repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
gem/oq-engine
openquake/sep/calculators.py
1
2395
from typing import Optional, Union import osgeo import numpy as np import pandas as pd try: import xarray as xr except ImportError: pass from .landslide.common import ( static_factor_of_safety, rock_slope_static_factor_of_safety, ) from .landslide.newmark import ( newmark_critical_accel, newmark_displ_from_pga_M, prob_failure_given_displacement, ) from .landslide.rotational import rotational_critical_accel def calc_newmark_soil_slide_single_event( pga: Union[float, np.ndarray], M: float, slope: Union[float, np.ndarray], cohesion: Union[float, np.ndarray], friction_angle: Union[float, np.ndarray], saturation_coeff: Union[float, np.ndarray] = 0.1, slab_thickness: Union[float, np.ndarray] = 2.5, soil_dry_density: Union[float, np.ndarray] = 1500.0, water_density: float = 1000.0, out_name=None, ) -> Union[float, np.ndarray]: """ """ fs = static_factor_of_safety( slope, cohesion, friction_angle, saturation_coeff, slab_thickness, soil_dry_density, water_density, ) ca = newmark_critical_accel(fs, slope) Dn = newmark_displ_from_pga_M(pga, ca, M) if isinstance(Dn, xr.DataArray): Dn.name = out_name return Dn def calc_newmark_soil_slide_event_set( pga: Union[float, np.ndarray], M: Union[float, np.ndarray], slope: Union[float, np.ndarray], cohesion: Union[float, np.ndarray], friction_angle: Union[float, np.ndarray], saturation_coeff: Union[float, np.ndarray] = 0.1, slab_thickness: Union[float, np.ndarray] = 2.5, soil_dry_density: Union[float, np.ndarray] = 1500.0, water_density=1000.0, ) -> Union[float, np.ndarray]: """ """ fs = static_factor_of_safety( slope, cohesion, friction_angle, saturation_coeff, slab_thickness, soil_dry_density, water_density, ) ca = newmark_critical_accel(fs, slope) if isinstance(pga, xr.Dataset): Dn = xr.Dataset( { k: newmark_displ_from_pga_M(da, ca, da.attrs["mag"]) for k, da in pga.data_vars.items() } ) # elif isinstance(pga, ) return Dn def calc_rock_slope_failures(): pass def calc_rotational_failures(): pass def calculate_lateral_spreading(): pass
agpl-3.0
kagayakidan/scikit-learn
sklearn/linear_model/stochastic_gradient.py
65
50308
# Authors: Peter Prettenhofer <[email protected]> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np import scipy.sparse as sp from abc import ABCMeta, abstractmethod from ..externals.joblib import Parallel, delayed from .base import LinearClassifierMixin, SparseCoefMixin from .base import make_dataset from ..base import BaseEstimator, RegressorMixin from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import (check_array, check_random_state, check_X_y, deprecated) from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted from ..externals import six from .sgd_fast import plain_sgd, average_sgd from ..utils.fixes import astype from ..utils import compute_class_weight from .sgd_fast import Hinge from .sgd_fast import SquaredHinge from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredLoss from .sgd_fast import Huber from .sgd_fast import EpsilonInsensitive from .sgd_fast import SquaredEpsilonInsensitive LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} DEFAULT_EPSILON = 0.1 # Default value of ``epsilon`` parameter. class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self.average = average self._validate_params() self.coef_ = None if self.average > 0: self.standard_coef_ = None self.average_coef_ = None # iteration count for learning rate schedule # must not be int (e.g. if ``learning_rate=='optimal'``) self.t_ = None def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(self.standard_intercept_.shape, dtype=np.float64, order="C") def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.standard_coef_.ravel() intercept = est.standard_intercept_[0] average_coef = est.average_coef_.ravel() average_intercept = est.average_intercept_[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est.standard_coef_[i] intercept = est.standard_intercept_[i] average_coef = est.average_coef_[i] average_intercept = est.average_intercept_[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if not est.average: return plain_sgd(coef, intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) else: standard_coef, standard_intercept, average_coef, \ average_intercept = average_sgd(coef, intercept, average_coef, average_intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if len(est.classes_) == 2: est.average_intercept_[0] = average_intercept else: est.average_intercept_[i] = average_intercept return standard_coef, standard_intercept class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) self.class_weight = class_weight self.classes_ = None self.n_jobs = int(n_jobs) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous data %d." % (n_features, self.coef_.shape[-1])) self.loss_function = self._get_loss_function(loss) if self.t_ is None: self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) self.t_ += n_iter * X.shape[0] # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self.average_coef_.reshape(1, -1) self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_.reshape(1, -1) self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept self.t_ += n_iter * X.shape[0] if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ if self.class_weight in ['balanced', 'auto']: raise ValueError("class_weight '{0}' is not supported for " "partial_fit. In order to use 'balanced' weights, " "use compute_class_weight('{0}', classes, y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.".format(self.class_weight)) return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the contructor) if class_weight is specified Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier, _LearntSelectorMixin): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate schedule: constant: eta = eta0 optimal: eta = 1.0 / (t + t0) [default] invscaling: eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes,\ n_features) Weights assigned to the features. intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): check_is_fitted(self, "t_") if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64) y = astype(y, np.float64, copy=False) n_samples, n_features = X.shape self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and self.average_coef_ is None: self.average_coef_ = np.zeros(n_features, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_intercept_ = self.intercept_ self.standard_coef_ = self.coef_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_features,) The initial coefficients to warm-start the optimization. intercept_init : array, shape (1,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) @deprecated(" and will be removed in 0.19.") def decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self, ["t_", "coef_", "intercept_"], all_or_any=all) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if self.t_ is None: self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ =\ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_) class SGDRegressor(BaseSGDRegressor, _LearntSelectorMixin): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level. epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate: constant: eta = eta0 optimal: eta = 1.0/(alpha * t) invscaling: eta = eta0 / pow(t, power_t) [default] eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10 will`` begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (n_features,) Weights assigned to the features. intercept_ : array, shape (1,) The intercept term. average_coef_ : array, shape (n_features,) Averaged weights assigned to the features. average_intercept_ : array, shape (1,) The averaged intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=True, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average)
bsd-3-clause
rahul-c1/scikit-learn
examples/ensemble/plot_forest_importances_faces.py
403
1519
""" ================================================= Pixel importances with a parallel forest of trees ================================================= This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task (faces). The hotter the pixel, the more important. The code below also illustrates how the construction and the computation of the predictions can be parallelized within multiple jobs. """ print(__doc__) from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.ensemble import ExtraTreesClassifier # Number of cores to use to perform parallel fitting of the forest model n_jobs = 1 # Load the faces dataset data = fetch_olivetti_faces() X = data.images.reshape((len(data.images), -1)) y = data.target mask = y < 5 # Limit to 5 classes X = X[mask] y = y[mask] # Build a forest and compute the pixel importances print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs) t0 = time() forest = ExtraTreesClassifier(n_estimators=1000, max_features=128, n_jobs=n_jobs, random_state=0) forest.fit(X, y) print("done in %0.3fs" % (time() - t0)) importances = forest.feature_importances_ importances = importances.reshape(data.images[0].shape) # Plot pixel importances plt.matshow(importances, cmap=plt.cm.hot) plt.title("Pixel importances with forests of trees") plt.show()
bsd-3-clause
henrykironde/scikit-learn
sklearn/decomposition/nmf.py
100
19059
""" Non-negative matrix factorization """ # Author: Vlad Niculae # Lars Buitinck <[email protected]> # Author: Chih-Jen Lin, National Taiwan University (original projected gradient # NMF implementation) # Author: Anthony Di Franco (original Python and NumPy port) # License: BSD 3 clause from __future__ import division from math import sqrt import warnings import numpy as np import scipy.sparse as sp from scipy.optimize import nnls from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm from ..utils.validation import check_is_fitted, check_non_negative def safe_vstack(Xs): if any(sp.issparse(X) for X in Xs): return sp.vstack(Xs) else: return np.vstack(Xs) def norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return sqrt(squared_norm(x)) def trace_dot(X, Y): """Trace of np.dot(X, Y.T).""" return np.dot(X.ravel(), Y.ravel()) def _sparseness(x): """Hoyer's measure of sparsity for a vector""" sqrt_n = np.sqrt(len(x)) return (sqrt_n - np.linalg.norm(x, 1) / norm(x)) / (sqrt_n - 1) def _initialize_nmf(X, n_components, variant=None, eps=1e-6, random_state=None): """NNDSVD algorithm for NMF initialization. Computes a good initial guess for the non-negative rank k matrix approximation for X: X = WH Parameters ---------- X : array, [n_samples, n_features] The data matrix to be decomposed. n_components : array, [n_components, n_features] The number of components desired in the approximation. variant : None | 'a' | 'ar' The variant of the NNDSVD algorithm. Accepts None, 'a', 'ar' None: leaves the zero entries as zero 'a': Fills the zero entries with the average of X 'ar': Fills the zero entries with standard normal random variates. Default: None eps: float Truncate all values less then this in output to zero. random_state : numpy.RandomState | int, optional The generator used to fill in the zeros, when using variant='ar' Default: numpy.random Returns ------- (W, H) : Initial guesses for solving X ~= WH such that the number of columns in W is n_components. References ---------- C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ check_non_negative(X, "NMF initialization") if variant not in (None, 'a', 'ar'): raise ValueError("Invalid variant name") random_state = check_random_state(random_state) U, S, V = randomized_svd(X, n_components, random_state=random_state) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if variant == "a": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif variant == "ar": avg = X.mean() W[W == 0] = abs(avg * random_state.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * random_state.randn(len(H[H == 0])) / 100) return W, H def _nls_subproblem(V, W, H, tol, max_iter, sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. min || WH - V ||_2 Parameters ---------- V, W : array-like Constant matrices. H : array-like Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like Solution to the non-negative least squares problem. grad : array-like The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtV = safe_sparse_dot(W.T, V) WtW = np.dot(W.T, W) # values justified in the paper alpha = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtV # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(19): # Gradient step. Hn = H - alpha * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_alpha = not suff_decr if decr_alpha: if suff_decr: H = Hn break else: alpha *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: alpha /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.") return H, grad, n_iter class ProjectedGradientNMF(BaseEstimator, TransformerMixin): """Non-Negative matrix factorization by Projected Gradient (NMF) Read more in the :ref:`User Guide <NMF>`. Parameters ---------- n_components : int or None Number of components, if n_components is not set all components are kept init : 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'random' Method used to initialize the procedure. Default: 'nndsvd' if n_components < n_features, otherwise random. Valid options:: 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 'random': non-negative random matrices sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : int, default: 200 Number of iterations to compute. nls_max_iter : int, default: 2000 Number of iterations in NLS subproblem. random_state : int or RandomState Random number generator seed control. Attributes ---------- components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. ``|| X - WH ||_2`` n_iter_ : int Number of iterations run. Examples -------- >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import ProjectedGradientNMF >>> model = ProjectedGradientNMF(n_components=2, init='random', ... random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness=None, tol=0.0001) >>> model.components_ array([[ 0.77032744, 0.11118662], [ 0.38526873, 0.38228063]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00746... >>> model = ProjectedGradientNMF(n_components=2, ... sparseness='components', init='random', random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness='components', tol=0.0001) >>> model.components_ array([[ 1.67481991, 0.29614922], [ 0. , 0.4681982 ]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.513... References ---------- This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 2004. NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ def __init__(self, n_components=None, init=None, sparseness=None, beta=1, eta=0.1, tol=1e-4, max_iter=200, nls_max_iter=2000, random_state=None): self.n_components = n_components self.init = init self.tol = tol if sparseness not in (None, 'data', 'components'): raise ValueError( 'Invalid sparseness parameter: got %r instead of one of %r' % (sparseness, (None, 'data', 'components'))) self.sparseness = sparseness self.beta = beta self.eta = eta self.max_iter = max_iter self.nls_max_iter = nls_max_iter self.random_state = random_state def _init(self, X): n_samples, n_features = X.shape init = self.init if init is None: if self.n_components_ < n_features: init = 'nndsvd' else: init = 'random' rng = check_random_state(self.random_state) if init == 'nndsvd': W, H = _initialize_nmf(X, self.n_components_, random_state=rng) elif init == 'nndsvda': W, H = _initialize_nmf(X, self.n_components_, variant='a', random_state=rng) elif init == 'nndsvdar': W, H = _initialize_nmf(X, self.n_components_, variant='ar', random_state=rng) elif init == "random": W = rng.randn(n_samples, self.n_components_) # we do not write np.abs(W, out=W) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(W, W) H = rng.randn(self.n_components_, n_features) np.abs(H, H) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'))) return W, H def _update_W(self, X, H, W, tolW): n_samples, n_features = X.shape if self.sparseness is None: W, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, self.nls_max_iter) elif self.sparseness == 'data': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((1, n_samples))]), safe_vstack([H.T, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), W.T, tolW, self.nls_max_iter) elif self.sparseness == 'components': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((self.n_components_, n_samples))]), safe_vstack([H.T, np.sqrt(self.eta) * np.eye(self.n_components_)]), W.T, tolW, self.nls_max_iter) return W.T, gradW.T, iterW def _update_H(self, X, H, W, tolH): n_samples, n_features = X.shape if self.sparseness is None: H, gradH, iterH = _nls_subproblem(X, W, H, tolH, self.nls_max_iter) elif self.sparseness == 'data': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((self.n_components_, n_features))]), safe_vstack([W, np.sqrt(self.eta) * np.eye(self.n_components_)]), H, tolH, self.nls_max_iter) elif self.sparseness == 'components': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((1, n_features))]), safe_vstack([W, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), H, tolH, self.nls_max_iter) return H, gradH, iterH def fit_transform(self, X, y=None): """Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- data: array, [n_samples, n_components] Transformed data """ X = check_array(X, accept_sparse='csr') check_non_negative(X, "NMF.fit") n_samples, n_features = X.shape if not self.n_components: self.n_components_ = n_features else: self.n_components_ = self.n_components W, H = self._init(X) gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = norm(np.r_[gradW, gradH.T]) tolW = max(0.001, self.tol) * init_grad # why max? tolH = tolW tol = self.tol * init_grad for n_iter in range(1, self.max_iter + 1): # stopping condition # as discussed in paper proj_norm = norm(np.r_[gradW[np.logical_or(gradW < 0, W > 0)], gradH[np.logical_or(gradH < 0, H > 0)]]) if proj_norm < tol: break # update W W, gradW, iterW = self._update_W(X, H, W, tolW) if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = self._update_H(X, H, W, tolH) if iterH == 1: tolH = 0.1 * tolH if not sp.issparse(X): error = norm(X - np.dot(W, H)) else: sqnorm_X = np.dot(X.data, X.data) norm_WHT = trace_dot(np.dot(np.dot(W.T, W), H), H) cross_prod = trace_dot((X * H.T), W) error = sqrt(sqnorm_X + norm_WHT - 2. * cross_prod) self.reconstruction_err_ = error self.comp_sparseness_ = _sparseness(H.ravel()) self.data_sparseness_ = _sparseness(W.ravel()) H[H == 0] = 0 # fix up negative zeros self.components_ = H if n_iter == self.max_iter: warnings.warn("Iteration limit reached during fit. Solving for W exactly.") return self.transform(X) self.n_iter_ = n_iter return W def fit(self, X, y=None, **params): """Learn a NMF model for the data X. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- self """ self.fit_transform(X, **params) return self def transform(self, X): """Transform the data X according to the fitted NMF model Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be transformed by the model Returns ------- data: array, [n_samples, n_components] Transformed data """ check_is_fitted(self, 'n_components_') X = check_array(X, accept_sparse='csc') Wt = np.zeros((self.n_components_, X.shape[0])) check_non_negative(X, "ProjectedGradientNMF.transform") if sp.issparse(X): Wt, _, _ = _nls_subproblem(X.T, self.components_.T, Wt, tol=self.tol, max_iter=self.nls_max_iter) else: for j in range(0, X.shape[0]): Wt[:, j], _ = nnls(self.components_.T, X[j, :]) return Wt.T class NMF(ProjectedGradientNMF): __doc__ = ProjectedGradientNMF.__doc__ pass
bsd-3-clause
rahul-c1/scikit-learn
sklearn/svm/tests/test_sparse.py
27
10643
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits from sklearn.svm.tests import test_svm from sklearn.utils import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def test_svc(): """Check that sparse SVC gives the same result as SVC""" clf = svm.SVC(kernel='linear', probability=True, random_state=0) clf.fit(X, Y) sp_clf = svm.SVC(kernel='linear', probability=True, random_state=0) sp_clf.fit(X_sp, Y) assert_array_equal(sp_clf.predict(T), true_result) assert_true(sparse.issparse(sp_clf.support_vectors_)) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_true(sparse.issparse(sp_clf.dual_coef_)) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_true(sparse.issparse(sp_clf.coef_)) assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) assert_array_almost_equal(clf.support_, sp_clf.support_) assert_array_almost_equal(clf.predict(T), sp_clf.predict(T)) # refit with a different dataset clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) assert_array_almost_equal(clf.support_, sp_clf.support_) assert_array_almost_equal(clf.predict(T2), sp_clf.predict(T2)) assert_array_almost_equal(clf.predict_proba(T2), sp_clf.predict_proba(T2), 4) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): """Test the sparse SVC with the iris dataset""" for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_error(): """ Test that it gives proper exception on deficient input """ # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): """ Similar to test_SVC """ clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): """Test the sparse LinearSVC with the iris dataset""" sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): """ Test class weights """ X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): """ Test weights on individual samples """ clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(X[2]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict(X[2]), [2.]) def test_sparse_liblinear_intercept_handling(): """ Test that sparse liblinear honours intercept_scaling param """ test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_realdata(): """ Test on a subset from the 20newsgroups dataset. This catchs some bugs if input is not correctly converted into sparse format or weights are not correctly initialized. """ data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
astrobayes/BMAD
chapter_10/code_10.11.py
1
2333
# From: Bayesian Models for Astrophysical Data, Cambridge Univ. Press # (c) 2017, Joseph M. Hilbe, Rafael S. de Souza and Emille E. O. Ishida # # you are kindly asked to include the complete citation if you used this # material in a publication # # Code 10.11 Beta model in Python using Stan, for accessing the # relationship between the fraction of atomic gas and # the galaxy stellar mass # # Statistical Model: Beta model in Python using Stan # # Astronomy case: Relation between atomic gas fraction # and stellar mass # taken from Bradford et al., 2015, ApJ 809, id. 146 # # 1 response (Y - atomic gass fraction) # 1 explanatory variable (x - log stellar mass) # # Original data from: http://www.astro.yale.edu/jdbradford/research.html import numpy as np import pandas as pd import pystan import statsmodels.api as sm # Data path_to_data = 'https://raw.githubusercontent.com/astrobayes/BMAD/master/data/Section_10p5/f_gas.csv' # read data data_frame = dict(pd.read_csv(path_to_data)) # built atomic gas fraction y = np.array([data_frame['M_HI'][i]/ (data_frame['M_HI'][i] + data_frame['M_STAR'][i]) for i in range(data_frame['M_STAR'].shape[0])]) x = np.array([np.log(item) for item in data_frame['M_STAR']]) # prepare data for Stan data = {} data['Y'] = y data['X'] = sm.add_constant((x.transpose())) data['nobs'] = data['X'].shape[0] data['K'] = data['X'].shape[1] # Fit stan_code=""" data{ int<lower=0> nobs; # number of data points int<lower=0> K; # number of coefficients matrix[nobs, K] X; # stellar mass real<lower=0, upper=1> Y[nobs]; # atomic gas fraction } parameters{ vector[K] beta; # linear predictor coefficients real<lower=0> theta; } model{ vector[nobs] pi; real a[nobs]; real b[nobs]; for (i in 1:nobs){ pi[i] = inv_logit(X[i] * beta); a[i] = theta * pi[i]; b[i] = theta * (1 - pi[i]); } # priors and likelihood for (i in 1:K) beta[i] ~ normal(0, 100); theta ~ gamma(0.01, 0.01); Y ~ beta(a, b); } """ # Run mcmc fit = pystan.stan(model_code=stan_code, data=data, iter=7500, chains=3, warmup=5000, thin=1, n_jobs=3) # Output print(fit)
gpl-3.0
LohithBlaze/scikit-learn
sklearn/metrics/pairwise.py
104
42995
# -*- coding: utf-8 -*- # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # Andreas Mueller <[email protected]> # Philippe Gervais <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause import itertools import numpy as np from scipy.spatial import distance from scipy.sparse import csr_matrix from scipy.sparse import issparse from ..utils import check_array from ..utils import gen_even_slices from ..utils import gen_batches from ..utils.fixes import partial from ..utils.extmath import row_norms, safe_sparse_dot from ..preprocessing import normalize from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.joblib.parallel import cpu_count from .pairwise_fast import _chi2_kernel_fast, _sparse_manhattan # Utility Functions def _return_float_dtype(X, Y): """ 1. If dtype of X and Y is float32, then dtype float32 is returned. 2. Else dtype float is returned. """ if not issparse(X) and not isinstance(X, np.ndarray): X = np.asarray(X) if Y is None: Y_dtype = X.dtype elif not issparse(Y) and not isinstance(Y, np.ndarray): Y = np.asarray(Y) Y_dtype = Y.dtype else: Y_dtype = Y.dtype if X.dtype == Y_dtype == np.float32: dtype = np.float32 else: dtype = np.float return X, Y, dtype def check_pairwise_arrays(X, Y): """ Set X and Y appropriately and checks inputs If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the second dimension of the two arrays is equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y, dtype = _return_float_dtype(X, Y) if Y is X or Y is None: X = Y = check_array(X, accept_sparse='csr', dtype=dtype) else: X = check_array(X, accept_sparse='csr', dtype=dtype) Y = check_array(Y, accept_sparse='csr', dtype=dtype) if X.shape[1] != Y.shape[1]: raise ValueError("Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % ( X.shape[1], Y.shape[1])) return X, Y def check_paired_arrays(X, Y): """ Set X and Y appropriately and checks inputs for paired distances All paired distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the dimensions of the two arrays are equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y = check_pairwise_arrays(X, Y) if X.shape != Y.shape: raise ValueError("X and Y should be of same shape. They were " "respectively %r and %r long." % (X.shape, Y.shape)) return X, Y # Pairwise distances def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:: dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) This formulation has two advantages over other ways of computing distances. First, it is computationally efficient when dealing with sparse data. Second, if x varies but y remains unchanged, then the right-most dot product `dot(y, y)` can be pre-computed. However, this is not the most precise way of doing this computation, and the distance matrix returned by this function may not be exactly symmetric as required by, e.g., ``scipy.spatial.distance`` functions. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_1, n_features) Y : {array-like, sparse matrix}, shape (n_samples_2, n_features) Y_norm_squared : array-like, shape (n_samples_2, ), optional Pre-computed dot-products of vectors in Y (e.g., ``(Y**2).sum(axis=1)``) squared : boolean, optional Return squared Euclidean distances. Returns ------- distances : {array, sparse matrix}, shape (n_samples_1, n_samples_2) Examples -------- >>> from sklearn.metrics.pairwise import euclidean_distances >>> X = [[0, 1], [1, 1]] >>> # distance between rows of X >>> euclidean_distances(X, X) array([[ 0., 1.], [ 1., 0.]]) >>> # get distance to origin >>> euclidean_distances(X, [[0, 0]]) array([[ 1. ], [ 1.41421356]]) See also -------- paired_distances : distances betweens pairs of elements of X and Y. """ # should not need X_norm_squared because if you could precompute that as # well as Y, then you should just pre-compute the output and not even # call this function. X, Y = check_pairwise_arrays(X, Y) if Y_norm_squared is not None: YY = check_array(Y_norm_squared) if YY.shape != (1, Y.shape[0]): raise ValueError( "Incompatible dimensions for Y and Y_norm_squared") else: YY = row_norms(Y, squared=True)[np.newaxis, :] if X is Y: # shortcut in the common case euclidean_distances(X, X) XX = YY.T else: XX = row_norms(X, squared=True)[:, np.newaxis] distances = safe_sparse_dot(X, Y.T, dense_output=True) distances *= -2 distances += XX distances += YY np.maximum(distances, 0, out=distances) if X is Y: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. distances.flat[::distances.shape[0] + 1] = 0.0 return distances if squared else np.sqrt(distances, out=distances) def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). The minimal distances are also returned. This is mostly equivalent to calling: (pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), pairwise_distances(X, Y=Y, metric=metric).min(axis=axis)) but uses much less memory, and is faster for large arrays. Parameters ---------- X, Y : {array-like, sparse matrix} Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable, default 'euclidean' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict, optional Keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. distances : numpy.ndarray distances[i] is the distance between the i-th row in X and the argmin[i]-th row in Y. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin """ dist_func = None if metric in PAIRWISE_DISTANCE_FUNCTIONS: dist_func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif not callable(metric) and not isinstance(metric, str): raise ValueError("'metric' must be a string or a callable") X, Y = check_pairwise_arrays(X, Y) if metric_kwargs is None: metric_kwargs = {} if axis == 0: X, Y = Y, X # Allocate output arrays indices = np.empty(X.shape[0], dtype=np.intp) values = np.empty(X.shape[0]) values.fill(np.infty) for chunk_x in gen_batches(X.shape[0], batch_size): X_chunk = X[chunk_x, :] for chunk_y in gen_batches(Y.shape[0], batch_size): Y_chunk = Y[chunk_y, :] if dist_func is not None: if metric == 'euclidean': # special case, for speed d_chunk = safe_sparse_dot(X_chunk, Y_chunk.T, dense_output=True) d_chunk *= -2 d_chunk += row_norms(X_chunk, squared=True)[:, np.newaxis] d_chunk += row_norms(Y_chunk, squared=True)[np.newaxis, :] np.maximum(d_chunk, 0, d_chunk) else: d_chunk = dist_func(X_chunk, Y_chunk, **metric_kwargs) else: d_chunk = pairwise_distances(X_chunk, Y_chunk, metric=metric, **metric_kwargs) # Update indices and minimum values using chunk min_indices = d_chunk.argmin(axis=1) min_values = d_chunk[np.arange(chunk_x.stop - chunk_x.start), min_indices] flags = values[chunk_x] > min_values indices[chunk_x][flags] = min_indices[flags] + chunk_y.start values[chunk_x][flags] = min_values[flags] if metric == "euclidean" and not metric_kwargs.get("squared", False): np.sqrt(values, values) return indices, values def pairwise_distances_argmin(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). This is mostly equivalent to calling: pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis) but uses much less memory, and is faster for large arrays. This function works with dense 2D arrays only. Parameters ---------- X : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) Y : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin_min """ if metric_kwargs is None: metric_kwargs = {} return pairwise_distances_argmin_min(X, Y, axis, metric, batch_size, metric_kwargs)[0] def manhattan_distances(X, Y=None, sum_over_features=True, size_threshold=5e8): """ Compute the L1 distances between the vectors in X and Y. With sum_over_features equal to False it returns the componentwise distances. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like An array with shape (n_samples_X, n_features). Y : array_like, optional An array with shape (n_samples_Y, n_features). sum_over_features : bool, default=True If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Not supported for sparse matrix inputs. size_threshold : int, default=5e8 Unused parameter. Returns ------- D : array If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances. Examples -------- >>> from sklearn.metrics.pairwise import manhattan_distances >>> manhattan_distances(3, 3)#doctest:+ELLIPSIS array([[ 0.]]) >>> manhattan_distances(3, 2)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances(2, 3)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances([[1, 2], [3, 4]],\ [[1, 2], [0, 3]])#doctest:+ELLIPSIS array([[ 0., 2.], [ 4., 4.]]) >>> import numpy as np >>> X = np.ones((1, 2)) >>> y = 2 * np.ones((2, 2)) >>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS array([[ 1., 1.], [ 1., 1.]]...) """ X, Y = check_pairwise_arrays(X, Y) if issparse(X) or issparse(Y): if not sum_over_features: raise TypeError("sum_over_features=%r not supported" " for sparse matrices" % sum_over_features) X = csr_matrix(X, copy=False) Y = csr_matrix(Y, copy=False) D = np.zeros((X.shape[0], Y.shape[0])) _sparse_manhattan(X.data, X.indices, X.indptr, Y.data, Y.indices, Y.indptr, X.shape[1], D) return D if sum_over_features: return distance.cdist(X, Y, 'cityblock') D = X[:, np.newaxis, :] - Y[np.newaxis, :, :] D = np.abs(D, D) return D.reshape((-1, X.shape[1])) def cosine_distances(X, Y=None): """ Compute cosine distance between samples in X and Y. Cosine distance is defined as 1.0 minus the cosine similarity. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like, sparse matrix with shape (n_samples_X, n_features). Y : array_like, sparse matrix (optional) with shape (n_samples_Y, n_features). Returns ------- distance matrix : array An array with shape (n_samples_X, n_samples_Y). See also -------- sklearn.metrics.pairwise.cosine_similarity scipy.spatial.distance.cosine (dense matrices only) """ # 1.0 - cosine_similarity(X, Y) without copy S = cosine_similarity(X, Y) S *= -1 S += 1 return S # Paired distances def paired_euclidean_distances(X, Y): """ Computes the paired euclidean distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) return row_norms(X - Y) def paired_manhattan_distances(X, Y): """Compute the L1 distances between the vectors in X and Y. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) diff = X - Y if issparse(diff): diff.data = np.abs(diff.data) return np.squeeze(np.array(diff.sum(axis=1))) else: return np.abs(diff).sum(axis=-1) def paired_cosine_distances(X, Y): """ Computes the paired cosine distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray, shape (n_samples, ) Notes ------ The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit norm """ X, Y = check_paired_arrays(X, Y) return .5 * row_norms(normalize(X) - normalize(Y), squared=True) PAIRED_DISTANCES = { 'cosine': paired_cosine_distances, 'euclidean': paired_euclidean_distances, 'l2': paired_euclidean_distances, 'l1': paired_manhattan_distances, 'manhattan': paired_manhattan_distances, 'cityblock': paired_manhattan_distances} def paired_distances(X, Y, metric="euclidean", **kwds): """ Computes the paired distances between X and Y. Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc... Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : ndarray (n_samples, n_features) Array 1 for distance computation. Y : ndarray (n_samples, n_features) Array 2 for distance computation. metric : string or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options specified in PAIRED_DISTANCES, including "euclidean", "manhattan", or "cosine". Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. Returns ------- distances : ndarray (n_samples, ) Examples -------- >>> from sklearn.metrics.pairwise import paired_distances >>> X = [[0, 1], [1, 1]] >>> Y = [[0, 1], [2, 1]] >>> paired_distances(X, Y) array([ 0., 1.]) See also -------- pairwise_distances : pairwise distances. """ if metric in PAIRED_DISTANCES: func = PAIRED_DISTANCES[metric] return func(X, Y) elif callable(metric): # Check the matrix first (it is usually done by the metric) X, Y = check_paired_arrays(X, Y) distances = np.zeros(len(X)) for i in range(len(X)): distances[i] = metric(X[i], Y[i]) return distances else: raise ValueError('Unknown distance %s' % metric) # Kernels def linear_kernel(X, Y=None): """ Compute the linear kernel between X and Y. Read more in the :ref:`User Guide <linear_kernel>`. Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=True) def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): """ Compute the polynomial kernel between X and Y:: K(X, Y) = (gamma <X, Y> + coef0)^degree Read more in the :ref:`User Guide <polynomial_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 degree : int, default 3 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 K **= degree return K def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): """ Compute the sigmoid kernel between X and Y:: K(X, Y) = tanh(gamma <X, Y> + coef0) Read more in the :ref:`User Guide <sigmoid_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 Returns ------- Gram matrix: array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 np.tanh(K, K) # compute tanh in-place return K def rbf_kernel(X, Y=None, gamma=None): """ Compute the rbf (gaussian) kernel between X and Y:: K(x, y) = exp(-gamma ||x-y||^2) for each pair of rows x in X and y in Y. Read more in the :ref:`User Guide <rbf_kernel>`. Parameters ---------- X : array of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = euclidean_distances(X, Y, squared=True) K *= -gamma np.exp(K, K) # exponentiate K in-place return K def cosine_similarity(X, Y=None, dense_output=True): """Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Read more in the :ref:`User Guide <cosine_similarity>`. Parameters ---------- X : ndarray or sparse array, shape: (n_samples_X, n_features) Input data. Y : ndarray or sparse array, shape: (n_samples_Y, n_features) Input data. If ``None``, the output will be the pairwise similarities between all samples in ``X``. dense_output : boolean (optional), default True Whether to return dense output even when the input is sparse. If ``False``, the output is sparse if both input arrays are sparse. Returns ------- kernel matrix : array An array with shape (n_samples_X, n_samples_Y). """ # to avoid recursive import X, Y = check_pairwise_arrays(X, Y) X_normalized = normalize(X, copy=True) if X is Y: Y_normalized = X_normalized else: Y_normalized = normalize(Y, copy=True) K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output) return K def additive_chi2_kernel(X, Y=None): """Computes the additive chi-squared kernel between observations in X and Y The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = -Sum [(x - y)^2 / (x + y)] It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Notes ----- As the negative of a distance, this kernel is only conditionally positive definite. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- chi2_kernel : The exponentiated version of the kernel, which is usually preferable. sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to this kernel. """ if issparse(X) or issparse(Y): raise ValueError("additive_chi2 does not support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if (X < 0).any(): raise ValueError("X contains negative values.") if Y is not X and (Y < 0).any(): raise ValueError("Y contains negative values.") result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype) _chi2_kernel_fast(X, Y, result) return result def chi2_kernel(X, Y=None, gamma=1.): """Computes the exponential chi-squared kernel X and Y. The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)]) It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float, default=1. Scaling parameter of the chi2 kernel. Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- additive_chi2_kernel : The additive version of this kernel sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to the additive version of this kernel. """ K = additive_chi2_kernel(X, Y) K *= gamma return np.exp(K, K) # Helper functions - distance PAIRWISE_DISTANCE_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'cityblock': manhattan_distances, 'cosine': cosine_distances, 'euclidean': euclidean_distances, 'l2': euclidean_distances, 'l1': manhattan_distances, 'manhattan': manhattan_distances, } def distance_metrics(): """Valid metrics for pairwise_distances. This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: ============ ==================================== metric Function ============ ==================================== 'cityblock' metrics.pairwise.manhattan_distances 'cosine' metrics.pairwise.cosine_distances 'euclidean' metrics.pairwise.euclidean_distances 'l1' metrics.pairwise.manhattan_distances 'l2' metrics.pairwise.euclidean_distances 'manhattan' metrics.pairwise.manhattan_distances ============ ==================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_DISTANCE_FUNCTIONS def _parallel_pairwise(X, Y, func, n_jobs, **kwds): """Break the pairwise matrix in n_jobs even slices and compute them in parallel""" if n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) if Y is None: Y = X if n_jobs == 1: # Special case to avoid picklability checks in delayed return func(X, Y, **kwds) # TODO: in some cases, backend='threading' may be appropriate fd = delayed(func) ret = Parallel(n_jobs=n_jobs, verbose=0)( fd(X, Y[s], **kwds) for s in gen_even_slices(Y.shape[0], n_jobs)) return np.hstack(ret) def _pairwise_callable(X, Y, metric, **kwds): """Handle the callable case for pairwise_{distances,kernels} """ X, Y = check_pairwise_arrays(X, Y) if X is Y: # Only calculate metric for upper triangle out = np.zeros((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.combinations(range(X.shape[0]), 2) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) # Make symmetric # NB: out += out.T will produce incorrect results out = out + out.T # Calculate diagonal # NB: nonzero diagonals are allowed for both metrics and kernels for i in range(X.shape[0]): x = X[i] out[i, i] = metric(x, x, **kwds) else: # Calculate all cells out = np.empty((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.product(range(X.shape[0]), range(Y.shape[0])) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) return out _VALID_METRICS = ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', "wminkowski"] def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds): """ Compute the distance matrix from a vector array X and optional Y. This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector array, the distances are computed. If the input is a distances matrix, it is returned instead. This method provides a safe way to take a distance matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X and Y. Valid values for metric are: - From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']. These metrics support sparse matrix inputs. - From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. These metrics do not support sparse matrix inputs. Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are valid scipy.spatial.distance metrics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (except for 'cityblock'). For a verbose description of the metrics from scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics function. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. Y : array [n_samples_b, n_features], optional An optional second feature array. Only allowed if metric != "precomputed". metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the jth array from Y. """ if (metric not in _VALID_METRICS and not callable(metric) and metric != "precomputed"): raise ValueError("Unknown metric %s. " "Valid metrics are %s, or 'precomputed', or a " "callable" % (metric, _VALID_METRICS)) if metric == "precomputed": return X elif metric in PAIRWISE_DISTANCE_FUNCTIONS: func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: if issparse(X) or issparse(Y): raise TypeError("scipy distance metrics do not" " support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if n_jobs == 1 and X is Y: return distance.squareform(distance.pdist(X, metric=metric, **kwds)) func = partial(distance.cdist, metric=metric, **kwds) return _parallel_pairwise(X, Y, func, n_jobs, **kwds) # Helper functions - distance PAIRWISE_KERNEL_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'additive_chi2': additive_chi2_kernel, 'chi2': chi2_kernel, 'linear': linear_kernel, 'polynomial': polynomial_kernel, 'poly': polynomial_kernel, 'rbf': rbf_kernel, 'sigmoid': sigmoid_kernel, 'cosine': cosine_similarity, } def kernel_metrics(): """ Valid metrics for pairwise_kernels This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: =============== ======================================== metric Function =============== ======================================== 'additive_chi2' sklearn.pairwise.additive_chi2_kernel 'chi2' sklearn.pairwise.chi2_kernel 'linear' sklearn.pairwise.linear_kernel 'poly' sklearn.pairwise.polynomial_kernel 'polynomial' sklearn.pairwise.polynomial_kernel 'rbf' sklearn.pairwise.rbf_kernel 'sigmoid' sklearn.pairwise.sigmoid_kernel 'cosine' sklearn.pairwise.cosine_similarity =============== ======================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_KERNEL_FUNCTIONS KERNEL_PARAMS = { "additive_chi2": (), "chi2": (), "cosine": (), "exp_chi2": frozenset(["gamma"]), "linear": (), "poly": frozenset(["gamma", "degree", "coef0"]), "polynomial": frozenset(["gamma", "degree", "coef0"]), "rbf": frozenset(["gamma"]), "sigmoid": frozenset(["gamma", "coef0"]), } def pairwise_kernels(X, Y=None, metric="linear", filter_params=False, n_jobs=1, **kwds): """Compute the kernel between arrays X and optional array Y. This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector array, the kernels are computed. If the input is a kernel matrix, it is returned instead. This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X and Y. Valid values for metric are:: ['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine'] Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise kernels between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. filter_params: boolean Whether to filter invalid parameters or not. `**kwds` : optional keyword parameters Any further parameters are passed directly to the kernel function. Returns ------- K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the ith array from X and the jth array from Y. Notes ----- If metric is 'precomputed', Y is ignored and X is returned. """ if metric == "precomputed": return X elif metric in PAIRWISE_KERNEL_FUNCTIONS: if filter_params: kwds = dict((k, kwds[k]) for k in kwds if k in KERNEL_PARAMS[metric]) func = PAIRWISE_KERNEL_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: raise ValueError("Unknown kernel %r" % metric) return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
bsd-3-clause
matija94/show-me-the-code
data-science/CollectiveIntelligence/com/AI/singi/kolo1/skmeans.py
1
1172
from sklearn.cluster import KMeans import numpy as np import matplotlib.pyplot as plt X = np.array([ [1,2], [1,4], [1,0], [4,2], [4,4], [4,0] ], dtype=float) x = KMeans(n_clusters=2).fit(X) print x.cluster_centers_ print x.labels_==1 print X[x.labels_==1,0] print X[x.labels_==1,1] plt.scatter(X[x.labels_==1,0], X[x.labels_==1,1]) plt.scatter(X[x.labels_==0,0], X[x.labels_==0,1], c=u'r') plt.show() #2ndExample X = np.zeros([200,2]) X[:100,0] = np.random.randint(1,2,100) + np.random.random(100)*2 X[100:,0] = np.random.randint(1,2,100) - np.random.random(100)*6 X[:,1] = np.random.randint(1,2,200) + np.random.random(200) plt.scatter(X[:,0], X[:,1]) plt.show() x = KMeans(n_clusters=2).fit(X) plt.scatter(X[x.labels_==1,0], X[x.labels_==1,1]) plt.scatter(X[x.labels_==0,0], X[x.labels_==0,1], c=u'r') plt.show() #3rd example #let's make 4 clusters out of randomly generated X data set x = KMeans(n_clusters=4).fit(X) plt.scatter(X[x.labels_==1,0], X[x.labels_==1,1]) plt.scatter(X[x.labels_==0,0], X[x.labels_==0,1], c=u'r') plt.scatter(X[x.labels_==2,0], X[x.labels_==2,1], c=u'y') plt.scatter(X[x.labels_==3,0], X[x.labels_==3,1], c=u'g') plt.show()
mit
tlshaw/AnoThER-Seq
tools.py
1
2759
import pandas as pd def CSVWriter (iterable, outLoc, header="", ): """ Writes an iterable to a CSV file. :param iterable: List of list :param outLoc: file location. Where to place it. :param header: header of the CSV file :return: 1 """ if not iterable: print ("nothing to write") return 0 out = open(outLoc, 'w') if header: out.write(header+'\n') #Only works if iterable is a nested list for member in iterable: for item in member: out.write(str(item)+',') out.write('\n') print("write to "+outLoc+" successful.") return 1 def seqParser(seqLoc): """ Takes a FASTA formatted list of sequences and returns a properly formatted nested list :param seqLoc: fasta formatted file :return: nested list in the form [[name, seq],...] """ f=open(seqLoc,'r') RNAseqs = f.readlines() f.close() RNAseqlist = [] for i in range(0, len(RNAseqs)): if RNAseqs[i][0] == ">": RNAseqlist.append([RNAseqs[i].rstrip()[1:],RNAseqs[i+1].rstrip()]) return RNAseqlist def countsin(inLoc): """ Takes saved count file and reads it into a counts nested list. :param inLoc: counts file :return: nested list. counts nested list. [[read, total number, unique number],...] """ countFile = open(inLoc, "r").readlines() counts=[] for i in range(1, len(countFile)): temp = countFile[i].rstrip().split(",") counts.append([temp[0][8:], temp[1], temp[2]]) return counts def tailParser(inLoc): """ parses .tail file into a nested list usable by other modules :param inLoc: CSV input .tail file as produced by aligner.tailcalc :return: nested list. [[sequence, #reads, gene, 3'end, tail len, tail seq],...] """ f = open(inLoc, 'r') tails = f.readlines() f.close() tailList = [] for i in range(len(tails)): if i==0: continue #skips the header line = tails[i].rstrip().split(',') tailList.append(line) return tailList def repeater(item, list, reps): '''Takes an item and a list and then adds a copy of the item to the list reps number of times.''' for i in range(reps): list.append(item) return def pdTailMaker(inLoc): """ Takes standard tail file and returns a pandas dataframe """ tails = tailParser(inLoc) pdTails = [] for tail in tails: type = tail[2][tail[2].find("|")+1:] repeater([tail[2],tail[3],tail[4],tail[5],type],pdTails,int(tail[1])) df = pd.DataFrame(pdTails,columns=['Gene','3Loc','TailLength','TailSeq', 'Type']) df[['3Loc','TailLength']] = df[['3Loc','TailLength']].apply(pd.to_numeric,errors='coerce') return df
mit
MiroBear/Information-Mining
StreetSigns/trainModels.py
1
5660
#!/usr/bin/env python3 import matplotlib.pyplot as plt import numpy as np from sklearn import svm # from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split # from sklearn.linear_model import LogisticRegression # from sklearn.ensemble import RandomForestClassifier # from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA # from sklearn.preprocessing import normalize from StreetSigns.readTrafficSigns import DataReader def classify(images, labels): # create stratified labels with equal number of samples per class classes, classCnts = np.unique(labels, return_counts=True) evenCnt = len(labels) / len(classes) evenCnt = int(evenCnt) stratifiedLabels = np.repeat(classes, evenCnt) stratifiedLabels = np.resize(stratifiedLabels, len(labels)) remainder = len(labels) - evenCnt * len(classes) stratifiedLabels[len(labels)-remainder-1:-1] = classes[0:remainder] X_train, X_test, y_train, y_test = train_test_split( images, labels, test_size=0.25, random_state=0, stratify=stratifiedLabels) # labels) # dimRed = LDA() # X_train = dimRed.fit_transform(X_train, y_train) # X_test = dimRed.transform(X_test) print('Training with LinearSVC') clf = svm.LinearSVC(penalty='l2', C=0.5) clf.fit(X_train, y_train) scores = clf.score(X_test, y_test) print(scores) # TODO: reduce dimensionality of features by PCA and do classification on this data. This should get rid of # background noise. # TODO: use spatial pyramid matching # https://github.com/wihoho/Image-Recognition # TODO: get best individuals from each class, extract the shape and create a mask to cancel out the background # for all images of this class. # y_pred = clf.predict(X_test) # confSVC = confusion_matrix(y_test, y_pred) # plt.figure() # plot_confusion_matrix(confSVC, classes=classes) # plt.show() # print('Training with LDA') # clf = LDA(solver='lsqr', shrinkage='auto') # clf.fit(X_train, y_train) # scores = clf.score(X_test, y_test) # print(scores) # print('Training with LR') # clf = LogisticRegression() # clf.fit(X_train, y_train) # scores = clf.score(X_test, y_test) # print(scores) # # print('Training with Random Forest') # clf = RandomForestClassifier(n_estimators=100) # clf.fit(X_train, y_train) # scores = clf.score(X_test, y_test) # print(scores) def main(): r = DataReader() # r = reader.DataReader() # r.clear() images, labels = r.readImages() print('#images: ' + str(len(images))) classes = np.unique(labels) print(np.sort(classes.astype(int))) hogFeatures, labels = r.readHOG() print('#hogFeatures: ' + str(len(hogFeatures[0]))) hueFeatures, labels = r.readHue() print('#hueFeatures: ' + str(len(hueFeatures[0]))) features = combine(hogFeatures, hueFeatures) # features = hogFeatures # imagesVectorized = np.empty([len(labels), images[0].size]) # for i in range(len(labels)): # imagesVectorized[i] = images[i].ravel() # features = imagesVectorized # features = normalize(features) # HOG1 # no normalize: 0.982432432432 # normalize: 0.980630630631 # HOG2 # 0.991441441441 # same with hue features combined # np.histogram(labels.astype(int)) # plt.hist(labels.astype(int), bins=42) # plt.title('Classes') # plt.show() # Classes are not evenly distributed # TODO: # - modify images a bit to create extra variants, e.g. by scaling, rotating, blurring, distorting # - or apply stratified sampling during cross-validation or training-test split ''' TODO: extract main colors from all images as additional feature. Problems: - common colors for all images, i.e. define a small set of colors to which all are mapped. Could be problematic for corner colors. - main colors to be extracted e.g. by ColorThief: https://github.com/fengsp/color-thief-py/blob/master/colorthief.py -> per image and image dependent. i.e. no mapping to predefined colors. This must be done on our own. ''' classify(features, labels) def combine(X1, X2): n = len(X1) n1 = len(X1[0]) n2 = len(X2[0]) X = np.empty([n, n1 + n2]) for i in range(len(X)): X[i, 0:n1] = X1[i] X[i, n1:n1+n2] = X2[i] return X def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') # print(cm) np.fill_diagonal(cm, 1) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) # fmt = '.2f' if normalize else 'd' # thresh = cm.max() / 2. # for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): # plt.text(j, i, format(cm[i, j], fmt), # horizontalalignment="center", # color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') if __name__ == '__main__': main()
gpl-3.0
omrihar/1_npfi
fig3.py
1
8078
#!/usr/bin/env python2 # encoding: utf-8 ''' fig3.py Written by: Omri Har-Shemesh, Computational Science Lab, University of Amsterdam [email protected] Last updated on 23 September 2015 Description: Figure 3 in Ref.[1] References: [1] O. Har-Shemesh, R. Quax, B. Miñano, A.G. Hoekstra, P.M.A. Sloot, Non-parametric estimation of Fisher information from real data, arxiv:1507.00964[stat.CO] Functions: simulate_data plot_date Dependencies: numpy matplotlib timeit cPickle os gzip npfi.py ''' from __future__ import division import numpy as np from numpy.random import normal import matplotlib.pyplot as plt import os import gzip import cPickle as pickle import timeit from npfi import npfi, get_pdfs_from_data def simulate_data(ss, es, N, rep, zero, G, alpha, fname): """ Simulates the data for the plot Args: ss: An array of sigma values to estimate the FI at. es: An array of epsilon values to estimate the FI at. N: Number of data points for each PDF. rep: Number of repetitions of the whole simulation. zero: What should npfi consider as zero G: G for DEFT alpha: alpha for DEFT fname: Name of the file where the simulation data will be stored. Returns: results: A dictionary with all simulated data, which was also stored to the file. """ # Results of the simulation will be stored here data = {} # Go over all sigma values in ss for i, s in enumerate(ss): true_fi = 2 / s ** 2 ess = [] # Store the epsilon values actually used dss = [] # Store the ds values we used FI_values_all = [] err_values_all = [] err_median, err_5, err_95 = [], [], [] for j, e in enumerate(es): ds = s / (e * np.sqrt(N)) # Choose ds according to desired epsilon # If ds >= s we have a problem of sampling with negative std if ds >= s: continue dss.append(ds) ess.append(e) # Estimate the FI for rep repetitions FI_values = [] for j in range(rep): sim_data = [normal(size=N, scale=s), normal(size=N, scale=s-ds), normal(size=N, scale=s+ds)] pdfs, bbox = get_pdfs_from_data(sim_data, method="deft", G=G, alpha=alpha, bbox="adjust") FI, a, b = npfi(pdfs, ds, bounds=bbox, logarithmic=False, zero=zero, N=N) FI_values.append(FI) # More convenient to use as numpy arrays FI_values = np.array(FI_values) # Compute statistics from the results err_values = (FI_values - true_fi) / true_fi FI_values_all.append(FI_values) err_values_all.append(err_values) err_median.append(np.median(err_values)) err_5.append(np.percentile(err_values, 5)) err_95.append(np.percentile(err_values, 95)) data[s] = dict(FI_values_all=FI_values_all, err_values_all=err_values_all, err_median=np.array(err_median), err_5=np.array(err_5), err_95=np.array(err_95), dss=dss, ess=ess) results = dict(data=data, N=N, rep=rep, ss=ss) f = gzip.open(fname, "wb") pickle.dump(results, f) f.close() return results def plot_data(sim_data, fname=None): """ Plots the data, either using plt.show or saves to a file. Args: sim_data: The data produced by sim_data fname: If None, plot to screen, else save figure as fname. Returns: Nothing """ # Setup the plotting parameters params = { 'text.usetex' : True, 'font.size' : 10, 'font.family' : 'cmr', 'text.latex.unicode' : True } plt.rcParams.update(params) plt.style.use("publication") colors = { 0 : ["#08519c", "#6baed6", "#3182bd"], 1 : ["#006d2c", "#66c2a4", "#2ca25f"], 2 : ["#b30000", "#fdbb84", "#e34a33"], 3 : ["#54278f", "#9e9ac8", "#756bb1"], 4 : ["#252525", "#969696", "#cccccc"] } dot_styles = "o*vsph" fig = plt.figure() fig.set_size_inches(5, 5) ax = fig.add_subplot(111) i = 0 for s, data in sim_data['data'].iteritems(): true_fi = 2.0 / s**2 x = data['ess'] y = data['err_median'] y_5, y_95 = data['err_5'], data['err_95'] line, = ax.plot(x, y, dot_styles[i] + "-", lw=1.2, markersize=4, color=colors[i][0], label=r"$\sigma=%.1f$" % s) ax.fill_between(x, y_5, y_95, alpha=.5, facecolor=colors[i][1], edgecolor=colors[i][2]) i += 1 ax.set_xlabel(r"$\varepsilon$") ax.set_ylabel(r"$\frac{\mathrm{FI} - g_{\sigma\sigma}}{g_{\sigma\sigma}}$") ax.set_xticks([0.01, 0.2, 0.4, 0.6, 0.8, 1.0]) ax.tick_params(right=False, top=False) ax.grid("off") ax.set_ylim(-0.75,4) ax.set_xlim(0, 0.8) ax.legend(loc="upper right", prop={"size": 8}) # Add inset to the original figure add_inset = True if add_inset: from mpl_toolkits.axes_grid1.inset_locator import mark_inset, zoomed_inset_axes, inset_axes xticks_down = True if xticks_down: axins = inset_axes(ax, width=1.2, height=1.2, bbox_to_anchor=(0.5, 0.98), bbox_transform=ax.transAxes) else: axins = inset_axes(ax, width=1.5, height=1.5, bbox_to_anchor=(0.6, 0.95), bbox_transform=ax.transAxes) i = 0 for s, data in sim_data['data'].iteritems(): true_fi = 2.0 / (s**2) x = data['ess'] y = data['err_median'] y_5, y_95 = data['err_5'], data['err_95'] line, = axins.plot(x, y, dot_styles[i] + "-", lw=1.2, markersize=4, color=colors[i][0], label=r"$\sigma=%.1f$" % s) line_err = axins.errorbar(x, y, yerr=[y-y_5, y_95-y], ls=dot_styles[i], lw=1.2, markersize=4, color=colors[i][0], label=r"$\sigma=%.1f$" % s) axins.set_xlim(0.015, 0.11) axins.set_ylim(-0.2, 0.35) axins.set_axis_bgcolor("w") if xticks_down: axins.set_xticks([0.02, 0.04, 0.06, 0.08, 0.1]) axins.set_xticklabels(["$0.02$", "$0.04$", "$0.06$", "$0.08$", ""]) axins.get_xaxis().set_tick_params(direction='in', labelcolor="k", labeltop=False, labelbottom=True, labelsize=8) axins.get_yaxis().set_tick_params(labelsize=8) else: axins.get_xaxis().set_tick_params(direction='in', labelcolor="k", labeltop=True, labelbottom=False) axins.get_yaxis().set_tick_params(direction='in', labelcolor="k", labelleft=False, labelright=True) axins.set_frame_on(True) axins.grid("off") plt.setp(axins.spines.values(), color="k", lw=1) mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="k", lw=1) if fname is None: plt.show() else: plt.savefig(fname, dpi=700, bbox_inches="tight") if __name__ == '__main__': start_time = timeit.default_timer() # Parameters of the plot rep = 100 ss = [0.5, 1.0, 2.0, 5.0, 10.0] es = np.array([0.01, 0.013, 0.015, 0.017, 0.019, 0.02, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) N = 20000 G = 200 alpha = 3 zero = 1e-10 seed = 200 np.random.seed(seed) fname = "fig3_data_rep_%d_N_%d_seed_%d.pklz" % (rep, N, seed) if os.path.isfile(fname): print("Found data file, plotting...") f = gzip.open(fname, "rb") data = pickle.load(f) f.close() else: print("Simulating data...") data = simulate_data(ss, es, N, rep, zero, G, alpha, fname) if __debug__: print("Obtaining the data took %.2f seconds" % (timeit.default_timer()-start_time)) plot_data(data)
mit
fabioticconi/scikit-learn
sklearn/pipeline.py
14
21389
""" The :mod:`sklearn.pipeline` module implements utilities to build a composite estimator, as a chain of transforms and estimators. """ # Author: Edouard Duchesnay # Gael Varoquaux # Virgile Fritsch # Alexandre Gramfort # Lars Buitinck # Licence: BSD from collections import defaultdict from warnings import warn import numpy as np from scipy import sparse from .base import BaseEstimator, TransformerMixin from .externals.joblib import Parallel, delayed from .externals import six from .utils import tosequence from .utils.metaestimators import if_delegate_has_method from .externals.six import iteritems __all__ = ['Pipeline', 'FeatureUnion'] class Pipeline(BaseEstimator): """Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. Read more in the :ref:`User Guide <pipeline>`. Parameters ---------- steps : list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. Attributes ---------- named_steps : dict Read-only attribute to access any step parameter by user given name. Keys are step names and values are steps parameters. Examples -------- >>> from sklearn import svm >>> from sklearn.datasets import samples_generator >>> from sklearn.feature_selection import SelectKBest >>> from sklearn.feature_selection import f_regression >>> from sklearn.pipeline import Pipeline >>> # generate some data to play with >>> X, y = samples_generator.make_classification( ... n_informative=5, n_redundant=0, random_state=42) >>> # ANOVA SVM-C >>> anova_filter = SelectKBest(f_regression, k=5) >>> clf = svm.SVC(kernel='linear') >>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)]) >>> # You can set the parameters using the names issued >>> # For instance, fit using a k of 10 in the SelectKBest >>> # and a parameter 'C' of the svm >>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y) ... # doctest: +ELLIPSIS Pipeline(steps=[...]) >>> prediction = anova_svm.predict(X) >>> anova_svm.score(X, y) # doctest: +ELLIPSIS 0.77... >>> # getting the selected features chosen by anova_filter >>> anova_svm.named_steps['anova'].get_support() ... # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, False, False, True, False, True, True, True, False, False, True, False, True, False, False, False, False, True], dtype=bool) """ # BaseEstimator interface def __init__(self, steps): names, estimators = zip(*steps) if len(dict(steps)) != len(steps): raise ValueError("Provided step names are not unique: %s" % (names,)) # shallow copy of steps self.steps = tosequence(steps) transforms = estimators[:-1] estimator = estimators[-1] for t in transforms: if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(t, "transform")): raise TypeError("All intermediate steps of the chain should " "be transforms and implement fit and transform" " '%s' (type %s) doesn't)" % (t, type(t))) if not hasattr(estimator, "fit"): raise TypeError("Last step of chain should implement fit " "'%s' (type %s) doesn't)" % (estimator, type(estimator))) @property def _estimator_type(self): return self.steps[-1][1]._estimator_type def get_params(self, deep=True): if not deep: return super(Pipeline, self).get_params(deep=False) else: out = self.named_steps for name, step in six.iteritems(self.named_steps): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value out.update(super(Pipeline, self).get_params(deep=False)) return out @property def named_steps(self): return dict(self.steps) @property def _final_estimator(self): return self.steps[-1][1] # Estimator interface def _pre_transform(self, X, y=None, **fit_params): fit_params_steps = dict((step, {}) for step, _ in self.steps) for pname, pval in six.iteritems(fit_params): step, param = pname.split('__', 1) fit_params_steps[step][param] = pval Xt = X for name, transform in self.steps[:-1]: if hasattr(transform, "fit_transform"): Xt = transform.fit_transform(Xt, y, **fit_params_steps[name]) else: Xt = transform.fit(Xt, y, **fit_params_steps[name]) \ .transform(Xt) return Xt, fit_params_steps[self.steps[-1][0]] def fit(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) self.steps[-1][-1].fit(Xt, y, **fit_params) return self def fit_transform(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) if hasattr(self.steps[-1][-1], 'fit_transform'): return self.steps[-1][-1].fit_transform(Xt, y, **fit_params) else: return self.steps[-1][-1].fit(Xt, y, **fit_params).transform(Xt) @if_delegate_has_method(delegate='_final_estimator') def predict(self, X): """Applies transforms to the data, and the predict method of the final estimator. Valid only if the final estimator implements predict. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict(Xt) @if_delegate_has_method(delegate='_final_estimator') def fit_predict(self, X, y=None, **fit_params): """Applies fit_predict of last step in pipeline after transforms. Applies fit_transforms of a pipeline to the data, followed by the fit_predict method of the final estimator in the pipeline. Valid only if the final estimator implements fit_predict. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) return self.steps[-1][-1].fit_predict(Xt, y, **fit_params) @if_delegate_has_method(delegate='_final_estimator') def predict_proba(self, X): """Applies transforms to the data, and the predict_proba method of the final estimator. Valid only if the final estimator implements predict_proba. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_proba(Xt) @if_delegate_has_method(delegate='_final_estimator') def decision_function(self, X): """Applies transforms to the data, and the decision_function method of the final estimator. Valid only if the final estimator implements decision_function. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].decision_function(Xt) @if_delegate_has_method(delegate='_final_estimator') def predict_log_proba(self, X): """Applies transforms to the data, and the predict_log_proba method of the final estimator. Valid only if the final estimator implements predict_log_proba. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_log_proba(Xt) @if_delegate_has_method(delegate='_final_estimator') def transform(self, X): """Applies transforms to the data, and the transform method of the final estimator. Valid only if the final estimator implements transform. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps: Xt = transform.transform(Xt) return Xt @if_delegate_has_method(delegate='_final_estimator') def inverse_transform(self, X): """Applies inverse transform to the data. Starts with the last step of the pipeline and applies ``inverse_transform`` in inverse order of the pipeline steps. Valid only if all steps of the pipeline implement inverse_transform. Parameters ---------- X : iterable Data to inverse transform. Must fulfill output requirements of the last step of the pipeline. """ if X.ndim == 1: warn("From version 0.19, a 1d X will not be reshaped in" " pipeline.inverse_transform any more.", FutureWarning) X = X[None, :] Xt = X for name, step in self.steps[::-1]: Xt = step.inverse_transform(Xt) return Xt @if_delegate_has_method(delegate='_final_estimator') def score(self, X, y=None): """Applies transforms to the data, and the score method of the final estimator. Valid only if the final estimator implements score. Parameters ---------- X : iterable Data to score. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Targets used for scoring. Must fulfill label requirements for all steps of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].score(Xt, y) @property def classes_(self): return self.steps[-1][-1].classes_ @property def _pairwise(self): # check if first estimator expects pairwise input return getattr(self.steps[0][1], '_pairwise', False) def _name_estimators(estimators): """Generate names for estimators.""" names = [type(estimator).__name__.lower() for estimator in estimators] namecount = defaultdict(int) for est, name in zip(estimators, names): namecount[name] += 1 for k, v in list(six.iteritems(namecount)): if v == 1: del namecount[k] for i in reversed(range(len(estimators))): name = names[i] if name in namecount: names[i] += "-%d" % namecount[name] namecount[name] -= 1 return list(zip(names, estimators)) def make_pipeline(*steps): """Construct a Pipeline from the given estimators. This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, their names will be set to the lowercase of their types automatically. Examples -------- >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB(priors=None)) # doctest: +NORMALIZE_WHITESPACE Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('gaussiannb', GaussianNB(priors=None))]) Returns ------- p : Pipeline """ return Pipeline(_name_estimators(steps)) def _fit_one_transformer(transformer, X, y): return transformer.fit(X, y) def _transform_one(transformer, name, X, transformer_weights): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, multiply output return transformer.transform(X) * transformer_weights[name] return transformer.transform(X) def _fit_transform_one(transformer, name, X, y, transformer_weights, **fit_params): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, multiply output if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed * transformer_weights[name], transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed * transformer_weights[name], transformer if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed, transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed, transformer class FeatureUnion(BaseEstimator, TransformerMixin): """Concatenates results of multiple transformer objects. This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer. Read more in the :ref:`User Guide <feature_union>`. Parameters ---------- transformer_list: list of (string, transformer) tuples List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer. n_jobs: int, optional Number of jobs to run in parallel (default 1). transformer_weights: dict, optional Multiplicative weights for features per transformer. Keys are transformer names, values the weights. """ def __init__(self, transformer_list, n_jobs=1, transformer_weights=None): self.transformer_list = transformer_list self.n_jobs = n_jobs self.transformer_weights = transformer_weights def get_feature_names(self): """Get feature names from all transformers. Returns ------- feature_names : list of strings Names of the features produced by transform. """ feature_names = [] for name, trans in self.transformer_list: if not hasattr(trans, 'get_feature_names'): raise AttributeError("Transformer %s does not provide" " get_feature_names." % str(name)) feature_names.extend([name + "__" + f for f in trans.get_feature_names()]) return feature_names def fit(self, X, y=None): """Fit all transformers using X. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data, used to fit transformers. """ transformers = Parallel(n_jobs=self.n_jobs)( delayed(_fit_one_transformer)(trans, X, y) for name, trans in self.transformer_list) self._update_transformer_list(transformers) return self def fit_transform(self, X, y=None, **fit_params): """Fit all transformers using X, transform the data and concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ result = Parallel(n_jobs=self.n_jobs)( delayed(_fit_transform_one)(trans, name, X, y, self.transformer_weights, **fit_params) for name, trans in self.transformer_list) Xs, transformers = zip(*result) self._update_transformer_list(transformers) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def transform(self, X): """Transform X separately by each transformer, concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ Xs = Parallel(n_jobs=self.n_jobs)( delayed(_transform_one)(trans, name, X, self.transformer_weights) for name, trans in self.transformer_list) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def get_params(self, deep=True): if not deep: return super(FeatureUnion, self).get_params(deep=False) else: out = dict(self.transformer_list) for name, trans in self.transformer_list: for key, value in iteritems(trans.get_params(deep=True)): out['%s__%s' % (name, key)] = value out.update(super(FeatureUnion, self).get_params(deep=False)) return out def _update_transformer_list(self, transformers): self.transformer_list[:] = [ (name, new) for ((name, old), new) in zip(self.transformer_list, transformers) ] # XXX it would be nice to have a keyword-only n_jobs argument to this function, # but that's not allowed in Python 2.x. def make_union(*transformers): """Construct a FeatureUnion from the given transformers. This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting. Examples -------- >>> from sklearn.decomposition import PCA, TruncatedSVD >>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE FeatureUnion(n_jobs=1, transformer_list=[('pca', PCA(copy=True, iterated_power=4, n_components=None, random_state=None, svd_solver='auto', tol=0.0, whiten=False)), ('truncatedsvd', TruncatedSVD(algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0))], transformer_weights=None) Returns ------- f : FeatureUnion """ return FeatureUnion(_name_estimators(transformers))
bsd-3-clause
JRMeyer/Autotrace
under-development/autoencoder.py
2
3117
import numpy as np import deepnet import backprop import cPickle as pickle import scipy.io import matplotlib.pyplot as plt #import matplotlib.cm as cm def demo_autoencoder(stream): #load and norm the data data = np.load('scaled_images.npy') data = np.asarray(data, dtype='float32') data /= 255.0 #set up and train the initial deepnet dnn = deepnet.DeepNet([data.shape[1], data.shape[1], data.shape[1], 42], ['sigmoid','sigmoid','sigmoid','sigmoid'], stream=stream) dnn.train(data, [225, 75, 75], 0.0025) #save the trained deepnet pickle.dump(dnn, file('pretrained.pkl','wb')) #unroll the deepnet into an autoencoder autoenc = unroll_network(dnn.network) ##fine-tune with backprop mlp = backprop.NeuralNet(network=autoenc, stream=stream) trained = mlp.train(mlp.network, data, data, max_iter=30, validErrFunc='reconstruction', targetCost='linSquaredErr') ##save pickle.dump(trained, file('network.pkl','wb')) def unroll_network(network): ''' Takes a pre-trained network and treats it as an encoder network. The decoder network is constructed by inverting the encoder. The decoder is then appended to the input network to produce an autoencoder. ''' decoder = [] encoder = [] for i in range(len(network)): elayer = backprop.Layer(network[i].W.T, network[i].hbias, network[i].n_hidden, network[i].hidtype) dlayer = backprop.Layer(network[i].W, network[i].vbias, network[i].n_visible, network[i].vistype) encoder.append(elayer) decoder.append(dlayer) decoder.reverse() encoder.extend(decoder) return encoder def save_net_as_mat(pickled_net): ''' Takes the network pickle file saved in demo_autoencoder and saves it as a .mat file for use with matlab ''' network = pickle.load(file(pickled_net,'rb')) mdic = {} for i in range(len(network)/2): mdic['W%d'%(i+1)] = network[i].W.as_numpy_array() mdic['b%d'%(i+1)] = network[i].hbias.as_numpy_array() mdic['hidtype%d'%(i+1)] = network[i].hidtype scipy.io.savemat('network.mat', mdic) def visualize_results(netfile, datafile): network = pickle.load(file(netfile, 'rb')) #network = unroll_network(dnn.network) data = np.load(datafile) data = np.asarray(data, dtype='float32') data /= 255.0 mlp = backprop.NeuralNet(network=network) recon = mlp.run_through_network(data, network) inds = np.arange(recon.shape[0]) np.random.shuffle(inds) for i in range(10): dim = int(np.sqrt(data.shape[1])) orig = data[inds[i]].reshape((dim,dim)) rec = recon[inds[i]].reshape((dim,dim)) plt.figure(i) ax = plt.subplot(211) plt.imshow(orig, cmap=plt.gray()) ax.set_yticks([]) ax.set_xticks([]) ax = plt.subplot(212) plt.imshow(rec, cmap=plt.gray()) ax.set_yticks([]) ax.set_xticks([]) plt.savefig('img_%d.jpg'%(inds[i])) if __name__ == "__main__": demo_autoencoder() visualize_results('network.pkl','scaled_images.npy')
