugin_module = __import__('skimage.io._plugins.' + modname, fromlist=[modname]) provides = plugin_provides[plugin] for p in provides: if p == 'imread_collection': _inject_imread_collection_if_needed(plugin_module) elif not hasattr(plugin_module, p): print("Plugin %s does not provide %s as advertised. Ignoring." % (plugin, p)) continue store = plugin_store[p] func = getattr(plugin_module, p) if not (plugin, func) in store: store.append((plugin, func)) def plugin_info(plugin): """Return plugin meta-data. Parameters ---------- plugin : str Name of plugin. Returns ------- m : dict Meta data as specified in plugin ``.ini``. """ try: return plugin_meta_data[plugin] except KeyError: raise ValueError('No information on plugin "%s"' % plugin) def plugin_order(): """Return the currently preferred plugin order. Returns ------- p : dict Dictionary of preferred plugin order, with function name as key and plugins (in order of preference) as value. """ p = {} for func in plugin_store: p[func] = [plugin_name for (plugin_name, f) in plugin_store[func]] return p
bsd-3-clause
xyguo/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
86
4092
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. k_means_cluster_centers = np.sort(k_means.cluster_centers_, axis=0) mbk_means_cluster_centers = np.sort(mbk.cluster_centers_, axis=0) k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers) mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers) order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for k in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
DCBIA-OrthoLab/ShapeVariationAnalyzer
src/py/generatelib/generate_polys.py
2
10177
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from scipy import stats import vtk import os import argparse import timeit import pickle import random from imblearn.over_sampling import SMOTE import matplotlib.pyplot as plt import pprint import inputData from sklearn.decomposition import PCA import math import inputData import glob import numpy as np # ############################################################################# # Generate data parser = argparse.ArgumentParser(description='Shape Variation Analyzer', formatter_class=argparse.ArgumentDefaultsHelpFormatter) #parser.add_argument('--model', type=str, help='pickle file with the pca decomposition', required=True) #parser.add_argument('--shapeDir', type=str, help='Directory with vtk files .vtk', required=True) parser.add_argument('--dataPath', action='store', dest='dirwithSub', help='folder with subclasses', required=True) parser.add_argument('--template', help='Sphere template, computed using SPHARM-PDM', type=str, required=True) parser.add_argument('--train_size', help='train ratio', type=float, default=0.8) parser.add_argument('--validation_size', help='validation ratio from test data', default=0.5, type=float) parser.add_argument('--out', dest="pickle_file", help='Pickle file output', default="datasets.pickle", type=str) def writeData(data_for_training,outputdataPath): #write data in a vtk file vtkdirshapes = os.listdir(outputdataPath) for vtkfilename in vtkdirshapes: if vtkfilename.endswith((".vtk")): print("Writing", vtkfilename) writer = vtk.vtkPolyDataWriter() writer.SetInput(data_for_training) writer.SetFileName(os.path.join(outputdataPath),vtkfilename) writer.Write() def get_conversion_matrices(geometry): points_to_cells = np.zeros((geometry.GetNumberOfCells(), geometry.GetNumberOfPoints())) for cid in range(geometry.GetNumberOfCells()): pointidlist = vtk.vtkIdList() geometry.GetCellPoints(cid, pointidlist) for pid in range(pointidlist.GetNumberOfIds()): points_to_cells[cid][pointidlist.GetId(pid)] = 1 cells_to_points = np.zeros((geometry.GetNumberOfPoints(), geometry.GetNumberOfCells())) for pid in range(geometry.GetNumberOfPoints()): pointidlist = vtk.vtkIdList() geometry.GetPointCells(pid, pointidlist) for cid in range(pointidlist.GetNumberOfIds()): cells_to_points[pid][pointidlist.GetId(cid)] = 1 return points_to_cells, cells_to_points def get_normals(vtkclassdict): inputdata = inputData.inputData() labels = [] dataset_concatenated = [] # This looks really confusing but is really not for folderclass, vtklist in vtkclassdict.items(): try: with open(folderclass + ".pickle",'rb') as f: dataset=pickle.load(f) normal_features = [] for vtkfilename in vtklist: #We'll load the same files and get the normals features = inputdata.load_features(vtkfilename, feature_points=["Normals"]) normal_features.append(features) #This reshaping stuff is to get the list of points, i.e., all connected points #and the corresponding label which is the normal in this case #The data in the dataset contains lists with different sizes normal_features = np.array(normal_features) featshape = np.shape(normal_features) labels.extend(normal_features.reshape(featshape[0], featshape[1], -1)) dsshape = np.shape(dataset) dataset_concatenated.extend(dataset.reshape(dsshape[0], dsshape[2], dsshape[3], -1)) except Exception as e: print('Unable to process', pickle_file,':',e) raise # lens = np.array([len(dataset_concatenated[i]) for i in range(len(dataset_concatenated))]) # mask = np.arange(lens.max()) < lens[:,None] # padded = np.zeros(mask.shape + (3,)) # padded[mask] = np.vstack((dataset_concatenated[:])) # return np.array(padded), np.array(labels) return np.array(dataset_concatenated), np.array(labels) def get_labels(pickle_file): #get labels of a dataset and returns the labels array and the dataset with features #num_classes=len(pickle_file) #num_shapes = 268 #should be changed!! labels = [] shape =[] dataset_concatenated =[] for label, pickle_file in enumerate(pickle_file): try: with open(pickle_file,'rb') as f: dataset=pickle.load(f) shape_dataset = np.shape(dataset) num_shapes_per_group = shape_dataset[0] l=[label]*num_shapes_per_group labels.extend(l) dataset_concatenated.extend(dataset) except Exception as e: print('Unable to process', pickle_file,':',e) raise features=np.array(dataset_concatenated) shape_features=np.shape(features) return features.reshape(-1,shape_features[1]*shape_features[2]), np.array(labels) def generate_data(pca_model): #generate data thanks to pca decomposition (not used) print("Generating data ...") pca = pca_model["pca"] X_ = pca_model["X_"] X_pca_ = pca_model["X_pca_"] X_pca_var = pca_model["X_pca_var"] print('Variance',X_pca_var) print('Mean',X_pca_) #between -1 and 1 alpha = 2.0*(np.random.random_sample(np.size(X_pca_))) - 1.0 print('alpha', alpha) data_compressed = 1.5*X_pca_var * alpha + X_pca_ print('data compressed',data_compressed) data_generated = pca.inverse_transform(data_compressed) + X_ return data_generated def generate_with_SMOTE(dataset,labels): #generate data thanks to SMOTE algorithm, it balances different groups sm=SMOTE(kind='regular') print('shape dataset',dataset.shape) print('shape labels',labels.shape) dataset_res, labels_res = sm.fit_sample(dataset,labels) print('shape dataset resampled',np.shape(dataset_res),'shape lables resampled',np.shape(labels_res)) return dataset_res,labels_res def PCA_plot(dataset,labels,dataset_res,labels_res): #plot original dat and data resampled after a PCA decomposition pca = PCA(n_components=200) pca.fit(dataset) dataset_pca=pca.transform(dataset) print('original shape: ',dataset.shape) print('transformed shape:',dataset_pca.shape) #print('Ratio variance',pca.explained_variance_ratio_) #plt.scatter(dataset[:,0],dataset[:,1],alpha=0.2) #dataset_new = pca.inverse_transform(dataset_pca) plt.figure(2) plt.subplot(121) plt.scatter(dataset_pca[:,0],dataset_pca[:,1],edgecolor='none',alpha=0.5,c=labels,cmap=plt.cm.get_cmap('nipy_spectral',np.shape(np.unique(labels))[0])) plt.title('Original data with pca (' + str(dataset.shape[0]) + ' samples)') #pca.fit(dataset_res) dataset_res_pca=pca.transform(dataset_res) plt.subplot(122) plt.scatter(dataset_res_pca[:,0],dataset_res_pca[:,1],edgecolor='none',alpha=0.5,c=labels_res,cmap=plt.cm.get_cmap('nipy_spectral',np.shape(np.unique(labels_res))[0])) plt.title('Resampled data with pca (' + str(dataset_res_pca.shape[0]) + ' samples)') for i in range(1,3): plt.subplot(1,2,i) plt.xlabel('component 1') plt.ylabel('component 2') plt.colorbar() cumsum = np.cumsum(pca.explained_variance_ratio_) plt.figure(1) plt.plot(cumsum) plt.xlabel('nb of components') plt.ylabel('cumulative explained variance') plt.axhline(y=0.95, linestyle=':', label='.95 explained', color="#f23e3e") numcomponents = len(np.where(cumsum < 0.95)[0]) plt.axvline(x=numcomponents, linestyle=':', label=(str(numcomponents) + ' components'), color="#31f9ad") plt.legend(loc=0) histo = np.bincount(labels) histo_range = np.array(range(histo.shape[0])) plt.figure(3) plt.bar(histo_range, histo) plt.xlabel('Groups') plt.ylabel('Number of samples') for xy in zip(histo_range, histo): plt.annotate(xy[1], xy=xy, ha="center", color="#4286f4") plt.show() if __name__ == '__main__': np.set_printoptions(threshold='nan') args = parser.parse_args() dataPath=args.dirwithSub pickle_file = args.pickle_file template = args.template reader = vtk.vtkPolyDataReader() reader.SetFileName(template) reader.Update() points_to_cells, cells_to_points = get_conversion_matrices(reader.GetOutput()) # Get the data from the folders with vtk files inputdata = inputData.inputData() data_folders = inputdata.get_folder_classes_list(dataPath) pickled_datasets = inputdata.maybe_pickle(data_folders, 5, feature_polys=["Points"]) # Create the labels, i.e., enumerate the groups vtklistdict = inputdata.get_vtklist(data_folders) dataset,labels = get_normals(vtklistdict) # Comput the total number of shapes and train/test size total_number_shapes=dataset.shape[0] num_train = int(args.train_size*total_number_shapes) num_valid = int((total_number_shapes - num_train)*args.validation_size) # Randomize the original dataset shuffled_dataset, shuffled_labels = inputdata.randomize(dataset, labels) dataset_res = shuffled_dataset labels_res = shuffled_labels # SANITY CHECKS print('dataset',np.shape(dataset)) print('labels',np.shape(labels)) print('dataset_res',np.shape(dataset_res)) print('labels_res',np.shape(labels_res)) print('num_train', num_train) print('num_valid', num_valid) print('num_test', total_number_shapes - num_valid - num_train) print("points_to_cells", np.shape(points_to_cells)) print("cells_to_points", np.shape(cells_to_points)) # PCA_plot(dataset,labels,dataset_res,labels_res) try: f = open(pickle_file, 'wb') save = { 'train_dataset': dataset_res, 'train_labels': labels_res, 'valid_dataset': dataset[num_train: num_train + num_valid], 'valid_labels': labels[num_train: num_train + num_valid], 'test_dataset': dataset[num_train + num_valid:], 'test_labels': labels[num_train + num_valid:], 'points_to_cells': points_to_cells, 'cells_to_points': cells_to_points } pickle.dump(save, f, pickle.HIGHEST_PROTOCOL) #f.close() except Exception as e: print('Unable to save data to', pickle_file, ':', e) raise
apache-2.0
soulmachine/scikit-learn
examples/ensemble/plot_adaboost_hastie_10_2.py
355
3576
""" ============================= Discrete versus Real AdaBoost ============================= This example is based on Figure 10.2 from Hastie et al 2009 [1] and illustrates the difference in performance between the discrete SAMME [2] boosting algorithm and real SAMME.R boosting algorithm. Both algorithms are evaluated on a binary classification task where the target Y is a non-linear function of 10 input features. Discrete SAMME AdaBoost adapts based on errors in predicted class labels whereas real SAMME.R uses the predicted class probabilities. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]>, # Noel Dawe <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import zero_one_loss from sklearn.ensemble import AdaBoostClassifier n_estimators = 400 # A learning rate of 1. may not be optimal for both SAMME and SAMME.R learning_rate = 1. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_test, y_test = X[2000:], y[2000:] X_train, y_train = X[:2000], y[:2000] dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1) dt_stump.fit(X_train, y_train) dt_stump_err = 1.0 - dt_stump.score(X_test, y_test) dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1) dt.fit(X_train, y_train) dt_err = 1.0 - dt.score(X_test, y_test) ada_discrete = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME") ada_discrete.fit(X_train, y_train) ada_real = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME.R") ada_real.fit(X_train, y_train) fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-', label='Decision Stump Error') ax.plot([1, n_estimators], [dt_err] * 2, 'k--', label='Decision Tree Error') ada_discrete_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_test)): ada_discrete_err[i] = zero_one_loss(y_pred, y_test) ada_discrete_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_train)): ada_discrete_err_train[i] = zero_one_loss(y_pred, y_train) ada_real_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_test)): ada_real_err[i] = zero_one_loss(y_pred, y_test) ada_real_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_train)): ada_real_err_train[i] = zero_one_loss(y_pred, y_train) ax.plot(np.arange(n_estimators) + 1, ada_discrete_err, label='Discrete AdaBoost Test Error', color='red') ax.plot(np.arange(n_estimators) + 1, ada_discrete_err_train, label='Discrete AdaBoost Train Error', color='blue') ax.plot(np.arange(n_estimators) + 1, ada_real_err, label='Real AdaBoost Test Error', color='orange') ax.plot(np.arange(n_estimators) + 1, ada_real_err_train, label='Real AdaBoost Train Error', color='green') ax.set_ylim((0.0, 0.5)) ax.set_xlabel('n_estimators') ax.set_ylabel('error rate') leg = ax.legend(loc='upper right', fancybox=True) leg.get_frame().set_alpha(0.7) plt.show()
bsd-3-clause
clemkoa/scikit-learn
sklearn/datasets/tests/test_base.py
8
9532
import os import shutil import tempfile import warnings import numpy from pickle import loads from pickle import dumps from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_breast_cancer from sklearn.datasets import load_boston from sklearn.datasets import load_wine from sklearn.datasets.base import Bunch from sklearn.externals.six import b, u from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_equal DATA_HOME = tempfile.mkdtemp(prefix="scikit_learn_data_home_test_") LOAD_FILES_ROOT = tempfile.mkdtemp(prefix="scikit_learn_load_files_test_") TEST_CATEGORY_DIR1 = "" TEST_CATEGORY_DIR2 = "" def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" for path in [DATA_HOME, LOAD_FILES_ROOT]: _remove_dir(path) def setup_load_files(): global TEST_CATEGORY_DIR1 global TEST_CATEGORY_DIR2 TEST_CATEGORY_DIR1 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) TEST_CATEGORY_DIR2 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) sample_file = tempfile.NamedTemporaryFile(dir=TEST_CATEGORY_DIR1, delete=False) sample_file.write(b("Hello World!\n")) sample_file.close() def teardown_load_files(): _remove_dir(TEST_CATEGORY_DIR1) _remove_dir(TEST_CATEGORY_DIR2) def test_data_home(): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=DATA_HOME) assert_equal(data_home, DATA_HOME) assert_true(os.path.exists(data_home)) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert_false(os.path.exists(data_home)) # if the folder is missing it will be created again data_home = get_data_home(data_home=DATA_HOME) assert_true(os.path.exists(data_home)) def test_default_empty_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 0) assert_equal(len(res.target_names), 0) assert_equal(res.DESCR, None) def test_default_load_files(): try: setup_load_files() res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.data, [b("Hello World!\n")]) finally: teardown_load_files() def test_load_files_w_categories_desc_and_encoding(): try: setup_load_files() category = os.path.abspath(TEST_CATEGORY_DIR1).split('/').pop() res = load_files(LOAD_FILES_ROOT, description="test", categories=category, encoding="utf-8") assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 1) assert_equal(res.DESCR, "test") assert_equal(res.data, [u("Hello World!\n")]) finally: teardown_load_files() def test_load_files_wo_load_content(): try: setup_load_files() res = load_files(LOAD_FILES_ROOT, load_content=False) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.get('data'), None) finally: teardown_load_files() def test_load_sample_images(): try: res = load_sample_images() assert_equal(len(res.images), 2) assert_equal(len(res.filenames), 2) assert_true(res.DESCR) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_digits(): digits = load_digits() assert_equal(digits.data.shape, (1797, 64)) assert_equal(numpy.unique(digits.target).size, 10) # test return_X_y option X_y_tuple = load_digits(return_X_y=True) bunch = load_digits() assert_true(isinstance(X_y_tuple, tuple)) assert_array_equal(X_y_tuple[0], bunch.data) assert_array_equal(X_y_tuple[1], bunch.target) def test_load_digits_n_class_lt_10(): digits = load_digits(9) assert_equal(digits.data.shape, (1617, 64)) assert_equal(numpy.unique(digits.target).size, 9) def test_load_sample_image(): try: china = load_sample_image('china.jpg') assert_equal(china.dtype, 'uint8') assert_equal(china.shape, (427, 640, 3)) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): have_PIL = True try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread # noqa except ImportError: have_PIL = False if have_PIL: assert_raises(AttributeError, load_sample_image, 'blop.jpg') else: warnings.warn("Could not load sample images, PIL is not available.") def test_load_diabetes(): res = load_diabetes() assert_equal(res.data.shape, (442, 10)) assert_true(res.target.size, 442) assert_equal(len(res.feature_names), 10) assert_true(res.DESCR) # test return_X_y option X_y_tuple = load_diabetes(return_X_y=True) bunch = load_diabetes() assert_true(isinstance(X_y_tuple, tuple)) assert_array_equal(X_y_tuple[0], bunch.data) assert_array_equal(X_y_tuple[1], bunch.target) def test_load_linnerud(): res = load_linnerud() assert_equal(res.data.shape, (20, 3)) assert_equal(res.target.shape, (20, 3)) assert_equal(len(res.target_names), 3) assert_true(res.DESCR) # test return_X_y option X_y_tuple = load_linnerud(return_X_y=True) bunch = load_linnerud() assert_true(isinstance(X_y_tuple, tuple)) assert_array_equal(X_y_tuple[0], bunch.data) assert_array_equal(X_y_tuple[1], bunch.target) def test_load_iris(): res = load_iris() assert_equal(res.data.shape, (150, 4)) assert_equal(res.target.size, 150) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) # test return_X_y option X_y_tuple = load_iris(return_X_y=True) bunch = load_iris() assert_true(isinstance(X_y_tuple, tuple)) assert_array_equal(X_y_tuple[0], bunch.data) assert_array_equal(X_y_tuple[1], bunch.target) def test_load_wine(): res = load_wine() assert_equal(res.data.shape, (178, 13)) assert_equal(res.target.size, 178) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) # test return_X_y option X_y_tuple = load_wine(return_X_y=True) bunch = load_wine() assert_true(isinstance(X_y_tuple, tuple)) assert_array_equal(X_y_tuple[0], bunch.data) assert_array_equal(X_y_tuple[1], bunch.target) def test_load_breast_cancer(): res = load_breast_cancer() assert_equal(res.data.shape, (569, 30)) assert_equal(res.target.size, 569) assert_equal(res.target_names.size, 2) assert_true(res.DESCR) # test return_X_y option X_y_tuple = load_breast_cancer(return_X_y=True) bunch = load_breast_cancer() assert_true(isinstance(X_y_tuple, tuple)) assert_array_equal(X_y_tuple[0], bunch.data) assert_array_equal(X_y_tuple[1], bunch.target) def test_load_boston(): res = load_boston() assert_equal(res.data.shape, (506, 13)) assert_equal(res.target.size, 506) assert_equal(res.feature_names.size, 13) assert_true(res.DESCR) # test return_X_y option X_y_tuple = load_boston(return_X_y=True) bunch = load_boston() assert_true(isinstance(X_y_tuple, tuple)) assert_array_equal(X_y_tuple[0], bunch.data) assert_array_equal(X_y_tuple[1], bunch.target) def test_loads_dumps_bunch(): bunch = Bunch(x="x") bunch_from_pkl = loads(dumps(bunch)) bunch_from_pkl.x = "y" assert_equal(bunch_from_pkl['x'], bunch_from_pkl.x) def test_bunch_pickle_generated_with_0_16_and_read_with_0_17(): bunch = Bunch(key='original') # This reproduces a problem when Bunch pickles have been created # with scikit-learn 0.16 and are read with 0.17. Basically there # is a suprising behaviour because reading bunch.key uses # bunch.__dict__ (which is non empty for 0.16 Bunch objects) # whereas assigning into bunch.key uses bunch.__setattr__. See # https://github.com/scikit-learn/scikit-learn/issues/6196 for # more details bunch.__dict__['key'] = 'set from __dict__' bunch_from_pkl = loads(dumps(bunch)) # After loading from pickle the __dict__ should have been ignored assert_equal(bunch_from_pkl.key, 'original') assert_equal(bunch_from_pkl['key'], 'original') # Making sure that changing the attr does change the value # associated with __getitem__ as well bunch_from_pkl.key = 'changed' assert_equal(bunch_from_pkl.key, 'changed') assert_equal(bunch_from_pkl['key'], 'changed') def test_bunch_dir(): # check that dir (important for autocomplete) shows attributes data = load_iris() assert_true("data" in dir(data))
bsd-3-clause
bundgus/python-playground
matplotlib-playground/examples/api/line_with_text.py
1
1671
""" Show how to override basic methods so an artist can contain another artist. In this case, the line contains a Text instance to label it. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as lines import matplotlib.transforms as mtransforms import matplotlib.text as mtext class MyLine(lines.Line2D): def __init__(self, *args, **kwargs): # we'll update the position when the line data is set self.text = mtext.Text(0, 0, '') lines.Line2D.__init__(self, *args, **kwargs) # we can't access the label attr until *after* the line is # inited self.text.set_text(self.get_label()) def set_figure(self, figure): self.text.set_figure(figure) lines.Line2D.set_figure(self, figure) def set_axes(self, axes): self.text.set_axes(axes) lines.Line2D.set_axes(self, axes) def set_transform(self, transform): # 2 pixel offset texttrans = transform + mtransforms.Affine2D().translate(2, 2) self.text.set_transform(texttrans) lines.Line2D.set_transform(self, transform) def set_data(self, x, y): if len(x): self.text.set_position((x[-1], y[-1])) lines.Line2D.set_data(self, x, y) def draw(self, renderer): # draw my label at the end of the line with 2 pixel offset lines.Line2D.draw(self, renderer) self.text.draw(renderer) fig, ax = plt.subplots() x, y = np.random.rand(2, 20) line = MyLine(x, y, mfc='red', ms=12, label='line label') #line.text.set_text('line label') line.text.set_color('red') line.text.set_fontsize(16) ax.add_line(line) plt.show()
mit
eggplantbren/DNest4
python/dnest4/analysis.py
1
10972
# -*- coding: utf-8 -*- import numpy as np from .backends import CSVBackend try: basestring except NameError: stringtype = str else: stringtype = basestring __all__ = ["postprocess", "make_plots"] def postprocess(backend=None, temperature=1.0, cut=0, compression_assert=None, resample_log_X=0, compression_bias_min=1, compression_scatter=0, resample=0, plot=False, plot_params=None): # Deal with filename inputs. if backend is None: backend = "." if isinstance(backend, stringtype): backend = CSVBackend(backend) # Unpack the backend's data. levels = backend.levels samples = backend.samples sample_info = backend.sample_info # Remove regularisation from levels if we asked for it. if compression_assert is not None: levels = np.array(levels) levels["log_X"][1:] = \ -np.cumsum(compression_assert*np.ones(len(levels) - 1)) # Remove burn-in. if cut > 0: samples, sample_info = remove_burnin(samples, sample_info, cut) # Subsample; one (randomly selected) particle for each time. if len(sample_info.shape) > 1: samples, sample_info = subsample_particles(samples, sample_info) # Check dimensions. assert len(samples) == len(sample_info), "dimension mismatch" # Estimate the X values for the samples by interpolating from the levels. if resample_log_X: resample_count = resample_log_X else: resample_count = 1 log_z = np.empty(resample_count) h = np.empty(resample_count) n_eff = np.empty(resample_count) log_post = np.empty((resample_count, len(sample_info))) for i in range(resample_count): # If requested, jitter the Xs of the levels. if resample_log_X: levels_2 = np.array(levels) comp = -np.diff(levels_2["log_X"]) comp *= np.random.uniform(compression_bias_min, 1.0) comp *= np.exp(compression_scatter*np.random.randn(len(comp))) levels_2["log_X"][1:] = -comp levels_2["log_X"] = np.cumsum(levels_2["log_X"]) else: levels_2 = levels sample_log_X = interpolate_samples(levels_2, sample_info, resample=resample_log_X) if i == 0: backend.write_sample_log_X(sample_log_X) log_z[i], h[i], n_eff[i], log_post[i] = compute_stats( levels_2, sample_info, sample_log_X, temperature=temperature, ) # Re-sample the samples using the posterior weights. log_post = logsumexp(log_post, axis=0) - np.log(resample_count) backend.write_weights(np.exp(log_post)) if resample: new_samples = generate_posterior_samples( samples, log_post, int(resample * np.mean(n_eff)) ) backend.write_posterior_samples(new_samples) log_post = np.zeros(len(new_samples)) else: new_samples = samples # Compute the final stats based on resampling. stats = dict( log_Z=np.mean(log_z), log_Z_std=np.std(log_z), H=np.mean(h), H_std=np.std(h), N_eff=np.mean(n_eff), N_eff_std=np.std(n_eff), ) backend.write_stats(stats) # Make the plots if requested. if plot: if plot_params is None: plot_params = dict() make_plots(backend, **plot_params) return stats def logsumexp(x, axis=None): mx = np.max(x, axis=axis) return np.log(np.sum(np.exp(x - mx), axis=axis)) + mx def remove_burnin(samples, sample_info, nburn): return ( samples[int(nburn * len(samples)):], sample_info[int(nburn * len(sample_info)):], ) def subsample_particles(samples, sample_info): if len(samples.shape) == 2 and len(sample_info.shape) == 1: return samples, sample_info if len(sample_info.shape) != 2: raise ValueError("invalid dimensions") # Subsample; one (randomly selected) particle for each time. if samples.shape[1] != sample_info.shape[1]: raise ValueError("dimension mismatch") n = np.prod(sample_info.shape) return samples.reshape((n, -1)), sample_info.reshape(n) # inds = ( # np.arange(len(samples)), # np.random.randint(samples.shape[1], size=len(samples)), # ) # return samples[inds], sample_info[inds] def interpolate_samples(levels, sample_info, resample=False): # Work out the level assignments. This looks horrifying because we need # to take tiebreakers into account; if two levels (or samples) have # exactly the same likelihood, then the tiebreaker decides the assignment. lev, order = 0, 0 assign = np.empty(len(sample_info), dtype=int) argsort = np.empty(len(sample_info), dtype=int) l_set = zip(levels["log_likelihood"], levels["tiebreaker"], -np.arange(1, len(levels)+1)) s_set = zip(sample_info["log_likelihood"], sample_info["tiebreaker"], range(len(sample_info))) for ll, _, ind in sorted(list(l_set) + list(s_set)): if ind < 0: lev = -ind - 1 continue assign[ind] = lev argsort[ind] = order order += 1 # Loop over levels and place the samples within each level. sample_log_X = np.empty(len(sample_info)) x_min = np.exp(np.append(levels["log_X"][1:], -np.inf)) x_max = np.exp(levels["log_X"]) dx = x_max - x_min for i, lev in enumerate(levels): # Use the level assignments to get a mask of sample IDs in the correct # order. m = assign == i inds = np.arange(len(sample_info))[m][np.argsort(argsort[m])] if resample: # Re-sample the points uniformly---in X---between the level # boundaries. sample_log_X[inds] = np.sort(np.log( np.random.uniform(x_min[i], x_max[i], size=len(inds)) ))[::-1] else: # Place the samples uniformly---in X not log(X)---between the # level boundaries. N = len(inds) # FIXME: there are two options here and we're using the backwards # compatible one but the other might be better. Need to think # about it further. It won't matter as the number of samples gets # large. n = ((np.arange(1, N+1)) / (N+1))[::-1] # n = ((np.arange(N) + 0.5) / N)[::-1] sample_log_X[inds] = np.log(x_min[i] + dx[i] * n) return sample_log_X def compute_stats(levels, sample_info, sample_log_X, temperature=1.0): # Use the log(X) estimates for the levels and the samples to estimate # log(Z) using the trapezoid rule. log_x = np.append(levels["log_X"], sample_log_X) log_y = np.append(levels["log_likelihood"], sample_info["log_likelihood"]) samp_inds = np.append(-np.ones(len(levels), dtype=int), np.arange(len(sample_info))) is_samp = np.append( np.zeros(len(levels), dtype=bool), np.ones(len(sample_info), dtype=bool) ) inds = np.argsort(log_x) log_x = log_x[inds] log_y = log_y[inds] / temperature samp_inds = samp_inds[inds] is_samp = is_samp[inds] # Extend to X=0. log_x = np.append(-np.inf, log_x) log_y = np.append(log_y[0], log_y) # Compute log(exp(L_k+1) + exp(L_k)) using logsumexp rules... d_log_y = log_y[1:] - log_y[:-1] log_y_mean = np.log(0.5) + np.log(1+np.exp(d_log_y)) + log_y[:-1] # ...and log(exp(log(X_k+1)) + exp(log(X_k))) using logsumexp rules. log_x_diff = np.log(1. - np.exp(log_x[:-1] - log_x[1:])) + log_x[1:] # Then from the trapezoid rule: # log(Z) = log(0.5) + logsumexp(log_x_diff + log_y_mean) log_p = log_x_diff + log_y_mean log_z = logsumexp(log_p) log_p -= log_z # Compute the sample posterior weights. These are equal to: # w_k = L_k / (0.5 * (X_k+1 - X_k-1)) / Z # but we'll recompute Z not using the levels just to be safe. log_prior = np.log(0.5) + np.logaddexp(log_x_diff[1:], log_x_diff[:-1]) log_post = np.array(sample_info["log_likelihood"]) log_post[samp_inds[samp_inds >= 0]] += log_prior[samp_inds[:-1] >= 0] log_post -= logsumexp(log_post) # Compute the information and effective sample size. h = -log_z + np.sum(np.exp(log_post) * sample_info["log_likelihood"]) n_eff = np.exp(-np.sum(np.exp(log_post)*log_post)) return log_z, h, n_eff, log_post def generate_posterior_samples(samples, log_weights, N): w = np.exp(log_weights - logsumexp(log_weights)) inds = np.random.choice(np.arange(len(samples)), size=int(N), p=w) return samples[inds] def make_plots(backend): figs = dict() figs["levels"] = make_levels_plot(backend) figs["compression"] = make_compression_plot(backend) figs["log_X_log_L"] = make_log_X_log_L_plot(backend) return figs def make_levels_plot(backend): import matplotlib.pyplot as pl fig, ax = pl.subplots(1, 1) ax.plot(backend.sample_info["level_assignment"], color="k") ax.set_xlabel("Iterations") ax.set_ylabel("Level") return fig def make_compression_plot(backend): import matplotlib.pyplot as pl fig, axes = pl.subplots(2, 1, sharex=True) levels = backend.levels ax = axes[0] ax.plot(np.diff(levels["log_X"]), color="k") ax.axhline(-1., color="g") ax.axhline(-np.log(10.), color="g", linestyle="--") ax.set_ylim(ymax=0.05) ax.set_ylabel("Compression") ax = axes[1] m = levels["tries"] > 0 ax.plot(np.arange(len(levels))[m], levels[m]["accepts"]/levels[m]["tries"], "ko-") ax.set_ylabel("MH Acceptance") ax.set_xlabel("level") ax.set_ylim([0.0, 1.0]) return fig def make_log_X_log_L_plot(backend): import matplotlib.pyplot as pl fig, axes = pl.subplots(2, 1, sharex=True) levels = backend.levels sample_info = backend.sample_info sample_log_X = backend.sample_log_X weights = backend.weights ax = axes[0] ax.plot(sample_log_X.flatten(), sample_info["log_likelihood"].flatten(), "k.", label="Samples") ax.plot(levels["log_X"][1:], levels["log_likelihood"][1:], "g.", label="Levels") ax.legend(numpoints=1, loc="lower left") ax.set_ylabel("log(L)") ax.set_title("log(Z) = {0}".format(backend.stats["log_Z"])) # Use all plotted logl values to set ylim combined_logl = np.hstack([sample_info["log_likelihood"],\ levels["log_likelihood"][1:]]) combined_logl = np.sort(combined_logl) lower = combined_logl[int(0.1*combined_logl.size)] upper = combined_logl[-1] diff = upper - lower lower -= 0.05*diff upper += 0.05*diff ax.set_ylim([lower, upper]) ax = axes[1] ax.plot(sample_log_X, weights, "k.") ax.set_ylabel("posterior weight") ax.set_xlabel("log(X)") return fig
mit
passoir/trading-with-python
sandbox/spreadCalculations.py
78
1496
''' Created on 28 okt 2011 @author: jev ''' from tradingWithPython import estimateBeta, Spread, returns, Portfolio, readBiggerScreener from tradingWithPython.lib import yahooFinance from pandas import DataFrame, Series import numpy as np import matplotlib.pyplot as plt import os symbols = ['SPY','IWM'] y = yahooFinance.HistData('temp.csv') y.startDate = (2007,1,1) df = y.loadSymbols(symbols,forceDownload=False) #df = y.downloadData(symbols) res = readBiggerScreener('CointPairs.csv') #---check with spread scanner #sp = DataFrame(index=symbols) # #sp['last'] = df.ix[-1,:] #sp['targetCapital'] = Series({'SPY':100,'IWM':-100}) #sp['targetShares'] = sp['targetCapital']/sp['last'] #print sp #The dollar-neutral ratio is about 1 * IWM - 1.7 * IWM. You will get the spread = zero (or probably very near zero) #s = Spread(symbols, histClose = df) #print s #s.value.plot() #print 'beta (returns)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='returns') #print 'beta (log)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='log') #print 'beta (standard)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='standard') #p = Portfolio(df) #p.setShares([1, -1.7]) #p.value.plot() quote = yahooFinance.getQuote(symbols) print quote s = Spread(symbols,histClose=df, estimateBeta = False) s.setLast(quote['last']) s.setShares(Series({'SPY':1,'IWM':-1.7})) print s #s.value.plot() #s.plot() fig = figure(2) s.plot()
bsd-3-clause
jorik041/scikit-learn
examples/model_selection/grid_search_digits.py
227
2665
""" ============================================================ Parameter estimation using grid search with cross-validation ============================================================ This examples shows how a classifier is optimized by cross-validation, which is done using the :class:`sklearn.grid_search.GridSearchCV` object on a development set that comprises only half of the available labeled data. The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set that was not used during the model selection step. More details on tools available for model selection can be found in the sections on :ref:`cross_validation` and :ref:`grid_search`. """ from __future__ import print_function from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.svm import SVC print(__doc__) # Loading the Digits dataset digits = datasets.load_digits() # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) X = digits.images.reshape((n_samples, -1)) y = digits.target # Split the dataset in two equal parts X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0) # Set the parameters by cross-validation tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] scores = ['precision', 'recall'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(SVC(C=1), tuned_parameters, cv=5, scoring='%s_weighted' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() for params, mean_score, scores in clf.grid_scores_: print("%0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print() # Note the problem is too easy: the hyperparameter plateau is too flat and the # output model is the same for precision and recall with ties in quality.
bsd-3-clause
lesteve/clusterlib
doc/sphinxext/gen_rst.py
3
38959
""" Example generation for the scikit learn Generate the rst files for the examples by iterating over the python example files. Files that generate images should start with 'plot' """ # Obtain from scikit-learn package from __future__ import division, print_function from time import time import ast import os import re import shutil import traceback import glob import sys import gzip import posixpath import subprocess from textwrap import dedent # Try Python 2 first, otherwise load from Python 3 try: from StringIO import StringIO import cPickle as pickle import urllib2 as urllib from urllib2 import HTTPError, URLError except ImportError: from io import StringIO import pickle import urllib.request import urllib.error import urllib.parse from urllib.error import HTTPError, URLError try: # Python 2 built-in execfile except NameError: def execfile(filename, global_vars=None, local_vars=None): with open(filename) as f: code = compile(f.read(), filename, 'exec') exec(code, global_vars, local_vars) try: basestring except NameError: basestring = str import token import tokenize import numpy as np try: # make sure that the Agg backend is set before importing any # matplotlib import matplotlib matplotlib.use('Agg') except ImportError: # this script can be imported by nosetest to find tests to run: we should not # impose the matplotlib requirement in that case. pass from sklearn.externals import joblib ############################################################################### # A tee object to redict streams to multiple outputs class Tee(object): def __init__(self, file1, file2): self.file1 = file1 self.file2 = file2 def write(self, data): self.file1.write(data) self.file2.write(data) def flush(self): self.file1.flush() self.file2.flush() ############################################################################### # Documentation link resolver objects def _get_data(url): """Helper function to get data over http or from a local file""" if url.startswith('http://'): # Try Python 2, use Python 3 on exception try: resp = urllib.urlopen(url) encoding = resp.headers.dict.get('content-encoding', 'plain') except AttributeError: resp = urllib.request.urlopen(url) encoding = resp.headers.get('content-encoding', 'plain') data = resp.read() if encoding == 'plain': pass elif encoding == 'gzip': data = StringIO(data) data = gzip.GzipFile(fileobj=data).read() else: raise RuntimeError('unknown encoding') else: with open(url, 'r') as fid: data = fid.read() fid.close() return data mem = joblib.Memory(cachedir='_build') get_data = mem.cache(_get_data) def parse_sphinx_searchindex(searchindex): """Parse a Sphinx search index Parameters ---------- searchindex : str The Sphinx search index (contents of searchindex.js) Returns ------- filenames : list of str The file names parsed from the search index. objects : dict The objects parsed from the search index. """ def _select_block(str_in, start_tag, end_tag): """Select first block delimited by start_tag and end_tag""" start_pos = str_in.find(start_tag) if start_pos < 0: raise ValueError('start_tag not found') depth = 0 for pos in range(start_pos, len(str_in)): if str_in[pos] == start_tag: depth += 1 elif str_in[pos] == end_tag: depth -= 1 if depth == 0: break sel = str_in[start_pos + 1:pos] return sel def _parse_dict_recursive(dict_str): """Parse a dictionary from the search index""" dict_out = dict() pos_last = 0 pos = dict_str.find(':') while pos >= 0: key = dict_str[pos_last:pos] if dict_str[pos + 1] == '[': # value is a list pos_tmp = dict_str.find(']', pos + 1) if pos_tmp < 0: raise RuntimeError('error when parsing dict') value = dict_str[pos + 2: pos_tmp].split(',') # try to convert elements to int for i in range(len(value)): try: value[i] = int(value[i]) except ValueError: pass elif dict_str[pos + 1] == '{': # value is another dictionary subdict_str = _select_block(dict_str[pos:], '{', '}') value = _parse_dict_recursive(subdict_str) pos_tmp = pos + len(subdict_str) else: raise ValueError('error when parsing dict: unknown elem') key = key.strip('"') if len(key) > 0: dict_out[key] = value pos_last = dict_str.find(',', pos_tmp) if pos_last < 0: break pos_last += 1 pos = dict_str.find(':', pos_last) return dict_out # Make sure searchindex uses UTF-8 encoding if hasattr(searchindex, 'decode'): searchindex = searchindex.decode('UTF-8') # parse objects query = 'objects:' pos = searchindex.find(query) if pos < 0: raise ValueError('"objects:" not found in search index') sel = _select_block(searchindex[pos:], '{', '}') objects = _parse_dict_recursive(sel) # parse filenames query = 'filenames:' pos = searchindex.find(query) if pos < 0: raise ValueError('"filenames:" not found in search index') filenames = searchindex[pos + len(query) + 1:] filenames = filenames[:filenames.find(']')] filenames = [f.strip('"') for f in filenames.split(',')] return filenames, objects class SphinxDocLinkResolver(object): """ Resolve documentation links using searchindex.js generated by Sphinx Parameters ---------- doc_url : str The base URL of the project website. searchindex : str Filename of searchindex, relative to doc_url. extra_modules_test : list of str List of extra module names to test. relative : bool Return relative links (only useful for links to documentation of this package). """ def __init__(self, doc_url, searchindex='searchindex.js', extra_modules_test=None, relative=False): self.doc_url = doc_url self.relative = relative self._link_cache = {} self.extra_modules_test = extra_modules_test self._page_cache = {} if doc_url.startswith('http://'): if relative: raise ValueError('Relative links are only supported for local ' 'URLs (doc_url cannot start with "http://)"') searchindex_url = doc_url + '/' + searchindex else: searchindex_url = os.path.join(doc_url, searchindex) # detect if we are using relative links on a Windows system if os.name.lower() == 'nt' and not doc_url.startswith('http://'): if not relative: raise ValueError('You have to use relative=True for the local' ' package on a Windows system.') self._is_windows = True else: self._is_windows = False # download and initialize the search index sindex = get_data(searchindex_url) filenames, objects = parse_sphinx_searchindex(sindex) self._searchindex = dict(filenames=filenames, objects=objects) def _get_link(self, cobj): """Get a valid link, False if not found""" fname_idx = None full_name = cobj['module_short'] + '.' + cobj['name'] if full_name in self._searchindex['objects']: value = self._searchindex['objects'][full_name] if isinstance(value, dict): value = value[next(iter(value.keys()))] fname_idx = value[0] elif cobj['module_short'] in self._searchindex['objects']: value = self._searchindex['objects'][cobj['module_short']] if cobj['name'] in value.keys(): fname_idx = value[cobj['name']][0] if fname_idx is not None: fname = self._searchindex['filenames'][fname_idx] + '.html' if self._is_windows: fname = fname.replace('/', '\\') link = os.path.join(self.doc_url, fname) else: link = posixpath.join(self.doc_url, fname) if hasattr(link, 'decode'): link = link.decode('utf-8', 'replace') if link in self._page_cache: html = self._page_cache[link] else: html = get_data(link) self._page_cache[link] = html # test if cobj appears in page comb_names = [cobj['module_short'] + '.' + cobj['name']] if self.extra_modules_test is not None: for mod in self.extra_modules_test: comb_names.append(mod + '.' + cobj['name']) url = False if hasattr(html, 'decode'): # Decode bytes under Python 3 html = html.decode('utf-8', 'replace') for comb_name in comb_names: if hasattr(comb_name, 'decode'): # Decode bytes under Python 3 comb_name = comb_name.decode('utf-8', 'replace') if comb_name in html: url = link + u'#' + comb_name link = url else: link = False return link def resolve(self, cobj, this_url): """Resolve the link to the documentation, returns None if not found Parameters ---------- cobj : dict Dict with information about the "code object" for which we are resolving a link. cobi['name'] : function or class name (str) cobj['module_short'] : shortened module name (str) cobj['module'] : module name (str) this_url: str URL of the current page. Needed to construct relative URLs (only used if relative=True in constructor). Returns ------- link : str | None The link (URL) to the documentation. """ full_name = cobj['module_short'] + '.' + cobj['name'] link = self._link_cache.get(full_name, None) if link is None: # we don't have it cached link = self._get_link(cobj) # cache it for the future self._link_cache[full_name] = link if link is False or link is None: # failed to resolve return None if self.relative: link = os.path.relpath(link, start=this_url) if self._is_windows: # replace '\' with '/' so it on the web link = link.replace('\\', '/') # for some reason, the relative link goes one directory too high up link = link[3:] return link ############################################################################### rst_template = """ .. _example_%(short_fname)s: %(docstring)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- """ plot_rst_template = """ .. _example_%(short_fname)s: %(docstring)s %(image_list)s %(stdout)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- **Total running time of the example:** %(time_elapsed) .2f seconds (%(time_m) .0f minutes %(time_s) .2f seconds) """ # The following strings are used when we have several pictures: we use # an html div tag that our CSS uses to turn the lists into horizontal # lists. HLIST_HEADER = """ .. rst-class:: horizontal """ HLIST_IMAGE_TEMPLATE = """ * .. image:: images/%s :scale: 47 """ SINGLE_IMAGE = """ .. image:: images/%s :align: center """ # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'plot_classifier_comparison_001.png': (1, 600), 'plot_outlier_detection_001.png': (3, 372), 'plot_gp_regression_001.png': (2, 250), 'plot_adaboost_twoclass_001.png': (1, 372), 'plot_compare_methods_001.png': (1, 349)} def extract_docstring(filename, ignore_heading=False): """ Extract a module-level docstring, if any """ lines = open(filename).readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, extract # the first one: paragraphs = '\n'.join( line.rstrip() for line in docstring.split('\n')).split('\n\n') if paragraphs: if ignore_heading: if len(paragraphs) > 1: first_par = re.sub('\n', ' ', paragraphs[1]) first_par = ((first_par[:95] + '...') if len(first_par) > 95 else first_par) else: raise ValueError("Docstring not found by gallery", "Please check your example's layout", " and make sure it's correct") else: first_par = paragraphs[0] break return docstring, first_par, erow + 1 + start_row def generate_example_rst(app): """ Generate the list of examples, as well as the contents of examples. """ root_dir = os.path.join(app.builder.srcdir, 'auto_examples') example_dir = os.path.abspath(os.path.join(app.builder.srcdir, '..', 'examples')) generated_dir = os.path.abspath(os.path.join(app.builder.srcdir, 'modules', 'generated')) try: plot_gallery = eval(app.builder.config.plot_gallery) except TypeError: plot_gallery = bool(app.builder.config.plot_gallery) if not os.path.exists(example_dir): os.makedirs(example_dir) if not os.path.exists(root_dir): os.makedirs(root_dir) if not os.path.exists(generated_dir): os.makedirs(generated_dir) # we create an index.rst with all examples fhindex = open(os.path.join(root_dir, 'index.rst'), 'w') # Note: The sidebar button has been removed from the examples page for now # due to how it messes up the layout. Will be fixed at a later point fhindex.write("""\ .. raw:: html <style type="text/css"> div#sidebarbutton { /* hide the sidebar collapser, while ensuring vertical arrangement */ width: 0px; overflow: hidden; } </style> Examples ======== .. _examples-index: """) # Here we don't use an os.walk, but we recurse only twice: flat is # better than nested. seen_backrefs = set() generate_dir_rst('.', fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) for dir in sorted(os.listdir(example_dir)): if os.path.isdir(os.path.join(example_dir, dir)): generate_dir_rst(dir, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) fhindex.flush() def extract_line_count(filename, target_dir): # Extract the line count of a file example_file = os.path.join(target_dir, filename) lines = open(example_file).readlines() start_row = 0 if lines and lines[0].startswith('#!'): lines.pop(0) start_row = 1 line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) check_docstring = True erow_docstring = 0 for tok_type, _, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif ((tok_type == 'STRING') and check_docstring): erow_docstring = erow check_docstring = False return erow_docstring+1+start_row, erow+1+start_row def line_count_sort(file_list, target_dir): # Sort the list of examples by line-count new_list = [x for x in file_list if x.endswith('.py')] unsorted = np.zeros(shape=(len(new_list), 2)) unsorted = unsorted.astype(np.object) for count, exmpl in enumerate(new_list): docstr_lines, total_lines = extract_line_count(exmpl, target_dir) unsorted[count][1] = total_lines - docstr_lines unsorted[count][0] = exmpl index = np.lexsort((unsorted[:, 0].astype(np.str), unsorted[:, 1].astype(np.float))) if not len(unsorted): return [] return np.array(unsorted[index][:, 0]).tolist() def _thumbnail_div(subdir, full_dir, fname, snippet): """Generates RST to place a thumbnail in a gallery""" thumb = os.path.join(full_dir, 'images', 'thumb', fname[:-3] + '.png') link_name = os.path.join(full_dir, fname).replace(os.path.sep, '_') ref_name = os.path.join(subdir, fname).replace(os.path.sep, '_') if ref_name.startswith('._'): ref_name = ref_name[2:] out = [] out.append(""" .. raw:: html <div class="thumbnailContainer"> <div class="docstringWrapper"> """) out.append('.. figure:: %s\n' % thumb) if link_name.startswith('._'): link_name = link_name[2:] if full_dir != '.': out.append(' :target: ./%s/%s.html\n\n' % (full_dir, fname[:-3])) else: out.append(' :target: ./%s.html\n\n' % link_name[:-3]) out.append(""" :ref:`example_%s` .. raw:: html <p>%s </p></div> </div> """ % (ref_name, snippet)) return ''.join(out) def generate_dir_rst(dir, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs): """ Generate the rst file for an example directory. """ if not dir == '.': target_dir = os.path.join(root_dir, dir) src_dir = os.path.join(example_dir, dir) else: target_dir = root_dir src_dir = example_dir if not os.path.exists(os.path.join(src_dir, 'README.txt')): raise ValueError('Example directory %s does not have a README.txt' % src_dir) fhindex.write(""" %s """ % open(os.path.join(src_dir, 'README.txt')).read()) if not os.path.exists(target_dir): os.makedirs(target_dir) sorted_listdir = line_count_sort(os.listdir(src_dir), src_dir) if not os.path.exists(os.path.join(dir, 'images', 'thumb')): os.makedirs(os.path.join(dir, 'images', 'thumb')) for fname in sorted_listdir: if fname.endswith('py'): backrefs = generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery) new_fname = os.path.join(src_dir, fname) _, snippet, _ = extract_docstring(new_fname, True) fhindex.write(_thumbnail_div(dir, dir, fname, snippet)) fhindex.write(""" .. toctree:: :hidden: %s/%s """ % (dir, fname[:-3])) for backref in backrefs: include_path = os.path.join(root_dir, '../modules/generated/%s.examples' % backref) seen = backref in seen_backrefs with open(include_path, 'a' if seen else 'w') as ex_file: if not seen: # heading print(file=ex_file) print('Examples using ``%s``' % backref, file=ex_file) print('-----------------%s--' % ('-' * len(backref)), file=ex_file) print(file=ex_file) rel_dir = os.path.join('../../auto_examples', dir) ex_file.write(_thumbnail_div(dir, rel_dir, fname, snippet)) seen_backrefs.add(backref) fhindex.write(""" .. raw:: html <div class="clearer"></div> """) # clear at the end of the section # modules for which we embed links into example code DOCMODULES = ['sklearn', 'matplotlib', 'numpy', 'scipy'] def make_thumbnail(in_fname, out_fname, width, height): """Make a thumbnail with the same aspect ratio centered in an image with a given width and height """ # local import to avoid testing dependency on PIL: try: from PIL import Image except ImportError: import Image img = Image.open(in_fname) width_in, height_in = img.size scale_w = width / float(width_in) scale_h = height / float(height_in) if height_in * scale_w <= height: scale = scale_w else: scale = scale_h width_sc = int(round(scale * width_in)) height_sc = int(round(scale * height_in)) # resize the image img.thumbnail((width_sc, height_sc), Image.ANTIALIAS) # insert centered thumb = Image.new('RGB', (width, height), (255, 255, 255)) pos_insert = ((width - width_sc) // 2, (height - height_sc) // 2) thumb.paste(img, pos_insert) thumb.save(out_fname) # Use optipng to perform lossless compression on the resized image if # software is installed if os.environ.get('SKLEARN_DOC_OPTIPNG', False): try: subprocess.call(["optipng", "-quiet", "-o", "9", out_fname]) except Exception: warnings.warn('Install optipng to reduce the size of the generated images') def get_short_module_name(module_name, obj_name): """ Get the shortest possible module name """ parts = module_name.split('.') short_name = module_name for i in range(len(parts) - 1, 0, -1): short_name = '.'.join(parts[:i]) try: exec('from %s import %s' % (short_name, obj_name)) except ImportError: # get the last working module name short_name = '.'.join(parts[:(i + 1)]) break return short_name class NameFinder(ast.NodeVisitor): """Finds the longest form of variable names and their imports in code Only retains names from imported modules. """ def __init__(self): super(NameFinder, self).__init__() self.imported_names = {} self.accessed_names = set() def visit_Import(self, node, prefix=''): for alias in node.names: local_name = alias.asname or alias.name self.imported_names[local_name] = prefix + alias.name def visit_ImportFrom(self, node): self.visit_Import(node, node.module + '.') def visit_Name(self, node): self.accessed_names.add(node.id) def visit_Attribute(self, node): attrs = [] while isinstance(node, ast.Attribute): attrs.append(node.attr) node = node.value if isinstance(node, ast.Name): # This is a.b, not e.g. a().b attrs.append(node.id) self.accessed_names.add('.'.join(reversed(attrs))) else: # need to get a in a().b self.visit(node) def get_mapping(self): for name in self.accessed_names: local_name = name.split('.', 1)[0] remainder = name[len(local_name):] if local_name in self.imported_names: # Join import path to relative path full_name = self.imported_names[local_name] + remainder yield name, full_name def identify_names(code): """Builds a codeobj summary by identifying and resovles used names >>> code = ''' ... from a.b import c ... import d as e ... print(c) ... e.HelloWorld().f.g ... ''' >>> for name, o in sorted(identify_names(code).items()): ... print(name, o['name'], o['module'], o['module_short']) c c a.b a.b e.HelloWorld HelloWorld d d """ finder = NameFinder() finder.visit(ast.parse(code)) example_code_obj = {} for name, full_name in finder.get_mapping(): # name is as written in file (e.g. np.asarray) # full_name includes resolved import path (e.g. numpy.asarray) module, attribute = full_name.rsplit('.', 1) # get shortened module name module_short = get_short_module_name(module, attribute) cobj = {'name': attribute, 'module': module, 'module_short': module_short} example_code_obj[name] = cobj return example_code_obj def generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery): """ Generate the rst file for a given example. Returns the set of sklearn functions/classes imported in the example. """ base_image_name = os.path.splitext(fname)[0] image_fname = '%s_%%03d.png' % base_image_name this_template = rst_template last_dir = os.path.split(src_dir)[-1] # to avoid leading . in file names, and wrong names in links if last_dir == '.' or last_dir == 'examples': last_dir = '' else: last_dir += '_' short_fname = last_dir + fname src_file = os.path.join(src_dir, fname) example_file = os.path.join(target_dir, fname) shutil.copyfile(src_file, example_file) # The following is a list containing all the figure names figure_list = [] image_dir = os.path.join(target_dir, 'images') thumb_dir = os.path.join(image_dir, 'thumb') if not os.path.exists(image_dir): os.makedirs(image_dir) if not os.path.exists(thumb_dir): os.makedirs(thumb_dir) image_path = os.path.join(image_dir, image_fname) stdout_path = os.path.join(image_dir, 'stdout_%s.txt' % base_image_name) time_path = os.path.join(image_dir, 'time_%s.txt' % base_image_name) thumb_file = os.path.join(thumb_dir, fname[:-3] + '.png') time_elapsed = 0 time_m = 0 time_s = 0 if plot_gallery and fname.startswith('plot'): # generate the plot as png image if file name # starts with plot and if it is more recent than an # existing image. first_image_file = image_path % 1 if os.path.exists(stdout_path): stdout = open(stdout_path).read() else: stdout = '' if os.path.exists(time_path): time_elapsed = float(open(time_path).read()) if not os.path.exists(first_image_file) or \ os.stat(first_image_file).st_mtime <= os.stat(src_file).st_mtime: # We need to execute the code print('plotting %s' % fname) t0 = time() import matplotlib.pyplot as plt plt.close('all') cwd = os.getcwd() try: # First CD in the original example dir, so that any file # created by the example get created in this directory orig_stdout = sys.stdout os.chdir(os.path.dirname(src_file)) my_buffer = StringIO() my_stdout = Tee(sys.stdout, my_buffer) sys.stdout = my_stdout my_globals = {'pl': plt} execfile(os.path.basename(src_file), my_globals) time_elapsed = time() - t0 sys.stdout = orig_stdout my_stdout = my_buffer.getvalue() if '__doc__' in my_globals: # The __doc__ is often printed in the example, we # don't with to echo it my_stdout = my_stdout.replace( my_globals['__doc__'], '') my_stdout = my_stdout.strip() if my_stdout: stdout = '**Script output**::\n\n %s\n\n' % ( '\n '.join(my_stdout.split('\n'))) open(stdout_path, 'w').write(stdout) open(time_path, 'w').write('%f' % time_elapsed) os.chdir(cwd) # In order to save every figure we have two solutions : # * iterate from 1 to infinity and call plt.fignum_exists(n) # (this requires the figures to be numbered # incrementally: 1, 2, 3 and not 1, 2, 5) # * iterate over [fig_mngr.num for fig_mngr in # matplotlib._pylab_helpers.Gcf.get_all_fig_managers()] fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers() for fig_mngr in fig_managers: # Set the fig_num figure as the current figure as we can't # save a figure that's not the current figure. plt.figure(fig_mngr.num) plt.savefig(image_path % fig_mngr.num) figure_list.append(image_fname % fig_mngr.num) except: print(80 * '_') print('%s is not compiling:' % fname) traceback.print_exc() print(80 * '_') finally: os.chdir(cwd) sys.stdout = orig_stdout print(" - time elapsed : %.2g sec" % time_elapsed) else: figure_list = [f[len(image_dir):] for f in glob.glob(image_path.replace("%03d", '[0-9][0-9][0-9]'))] figure_list.sort() # generate thumb file this_template = plot_rst_template car_thumb_path = os.path.join(os.path.split(root_dir)[0], '_build/html/stable/_images/') # Note: normaly, make_thumbnail is used to write to the path contained in `thumb_file` # which is within `auto_examples/../images/thumbs` depending on the example. # Because the carousel has different dimensions than those of the examples gallery, # I did not simply reuse them all as some contained whitespace due to their default gallery # thumbnail size. Below, for a few cases, seperate thumbnails are created (the originals can't # just be overwritten with the carousel dimensions as it messes up the examples gallery layout). # The special carousel thumbnails are written directly to _build/html/stable/_images/, # as for some reason unknown to me, Sphinx refuses to copy my 'extra' thumbnails from the # auto examples gallery to the _build folder. This works fine as is, but it would be cleaner to # have it happen with the rest. Ideally the should be written to 'thumb_file' as well, and then # copied to the _images folder during the `Copying Downloadable Files` step like the rest. if not os.path.exists(car_thumb_path): os.makedirs(car_thumb_path) if os.path.exists(first_image_file): # We generate extra special thumbnails for the carousel carousel_tfile = os.path.join(car_thumb_path, fname[:-3] + '_carousel.png') first_img = image_fname % 1 if first_img in carousel_thumbs: make_thumbnail((image_path % carousel_thumbs[first_img][0]), carousel_tfile, carousel_thumbs[first_img][1], 190) make_thumbnail(first_image_file, thumb_file, 400, 280) if not os.path.exists(thumb_file): # create something to replace the thumbnail make_thumbnail('images/no_image.png', thumb_file, 200, 140) docstring, short_desc, end_row = extract_docstring(example_file) # Depending on whether we have one or more figures, we're using a # horizontal list or a single rst call to 'image'. if len(figure_list) == 1: figure_name = figure_list[0] image_list = SINGLE_IMAGE % figure_name.lstrip('/') else: image_list = HLIST_HEADER for figure_name in figure_list: image_list += HLIST_IMAGE_TEMPLATE % figure_name.lstrip('/') time_m, time_s = divmod(time_elapsed, 60) f = open(os.path.join(target_dir, fname[:-2] + 'rst'), 'w') f.write(this_template % locals()) f.flush() # save variables so we can later add links to the documentation example_code_obj = identify_names(open(example_file).read()) if example_code_obj: codeobj_fname = example_file[:-3] + '_codeobj.pickle' with open(codeobj_fname, 'wb') as fid: pickle.dump(example_code_obj, fid, pickle.HIGHEST_PROTOCOL) backrefs = set('{module_short}.{name}'.format(**entry) for entry in example_code_obj.values() if entry['module'].startswith('sklearn')) return backrefs def embed_code_links(app, exception): """Embed hyperlinks to documentation into example code""" try: if exception is not None: return print('Embedding documentation hyperlinks in examples..') # Add resolvers for the packages for which we want to show links doc_resolvers = {} doc_resolvers['sklearn'] = SphinxDocLinkResolver(app.builder.outdir, relative=True) doc_resolvers['matplotlib'] = SphinxDocLinkResolver( 'http://matplotlib.org') doc_resolvers['numpy'] = SphinxDocLinkResolver( 'http://docs.scipy.org/doc/numpy-1.6.0') doc_resolvers['scipy'] = SphinxDocLinkResolver( 'http://docs.scipy.org/doc/scipy-0.11.0/reference') example_dir = os.path.join(app.builder.srcdir, 'auto_examples') html_example_dir = os.path.abspath(os.path.join(app.builder.outdir, 'auto_examples')) # patterns for replacement link_pattern = '<a href="%s">%s</a>' orig_pattern = '<span class="n">%s</span>' period = '<span class="o">.</span>' for dirpath, _, filenames in os.walk(html_example_dir): for fname in filenames: print('\tprocessing: %s' % fname) full_fname = os.path.join(html_example_dir, dirpath, fname) subpath = dirpath[len(html_example_dir) + 1:] pickle_fname = os.path.join(example_dir, subpath, fname[:-5] + '_codeobj.pickle') if os.path.exists(pickle_fname): # we have a pickle file with the objects to embed links for with open(pickle_fname, 'rb') as fid: example_code_obj = pickle.load(fid) fid.close() str_repl = {} # generate replacement strings with the links for name, cobj in example_code_obj.items(): this_module = cobj['module'].split('.')[0] if this_module not in doc_resolvers: continue link = doc_resolvers[this_module].resolve(cobj, full_fname) if link is not None: parts = name.split('.') name_html = period.join(orig_pattern % part for part in parts) str_repl[name_html] = link_pattern % (link, name_html) # do the replacement in the html file # ensure greediness names = sorted(str_repl, key=len, reverse=True) expr = re.compile(r'(?<!\.)\b' + # don't follow . or word '|'.join(re.escape(name) for name in names)) def substitute_link(match): return str_repl[match.group()] if len(str_repl) > 0: with open(full_fname, 'rb') as fid: lines_in = fid.readlines() with open(full_fname, 'wb') as fid: for line in lines_in: line = line.decode('utf-8') line = expr.sub(substitute_link, line) fid.write(line.encode('utf-8')) except HTTPError as e: print("The following HTTP Error has occurred:\n") print(e.code) except URLError as e: print("\n...\n" "Warning: Embedding the documentation hyperlinks requires " "internet access.\nPlease check your network connection.\n" "Unable to continue embedding due to a URL Error: \n") print(e.args) print('[done]') def setup(app): app.connect('builder-inited', generate_example_rst) app.add_config_value('plot_gallery', True, 'html') # embed links after build is finished app.connect('build-finished', embed_code_links) # Sphinx hack: sphinx copies generated images to the build directory # each time the docs are made. If the desired image name already # exists, it appends a digit to prevent overwrites. The problem is, # the directory is never cleared. This means that each time you build # the docs, the number of images in the directory grows. # # This question has been asked on the sphinx development list, but there # was no response: http://osdir.com/ml/sphinx-dev/2011-02/msg00123.html # # The following is a hack that prevents this behavior by clearing the # image build directory each time the docs are built. If sphinx # changes their layout between versions, this will not work (though # it should probably not cause a crash). Tested successfully # on Sphinx 1.0.7 build_image_dir = '_build/html/_images' if os.path.exists(build_image_dir): filelist = os.listdir(build_image_dir) for filename in filelist: if filename.endswith('png'): os.remove(os.path.join(build_image_dir, filename)) def setup_module(): # HACK: Stop nosetests running setup() above pass
bsd-3-clause
zhuango/python
pandasLearning/featureEng_for_ning.py
2
4108
import numpy as np import pandas as pd from math import * def getMinDistances(tasks, vips): distances = [] for longitude, latitude in zip(tasks['任务gps经度'], tasks['任务gps纬度']): minDistance = 100000000000000 for longVip, latiVip in zip(vips['会员gps经度'], vips['会员gps纬度']): # print(longitude, latitude, longVip, latiVip) dis = cal_dist(longitude, latitude, longVip, latiVip) if minDistance > dis: minDistance = dis distances.append(minDistance) return distances def getMinute(timeStr): """6:30:00""" items = [int(elem) for elem in timeStr.split(":")] minutes = items[0] * 60 + items[1] return minutes def cal_dist(lon1, lat1, lon2, lat2): # 经度1,纬度1,经度2,纬度2 (十进制度数) """ 求AB两点经纬度之间的距离 """ # 将十进制度数转化为弧度 lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # haversine公式 dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2 c = 2 * asin(sqrt(a)) r = 6371 # 地球平均半径,单位为公里 return c * r * 1000 def addVipAroundCount(tasks, vips, thres=0.324208925969, ss='sss'): vipsAroundCounts = [] averageBeginningTimes = [] averageCredits = [] averageLimit = [] for longitude, latitude in zip(tasks['任务gps经度'], tasks['任务gps纬度']): count = 0 totalTime = 0 totalCredit = 0 totalLimit = 0 for longVip, latiVip, timeStr, credit, limit in zip(vips['会员gps经度'], vips['会员gps纬度'], vips['预订任务开始时间'], vips['信誉值'], vips['预订任务限额']): # print(longitude, latitude, longVip, latiVip) dis = cal_dist(longitude, latitude, longVip, latiVip) time = getMinute(str(timeStr)) if dis <= thres: count += 1 totalTime += time totalCredit += credit totalLimit += limit vipsAroundCounts.append(count) if count == 0: averageBeginningTimes.append(getMinute('8:00:00')) averageCredits.append(0.0) averageLimit.append(0.0) else: averageBeginningTimes.append(totalTime / count) averageCredits.append(totalCredit / count) averageLimit.append(totalLimit / count) tasks['vip_count_around_' + str(ss)] = vipsAroundCounts # tasks['averaged_begining_time_' + str(thres)] = averageBeginningTimes tasks['averaged_credit_' + str(ss)] = averageCredits tasks['averaged_limit' + str(ss)] = averageLimit return vipsAroundCounts, def factorizeLocation(tasks): tasks['位置_factorized'] = pd.factorize(tasks['位置'])[0] def mapLocation(tasks, loc2id): tasks['位置_factorized'] = [loc2id[loc.strip()] for loc in tasks['位置']] def buildLocationDict(filename): loc2id = {} locations = pd.read_csv(filename) for location, location_id in zip(locations['位置'], locations['位置_factorized']): loc2id[location] = location_id return loc2id # tasks: 任务号码,任务gps经度,任务gps纬度,位置,任务标价 # vips: 会员编号,会员gps纬度,会员gps纬度,预订任务限额,预订任务开始时间,信誉值 tasks = pd.read_csv('/home/laboratory/Desktop/math/q4.csv', header=0) print(tasks.info()) vips = pd.read_csv('vips.csv', header=0) print(vips.info()) distances = getMinDistances(tasks, vips) addVipAroundCount(tasks, vips, 33934.34627910165, 33934.34627910165) addVipAroundCount(tasks, vips, 16967.173139550825, 16967.173139550825) # factorizeLocation(tasks) # loc2id = buildLocationDict('/home/laboratory/Desktop/math/featured_tasks.csv') # print(len(loc2id)) # for loc in loc2id: # print("{},{}".format(loc, loc2id[loc])) # mapLocation(tasks, loc2id) tasks.to_excel('./ning/featured_tasks_ning_q4.xls', index=False) tasks.to_csv('./ning/featured_tasks_ning_q4.csv', index=False)
gpl-2.0
tosolveit/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting.py
56
37976
""" Testing for the gradient boosting module (sklearn.ensemble.gradient_boosting). """ import warnings import numpy as np from sklearn import datasets from sklearn.base import clone from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.gradient_boosting import ZeroEstimator from sklearn.metrics import mean_squared_error from sklearn.utils import check_random_state, tosequence from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.validation import DataConversionWarning from sklearn.utils.validation import NotFittedError # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] rng = np.random.RandomState(0) # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset. for loss in ('deviance', 'exponential'): clf = GradientBoostingClassifier(loss=loss, n_estimators=10, random_state=1) assert_raises(ValueError, clf.predict, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf.estimators_)) deviance_decrease = (clf.train_score_[:-1] - clf.train_score_[1:]) assert np.any(deviance_decrease >= 0.0), \ "Train deviance does not monotonically decrease." leaves = clf.apply(X) assert_equal(leaves.shape, (6, 10, 1)) def test_parameter_checks(): # Check input parameter validation. assert_raises(ValueError, GradientBoostingClassifier(n_estimators=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(n_estimators=-1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='foobar').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=0.6).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=1.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(init={}).fit, X, y) # test fit before feature importance assert_raises(ValueError, lambda: GradientBoostingClassifier().feature_importances_) # deviance requires ``n_classes >= 2``. assert_raises(ValueError, lambda X, y: GradientBoostingClassifier( loss='deviance').fit(X, y), X, [0, 0, 0, 0]) def test_loss_function(): assert_raises(ValueError, GradientBoostingClassifier(loss='ls').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='lad').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='quantile').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='huber').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='deviance').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='exponential').fit, X, y) def test_classification_synthetic(): # Test GradientBoostingClassifier on synthetic dataset used by # Hastie et al. in ESLII Example 12.7. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] for loss in ('deviance', 'exponential'): gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=1, max_depth=1, loss=loss, learning_rate=1.0, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert error_rate < 0.09, \ "GB(loss={}) failed with error {}".format(loss, error_rate) gbrt = GradientBoostingClassifier(n_estimators=200, min_samples_split=1, max_depth=1, learning_rate=1.0, subsample=0.5, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert error_rate < 0.08, ("Stochastic GradientBoostingClassifier(loss={}) " "failed with error {}".format(loss, error_rate)) def test_boston(): # Check consistency on dataset boston house prices with least squares # and least absolute deviation. for loss in ("ls", "lad", "huber"): for subsample in (1.0, 0.5): last_y_pred = None for i, sample_weight in enumerate( (None, np.ones(len(boston.target)), 2 * np.ones(len(boston.target)))): clf = GradientBoostingRegressor(n_estimators=100, loss=loss, max_depth=4, subsample=subsample, min_samples_split=1, random_state=1) assert_raises(ValueError, clf.predict, boston.data) clf.fit(boston.data, boston.target, sample_weight=sample_weight) leaves = clf.apply(boston.data) assert_equal(leaves.shape, (506, 100)) y_pred = clf.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert mse < 6.0, "Failed with loss %s and " \ "mse = %.4f" % (loss, mse) if last_y_pred is not None: np.testing.assert_array_almost_equal( last_y_pred, y_pred, err_msg='pred_%d doesnt match last pred_%d for loss %r and subsample %r. ' % (i, i - 1, loss, subsample)) last_y_pred = y_pred def test_iris(): # Check consistency on dataset iris. for subsample in (1.0, 0.5): for sample_weight in (None, np.ones(len(iris.target))): clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=subsample) clf.fit(iris.data, iris.target, sample_weight=sample_weight) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with subsample %.1f " \ "and score = %f" % (subsample, score) leaves = clf.apply(iris.data) assert_equal(leaves.shape, (150, 100, 3)) def test_regression_synthetic(): # Test on synthetic regression datasets used in Leo Breiman, # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). random_state = check_random_state(1) regression_params = {'n_estimators': 100, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.1, 'loss': 'ls'} # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=random_state, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor() clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 5.0, "Failed on Friedman1 with mse = %.4f" % mse # Friedman2 X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 1700.0, "Failed on Friedman2 with mse = %.4f" % mse # Friedman3 X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert mse < 0.015, "Failed on Friedman3 with mse = %.4f" % mse def test_feature_importances(): X = np.array(boston.data, dtype=np.float32) y = np.array(boston.target, dtype=np.float32) clf = GradientBoostingRegressor(n_estimators=100, max_depth=5, min_samples_split=1, random_state=1) clf.fit(X, y) #feature_importances = clf.feature_importances_ assert_true(hasattr(clf, 'feature_importances_')) X_new = clf.transform(X, threshold="mean") assert_less(X_new.shape[1], X.shape[1]) feature_mask = clf.feature_importances_ > clf.feature_importances_.mean() assert_array_almost_equal(X_new, X[:, feature_mask]) # true feature importance ranking # true_ranking = np.array([3, 1, 8, 2, 10, 9, 4, 11, 0, 6, 7, 5, 12]) # assert_array_equal(true_ranking, feature_importances.argsort()) def test_probability_log(): # Predict probabilities. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert np.all(y_proba >= 0.0) assert np.all(y_proba <= 1.0) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_check_inputs(): # Test input checks (shape and type of X and y). clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y + [0, 1]) from scipy import sparse X_sparse = sparse.csr_matrix(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(TypeError, clf.fit, X_sparse, y) clf = GradientBoostingClassifier().fit(X, y) assert_raises(TypeError, clf.predict, X_sparse) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y, sample_weight=([1] * len(y)) + [0, 1]) def test_check_inputs_predict(): # X has wrong shape clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, rng.rand(len(X))) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) def test_check_max_features(): # test if max_features is valid. clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=0) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=(len(X[0]) + 1)) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=-0.1) assert_raises(ValueError, clf.fit, X, y) def test_max_feature_regression(): # Test to make sure random state is set properly. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=5, max_depth=2, learning_rate=.1, max_features=2, random_state=1) gbrt.fit(X_train, y_train) deviance = gbrt.loss_(y_test, gbrt.decision_function(X_test)) assert_true(deviance < 0.5, "GB failed with deviance %.4f" % deviance) def test_max_feature_auto(): # Test if max features is set properly for floats and str. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) _, n_features = X.shape X_train = X[:2000] y_train = y[:2000] gbrt = GradientBoostingClassifier(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, n_features) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.3) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(n_features * 0.3)) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='sqrt') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='log2') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.log2(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.01 / X.shape[1]) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, 1) def test_staged_predict(): # Test whether staged decision function eventually gives # the same prediction. X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test = X[200:] clf = GradientBoostingRegressor() # test raise ValueError if not fitted assert_raises(ValueError, lambda X: np.fromiter( clf.staged_predict(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # test if prediction for last stage equals ``predict`` for y in clf.staged_predict(X_test): assert_equal(y.shape, y_pred.shape) assert_array_equal(y_pred, y) def test_staged_predict_proba(): # Test whether staged predict proba eventually gives # the same prediction. X, y = datasets.make_hastie_10_2(n_samples=1200, random_state=1) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingClassifier(n_estimators=20) # test raise NotFittedError if not fitted assert_raises(NotFittedError, lambda X: np.fromiter( clf.staged_predict_proba(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) # test if prediction for last stage equals ``predict`` for y_pred in clf.staged_predict(X_test): assert_equal(y_test.shape, y_pred.shape) assert_array_equal(clf.predict(X_test), y_pred) # test if prediction for last stage equals ``predict_proba`` for staged_proba in clf.staged_predict_proba(X_test): assert_equal(y_test.shape[0], staged_proba.shape[0]) assert_equal(2, staged_proba.shape[1]) assert_array_equal(clf.predict_proba(X_test), staged_proba) def test_staged_functions_defensive(): # test that staged_functions make defensive copies rng = np.random.RandomState(0) X = rng.uniform(size=(10, 3)) y = (4 * X[:, 0]).astype(np.int) + 1 # don't predict zeros for estimator in [GradientBoostingRegressor(), GradientBoostingClassifier()]: estimator.fit(X, y) for func in ['predict', 'decision_function', 'predict_proba']: staged_func = getattr(estimator, "staged_" + func, None) if staged_func is None: # regressor has no staged_predict_proba continue with warnings.catch_warnings(record=True): staged_result = list(staged_func(X)) staged_result[1][:] = 0 assert_true(np.all(staged_result[0] != 0)) def test_serialization(): # Check model serialization. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) try: import cPickle as pickle except ImportError: import pickle serialized_clf = pickle.dumps(clf, protocol=pickle.HIGHEST_PROTOCOL) clf = None clf = pickle.loads(serialized_clf) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_degenerate_targets(): # Check if we can fit even though all targets are equal. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) # classifier should raise exception assert_raises(ValueError, clf.fit, X, np.ones(len(X))) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, np.ones(len(X))) clf.predict([rng.rand(2)]) assert_array_equal(np.ones((1,), dtype=np.float64), clf.predict([rng.rand(2)])) def test_quantile_loss(): # Check if quantile loss with alpha=0.5 equals lad. clf_quantile = GradientBoostingRegressor(n_estimators=100, loss='quantile', max_depth=4, alpha=0.5, random_state=7) clf_quantile.fit(boston.data, boston.target) y_quantile = clf_quantile.predict(boston.data) clf_lad = GradientBoostingRegressor(n_estimators=100, loss='lad', max_depth=4, random_state=7) clf_lad.fit(boston.data, boston.target) y_lad = clf_lad.predict(boston.data) assert_array_almost_equal(y_quantile, y_lad, decimal=4) def test_symbol_labels(): # Test with non-integer class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) symbol_y = tosequence(map(str, y)) clf.fit(X, symbol_y) assert_array_equal(clf.predict(T), tosequence(map(str, true_result))) assert_equal(100, len(clf.estimators_)) def test_float_class_labels(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) float_y = np.asarray(y, dtype=np.float32) clf.fit(X, float_y) assert_array_equal(clf.predict(T), np.asarray(true_result, dtype=np.float32)) assert_equal(100, len(clf.estimators_)) def test_shape_y(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) y_ = np.asarray(y, dtype=np.int32) y_ = y_[:, np.newaxis] # This will raise a DataConversionWarning that we want to # "always" raise, elsewhere the warnings gets ignored in the # later tests, and the tests that check for this warning fail assert_warns(DataConversionWarning, clf.fit, X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_mem_layout(): # Test with different memory layouts of X and y X_ = np.asfortranarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) X_ = np.ascontiguousarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.ascontiguousarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.asfortranarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_oob_improvement(): # Test if oob improvement has correct shape and regression test. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=0.5) clf.fit(X, y) assert clf.oob_improvement_.shape[0] == 100 # hard-coded regression test - change if modification in OOB computation assert_array_almost_equal(clf.oob_improvement_[:5], np.array([0.19, 0.15, 0.12, -0.12, -0.11]), decimal=2) def test_oob_improvement_raise(): # Test if oob improvement has correct shape. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=1.0) clf.fit(X, y) assert_raises(AttributeError, lambda: clf.oob_improvement_) def test_oob_multilcass_iris(): # Check OOB improvement on multi-class dataset. clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=0.5) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with subsample %.1f " \ "and score = %f" % (0.5, score) assert clf.oob_improvement_.shape[0] == clf.n_estimators # hard-coded regression test - change if modification in OOB computation # FIXME: the following snippet does not yield the same results on 32 bits # assert_array_almost_equal(clf.oob_improvement_[:5], # np.array([12.68, 10.45, 8.18, 6.43, 5.13]), # decimal=2) def test_verbose_output(): # Check verbose=1 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=1, subsample=0.8) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # with OOB true_header = ' '.join(['%10s'] + ['%16s'] * 3) % ( 'Iter', 'Train Loss', 'OOB Improve', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # one for 1-10 and then 9 for 20-100 assert_equal(10 + 9, n_lines) def test_more_verbose_output(): # Check verbose=2 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=2) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # no OOB true_header = ' '.join(['%10s'] + ['%16s'] * 2) % ( 'Iter', 'Train Loss', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # 100 lines for n_estimators==100 assert_equal(100, n_lines) def test_warm_start(): # Test if warm start equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_n_estimators(): # Test if warm start equals fit - set n_estimators. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=300, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=300) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_max_depth(): # Test if possible to fit trees of different depth in ensemble. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, max_depth=2) est.fit(X, y) # last 10 trees have different depth assert est.estimators_[0, 0].max_depth == 1 for i in range(1, 11): assert est.estimators_[-i, 0].max_depth == 2 def test_warm_start_clear(): # Test if fit clears state. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est_2 = Cls(n_estimators=100, max_depth=1, warm_start=True) est_2.fit(X, y) # inits state est_2.set_params(warm_start=False) est_2.fit(X, y) # clears old state and equals est assert_array_almost_equal(est_2.predict(X), est.predict(X)) def test_warm_start_zero_n_estimators(): # Test if warm start with zero n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=0) assert_raises(ValueError, est.fit, X, y) def test_warm_start_smaller_n_estimators(): # Test if warm start with smaller n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=99) assert_raises(ValueError, est.fit, X, y) def test_warm_start_equal_n_estimators(): # Test if warm start with equal n_estimators does nothing X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est2 = clone(est) est2.set_params(n_estimators=est.n_estimators, warm_start=True) est2.fit(X, y) assert_array_almost_equal(est2.predict(X), est.predict(X)) def test_warm_start_oob_switch(): # Test if oob can be turned on during warm start. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, subsample=0.5) est.fit(X, y) assert_array_equal(est.oob_improvement_[:100], np.zeros(100)) # the last 10 are not zeros assert_array_equal(est.oob_improvement_[-10:] == 0.0, np.zeros(10, dtype=np.bool)) def test_warm_start_oob(): # Test if warm start OOB equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1, subsample=0.5, random_state=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, subsample=0.5, random_state=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.oob_improvement_[:100], est.oob_improvement_[:100]) def early_stopping_monitor(i, est, locals): """Returns True on the 10th iteration. """ if i == 9: return True else: return False def test_monitor_early_stopping(): # Test if monitor return value works. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) # this is not altered assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.train_score_.shape[0], 30) est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5, warm_start=True) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30, warm_start=False) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.train_score_.shape[0], 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.oob_improvement_.shape[0], 30) def test_complete_classification(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 est = GradientBoostingClassifier(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, k) assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_complete_regression(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF k = 4 est = GradientBoostingRegressor(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(boston.data, boston.target) tree = est.estimators_[-1, 0].tree_ assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_zero_estimator_reg(): # Test if ZeroEstimator works for regression. est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, boston.data, boston.target) def test_zero_estimator_clf(): # Test if ZeroEstimator works for classification. X = iris.data y = np.array(iris.target) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(X, y) assert est.score(X, y) > 0.96 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert est.score(X, y) > 0.96 # binary clf mask = y != 0 y[mask] = 1 y[~mask] = 0 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert est.score(X, y) > 0.96 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test preceedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [GradientBoostingRegressor, GradientBoostingClassifier] k = 4 for GBEstimator in all_estimators: est = GBEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_greater(tree.max_depth, 1) est = GBEstimator(max_depth=1).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, 1) def test_warm_start_wo_nestimators_change(): # Test if warm_start does nothing if n_estimators is not changed. # Regression test for #3513. clf = GradientBoostingClassifier(n_estimators=10, warm_start=True) clf.fit([[0, 1], [2, 3]], [0, 1]) assert clf.estimators_.shape[0] == 10 clf.fit([[0, 1], [2, 3]], [0, 1]) assert clf.estimators_.shape[0] == 10 def test_probability_exponential(): # Predict probabilities. clf = GradientBoostingClassifier(loss='exponential', n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert np.all(y_proba >= 0.0) assert np.all(y_proba <= 1.0) score = clf.decision_function(T).ravel() assert_array_almost_equal(y_proba[:, 1], 1.0 / (1.0 + np.exp(-2 * score))) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_non_uniform_weights_toy_edge_case_reg(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('huber', 'ls', 'lad', 'quantile'): gb = GradientBoostingRegressor(learning_rate=1.0, n_estimators=2, loss=loss) gb.fit(X, y, sample_weight=sample_weight) assert_greater(gb.predict([[1, 0]])[0], 0.5) def test_non_uniform_weights_toy_min_weight_leaf(): # Regression test for issue #4447 X = [[1, 0], [1, 0], [1, 0], [0, 1], ] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] gb = GradientBoostingRegressor(n_estimators=5, min_weight_fraction_leaf=0.1) gb.fit(X, y, sample_weight=sample_weight) assert_true(gb.predict([[1, 0]])[0] > 0.5) assert_almost_equal(gb.estimators_[0, 0].splitter.min_weight_leaf, 0.2) def test_non_uniform_weights_toy_edge_case_clf(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('deviance', 'exponential'): gb = GradientBoostingClassifier(n_estimators=5) gb.fit(X, y, sample_weight=sample_weight) assert_array_equal(gb.predict([[1, 0]]), [1])
bsd-3-clause
Jimmy-Morzaria/scikit-learn
examples/cluster/plot_kmeans_silhouette_analysis.py
242
5885
""" =============================================================================== Selecting the number of clusters with silhouette analysis on KMeans clustering =============================================================================== Silhouette analysis can be used to study the separation distance between the resulting clusters. The silhouette plot displays a measure of how close each point in one cluster is to points in the neighboring clusters and thus provides a way to assess parameters like number of clusters visually. This measure has a range of [-1, 1]. Silhoette coefficients (as these values are referred to as) near +1 indicate that the sample is far away from the neighboring clusters. A value of 0 indicates that the sample is on or very close to the decision boundary between two neighboring clusters and negative values indicate that those samples might have been assigned to the wrong cluster. In this example the silhouette analysis is used to choose an optimal value for ``n_clusters``. The silhouette plot shows that the ``n_clusters`` value of 3, 5 and 6 are a bad pick for the given data due to the presence of clusters with below average silhouette scores and also due to wide fluctuations in the size of the silhouette plots. Silhouette analysis is more ambivalent in deciding between 2 and 4. Also from the thickness of the silhouette plot the cluster size can be visualized. The silhouette plot for cluster 0 when ``n_clusters`` is equal to 2, is bigger in size owing to the grouping of the 3 sub clusters into one big cluster. However when the ``n_clusters`` is equal to 4, all the plots are more or less of similar thickness and hence are of similar sizes as can be also verified from the labelled scatter plot on the right. """ from __future__ import print_function from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples, silhouette_score import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np print(__doc__) # Generating the sample data from make_blobs # This particular setting has one distict cluster and 3 clusters placed close # together. X, y = make_blobs(n_samples=500, n_features=2, centers=4, cluster_std=1, center_box=(-10.0, 10.0), shuffle=True, random_state=1) # For reproducibility range_n_clusters = [2, 3, 4, 5, 6] for n_clusters in range_n_clusters: # Create a subplot with 1 row and 2 columns fig, (ax1, ax2) = plt.subplots(1, 2) fig.set_size_inches(18, 7) # The 1st subplot is the silhouette plot # The silhouette coefficient can range from -1, 1 but in this example all # lie within [-0.1, 1] ax1.set_xlim([-0.1, 1]) # The (n_clusters+1)*10 is for inserting blank space between silhouette # plots of individual clusters, to demarcate them clearly. ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10]) # Initialize the clusterer with n_clusters value and a random generator # seed of 10 for reproducibility. clusterer = KMeans(n_clusters=n_clusters, random_state=10) cluster_labels = clusterer.fit_predict(X) # The silhouette_score gives the average value for all the samples. # This gives a perspective into the density and separation of the formed # clusters silhouette_avg = silhouette_score(X, cluster_labels) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg) # Compute the silhouette scores for each sample sample_silhouette_values = silhouette_samples(X, cluster_labels) y_lower = 10 for i in range(n_clusters): # Aggregate the silhouette scores for samples belonging to # cluster i, and sort them ith_cluster_silhouette_values = \ sample_silhouette_values[cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.spectral(float(i) / n_clusters) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) # Label the silhouette plots with their cluster numbers at the middle ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # Compute the new y_lower for next plot y_lower = y_upper + 10 # 10 for the 0 samples ax1.set_title("The silhouette plot for the various clusters.") ax1.set_xlabel("The silhouette coefficient values") ax1.set_ylabel("Cluster label") # The vertical line for average silhoutte score of all the values ax1.axvline(x=silhouette_avg, color="red", linestyle="--") ax1.set_yticks([]) # Clear the yaxis labels / ticks ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) # 2nd Plot showing the actual clusters formed colors = cm.spectral(cluster_labels.astype(float) / n_clusters) ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors) # Labeling the clusters centers = clusterer.cluster_centers_ # Draw white circles at cluster centers ax2.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200) for i, c in enumerate(centers): ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50) ax2.set_title("The visualization of the clustered data.") ax2.set_xlabel("Feature space for the 1st feature") ax2.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Silhouette analysis for KMeans clustering on sample data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.show()
bsd-3-clause
tbenthompson/tectosaur
examples/check_RH3.py
1
4161
import sys import numpy as np import matplotlib.pyplot as plt import tectosaur.mesh.find_near_adj as find_near_adj from tectosaur.constraint_builders import continuity_constraints, \ free_edge_constraints, all_bc_constraints from tectosaur.ops.sparse_integral_op import SparseIntegralOp from tectosaur.ops.sparse_farfield_op import PtToPtDirectFarfieldOp, \ PtToPtFMMFarfieldOp, TriToTriDirectFarfieldOp from tectosaur.ops.dense_integral_op import DenseIntegralOp from tectosaur.ops.mass_op import MassOp from tectosaur.ops.composite_op import CompositeOp from tectosaur.ops.sum_op import SumOp from tectosaur.util.timer import Timer from okada import Okada, build_constraints, abs_fault_slip import solve from tectosaur.util.logging import setup_root_logger logger = setup_root_logger(__name__) def build_and_solve_T(data): allow_nearfield = True near_threshold = 2.0 if not allow_nearfield: if any_nearfield( data.all_mesh[0], data.all_mesh[1], data.surf_tri_idxs, data.fault_tri_idxs, near_threshold ): raise Exception("nearfield interactions not allowed!") else: print('good. all interactions are farfield.') cs = build_constraints( data.surface_tris, data.fault_tris, data.all_mesh[0], abs_fault_slip ) op_type = SparseIntegralOp # op_type = DenseIntegralOp T_op = SparseIntegralOp( 6, 2, 5, near_threshold, 'elasticT3', data.k_params, data.all_mesh[0], data.all_mesh[1], data.float_type, farfield_op_type = PtToPtFMMFarfieldOp(150, 3.0, 450), obs_subset = data.surf_tri_idxs, src_subset = data.surf_tri_idxs, ) mass_op = MassOp(3, data.all_mesh[0], data.all_mesh[1]) T_op_fault_to_surf = SparseIntegralOp( 6, 2, 5, near_threshold, 'elasticT3', data.k_params, data.all_mesh[0], data.all_mesh[1], data.float_type, farfield_op_type = PtToPtDirectFarfieldOp, obs_subset = data.surf_tri_idxs, src_subset = data.fault_tri_idxs, ) def replace_K_name(*args): args = list(args) args[1] = 'elasticRT3' return TriToTriDirectFarfieldOp(*args) # args[1] = 'elasticT3' # return PtToPtDirectFarfieldOp(*args) # return TriToTriDirectFarfieldOp(*args) T_op_fault_to_surf2 = DenseIntegralOp( 6, 2, 10, near_threshold, 'elasticRT3', data.k_params, data.all_mesh[0], data.all_mesh[1], data.float_type, obs_subset = data.surf_tri_idxs, src_subset = data.fault_tri_idxs, ) # T_op_fault_to_surf2 = SparseIntegralOp( # 6, 2, 5, near_threshold, # 'elasticRT3', data.k_params, data.all_mesh[0], data.all_mesh[1], # data.float_type, # farfield_op_type = replace_K_name, # obs_subset = data.surf_tri_idxs, # src_subset = data.fault_tri_idxs, # ) # T_op_fault_to_surf2 = TriToTriDirectFarfieldOp( # 2, 'elasticRT3', data.k_params, data.all_mesh[0], data.all_mesh[1], # data.float_type, obs_subset = data.surf_tri_idxs, # src_subset = data.fault_tri_idxs # ) slip = get_fault_slip(data.all_mesh[0], data.fault_tris).reshape(-1) A = T_op_fault_to_surf.dot(slip).reshape((-1,3,3)) B = T_op_fault_to_surf2.dot(slip).reshape((-1,3,3)) ratio = A / B import ipdb ipdb.set_trace() iop = CompositeOp( (mass_op, 0, 0), (T_op, 0, 0), (T_op_fault_to_surf, 0, data.n_surf_dofs), shape = (data.n_dofs, data.n_dofs) ) iop2 = CompositeOp( (mass_op, 0, 0), (T_op, 0, 0), (T_op_fault_to_surf2, 0, data.n_surf_dofs), shape = (data.n_dofs, data.n_dofs) ) return ( solve.iterative_solve(iop, cs, tol = 1e-6), solve.iterative_solve(iop2, cs, tol = 1e-6) ) def main(): obj = Okada(21, 10, top_depth = -0.2) soln, soln2 = obj.run(build_and_solve = build_and_solve_T) # okada_soln = obj.okada_exact() obj.xsec_plot([soln, soln2], okada_soln = None) if __name__ == "__main__": main()
mit
apache/spark
python/pyspark/pandas/tests/test_series_string.py
15
13727
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pandas as pd import numpy as np import re from pyspark import pandas as ps from pyspark.testing.pandasutils import PandasOnSparkTestCase from pyspark.testing.sqlutils import SQLTestUtils class SeriesStringTest(PandasOnSparkTestCase, SQLTestUtils): @property def pser(self): return pd.Series( [ "apples", "Bananas", "carrots", "1", "100", "", "\nleading-whitespace", "trailing-Whitespace \t", None, np.NaN, ] ) def check_func(self, func, almost=False): self.check_func_on_series(func, self.pser, almost=almost) def check_func_on_series(self, func, pser, almost=False): self.assert_eq(func(ps.from_pandas(pser)), func(pser), almost=almost) def test_string_add_str_num(self): pdf = pd.DataFrame(dict(col1=["a"], col2=[1])) psdf = ps.from_pandas(pdf) with self.assertRaises(TypeError): psdf["col1"] + psdf["col2"] def test_string_add_assign(self): pdf = pd.DataFrame(dict(col1=["a", "b", "c"], col2=["1", "2", "3"])) psdf = ps.from_pandas(pdf) psdf["col1"] += psdf["col2"] pdf["col1"] += pdf["col2"] self.assert_eq(psdf["col1"], pdf["col1"]) def test_string_add_str_str(self): pdf = pd.DataFrame(dict(col1=["a", "b", "c"], col2=["1", "2", "3"])) psdf = ps.from_pandas(pdf) # TODO: Fix the Series names self.assert_eq(psdf["col1"] + psdf["col2"], pdf["col1"] + pdf["col2"]) self.assert_eq(psdf["col2"] + psdf["col1"], pdf["col2"] + pdf["col1"]) def test_string_add_str_lit(self): pdf = pd.DataFrame(dict(col1=["a", "b", "c"])) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["col1"] + "_lit", pdf["col1"] + "_lit") self.assert_eq("_lit" + psdf["col1"], "_lit" + pdf["col1"]) def test_string_capitalize(self): self.check_func(lambda x: x.str.capitalize()) def test_string_title(self): self.check_func(lambda x: x.str.title()) def test_string_lower(self): self.check_func(lambda x: x.str.lower()) def test_string_upper(self): self.check_func(lambda x: x.str.upper()) def test_string_swapcase(self): self.check_func(lambda x: x.str.swapcase()) def test_string_startswith(self): pattern = "car" self.check_func(lambda x: x.str.startswith(pattern)) self.check_func(lambda x: x.str.startswith(pattern, na=False)) def test_string_endswith(self): pattern = "s" self.check_func(lambda x: x.str.endswith(pattern)) self.check_func(lambda x: x.str.endswith(pattern, na=False)) def test_string_strip(self): self.check_func(lambda x: x.str.strip()) self.check_func(lambda x: x.str.strip("es\t")) self.check_func(lambda x: x.str.strip("1")) def test_string_lstrip(self): self.check_func(lambda x: x.str.lstrip()) self.check_func(lambda x: x.str.lstrip("\n1le")) self.check_func(lambda x: x.str.lstrip("s")) def test_string_rstrip(self): self.check_func(lambda x: x.str.rstrip()) self.check_func(lambda x: x.str.rstrip("\t ec")) self.check_func(lambda x: x.str.rstrip("0")) def test_string_get(self): self.check_func(lambda x: x.str.get(6)) self.check_func(lambda x: x.str.get(-1)) def test_string_isalnum(self): self.check_func(lambda x: x.str.isalnum()) def test_string_isalpha(self): self.check_func(lambda x: x.str.isalpha()) def test_string_isdigit(self): self.check_func(lambda x: x.str.isdigit()) def test_string_isspace(self): self.check_func(lambda x: x.str.isspace()) def test_string_islower(self): self.check_func(lambda x: x.str.islower()) def test_string_isupper(self): self.check_func(lambda x: x.str.isupper()) def test_string_istitle(self): self.check_func(lambda x: x.str.istitle()) def test_string_isnumeric(self): self.check_func(lambda x: x.str.isnumeric()) def test_string_isdecimal(self): self.check_func(lambda x: x.str.isdecimal()) def test_string_cat(self): psser = ps.from_pandas(self.pser) with self.assertRaises(NotImplementedError): psser.str.cat() def test_string_center(self): self.check_func(lambda x: x.str.center(0)) self.check_func(lambda x: x.str.center(10)) self.check_func(lambda x: x.str.center(10, "x")) def test_string_contains(self): self.check_func(lambda x: x.str.contains("le", regex=False)) self.check_func(lambda x: x.str.contains("White", case=True, regex=False)) self.check_func(lambda x: x.str.contains("apples|carrots", regex=True)) self.check_func(lambda x: x.str.contains("BANANAS", flags=re.IGNORECASE, na=False)) def test_string_count(self): self.check_func(lambda x: x.str.count("wh|Wh")) self.check_func(lambda x: x.str.count("WH", flags=re.IGNORECASE)) def test_string_decode(self): psser = ps.from_pandas(self.pser) with self.assertRaises(NotImplementedError): psser.str.decode("utf-8") def test_string_encode(self): psser = ps.from_pandas(self.pser) with self.assertRaises(NotImplementedError): psser.str.encode("utf-8") def test_string_extract(self): psser = ps.from_pandas(self.pser) with self.assertRaises(NotImplementedError): psser.str.extract("pat") def test_string_extractall(self): psser = ps.from_pandas(self.pser) with self.assertRaises(NotImplementedError): psser.str.extractall("pat") def test_string_find(self): self.check_func(lambda x: x.str.find("a")) self.check_func(lambda x: x.str.find("a", start=3)) self.check_func(lambda x: x.str.find("a", start=0, end=1)) def test_string_findall(self): self.check_func_on_series(lambda x: x.str.findall("es|as").apply(str), self.pser[:-1]) self.check_func_on_series( lambda x: x.str.findall("wh.*", flags=re.IGNORECASE).apply(str), self.pser[:-1] ) def test_string_index(self): pser = pd.Series(["tea", "eat"]) self.check_func_on_series(lambda x: x.str.index("ea"), pser) with self.assertRaises(Exception): self.check_func_on_series(lambda x: x.str.index("ea", start=0, end=2), pser) with self.assertRaises(Exception): self.check_func(lambda x: x.str.index("not-found")) def test_string_join(self): pser = pd.Series([["a", "b", "c"], ["xx", "yy", "zz"]]) self.check_func_on_series(lambda x: x.str.join("-"), pser) self.check_func(lambda x: x.str.join("-")) def test_string_len(self): self.check_func(lambda x: x.str.len()) pser = pd.Series([["a", "b", "c"], ["xx"], []]) self.check_func_on_series(lambda x: x.str.len(), pser) def test_string_ljust(self): self.check_func(lambda x: x.str.ljust(0)) self.check_func(lambda x: x.str.ljust(10)) self.check_func(lambda x: x.str.ljust(30, "x")) def test_string_match(self): self.check_func(lambda x: x.str.match("in")) self.check_func(lambda x: x.str.match("apples|carrots", na=False)) self.check_func(lambda x: x.str.match("White", case=True)) self.check_func(lambda x: x.str.match("BANANAS", flags=re.IGNORECASE)) def test_string_normalize(self): self.check_func(lambda x: x.str.normalize("NFC")) self.check_func(lambda x: x.str.normalize("NFKD")) def test_string_pad(self): self.check_func(lambda x: x.str.pad(10)) self.check_func(lambda x: x.str.pad(10, side="both")) self.check_func(lambda x: x.str.pad(10, side="right", fillchar="-")) def test_string_partition(self): with self.assertRaises(NotImplementedError): self.check_func(lambda x: x.str.partition()) def test_string_repeat(self): self.check_func(lambda x: x.str.repeat(repeats=3)) with self.assertRaises(TypeError): self.check_func(lambda x: x.str.repeat(repeats=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])) def test_string_replace(self): self.check_func(lambda x: x.str.replace("a.", "xx", regex=True)) self.check_func(lambda x: x.str.replace("a.", "xx", regex=False)) self.check_func(lambda x: x.str.replace("ing", "0", flags=re.IGNORECASE)) # reverse every lowercase word repl = lambda m: m.group(0)[::-1] self.check_func(lambda x: x.str.replace(r"[a-z]+", repl)) # compiled regex with flags regex_pat = re.compile(r"WHITESPACE", flags=re.IGNORECASE) self.check_func(lambda x: x.str.replace(regex_pat, "---")) def test_string_rfind(self): self.check_func(lambda x: x.str.rfind("a")) self.check_func(lambda x: x.str.rfind("a", start=3)) self.check_func(lambda x: x.str.rfind("a", start=0, end=1)) def test_string_rindex(self): pser = pd.Series(["teatea", "eateat"]) self.check_func_on_series(lambda x: x.str.rindex("ea"), pser) with self.assertRaises(Exception): self.check_func_on_series(lambda x: x.str.rindex("ea", start=0, end=2), pser) with self.assertRaises(Exception): self.check_func(lambda x: x.str.rindex("not-found")) def test_string_rjust(self): self.check_func(lambda x: x.str.rjust(0)) self.check_func(lambda x: x.str.rjust(10)) self.check_func(lambda x: x.str.rjust(30, "x")) def test_string_rpartition(self): with self.assertRaises(NotImplementedError): self.check_func(lambda x: x.str.rpartition()) def test_string_slice(self): self.check_func(lambda x: x.str.slice(start=1)) self.check_func(lambda x: x.str.slice(stop=3)) self.check_func(lambda x: x.str.slice(step=2)) self.check_func(lambda x: x.str.slice(start=0, stop=5, step=3)) def test_string_slice_replace(self): self.check_func(lambda x: x.str.slice_replace(1, repl="X")) self.check_func(lambda x: x.str.slice_replace(stop=2, repl="X")) self.check_func(lambda x: x.str.slice_replace(start=1, stop=3, repl="X")) def test_string_split(self): self.check_func_on_series(lambda x: repr(x.str.split()), self.pser[:-1]) self.check_func_on_series(lambda x: repr(x.str.split(r"p*")), self.pser[:-1]) pser = pd.Series(["This is a sentence.", "This-is-a-long-word."]) self.check_func_on_series(lambda x: repr(x.str.split(n=2)), pser) self.check_func_on_series(lambda x: repr(x.str.split(pat="-", n=2)), pser) self.check_func_on_series(lambda x: x.str.split(n=2, expand=True), pser, almost=True) with self.assertRaises(NotImplementedError): self.check_func(lambda x: x.str.split(expand=True)) def test_string_rsplit(self): self.check_func_on_series(lambda x: repr(x.str.rsplit()), self.pser[:-1]) self.check_func_on_series(lambda x: repr(x.str.rsplit(r"p*")), self.pser[:-1]) pser = pd.Series(["This is a sentence.", "This-is-a-long-word."]) self.check_func_on_series(lambda x: repr(x.str.rsplit(n=2)), pser) self.check_func_on_series(lambda x: repr(x.str.rsplit(pat="-", n=2)), pser) self.check_func_on_series(lambda x: x.str.rsplit(n=2, expand=True), pser, almost=True) with self.assertRaises(NotImplementedError): self.check_func(lambda x: x.str.rsplit(expand=True)) def test_string_translate(self): m = str.maketrans({"a": "X", "e": "Y", "i": None}) self.check_func(lambda x: x.str.translate(m)) def test_string_wrap(self): self.check_func(lambda x: x.str.wrap(5)) self.check_func(lambda x: x.str.wrap(5, expand_tabs=False)) self.check_func(lambda x: x.str.wrap(5, replace_whitespace=False)) self.check_func(lambda x: x.str.wrap(5, drop_whitespace=False)) self.check_func(lambda x: x.str.wrap(5, break_long_words=False)) self.check_func(lambda x: x.str.wrap(5, break_on_hyphens=False)) def test_string_zfill(self): self.check_func(lambda x: x.str.zfill(10)) def test_string_get_dummies(self): with self.assertRaises(NotImplementedError): self.check_func(lambda x: x.str.get_dummies()) if __name__ == "__main__": import unittest from pyspark.pandas.tests.test_series_string import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