mit
TomAugspurger/pandas
pandas/io/formats/html.py
1
22772
""" Module for formatting output data in HTML. """ from textwrap import dedent from typing import IO, Any, Dict, Iterable, List, Mapping, Optional, Tuple, Union, cast from pandas._config import get_option from pandas._libs import lib from pandas import MultiIndex, option_context from pandas.io.common import is_url from pandas.io.formats.format import ( DataFrameFormatter, TableFormatter, buffer_put_lines, get_level_lengths, ) from pandas.io.formats.printing import pprint_thing class HTMLFormatter(TableFormatter): """ Internal class for formatting output data in html. This class is intended for shared functionality between DataFrame.to_html() and DataFrame._repr_html_(). Any logic in common with other output formatting methods should ideally be inherited from classes in format.py and this class responsible for only producing html markup. """ indent_delta = 2 def __init__( self, formatter: DataFrameFormatter, classes: Optional[Union[str, List[str], Tuple[str, ...]]] = None, border: Optional[int] = None, ) -> None: self.fmt = formatter self.classes = classes self.frame = self.fmt.frame self.columns = self.fmt.tr_frame.columns self.elements: List[str] = [] self.bold_rows = self.fmt.bold_rows self.escape = self.fmt.escape self.show_dimensions = self.fmt.show_dimensions if border is None: border = cast(int, get_option("display.html.border")) self.border = border self.table_id = self.fmt.table_id self.render_links = self.fmt.render_links if isinstance(self.fmt.col_space, int): self.fmt.col_space = f"{self.fmt.col_space}px" @property def show_row_idx_names(self) -> bool: return self.fmt.show_row_idx_names @property def show_col_idx_names(self) -> bool: return self.fmt.show_col_idx_names @property def row_levels(self) -> int: if self.fmt.index: # showing (row) index return self.frame.index.nlevels elif self.show_col_idx_names: # see gh-22579 # Column misalignment also occurs for # a standard index when the columns index is named. # If the row index is not displayed a column of # blank cells need to be included before the DataFrame values. return 1 # not showing (row) index return 0 def _get_columns_formatted_values(self) -> Iterable: return self.columns # https://github.com/python/mypy/issues/1237 @property def is_truncated(self) -> bool: # type: ignore return self.fmt.is_truncated @property def ncols(self) -> int: return len(self.fmt.tr_frame.columns) def write(self, s: Any, indent: int = 0) -> None: rs = pprint_thing(s) self.elements.append(" " * indent + rs) def write_th( self, s: Any, header: bool = False, indent: int = 0, tags: Optional[str] = None ) -> None: """ Method for writing a formatted <th> cell. If col_space is set on the formatter then that is used for the value of min-width. Parameters ---------- s : object The data to be written inside the cell. header : bool, default False Set to True if the <th> is for use inside <thead>. This will cause min-width to be set if there is one. indent : int, default 0 The indentation level of the cell. tags : str, default None Tags to include in the cell. Returns ------- A written <th> cell. """ if header and self.fmt.col_space is not None: tags = tags or "" tags += f'style="min-width: {self.fmt.col_space};"' self._write_cell(s, kind="th", indent=indent, tags=tags) def write_td(self, s: Any, indent: int = 0, tags: Optional[str] = None) -> None: self._write_cell(s, kind="td", indent=indent, tags=tags) def _write_cell( self, s: Any, kind: str = "td", indent: int = 0, tags: Optional[str] = None ) -> None: if tags is not None: start_tag = f"<{kind} {tags}>" else: start_tag = f"<{kind}>" if self.escape: # escape & first to prevent double escaping of & esc = {"&": r"&amp;", "<": r"&lt;", ">": r"&gt;"} else: esc = {} rs = pprint_thing(s, escape_chars=esc).strip() if self.render_links and is_url(rs): rs_unescaped = pprint_thing(s, escape_chars={}).strip() start_tag += f'<a href="{rs_unescaped}" target="_blank">' end_a = "</a>" else: end_a = "" self.write(f"{start_tag}{rs}{end_a}</{kind}>", indent) def write_tr( self, line: Iterable, indent: int = 0, indent_delta: int = 0, header: bool = False, align: Optional[str] = None, tags: Optional[Dict[int, str]] = None, nindex_levels: int = 0, ) -> None: if tags is None: tags = {} if align is None: self.write("<tr>", indent) else: self.write(f'<tr style="text-align: {align};">', indent) indent += indent_delta for i, s in enumerate(line): val_tag = tags.get(i, None) if header or (self.bold_rows and i < nindex_levels): self.write_th(s, indent=indent, header=header, tags=val_tag) else: self.write_td(s, indent, tags=val_tag) indent -= indent_delta self.write("</tr>", indent) def render(self) -> List[str]: self._write_table() if self.should_show_dimensions: by = chr(215) # × self.write( f"<p>{len(self.frame)} rows {by} {len(self.frame.columns)} columns</p>" ) return self.elements def write_result(self, buf: IO[str]) -> None: buffer_put_lines(buf, self.render()) def _write_table(self, indent: int = 0) -> None: _classes = ["dataframe"] # Default class. use_mathjax = get_option("display.html.use_mathjax") if not use_mathjax: _classes.append("tex2jax_ignore") if self.classes is not None: if isinstance(self.classes, str): self.classes = self.classes.split() if not isinstance(self.classes, (list, tuple)): raise TypeError( "classes must be a string, list, " f"or tuple, not {type(self.classes)}" ) _classes.extend(self.classes) if self.table_id is None: id_section = "" else: id_section = f' id="{self.table_id}"' self.write( f'<table border="{self.border}" class="{" ".join(_classes)}"{id_section}>', indent, ) if self.fmt.header or self.show_row_idx_names: self._write_header(indent + self.indent_delta) self._write_body(indent + self.indent_delta) self.write("</table>", indent) def _write_col_header(self, indent: int) -> None: truncate_h = self.fmt.truncate_h if isinstance(self.columns, MultiIndex): template = 'colspan="{span:d}" halign="left"' if self.fmt.sparsify: # GH3547 sentinel = lib.no_default else: sentinel = False levels = self.columns.format(sparsify=sentinel, adjoin=False, names=False) level_lengths = get_level_lengths(levels, sentinel) inner_lvl = len(level_lengths) - 1 for lnum, (records, values) in enumerate(zip(level_lengths, levels)): if truncate_h: # modify the header lines ins_col = self.fmt.tr_col_num if self.fmt.sparsify: recs_new = {} # Increment tags after ... col. for tag, span in list(records.items()): if tag >= ins_col: recs_new[tag + 1] = span elif tag + span > ins_col: recs_new[tag] = span + 1 if lnum == inner_lvl: values = ( values[:ins_col] + ("...",) + values[ins_col:] ) else: # sparse col headers do not receive a ... values = ( values[:ins_col] + (values[ins_col - 1],) + values[ins_col:] ) else: recs_new[tag] = span # if ins_col lies between tags, all col headers # get ... if tag + span == ins_col: recs_new[ins_col] = 1 values = values[:ins_col] + ("...",) + values[ins_col:] records = recs_new inner_lvl = len(level_lengths) - 1 if lnum == inner_lvl: records[ins_col] = 1 else: recs_new = {} for tag, span in list(records.items()): if tag >= ins_col: recs_new[tag + 1] = span else: recs_new[tag] = span recs_new[ins_col] = 1 records = recs_new values = values[:ins_col] + ["..."] + values[ins_col:] # see gh-22579 # Column Offset Bug with to_html(index=False) with # MultiIndex Columns and Index. # Initially fill row with blank cells before column names. # TODO: Refactor to remove code duplication with code # block below for standard columns index. row = [""] * (self.row_levels - 1) if self.fmt.index or self.show_col_idx_names: # see gh-22747 # If to_html(index_names=False) do not show columns # index names. # TODO: Refactor to use _get_column_name_list from # DataFrameFormatter class and create a # _get_formatted_column_labels function for code # parity with DataFrameFormatter class. if self.fmt.show_index_names: name = self.columns.names[lnum] row.append(pprint_thing(name or "")) else: row.append("") tags = {} j = len(row) for i, v in enumerate(values): if i in records: if records[i] > 1: tags[j] = template.format(span=records[i]) else: continue j += 1 row.append(v) self.write_tr(row, indent, self.indent_delta, tags=tags, header=True) else: # see gh-22579 # Column misalignment also occurs for # a standard index when the columns index is named. # Initially fill row with blank cells before column names. # TODO: Refactor to remove code duplication with code block # above for columns MultiIndex. row = [""] * (self.row_levels - 1) if self.fmt.index or self.show_col_idx_names: # see gh-22747 # If to_html(index_names=False) do not show columns # index names. # TODO: Refactor to use _get_column_name_list from # DataFrameFormatter class. if self.fmt.show_index_names: row.append(self.columns.name or "") else: row.append("") row.extend(self._get_columns_formatted_values()) align = self.fmt.justify if truncate_h: ins_col = self.row_levels + self.fmt.tr_col_num row.insert(ins_col, "...") self.write_tr(row, indent, self.indent_delta, header=True, align=align) def _write_row_header(self, indent: int) -> None: truncate_h = self.fmt.truncate_h row = [x if x is not None else "" for x in self.frame.index.names] + [""] * ( self.ncols + (1 if truncate_h else 0) ) self.write_tr(row, indent, self.indent_delta, header=True) def _write_header(self, indent: int) -> None: self.write("<thead>", indent) if self.fmt.header: self._write_col_header(indent + self.indent_delta) if self.show_row_idx_names: self._write_row_header(indent + self.indent_delta) self.write("</thead>", indent) def _get_formatted_values(self) -> Dict[int, List[str]]: with option_context("display.max_colwidth", None): fmt_values = {i: self.fmt._format_col(i) for i in range(self.ncols)} return fmt_values def _write_body(self, indent: int) -> None: self.write("<tbody>", indent) fmt_values = self._get_formatted_values() # write values if self.fmt.index and isinstance(self.frame.index, MultiIndex): self._write_hierarchical_rows(fmt_values, indent + self.indent_delta) else: self._write_regular_rows(fmt_values, indent + self.indent_delta) self.write("</tbody>", indent) def _write_regular_rows( self, fmt_values: Mapping[int, List[str]], indent: int ) -> None: truncate_h = self.fmt.truncate_h truncate_v = self.fmt.truncate_v nrows = len(self.fmt.tr_frame) if self.fmt.index: fmt = self.fmt._get_formatter("__index__") if fmt is not None: index_values = self.fmt.tr_frame.index.map(fmt) else: index_values = self.fmt.tr_frame.index.format() row: List[str] = [] for i in range(nrows): if truncate_v and i == (self.fmt.tr_row_num): str_sep_row = ["..."] * len(row) self.write_tr( str_sep_row, indent, self.indent_delta, tags=None, nindex_levels=self.row_levels, ) row = [] if self.fmt.index: row.append(index_values[i]) # see gh-22579 # Column misalignment also occurs for # a standard index when the columns index is named. # Add blank cell before data cells. elif self.show_col_idx_names: row.append("") row.extend(fmt_values[j][i] for j in range(self.ncols)) if truncate_h: dot_col_ix = self.fmt.tr_col_num + self.row_levels row.insert(dot_col_ix, "...") self.write_tr( row, indent, self.indent_delta, tags=None, nindex_levels=self.row_levels ) def _write_hierarchical_rows( self, fmt_values: Mapping[int, List[str]], indent: int ) -> None: template = 'rowspan="{span}" valign="top"' truncate_h = self.fmt.truncate_h truncate_v = self.fmt.truncate_v frame = self.fmt.tr_frame nrows = len(frame) idx_values = frame.index.format(sparsify=False, adjoin=False, names=False) idx_values = list(zip(*idx_values)) if self.fmt.sparsify: # GH3547 sentinel = lib.no_default levels = frame.index.format(sparsify=sentinel, adjoin=False, names=False) level_lengths = get_level_lengths(levels, sentinel) inner_lvl = len(level_lengths) - 1 if truncate_v: # Insert ... row and adjust idx_values and # level_lengths to take this into account. ins_row = self.fmt.tr_row_num # cast here since if truncate_v is True, self.fmt.tr_row_num is not None ins_row = cast(int, ins_row) inserted = False for lnum, records in enumerate(level_lengths): rec_new = {} for tag, span in list(records.items()): if tag >= ins_row: rec_new[tag + 1] = span elif tag + span > ins_row: rec_new[tag] = span + 1 # GH 14882 - Make sure insertion done once if not inserted: dot_row = list(idx_values[ins_row - 1]) dot_row[-1] = "..." idx_values.insert(ins_row, tuple(dot_row)) inserted = True else: dot_row = list(idx_values[ins_row]) dot_row[inner_lvl - lnum] = "..." idx_values[ins_row] = tuple(dot_row) else: rec_new[tag] = span # If ins_row lies between tags, all cols idx cols # receive ... if tag + span == ins_row: rec_new[ins_row] = 1 if lnum == 0: idx_values.insert( ins_row, tuple(["..."] * len(level_lengths)) ) # GH 14882 - Place ... in correct level elif inserted: dot_row = list(idx_values[ins_row]) dot_row[inner_lvl - lnum] = "..." idx_values[ins_row] = tuple(dot_row) level_lengths[lnum] = rec_new level_lengths[inner_lvl][ins_row] = 1 for ix_col in range(len(fmt_values)): fmt_values[ix_col].insert(ins_row, "...") nrows += 1 for i in range(nrows): row = [] tags = {} sparse_offset = 0 j = 0 for records, v in zip(level_lengths, idx_values[i]): if i in records: if records[i] > 1: tags[j] = template.format(span=records[i]) else: sparse_offset += 1 continue j += 1 row.append(v) row.extend(fmt_values[j][i] for j in range(self.ncols)) if truncate_h: row.insert( self.row_levels - sparse_offset + self.fmt.tr_col_num, "..." ) self.write_tr( row, indent, self.indent_delta, tags=tags, nindex_levels=len(levels) - sparse_offset, ) else: row = [] for i in range(len(frame)): if truncate_v and i == (self.fmt.tr_row_num): str_sep_row = ["..."] * len(row) self.write_tr( str_sep_row, indent, self.indent_delta, tags=None, nindex_levels=self.row_levels, ) idx_values = list( zip(*frame.index.format(sparsify=False, adjoin=False, names=False)) ) row = [] row.extend(idx_values[i]) row.extend(fmt_values[j][i] for j in range(self.ncols)) if truncate_h: row.insert(self.row_levels + self.fmt.tr_col_num, "...") self.write_tr( row, indent, self.indent_delta, tags=None, nindex_levels=frame.index.nlevels, ) class NotebookFormatter(HTMLFormatter): """ Internal class for formatting output data in html for display in Jupyter Notebooks. This class is intended for functionality specific to DataFrame._repr_html_() and DataFrame.to_html(notebook=True) """ def _get_formatted_values(self) -> Dict[int, List[str]]: return {i: self.fmt._format_col(i) for i in range(self.ncols)} def _get_columns_formatted_values(self) -> List[str]: return self.columns.format() def write_style(self) -> None: # We use the "scoped" attribute here so that the desired # style properties for the data frame are not then applied # throughout the entire notebook. template_first = """\ <style scoped>""" template_last = """\ </style>""" template_select = """\ .dataframe %s { %s: %s; }""" element_props = [ ("tbody tr th:only-of-type", "vertical-align", "middle"), ("tbody tr th", "vertical-align", "top"), ] if isinstance(self.columns, MultiIndex): element_props.append(("thead tr th", "text-align", "left")) if self.show_row_idx_names: element_props.append( ("thead tr:last-of-type th", "text-align", "right") ) else: element_props.append(("thead th", "text-align", "right")) template_mid = "\n\n".join(map(lambda t: template_select % t, element_props)) template = dedent("\n".join((template_first, template_mid, template_last))) self.write(template) def render(self) -> List[str]: self.write("<div>") self.write_style() super().render() self.write("</div>") return self.elements
bsd-3-clause
nclsHart/glances
setup.py
1
3348
#!/usr/bin/env python import glob import os import sys from setuptools import setup is_chroot = os.stat('/').st_ino != 2 def get_data_files(): data_files = [ ('share/doc/glances', ['AUTHORS', 'COPYING', 'NEWS', 'README.rst', 'conf/glances.conf', 'docs/glances-doc.html']), ('share/doc/glances/images', glob.glob('docs/images/*.png')), ('share/man/man1', ['man/glances.1']) ] if hasattr(sys, 'real_prefix'): # virtualenv conf_path = os.path.join(sys.prefix, 'etc', 'glances') elif os.name == 'posix' and (os.getuid() == 0 or is_chroot): # Unix-like + root privileges/chroot environment if 'bsd' in sys.platform: conf_path = os.path.join(sys.prefix, 'etc', 'glances') elif 'linux' in sys.platform: conf_path = os.path.join('/etc', 'glances') elif 'darwin' in sys.platform: conf_path = os.path.join('/usr/local', 'etc', 'glances') elif 'win32' in sys.platform: # windows conf_path = os.path.join(os.environ.get('APPDATA'), 'glances') else: # Unix-like + per-user install conf_path = os.path.join('etc', 'glances') data_files.append((conf_path, ['conf/glances.conf'])) for mo in glob.glob('i18n/*/LC_MESSAGES/*.mo'): data_files.append( (os.path.dirname(mo).replace('i18n/', 'share/locale/'), [mo])) return data_files def get_requires(): requires = ['psutil>=2.0.0'] if sys.platform.startswith('win'): requires += ['colorconsole'] if sys.version_info < (2, 7): requires += ['argparse'] return requires setup( name='Glances', version='2.3', description="A cross-platform curses-based monitoring tool", long_description=open('README.rst').read(), author='Nicolas Hennion', author_email='[email protected]', url='https://github.com/nicolargo/glances', # download_url='https://s3.amazonaws.com/glances/glances-2.3.tar.gz', license="LGPL", keywords="cli curses monitoring system", install_requires=get_requires(), extras_require={ 'WEB': ['bottle'], 'SENSORS': ['py3sensors'], 'BATINFO': ['batinfo'], 'SNMP': ['pysnmp'], 'CHART': ['matplotlib'], 'BROWSER': ['zeroconf>=0.16', 'netifaces'], 'RAID': ['pymdstat'], 'DOCKER': ['docker-py'], 'EXPORT': ['influxdb', 'statsd'], 'ACTION': ['pystache'] }, packages=['glances'], include_package_data=True, data_files=get_data_files(), test_suite="unitest.py", entry_points={"console_scripts": ["glances=glances:main"]}, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console :: Curses', 'Intended Audience :: Developers', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: GNU Lesser General Public License v3 (LGPLv3)', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4' ] )
lgpl-3.0
hlin117/statsmodels
statsmodels/sandbox/examples/ex_mixed_lls_0.py
34
5233
# -*- coding: utf-8 -*- """Example using OneWayMixed Created on Sat Dec 03 10:15:55 2011 Author: Josef Perktold This example constructs a linear model with individual specific random effects and random coefficients, and uses OneWayMixed to estimate it. """ from __future__ import print_function import numpy as np from statsmodels.sandbox.panel.mixed import OneWayMixed, Unit examples = ['ex1'] if 'ex1' in examples: #np.random.seed(54321) np.random.seed(978326) nsubj = 2000 units = [] nobs_i = 4 #number of observations per unit, changed below nx = 4 #number fixed effects nz = 2 ##number random effects beta = np.ones(nx) gamma = 0.5 * np.ones(nz) #mean of random effect gamma[0] = 0 gamma_re_true = [] for i in range(nsubj): #create data for one unit #random effect/coefficient gamma_re = gamma + 0.2 * np.random.standard_normal(nz) #store true parameter for checking gamma_re_true.append(gamma_re) #for testing unbalanced case, let's change nobs per unit if i > nsubj//4: nobs_i = 6 #generate exogenous variables X = np.random.standard_normal((nobs_i, nx)) Z = np.random.standard_normal((nobs_i, nz-1)) Z = np.column_stack((np.ones(nobs_i), Z)) noise = 0.1 * np.random.randn(nobs_i) #sig_e = 0.1 #generate endogenous variable Y = np.dot(X, beta) + np.dot(Z, gamma_re) + noise #add random effect design matrix also to fixed effects to #capture the mean #this seems to be necessary to force mean of RE to zero !? #(It's not required for estimation but interpretation of random #effects covariance matrix changes - still need to check details. X = np.hstack((X,Z)) #create units and append to list unit = Unit(Y, X, Z) units.append(unit) m = OneWayMixed(units) import time t0 = time.time() m.initialize() res = m.fit(maxiter=100, rtol=1.0e-5, params_rtol=1e-6, params_atol=1e-6) t1 = time.time() print('time for initialize and fit', t1-t0) print('number of iterations', m.iterations) #print(dir(m) #print(vars(m) print('\nestimates for fixed effects') print(m.a) print(m.params) bfixed_cov = m.cov_fixed() print('beta fixed standard errors') print(np.sqrt(np.diag(bfixed_cov))) print(m.bse) b_re = m.params_random_units print('RE mean:', b_re.mean(0)) print('RE columns std', b_re.std(0)) print('np.cov(b_re, rowvar=0), sample statistic') print(np.cov(b_re, rowvar=0)) print('std of above') print(np.sqrt(np.diag(np.cov(b_re, rowvar=0)))) print('m.cov_random()') print(m.cov_random()) print('std of above') print(res.std_random()) print(np.sqrt(np.diag(m.cov_random()))) print('\n(non)convergence of llf') print(m.history['llf'][-4:]) print('convergence of parameters') #print(np.diff(np.vstack(m.history[-4:])[:,1:],axis=0) print(np.diff(np.vstack(m.history['params'][-4:]),axis=0)) print('convergence of D') print(np.diff(np.array(m.history['D'][-4:]), axis=0)) #zdotb = np.array([np.dot(unit.Z, unit.b) for unit in m.units]) zb = np.array([(unit.Z * unit.b[None,:]).sum(0) for unit in m.units]) '''if Z is not included in X: >>> np.dot(b_re.T, b_re)/100 array([[ 0.03270611, -0.00916051], [-0.00916051, 0.26432783]]) >>> m.cov_random() array([[ 0.0348722 , -0.00909159], [-0.00909159, 0.26846254]]) >>> #note cov_random doesn't subtract mean! ''' print('\nchecking the random effects distribution and prediction') gamma_re_true = np.array(gamma_re_true) print('mean of random effect true', gamma_re_true.mean(0)) print('mean from fixed effects ', m.params[-2:]) print('mean of estimated RE ', b_re.mean(0)) print('') absmean_true = np.abs(gamma_re_true).mean(0) mape = ((m.params[-2:] + b_re) / gamma_re_true - 1).mean(0)*100 mean_abs_perc = np.abs((m.params[-2:] + b_re) - gamma_re_true).mean(0) \ / absmean_true*100 median_abs_perc = np.median(np.abs((m.params[-2:] + b_re) - gamma_re_true), 0) \ / absmean_true*100 rmse_perc = ((m.params[-2:] + b_re) - gamma_re_true).std(0) \ / absmean_true*100 print('mape ', mape) print('mean_abs_perc ', mean_abs_perc) print('median_abs_perc', median_abs_perc) print('rmse_perc (std)', rmse_perc) from numpy.testing import assert_almost_equal #assert is for n_units=100 in original example #I changed random number generation, so this won't work anymore #assert_almost_equal(rmse_perc, [ 34.14783884, 11.6031684 ], decimal=8) #now returns res print(res.llf) #based on MLE, does not include constant print(res.tvalues) print(res.pvalues) print(res.t_test([1,-1,0,0,0,0])) print('test mean of both random effects variables is zero') print(res.f_test([[0,0,0,0,1,0], [0,0,0,0,0,1]])) plots = res.plot_random_univariate(bins=50) fig = res.plot_scatter_pairs(0, 1) import matplotlib.pyplot as plt plt.show()
bsd-3-clause
sigopt/sigopt_sklearn
test/test_search.py
1
7251
from mock import MagicMock, patch import pytest import warnings import sklearn.datasets from sklearn.ensemble import GradientBoostingClassifier from sklearn.svm import SVC import sigopt import sigopt.objects from sigopt_sklearn.search import SigOptSearchCV from test_util import random_assignments warnings.simplefilter("error", append=True) GradientBoostingClassifier_PARAM_DOMAIN = { 'n_estimators': (20, 500), 'min_samples_split': (2, 5), 'min_samples_leaf': (1, 3), 'learning_rate': (0.01, 1.0) } GradientBoostingClassifier_EXPERIMENT_DEF = { 'name': 'GradientBoostingClassifier (sklearn)', 'parameters': [ { 'type': 'int', 'name': 'n_estimators', 'bounds': { 'min': 20, 'max': 500, }, }, { 'type': 'int', 'name': 'min_samples_split', 'bounds': { 'min': 2, 'max': 5, }, }, { 'type': 'int', 'name': 'min_samples_leaf', 'bounds': { 'min': 1, 'max': 3, }, }, { 'type': 'double', 'name': 'learning_rate', 'bounds': { 'min': 0.01, 'max': 1.0, }, }, ], } SVC_PARAM_DOMAIN = { 'C': {'little': 1e-3, 'some': 1, 'lots': 1e3} } SVC_EXPERIMENT_DEF = { 'name': 'SVC with fancy categoricals', 'parameters': [ { 'type': 'categorical', 'name': 'C', 'categorical_values': [ {'name': 'little'}, {'name': 'some'}, {'name': 'lots'} ] } ] } def zero_corner(experiment_definition): """Take the parameters corresponding to the zero corner. All of the minimums and the first categories.""" return {p['name']: (p['bounds']['min'] if p['type'] in ['int', 'double'] else p['categorical_values'][0]['name']) for p in experiment_definition['parameters']} def mock_connection(experiment_definition): return MagicMock(return_value=MagicMock( experiments=MagicMock(return_value=MagicMock( create=MagicMock(return_value=MagicMock( id="exp_id", )), fetch=MagicMock(return_value=MagicMock( progress=MagicMock( best_observation=MagicMock( assignments=MagicMock( to_json=MagicMock(return_value=zero_corner(experiment_definition)), ))), )), suggestions=MagicMock(return_value=MagicMock( create=MagicMock(return_value=MagicMock( assignments=MagicMock( to_json=MagicMock(side_effect=lambda: random_assignments(experiment_definition))), id="sugg_id", )), )), observations=MagicMock(return_value=MagicMock( create=MagicMock(return_value=MagicMock( id="obs_id", value=52, )), )), best_assignments=MagicMock(return_value=MagicMock( fetch=MagicMock(return_value=MagicMock( data=[MagicMock( assignments=MagicMock( to_json=MagicMock(return_value=zero_corner(experiment_definition)), ) )], )), )), )) )) class TestSearch(object): def test_create(self): SigOptSearchCV( estimator=GradientBoostingClassifier, param_domains=GradientBoostingClassifier_PARAM_DOMAIN, client_token='client_token' ) def test_no_token(self): with pytest.raises(ValueError): SigOptSearchCV(estimator=GradientBoostingClassifier, param_domains=GradientBoostingClassifier_PARAM_DOMAIN) @patch('sigopt.Connection', new=mock_connection(GradientBoostingClassifier_EXPERIMENT_DEF)) def test_search(self): conn = sigopt.Connection() n_iter = 5 folds = 3 cv = SigOptSearchCV( estimator=GradientBoostingClassifier(), param_domains=GradientBoostingClassifier_PARAM_DOMAIN, client_token='client_token', n_iter=n_iter, cv=folds ) assert len(conn.experiments().create.mock_calls) == 0 assert len(conn.experiments().fetch.mock_calls) == 0 assert len(conn.experiments().suggestions.create.mock_calls) == 0 assert len(conn.experiments().observations.create.mock_calls) == 0 data = sklearn.datasets.load_iris() cv.fit(data['data'], data['target']) assert len(conn.experiments().create.mock_calls) == 1 create_definition = conn.experiments().create.call_args[1] assert create_definition['name'] == GradientBoostingClassifier_EXPERIMENT_DEF['name'] assert len(create_definition['parameters']) == len(GradientBoostingClassifier_EXPERIMENT_DEF['parameters']) for p in GradientBoostingClassifier_EXPERIMENT_DEF['parameters']: assert p in create_definition['parameters'] assert len(conn.experiments().best_assignments().fetch.mock_calls) == 1 assert len(conn.experiments().suggestions().create.mock_calls) == n_iter assert len(conn.experiments().observations().create.mock_calls) == n_iter assert cv.best_params_ == zero_corner(GradientBoostingClassifier_EXPERIMENT_DEF) @patch('sigopt.Connection', new=mock_connection(GradientBoostingClassifier_EXPERIMENT_DEF)) def test_provide_experiment(self): conn = sigopt.Connection() n_iter = 5 folds = 3 experiment = sigopt.objects.Experiment({'id': '1'}) cv = SigOptSearchCV( estimator=GradientBoostingClassifier(), param_domains=GradientBoostingClassifier_PARAM_DOMAIN, client_token='client_token', n_iter=n_iter, cv=folds, experiment=experiment, ) data = sklearn.datasets.load_iris() cv.fit(data['data'], data['target']) assert len(conn.experiments().create.mock_calls) == 0 assert len(conn.experiments().suggestions().create.mock_calls) == n_iter assert len(conn.experiments().observations().create.mock_calls) == n_iter @patch('sigopt.Connection', new=mock_connection(SVC_EXPERIMENT_DEF)) def test_non_string_categorical(self): data = sklearn.datasets.load_iris() clf = SigOptSearchCV(SVC(gamma='auto'), SVC_PARAM_DOMAIN, client_token='client_token', n_iter=5, cv=3) clf.fit(data['data'], data['target']) def test_bad_param_range1(self): with pytest.raises(Exception): clf = SigOptSearchCV( SVC(), { 'bad_param_range': (1,), 'hidden_layer_sizes': {'5': (5,), '5,4,3': (5, 4, 3)} }, client_token='client_token', n_iter=5 ) clf._transform_param_domains(clf.param_domains) def test_bad_param_range2(self): with pytest.raises(Exception): clf = SigOptSearchCV( SVC(), { 'bad_param_range': (1, 2, 3), 'hidden_layer_sizes': {'5': (5,), '5,4,3': (5, 4, 3)} }, client_token='client_token', n_iter=5 ) clf._transform_param_domains(clf.param_domains) def test_warn_param_range_list(self): with pytest.warns(UserWarning): clf = SigOptSearchCV( SVC(), {'max_iter': [5, 10]}, client_token='client_token', n_iter=5 ) clf._transform_param_domains(clf.param_domains) def test_bad_param_range_not_iterable(self): with pytest.raises(Exception): clf = SigOptSearchCV( SVC(), {'max_iter': 15}, client_token='client_token', n_iter=5 ) clf._transform_param_domains(clf.param_domains)
mit
nicolas998/Op_Radar
06_Codigos/Actualiza_MeanRain_Hist.py
1
4188
#!/usr/bin/env python from wmf import wmf import numpy as np import pickle import pandas as pnd import pylab as pl import argparse import textwrap import netCDF4 from multiprocessing import Pool import os #------------------------------------------------------------------- #FUNCIONES LOCALES #------------------------------------------------------------------- #------------------------------------------------------------------- #PARSEADOR DE ARGUMENTOS #------------------------------------------------------------------- #Parametros de entrada del trazador parser=argparse.ArgumentParser( prog='Actualiza_Caudales_Hist', formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent('''\ Actualiza la lluvia media sobre la cuenca estimada por alguna metodologia. ''')) #Parametros obligatorios parser.add_argument("rutaRain",help="(Obligatorio) Ruta donde se encuentran los archivos de lluvia ") parser.add_argument("-n", "--newhist", help="(Opcional) Con esta opcion el script genera un nuevo punto de generacion de historicos", action = 'store_true', default = False) parser.add_argument("-i", "--fechai", help="(Opcional) Fecha de inicio de nuevo punto de historicos (YYYY-MM-DD HH:MM)") parser.add_argument("-f", "--fechaf", help="(Opcional) Fecha de fin de nuevo punto de historicos (YYYY-MM-DD HH:MM)") parser.add_argument("-v","--verbose",help="(Opcional) Hace que el modelo indique en que porcentaje de ejecucion va", action = 'store_true', default = False) args=parser.parse_args() nombre = 'Mean_Rain_History.rainh' #------------------------------------------------------------------- #CHECK DE SI YA HAY ARCHIVO DE HISTORIA O SI RE ESCRIBE #------------------------------------------------------------------- if args.newhist: #Fechas de inicio y fin FechaI = args.fechai FechaF = args.fechaf #Genera el Data Frame vacio desde el inicio hasta el punto de ejecucion DifIndex = pnd.date_range(FechaI, FechaF, freq='5min') Rh = pnd.DataFrame(np.zeros((DifIndex.size, 3))*np.nan, index=pnd.date_range(FechaI, FechaF, freq='5min'), columns = ['media','baja','alta']) #Guarda los caudales base para los historicos Lhist = os.listdir(args.rutaRain) try: pos = Lhist.index(nombre) flag = raw_input('Aviso: El archivo historico : '+nombre+' ya existe, desea sobre-escribirlo, perdera la historia de este!! (S o N): ') if flag == 'S': flag = True else: flag = False except: flag = True #Guardado if flag: Rh.to_msgpack(args.rutaRain + nombre) #------------------------------------------------------------------- #ACTUALIZA HISTORIA DE LLUVIA #------------------------------------------------------------------- #Lista caudales simulados sin repetir Lsim = os.listdir('/home/nicolas/Operacional/Op_Radar/03_Simulaciones/01_Rain/') Lsim = [i for i in Lsim if i.endswith('hdr')] names = [i.split('_')[1][:-4] for i in Lsim] #busca que este el archivo base en la carpeta try: #lee la lluvia de los encabezados R = [] for n,l in zip(names, Lsim): r = pnd.read_csv(args.rutaRain + l, header = 5, index_col = 1, parse_dates = True, usecols=(2,3)) R.append(r.values[0].tolist()) R = np.array(R) #Genera un DataFrame con eso Rt = pnd.DataFrame(R.T, index=[r.index[0],], columns=names) #Lee el historico de lluvia Rhist = pnd.read_msgpack(args.rutaRain + nombre) #Rhist = pnd.read_msgpack('Mean_Rain_History.rainh') #encuentra el pedazo que falta entre ambos Gap = pnd.date_range(Rhist.index[-1], Rt.index[0], freq='5min') #Genera el pedazo con faltantes GapData = pnd.DataFrame(np.zeros((Gap.size - 2, 3))*np.nan, index= Gap[1:-1], columns = Rhist.columns) #pega la informacion Rhist = Rhist.append(GapData) Rhist = Rhist.append(Rt) #Guarda el archivo historico Rhist.to_msgpack(args.rutaRain + nombre) #Aviso print 'Aviso: Se ha actualizado el archivo de precipitacion media historica: '+nombre except: print 'Aviso: No se encuentra el historico de precipitacion '+nombre+' Por lo tanto no se actualiza'
gpl-3.0
ishanic/scikit-learn
sklearn/decomposition/tests/test_fastica.py
272
7798
""" Test the fastica algorithm. """ import itertools import warnings import numpy as np from scipy import stats from nose.tools import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns from sklearn.decomposition import FastICA, fastica, PCA from sklearn.decomposition.fastica_ import _gs_decorrelation from sklearn.externals.six import moves def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): # Test gram schmidt orthonormalization # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert_less((w ** 2).sum(), 1.e-10) w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert_less((tmp[:5] ** 2).sum(), 1.e-10) def test_fastica_simple(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x ** 3, (3 * x ** 2).mean(axis=-1) algos = ['parallel', 'deflation'] nls = ['logcosh', 'exp', 'cube', g_test] whitening = [True, False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo) assert_raises(ValueError, fastica, m.T, fun=np.tanh, algorithm=algo) else: X = PCA(n_components=2, whiten=True).fit_transform(m.T) k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False) assert_raises(ValueError, fastica, X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) # Test FastICA class _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0) ica = FastICA(fun=nl, algorithm=algo, random_state=0) sources = ica.fit_transform(m.T) assert_equal(ica.components_.shape, (2, 2)) assert_equal(sources.shape, (1000, 2)) assert_array_almost_equal(sources_fun, sources) assert_array_almost_equal(sources, ica.transform(m.T)) assert_equal(ica.mixing_.shape, (2, 2)) for fn in [np.tanh, "exp(-.5(x^2))"]: ica = FastICA(fun=fn, algorithm=algo, random_state=0) assert_raises(ValueError, ica.fit, m.T) assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] # test for issue #697 ica = FastICA(n_components=1, whiten=False, random_state=0) assert_warns(UserWarning, ica.fit, m) assert_true(hasattr(ica, 'mixing_')) def test_non_square_fastica(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3) def test_fit_transform(): # Test FastICA.fit_transform rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) for whiten, n_components in [[True, 5], [False, None]]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) Xt = ica.fit_transform(X) assert_equal(ica.components_.shape, (n_components_, 10)) assert_equal(Xt.shape, (100, n_components_)) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) ica.fit(X) assert_equal(ica.components_.shape, (n_components_, 10)) Xt2 = ica.transform(X) assert_array_almost_equal(Xt, Xt2) def test_inverse_transform(): # Test FastICA.inverse_transform n_features = 10 n_samples = 100 n1, n2 = 5, 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected = {(True, n1): (n_features, n1), (True, n2): (n_features, n2), (False, n1): (n_features, n2), (False, n2): (n_features, n2)} for whiten in [True, False]: for n_components in [n1, n2]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) with warnings.catch_warnings(record=True): # catch "n_components ignored" warning Xt = ica.fit_transform(X) expected_shape = expected[(whiten, n_components_)] assert_equal(ica.mixing_.shape, expected_shape) X2 = ica.inverse_transform(Xt) assert_equal(X.shape, X2.shape) # reversibility test in non-reduction case if n_components == X.shape[1]: assert_array_almost_equal(X, X2)
bsd-3-clause
myt00seven/svrg
bk/svrg_bn_bk/run_on_sparse_features.py
1
2589
import sys, os import numpy as np import matplotlib.pyplot as plt import theano import theano.tensor as T import lasagne from load_dataset import * from neuralnet import train from deep import DeepAutoEncoder from sparse_autoencoder import SparseAutoEncoder from neuralclassifier import NeuralClassifier def main(): X_train, y_train, X_val, y_val, X_test, y_test = load_dataset() input_var = T.matrix('inputs') target_var = T.ivector('targets') n_hidden = 500 sparse_model = 'adam_sparse_3.0_not_denoising' classify_model = 'adam_classif_on_sparse' network = SparseAutoEncoder(n_input=X_train.shape[1], n_hidden=n_hidden, input_var=input_var) with np.load('models/model_%s.npz' % sparse_model) as f: param_values = [f['arr_%d' % j] for j in range(len(f.files))] lasagne.layers.set_all_param_values(network.output_layer, param_values) output_layer = lasagne.layers.DenseLayer(network.hidden_layer, num_units=10, nonlinearity=lasagne.nonlinearities.softmax) prediction = lasagne.layers.get_output(output_layer) lambd = 0.0 l2_reg = lasagne.regularization.regularize_layer_params(output_layer, lasagne.regularization.l2) loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) + lambd * l2_reg loss = loss.mean() params = lasagne.layers.get_all_params(output_layer, trainable=True) params = params[2:] updates = lasagne.updates.adam(loss, params, learning_rate=0.01) train_fn = theano.function([input_var, target_var], loss, updates=updates) if X_val is not None: test_prediction = lasagne.layers.get_output(output_layer, deterministic=True) test_loss = lasagne.objectives.categorical_crossentropy(test_prediction, target_var) test_loss = test_loss.mean() val_fn = theano.function([input_var, target_var], test_loss) else: val_fn = None n_epochs = 100 batch_size = 500 train_error, validation_error = train( X_train, y_train, X_val, y_val, train_fn, val_fn, n_epochs, batch_size=batch_size#, toprint=it ) plt.plot(validation_error, label=classify_model) np.savez('models/model_%s.npz' % classify_model, *lasagne.layers.get_all_param_values(output_layer)) np.savez('models/model_%s_val_error.npz' % classify_model, validation_error) accuracy = (lasagne.layers.get_output(output_layer, X_test, deterministic=True).eval().argmax(axis=1) == y_test).mean() print "Model: {}; accuracy: {}".format(classify_model, accuracy) main()