mackelab/autohmm
autohmm/utils.py
2
4939
from __future__ import division, print_function, absolute_import import time import sys from collections import deque import numpy as np class ConvergenceMonitor(object): """Monitors and reports convergence to :data:`sys.stderr`. Parameters ---------- tol : double Convergence threshold. EM has converged either if the maximum number of iterations is reached or the log probability improvement between the two consecutive iterations is less than threshold. n_iter : int Maximum number of iterations to perform. verbose : bool If ``True`` then per-iteration convergence reports are printed, otherwise the monitor is mute. Attributes ---------- history : deque The log probability of the data for the last two training iterations. If the values are not strictly increasing, the model did not converge. iter : int Number of iterations performed while training the model. Note ---- The convergence monitor is adapted from hmmlearn.base. """ fmt = "{iter:>10d} {logprob:>16.4f} {delta:>+16.4f}" def __init__(self, tol, n_iter, n_iter_min, verbose): self.tol = tol self.n_iter = n_iter self.n_iter_min = n_iter_min self.verbose = verbose self.history = deque(maxlen=2) self.iter = 1 def __repr__(self): class_name = self.__class__.__name__ params = dict(vars(self), history=list(self.history)) return "{0}({1})".format( class_name, _pprint(params, offset=len(class_name))) def report(self, logprob): """Reports the log probability of the next iteration.""" if self.history and self.verbose: delta = logprob - self.history[-1] message = self.fmt.format( iter=self.iter, logprob=logprob, delta=delta) print(message, file=sys.stderr) self.history.append(logprob) self.iter += 1 @property def converged(self): """``True`` if the EM-algorithm converged and ``False`` otherwise.""" has_converged = False if self.iter < self.n_iter_min: return has_converged if len(self.history) == 2: diff = self.history[1] - self.history[0] absdiff = abs(diff) if diff < 0: if self.verbose: print('Warning: LL did decrease', file=sys.stderr) has_converged = True if absdiff < self.tol: if self.verbose: print('Converged, |difference| is: {}'.format(absdiff)) has_converged = True if self.iter == self.n_iter: if self.verbose: print('Warning: Maximum iterations reached', file=sys.stderr) has_converged = True return has_converged class Timer(object): """Helper class to time performance""" def __init__(self, name=None): self.name = name def __enter__(self): self.tenter = time.time() def __exit__(self, type, value, traceback): if self.name: print('{}: '.format(self.name)) print('Elapsed: {}'.format((time.time() - self.tenter))) def gamma_prior_params(mean_gamma_prior, var_gamma_prior): """Returns ``weight`` and ``prior`` for a gamma prior with mean and var""" # mean: alpha / beta, var: alpha / beta**2 beta = mean_gamma_prior / var_gamma_prior alpha = mean_gamma_prior * beta weight = alpha prior = np.array((beta,beta)) return weight, prior def sequence_to_rects(seq=None, y=-5, height=10, colors = ['0.2','0.4', '0.6', '0.7']): """Transforms a state sequence to rects for plotting with matplotlib. Parameters ---------- seq : array state sequence y : int lower left corner height: int height colors : array array of label colors Returns ------- rects : dict .xy : tuple (x,y) tuple specifying the lower left .width: int width of rect .height : int height of rect .label : int state label .color : string color string """ y_ = y height_ = height label_ = seq[0] x_ = -0.5 width_ = 1.0 rects = [] for s in range(1,len(seq)): if seq[s] != seq[s-1] or s == len(seq)-1: rects.append({'xy': (x_, y_), 'width': width_, 'height': height_, 'label': int(label_), 'color': colors[int(label_)]}) x_ = s-0.5 width_ = 1.0 label_ = seq[s] else: if s == len(seq)-2: width_ += 2.0 else: width_ += 1.0 return rects
bsd-2-clause
joelgrus/data-science-from-scratch
first-edition/code/gradient_descent.py
53
5895
from __future__ import division from collections import Counter from linear_algebra import distance, vector_subtract, scalar_multiply import math, random def sum_of_squares(v): """computes the sum of squared elements in v""" return sum(v_i ** 2 for v_i in v) def difference_quotient(f, x, h): return (f(x + h) - f(x)) / h def plot_estimated_derivative(): def square(x): return x * x def derivative(x): return 2 * x derivative_estimate = lambda x: difference_quotient(square, x, h=0.00001) # plot to show they're basically the same import matplotlib.pyplot as plt x = range(-10,10) plt.plot(x, map(derivative, x), 'rx') # red x plt.plot(x, map(derivative_estimate, x), 'b+') # blue + plt.show() # purple *, hopefully def partial_difference_quotient(f, v, i, h): # add h to just the i-th element of v w = [v_j + (h if j == i else 0) for j, v_j in enumerate(v)] return (f(w) - f(v)) / h def estimate_gradient(f, v, h=0.00001): return [partial_difference_quotient(f, v, i, h) for i, _ in enumerate(v)] def step(v, direction, step_size): """move step_size in the direction from v""" return [v_i + step_size * direction_i for v_i, direction_i in zip(v, direction)] def sum_of_squares_gradient(v): return [2 * v_i for v_i in v] def safe(f): """define a new function that wraps f and return it""" def safe_f(*args, **kwargs): try: return f(*args, **kwargs) except: return float('inf') # this means "infinity" in Python return safe_f # # # minimize / maximize batch # # def minimize_batch(target_fn, gradient_fn, theta_0, tolerance=0.000001): """use gradient descent to find theta that minimizes target function""" step_sizes = [100, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001] theta = theta_0 # set theta to initial value target_fn = safe(target_fn) # safe version of target_fn value = target_fn(theta) # value we're minimizing while True: gradient = gradient_fn(theta) next_thetas = [step(theta, gradient, -step_size) for step_size in step_sizes] # choose the one that minimizes the error function next_theta = min(next_thetas, key=target_fn) next_value = target_fn(next_theta) # stop if we're "converging" if abs(value - next_value) < tolerance: return theta else: theta, value = next_theta, next_value def negate(f): """return a function that for any input x returns -f(x)""" return lambda *args, **kwargs: -f(*args, **kwargs) def negate_all(f): """the same when f returns a list of numbers""" return lambda *args, **kwargs: [-y for y in f(*args, **kwargs)] def maximize_batch(target_fn, gradient_fn, theta_0, tolerance=0.000001): return minimize_batch(negate(target_fn), negate_all(gradient_fn), theta_0, tolerance) # # minimize / maximize stochastic # def in_random_order(data): """generator that returns the elements of data in random order""" indexes = [i for i, _ in enumerate(data)] # create a list of indexes random.shuffle(indexes) # shuffle them for i in indexes: # return the data in that order yield data[i] def minimize_stochastic(target_fn, gradient_fn, x, y, theta_0, alpha_0=0.01): data = zip(x, y) theta = theta_0 # initial guess alpha = alpha_0 # initial step size min_theta, min_value = None, float("inf") # the minimum so far iterations_with_no_improvement = 0 # if we ever go 100 iterations with no improvement, stop while iterations_with_no_improvement < 100: value = sum( target_fn(x_i, y_i, theta) for x_i, y_i in data ) if value < min_value: # if we've found a new minimum, remember it # and go back to the original step size min_theta, min_value = theta, value iterations_with_no_improvement = 0 alpha = alpha_0 else: # otherwise we're not improving, so try shrinking the step size iterations_with_no_improvement += 1 alpha *= 0.9 # and take a gradient step for each of the data points for x_i, y_i in in_random_order(data): gradient_i = gradient_fn(x_i, y_i, theta) theta = vector_subtract(theta, scalar_multiply(alpha, gradient_i)) return min_theta def maximize_stochastic(target_fn, gradient_fn, x, y, theta_0, alpha_0=0.01): return minimize_stochastic(negate(target_fn), negate_all(gradient_fn), x, y, theta_0, alpha_0) if __name__ == "__main__": print "using the gradient" v = [random.randint(-10,10) for i in range(3)] tolerance = 0.0000001 while True: #print v, sum_of_squares(v) gradient = sum_of_squares_gradient(v) # compute the gradient at v next_v = step(v, gradient, -0.01) # take a negative gradient step if distance(next_v, v) < tolerance: # stop if we're converging break v = next_v # continue if we're not print "minimum v", v print "minimum value", sum_of_squares(v) print print "using minimize_batch" v = [random.randint(-10,10) for i in range(3)] v = minimize_batch(sum_of_squares, sum_of_squares_gradient, v) print "minimum v", v print "minimum value", sum_of_squares(v)
mit
optimizers/nlpy
nlpy/optimize/solvers/nlpy_regqp.py
3
6275
#!/usr/bin/env python from nlpy import __version__ from nlpy.model import SlackFramework from nlpy.optimize.solvers.cqp import RegQPInteriorPointSolver from nlpy.optimize.solvers.cqp import RegQPInteriorPointSolver3x3 from nlpy.tools.norms import norm2 from nlpy.tools.timing import cputime from optparse import OptionParser import numpy import os import sys import logging # Create root logger. log = logging.getLogger('cqp') log.setLevel(logging.INFO) fmt = logging.Formatter('%(name)-10s %(levelname)-8s %(message)s') hndlr = logging.StreamHandler(sys.stdout) hndlr.setFormatter(fmt) log.addHandler(hndlr) # Configure the solver logger. sublogger = logging.getLogger('cqp.solver') sublogger.setLevel(logging.INFO) sublogger.addHandler(hndlr) sublogger.propagate = False usage_msg = """%prog [options] problem1 [... problemN] where problem1 through problemN represent convex quadratic programs.""" # Define formats for output table. hdrfmt = '%-15s %5s %15s %7s %7s %7s %6s %6s %4s' hdr = hdrfmt % ('Name', 'Iter', 'Objective', 'pResid', 'dResid', 'Gap', 'Setup', 'Solve', 'Stat') fmt = '%-15s %5d %15.8e %7.1e %7.1e %7.1e %6.2f %6.2f %4s' # Define allowed command-line options parser = OptionParser(usage=usage_msg, version='%prog version ' + __version__) # File name options parser.add_option("-i", "--iter", action="store", type="int", default=None, dest="maxiter", help="Specify maximum number of iterations") parser.add_option("-t", "--tol", action="store", type="float", default=None, dest="tol", help="Specify relative stopping tolerance") parser.add_option("-p", "--regpr", action="store", type="float", default=None, dest="regpr", help="Specify initial primal regularization parameter") parser.add_option("-d", "--regdu", action="store", type="float", default=None, dest="regdu", help="Specify initial dual regularization parameter") parser.add_option("-S", "--no-scale", action="store_true", dest="no_scale", default=False, help="Turn off problem scaling") parser.add_option("-3", "--3x3", action="store_true", dest="sys3x3", default=False, help="Use 3x3 block linear system") parser.add_option("-l", "--long-step", action="store_true", default=False, dest="longstep", help="Use long-step method") parser.add_option("-f", "--assume-feasible", action="store_true", default=False, dest="assume_feasible", help="Deactivate infeasibility check") parser.add_option("-V", "--verbose", action="store_true", default=False, dest="verbose", help="Set verbose mode") # Parse command-line options (options, args) = parser.parse_args() # Decide which class to instantiate. if options.sys3x3: print 'Brave man! Using 3x3 block system!' Solver = RegQPInteriorPointSolver3x3 else: Solver = RegQPInteriorPointSolver opts_init = {} if options.regpr is not None: opts_init['regpr'] = options.regpr if options.regdu is not None: opts_init['regdu'] = options.regdu opts_solve = {} if options.maxiter is not None: opts_solve['itermax'] = options.maxiter if options.tol is not None: opts_solve['tolerance'] = options.tol # Set printing standards for arrays. numpy.set_printoptions(precision=3, linewidth=70, threshold=10, edgeitems=2) multiple_problems = len(args) > 1 if not options.verbose: log.info(hdr) log.info('-'*len(hdr)) for probname in args: t_setup = cputime() qp = SlackFramework(probname) t_setup = cputime() - t_setup # isqp() should be implemented in the near future. #if not qp.isqp(): # log.info('Problem %s is not a quadratic program\n' % probname) # qp.close() # continue # Pass problem to RegQP. regqp = Solver(qp, scale=not options.no_scale, verbose=options.verbose, **opts_init) regqp.solve(PredictorCorrector=not options.longstep, check_infeasible=not options.assume_feasible, **opts_solve) # Display summary line. probname=os.path.basename(probname) if probname[-3:] == '.nl': probname = probname[:-3] if not options.verbose: log.info(fmt % (probname, regqp.iter, regqp.obj_value, regqp.pResid, regqp.dResid, regqp.rgap, t_setup, regqp.solve_time, regqp.short_status)) if regqp.short_status == 'degn': log.info(' F') # Could not regularize sufficiently. qp.close() log.info('-'*len(hdr)) if not multiple_problems: x = regqp.x[:qp.original_n] log.info('Final x: %s, |x| = %7.1e' % (repr(x),norm2(x))) log.info('Final y: %s, |y| = %7.1e' % (repr(regqp.y),norm2(regqp.y))) log.info('Final z: %s, |z| = %7.1e' % (repr(regqp.z),norm2(regqp.z))) log.info(regqp.status) log.info('#Iterations: %-d' % regqp.iter) log.info('RelResidual: %7.1e' % regqp.kktResid) log.info('Final cost : %21.15e' % regqp.obj_value) log.info('Setup time : %6.2fs' % t_setup) log.info('Solve time : %6.2fs' % regqp.solve_time) # Plot linear system statistics. import matplotlib.pyplot as plt fig = plt.figure() ax = fig.gca() ax.semilogy(regqp.lres_history) ax.set_title('LS Relative Residual') fig2 = plt.figure() ax2 = fig2.gca() ax2.semilogy(regqp.derr_history) ax2.set_title('Direct Error Estimate') fig3 = plt.figure() ax3 = fig3.gca() ax3.semilogy([cond[0] for cond in regqp.cond_history], label='K1') ax3.semilogy([cond[1] for cond in regqp.cond_history], label='K2') ax3.legend(loc='upper left') ax3.set_title('Condition number estimates of Arioli, Demmel, Duff') fig4 = plt.figure() ax4 = fig4.gca() ax4.semilogy([berr[0] for berr in regqp.berr_history], label='bkwrd err1') ax4.semilogy([berr[1] for berr in regqp.berr_history], label='bkwrd err2') ax4.legend(loc='upper left') ax4.set_title('Backward Error Estimates of Arioli, Demmel, Duff') fig5 = plt.figure() ax5 = fig5.gca() ax5.semilogy([nrm[0] for nrm in regqp.nrms_history], label='Matrix norm') ax5.semilogy([nrm[1] for nrm in regqp.nrms_history], label='Solution norm') ax5.legend(loc='upper left') ax5.set_title('Infinity Norm Estimates') plt.show()
gpl-3.0
vansky/meg_playground
scripts/meg_frequency_scanner.py
1
20480
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <markdowncell> # Imports # ======= # <codecell> #disable autosave functionality; #This script is taxing enough, and autosaving tends to push it over the edge # plus, autosaving seems to zero out the file before restoring it from the backup # this means an autosave causing a crash will actually delete the file rather than saving it!!! #%autosave 0 # <codecell> #basic imports #%pylab inline import time import pickle import logging as L L.basicConfig(level=L.ERROR) # INFO) import time import numpy import scipy.stats import os #import pylab import sklearn import scipy import sklearn.linear_model import sys import re #pylab.rcParams['figure.figsize'] = 10,10 #change the default image size for this session #pylab.ion() # <codecell> #custom imports #%cd ../scripts # brian's prototype routines from protoMEEGutils import * import protoSpectralWinFFTMapper as specfft # <markdowncell> # Definitions # =========== # <codecell> # OUTLINE, 19th Nov 2014 # # script for initial "signs of life" analysis of single MEG # # load in a meg file in EEGlab format # load in the word properties # choose a "languagey" channel (left-temporal, clean, with expected ERF patterns) # plot some ERFs (e.g. all nouns vs all preps) as sanity check # do the earlier analysis of R^2 and betas due to lexical access vars, up to X words back # hand over to Marten, so he can do the analysis based on syntactic embedding... #### SUBROUTINES #### # plot the time-scale for ERFs and other epoch figures #def commonPlotProps(): #zeroSample = (abs(epochStart)/float(epochLength)*epochNumTimepoints) #pylab.plot((0,epochNumTimepoints),(0,0),'k--') #pylab.ylim((-2.5e-13,2.5e-13)) #((-5e-14,5e-14)) # better way just to get the ones it choose itself? #pylab.plot((zeroSample,zeroSample),(0,0.01),'k--') # pylab.xticks(numpy.linspace(0,epochNumTimepoints,7),epochStart+(numpy.linspace(0,epochNumTimepoints,7)/samplingRate)) # pylab.xlabel('time (s) relative to auditory onset') #+refEvent) # pylab.xlim((62,313)) # pylab.show() # pylab.axhline(0, color='k', linestyle='--') # pylab.axvline(125, color='k', linestyle='--') # adjust R2 down for the artificial inflation you get by increasing the number of explanatory features def adjustR2(R2, numFeatures, numSamples): #1/0 #return R2 return R2-(1-R2)*(float(numFeatures)/(numSamples-numFeatures-1)) # normalise (z-scale) the scale of variables (for the explanatory ones, so the magnitude of beta values are comparably interpretable) def mynormalise(A): A = scipy.stats.zscore(A) A[numpy.isnan(A)] = 0 return A # <markdowncell> # Preprocessing # ============= # <markdowncell> # Input Params # ---------- # <codecell> #change to the data directory to load in the data #%cd ../MEG_data #*# MARTY #*# choose a file - I found participant V to be pretty good, and 0.01 to 50Hz filter is pretty conservative #*# (megFileTag1, megFile1) = ('V_TSSS_0.01-50Hz_@125', '../MEG_data/v_hod_allRuns_tsss_audiobookPrepro_stPad1_lp50_resamp125_frac10ICAed.set')#_hp0.010000.set') (megFileTag2, megFile2) = ('A_TSSS_0.01-50Hz_@125', '../MEG_data/aud_hofd_a_allRuns_tsss_audiobookPrepro_stPad1_lp50_resamp125_frac10ICAed_hp0.010000.set') (megFileTag3, megFile3) = ('C_TSSS_0.01-50Hz_@125', '../MEG_data/aud_hofd_c_allRuns_tsss_audiobookPrepro_stPad1_lp50_resamp125_frac10ICAed_hp0.010000.set') ## put your on properties in here, as a .tab file of similar format (tab delimited, and field names in a first comment line - should be easy to do in excel...) #to get the V5.tab: # python ../scripts/buildtab.py hod_JoeTimes_LoadsaFeaturesV3.tab hod.wsj02to21-comparativized-gcg15-1671-4sm.fullberk.parsed.gcgbadwords > hod_JoeTimes_LoadsaFeaturesV4.tab # python ../scripts/addsentid.py hod_JoeTimes_LoadsaFeaturesV4.tab > hod_JoeTimes_LoadsaFeaturesV5.tab tokenPropsFile = '../MEG_data/hod_JoeTimes_LoadsaFeaturesV5.tab' # WHICH CHANNELS TO LOOK AT AS ERFS #*# MARTY #*# decide which channels to use - channels of interest are the first few you can look at in an ERF, and then from them you can choose one at a time with "channelToAnalyse" for the actual regression analysis #*# #channelLabels = ['MEG0111', 'MEG0121', 'MEG0131', 'MEG0211', 'MEG0212', 'MEG0213', 'MEG0341'] #?# this way of doing things was a slightly clumsy work-around, cos I didn't have enough memory to epoch all 306 channels at one time # LOAD WORD PROPS #*# MARTY #*# change dtype to suit the files in your .tab file #*# tokenProps = scipy.genfromtxt(tokenPropsFile, delimiter='\t',names=True, dtype="i4,f4,f4,S50,S50,i2,i2,i2,S10,f4,f4,f4,f4,f4,f4,f4,f4,f4,f4,f4,i1,>i4") # ... and temporarily save as cpickle archive to satisfy the way I programmed the convenience function loadBookMEGWithAudio (it expects to find the same info in a C-pickle file, and so doesn't need to know about number and type of fields) tokenPropsPickle = tokenPropsFile+'.cpk' cPickle.dump(tokenProps, open(tokenPropsPickle, 'wb')) # <markdowncell> # Trial Params # ------------ # <codecell> triggersOfInterest=['s%d' % i for i in range(1,10)] refEvent = 'onTime' #,'offTime'] #*# MARTY #*# guess an epoch of -0.5 to +1s should be enough #*# epochStart = -1; # stimulus ref event epochEnd = +2; # epochLength = epochEnd-epochStart; baseline = False #[-1,0] # <markdowncell> # Epoch Data # ---------- # <codecell> # Get the goods on subject 1 (contSignalData1, metaData1, trackTrials, tokenPropsOrig, audioSignal, samplingRate, numChannels) = loadBookMEGWithAudio(megFile1, tokenPropsPickle, triggersOfInterest, epochEnd, epochStart, icaComps=False) # Get the goods on subject 2 (contSignalData2, metaData2, trackTrials, tokenPropsOrig, audioSignal, samplingRate, numChannels) = loadBookMEGWithAudio(megFile2, tokenPropsPickle, triggersOfInterest, epochEnd, epochStart, icaComps=False) # Get the goods on subject 3 (contSignalData3, metaData3, trackTrials, tokenPropsOrig, audioSignal, samplingRate, numChannels) = loadBookMEGWithAudio(megFile3, tokenPropsPickle, triggersOfInterest, epochEnd, epochStart, icaComps=False) tokenProps = numpy.concatenate((tokenPropsOrig,tokenPropsOrig,tokenPropsOrig),axis=0) #channelsOfInterest = [i for i in range(len(metaData1.chanlocs)) if metaData1.chanlocs[i].labels in channelLabels] # REDUCE TRIALS TO JUST THOSE THAT CONTAIN A REAL WORD (NOT PUNCTUATION, SPACES, ...) wordTrialsBool = numpy.array([p != '' for p in tokenProps['stanfPOS']]) #print(wordTrialsBool[:10]) # REDUCE TRIALS TO JUST THOSE THAT HAVE A DECENT DEPTH ESTIMATE parsedTrialsBool = numpy.array([d != -1 for d in tokenProps['syndepth']]) #print(parsedTrialsBool[:10]) # <codecell> # Set up the dev and test sets devsizerecip = 3 # the reciprocal of the dev size, so devsizerecip = 3 means the dev set is 1/3 and the test set is 2/3 devitems = numpy.arange(1,max(tokenProps['sentid']),devsizerecip) devTrialsBool = numpy.array([s in devitems for s in tokenProps['sentid']]) testTrialsBool = numpy.array([s not in devitems for s in tokenProps['sentid']]) inDataset = devTrialsBool freqsource = None # determines how the frequency bands are defined #Can be 'weiss', 'wiki', or an interpolation of the two avefitresults = {} maxfitresults = {} for channelix in range(metaData1.chanlocs.shape[0]-1): #minus 1 because the last 'channel' is MISC print 'Compiling data from channel:',channelix #need to reshape because severalMagChannels needs to be channel x samples, and 1-D shapes are flattened by numpy severalMagChannels1 = contSignalData1[channelix,:].reshape((1,-1)) ###### ##### # sys.stderr.write('metaData1.shape: '+str(metaData1.chanlocs.shape[0])+'\n') # sys.stderr.write('contSignalData1.shape: '+str(contSignalData1.shape)+'\n') # sys.stderr.write('severalMagChannels1.shape: '+str(severalMagChannels1.shape)+'\n') # sys.stderr.write(str([metaData1.chanlocs[i].labels for i in range(len(metaData1.chanlocs))])+'\n') # severalMagChannels1 = contSignalData1[channelix,:].reshape((1,-1)) # sys.stderr.write('contSignalData1.shape: '+str(contSignalData1.shape)+'\n') # sys.stderr.write('severalMagChannels1.shape: '+str(severalMagChannels1.shape)+'\n') # channelLabels = ['MEG0111', 'MEG0121', 'MEG0131', 'MEG0211', 'MEG0212', 'MEG0213', 'MEG0341'] # channelsOfInterest = [i for i in range(len(metaData1.chanlocs)) if metaData1.chanlocs[i].labels in channelLabels] # severalMagChannels2 = contSignalData1[channelsOfInterest,:] # sys.stderr.write('severalMagChannels2.shape: '+str(severalMagChannels2.shape)+'\n') # severalMagChannels2 = contSignalData1[channelsOfInterest,:].reshape((1,-1)) # sys.stderr.write('severalMagChannels2.shape: '+str(severalMagChannels2.shape)+'\n') # raise #need to determine whether we need to reshape with a center column or retain two dimensional...? ###### ###### (wordTrials1, epochedSignalData1, epochSliceTimepoints, wordTimesAbsolute, numTrials, epochNumTimepoints) = wordTrialEpochify(severalMagChannels1, samplingRate, tokenPropsOrig, trackTrials, refEvent, epochEnd, epochStart) # sys.stderr.write('epochedSignalData1.shape: '+str(epochedSignalData1.shape)+'\n') # <codecell> #del contSignalData1 #del severalMagChannels1 # <codecell> severalMagChannels2 = contSignalData2[channelix,:].reshape((1,-1)) (wordTrials2, epochedSignalData2, epochSliceTimepoints, wordTimesAbsolute, numTrials, epochNumTimepoints) = wordTrialEpochify(severalMagChannels2, samplingRate, tokenPropsOrig, trackTrials, refEvent, epochEnd, epochStart) # <codecell> #del contSignalData2 #del severalMagChannels2 # <codecell> severalMagChannels3 = contSignalData3[channelix,:].reshape((1,-1)) (wordTrials3, epochedSignalData3, epochSliceTimepoints, wordTimesAbsolute, numTrials, epochNumTimepoints) = wordTrialEpochify(severalMagChannels3, samplingRate, tokenPropsOrig, trackTrials, refEvent, epochEnd, epochStart) # <codecell> #del contSignalData3 #del severalMagChannels3 # <codecell> epochedSignalData = numpy.concatenate((epochedSignalData1,epochedSignalData2,epochedSignalData3), axis=0) # print(epochedSignalData.shape) #print(tokenProps.shape) # raise # <codecell> #print tokenProps.shape,epochedSignalData.shape wordEpochs = epochedSignalData[wordTrialsBool & parsedTrialsBool & inDataset] #NB: Might not be wordFeatures = tokenProps[wordTrialsBool & parsedTrialsBool & inDataset] # print wordFeatures.shape, wordEpochs.shape # raise # <markdowncell> # Spectral decomposition # --------------------- # <codecell> #test reshape outcomes #a = np.arange(18).reshape((3,2,3)) #print(a) #target: 3 epochs, 2 channels, 3 frequency_features #b = np.arange(18).reshape((3,6)) #print(b) #fft output: 3 epochs, 2 channels x 3 frequency_features #c = b.reshape((3,2,3)) #print(c) #reshaped output: 3 epochs, 2 channels, 3 frequency_features # <codecell> # The FFT script collapses across channels # index0: epoch # index1: channels x fft_feature_types x frequencies # solution: reshape the output as (epochs,channels,-1) #print 'wordEpochs: ',wordEpochs.shape # Spectrally decompose the epochs (mappedTrialFeatures, spectralFrequencies) = specfft.mapFeatures(wordEpochs,samplingRate,windowShape='hann',featureType='amp',freqRes=32) # Reshape output to get epochs x channels x frequency mappedTrialFeatures = mappedTrialFeatures.reshape((wordEpochs.shape[0],wordEpochs.shape[1],-1)) # print 'FFT output: ', mappedTrialFeatures.shape, spectralFrequencies.shape # raise # <codecell> #print(spectralFrequencies) freqbands = {} if freqsource == 'weiss': #Weiss et al. 05 freqbands['theta'] = numpy.nonzero( (spectralFrequencies >= 4) & (spectralFrequencies <= 7) ) freqbands['beta1'] = numpy.nonzero( (spectralFrequencies >= 13) & (spectralFrequencies <= 18) ) freqbands['beta2'] = numpy.nonzero( (spectralFrequencies >= 20) & (spectralFrequencies <= 28) ) freqbands['gamma'] = numpy.nonzero( (spectralFrequencies >= 30) & (spectralFrequencies <= 34) ) elif freqsource == 'wiki': # end of http://en.wikipedia.org/wiki/Theta_rhythm freqbands['delta'] = numpy.nonzero( (spectralFrequencies >= 0.1) & (spectralFrequencies <= 3) ) freqbands['theta'] = numpy.nonzero( (spectralFrequencies >= 4) & (spectralFrequencies <= 7) ) freqbands['alpha'] = numpy.nonzero( (spectralFrequencies >= 8) & (spectralFrequencies <= 15) ) freqbands['beta'] = numpy.nonzero( (spectralFrequencies >= 16) & (spectralFrequencies <= 31) ) freqbands['gamma'] = numpy.nonzero( (spectralFrequencies >= 32) & (spectralFrequencies <= 100) ) else: #Interpolate between weiss and wiki #print(numpy.nonzero((spectralFrequencies >= 4) & (spectralFrequencies <= 7))) freqbands['theta'] = numpy.nonzero( (spectralFrequencies >= 4) & (spectralFrequencies <= 7) ) freqbands['alpha'] = numpy.nonzero( (spectralFrequencies >= 8) & (spectralFrequencies < 13) ) freqbands['beta1'] = numpy.nonzero( (spectralFrequencies >= 13) & (spectralFrequencies <= 18) ) freqbands['beta2'] = numpy.nonzero( (spectralFrequencies >= 20) & (spectralFrequencies <= 28) ) freqbands['gamma'] = numpy.nonzero( (spectralFrequencies >= 30) & (spectralFrequencies <= 34) ) #print(theta) #print(theta[0]) # <markdowncell> # Select channel for analysis # -------------- # <codecell> #print(channelLabels) #channelToAnalyse = 3 # index of the channels above to actually run regression analysis on #print 'Analyzing:', channelLabels[channelToAnalyse] # <markdowncell> # Run Regression Analysis # --------------------------- # <codecell> # REGULARISATION VALUES TO TRY (e.g. in Ridge GCV) regParam = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 1e+2, 2e+2, 5e+2, 1e+3, 2e+3, 5e+3] # SELECT AND DESCRIBE THE REGRESSORS WE'RE CHOOSING TO USE # this strings should match the names of the fields in tokenProps #*# MARTY #*# here you should list the features you're choosing from your .tab file (just one?) #*# features = [ #'logFreq_ANC', #'surprisal2back_COCA', #'bigramEntropy_COCA_here', 'syndepth' ] #*# MARTY #*# ... this has shorthand versions of the variable names, for display, and also has to include the "position" one that this version of the script inserts by default #*# labelMap = { #'logFreq_ANC': 'freq', #'surprisal2back_COCA': 'surprisal', #'bigramEntropy_COCA_here': 'entropy', #'sentenceSerial': 'position', 'syndepth': 'depth' } legendLabels = features # <codecell> # SLOT REGRESSORS IN ONE BY ONE explanatoryFeatures = numpy.zeros((wordFeatures.shape)) # dummy #explanatoryFeatures = numpy.array([]) for feature in features: # print feature explanatoryFeatures = numpy.vstack((explanatoryFeatures, wordFeatures[feature])) explanatoryFeatures = explanatoryFeatures[1:].T # strip zeros out again # PLOT EFFECTS X EPOCHS BACK #*# MARTY #*# I guess you don't want to do the history thing (though is good initially for sanity check), so can leave this at 0 #*# epochHistory = 0 # <codecell> #tmpFeatures = explanatoryFeatures.copy() #tmpLegend = legendLabels[:] #for epochsBack in range(1,epochHistory+1): # epochFeatures = numpy.zeros(tmpFeatures.shape) # epochFeatures[epochsBack:,:] = tmpFeatures[:-epochsBack,:] # explanatoryFeatures = numpy.hstack((explanatoryFeatures,epochFeatures)) # legendLabels = legendLabels + [l+'-'+str(epochsBack) for l in tmpLegend] ## put in sentence serial - can't leave in history, cos is too highly correlated across history... #explanatoryFeatures = numpy.vstack((explanatoryFeatures.T, wordFeatures['sentenceSerial'])).T #features.append('sentenceSerial') #legendLabels.append('sentenceSerial') # <codecell> # STEP THROUGH EACH TIME POINT IN THE EPOCH, RUNNING REGRESSION FOR EACH ONE bandavefits = {} bandmaxfits = {} for band in freqbands: modelTrainingFit = [] modelTestCorrelation = [] modelParameters = [] legendLabels = features for freq in freqbands[band]: # WHICH VARIETY OF REGRESSION TO USE? #*# MARTY #*# I get pretty similar results with all three of those below. The most generic (ie fewest extra assumptions) is normal LinearRegression. I guess RidgeCV should do best in terms of R^2, but has discontinuities in betas, as different regularisation parameters are optimal at each time step. LassoLars is something of a compromise. #*# #lm = sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=True) #lm = sklearn.linear_model.RidgeCV(fit_intercept=True, normalize=True, alphas=regParam) #, 10000, 100000]) lm = sklearn.linear_model.LassoLars(alpha=0.0001) #(alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.2204460492503131e-16, copy_X=True) # NORMALISE THE EXPLANATORY VARIABLES? (for comparable beta magnitude interpretation) #*# MARTY #*# choose whether to scale inputs #*# trainX = mynormalise(explanatoryFeatures) trainY = mynormalise(mappedTrialFeatures[:,0,freq]) #trainX = mynormalise(explanatoryFeatures) #trainY = mynormalise(wordEpochs[:,channelToAnalyse,t]) #trainX = explanatoryFeatures #trainY = wordEpochs[:,channelToAnalyse,t] trainedLM = lm.fit(trainX,trainY) modelParameters.append(lm) #print(lm.score(trainX,trainY),trainX.shape[1], trainX.shape[0]) #modelTrainingFit.append(adjustR2(lm.score(trainX,trainY), trainX.shape[1], trainX.shape[0])) modelTrainingFit.append(lm.score(trainX,trainY)) #for a single feature, no punishment is necessary bandavefits[band] = numpy.mean(modelTrainingFit) bandmaxfits[band] = numpy.max(modelTrainingFit) avefitresults[ metaData1.chanlocs[channelix].labels ] = bandavefits maxfitresults[ metaData1.chanlocs[channelix].labels ] = bandmaxfits #print(modelTrainingFit) #print(numpy.sort(modelTrainingFit)[::-1]) #print 'ave fit: ', numpy.mean(modelTrainingFit) #print 'max fit: ', numpy.max(modelTrainingFit) fitresults = {'ave':avefitresults,'max':maxfitresults} cPickle.dump(fitresults, open('fitresults.cpk', 'wb')) # <markdowncell> # Graph results # ============ # <codecell> # DETERMINE IF THERE IS CORRELATION BETWEEN THE EXPLANATORY VARIABLES #betaMatrix = numpy.array([p.coef_ for p in modelParameters]) #print(betaMatrix.shape) #neatLabels = [l.replace(re.match(r'[^-]+',l).group(0), labelMap[re.match(r'[^-]+',l).group(0)]) for l in legendLabels if re.match(r'[^-]+',l).group(0) in labelMap] #legendLabels = numpy.array(legendLabels) ##numFeaturesDisplay = len(legendLabels) #neatLabels = numpy.array(neatLabels) # ## <codecell> # ## DO BIG SUMMARY PLOT OF FEATURE CORRELATIONS, R^2 OVER TIMECOURSE, BETAS OVER TIME COURSE, AND ERF/ERP #f = pylab.figure(figsize=(10,10)) #s = pylab.subplot(2,2,1) #pylab.title('R-squared '+str(trainedLM)) #pylab.plot(modelTrainingFit, linewidth=2) #commonPlotProps() #s = pylab.subplot(2,2,2) #if betaMatrix.shape[1] > 7: # pylab.plot(betaMatrix[:,:7], '-', linewidth=2) # pylab.plot(betaMatrix[:,7:], '--', linewidth=2) #else: # pylab.plot(betaMatrix, '-', linewidth=2) # #pylab.legend(neatLabels) ##pylab.legend(legendLabels) #pylab.title('betas for all (normed) variables') #commonPlotProps() # # #s = pylab.subplot(3,3,2) #pylab.title('correlations between explanatory variables') #pylab.imshow(numpy.abs(numpy.corrcoef(explanatoryFeatures.T)),interpolation='nearest', origin='upper') # leave out the dummy one #pylab.clim(0,1) #pylab.yticks(range(len(neatLabels)),neatLabels) #pylab.ylim((-0.5,len(neatLabels)-0.5)) #pylab.xticks(range(len(neatLabels)),neatLabels, rotation=90) #pylab.xlim((-0.5,len(neatLabels)-0.5)) #pylab.colorbar() # ##fontP = FontProperties() ##fontP.set_size('small') ##legend([s], "title", prop = fontP) # ##s = pylab.subplot(2,2,4) ##pylab.plot(numpy.mean(epochedSignalData[wordTrialsBool,channelToAnalyse],axis=0).T, linewidth=2) ##pylab.title('ERF') ##commonPlotProps() # ##print 'history %d, mean model fit over -0.5s to +1.0s: %.5f, max is %.5f' % (epochHistory, numpy.mean(modelTrainingFit[62:250]), numpy.max(modelTrainingFit[62:250])) ##pylab.savefig('meg_testfig_%s.png' % (channelLabels[channelToAnalyse])) # #pylab.show() # <codecell>
gpl-2.0
shangwuhencc/shogun
examples/undocumented/python_modular/graphical/so_multiclass_director_BMRM.py
16
4362
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt from modshogun import RealFeatures from modshogun import MulticlassModel, MulticlassSOLabels, RealNumber, DualLibQPBMSOSVM, DirectorStructuredModel from modshogun import BMRM, PPBMRM, P3BMRM, ResultSet, RealVector from modshogun import StructuredAccuracy class MulticlassStructuredModel(DirectorStructuredModel): def __init__(self,features,labels): DirectorStructuredModel.__init__(self) self.set_features(features) self.set_labels(labels) self.dim = features.get_dim_feature_space()*labels.get_num_classes() self.n_classes = labels.get_num_classes() self.n_feats = features.get_dim_feature_space() #self.use_director_risk() def get_dim(self): return self.dim def argmax(self,w,feat_idx,training): feature_vector = self.get_features().get_feature_vector(feat_idx) label = None if training == True: label = int(RealNumber.obtain_from_generic(self.get_labels().get_label(feat_idx)).value) ypred = 0 max_score = -1e10 for c in xrange(self.n_classes): score = 0.0 for i in xrange(self.n_feats): score += w[i+self.n_feats*c]*feature_vector[i] if training == True: score += (c!=label) if score > max_score: max_score = score ypred = c res = ResultSet() res.score = max_score res.psi_pred = RealVector(self.dim) res.psi_pred.zero() for i in xrange(self.n_feats): res.psi_pred[i+self.n_feats*ypred] = feature_vector[i] res.argmax = RealNumber(ypred) if training == True: res.delta = (label!=ypred) res.psi_truth = RealVector(self.dim) res.psi_truth.zero() for i in xrange(self.n_feats): res.psi_truth[i+self.n_feats*label] = feature_vector[i] for i in xrange(self.n_feats): res.score -= w[i+self.n_feats*label]*feature_vector[i] return res def fill_data(cnt, minv, maxv): x1 = np.linspace(minv, maxv, cnt) a, b = np.meshgrid(x1, x1) X = np.array((np.ravel(a), np.ravel(b))) y = np.zeros((1, cnt*cnt)) tmp = cnt*cnt; y[0, tmp/3:(tmp/3)*2]=1 y[0, tmp/3*2:(tmp/3)*3]=2 return X, y.flatten() def gen_data(): covs = np.array([[[0., -1. ], [2.5, .7]], [[3., -1.5], [1.2, .3]], [[ 2, 0 ], [ .0, 1.5 ]]]) X = np.r_[np.dot(np.random.randn(N, dim), covs[0]) + np.array([0, 10]), np.dot(np.random.randn(N, dim), covs[1]) + np.array([-10, -10]), np.dot(np.random.randn(N, dim), covs[2]) + np.array([10, -10])]; Y = np.hstack((np.zeros(N), np.ones(N), 2*np.ones(N))) return X, Y def get_so_labels(out): N = out.get_num_labels() l = np.zeros(N) for i in xrange(N): l[i] = RealNumber.obtain_from_generic(out.get_label(i)).value return l # Number of classes M = 3 # Number of samples of each class N = 10 # Dimension of the data dim = 2 X, y = gen_data() cnt = 50 X2, y2 = fill_data(cnt, np.min(X), np.max(X)) labels = MulticlassSOLabels(y) features = RealFeatures(X.T) model = MulticlassStructuredModel(features, labels) lambda_ = 1e1 sosvm = DualLibQPBMSOSVM(model, labels, lambda_) sosvm.set_cleanAfter(10) # number of iterations that cutting plane has to be inactive for to be removed sosvm.set_cleanICP(True) # enables inactive cutting plane removal feature sosvm.set_TolRel(0.001) # set relative tolerance sosvm.set_verbose(True) # enables verbosity of the solver sosvm.set_cp_models(16) # set number of cutting plane models sosvm.set_solver(BMRM) # select training algorithm #sosvm.set_solver(PPBMRM) #sosvm.set_solver(P3BMRM) sosvm.train() res = sosvm.get_result() Fps = res.get_hist_Fp_vector() Fds = res.get_hist_Fd_vector() wdists = res.get_hist_wdist_vector() plt.figure() plt.subplot(221) plt.title('Fp and Fd history') plt.plot(xrange(res.get_n_iters()), Fps, hold=True) plt.plot(xrange(res.get_n_iters()), Fds, hold=True) plt.subplot(222) plt.title('w dist history') plt.plot(xrange(res.get_n_iters()), wdists) # Evaluation out = sosvm.apply() Evaluation = StructuredAccuracy() acc = Evaluation.evaluate(out, labels) print "Correct classification rate: %0.4f%%" % ( 100.0*acc ) # show figure Z = get_so_labels(sosvm.apply(RealFeatures(X2))) x = (X2[0,:]).reshape(cnt, cnt) y = (X2[1,:]).reshape(cnt, cnt) z = Z.reshape(cnt, cnt) plt.subplot(223) plt.pcolor(x, y, z, shading='interp') plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.plot(X[:,0], X[:,1], 'yo') plt.axis('tight') plt.title('Classification') plt.show()
gpl-3.0
hainm/scikit-learn
examples/ensemble/plot_bias_variance.py
357
7324
""" ============================================================ Single estimator versus bagging: bias-variance decomposition ============================================================ This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single estimator against a bagging ensemble. In regression, the expected mean squared error of an estimator can be decomposed in terms of bias, variance and noise. On average over datasets of the regression problem, the bias term measures the average amount by which the predictions of the estimator differ from the predictions of the best possible estimator for the problem (i.e., the Bayes model). The variance term measures the variability of the predictions of the estimator when fit over different instances LS of the problem. Finally, the noise measures the irreducible part of the error which is due the variability in the data. The upper left figure illustrates the predictions (in dark red) of a single decision tree trained over a random dataset LS (the blue dots) of a toy 1d regression problem. It also illustrates the predictions (in light red) of other single decision trees trained over other (and different) randomly drawn instances LS of the problem. Intuitively, the variance term here corresponds to the width of the beam of predictions (in light red) of the individual estimators. The larger the variance, the more sensitive are the predictions for `x` to small changes in the training set. The bias term corresponds to the difference between the average prediction of the estimator (in cyan) and the best possible model (in dark blue). On this problem, we can thus observe that the bias is quite low (both the cyan and the blue curves are close to each other) while the variance is large (the red beam is rather wide). The lower left figure plots the pointwise decomposition of the expected mean squared error of a single decision tree. It confirms that the bias term (in blue) is low while the variance is large (in green). It also illustrates the noise part of the error which, as expected, appears to be constant and around `0.01`. The right figures correspond to the same plots but using instead a bagging ensemble of decision trees. In both figures, we can observe that the bias term is larger than in the previous case. In the upper right figure, the difference between the average prediction (in cyan) and the best possible model is larger (e.g., notice the offset around `x=2`). In the lower right figure, the bias curve is also slightly higher than in the lower left figure. In terms of variance however, the beam of predictions is narrower, which suggests that the variance is lower. Indeed, as the lower right figure confirms, the variance term (in green) is lower than for single decision trees. Overall, the bias- variance decomposition is therefore no longer the same. The tradeoff is better for bagging: averaging several decision trees fit on bootstrap copies of the dataset slightly increases the bias term but allows for a larger reduction of the variance, which results in a lower overall mean squared error (compare the red curves int the lower figures). The script output also confirms this intuition. The total error of the bagging ensemble is lower than the total error of a single decision tree, and this difference indeed mainly stems from a reduced variance. For further details on bias-variance decomposition, see section 7.3 of [1]_. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning", Springer, 2009. """ print(__doc__) # Author: Gilles Louppe <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import BaggingRegressor from sklearn.tree import DecisionTreeRegressor # Settings n_repeat = 50 # Number of iterations for computing expectations n_train = 50 # Size of the training set n_test = 1000 # Size of the test set noise = 0.1 # Standard deviation of the noise np.random.seed(0) # Change this for exploring the bias-variance decomposition of other # estimators. This should work well for estimators with high variance (e.g., # decision trees or KNN), but poorly for estimators with low variance (e.g., # linear models). estimators = [("Tree", DecisionTreeRegressor()), ("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor()))] n_estimators = len(estimators) # Generate data def f(x): x = x.ravel() return np.exp(-x ** 2) + 1.5 * np.exp(-(x - 2) ** 2) def generate(n_samples, noise, n_repeat=1): X = np.random.rand(n_samples) * 10 - 5 X = np.sort(X) if n_repeat == 1: y = f(X) + np.random.normal(0.0, noise, n_samples) else: y = np.zeros((n_samples, n_repeat)) for i in range(n_repeat): y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples) X = X.reshape((n_samples, 1)) return X, y X_train = [] y_train = [] for i in range(n_repeat): X, y = generate(n_samples=n_train, noise=noise) X_train.append(X) y_train.append(y) X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat) # Loop over estimators to compare for n, (name, estimator) in enumerate(estimators): # Compute predictions y_predict = np.zeros((n_test, n_repeat)) for i in range(n_repeat): estimator.fit(X_train[i], y_train[i]) y_predict[:, i] = estimator.predict(X_test) # Bias^2 + Variance + Noise decomposition of the mean squared error y_error = np.zeros(n_test) for i in range(n_repeat): for j in range(n_repeat): y_error += (y_test[:, j] - y_predict[:, i]) ** 2 y_error /= (n_repeat * n_repeat) y_noise = np.var(y_test, axis=1) y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2 y_var = np.var(y_predict, axis=1) print("{0}: {1:.4f} (error) = {2:.4f} (bias^2) " " + {3:.4f} (var) + {4:.4f} (noise)".format(name, np.mean(y_error), np.mean(y_bias), np.mean(y_var), np.mean(y_noise))) # Plot figures plt.subplot(2, n_estimators, n + 1) plt.plot(X_test, f(X_test), "b", label="$f(x)$") plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$") for i in range(n_repeat): if i == 0: plt.plot(X_test, y_predict[:, i], "r", label="$\^y(x)$") else: plt.plot(X_test, y_predict[:, i], "r", alpha=0.05) plt.plot(X_test, np.mean(y_predict, axis=1), "c", label="$\mathbb{E}_{LS} \^y(x)$") plt.xlim([-5, 5]) plt.title(name) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.subplot(2, n_estimators, n_estimators + n + 1) plt.plot(X_test, y_error, "r", label="$error(x)$") plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"), plt.plot(X_test, y_var, "g", label="$variance(x)$"), plt.plot(X_test, y_noise, "c", label="$noise(x)$") plt.xlim([-5, 5]) plt.ylim([0, 0.1]) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.show()
bsd-3-clause
wkfwkf/statsmodels
examples/python/tsa_filters.py
34
4559
## Time Series Filters from __future__ import print_function import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm dta = sm.datasets.macrodata.load_pandas().data index = pd.Index(sm.tsa.datetools.dates_from_range('1959Q1', '2009Q3')) print(index) dta.index = index del dta['year'] del dta['quarter'] print(sm.datasets.macrodata.NOTE) print(dta.head(10)) fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) dta.realgdp.plot(ax=ax); legend = ax.legend(loc = 'upper left'); legend.prop.set_size(20); #### Hodrick-Prescott Filter # The Hodrick-Prescott filter separates a time-series $y_t$ into a trend $\tau_t$ and a cyclical component $\zeta_t$ # # $$y_t = \tau_t + \zeta_t$$ # # The components are determined by minimizing the following quadratic loss function # # $$\min_{\\{ \tau_{t}\\} }\sum_{t}^{T}\zeta_{t}^{2}+\lambda\sum_{t=1}^{T}\left[\left(\tau_{t}-\tau_{t-1}\right)-\left(\tau_{t-1}-\tau_{t-2}\right)\right]^{2}$$ gdp_cycle, gdp_trend = sm.tsa.filters.hpfilter(dta.realgdp) gdp_decomp = dta[['realgdp']] gdp_decomp["cycle"] = gdp_cycle gdp_decomp["trend"] = gdp_trend fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) gdp_decomp[["realgdp", "trend"]]["2000-03-31":].plot(ax=ax, fontsize=16); legend = ax.get_legend() legend.prop.set_size(20); #### Baxter-King approximate band-pass filter: Inflation and Unemployment ##### Explore the hypothesis that inflation and unemployment are counter-cyclical. # The Baxter-King filter is intended to explictly deal with the periodicty of the business cycle. By applying their band-pass filter to a series, they produce a new series that does not contain fluctuations at higher or lower than those of the business cycle. Specifically, the BK filter takes the form of a symmetric moving average # # $$y_{t}^{*}=\sum_{k=-K}^{k=K}a_ky_{t-k}$$ # # where $a_{-k}=a_k$ and $\sum_{k=-k}^{K}a_k=0$ to eliminate any trend in the series and render it stationary if the series is I(1) or I(2). # # For completeness, the filter weights are determined as follows # # $$a_{j} = B_{j}+\theta\text{ for }j=0,\pm1,\pm2,\dots,\pm K$$ # # $$B_{0} = \frac{\left(\omega_{2}-\omega_{1}\right)}{\pi}$$ # $$B_{j} = \frac{1}{\pi j}\left(\sin\left(\omega_{2}j\right)-\sin\left(\omega_{1}j\right)\right)\text{ for }j=0,\pm1,\pm2,\dots,\pm K$$ # # where $\theta$ is a normalizing constant such that the weights sum to zero. # # $$\theta=\frac{-\sum_{j=-K^{K}b_{j}}}{2K+1}$$ # # $$\omega_{1}=\frac{2\pi}{P_{H}}$$ # # $$\omega_{2}=\frac{2\pi}{P_{L}}$$ # # $P_L$ and $P_H$ are the periodicity of the low and high cut-off frequencies. Following Burns and Mitchell's work on US business cycles which suggests cycles last from 1.5 to 8 years, we use $P_L=6$ and $P_H=32$ by default. bk_cycles = sm.tsa.filters.bkfilter(dta[["infl","unemp"]]) # * We lose K observations on both ends. It is suggested to use K=12 for quarterly data. fig = plt.figure(figsize=(14,10)) ax = fig.add_subplot(111) bk_cycles.plot(ax=ax, style=['r--', 'b-']); #### Christiano-Fitzgerald approximate band-pass filter: Inflation and Unemployment # The Christiano-Fitzgerald filter is a generalization of BK and can thus also be seen as weighted moving average. However, the CF filter is asymmetric about $t$ as well as using the entire series. The implementation of their filter involves the # calculations of the weights in # # $$y_{t}^{*}=B_{0}y_{t}+B_{1}y_{t+1}+\dots+B_{T-1-t}y_{T-1}+\tilde B_{T-t}y_{T}+B_{1}y_{t-1}+\dots+B_{t-2}y_{2}+\tilde B_{t-1}y_{1}$$ # # for $t=3,4,...,T-2$, where # # $$B_{j} = \frac{\sin(jb)-\sin(ja)}{\pi j},j\geq1$$ # # $$B_{0} = \frac{b-a}{\pi},a=\frac{2\pi}{P_{u}},b=\frac{2\pi}{P_{L}}$$ # # $\tilde B_{T-t}$ and $\tilde B_{t-1}$ are linear functions of the $B_{j}$'s, and the values for $t=1,2,T-1,$ and $T$ are also calculated in much the same way. $P_{U}$ and $P_{L}$ are as described above with the same interpretation. # The CF filter is appropriate for series that may follow a random walk. print(sm.tsa.stattools.adfuller(dta['unemp'])[:3]) print(sm.tsa.stattools.adfuller(dta['infl'])[:3]) cf_cycles, cf_trend = sm.tsa.filters.cffilter(dta[["infl","unemp"]]) print(cf_cycles.head(10)) fig = plt.figure(figsize=(14,10)) ax = fig.add_subplot(111) cf_cycles.plot(ax=ax, style=['r--','b-']); # Filtering assumes *a priori* that business cycles exist. Due to this assumption, many macroeconomic models seek to create models that match the shape of impulse response functions rather than replicating properties of filtered series. See VAR notebook.
bsd-3-clause
pv/scikit-learn
sklearn/tests/test_isotonic.py
230
11087
import numpy as np import pickle from sklearn.isotonic import (check_increasing, isotonic_regression, IsotonicRegression) from sklearn.utils.testing import (assert_raises, assert_array_equal, assert_true, assert_false, assert_equal, assert_array_almost_equal, assert_warns_message, assert_no_warnings) from sklearn.utils import shuffle def test_permutation_invariance(): # check that fit is permuation invariant. # regression test of missing sorting of sample-weights ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0) y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight) y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x) assert_array_equal(y_transformed, y_transformed_s) def test_check_increasing_up(): x = [0, 1, 2, 3, 4, 5] y = [0, 1.5, 2.77, 8.99, 8.99, 50] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_up_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_down(): x = [0, 1, 2, 3, 4, 5] y = [0, -1.5, -2.77, -8.99, -8.99, -50] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_increasing_down_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, -2, -3, -4, -5] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_ci_warn(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, 2, -3, 4, -5] # Check that we got increasing=False and CI interval warning is_increasing = assert_warns_message(UserWarning, "interval", check_increasing, x, y) assert_false(is_increasing) def test_isotonic_regression(): y = np.array([3, 7, 5, 9, 8, 7, 10]) y_ = np.array([3, 6, 6, 8, 8, 8, 10]) assert_array_equal(y_, isotonic_regression(y)) x = np.arange(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(ir.transform(x), ir.predict(x)) # check that it is immune to permutation perm = np.random.permutation(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) # check we don't crash when all x are equal: ir = IsotonicRegression() assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y)) def test_isotonic_regression_ties_min(): # Setup examples with ties on minimum x = [0, 1, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5, 6] y_true = [0, 1.5, 1.5, 3, 4, 5, 6] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_max(): # Setup examples with ties on maximum x = [1, 2, 3, 4, 5, 5] y = [1, 2, 3, 4, 5, 6] y_true = [1, 2, 3, 4, 5.5, 5.5] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_secondary_(): """ Test isotonic regression fit, transform and fit_transform against the "secondary" ties method and "pituitary" data from R "isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Set values based on pituitary example and the following R command detailed in the paper above: > library("isotone") > data("pituitary") > res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") > res1$x `isotone` version: 1.0-2, 2014-09-07 R version: R version 3.1.1 (2014-07-10) """ x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] y_true = [22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 24.25, 24.25] # Check fit, transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true, 4) assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4) def test_isotonic_regression_reversed(): y = np.array([10, 9, 10, 7, 6, 6.1, 5]) y_ = IsotonicRegression(increasing=False).fit_transform( np.arange(len(y)), y) assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) def test_isotonic_regression_auto_decreasing(): # Set y and x for decreasing y = np.array([10, 9, 10, 7, 6, 6.1, 5]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship decreases is_increasing = y_[0] < y_[-1] assert_false(is_increasing) def test_isotonic_regression_auto_increasing(): # Set y and x for decreasing y = np.array([5, 6.1, 6, 7, 10, 9, 10]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship increases is_increasing = y_[0] < y_[-1] assert_true(is_increasing) def test_assert_raises_exceptions(): ir = IsotonicRegression() rng = np.random.RandomState(42) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7, 3], [0.1, 0.6]) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7]) assert_raises(ValueError, ir.fit, rng.randn(3, 10), [0, 1, 2]) assert_raises(ValueError, ir.transform, rng.randn(3, 10)) def test_isotonic_sample_weight_parameter_default_value(): # check if default value of sample_weight parameter is one ir = IsotonicRegression() # random test data rng = np.random.RandomState(42) n = 100 x = np.arange(n) y = rng.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) # check if value is correctly used weights = np.ones(n) y_set_value = ir.fit_transform(x, y, sample_weight=weights) y_default_value = ir.fit_transform(x, y) assert_array_equal(y_set_value, y_default_value) def test_isotonic_min_max_boundaries(): # check if min value is used correctly ir = IsotonicRegression(y_min=2, y_max=4) n = 6 x = np.arange(n) y = np.arange(n) y_test = [2, 2, 2, 3, 4, 4] y_result = np.round(ir.fit_transform(x, y)) assert_array_equal(y_result, y_test) def test_isotonic_sample_weight(): ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24] received_y = ir.fit_transform(x, y, sample_weight=sample_weight) assert_array_equal(expected_y, received_y) def test_isotonic_regression_oob_raise(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") ir.fit(x, y) # Check that an exception is thrown assert_raises(ValueError, ir.predict, [min(x) - 10, max(x) + 10]) def test_isotonic_regression_oob_clip(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) # Predict from training and test x and check that min/max match. y1 = ir.predict([min(x) - 10, max(x) + 10]) y2 = ir.predict(x) assert_equal(max(y1), max(y2)) assert_equal(min(y1), min(y2)) def test_isotonic_regression_oob_nan(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="nan") ir.fit(x, y) # Predict from training and test x and check that we have two NaNs. y1 = ir.predict([min(x) - 10, max(x) + 10]) assert_equal(sum(np.isnan(y1)), 2) def test_isotonic_regression_oob_bad(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="xyz") # Make sure that we throw an error for bad out_of_bounds value assert_raises(ValueError, ir.fit, x, y) def test_isotonic_regression_oob_bad_after(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") # Make sure that we throw an error for bad out_of_bounds value in transform ir.fit(x, y) ir.out_of_bounds = "xyz" assert_raises(ValueError, ir.transform, x) def test_isotonic_regression_pickle(): y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL) ir2 = pickle.loads(ir_ser) np.testing.assert_array_equal(ir.predict(x), ir2.predict(x)) def test_isotonic_duplicate_min_entry(): x = [0, 0, 1] y = [0, 0, 1] ir = IsotonicRegression(increasing=True, out_of_bounds="clip") ir.fit(x, y) all_predictions_finite = np.all(np.isfinite(ir.predict(x))) assert_true(all_predictions_finite) def test_isotonic_zero_weight_loop(): # Test from @ogrisel's issue: # https://github.com/scikit-learn/scikit-learn/issues/4297 # Get deterministic RNG with seed rng = np.random.RandomState(42) # Create regression and samples regression = IsotonicRegression() n_samples = 50 x = np.linspace(-3, 3, n_samples) y = x + rng.uniform(size=n_samples) # Get some random weights and zero out w = rng.uniform(size=n_samples) w[5:8] = 0 regression.fit(x, y, sample_weight=w) # This will hang in failure case. regression.fit(x, y, sample_weight=w)
bsd-3-clause
jaeilepp/eggie
mne/inverse_sparse/mxne_optim.py
3
21727
from __future__ import print_function # Author: Alexandre Gramfort <[email protected]> # # License: Simplified BSD import warnings from math import sqrt, ceil import numpy as np from scipy import linalg from .mxne_debiasing import compute_bias from ..utils import logger, verbose, sum_squared from ..time_frequency.stft import stft_norm2, stft, istft def groups_norm2(A, n_orient): """compute squared L2 norms of groups inplace""" n_positions = A.shape[0] // n_orient return np.sum(np.power(A, 2, A).reshape(n_positions, -1), axis=1) def norm_l2inf(A, n_orient, copy=True): """L2-inf norm""" if A.size == 0: return 0.0 if copy: A = A.copy() return sqrt(np.max(groups_norm2(A, n_orient))) def norm_l21(A, n_orient, copy=True): """L21 norm""" if A.size == 0: return 0.0 if copy: A = A.copy() return np.sum(np.sqrt(groups_norm2(A, n_orient))) def prox_l21(Y, alpha, n_orient, shape=None, is_stft=False): """proximity operator for l21 norm L2 over columns and L1 over rows => groups contain n_orient rows. It can eventually take into account the negative frequencies when a complex value is passed and is_stft=True. Example ------- >>> Y = np.tile(np.array([0, 4, 3, 0, 0], dtype=np.float), (2, 1)) >>> Y = np.r_[Y, np.zeros_like(Y)] >>> print(Y) [[ 0. 4. 3. 0. 0.] [ 0. 4. 3. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.]] >>> Yp, active_set = prox_l21(Y, 2, 2) >>> print(Yp) [[ 0. 2.86862915 2.15147186 0. 0. ] [ 0. 2.86862915 2.15147186 0. 0. ]] >>> print(active_set) [ True True False False] """ if len(Y) == 0: return np.zeros_like(Y), np.zeros((0,), dtype=np.bool) if shape is not None: shape_init = Y.shape Y = Y.reshape(*shape) n_positions = Y.shape[0] // n_orient if is_stft: rows_norm = np.sqrt(stft_norm2(Y).reshape(n_positions, -1).sum(axis=1)) else: rows_norm = np.sqrt(np.sum((np.abs(Y) ** 2).reshape(n_positions, -1), axis=1)) # Ensure shrink is >= 0 while avoiding any division by zero shrink = np.maximum(1.0 - alpha / np.maximum(rows_norm, alpha), 0.0) active_set = shrink > 0.0 if n_orient > 1: active_set = np.tile(active_set[:, None], [1, n_orient]).ravel() shrink = np.tile(shrink[:, None], [1, n_orient]).ravel() Y = Y[active_set] if shape is None: Y *= shrink[active_set][:, np.newaxis] else: Y *= shrink[active_set][:, np.newaxis, np.newaxis] Y = Y.reshape(-1, *shape_init[1:]) return Y, active_set def prox_l1(Y, alpha, n_orient): """proximity operator for l1 norm with multiple orientation support L2 over orientation and L1 over position (space + time) Example ------- >>> Y = np.tile(np.array([1, 2, 3, 2, 0], dtype=np.float), (2, 1)) >>> Y = np.r_[Y, np.zeros_like(Y)] >>> print(Y) [[ 1. 2. 3. 2. 0.] [ 1. 2. 3. 2. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.]] >>> Yp, active_set = prox_l1(Y, 2, 2) >>> print(Yp) [[ 0. 0.58578644 1.58578644 0.58578644 0. ] [ 0. 0.58578644 1.58578644 0.58578644 0. ]] >>> print(active_set) [ True True False False] """ n_positions = Y.shape[0] // n_orient norms = np.sqrt(np.sum((np.abs(Y) ** 2).T.reshape(-1, n_orient), axis=1)) # Ensure shrink is >= 0 while avoiding any division by zero shrink = np.maximum(1.0 - alpha / np.maximum(norms, alpha), 0.0) shrink = shrink.reshape(-1, n_positions).T active_set = np.any(shrink > 0.0, axis=1) shrink = shrink[active_set] if n_orient > 1: active_set = np.tile(active_set[:, None], [1, n_orient]).ravel() Y = Y[active_set] if len(Y) > 0: for o in range(n_orient): Y[o::n_orient] *= shrink return Y, active_set def dgap_l21(M, G, X, active_set, alpha, n_orient): """Duality gaps for the mixed norm inverse problem For details see: Gramfort A., Kowalski M. and Hamalainen, M, Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods, Physics in Medicine and Biology, 2012 http://dx.doi.org/10.1088/0031-9155/57/7/1937 Parameters ---------- M : array of shape [n_sensors, n_times] data G : array of shape [n_sensors, n_active] Gain matrix a.k.a. lead field X : array of shape [n_active, n_times] Sources active_set : array of bool Mask of active sources alpha : float Regularization parameter n_orient : int Number of dipoles per locations (typically 1 or 3) Returns ------- gap : float Dual gap pobj : float Primal cost dobj : float Dual cost. gap = pobj - dobj R : array of shape [n_sensors, n_times] Current residual of M - G * X """ GX = np.dot(G[:, active_set], X) R = M - GX penalty = norm_l21(X, n_orient, copy=True) nR2 = sum_squared(R) pobj = 0.5 * nR2 + alpha * penalty dual_norm = norm_l2inf(np.dot(G.T, R), n_orient, copy=False) scaling = alpha / dual_norm scaling = min(scaling, 1.0) dobj = 0.5 * (scaling ** 2) * nR2 + scaling * np.sum(R * GX) gap = pobj - dobj return gap, pobj, dobj, R @verbose def _mixed_norm_solver_prox(M, G, alpha, maxit=200, tol=1e-8, verbose=None, init=None, n_orient=1): """Solves L21 inverse problem with proximal iterations and FISTA""" n_sensors, n_times = M.shape n_sensors, n_sources = G.shape lipschitz_constant = 1.1 * linalg.norm(G, ord=2) ** 2 if n_sources < n_sensors: gram = np.dot(G.T, G) GTM = np.dot(G.T, M) else: gram = None if init is None: X = 0.0 R = M.copy() if gram is not None: R = np.dot(G.T, R) else: X = init if gram is None: R = M - np.dot(G, X) else: R = GTM - np.dot(gram, X) t = 1.0 Y = np.zeros((n_sources, n_times)) # FISTA aux variable E = [] # track cost function active_set = np.ones(n_sources, dtype=np.bool) # start with full AS for i in range(maxit): X0, active_set_0 = X, active_set # store previous values if gram is None: Y += np.dot(G.T, R) / lipschitz_constant # ISTA step else: Y += R / lipschitz_constant # ISTA step X, active_set = prox_l21(Y, alpha / lipschitz_constant, n_orient) t0 = t t = 0.5 * (1.0 + sqrt(1.0 + 4.0 * t ** 2)) Y.fill(0.0) dt = ((t0 - 1.0) / t) Y[active_set] = (1.0 + dt) * X Y[active_set_0] -= dt * X0 Y_as = active_set_0 | active_set if gram is None: R = M - np.dot(G[:, Y_as], Y[Y_as]) else: R = GTM - np.dot(gram[:, Y_as], Y[Y_as]) gap, pobj, dobj, _ = dgap_l21(M, G, X, active_set, alpha, n_orient) E.append(pobj) logger.debug("pobj : %s -- gap : %s" % (pobj, gap)) if gap < tol: logger.debug('Convergence reached ! (gap: %s < %s)' % (gap, tol)) break return X, active_set, E @verbose def _mixed_norm_solver_cd(M, G, alpha, maxit=10000, tol=1e-8, verbose=None, init=None, n_orient=1): """Solves L21 inverse problem with coordinate descent""" from sklearn.linear_model.coordinate_descent import MultiTaskLasso n_sensors, n_times = M.shape n_sensors, n_sources = G.shape if init is not None: init = init.T clf = MultiTaskLasso(alpha=alpha / len(M), tol=tol, normalize=False, fit_intercept=False, max_iter=maxit, warm_start=True) clf.coef_ = init clf.fit(G, M) X = clf.coef_.T active_set = np.any(X, axis=1) X = X[active_set] gap, pobj, dobj, _ = dgap_l21(M, G, X, active_set, alpha, n_orient) return X, active_set, pobj @verbose def mixed_norm_solver(M, G, alpha, maxit=3000, tol=1e-8, verbose=None, active_set_size=50, debias=True, n_orient=1, solver='auto'): """Solves L21 inverse solver with active set strategy Algorithm is detailed in: Gramfort A., Kowalski M. and Hamalainen, M, Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods, Physics in Medicine and Biology, 2012 http://dx.doi.org/10.1088/0031-9155/57/7/1937 Parameters ---------- M : array The data G : array The forward operator alpha : float The regularization parameter. It should be between 0 and 100. A value of 100 will lead to an empty active set (no active source). maxit : int The number of iterations tol : float Tolerance on dual gap for convergence checking verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). active_set_size : int Size of active set increase at each iteration. debias : bool Debias source estimates n_orient : int The number of orientation (1 : fixed or 3 : free or loose). solver : 'prox' | 'cd' | 'auto' The algorithm to use for the optimization. Returns ------- X : array The source estimates. active_set : array The mask of active sources. E : list The value of the objective function over the iterations. """ n_dipoles = G.shape[1] n_positions = n_dipoles // n_orient alpha_max = norm_l2inf(np.dot(G.T, M), n_orient, copy=False) logger.info("-- ALPHA MAX : %s" % alpha_max) alpha = float(alpha) has_sklearn = True try: from sklearn.linear_model.coordinate_descent import MultiTaskLasso except ImportError: has_sklearn = False if solver == 'auto': if has_sklearn and (n_orient == 1): solver = 'cd' else: solver = 'prox' if solver == 'cd': if n_orient == 1 and not has_sklearn: warnings.warn("Scikit-learn >= 0.12 cannot be found. " "Using proximal iterations instead of coordinate " "descent.") solver = 'prox' if n_orient > 1: warnings.warn("Coordinate descent is only available for fixed " "orientation. Using proximal iterations instead of " "coordinate descent") solver = 'prox' if solver == 'cd': logger.info("Using coordinate descent") l21_solver = _mixed_norm_solver_cd else: logger.info("Using proximal iterations") l21_solver = _mixed_norm_solver_prox if active_set_size is not None: X_init = None n_sensors, n_times = M.shape idx_large_corr = np.argsort(groups_norm2(np.dot(G.T, M), n_orient)) active_set = np.zeros(n_positions, dtype=np.bool) active_set[idx_large_corr[-active_set_size:]] = True if n_orient > 1: active_set = np.tile(active_set[:, None], [1, n_orient]).ravel() for k in range(maxit): X, as_, E = l21_solver(M, G[:, active_set], alpha, maxit=maxit, tol=tol, init=X_init, n_orient=n_orient) as_ = np.where(active_set)[0][as_] gap, pobj, dobj, R = dgap_l21(M, G, X, as_, alpha, n_orient) logger.info('gap = %s, pobj = %s' % (gap, pobj)) if gap < tol: logger.info('Convergence reached ! (gap: %s < %s)' % (gap, tol)) break else: # add sources idx_large_corr = np.argsort(groups_norm2(np.dot(G.T, R), n_orient)) new_active_idx = idx_large_corr[-active_set_size:] if n_orient > 1: new_active_idx = (n_orient * new_active_idx[:, None] + np.arange(n_orient)[None, :]) new_active_idx = new_active_idx.ravel() idx_old_active_set = as_ active_set_old = active_set.copy() active_set[new_active_idx] = True as_size = np.sum(active_set) logger.info('active set size %s' % as_size) X_init = np.zeros((as_size, n_times), dtype=X.dtype) idx_active_set = np.where(active_set)[0] idx = np.searchsorted(idx_active_set, idx_old_active_set) X_init[idx] = X if np.all(active_set_old == active_set): logger.info('Convergence stopped (AS did not change) !') break else: logger.warning('Did NOT converge ! (gap: %s > %s)' % (gap, tol)) active_set = np.zeros_like(active_set) active_set[as_] = True else: X, active_set, E = l21_solver(M, G, alpha, maxit=maxit, tol=tol, n_orient=n_orient) if (active_set.sum() > 0) and debias: bias = compute_bias(M, G[:, active_set], X, n_orient=n_orient) X *= bias[:, np.newaxis] return X, active_set, E ############################################################################### # TF-MxNE @verbose def tf_lipschitz_constant(M, G, phi, phiT, tol=1e-3, verbose=None): """Compute lipschitz constant for FISTA It uses a power iteration method. """ n_times = M.shape[1] n_points = G.shape[1] iv = np.ones((n_points, n_times), dtype=np.float) v = phi(iv) L = 1e100 for it in range(100): L_old = L logger.info('Lipschitz estimation: iteration = %d' % it) iv = np.real(phiT(v)) Gv = np.dot(G, iv) GtGv = np.dot(G.T, Gv) w = phi(GtGv) L = np.max(np.abs(w)) # l_inf norm v = w / L if abs((L - L_old) / L_old) < tol: break return L def safe_max_abs(A, ia): """Compute np.max(np.abs(A[ia])) possible with empty A""" if np.sum(ia): # ia is not empty return np.max(np.abs(A[ia])) else: return 0. def safe_max_abs_diff(A, ia, B, ib): """Compute np.max(np.abs(A)) possible with empty A""" A = A[ia] if np.sum(ia) else 0.0 B = B[ib] if np.sum(ia) else 0.0 return np.max(np.abs(A - B)) class _Phi(object): """Util class to have phi stft as callable without using a lambda that does not pickle""" def __init__(self, wsize, tstep, n_coefs): self.wsize = wsize self.tstep = tstep self.n_coefs = n_coefs def __call__(self, x): return stft(x, self.wsize, self.tstep, verbose=False).reshape(-1, self.n_coefs) class _PhiT(object): """Util class to have phi.T istft as callable without using a lambda that does not pickle""" def __init__(self, tstep, n_freq, n_step, n_times): self.tstep = tstep self.n_freq = n_freq self.n_step = n_step self.n_times = n_times def __call__(self, z): return istft(z.reshape(-1, self.n_freq, self.n_step), self.tstep, self.n_times) @verbose def tf_mixed_norm_solver(M, G, alpha_space, alpha_time, wsize=64, tstep=4, n_orient=1, maxit=200, tol=1e-8, log_objective=True, lipschitz_constant=None, debias=True, verbose=None): """Solves TF L21+L1 inverse solver Algorithm is detailed in: A. Gramfort, D. Strohmeier, J. Haueisen, M. Hamalainen, M. Kowalski Time-Frequency Mixed-Norm Estimates: Sparse M/EEG imaging with non-stationary source activations Neuroimage, Volume 70, 15 April 2013, Pages 410-422, ISSN 1053-8119, DOI: 10.1016/j.neuroimage.2012.12.051. Functional Brain Imaging with M/EEG Using Structured Sparsity in Time-Frequency Dictionaries Gramfort A., Strohmeier D., Haueisen J., Hamalainen M. and Kowalski M. INFORMATION PROCESSING IN MEDICAL IMAGING Lecture Notes in Computer Science, 2011, Volume 6801/2011, 600-611, DOI: 10.1007/978-3-642-22092-0_49 http://dx.doi.org/10.1007/978-3-642-22092-0_49 Parameters ---------- M : array The data. G : array The forward operator. alpha_space : float The spatial regularization parameter. It should be between 0 and 100. alpha_time : float The temporal regularization parameter. The higher it is the smoother will be the estimated time series. wsize: int length of the STFT window in samples (must be a multiple of 4). tstep: int step between successive windows in samples (must be a multiple of 2, a divider of wsize and smaller than wsize/2) (default: wsize/2). n_orient : int The number of orientation (1 : fixed or 3 : free or loose). maxit : int The number of iterations. tol : float If absolute difference between estimates at 2 successive iterations is lower than tol, the convergence is reached. log_objective : bool If True, the value of the minimized objective function is computed and stored at every iteration. lipschitz_constant : float | None The lipschitz constant of the spatio temporal linear operator. If None it is estimated. debias : bool Debias source estimates. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- X : array The source estimates. active_set : array The mask of active sources. E : list The value of the objective function at each iteration. If log_objective is False, it will be empty. """ n_sensors, n_times = M.shape n_dipoles = G.shape[1] n_step = int(ceil(n_times / float(tstep))) n_freq = wsize // 2 + 1 n_coefs = n_step * n_freq phi = _Phi(wsize, tstep, n_coefs) phiT = _PhiT(tstep, n_freq, n_step, n_times) Z = np.zeros((0, n_coefs), dtype=np.complex) active_set = np.zeros(n_dipoles, dtype=np.bool) R = M.copy() # residual if lipschitz_constant is None: lipschitz_constant = 1.1 * tf_lipschitz_constant(M, G, phi, phiT) logger.info("lipschitz_constant : %s" % lipschitz_constant) t = 1.0 Y = np.zeros((n_dipoles, n_coefs), dtype=np.complex) # FISTA aux variable Y[active_set] = Z E = [] # track cost function Y_time_as = None Y_as = None alpha_time_lc = alpha_time / lipschitz_constant alpha_space_lc = alpha_space / lipschitz_constant for i in range(maxit): Z0, active_set_0 = Z, active_set # store previous values if active_set.sum() < len(R) and Y_time_as is not None: # trick when using tight frame to do a first screen based on # L21 prox (L21 norms are not changed by phi) GTR = np.dot(G.T, R) / lipschitz_constant A = GTR.copy() A[Y_as] += Y_time_as _, active_set_l21 = prox_l21(A, alpha_space_lc, n_orient) # just compute prox_l1 on rows that won't be zeroed by prox_l21 B = Y[active_set_l21] + phi(GTR[active_set_l21]) Z, active_set_l1 = prox_l1(B, alpha_time_lc, n_orient) active_set_l21[active_set_l21] = active_set_l1 active_set_l1 = active_set_l21 else: Y += np.dot(G.T, phi(R)) / lipschitz_constant # ISTA step Z, active_set_l1 = prox_l1(Y, alpha_time_lc, n_orient) Z, active_set_l21 = prox_l21(Z, alpha_space_lc, n_orient, shape=(-1, n_freq, n_step), is_stft=True) active_set = active_set_l1 active_set[active_set_l1] = active_set_l21 # Check convergence : max(abs(Z - Z0)) < tol stop = (safe_max_abs(Z, ~active_set_0[active_set]) < tol and safe_max_abs(Z0, ~active_set[active_set_0]) < tol and safe_max_abs_diff(Z, active_set_0[active_set], Z0, active_set[active_set_0]) < tol) if stop: print('Convergence reached !') break # FISTA 2 steps # compute efficiently : Y = Z + ((t0 - 1.0) / t) * (Z - Z0) t0 = t t = 0.5 * (1.0 + sqrt(1.0 + 4.0 * t ** 2)) Y.fill(0.0) dt = ((t0 - 1.0) / t) Y[active_set] = (1.0 + dt) * Z if len(Z0): Y[active_set_0] -= dt * Z0 Y_as = active_set_0 | active_set Y_time_as = phiT(Y[Y_as]) R = M - np.dot(G[:, Y_as], Y_time_as) if log_objective: # log cost function value Z2 = np.abs(Z) Z2 **= 2 X = phiT(Z) RZ = M - np.dot(G[:, active_set], X) pobj = 0.5 * linalg.norm(RZ, ord='fro') ** 2 \ + alpha_space * norm_l21(X, n_orient) \ + alpha_time * np.sqrt(np.sum(Z2.T.reshape(-1, n_orient), axis=1)).sum() E.append(pobj) logger.info("Iteration %d :: pobj %f :: n_active %d" % (i + 1, pobj, np.sum(active_set))) else: logger.info("Iteration %d" % i + 1) X = phiT(Z) if (active_set.sum() > 0) and debias: bias = compute_bias(M, G[:, active_set], X, n_orient=n_orient) X *= bias[:, np.newaxis] return X, active_set, E
bsd-2-clause
glouppe/scikit-learn
sklearn/tests/test_base.py
45
7049
# Author: Gael Varoquaux # License: BSD 3 clause import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.base import BaseEstimator, clone, is_classifier from sklearn.svm import SVC from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.utils import deprecated ############################################################################# # A few test classes class MyEstimator(BaseEstimator): def __init__(self, l1=0, empty=None): self.l1 = l1 self.empty = empty class K(BaseEstimator): def __init__(self, c=None, d=None): self.c = c self.d = d class T(BaseEstimator): def __init__(self, a=None, b=None): self.a = a self.b = b class DeprecatedAttributeEstimator(BaseEstimator): def __init__(self, a=None, b=None): self.a = a if b is not None: DeprecationWarning("b is deprecated and renamed 'a'") self.a = b @property @deprecated("Parameter 'b' is deprecated and renamed to 'a'") def b(self): return self._b class Buggy(BaseEstimator): " A buggy estimator that does not set its parameters right. " def __init__(self, a=None): self.a = 1 class NoEstimator(object): def __init__(self): pass def fit(self, X=None, y=None): return self def predict(self, X=None): return None class VargEstimator(BaseEstimator): """Sklearn estimators shouldn't have vargs.""" def __init__(self, *vargs): pass ############################################################################# # The tests def test_clone(): # Tests that clone creates a correct deep copy. # We create an estimator, make a copy of its original state # (which, in this case, is the current state of the estimator), # and check that the obtained copy is a correct deep copy. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) new_selector = clone(selector) assert_true(selector is not new_selector) assert_equal(selector.get_params(), new_selector.get_params()) selector = SelectFpr(f_classif, alpha=np.zeros((10, 2))) new_selector = clone(selector) assert_true(selector is not new_selector) def test_clone_2(): # Tests that clone doesn't copy everything. # We first create an estimator, give it an own attribute, and # make a copy of its original state. Then we check that the copy doesn't # have the specific attribute we manually added to the initial estimator. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) selector.own_attribute = "test" new_selector = clone(selector) assert_false(hasattr(new_selector, "own_attribute")) def test_clone_buggy(): # Check that clone raises an error on buggy estimators. buggy = Buggy() buggy.a = 2 assert_raises(RuntimeError, clone, buggy) no_estimator = NoEstimator() assert_raises(TypeError, clone, no_estimator) varg_est = VargEstimator() assert_raises(RuntimeError, clone, varg_est) def test_clone_empty_array(): # Regression test for cloning estimators with empty arrays clf = MyEstimator(empty=np.array([])) clf2 = clone(clf) assert_array_equal(clf.empty, clf2.empty) clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]]))) clf2 = clone(clf) assert_array_equal(clf.empty.data, clf2.empty.data) def test_clone_nan(): # Regression test for cloning estimators with default parameter as np.nan clf = MyEstimator(empty=np.nan) clf2 = clone(clf) assert_true(clf.empty is clf2.empty) def test_repr(): # Smoke test the repr of the base estimator. my_estimator = MyEstimator() repr(my_estimator) test = T(K(), K()) assert_equal( repr(test), "T(a=K(c=None, d=None), b=K(c=None, d=None))" ) some_est = T(a=["long_params"] * 1000) assert_equal(len(repr(some_est)), 415) def test_str(): # Smoke test the str of the base estimator my_estimator = MyEstimator() str(my_estimator) def test_get_params(): test = T(K(), K()) assert_true('a__d' in test.get_params(deep=True)) assert_true('a__d' not in test.get_params(deep=False)) test.set_params(a__d=2) assert_true(test.a.d == 2) assert_raises(ValueError, test.set_params, a__a=2) def test_get_params_deprecated(): # deprecated attribute should not show up as params est = DeprecatedAttributeEstimator(a=1) assert_true('a' in est.get_params()) assert_true('a' in est.get_params(deep=True)) assert_true('a' in est.get_params(deep=False)) assert_true('b' not in est.get_params()) assert_true('b' not in est.get_params(deep=True)) assert_true('b' not in est.get_params(deep=False)) def test_is_classifier(): svc = SVC() assert_true(is_classifier(svc)) assert_true(is_classifier(GridSearchCV(svc, {'C': [0.1, 1]}))) assert_true(is_classifier(Pipeline([('svc', svc)]))) assert_true(is_classifier(Pipeline([('svc_cv', GridSearchCV(svc, {'C': [0.1, 1]}))]))) def test_set_params(): # test nested estimator parameter setting clf = Pipeline([("svc", SVC())]) # non-existing parameter in svc assert_raises(ValueError, clf.set_params, svc__stupid_param=True) # non-existing parameter of pipeline assert_raises(ValueError, clf.set_params, svm__stupid_param=True) # we don't currently catch if the things in pipeline are estimators # bad_pipeline = Pipeline([("bad", NoEstimator())]) # assert_raises(AttributeError, bad_pipeline.set_params, # bad__stupid_param=True) def test_score_sample_weight(): from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn import datasets rng = np.random.RandomState(0) # test both ClassifierMixin and RegressorMixin estimators = [DecisionTreeClassifier(max_depth=2), DecisionTreeRegressor(max_depth=2)] sets = [datasets.load_iris(), datasets.load_boston()] for est, ds in zip(estimators, sets): est.fit(ds.data, ds.target) # generate random sample weights sample_weight = rng.randint(1, 10, size=len(ds.target)) # check that the score with and without sample weights are different assert_not_equal(est.score(ds.data, ds.target), est.score(ds.data, ds.target, sample_weight=sample_weight), msg="Unweighted and weighted scores " "are unexpectedly equal")
bsd-3-clause
jjsalomon/python-analytics
pandas3 - Data Manipulation/pandas10 - Data Aggregation - GroupBy.py
1
3153
# -*- coding: utf-8 -*- """ Created on Tue May 30 21:57:10 2017 @author: azkei The last stage is Data Aggregation. Introduction: For Data Aggregation, you generally mean a transofmration that produces a single integer from an array. In fact you have already made many operations of Data Aggregation, for example, when we calculated the sum(), mean() and count(). These functions operate on a set of Data and perform a calculation with a consistent result consisting of a single value. However a more formal manner and the one with more control in data aggregation is that which involves the categorization of a set. The categorization of a set data carried out for grouping is often a critical stage. In the process of data analysis, it is a process of transformation after the division into diferent groups, you apply a function that converts or transforms the data in some way depending on the group they belong to. Very often the two phases of grouping and apaplication of a function are performed in a single step. Also for this part of the data analysis, pandas provides a tool very flexible and high performance: GroupBy Generally it refers to its internal mechanism as a process called Split-Apply-Combine with three operations 1. Splitting: Division into groups of data sets 2. Applying: Application of a function on each group 3. Combining: Combination of all the results obtained by different groups """ # 1. A practical example # First generate data frame = pd.DataFrame({'color':['white','red','green','red','green'], 'object':['pen','pencil','pencil','ashtray','pen'], 'price1':[5.56,4.20,1.30,0.56,2.75], 'price2':[4.75,4.12,1.60,0.75,3.15]}) frame # Suppose we want to calculate the average price1 column using group labels # listed in the column color. group = frame['price1'].groupby(frame['color']) # The result is a GroupBy object - the operation was not calculation, it was just # to collect all the information needed to calculate to be executed. # This process is called grouping - which all rows having the same value of color # are grouped into a single item. # To analyze this more.. group.groups # Each group is specified into where it starts and ends on the rows # Now its sufficient to apply the operation on the group to obtain results # for each group # Mean group.mean() # Sum group.sum() # 2. Hierarchical Grouping # We have seen how to group the data according to the values of a column # as a key choice. The same thing can be extended to multiple columns # i.e. make a grouping of multiple keys hierarchical ggroup = frame['price1'].groupby([frame['color'],frame['object']]) ggroup ggroup.sum() # So far we have applied the grouping to a single column of data, but in reality # it can be extended to multiple columns or the entire DataFrame. # We do not need to reuse the object GroupBy serveral times, # it is convenient to combine in a single passing all of the grouping and calculation # to be done, without any intermediate variable frame[['price1','price2']].groupby(frame['color']).mean() frame.groupby(frame['color']).mean()
mit
hugobowne/scikit-learn
sklearn/neighbors/tests/test_kde.py
80
5560
import numpy as np from sklearn.utils.testing import (assert_allclose, assert_raises, assert_equal) from sklearn.neighbors import KernelDensity, KDTree, NearestNeighbors from sklearn.neighbors.ball_tree import kernel_norm from sklearn.pipeline import make_pipeline from sklearn.datasets import make_blobs from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) / X.shape[0] if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_kernel_density(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_features) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for bandwidth in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, bandwidth) def check_results(kernel, bandwidth, atol, rtol): kde = KernelDensity(kernel=kernel, bandwidth=bandwidth, atol=atol, rtol=rtol) log_dens = kde.fit(X).score_samples(Y) assert_allclose(np.exp(log_dens), dens_true, atol=atol, rtol=max(1E-7, rtol)) assert_allclose(np.exp(kde.score(Y)), np.prod(dens_true), atol=atol, rtol=max(1E-7, rtol)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, bandwidth, atol, rtol) def test_kernel_density_sampling(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) bandwidth = 0.2 for kernel in ['gaussian', 'tophat']: # draw a tophat sample kde = KernelDensity(bandwidth, kernel=kernel).fit(X) samp = kde.sample(100) assert_equal(X.shape, samp.shape) # check that samples are in the right range nbrs = NearestNeighbors(n_neighbors=1).fit(X) dist, ind = nbrs.kneighbors(X, return_distance=True) if kernel == 'tophat': assert np.all(dist < bandwidth) elif kernel == 'gaussian': # 5 standard deviations is safe for 100 samples, but there's a # very small chance this test could fail. assert np.all(dist < 5 * bandwidth) # check unsupported kernels for kernel in ['epanechnikov', 'exponential', 'linear', 'cosine']: kde = KernelDensity(bandwidth, kernel=kernel).fit(X) assert_raises(NotImplementedError, kde.sample, 100) # non-regression test: used to return a scalar X = rng.randn(4, 1) kde = KernelDensity(kernel="gaussian").fit(X) assert_equal(kde.sample().shape, (1, 1)) def test_kde_algorithm_metric_choice(): # Smoke test for various metrics and algorithms rng = np.random.RandomState(0) X = rng.randn(10, 2) # 2 features required for haversine dist. Y = rng.randn(10, 2) for algorithm in ['auto', 'ball_tree', 'kd_tree']: for metric in ['euclidean', 'minkowski', 'manhattan', 'chebyshev', 'haversine']: if algorithm == 'kd_tree' and metric not in KDTree.valid_metrics: assert_raises(ValueError, KernelDensity, algorithm=algorithm, metric=metric) else: kde = KernelDensity(algorithm=algorithm, metric=metric) kde.fit(X) y_dens = kde.score_samples(Y) assert_equal(y_dens.shape, Y.shape[:1]) def test_kde_score(n_samples=100, n_features=3): pass #FIXME #np.random.seed(0) #X = np.random.random((n_samples, n_features)) #Y = np.random.random((n_samples, n_features)) def test_kde_badargs(): assert_raises(ValueError, KernelDensity, algorithm='blah') assert_raises(ValueError, KernelDensity, bandwidth=0) assert_raises(ValueError, KernelDensity, kernel='blah') assert_raises(ValueError, KernelDensity, metric='blah') assert_raises(ValueError, KernelDensity, algorithm='kd_tree', metric='blah') def test_kde_pipeline_gridsearch(): # test that kde plays nice in pipelines and grid-searches X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) pipe1 = make_pipeline(StandardScaler(with_mean=False, with_std=False), KernelDensity(kernel="gaussian")) params = dict(kerneldensity__bandwidth=[0.001, 0.01, 0.1, 1, 10]) search = GridSearchCV(pipe1, param_grid=params, cv=5) search.fit(X) assert_equal(search.best_params_['kerneldensity__bandwidth'], .1)
bsd-3-clause
ahoyosid/scikit-learn
sklearn/decomposition/tests/test_nmf.py
14
6123
import numpy as np from scipy import linalg from sklearn.decomposition import nmf from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import raises from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less random_state = np.random.mtrand.RandomState(0) @raises(ValueError) def test_initialize_nn_input(): # Test NNDSVD behaviour on negative input nmf._initialize_nmf(-np.ones((2, 2)), 2) def test_initialize_nn_output(): # Test that NNDSVD does not return negative values data = np.abs(random_state.randn(10, 10)) for var in (None, 'a', 'ar'): W, H = nmf._initialize_nmf(data, 10, random_state=0) assert_false((W < 0).any() or (H < 0).any()) def test_initialize_close(): # Test NNDSVD error # Test that _initialize_nmf error is less than the standard deviation of # the entries in the matrix. A = np.abs(random_state.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10) error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert_true(error <= sdev) def test_initialize_variants(): # Test NNDSVD variants correctness # Test that the variants 'a' and 'ar' differ from basic NNDSVD only where # the basic version has zeros. data = np.abs(random_state.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, variant=None) Wa, Ha = nmf._initialize_nmf(data, 10, variant='a') War, Har = nmf._initialize_nmf(data, 10, variant='ar', random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_true(np.allclose(evl[ref != 0], ref[ref != 0])) @raises(ValueError) def test_projgrad_nmf_fit_nn_input(): # Test model fit behaviour on negative input A = -np.ones((2, 2)) m = nmf.ProjectedGradientNMF(n_components=2, init=None, random_state=0) m.fit(A) def test_projgrad_nmf_fit_nn_output(): # Test that the decomposition does not contain negative values A = np.c_[5 * np.ones(5) - np.arange(1, 6), 5 * np.ones(5) + np.arange(1, 6)] for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar'): model = nmf.ProjectedGradientNMF(n_components=2, init=init, random_state=0) transf = model.fit_transform(A) assert_false((model.components_ < 0).any() or (transf < 0).any()) def test_projgrad_nmf_fit_close(): # Test that the fit is not too far away pnmf = nmf.ProjectedGradientNMF(5, init='nndsvda', random_state=0) X = np.abs(random_state.randn(6, 5)) assert_less(pnmf.fit(X).reconstruction_err_, 0.05) def test_nls_nn_output(): # Test that NLS solver doesn't return negative values A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, -A), A.T, A, 0.001, 100) assert_false((Ap < 0).any()) def test_nls_close(): # Test that the NLS results should be close A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, A), A.T, np.zeros_like(A), 0.001, 100) assert_true((np.abs(Ap - A) < 0.01).all()) def test_projgrad_nmf_transform(): # Test that NMF.transform returns close values # (transform uses scipy.optimize.nnls for now) A = np.abs(random_state.randn(6, 5)) m = nmf.ProjectedGradientNMF(n_components=5, init='nndsvd', random_state=0) transf = m.fit_transform(A) assert_true(np.allclose(transf, m.transform(A), atol=1e-2, rtol=0)) def test_n_components_greater_n_features(): # Smoke test for the case of more components than features. A = np.abs(random_state.randn(30, 10)) nmf.ProjectedGradientNMF(n_components=15, sparseness='data', random_state=0).fit(A) def test_projgrad_nmf_sparseness(): # Test sparseness # Test that sparsity constraints actually increase sparseness in the # part where they are applied. A = np.abs(random_state.randn(10, 10)) m = nmf.ProjectedGradientNMF(n_components=5, random_state=0).fit(A) data_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='data', random_state=0).fit(A).data_sparseness_ comp_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='components', random_state=0).fit(A).comp_sparseness_ assert_greater(data_sp, m.data_sparseness_) assert_greater(comp_sp, m.comp_sparseness_) def test_sparse_input(): # Test that sparse matrices are accepted as input from scipy.sparse import csc_matrix A = np.abs(random_state.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 T1 = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999).fit_transform(A) A_sparse = csc_matrix(A) pg_nmf = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999) T2 = pg_nmf.fit_transform(A_sparse) assert_array_almost_equal(pg_nmf.reconstruction_err_, linalg.norm(A - np.dot(T2, pg_nmf.components_), 'fro')) assert_array_almost_equal(T1, T2) # same with sparseness T2 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A_sparse) T1 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A) def test_sparse_transform(): # Test that transform works on sparse data. Issue #2124 from scipy.sparse import csc_matrix A = np.abs(random_state.randn(5, 4)) A[A > 1.0] = 0 A = csc_matrix(A) model = nmf.NMF() A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) # This solver seems pretty inconsistent assert_array_almost_equal(A_fit_tr, A_tr, decimal=2) if __name__ == '__main__': import nose nose.run(argv=['', __file__])
bsd-3-clause
GT-IDEaS/SkillsWorkshop2017
Week03/k.means.MariaSotoGiron.py
2
1305
#!/usr/bin/env python #https://www.datascience.com/blog/introduction-to-k-means-clustering-algorithm-learn-data-science-tutorials import numpy as np from matplotlib import pyplot #import numpy.core.multiarray from sklearn.cluster import KMeans import pandas as pd ### For the purposes of this example, we store feature data from our ### dataframe `df`, in the `f1` and `f2` arrays. We combine this into ### a feature matrix `X` before entering it into the algorithm. # Read input file .csv df = pd.read_csv( filepath_or_buffer='faithful.csv', sep=',') #print (df) f1 = df['eruptions'].values f2 = df['waiting'].values data=np.matrix(zip(f1,f2)) k=2 kmeans = KMeans(n_clusters=k).fit(data) #The cluster labels are returned in kmeans.labels_. labels = kmeans.labels_ centroids = kmeans.cluster_centers_ #plot clustering for i in range(k): # select only data observations with cluster label == i ds = data[np.where(labels==i)] # plot the data observations pyplot.plot(ds[:,0],ds[:,1],'o') # plot the centroids lines = pyplot.plot(centroids[i,0],centroids[i,1],'kx') # make the centroid x's bigger pyplot.setp(lines,ms=15.0) pyplot.setp(lines,mew=2.0) pyplot.show() #Step 4: Iterate Over Several Values of K #kmeans = KMeans(n_clusters=4).fit(X)
bsd-3-clause
petosegan/scikit-learn
sklearn/tests/test_common.py
127
7665
""" General tests for all estimators in sklearn. """ # Authors: Andreas Mueller <[email protected]> # Gael Varoquaux [email protected] # License: BSD 3 clause from __future__ import print_function import os import warnings import sys import pkgutil from sklearn.externals.six import PY3 from sklearn.utils.testing import assert_false, clean_warning_registry from sklearn.utils.testing import all_estimators from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_in from sklearn.utils.testing import ignore_warnings import sklearn from sklearn.cluster.bicluster import BiclusterMixin from sklearn.linear_model.base import LinearClassifierMixin from sklearn.utils.estimator_checks import ( _yield_all_checks, CROSS_DECOMPOSITION, check_parameters_default_constructible, check_class_weight_balanced_linear_classifier, check_transformer_n_iter, check_non_transformer_estimators_n_iter, check_get_params_invariance) def test_all_estimator_no_base_class(): # test that all_estimators doesn't find abstract classes. for name, Estimator in all_estimators(): msg = ("Base estimators such as {0} should not be included" " in all_estimators").format(name) assert_false(name.lower().startswith('base'), msg=msg) def test_all_estimators(): # Test that estimators are default-constructible, clonable # and have working repr. estimators = all_estimators(include_meta_estimators=True) # Meta sanity-check to make sure that the estimator introspection runs # properly assert_greater(len(estimators), 0) for name, Estimator in estimators: # some can just not be sensibly default constructed yield check_parameters_default_constructible, name, Estimator def test_non_meta_estimators(): # input validation etc for non-meta estimators estimators = all_estimators() for name, Estimator in estimators: if issubclass(Estimator, BiclusterMixin): continue if name.startswith("_"): continue for check in _yield_all_checks(name, Estimator): yield check, name, Estimator def test_configure(): # Smoke test the 'configure' step of setup, this tests all the # 'configure' functions in the setup.pys in the scikit cwd = os.getcwd() setup_path = os.path.abspath(os.path.join(sklearn.__path__[0], '..')) setup_filename = os.path.join(setup_path, 'setup.py') if not os.path.exists(setup_filename): return try: os.chdir(setup_path) old_argv = sys.argv sys.argv = ['setup.py', 'config'] clean_warning_registry() with warnings.catch_warnings(): # The configuration spits out warnings when not finding # Blas/Atlas development headers warnings.simplefilter('ignore', UserWarning) if PY3: with open('setup.py') as f: exec(f.read(), dict(__name__='__main__')) else: execfile('setup.py', dict(__name__='__main__')) finally: sys.argv = old_argv os.chdir(cwd) def test_class_weight_balanced_linear_classifiers(): classifiers = all_estimators(type_filter='classifier') clean_warning_registry() with warnings.catch_warnings(record=True): linear_classifiers = [ (name, clazz) for name, clazz in classifiers if 'class_weight' in clazz().get_params().keys() and issubclass(clazz, LinearClassifierMixin)] for name, Classifier in linear_classifiers: if name == "LogisticRegressionCV": # Contrary to RidgeClassifierCV, LogisticRegressionCV use actual # CV folds and fit a model for each CV iteration before averaging # the coef. Therefore it is expected to not behave exactly as the # other linear model. continue yield check_class_weight_balanced_linear_classifier, name, Classifier @ignore_warnings def test_import_all_consistency(): # Smoke test to check that any name in a __all__ list is actually defined # in the namespace of the module or package. pkgs = pkgutil.walk_packages(path=sklearn.__path__, prefix='sklearn.', onerror=lambda _: None) submods = [modname for _, modname, _ in pkgs] for modname in submods + ['sklearn']: if ".tests." in modname: continue package = __import__(modname, fromlist="dummy") for name in getattr(package, '__all__', ()): if getattr(package, name, None) is None: raise AttributeError( "Module '{0}' has no attribute '{1}'".format( modname, name)) def test_root_import_all_completeness(): EXCEPTIONS = ('utils', 'tests', 'base', 'setup') for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__, onerror=lambda _: None): if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS: continue assert_in(modname, sklearn.__all__) def test_non_transformer_estimators_n_iter(): # Test that all estimators of type which are non-transformer # and which have an attribute of max_iter, return the attribute # of n_iter atleast 1. for est_type in ['regressor', 'classifier', 'cluster']: regressors = all_estimators(type_filter=est_type) for name, Estimator in regressors: # LassoLars stops early for the default alpha=1.0 for # the iris dataset. if name == 'LassoLars': estimator = Estimator(alpha=0.) else: estimator = Estimator() if hasattr(estimator, "max_iter"): # These models are dependent on external solvers like # libsvm and accessing the iter parameter is non-trivial. if name in (['Ridge', 'SVR', 'NuSVR', 'NuSVC', 'RidgeClassifier', 'SVC', 'RandomizedLasso', 'LogisticRegressionCV']): continue # Tested in test_transformer_n_iter below elif (name in CROSS_DECOMPOSITION or name in ['LinearSVC', 'LogisticRegression']): continue else: # Multitask models related to ENet cannot handle # if y is mono-output. yield (check_non_transformer_estimators_n_iter, name, estimator, 'Multi' in name) def test_transformer_n_iter(): transformers = all_estimators(type_filter='transformer') for name, Estimator in transformers: estimator = Estimator() # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] if hasattr(estimator, "max_iter") and name not in external_solver: yield check_transformer_n_iter, name, estimator def test_get_params_invariance(): # Test for estimators that support get_params, that # get_params(deep=False) is a subset of get_params(deep=True) # Related to issue #4465 estimators = all_estimators(include_meta_estimators=False, include_other=True) for name, Estimator in estimators: if hasattr(Estimator, 'get_params'): yield check_get_params_invariance, name, Estimator
bsd-3-clause
jordancheah/zipline
tests/modelling/test_us_equity_pricing_loader.py
15
23196