mit
Myasuka/scikit-learn
benchmarks/bench_tree.py
297
3617
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import pylab as pl import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) pl.figure('scikit-learn tree benchmark results') pl.subplot(211) pl.title('Learning with varying number of samples') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) pl.subplot(212) pl.title('Learning in high dimensional spaces') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of dimensions') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
gfyoung/pandas
pandas/tests/series/indexing/test_get.py
4
4324
import numpy as np import pytest import pandas as pd from pandas import Series import pandas._testing as tm def test_get(): # GH 6383 s = Series( np.array( [ 43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54, ] ) ) result = s.get(25, 0) expected = 0 assert result == expected s = Series( np.array( [ 43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54, ] ), index=pd.Float64Index( [ 25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0, ] ), ) result = s.get(25, 0) expected = 43 assert result == expected # GH 7407 # with a boolean accessor df = pd.DataFrame({"i": [0] * 3, "b": [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default="Missing") assert result == "Missing" vc = df.b.value_counts() result = vc.get(False, default="Missing") assert result == 3 result = vc.get(True, default="Missing") assert result == "Missing" def test_get_nan(): # GH 8569 s = pd.Float64Index(range(10)).to_series() assert s.get(np.nan) is None assert s.get(np.nan, default="Missing") == "Missing" def test_get_nan_multiple(): # GH 8569 # ensure that fixing "test_get_nan" above hasn't broken get # with multiple elements s = pd.Float64Index(range(10)).to_series() idx = [2, 30] assert s.get(idx) is None idx = [2, np.nan] assert s.get(idx) is None # GH 17295 - all missing keys idx = [20, 30] assert s.get(idx) is None idx = [np.nan, np.nan] assert s.get(idx) is None def test_get_with_default(): # GH#7725 d0 = ["a", "b", "c", "d"] d1 = np.arange(4, dtype="int64") others = ["e", 10] for data, index in ((d0, d1), (d1, d0)): s = Series(data, index=index) for i, d in zip(index, data): assert s.get(i) == d assert s.get(i, d) == d assert s.get(i, "z") == d for other in others: assert s.get(other, "z") == "z" assert s.get(other, other) == other @pytest.mark.parametrize( "arr", [np.random.randn(10), tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern")], ) def test_get2(arr): # TODO: better name, possibly split # GH#21260 ser = Series(arr, index=[2 * i for i in range(len(arr))]) assert ser.get(4) == ser.iloc[2] result = ser.get([4, 6]) expected = ser.iloc[[2, 3]] tm.assert_series_equal(result, expected) result = ser.get(slice(2)) expected = ser.iloc[[0, 1]] tm.assert_series_equal(result, expected) assert ser.get(-1) is None assert ser.get(ser.index.max() + 1) is None ser = Series(arr[:6], index=list("abcdef")) assert ser.get("c") == ser.iloc[2] result = ser.get(slice("b", "d")) expected = ser.iloc[[1, 2, 3]] tm.assert_series_equal(result, expected) result = ser.get("Z") assert result is None assert ser.get(4) == ser.iloc[4] assert ser.get(-1) == ser.iloc[-1] assert ser.get(len(ser)) is None # GH#21257 ser = Series(arr) ser2 = ser[::2] assert ser2.get(1) is None
bsd-3-clause
gandalf15/CS2521-ALGORITHMIC-PROBLEM-SOLVING
convex-hull.py
1
9049
import random import time import matplotlib.pyplot as plt from operator import itemgetter def gen_rand_uniq_points(x_range, y_range, n): try: x_points = random.sample(range(0, x_range), n) y_points = random.sample(range(0, y_range), n) points = [] for i in range(0,n): points.append([x_points[i],y_points[i]]) return points except ValueError: print('Sample size exceeded population size.') def get_y_intersection(point_a, point_b, x_of_line): try: #define where is the vertical line x_coord_of_line = x_of_line # calculate the slope between two points slope = float((point_b[1]-point_a[1]))/float((point_b[0]-point_a[0])) #calculate the point where line between points a and b intersects with vertical line y_coord_of_intersection = point_a[1]+((x_coord_of_line - point_a[0])*slope) #return float y_coord_of_intersection return y_coord_of_intersection except ZeroDivisionError: print ("After 7.5 million years....", "The Answer to the Ultimate Question of Life, The Universe, and Everything is 42.") def get_tangents(left_hell, right_hell): #here starts get upper tangent left_indices = left_hell.pop() #get indices from the list right_indices = right_hell.pop() left_proces_mark = left_hell.pop() right_proces_mark = right_hell.pop() left_hell_most_right_index = left_indices[1] right_hell_most_left_index = right_indices[0] num_of_left_points = len(left_hell) num_of_right_points = len(right_hell) x_of_line = float((left_hell[left_hell_most_right_index][0] +\ right_hell[right_hell_most_left_index][0])/2.0) # if base case then order the points clockwise if num_of_left_points < 4 and left_proces_mark == 0: if num_of_left_points > 2: #exactly 3 points then - do some magic please if (get_y_intersection(left_hell[0],left_hell[2],left_hell[1][0]) < left_hell[1][1]): left_hell = [left_hell[2],left_hell[0],left_hell[1]] left_indices = [1,0] left_hell_most_right_index = 0 left_proces_mark == 1 #this created clockwise order from right, bottom and up else: left_hell = [left_hell[2],left_hell[1],left_hell[0]] left_indices = [2,0] left_hell_most_right_index = 0 left_proces_mark == 1 else: #exactly 2 points left_hell = [left_hell[1],left_hell[0]] left_indices = [1,0] left_hell_most_right_index = 0 left_proces_mark == 1 if num_of_right_points < 4 and right_proces_mark == 0: if num_of_right_points > 2: # here must be different num for same clockwise if (get_y_intersection(right_hell[0],right_hell[2],right_hell[1][0]) < right_hell[1][1]): right_hell = [right_hell[0],right_hell[1],right_hell[2]] right_indices = [0,2] right_hell_most_left_index = 0 right_proces_mark = 1 else: right_hell = [right_hell[0],right_hell[2],right_hell[1]] right_indices = [0,1] right_hell_most_left_index = 0 right_proces_mark = 1 else: right_indices = [0,1] right_hell_most_left_index = 0 right_proces_mark = 1 #now the arrays are ordered clockwise form the middle line i = left_hell_most_right_index # the most right point on X in left hell j = right_hell_most_left_index #the most left point on X in right hell while (get_y_intersection(left_hell[i],right_hell[(j+1)%num_of_right_points], x_of_line) > get_y_intersection(left_hell[i],right_hell[j], x_of_line) or get_y_intersection(left_hell[(i-1)%num_of_left_points],right_hell[j], x_of_line) > get_y_intersection(left_hell[i],right_hell[j], x_of_line)): if (get_y_intersection(left_hell[i],right_hell[(j+1)%num_of_right_points], x_of_line) > get_y_intersection(left_hell[i],right_hell[j], x_of_line)): j = (j+1)%num_of_right_points #move right # mod is there because after iterate to the last point in array # we want to return to the 0 index, so the last point is connected with the first else: i = (i-1)%num_of_left_points #move left # mod is there because after iterate to the last point in array # we want to return to the 0 index, so the last point is connected with the first pass upper_tangent = [i,j] #array of indices which represent points coords. #here starts get lower tangent i = left_hell_most_right_index # reset the most right point on X j = right_hell_most_left_index # reset the most left point on X while (get_y_intersection(left_hell[i],right_hell[(j-1)%num_of_right_points], x_of_line) < get_y_intersection(left_hell[i],right_hell[j], x_of_line) or get_y_intersection(left_hell[(i+1)%num_of_left_points],right_hell[j], x_of_line) < get_y_intersection(left_hell[i],right_hell[j], x_of_line)): if (get_y_intersection(left_hell[i],right_hell[(j-1)%num_of_right_points], x_of_line) < get_y_intersection(left_hell[i],right_hell[j], x_of_line)): j = (j-1)%num_of_right_points #move right # mod is there because after iterate to the last point in array # we want to return to the 0 index, so the last point is connected with the first else: i = (i+1)%num_of_left_points #move left lower_tangent = [i,j] #array of two indices which represent points coords. tangents = [upper_tangent,lower_tangent] indices = [left_indices[0], right_indices[1]] # send further left, right points right_hell.append(right_proces_mark) left_hell.append(left_proces_mark) result = [left_hell,right_hell,tangents,indices] return result def merge_convex_hells(left_convex, right_convex, tangents, indices): upper_tangent = tangents[0] #extract upper tangent lower_tangent = tangents[1] #extract lower tangent left_proces_mark = left_convex.pop() right_proces_mark = right_convex.pop() num_of_left_points = len(left_convex) num_of_right_points = len(right_convex) most_left = indices[0] most_right = indices[1] if most_left == upper_tangent[0]: # if the upper tangent is most left point new_convex = [left_convex[upper_tangent[0]]] most_left = 0 else: new_convex = [left_convex[upper_tangent[0]]] next_point = upper_tangent[1] if indices[1] == next_point: # if the upper tangent is most right point most_right = 1 if next_point != lower_tangent[1]: new_convex.append(right_convex[upper_tangent[1]]) next_point = (upper_tangent[1]+1)%num_of_right_points if indices[1] == next_point: most_right = 2 while next_point != lower_tangent[1]: new_convex.append(right_convex[next_point]) if indices[1] == next_point: most_right = len(new_convex)-1 next_point = (next_point + 1)%num_of_right_points new_convex.append(right_convex[next_point]) # if ther is only one point for upper and lower tangents if indices[1] == next_point: most_right = len(new_convex)-1 #then append the right lower bound next_point = lower_tangent[0] if next_point != upper_tangent[0]: new_convex.append(left_convex[lower_tangent[0]]) if indices[0] == next_point: most_left = len(new_convex)-1 next_point = (lower_tangent[0] + 1)%num_of_left_points while next_point != upper_tangent[0]: new_convex.append(left_convex[next_point]) if indices[0] == next_point: most_left = len(new_convex)-1 next_point = (next_point + 1)%num_of_left_points new_convex.append(1) new_convex.append([most_left, most_right]) return new_convex #this is new convex hell without inner points def make_convex_hell(array): #array comes already sorted based on X coordinates try: if len(array) < 4: most_left = 0 #initialize with some index, cannot be 0 most_right = len(array)-1 #initialize with some index, cannot be 0 indices = [most_left, most_right] array.append(0) #mark it that it will be processed array.append(indices) #at the end append indices of the left and right points return array #this is base case when 3 points are convex hell else: length = len(array) left_convex = make_convex_hell(array[0:length // 2]) right_convex = make_convex_hell(array[length // 2:]) result = get_tangents(left_convex, right_convex) indices = result.pop() tangents = result.pop() right_hell = result.pop() left_hell = result.pop() new_convex_hell = merge_convex_hells(left_hell, right_hell, tangents, indices) return new_convex_hell except ValueError: print("The convex hull function takes array of arrays with two integer inside.") try: #generate random, but uniq points no x and y coordinates are same uniq_points = gen_rand_uniq_points(9000,9000,500) #sort based on x coordinate uniq_points = sorted(uniq_points, key=itemgetter(0)) start = time.clock() convex_hell = make_convex_hell(uniq_points) elapsed = time.clock() print('Running time was: ', elapsed - start) indices = convex_hell.pop() proces_mark = convex_hell.pop() #print("indices at the end ", indices) #print ("convex_hell ", convex_hell) x_points = [] y_points = [] plt.axis([-100, 10000, -100, 10000]) for point in uniq_points: plt.plot(point[0],point[1], 'ro') for point in convex_hell: x_points.append(point[0]) y_points.append(point[1]) x_points.append(convex_hell[0][0]) y_points.append(convex_hell[0][1]) plt.plot(x_points,y_points) plt.show() except KeyboardInterrupt: print (" Quit")
mit
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/numpy/lib/tests/test_function_base.py
1
122243
from __future__ import division, absolute_import, print_function import operator import warnings import sys import decimal import types from fractions import Fraction import pytest import numpy as np from numpy import ma from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_raises, assert_allclose, IS_PYPY, assert_warns, assert_raises_regex, suppress_warnings, HAS_REFCOUNT, ) import numpy.lib.function_base as nfb from numpy.random import rand from numpy.lib import ( add_newdoc_ufunc, angle, average, bartlett, blackman, corrcoef, cov, delete, diff, digitize, extract, flipud, gradient, hamming, hanning, i0, insert, interp, kaiser, meshgrid, msort, piecewise, place, rot90, select, setxor1d, sinc, trapz, trim_zeros, unwrap, unique, vectorize ) from numpy.compat import long PY2 = sys.version_info[0] == 2 def get_mat(n): data = np.arange(n) data = np.add.outer(data, data) return data def _make_complex(real, imag): """ Like real + 1j * imag, but behaves as expected when imag contains non-finite values """ ret = np.zeros(np.broadcast(real, imag).shape, np.complex_) ret.real = real ret.imag = imag return ret class TestRot90(object): def test_basic(self): assert_raises(ValueError, rot90, np.ones(4)) assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(0,1,2)) assert_raises(ValueError, rot90, np.ones((2,2)), axes=(0,2)) assert_raises(ValueError, rot90, np.ones((2,2)), axes=(1,1)) assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(-2,1)) a = [[0, 1, 2], [3, 4, 5]] b1 = [[2, 5], [1, 4], [0, 3]] b2 = [[5, 4, 3], [2, 1, 0]] b3 = [[3, 0], [4, 1], [5, 2]] b4 = [[0, 1, 2], [3, 4, 5]] for k in range(-3, 13, 4): assert_equal(rot90(a, k=k), b1) for k in range(-2, 13, 4): assert_equal(rot90(a, k=k), b2) for k in range(-1, 13, 4): assert_equal(rot90(a, k=k), b3) for k in range(0, 13, 4): assert_equal(rot90(a, k=k), b4) assert_equal(rot90(rot90(a, axes=(0,1)), axes=(1,0)), a) assert_equal(rot90(a, k=1, axes=(1,0)), rot90(a, k=-1, axes=(0,1))) def test_axes(self): a = np.ones((50, 40, 3)) assert_equal(rot90(a).shape, (40, 50, 3)) assert_equal(rot90(a, axes=(0,2)), rot90(a, axes=(0,-1))) assert_equal(rot90(a, axes=(1,2)), rot90(a, axes=(-2,-1))) def test_rotation_axes(self): a = np.arange(8).reshape((2,2,2)) a_rot90_01 = [[[2, 3], [6, 7]], [[0, 1], [4, 5]]] a_rot90_12 = [[[1, 3], [0, 2]], [[5, 7], [4, 6]]] a_rot90_20 = [[[4, 0], [6, 2]], [[5, 1], [7, 3]]] a_rot90_10 = [[[4, 5], [0, 1]], [[6, 7], [2, 3]]] assert_equal(rot90(a, axes=(0, 1)), a_rot90_01) assert_equal(rot90(a, axes=(1, 0)), a_rot90_10) assert_equal(rot90(a, axes=(1, 2)), a_rot90_12) for k in range(1,5): assert_equal(rot90(a, k=k, axes=(2, 0)), rot90(a_rot90_20, k=k-1, axes=(2, 0))) class TestFlip(object): def test_axes(self): assert_raises(np.AxisError, np.flip, np.ones(4), axis=1) assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=2) assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=-3) assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=(0, 3)) def test_basic_lr(self): a = get_mat(4) b = a[:, ::-1] assert_equal(np.flip(a, 1), b) a = [[0, 1, 2], [3, 4, 5]] b = [[2, 1, 0], [5, 4, 3]] assert_equal(np.flip(a, 1), b) def test_basic_ud(self): a = get_mat(4) b = a[::-1, :] assert_equal(np.flip(a, 0), b) a = [[0, 1, 2], [3, 4, 5]] b = [[3, 4, 5], [0, 1, 2]] assert_equal(np.flip(a, 0), b) def test_3d_swap_axis0(self): a = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) b = np.array([[[4, 5], [6, 7]], [[0, 1], [2, 3]]]) assert_equal(np.flip(a, 0), b) def test_3d_swap_axis1(self): a = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) b = np.array([[[2, 3], [0, 1]], [[6, 7], [4, 5]]]) assert_equal(np.flip(a, 1), b) def test_3d_swap_axis2(self): a = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) b = np.array([[[1, 0], [3, 2]], [[5, 4], [7, 6]]]) assert_equal(np.flip(a, 2), b) def test_4d(self): a = np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5) for i in range(a.ndim): assert_equal(np.flip(a, i), np.flipud(a.swapaxes(0, i)).swapaxes(i, 0)) def test_default_axis(self): a = np.array([[1, 2, 3], [4, 5, 6]]) b = np.array([[6, 5, 4], [3, 2, 1]]) assert_equal(np.flip(a), b) def test_multiple_axes(self): a = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) assert_equal(np.flip(a, axis=()), a) b = np.array([[[5, 4], [7, 6]], [[1, 0], [3, 2]]]) assert_equal(np.flip(a, axis=(0, 2)), b) c = np.array([[[3, 2], [1, 0]], [[7, 6], [5, 4]]]) assert_equal(np.flip(a, axis=(1, 2)), c) class TestAny(object): def test_basic(self): y1 = [0, 0, 1, 0] y2 = [0, 0, 0, 0] y3 = [1, 0, 1, 0] assert_(np.any(y1)) assert_(np.any(y3)) assert_(not np.any(y2)) def test_nd(self): y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]] assert_(np.any(y1)) assert_array_equal(np.sometrue(y1, axis=0), [1, 1, 0]) assert_array_equal(np.sometrue(y1, axis=1), [0, 1, 1]) class TestAll(object): def test_basic(self): y1 = [0, 1, 1, 0] y2 = [0, 0, 0, 0] y3 = [1, 1, 1, 1] assert_(not np.all(y1)) assert_(np.all(y3)) assert_(not np.all(y2)) assert_(np.all(~np.array(y2))) def test_nd(self): y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]] assert_(not np.all(y1)) assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1]) assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1]) class TestCopy(object): def test_basic(self): a = np.array([[1, 2], [3, 4]]) a_copy = np.copy(a) assert_array_equal(a, a_copy) a_copy[0, 0] = 10 assert_equal(a[0, 0], 1) assert_equal(a_copy[0, 0], 10) def test_order(self): # It turns out that people rely on np.copy() preserving order by # default; changing this broke scikit-learn: # github.com/scikit-learn/scikit-learn/commit/7842748cf777412c506a8c0ed28090711d3a3783 # noqa a = np.array([[1, 2], [3, 4]]) assert_(a.flags.c_contiguous) assert_(not a.flags.f_contiguous) a_fort = np.array([[1, 2], [3, 4]], order="F") assert_(not a_fort.flags.c_contiguous) assert_(a_fort.flags.f_contiguous) a_copy = np.copy(a) assert_(a_copy.flags.c_contiguous) assert_(not a_copy.flags.f_contiguous) a_fort_copy = np.copy(a_fort) assert_(not a_fort_copy.flags.c_contiguous) assert_(a_fort_copy.flags.f_contiguous) class TestAverage(object): def test_basic(self): y1 = np.array([1, 2, 3]) assert_(average(y1, axis=0) == 2.) y2 = np.array([1., 2., 3.]) assert_(average(y2, axis=0) == 2.) y3 = [0., 0., 0.] assert_(average(y3, axis=0) == 0.) y4 = np.ones((4, 4)) y4[0, 1] = 0 y4[1, 0] = 2 assert_almost_equal(y4.mean(0), average(y4, 0)) assert_almost_equal(y4.mean(1), average(y4, 1)) y5 = rand(5, 5) assert_almost_equal(y5.mean(0), average(y5, 0)) assert_almost_equal(y5.mean(1), average(y5, 1)) def test_weights(self): y = np.arange(10) w = np.arange(10) actual = average(y, weights=w) desired = (np.arange(10) ** 2).sum() * 1. / np.arange(10).sum() assert_almost_equal(actual, desired) y1 = np.array([[1, 2, 3], [4, 5, 6]]) w0 = [1, 2] actual = average(y1, weights=w0, axis=0) desired = np.array([3., 4., 5.]) assert_almost_equal(actual, desired) w1 = [0, 0, 1] actual = average(y1, weights=w1, axis=1) desired = np.array([3., 6.]) assert_almost_equal(actual, desired) # This should raise an error. Can we test for that ? # assert_equal(average(y1, weights=w1), 9./2.) # 2D Case w2 = [[0, 0, 1], [0, 0, 2]] desired = np.array([3., 6.]) assert_array_equal(average(y1, weights=w2, axis=1), desired) assert_equal(average(y1, weights=w2), 5.) y3 = rand(5).astype(np.float32) w3 = rand(5).astype(np.float64) assert_(np.average(y3, weights=w3).dtype == np.result_type(y3, w3)) def test_returned(self): y = np.array([[1, 2, 3], [4, 5, 6]]) # No weights avg, scl = average(y, returned=True) assert_equal(scl, 6.) avg, scl = average(y, 0, returned=True) assert_array_equal(scl, np.array([2., 2., 2.])) avg, scl = average(y, 1, returned=True) assert_array_equal(scl, np.array([3., 3.])) # With weights w0 = [1, 2] avg, scl = average(y, weights=w0, axis=0, returned=True) assert_array_equal(scl, np.array([3., 3., 3.])) w1 = [1, 2, 3] avg, scl = average(y, weights=w1, axis=1, returned=True) assert_array_equal(scl, np.array([6., 6.])) w2 = [[0, 0, 1], [1, 2, 3]] avg, scl = average(y, weights=w2, axis=1, returned=True) assert_array_equal(scl, np.array([1., 6.])) def test_subclasses(self): class subclass(np.ndarray): pass a = np.array([[1,2],[3,4]]).view(subclass) w = np.array([[1,2],[3,4]]).view(subclass) assert_equal(type(np.average(a)), subclass) assert_equal(type(np.average(a, weights=w)), subclass) def test_upcasting(self): typs = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'), ('f4', 'f4', 'f4'), ('f4', 'f8', 'f8')] for at, wt, rt in typs: a = np.array([[1,2],[3,4]], dtype=at) w = np.array([[1,2],[3,4]], dtype=wt) assert_equal(np.average(a, weights=w).dtype, np.dtype(rt)) def test_object_dtype(self): a = np.array([decimal.Decimal(x) for x in range(10)]) w = np.array([decimal.Decimal(1) for _ in range(10)]) w /= w.sum() assert_almost_equal(a.mean(0), average(a, weights=w)) class TestSelect(object): choices = [np.array([1, 2, 3]), np.array([4, 5, 6]), np.array([7, 8, 9])] conditions = [np.array([False, False, False]), np.array([False, True, False]), np.array([False, False, True])] def _select(self, cond, values, default=0): output = [] for m in range(len(cond)): output += [V[m] for V, C in zip(values, cond) if C[m]] or [default] return output def test_basic(self): choices = self.choices conditions = self.conditions assert_array_equal(select(conditions, choices, default=15), self._select(conditions, choices, default=15)) assert_equal(len(choices), 3) assert_equal(len(conditions), 3) def test_broadcasting(self): conditions = [np.array(True), np.array([False, True, False])] choices = [1, np.arange(12).reshape(4, 3)] assert_array_equal(select(conditions, choices), np.ones((4, 3))) # default can broadcast too: assert_equal(select([True], [0], default=[0]).shape, (1,)) def test_return_dtype(self): assert_equal(select(self.conditions, self.choices, 1j).dtype, np.complex_) # But the conditions need to be stronger then the scalar default # if it is scalar. choices = [choice.astype(np.int8) for choice in self.choices] assert_equal(select(self.conditions, choices).dtype, np.int8) d = np.array([1, 2, 3, np.nan, 5, 7]) m = np.isnan(d) assert_equal(select([m], [d]), [0, 0, 0, np.nan, 0, 0]) def test_deprecated_empty(self): with warnings.catch_warnings(record=True): warnings.simplefilter("always") assert_equal(select([], [], 3j), 3j) with warnings.catch_warnings(): warnings.simplefilter("always") assert_warns(DeprecationWarning, select, [], []) warnings.simplefilter("error") assert_raises(DeprecationWarning, select, [], []) def test_non_bool_deprecation(self): choices = self.choices conditions = self.conditions[:] with warnings.catch_warnings(): warnings.filterwarnings("always") conditions[0] = conditions[0].astype(np.int_) assert_warns(DeprecationWarning, select, conditions, choices) conditions[0] = conditions[0].astype(np.uint8) assert_warns(DeprecationWarning, select, conditions, choices) warnings.filterwarnings("error") assert_raises(DeprecationWarning, select, conditions, choices) def test_many_arguments(self): # This used to be limited by NPY_MAXARGS == 32 conditions = [np.array([False])] * 100 choices = [np.array([1])] * 100 select(conditions, choices) class TestInsert(object): def test_basic(self): a = [1, 2, 3] assert_equal(insert(a, 0, 1), [1, 1, 2, 3]) assert_equal(insert(a, 3, 1), [1, 2, 3, 1]) assert_equal(insert(a, [1, 1, 1], [1, 2, 3]), [1, 1, 2, 3, 2, 3]) assert_equal(insert(a, 1, [1, 2, 3]), [1, 1, 2, 3, 2, 3]) assert_equal(insert(a, [1, -1, 3], 9), [1, 9, 2, 9, 3, 9]) assert_equal(insert(a, slice(-1, None, -1), 9), [9, 1, 9, 2, 9, 3]) assert_equal(insert(a, [-1, 1, 3], [7, 8, 9]), [1, 8, 2, 7, 3, 9]) b = np.array([0, 1], dtype=np.float64) assert_equal(insert(b, 0, b[0]), [0., 0., 1.]) assert_equal(insert(b, [], []), b) # Bools will be treated differently in the future: # assert_equal(insert(a, np.array([True]*4), 9), [9, 1, 9, 2, 9, 3, 9]) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', FutureWarning) assert_equal( insert(a, np.array([True] * 4), 9), [1, 9, 9, 9, 9, 2, 3]) assert_(w[0].category is FutureWarning) def test_multidim(self): a = [[1, 1, 1]] r = [[2, 2, 2], [1, 1, 1]] assert_equal(insert(a, 0, [1]), [1, 1, 1, 1]) assert_equal(insert(a, 0, [2, 2, 2], axis=0), r) assert_equal(insert(a, 0, 2, axis=0), r) assert_equal(insert(a, 2, 2, axis=1), [[1, 1, 2, 1]]) a = np.array([[1, 1], [2, 2], [3, 3]]) b = np.arange(1, 4).repeat(3).reshape(3, 3) c = np.concatenate( (a[:, 0:1], np.arange(1, 4).repeat(3).reshape(3, 3).T, a[:, 1:2]), axis=1) assert_equal(insert(a, [1], [[1], [2], [3]], axis=1), b) assert_equal(insert(a, [1], [1, 2, 3], axis=1), c) # scalars behave differently, in this case exactly opposite: assert_equal(insert(a, 1, [1, 2, 3], axis=1), b) assert_equal(insert(a, 1, [[1], [2], [3]], axis=1), c) a = np.arange(4).reshape(2, 2) assert_equal(insert(a[:, :1], 1, a[:, 1], axis=1), a) assert_equal(insert(a[:1,:], 1, a[1,:], axis=0), a) # negative axis value a = np.arange(24).reshape((2, 3, 4)) assert_equal(insert(a, 1, a[:,:, 3], axis=-1), insert(a, 1, a[:,:, 3], axis=2)) assert_equal(insert(a, 1, a[:, 2,:], axis=-2), insert(a, 1, a[:, 2,:], axis=1)) # invalid axis value assert_raises(np.AxisError, insert, a, 1, a[:, 2, :], axis=3) assert_raises(np.AxisError, insert, a, 1, a[:, 2, :], axis=-4) # negative axis value a = np.arange(24).reshape((2, 3, 4)) assert_equal(insert(a, 1, a[:, :, 3], axis=-1), insert(a, 1, a[:, :, 3], axis=2)) assert_equal(insert(a, 1, a[:, 2, :], axis=-2), insert(a, 1, a[:, 2, :], axis=1)) def test_0d(self): # This is an error in the future a = np.array(1) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', DeprecationWarning) assert_equal(insert(a, [], 2, axis=0), np.array(2)) assert_(w[0].category is DeprecationWarning) def test_subclass(self): class SubClass(np.ndarray): pass a = np.arange(10).view(SubClass) assert_(isinstance(np.insert(a, 0, [0]), SubClass)) assert_(isinstance(np.insert(a, [], []), SubClass)) assert_(isinstance(np.insert(a, [0, 1], [1, 2]), SubClass)) assert_(isinstance(np.insert(a, slice(1, 2), [1, 2]), SubClass)) assert_(isinstance(np.insert(a, slice(1, -2, -1), []), SubClass)) # This is an error in the future: a = np.array(1).view(SubClass) assert_(isinstance(np.insert(a, 0, [0]), SubClass)) def test_index_array_copied(self): x = np.array([1, 1, 1]) np.insert([0, 1, 2], x, [3, 4, 5]) assert_equal(x, np.array([1, 1, 1])) def test_structured_array(self): a = np.array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=[('foo', 'i'), ('bar', 'a1')]) val = (4, 'd') b = np.insert(a, 0, val) assert_array_equal(b[0], np.array(val, dtype=b.dtype)) val = [(4, 'd')] * 2 b = np.insert(a, [0, 2], val) assert_array_equal(b[[0, 3]], np.array(val, dtype=b.dtype)) class TestAmax(object): def test_basic(self): a = [3, 4, 5, 10, -3, -5, 6.0] assert_equal(np.amax(a), 10.0) b = [[3, 6.0, 9.0], [4, 10.0, 5.0], [8, 3.0, 2.0]] assert_equal(np.amax(b, axis=0), [8.0, 10.0, 9.0]) assert_equal(np.amax(b, axis=1), [9.0, 10.0, 8.0]) class TestAmin(object): def test_basic(self): a = [3, 4, 5, 10, -3, -5, 6.0] assert_equal(np.amin(a), -5.0) b = [[3, 6.0, 9.0], [4, 10.0, 5.0], [8, 3.0, 2.0]] assert_equal(np.amin(b, axis=0), [3.0, 3.0, 2.0]) assert_equal(np.amin(b, axis=1), [3.0, 4.0, 2.0]) class TestPtp(object): def test_basic(self): a = np.array([3, 4, 5, 10, -3, -5, 6.0]) assert_equal(a.ptp(axis=0), 15.0) b = np.array([[3, 6.0, 9.0], [4, 10.0, 5.0], [8, 3.0, 2.0]]) assert_equal(b.ptp(axis=0), [5.0, 7.0, 7.0]) assert_equal(b.ptp(axis=-1), [6.0, 6.0, 6.0]) assert_equal(b.ptp(axis=0, keepdims=True), [[5.0, 7.0, 7.0]]) assert_equal(b.ptp(axis=(0,1), keepdims=True), [[8.0]]) class TestCumsum(object): def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype) assert_array_equal(np.cumsum(a, axis=0), tgt) tgt = np.array( [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype) assert_array_equal(np.cumsum(a2, axis=0), tgt) tgt = np.array( [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype) assert_array_equal(np.cumsum(a2, axis=1), tgt) class TestProd(object): def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: assert_raises(ArithmeticError, np.prod, a) assert_raises(ArithmeticError, np.prod, a2, 1) else: assert_equal(a.prod(axis=0), 26400) assert_array_equal(a2.prod(axis=0), np.array([50, 36, 84, 180], ctype)) assert_array_equal(a2.prod(axis=-1), np.array([24, 1890, 600], ctype)) class TestCumprod(object): def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: assert_raises(ArithmeticError, np.cumprod, a) assert_raises(ArithmeticError, np.cumprod, a2, 1) assert_raises(ArithmeticError, np.cumprod, a) else: assert_array_equal(np.cumprod(a, axis=-1), np.array([1, 2, 20, 220, 1320, 6600, 26400], ctype)) assert_array_equal(np.cumprod(a2, axis=0), np.array([[1, 2, 3, 4], [5, 12, 21, 36], [50, 36, 84, 180]], ctype)) assert_array_equal(np.cumprod(a2, axis=-1), np.array([[1, 2, 6, 24], [5, 30, 210, 1890], [10, 30, 120, 600]], ctype)) class TestDiff(object): def test_basic(self): x = [1, 4, 6, 7, 12] out = np.array([3, 2, 1, 5]) out2 = np.array([-1, -1, 4]) out3 = np.array([0, 5]) assert_array_equal(diff(x), out) assert_array_equal(diff(x, n=2), out2) assert_array_equal(diff(x, n=3), out3) x = [1.1, 2.2, 3.0, -0.2, -0.1] out = np.array([1.1, 0.8, -3.2, 0.1]) assert_almost_equal(diff(x), out) x = [True, True, False, False] out = np.array([False, True, False]) out2 = np.array([True, True]) assert_array_equal(diff(x), out) assert_array_equal(diff(x, n=2), out2) def test_axis(self): x = np.zeros((10, 20, 30)) x[:, 1::2, :] = 1 exp = np.ones((10, 19, 30)) exp[:, 1::2, :] = -1 assert_array_equal(diff(x), np.zeros((10, 20, 29))) assert_array_equal(diff(x, axis=-1), np.zeros((10, 20, 29))) assert_array_equal(diff(x, axis=0), np.zeros((9, 20, 30))) assert_array_equal(diff(x, axis=1), exp) assert_array_equal(diff(x, axis=-2), exp) assert_raises(np.AxisError, diff, x, axis=3) assert_raises(np.AxisError, diff, x, axis=-4) x = np.array(1.11111111111, np.float64) assert_raises(ValueError, diff, x) def test_nd(self): x = 20 * rand(10, 20, 30) out1 = x[:, :, 1:] - x[:, :, :-1] out2 = out1[:, :, 1:] - out1[:, :, :-1] out3 = x[1:, :, :] - x[:-1, :, :] out4 = out3[1:, :, :] - out3[:-1, :, :] assert_array_equal(diff(x), out1) assert_array_equal(diff(x, n=2), out2) assert_array_equal(diff(x, axis=0), out3) assert_array_equal(diff(x, n=2, axis=0), out4) def test_n(self): x = list(range(3)) assert_raises(ValueError, diff, x, n=-1) output = [diff(x, n=n) for n in range(1, 5)] expected = [[1, 1], [0], [], []] assert_(diff(x, n=0) is x) for n, (expected, out) in enumerate(zip(expected, output), start=1): assert_(type(out) is np.ndarray) assert_array_equal(out, expected) assert_equal(out.dtype, np.int_) assert_equal(len(out), max(0, len(x) - n)) def test_times(self): x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64) expected = [ np.array([1, 1], dtype='timedelta64[D]'), np.array([0], dtype='timedelta64[D]'), ] expected.extend([np.array([], dtype='timedelta64[D]')] * 3) for n, exp in enumerate(expected, start=1): out = diff(x, n=n) assert_array_equal(out, exp) assert_equal(out.dtype, exp.dtype) def test_subclass(self): x = ma.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]], mask=[[False, False], [True, False], [False, True], [True, True], [False, False]]) out = diff(x) assert_array_equal(out.data, [[1], [1], [1], [1], [1]]) assert_array_equal(out.mask, [[False], [True], [True], [True], [False]]) assert_(type(out) is type(x)) out3 = diff(x, n=3) assert_array_equal(out3.data, [[], [], [], [], []]) assert_array_equal(out3.mask, [[], [], [], [], []]) assert_(type(out3) is type(x)) def test_prepend(self): x = np.arange(5) + 1 assert_array_equal(diff(x, prepend=0), np.ones(5)) assert_array_equal(diff(x, prepend=[0]), np.ones(5)) assert_array_equal(np.cumsum(np.diff(x, prepend=0)), x) assert_array_equal(diff(x, prepend=[-1, 0]), np.ones(6)) x = np.arange(4).reshape(2, 2) result = np.diff(x, axis=1, prepend=0) expected = [[0, 1], [2, 1]] assert_array_equal(result, expected) result = np.diff(x, axis=1, prepend=[[0], [0]]) assert_array_equal(result, expected) result = np.diff(x, axis=0, prepend=0) expected = [[0, 1], [2, 2]] assert_array_equal(result, expected) result = np.diff(x, axis=0, prepend=[[0, 0]]) assert_array_equal(result, expected) assert_raises(ValueError, np.diff, x, prepend=np.zeros((3,3))) assert_raises(np.AxisError, diff, x, prepend=0, axis=3) def test_append(self): x = np.arange(5) result = diff(x, append=0) expected = [1, 1, 1, 1, -4] assert_array_equal(result, expected) result = diff(x, append=[0]) assert_array_equal(result, expected) result = diff(x, append=[0, 2]) expected = expected + [2] assert_array_equal(result, expected) x = np.arange(4).reshape(2, 2) result = np.diff(x, axis=1, append=0) expected = [[1, -1], [1, -3]] assert_array_equal(result, expected) result = np.diff(x, axis=1, append=[[0], [0]]) assert_array_equal(result, expected) result = np.diff(x, axis=0, append=0) expected = [[2, 2], [-2, -3]] assert_array_equal(result, expected) result = np.diff(x, axis=0, append=[[0, 0]]) assert_array_equal(result, expected) assert_raises(ValueError, np.diff, x, append=np.zeros((3,3))) assert_raises(np.AxisError, diff, x, append=0, axis=3) class TestDelete(object): def setup(self): self.a = np.arange(5) self.nd_a = np.arange(5).repeat(2).reshape(1, 5, 2) def _check_inverse_of_slicing(self, indices): a_del = delete(self.a, indices) nd_a_del = delete(self.nd_a, indices, axis=1) msg = 'Delete failed for obj: %r' % indices # NOTE: The cast should be removed after warning phase for bools if not isinstance(indices, (slice, int, long, np.integer)): indices = np.asarray(indices, dtype=np.intp) indices = indices[(indices >= 0) & (indices < 5)] assert_array_equal(setxor1d(a_del, self.a[indices, ]), self.a, err_msg=msg) xor = setxor1d(nd_a_del[0,:, 0], self.nd_a[0, indices, 0]) assert_array_equal(xor, self.nd_a[0,:, 0], err_msg=msg) def test_slices(self): lims = [-6, -2, 0, 1, 2, 4, 5] steps = [-3, -1, 1, 3] for start in lims: for stop in lims: for step in steps: s = slice(start, stop, step) self._check_inverse_of_slicing(s) def test_fancy(self): # Deprecation/FutureWarning tests should be kept after change. self._check_inverse_of_slicing(np.array([[0, 1], [2, 1]])) with warnings.catch_warnings(): warnings.filterwarnings('error', category=DeprecationWarning) assert_raises(DeprecationWarning, delete, self.a, [100]) assert_raises(DeprecationWarning, delete, self.a, [-100]) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', category=FutureWarning) self._check_inverse_of_slicing([0, -1, 2, 2]) obj = np.array([True, False, False], dtype=bool) self._check_inverse_of_slicing(obj) assert_(w[0].category is FutureWarning) assert_(w[1].category is FutureWarning) def test_single(self): self._check_inverse_of_slicing(0) self._check_inverse_of_slicing(-4) def test_0d(self): a = np.array(1) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', DeprecationWarning) assert_equal(delete(a, [], axis=0), a) assert_(w[0].category is DeprecationWarning) def test_subclass(self): class SubClass(np.ndarray): pass a = self.a.view(SubClass) assert_(isinstance(delete(a, 0), SubClass)) assert_(isinstance(delete(a, []), SubClass)) assert_(isinstance(delete(a, [0, 1]), SubClass)) assert_(isinstance(delete(a, slice(1, 2)), SubClass)) assert_(isinstance(delete(a, slice(1, -2)), SubClass)) def test_array_order_preserve(self): # See gh-7113 k = np.arange(10).reshape(2, 5, order='F') m = delete(k, slice(60, None), axis=1) # 'k' is Fortran ordered, and 'm' should have the # same ordering as 'k' and NOT become C ordered assert_equal(m.flags.c_contiguous, k.flags.c_contiguous) assert_equal(m.flags.f_contiguous, k.flags.f_contiguous) class TestGradient(object): def test_basic(self): v = [[1, 1], [3, 4]] x = np.array(v) dx = [np.array([[2., 3.], [2., 3.]]), np.array([[0., 0.], [1., 1.]])] assert_array_equal(gradient(x), dx) assert_array_equal(gradient(v), dx) def test_args(self): dx = np.cumsum(np.ones(5)) dx_uneven = [1., 2., 5., 9., 11.] f_2d = np.arange(25).reshape(5, 5) # distances must be scalars or have size equal to gradient[axis] gradient(np.arange(5), 3.) gradient(np.arange(5), np.array(3.)) gradient(np.arange(5), dx) # dy is set equal to dx because scalar gradient(f_2d, 1.5) gradient(f_2d, np.array(1.5)) gradient(f_2d, dx_uneven, dx_uneven) # mix between even and uneven spaces and # mix between scalar and vector gradient(f_2d, dx, 2) # 2D but axis specified gradient(f_2d, dx, axis=1) # 2d coordinate arguments are not yet allowed assert_raises_regex(ValueError, '.