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for zipline.data.ffc.loaders.us_equity_pricing """ from unittest import TestCase from nose_parameterized import parameterized from numpy import ( arange, datetime64, uint32, ) from numpy.testing import ( assert_allclose, assert_array_equal, ) from pandas import ( concat, DataFrame, DatetimeIndex, Timestamp, ) from pandas.util.testing import assert_index_equal from testfixtures import TempDirectory from zipline.lib.adjustment import Float64Multiply from zipline.data.equities import USEquityPricing from zipline.data.ffc.synthetic import ( NullAdjustmentReader, SyntheticDailyBarWriter, ) from zipline.data.ffc.loaders.us_equity_pricing import ( BcolzDailyBarReader, SQLiteAdjustmentReader, SQLiteAdjustmentWriter, USEquityPricingLoader, ) from zipline.errors import WindowLengthTooLong from zipline.finance.trading import TradingEnvironment from zipline.utils.test_utils import ( seconds_to_timestamp, str_to_seconds, ) # Test calendar ranges over the month of June 2015 # June 2015 # Mo Tu We Th Fr Sa Su # 1 2 3 4 5 6 7 # 8 9 10 11 12 13 14 # 15 16 17 18 19 20 21 # 22 23 24 25 26 27 28 # 29 30 TEST_CALENDAR_START = Timestamp('2015-06-01', tz='UTC') TEST_CALENDAR_STOP = Timestamp('2015-06-30', tz='UTC') TEST_QUERY_START = Timestamp('2015-06-10', tz='UTC') TEST_QUERY_STOP = Timestamp('2015-06-19', tz='UTC') # One asset for each of the cases enumerated in load_raw_arrays_from_bcolz. EQUITY_INFO = DataFrame( [ # 1) The equity's trades start and end before query. {'start_date': '2015-06-01', 'end_date': '2015-06-05'}, # 2) The equity's trades start and end after query. {'start_date': '2015-06-22', 'end_date': '2015-06-30'}, # 3) The equity's data covers all dates in range. {'start_date': '2015-06-02', 'end_date': '2015-06-30'}, # 4) The equity's trades start before the query start, but stop # before the query end. {'start_date': '2015-06-01', 'end_date': '2015-06-15'}, # 5) The equity's trades start and end during the query. {'start_date': '2015-06-12', 'end_date': '2015-06-18'}, # 6) The equity's trades start during the query, but extend through # the whole query. {'start_date': '2015-06-15', 'end_date': '2015-06-25'}, ], index=arange(1, 7), columns=['start_date', 'end_date'], ).astype(datetime64) TEST_QUERY_ASSETS = EQUITY_INFO.index class BcolzDailyBarTestCase(TestCase): def setUp(self): all_trading_days = TradingEnvironment.instance().trading_days self.trading_days = all_trading_days[ all_trading_days.get_loc(TEST_CALENDAR_START): all_trading_days.get_loc(TEST_CALENDAR_STOP) + 1 ] self.asset_info = EQUITY_INFO self.writer = SyntheticDailyBarWriter( self.asset_info, self.trading_days, ) self.dir_ = TempDirectory() self.dir_.create() self.dest = self.dir_.getpath('daily_equity_pricing.bcolz') def tearDown(self): self.dir_.cleanup() @property def assets(self): return self.asset_info.index def trading_days_between(self, start, end): return self.trading_days[self.trading_days.slice_indexer(start, end)] def asset_start(self, asset_id): return self.writer.asset_start(asset_id) def asset_end(self, asset_id): return self.writer.asset_end(asset_id) def dates_for_asset(self, asset_id): start, end = self.asset_start(asset_id), self.asset_end(asset_id) return self.trading_days_between(start, end) def test_write_ohlcv_content(self): result = self.writer.write(self.dest, self.trading_days, self.assets) for column in SyntheticDailyBarWriter.OHLCV: idx = 0 data = result[column][:] multiplier = 1 if column == 'volume' else 1000 for asset_id in self.assets: for date in self.dates_for_asset(asset_id): self.assertEqual( SyntheticDailyBarWriter.expected_value( asset_id, date, column ) * multiplier, data[idx], ) idx += 1 self.assertEqual(idx, len(data)) def test_write_day_and_id(self): result = self.writer.write(self.dest, self.trading_days, self.assets) idx = 0 ids = result['id'] days = result['day'] for asset_id in self.assets: for date in self.dates_for_asset(asset_id): self.assertEqual(ids[idx], asset_id) self.assertEqual(date, seconds_to_timestamp(days[idx])) idx += 1 def test_write_attrs(self): result = self.writer.write(self.dest, self.trading_days, self.assets) expected_first_row = { '1': 0, '2': 5, # Asset 1 has 5 trading days. '3': 12, # Asset 2 has 7 trading days. '4': 33, # Asset 3 has 21 trading days. '5': 44, # Asset 4 has 11 trading days. '6': 49, # Asset 5 has 5 trading days. } expected_last_row = { '1': 4, '2': 11, '3': 32, '4': 43, '5': 48, '6': 57, # Asset 6 has 9 trading days. } expected_calendar_offset = { '1': 0, # Starts on 6-01, 1st trading day of month. '2': 15, # Starts on 6-22, 16th trading day of month. '3': 1, # Starts on 6-02, 2nd trading day of month. '4': 0, # Starts on 6-01, 1st trading day of month. '5': 9, # Starts on 6-12, 10th trading day of month. '6': 10, # Starts on 6-15, 11th trading day of month. } self.assertEqual(result.attrs['first_row'], expected_first_row) self.assertEqual(result.attrs['last_row'], expected_last_row) self.assertEqual( result.attrs['calendar_offset'], expected_calendar_offset, ) assert_index_equal( self.trading_days, DatetimeIndex(result.attrs['calendar'], tz='UTC'), ) def _check_read_results(self, columns, assets, start_date, end_date): table = self.writer.write(self.dest, self.trading_days, self.assets) reader = BcolzDailyBarReader(table) dates = self.trading_days_between(start_date, end_date) results = reader.load_raw_arrays(columns, dates, assets) for column, result in zip(columns, results): assert_array_equal( result, self.writer.expected_values_2d( dates, assets, column.name, ) ) @parameterized.expand([ ([USEquityPricing.open],), ([USEquityPricing.close, USEquityPricing.volume],), ([USEquityPricing.volume, USEquityPricing.high, USEquityPricing.low],), (USEquityPricing.columns,), ]) def test_read(self, columns): self._check_read_results( columns, self.assets, TEST_QUERY_START, TEST_QUERY_STOP, ) def test_start_on_asset_start(self): """ Test loading with queries that starts on the first day of each asset's lifetime. """ columns = [USEquityPricing.high, USEquityPricing.volume] for asset in self.assets: self._check_read_results( columns, self.assets, start_date=self.asset_start(asset), end_date=self.trading_days[-1], ) def test_start_on_asset_end(self): """ Test loading with queries that start on the last day of each asset's lifetime. """ columns = [USEquityPricing.close, USEquityPricing.volume] for asset in self.assets: self._check_read_results( columns, self.assets, start_date=self.asset_end(asset), end_date=self.trading_days[-1], ) def test_end_on_asset_start(self): """ Test loading with queries that end on the first day of each asset's lifetime. """ columns = [USEquityPricing.close, USEquityPricing.volume] for asset in self.assets: self._check_read_results( columns, self.assets, start_date=self.trading_days[0], end_date=self.asset_start(asset), ) def test_end_on_asset_end(self): """ Test loading with queries that end on the last day of each asset's lifetime. """ columns = [USEquityPricing.close, USEquityPricing.volume] for asset in self.assets: self._check_read_results( columns, self.assets, start_date=self.trading_days[0], end_date=self.asset_end(asset), ) # ADJUSTMENTS use the following scheme to indicate information about the value # upon inspection. # # 1s place is the equity # # 0.1s place is the action type, with: # # splits, 1 # mergers, 2 # dividends, 3 # # 0.001s is the date SPLITS = DataFrame( [ # Before query range, should be excluded. {'effective_date': str_to_seconds('2015-06-03'), 'ratio': 1.103, 'sid': 1}, # First day of query range, should be excluded. {'effective_date': str_to_seconds('2015-06-10'), 'ratio': 3.110, 'sid': 3}, # Third day of query range, should have last_row of 2 {'effective_date': str_to_seconds('2015-06-12'), 'ratio': 3.112, 'sid': 3}, # After query range, should be excluded. {'effective_date': str_to_seconds('2015-06-21'), 'ratio': 6.121, 'sid': 6}, # Another action in query range, should have last_row of 1 {'effective_date': str_to_seconds('2015-06-11'), 'ratio': 3.111, 'sid': 3}, # Last day of range. Should have last_row of 7 {'effective_date': str_to_seconds('2015-06-19'), 'ratio': 3.119, 'sid': 3}, ], columns=['effective_date', 'ratio', 'sid'], ) MERGERS = DataFrame( [ # Before query range, should be excluded. {'effective_date': str_to_seconds('2015-06-03'), 'ratio': 1.203, 'sid': 1}, # First day of query range, should be excluded. {'effective_date': str_to_seconds('2015-06-10'), 'ratio': 3.210, 'sid': 3}, # Third day of query range, should have last_row of 2 {'effective_date': str_to_seconds('2015-06-12'), 'ratio': 3.212, 'sid': 3}, # After query range, should be excluded. {'effective_date': str_to_seconds('2015-06-25'), 'ratio': 6.225, 'sid': 6}, # Another action in query range, should have last_row of 2 {'effective_date': str_to_seconds('2015-06-12'), 'ratio': 4.212, 'sid': 4}, # Last day of range. Should have last_row of 7 {'effective_date': str_to_seconds('2015-06-19'), 'ratio': 3.219, 'sid': 3}, ], columns=['effective_date', 'ratio', 'sid'], ) DIVIDENDS = DataFrame( [ # Before query range, should be excluded. {'effective_date': str_to_seconds('2015-06-01'), 'ratio': 1.301, 'sid': 1}, # First day of query range, should be excluded. {'effective_date': str_to_seconds('2015-06-10'), 'ratio': 3.310, 'sid': 3}, # Third day of query range, should have last_row of 2 {'effective_date': str_to_seconds('2015-06-12'), 'ratio': 3.312, 'sid': 3}, # After query range, should be excluded. {'effective_date': str_to_seconds('2015-06-25'), 'ratio': 6.325, 'sid': 6}, # Another action in query range, should have last_row of 3 {'effective_date': str_to_seconds('2015-06-15'), 'ratio': 3.315, 'sid': 3}, # Last day of range. Should have last_row of 7 {'effective_date': str_to_seconds('2015-06-19'), 'ratio': 3.319, 'sid': 3}, ], columns=['effective_date', 'ratio', 'sid'], ) class USEquityPricingLoaderTestCase(TestCase): @classmethod def setUpClass(cls): cls.test_data_dir = TempDirectory() cls.db_path = cls.test_data_dir.getpath('adjustments.db') writer = SQLiteAdjustmentWriter(cls.db_path) writer.write(SPLITS, MERGERS, DIVIDENDS) cls.assets = TEST_QUERY_ASSETS all_days = TradingEnvironment.instance().trading_days cls.calendar_days = all_days[ all_days.slice_indexer(TEST_CALENDAR_START, TEST_CALENDAR_STOP) ] cls.asset_info = EQUITY_INFO cls.bcolz_writer = SyntheticDailyBarWriter( cls.asset_info, cls.calendar_days, ) cls.bcolz_path = cls.test_data_dir.getpath('equity_pricing.bcolz') cls.bcolz_writer.write(cls.bcolz_path, cls.calendar_days, cls.assets) @classmethod def tearDownClass(cls): cls.test_data_dir.cleanup() def test_input_sanity(self): # Ensure that the input data doesn't contain adjustments during periods # where the corresponding asset didn't exist. for table in SPLITS, MERGERS, DIVIDENDS: for eff_date_secs, _, sid in table.itertuples(index=False): eff_date = Timestamp(eff_date_secs, unit='s') asset_start, asset_end = EQUITY_INFO.ix[ sid, ['start_date', 'end_date'] ] self.assertGreaterEqual(eff_date, asset_start) self.assertLessEqual(eff_date, asset_end) def calendar_days_between(self, start_date, end_date): return self.calendar_days[ self.calendar_days.slice_indexer(start_date, end_date) ] def expected_adjustments(self, start_date, end_date): price_adjustments = {} volume_adjustments = {} query_days = self.calendar_days_between(start_date, end_date) start_loc = query_days.get_loc(start_date) for table in SPLITS, MERGERS, DIVIDENDS: for eff_date_secs, ratio, sid in table.itertuples(index=False): eff_date = Timestamp(eff_date_secs, unit='s', tz='UTC') # The boundary conditions here are subtle. An adjustment with # an effective date equal to the query start can't have an # effect because adjustments only the array for dates strictly # less than the adjustment effective date. if not (start_date < eff_date <= end_date): continue eff_date_loc = query_days.get_loc(eff_date) delta = eff_date_loc - start_loc # Pricing adjusments should be applied on the date # corresponding to the effective date of the input data. They # should affect all rows **before** the effective date. price_adjustments.setdefault(delta, []).append( Float64Multiply( first_row=0, last_row=delta - 1, col=sid - 1, value=ratio, ) ) # Volume is *inversely* affected by *splits only*. if table is SPLITS: volume_adjustments.setdefault(delta, []).append( Float64Multiply( first_row=0, last_row=delta - 1, col=sid - 1, value=1.0 / ratio, ) ) return price_adjustments, volume_adjustments def test_load_adjustments_from_sqlite(self): reader = SQLiteAdjustmentReader(self.db_path) columns = [USEquityPricing.close, USEquityPricing.volume] query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP ) adjustments = reader.load_adjustments( columns, query_days, self.assets, ) close_adjustments = adjustments[0] volume_adjustments = adjustments[1] expected_close_adjustments, expected_volume_adjustments = \ self.expected_adjustments(TEST_QUERY_START, TEST_QUERY_STOP) self.assertEqual(close_adjustments, expected_close_adjustments) self.assertEqual(volume_adjustments, expected_volume_adjustments) def test_read_no_adjustments(self): adjustment_reader = NullAdjustmentReader() columns = [USEquityPricing.close, USEquityPricing.volume] query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP ) adjustments = adjustment_reader.load_adjustments( columns, query_days, self.assets, ) self.assertEqual(adjustments, [{}, {}]) baseline_reader = BcolzDailyBarReader(self.bcolz_path) pricing_loader = USEquityPricingLoader( baseline_reader, adjustment_reader, ) closes, volumes = pricing_loader.load_adjusted_array( columns, DataFrame(True, index=query_days, columns=self.assets), ) expected_baseline_closes = self.bcolz_writer.expected_values_2d( query_days, self.assets, 'close', ) expected_baseline_volumes = self.bcolz_writer.expected_values_2d( query_days, self.assets, 'volume', ) # AdjustedArrays should yield the same data as the expected baseline. for windowlen in range(1, len(query_days) + 1): for offset, window in enumerate(closes.traverse(windowlen)): assert_array_equal( expected_baseline_closes[offset:offset + windowlen], window, ) for offset, window in enumerate(volumes.traverse(windowlen)): assert_array_equal( expected_baseline_volumes[offset:offset + windowlen], window, ) # Verify that we checked up to the longest possible window. with self.assertRaises(WindowLengthTooLong): closes.traverse(windowlen + 1) with self.assertRaises(WindowLengthTooLong): volumes.traverse(windowlen + 1) def apply_adjustments(self, dates, assets, baseline_values, adjustments): min_date, max_date = dates[[0, -1]] values = baseline_values.copy() for eff_date_secs, ratio, sid in adjustments.itertuples(index=False): eff_date = seconds_to_timestamp(eff_date_secs) if eff_date < min_date or eff_date > max_date: continue eff_date_loc = dates.get_loc(eff_date) asset_col = assets.get_loc(sid) # Apply ratio multiplicatively to the asset column on all rows # **strictly less** than the adjustment effective date. Note that # this will be a no-op in the case that the effective date is the # first entry in dates. values[:eff_date_loc, asset_col] *= ratio return values def test_read_with_adjustments(self): columns = [USEquityPricing.high, USEquityPricing.volume] query_days = self.calendar_days_between( TEST_QUERY_START, TEST_QUERY_STOP ) baseline_reader = BcolzDailyBarReader(self.bcolz_path) adjustment_reader = SQLiteAdjustmentReader(self.db_path) pricing_loader = USEquityPricingLoader( baseline_reader, adjustment_reader, ) closes, volumes = pricing_loader.load_adjusted_array( columns, DataFrame(True, index=query_days, columns=arange(1, 7)), ) expected_baseline_highs = self.bcolz_writer.expected_values_2d( query_days, self.assets, 'high', ) expected_baseline_volumes = self.bcolz_writer.expected_values_2d( query_days, self.assets, 'volume', ) # At each point in time, the AdjustedArrays should yield the baseline # with all adjustments up to that date applied. for windowlen in range(1, len(query_days) + 1): for offset, window in enumerate(closes.traverse(windowlen)): baseline = expected_baseline_highs[offset:offset + windowlen] baseline_dates = query_days[offset:offset + windowlen] expected_adjusted_highs = self.apply_adjustments( baseline_dates, self.assets, baseline, # Apply all adjustments. concat([SPLITS, MERGERS, DIVIDENDS], ignore_index=True), ) assert_allclose(expected_adjusted_highs, window) for offset, window in enumerate(volumes.traverse(windowlen)): baseline = expected_baseline_volumes[offset:offset + windowlen] baseline_dates = query_days[offset:offset + windowlen] # Apply only splits and invert the ratio. adjustments = SPLITS.copy() adjustments.ratio = 1 / adjustments.ratio expected_adjusted_volumes = self.apply_adjustments( baseline_dates, self.assets, baseline, adjustments, ) # FIXME: Make AdjustedArray properly support integral types. assert_array_equal( expected_adjusted_volumes, window.astype(uint32), ) # Verify that we checked up to the longest possible window. with self.assertRaises(WindowLengthTooLong): closes.traverse(windowlen + 1) with self.assertRaises(WindowLengthTooLong): volumes.traverse(windowlen + 1)
apache-2.0
spelteam/spel
src/python/plotDetSeqErrors.py
1
4407
#! /usr/bin/env python2.7 import glob from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import argparse import numpy as np import matplotlib.image as mpimg from matplotlib.lines import Line2D from pylab import figure, show import math import os import re def usage(): print("Author: Mykyta Fastovets / poselib project / 2015") print("This utility is an analysis tool for plotting error files generated by the poselib tuners.") print("Input should be a .err file.") print("Example usage: ./plotSimVsTemp.py ~/file.err ") def dist(a,b): return math.sqrt((a[0]-b[0])**2+(a[1] - b[1])**2) parser = argparse.ArgumentParser(description='1 non-optional argument') parser.add_argument('ERRIN', action="store") parseResult = parser.parse_args() #DATADIR contains that folder that contains all other data errFile = parseResult.ERRIN data = [line.strip().split() for line in open(errFile)] #read the data from the int file firstLine = data.pop(0) #pop the first line off the data stack numParams = int(firstLine.pop(0)) #the number of parameters in the file pfRMS=[] frameMeans=[] frameDevs=[] paramNames=[] means=[] devs=[] for dataItem in data: #data now contains everything but the first line frameID = int(dataItem[0]) params = [float(x) for x in dataItem[1:numParams+1]] if frameID<=20: if frameID==0: paramNames.append(params) if len(means)!=0: frameMeans.append(means) frameDevs.append(devs) means=[] devs=[] #rest of the items are bodypart errors partErrors=dataItem[numParams+1:len(dataItem)] for err, stddev in zip(partErrors[0::2], partErrors[1::2]): #for each number means.append(float(err)) devs.append(float(stddev)); #mMean = np.mean(means) #mDev = np.std(means) #dMean = np.mean(devs) #dDev = np.std(devs) #we now have the mean and SD for both, error and SD of labels at a particular frame, to associate with parameters pfRMS.append([params, means, devs]) #means and std devs pushed fig = plt.figure() ax = fig.add_subplot(111) ax.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax.xaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ap = ax.boxplot(frameMeans, patch_artist=True) ax.set_ylabel('RMS Error (pix)', fontsize=30) plt.xticks(rotation=45) ## change outline color, fill color and linewidth of the boxes for box in ap['boxes']: # change outline color box.set( color='#7570b3', linewidth=2) # change fill color box.set( facecolor = '#1b9e77' ) ## change color and linewidth of the whiskers for whisker in ap['whiskers']: whisker.set(color='#009933', linewidth=2) ## change color and linewidth of the caps for cap in ap['caps']: cap.set(color='#009933', linewidth=2) ## change color and linewidth of the medians for median in ap['medians']: median.set(color='#b2df8a', linewidth=2) ## change the style of fliers and their fill for flier in ap['fliers']: flier.set(marker='o', color='#e7298a', alpha=0.5) # bx = fig.add_subplot(212) # bx.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', # alpha=0.5) # bx.xaxis.grid(True, linestyle='-', which='major', color='lightgrey', # alpha=0.5) bp = ax.boxplot(frameDevs, patch_artist=True) ## change outline color, fill color and linewidth of the boxes for box in bp['boxes']: # change outline color box.set( color='#7570b3', linewidth=2) # change fill color box.set( facecolor = '#771b9e' ) ## change color and linewidth of the whiskers for whisker in bp['whiskers']: whisker.set(color='#7570b3', linewidth=2) ## change color and linewidth of the caps for cap in bp['caps']: cap.set(color='#7570b3', linewidth=2) ## change color and linewidth of the medians for median in bp['medians']: median.set(color='#FF6600', linewidth=2) ## change the style of fliers and their fill for flier in bp['fliers']: flier.set(marker='o', color='#e7298a', alpha=0.5) ## Remove top axes and right axes ticks ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() # bx.get_xaxis().tick_bottom() # bx.get_yaxis().tick_left() plt.xticks(rotation=45) #plt.setp(paramNames, rotation=45, fontsize=8) ax.set_xticklabels(paramNames) # bx.set_xticklabels(paramNames) print paramNames # Save the figure plt.show() #fig.savefig('testFig.png', bbox_inches='tight')
gpl-3.0
3manuek/scikit-learn
sklearn/tests/test_qda.py
155
3481
import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn import qda # Data is just 6 separable points in the plane X = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2], [1, 3], [1, 2], [2, 1], [2, 2]]) y = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2]) y3 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1]) # Degenerate data with 1 feature (still should be separable) X1 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ], [2, ], [3, ]]) # Data that has zero variance in one dimension and needs regularization X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0], [2, 0], [3, 0]]) # One element class y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2]) # Data with less samples in a class than n_features X5 = np.c_[np.arange(8), np.zeros((8,3))] y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1]) def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = qda.QDA() y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y) # Assure that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y) # Test probas estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X, y3).predict(X) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X, y4) def test_qda_priors(): clf = qda.QDA() y_pred = clf.fit(X, y).predict(X) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = qda.QDA(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X, y).predict(X) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos) def test_qda_store_covariances(): # The default is to not set the covariances_ attribute clf = qda.QDA().fit(X, y) assert_true(not hasattr(clf, 'covariances_')) # Test the actual attribute: clf = qda.QDA().fit(X, y, store_covariances=True) assert_true(hasattr(clf, 'covariances_')) assert_array_almost_equal( clf.covariances_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariances_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) ) def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = qda.QDA() with ignore_warnings(): y_pred = clf.fit(X2, y).predict(X2) assert_true(np.any(y_pred != y)) # adding a little regularization fixes the problem clf = qda.QDA(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y) y_pred = clf.predict(X2) assert_array_equal(y_pred, y) # Case n_samples_in_a_class < n_features clf = qda.QDA(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5)
bsd-3-clause
chengsoonong/crowdastro-projects
ATLAS-CDFS/scripts/plot_zid.py
1
6213
"""Plot a Zooniverse subject. Matthew Alger <[email protected]> Research School of Astronomy and Astrophysics The Australian National University 2017 """ import aplpy import astropy.coordinates import astropy.io.ascii import astropy.io.fits import matplotlib.pyplot as plt import matplotlib.patches import numpy import matplotlib import matplotlib.pyplot as plt import numpy INCHES_PER_PT = 1.0 / 72.27 COLUMN_WIDTH_PT = 240.0 FONT_SIZE_PT = 8.0 pgf_with_latex = { "pgf.texsystem": "pdflatex", "text.usetex": True, "font.family": "serif", "font.serif": [], "font.sans-serif": [], "font.monospace": [], "axes.labelsize": FONT_SIZE_PT, "font.size": FONT_SIZE_PT, "legend.fontsize": FONT_SIZE_PT, "xtick.labelsize": FONT_SIZE_PT, "ytick.labelsize": FONT_SIZE_PT, "figure.figsize": (COLUMN_WIDTH_PT * INCHES_PER_PT, 0.8 * COLUMN_WIDTH_PT * INCHES_PER_PT), "pgf.preamble": [ r"\usepackage[utf8x]{inputenc}", r"\usepackage[T1]{fontenc}", ] } matplotlib.rcParams.update(pgf_with_latex) def plot(radio_path, ir_path, plot_atlas_hosts=False, vmax=99.5, centrebox=False, centreboxwidth=None, width_in_px=True, stretch='arcsinh', fig=None, first=False): fig = aplpy.FITSFigure(ir_path, slices=[0, 1], figure=fig) fig.set_theme('publication') # if not v: # fig.show_grayscale(stretch=stretch, invert=True) # else: # fig.show_grayscale(stretch=stretch, vmin=v[0], vmax=v[1], invert=True) with astropy.io.fits.open(ir_path) as f: fig.show_colorscale(cmap='cubehelix_r', vmin=f[0].data.min(), vmax=numpy.percentile(f[0].data, vmax)) if plot_atlas_hosts: table = astropy.io.ascii.read( '/Users/alger/data/RGZ/dr1_weighted_old/static_rgz_host_full.csv') ras = table['SWIRE.ra'] decs = table['SWIRE.dec'] fig.show_markers(ras, decs, marker='x', s=50, c='red') if centrebox: with astropy.io.fits.open(radio_path) as f, astropy.io.fits.open(ir_path) as g: if first: contours = numpy.array([4, 8, 16, 32, 64, 128, 256]) * 0.14e-3 fig.show_contour(f, levels=contours, colors='black', linewidths=0.75, zorder=2, slices=[2, 3]) else: contours = [4, 8, 16, 32, 64, 128, 256] fig.show_contour(f, levels=contours, colors='black', linewidths=0.75, zorder=2) centre = numpy.array(g[0].data.shape) // 2 if not first: cdelt1 = f[0].header['CDELT1'] cdelt2 = f[0].header['CDELT2'] ra, dec = fig.pixel2world(centre[0], centre[1]) else: cdelt1 = f[0].header['CDELT3'] cdelt2 = f[0].header['CDELT4'] ra, dec = fig.pixel2world(centre[0], centre[1]) if width_in_px: width = -cdelt1 * centreboxwidth height = cdelt2 * centreboxwidth else: width = centreboxwidth height = centreboxwidth fig.show_rectangles([ra], [dec], width, height, color='r', linewidth=1) else: with astropy.io.fits.open(radio_path) as f: if first: contours = numpy.array([4, 8, 16, 32, 64]) * 0.14e-3 fig.show_contour(f, levels=contours, colors='black', linewidths=0.75, zorder=2, slices=[2, 3]) else: contours = [4, 8, 16, 32, 64, 128, 256] fig.show_contour(f, levels=contours, colors='black', linewidths=0.75, zorder=2) fig.axis_labels.set_xtext('Right Ascension (J2000)') fig.axis_labels.set_ytext('Declination (J2000)') # fig.ticks.set_linewidth(2) # fig.ticks.set_color('black') # fig.tick_labels.set_font(size='xx-large', weight='medium', \ # stretch='normal', family='sans-serif', \ # style='normal', variant='normal') # fig.axis_labels.set_font(size='xx-large', weight='medium', \ # stretch='normal', family='sans-serif', \ # style='normal', variant='normal') fig.set_tick_labels_format(xformat='hh:mm:ss',yformat='dd:mm:ss') return fig def plot_box_FIRST(fig, path): fig.show_rectangles([]) # rect = matplotlib.patches.Rectangle((267 / 2 - 267 / 8 * 3 / 2, 267 / 2 - 267 / 8 * 3 / 2), 267 / 8 * 3, 267 / 8 * 3, facecolor='None', edgecolor='red', linewidth=2) # plt.gca().add_patch(rect) # def plot_box_ATLAS(fig, path): # rect = matplotlib.patches.Rectangle((100 - 35, 100 - 35), 70, 70, facecolor='None', edgecolor='red', linewidth=2) # plt.gca().add_patch(rect) if __name__ == '__main__': # radio_path = "/Users/alger/data/RGZ/cdfs/2x2/CI2363_radio.fits" # ir_path = "/Users/alger/data/RGZ/cdfs/2x2/CI2363_ir.fits" # fig = plt.figure() # fig = plot(radio_path, ir_path, plot_atlas_hosts=False, centrebox=True, centreboxwidth=48 / 60 / 60, width_in_px=False, fig=fig) # plt.subplots_adjust(top=1, right=0.95, left=0.3) # plt.show() # plt.savefig('/Users/alger/repos/crowdastro-projects/ATLAS-CDFS/images/CI2363_fig.pdf') # radio_path = "/Users/alger/data/RGZ/cdfs/2x2/CI0077C1_radio.fits" # ir_path = "/Users/alger/data/RGZ/cdfs/2x2/CI0077C1_ir.fits" # fig = plt.figure() # fig = plot(radio_path, ir_path, plot_atlas_hosts=True, centrebox=False, fig=fig, vmax=99.9) # plt.subplots_adjust(top=1, right=0.95, left=0.3) # plt.show() # plt.savefig('/Users/alger/repos/crowdastro-projects/ATLAS-CDFS/images/CI0077C1_fig.pdf') # radio_path = "/Users/alger/repos/crowdastro-projects/ATLAS-CDFS/images/FIRSTJ151227.2+454026_8.fits" # ir_path = "/Users/alger/repos/crowdastro-projects/ATLAS-CDFS/images/2279p454_ac51-w1-int-3_ra228.11333333333332_dec45.67388888888889_asec480.000.fits" # fig = plt.figure() # fig = plot(radio_path, ir_path, plot_atlas_hosts=False, centrebox=True, centreboxwidth=3 / 60, width_in_px=False, stretch='linear', fig=fig, first=True) # plt.subplots_adjust(top=1, right=0.95, left=0.3) # plt.show() # plt.savefig('/Users/alger/repos/crowdastro-projects/ATLAS-CDFS/images/FIRSTJ151227_fig.pdf')
mit
svobodam/Deep-Learning-Text-Summariser
Models/sequenceNet.py
1
5910
# Original script developed by Harshal Priyadarshi https://github.com/harpribot and from Tensorflow: https://github.com/tensorflow/models/tree/master/tutorials/rnn/ptb # Edited for purpose of this project. # Import required libraries from tensorflow.python.framework import ops import tensorflow as tf import numpy as np import pandas as pd from abc import abstractmethod, ABCMeta class NeuralNet(object): __metaclass__ = ABCMeta def __init__(self): # Sequence-to-sequence Neural Network # parameters self.train_batch_size = None self.test_batch_size = None self.memory_dim = None self.learning_rate = None self.saver = None self.sess = None self.test_size = self.test_size self.checkpointSys = self.checkpointSys self.mapper_dict = self.mapper_dict self.test_review = self.test_review self.true_summary = self.true_summary self.predicted_test_summary = self.predicted_test_summary # Load all the parameters self._load_model_params() def set_parameters(self, train_batch_size, test_batch_size, memory_dim, learning_rate): #Set the parameters for the model and training. #parameter train_batch_size: The batch size of examples used for batch training #parameter test_batch_size: The batch size of test examples used for testing #parameter memory_dim: The length of the hidden vector produced by the encoder #parameter learning_rate: The learning rate for Stochastic Gradient Descent self.train_batch_size = train_batch_size self.test_batch_size = test_batch_size self.memory_dim = memory_dim self.learning_rate = learning_rate @abstractmethod def _load_data(self): pass @abstractmethod def _split_train_tst(self): pass def _load_model_params(self): #Load model parameters #self.seq_length -> The length of the input sequence (Length of input sentence fed to the encoder-decoder model) #self.vocab_size -> The size of the data vocabulary #self.momentum -> The momentum parameter in the update rule for SGD #:return: None # parameters self.seq_length = self.mapper_dict['seq_length'] self.vocab_size = self.mapper_dict['vocab_size'] self.momentum = 0.9 def begin_session(self): #Begins the session # start the tensorflow session # start the tensorflow session ops.reset_default_graph() # initialize interactive session self.sess = tf.Session() def form_model_graph(self): #Creates the data graph, loads the model and optimizer and then starts the session. #:return: None self._load_data_graph() self._load_model() self._load_optimizer() self._start_session() @abstractmethod def _load_data_graph(self): pass @abstractmethod def _load_model(self): pass @abstractmethod def _load_optimizer(self): pass def _start_session(self): print("Starting tensorflow session...") self.sess.run(tf.global_variables_initializer()) # initialize the saver node # print tf.GraphKeys.GLOBAL_VARIABLES self.saver = tf.train.Saver(tf.global_variables()) # get the latest checkpoint last_checkpoint_path = self.checkpointSys.get_last_checkpoint() if last_checkpoint_path is not None: print 'Previous saved tensorflow objects found... Extracting...' # restore the tensorflow variables self.saver.restore(self.sess, last_checkpoint_path) print 'Extraction Complete. Moving Forward....' @abstractmethod def fit(self): pass def _index2sentence(self, list_): # Converts the indexed sentence to the actual sentence, return string rev_map = self.mapper_dict['rev_map'] # rev_map is reverse mapping from index in vocabulary to actual word sentence = "" for entry in list_: if entry != 0: sentence += (rev_map[entry] + " ") return sentence def store_test_predictions(self, prediction_id='_final'): # Stores the test predictions in a CSV file # param prediction_id: A simple id appended to the name of the summary for uniqueness # prediction id is usually the step count print 'Storing predictions on Test Data...' document = [] true_summary = [] generated_summary = [] for i in range(self.test_size): if not self.checkpointSys.is_output_file_present(): document.append(self._index2sentence(self.test_review[i])) true_summary.append(self._index2sentence(self.true_summary[i])) if i < (self.test_batch_size * (self.test_size // self.test_batch_size)): generated_summary.append(self._index2sentence(self.predicted_test_summary[i])) else: generated_summary.append('') prediction_nm = 'generated_summary' + prediction_id if self.checkpointSys.is_output_file_present(): df = pd.read_csv(self.checkpointSys.get_result_location(), header=0) df[prediction_nm] = np.array(generated_summary) else: df = pd.DataFrame() df['document'] = np.array(document) df['true_summary'] = np.array(true_summary) df[prediction_nm] = np.array(generated_summary) df.to_csv(self.checkpointSys.get_result_location(), index=False) print 'Stored the predictions. Moving Forward' if prediction_id == '_final': print 'All done. Exiting..' print 'Exited'
mit
themrmax/scikit-learn
examples/applications/plot_stock_market.py
6
9353
""" ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: Gael Varoquaux [email protected] # License: BSD 3 clause from datetime import datetime import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from six.moves.urllib.request import urlopen from six.moves.urllib.parse import urlencode from sklearn import cluster, covariance, manifold ############################################################################### # Retrieve the data from Internet def quotes_historical_google(symbol, date1, date2): """Get the historical data from Google finance. Parameters ---------- symbol : str Ticker symbol to query for, for example ``"DELL"``. date1 : datetime.datetime Start date. date2 : datetime.datetime End date. Returns ------- X : array The columns are ``date`` -- datetime, ``open``, ``high``, ``low``, ``close`` and ``volume`` of type float. """ params = urlencode({ 'q': symbol, 'startdate': date1.strftime('%b %d, %Y'), 'enddate': date2.strftime('%b %d, %Y'), 'output': 'csv' }) url = 'http://www.google.com/finance/historical?' + params with urlopen(url) as response: dtype = { 'names': ['date', 'open', 'high', 'low', 'close', 'volume'], 'formats': ['object', 'f4', 'f4', 'f4', 'f4', 'f4'] } converters = {0: lambda s: datetime.strptime(s.decode(), '%d-%b-%y')} return np.genfromtxt(response, delimiter=',', skip_header=1, dtype=dtype, converters=converters, missing_values='-', filling_values=-1) # Choose a time period reasonably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime(2003, 1, 1) d2 = datetime(2008, 1, 1) symbol_dict = { 'TOT': 'Total', 'XOM': 'Exxon', 'CVX': 'Chevron', 'COP': 'ConocoPhillips', 'VLO': 'Valero Energy', 'MSFT': 'Microsoft', 'IBM': 'IBM', 'TWX': 'Time Warner', 'CMCSA': 'Comcast', 'CVC': 'Cablevision', 'YHOO': 'Yahoo', 'DELL': 'Dell', 'HPQ': 'HP', 'AMZN': 'Amazon', 'TM': 'Toyota', 'CAJ': 'Canon', 'SNE': 'Sony', 'F': 'Ford', 'HMC': 'Honda', 'NAV': 'Navistar', 'NOC': 'Northrop Grumman', 'BA': 'Boeing', 'KO': 'Coca Cola', 'MMM': '3M', 'MCD': 'McDonald\'s', 'PEP': 'Pepsi', 'K': 'Kellogg', 'UN': 'Unilever', 'MAR': 'Marriott', 'PG': 'Procter Gamble', 'CL': 'Colgate-Palmolive', 'GE': 'General Electrics', 'WFC': 'Wells Fargo', 'JPM': 'JPMorgan Chase', 'AIG': 'AIG', 'AXP': 'American express', 'BAC': 'Bank of America', 'GS': 'Goldman Sachs', 'AAPL': 'Apple', 'SAP': 'SAP', 'CSCO': 'Cisco', 'TXN': 'Texas Instruments', 'XRX': 'Xerox', 'WMT': 'Wal-Mart', 'HD': 'Home Depot', 'GSK': 'GlaxoSmithKline', 'PFE': 'Pfizer', 'SNY': 'Sanofi-Aventis', 'NVS': 'Novartis', 'KMB': 'Kimberly-Clark', 'R': 'Ryder', 'GD': 'General Dynamics', 'RTN': 'Raytheon', 'CVS': 'CVS', 'CAT': 'Caterpillar', 'DD': 'DuPont de Nemours'} symbols, names = np.array(list(symbol_dict.items())).T quotes = [ quotes_historical_google(symbol, d1, d2) for symbol in symbols ] close_prices = np.stack([q['close'] for q in quotes]) open_prices = np.stack([q['open'] for q in quotes]) # The daily variations of the quotes are what carry most information variation = close_prices - open_prices ############################################################################### # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) ############################################################################### # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) ############################################################################### # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T ############################################################################### # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx = np.where(non_zero) # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # Add a label to each node. The challenge here is that we want to # position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate( zip(names, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.spectral(label / float(n_labels)), alpha=.6)) plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(),) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.show()
bsd-3-clause
andaag/scikit-learn
sklearn/manifold/tests/test_locally_linear.py
232
4761
from itertools import product from nose.tools import assert_true import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from scipy import linalg from sklearn import neighbors, manifold from sklearn.manifold.locally_linear import barycenter_kneighbors_graph from sklearn.utils.testing import assert_less from sklearn.utils.testing import ignore_warnings eigen_solvers = ['dense', 'arpack'] #---------------------------------------------------------------------- # Test utility routines def test_barycenter_kneighbors_graph(): X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = barycenter_kneighbors_graph(X, 1) assert_array_almost_equal( A.toarray(), [[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]]) A = barycenter_kneighbors_graph(X, 2) # check that columns sum to one assert_array_almost_equal(np.sum(A.toarray(), 1), np.ones(3)) pred = np.dot(A.toarray(), X) assert_less(linalg.norm(pred - X) / X.shape[0], 1) #---------------------------------------------------------------------- # Test LLE by computing the reconstruction error on some manifolds. def test_lle_simple_grid(): # note: ARPACK is numerically unstable, so this test will fail for # some random seeds. We choose 2 because the tests pass. rng = np.random.RandomState(2) tol = 0.1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(5), repeat=2))) X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 clf = manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=n_components, random_state=rng) tol = 0.1 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X, 'fro') assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 assert_less(reconstruction_error, tol) assert_almost_equal(clf.reconstruction_error_, reconstruction_error, decimal=1) # re-embed a noisy version of X using the transform method noise = rng.randn(*X.shape) / 100 X_reembedded = clf.transform(X + noise) assert_less(linalg.norm(X_reembedded - clf.embedding_), tol) def test_lle_manifold(): rng = np.random.RandomState(0) # similar test on a slightly more complex manifold X = np.array(list(product(np.arange(18), repeat=2))) X = np.c_[X, X[:, 0] ** 2 / 18] X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 for method in ["standard", "hessian", "modified", "ltsa"]: clf = manifold.LocallyLinearEmbedding(n_neighbors=6, n_components=n_components, method=method, random_state=0) tol = 1.5 if method == "standard" else 3 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X) assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 details = ("solver: %s, method: %s" % (solver, method)) assert_less(reconstruction_error, tol, msg=details) assert_less(np.abs(clf.reconstruction_error_ - reconstruction_error), tol * reconstruction_error, msg=details) def test_pipeline(): # check that LocallyLinearEmbedding works fine as a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful from sklearn import pipeline, datasets X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('filter', manifold.LocallyLinearEmbedding(random_state=0)), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y)) # Test the error raised when the weight matrix is singular def test_singular_matrix(): from nose.tools import assert_raises M = np.ones((10, 3)) f = ignore_warnings assert_raises(ValueError, f(manifold.locally_linear_embedding), M, 2, 1, method='standard', eigen_solver='arpack')
bsd-3-clause
cloudera/ibis
ibis/backends/tests/test_vectorized_udf.py
1
11404
import pytest import ibis import ibis.common.exceptions as com import ibis.expr.datatypes as dt from ibis.expr.window import window from ibis.udf.vectorized import analytic, elementwise, reduction pytestmark = pytest.mark.udf @elementwise(input_type=[dt.double], output_type=dt.double) def add_one(s): return s + 1 @analytic(input_type=[dt.double], output_type=dt.double) def calc_zscore(s): return (s - s.mean()) / s.std() @reduction(input_type=[dt.double], output_type=dt.double) def calc_mean(s): return s.mean() @elementwise( input_type=[dt.double], output_type=dt.Struct(['col1', 'col2'], [dt.double, dt.double]), ) def add_one_struct(v): return v + 1, v + 2 @analytic( input_type=[dt.double, dt.double], output_type=dt.Struct(['demean', 'demean_weight'], [dt.double, dt.double]), ) def demean_struct(v, w): return v - v.mean(), w - w.mean() @reduction( input_type=[dt.double, dt.double], output_type=dt.Struct(['mean', 'mean_weight'], [dt.double, dt.double]), ) def mean_struct(v, w): return v.mean(), w.mean() @pytest.mark.only_on_backends(['pandas', 'pyspark']) @pytest.mark.xfail_unsupported def test_elementwise_udf(backend, alltypes, df): result = add_one(alltypes['double_col']).execute() expected = add_one.func(df['double_col']) backend.assert_series_equal(result, expected, check_names=False) @pytest.mark.only_on_backends(['pandas', 'pyspark']) @pytest.mark.xfail_unsupported def test_elementwise_udf_mutate(backend, alltypes, df): expr = alltypes.mutate(incremented=add_one(alltypes['double_col'])) result = expr.execute() expected = df.assign(incremented=add_one.func(df['double_col'])) backend.assert_series_equal(result['incremented'], expected['incremented']) @pytest.mark.only_on_backends(['pandas', 'pyspark']) @pytest.mark.xfail_unsupported def test_analytic_udf(backend, alltypes, df): result = calc_zscore(alltypes['double_col']).execute() expected = calc_zscore.func(df['double_col']) backend.assert_series_equal(result, expected, check_names=False) @pytest.mark.only_on_backends(['pandas', 'pyspark']) @pytest.mark.xfail_unsupported def test_analytic_udf_mutate(backend, alltypes, df): expr = alltypes.mutate(zscore=calc_zscore(alltypes['double_col'])) result = expr.execute() expected = df.assign(zscore=calc_zscore.func(df['double_col'])) backend.assert_series_equal(result['zscore'], expected['zscore']) @pytest.mark.only_on_backends(['pandas', 'pyspark']) @pytest.mark.xfail_unsupported def test_reduction_udf(backend, alltypes, df): result = calc_mean(alltypes['double_col']).execute() expected = df['double_col'].agg(calc_mean.func) assert result == expected @pytest.mark.only_on_backends(['pandas', 'pyspark']) @pytest.mark.xfail_unsupported def test_output_type_in_list_invalid(backend, alltypes, df): # Test that an error is raised if UDF output type is wrapped in a list with pytest.raises( com.IbisTypeError, match="The output type of a UDF must be a single datatype.", ): @elementwise(input_type=[dt.double], output_type=[dt.double]) def add_one(s): return s + 1 @pytest.mark.only_on_backends(['pandas', 'pyspark']) @pytest.mark.xfail_unsupported def test_valid_kwargs(backend, alltypes, df): # Test different forms of UDF definition with keyword arguments @elementwise(input_type=[dt.double], output_type=dt.double) def foo1(v): # Basic UDF with kwargs return v + 1 @elementwise(input_type=[dt.double], output_type=dt.double) def foo2(v, *, amount): # UDF with keyword only arguments return v + amount @elementwise(input_type=[dt.double], output_type=dt.double) def foo3(v, **kwargs): # UDF with kwargs return v + kwargs.get('amount', 1) result = alltypes.mutate( v1=foo1(alltypes['double_col']), v2=foo2(alltypes['double_col'], amount=1), v3=foo2(alltypes['double_col'], amount=2), v4=foo3(alltypes['double_col']), v5=foo3(alltypes['double_col'], amount=2), v6=foo3(alltypes['double_col'], amount=3), ).execute() expected = df.assign( v1=df['double_col'] + 1, v2=df['double_col'] + 1, v3=df['double_col'] + 2, v4=df['double_col'] + 1, v5=df['double_col'] + 2, v6=df['double_col'] + 3, ) backend.assert_frame_equal(result, expected) @pytest.mark.only_on_backends(['pandas', 'pyspark']) @pytest.mark.xfail_unsupported def test_valid_args(backend, alltypes, df): # Test different forms of UDF definition with *args @elementwise(input_type=[dt.double, dt.string], output_type=dt.double) def foo1(*args): return args[0] + len(args[1]) @elementwise(input_type=[dt.double, dt.string], output_type=dt.double) def foo2(v, *args): return v + len(args[0]) result = alltypes.mutate( v1=foo1(alltypes['double_col'], alltypes['string_col']), v2=foo2(alltypes['double_col'], alltypes['string_col']), ).execute() expected = df.assign( v1=df['double_col'] + len(df['string_col']), v2=df['double_col'] + len(df['string_col']), ) backend.assert_frame_equal(result, expected) @pytest.mark.only_on_backends(['pandas', 'pyspark']) @pytest.mark.xfail_unsupported def test_valid_args_and_kwargs(backend, alltypes, df): # Test UDFs with both *args and keyword arguments @elementwise(input_type=[dt.double, dt.string], output_type=dt.double) def foo1(*args, amount): # UDF with *args and a keyword-only argument return args[0] + len(args[1]) + amount @elementwise(input_type=[dt.double, dt.string], output_type=dt.double) def foo2(*args, **kwargs): # UDF with *args and **kwargs return args[0] + len(args[1]) + kwargs.get('amount', 1) @elementwise(input_type=[dt.double, dt.string], output_type=dt.double) def foo3(v, *args, amount): # UDF with an explicit positional argument, *args, and a keyword-only # argument return v + len(args[0]) + amount @elementwise(input_type=[dt.double, dt.string], output_type=dt.double) def foo4(v, *args, **kwargs): # UDF with an explicit positional argument, *args, and **kwargs return v + len(args[0]) + kwargs.get('amount', 1) result = alltypes.mutate( v1=foo1(alltypes['double_col'], alltypes['string_col'], amount=2), v2=foo2(alltypes['double_col'], alltypes['string_col'], amount=2), v3=foo3(alltypes['double_col'], alltypes['string_col'], amount=2), v4=foo4(alltypes['double_col'], alltypes['string_col'], amount=2), ).execute() expected = df.assign( v1=df['double_col'] + len(df['string_col']) + 2, v2=df['double_col'] + len(df['string_col']) + 2, v3=df['double_col'] + len(df['string_col']) + 2, v4=df['double_col'] + len(df['string_col']) + 2, ) backend.assert_frame_equal(result, expected) @pytest.mark.only_on_backends(['pandas', 'pyspark']) @pytest.mark.xfail_unsupported def test_invalid_kwargs(backend, alltypes): # Test that defining a UDF with a non-column argument that is not a # keyword argument raises an error with pytest.raises(TypeError, match=".*must be defined as keyword only.*"): @elementwise(input_type=[dt.double], output_type=dt.double) def foo1(v, amount): return v + 1 @pytest.mark.only_on_backends(['pandas', 'pyspark']) # TODO - udf - #2553 @pytest.mark.xfail_backends(['dask']) @pytest.mark.xfail_unsupported def test_elementwise_udf_destruct(backend, alltypes): result = alltypes.mutate( add_one_struct(alltypes['double_col']).destructure() ).execute() expected = alltypes.mutate( col1=alltypes['double_col'] + 1, col2=alltypes['double_col'] + 2, ).execute() backend.assert_frame_equal(result, expected) @pytest.mark.only_on_backends(['pandas', 'pyspark']) @pytest.mark.xfail_unsupported def test_elementwise_udf_named_destruct(backend, alltypes): """Test error when assigning name to a destruct column.""" with pytest.raises( com.ExpressionError, match=r".*Cannot name a destruct.*" ): alltypes.mutate( new_struct=add_one_struct(alltypes['double_col']).destructure() ) @pytest.mark.only_on_backends(['pyspark']) @pytest.mark.xfail_unsupported def test_elementwise_udf_struct(backend, alltypes): result = alltypes.mutate( new_col=add_one_struct(alltypes['double_col']) ).execute() result = result.assign( col1=result['new_col'].apply(lambda x: x[0]), col2=result['new_col'].apply(lambda x: x[1]), ) result = result.drop('new_col', axis=1) expected = alltypes.mutate( col1=alltypes['double_col'] + 1, col2=alltypes['double_col'] + 2, ).execute() backend.assert_frame_equal(result, expected) @pytest.mark.only_on_backends(['pandas']) # TODO - udf - #2553 @pytest.mark.xfail_backends(['dask']) def test_analytic_udf_destruct(backend, alltypes): w = window(preceding=None, following=None, group_by='year') result = alltypes.mutate( demean_struct(alltypes['double_col'], alltypes['int_col']) .over(w) .destructure() ).execute() expected = alltypes.mutate( demean=alltypes['double_col'] - alltypes['double_col'].mean().over(w), demean_weight=alltypes['int_col'] - alltypes['int_col'].mean().over(w), ).execute() backend.assert_frame_equal(result, expected) @pytest.mark.only_on_backends(['pandas']) # TODO - udf - #2553 @pytest.mark.xfail_backends(['dask']) def test_reduction_udf_destruct_groupby(backend, alltypes): result = ( alltypes.groupby('year') .aggregate( mean_struct( alltypes['double_col'], alltypes['int_col'] ).destructure() ) .execute() ) expected = ( alltypes.groupby('year') .aggregate( mean=alltypes['double_col'].mean(), mean_weight=alltypes['int_col'].mean(), ) .execute() ) backend.assert_frame_equal(result, expected) @pytest.mark.only_on_backends(['pandas']) # TODO - udf - #2553 @pytest.mark.xfail_backends(['dask']) def test_reduction_udf_destruct_no_groupby(backend, alltypes): result = alltypes.aggregate( mean_struct(alltypes['double_col'], alltypes['int_col']).destructure() ).execute() expected = alltypes.aggregate( mean=alltypes['double_col'].mean(), mean_weight=alltypes['int_col'].mean(), ).execute() backend.assert_frame_equal(result, expected) @pytest.mark.only_on_backends(['pandas']) # TODO - udf - #2553 @pytest.mark.xfail_backends(['dask']) def test_reduction_udf_destruct_window(backend, alltypes): win = window( preceding=ibis.interval(hours=2), following=0, group_by='year', order_by='timestamp_col', ) result = alltypes.mutate( mean_struct(alltypes['double_col'], alltypes['int_col']) .over(win) .destructure() ).execute() expected = alltypes.mutate( mean=alltypes['double_col'].mean().over(win), mean_weight=alltypes['int_col'].mean().over(win), ).execute() backend.assert_frame_equal(result, expected)
apache-2.0
imperial-genomics-facility/data-management-python
test/dbadaptor/projectadaptor_test.py
1
6564
import os, unittest import pandas as pd from sqlalchemy import create_engine from igf_data.igfdb.igfTables import Base, Project, Project_attribute, Sample from igf_data.igfdb.baseadaptor import BaseAdaptor from igf_data.igfdb.projectadaptor import ProjectAdaptor from igf_data.igfdb.useradaptor import UserAdaptor from igf_data.igfdb.sampleadaptor import SampleAdaptor from igf_data.utils.dbutils import read_dbconf_json class Projectadaptor_test1(unittest.TestCase): def setUp(self): self.dbconfig='data/dbconfig.json' dbparam=read_dbconf_json(self.dbconfig) base=BaseAdaptor(**dbparam) self.engine=base.engine self.dbname=dbparam['dbname'] Base.metadata.create_all(self.engine) self.session_class=base.get_session_class() project_data=[{'project_igf_id':'IGFP0001_test_22-8-2017_rna', 'project_name':'test_22-8-2017_rna', 'description':'Its project 1', 'project_deadline':'Before August 2017', 'comments':'Some samples are treated with drug X', }, {'project_igf_id':'IGFP0002_test_22-8-2017_rna', 'project_name':'test_23-8-2017_rna', 'description':'Its project 2', 'project_deadline':'Before August 2017', 'comments':'Some samples are treated with drug X', }] base.start_session() pa=ProjectAdaptor(**{'session':base.session}) pa.store_project_and_attribute_data(data=project_data) sa=SampleAdaptor(**{'session': base.session}) sample_data=[{'sample_igf_id':'IGFS001','project_igf_id':'IGFP0001_test_22-8-2017_rna',}, {'sample_igf_id':'IGFS002','project_igf_id':'IGFP0001_test_22-8-2017_rna',}, {'sample_igf_id':'IGFS003','project_igf_id':'IGFP0001_test_22-8-2017_rna',}, {'sample_igf_id':'IGFS004','project_igf_id':'IGFP0001_test_22-8-2017_rna','status':'FAILED',}, ] sa.store_sample_and_attribute_data(data=sample_data) base.close_session() def tearDown(self): Base.metadata.drop_all(self.engine) os.remove(self.dbname) def test_fetch_project_samples(self): pa=ProjectAdaptor(**{'session_class':self.session_class}) pa.start_session() sample1=pa.fetch_project_samples(project_igf_id='IGFP0001_test_22-8-2017_rna',output_mode='dataframe') self.assertEqual(len(sample1.index),3) sample2=pa.fetch_project_samples(project_igf_id='IGFP0002_test_22-8-2017_rna',output_mode='dataframe') self.assertEqual(len(sample2.index),0) sample3=pa.fetch_project_samples(project_igf_id='IGFP0001_test_22-8-2017_rna', only_active=False, output_mode='dataframe') self.assertEqual(len(sample3.index),4) pa.close_session() def test_count_project_samples(self): pa=ProjectAdaptor(**{'session_class':self.session_class}) pa.start_session() sample1=pa.count_project_samples(project_igf_id='IGFP0001_test_22-8-2017_rna') self.assertEqual(sample1,3) sample2=pa.count_project_samples(project_igf_id='IGFP0002_test_22-8-2017_rna') self.assertEqual(sample2,0) sample3=pa.count_project_samples(project_igf_id='IGFP0001_test_22-8-2017_rna', only_active=False) self.assertEqual(sample3,4) pa.close_session() class Projectadaptor_test2(unittest.TestCase): def setUp(self): self.dbconfig='data/dbconfig.json' dbparam=read_dbconf_json(self.dbconfig) base=BaseAdaptor(**dbparam) self.engine=base.engine self.dbname=dbparam['dbname'] Base.metadata.create_all(self.engine) self.session_class=base.get_session_class() project_data=[{'project_igf_id':'IGFP0001_test_22-8-2017_rna', 'project_name':'test_22-8-2017_rna', 'description':'Its project 1', 'project_deadline':'Before August 2017', 'comments':'Some samples are treated with drug X', }, {'project_igf_id':'IGFP0002_test_22-8-2017_rna', 'project_name':'test_23-8-2017_rna', 'description':'Its project 2', 'project_deadline':'Before August 2017', 'comments':'Some samples are treated with drug X'}] user_data=[{'name':'UserA', 'email_id':'[email protected]', 'username':'usera'}] project_user_data=[{'project_igf_id': 'IGFP0001_test_22-8-2017_rna', 'email_id': '[email protected]', 'data_authority':True}, {'project_igf_id': 'IGFP0002_test_22-8-2017_rna', 'email_id': '[email protected]'}] base.start_session() ua=UserAdaptor(**{'session':base.session}) ua.store_user_data(data=user_data) pa=ProjectAdaptor(**{'session':base.session}) pa.store_project_and_attribute_data(data=project_data) pa.assign_user_to_project(data=project_user_data) base.close_session() def tearDown(self): Base.metadata.drop_all(self.engine) os.remove(self.dbname) def test_check_data_authority_for_project(self): pa=ProjectAdaptor(**{'session_class':self.session_class}) pa.start_session() pa_results1=pa.check_data_authority_for_project(project_igf_id='IGFP0001_test_22-8-2017_rna') self.assertTrue(pa_results1) pa_results2=pa.check_data_authority_for_project(project_igf_id='IGFP0002_test_22-8-2017_rna') self.assertFalse(pa_results2) pa.close_session() def test_fetch_data_authority_for_project(self): pa=ProjectAdaptor(**{'session_class':self.session_class}) pa.start_session() pa_results1=pa.fetch_data_authority_for_project(project_igf_id='IGFP0001_test_22-8-2017_rna') self.assertEqual(pa_results1.email_id,'[email protected]') pa_results2=pa.fetch_data_authority_for_project(project_igf_id='IGFP0002_test_22-8-2017_rna') self.assertEqual(pa_results2, None) pa.close_session() def test_fetch_all_project_igf_ids(self): pa = ProjectAdaptor(**{'session_class':self.session_class}) pa.start_session() project_list = pa.fetch_all_project_igf_ids() pa.close_session() self.assertTrue('IGFP0002_test_22-8-2017_rna' in project_list['project_igf_id'].values) self.assertTrue('IGFP0001_test_22-8-2017_rna' in project_list['project_igf_id'].values) self.assertEqual(len(project_list['project_igf_id'].values), 2) if __name__ == '__main__': unittest.main()
apache-2.0
jorge2703/scikit-learn
sklearn/utils/validation.py
67
24013
"""Utilities for input validation""" # Authors: Olivier Grisel # Gael Varoquaux # Andreas Mueller # Lars Buitinck # Alexandre Gramfort # Nicolas Tresegnie # License: BSD 3 clause import warnings import numbers import numpy as np import scipy.sparse as sp from ..externals import six from inspect import getargspec FLOAT_DTYPES = (np.float64, np.float32, np.float16) class DataConversionWarning(UserWarning): """A warning on implicit data conversions happening in the code""" pass warnings.simplefilter("always", DataConversionWarning) class NonBLASDotWarning(UserWarning): """A warning on implicit dispatch to numpy.dot""" class NotFittedError(ValueError, AttributeError): """Exception class to raise if estimator is used before fitting This class inherits from both ValueError and AttributeError to help with exception handling and backward compatibility. """ # Silenced by default to reduce verbosity. Turn on at runtime for # performance profiling. warnings.simplefilter('ignore', NonBLASDotWarning) def _assert_all_finite(X): """Like assert_all_finite, but only for ndarray.""" X = np.asanyarray(X) # First try an O(n) time, O(1) space solution for the common case that # everything is finite; fall back to O(n) space np.isfinite to prevent # false positives from overflow in sum method. if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum()) and not np.isfinite(X).all()): raise ValueError("Input contains NaN, infinity" " or a value too large for %r." % X.dtype) def assert_all_finite(X): """Throw a ValueError if X contains NaN or infinity. Input MUST be an np.ndarray instance or a scipy.sparse matrix.""" _assert_all_finite(X.data if sp.issparse(X) else X) def as_float_array(X, copy=True, force_all_finite=True): """Converts an array-like to an array of floats The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy. Parameters ---------- X : {array-like, sparse matrix} copy : bool, optional If True, a copy of X will be created. If False, a copy may still be returned if X's dtype is not a floating point type. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. Returns ------- XT : {array, sparse matrix} An array of type np.float """ if isinstance(X, np.matrix) or (not isinstance(X, np.ndarray) and not sp.issparse(X)): return check_array(X, ['csr', 'csc', 'coo'], dtype=np.float64, copy=copy, force_all_finite=force_all_finite, ensure_2d=False) elif sp.issparse(X) and X.dtype in [np.float32, np.float64]: return X.copy() if copy else X elif X.dtype in [np.float32, np.float64]: # is numpy array return X.copy('F' if X.flags['F_CONTIGUOUS'] else 'C') if copy else X else: return X.astype(np.float32 if X.dtype == np.int32 else np.float64) def _is_arraylike(x): """Returns whether the input is array-like""" return (hasattr(x, '__len__') or hasattr(x, 'shape') or hasattr(x, '__array__')) def _num_samples(x): """Return number of samples in array-like x.""" if hasattr(x, 'fit'): # Don't get num_samples from an ensembles length! raise TypeError('Expected sequence or array-like, got ' 'estimator %s' % x) if not hasattr(x, '__len__') and not hasattr(x, 'shape'): if hasattr(x, '__array__'): x = np.asarray(x) else: raise TypeError("Expected sequence or array-like, got %s" % type(x)) if hasattr(x, 'shape'): if len(x.shape) == 0: raise TypeError("Singleton array %r cannot be considered" " a valid collection." % x) return x.shape[0] else: return len(x) def _shape_repr(shape): """Return a platform independent reprensentation of an array shape Under Python 2, the `long` type introduces an 'L' suffix when using the default %r format for tuples of integers (typically used to store the shape of an array). Under Windows 64 bit (and Python 2), the `long` type is used by default in numpy shapes even when the integer dimensions are well below 32 bit. The platform specific type causes string messages or doctests to change from one platform to another which is not desirable. Under Python 3, there is no more `long` type so the `L` suffix is never introduced in string representation. >>> _shape_repr((1, 2)) '(1, 2)' >>> one = 2 ** 64 / 2 ** 64 # force an upcast to `long` under Python 2 >>> _shape_repr((one, 2 * one)) '(1, 2)' >>> _shape_repr((1,)) '(1,)' >>> _shape_repr(()) '()' """ if len(shape) == 0: return "()" joined = ", ".join("%d" % e for e in shape) if len(shape) == 1: # special notation for singleton tuples joined += ',' return "(%s)" % joined def check_consistent_length(*arrays): """Check that all arrays have consistent first dimensions. Checks whether all objects in arrays have the same shape or length. Parameters ---------- *arrays : list or tuple of input objects. Objects that will be checked for consistent length. """ uniques = np.unique([_num_samples(X) for X in arrays if X is not None]) if len(uniques) > 1: raise ValueError("Found arrays with inconsistent numbers of samples: " "%s" % str(uniques)) def indexable(*iterables): """Make arrays indexable for cross-validation. Checks consistent length, passes through None, and ensures that everything can be indexed by converting sparse matrices to csr and converting non-interable objects to arrays. Parameters ---------- *iterables : lists, dataframes, arrays, sparse matrices List of objects to ensure sliceability. """ result = [] for X in iterables: if sp.issparse(X): result.append(X.tocsr()) elif hasattr(X, "__getitem__") or hasattr(X, "iloc"): result.append(X) elif X is None: result.append(X) else: result.append(np.array(X)) check_consistent_length(*result) return result def _ensure_sparse_format(spmatrix, accept_sparse, dtype, copy, force_all_finite): """Convert a sparse matrix to a given format. Checks the sparse format of spmatrix and converts if necessary. Parameters ---------- spmatrix : scipy sparse matrix Input to validate and convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats ('csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type or None (default=none) Data type of result. If None, the dtype of the input is preserved. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. Returns ------- spmatrix_converted : scipy sparse matrix. Matrix that is ensured to have an allowed type. """ if accept_sparse in [None, False]: raise TypeError('A sparse matrix was passed, but dense ' 'data is required. Use X.toarray() to ' 'convert to a dense numpy array.') if dtype is None: dtype = spmatrix.dtype changed_format = False if (isinstance(accept_sparse, (list, tuple)) and spmatrix.format not in accept_sparse): # create new with correct sparse spmatrix = spmatrix.asformat(accept_sparse[0]) changed_format = True if dtype != spmatrix.dtype: # convert dtype spmatrix = spmatrix.astype(dtype) elif copy and not changed_format: # force copy spmatrix = spmatrix.copy() if force_all_finite: if not hasattr(spmatrix, "data"): warnings.warn("Can't check %s sparse matrix for nan or inf." % spmatrix.format) else: _assert_all_finite(spmatrix.data) return spmatrix def check_array(array, accept_sparse=None, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1, warn_on_dtype=False, estimator=None): """Input validation on an array, list, sparse matrix or similar. By default, the input is converted to an at least 2nd numpy array. If the dtype of the array is object, attempt converting to float, raising on failure. Parameters ---------- array : object Input object to check / convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type, list of types or None (default="numeric") Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. ensure_min_samples : int (default=1) Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check. ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. warn_on_dtype : boolean (default=False) Raise DataConversionWarning if the dtype of the input data structure does not match the requested dtype, causing a memory copy. estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. """ if isinstance(accept_sparse, str): accept_sparse = [accept_sparse] # store whether originally we wanted numeric dtype dtype_numeric = dtype == "numeric" dtype_orig = getattr(array, "dtype", None) if not hasattr(dtype_orig, 'kind'): # not a data type (e.g. a column named dtype in a pandas DataFrame) dtype_orig = None if dtype_numeric: if dtype_orig is not None and dtype_orig.kind == "O": # if input is object, convert to float. dtype = np.float64 else: dtype = None if isinstance(dtype, (list, tuple)): if dtype_orig is not None and dtype_orig in dtype: # no dtype conversion required dtype = None else: # dtype conversion required. Let's select the first element of the # list of accepted types. dtype = dtype[0] if sp.issparse(array): array = _ensure_sparse_format(array, accept_sparse, dtype, copy, force_all_finite) else: if ensure_2d: array = np.atleast_2d(array) array = np.array(array, dtype=dtype, order=order, copy=copy) # make sure we actually converted to numeric: if dtype_numeric and array.dtype.kind == "O": array = array.astype(np.float64) if not allow_nd and array.ndim >= 3: raise ValueError("Found array with dim %d. Expected <= 2" % array.ndim) if force_all_finite: _assert_all_finite(array) shape_repr = _shape_repr(array.shape) if ensure_min_samples > 0: n_samples = _num_samples(array) if n_samples < ensure_min_samples: raise ValueError("Found array with %d sample(s) (shape=%s) while a" " minimum of %d is required." % (n_samples, shape_repr, ensure_min_samples)) if ensure_min_features > 0 and array.ndim == 2: n_features = array.shape[1] if n_features < ensure_min_features: raise ValueError("Found array with %d feature(s) (shape=%s) while" " a minimum of %d is required." % (n_features, shape_repr, ensure_min_features)) if warn_on_dtype and dtype_orig is not None and array.dtype != dtype_orig: msg = ("Data with input dtype %s was converted to %s" % (dtype_orig, array.dtype)) if estimator is not None: if not isinstance(estimator, six.string_types): estimator = estimator.__class__.__name__ msg += " by %s" % estimator warnings.warn(msg, DataConversionWarning) return array def check_X_y(X, y, accept_sparse=None, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, multi_output=False, ensure_min_samples=1, ensure_min_features=1, y_numeric=False, warn_on_dtype=False, estimator=None): """Input validation for standard estimators. Checks X and y for consistent length, enforces X 2d and y 1d. Standard input checks are only applied to y. For multi-label y, set multi_output=True to allow 2d and sparse y. If the dtype of X is object, attempt converting to float, raising on failure. Parameters ---------- X : nd-array, list or sparse matrix Input data. y : nd-array, list or sparse matrix Labels. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type, list of types or None (default="numeric") Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. multi_output : boolean (default=False) Whether to allow 2-d y (array or sparse matrix). If false, y will be validated as a vector. ensure_min_samples : int (default=1) Make sure that X has a minimum number of samples in its first axis (rows for a 2D array). ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when X has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. y_numeric : boolean (default=False) Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to float64. Should only be used for regression algorithms. warn_on_dtype : boolean (default=False) Raise DataConversionWarning if the dtype of the input data structure does not match the requested dtype, causing a memory copy. estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. """ X = check_array(X, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator) if multi_output: y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False, dtype=None) else: y = column_or_1d(y, warn=True) _assert_all_finite(y) if y_numeric and y.dtype.kind == 'O': y = y.astype(np.float64) check_consistent_length(X, y) return X, y def column_or_1d(y, warn=False): """ Ravel column or 1d numpy array, else raises an error Parameters ---------- y : array-like warn : boolean, default False To control display of warnings. Returns ------- y : array """ shape = np.shape(y) if len(shape) == 1: return np.ravel(y) if len(shape) == 2 and shape[1] == 1: if warn: warnings.warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) return np.ravel(y) raise ValueError("bad input shape {0}".format(shape)) def check_random_state(seed): """Turn seed into a np.random.RandomState instance If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed) def has_fit_parameter(estimator, parameter): """Checks whether the estimator's fit method supports the given parameter. Examples -------- >>> from sklearn.svm import SVC >>> has_fit_parameter(SVC(), "sample_weight") True """ return parameter in getargspec(estimator.fit)[0] def check_symmetric(array, tol=1E-10, raise_warning=True, raise_exception=False): """Make sure that array is 2D, square and symmetric. If the array is not symmetric, then a symmetrized version is returned. Optionally, a warning or exception is raised if the matrix is not symmetric. Parameters ---------- array : nd-array or sparse matrix Input object to check / convert. Must be two-dimensional and square, otherwise a ValueError will be raised. tol : float Absolute tolerance for equivalence of arrays. Default = 1E-10. raise_warning : boolean (default=True) If True then raise a warning if conversion is required. raise_exception : boolean (default=False) If True then raise an exception if array is not symmetric. Returns ------- array_sym : ndarray or sparse matrix Symmetrized version of the input array, i.e. the average of array and array.transpose(). If sparse, then duplicate entries are first summed and zeros are eliminated. """ if (array.ndim != 2) or (array.shape[0] != array.shape[1]): raise ValueError("array must be 2-dimensional and square. " "shape = {0}".format(array.shape)) if sp.issparse(array): diff = array - array.T # only csr, csc, and coo have `data` attribute if diff.format not in ['csr', 'csc', 'coo']: diff = diff.tocsr() symmetric = np.all(abs(diff.data) < tol) else: symmetric = np.allclose(array, array.T, atol=tol) if not symmetric: if raise_exception: raise ValueError("Array must be symmetric") if raise_warning: warnings.warn("Array is not symmetric, and will be converted " "to symmetric by average with its transpose.") if sp.issparse(array): conversion = 'to' + array.format array = getattr(0.5 * (array + array.T), conversion)() else: array = 0.5 * (array + array.T) return array def check_is_fitted(estimator, attributes, msg=None, all_or_any=all): """Perform is_fitted validation for estimator. Checks if the estimator is fitted by verifying the presence of "all_or_any" of the passed attributes and raises a NotFittedError with the given message. Parameters ---------- estimator : estimator instance. estimator instance for which the check is performed. attributes : attribute name(s) given as string or a list/tuple of strings Eg. : ["coef_", "estimator_", ...], "coef_" msg : string The default error message is, "This %(name)s instance is not fitted yet. Call 'fit' with appropriate arguments before using this method." For custom messages if "%(name)s" is present in the message string, it is substituted for the estimator name. Eg. : "Estimator, %(name)s, must be fitted before sparsifying". all_or_any : callable, {all, any}, default all Specify whether all or any of the given attributes must exist. """ if msg is None: msg = ("This %(name)s instance is not fitted yet. Call 'fit' with " "appropriate arguments before using this method.") if not hasattr(estimator, 'fit'): raise TypeError("%s is not an estimator instance." % (estimator)) if not isinstance(attributes, (list, tuple)): attributes = [attributes] if not all_or_any([hasattr(estimator, attr) for attr in attributes]): raise NotFittedError(msg % {'name': type(estimator).__name__}) def check_non_negative(X, whom): """ Check if there is any negative value in an array. Parameters ---------- X : array-like or sparse matrix Input data. whom : string Who passed X to this function. """ X = X.data if sp.issparse(X) else X if (X < 0).any(): raise ValueError("Negative values in data passed to %s" % whom)
bsd-3-clause
dyno/LMK
lmk/test/test_cache.py
1
4051
import unittest from tempfile import TemporaryDirectory from pandas_datareader.data import DataReader from pandas import to_datetime from numpy import dtype from lmk.utils import env from lmk.cache import Cache def date(s): return to_datetime(s).date() DS = "google" class CacheTestCase(unittest.TestCase): """Tests for `lmk.cache`.""" def setUp(self): # env.logger.setLevel(logging.WARN) self.symbol = "TSLA" self.start = "2015-04-01" self.end = "2015-06-30" self.h = DataReader(self.symbol, DS, self.start, self.end) def test_cache(self): with TemporaryDirectory(prefix="lmk.") as tmpdir: cache = Cache(tmpdir) self.assertTrue(list(cache.range.columns) == ["start", "end"]) self.assertEqual(cache.range.dtypes.loc["start"], dtype("<M8[ns]")) def cache_range(): r = cache.range.loc[self.symbol] return r["start"].date(), r["end"].date() # initial put cache.put(self.symbol, date(self.start), date(self.end), self.h) self.assertEqual(cache.range.dtypes.loc["end"], dtype("<M8[ns]")) self.assertEqual(cache_range(), (date(self.start), date(self.end))) # no data cached for the symbol. start, end = "2015-01-01", "2015-01-31" h = cache.get("NONEXIST", date(start), date(end)) self.assertTrue(h is None) # on the left, no overlap start, end = "2015-01-01", "2015-01-31" h = cache.get(self.symbol, date(start), date(end)) self.assertTrue(h is None) self.assertEqual(cache_range(), (date(self.start), date(self.end))) h1 = DataReader(self.symbol, DS, start, end) cache.put(self.symbol, date(start), date(end), h1) self.assertEqual(cache_range(), (date(self.start), date(self.end))) h = cache.get(self.symbol, date(start), date(end)) self.assertTrue(h is None) # only the most recent range is saved. # on the right, no overlap start, end = "2016-01-01", "2016-05-31" h = cache.get(self.symbol, date(start), date(end)) self.assertTrue(h is None) h1 = DataReader(self.symbol, DS, start, end) cache.put(self.symbol, date(start), date(end), h1) self.assertEqual(cache_range(), (date(start), date(end))) h = cache.get(self.symbol, date(start), date(end)) self.assertTrue(h is not None) # only the most recent range is saved. # overlap on the left start, end = "2015-12-01", "2016-03-31" h = cache.get(self.symbol, date(start), date(end)) self.assertTrue(h is None) h1 = DataReader(self.symbol, DS, start, end) cache.put(self.symbol, date(start), date(end), h1) self.assertEqual(cache_range(), (date(start), date("2016-05-31"))) h = cache.get(self.symbol, date(start), date(end)) self.assertTrue(h is not None) # cache extended # overlap on the right start, end = "2016-04-01", "2016-06-30" h = cache.get(self.symbol, date(start), date(end)) self.assertTrue(h is None) h1 = DataReader(self.symbol, DS, start, end) cache.put(self.symbol, date(start), date(end), h1) self.assertEqual(cache_range(), (date("2015-12-01"), date("2016-06-30"))) h = cache.get(self.symbol, date(start), date(end)) self.assertTrue(h is not None) # cache extended # hit - part start, end = "2016-01-01", "2016-05-31" h = cache.get(self.symbol, date(start), date(end)) self.assertTrue(h is not None) # hit - full start, end = "2015-12-01", "2016-06-30" h = cache.get(self.symbol, date(start), date(end)) self.assertTrue(h is not None) if __name__ == "__main__": unittest.main()
mit
umuzungu/zipline
zipline/data/us_equity_pricing.py
1
42320
# Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABCMeta, abstractmethod, abstractproperty from errno import ENOENT from functools import partial from os import remove from os.path import exists import sqlite3 import warnings from bcolz import ( carray, ctable, ) from collections import namedtuple import logbook import numpy as np from numpy import ( array, int64, float64, full, iinfo, integer, issubdtype, nan, uint32, zeros, ) from pandas import ( DataFrame, DatetimeIndex, read_csv, Timestamp, NaT, isnull, ) from pandas.tslib import iNaT from six import ( iteritems, with_metaclass, viewkeys, ) from zipline.utils.functional import apply from zipline.utils.preprocess import call from zipline.utils.input_validation import ( coerce_string, preprocess, expect_element, verify_indices_all_unique, ) from zipline.utils.sqlite_utils import group_into_chunks from zipline.utils.memoize import lazyval from zipline.utils.cli import maybe_show_progress from ._equities import _compute_row_slices, _read_bcolz_data from ._adjustments import load_adjustments_from_sqlite logger = logbook.Logger('UsEquityPricing') OHLC = frozenset(['open', 'high', 'low', 'close']) US_EQUITY_PRICING_BCOLZ_COLUMNS = ( 'open', 'high', 'low', 'close', 'volume', 'day', 'id' ) SQLITE_ADJUSTMENT_COLUMN_DTYPES = { 'effective_date': integer, 'ratio': float, 'sid': integer, } SQLITE_ADJUSTMENT_TABLENAMES = frozenset(['splits', 'dividends', 'mergers']) SQLITE_DIVIDEND_PAYOUT_COLUMN_DTYPES = { 'sid': integer, 'ex_date': integer, 'declared_date': integer, 'record_date': integer, 'pay_date': integer, 'amount': float, } SQLITE_STOCK_DIVIDEND_PAYOUT_COLUMN_DTYPES = { 'sid': integer, 'ex_date': integer, 'declared_date': integer, 'record_date': integer, 'pay_date': integer, 'payment_sid': integer, 'ratio': float, } UINT32_MAX = iinfo(uint32).max class NoDataOnDate(Exception): """ Raised when a spot price can be found for the sid and date. """ pass def check_uint32_safe(value, colname): if value >= UINT32_MAX: raise ValueError( "Value %s from column '%s' is too large" % (value, colname) ) @expect_element(invalid_data_behavior={'warn', 'raise', 'ignore'}) def winsorise_uint32(df, invalid_data_behavior, column, *columns): """Drops any record where a value would not fit into a uint32. Parameters ---------- df : pd.DataFrame The dataframe to winsorise. invalid_data_behavior : {'warn', 'raise', 'ignore'} What to do when data is outside the bounds of a uint32. *columns : iterable[str] The names of the columns to check. Returns ------- truncated : pd.DataFrame ``df`` with values that do not fit into a uint32 zeroed out. """ columns = list((column,) + columns) mask = df[columns] > UINT32_MAX if invalid_data_behavior != 'ignore': mask |= df[columns].isnull() else: # we are not going to generate a warning or error for this so just use # nan_to_num df[columns] = np.nan_to_num(df[columns]) mv = mask.values if mv.any(): if invalid_data_behavior == 'raise': raise ValueError( '%d values out of bounds for uint32: %r' % ( mv.sum(), df[mask.any(axis=1)], ), ) if invalid_data_behavior == 'warn': warnings.warn( 'Ignoring %d values because they are out of bounds for' ' uint32: %r' % ( mv.sum(), df[mask.any(axis=1)], ), stacklevel=3, # one extra frame for `expect_element` ) df[mask] = 0 return df @expect_element(invalid_data_behavior={'warn', 'raise', 'ignore'}) def to_ctable(raw_data, invalid_data_behavior): if isinstance(raw_data, ctable): # we already have a ctable so do nothing return raw_data winsorise_uint32(raw_data, invalid_data_behavior, 'volume', *OHLC) processed = (raw_data[list(OHLC)] * 1000).astype('uint32') dates = raw_data.index.values.astype('datetime64[s]') check_uint32_safe(dates.max().view(np.int64), 'day') processed['day'] = dates.astype('uint32') processed['volume'] = raw_data.volume.astype('uint32') return ctable.fromdataframe(processed) class BcolzDailyBarWriter(object): """ Class capable of writing daily OHLCV data to disk in a format that can be read efficiently by BcolzDailyOHLCVReader. Parameters ---------- filename : str The location at which we should write our output. calendar : pandas.DatetimeIndex Calendar to use to compute asset calendar offsets. See Also -------- zipline.data.us_equity_pricing.BcolzDailyBarReader """ _csv_dtypes = { 'open': float64, 'high': float64, 'low': float64, 'close': float64, 'volume': float64, } def __init__(self, filename, calendar): self._filename = filename self._calendar = calendar @property def progress_bar_message(self): return "Merging daily equity files:" def progress_bar_item_show_func(self, value): return value if value is None else str(value[0]) def write(self, data, assets=None, show_progress=False, invalid_data_behavior='warn'): """ Parameters ---------- data : iterable[tuple[int, pandas.DataFrame or bcolz.ctable]] The data chunks to write. Each chunk should be a tuple of sid and the data for that asset. assets : set[int], optional The assets that should be in ``data``. If this is provided we will check ``data`` against the assets and provide better progress information. show_progress : bool, optional Whether or not to show a progress bar while writing. invalid_data_behavior : {'warn', 'raise', 'ignore'}, optional What to do when data is encountered that is outside the range of a uint32. Returns ------- table : bcolz.ctable The newly-written table. """ ctx = maybe_show_progress( ((sid, to_ctable(df, invalid_data_behavior)) for sid, df in data), show_progress=show_progress, item_show_func=self.progress_bar_item_show_func, label=self.progress_bar_message, length=len(assets) if assets is not None else None, ) with ctx as it: return self._write_internal(it, assets) def write_csvs(self, asset_map, show_progress=False, invalid_data_behavior='warn'): """Read CSVs as DataFrames from our asset map. Parameters ---------- asset_map : dict[int -> str] A mapping from asset id to file path with the CSV data for that asset show_progress : bool Whether or not to show a progress bar while writing. invalid_data_behavior : {'warn', 'raise', 'ignore'} What to do when data is encountered that is outside the range of a uint32. """ read = partial( read_csv, parse_dates=['day'], index_col='day', dtype=self._csv_dtypes, ) return self.write( ((asset, read(path)) for asset, path in iteritems(asset_map)), assets=viewkeys(asset_map), show_progress=show_progress, invalid_data_behavior=invalid_data_behavior, ) def _write_internal(self, iterator, assets): """ Internal implementation of write. `iterator` should be an iterator yielding pairs of (asset, ctable). """ total_rows = 0 first_row = {} last_row = {} calendar_offset = {} # Maps column name -> output carray. columns = { k: carray(array([], dtype=uint32)) for k in US_EQUITY_PRICING_BCOLZ_COLUMNS } earliest_date = None calendar = self._calendar if assets is not None: @apply def iterator(iterator=iterator, assets=set(assets)): for asset_id, table in iterator: if asset_id not in assets: raise ValueError('unknown asset id %r' % asset_id) yield asset_id, table for asset_id, table in iterator: nrows = len(table) for column_name in columns: if column_name == 'id': # We know what the content of this column is, so don't # bother reading it. columns['id'].append( full((nrows,), asset_id, dtype='uint32'), ) continue columns[column_name].append(table[column_name]) if earliest_date is None: earliest_date = table["day"][0] else: earliest_date = min(earliest_date, table["day"][0]) # Bcolz doesn't support ints as keys in `attrs`, so convert # assets to strings for use as attr keys. asset_key = str(asset_id) # Calculate the index into the array of the first and last row # for this asset. This allows us to efficiently load single # assets when querying the data back out of the table. first_row[asset_key] = total_rows last_row[asset_key] = total_rows + nrows - 1 total_rows += nrows # Calculate the number of trading days between the first date # in the stored data and the first date of **this** asset. This # offset used for output alignment by the reader. asset_first_day = table['day'][0] calendar_offset[asset_key] = calendar.get_loc( Timestamp(asset_first_day, unit='s', tz='UTC'), ) # This writes the table to disk. full_table = ctable( columns=[ columns[colname] for colname in US_EQUITY_PRICING_BCOLZ_COLUMNS ], names=US_EQUITY_PRICING_BCOLZ_COLUMNS, rootdir=self._filename, mode='w', ) full_table.attrs['first_trading_day'] = ( earliest_date // 1e6 if earliest_date is not None else iNaT ) full_table.attrs['first_row'] = first_row full_table.attrs['last_row'] = last_row full_table.attrs['calendar_offset'] = calendar_offset full_table.attrs['calendar'] = calendar.asi8.tolist() full_table.flush() return full_table class DailyBarReader(with_metaclass(ABCMeta)): """ Reader for OHCLV pricing data at a daily frequency. """ @abstractmethod def load_raw_arrays(self, columns, start_date, end_date, assets): pass @abstractmethod def spot_price(self, sid, day, colname): pass @abstractproperty def last_available_dt(self): pass class BcolzDailyBarReader(DailyBarReader): """ Reader for raw pricing data written by BcolzDailyOHLCVWriter. A Bcolz CTable is comprised of Columns and Attributes. Columns ------- The table with which this loader interacts contains the following columns: ['open', 'high', 'low', 'close', 'volume', 'day', 'id']. The data in these columns is interpreted as follows: - Price columns ('open', 'high', 'low', 'close') are interpreted as 1000 * as-traded dollar value. - Volume is interpreted as as-traded volume. - Day is interpreted as seconds since midnight UTC, Jan 1, 1970. - Id is the asset id of the row. The data in each column is grouped by asset and then sorted by day within each asset block. The table is built to represent a long time range of data, e.g. ten years of equity data, so the lengths of each asset block is not equal to each other. The blocks are clipped to the known start and end date of each asset to cut down on the number of empty values that would need to be included to make a regular/cubic dataset. When read across the open, high, low, close, and volume with the same index should represent the same asset and day. Parameters ---------- table : bcolz.ctable The ctable contaning the pricing data, with attrs corresponding to the Attributes list below. read_all_threshold : int The number of equities at which; below, the data is read by reading a slice from the carray per asset. above, the data is read by pulling all of the data for all assets into memory and then indexing into that array for each day and asset pair. Used to tune performance of reads when using a small or large number of equities. Attributes ---------- The table with which this loader interacts contains the following attributes: first_row : dict Map from asset_id -> index of first row in the dataset with that id. last_row : dict Map from asset_id -> index of last row in the dataset with that id. calendar_offset : dict Map from asset_id -> calendar index of first row. calendar : list[int64] Calendar used to compute offsets, in asi8 format (ns since EPOCH). We use first_row and last_row together to quickly find ranges of rows to load when reading an asset's data into memory. We use calendar_offset and calendar to orient loaded blocks within a range of queried dates. See Also -------- zipline.data.us_equity_pricing.BcolzDailyBarWriter """ def __init__(self, table, read_all_threshold=3000): self._maybe_table_rootdir = table # Cache of fully read np.array for the carrays in the daily bar table. # raw_array does not use the same cache, but it could. # Need to test keeping the entire array in memory for the course of a # process first. self._spot_cols = {} self.PRICE_ADJUSTMENT_FACTOR = 0.001 self._read_all_threshold = read_all_threshold @lazyval def _table(self): maybe_table_rootdir = self._maybe_table_rootdir if isinstance(maybe_table_rootdir, ctable): return maybe_table_rootdir return ctable(rootdir=maybe_table_rootdir, mode='r') @lazyval def _calendar(self): return DatetimeIndex(self._table.attrs['calendar'], tz='UTC') @lazyval def _first_rows(self): return { int(asset_id): start_index for asset_id, start_index in iteritems( self._table.attrs['first_row'], ) } @lazyval def _last_rows(self): return { int(asset_id): end_index for asset_id, end_index in iteritems( self._table.attrs['last_row'], ) } @lazyval def _calendar_offsets(self): return { int(id_): offset for id_, offset in iteritems( self._table.attrs['calendar_offset'], ) } @lazyval def first_trading_day(self): try: return Timestamp( self._table.attrs['first_trading_day'], unit='ms', tz='UTC' ) except KeyError: return None @property def last_available_dt(self): return self._calendar[-1] def _compute_slices(self, start_idx, end_idx, assets): """ Compute the raw row indices to load for each asset on a query for the given dates after applying a shift. Parameters ---------- start_idx : int Index of first date for which we want data. end_idx : int Index of last date for which we want data. assets : pandas.Int64Index Assets for which we want to compute row indices Returns ------- A 3-tuple of (first_rows, last_rows, offsets): first_rows : np.array[intp] Array with length == len(assets) containing the index of the first row to load for each asset in `assets`. last_rows : np.array[intp] Array with length == len(assets) containing the index of the last row to load for each asset in `assets`. offset : np.array[intp] Array with length == (len(asset) containing the index in a buffer of length `dates` corresponding to the first row of each asset. The value of offset[i] will be 0 if asset[i] existed at the start of a query. Otherwise, offset[i] will be equal to the number of entries in `dates` for which the asset did not yet exist. """ # The core implementation of the logic here is implemented in Cython # for efficiency. return _compute_row_slices( self._first_rows, self._last_rows, self._calendar_offsets, start_idx, end_idx, assets, ) def load_raw_arrays(self, columns, start_date, end_date, assets): # Assumes that the given dates are actually in calendar. start_idx = self._calendar.get_loc(start_date) end_idx = self._calendar.get_loc(end_date) first_rows, last_rows, offsets = self._compute_slices( start_idx, end_idx, assets, ) read_all = len(assets) > self._read_all_threshold return _read_bcolz_data( self._table, (end_idx - start_idx + 1, len(assets)), list(columns), first_rows, last_rows, offsets, read_all, ) def _spot_col(self, colname): """ Get the colname from daily_bar_table and read all of it into memory, caching the result. Parameters ---------- colname : string A name of a OHLCV carray in the daily_bar_table Returns ------- array (uint32) Full read array of the carray in the daily_bar_table with the given colname. """ try: col = self._spot_cols[colname] except KeyError: col = self._spot_cols[colname] = self._table[colname] return col def get_last_traded_dt(self, asset, day): volumes = self._spot_col('volume') if day >= asset.end_date: # go back to one day before the asset ended search_day = self._calendar[ self._calendar.searchsorted(asset.end_date) - 1 ] else: search_day = day while True: try: ix = self.sid_day_index(asset, search_day) except NoDataOnDate: return None if volumes[ix] != 0: return search_day prev_day_ix = self._calendar.get_loc(search_day) - 1 if prev_day_ix > -1: search_day = self._calendar[prev_day_ix] else: return None def sid_day_index(self, sid, day): """ Parameters ---------- sid : int The asset identifier. day : datetime64-like Midnight of the day for which data is requested. Returns ------- int Index into the data tape for the given sid and day. Raises a NoDataOnDate exception if the given day and sid is before or after the date range of the equity. """ try: day_loc = self._calendar.get_loc(day) except: raise NoDataOnDate("day={0} is outside of calendar={1}".format( day, self._calendar)) offset = day_loc - self._calendar_offsets[sid] if offset < 0: raise NoDataOnDate( "No data on or before day={0} for sid={1}".format( day, sid)) ix = self._first_rows[sid] + offset if ix > self._last_rows[sid]: raise NoDataOnDate( "No data on or after day={0} for sid={1}".format( day, sid)) return ix def spot_price(self, sid, day, colname): """ Parameters ---------- sid : int The asset identifier. day : datetime64-like Midnight of the day for which data is requested. colname : string The price field. e.g. ('open', 'high', 'low', 'close', 'volume') Returns ------- float The spot price for colname of the given sid on the given day. Raises a NoDataOnDate exception if the given day and sid is before or after the date range of the equity. Returns -1 if the day is within the date range, but the price is 0. """ ix = self.sid_day_index(sid, day) price = self._spot_col(colname)[ix] if price == 0: return -1 if colname != 'volume': return price * 0.001 else: return price class PanelDailyBarReader(DailyBarReader): """ Reader for data passed as Panel. DataPanel Structure ------- items : Int64Index Asset identifiers. Must be unique. major_axis : DatetimeIndex Dates for data provided provided by the Panel. Must be unique. minor_axis : ['open', 'high', 'low', 'close', 'volume'] Price attributes. Must be unique. Attributes ---------- The table with which this loader interacts contains the following attributes: panel : pd.Panel The panel from which to read OHLCV data. first_trading_day : pd.Timestamp The first trading day in the dataset. """ @preprocess(panel=call(verify_indices_all_unique)) def __init__(self, calendar, panel): panel = panel.copy() if 'volume' not in panel.minor_axis: # Fake volume if it does not exist. panel.loc[:, :, 'volume'] = int(1e9) self.first_trading_day = panel.major_axis[0] self._calendar = calendar self.panel = panel @property def last_available_dt(self): return self._calendar[-1] def load_raw_arrays(self, columns, start_date, end_date, assets): columns = list(columns) cal = self._calendar index = cal[cal.slice_indexer(start_date, end_date)] shape = (len(index), len(assets)) results = [] for col in columns: outbuf = zeros(shape=shape) for i, asset in enumerate(assets): data = self.panel.loc[asset, start_date:end_date, col] data = data.reindex_axis(index).values outbuf[:, i] = data results.append(outbuf) return results def spot_price(self, sid, day, colname): """ Parameters ---------- sid : int The asset identifier. day : datetime64-like Midnight of the day for which data is requested. colname : string The price field. e.g. ('open', 'high', 'low', 'close', 'volume') Returns ------- float The spot price for colname of the given sid on the given day. Raises a NoDataOnDate exception if the given day and sid is before or after the date range of the equity. Returns -1 if the day is within the date range, but the price is 0. """ return self.panel.loc[sid, day, colname] def get_last_traded_dt(self, sid, dt): """ Parameters ---------- sid : int The asset identifier. dt : datetime64-like Midnight of the day for which data is requested. Returns ------- pd.Timestamp : The last know dt for the asset and dt; NaT if no trade is found before the given dt. """ while dt in self.panel.major_axis: freq = self.panel.major_axis.freq if not isnull(self.panel.loc[sid, dt, 'close']): return dt dt -= freq else: return NaT class SQLiteAdjustmentWriter(object): """ Writer for data to be read by SQLiteAdjustmentReader Parameters ---------- conn_or_path : str or sqlite3.Connection A handle to the target sqlite database. daily_bar_reader : BcolzDailyBarReader Daily bar reader to use for dividend writes. overwrite : bool, optional, default=False If True and conn_or_path is a string, remove any existing files at the given path before connecting. See Also -------- zipline.data.us_equity_pricing.SQLiteAdjustmentReader """ def __init__(self, conn_or_path, daily_bar_reader, calendar, overwrite=False): if isinstance(conn_or_path, sqlite3.Connection): self.conn = conn_or_path elif isinstance(conn_or_path, str): if overwrite and exists(conn_or_path): try: remove(conn_or_path) except OSError as e: if e.errno != ENOENT: raise self.conn = sqlite3.connect(conn_or_path) self.uri = conn_or_path else: raise TypeError("Unknown connection type %s" % type(conn_or_path)) self._daily_bar_reader = daily_bar_reader self._calendar = calendar def _write(self, tablename, expected_dtypes, frame): if frame is None or frame.empty: # keeping the dtypes correct for empty frames is not easy frame = DataFrame( np.array([], dtype=list(expected_dtypes.items())), ) else: if frozenset(frame.columns) != viewkeys(expected_dtypes): raise ValueError( "Unexpected frame columns:\n" "Expected Columns: %s\n" "Received Columns: %s" % ( set(expected_dtypes), frame.columns.tolist(), ) ) actual_dtypes = frame.dtypes for colname, expected in iteritems(expected_dtypes): actual = actual_dtypes[colname] if not issubdtype(actual, expected): raise TypeError( "Expected data of type {expected} for column" " '{colname}', but got '{actual}'.".format( expected=expected, colname=colname, actual=actual, ), ) frame.to_sql( tablename, self.conn, if_exists='append', chunksize=50000, ) def write_frame(self, tablename, frame): if tablename not in SQLITE_ADJUSTMENT_TABLENAMES: raise ValueError( "Adjustment table %s not in %s" % ( tablename, SQLITE_ADJUSTMENT_TABLENAMES, ) ) if not (frame is None or frame.empty): frame = frame.copy() frame['effective_date'] = frame['effective_date'].values.astype( 'datetime64[s]', ).astype('int64') return self._write( tablename, SQLITE_ADJUSTMENT_COLUMN_DTYPES, frame, ) def write_dividend_payouts(self, frame): """ Write dividend payout data to SQLite table `dividend_payouts`. """ return self._write( 'dividend_payouts', SQLITE_DIVIDEND_PAYOUT_COLUMN_DTYPES, frame, ) def write_stock_dividend_payouts(self, frame): return self._write( 'stock_dividend_payouts', SQLITE_STOCK_DIVIDEND_PAYOUT_COLUMN_DTYPES, frame, ) def calc_dividend_ratios(self, dividends): """ Calculate the ratios to apply to equities when looking back at pricing history so that the price is smoothed over the ex_date, when the market adjusts to the change in equity value due to upcoming dividend. Returns ------- DataFrame A frame in the same format as splits and mergers, with keys - sid, the id of the equity - effective_date, the date in seconds on which to apply the ratio. - ratio, the ratio to apply to backwards looking pricing data. """ if dividends is None: return DataFrame(np.array( [], dtype=[ ('sid', uint32), ('effective_date', uint32), ('ratio', float64), ], )) ex_dates = dividends.ex_date.values sids = dividends.sid.values amounts = dividends.amount.values ratios = full(len(amounts), nan) daily_bar_reader = self._daily_bar_reader effective_dates = full(len(amounts), -1, dtype=int64) calendar = self._calendar for i, amount in enumerate(amounts): sid = sids[i] ex_date = ex_dates[i] day_loc = calendar.get_loc(ex_date, method='bfill') prev_close_date = calendar[day_loc - 1] try: prev_close = daily_bar_reader.spot_price( sid, prev_close_date, 'close') if prev_close != 0.0: ratio = 1.0 - amount / prev_close ratios[i] = ratio # only assign effective_date when data is found effective_dates[i] = ex_date except NoDataOnDate: logger.warn("Couldn't compute ratio for dividend %s" % { 'sid': sid, 'ex_date': ex_date, 'amount': amount, }) continue # Create a mask to filter out indices in the effective_date, sid, and # ratio vectors for which a ratio was not calculable. effective_mask = effective_dates != -1 effective_dates = effective_dates[effective_mask] effective_dates = effective_dates.astype('datetime64[ns]').\ astype('datetime64[s]').astype(uint32) sids = sids[effective_mask] ratios = ratios[effective_mask] return DataFrame({ 'sid': sids, 'effective_date': effective_dates, 'ratio': ratios, }) def _write_dividends(self, dividends): if dividends is None: dividend_payouts = None else: dividend_payouts = dividends.copy() dividend_payouts['ex_date'] = dividend_payouts['ex_date'].values.