*scalars or 1d', gradient, f_2d, np.stack([dx]*2, axis=-1), 1) def test_badargs(self): f_2d = np.arange(25).reshape(5, 5) x = np.cumsum(np.ones(5)) # wrong sizes assert_raises(ValueError, gradient, f_2d, x, np.ones(2)) assert_raises(ValueError, gradient, f_2d, 1, np.ones(2)) assert_raises(ValueError, gradient, f_2d, np.ones(2), np.ones(2)) # wrong number of arguments assert_raises(TypeError, gradient, f_2d, x) assert_raises(TypeError, gradient, f_2d, x, axis=(0,1)) assert_raises(TypeError, gradient, f_2d, x, x, x) assert_raises(TypeError, gradient, f_2d, 1, 1, 1) assert_raises(TypeError, gradient, f_2d, x, x, axis=1) assert_raises(TypeError, gradient, f_2d, 1, 1, axis=1) def test_datetime64(self): # Make sure gradient() can handle special types like datetime64 x = np.array( ['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12', '1910-10-12', '1910-12-12', '1912-12-12'], dtype='datetime64[D]') dx = np.array( [-5, -3, 0, 31, 61, 396, 731], dtype='timedelta64[D]') assert_array_equal(gradient(x), dx) assert_(dx.dtype == np.dtype('timedelta64[D]')) def test_masked(self): # Make sure that gradient supports subclasses like masked arrays x = np.ma.array([[1, 1], [3, 4]], mask=[[False, False], [False, False]]) out = gradient(x)[0] assert_equal(type(out), type(x)) # And make sure that the output and input don't have aliased mask # arrays assert_(x._mask is not out._mask) # Also check that edge_order=2 doesn't alter the original mask x2 = np.ma.arange(5) x2[2] = np.ma.masked np.gradient(x2, edge_order=2) assert_array_equal(x2.mask, [False, False, True, False, False]) def test_second_order_accurate(self): # Testing that the relative numerical error is less that 3% for # this example problem. This corresponds to second order # accurate finite differences for all interior and boundary # points. x = np.linspace(0, 1, 10) dx = x[1] - x[0] y = 2 * x ** 3 + 4 * x ** 2 + 2 * x analytical = 6 * x ** 2 + 8 * x + 2 num_error = np.abs((np.gradient(y, dx, edge_order=2) / analytical) - 1) assert_(np.all(num_error < 0.03) == True) # test with unevenly spaced np.random.seed(0) x = np.sort(np.random.random(10)) y = 2 * x ** 3 + 4 * x ** 2 + 2 * x analytical = 6 * x ** 2 + 8 * x + 2 num_error = np.abs((np.gradient(y, x, edge_order=2) / analytical) - 1) assert_(np.all(num_error < 0.03) == True) def test_spacing(self): f = np.array([0, 2., 3., 4., 5., 5.]) f = np.tile(f, (6,1)) + f.reshape(-1, 1) x_uneven = np.array([0., 0.5, 1., 3., 5., 7.]) x_even = np.arange(6.) fdx_even_ord1 = np.tile([2., 1.5, 1., 1., 0.5, 0.], (6,1)) fdx_even_ord2 = np.tile([2.5, 1.5, 1., 1., 0.5, -0.5], (6,1)) fdx_uneven_ord1 = np.tile([4., 3., 1.7, 0.5, 0.25, 0.], (6,1)) fdx_uneven_ord2 = np.tile([5., 3., 1.7, 0.5, 0.25, -0.25], (6,1)) # evenly spaced for edge_order, exp_res in [(1, fdx_even_ord1), (2, fdx_even_ord2)]: res1 = gradient(f, 1., axis=(0,1), edge_order=edge_order) res2 = gradient(f, x_even, x_even, axis=(0,1), edge_order=edge_order) res3 = gradient(f, x_even, x_even, axis=None, edge_order=edge_order) assert_array_equal(res1, res2) assert_array_equal(res2, res3) assert_almost_equal(res1[0], exp_res.T) assert_almost_equal(res1[1], exp_res) res1 = gradient(f, 1., axis=0, edge_order=edge_order) res2 = gradient(f, x_even, axis=0, edge_order=edge_order) assert_(res1.shape == res2.shape) assert_almost_equal(res2, exp_res.T) res1 = gradient(f, 1., axis=1, edge_order=edge_order) res2 = gradient(f, x_even, axis=1, edge_order=edge_order) assert_(res1.shape == res2.shape) assert_array_equal(res2, exp_res) # unevenly spaced for edge_order, exp_res in [(1, fdx_uneven_ord1), (2, fdx_uneven_ord2)]: res1 = gradient(f, x_uneven, x_uneven, axis=(0,1), edge_order=edge_order) res2 = gradient(f, x_uneven, x_uneven, axis=None, edge_order=edge_order) assert_array_equal(res1, res2) assert_almost_equal(res1[0], exp_res.T) assert_almost_equal(res1[1], exp_res) res1 = gradient(f, x_uneven, axis=0, edge_order=edge_order) assert_almost_equal(res1, exp_res.T) res1 = gradient(f, x_uneven, axis=1, edge_order=edge_order) assert_almost_equal(res1, exp_res) # mixed res1 = gradient(f, x_even, x_uneven, axis=(0,1), edge_order=1) res2 = gradient(f, x_uneven, x_even, axis=(1,0), edge_order=1) assert_array_equal(res1[0], res2[1]) assert_array_equal(res1[1], res2[0]) assert_almost_equal(res1[0], fdx_even_ord1.T) assert_almost_equal(res1[1], fdx_uneven_ord1) res1 = gradient(f, x_even, x_uneven, axis=(0,1), edge_order=2) res2 = gradient(f, x_uneven, x_even, axis=(1,0), edge_order=2) assert_array_equal(res1[0], res2[1]) assert_array_equal(res1[1], res2[0]) assert_almost_equal(res1[0], fdx_even_ord2.T) assert_almost_equal(res1[1], fdx_uneven_ord2) def test_specific_axes(self): # Testing that gradient can work on a given axis only v = [[1, 1], [3, 4]] x = np.array(v) dx = [np.array([[2., 3.], [2., 3.]]), np.array([[0., 0.], [1., 1.]])] assert_array_equal(gradient(x, axis=0), dx[0]) assert_array_equal(gradient(x, axis=1), dx[1]) assert_array_equal(gradient(x, axis=-1), dx[1]) assert_array_equal(gradient(x, axis=(1, 0)), [dx[1], dx[0]]) # test axis=None which means all axes assert_almost_equal(gradient(x, axis=None), [dx[0], dx[1]]) # and is the same as no axis keyword given assert_almost_equal(gradient(x, axis=None), gradient(x)) # test vararg order assert_array_equal(gradient(x, 2, 3, axis=(1, 0)), [dx[1]/2.0, dx[0]/3.0]) # test maximal number of varargs assert_raises(TypeError, gradient, x, 1, 2, axis=1) assert_raises(np.AxisError, gradient, x, axis=3) assert_raises(np.AxisError, gradient, x, axis=-3) # assert_raises(TypeError, gradient, x, axis=[1,]) def test_timedelta64(self): # Make sure gradient() can handle special types like timedelta64 x = np.array( [-5, -3, 10, 12, 61, 321, 300], dtype='timedelta64[D]') dx = np.array( [2, 7, 7, 25, 154, 119, -21], dtype='timedelta64[D]') assert_array_equal(gradient(x), dx) assert_(dx.dtype == np.dtype('timedelta64[D]')) def test_inexact_dtypes(self): for dt in [np.float16, np.float32, np.float64]: # dtypes should not be promoted in a different way to what diff does x = np.array([1, 2, 3], dtype=dt) assert_equal(gradient(x).dtype, np.diff(x).dtype) def test_values(self): # needs at least 2 points for edge_order ==1 gradient(np.arange(2), edge_order=1) # needs at least 3 points for edge_order ==1 gradient(np.arange(3), edge_order=2) assert_raises(ValueError, gradient, np.arange(0), edge_order=1) assert_raises(ValueError, gradient, np.arange(0), edge_order=2) assert_raises(ValueError, gradient, np.arange(1), edge_order=1) assert_raises(ValueError, gradient, np.arange(1), edge_order=2) assert_raises(ValueError, gradient, np.arange(2), edge_order=2) class TestAngle(object): def test_basic(self): x = [1 + 3j, np.sqrt(2) / 2.0 + 1j * np.sqrt(2) / 2, 1, 1j, -1, -1j, 1 - 3j, -1 + 3j] y = angle(x) yo = [ np.arctan(3.0 / 1.0), np.arctan(1.0), 0, np.pi / 2, np.pi, -np.pi / 2.0, -np.arctan(3.0 / 1.0), np.pi - np.arctan(3.0 / 1.0)] z = angle(x, deg=1) zo = np.array(yo) * 180 / np.pi assert_array_almost_equal(y, yo, 11) assert_array_almost_equal(z, zo, 11) def test_subclass(self): x = np.ma.array([1 + 3j, 1, np.sqrt(2)/2 * (1 + 1j)]) x[1] = np.ma.masked expected = np.ma.array([np.arctan(3.0 / 1.0), 0, np.arctan(1.0)]) expected[1] = np.ma.masked actual = angle(x) assert_equal(type(actual), type(expected)) assert_equal(actual.mask, expected.mask) assert_equal(actual, expected) class TestTrimZeros(object): """ Only testing for integer splits. """ def test_basic(self): a = np.array([0, 0, 1, 2, 3, 4, 0]) res = trim_zeros(a) assert_array_equal(res, np.array([1, 2, 3, 4])) def test_leading_skip(self): a = np.array([0, 0, 1, 0, 2, 3, 4, 0]) res = trim_zeros(a) assert_array_equal(res, np.array([1, 0, 2, 3, 4])) def test_trailing_skip(self): a = np.array([0, 0, 1, 0, 2, 3, 0, 4, 0]) res = trim_zeros(a) assert_array_equal(res, np.array([1, 0, 2, 3, 0, 4])) class TestExtins(object): def test_basic(self): a = np.array([1, 3, 2, 1, 2, 3, 3]) b = extract(a > 1, a) assert_array_equal(b, [3, 2, 2, 3, 3]) def test_place(self): # Make sure that non-np.ndarray objects # raise an error instead of doing nothing assert_raises(TypeError, place, [1, 2, 3], [True, False], [0, 1]) a = np.array([1, 4, 3, 2, 5, 8, 7]) place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6]) assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7]) place(a, np.zeros(7), []) assert_array_equal(a, np.arange(1, 8)) place(a, [1, 0, 1, 0, 1, 0, 1], [8, 9]) assert_array_equal(a, [8, 2, 9, 4, 8, 6, 9]) assert_raises_regex(ValueError, "Cannot insert from an empty array", lambda: place(a, [0, 0, 0, 0, 0, 1, 0], [])) # See Issue #6974 a = np.array(['12', '34']) place(a, [0, 1], '9') assert_array_equal(a, ['12', '9']) def test_both(self): a = rand(10) mask = a > 0.5 ac = a.copy() c = extract(mask, a) place(a, mask, 0) place(a, mask, c) assert_array_equal(a, ac) class TestVectorize(object): def test_simple(self): def addsubtract(a, b): if a > b: return a - b else: return a + b f = vectorize(addsubtract) r = f([0, 3, 6, 9], [1, 3, 5, 7]) assert_array_equal(r, [1, 6, 1, 2]) def test_scalar(self): def addsubtract(a, b): if a > b: return a - b else: return a + b f = vectorize(addsubtract) r = f([0, 3, 6, 9], 5) assert_array_equal(r, [5, 8, 1, 4]) def test_large(self): x = np.linspace(-3, 2, 10000) f = vectorize(lambda x: x) y = f(x) assert_array_equal(y, x) def test_ufunc(self): import math f = vectorize(math.cos) args = np.array([0, 0.5 * np.pi, np.pi, 1.5 * np.pi, 2 * np.pi]) r1 = f(args) r2 = np.cos(args) assert_array_almost_equal(r1, r2) def test_keywords(self): def foo(a, b=1): return a + b f = vectorize(foo) args = np.array([1, 2, 3]) r1 = f(args) r2 = np.array([2, 3, 4]) assert_array_equal(r1, r2) r1 = f(args, 2) r2 = np.array([3, 4, 5]) assert_array_equal(r1, r2) def test_keywords_no_func_code(self): # This needs to test a function that has keywords but # no func_code attribute, since otherwise vectorize will # inspect the func_code. import random try: vectorize(random.randrange) # Should succeed except Exception: raise AssertionError() def test_keywords2_ticket_2100(self): # Test kwarg support: enhancement ticket 2100 def foo(a, b=1): return a + b f = vectorize(foo) args = np.array([1, 2, 3]) r1 = f(a=args) r2 = np.array([2, 3, 4]) assert_array_equal(r1, r2) r1 = f(b=1, a=args) assert_array_equal(r1, r2) r1 = f(args, b=2) r2 = np.array([3, 4, 5]) assert_array_equal(r1, r2) def test_keywords3_ticket_2100(self): # Test excluded with mixed positional and kwargs: ticket 2100 def mypolyval(x, p): _p = list(p) res = _p.pop(0) while _p: res = res * x + _p.pop(0) return res vpolyval = np.vectorize(mypolyval, excluded=['p', 1]) ans = [3, 6] assert_array_equal(ans, vpolyval(x=[0, 1], p=[1, 2, 3])) assert_array_equal(ans, vpolyval([0, 1], p=[1, 2, 3])) assert_array_equal(ans, vpolyval([0, 1], [1, 2, 3])) def test_keywords4_ticket_2100(self): # Test vectorizing function with no positional args. @vectorize def f(**kw): res = 1.0 for _k in kw: res *= kw[_k] return res assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8]) def test_keywords5_ticket_2100(self): # Test vectorizing function with no kwargs args. @vectorize def f(*v): return np.prod(v) assert_array_equal(f([1, 2], [3, 4]), [3, 8]) def test_coverage1_ticket_2100(self): def foo(): return 1 f = vectorize(foo) assert_array_equal(f(), 1) def test_assigning_docstring(self): def foo(x): """Original documentation""" return x f = vectorize(foo) assert_equal(f.__doc__, foo.__doc__) doc = "Provided documentation" f = vectorize(foo, doc=doc) assert_equal(f.__doc__, doc) def test_UnboundMethod_ticket_1156(self): # Regression test for issue 1156 class Foo: b = 2 def bar(self, a): return a ** self.b assert_array_equal(vectorize(Foo().bar)(np.arange(9)), np.arange(9) ** 2) assert_array_equal(vectorize(Foo.bar)(Foo(), np.arange(9)), np.arange(9) ** 2) def test_execution_order_ticket_1487(self): # Regression test for dependence on execution order: issue 1487 f1 = vectorize(lambda x: x) res1a = f1(np.arange(3)) res1b = f1(np.arange(0.1, 3)) f2 = vectorize(lambda x: x) res2b = f2(np.arange(0.1, 3)) res2a = f2(np.arange(3)) assert_equal(res1a, res2a) assert_equal(res1b, res2b) def test_string_ticket_1892(self): # Test vectorization over strings: issue 1892. f = np.vectorize(lambda x: x) s = '0123456789' * 10 assert_equal(s, f(s)) def test_cache(self): # Ensure that vectorized func called exactly once per argument. _calls = [0] @vectorize def f(x): _calls[0] += 1 return x ** 2 f.cache = True x = np.arange(5) assert_array_equal(f(x), x * x) assert_equal(_calls[0], len(x)) def test_otypes(self): f = np.vectorize(lambda x: x) f.otypes = 'i' x = np.arange(5) assert_array_equal(f(x), x) def test_parse_gufunc_signature(self): assert_equal(nfb._parse_gufunc_signature('(x)->()'), ([('x',)], [()])) assert_equal(nfb._parse_gufunc_signature('(x,y)->()'), ([('x', 'y')], [()])) assert_equal(nfb._parse_gufunc_signature('(x),(y)->()'), ([('x',), ('y',)], [()])) assert_equal(nfb._parse_gufunc_signature('(x)->(y)'), ([('x',)], [('y',)])) assert_equal(nfb._parse_gufunc_signature('(x)->(y),()'), ([('x',)], [('y',), ()])) assert_equal(nfb._parse_gufunc_signature('(),(a,b,c),(d)->(d,e)'), ([(), ('a', 'b', 'c'), ('d',)], [('d', 'e')])) with assert_raises(ValueError): nfb._parse_gufunc_signature('(x)(y)->()') with assert_raises(ValueError): nfb._parse_gufunc_signature('(x),(y)->') with assert_raises(ValueError): nfb._parse_gufunc_signature('((x))->(x)') def test_signature_simple(self): def addsubtract(a, b): if a > b: return a - b else: return a + b f = vectorize(addsubtract, signature='(),()->()') r = f([0, 3, 6, 9], [1, 3, 5, 7]) assert_array_equal(r, [1, 6, 1, 2]) def test_signature_mean_last(self): def mean(a): return a.mean() f = vectorize(mean, signature='(n)->()') r = f([[1, 3], [2, 4]]) assert_array_equal(r, [2, 3]) def test_signature_center(self): def center(a): return a - a.mean() f = vectorize(center, signature='(n)->(n)') r = f([[1, 3], [2, 4]]) assert_array_equal(r, [[-1, 1], [-1, 1]]) def test_signature_two_outputs(self): f = vectorize(lambda x: (x, x), signature='()->(),()') r = f([1, 2, 3]) assert_(isinstance(r, tuple) and len(r) == 2) assert_array_equal(r[0], [1, 2, 3]) assert_array_equal(r[1], [1, 2, 3]) def test_signature_outer(self): f = vectorize(np.outer, signature='(a),(b)->(a,b)') r = f([1, 2], [1, 2, 3]) assert_array_equal(r, [[1, 2, 3], [2, 4, 6]]) r = f([[[1, 2]]], [1, 2, 3]) assert_array_equal(r, [[[[1, 2, 3], [2, 4, 6]]]]) r = f([[1, 0], [2, 0]], [1, 2, 3]) assert_array_equal(r, [[[1, 2, 3], [0, 0, 0]], [[2, 4, 6], [0, 0, 0]]]) r = f([1, 2], [[1, 2, 3], [0, 0, 0]]) assert_array_equal(r, [[[1, 2, 3], [2, 4, 6]], [[0, 0, 0], [0, 0, 0]]]) def test_signature_computed_size(self): f = vectorize(lambda x: x[:-1], signature='(n)->(m)') r = f([1, 2, 3]) assert_array_equal(r, [1, 2]) r = f([[1, 2, 3], [2, 3, 4]]) assert_array_equal(r, [[1, 2], [2, 3]]) def test_signature_excluded(self): def foo(a, b=1): return a + b f = vectorize(foo, signature='()->()', excluded={'b'}) assert_array_equal(f([1, 2, 3]), [2, 3, 4]) assert_array_equal(f([1, 2, 3], b=0), [1, 2, 3]) def test_signature_otypes(self): f = vectorize(lambda x: x, signature='(n)->(n)', otypes=['float64']) r = f([1, 2, 3]) assert_equal(r.dtype, np.dtype('float64')) assert_array_equal(r, [1, 2, 3]) def test_signature_invalid_inputs(self): f = vectorize(operator.add, signature='(n),(n)->(n)') with assert_raises_regex(TypeError, 'wrong number of positional'): f([1, 2]) with assert_raises_regex( ValueError, 'does not have enough dimensions'): f(1, 2) with assert_raises_regex( ValueError, 'inconsistent size for core dimension'): f([1, 2], [1, 2, 3]) f = vectorize(operator.add, signature='()->()') with assert_raises_regex(TypeError, 'wrong number of positional'): f(1, 2) def test_signature_invalid_outputs(self): f = vectorize(lambda x: x[:-1], signature='(n)->(n)') with assert_raises_regex( ValueError, 'inconsistent size for core dimension'): f([1, 2, 3]) f = vectorize(lambda x: x, signature='()->(),()') with assert_raises_regex(ValueError, 'wrong number of outputs'): f(1) f = vectorize(lambda x: (x, x), signature='()->()') with assert_raises_regex(ValueError, 'wrong number of outputs'): f([1, 2]) def test_size_zero_output(self): # see issue 5868 f = np.vectorize(lambda x: x) x = np.zeros([0, 5], dtype=int) with assert_raises_regex(ValueError, 'otypes'): f(x) f.otypes = 'i' assert_array_equal(f(x), x) f = np.vectorize(lambda x: x, signature='()->()') with assert_raises_regex(ValueError, 'otypes'): f(x) f = np.vectorize(lambda x: x, signature='()->()', otypes='i') assert_array_equal(f(x), x) f = np.vectorize(lambda x: x, signature='(n)->(n)', otypes='i') assert_array_equal(f(x), x) f = np.vectorize(lambda x: x, signature='(n)->(n)') assert_array_equal(f(x.T), x.T) f = np.vectorize(lambda x: [x], signature='()->(n)', otypes='i') with assert_raises_regex(ValueError, 'new output dimensions'): f(x) class TestLeaks(object): class A(object): iters = 20 def bound(self, *args): return 0 @staticmethod def unbound(*args): return 0 @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") @pytest.mark.parametrize('name, incr', [ ('bound', A.iters), ('unbound', 0), ]) def test_frompyfunc_leaks(self, name, incr): # exposed in gh-11867 as np.vectorized, but the problem stems from # frompyfunc. # class.attribute = np.frompyfunc(<method>) creates a # reference cycle if <method> is a bound class method. It requires a # gc collection cycle to break the cycle (on CPython 3) import gc A_func = getattr(self.A, name) gc.disable() try: refcount = sys.getrefcount(A_func) for i in range(self.A.iters): a = self.A() a.f = np.frompyfunc(getattr(a, name), 1, 1) out = a.f(np.arange(10)) a = None if PY2: assert_equal(sys.getrefcount(A_func), refcount) else: # A.func is part of a reference cycle if incr is non-zero assert_equal(sys.getrefcount(A_func), refcount + incr) for i in range(5): gc.collect() assert_equal(sys.getrefcount(A_func), refcount) finally: gc.enable() class TestDigitize(object): def test_forward(self): x = np.arange(-6, 5) bins = np.arange(-5, 5) assert_array_equal(digitize(x, bins), np.arange(11)) def test_reverse(self): x = np.arange(5, -6, -1) bins = np.arange(5, -5, -1) assert_array_equal(digitize(x, bins), np.arange(11)) def test_random(self): x = rand(10) bin = np.linspace(x.min(), x.max(), 10) assert_(np.all(digitize(x, bin) != 0)) def test_right_basic(self): x = [1, 5, 4, 10, 8, 11, 0] bins = [1, 5, 10] default_answer = [1, 2, 1, 3, 2, 3, 0] assert_array_equal(digitize(x, bins), default_answer) right_answer = [0, 1, 1, 2, 2, 3, 0] assert_array_equal(digitize(x, bins, True), right_answer) def test_right_open(self): x = np.arange(-6, 5) bins = np.arange(-6, 4) assert_array_equal(digitize(x, bins, True), np.arange(11)) def test_right_open_reverse(self): x = np.arange(5, -6, -1) bins = np.arange(4, -6, -1) assert_array_equal(digitize(x, bins, True), np.arange(11)) def test_right_open_random(self): x = rand(10) bins = np.linspace(x.min(), x.max(), 10) assert_(np.all(digitize(x, bins, True) != 10)) def test_monotonic(self): x = [-1, 0, 1, 2] bins = [0, 0, 1] assert_array_equal(digitize(x, bins, False), [0, 2, 3, 3]) assert_array_equal(digitize(x, bins, True), [0, 0, 2, 3]) bins = [1, 1, 0] assert_array_equal(digitize(x, bins, False), [3, 2, 0, 0]) assert_array_equal(digitize(x, bins, True), [3, 3, 2, 0]) bins = [1, 1, 1, 1] assert_array_equal(digitize(x, bins, False), [0, 0, 4, 4]) assert_array_equal(digitize(x, bins, True), [0, 0, 0, 4]) bins = [0, 0, 1, 0] assert_raises(ValueError, digitize, x, bins) bins = [1, 1, 0, 1] assert_raises(ValueError, digitize, x, bins) def test_casting_error(self): x = [1, 2, 3 + 1.j] bins = [1, 2, 3] assert_raises(TypeError, digitize, x, bins) x, bins = bins, x assert_raises(TypeError, digitize, x, bins) def test_return_type(self): # Functions returning indices should always return base ndarrays class A(np.ndarray): pass a = np.arange(5).view(A) b = np.arange(1, 3).view(A) assert_(not isinstance(digitize(b, a, False), A)) assert_(not isinstance(digitize(b, a, True), A)) def test_large_integers_increasing(self): # gh-11022 x = 2**54 # loses precision in a float assert_equal(np.digitize(x, [x - 1, x + 1]), 1) @pytest.mark.xfail( reason="gh-11022: np.core.multiarray._monoticity loses precision") def test_large_integers_decreasing(self): # gh-11022 x = 2**54 # loses precision in a float assert_equal(np.digitize(x, [x + 1, x - 1]), 1) class TestUnwrap(object): def test_simple(self): # check that unwrap removes jumps greater that 2*pi assert_array_equal(unwrap([1, 1 + 2 * np.pi]), [1, 1]) # check that unwrap maintains continuity assert_(np.all(diff(unwrap(rand(10) * 100)) < np.pi)) class TestFilterwindows(object): def test_hanning(self): # check symmetry w = hanning(10) assert_array_almost_equal(w, flipud(w), 7) # check known value assert_almost_equal(np.sum(w, axis=0), 4.500, 4) def test_hamming(self): # check symmetry w = hamming(10) assert_array_almost_equal(w, flipud(w), 7) # check known value assert_almost_equal(np.sum(w, axis=0), 4.9400, 4) def test_bartlett(self): # check symmetry w = bartlett(10) assert_array_almost_equal(w, flipud(w), 7) # check known value assert_almost_equal(np.sum(w, axis=0), 4.4444, 4) def test_blackman(self): # check symmetry w = blackman(10) assert_array_almost_equal(w, flipud(w), 7) # check known value assert_almost_equal(np.sum(w, axis=0), 3.7800, 4) class TestTrapz(object): def test_simple(self): x = np.arange(-10, 10, .1) r = trapz(np.exp(-.5 * x ** 2) / np.sqrt(2 * np.pi), dx=0.1) # check integral of normal equals 1 assert_almost_equal(r, 1, 7) def test_ndim(self): x = np.linspace(0, 1, 3) y = np.linspace(0, 2, 8) z = np.linspace(0, 3, 13) wx = np.ones_like(x) * (x[1] - x[0]) wx[0] /= 2 wx[-1] /= 2 wy = np.ones_like(y) * (y[1] - y[0]) wy[0] /= 2 wy[-1] /= 2 wz = np.ones_like(z) * (z[1] - z[0]) wz[0] /= 2 wz[-1] /= 2 q = x[:, None, None] + y[None,:, None] + z[None, None,:] qx = (q * wx[:, None, None]).sum(axis=0) qy = (q * wy[None, :, None]).sum(axis=1) qz = (q * wz[None, None, :]).sum(axis=2) # n-d `x` r = trapz(q, x=x[:, None, None], axis=0) assert_almost_equal(r, qx) r = trapz(q, x=y[None,:, None], axis=1) assert_almost_equal(r, qy) r = trapz(q, x=z[None, None,:], axis=2) assert_almost_equal(r, qz) # 1-d `x` r = trapz(q, x=x, axis=0) assert_almost_equal(r, qx) r = trapz(q, x=y, axis=1) assert_almost_equal(r, qy) r = trapz(q, x=z, axis=2) assert_almost_equal(r, qz) def test_masked(self): # Testing that masked arrays behave as if the function is 0 where # masked x = np.arange(5) y = x * x mask = x == 2 ym = np.ma.array(y, mask=mask) r = 13.0 # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16)) assert_almost_equal(trapz(ym, x), r) xm = np.ma.array(x, mask=mask) assert_almost_equal(trapz(ym, xm), r) xm = np.ma.array(x, mask=mask) assert_almost_equal(trapz(y, xm), r) class TestSinc(object): def test_simple(self): assert_(sinc(0) == 1) w = sinc(np.linspace(-1, 1, 100)) # check symmetry assert_array_almost_equal(w, flipud(w), 7) def test_array_like(self): x = [0, 0.5] y1 = sinc(np.array(x)) y2 = sinc(list(x)) y3 = sinc(tuple(x)) assert_array_equal(y1, y2) assert_array_equal(y1, y3) class TestUnique(object): def test_simple(self): x = np.array([4, 3, 2, 1, 1, 2, 3, 4, 0]) assert_(np.all(unique(x) == [0, 1, 2, 3, 4])) assert_(unique(np.array([1, 1, 1, 1, 1])) == np.array([1])) x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham'] assert_(np.all(unique(x) == ['bar', 'foo', 'ham', 'widget'])) x = np.array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j]) assert_(np.all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10])) class TestCheckFinite(object): def test_simple(self): a = [1, 2, 3] b = [1, 2, np.inf] c = [1, 2, np.nan] np.lib.asarray_chkfinite(a) assert_raises(ValueError, np.lib.asarray_chkfinite, b) assert_raises(ValueError, np.lib.asarray_chkfinite, c) def test_dtype_order(self): # Regression test for missing dtype and order arguments a = [1, 2, 3] a = np.lib.asarray_chkfinite(a, order='F', dtype=np.float64) assert_(a.dtype == np.float64) class TestCorrCoef(object): A = np.array( [[0.15391142, 0.18045767, 0.14197213], [0.70461506, 0.96474128, 0.27906989], [0.9297531, 0.32296769, 0.19267156]]) B = np.array( [[0.10377691, 0.5417086, 0.49807457], [0.82872117, 0.77801674, 0.39226705], [0.9314666, 0.66800209, 0.03538394]]) res1 = np.array( [[1., 0.9379533, -0.04931983], [0.9379533, 1., 0.30007991], [-0.04931983, 0.30007991, 1.]]) res2 = np.array( [[1., 0.9379533, -0.04931983, 0.30151751, 0.66318558, 0.51532523], [0.9379533, 1., 0.30007991, -0.04781421, 0.88157256, 0.78052386], [-0.04931983, 0.30007991, 1., -0.96717111, 0.71483595, 0.83053601], [0.30151751, -0.04781421, -0.96717111, 1., -0.51366032, -0.66173113], [0.66318558, 0.88157256, 0.71483595, -0.51366032, 1., 0.98317823], [0.51532523, 0.78052386, 0.83053601, -0.66173113, 0.98317823, 1.]]) def test_non_array(self): assert_almost_equal(np.corrcoef([0, 1, 0], [1, 0, 1]), [[1., -1.], [-1., 1.]]) def test_simple(self): tgt1 = corrcoef(self.A) assert_almost_equal(tgt1, self.res1) assert_(np.all(np.abs(tgt1) <= 1.0)) tgt2 = corrcoef(self.A, self.B) assert_almost_equal(tgt2, self.res2) assert_(np.all(np.abs(tgt2) <= 1.0)) def test_ddof(self): # ddof raises DeprecationWarning with suppress_warnings() as sup: warnings.simplefilter("always") assert_warns(DeprecationWarning, corrcoef, self.A, ddof=-1) sup.filter(DeprecationWarning) # ddof has no or negligible effect on the function assert_almost_equal(corrcoef(self.A, ddof=-1), self.res1) assert_almost_equal(corrcoef(self.A, self.B, ddof=-1), self.res2) assert_almost_equal(corrcoef(self.A, ddof=3), self.res1) assert_almost_equal(corrcoef(self.A, self.B, ddof=3), self.res2) def test_bias(self): # bias raises DeprecationWarning with suppress_warnings() as sup: warnings.simplefilter("always") assert_warns(DeprecationWarning, corrcoef, self.A, self.B, 1, 0) assert_warns(DeprecationWarning, corrcoef, self.A, bias=0) sup.filter(DeprecationWarning) # bias has no or negligible effect on the function assert_almost_equal(corrcoef(self.A, bias=1), self.res1) def test_complex(self): x = np.array([[1, 2, 3], [1j, 2j, 3j]]) res = corrcoef(x) tgt = np.array([[1., -1.j], [1.j, 1.]]) assert_allclose(res, tgt) assert_(np.all(np.abs(res) <= 1.0)) def test_xy(self): x = np.array([[1, 2, 3]]) y = np.array([[1j, 2j, 3j]]) assert_allclose(np.corrcoef(x, y), np.array([[1., -1.j], [1.j, 1.]])) def test_empty(self): with warnings.catch_warnings(record=True): warnings.simplefilter('always', RuntimeWarning) assert_array_equal(corrcoef(np.array([])), np.nan) assert_array_equal(corrcoef(np.array([]).reshape(0, 2)), np.array([]).reshape(0, 0)) assert_array_equal(corrcoef(np.array([]).reshape(2, 0)), np.array([[np.nan, np.nan], [np.nan, np.nan]])) def test_extreme(self): x = [[1e-100, 1e100], [1e100, 1e-100]] with np.errstate(all='raise'): c = corrcoef(x) assert_array_almost_equal(c, np.array([[1., -1.], [-1., 1.]])) assert_(np.all(np.abs(c) <= 1.0)) class TestCov(object): x1 = np.array([[0, 2], [1, 1], [2, 0]]).T res1 = np.array([[1., -1.], [-1., 1.]]) x2 = np.array([0.0, 1.0, 2.0], ndmin=2) frequencies = np.array([1, 4, 1]) x2_repeats = np.array([[0.0], [1.0], [1.0], [1.0], [1.0], [2.0]]).T res2 = np.array([[0.4, -0.4], [-0.4, 0.4]]) unit_frequencies = np.ones(3, dtype=np.integer) weights = np.array([1.0, 4.0, 1.0]) res3 = np.array([[2. / 3., -2. / 3.], [-2. / 3., 2. / 3.]]) unit_weights = np.ones(3) x3 = np.array([0.3942, 0.5969, 0.7730, 0.9918, 0.7964]) def test_basic(self): assert_allclose(cov(self.x1), self.res1) def test_complex(self): x = np.array([[1, 2, 3], [1j, 2j, 3j]]) res = np.array([[1., -1.j], [1.j, 1.]]) assert_allclose(cov(x), res) assert_allclose(cov(x, aweights=np.ones(3)), res) def test_xy(self): x = np.array([[1, 2, 3]]) y = np.array([[1j, 2j, 3j]]) assert_allclose(cov(x, y), np.array([[1., -1.j], [1.j, 1.]])) def test_empty(self): with warnings.catch_warnings(record=True): warnings.simplefilter('always', RuntimeWarning) assert_array_equal(cov(np.array([])), np.nan) assert_array_equal(cov(np.array([]).reshape(0, 2)), np.array([]).reshape(0, 0)) assert_array_equal(cov(np.array([]).reshape(2, 0)), np.array([[np.nan, np.nan], [np.nan, np.nan]])) def test_wrong_ddof(self): with warnings.catch_warnings(record=True): warnings.simplefilter('always', RuntimeWarning) assert_array_equal(cov(self.x1, ddof=5), np.array([[np.inf, -np.inf], [-np.inf, np.inf]])) def test_1D_rowvar(self): assert_allclose(cov(self.x3), cov(self.x3, rowvar=0)) y = np.array([0.0780, 0.3107, 0.2111, 0.0334, 0.8501]) assert_allclose(cov(self.x3, y), cov(self.x3, y, rowvar=0)) def test_1D_variance(self): assert_allclose(cov(self.x3, ddof=1), np.var(self.x3, ddof=1)) def test_fweights(self): assert_allclose(cov(self.x2, fweights=self.frequencies), cov(self.x2_repeats)) assert_allclose(cov(self.x1, fweights=self.frequencies), self.res2) assert_allclose(cov(self.x1, fweights=self.unit_frequencies), self.res1) nonint = self.frequencies + 0.5 assert_raises(TypeError, cov, self.x1, fweights=nonint) f = np.ones((2, 3), dtype=np.integer) assert_raises(RuntimeError, cov, self.x1, fweights=f) f = np.ones(2, dtype=np.integer) assert_raises(RuntimeError, cov, self.x1, fweights=f) f = -1 * np.ones(3, dtype=np.integer) assert_raises(ValueError, cov, self.x1, fweights=f) def test_aweights(self): assert_allclose(cov(self.x1, aweights=self.weights), self.res3) assert_allclose(cov(self.x1, aweights=3.0 * self.weights), cov(self.x1, aweights=self.weights)) assert_allclose(cov(self.x1, aweights=self.unit_weights), self.res1) w = np.ones((2, 3)) assert_raises(RuntimeError, cov, self.x1, aweights=w) w = np.ones(2) assert_raises(RuntimeError, cov, self.x1, aweights=w) w = -1.0 * np.ones(3) assert_raises(ValueError, cov, self.x1, aweights=w) def test_unit_fweights_and_aweights(self): assert_allclose(cov(self.x2, fweights=self.frequencies, aweights=self.unit_weights), cov(self.x2_repeats)) assert_allclose(cov(self.x1, fweights=self.frequencies, aweights=self.unit_weights), self.res2) assert_allclose(cov(self.x1, fweights=self.unit_frequencies, aweights=self.unit_weights), self.res1) assert_allclose(cov(self.x1, fweights=self.unit_frequencies, aweights=self.weights), self.res3) assert_allclose(cov(self.x1, fweights=self.unit_frequencies, aweights=3.0 * self.weights), cov(self.x1, aweights=self.weights)) assert_allclose(cov(self.x1, fweights=self.unit_frequencies, aweights=self.unit_weights), self.res1) class Test_I0(object): def test_simple(self): assert_almost_equal( i0(0.5), np.array(1.0634833707413234)) A = np.array([0.49842636, 0.6969809, 0.22011976, 0.0155549]) expected = np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049]) assert_almost_equal(i0(A), expected) assert_almost_equal(i0(-A), expected) B = np.array([[0.827002, 0.99959078], [0.89694769, 0.39298162], [0.37954418, 0.05206293], [0.36465447, 0.72446427], [0.48164949, 0.50324519]]) assert_almost_equal( i0(B), np.array([[1.17843223, 1.26583466], [1.21147086, 1.03898290], [1.03633899, 1.00067775], [1.03352052, 1.13557954], [1.05884290, 1.06432317]])) # Regression test for gh-11205 i0_0 = np.i0([0.]) assert_equal(i0_0.shape, (1,)) assert_array_equal(np.i0([0.]), np.array([1.])) def test_non_array(self): a = np.arange(4) class array_like: __array_interface__ = a.__array_interface__ def __array_wrap__(self, arr): return self # E.g. pandas series survive ufunc calls through array-wrap: assert isinstance(np.abs(array_like()), array_like) exp = np.i0(a) res = np.i0(array_like()) assert_array_equal(exp, res) class TestKaiser(object): def test_simple(self): assert_(np.isfinite(kaiser(1, 1.0))) assert_almost_equal(kaiser(0, 1.0), np.array([])) assert_almost_equal(kaiser(2, 1.0), np.array([0.78984831, 0.78984831])) assert_almost_equal(kaiser(5, 1.0), np.array([0.78984831, 0.94503323, 1., 0.94503323, 0.78984831])) assert_almost_equal(kaiser(5, 1.56789), np.array([0.58285404, 0.88409679, 1., 0.88409679, 0.58285404])) def test_int_beta(self): kaiser(3, 4) class TestMsort(object): def test_simple(self): A = np.array([[0.44567325, 0.79115165, 0.54900530], [0.36844147, 0.37325583, 0.96098397], [0.64864341, 0.52929049, 0.39172155]]) assert_almost_equal( msort(A), np.array([[0.36844147, 0.37325583, 0.39172155], [0.44567325, 0.52929049, 0.54900530], [0.64864341, 0.79115165, 0.96098397]])) class TestMeshgrid(object): def test_simple(self): [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7]) assert_array_equal(X, np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]])) assert_array_equal(Y, np.array([[4, 4, 4], [5, 5, 5], [6, 6, 6], [7, 7, 7]])) def test_single_input(self): [X] = meshgrid([1, 2, 3, 4]) assert_array_equal(X, np.array([1, 2, 3, 4])) def test_no_input(self): args = [] assert_array_equal([], meshgrid(*args)) assert_array_equal([], meshgrid(*args, copy=False)) def test_indexing(self): x = [1, 2, 3] y = [4, 5, 6, 7] [X, Y] = meshgrid(x, y, indexing='ij') assert_array_equal(X, np.array([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]])) assert_array_equal(Y, np.array([[4, 5, 6, 7], [4, 5, 6, 7], [4, 5, 6, 7]])) # Test expected shapes: z = [8, 9] assert_(meshgrid(x, y)[0].shape == (4, 3)) assert_(meshgrid(x, y, indexing='ij')[0].shape == (3, 4)) assert_(meshgrid(x, y, z)[0].shape == (4, 3, 2)) assert_(meshgrid(x, y, z, indexing='ij')[0].shape == (3, 4, 2)) assert_raises(ValueError, meshgrid, x, y, indexing='notvalid') def test_sparse(self): [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7], sparse=True) assert_array_equal(X, np.array([[1, 2, 3]])) assert_array_equal(Y, np.array([[4], [5], [6], [7]])) def test_invalid_arguments(self): # Test that meshgrid complains about invalid arguments # Regression test for issue #4755: # https://github.com/numpy/numpy/issues/4755 assert_raises(TypeError, meshgrid, [1, 2, 3], [4, 5, 6, 7], indices='ij') def test_return_type(self): # Test for appropriate dtype in returned arrays. # Regression test for issue #5297 # https://github.com/numpy/numpy/issues/5297 x = np.arange(0, 10, dtype=np.float32) y = np.arange(10, 20, dtype=np.float64) X, Y = np.meshgrid(x,y) assert_(X.dtype == x.dtype) assert_(Y.dtype == y.dtype) # copy X, Y = np.meshgrid(x,y, copy=True) assert_(X.dtype == x.dtype) assert_(Y.dtype == y.dtype) # sparse X, Y = np.meshgrid(x,y, sparse=True) assert_(X.dtype == x.dtype) assert_(Y.dtype == y.dtype) def test_writeback(self): # Issue 8561 X = np.array([1.1, 2.2]) Y = np.array([3.3, 4.4]) x, y = np.meshgrid(X, Y, sparse=False, copy=True) x[0, :] = 0 assert_equal(x[0, :], 0) assert_equal(x[1, :], X) class TestPiecewise(object): def test_simple(self): # Condition is single bool list x = piecewise([0, 0], [True, False], [1]) assert_array_equal(x, [1, 0]) # List of conditions: single bool list x = piecewise([0, 0], [[True, False]], [1]) assert_array_equal(x, [1, 0]) # Conditions is single bool array x = piecewise([0, 0], np.array([True, False]), [1]) assert_array_equal(x, [1, 0]) # Condition is single int array x = piecewise([0, 0], np.array([1, 0]), [1]) assert_array_equal(x, [1, 0]) # List of conditions: int array x = piecewise([0, 0], [np.array([1, 0])], [1]) assert_array_equal(x, [1, 0]) x = piecewise([0, 0], [[False, True]], [lambda x:-1]) assert_array_equal(x, [0, -1]) assert_raises_regex(ValueError, '1 or 2 functions are expected', piecewise, [0, 0], [[False, True]], []) assert_raises_regex(ValueError, '1 or 2 functions are expected', piecewise, [0, 0], [[False, True]], [1, 2, 3]) def test_two_conditions(self): x = piecewise([1, 2], [[True, False], [False, True]], [3, 4]) assert_array_equal(x, [3, 4]) def test_scalar_domains_three_conditions(self): x = piecewise(3, [True, False, False], [4, 2, 0]) assert_equal(x, 4) def test_default(self): # No value specified for x[1], should be 0 x = piecewise([1, 2], [True, False], [2]) assert_array_equal(x, [2, 0]) # Should set x[1] to 3 x = piecewise([1, 2], [True, False], [2, 3]) assert_array_equal(x, [2, 3]) def test_0d(self): x = np.array(3) y = piecewise(x, x > 3, [4, 0]) assert_(y.ndim == 0) assert_(y == 0) x = 5 y = piecewise(x, [True, False], [1, 0]) assert_(y.ndim == 0) assert_(y == 1) # With 3 ranges (It was failing, before) y = piecewise(x, [False, False, True], [1, 2, 3]) assert_array_equal(y, 3) def test_0d_comparison(self): x = 3 y = piecewise(x, [x <= 3, x > 3], [4, 0]) # Should succeed. assert_equal(y, 4) # With 3 ranges (It was failing, before) x = 4 y = piecewise(x, [x <= 3, (x > 3) * (x <= 5), x > 5], [1, 2, 3]) assert_array_equal(y, 2) assert_raises_regex(ValueError, '2 or 3 functions are expected', piecewise, x, [x <= 3, x > 3], [1]) assert_raises_regex(ValueError, '2 or 3 functions are expected', piecewise, x, [x <= 3, x > 3], [1, 1, 1, 1]) def test_0d_0d_condition(self): x = np.array(3) c = np.array(x > 3) y = piecewise(x, [c], [1, 2]) assert_equal(y, 2) def test_multidimensional_extrafunc(self): x = np.array([[-2.5, -1.5, -0.5], [0.5, 1.5, 2.5]]) y = piecewise(x, [x < 0, x >= 2], [-1, 1, 3]) assert_array_equal(y, np.array([[-1., -1., -1.], [3., 3., 1.]])) class TestBincount(object): def test_simple(self): y = np.bincount(np.arange(4)) assert_array_equal(y, np.ones(4)) def test_simple2(self): y = np.bincount(np.array([1, 5, 2, 4, 1])) assert_array_equal(y, np.array([0, 2, 1, 0, 1, 1])) def test_simple_weight(self): x = np.arange(4) w = np.array([0.2, 0.3, 0.5, 0.1]) y = np.bincount(x, w) assert_array_equal(y, w) def test_simple_weight2(self): x = np.array([1, 2, 4, 5, 2]) w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) y = np.bincount(x, w) assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1])) def test_with_minlength(self): x = np.array([0, 1, 0, 1, 1]) y = np.bincount(x, minlength=3) assert_array_equal(y, np.array([2, 3, 0])) x = [] y = np.bincount(x, minlength=0) assert_array_equal(y, np.array([])) def test_with_minlength_smaller_than_maxvalue(self): x = np.array([0, 1, 1, 2, 2, 3, 3]) y = np.bincount(x, minlength=2) assert_array_equal(y, np.array([1, 2, 2, 2])) y = np.bincount(x, minlength=0) assert_array_equal(y, np.array([1, 2, 2, 2])) def test_with_minlength_and_weights(self): x = np.array([1, 2, 4, 5, 2]) w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) y = np.bincount(x, w, 8) assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1, 0, 0])) def test_empty(self): x = np.array([], dtype=int) y = np.bincount(x) assert_array_equal(x, y) def test_empty_with_minlength(self): x = np.array([], dtype=int) y = np.bincount(x, minlength=5) assert_array_equal(y, np.zeros(5, dtype=int)) def test_with_incorrect_minlength(self): x = np.array([], dtype=int) assert_raises_regex(TypeError, "'str' object cannot be interpreted", lambda: np.bincount(x, minlength="foobar")) assert_raises_regex(ValueError, "must not be negative", lambda: np.bincount(x, minlength=-1)) x = np.arange(5) assert_raises_regex(TypeError, "'str' object cannot be interpreted", lambda: np.bincount(x, minlength="foobar")) assert_raises_regex(ValueError, "must not be negative", lambda: np.bincount(x, minlength=-1)) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_dtype_reference_leaks(self): # gh-6805 intp_refcount = sys.getrefcount(np.dtype(np.intp)) double_refcount = sys.getrefcount(np.dtype(np.double)) for j in range(10): np.bincount([1, 2, 3]) assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) for j in range(10): np.bincount([1, 2, 3], [4, 5, 6]) assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) class TestInterp(object): def test_exceptions(self): assert_raises(ValueError, interp, 0, [], []) assert_raises(ValueError, interp, 0, [0], [1, 2]) assert_raises(ValueError, interp, 0, [0, 1], [1, 2], period=0) assert_raises(ValueError, interp, 0, [], [], period=360) assert_raises(ValueError, interp, 0, [0], [1, 2], period=360) def test_basic(self): x = np.linspace(0, 1, 5) y = np.linspace(0, 1, 5) x0 = np.linspace(0, 1, 50) assert_almost_equal(np.interp(x0, x, y), x0) def test_right_left_behavior(self): # Needs range of sizes to test different code paths. # size ==1 is special cased, 1 < size < 5 is linear search, and # size >= 5 goes through local search and possibly binary search. for size in range(1, 10): xp = np.arange(size, dtype=np.double) yp = np.ones(size, dtype=np.double) incpts = np.array([-1, 0, size - 1, size], dtype=np.double) decpts = incpts[::-1] incres = interp(incpts, xp, yp) decres = interp(decpts, xp, yp) inctgt = np.array([1, 1, 1, 1], dtype=float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) incres = interp(incpts, xp, yp, left=0) decres = interp(decpts, xp, yp, left=0) inctgt = np.array([0, 1, 1, 1], dtype=float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) incres = interp(incpts, xp, yp, right=2) decres = interp(decpts, xp, yp, right=2) inctgt = np.array([1, 1, 1, 2], dtype=float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) incres = interp(incpts, xp, yp, left=0, right=2) decres = interp(decpts, xp, yp, left=0, right=2) inctgt = np.array([0, 1, 1, 2], dtype=float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) def test_scalar_interpolation_point(self): x = np.linspace(0, 1, 5) y = np.linspace(0, 1, 5) x0 = 0 assert_almost_equal(np.interp(x0, x, y), x0) x0 = .3 assert_almost_equal(np.interp(x0, x, y), x0) x0 = np.float32(.3) assert_almost_equal(np.interp(x0, x, y), x0) x0 = np.float64(.3) assert_almost_equal(np.interp(x0, x, y), x0) x0 = np.nan assert_almost_equal(np.interp(x0, x, y), x0) def test_non_finite_behavior_exact_x(self): x = [1, 2, 2.5, 3, 4] xp = [1, 2, 3, 4] fp = [1, 2, np.inf, 4] assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.inf, np.inf, 4]) fp = [1, 2, np.nan, 4] assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.nan, np.nan, 4]) @pytest.fixture(params=[ lambda x: np.float_(x), lambda x: _make_complex(x, 0), lambda x: _make_complex(0, x), lambda x: _make_complex(x, np.multiply(x, -2)) ], ids=[ 'real', 'complex-real', 'complex-imag', 'complex-both' ]) def sc(self, request): """ scale function used by the below tests """ return request.param def test_non_finite_any_nan(self, sc): """ test that nans are propagated """ assert_equal(np.interp(0.5, [np.nan, 1], sc([ 0, 10])), sc(np.nan)) assert_equal(np.interp(0.5, [ 0, np.nan], sc([ 0, 10])), sc(np.nan)) assert_equal(np.interp(0.5, [ 0, 1], sc([np.nan, 10])), sc(np.nan)) assert_equal(np.interp(0.5, [ 0, 1], sc([ 0, np.nan])), sc(np.nan)) def test_non_finite_inf(self, sc): """ Test that interp between opposite infs gives nan """ assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 0, 10])), sc(np.nan)) assert_equal(np.interp(0.5, [ 0, 1], sc([-np.inf, +np.inf])), sc(np.nan)) assert_equal(np.interp(0.5, [ 0, 1], sc([+np.inf, -np.inf])), sc(np.nan)) # unless the y values are equal assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 10, 10])), sc(10)) def test_non_finite_half_inf_xf(self, sc): """ Test that interp where both axes have a bound at inf gives nan """ assert_equal(np.interp(0.5, [-np.inf, 1], sc([-np.inf, 10])), sc(np.nan)) assert_equal(np.interp(0.5, [-np.inf, 1], sc([+np.inf, 10])), sc(np.nan)) assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, -np.inf])), sc(np.nan)) assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, +np.inf])), sc(np.nan)) assert_equal(np.interp(0.5, [ 0, +np.inf], sc([-np.inf, 10])), sc(np.nan)) assert_equal(np.interp(0.5, [ 0, +np.inf], sc([+np.inf, 10])), sc(np.nan)) assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, -np.inf])), sc(np.nan)) assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, +np.inf])), sc(np.nan)) def test_non_finite_half_inf_x(self, sc): """ Test interp where the x axis has a bound at inf """ assert_equal(np.interp(0.5, [-np.inf, -np.inf], sc([0, 10])), sc(10)) assert_equal(np.interp(0.5, [-np.inf, 1 ], sc([0, 10])), sc(10)) assert_equal(np.interp(0.5, [ 0, +np.inf], sc([0, 10])), sc(0)) assert_equal(np.interp(0.5, [+np.inf, +np.inf], sc([0, 10])), sc(0)) def test_non_finite_half_inf_f(self, sc): """ Test interp where the f axis has a bound at inf """ assert_equal(np.interp(0.5, [0, 1], sc([ 0, -np.inf])), sc(-np.inf)) assert_equal(np.interp(0.5, [0, 1], sc([ 0, +np.inf])), sc(+np.inf)) assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, 10])), sc(-np.inf)) assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, 10])), sc(+np.inf)) assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, -np.inf])), sc(-np.inf)) assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, +np.inf])), sc(+np.inf)) def test_complex_interp(self): # test complex interpolation x = np.linspace(0, 1, 5) y = np.linspace(0, 1, 5) + (1 + np.linspace(0, 1, 5))*1.0j x0 = 0.3 y0 = x0 + (1+x0)*1.0j assert_almost_equal(np.interp(x0, x, y), y0) # test complex left and right x0 = -1 left = 2 + 3.0j assert_almost_equal(np.interp(x0, x, y, left=left), left) x0 = 2.0 right = 2 + 3.0j assert_almost_equal(np.interp(x0, x, y, right=right), right) # test complex non finite x = [1, 2, 2.5, 3, 4] xp = [1, 2, 3, 4] fp = [1, 2+1j, np.inf, 4] y = [1, 2+1j, np.inf+0.5j, np.inf, 4] assert_almost_equal(np.interp(x, xp, fp), y) # test complex periodic x = [-180, -170, -185, 185, -10, -5, 0, 365] xp = [190, -190, 350, -350] fp = [5+1.0j, 10+2j, 3+3j, 4+4j] y = [7.5+1.5j, 5.