\ astype('datetime64[s]').astype(integer) dividend_payouts['record_date'] = \ dividend_payouts['record_date'].values.astype('datetime64[s]').\ astype(integer) dividend_payouts['declared_date'] = \ dividend_payouts['declared_date'].values.astype('datetime64[s]').\ astype(integer) dividend_payouts['pay_date'] = \ dividend_payouts['pay_date'].values.astype('datetime64[s]').\ astype(integer) self.write_dividend_payouts(dividend_payouts) def _write_stock_dividends(self, stock_dividends): if stock_dividends is None: stock_dividend_payouts = None else: stock_dividend_payouts = stock_dividends.copy() stock_dividend_payouts['ex_date'] = \ stock_dividend_payouts['ex_date'].values.\ astype('datetime64[s]').astype(integer) stock_dividend_payouts['record_date'] = \ stock_dividend_payouts['record_date'].values.\ astype('datetime64[s]').astype(integer) stock_dividend_payouts['declared_date'] = \ stock_dividend_payouts['declared_date'].\ values.astype('datetime64[s]').astype(integer) stock_dividend_payouts['pay_date'] = \ stock_dividend_payouts['pay_date'].\ values.astype('datetime64[s]').astype(integer) self.write_stock_dividend_payouts(stock_dividend_payouts) def write_dividend_data(self, dividends, stock_dividends=None): """ Write both dividend payouts and the derived price adjustment ratios. """ # First write the dividend payouts. self._write_dividends(dividends) self._write_stock_dividends(stock_dividends) # Second from the dividend payouts, calculate ratios. dividend_ratios = self.calc_dividend_ratios(dividends) self.write_frame('dividends', dividend_ratios) def write(self, splits=None, mergers=None, dividends=None, stock_dividends=None): """ Writes data to a SQLite file to be read by SQLiteAdjustmentReader. Parameters ---------- splits : pandas.DataFrame, optional Dataframe containing split data. The format of this dataframe is: effective_date : int The date, represented as seconds since Unix epoch, on which the adjustment should be applied. ratio : float A value to apply to all data earlier than the effective date. For open, high, low, and close those values are multiplied by the ratio. Volume is divided by this value. sid : int The asset id associated with this adjustment. mergers : pandas.DataFrame, optional DataFrame containing merger data. The format of this dataframe is: effective_date : int The date, represented as seconds since Unix epoch, on which the adjustment should be applied. ratio : float A value to apply to all data earlier than the effective date. For open, high, low, and close those values are multiplied by the ratio. Volume is unaffected. sid : int The asset id associated with this adjustment. dividends : pandas.DataFrame, optional DataFrame containing dividend data. The format of the dataframe is: sid : int The asset id associated with this adjustment. ex_date : datetime64 The date on which an equity must be held to be eligible to receive payment. declared_date : datetime64 The date on which the dividend is announced to the public. pay_date : datetime64 The date on which the dividend is distributed. record_date : datetime64 The date on which the stock ownership is checked to determine distribution of dividends. amount : float The cash amount paid for each share. Dividend ratios are calculated as: ``1.0 - (dividend_value / "close on day prior to ex_date")`` stock_dividends : pandas.DataFrame, optional DataFrame containing stock dividend data. The format of the dataframe is: sid : int The asset id associated with this adjustment. ex_date : datetime64 The date on which an equity must be held to be eligible to receive payment. declared_date : datetime64 The date on which the dividend is announced to the public. pay_date : datetime64 The date on which the dividend is distributed. record_date : datetime64 The date on which the stock ownership is checked to determine distribution of dividends. payment_sid : int The asset id of the shares that should be paid instead of cash. ratio : float The ratio of currently held shares in the held sid that should be paid with new shares of the payment_sid. See Also -------- zipline.data.us_equity_pricing.SQLiteAdjustmentReader """ self.write_frame('splits', splits) self.write_frame('mergers', mergers) self.write_dividend_data(dividends, stock_dividends) self.conn.execute( "CREATE INDEX splits_sids " "ON splits(sid)" ) self.conn.execute( "CREATE INDEX splits_effective_date " "ON splits(effective_date)" ) self.conn.execute( "CREATE INDEX mergers_sids " "ON mergers(sid)" ) self.conn.execute( "CREATE INDEX mergers_effective_date " "ON mergers(effective_date)" ) self.conn.execute( "CREATE INDEX dividends_sid " "ON dividends(sid)" ) self.conn.execute( "CREATE INDEX dividends_effective_date " "ON dividends(effective_date)" ) self.conn.execute( "CREATE INDEX dividend_payouts_sid " "ON dividend_payouts(sid)" ) self.conn.execute( "CREATE INDEX dividends_payouts_ex_date " "ON dividend_payouts(ex_date)" ) self.conn.execute( "CREATE INDEX stock_dividend_payouts_sid " "ON stock_dividend_payouts(sid)" ) self.conn.execute( "CREATE INDEX stock_dividends_payouts_ex_date " "ON stock_dividend_payouts(ex_date)" ) def close(self): self.conn.close() UNPAID_QUERY_TEMPLATE = """ SELECT sid, amount, pay_date from dividend_payouts WHERE ex_date=? AND sid IN ({0}) """ Dividend = namedtuple('Dividend', ['asset', 'amount', 'pay_date']) UNPAID_STOCK_DIVIDEND_QUERY_TEMPLATE = """ SELECT sid, payment_sid, ratio, pay_date from stock_dividend_payouts WHERE ex_date=? AND sid IN ({0}) """ StockDividend = namedtuple( 'StockDividend', ['asset', 'payment_asset', 'ratio', 'pay_date']) class SQLiteAdjustmentReader(object): """ Loads adjustments based on corporate actions from a SQLite database. Expects data written in the format output by `SQLiteAdjustmentWriter`. Parameters ---------- conn : str or sqlite3.Connection Connection from which to load data. See Also -------- zipline.data.us_equity_pricing.SQLiteAdjustmentWriter """ @preprocess(conn=coerce_string(sqlite3.connect)) def __init__(self, conn): self.conn = conn def load_adjustments(self, columns, dates, assets): return load_adjustments_from_sqlite( self.conn, list(columns), dates, assets, ) def get_adjustments_for_sid(self, table_name, sid): t = (sid,) c = self.conn.cursor() adjustments_for_sid = c.execute( "SELECT effective_date, ratio FROM %s WHERE sid = ?" % table_name, t).fetchall() c.close() return [[Timestamp(adjustment[0], unit='s', tz='UTC'), adjustment[1]] for adjustment in adjustments_for_sid] def get_dividends_with_ex_date(self, assets, date, asset_finder): seconds = date.value / int(1e9) c = self.conn.cursor() divs = [] for chunk in group_into_chunks(assets): query = UNPAID_QUERY_TEMPLATE.format( ",".join(['?' for _ in chunk])) t = (seconds,) + tuple(map(lambda x: int(x), chunk)) c.execute(query, t) rows = c.fetchall() for row in rows: div = Dividend( asset_finder.retrieve_asset(row[0]), row[1], Timestamp(row[2], unit='s', tz='UTC')) divs.append(div) c.close() return divs def get_stock_dividends_with_ex_date(self, assets, date, asset_finder): seconds = date.value / int(1e9) c = self.conn.cursor() stock_divs = [] for chunk in group_into_chunks(assets): query = UNPAID_STOCK_DIVIDEND_QUERY_TEMPLATE.format( ",".join(['?' for _ in chunk])) t = (seconds,) + tuple(map(lambda x: int(x), chunk)) c.execute(query, t) rows = c.fetchall() for row in rows: stock_div = StockDividend( asset_finder.retrieve_asset(row[0]), # asset asset_finder.retrieve_asset(row[1]), # payment_asset row[2], Timestamp(row[3], unit='s', tz='UTC')) stock_divs.append(stock_div) c.close() return stock_divs
apache-2.0
fredhusser/scikit-learn
examples/covariance/plot_outlier_detection.py
235
3891
""" ========================================== Outlier detection with several methods. ========================================== When the amount of contamination is known, this example illustrates two different ways of performing :ref:`outlier_detection`: - based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs better than the One-Class SVM in that case. - using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the data is strongly non-Gaussian, i.e. with two well-separated clusters; The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which points are reported as inliers by each method. Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the 'predict' method of the objects, we set the threshold on the decision_function to separate out the corresponding fraction. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from scipy import stats from sklearn import svm from sklearn.covariance import EllipticEnvelope # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "robust covariance estimator": EllipticEnvelope(contamination=.1)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = 0 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model with the One-Class SVM plt.figure(figsize=(10, 5)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers clf.fit(X) y_pred = clf.decision_function(X).ravel() threshold = stats.scoreatpercentile(y_pred, 100 * outliers_fraction) y_pred = y_pred > threshold n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(1, 2, i + 1) subplot.set_title("Outlier detection") subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=11)) subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) plt.show()
bsd-3-clause
soulmachine/scikit-learn
examples/manifold/plot_swissroll.py
330
1446
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 print(__doc__) import matplotlib.pyplot as plt # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D #---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) #---------------------------------------------------------------------- # Plot result fig = plt.figure() try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(211, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) except: ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral) plt.axis('tight') plt.xticks([]), plt.yticks([]) plt.title('Projected data') plt.show()
bsd-3-clause
ajaybhat/scikit-image
doc/examples/xx_applications/plot_rank_filters.py
4
20058
""" ============ Rank filters ============ Rank filters are non-linear filters using the local gray-level ordering to compute the filtered value. This ensemble of filters share a common base: the local gray-level histogram is computed on the neighborhood of a pixel (defined by a 2-D structuring element). If the filtered value is taken as the middle value of the histogram, we get the classical median filter. Rank filters can be used for several purposes such as: * image quality enhancement e.g. image smoothing, sharpening * image pre-processing e.g. noise reduction, contrast enhancement * feature extraction e.g. border detection, isolated point detection * post-processing e.g. small object removal, object grouping, contour smoothing Some well known filters are specific cases of rank filters [1]_ e.g. morphological dilation, morphological erosion, median filters. In this example, we will see how to filter a gray-level image using some of the linear and non-linear filters available in skimage. We use the `camera` image from `skimage.data` for all comparisons. .. [1] Pierre Soille, On morphological operators based on rank filters, Pattern Recognition 35 (2002) 527-535. """ import numpy as np import matplotlib.pyplot as plt from skimage import img_as_ubyte from skimage import data noisy_image = img_as_ubyte(data.camera()) hist = np.histogram(noisy_image, bins=np.arange(0, 256)) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3)) ax1.imshow(noisy_image, interpolation='nearest', cmap=plt.cm.gray) ax1.axis('off') ax2.plot(hist[1][:-1], hist[0], lw=2) ax2.set_title('Histogram of grey values') ###################################################################### # # Noise removal # ============= # # Some noise is added to the image, 1% of pixels are randomly set to 255, 1% # are randomly set to 0. The **median** filter is applied to remove the # noise. from skimage.filters.rank import median from skimage.morphology import disk noise = np.random.random(noisy_image.shape) noisy_image = img_as_ubyte(data.camera()) noisy_image[noise > 0.99] = 255 noisy_image[noise < 0.01] = 0 fig, axes = plt.subplots(2, 2, figsize=(10, 7), sharex=True, sharey=True) ax = axes.ravel() ax[0].imshow(noisy_image, vmin=0, vmax=255, cmap=plt.cm.gray) ax[0].set_title('Noisy image') ax[0].axis('off') ax[0].set_adjustable('box-forced') ax[1].imshow(median(noisy_image, disk(1)), vmin=0, vmax=255, cmap=plt.cm.gray) ax[1].set_title('Median $r=1$') ax[1].axis('off') ax[1].set_adjustable('box-forced') ax[2].imshow(median(noisy_image, disk(5)), vmin=0, vmax=255, cmap=plt.cm.gray) ax[2].set_title('Median $r=5$') ax[2].axis('off') ax[2].set_adjustable('box-forced') ax[3].imshow(median(noisy_image, disk(20)), vmin=0, vmax=255, cmap=plt.cm.gray) ax[3].set_title('Median $r=20$') ax[3].axis('off') ax[3].set_adjustable('box-forced') ###################################################################### # # The added noise is efficiently removed, as the image defaults are small (1 # pixel wide), a small filter radius is sufficient. As the radius is # increasing, objects with bigger sizes are filtered as well, such as the # camera tripod. The median filter is often used for noise removal because # borders are preserved and e.g. salt and pepper noise typically does not # distort the gray-level. # # Image smoothing # =============== # # The example hereunder shows how a local **mean** filter smooths the camera # man image. from skimage.filters.rank import mean fig, (ax1, ax2) = plt.subplots(1, 2, figsize=[10, 7], sharex=True, sharey=True) loc_mean = mean(noisy_image, disk(10)) ax1.imshow(noisy_image, vmin=0, vmax=255, cmap=plt.cm.gray) ax1.set_title('Original') ax1.axis('off') ax1.set_adjustable('box-forced') ax2.imshow(loc_mean, vmin=0, vmax=255, cmap=plt.cm.gray) ax2.set_title('Local mean $r=10$') ax2.axis('off') ax2.set_adjustable('box-forced') ###################################################################### # # One may be interested in smoothing an image while preserving important # borders (median filters already achieved this), here we use the # **bilateral** filter that restricts the local neighborhood to pixel having # a gray-level similar to the central one. # # .. note:: # # A different implementation is available for color images in # `skimage.filters.denoise_bilateral`. from skimage.filters.rank import mean_bilateral noisy_image = img_as_ubyte(data.camera()) bilat = mean_bilateral(noisy_image.astype(np.uint16), disk(20), s0=10, s1=10) fig, axes = plt.subplots(2, 2, figsize=(10, 7), sharex='row', sharey='row') ax = axes.ravel() ax[0].imshow(noisy_image, cmap=plt.cm.gray) ax[0].set_title('Original') ax[0].axis('off') ax[0].set_adjustable('box-forced') ax[1].imshow(bilat, cmap=plt.cm.gray) ax[1].set_title('Bilateral mean') ax[1].axis('off') ax[1].set_adjustable('box-forced') ax[2].imshow(noisy_image[200:350, 350:450], cmap=plt.cm.gray) ax[2].axis('off') ax[2].set_adjustable('box-forced') ax[3].imshow(bilat[200:350, 350:450], cmap=plt.cm.gray) ax[3].axis('off') ax[3].set_adjustable('box-forced') ###################################################################### # One can see that the large continuous part of the image (e.g. sky) is # smoothed whereas other details are preserved. # # Contrast enhancement # ==================== # # We compare here how the global histogram equalization is applied locally. # # The equalized image [2]_ has a roughly linear cumulative distribution # function for each pixel neighborhood. The local version [3]_ of the # histogram equalization emphasizes every local gray-level variations. # # .. [2] http://en.wikipedia.org/wiki/Histogram_equalization # .. [3] http://en.wikipedia.org/wiki/Adaptive_histogram_equalization from skimage import exposure from skimage.filters import rank noisy_image = img_as_ubyte(data.camera()) # equalize globally and locally glob = exposure.equalize_hist(noisy_image) * 255 loc = rank.equalize(noisy_image, disk(20)) # extract histogram for each image hist = np.histogram(noisy_image, bins=np.arange(0, 256)) glob_hist = np.histogram(glob, bins=np.arange(0, 256)) loc_hist = np.histogram(loc, bins=np.arange(0, 256)) fig, axes = plt.subplots(3, 2, figsize=(10, 10)) ax = axes.ravel() ax[0].imshow(noisy_image, interpolation='nearest', cmap=plt.cm.gray) ax[0].axis('off') ax[1].plot(hist[1][:-1], hist[0], lw=2) ax[1].set_title('Histogram of gray values') ax[2].imshow(glob, interpolation='nearest', cmap=plt.cm.gray) ax[2].axis('off') ax[3].plot(glob_hist[1][:-1], glob_hist[0], lw=2) ax[3].set_title('Histogram of gray values') ax[4].imshow(loc, interpolation='nearest', cmap=plt.cm.gray) ax[4].axis('off') ax[5].plot(loc_hist[1][:-1], loc_hist[0], lw=2) ax[5].set_title('Histogram of gray values') ###################################################################### # Another way to maximize the number of gray-levels used for an image is to # apply a local auto-leveling, i.e. the gray-value of a pixel is # proportionally remapped between local minimum and local maximum. # # The following example shows how local auto-level enhances the camara man # picture. from skimage.filters.rank import autolevel noisy_image = img_as_ubyte(data.camera()) auto = autolevel(noisy_image.astype(np.uint16), disk(20)) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=[10, 7], sharex=True, sharey=True) ax1.imshow(noisy_image, cmap=plt.cm.gray) ax1.set_title('Original') ax1.axis('off') ax1.set_adjustable('box-forced') ax2.imshow(auto, cmap=plt.cm.gray) ax2.set_title('Local autolevel') ax2.axis('off') ax2.set_adjustable('box-forced') ###################################################################### # This filter is very sensitive to local outliers, see the little white spot # in the left part of the sky. This is due to a local maximum which is very # high comparing to the rest of the neighborhood. One can moderate this using # the percentile version of the auto-level filter which uses given # percentiles (one inferior, one superior) in place of local minimum and # maximum. The example below illustrates how the percentile parameters # influence the local auto-level result. from skimage.filters.rank import autolevel_percentile image = data.camera() selem = disk(20) loc_autolevel = autolevel(image, selem=selem) loc_perc_autolevel0 = autolevel_percentile(image, selem=selem, p0=.00, p1=1.0) loc_perc_autolevel1 = autolevel_percentile(image, selem=selem, p0=.01, p1=.99) loc_perc_autolevel2 = autolevel_percentile(image, selem=selem, p0=.05, p1=.95) loc_perc_autolevel3 = autolevel_percentile(image, selem=selem, p0=.1, p1=.9) fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(7, 8), sharex=True, sharey=True) plt.gray() title_list = ['Original', 'auto_level', 'auto-level 0%', 'auto-level 1%', 'auto-level 5%', 'auto-level 10%'] image_list = [image, loc_autolevel, loc_perc_autolevel0, loc_perc_autolevel1, loc_perc_autolevel2, loc_perc_autolevel3] axes_list = axes.ravel() for i in range(0, len(image_list)): axes_list[i].imshow(image_list[i], cmap=plt.cm.gray, vmin=0, vmax=255) axes_list[i].set_title(title_list[i]) axes_list[i].axis('off') axes_list[i].set_adjustable('box-forced') ###################################################################### # The morphological contrast enhancement filter replaces the central pixel by # the local maximum if the original pixel value is closest to local maximum, # otherwise by the minimum local. from skimage.filters.rank import enhance_contrast noisy_image = img_as_ubyte(data.camera()) enh = enhance_contrast(noisy_image, disk(5)) fig, axes = plt.subplots(2, 2, figsize=[10, 7], sharex='row', sharey='row') ax = axes.ravel() ax[0].imshow(noisy_image, cmap=plt.cm.gray) ax[0].set_title('Original') ax[0].axis('off') ax[0].set_adjustable('box-forced') ax[1].imshow(enh, cmap=plt.cm.gray) ax[1].set_title('Local morphological contrast enhancement') ax[1].axis('off') ax[1].set_adjustable('box-forced') ax[2].imshow(noisy_image[200:350, 350:450], cmap=plt.cm.gray) ax[2].axis('off') ax[2].set_adjustable('box-forced') ax[3].imshow(enh[200:350, 350:450], cmap=plt.cm.gray) ax[3].axis('off') ax[3].set_adjustable('box-forced') ###################################################################### # The percentile version of the local morphological contrast enhancement uses # percentile *p0* and *p1* instead of the local minimum and maximum. from skimage.filters.rank import enhance_contrast_percentile noisy_image = img_as_ubyte(data.camera()) penh = enhance_contrast_percentile(noisy_image, disk(5), p0=.1, p1=.9) fig, axes = plt.subplots(2, 2, figsize=[10, 7], sharex='row', sharey='row') ax = axes.ravel() ax[0].imshow(noisy_image, cmap=plt.cm.gray) ax[0].set_title('Original') ax[1].imshow(penh, cmap=plt.cm.gray) ax[1].set_title('Local percentile morphological\n contrast enhancement') ax[2].imshow(noisy_image[200:350, 350:450], cmap=plt.cm.gray) ax[3].imshow(penh[200:350, 350:450], cmap=plt.cm.gray) for a in ax: a.axis('off') a.set_adjustable('box-forced') ###################################################################### # # Image threshold # =============== # # The Otsu threshold [1]_ method can be applied locally using the local gray- # level distribution. In the example below, for each pixel, an "optimal" # threshold is determined by maximizing the variance between two classes of # pixels of the local neighborhood defined by a structuring element. # # The example compares the local threshold with the global threshold # `skimage.filters.threshold_otsu`. # # .. note:: # # Local is much slower than global thresholding. A function for global # Otsu thresholding can be found in : `skimage.filters.threshold_otsu`. # # .. [4] http://en.wikipedia.org/wiki/Otsu's_method from skimage.filters.rank import otsu from skimage.filters import threshold_otsu p8 = data.page() radius = 10 selem = disk(radius) # t_loc_otsu is an image t_loc_otsu = otsu(p8, selem) loc_otsu = p8 >= t_loc_otsu # t_glob_otsu is a scalar t_glob_otsu = threshold_otsu(p8) glob_otsu = p8 >= t_glob_otsu fig, axes = plt.subplots(2, 2, sharex=True, sharey=True) ax = axes.ravel() fig.colorbar(ax1.imshow(p8, cmap=plt.cm.gray), ax=ax1) ax[0].set_title('Original') fig.colorbar(ax[1].imshow(t_loc_otsu, cmap=plt.cm.gray), ax=ax2) ax[1].set_title('Local Otsu ($r=%d$)' % radius) ax[2].imshow(p8 >= t_loc_otsu, cmap=plt.cm.gray) ax[2].set_title('Original >= local Otsu' % t_glob_otsu) ax[3].imshow(glob_otsu, cmap=plt.cm.gray) ax[3].set_title('Global Otsu ($t=%d$)' % t_glob_otsu) for a in ax: a.axis('off') a.set_adjustable('box-forced') ###################################################################### # The following example shows how local Otsu thresholding handles a global # level shift applied to a synthetic image. n = 100 theta = np.linspace(0, 10 * np.pi, n) x = np.sin(theta) m = (np.tile(x, (n, 1)) * np.linspace(0.1, 1, n) * 128 + 128).astype(np.uint8) radius = 10 t = rank.otsu(m, disk(radius)) fig, (ax1, ax2) = plt.subplots(1, 2, sharex=True, sharey=True) ax1.imshow(m) ax1.set_title('Original') ax1.axis('off') ax1.set_adjustable('box-forced') ax2.imshow(m >= t, interpolation='nearest') ax2.set_title('Local Otsu ($r=%d$)' % radius) ax2.axis('off') ax2.set_adjustable('box-forced') ###################################################################### # Image morphology # ================ # # Local maximum and local minimum are the base operators for gray-level # morphology. # # .. note:: # # `skimage.dilate` and `skimage.erode` are equivalent filters (see below # for comparison). # # Here is an example of the classical morphological gray-level filters: # opening, closing and morphological gradient. from skimage.filters.rank import maximum, minimum, gradient noisy_image = img_as_ubyte(data.camera()) closing = maximum(minimum(noisy_image, disk(5)), disk(5)) opening = minimum(maximum(noisy_image, disk(5)), disk(5)) grad = gradient(noisy_image, disk(5)) # display results fig, axes = plt.subplots(2, 2, figsize=[10, 7], sharex=True, sharey=True) ax = axes.ravel() ax[0].imshow(noisy_image, cmap=plt.cm.gray) ax[0].set_title('Original') ax[1].imshow(closing, cmap=plt.cm.gray) ax[1].set_title('Gray-level closing') ax[2].imshow(opening, cmap=plt.cm.gray) ax[2].set_title('Gray-level opening') ax[3].imshow(grad, cmap=plt.cm.gray) ax[3].set_title('Morphological gradient') for a in ax: a.axis('off') a.set_adjustable('box-forced') ###################################################################### # # Feature extraction # =================== # # Local histograms can be exploited to compute local entropy, which is # related to the local image complexity. Entropy is computed using base 2 # logarithm i.e. the filter returns the minimum number of bits needed to # encode local gray-level distribution. # # `skimage.rank.entropy` returns the local entropy on a given structuring # element. The following example shows applies this filter on 8- and 16-bit # images. # # .. note:: # # to better use the available image bit, the function returns 10x entropy # for 8-bit images and 1000x entropy for 16-bit images. from skimage import data from skimage.filters.rank import entropy from skimage.morphology import disk import numpy as np import matplotlib.pyplot as plt image = data.camera() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4), sharex=True, sharey=True) fig.colorbar(ax1.imshow(image, cmap=plt.cm.gray), ax=ax1) ax1.set_title('Image') ax1.axis('off') ax1.set_adjustable('box-forced') fig.colorbar(ax2.imshow(entropy(image, disk(5)), cmap=plt.cm.gray), ax=ax2) ax2.set_title('Entropy') ax2.axis('off') ax2.set_adjustable('box-forced') ###################################################################### # # Implementation # ============== # # The central part of the `skimage.rank` filters is build on a sliding window # that updates the local gray-level histogram. This approach limits the # algorithm complexity to O(n) where n is the number of image pixels. The # complexity is also limited with respect to the structuring element size. # # In the following we compare the performance of different implementations # available in `skimage`. from time import time from scipy.ndimage import percentile_filter from skimage.morphology import dilation from skimage.filters.rank import median, maximum def exec_and_timeit(func): """Decorator that returns both function results and execution time.""" def wrapper(*arg): t1 = time() res = func(*arg) t2 = time() ms = (t2 - t1) * 1000.0 return (res, ms) return wrapper @exec_and_timeit def cr_med(image, selem): return median(image=image, selem=selem) @exec_and_timeit def cr_max(image, selem): return maximum(image=image, selem=selem) @exec_and_timeit def cm_dil(image, selem): return dilation(image=image, selem=selem) @exec_and_timeit def ndi_med(image, n): return percentile_filter(image, 50, size=n * 2 - 1) ###################################################################### # Comparison between # # * `filters.rank.maximum` # * `morphology.dilate` # # on increasing structuring element size: a = data.camera() rec = [] e_range = range(1, 20, 2) for r in e_range: elem = disk(r + 1) rc, ms_rc = cr_max(a, elem) rcm, ms_rcm = cm_dil(a, elem) rec.append((ms_rc, ms_rcm)) rec = np.asarray(rec) fig, ax = plt.subplots() ax.set_title('Performance with respect to element size') ax.set_ylabel('Time (ms)') ax.set_xlabel('Element radius') ax.plot(e_range, rec) ax.legend(['filters.rank.maximum', 'morphology.dilate']) ###################################################################### # and increasing image size: r = 9 elem = disk(r + 1) rec = [] s_range = range(100, 1000, 100) for s in s_range: a = (np.random.random((s, s)) * 256).astype(np.uint8) (rc, ms_rc) = cr_max(a, elem) (rcm, ms_rcm) = cm_dil(a, elem) rec.append((ms_rc, ms_rcm)) rec = np.asarray(rec) fig, ax = plt.subplots() ax.set_title('Performance with respect to image size') ax.set_ylabel('Time (ms)') ax.set_xlabel('Image size') ax.plot(s_range, rec) ax.legend(['filters.rank.maximum', 'morphology.dilate']) ###################################################################### # Comparison between: # # * `filters.rank.median` # * `scipy.ndimage.percentile` # # on increasing structuring element size: a = data.camera() rec = [] e_range = range(2, 30, 4) for r in e_range: elem = disk(r + 1) rc, ms_rc = cr_med(a, elem) rndi, ms_ndi = ndi_med(a, r) rec.append((ms_rc, ms_ndi)) rec = np.asarray(rec) fig, ax = plt.subplots() ax.set_title('Performance with respect to element size') ax.plot(e_range, rec) ax.legend(['filters.rank.median', 'scipy.ndimage.percentile']) ax.set_ylabel('Time (ms)') ax.set_xlabel('Element radius') ###################################################################### # Comparison of outcome of the three methods: fig, (ax0, ax1) = plt.subplots(ncols=2, sharex=True, sharey=True) ax0.set_title('filters.rank.median') ax0.imshow(rc) ax0.axis('off') ax0.set_adjustable('box-forced') ax1.set_title('scipy.ndimage.percentile') ax1.imshow(rndi) ax1.axis('off') ax1.set_adjustable('box-forced') ###################################################################### # and increasing image size: r = 9 elem = disk(r + 1) rec = [] s_range = [100, 200, 500, 1000] for s in s_range: a = (np.random.random((s, s)) * 256).astype(np.uint8) (rc, ms_rc) = cr_med(a, elem) rndi, ms_ndi = ndi_med(a, r) rec.append((ms_rc, ms_ndi)) rec = np.asarray(rec) fig, ax = plt.subplots() ax.set_title('Performance with respect to image size') ax.plot(s_range, rec) ax.legend(['filters.rank.median', 'scipy.ndimage.percentile']) ax.set_ylabel('Time (ms)') ax.set_xlabel('Image size')
bsd-3-clause
HyperloopTeam/FullOpenMDAO
lib/python2.7/site-packages/matplotlib/testing/image_util.py
11
3765
# This module contains some functionality from the Python Imaging # Library, that has been ported to use Numpy arrays rather than PIL # Image objects. # The Python Imaging Library is # Copyright (c) 1997-2009 by Secret Labs AB # Copyright (c) 1995-2009 by Fredrik Lundh # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # Permission to use, copy, modify, and distribute this software and its # associated documentation for any purpose and without fee is hereby # granted, provided that the above copyright notice appears in all # copies, and that both that copyright notice and this permission notice # appear in supporting documentation, and that the name of Secret Labs # AB or the author not be used in advertising or publicity pertaining to # distribution of the software without specific, written prior # permission. # SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO # THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR BE LIABLE FOR # ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange import numpy as np from matplotlib.cbook import deprecated, warn_deprecated warn_deprecated('1.4.0', name='matplotlib.testing.image_util', obj_type='module') @deprecated('1.4.0') def autocontrast(image, cutoff=0): """ Maximize image contrast, based on histogram. This completely ignores the alpha channel. """ assert image.dtype == np.uint8 output_image = np.empty((image.shape[0], image.shape[1], 3), np.uint8) for i in xrange(0, 3): plane = image[:,:,i] output_plane = output_image[:,:,i] h = np.histogram(plane, bins=256)[0] if cutoff: # cut off pixels from both ends of the histogram # get number of pixels n = 0 for ix in xrange(256): n = n + h[ix] # remove cutoff% pixels from the low end cut = n * cutoff / 100 for lo in range(256): if cut > h[lo]: cut = cut - h[lo] h[lo] = 0 else: h[lo] = h[lo] - cut cut = 0 if cut <= 0: break # remove cutoff% samples from the hi end cut = n * cutoff / 100 for hi in xrange(255, -1, -1): if cut > h[hi]: cut = cut - h[hi] h[hi] = 0 else: h[hi] = h[hi] - cut cut = 0 if cut <= 0: break # find lowest/highest samples after preprocessing for lo in xrange(256): if h[lo]: break for hi in xrange(255, -1, -1): if h[hi]: break if hi <= lo: output_plane[:,:] = plane else: scale = 255.0 / (hi - lo) offset = -lo * scale lut = np.arange(256, dtype=np.float) lut *= scale lut += offset lut = lut.clip(0, 255) lut = lut.astype(np.uint8) output_plane[:,:] = lut[plane] return output_image
gpl-2.0
karec/oct
oct/results/report.py
2
4007
import six import time from collections import defaultdict import ujson as json import pandas as pd from oct.results.models import db, Result, Turret class ReportResults(object): """Represent a report containing all tests results :param int run_time: the run_time of the script :param int interval: the time interval between each group of results """ def __init__(self, run_time, interval): self.total_transactions = 0 self.total_errors = Result.select(Result.id).where(Result.error != "", Result.error != None).count() self.total_timers = 0 self.timers_results = {} self._timers_values = defaultdict(list) self.turrets = [] self.main_results = {} self.interval = interval self._init_turrets() def _init_dates(self): """Initialize all dates properties """ if self.total_transactions == 0: return None self.epoch_start = Result.select(Result.epoch).order_by(Result.epoch.asc()).limit(1).get().epoch self.epoch_finish = Result.select(Result.epoch).order_by(Result.epoch.desc()).limit(1).get().epoch self.start_datetime = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.epoch_start)) self.finish_datetime = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.epoch_finish)) def _init_dataframes(self): """Initialise the main dataframe for the results and the custom timers dataframes """ df = pd.read_sql_query("SELECT elapsed, epoch, scriptrun_time, custom_timers FROM result ORDER BY epoch ASC", db.get_conn()) self._get_all_timers(df) self.main_results = self._get_processed_dataframe(df) # create all custom timers dataframes for key, value in six.iteritems(self._timers_values): df = pd.DataFrame(value, columns=['epoch', 'scriptrun_time']) df.index = pd.to_datetime(df['epoch'], unit='s') timer_results = self._get_processed_dataframe(df) self.timers_results[key] = timer_results # clear memory del self._timers_values def _get_all_timers(self, dataframe): """Get all timers and set them in the _timers_values property :param pandas.DataFrame dataframe: the main dataframe with row results """ s = dataframe['custom_timers'].apply(json.loads) s.index = dataframe['epoch'] for index, value in s.iteritems(): if not value: continue for key, value in six.iteritems(value): self._timers_values[key].append((index, value)) self.total_timers += 1 del dataframe['custom_timers'] del s def _get_processed_dataframe(self, dataframe): """Generate required dataframe for results from raw dataframe :param pandas.DataFrame dataframe: the raw dataframe :return: a dict containing raw, compiled, and summary dataframes from original dataframe :rtype: dict """ dataframe.index = pd.to_datetime(dataframe['epoch'], unit='s', utc=True) del dataframe['epoch'] summary = dataframe.describe(percentiles=[.80, .90, .95]).transpose().loc['scriptrun_time'] df_grp = dataframe.groupby(pd.TimeGrouper('{}S'.format(self.interval))) df_final = df_grp.apply(lambda x: x.describe(percentiles=[.80, .90, .95])['scriptrun_time']) return { "raw": dataframe.round(2), "compiled": df_final.round(2), "summary": summary.round(2) } def _init_turrets(self): """Setup data from database """ for turret in Turret.select(): self.turrets.append(turret.to_dict()) def compile_results(self): """Compile all results for the current test """ self._init_dataframes() self.total_transactions = len(self.main_results['raw']) self._init_dates()
mit
jgdwyer/nn-convection
sknn_jgd/nn.py
3
26071
# -*- coding: utf-8 -*- from __future__ import (absolute_import, unicode_literals, print_function) __all__ = ['Regressor', 'Classifier', 'Layer', 'Convolution'] import os import sys import time import logging import itertools import collections log = logging.getLogger('sknn') import numpy import theano class ansi: BOLD = '\033[1;97m' WHITE = '\033[0;97m' YELLOW = '\033[0;33m' RED = '\033[0;31m' GREEN = '\033[0;32m' BLUE = '\033[0;94m' ENDC = '\033[0m' class Layer(object): """ Specification for a layer to be passed to the neural network during construction. This includes a variety of parameters to configure each layer based on its activation type. Parameters ---------- type: str Select which activation function this layer should use, as a string. Specifically, options are ``Rectifier``, ``Sigmoid``, ``Tanh``, and ``ExpLin`` for non-linear layers and ``Linear`` or ``Softmax`` for output layers. name: str, optional You optionally can specify a name for this layer, and its parameters will then be accessible to scikit-learn via a nested sub-object. For example, if name is set to ``layer1``, then the parameter ``layer1__units`` from the network is bound to this layer's ``units`` variable. The name defaults to ``hiddenN`` where N is the integer index of that layer, and the final layer is always ``output`` without an index. units: int The number of units (also known as neurons) in this layer. This applies to all layer types except for convolution. weight_decay: float, optional The coefficient for L1 or L2 regularization of the weights. For example, a value of 0.0001 is multiplied by the L1 or L2 weight decay equation. dropout: float, optional The ratio of inputs to drop out for this layer during training. For example, 0.25 means that 25% of the inputs will be excluded for each training sample, with the remaining inputs being renormalized accordingly. normalize: str, optional Enable normalization of this layer. Can be either `batch` for batch normalization or (soon) `weights` for weight normalization. Default is no normalization. frozen: bool, optional Specify whether to freeze a layer's parameters so they are not adjusted during the training. This is useful when relying on pre-trained neural networks. warning: None You should use keyword arguments after `type` when initializing this object. If not, the code will raise an AssertionError. """ def __init__( self, type, warning=None, name=None, units=None, weight_decay=None, dropout=None, normalize=None, frozen=False): assert warning is None,\ "Specify layer parameters as keyword arguments, not positional arguments." if type not in ['Rectifier', 'Sigmoid', 'Tanh', 'Linear', 'Softmax', 'Gaussian', 'ExpLin']: raise NotImplementedError("Layer type `%s` is not implemented." % type) self.name = name self.type = type self.units = units self.weight_decay = weight_decay self.dropout = dropout self.normalize = normalize self.frozen = frozen def set_params(self, **params): """Setter for internal variables that's compatible with ``scikit-learn``. """ for k, v in params.items(): if k not in self.__dict__: raise ValueError("Invalid parameter `%s` for layer `%s`." % (k, self.name)) self.__dict__[k] = v def __eq__(self, other): return self.__dict__ == other.__dict__ def __repr__(self): copy = self.__dict__.copy() del copy['type'] params = ", ".join(["%s=%r" % (k, v) for k, v in copy.items() if v is not None]) return "<sknn.nn.%s `%s`: %s>" % (self.__class__.__name__, self.type, params) class Native(object): """Special type of layer that is handled directly to the backend (e.g. Lasagne). This can be used to construct more advanced networks that are not yet supported by the default interface. Note that using this as a layer type means your code may not be compatible with future revisions or other backends, and that serialization may be affected. Parameters ---------- constructor: class or callable The layer type usable directly by the backend (e.g. Lasagne). This can also be a callable function that acts as a layer constructor. *args: list of arguments All positional arguments are passed directly to the constructor when the neural network is initialized. **kwargs: dictionary of named arguments All named arguments are passed to the constructor directly also, with the exception of the parameters ``name``, ``units``, ``frozen``, ``weight_decay``, ``normalize`` which take on the same role as in :class:`sknn.nn.Layer`. """ def __init__(self, constructor, *args, **keywords): for attr in ['name', 'units', 'frozen', 'weight_decay', 'normalize']: setattr(self, attr, keywords.pop(attr, None)) self.type = constructor self.args = args self.keywords = keywords class Convolution(Layer): """ Specification for a convolution layer to be passed to the neural network in construction. This includes a variety of convolution-specific parameters to configure each layer, as well as activation-specific parameters. Parameters ---------- type: str Select which activation function this convolution layer should use, as a string. For hidden layers, you can use the following convolution types ``Rectifier``, ``ExpLin``, ``Sigmoid``, ``Tanh`` or ``Linear``. name: str, optional You optionally can specify a name for this layer, and its parameters will then be accessible to scikit-learn via a nested sub-object. For example, if name is set to ``layer1``, then the parameter ``layer1__units`` from the network is bound to this layer's ``units`` variable. The name defaults to ``hiddenN`` where N is the integer index of that layer, and the final layer is always ``output`` without an index. channels: int Number of output channels for the convolution layers. Each channel has its own set of shared weights which are trained by applying the kernel over the image. kernel_shape: tuple of ints A two-dimensional tuple of integers corresponding to the shape of the kernel when convolution is used. For example, this could be a square kernel `(3,3)` or a full horizontal or vertical kernel on the input matrix, e.g. `(N,1)` or `(1,N)`. kernel_stride: tuple of ints, optional A two-dimensional tuple of integers that represents the steps taken by the kernel through the input image. By default, this is set to `(1,1)` and can be customized separately to pooling. border_mode: str String indicating the way borders in the image should be processed, one of two options: * `valid` — Only pixels from input where the kernel fits within bounds are processed. * `full` — All pixels from input are processed, and the boundaries are zero-padded. * `same` — The output resolution is set to the exact same as the input. The size of the output will depend on this mode, for `full` it's identical to the input, but for `valid` (default) it will be smaller or equal. pool_shape: tuple of ints, optional A two-dimensional tuple of integers corresponding to the pool size for downsampling. This should be square, for example `(2,2)` to reduce the size by half, or `(4,4)` to make the output a quarter of the original. Pooling is applied after the convolution and calculation of its activation. pool_type: str, optional Type of the pooling to be used; can be either `max` or `mean`. If a `pool_shape` is specified the default is to take the maximum value of all inputs that fall into this pool. Otherwise, the default is None and no pooling is used for performance. scale_factor: tuple of ints, optional A two-dimensional tuple of integers corresponding to upscaling ration. This should be square, for example `(2,2)` to increase the size by double, or `(4,4)` to make the output four times the original. Upscaling is applied before the convolution and calculation of its activation. weight_decay: float, optional The coefficient for L1 or L2 regularization of the weights. For example, a value of 0.0001 is multiplied by the L1 or L2 weight decay equation. dropout: float, optional The ratio of inputs to drop out for this layer during training. For example, 0.25 means that 25% of the inputs will be excluded for each training sample, with the remaining inputs being renormalized accordingly. normalize: str, optional Enable normalization of this layer. Can be either `batch` for batch normalization or (soon) `weights` for weight normalization. Default is no normalization. frozen: bool, optional Specify whether to freeze a layer's parameters so they are not adjusted during the training. This is useful when relying on pre-trained neural networks. warning: None You should use keyword arguments after `type` when initializing this object. If not, the code will raise an AssertionError. """ def __init__( self, type, warning=None, name=None, channels=None, kernel_shape=None, kernel_stride=None, border_mode='valid', pool_shape=None, pool_type=None, scale_factor=None, weight_decay=None, dropout=None, normalize=None, frozen=False): assert warning is None,\ "Specify layer parameters as keyword arguments, not positional arguments." if type not in ['Rectifier', 'Sigmoid', 'Tanh', 'Linear', 'ExpLin']: raise NotImplementedError("Convolution type `%s` is not implemented." % (type,)) if border_mode not in ['valid', 'full', 'same']: raise NotImplementedError("Convolution border_mode `%s` is not implemented." % (border_mode,)) super(Convolution, self).__init__( type, name=name, weight_decay=weight_decay, dropout=dropout, normalize=normalize, frozen=frozen) self.channels = channels self.kernel_shape = kernel_shape self.kernel_stride = kernel_stride or (1,1) self.border_mode = border_mode self.pool_shape = pool_shape or (1,1) self.pool_type = pool_type or ('max' if pool_shape else None) self.scale_factor = scale_factor or (1,1) class NeuralNetwork(object): """ Abstract base class for wrapping all neural network functionality from PyLearn2, common to multi-layer perceptrons in :mod:`sknn.mlp` and auto-encoders in in :mod:`sknn.ae`. Parameters ---------- layers: list of Layer An iterable sequence of each layer each as a :class:`sknn.mlp.Layer` instance that contains its type, optional name, and any paramaters required. * For hidden layers, you can use the following layer types: ``Rectifier``, ``ExpLin``, ``Sigmoid``, ``Tanh``, or ``Convolution``. * For output layers, you can use the following layer types: ``Linear`` or ``Softmax``. It's possible to mix and match any of the layer types, though most often you should probably use hidden and output types as recommended here. Typically, the last entry in this ``layers`` list should contain ``Linear`` for regression, or ``Softmax`` for classification. random_state: int, optional Seed for the initialization of the neural network parameters (e.g. weights and biases). This is fully deterministic. parameters: list of tuple of array-like, optional A list of ``(weights, biases)`` tuples to be reloaded for each layer, in the same order as ``layers`` was specified. Useful for initializing with pre-trained networks. learning_rule: str, optional Name of the learning rule used during stochastic gradient descent, one of ``sgd``, ``momentum``, ``nesterov``, ``adadelta``, ``adagrad`` or ``rmsprop`` at the moment. The default is vanilla ``sgd``. learning_rate: float, optional Real number indicating the default/starting rate of adjustment for the weights during gradient descent. Different learning rules may take this into account differently. Default is ``0.01``. learning_momentum: float, optional Real number indicating the momentum factor to be used for the learning rule 'momentum'. Default is ``0.9``. batch_size: int, optional Number of training samples to group together when performing stochastic gradient descent (technically, a "minibatch"). By default each sample is treated on its own, with ``batch_size=1``. Larger batches are usually faster. n_iter: int, optional The number of iterations of gradient descent to perform on the neural network's weights when training with ``fit()``. n_stable: int, optional Number of interations after which training should return when the validation error remains (near) constant. This is usually a sign that the data has been fitted, or that optimization may have stalled. If no validation set is specified, then stability is judged based on the training error. Default is ``10``. f_stable: float, optional Threshold under which the validation error change is assumed to be stable, to be used in combination with `n_stable`. This is calculated as a relative ratio of improvement, so if the results are only 0.1% better training is considered stable. The training set is used as fallback if there's no validation set. Default is ``0.001`. valid_set: tuple of array-like, optional Validation set (X_v, y_v) to be used explicitly while training. Both arrays should have the same size for the first dimention, and the second dimention should match with the training data specified in ``fit()``. valid_size: float, optional Ratio of the training data to be used for validation. 0.0 means no validation, and 1.0 would mean there's no training data! Common values are 0.1 or 0.25. normalize: string, optional Enable normalization for all layers. Can be either `batch` for batch normalization or (soon) `weights` for weight normalization. Default is no normalization. regularize: string, optional Which regularization technique to use on the weights, for example ``L2`` (most common) or ``L1`` (quite rare), as well as ``dropout``. By default, there's no regularization, unless another parameter implies it should be enabled, e.g. if ``weight_decay`` or ``dropout_rate`` are specified. weight_decay: float, optional The coefficient used to multiply either ``L1`` or ``L2`` equations when computing the weight decay for regularization. If ``regularize`` is specified, this defaults to 0.0001. dropout_rate: float, optional What rate to use for drop-out training in the inputs (jittering) and the hidden layers, for each training example. Specify this as a ratio of inputs to be randomly excluded during training, e.g. 0.75 means only 25% of inputs will be included in the training. loss_type: string, optional The cost function to use when training the network. There are two valid options: * ``mse`` — Use mean squared error, for learning to predict the mean of the data. * ``mae`` — Use mean average error, for learning to predict the median of the data. * ``mcc`` — Use mean categorical cross-entropy, particularly for classifiers. The default option is ``mse`` for regressors and ``mcc`` for classifiers, but ``mae`` can only be applied to layers of type ``Linear`` or ``Gaussian`` and they must be used as the output layer (PyLearn2 only). callback: callable or dict, optional An observer mechanism that exposes information about the inner training loop. This is either a single function that takes ``cbs(event, **variables)`` as a parameter, or a dictionary of functions indexed by on `event` string that conforms to ``cb(**variables)``. There are multiple events sent from the inner training loop: * ``on_train_start`` — Called when the main training function is entered. * ``on_epoch_start`` — Called the first thing when a new iteration starts. * ``on_batch_start`` — Called before an individual batch is processed. * ``on_batch_finish`` — Called after that individual batch is processed. * ``on_epoch_finish`` — Called the first last when the iteration is done. * ``on_train_finish`` — Called just before the training function exits. For each function, the ``variables`` dictionary passed contains all local variables within the training implementation. debug: bool, optional Should the underlying training algorithms perform validation on the data as it's optimizing the model? This makes things slower, but errors can be caught more effectively. Default is off. verbose: bool, optional How to initialize the logging to display the results during training. If there is already a logger initialized, either ``sknn`` or the root logger, then this function does nothing. Otherwise: * ``False`` — Setup new logger that shows only warnings and errors. * ``True`` — Setup a new logger that displays all debug messages. * ``None`` — Don't setup a new logger under any condition (default). Using the built-in python ``logging`` module, you can control the detail and style of output by customising the verbosity level and formatter for ``sknn`` logger. warning: None You should use keyword arguments after `layers` when initializing this object. If not, the code will raise an AssertionError. """ def __init__( self, layers, warning=None, parameters=None, random_state=None, learning_rule='sgd', learning_rate=0.01, learning_momentum=0.9, normalize=None, regularize=None, weight_decay=None, dropout_rate=None, batch_size=1, n_iter=None, n_stable=10, f_stable=0.001, valid_set=None, valid_size=0.0, loss_type=None, callback=None, debug=False, verbose=None, **params): assert warning is None,\ "Specify network parameters as keyword arguments, not positional arguments." self.layers = [] for i, layer in enumerate(layers): assert isinstance(layer, Layer) or isinstance(layer, Native),\ "Specify each layer as an instance of a `sknn.mlp.Layer` object." # Layer names are optional, if not specified then generate one. if layer.name is None: layer.name = ("hidden%i" % i) if i < len(layers)-1 else "output" # sklearn may pass layers in as additional named parameters, remove them. if layer.name in params: del params[layer.name] self.layers.append(layer) # Don't support any additional parameters that are not in the constructor. # These are specified only so `get_params()` can return named layers, for double- # underscore syntax to work. assert len(params) == 0,\ "The specified additional parameters are unknown: %s." % ','.join(params.keys()) # Basic checking of the freeform string options. assert regularize in (None, 'L1', 'L2', 'dropout'),\ "Unknown type of regularization specified: %s." % regularize assert loss_type in ('mse', 'mae', 'mcc', None),\ "Unknown loss function type specified: %s." % loss_type self.weights = parameters self.random_state = random_state self.learning_rule = learning_rule self.learning_rate = learning_rate self.learning_momentum = learning_momentum self.normalize = normalize self.regularize = regularize or ('dropout' if dropout_rate else None)\ or ('L2' if weight_decay else None) self.weight_decay = weight_decay self.dropout_rate = dropout_rate self.batch_size = batch_size self.n_iter = n_iter self.n_stable = n_stable self.f_stable = f_stable self.valid_set = valid_set self.valid_size = valid_size self.loss_type = loss_type self.debug = debug self.verbose = verbose self.callback = callback self.auto_enabled = {} self._backend = None self._create_logger() self._setup() def _setup(self): raise NotImplementedError("NeuralNetwork is an abstract class; " "use the mlp.Classifier or mlp.Regressor instead.") @property def is_initialized(self): """Check if the neural network was setup already. """ return self._backend is not None and self._backend.is_initialized def is_convolution(self, input=None, output=False): """Check whether this neural network includes convolution layers in the first or last position. Parameters ---------- input : boolean, optional Whether the first layer should be checked for convolution. Default True. output : boolean, optional Whether the last layer should be checked for convolution. Default False. Returns ------- is_conv : boolean True if either of the specified layers are indeed convolution, False otherwise. """ check_output = output check_input = False if check_output and input is None else True i = check_input and isinstance(self.layers[0], Convolution) o = check_output and isinstance(self.layers[-1], Convolution) return i or o @property def is_classifier(self): """Is this neural network instanced as a classifier or regressor?""" return False def _create_logger(self): # If users have configured logging already, assume they know best. if len(log.handlers) > 0 or len(log.parent.handlers) > 0 or self.verbose is None: return # Otherwise setup a default handler and formatter based on verbosity. lvl = logging.DEBUG if self.verbose else logging.WARNING fmt = logging.Formatter("%(message)s") hnd = logging.StreamHandler(stream=sys.stdout) hnd.setFormatter(fmt) hnd.setLevel(lvl) log.addHandler(hnd) log.setLevel(lvl) def get_parameters(self): """Extract the neural networks weights and biases layer by layer. Only valid once the neural network has been initialized, for example via `fit()` function. Returns ------- params : list of tuples For each layer in the order they are passed to the constructor, a named-tuple of three items `weights`, `biases` (both numpy arrays) and `name` (string) in that order. """ assert self._backend is not None,\ "Backend was not initialized; could not retrieve network parameters." P = collections.namedtuple('Parameters', 'weights biases layer') return [P(w, b, s.name) for s, (w, b) in zip(self.layers, self._backend._mlp_to_array())] def set_parameters(self, storage): """Store the given weighs and biases into the neural network. If the neural network has not been initialized, use the `weights` list as construction parameter instead. Otherwise if the neural network is initialized, this function will extract the parameters from the input list or dictionary and store them accordingly. Parameters ---------- storage : list of tuples, or dictionary of tuples Either a list of tuples for each layer, storing two items `weights` and `biases` in the exact same order as construction. Alternatively, if this is a dictionary, a string to tuple mapping for each layer also storing `weights` and `biases` but not necessarily for all layers. """ # In case the class is not initialized, store the parameters for later during _initialize. if self._backend is None: self.weights = storage return if isinstance(storage, dict): layers = [storage.get(l.name, None) for l in self.layers] else: layers = storage return self._backend._array_to_mlp(layers, self._backend.mlp)
apache-2.0
daodaoliang/neural-network-animation
matplotlib/textpath.py
11
16650
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip import warnings if six.PY3: from urllib.parse import quote as urllib_quote else: from urllib import quote as urllib_quote import numpy as np from matplotlib.path import Path from matplotlib import rcParams import matplotlib.font_manager as font_manager from matplotlib.ft2font import FT2Font, KERNING_DEFAULT, LOAD_NO_HINTING from matplotlib.ft2font import LOAD_TARGET_LIGHT from matplotlib.mathtext import MathTextParser import matplotlib.dviread as dviread from matplotlib.font_manager import FontProperties from matplotlib.transforms import Affine2D class TextToPath(object): """ A class that convert a given text to a path using ttf fonts. """ FONT_SCALE = 100. DPI = 72 def __init__(self): """ Initialization """ self.mathtext_parser = MathTextParser('path') self.tex_font_map = None from matplotlib.cbook import maxdict self._ps_fontd = maxdict(50) self._texmanager = None self._adobe_standard_encoding = None def _get_adobe_standard_encoding(self): enc_name = dviread.find_tex_file('8a.enc') enc = dviread.Encoding(enc_name) return dict([(c, i) for i, c in enumerate(enc.encoding)]) def _get_font(self, prop): """ find a ttf font. """ fname = font_manager.findfont(prop) font = FT2Font(fname) font.set_size(self.FONT_SCALE, self.DPI) return font def _get_hinting_flag(self): return LOAD_NO_HINTING def _get_char_id(self, font, ccode): """ Return a unique id for the given font and character-code set. """ sfnt = font.get_sfnt() try: ps_name = sfnt[(1, 0, 0, 6)].decode('macroman') except KeyError: ps_name = sfnt[(3, 1, 0x0409, 6)].decode('utf-16be') char_id = urllib_quote('%s-%x' % (ps_name, ccode)) return char_id def _get_char_id_ps(self, font, ccode): """ Return a unique id for the given font and character-code set (for tex). """ ps_name = font.get_ps_font_info()[2] char_id = urllib_quote('%s-%d' % (ps_name, ccode)) return char_id def glyph_to_path(self, font, currx=0.): """ convert the ft2font glyph to vertices and codes. """ verts, codes = font.get_path() if currx != 0.0: verts[:, 0] += currx return verts, codes def get_text_width_height_descent(self, s, prop, ismath): if rcParams['text.usetex']: texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() w, h, d = texmanager.get_text_width_height_descent(s, fontsize, renderer=None) return w, h, d fontsize = prop.get_size_in_points() scale = float(fontsize) / self.FONT_SCALE if ismath: prop = prop.copy() prop.set_size(self.FONT_SCALE) width, height, descent, trash, used_characters = \ self.mathtext_parser.parse(s, 72, prop) return width * scale, height * scale, descent * scale font = self._get_font(prop) font.set_text(s, 0.0, flags=LOAD_NO_HINTING) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 d = font.get_descent() d /= 64.0 return w * scale, h * scale, d * scale def get_text_path(self, prop, s, ismath=False, usetex=False): """ convert text *s* to path (a tuple of vertices and codes for matplotlib.path.Path). *prop* font property *s* text to be converted *usetex* If True, use matplotlib usetex mode. *ismath* If True, use mathtext parser. Effective only if usetex == False. """ if not usetex: if not ismath: font = self._get_font(prop) glyph_info, glyph_map, rects = self.get_glyphs_with_font( font, s) else: glyph_info, glyph_map, rects = self.get_glyphs_mathtext( prop, s) else: glyph_info, glyph_map, rects = self.get_glyphs_tex(prop, s) verts, codes = [], [] for glyph_id, xposition, yposition, scale in glyph_info: verts1, codes1 = glyph_map[glyph_id] if len(verts1): verts1 = np.array(verts1) * scale + [xposition, yposition] verts.extend(verts1) codes.extend(codes1) for verts1, codes1 in rects: verts.extend(verts1) codes.extend(codes1) return verts, codes def get_glyphs_with_font(self, font, s, glyph_map=None, return_new_glyphs_only=False): """ convert the string *s* to vertices and codes using the provided ttf font. """ # Mostly copied from backend_svg.py. cmap = font.get_charmap() lastgind = None currx = 0 xpositions = [] glyph_ids = [] if glyph_map is None: glyph_map = dict() if return_new_glyphs_only: glyph_map_new = dict() else: glyph_map_new = glyph_map # I'm not sure if I get kernings right. Needs to be verified. -JJL for c in s: ccode = ord(c) gind = cmap.get(ccode) if gind is None: ccode = ord('?') gind = 0 if lastgind is not None: kern = font.get_kerning(lastgind, gind, KERNING_DEFAULT) else: kern = 0 glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) horiz_advance = (glyph.linearHoriAdvance / 65536.0) char_id = self._get_char_id(font, ccode) if char_id not in glyph_map: glyph_map_new[char_id] = self.glyph_to_path(font) currx += (kern / 64.0) xpositions.append(currx) glyph_ids.append(char_id) currx += horiz_advance lastgind = gind ypositions = [0] * len(xpositions) sizes = [1.] * len(xpositions) rects = [] return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, rects) def get_glyphs_mathtext(self, prop, s, glyph_map=None, return_new_glyphs_only=False): """ convert the string *s* to vertices and codes by parsing it with mathtext. """ prop = prop.copy() prop.set_size(self.FONT_SCALE) width, height, descent, glyphs, rects = self.mathtext_parser.parse( s, self.DPI, prop) if not glyph_map: glyph_map = dict() if return_new_glyphs_only: glyph_map_new = dict() else: glyph_map_new = glyph_map xpositions = [] ypositions = [] glyph_ids = [] sizes = [] currx, curry = 0, 0 for font, fontsize, ccode, ox, oy in glyphs: char_id = self._get_char_id(font, ccode) if char_id not in glyph_map: font.clear() font.set_size(self.FONT_SCALE, self.DPI) glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) glyph_map_new[char_id] = self.glyph_to_path(font) xpositions.append(ox) ypositions.append(oy) glyph_ids.append(char_id) size = fontsize / self.FONT_SCALE sizes.append(size) myrects = [] for ox, oy, w, h in rects: vert1 = [(ox, oy), (ox, oy + h), (ox + w, oy + h), (ox + w, oy), (ox, oy), (0, 0)] code1 = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] myrects.append((vert1, code1)) return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, myrects) def get_texmanager(self): """ return the :class:`matplotlib.texmanager.TexManager` instance """ if self._texmanager is None: from matplotlib.texmanager import TexManager self._texmanager = TexManager() return self._texmanager def get_glyphs_tex(self, prop, s, glyph_map=None, return_new_glyphs_only=False): """ convert the string *s* to vertices and codes using matplotlib's usetex mode. """ # codes are modstly borrowed from pdf backend. texmanager = self.get_texmanager() if self.tex_font_map is None: self.tex_font_map = dviread.PsfontsMap( dviread.find_tex_file('pdftex.map')) if self._adobe_standard_encoding is None: self._adobe_standard_encoding = self._get_adobe_standard_encoding() fontsize = prop.get_size_in_points() if hasattr(texmanager, "get_dvi"): dvifilelike = texmanager.get_dvi(s, self.FONT_SCALE) dvi = dviread.DviFromFileLike(dvifilelike, self.DPI) else: dvifile = texmanager.make_dvi(s, self.FONT_SCALE) dvi = dviread.Dvi(dvifile, self.DPI) try: page = next(iter(dvi)) finally: dvi.close() if glyph_map is None: glyph_map = dict() if return_new_glyphs_only: glyph_map_new = dict() else: glyph_map_new = glyph_map glyph_ids, xpositions, ypositions, sizes = [], [], [], [] # Gather font information and do some setup for combining # characters into strings. # oldfont, seq = None, [] for x1, y1, dvifont, glyph, width in page.text: font_and_encoding = self._ps_fontd.get(dvifont.texname) font_bunch = self.tex_font_map[dvifont.texname] if font_and_encoding is None: font = FT2Font(font_bunch.filename) for charmap_name, charmap_code in [("ADOBE_CUSTOM", 1094992451), ("ADOBE_STANDARD", 1094995778)]: try: font.select_charmap(charmap_code) except ValueError: pass else: break else: charmap_name = "" warnings.warn("No supported encoding in font (%s)." % font_bunch.filename) if charmap_name == "ADOBE_STANDARD" and font_bunch.encoding: enc0 = dviread.Encoding(font_bunch.encoding) enc = dict([(i, self._adobe_standard_encoding.get(c, None)) for i, c in enumerate(enc0.encoding)]) else: enc = dict() self._ps_fontd[dvifont.texname] = font, enc else: font, enc = font_and_encoding ft2font_flag = LOAD_TARGET_LIGHT char_id = self._get_char_id_ps(font, glyph) if char_id not in glyph_map: font.clear() font.set_size(self.FONT_SCALE, self.DPI) if enc: charcode = enc.get(glyph, None) else: charcode = glyph if charcode is not None: glyph0 = font.load_char(charcode, flags=ft2font_flag) else: warnings.warn("The glyph (%d) of font (%s) cannot be " "converted with the encoding. Glyph may " "be wrong" % (glyph, font_bunch.filename)) glyph0 = font.load_char(glyph, flags=ft2font_flag) glyph_map_new[char_id] = self.glyph_to_path(font) glyph_ids.append(char_id) xpositions.append(x1) ypositions.append(y1) sizes.append(dvifont.size / self.FONT_SCALE) myrects = [] for ox, oy, h, w in page.boxes: vert1 = [(ox, oy), (ox + w, oy), (ox + w, oy + h), (ox, oy + h), (ox, oy), (0, 0)] code1 = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] myrects.append((vert1, code1)) return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, myrects) text_to_path = TextToPath() class TextPath(Path): """ Create a path from the text. """ def __init__(self, xy, s, size=None, prop=None, _interpolation_steps=1, usetex=False, *kl, **kwargs): """ Create a path from the text. No support for TeX yet. Note that it simply is a path, not an artist. You need to use the PathPatch (or other artists) to draw this path onto the canvas. xy : position of the text. s : text size : font size prop : font property """ if prop is None: prop = FontProperties() if size is None: size = prop.get_size_in_points() self._xy = xy self.set_size(size) self._cached_vertices = None self._vertices, self._codes = self.text_get_vertices_codes( prop, s, usetex=usetex) self._should_simplify = False self._simplify_threshold = rcParams['path.simplify_threshold'] self._has_nonfinite = False self._interpolation_steps = _interpolation_steps def set_size(self, size): """ set the size of the text """ self._size = size self._invalid = True def get_size(self): """ get the size of the text """ return self._size def _get_vertices(self): """ Return the cached path after updating it if necessary. """ self._revalidate_path() return self._cached_vertices def _get_codes(self): """ Return the codes """ return self._codes vertices = property(_get_vertices) codes = property(_get_codes) def _revalidate_path(self): """ update the path if necessary. The path for the text is initially create with the font size of FONT_SCALE, and this path is rescaled to other size when necessary. """ if (self._invalid or (self._cached_vertices is None)): tr = Affine2D().scale( self._size / text_to_path.FONT_SCALE, self._size / text_to_path.FONT_SCALE).translate(*self._xy) self._cached_vertices = tr.transform(self._vertices) self._invalid = False def is_math_text(self, s): """ Returns True if the given string *s* contains any mathtext. """ # copied from Text.is_math_text -JJL # Did we find an even number of non-escaped dollar signs? # If so, treat is as math text. dollar_count = s.count(r'$') - s.count(r'\$') even_dollars = (dollar_count > 0 and dollar_count % 2 == 0) if rcParams['text.usetex']: return s, 'TeX' if even_dollars: return s, True else: return s.replace(r'\$', '$'), False def text_get_vertices_codes(self, prop, s, usetex): """ convert the string *s* to vertices and codes using the provided font property *prop*. Mostly copied from backend_svg.py. """ if usetex: verts, codes = text_to_path.get_text_path(prop, s, usetex=True) else: clean_line, ismath = self.is_math_text(s) verts, codes = text_to_path.get_text_path(prop, clean_line, ismath=ismath) return verts, codes
mit
gtesei/fast-furious
competitions/tgs-salt-identification-challenge/unet_start_2_correct_IoU.py
1
8619
import os import sys import random import warnings import time import pandas as pd import numpy as np import matplotlib.pyplot as plt import cv2 from tqdm import tqdm, tnrange from itertools import chain from skimage.io import imread, imshow, concatenate_images from skimage.transform import resize from skimage.morphology import label from keras.models import Model, load_model from keras.layers import Input from keras.layers.core import Lambda from keras.layers.convolutional import Conv2D, Conv2DTranspose from keras.layers.pooling import MaxPooling2D from keras.layers.merge import concatenate from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras import backend as K import tensorflow as tf from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img # Define IoU metric def castF(x): return K.cast(x, K.floatx()) def castB(x): return K.cast(x, bool) def iou_loss_core(true,pred): intersection = true * pred notTrue = 1 - true union = true + (notTrue * pred) return (K.sum(intersection, axis=-1) + K.epsilon()) / (K.sum(union, axis=-1) + K.epsilon()) def competitionMetric2(true, pred): #any shape can go tresholds = [0.5 + (i*.05) for i in range(10)] #flattened images (batch, pixels) true = K.batch_flatten(true) pred = K.batch_flatten(pred) pred = castF(K.greater(pred, 0.5)) #total white pixels - (batch,) trueSum = K.sum(true, axis=-1) predSum = K.sum(pred, axis=-1) #has mask or not per image - (batch,) true1 = castF(K.greater(trueSum, 1)) pred1 = castF(K.greater(predSum, 1)) #to get images that have mask in both true and pred truePositiveMask = castB(true1 * pred1) #separating only the possible true positives to check iou testTrue = tf.boolean_mask(true, truePositiveMask) testPred = tf.boolean_mask(pred, truePositiveMask) #getting iou and threshold comparisons iou = iou_loss_core(testTrue,testPred) truePositives = [castF(K.greater(iou, tres)) for tres in tresholds] #mean of thressholds for true positives and total sum truePositives = K.mean(K.stack(truePositives, axis=-1), axis=-1) truePositives = K.sum(truePositives) #to get images that don't have mask in both true and pred trueNegatives = (1-true1) * (1 - pred1) # = 1 -true1 - pred1 + true1*pred1 trueNegatives = K.sum(trueNegatives) return (truePositives + trueNegatives) / castF(K.shape(true)[0]) ####################################################### START start_time = time.time() # Set some parameters im_width = 128 im_height = 128 im_chan = 1 path_train = 'data/train/' path_test = 'data/test/' train_ids = next(os.walk(path_train+"images"))[2] test_ids = next(os.walk(path_test+"images"))[2] # Get and resize train images and masks X_train = np.zeros((len(train_ids), im_height, im_width, im_chan), dtype=np.uint8) Y_train = np.zeros((len(train_ids), im_height, im_width, 1), dtype=np.bool) print('Getting and resizing train images and masks ... ') sys.stdout.flush() for n, id_ in tqdm(enumerate(train_ids), total=len(train_ids)): path = path_train img = load_img(path + '/images/' + id_) x = img_to_array(img)[:,:,1] x = resize(x, (128, 128, 1), mode='constant', preserve_range=True) X_train[n] = x mask = img_to_array(load_img(path + '/masks/' + id_))[:,:,1] Y_train[n] = resize(mask, (128, 128, 1), mode='constant', preserve_range=True) print('Done!') # Build U-Net model inputs = Input((im_height, im_width, im_chan)) s = Lambda(lambda x: x / 255) (inputs) c1 = Conv2D(8, (3, 3), activation='relu', padding='same') (s) c1 = Conv2D(8, (3, 3), activation='relu', padding='same') (c1) p1 = MaxPooling2D((2, 2)) (c1) c2 = Conv2D(16, (3, 3), activation='relu', padding='same') (p1) c2 = Conv2D(16, (3, 3), activation='relu', padding='same') (c2) p2 = MaxPooling2D((2, 2)) (c2) c3 = Conv2D(32, (3, 3), activation='relu', padding='same') (p2) c3 = Conv2D(32, (3, 3), activation='relu', padding='same') (c3) p3 = MaxPooling2D((2, 2)) (c3) c4 = Conv2D(64, (3, 3), activation='relu', padding='same') (p3) c4 = Conv2D(64, (3, 3), activation='relu', padding='same') (c4) p4 = MaxPooling2D(pool_size=(2, 2)) (c4) c5 = Conv2D(128, (3, 3), activation='relu', padding='same') (p4) c5 = Conv2D(128, (3, 3), activation='relu', padding='same') (c5) u6 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (c5) u6 = concatenate([u6, c4]) c6 = Conv2D(64, (3, 3), activation='relu', padding='same') (u6) c6 = Conv2D(64, (3, 3), activation='relu', padding='same') (c6) u7 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same') (c6) u7 = concatenate([u7, c3]) c7 = Conv2D(32, (3, 3), activation='relu', padding='same') (u7) c7 = Conv2D(32, (3, 3), activation='relu', padding='same') (c7) u8 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same') (c7) u8 = concatenate([u8, c2]) c8 = Conv2D(16, (3, 3), activation='relu', padding='same') (u8) c8 = Conv2D(16, (3, 3), activation='relu', padding='same') (c8) u9 = Conv2DTranspose(8, (2, 2), strides=(2, 2), padding='same') (c8) u9 = concatenate([u9, c1], axis=3) c9 = Conv2D(8, (3, 3), activation='relu', padding='same') (u9) c9 = Conv2D(8, (3, 3), activation='relu', padding='same') (c9) outputs = Conv2D(1, (1, 1), activation='sigmoid') (c9) model = Model(inputs=[inputs], outputs=[outputs]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[competitionMetric2]) model.summary() earlystopper = EarlyStopping(patience=20, verbose=1,monitor='val_competitionMetric2',mode='max') checkpointer = ModelCheckpoint('model-tgs-salt-1.h5', verbose=1, save_best_only=True,monitor='val_competitionMetric2',mode='max') reduce_lr = ReduceLROnPlateau(factor=0.2, patience=5, min_lr=0.00001, verbose=1,monitor='val_competitionMetric2',mode='max') results = model.fit(X_train, Y_train, validation_split=0.1, batch_size=32, epochs=200, callbacks=[earlystopper, checkpointer,reduce_lr]) # Get and resize test images X_test = np.zeros((len(test_ids), im_height, im_width, im_chan), dtype=np.uint8) sizes_test = [] print('Getting and resizing test images ... ') sys.stdout.flush() for n, id_ in tqdm(enumerate(test_ids), total=len(test_ids)): path = path_test img = load_img(path + '/images/' + id_) x = img_to_array(img)[:,:,1] sizes_test.append([x.shape[0], x.shape[1]]) x = resize(x, (128, 128, 1), mode='constant', preserve_range=True) X_test[n] = x print('Done!') # Predict on train, val and test model = load_model('model-tgs-salt-1.h5' , custom_objects={'competitionMetric2': competitionMetric2 , 'iou_loss_core': iou_loss_core , 'castB': castB , 'castF': castF}) preds_train = model.predict(X_train[:int(X_train.shape[0]*0.9)], verbose=1) preds_val = model.predict(X_train[int(X_train.shape[0]*0.9):], verbose=1) preds_test = model.predict(X_test, verbose=1) # Threshold predictions preds_train_t = (preds_train > 0.5).astype(np.uint8) preds_val_t = (preds_val > 0.5).astype(np.uint8) preds_test_t = (preds_test > 0.5).astype(np.uint8) # Create list of upsampled test masks preds_test_upsampled = [] for i in tnrange(len(preds_test)): preds_test_upsampled.append(resize(np.squeeze(preds_test[i]), (sizes_test[i][0], sizes_test[i][1]), mode='constant', preserve_range=True)) preds_test_upsampled[0].shape def RLenc(img, order='F', format=True): bytes = img.reshape(img.shape[0] * img.shape[1], order=order) runs = [] ## list of run lengths r = 0 ## the current run length pos = 1 ## count starts from 1 per WK for c in bytes: if (c == 0): if r != 0: runs.append((pos, r)) pos += r r = 0 pos += 1 else: r += 1 # if last run is unsaved (i.e. data ends with 1) if r != 0: runs.append((pos, r)) pos += r r = 0 if format: z = '' for rr in runs: z += '{} {} '.format(rr[0], rr[1]) return z[:-1] else: return runs pred_dict = {fn[:-4]:RLenc(np.round(preds_test_upsampled[i])) for i,fn in tqdm(enumerate(test_ids))} sub = pd.DataFrame.from_dict(pred_dict,orient='index') sub.index.names = ['id'] sub.columns = ['rle_mask'] sub.to_csv('submission.csv') ### seconds = time.time() - start_time mins = seconds / 60 hours = mins / 60 days = hours / 24 print("------>>>>>>> elapsed seconds:", seconds) print("------>>>>>>> elapsed minutes:", mins) print("------>>>>>>> elapsed hours:", hours) print("------>>>>>>> elapsed days:", days)
mit
shujaatak/UAV_MissionPlanner
Lib/site-packages/numpy/doc/creation.py
94
5411
""" ============== Array Creation ============== Introduction ============ There are 5 general mechanisms for creating arrays: 1) Conversion from other Python structures (e.g., lists, tuples) 2) Intrinsic numpy array array creation objects (e.g., arange, ones, zeros, etc.) 3) Reading arrays from disk, either from standard or custom formats 4) Creating arrays from raw bytes through the use of strings or buffers 5) Use of special library functions (e.g., random) This section will not cover means of replicating, joining, or otherwise expanding or mutating existing arrays. Nor will it cover creating object arrays or record arrays. Both of those are covered in their own sections. Converting Python array_like Objects to Numpy Arrays ==================================================== In general, numerical data arranged in an array-like structure in Python can be converted to arrays through the use of the array() function. The most obvious examples are lists and tuples. See the documentation for array() for details for its use. Some objects may support the array-protocol and allow conversion to arrays this way. A simple way to find out if the object can be converted to a numpy array using array() is simply to try it interactively and see if it works! (The Python Way). Examples: :: >>> x = np.array([2,3,1,0]) >>> x = np.array([2, 3, 1, 0]) >>> x = np.array([[1,2.0],[0,0],(1+1j,3.)]) # note mix of tuple and lists, and types >>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j], [ 1.+1.j, 3.+0.j]]) Intrinsic Numpy Array Creation ============================== Numpy has built-in functions for creating arrays from scratch: zeros(shape) will create an array filled with 0 values with the specified shape. The default dtype is float64. ``>>> np.zeros((2, 3)) array([[ 0., 0., 0.], [ 0., 0., 0.]])`` ones(shape) will create an array filled with 1 values. It is identical to zeros in all other respects. arange() will create arrays with regularly incrementing values. Check the docstring for complete information on the various ways it can be used. A few examples will be given here: :: >>> np.arange(10) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.arange(2, 10, dtype=np.float) array([ 2., 3., 4., 5., 6., 7., 8., 9.]) >>> np.arange(2, 3, 0.1) array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9]) Note that there are some subtleties regarding the last usage that the user should be aware of that are described in the arange docstring. linspace() will create arrays with a specified number of elements, and spaced equally between the specified beginning and end values. For example: :: >>> np.linspace(1., 4., 6) array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ]) The advantage of this creation function is that one can guarantee the number of elements and the starting and end point, which arange() generally will not do for arbitrary start, stop, and step values. indices() will create a set of arrays (stacked as a one-higher dimensioned array), one per dimension with each representing variation in that dimension. An example illustrates much better than a verbal description: :: >>> np.indices((3,3)) array([[[0, 0, 0], [1, 1, 1], [2, 2, 2]], [[0, 1, 2], [0, 1, 2], [0, 1, 2]]]) This is particularly useful for evaluating functions of multiple dimensions on a regular grid. Reading Arrays From Disk ======================== This is presumably the most common case of large array creation. The details, of course, depend greatly on the format of data on disk and so this section can only give general pointers on how to handle various formats. Standard Binary Formats ----------------------- Various fields have standard formats for array data. The following lists the ones with known python libraries to read them and return numpy arrays (there may be others for which it is possible to read and convert to numpy arrays so check the last section as well) :: HDF5: PyTables FITS: PyFITS Examples of formats that cannot be read directly but for which it is not hard to convert are libraries like PIL (able to read and write many image formats such as jpg, png, etc). Common ASCII Formats ------------------------ Comma Separated Value files (CSV) are widely used (and an export and import option for programs like Excel). There are a number of ways of reading these files in Python. There are CSV functions in Python and functions in pylab (part of matplotlib). More generic ascii files can be read using the io package in scipy. Custom Binary Formats --------------------- There are a variety of approaches one can use. If the file has a relatively simple format then one can write a simple I/O library and use the numpy fromfile() function and .tofile() method to read and write numpy arrays directly (mind your byteorder though!) If a good C or C++ library exists that read the data, one can wrap that library with a variety of techniques though that certainly is much more work and requires significantly more advanced knowledge to interface with C or C++. Use of Special Libraries ------------------------ There are libraries that can be used to generate arrays for special purposes and it isn't possible to enumerate all of them. The most common uses are use of the many array generation functions in random that can generate arrays of random values, and some utility functions to generate special matrices (e.g. diagonal). """
gpl-2.0
nipunreddevil/bayespy
bayespy/inference/vmp/nodes/GaussianProcesses.py
2
26795
###################################################################### # Copyright (C) 2011,2012 Jaakko Luttinen # # This file is licensed under Version 3.0 of the GNU General Public # License. See LICENSE for a text of the license. ###################################################################### ###################################################################### # This file is part of BayesPy. # # BayesPy is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # BayesPy is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with BayesPy. If not, see <http://www.gnu.org/licenses/>. ###################################################################### import itertools import numpy as np #import scipy as sp #import scipy.linalg.decomp_cholesky as decomp import scipy.linalg as linalg #import scipy.special as special #import matplotlib.pyplot as plt #import time #import profile #import scipy.spatial.distance as distance import scipy.sparse as sp import utils import Nodes.ExponentialFamily as EF import Nodes.CovarianceFunctions as CF import imp imp.reload(utils) imp.reload(EF) imp.reload(CF) class CovarianceMatrix: def cholesky(self): pass def multiply(A, B): return np.multiply(A,B) # m prior mean function # k prior covariance function # x data inputs # z processed data outputs (z = inv(Cov) * (y-m(x))) # U data covariance Cholesky factor def gp_posterior_moment_function(m, k, x, y, k_sparse=None, pseudoinputs=None, noise=None): # Prior # FIXME: We are ignoring the covariance of mu now.. mu = m(x)[0] ## if np.ndim(mu) == 1: ## mu = np.asmatrix(mu).T ## else: ## mu = np.asmatrix(mu) K_noise = None if noise != None: if K_noise is None: K_noise = noise else: K_noise += noise if k_sparse != None: if K_noise is None: K_noise = k_sparse(x,x)[0] else: K_noise += k_sparse(x,x)[0] if pseudoinputs != None: p = pseudoinputs #print('in pseudostuff') #print(K_noise) #print(np.shape(K_noise)) K_pp = k(p,p)[0] K_xp = k(x,p)[0] U = utils.chol(K_noise) # Compute Lambda Lambda = K_pp + np.dot(K_xp.T, utils.chol_solve(U, K_xp)) U_lambda = utils.chol(Lambda) # Compute statistics for posterior predictions #print(np.shape(U_lambda)) #print(np.shape(y)) z = utils.chol_solve(U_lambda, np.dot(K_xp.T, utils.chol_solve(U, y - mu))) U = utils.chol(K_pp) # Now we can forget the location of the observations and # consider only the pseudoinputs when predicting. x = p else: K = K_noise if K is None: K = k(x,x)[0] else: try: K += k(x,x)[0] except: K = K + k(x,x)[0] # Compute posterior GP N = len(y) U = None z = None if N > 0: U = utils.chol(K) z = utils.chol_solve(U, y-mu) def get_moments(h, covariance=1, mean=True): K_xh = k(x, h)[0] if k_sparse != None: try: # This may not work, for instance, if either one is a # sparse matrix. K_xh += k_sparse(x, h)[0] except: K_xh = K_xh + k_sparse(x, h)[0] # NumPy has problems when mixing matrices and arrays. # Matrices may appear, for instance, when you sum an array and # a sparse matrix. Make sure the result is either an array or # a sparse matrix (not dense matrix!), because matrix objects # cause lots of problems: # # array.dot(array) = array # matrix.dot(array) = matrix # sparse.dot(array) = array if not sp.issparse(K_xh): K_xh = np.asarray(K_xh) # Function for computing posterior moments if mean: # Mean vector # FIXME: Ignoring the covariance of prior mu m_h = m(h)[0] if z != None: m_h += K_xh.T.dot(z) else: m_h = None # Compute (co)variance matrix/vector if covariance: if covariance == 1: ## Compute variance vector k_h = k(h)[0] if k_sparse != None: k_h += k_sparse(h)[0] if U != None: if isinstance(K_xh, np.ndarray): k_h -= np.einsum('i...,i...', K_xh, utils.chol_solve(U, K_xh)) else: # TODO: This isn't very efficient way, but # einsum doesn't work for sparse matrices.. # This may consume A LOT of memory for sparse # matrices. k_h -= np.asarray(K_xh.multiply(utils.chol_solve(U, K_xh))).sum(axis=0) if pseudoinputs != None: if isinstance(K_xh, np.ndarray): k_h += np.einsum('i...,i...', K_xh, utils.chol_solve(U_lambda, K_xh)) else: # TODO: This isn't very efficient way, but # einsum doesn't work for sparse matrices.. # This may consume A LOT of memory for sparse # matrices. k_h += np.asarray(K_xh.multiply(utils.chol_solve(U_lambda, K_xh))).sum(axis=0) # Ensure non-negative variances k_h[k_h<0] = 0 return (m_h, k_h) elif covariance == 2: ## Compute full covariance matrix K_hh = k(h,h)[0] if k_sparse != None: K_hh += k_sparse(h)[0] if U != None: K_hh -= K_xh.T.dot(utils.chol_solve(U,K_xh)) #K_hh -= np.dot(K_xh.T, utils.chol_solve(U,K_xh)) if pseudoinputs != None: K_hh += K_xh.T.dot(utils.chol_solve(U_lambda, K_xh)) #K_hh += np.dot(K_xh.T, utils.chol_solve(U_lambda, K_xh)) return (m_h, K_hh) else: return (m_h, None) return get_moments # Constant function using GP mean protocol class Constant(EF.Node): def __init__(self, f, **kwargs): self.f = f EF.Node.__init__(self, dims=[(np.inf,)], **kwargs) def message_to_child(self, gradient=False): # Wrapper def func(x, gradient=False): if gradient: return ([self.f(x), None], []) else: return [self.f(x), None] return func #class MultiDimensional(EF.NodeVariable): # """ A multi-dimensional Gaussian process f(x). """ ## class ToGaussian(EF.NodeVariable): ## """ Deterministic node which transform a Gaussian process into ## finite-dimensional Gaussian variable. """ ## def __init__(self, f, x, **kwargs): ## EF.NodeVariable.__init__(self, ## f, ## x, ## plates= ## dims= # Deterministic node for creating a set of GPs which can be used as a # mean function to a general GP node. class Multiple(EF.NodeVariable): def __init__(self, GPs, **kwargs): # Ignore plates EF.NodeVariable.__init__(self, *GPs, plates=(), dims=[(np.inf,), (np.inf,np.inf)], **kwargs) def message_to_parent(self, index): raise Exception("not implemented yet") def message_to_child(self, gradient=False): u = [parent.message_to_child() for parent in self.parents] def get_moments(xh, **kwargs): mh_all = [] khh_all = [] for i in range(len(self.parents)): xi = np.array(xh[i]) #print(xi) #print(np.shape(xi)) #print(xi) # FIXME: We are ignoring the covariance of mu now.. if gradient: ((mh, khh), dm) = u[i](xi, **kwargs) else: (mh, khh) = u[i](xi, **kwargs) #mh = u[i](xi, **kwargs)[0] #print(mh) #print(mh_all) ## print(mh) ## print(khh) ## print(np.shape(mh)) mh_all = np.concatenate([mh_all, mh]) #print(np.shape(mh_all)) if khh != None: print(khh) raise Exception('Not implemented yet for covariances') #khh_all = np.concatenate([khh_all, khh]) # FIXME: Compute gradients! if gradient: return ([mh_all, khh_all], []) else: return [mh_all, khh_all] #return [mh_all, khh_all] return get_moments # Gaussian process distribution class GaussianProcess(EF.NodeVariable): def __init__(self, m, k, k_sparse=None, pseudoinputs=None, **kwargs): self.x = np.array([]) self.f = np.array([]) ## self.x_obs = np.zeros((0,1)) ## self.f_obs = np.zeros((0,)) if pseudoinputs != None: pseudoinputs = EF.NodeConstant([pseudoinputs], dims=[np.shape(pseudoinputs)]) # By default, posterior == prior self.m = None #m self.k = None #k if isinstance(k, list) and isinstance(m, list): if len(k) != len(m): raise Exception('The number of mean and covariance functions must be equal.') k = CF.Multiple(k) m = Multiple(m) elif isinstance(k, list): D = len(k) k = CF.Multiple(k) m = Multiple(D*[m]) elif isinstance(m, list): D = len(m) k = CF.Multiple(D*[k]) m = Multiple(m) # Ignore plates EF.NodeVariable.__init__(self, m, k, k_sparse, pseudoinputs, plates=(), dims=[(np.inf,), (np.inf,np.inf)], **kwargs) def __call__(self, x, covariance=None): if not covariance: return self.u(x, covariance=False)[0] elif covariance.lower() == 'vector': return self.u(x, covariance=1) elif covariance.lower() == 'matrix': return self.u(x, covariance=2) else: raise Exception("Unknown covariance type requested") def message_to_parent(self, index): if index == 0: k = self.parents[1].message_to_child()[0] K = k(self.x, self.x) return [self.x, self.mu, K] if index == 1: raise Exception("not implemented yet") def message_to_child(self): if self.observed: raise Exception("Observable GP should not have children.") return self.u def get_parameters(self): return self.u def observe(self, x, f): self.observed = True self.x = x self.f = f ## if np.ndim(f) == 1: ## self.f = np.asmatrix(f).T ## else: ## self.f = np.asmatrix(f) # You might want: # - mean for x # - covariance (and mean) for x # - variance (and mean) for x # - i.e., mean and/or (co)variance for x # - covariance for x1 and x2 def lower_bound_contribution(self, gradient=False): # Get moment functions from parents m = self.parents[0].message_to_child(gradient=gradient) k = self.parents[1].message_to_child(gradient=gradient) if self.parents[2]: k_sparse = self.parents[2].message_to_child(gradient=gradient) else: k_sparse = None if self.parents[3]: pseudoinputs = self.parents[3].message_to_child(gradient=gradient) #pseudoinputs = self.parents[3].message_to_child(gradient=gradient)[0] else: pseudoinputs = None ## m = self.parents[0].message_to_child(gradient=gradient)[0] ## k = self.parents[1].message_to_child(gradient=gradient)[0] # Compute the parameters (covariance matrices etc) using # parents' moment functions DKs_xx = [] DKd_xx = [] DKd_xp = [] DKd_pp = [] Dxp = [] Dmu = [] if gradient: # FIXME: We are ignoring the covariance of mu now.. ((mu, _), Dmu) = m(self.x, gradient=True) ## if k_sparse: ## ((Ks_xx,), DKs_xx) = k_sparse(self.x, self.x, gradient=True) if pseudoinputs: ((Ks_xx,), DKs_xx) = k_sparse(self.x, self.x, gradient=True) ((xp,), Dxp) = pseudoinputs ((Kd_pp,), DKd_pp) = k(xp,xp, gradient=True) ((Kd_xp,), DKd_xp) = k(self.x, xp, gradient=True) else: ((K_xx,), DKd_xx) = k(self.x, self.x, gradient=True) if k_sparse: ((Ks_xx,), DKs_xx) = k_sparse(self.x, self.x, gradient=True) try: K_xx += Ks_xx except: K_xx = K_xx + Ks_xx else: # FIXME: We are ignoring the covariance of mu now.. (mu, _) = m(self.x) ## if k_sparse: ## (Ks_xx,) = k_sparse(self.x, self.x) if pseudoinputs: (Ks_xx,) = k_sparse(self.x, self.x) (xp,) = pseudoinputs (Kd_pp,) = k(xp, xp) (Kd_xp,) = k(self.x, xp) else: (K_xx,) = k(self.x, self.x) if k_sparse: (Ks_xx,) = k_sparse(self.x, self.x) try: K_xx += Ks_xx except: K_xx = K_xx + Ks_xx mu = mu[0] #K = K[0] # Log pdf if self.observed: ## Log pdf for directly observed GP f0 = self.f - mu #print('hereiam') #print(K) if pseudoinputs: ## Pseudo-input approximation # Decompose the full-rank sparse/noise covariance matrix try: Us_xx = utils.cholesky(Ks_xx) except linalg.LinAlgError: print('Noise/sparse covariance not positive definite') return -np.inf # Use Woodbury-Sherman-Morrison formula with the # following notation: # # y2 = f0' * inv(Kd_xp*inv(Kd_pp)*Kd_xp' + Ks_xx) * f0 # # z = Ks_xx \ f0 # Lambda = Kd_pp + Kd_xp'*inv(Ks_xx)*Kd_xp # nu = inv(Lambda) * (Kd_xp' * (Ks_xx \ f0)) # rho = Kd_xp * inv(Lambda) * (Kd_xp' * (Ks_xx \ f0)) # # y2 = f0' * z - z' * rho z = Us_xx.solve(f0) Lambda = Kd_pp + np.dot(Kd_xp.T, Us_xx.solve(Kd_xp)) ## z = utils.chol_solve(Us_xx, f0) ## Lambda = Kd_pp + np.dot(Kd_xp.T, ## utils.chol_solve(Us_xx, Kd_xp)) try: U_Lambda = utils.cholesky(Lambda) #U_Lambda = utils.chol(Lambda) except linalg.LinAlgError: print('Lambda not positive definite') return -np.inf nu = U_Lambda.solve(np.dot(Kd_xp.T, z)) #nu = utils.chol_solve(U_Lambda, np.dot(Kd_xp.T, z)) rho = np.dot(Kd_xp, nu) y2 = np.dot(f0, z) - np.dot(z, rho) # Use matrix determinant lemma # # det(Kd_xp*inv(Kd_pp)*Kd_xp' + Ks_xx) # = det(Kd_pp + Kd_xp'*inv(Ks_xx)*Kd_xp) # * det(inv(Kd_pp)) * det(Ks_xx) # = det(Lambda) * det(Ks_xx) / det(Kd_pp) try: Ud_pp = utils.cholesky(Kd_pp) #Ud_pp = utils.chol(Kd_pp) except linalg.LinAlgError: print('Covariance of pseudo inputs not positive definite') return -np.inf logdet = (U_Lambda.logdet() + Us_xx.logdet() - Ud_pp.logdet()) ## logdet = (utils.logdet_chol(U_Lambda) ## + utils.logdet_chol(Us_xx) ## - utils.logdet_chol(Ud_pp)) # Compute the log pdf L = gaussian_logpdf(y2, 0, 0, logdet, np.size(self.f)) # Add the variational cost of the pseudo-input # approximation # Compute gradients for (dmu, func) in Dmu: # Derivative w.r.t. mean vector d = np.nan # Send the derivative message func(d) for (dKs_xx, func) in DKs_xx: # Compute derivative w.r.t. covariance matrix d = np.nan # Send the derivative message func(d) for (dKd_xp, func) in DKd_xp: # Compute derivative w.r.t. covariance matrix d = np.nan # Send the derivative message func(d) V = Ud_pp.solve(Kd_xp.T) Z = Us_xx.solve(V.T) ## V = utils.chol_solve(Ud_pp, Kd_xp.T) ## Z = utils.chol_solve(Us_xx, V.T) for (dKd_pp, func) in DKd_pp: # Compute derivative w.r.t. covariance matrix d = (0.5 * np.trace(Ud_pp.solve(dKd_pp)) - 0.5 * np.trace(U_Lambda.solve(dKd_pp)) + np.dot(nu, np.dot(dKd_pp, nu)) + np.trace(np.dot(dKd_pp, np.dot(V,Z)))) ## d = (0.5 * np.trace(utils.chol_solve(Ud_pp, dKd_pp)) ## - 0.5 * np.trace(utils.chol_solve(U_Lambda, dKd_pp)) ## + np.dot(nu, np.dot(dKd_pp, nu)) ## + np.trace(np.dot(dKd_pp, ## np.dot(V,Z)))) # Send the derivative message func(d) for (dxp, func) in Dxp: # Compute derivative w.r.t. covariance matrix d = np.nan # Send the derivative message func(d) else: ## Full exact (no pseudo approximations) try: U = utils.cholesky(K_xx) #U = utils.chol(K_xx) except linalg.LinAlgError: print('non positive definite, return -inf') return -np.inf z = U.solve(f0) #z = utils.chol_solve(U, f0) #print(K) L = utils.gaussian_logpdf(np.dot(f0, z), 0, 0, U.logdet(), ## utils.logdet_chol(U), np.size(self.f)) for (dmu, func) in Dmu: # Derivative w.r.t. mean vector d = -np.sum(z) # Send the derivative message func(d) for (dK, func) in DKd_xx: # Compute derivative w.r.t. covariance matrix # # TODO: trace+chol_solve should be handled better # for sparse matrices. Use sparse-inverse! d = 0.5 * (dK.dot(z).dot(z) - U.trace_solve_gradient(dK)) ## - np.trace(U.solve(dK))) ## d = 0.5 * (dK.dot(z).dot(z) ## - np.trace(utils.chol_solve(U, dK))) #print('derivate', d, dK) ## d = 0.5 * (np.dot(z, np.dot(dK, z)) ## - np.trace(utils.chol_solve(U, dK))) # # Send the derivative message func(d) for (dK, func) in DKs_xx: # Compute derivative w.r.t. covariance matrix d = 0.5 * (dK.dot(z).dot(z) - U.trace_solve_gradient(dK)) ## - np.trace(U.solve(dK))) ## d = 0.5 * (dK.dot(z).dot(z) ## - np.trace(utils.chol_solve(U, dK))) ## d = 0.5 * (np.dot(z, np.dot(dK, z)) ## - np.trace(utils.chol_solve(U, dK))) # Send the derivative message func(d) else: ## Log pdf for latent GP raise Exception('Not implemented yet') return L ## Let f1 be observed and f2 latent function values. # Compute <log p(f1,f2|m,k)> #L = gaussian_logpdf(sum_product(np.outer(self.f,self.f) + self.Cov, # Compute <log q(f2)> def update(self): # Messages from parents m = self.parents[0].message_to_child() k = self.parents[1].message_to_child() if self.parents[2]: k_sparse = self.parents[2].message_to_child() else: k_sparse = None if self.parents[3]: pseudoinputs = self.parents[3].message_to_child()[0] else: pseudoinputs = None ## m = self.parents[0].message_to_child()[0] ## k = self.parents[1].message_to_child()[0] if self.observed: # Observations of this node self.u = gp_posterior_moment_function(m, k, self.x, self.f, k_sparse=k_sparse, pseudoinputs=pseudoinputs) else: x = np.array([]) y = np.array([]) # Messages from children for (child,index) in self.children: (msg, mask) = child.message_to_parent(index) # Ignoring masks and plates.. # m[0] is the inputs x = np.concatenate((x, msg[0]), axis=-2) # m[1] is the observations y = np.concatenate((y, msg[1])) # m[2] is the covariance matrix V = linalg.block_diag(V, msg[2]) self.u = gp_posterior_moment_function(m, k, x, y, covariance=V) self.x = x self.f = y # At least for now, simplify this GP node such that a GP is either # observed or latent. If it is observed, it doesn't take messages from # children, actually, it should not even have children! ## # Pseudo for GPFA: ## k1 = gp_cov_se(magnitude=theta1, lengthscale=theta2) ## k2 = gp_cov_periodic(magnitude=.., lengthscale=.., period=..) ## k3 = gp_cov_rq(magnitude=.., lengthscale=.., alpha=..) ## f = NodeGPSet(0, [k1,k2,k3]) # assumes block diagonality ## # f = NodeGPSet(0, [[k11,k12,k13],[k21,k22,k23],[k31,k32,k33]]) ## X = GaussianFromGP(f, [ [[t0,0],[t0,1],[t0,2]], [t1,0],[t1,1],[t1,2], ..]) ## ... ## # Construct a sum of GPs if interested only in the sum term ## k1 = gp_cov_se(magnitude=theta1, lengthscale=theta2) ## k2 = gp_cov_periodic(magnitude=.., lengthscale=.., period=..) ## k = gp_cov_sum(k1, k2) ## f = NodeGP(0, k) ## f.observe(x, y) ## f.update() ## (mp, kp) = f.get_parameters() ## # Construct a sum of GPs when interested also in the individual ## # GPs: ## k1 = gp_cov_se(magnitude=theta1, lengthscale=theta2) ## k2 = gp_cov_periodic(magnitude=.., lengthscale=.., period=..) ## k3 = gp_cov_delta(magnitude=theta3) ## f = NodeGPSum(0, [k1,k2,k3]) ## x = np.array([1,2,3,4,5,6,7,8,9,10]) ## y = np.sin(x[0]) + np.random.normal(0, 0.1, (10,)) ## # Observe the sum (index 0) ## f.observe((0,x), y) ## # Inference ## f.update() ## (mp, kp) = f.get_parameters() ## # Mean of the sum ## mp[0](...) ## # Mean of the individual terms ## mp[1](...) ## mp[2](...) ## mp[3](...) ## # Covariance of the sum ## kp[0][0](..., ...) ## # Other covariances ## kp[1][1](..., ...) ## kp[2][2](..., ...) ## kp[3][3](..., ...) ## kp[1][2](..., ...) ## kp[1][3](..., ...) ## kp[2][3](..., ...)
gpl-3.0