+1.0j, 8.75+1.75j, 6.25+1.25j, 3.+3j, 3.25+3.25j, 3.5+3.5j, 3.75+3.75j] assert_almost_equal(np.interp(x, xp, fp, period=360), y) def test_zero_dimensional_interpolation_point(self): x = np.linspace(0, 1, 5) y = np.linspace(0, 1, 5) x0 = np.array(.3) assert_almost_equal(np.interp(x0, x, y), x0) xp = np.array([0, 2, 4]) fp = np.array([1, -1, 1]) actual = np.interp(np.array(1), xp, fp) assert_equal(actual, 0) assert_(isinstance(actual, np.float64)) actual = np.interp(np.array(4.5), xp, fp, period=4) assert_equal(actual, 0.5) assert_(isinstance(actual, np.float64)) def test_if_len_x_is_small(self): xp = np.arange(0, 10, 0.0001) fp = np.sin(xp) assert_almost_equal(np.interp(np.pi, xp, fp), 0.0) def test_period(self): x = [-180, -170, -185, 185, -10, -5, 0, 365] xp = [190, -190, 350, -350] fp = [5, 10, 3, 4] y = [7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75] assert_almost_equal(np.interp(x, xp, fp, period=360), y) x = np.array(x, order='F').reshape(2, -1) y = np.array(y, order='C').reshape(2, -1) assert_almost_equal(np.interp(x, xp, fp, period=360), y) def compare_results(res, desired): for i in range(len(desired)): assert_array_equal(res[i], desired[i]) class TestPercentile(object): def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.percentile(x, 0), 0.) assert_equal(np.percentile(x, 100), 3.5) assert_equal(np.percentile(x, 50), 1.75) x[1] = np.nan assert_equal(np.percentile(x, 0), np.nan) assert_equal(np.percentile(x, 0, interpolation='nearest'), np.nan) def test_fraction(self): x = [Fraction(i, 2) for i in np.arange(8)] p = np.percentile(x, Fraction(0)) assert_equal(p, Fraction(0)) assert_equal(type(p), Fraction) p = np.percentile(x, Fraction(100)) assert_equal(p, Fraction(7, 2)) assert_equal(type(p), Fraction) p = np.percentile(x, Fraction(50)) assert_equal(p, Fraction(7, 4)) assert_equal(type(p), Fraction) def test_api(self): d = np.ones(5) np.percentile(d, 5, None, None, False) np.percentile(d, 5, None, None, False, 'linear') o = np.ones((1,)) np.percentile(d, 5, None, o, False, 'linear') def test_2D(self): x = np.array([[1, 1, 1], [1, 1, 1], [4, 4, 3], [1, 1, 1], [1, 1, 1]]) assert_array_equal(np.percentile(x, 50, axis=0), [1, 1, 1]) def test_linear(self): # Test defaults assert_equal(np.percentile(range(10), 50), 4.5) # explicitly specify interpolation_method 'linear' (the default) assert_equal(np.percentile(range(10), 50, interpolation='linear'), 4.5) def test_lower_higher(self): # interpolation_method 'lower'/'higher' assert_equal(np.percentile(range(10), 50, interpolation='lower'), 4) assert_equal(np.percentile(range(10), 50, interpolation='higher'), 5) def test_midpoint(self): assert_equal(np.percentile(range(10), 51, interpolation='midpoint'), 4.5) assert_equal(np.percentile(range(11), 51, interpolation='midpoint'), 5.5) assert_equal(np.percentile(range(11), 50, interpolation='midpoint'), 5) def test_nearest(self): assert_equal(np.percentile(range(10), 51, interpolation='nearest'), 5) assert_equal(np.percentile(range(10), 49, interpolation='nearest'), 4) def test_sequence(self): x = np.arange(8) * 0.5 assert_equal(np.percentile(x, [0, 100, 50]), [0, 3.5, 1.75]) def test_axis(self): x = np.arange(12).reshape(3, 4) assert_equal(np.percentile(x, (25, 50, 100)), [2.75, 5.5, 11.0]) r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]] assert_equal(np.percentile(x, (25, 50, 100), axis=0), r0) r1 = [[0.75, 1.5, 3], [4.75, 5.5, 7], [8.75, 9.5, 11]] assert_equal(np.percentile(x, (25, 50, 100), axis=1), np.array(r1).T) # ensure qth axis is always first as with np.array(old_percentile(..)) x = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6) assert_equal(np.percentile(x, (25, 50)).shape, (2,)) assert_equal(np.percentile(x, (25, 50, 75)).shape, (3,)) assert_equal(np.percentile(x, (25, 50), axis=0).shape, (2, 4, 5, 6)) assert_equal(np.percentile(x, (25, 50), axis=1).shape, (2, 3, 5, 6)) assert_equal(np.percentile(x, (25, 50), axis=2).shape, (2, 3, 4, 6)) assert_equal(np.percentile(x, (25, 50), axis=3).shape, (2, 3, 4, 5)) assert_equal( np.percentile(x, (25, 50, 75), axis=1).shape, (3, 3, 5, 6)) assert_equal(np.percentile(x, (25, 50), interpolation="higher").shape, (2,)) assert_equal(np.percentile(x, (25, 50, 75), interpolation="higher").shape, (3,)) assert_equal(np.percentile(x, (25, 50), axis=0, interpolation="higher").shape, (2, 4, 5, 6)) assert_equal(np.percentile(x, (25, 50), axis=1, interpolation="higher").shape, (2, 3, 5, 6)) assert_equal(np.percentile(x, (25, 50), axis=2, interpolation="higher").shape, (2, 3, 4, 6)) assert_equal(np.percentile(x, (25, 50), axis=3, interpolation="higher").shape, (2, 3, 4, 5)) assert_equal(np.percentile(x, (25, 50, 75), axis=1, interpolation="higher").shape, (3, 3, 5, 6)) def test_scalar_q(self): # test for no empty dimensions for compatibility with old percentile x = np.arange(12).reshape(3, 4) assert_equal(np.percentile(x, 50), 5.5) assert_(np.isscalar(np.percentile(x, 50))) r0 = np.array([4., 5., 6., 7.]) assert_equal(np.percentile(x, 50, axis=0), r0) assert_equal(np.percentile(x, 50, axis=0).shape, r0.shape) r1 = np.array([1.5, 5.5, 9.5]) assert_almost_equal(np.percentile(x, 50, axis=1), r1) assert_equal(np.percentile(x, 50, axis=1).shape, r1.shape) out = np.empty(1) assert_equal(np.percentile(x, 50, out=out), 5.5) assert_equal(out, 5.5) out = np.empty(4) assert_equal(np.percentile(x, 50, axis=0, out=out), r0) assert_equal(out, r0) out = np.empty(3) assert_equal(np.percentile(x, 50, axis=1, out=out), r1) assert_equal(out, r1) # test for no empty dimensions for compatibility with old percentile x = np.arange(12).reshape(3, 4) assert_equal(np.percentile(x, 50, interpolation='lower'), 5.) assert_(np.isscalar(np.percentile(x, 50))) r0 = np.array([4., 5., 6., 7.]) c0 = np.percentile(x, 50, interpolation='lower', axis=0) assert_equal(c0, r0) assert_equal(c0.shape, r0.shape) r1 = np.array([1., 5., 9.]) c1 = np.percentile(x, 50, interpolation='lower', axis=1) assert_almost_equal(c1, r1) assert_equal(c1.shape, r1.shape) out = np.empty((), dtype=x.dtype) c = np.percentile(x, 50, interpolation='lower', out=out) assert_equal(c, 5) assert_equal(out, 5) out = np.empty(4, dtype=x.dtype) c = np.percentile(x, 50, interpolation='lower', axis=0, out=out) assert_equal(c, r0) assert_equal(out, r0) out = np.empty(3, dtype=x.dtype) c = np.percentile(x, 50, interpolation='lower', axis=1, out=out) assert_equal(c, r1) assert_equal(out, r1) def test_exception(self): assert_raises(ValueError, np.percentile, [1, 2], 56, interpolation='foobar') assert_raises(ValueError, np.percentile, [1], 101) assert_raises(ValueError, np.percentile, [1], -1) assert_raises(ValueError, np.percentile, [1], list(range(50)) + [101]) assert_raises(ValueError, np.percentile, [1], list(range(50)) + [-0.1]) def test_percentile_list(self): assert_equal(np.percentile([1, 2, 3], 0), 1) def test_percentile_out(self): x = np.array([1, 2, 3]) y = np.zeros((3,)) p = (1, 2, 3) np.percentile(x, p, out=y) assert_equal(y, np.percentile(x, p)) x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.zeros((3, 3)) np.percentile(x, p, axis=0, out=y) assert_equal(y, np.percentile(x, p, axis=0)) y = np.zeros((3, 2)) np.percentile(x, p, axis=1, out=y) assert_equal(y, np.percentile(x, p, axis=1)) x = np.arange(12).reshape(3, 4) # q.dim > 1, float r0 = np.array([[2., 3., 4., 5.], [4., 5., 6., 7.]]) out = np.empty((2, 4)) assert_equal(np.percentile(x, (25, 50), axis=0, out=out), r0) assert_equal(out, r0) r1 = np.array([[0.75, 4.75, 8.75], [1.5, 5.5, 9.5]]) out = np.empty((2, 3)) assert_equal(np.percentile(x, (25, 50), axis=1, out=out), r1) assert_equal(out, r1) # q.dim > 1, int r0 = np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) out = np.empty((2, 4), dtype=x.dtype) c = np.percentile(x, (25, 50), interpolation='lower', axis=0, out=out) assert_equal(c, r0) assert_equal(out, r0) r1 = np.array([[0, 4, 8], [1, 5, 9]]) out = np.empty((2, 3), dtype=x.dtype) c = np.percentile(x, (25, 50), interpolation='lower', axis=1, out=out) assert_equal(c, r1) assert_equal(out, r1) def test_percentile_empty_dim(self): # empty dims are preserved d = np.arange(11 * 2).reshape(11, 1, 2, 1) assert_array_equal(np.percentile(d, 50, axis=0).shape, (1, 2, 1)) assert_array_equal(np.percentile(d, 50, axis=1).shape, (11, 2, 1)) assert_array_equal(np.percentile(d, 50, axis=2).shape, (11, 1, 1)) assert_array_equal(np.percentile(d, 50, axis=3).shape, (11, 1, 2)) assert_array_equal(np.percentile(d, 50, axis=-1).shape, (11, 1, 2)) assert_array_equal(np.percentile(d, 50, axis=-2).shape, (11, 1, 1)) assert_array_equal(np.percentile(d, 50, axis=-3).shape, (11, 2, 1)) assert_array_equal(np.percentile(d, 50, axis=-4).shape, (1, 2, 1)) assert_array_equal(np.percentile(d, 50, axis=2, interpolation='midpoint').shape, (11, 1, 1)) assert_array_equal(np.percentile(d, 50, axis=-2, interpolation='midpoint').shape, (11, 1, 1)) assert_array_equal(np.array(np.percentile(d, [10, 50], axis=0)).shape, (2, 1, 2, 1)) assert_array_equal(np.array(np.percentile(d, [10, 50], axis=1)).shape, (2, 11, 2, 1)) assert_array_equal(np.array(np.percentile(d, [10, 50], axis=2)).shape, (2, 11, 1, 1)) assert_array_equal(np.array(np.percentile(d, [10, 50], axis=3)).shape, (2, 11, 1, 2)) def test_percentile_no_overwrite(self): a = np.array([2, 3, 4, 1]) np.percentile(a, [50], overwrite_input=False) assert_equal(a, np.array([2, 3, 4, 1])) a = np.array([2, 3, 4, 1]) np.percentile(a, [50]) assert_equal(a, np.array([2, 3, 4, 1])) def test_no_p_overwrite(self): p = np.linspace(0., 100., num=5) np.percentile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, np.linspace(0., 100., num=5)) p = np.linspace(0., 100., num=5).tolist() np.percentile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, np.linspace(0., 100., num=5).tolist()) def test_percentile_overwrite(self): a = np.array([2, 3, 4, 1]) b = np.percentile(a, [50], overwrite_input=True) assert_equal(b, np.array([2.5])) b = np.percentile([2, 3, 4, 1], [50], overwrite_input=True) assert_equal(b, np.array([2.5])) def test_extended_axis(self): o = np.random.normal(size=(71, 23)) x = np.dstack([o] * 10) assert_equal(np.percentile(x, 30, axis=(0, 1)), np.percentile(o, 30)) x = np.moveaxis(x, -1, 0) assert_equal(np.percentile(x, 30, axis=(-2, -1)), np.percentile(o, 30)) x = x.swapaxes(0, 1).copy() assert_equal(np.percentile(x, 30, axis=(0, -1)), np.percentile(o, 30)) x = x.swapaxes(0, 1).copy() assert_equal(np.percentile(x, [25, 60], axis=(0, 1, 2)), np.percentile(x, [25, 60], axis=None)) assert_equal(np.percentile(x, [25, 60], axis=(0,)), np.percentile(x, [25, 60], axis=0)) d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) np.random.shuffle(d.ravel()) assert_equal(np.percentile(d, 25, axis=(0, 1, 2))[0], np.percentile(d[:,:,:, 0].flatten(), 25)) assert_equal(np.percentile(d, [10, 90], axis=(0, 1, 3))[:, 1], np.percentile(d[:,:, 1,:].flatten(), [10, 90])) assert_equal(np.percentile(d, 25, axis=(3, 1, -4))[2], np.percentile(d[:,:, 2,:].flatten(), 25)) assert_equal(np.percentile(d, 25, axis=(3, 1, 2))[2], np.percentile(d[2,:,:,:].flatten(), 25)) assert_equal(np.percentile(d, 25, axis=(3, 2))[2, 1], np.percentile(d[2, 1,:,:].flatten(), 25)) assert_equal(np.percentile(d, 25, axis=(1, -2))[2, 1], np.percentile(d[2,:,:, 1].flatten(), 25)) assert_equal(np.percentile(d, 25, axis=(1, 3))[2, 2], np.percentile(d[2,:, 2,:].flatten(), 25)) def test_extended_axis_invalid(self): d = np.ones((3, 5, 7, 11)) assert_raises(np.AxisError, np.percentile, d, axis=-5, q=25) assert_raises(np.AxisError, np.percentile, d, axis=(0, -5), q=25) assert_raises(np.AxisError, np.percentile, d, axis=4, q=25) assert_raises(np.AxisError, np.percentile, d, axis=(0, 4), q=25) # each of these refers to the same axis twice assert_raises(ValueError, np.percentile, d, axis=(1, 1), q=25) assert_raises(ValueError, np.percentile, d, axis=(-1, -1), q=25) assert_raises(ValueError, np.percentile, d, axis=(3, -1), q=25) def test_keepdims(self): d = np.ones((3, 5, 7, 11)) assert_equal(np.percentile(d, 7, axis=None, keepdims=True).shape, (1, 1, 1, 1)) assert_equal(np.percentile(d, 7, axis=(0, 1), keepdims=True).shape, (1, 1, 7, 11)) assert_equal(np.percentile(d, 7, axis=(0, 3), keepdims=True).shape, (1, 5, 7, 1)) assert_equal(np.percentile(d, 7, axis=(1,), keepdims=True).shape, (3, 1, 7, 11)) assert_equal(np.percentile(d, 7, (0, 1, 2, 3), keepdims=True).shape, (1, 1, 1, 1)) assert_equal(np.percentile(d, 7, axis=(0, 1, 3), keepdims=True).shape, (1, 1, 7, 1)) assert_equal(np.percentile(d, [1, 7], axis=(0, 1, 3), keepdims=True).shape, (2, 1, 1, 7, 1)) assert_equal(np.percentile(d, [1, 7], axis=(0, 3), keepdims=True).shape, (2, 1, 5, 7, 1)) def test_out(self): o = np.zeros((4,)) d = np.ones((3, 4)) assert_equal(np.percentile(d, 0, 0, out=o), o) assert_equal(np.percentile(d, 0, 0, interpolation='nearest', out=o), o) o = np.zeros((3,)) assert_equal(np.percentile(d, 1, 1, out=o), o) assert_equal(np.percentile(d, 1, 1, interpolation='nearest', out=o), o) o = np.zeros(()) assert_equal(np.percentile(d, 2, out=o), o) assert_equal(np.percentile(d, 2, interpolation='nearest', out=o), o) def test_out_nan(self): with warnings.catch_warnings(record=True): warnings.filterwarnings('always', '', RuntimeWarning) o = np.zeros((4,)) d = np.ones((3, 4)) d[2, 1] = np.nan assert_equal(np.percentile(d, 0, 0, out=o), o) assert_equal( np.percentile(d, 0, 0, interpolation='nearest', out=o), o) o = np.zeros((3,)) assert_equal(np.percentile(d, 1, 1, out=o), o) assert_equal( np.percentile(d, 1, 1, interpolation='nearest', out=o), o) o = np.zeros(()) assert_equal(np.percentile(d, 1, out=o), o) assert_equal( np.percentile(d, 1, interpolation='nearest', out=o), o) def test_nan_behavior(self): a = np.arange(24, dtype=float) a[2] = np.nan assert_equal(np.percentile(a, 0.3), np.nan) assert_equal(np.percentile(a, 0.3, axis=0), np.nan) assert_equal(np.percentile(a, [0.3, 0.6], axis=0), np.array([np.nan] * 2)) a = np.arange(24, dtype=float).reshape(2, 3, 4) a[1, 2, 3] = np.nan a[1, 1, 2] = np.nan # no axis assert_equal(np.percentile(a, 0.3), np.nan) assert_equal(np.percentile(a, 0.3).ndim, 0) # axis0 zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0) b[2, 3] = np.nan b[1, 2] = np.nan assert_equal(np.percentile(a, 0.3, 0), b) # axis0 not zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 0) b[:, 2, 3] = np.nan b[:, 1, 2] = np.nan assert_equal(np.percentile(a, [0.3, 0.6], 0), b) # axis1 zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1) b[1, 3] = np.nan b[1, 2] = np.nan assert_equal(np.percentile(a, 0.3, 1), b) # axis1 not zerod b = np.percentile( np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1) b[:, 1, 3] = np.nan b[:, 1, 2] = np.nan assert_equal(np.percentile(a, [0.3, 0.6], 1), b) # axis02 zerod b = np.percentile( np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2)) b[1] = np.nan b[2] = np.nan assert_equal(np.percentile(a, 0.3, (0, 2)), b) # axis02 not zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], (0, 2)) b[:, 1] = np.nan b[:, 2] = np.nan assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b) # axis02 not zerod with nearest interpolation b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], (0, 2), interpolation='nearest') b[:, 1] = np.nan b[:, 2] = np.nan assert_equal(np.percentile( a, [0.3, 0.6], (0, 2), interpolation='nearest'), b) class TestQuantile(object): # most of this is already tested by TestPercentile def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.quantile(x, 0), 0.) assert_equal(np.quantile(x, 1), 3.5) assert_equal(np.quantile(x, 0.5), 1.75) def test_fraction(self): # fractional input, integral quantile x = [Fraction(i, 2) for i in np.arange(8)] q = np.quantile(x, 0) assert_equal(q, 0) assert_equal(type(q), Fraction) q = np.quantile(x, 1) assert_equal(q, Fraction(7, 2)) assert_equal(type(q), Fraction) q = np.quantile(x, Fraction(1, 2)) assert_equal(q, Fraction(7, 4)) assert_equal(type(q), Fraction) # repeat with integral input but fractional quantile x = np.arange(8) assert_equal(np.quantile(x, Fraction(1, 2)), Fraction(7, 2)) def test_no_p_overwrite(self): # this is worth retesting, because quantile does not make a copy p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) p = p0.copy() np.quantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) p0 = p0.tolist() p = p.tolist() np.quantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) class TestMedian(object): def test_basic(self): a0 = np.array(1) a1 = np.arange(2) a2 = np.arange(6).reshape(2, 3) assert_equal(np.median(a0), 1) assert_allclose(np.median(a1), 0.5) assert_allclose(np.median(a2), 2.5) assert_allclose(np.median(a2, axis=0), [1.5, 2.5, 3.5]) assert_equal(np.median(a2, axis=1), [1, 4]) assert_allclose(np.median(a2, axis=None), 2.5) a = np.array([0.0444502, 0.0463301, 0.141249, 0.0606775]) assert_almost_equal((a[1] + a[3]) / 2., np.median(a)) a = np.array([0.0463301, 0.0444502, 0.141249]) assert_equal(a[0], np.median(a)) a = np.array([0.0444502, 0.141249, 0.0463301]) assert_equal(a[-1], np.median(a)) # check array scalar result assert_equal(np.median(a).ndim, 0) a[1] = np.nan assert_equal(np.median(a).ndim, 0) def test_axis_keyword(self): a3 = np.array([[2, 3], [0, 1], [6, 7], [4, 5]]) for a in [a3, np.random.randint(0, 100, size=(2, 3, 4))]: orig = a.copy() np.median(a, axis=None) for ax in range(a.ndim): np.median(a, axis=ax) assert_array_equal(a, orig) assert_allclose(np.median(a3, axis=0), [3, 4]) assert_allclose(np.median(a3.T, axis=1), [3, 4]) assert_allclose(np.median(a3), 3.5) assert_allclose(np.median(a3, axis=None), 3.5) assert_allclose(np.median(a3.T), 3.5) def test_overwrite_keyword(self): a3 = np.array([[2, 3], [0, 1], [6, 7], [4, 5]]) a0 = np.array(1) a1 = np.arange(2) a2 = np.arange(6).reshape(2, 3) assert_allclose(np.median(a0.copy(), overwrite_input=True), 1) assert_allclose(np.median(a1.copy(), overwrite_input=True), 0.5) assert_allclose(np.median(a2.copy(), overwrite_input=True), 2.5) assert_allclose(np.median(a2.copy(), overwrite_input=True, axis=0), [1.5, 2.5, 3.5]) assert_allclose( np.median(a2.copy(), overwrite_input=True, axis=1), [1, 4]) assert_allclose( np.median(a2.copy(), overwrite_input=True, axis=None), 2.5) assert_allclose( np.median(a3.copy(), overwrite_input=True, axis=0), [3, 4]) assert_allclose(np.median(a3.T.copy(), overwrite_input=True, axis=1), [3, 4]) a4 = np.arange(3 * 4 * 5, dtype=np.float32).reshape((3, 4, 5)) np.random.shuffle(a4.ravel()) assert_allclose(np.median(a4, axis=None), np.median(a4.copy(), axis=None, overwrite_input=True)) assert_allclose(np.median(a4, axis=0), np.median(a4.copy(), axis=0, overwrite_input=True)) assert_allclose(np.median(a4, axis=1), np.median(a4.copy(), axis=1, overwrite_input=True)) assert_allclose(np.median(a4, axis=2), np.median(a4.copy(), axis=2, overwrite_input=True)) def test_array_like(self): x = [1, 2, 3] assert_almost_equal(np.median(x), 2) x2 = [x] assert_almost_equal(np.median(x2), 2) assert_allclose(np.median(x2, axis=0), x) def test_subclass(self): # gh-3846 class MySubClass(np.ndarray): def __new__(cls, input_array, info=None): obj = np.asarray(input_array).view(cls) obj.info = info return obj def mean(self, axis=None, dtype=None, out=None): return -7 a = MySubClass([1, 2, 3]) assert_equal(np.median(a), -7) def test_out(self): o = np.zeros((4,)) d = np.ones((3, 4)) assert_equal(np.median(d, 0, out=o), o) o = np.zeros((3,)) assert_equal(np.median(d, 1, out=o), o) o = np.zeros(()) assert_equal(np.median(d, out=o), o) def test_out_nan(self): with warnings.catch_warnings(record=True): warnings.filterwarnings('always', '', RuntimeWarning) o = np.zeros((4,)) d = np.ones((3, 4)) d[2, 1] = np.nan assert_equal(np.median(d, 0, out=o), o) o = np.zeros((3,)) assert_equal(np.median(d, 1, out=o), o) o = np.zeros(()) assert_equal(np.median(d, out=o), o) def test_nan_behavior(self): a = np.arange(24, dtype=float) a[2] = np.nan assert_equal(np.median(a), np.nan) assert_equal(np.median(a, axis=0), np.nan) a = np.arange(24, dtype=float).reshape(2, 3, 4) a[1, 2, 3] = np.nan a[1, 1, 2] = np.nan # no axis assert_equal(np.median(a), np.nan) assert_equal(np.median(a).ndim, 0) # axis0 b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0) b[2, 3] = np.nan b[1, 2] = np.nan assert_equal(np.median(a, 0), b) # axis1 b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1) b[1, 3] = np.nan b[1, 2] = np.nan assert_equal(np.median(a, 1), b) # axis02 b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2)) b[1] = np.nan b[2] = np.nan assert_equal(np.median(a, (0, 2)), b) def test_empty(self): # mean(empty array) emits two warnings: empty slice and divide by 0 a = np.array([], dtype=float) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a), np.nan) assert_(w[0].category is RuntimeWarning) assert_equal(len(w), 2) # multiple dimensions a = np.array([], dtype=float, ndmin=3) # no axis with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a), np.nan) assert_(w[0].category is RuntimeWarning) # axis 0 and 1 b = np.array([], dtype=float, ndmin=2) assert_equal(np.median(a, axis=0), b) assert_equal(np.median(a, axis=1), b) # axis 2 b = np.array(np.nan, dtype=float, ndmin=2) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a, axis=2), b) assert_(w[0].category is RuntimeWarning) def test_object(self): o = np.arange(7.) assert_(type(np.median(o.astype(object))), float) o[2] = np.nan assert_(type(np.median(o.astype(object))), float) def test_extended_axis(self): o = np.random.normal(size=(71, 23)) x = np.dstack([o] * 10) assert_equal(np.median(x, axis=(0, 1)), np.median(o)) x = np.moveaxis(x, -1, 0) assert_equal(np.median(x, axis=(-2, -1)), np.median(o)) x = x.swapaxes(0, 1).copy() assert_equal(np.median(x, axis=(0, -1)), np.median(o)) assert_equal(np.median(x, axis=(0, 1, 2)), np.median(x, axis=None)) assert_equal(np.median(x, axis=(0, )), np.median(x, axis=0)) assert_equal(np.median(x, axis=(-1, )), np.median(x, axis=-1)) d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) np.random.shuffle(d.ravel()) assert_equal(np.median(d, axis=(0, 1, 2))[0], np.median(d[:,:,:, 0].flatten())) assert_equal(np.median(d, axis=(0, 1, 3))[1], np.median(d[:,:, 1,:].flatten())) assert_equal(np.median(d, axis=(3, 1, -4))[2], np.median(d[:,:, 2,:].flatten())) assert_equal(np.median(d, axis=(3, 1, 2))[2], np.median(d[2,:,:,:].flatten())) assert_equal(np.median(d, axis=(3, 2))[2, 1], np.median(d[2, 1,:,:].flatten())) assert_equal(np.median(d, axis=(1, -2))[2, 1], np.median(d[2,:,:, 1].flatten())) assert_equal(np.median(d, axis=(1, 3))[2, 2], np.median(d[2,:, 2,:].flatten())) def test_extended_axis_invalid(self): d = np.ones((3, 5, 7, 11)) assert_raises(np.AxisError, np.median, d, axis=-5) assert_raises(np.AxisError, np.median, d, axis=(0, -5)) assert_raises(np.AxisError, np.median, d, axis=4) assert_raises(np.AxisError, np.median, d, axis=(0, 4)) assert_raises(ValueError, np.median, d, axis=(1, 1)) def test_keepdims(self): d = np.ones((3, 5, 7, 11)) assert_equal(np.median(d, axis=None, keepdims=True).shape, (1, 1, 1, 1)) assert_equal(np.median(d, axis=(0, 1), keepdims=True).shape, (1, 1, 7, 11)) assert_equal(np.median(d, axis=(0, 3), keepdims=True).shape, (1, 5, 7, 1)) assert_equal(np.median(d, axis=(1,), keepdims=True).shape, (3, 1, 7, 11)) assert_equal(np.median(d, axis=(0, 1, 2, 3), keepdims=True).shape, (1, 1, 1, 1)) assert_equal(np.median(d, axis=(0, 1, 3), keepdims=True).shape, (1, 1, 7, 1)) class TestAdd_newdoc_ufunc(object): def test_ufunc_arg(self): assert_raises(TypeError, add_newdoc_ufunc, 2, "blah") assert_raises(ValueError, add_newdoc_ufunc, np.add, "blah") def test_string_arg(self): assert_raises(TypeError, add_newdoc_ufunc, np.add, 3) class TestAdd_newdoc(object): @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO") @pytest.mark.xfail(IS_PYPY, reason="PyPy does not modify tp_doc") def test_add_doc(self): # test np.add_newdoc tgt = "Current flat index into the array." assert_equal(np.core.flatiter.index.__doc__[:len(tgt)], tgt) assert_(len(np.core.ufunc.identity.__doc__) > 300) assert_(len(np.lib.index_tricks.mgrid.__doc__) > 300) class TestSortComplex(object): @pytest.mark.parametrize("type_in, type_out", [ ('l', 'D'), ('h', 'F'), ('H', 'F'), ('b', 'F'), ('B', 'F'), ('g', 'G'), ]) def test_sort_real(self, type_in, type_out): # sort_complex() type casting for real input types a = np.array([5, 3, 6, 2, 1], dtype=type_in) actual = np.sort_complex(a) expected = np.sort(a).astype(type_out) assert_equal(actual, expected) assert_equal(actual.dtype, expected.dtype) def test_sort_complex(self): # sort_complex() handling of complex input a = np.array([2 + 3j, 1 - 2j, 1 - 3j, 2 + 1j], dtype='D') expected = np.array([1 - 3j, 1 - 2j, 2 + 1j, 2 + 3j], dtype='D') actual = np.sort_complex(a) assert_equal(actual, expected) assert_equal(actual.dtype, expected.dtype)
apache-2.0
btabibian/scikit-learn
sklearn/datasets/__init__.py
61
3734
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_breast_cancer from .base import load_boston from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_sample_images from .base import load_sample_image from .base import load_wine from .base import get_data_home from .base import clear_data_home from .covtype import fetch_covtype from .kddcup99 import fetch_kddcup99 from .mlcomp import load_mlcomp from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'fetch_kddcup99', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_breast_cancer', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'load_wine', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
shaochengcheng/hoaxy-network
setup.py
1
1178
from os.path import dirname, join from setuptools import setup, find_packages with open(join(dirname(__file__), 'hnetwork/VERSION'), 'rb') as f: version = f.read().decode('ascii').strip() setup( name='hoaxy-network', version=version, url='http://cnets.indiana.edu', description='Network analysis of hoaxy data', long_description=open('README.md').read(), author='Chengcheng Shao', maintainer='Chengcheng Shao', maintainer_email='[email protected]', license='GPLv3', entry_points={'console_scripts': ['hnetwork = hnetwork.cmdline:main']}, packages=find_packages(exclude=('tests', 'tests.*')), include_package_data=True, zip_safe=True, classifiers=[ 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: GPL :: Version 3', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Topic :: Scientific/Engineering :: Information Analysis', 'Topic :: Software Development :: Libraries :: Python Modules', ], install_requires=[ 'networkx', 'pandas', 'docopt>=0.6.2', 'schema', ],)
gpl-3.0
mjirik/larVolumeToObj
larVolumeToObj/computation/old/step_calcchains_serial_tobinary_filter_cyx.py
2
8113
# -*- coding: utf-8 -*- from lar import * from scipy import * import json import scipy import numpy as np import time as tm import gc from pngstack2array3d import * import struct import getopt, sys import traceback # import matplotlib.pyplot as plt #cython import larVolumeToObjximport; pyximport.install() import calc_chains_helper as cch # ------------------------------------------------------------ # Logging & Timer # ------------------------------------------------------------ logging_level = 0; # 0 = no_logging # 1 = few details # 2 = many details # 3 = many many details def log(n, l): if __name__=="__main__" and n <= logging_level: for s in l: print "Log:", s; timer = 1; timer_last = tm.time() def timer_start(s): global timer_last; if __name__=="__main__" and timer == 1: log(3, ["Timer start:" + s]); timer_last = tm.time(); def timer_stop(): global timer_last; if __name__=="__main__" and timer == 1: log(3, ["Timer stop :" + str(tm.time() - timer_last)]); # ------------------------------------------------------------ # Configuration parameters # ------------------------------------------------------------ PNG_EXTENSION = ".png" BIN_EXTENSION = ".bin" # ------------------------------------------------------------ # Utility toolbox # ------------------------------------------------------------ def invertIndex(nx,ny,nz): nx,ny,nz = nx+1,ny+1,nz+1 def invertIndex0(offset): a0, b0 = offset / nx, offset % nx a1, b1 = a0 / ny, a0 % ny a2, b2 = a1 / nz, a1 % nz return b0,b1,b2 return invertIndex0 def countFilesInADir(directory): return len(os.walk(directory).next()[2]) def isArrayEmpty(arr): return all(e == 0 for e in arr) # ------------------------------------------------------------ def writeOffsetToFile(file, offsetCurr): file.write( struct.pack('>I', offsetCurr[0]) ) file.write( struct.pack('>I', offsetCurr[1]) ) file.write( struct.pack('>I', offsetCurr[2]) ) # ------------------------------------------------------------ def computeChains(imageHeight,imageWidth,imageDepth, imageDx,imageDy,imageDz, Nx,Ny,Nz, calculateout,bordo3, colors,pixelCalc,centroidsCalc, colorIdx,INPUT_DIR,DIR_O): beginImageStack = 0 endImage = beginImageStack MAX_CHAINS = colors count = 0 fileName = "selettori-" if (calculateout == True): fileName = "output-" saveTheColors = centroidsCalc saveTheColors = np.array( sorted(saveTheColors.reshape(1,colors)[0]), dtype=np.int ) # print str(imageHeight) + '-' + str(imageWidth) + '-' + str(imageDepth) # print str(imageDx) + '-' + str(imageDy) + '-' + str(imageDz) # print str(Nx) + '-' + str(Ny) + '-' + str(Nz) with open(DIR_O+'/'+fileName+str(saveTheColors[colorIdx])+BIN_EXTENSION, "wb") as newFile: for zBlock in xrange(imageDepth/imageDz): startImage = endImage endImage = startImage + imageDz xEnd, yEnd = 0,0 theImage,colors,theColors = pngstack2array3d(INPUT_DIR, startImage, endImage, colors, pixelCalc, centroidsCalc) # theColors = theColors.reshape(1,colors) # if (sorted(theColors[0]) != saveTheColors): # log(1, [ "Error: colors have changed"] ) # sys.exit(2) for xBlock in xrange(imageHeight/imageDx): for yBlock in xrange(imageWidth/imageDy): xStart, yStart = xBlock * imageDx, yBlock * imageDy xEnd, yEnd = xStart+imageDx, yStart+imageDy image = theImage[:, xStart:xEnd, yStart:yEnd] nz,nx,ny = image.shape count += 1 # Compute a quotient complex of chains with constant field # ------------------------------------------------------------ chains3D_old = []; chains3D = None hasSomeOne = False zStart = startImage - beginImageStack; if (calculateout == True): chains3D_old = cch.setList(nx,ny,nz, colorIdx, image,saveTheColors) else: hasSomeOne,chains3D = cch.setListNP(nx,ny,nz, colorIdx, image,saveTheColors) # hasSomeOne,chains3D = cch.setParallelListNP(nx,ny,nz, colorIdx, image,saveTheColors) # Compute the boundary complex of the quotient cell # ------------------------------------------------------------ objectBoundaryChain = None if (calculateout == True) and (len(chains3D_old) > 0): objectBoundaryChain = larBoundaryChain(bordo3,chains3D_old) # Save if (calculateout == True): if (objectBoundaryChain != None): writeOffsetToFile( newFile, np.array([zStart,xStart,yStart], dtype=int32) ) newFile.write( bytearray( np.array(objectBoundaryChain.toarray().astype('b').flatten()) ) ) else: if (hasSomeOne != False): writeOffsetToFile( newFile, np.array([zStart,xStart,yStart], dtype=int32) ) newFile.write( bytearray( np.array(chains3D, dtype=np.dtype('b')) ) ) def runComputation(imageDx,imageDy,imageDz, colors,coloridx,calculateout, V,FV, INPUT_DIR,BEST_IMAGE,BORDER_FILE,DIR_O): bordo3 = None if (calculateout == True): with open(BORDER_FILE, "r") as file: bordo3_json = json.load(file) ROWCOUNT = bordo3_json['ROWCOUNT'] COLCOUNT = bordo3_json['COLCOUNT'] ROW = np.asarray(bordo3_json['ROW'], dtype=np.int32) COL = np.asarray(bordo3_json['COL'], dtype=np.int32) DATA = np.asarray(bordo3_json['DATA'], dtype=np.int8) bordo3 = csr_matrix((DATA,COL,ROW),shape=(ROWCOUNT,COLCOUNT)); imageHeight,imageWidth = getImageData(INPUT_DIR+str(BEST_IMAGE)+PNG_EXTENSION) imageDepth = countFilesInADir(INPUT_DIR) Nx,Ny,Nz = imageHeight/imageDx, imageWidth/imageDx, imageDepth/imageDz try: pixelCalc, centroidsCalc = centroidcalc(INPUT_DIR, BEST_IMAGE, colors) computeChains(imageHeight,imageWidth,imageDepth, imageDx,imageDy,imageDz, Nx,Ny,Nz, calculateout,bordo3, colors,pixelCalc,centroidsCalc, coloridx,INPUT_DIR,DIR_O) except: exc_type, exc_value, exc_traceback = sys.exc_info() lines = traceback.format_exception(exc_type, exc_value, exc_traceback) log(1, [ "Error: " + ''.join('!! ' + line for line in lines) ]) # Log it or whatever here sys.exit(2) def main(argv): ARGS_STRING = 'Args: -r -b <borderfile> -x <borderX> -y <borderY> -z <borderZ> -i <inputdirectory> -c <colors> -d <coloridx> -o <outputdir> -q <bestimage>' try: opts, args = getopt.getopt(argv,"rb:x:y:z:i:c:d:o:q:") except getopt.GetoptError: print ARGS_STRING sys.exit(2) nx = ny = nz = imageDx = imageDy = imageDz = 64 colors = 2 coloridx = 0 mandatory = 6 calculateout = False #Files BORDER_FILE = 'bordo3.json' BEST_IMAGE = '' DIR_IN = '' DIR_O = '' for opt, arg in opts: if opt == '-x': nx = ny = nz = imageDx = imageDy = imageDz = int(arg) mandatory = mandatory - 1 elif opt == '-y': ny = nz = imageDy = imageDz = int(arg) elif opt == '-z': nz = imageDz = int(arg) elif opt == '-r': calculateout = True elif opt == '-i': DIR_IN = arg + '/' mandatory = mandatory - 1 elif opt == '-b': BORDER_FILE = arg mandatory = mandatory - 1 elif opt == '-o': mandatory = mandatory - 1 DIR_O = arg elif opt == '-c': mandatory = mandatory - 1 colors = int(arg) elif opt == '-d': mandatory = mandatory - 1 coloridx = int(arg) elif opt == '-q': BEST_IMAGE = int(arg) if mandatory != 0: print 'Not all arguments where given' print ARGS_STRING sys.exit(2) if (coloridx >= colors): print 'Not all arguments where given (coloridx >= colors)' print ARGS_STRING sys.exit(2) def ind(x,y,z): return x + (nx+1) * (y + (ny+1) * (z)) chunksize = nx * ny + nx * nz + ny * nz + 3 * nx * ny * nz V = [[x,y,z] for z in xrange(nz+1) for y in xrange(ny+1) for x in xrange(nx+1) ] v2coords = invertIndex(nx,ny,nz) FV = [] for h in xrange(len(V)): x,y,z = v2coords(h) if (x < nx) and (y < ny): FV.append([h,ind(x+1,y,z),ind(x,y+1,z),ind(x+1,y+1,z)]) if (x < nx) and (z < nz): FV.append([h,ind(x+1,y,z),ind(x,y,z+1),ind(x+1,y,z+1)]) if (y < ny) and (z < nz): FV.append([h,ind(x,y+1,z),ind(x,y,z+1),ind(x,y+1,z+1)]) runComputation(imageDx, imageDy, imageDz, colors, coloridx, calculateout, V, FV, DIR_IN, BEST_IMAGE, BORDER_FILE, DIR_O) if __name__ == "__main__": main(sys.argv[1:])
mit
bjlittle/iris
lib/iris/tests/integration/plot/test_colorbar.py
1
3449
# Copyright Iris contributors # # This file is part of Iris and is released under the LGPL license. # See COPYING and COPYING.LESSER in the root of the repository for full # licensing details. """ Test interaction between :mod:`iris.plot` and :func:`matplotlib.pyplot.colorbar` """ # import iris tests first so that some things can be initialised before # importing anything else import iris.tests as tests # isort:skip import numpy as np from iris.coords import AuxCoord import iris.tests.stock # Run tests in no graphics mode if matplotlib is not available. if tests.MPL_AVAILABLE: import matplotlib.pyplot as plt from iris.plot import ( contour, contourf, pcolor, pcolormesh, points, scatter, ) @tests.skip_plot class TestColorBarCreation(tests.GraphicsTest): def setUp(self): super().setUp() self.draw_functions = (contour, contourf, pcolormesh, pcolor) self.cube = iris.tests.stock.lat_lon_cube() self.cube.coord("longitude").guess_bounds() self.cube.coord("latitude").guess_bounds() self.traj_lon = AuxCoord( np.linspace(-180, 180, 50), standard_name="longitude", units="degrees", ) self.traj_lat = AuxCoord( np.sin(np.deg2rad(self.traj_lon.points)) * 30.0, standard_name="latitude", units="degrees", ) def test_common_draw_functions(self): for draw_function in self.draw_functions: mappable = draw_function(self.cube) cbar = plt.colorbar() self.assertIs( cbar.mappable, mappable, msg="Problem with draw function iris.plot.{}".format( draw_function.__name__ ), ) def test_common_draw_functions_specified_mappable(self): for draw_function in self.draw_functions: mappable_initial = draw_function(self.cube, cmap="cool") _ = draw_function(self.cube) cbar = plt.colorbar(mappable_initial) self.assertIs( cbar.mappable, mappable_initial, msg="Problem with draw function iris.plot.{}".format( draw_function.__name__ ), ) def test_points_with_c_kwarg(self): mappable = points(self.cube, c=self.cube.data) cbar = plt.colorbar() self.assertIs(cbar.mappable, mappable) def test_points_with_c_kwarg_specified_mappable(self): mappable_initial = points(self.cube, c=self.cube.data, cmap="cool") _ = points(self.cube, c=self.cube.data) cbar = plt.colorbar(mappable_initial) self.assertIs(cbar.mappable, mappable_initial) def test_scatter_with_c_kwarg(self): mappable = scatter( self.traj_lon, self.traj_lat, c=self.traj_lon.points ) cbar = plt.colorbar() self.assertIs(cbar.mappable, mappable) def test_scatter_with_c_kwarg_specified_mappable(self): mappable_initial = scatter( self.traj_lon, self.traj_lat, c=self.traj_lon.points ) _ = scatter( self.traj_lon, self.traj_lat, c=self.traj_lon.points, cmap="cool" ) cbar = plt.colorbar(mappable_initial) self.assertIs(cbar.mappable, mappable_initial) if __name__ == "__main__": tests.main()
lgpl-3.0
saapunki/solitadds
main.py
1
2867
#!/usr/bin/python import sys, re, pdb, os import logging import argparse import numpy as np import pandas as pd import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg import datetime import utils, data_helper import analyze def parse_args(): """ Parse command line args. Example ------- python main.py --input-file-operative ../data/small/some-applications-operative-pub-20161031.csv --input-file-usage ../data/small/some-lupapiste-usage-pub-20161031.csv --output-file-applications ../target/application-summary.csv --output-file-users ../target/user-summary.csv """ parser = argparse.ArgumentParser(description='SOLITADDS analysis') parser.add_argument('-io', '--input-file-operative', help='Input CSV file for operative data', required = False, default = os.getcwd() + "/test-data/some-applications-operative-pub-20161031.csv") parser.add_argument('-iu', '--input-file-usage', help='Input CSV file for usage data', required = False, default = os.getcwd() + "/test-data/some-lupapiste-usage-pub-20161031.csv") parser.add_argument('-oa', '--output-file-applications', help='Output CSV file for applications', required = False, default = os.getcwd() + "summary-applications.csv") parser.add_argument('-ou', '--output-file-users', help='Output CSV file for users', required=False, default = os.getcwd() + "summary-users.csv") args = vars(parser.parse_args()) return args if __name__ == "__main__": pd.set_option('display.width', 240) args = parse_args() input_file_operative = args['input_file_operative'] input_file_usage = args['input_file_usage'] output_file_applications = args['output_file_applications'] output_file_users = args['output_file_users'] analysis_start_time = datetime.datetime.now() odf = data_helper.import_operative_data(input_file_operative) udf = data_helper.import_usage_data(input_file_usage) print("Total number of apps: {}".format(len(odf))) print("Total number of events: {} with time range from {} to {} ".format(len(udf), udf['datetime'].min(), udf['datetime'].max())) application_summary = analyze.summarize_applications(odf, udf) application_summary.to_csv(output_file_applications, sep=';', encoding='utf-8') user_summary = analyze.summarize_users(odf, udf) user_summary.to_csv(output_file_users, sep=';', encoding='utf-8') print("Analysis took {} seconds".format(datetime.datetime.now() - analysis_start_time)) fig = plt.figure(1) plot = fig.add_subplot(111) plot.set_title("Hakemukset viikonpaivittain") plot.set_xlabel("Viikonpaiva") plot.set_ylabel("Hakemuksia") analyze.applications_by_week_day(application_summary) canvas = FigureCanvasAgg(fig) canvas.print_figure("testi_kuva", dpi=80)
mit
kenshay/ImageScript
ProgramData/SystemFiles/Python/share/doc/networkx-2.2/examples/drawing/plot_atlas.py
5
2760
#!/usr/bin/env python """ ===== Atlas ===== Atlas of all graphs of 6 nodes or less. """ # Author: Aric Hagberg ([email protected]) # Copyright (C) 2004-2018 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import random try: import pygraphviz from networkx.drawing.nx_agraph import graphviz_layout except ImportError: try: import pydot from networkx.drawing.nx_pydot import graphviz_layout except ImportError: raise ImportError("This example needs Graphviz and either " "PyGraphviz or pydot.") import matplotlib.pyplot as plt import networkx as nx from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic as isomorphic from networkx.generators.atlas import graph_atlas_g def atlas6(): """ Return the atlas of all connected graphs of 6 nodes or less. Attempt to check for isomorphisms and remove. """ Atlas = graph_atlas_g()[0:208] # 208 # remove isolated nodes, only connected graphs are left U = nx.Graph() # graph for union of all graphs in atlas for G in Atlas: zerodegree = [n for n in G if G.degree(n) == 0] for n in zerodegree: G.remove_node(n) U = nx.disjoint_union(U, G) # list of graphs of all connected components C = nx.connected_component_subgraphs(U) UU = nx.Graph() # do quick isomorphic-like check, not a true isomorphism checker nlist = [] # list of nonisomorphic graphs for G in C: # check against all nonisomorphic graphs so far if not iso(G, nlist): nlist.append(G) UU = nx.disjoint_union(UU, G) # union the nonisomorphic graphs return UU def iso(G1, glist): """Quick and dirty nonisomorphism checker used to check isomorphisms.""" for G2 in glist: if isomorphic(G1, G2): return True return False if __name__ == '__main__': G = atlas6() print("graph has %d nodes with %d edges" % (nx.number_of_nodes(G), nx.number_of_edges(G))) print(nx.number_connected_components(G), "connected components") plt.figure(1, figsize=(8, 8)) # layout graphs with positions using graphviz neato pos = graphviz_layout(G, prog="neato") # color nodes the same in each connected subgraph C = nx.connected_component_subgraphs(G) for g in C: c = [random.random()] * nx.number_of_nodes(g) # random color... nx.draw(g, pos, node_size=40, node_color=c, vmin=0.0, vmax=1.0, with_labels=False ) plt.show()
gpl-3.0
blaze/dask
dask/dataframe/io/sql.py
1
15082
import numpy as np import pandas as pd import dask from dask.dataframe.utils import PANDAS_GT_0240, PANDAS_VERSION from dask.delayed import tokenize from .io import from_delayed, from_pandas from ... import delayed from .. import methods def read_sql_table( table, uri, index_col, divisions=None, npartitions=None, limits=None, columns=None, bytes_per_chunk="256 MiB", head_rows=5, schema=None, meta=None, engine_kwargs=None, **kwargs, ): """ Create dataframe from an SQL table. If neither divisions or npartitions is given, the memory footprint of the first few rows will be determined, and partitions of size ~256MB will be used. Parameters ---------- table : string or sqlalchemy expression Select columns from here. uri : string Full sqlalchemy URI for the database connection index_col : string Column which becomes the index, and defines the partitioning. Should be a indexed column in the SQL server, and any orderable type. If the type is number or time, then partition boundaries can be inferred from npartitions or bytes_per_chunk; otherwide must supply explicit ``divisions=``. ``index_col`` could be a function to return a value, e.g., ``sql.func.abs(sql.column('value')).label('abs(value)')``. ``index_col=sql.func.abs(sql.column("value")).label("abs(value)")``, or ``index_col=cast(sql.column("id"),types.BigInteger).label("id")`` to convert the textfield ``id`` to ``BigInteger``. Note ``sql``, ``cast``, ``types`` methods comes from ``sqlalchemy`` module. Labeling columns created by functions or arithmetic operations is required. divisions: sequence Values of the index column to split the table by. If given, this will override npartitions and bytes_per_chunk. The divisions are the value boundaries of the index column used to define the partitions. For example, ``divisions=list('acegikmoqsuwz')`` could be used to partition a string column lexographically into 12 partitions, with the implicit assumption that each partition contains similar numbers of records. npartitions : int Number of partitions, if divisions is not given. Will split the values of the index column linearly between limits, if given, or the column max/min. The index column must be numeric or time for this to work limits: 2-tuple or None Manually give upper and lower range of values for use with npartitions; if None, first fetches max/min from the DB. Upper limit, if given, is inclusive. columns : list of strings or None Which columns to select; if None, gets all; can include sqlalchemy functions, e.g., ``sql.func.abs(sql.column('value')).label('abs(value)')``. Labeling columns created by functions or arithmetic operations is recommended. bytes_per_chunk : str, int If both divisions and npartitions is None, this is the target size of each partition, in bytes head_rows : int How many rows to load for inferring the data-types, unless passing meta meta : empty DataFrame or None If provided, do not attempt to infer dtypes, but use these, coercing all chunks on load schema : str or None If using a table name, pass this to sqlalchemy to select which DB schema to use within the URI connection engine_kwargs : dict or None Specific db engine parameters for sqlalchemy kwargs : dict Additional parameters to pass to `pd.read_sql()` Returns ------- dask.dataframe Examples -------- >>> df = dd.read_sql_table('accounts', 'sqlite:///path/to/bank.db', ... npartitions=10, index_col='id') # doctest: +SKIP """ import sqlalchemy as sa from sqlalchemy import sql from sqlalchemy.sql import elements if index_col is None: raise ValueError("Must specify index column to partition on") engine_kwargs = {} if engine_kwargs is None else engine_kwargs engine = sa.create_engine(uri, **engine_kwargs) m = sa.MetaData() if isinstance(table, str): table = sa.Table(table, m, autoload=True, autoload_with=engine, schema=schema) index = table.columns[index_col] if isinstance(index_col, str) else index_col if not isinstance(index_col, (str, elements.Label)): raise ValueError( "Use label when passing an SQLAlchemy instance as the index (%s)" % index ) if divisions and npartitions: raise TypeError("Must supply either divisions or npartitions, not both") columns = ( [(table.columns[c] if isinstance(c, str) else c) for c in columns] if columns else list(table.columns) ) if index_col not in columns: columns.append( table.columns[index_col] if isinstance(index_col, str) else index_col ) if isinstance(index_col, str): kwargs["index_col"] = index_col else: # function names get pandas auto-named kwargs["index_col"] = index_col.name if head_rows > 0: # derive metadata from first few rows q = sql.select(columns).limit(head_rows).select_from(table) head = pd.read_sql(q, engine, **kwargs) if head.empty: # no results at all name = table.name schema = table.schema head = pd.read_sql_table(name, uri, schema=schema, index_col=index_col) return from_pandas(head, npartitions=1) bytes_per_row = (head.memory_usage(deep=True, index=True)).sum() / head_rows if meta is None: meta = head.iloc[:0] elif meta is None: raise ValueError("Must provide meta if head_rows is 0") else: if divisions is None and npartitions is None: raise ValueError( "Must provide divisions or npartitions when using explicit meta." ) if divisions is None: if limits is None: # calculate max and min for given index q = sql.select([sql.func.max(index), sql.func.min(index)]).select_from( table ) minmax = pd.read_sql(q, engine) maxi, mini = minmax.iloc[0] dtype = minmax.dtypes["max_1"] else: mini, maxi = limits dtype = pd.Series(limits).dtype if npartitions is None: q = sql.select([sql.func.count(index)]).select_from(table) count = pd.read_sql(q, engine)["count_1"][0] npartitions = ( int( round( count * bytes_per_row / dask.utils.parse_bytes(bytes_per_chunk) ) ) or 1 ) if dtype.kind == "M": divisions = methods.tolist( pd.date_range( start=mini, end=maxi, freq="%iS" % ((maxi - mini).total_seconds() / npartitions), ) ) divisions[0] = mini divisions[-1] = maxi elif dtype.kind in ["i", "u", "f"]: divisions = np.linspace(mini, maxi, npartitions + 1).tolist() else: raise TypeError( 'Provided index column is of type "{}". If divisions is not provided the ' "index column type must be numeric or datetime.".format(dtype) ) parts = [] lowers, uppers = divisions[:-1], divisions[1:] for i, (lower, upper) in enumerate(zip(lowers, uppers)): cond = index <= upper if i == len(lowers) - 1 else index < upper q = sql.select(columns).where(sql.and_(index >= lower, cond)).select_from(table) parts.append( delayed(_read_sql_chunk)( q, uri, meta, engine_kwargs=engine_kwargs, **kwargs ) ) engine.dispose() return from_delayed(parts, meta, divisions=divisions) def _read_sql_chunk(q, uri, meta, engine_kwargs=None, **kwargs): import sqlalchemy as sa engine_kwargs = engine_kwargs or {} engine = sa.create_engine(uri, **engine_kwargs) df = pd.read_sql(q, engine, **kwargs) engine.dispose() if df.empty: return meta else: return df.astype(meta.dtypes.to_dict(), copy=False) def to_sql( df, name: str, uri: str, schema=None, if_exists: str = "fail", index: bool = True, index_label=None, chunksize=None, dtype=None, method=None, compute=True, parallel=False, ): """Store Dask Dataframe to a SQL table An empty table is created based on the "meta" DataFrame (and conforming to the caller's "if_exists" preference), and then each block calls pd.DataFrame.to_sql (with `if_exists="append"`). Databases supported by SQLAlchemy [1]_ are supported. Tables can be newly created, appended to, or overwritten. Parameters ---------- name : str Name of SQL table. uri : string Full sqlalchemy URI for the database connection schema : str, optional Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {'fail', 'replace', 'append'}, default 'fail' How to behave if the table already exists. * fail: Raise a ValueError. * replace: Drop the table before inserting new values. * append: Insert new values to the existing table. index : bool, default True Write DataFrame index as a column. Uses `index_label` as the column name in the table. index_label : str or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, optional Specify the number of rows in each batch to be written at a time. By default, all rows will be written at once. dtype : dict or scalar, optional Specifying the datatype for columns. If a dictionary is used, the keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode. If a scalar is provided, it will be applied to all columns. method : {None, 'multi', callable}, optional Controls the SQL insertion clause used: * None : Uses standard SQL ``INSERT`` clause (one per row). * 'multi': Pass multiple values in a single ``INSERT`` clause. * callable with signature ``(pd_table, conn, keys, data_iter)``. Details and a sample callable implementation can be found in the section :ref:`insert method <io.sql.method>`. compute : bool, default True When true, call dask.compute and perform the load into SQL; otherwise, return a Dask object (or array of per-block objects when parallel=True) parallel : bool, default False When true, have each block append itself to the DB table concurrently. This can result in DB rows being in a different order than the source DataFrame's corresponding rows. When false, load each block into the SQL DB in sequence. Raises ------ ValueError When the table already exists and `if_exists` is 'fail' (the default). See Also -------- read_sql : Read a DataFrame from a table. Notes ----- Timezone aware datetime columns will be written as ``Timestamp with timezone`` type with SQLAlchemy if supported by the database. Otherwise, the datetimes will be stored as timezone unaware timestamps local to the original timezone. .. versionadded:: 0.24.0 References ---------- .. [1] https://docs.sqlalchemy.org .. [2] https://www.python.org/dev/peps/pep-0249/ Examples -------- Create a table from scratch with 4 rows. >>> import pandas as pd >>> df = pd.DataFrame([ {'i':i, 's':str(i)*2 } for i in range(4) ]) >>> from dask.dataframe import from_pandas >>> ddf = from_pandas(df, npartitions=2) >>> ddf # doctest: +SKIP Dask DataFrame Structure: i s npartitions=2 0 int64 object 2 ... ... 3 ... ... Dask Name: from_pandas, 2 tasks >>> from dask.utils import tmpfile >>> from sqlalchemy import create_engine # doctest: +SKIP >>> with tmpfile() as f: # doctest: +SKIP ... db = 'sqlite:///%s' %f # doctest: +SKIP ... ddf.to_sql('test', db) # doctest: +SKIP ... engine = create_engine(db, echo=False) # doctest: +SKIP ... result = engine.execute("SELECT * FROM test").fetchall() # doctest: +SKIP >>> result # doctest: +SKIP [(0, 0, '00'), (1, 1, '11'), (2, 2, '22'), (3, 3, '33')] """ if not isinstance(uri, str): raise ValueError(f"Expected URI to be a string, got {type(uri)}.") # This is the only argument we add on top of what Pandas supports kwargs = dict( name=name, con=uri, schema=schema, if_exists=if_exists, index=index, index_label=index_label, chunksize=chunksize, dtype=dtype, ) if method: if not PANDAS_GT_0240: raise NotImplementedError( "'method' requires pandas>=0.24.0. You have version %s" % PANDAS_VERSION ) else: kwargs["method"] = method def make_meta(meta): return meta.to_sql(**kwargs) make_meta = delayed(make_meta) meta_task = make_meta(df._meta) # Partitions should always append to the empty table created from `meta` above worker_kwargs = dict(kwargs, if_exists="append") if parallel: # Perform the meta insert, then one task that inserts all blocks concurrently: result = [ _extra_deps( d.to_sql, extras=meta_task, **worker_kwargs, dask_key_name="to_sql-%s" % tokenize(d, **worker_kwargs), ) for d in df.to_delayed() ] else: # Chain the "meta" insert and each block's insert result = [] last = meta_task for d in df.to_delayed(): result.append( _extra_deps( d.to_sql, extras=last, **worker_kwargs, dask_key_name="to_sql-%s" % tokenize(d, **worker_kwargs), ) ) last = result[-1] result = dask.delayed(result) if compute: dask.compute(result) else: return result @delayed def _extra_deps(func, *args, extras=None, **kwargs): return func(*args, **kwargs)
bsd-3-clause
fbagirov/scikit-learn
sklearn/neighbors/graph.py
208
7031
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self, mode): """Return the query based on include_self param""" # Done to preserve backward compatibility. if include_self is None: if mode == "connectivity": warnings.warn( "The behavior of 'kneighbors_graph' when mode='connectivity' " "will change in version 0.18. Presently, the nearest neighbor " "of each sample is the sample itself. Beginning in version " "0.18, the default behavior will be to exclude each sample " "from being its own nearest neighbor. To maintain the current " "behavior, set include_self=True.", DeprecationWarning) include_self = True else: include_self = False if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self: bool, default backward-compatible. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self: bool, default None Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
bastibl/gnuradio
gr-filter/examples/decimate.py
7
6079
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from __future__ import print_function from __future__ import division from __future__ import unicode_literals from gnuradio import gr from gnuradio import blocks from gnuradio import filter import sys, time import numpy try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: from matplotlib import pyplot from matplotlib import pyplot as mlab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 10000000 # number of samples to use self._fs = 10000 # initial sampling rate self._decim = 20 # Decimation rate # Generate the prototype filter taps for the decimators with a 200 Hz bandwidth self._taps = filter.firdes.low_pass_2(1, self._fs, 200, 150, attenuation_dB=120, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = numpy.ceil(float(len(self._taps)) / float(self._decim)) print("Number of taps: ", len(self._taps)) print("Number of filters: ", self._decim) print("Taps per channel: ", tpc) # Build the input signal source # We create a list of freqs, and a sine wave is generated and added to the source # for each one of these frequencies. self.signals = list() self.add = blocks.add_cc() freqs = [10, 20, 2040] for i in range(len(freqs)): self.signals.append(analog.sig_source_c(self._fs, analog.GR_SIN_WAVE, freqs[i], 1)) self.connect(self.signals[i], (self.add,i)) self.head = blocks.head(gr.sizeof_gr_complex, self._N) # Construct a PFB decimator filter self.pfb = filter.pfb.decimator_ccf(self._decim, self._taps, 0) # Construct a standard FIR decimating filter self.dec = filter.fir_filter_ccf(self._decim, self._taps) self.snk_i = blocks.vector_sink_c() # Connect the blocks self.connect(self.add, self.head, self.pfb) self.connect(self.add, self.snk_i) # Create the sink for the decimated siganl self.snk = blocks.vector_sink_c() self.connect(self.pfb, self.snk) def main(): tb = pfb_top_block() tstart = time.time() tb.run() tend = time.time() print("Run time: %f" % (tend - tstart)) if 1: fig1 = pyplot.figure(1, figsize=(16,9)) fig2 = pyplot.figure(2, figsize=(16,9)) Ns = 10000 Ne = 10000 fftlen = 8192 winfunc = numpy.blackman fs = tb._fs # Plot the input to the decimator d = tb.snk_i.data()[Ns:Ns+Ne] sp1_f = fig1.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen / 4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*numpy.log10(abs(numpy.fft.fftshift(X))) f_in = numpy.arange(-fs / 2.0, fs / 2.0, fs / float(X_in.size)) p1_f = sp1_f.plot(f_in, X_in, "b") sp1_f.set_xlim([min(f_in), max(f_in)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title("Input Signal", weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") Ts = 1.0 / fs Tmax = len(d)*Ts t_in = numpy.arange(0, Tmax, Ts) x_in = numpy.array(d) sp1_t = fig1.add_subplot(2, 1, 2) p1_t = sp1_t.plot(t_in, x_in.real, "b") p1_t = sp1_t.plot(t_in, x_in.imag, "r") sp1_t.set_ylim([-tb._decim*1.1, tb._decim*1.1]) sp1_t.set_xlabel("Time (s)") sp1_t.set_ylabel("Amplitude") # Plot the output of the decimator fs_o = tb._fs / tb._decim sp2_f = fig2.add_subplot(2, 1, 1) d = tb.snk.data()[Ns:Ns+Ne] X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen / 4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*numpy.log10(abs(numpy.fft.fftshift(X))) f_o = numpy.arange(-fs_o / 2.0, fs_o / 2.0, fs_o / float(X_o.size)) p2_f = sp2_f.plot(f_o, X_o, "b") sp2_f.set_xlim([min(f_o), max(f_o)+1]) sp2_f.set_ylim([-200.0, 50.0]) sp2_f.set_title("PFB Decimated Signal", weight="bold") sp2_f.set_xlabel("Frequency (Hz)") sp2_f.set_ylabel("Power (dBW)") Ts_o = 1.0 / fs_o Tmax_o = len(d)*Ts_o x_o = numpy.array(d) t_o = numpy.arange(0, Tmax_o, Ts_o) sp2_t = fig2.add_subplot(2, 1, 2) p2_t = sp2_t.plot(t_o, x_o.real, "b-o") p2_t = sp2_t.plot(t_o, x_o.imag, "r-o") sp2_t.set_ylim([-2.5, 2.5]) sp2_t.set_xlabel("Time (s)") sp2_t.set_ylabel("Amplitude") pyplot.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
TinyOS-Camp/DDEA-DEV
Archive/[14_10_10] DDEA sample code/lib_bnlearn.py
6
12617
# -*- coding: utf-8 -*- """ Created on Mon Mar 24 19:24:11 2014 @author: NGO Quang Minh Khiem @e-mail: [email protected] """ from __future__ import division # To forace float point division import numpy as np from pandas import DataFrame # R libs import rpy2.robjects as robjects from rpy2.robjects.packages import importr import pandas.rpy.common as com from rpy2.robjects import pandas2ri import networkx as nx import matplotlib.pyplot as plt #============================================================# # Utility functions and Misc #============================================================# def write_to_file(filename,text): with open(filename,'w') as f: f.write(text) # Close X11 window def dev_off(): r['dev.off']() #============================================================# # Methods for Plotting #============================================================# # visualize graph from adjacence matrix r_graph # for quick usage: set simple=True (by default) # otherwise, function allows customize some properties of the graph def nx_plot(r_graph, cols_names, simple=True, labels=None, graph_layout='shell', node_size=1600, node_color='blue', node_alpha=0.3, node_text_size=12, edge_color='blue', edge_alpha=0.3, edge_tickness=1, edge_text_pos=0.3, text_font='sans-serif'): #G = nx.Graph() dg = nx.DiGraph() edges = [] np_amat = np.asarray(bnlearn.amat(r_graph)) for ri in range(np_amat.shape[0]): for ci in range(np_amat.shape[1]): if np_amat[ri,ci] == 1: #G.add_edge(cols_names[ri],cols_names[ci]) dg.add_edge(cols_names[ri],cols_names[ci]) edges.append((cols_names[ri],cols_names[ci])) #import pdb;pdb.set_trace() if simple: if graph_layout=='spectral': nx.draw_spectral(dg,font_size=node_text_size) elif graph_layout=='random': nx.draw_random(dg,font_size=node_text_size) elif graph_layout=='circular': nx.draw_circular(dg,font_size=node_text_size) elif graph_layout=='spring': nx.draw_spring(dg,font_size=node_text_size) else: nx.draw(dg,font_size=node_text_size) else: draw_graph(edges,directed=True, labels=labels, graph_layout=graph_layout, node_size=node_size, node_color=node_color, node_alpha=node_alpha, node_text_size=node_text_size, edge_color=edge_color, edge_alpha=edge_alpha, edge_tickness=edge_tickness, edge_text_pos=edge_text_pos, text_font=text_font) #nxlib.draw_graph(dg,labels=cols_names) def nx_plot2(r_graph,cols_names,is_bnlearn=True): G = nx.Graph() dg = nx.DiGraph() if is_bnlearn: np_amat = np.asarray(bnlearn.amat(r_graph)) for ri in range(np_amat.shape[0]): for ci in range(np_amat.shape[1]): if np_amat[ri,ci] == 1: G.add_edge(cols_names[ri],cols_names[ci]) dg.add_edge(cols_names[ri],cols_names[ci]) else: np_amat = np.asarray(r_graph) for ri in range(np_amat.shape[0]): for ci in range(np_amat.shape[1]): if np_amat[ri,ci] >= 0: #G.add_weighted_edges_from([(cols_names[ri],cols_names[ci],{'weight': np_amat[ri,ci]})]) G.add_edge(cols_names[ri],cols_names[ci],weight=np_amat[ri,ci]) #dg.add_weighted_edges_from([(cols_names[ri],cols_names[ci],np_amat[ri,ci])]) #nx.draw(G,nx.shell_layout) nx.draw(G) #nxlib.draw_graph(dg,labels=cols_names) # a more generic graph plotting function, using networkx lib # graph is a list of edges def draw_graph(graph, directed=True, labels=None, graph_layout='shell', node_size=1600, node_color='blue', node_alpha=0.3, node_text_size=12, edge_color='blue', edge_alpha=0.3, edge_tickness=1, edge_text_pos=0.3, text_font='sans-serif'): # create networkx graph #G=nx.Graph() if directed: G = nx.DiGraph() else: G = nx.Graph() # add edges for edge in graph: G.add_edge(edge[0], edge[1]) # these are different layouts for the network you may try # shell seems to work best if graph_layout == 'spring': graph_pos=nx.spring_layout(G) elif graph_layout == 'spectral': graph_pos=nx.spectral_layout(G) elif graph_layout == 'random': graph_pos=nx.random_layout(G) else: graph_pos=nx.shell_layout(G) # draw graph nx.draw_networkx_nodes(G,graph_pos,node_size=node_size, alpha=node_alpha, node_color=node_color) nx.draw_networkx_edges(G,graph_pos,width=edge_tickness, alpha=edge_alpha,edge_color=edge_color) nx.draw_networkx_labels(G, graph_pos,font_size=node_text_size, font_family=text_font) """ if labels is None: labels = range(len(graph)) edge_labels = dict(zip(graph, labels)) """ if labels is not None: edge_labels = dict(zip(graph, labels)) nx.draw_networkx_edge_labels(G, graph_pos, edge_labels=edge_labels, label_pos=edge_text_pos) # show graph plt.show() #============================================================# # bnlearn wrapper APIs #============================================================# ### # Construct list of arcs used for blacklisting/whitelisting # arc list is a list of arcs. For example: # arc_list = # [['A','B'] , ['A','C']] # # return data frame in the following format # from to # 0 A B # 1 A C ### def construct_arcs_frame(arc_list): data_frame = DataFrame(data=np.array(arc_list),columns=['from','to']) return data_frame def print_bw_rules(): rules = """ ============================================================ Blacklisting Rules: ------------------- 1. any arc blacklisted in one of its possible directions is never present in the graph. if A-->B is blacklisted (but B-->A is not), A-->B and A--B are never present in the graph (but not B-->A) 2. any arc blacklisted in both directions, as well as the corresponding undirected arc, is never present in the graph. B(A-->B,B-->A) => B(A--B) Whitelisting Rules: ------------------- 1. arcs whitelisted in one direction only (i.e. A-->B is whitelisted but B-->A is not) have the respective reverse arcs blacklisted, and are always present in the graph. W(A-->B) => B(B-->A,A--B) 2. arcs whitelisted in both directions (i.e. both A--> B and B-->A are whitelisted) are present in the graph, but their direction is set by the learning algorithm. 3. any arc whitelisted and blacklisted at the same time is assumed to be whitelisted, and is thus removed from the blacklist. ============================================================ """ print rules def convert_pymat_to_rfactor(py_mat): mat_shape = py_mat.shape r_factor_vec = r.factor(py_mat) r_factor_mat = r.matrix(r_factor_vec, nrow=mat_shape[1], byrow=True) return np.array(r_factor_mat).reshape(mat_shape[0],mat_shape[1],order='C') def construct_data_frame(data_mat,columns=[]): if len(columns) == 0: column_names = range(data_mat.shape[1]) else: column_names = columns return DataFrame(data=data_mat,columns=column_names) """ def py_bnlearn(data_frame,method='gs',blacklist=None, whitelist=None): # For hill-climbing, the data must be real or factor # if method == 'hc': bn_structure = bnlearn.hc(data_frame) else: bn_structure = bnlearn.gs(data_frame) return bn_structure """ #============================================================# # APIs related to bn_learn structure #============================================================# #=======================| # bn structure and graph| #=======================| def acyclic(bn_structure): return bool(bnlearn.acyclic(bn_structure)[0]) def amat(bn_structure): return np.array(bnlearn.amat(bn_structure)) def py_get_amat(bn_structure): return np.array(bnlearn.amat(bn_structure)) #=======================| # Arcs | #=======================| def narcs(bn_structure): return bnlearn.narcs(bn_structure)[0] def arcs(bn_structure): arcs = np.array(bnlearn.arcs(bn_structure)) ncols = 2 nrows = len(arcs) / 2 arcs = arcs.reshape(nrows,ncols,order='F') return arcs def directed_arcs(bn_structure): arcs = np.array(bnlearn.directed_arcs(bn_structure)) ncols = 2 nrows = len(arcs) / 2 arcs = arcs.reshape(nrows,ncols,order='F') return arcs def undirected_arcs(bn_structure): arcs = np.array(bnlearn.undirected_arcs(bn_structure)) ncols = 2 nrows = len(arcs) / 2 arcs = arcs.reshape(nrows,ncols,order='F') return arcs def incoming_arcs(bn_structure, node_name): arcs = np.array(bnlearn.incoming_arcs(bn_structure, node_name)) ncols = 2 nrows = len(arcs) / 2 arcs = arcs.reshape(nrows,ncols,order='F') return arcs def outgoing_arcs(bn_structure, node_name): arcs = np.array(bnlearn.outgoing_arcs(bn_structure, node_name)) ncols = 2 nrows = len(arcs) / 2 arcs = arcs.reshape(nrows,ncols,order='F') return arcs #=======================| # Nodes | #=======================| def nnodes(bn_structure): return bnlearn.nnodes(bn_structure)[0] def degree(bn_structure, node_name): return bnlearn.degree(bn_structure, node_name)[0] def in_degree(bn_structure, node_name): return bnlearn.in_degree(bn_structure, node_name)[0] def out_degree(bn_structure, node_name): return bnlearn.out_degree(bn_structure, node_name)[0] def root_nodes(bn_structure): return np.array(bnlearn.root_nodes(bn_structure)) def leaf_nodes(bn_structure): return np.array(bnlearn.leaf_nodes(bn_structure)) def children(bn_structure, node_name): return np.array(bnlearn.children(bn_structure, node_name)) def parents(bn_structure, node_name): return np.array(bnlearn.parents(bn_structure, node_name)) def nbr(bn_structure, node_name): return np.array(bnlearn.nbr(bn_structure, node_name)) #=======================| # bn fit | #=======================| ### # To fit data to bn structure, the graph must be completely directed ### def py_bn_fit(bn_structure,data_frame): fit = bnlearn.bn_fit(bn_structure,data_frame) return fit def py_get_node_cond_mat(fit,node_indx): """ Each item in fit is a list vector with dimension attributes fit[node_indx] has 4 attributes ['node', 'parents', 'children', 'prob'] """ node_fit = fit[node_indx] node = node_fit[0] parents = node_fit[1] children = node_fit[2] prob = node_fit[3] """ prob is a vector Array type in R, which contains the conditional probability table of this node. prob is a (n_0 x n_1 x ... x n_parents) matrix, where each n_i is the number of discrete values of each node in the list prob_dimnames prob_dimnames contains the name of each dimension. """ prob_dimnames = np.array(prob.dimnames.names) prob_factors = np.array(prob.dimnames) prob_mat = np.array(prob) #prob_frame = DataFrame(data=prob_mat[0],columns=prob_dimnames) return prob_dimnames,prob_factors,prob_mat def bn_fit_barchart(fit, node_idx): print bnlearn.bn_fit_barchart(fit[node_idx]) def bn_fit_dotplot(fit, node_idx): print bnlearn.bn_fit_dotplot(fit[node_idx]) #==========================================================================# #==========================================================================# #==========================================================================# #============================================================# # Use R bnlearn to learn the Bayes network structure #============================================================# ### BN Learn ## load some R libs r = robjects.r utils = importr("utils") bnlearn = importr("bnlearn") #rgraphviz = importr("Rgraphviz") pandas2ri.activate() ### this is important to seamlessly convert from pandas to R data frame """ a = com.load_data('learning.test') #d = construct_data_frame(a) gs = py_bnlearn(a) amat = py_get_amat(gs) #fit = py_bn_fit(gs,a) """
gpl-2.0
letsgoexploring/data
useconomicdata/python/usProductionData.py
1
15611
# coding: utf-8 # In[1]: import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as dts from fredpy import series, window_equalize import pandas as pd import runProcs # get_ipython().magic('matplotlib inline') # In[2]: # 0. Setup: Formatting commands and definitions. # 0.1 general plot settings # Make all plotted axis lables and tick lables bold 15 pt font font = {'weight' : 'bold', 'size' : 15} axes={'labelweight' : 'bold'} plt.rc('font', **font) plt.rc('axes', **axes) # Add some space around the tick lables for better readability plt.rcParams['xtick.major.pad']='8' plt.rcParams['ytick.major.pad']='8' # 0.2 Formatter for inserting commas in y axis labels with magnitudes in the thousands def func(x, pos): # formatter function takes tick label and tick position s = '{:0,d}'.format(int(x)) return s y_format = plt.FuncFormatter(func) # make formatter # 0.3 format the x axis ticksticks years2,years4,years5,years10,years15= dts.YearLocator(2),dts.YearLocator(4),dts.YearLocator(5),dts.YearLocator(10),dts.YearLocator(15) # 0.4 y label locator for vertical axes plotting gdp majorLocator_y = plt.MultipleLocator(3) majorLocator_shares = plt.MultipleLocator(0.2) # In[3]: # 1. Setup for the construction of K and A # 1.1 Parameters for the model alpha = 0.35 # If output_solow == TRUE, then Y = C + I. Else: Y = C + I + G + NX (default) output_solow = False # 1.3 Define the function for computing the capital series def capitalSeries(i,k0,delta): t0 = len(i)-1 k = [k0] for t in range(t0): k.append(i[t]+(1-delta)*k[t]) return np.array(k) # In[4]: # 2. Import and manage data from FRED # 2.1 Annual data investmentA = series('GPDIA') consumptionA = series('PCECA') governmentA = series('GCEA') exportsA = series('EXPGSA') importsA = series('IMPGSA') netExportsA = series('A019RC1A027NBEA') deflatorA = series('A191RD3A086NBEA') depreciationA = series('Y0000C1A027NBEA') gdpA = series('GDPA') tfpA = series('GDPA') capitalA = series('GDPA') laborA = series('B4701C0A222NBEA')# BEA index: fred('HOANBS') / .quartertoannual(method='AVG') # annualSeries = [investmentA,consumptionA,governmentA,exportsA,importsA,netExportsA,deflatorA,depreciationA,gdpA,tfpA,capitalA,laborA] investmentA,consumptionA,governmentA,netExportsA,exportsA,importsA,deflatorA,depreciationA,gdpA,tfpA,capitalA,laborA = window_equalize([investmentA,consumptionA,governmentA,netExportsA,exportsA,importsA,deflatorA,depreciationA,gdpA,tfpA,capitalA,laborA]) # 2.2 Compute real annual data series investmentA.data= 100*investmentA.data/deflatorA.data consumptionA.data = 100*consumptionA.data/deflatorA.data governmentA.data = 100*governmentA.data/deflatorA.data exportsA.data = 100*exportsA.data/deflatorA.data importsA.data = 100*importsA.data/deflatorA.data netExportsA.data = 100*netExportsA.data/deflatorA.data gdpA.data= 100*gdpA.data/deflatorA.data TA = len(investmentA.data) # 2.3 Convert labor from millions of hours to billions laborA.data = laborA.data/1000 # 2.4 Quarterly data investmentQ = series('GPDI') investmentQ4 = series('GPDI') consumptionQ = series('PCEC') governmentQ = series('GCE') exportsQ = series('EXPGS') importsQ = series('IMPGS') netExportsQ = series('NETEXP') deflatorQ = series('GDPDEF') gdpQ = series('GDP') tfpQ = series('GDP') capitalQ = series('GDP') laborQ = series('HOANBS') # L = fred('B4701C0A222NBEA') # quarterlySeries = [investmentQ,investmentQ4,consumptionQ,governmentQ,exportsQ,importsQ,netExportsQ,deflatorQ,gdpQ,tfpQ,capitalQ,laborQ] investmentQ,investmentQ4,consumptionQ,governmentQ,netExportsQ,exportsQ,importsQ,deflatorQ,gdpQ,tfpQ,capitalQ,laborQ = window_equalize([investmentQ,investmentQ4,consumptionQ,governmentQ,netExportsQ,exportsQ,importsQ,deflatorQ,gdpQ,tfpQ,capitalQ,laborQ]) # 2.5 Compute real annual data series investmentQ.data= 100*investmentQ.data/deflatorQ.data investmentQ4.data= 100*investmentQ4.data/deflatorQ.data consumptionQ.data = 100*consumptionQ.data/deflatorQ.data governmentQ.data = 100*governmentQ.data/deflatorQ.data netExportsQ.data = 100*netExportsQ.data/deflatorQ.data exportsQ.data = 100*exportsQ.data/deflatorQ.data importsQ.data = 100*importsQ.data/deflatorQ.data gdpQ.data= 100*gdpQ.data/deflatorQ.data TQ = len(investmentQ.data) # 2.6 Compute real annual data series. Note that investment is at a quarterly rate investmentQ4.data= investmentQ.data/4 realGdpQ= 100*gdpQ.data/deflatorQ.data # 2.7 Find the base year for the deflator: baseYear = deflatorA.units[6:10] laborBaseYear= laborQ.units[6:10] # In[5]: # 3. Parameter calibration using the annual series # 3.1 Use Y = C + I as the measure for output if that was requested above if output_solow == True: y0A= consumptionA.data+investmentA.data gdpA.data = y0A y0Q = consumptionQ.data+investmentQ.data gdpQ.data = y0Q # 3.2 form the ratios of depreciation and investment to output # depreciationYRatio= np.mean([d/y for d,y in zip(depreciationA.data,gdpA.data)]) iYRatio = np.mean(investmentA.data/gdpA.data) # 3.3 compute the annual growth rates of output and investment growthY = (gdpA.data[-1]/gdpA.data[0])**(1/(TA-1))-1 growthI = (investmentA.data[-1]/investmentA.data[0])**(1/(TA-1))-1 growthL = (laborA.data[-1]/laborA.data[0])**(1/(TA-1))-1 g = growthY n = growthL # 3.4 Compute delta based on requirement that K/Y = 2.5 delta = iYRatio/2.5-g-n # 3.5 print the computed rates for inspection print('gI:' ,growthI) print('gY:' ,growthY) print('gL:' ,growthL) print('delta:',delta) print('s:', iYRatio) print('g:', g) # In[6]: # 4. Implement the perpetual inventory method # 4.1 Annual capital series k0A = gdpA.data[0]*iYRatio/(delta + g + n) capitalA.data = capitalSeries(investmentA.data,k0A,delta) # 4.2 Quarterly capital series k0Q = gdpQ.data[0]*iYRatio/(delta + g + n) capitalQ.data = capitalSeries(investmentQ4.data,k0Q,delta/4) # In[7]: # 5. Plot the capital series. Note that the annual and quarterly series should and do align approximately. fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot_date(capitalA.datetimes,capitalA.data/1000,'b-',lw = 3) ax.plot_date(capitalQ.datetimes,capitalQ.data/1000,'r-',lw = 3) ax.xaxis.set_major_locator(years10) ax.set_ylabel('Trillions of \n '+baseYear+' $') capitalA.recessions() fig.autofmt_xdate() plt.title('Capital Stock') ax.legend(['Annual','Quarterly'],loc='upper left') ax.grid(True) # plt.savefig('fig_US_Production_Capital_QA.png',bbox_inches='tight') fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot_date(capitalA.datetimes,capitalA.data/1000,'b-',lw = 3) ax.xaxis.set_major_locator(years10) ax.set_ylabel('Trillions of \n '+baseYear+' $') capitalA.recessions() fig.autofmt_xdate() plt.title('Capital Stock: Annual') ax.grid(True) # plt.savefig('fig_US_Production_Capital_A.png',bbox_inches='tight') fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot_date(capitalQ.datetimes,capitalQ.data/1000,'b-',lw = 3) ax.xaxis.set_major_locator(years10) ax.set_ylabel('Trillions of \n '+baseYear+' $') capitalA.recessions() fig.autofmt_xdate() plt.title('Capital Stock: Quarterly') ax.grid(True) # plt.savefig('../img/fig_US_Production_Capital_A.png',bbox_inches='tight') # In[8]: # 6. Save data to csv files # 6.1 Annual data YearA = [a[0:4] for a in capitalA.dates] OutputA = [round(x,1) for x in gdpA.data] ConsumptionA= [round(x,1) for x in consumptionA.data] InvestmentA = [round(x,1) for x in investmentA.data] GovernmentA = [round(x,1) for x in governmentA.data] ImportsA = [round(x,1) for x in importsA.data] ExportsA = [round(x,1) for x in exportsA.data] NetExportsA = [round(x,1) for x in netExportsA.data] CapitalA = [round(x,1) for x in capitalA.data] LaborA = [round(x,4) for x in laborA.data] columnsA = ['Year','GDP [Bil. of '+baseYear+' Dollars]','Consumption [Bil. of '+baseYear+' Dollars]','Investment [Bil. of '+baseYear+' Dollars]','Government Purchases [Bil. of '+baseYear+' Dollars]','Exports [Bil. of '+baseYear+' Dollars]','Imports [Bil. of '+baseYear+' Dollars]','Net Exports [Bil. of '+baseYear+' Dollars]','Capital [Bil. of '+baseYear+' Dollars]','Labor [Bil. of Hours]'] df = pd.DataFrame({ 'Year':YearA, 'GDP [Bil. of '+baseYear+' Dollars]':OutputA, 'Consumption [Bil. of '+baseYear+' Dollars]':ConsumptionA, 'Investment [Bil. of '+baseYear+' Dollars]':InvestmentA, 'Government Purchases [Bil. of '+baseYear+' Dollars]':GovernmentA, 'Exports [Bil. of '+baseYear+' Dollars]':ExportsA, 'Imports [Bil. of '+baseYear+' Dollars]':ImportsA, 'Net Exports [Bil. of '+baseYear+' Dollars]':NetExportsA, 'Capital [Bil. of '+baseYear+' Dollars]':CapitalA, 'Labor [Bil. of Hours]':LaborA}) df = df[columnsA] df.to_csv('../csv/US_Production_A_Data.csv',index=False) # 6.2 Quarterly data DateQ = [a for a in capitalQ.dates] OutputQ = [round(x,1) for x in gdpQ.data] ConsumptionQ= [round(x,1) for x in consumptionQ.data] InvestmentQ = [round(x,1) for x in investmentQ.data] GovernmentQ = [round(x,1) for x in governmentQ.data] ImportsQ = [round(x,1) for x in importsQ.data] ExportsQ = [round(x,1) for x in exportsQ.data] NetExportsQ = [round(x,1) for x in netExportsQ.data] CapitalQ = [round(x,1) for x in capitalQ.data] LaborQ = [round(x,1) for x in laborQ.data] columnsQ = ['Date','GDP [Bil. of '+baseYear+' Dollars]','Consumption [Bil. of '+baseYear+' Dollars]','Investment [Bil. of '+baseYear+' Dollars]','Government Purchases [Bil. of '+baseYear+' Dollars]','Exports [Bil. of '+baseYear+' Dollars]','Imports [Bil. of '+baseYear+' Dollars]','Net Exports [Bil. of '+baseYear+' Dollars]','Capital [Bil. of '+baseYear+' Dollars]','Labor [Index: '+laborBaseYear+'=100]'] df = pd.DataFrame({ 'Date':DateQ, 'GDP [Bil. of '+baseYear+' Dollars]':OutputQ, 'Consumption [Bil. of '+baseYear+' Dollars]':ConsumptionQ, 'Investment [Bil. of '+baseYear+' Dollars]':InvestmentQ, 'Government Purchases [Bil. of '+baseYear+' Dollars]':GovernmentQ, 'Exports [Bil. of '+baseYear+' Dollars]':ExportsQ, 'Imports [Bil. of '+baseYear+' Dollars]':ImportsQ, 'Net Exports [Bil. of '+baseYear+' Dollars]':NetExportsQ, 'Capital [Bil. of '+baseYear+' Dollars]':CapitalQ, 'Labor [Index: '+laborBaseYear+'=100]':LaborQ}) df = df[columnsQ] df.to_csv('../csv/US_Production_Q_Data.csv',index=False) # In[9]: # 7. Compute the Solow residuals: # 7.1 Annual residual capitalA = capitalA.apc() tfpA = tfpA.apc() laborA = laborA.apc() gdpA = gdpA.apc() consumptionA = consumptionA.apc() investmentA = investmentA.apc() governmentA = governmentA.apc() exportsA = exportsA.apc() importsA = importsA.apc() # netExportsA = netExportsA.apc() gYA = gdpA.data gLA = laborA.data gKA = capitalA.data tfpA.data = gYA - alpha*gKA - (1-alpha)*gLA # 7.2. Compute the Solow residual: Quarterly capitalQ = capitalQ.apc() tfpQ = tfpQ.apc() laborQ = laborQ.apc() gdpQ = gdpQ.apc() consumptionQ = consumptionQ.apc() investmentQ = investmentQ.apc() governmentQ = governmentQ.apc() exportsQ = exportsQ.apc() importsQ = importsQ.apc() netExportsQ.data = np.array(netExportsQ.data) # netExportsQ = netExportsQ.apc() gYQ = gdpQ.data gLQ = laborQ.data gKQ = capitalQ.data tfpQ.data = gYQ - alpha*gKQ - (1-alpha)*gLQ # In[10]: # 11. Construct some plots fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot_date(gdpA.datetimes,gdpA.data,'b-',lw = 3) ax.plot_date(tfpA.datetimes,tfpA.data,'g-',lw = 3) ax.xaxis.set_major_locator(years10) ax.set_ylabel('%') gdpA.recessions() fig.autofmt_xdate() ax.grid(True) ax.legend(['GDP growth','Solow Residual'],bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0.,fontsize=15) # plt.savefig('fig_US_Production_ya_growth_A.png',bbox_inches='tight') # 11.2 Figure for website: Annual growth in Y, L, K, and A fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(2,2,1) ax.plot_date(tfpA.datetimes,tfpA.data,'b-',lw = 3,alpha = 0.75) ax.set_title('TFP Growth') ax.xaxis.set_major_locator(years10) ax.set_ylabel('%') tfpA.recessions() fig.autofmt_xdate() ax.locator_params(axis='y',nbins=6) ax.grid(True) ax = fig.add_subplot(2,2,2) ax.plot_date(gdpA.datetimes,gdpA.data,'b-',lw = 3,alpha = 0.75) ax.set_title('Real GDP Growth') ax.xaxis.set_major_locator(years10) ax.locator_params(axis='y',nbins=6) gdpA.recessions() fig.autofmt_xdate() ax.grid(True) ax = fig.add_subplot(2,2,3) ax.plot_date(laborA.datetimes,laborA.data,'b-',lw = 3,alpha = 0.75) ax.xaxis.set_major_locator(years10) laborA.recessions() ax.set_ylabel('%') ax.set_title('Labor Growth') ax.locator_params(axis='y',nbins=6) fig.autofmt_xdate() ax.grid(True) ax = fig.add_subplot(2,2,4) ax.plot_date(capitalA.datetimes,capitalA.data,'b-',lw = 3,alpha = 0.75) ax.xaxis.set_major_locator(years10) ax.set_title('Capital Growth') ax.locator_params(axis='y',nbins=6) capitalA.recessions() fig.autofmt_xdate() ax.grid(True) plt.savefig('../img/fig_US_Production_A_site.png',bbox_inches='tight') # 11.3 Quarterly GDP growth and the SOlow residual fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot_date(gdpQ.datetimes,gdpQ.data,'b-',lw = 3) ax.plot_date(tfpQ.datetimes,tfpQ.data,'g-',lw = 3) ax.xaxis.set_major_locator(years10) ax.set_ylabel('%') gdpQ.recessions() fig.autofmt_xdate() ax.grid(True) ax.legend(['GDP growth','Solow Residual'],bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0.,fontsize=15) # plt.savefig('../img/fig_US_Production_ya_growth_Q.png',bbox_inches='tight') # In[11]: # 10. Save growth rate data to csv files # 10.1 Annual data YearA = [a[0:4] for a in tfpA.dates] CapitalA = [round(x,1) for x in capitalA.data] LaborA = [round(x,1) for x in laborA.data] OutputA = [round(x,1) for x in gdpA.data] ConsumptionA = [round(x,1) for x in consumptionA.data] InvestmentA = [round(x,1) for x in investmentA.data] GovernmentA = [round(x,1) for x in governmentA.data] ExportsA = [round(x,1) for x in exportsA.data] ImportsA = [round(x,1) for x in importsA.data] NetExportsA = [round(x,1) for x in netExportsA.data] columnsA = ['Year','GDP Growth','Consumption Growth','Investment Growth','Government Purchases Growth','Exports Growth','Imports Growth','Capital Growth','Labor Growth'] data = [YearA,OutputA,ConsumptionA,InvestmentA,GovernmentA,ExportsA,ImportsA,CapitalA,LaborA] dA ={} for n,c in enumerate(columnsA): dA[columnsA[n]]=data[n] df = pd.DataFrame(dA) df = df[columnsA] df.to_csv('../csv/US_Production_A_Data_Growth_Rates.csv',index=False) # 10.2 Quarterly data DateQ = [a for a in tfpQ.dates] CapitalQ = [round(x,1) for x in capitalQ.data] LaborQ = [round(x,1) for x in laborQ.data] OutputQ = [round(x,1) for x in gdpQ.data] ConsumptionQ = [round(x,1) for x in consumptionQ.data] InvestmentQ = [round(x,1) for x in investmentQ.data] GovernmentQ = [round(x,1) for x in governmentQ.data] ExportsQ = [round(x,1) for x in exportsQ.data] ImportsQ = [round(x,1) for x in importsQ.data] NetExportsQ = [round(x,1) for x in netExportsQ.data] columnsQ = ['Year','GDP Growth','Consumption Growth','Investment Growth','Government Purchases Growth','Exports Growth','Imports Growth','Capital Growth','Labor Growth'] data = [DateQ,OutputQ,ConsumptionQ,InvestmentQ,GovernmentQ,ExportsQ,ImportsQ,CapitalQ,LaborQ] dQ ={} for n,c in enumerate(columnsQ): dQ[columnsQ[n]]=data[n] df = pd.DataFrame(dQ) df = df[columnsQ] df.to_csv('../csv/US_Production_Q_Data_Growth_Rates.csv',index=False) # In[12]: # 11. Export notebook to python script progName = 'usProductionData' runProcs.exportNb(progName)
mit
paultcochrane/bokeh
examples/charts/file/boxplot.py
37
1117
from collections import OrderedDict import pandas as pd from bokeh.charts import BoxPlot, output_file, show from bokeh.sampledata.olympics2014 import data # create a DataFrame with the sample data df = pd.io.json.json_normalize(data['data']) # filter by countries with at least one medal and sort df = df[df['medals.total'] > 0] df = df.sort("medals.total", ascending=False) # get the countries and group the data by medal type countries = df.abbr.values.tolist() gold = df['medals.gold'].astype(float).values silver = df['medals.silver'].astype(float).values bronze = df['medals.bronze'].astype(float).values # build a dict containing the grouped data medals = OrderedDict(bronze=bronze, silver=silver, gold=gold) # any of the following commented are valid BoxPlot inputs #medals = pd.DataFrame(medals) #medals = list(medals.values()) #medals = tuple(medals.values()) #medals = np.array(list(medals.values())) output_file("boxplot.html") boxplot = BoxPlot( medals, marker='circle', outliers=True, title="boxplot test", xlabel="medal type", ylabel="medal count", width=800, height=600) show(boxplot)
bsd-3-clause
matthiasdiener/spack
var/spack/repos/builtin/packages/py-espressopp/package.py
3
3452
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class PyEspressopp(CMakePackage): """ESPResSo++ is an extensible, flexible, fast and parallel simulation software for soft matter research. It is a highly versatile software package for the scientific simulation and analysis of coarse-grained atomistic or bead-spring models as they are used in soft matter research """ homepage = "https://espressopp.github.io" url = "https://github.com/espressopp/espressopp/tarball/v1.9.4.1" version('develop', git='https://github.com/espressopp/espressopp.git', branch='master') version('1.9.5', '13a93c30b07132b5e5fa0d828aa17d79') version('1.9.4.1', '0da74a6d4e1bfa6a2a24fca354245a4f') version('1.9.4', 'f2a27993a83547ad014335006eea74ea') variant('ug', default=False, description='Build user guide') variant('pdf', default=False, description='Build user guide in pdf format') variant('dg', default=False, description='Build developer guide') depends_on("[email protected]:", type='build') depends_on("mpi") depends_on("boost+serialization+filesystem+system+python+mpi", when='@1.9.4:') extends("python") depends_on("python@2:2.8") depends_on("[email protected]:", when='@1.9.4', type=('build', 'run')) depends_on("[email protected]:", when='@1.9.4.1:', type=('build', 'run')) depends_on("fftw") depends_on("py-sphinx", when="+ug", type='build') depends_on("py-sphinx", when="+pdf", type='build') depends_on('py-numpy', type=('build', 'run')) depends_on('py-matplotlib', when="+ug", type='build') depends_on('py-matplotlib', when="+pdf", type='build') depends_on("texlive", when="+pdf", type='build') depends_on("doxygen", when="+dg", type='build') def cmake_args(self): return [ '-DEXTERNAL_MPI4PY=ON', '-DEXTERNAL_BOOST=ON', '-DWITH_RC_FILES=OFF' ] def build(self, spec, prefix): with working_dir(self.build_directory): make() if '+ug' in spec: make("ug", parallel=False) if '+pdf' in spec: make("ug-pdf", parallel=False) if '+dg' in spec: make("doc", parallel=False)
lgpl-2.1
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/pandas/core/reshape/util.py
20
1915
import numpy as np from pandas.core.dtypes.common import is_list_like from pandas.compat import reduce from pandas.core.index import Index from pandas.core import common as com def match(needles, haystack): haystack = Index(haystack) needles = Index(needles) return haystack.get_indexer(needles) def cartesian_product(X): """ Numpy version of itertools.product or pandas.compat.product. Sometimes faster (for large inputs)... Parameters ---------- X : list-like of list-likes Returns ------- product : list of ndarrays Examples -------- >>> cartesian_product([list('ABC'), [1, 2]]) [array(['A', 'A', 'B', 'B', 'C', 'C'], dtype='|S1'), array([1, 2, 1, 2, 1, 2])] See also -------- itertools.product : Cartesian product of input iterables. Equivalent to nested for-loops. pandas.compat.product : An alias for itertools.product. """ msg = "Input must be a list-like of list-likes" if not is_list_like(X): raise TypeError(msg) for x in X: if not is_list_like(x): raise TypeError(msg) if len(X) == 0: return [] lenX = np.fromiter((len(x) for x in X), dtype=np.intp) cumprodX = np.cumproduct(lenX) a = np.roll(cumprodX, 1) a[0] = 1 if cumprodX[-1] != 0: b = cumprodX[-1] / cumprodX else: # if any factor is empty, the cartesian product is empty b = np.zeros_like(cumprodX) return [np.tile(np.repeat(np.asarray(com._values_from_object(x)), b[i]), np.product(a[i])) for i, x in enumerate(X)] def _compose2(f, g): """Compose 2 callables""" return lambda *args, **kwargs: f(g(*args, **kwargs)) def compose(*funcs): """Compose 2 or more callables""" assert len(funcs) > 1, 'At least 2 callables must be passed to compose' return reduce(_compose2, funcs)
mit
hfp/tensorflow-xsmm
tensorflow/contrib/learn/python/learn/learn_io/data_feeder_test.py
25
13554
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `DataFeeder`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin # pylint: disable=wildcard-import from tensorflow.contrib.learn.python.learn.learn_io import * from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.lib.io import file_io from tensorflow.python.platform import test # pylint: enable=wildcard-import class DataFeederTest(test.TestCase): # pylint: disable=undefined-variable """Tests for `DataFeeder`.""" def setUp(self): self._base_dir = os.path.join(self.get_temp_dir(), 'base_dir') file_io.create_dir(self._base_dir) def tearDown(self): file_io.delete_recursively(self._base_dir) def _wrap_dict(self, data, prepend=''): return {prepend + '1': data, prepend + '2': data} def _assert_raises(self, input_data): with self.assertRaisesRegexp(TypeError, 'annot convert'): data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1) def _assert_dtype(self, expected_np_dtype, expected_tf_dtype, input_data): feeder = data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1) if isinstance(input_data, dict): for v in list(feeder.input_dtype.values()): self.assertEqual(expected_np_dtype, v) else: self.assertEqual(expected_np_dtype, feeder.input_dtype) with ops.Graph().as_default() as g, self.session(g): inp, _ = feeder.input_builder() if isinstance(inp, dict): for v in list(inp.values()): self.assertEqual(expected_tf_dtype, v.dtype) else: self.assertEqual(expected_tf_dtype, inp.dtype) def test_input_int8(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int8) self._assert_dtype(np.int8, dtypes.int8, data) self._assert_dtype(np.int8, dtypes.int8, self._wrap_dict(data)) def test_input_int16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int16) self._assert_dtype(np.int16, dtypes.int16, data) self._assert_dtype(np.int16, dtypes.int16, self._wrap_dict(data)) def test_input_int32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int32) self._assert_dtype(np.int32, dtypes.int32, data) self._assert_dtype(np.int32, dtypes.int32, self._wrap_dict(data)) def test_input_int64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int64) self._assert_dtype(np.int64, dtypes.int64, data) self._assert_dtype(np.int64, dtypes.int64, self._wrap_dict(data)) def test_input_uint32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint32) self._assert_dtype(np.uint32, dtypes.uint32, data) self._assert_dtype(np.uint32, dtypes.uint32, self._wrap_dict(data)) def test_input_uint64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint64) self._assert_dtype(np.uint64, dtypes.uint64, data) self._assert_dtype(np.uint64, dtypes.uint64, self._wrap_dict(data)) def test_input_uint8(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint8) self._assert_dtype(np.uint8, dtypes.uint8, data) self._assert_dtype(np.uint8, dtypes.uint8, self._wrap_dict(data)) def test_input_uint16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint16) self._assert_dtype(np.uint16, dtypes.uint16, data) self._assert_dtype(np.uint16, dtypes.uint16, self._wrap_dict(data)) def test_input_float16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float16) self._assert_dtype(np.float16, dtypes.float16, data) self._assert_dtype(np.float16, dtypes.float16, self._wrap_dict(data)) def test_input_float32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float32) self._assert_dtype(np.float32, dtypes.float32, data) self._assert_dtype(np.float32, dtypes.float32, self._wrap_dict(data)) def test_input_float64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float64) self._assert_dtype(np.float64, dtypes.float64, data) self._assert_dtype(np.float64, dtypes.float64, self._wrap_dict(data)) def test_input_bool(self): data = np.array([[False for _ in xrange(2)] for _ in xrange(2)]) self._assert_dtype(np.bool, dtypes.bool, data) self._assert_dtype(np.bool, dtypes.bool, self._wrap_dict(data)) def test_input_string(self): input_data = np.array([['str%d' % i for i in xrange(2)] for _ in xrange(2)]) self._assert_dtype(input_data.dtype, dtypes.string, input_data) self._assert_dtype(input_data.dtype, dtypes.string, self._wrap_dict(input_data)) def _assertAllClose(self, src, dest, src_key_of=None, src_prop=None): def func(x): val = getattr(x, src_prop) if src_prop else x return val if src_key_of is None else src_key_of[val] if isinstance(src, dict): for k in list(src.keys()): self.assertAllClose(func(src[k]), dest) else: self.assertAllClose(func(src), dest) def test_unsupervised(self): def func(feeder): with self.cached_session(): inp, _ = feeder.input_builder() feed_dict_fn = feeder.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[1, 2]], feed_dict, 'name') data = np.matrix([[1, 2], [2, 3], [3, 4]]) func(data_feeder.DataFeeder(data, None, n_classes=0, batch_size=1)) func( data_feeder.DataFeeder( self._wrap_dict(data), None, n_classes=0, batch_size=1)) def test_data_feeder_regression(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose(out, [2, 1], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([1, 2]) func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=3)) def test_epoch(self): def func(feeder): with self.cached_session(): feeder.input_builder() epoch = feeder.make_epoch_variable() feed_dict_fn = feeder.get_feed_dict_fn() # First input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Second input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Third input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Back to the first input again, so new epoch. feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [1]) data = np.matrix([[1, 2], [2, 3], [3, 4]]) labels = np.array([0, 0, 1]) func(data_feeder.DataFeeder(data, labels, n_classes=0, batch_size=1)) func( data_feeder.DataFeeder( self._wrap_dict(data, 'in'), self._wrap_dict(labels, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=1)) def test_data_feeder_multioutput_regression(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose(out, [[3, 4], [1, 2]], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([[1, 2], [3, 4]]) func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=2)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=2)) def test_data_feeder_multioutput_classification(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose( out, [[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([[0, 1, 2], [2, 3, 4]]) func(data_feeder.DataFeeder(x, y, n_classes=5, batch_size=2)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(5, 'out'), batch_size=2)) def test_streaming_data_feeder(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[[1, 2]], [[3, 4]]], feed_dict, 'name') self._assertAllClose(out, [[[1], [2]], [[2], [2]]], feed_dict, 'name') def x_iter(wrap_dict=False): yield np.array([[1, 2]]) if not wrap_dict else self._wrap_dict( np.array([[1, 2]]), 'in') yield np.array([[3, 4]]) if not wrap_dict else self._wrap_dict( np.array([[3, 4]]), 'in') def y_iter(wrap_dict=False): yield np.array([[1], [2]]) if not wrap_dict else self._wrap_dict( np.array([[1], [2]]), 'out') yield np.array([[2], [2]]) if not wrap_dict else self._wrap_dict( np.array([[2], [2]]), 'out') func( data_feeder.StreamingDataFeeder( x_iter(), y_iter(), n_classes=0, batch_size=2)) func( data_feeder.StreamingDataFeeder( x_iter(True), y_iter(True), n_classes=self._wrap_dict(0, 'out'), batch_size=2)) # Test non-full batches. func( data_feeder.StreamingDataFeeder( x_iter(), y_iter(), n_classes=0, batch_size=10)) func( data_feeder.StreamingDataFeeder( x_iter(True), y_iter(True), n_classes=self._wrap_dict(0, 'out'), batch_size=10)) def test_dask_data_feeder(self): if HAS_PANDAS and HAS_DASK: x = pd.DataFrame( dict( a=np.array([.1, .3, .4, .6, .2, .1, .6]), b=np.array([.7, .8, .1, .2, .5, .3, .9]))) x = dd.from_pandas(x, npartitions=2) y = pd.DataFrame(dict(labels=np.array([1, 0, 2, 1, 0, 1, 2]))) y = dd.from_pandas(y, npartitions=2) # TODO(ipolosukhin): Remove or restore this. # x = extract_dask_data(x) # y = extract_dask_labels(y) df = data_feeder.DaskDataFeeder(x, y, n_classes=2, batch_size=2) inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[inp.name], [[0.40000001, 0.1], [0.60000002, 0.2]]) self.assertAllClose(feed_dict[out.name], [[0., 0., 1.], [0., 1., 0.]]) # TODO(rohanj): Fix this test by fixing data_feeder. Currently, h5py doesn't # support permutation based indexing lookups (More documentation at # http://docs.h5py.org/en/latest/high/dataset.html#fancy-indexing) def DISABLED_test_hdf5_data_feeder(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self.assertAllClose(out, [2, 1], feed_dict, 'name') try: import h5py # pylint: disable=g-import-not-at-top x = np.matrix([[1, 2], [3, 4]]) y = np.array([1, 2]) file_path = os.path.join(self._base_dir, 'test_hdf5.h5') h5f = h5py.File(file_path, 'w') h5f.create_dataset('x', data=x) h5f.create_dataset('y', data=y) h5f.close() h5f = h5py.File(file_path, 'r') x = h5f['x'] y = h5f['y'] func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=3)) except ImportError: print("Skipped test for hdf5 since it's not installed.") class SetupPredictDataFeederTest(DataFeederTest): """Tests for `DataFeeder.setup_predict_data_feeder`.""" def test_iterable_data(self): # pylint: disable=undefined-variable def func(df): self._assertAllClose(six.next(df), [[1, 2], [3, 4]]) self._assertAllClose(six.next(df), [[5, 6]]) data = [[1, 2], [3, 4], [5, 6]] x = iter(data) x_dict = iter([self._wrap_dict(v) for v in iter(data)]) func(data_feeder.setup_predict_data_feeder(x, batch_size=2)) func(data_feeder.setup_predict_data_feeder(x_dict, batch_size=2)) if __name__ == '__main__': test.main()
apache-2.0
liberatorqjw/scikit-learn
sklearn/tree/tests/test_export.py
37
2897
""" Testing for export functions of decision trees (sklearn.tree.export). """ from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.tree import DecisionTreeClassifier from sklearn.tree import export_graphviz from sklearn.externals.six import StringIO # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] def test_graphviz_toy(): """Check correctness of export_graphviz""" clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1, criterion="gini", random_state=2) clf.fit(X, y) # Test export code out = StringIO() export_graphviz(clf, out_file=out) contents1 = out.getvalue() contents2 = "digraph Tree {\n" \ "0 [label=\"X[0] <= 0.0000\\ngini = 0.5\\n" \ "samples = 6\", shape=\"box\"] ;\n" \ "1 [label=\"gini = 0.0000\\nsamples = 3\\n" \ "value = [ 3. 0.]\", shape=\"box\"] ;\n" \ "0 -> 1 ;\n" \ "2 [label=\"gini = 0.0000\\nsamples = 3\\n" \ "value = [ 0. 3.]\", shape=\"box\"] ;\n" \ "0 -> 2 ;\n" \ "}" assert_equal(contents1, contents2) # Test with feature_names out = StringIO() export_graphviz(clf, out_file=out, feature_names=["feature0", "feature1"]) contents1 = out.getvalue() contents2 = "digraph Tree {\n" \ "0 [label=\"feature0 <= 0.0000\\ngini = 0.5\\n" \ "samples = 6\", shape=\"box\"] ;\n" \ "1 [label=\"gini = 0.0000\\nsamples = 3\\n" \ "value = [ 3. 0.]\", shape=\"box\"] ;\n" \ "0 -> 1 ;\n" \ "2 [label=\"gini = 0.0000\\nsamples = 3\\n" \ "value = [ 0. 3.]\", shape=\"box\"] ;\n" \ "0 -> 2 ;\n" \ "}" assert_equal(contents1, contents2) # Test max_depth out = StringIO() export_graphviz(clf, out_file=out, max_depth=0) contents1 = out.getvalue() contents2 = "digraph Tree {\n" \ "0 [label=\"X[0] <= 0.0000\\ngini = 0.5\\n" \ "samples = 6\", shape=\"box\"] ;\n" \ "1 [label=\"(...)\", shape=\"box\"] ;\n" \ "0 -> 1 ;\n" \ "2 [label=\"(...)\", shape=\"box\"] ;\n" \ "0 -> 2 ;\n" \ "}" assert_equal(contents1, contents2) def test_graphviz_errors(): """Check for errors of export_graphviz""" clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1) clf.fit(X, y) out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, feature_names=[]) if __name__ == "__main__": import nose nose.runmodule()
bsd-3-clause
ThomasMiconi/htmresearch
projects/vehicle-control/agent/run_q.py
12
5498
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from collections import defaultdict import operator import time import numpy from unity_client.server import Server from sensorimotor.encoders.one_d_depth import OneDDepthEncoder from sensorimotor.q_learner import QLearner ACTIIONS = ["-1", "0", "1"] class Agent(object): def __init__(self, position): self.encoder = OneDDepthEncoder(positions=positions, radius=5, wrapAround=True, nPerPosition=28, wPerPosition=3, minVal=0, maxVal=1) self.plotter = Plotter(self.encoder) self.learner = QLearner(ACTIIONS, n=1008) self.lastState = None self.lastAction = None def sync(self, outputData): if not ("ForwardsSweepSensor" in outputData and "steer" in outputData): print "Warning: Missing data:", outputData return if outputData.get("reset"): print "Reset." sensor = outputData["ForwardsSweepSensor"] steer = outputData["steer"] reward = outputData.get("reward") or 0 encoding = self.encoder.encode(numpy.array(sensor)) if self.lastState is not None: self.learner.update(self.lastState, str(self.lastAction), encoding, str(steer), reward) value = self.learner.value(encoding) qValues = {} for action in ACTIIONS: qValues[action] = self.learner.qValue(encoding, action) inputData = {} inputData["qValues"] = qValues inputData["bestAction"] = self.learner.bestAction(encoding) self.plotter.update(sensor, encoding, steer, reward, value, qValues) if outputData.get("reset"): self.plotter.render() self.lastState = encoding self.lastAction = steer return inputData class Plotter(object): def __init__(self, encoder): self.encoder = encoder self.sensor = [] self.encoding = [] self.steer = [] self.reward = [] self.value = [] self.qValues = defaultdict(lambda: []) self.bestAction = [] import matplotlib.pyplot as plt self.plt = plt import matplotlib.cm as cm self.cm = cm from pylab import rcParams rcParams.update({'figure.figsize': (6, 9)}) # rcParams.update({'figure.autolayout': True}) rcParams.update({'figure.facecolor': 'white'}) def update(self, sensor, encoding, steer, reward, value, qValues): self.sensor.append(sensor) self.encoding.append(encoding) self.steer.append(steer) self.reward.append(reward) self.value.append(value) for key, value in qValues.iteritems(): self.qValues[key].append(value) bestAction = int(max(qValues.iteritems(), key=operator.itemgetter(1))[0]) self.bestAction.append(bestAction) def render(self): self.plt.figure(1) self.plt.clf() n = 7 self.plt.subplot(n,1,1) self._plot(self.steer, "Steer over time") self.plt.subplot(n,1,2) self._plot(self.reward, "Reward over time") self.plt.subplot(n,1,3) self._plot(self.value, "Value over time") self.plt.subplot(n,1,4) shape = len(self.encoder.positions), self.encoder.scalarEncoder.getWidth() encoding = numpy.array(self.encoding[-1]).reshape(shape).transpose() self._imshow(encoding, "Encoding at time t") self.plt.subplot(n,1,5) data = self.encoding w = self.encoder.w overlaps = [sum(a & b) / float(w) for a, b in zip(data[:-1], data[1:])] self._plot(overlaps, "Encoding overlaps between consecutive times") # for i, action in enumerate(ACTIIONS): # self.plt.subplot(n,1,4+i) # self._plot(self.qValues[action], "Q value: {0}".format(action)) # self.plt.subplot(n,1,7) # self._plot(self.bestAction, "Best action") self.plt.draw() self.plt.savefig("q-{0}.png".format(time.time())) def _plot(self, data, title): self.plt.title(title) self.plt.xlim(0, len(data)) self.plt.plot(range(len(data)), data) def _imshow(self, data, title): self.plt.title(title) self.plt.imshow(data, cmap=self.cm.Greys, interpolation="nearest", aspect='auto', vmin=0, vmax=1) if __name__ == "__main__": # complete uniform # positions = [i*20 for i in range(36)] # forward uniform positions = [i*10 for i in range(-18, 18)] agent = Agent(positions) Server(agent)
agpl-3.0
pandas-ml/pandas-ml
pandas_ml/skaccessors/gaussian_process.py
3
2067
#!/usr/bin/env python from pandas_ml.core.accessor import _AccessorMethods, _attach_methods, _wrap_data_func class GaussianProcessMethods(_AccessorMethods): """ Accessor to ``sklearn.gaussian_process``. """ _module_name = 'sklearn.gaussian_process' _method_mapper = dict(predict={'GaussianProcess': '_predict'}) @property def correlation_models(self): """Property to access ``sklearn.gaussian_process.correlation_models``""" module_name = 'sklearn.gaussian_process.correlation_models' attrs = ['absolute_exponential', 'squared_exponential', 'generalized_exponential', 'pure_nugget', 'cubic', 'linear'] return _AccessorMethods(self._df, module_name=module_name, attrs=attrs) @property def regression_models(self): """Property to access ``sklearn.gaussian_process.regression_models``""" return RegressionModelsMethods(self._df) @classmethod def _predict(cls, df, estimator, *args, **kwargs): data = df.data.values eval_MSE = kwargs.get('eval_MSE', False) if eval_MSE: y, MSE = estimator.predict(data, *args, **kwargs) if y.ndim == 1: y = df._constructor_sliced(y, index=df.index) MSE = df._constructor_sliced(MSE, index=df.index) else: y = df._constructor(y, index=df.index) MSE = df._constructor(MSE, index=df.index) return y, MSE else: y = estimator.predict(data, *args, **kwargs) if y.ndim == 1: y = df._constructor_sliced(y, index=df.index) else: y = df._constructor(y, index=df.index) return y class RegressionModelsMethods(_AccessorMethods): _module_name = 'sklearn.gaussian_process.regression_models' _regression_methods = ['constant', 'linear', 'quadratic'] _attach_methods(RegressionModelsMethods, _wrap_data_func, _regression_methods)
bsd-3-clause
sonnyhu/numpy
doc/example.py
81
3581
"""This is the docstring for the example.py module. Modules names should have short, all-lowercase names. The module name may have underscores if this improves readability. Every module should have a docstring at the very top of the file. The module's docstring may extend over multiple lines. If your docstring does extend over multiple lines, the closing three quotation marks must be on a line by itself, preferably preceeded by a blank line. """ from __future__ import division, absolute_import, print_function import os # standard library imports first # Do NOT import using *, e.g. from numpy import * # # Import the module using # # import numpy # # instead or import individual functions as needed, e.g # # from numpy import array, zeros # # If you prefer the use of abbreviated module names, we suggest the # convention used by NumPy itself:: import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt # These abbreviated names are not to be used in docstrings; users must # be able to paste and execute docstrings after importing only the # numpy module itself, unabbreviated. from my_module import my_func, other_func def foo(var1, var2, long_var_name='hi') : r"""A one-line summary that does not use variable names or the function name. Several sentences providing an extended description. Refer to variables using back-ticks, e.g. `var`. Parameters ---------- var1 : array_like Array_like means all those objects -- lists, nested lists, etc. -- that can be converted to an array. We can also refer to variables like `var1`. var2 : int The type above can either refer to an actual Python type (e.g. ``int``), or describe the type of the variable in more detail, e.g. ``(N,) ndarray`` or ``array_like``. Long_variable_name : {'hi', 'ho'}, optional Choices in brackets, default first when optional. Returns ------- type Explanation of anonymous return value of type ``type``. describe : type Explanation of return value named `describe`. out : type Explanation of `out`. Other Parameters ---------------- only_seldom_used_keywords : type Explanation common_parameters_listed_above : type Explanation Raises ------ BadException Because you shouldn't have done that. See Also -------- otherfunc : relationship (optional) newfunc : Relationship (optional), which could be fairly long, in which case the line wraps here. thirdfunc, fourthfunc, fifthfunc Notes ----- Notes about the implementation algorithm (if needed). This can have multiple paragraphs. You may include some math: .. math:: X(e^{j\omega } ) = x(n)e^{ - j\omega n} And even use a greek symbol like :math:`omega` inline. References ---------- Cite the relevant literature, e.g. [1]_. You may also cite these references in the notes section above. .. [1] O. McNoleg, "The integration of GIS, remote sensing, expert systems and adaptive co-kriging for environmental habitat modelling of the Highland Haggis using object-oriented, fuzzy-logic and neural-network techniques," Computers & Geosciences, vol. 22, pp. 585-588, 1996. Examples -------- These are written in doctest format, and should illustrate how to use the function. >>> a=[1,2,3] >>> print [x + 3 for x in a] [4, 5, 6] >>> print "a\n\nb" a b """ pass
bsd-3-clause
waterponey/scikit-learn
sklearn/tree/tests/test_export.py
33
9901
""" Testing for export functions of decision trees (sklearn.tree.export). """ from re import finditer from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.tree import export_graphviz from sklearn.externals.six import StringIO from sklearn.utils.testing import assert_in, assert_equal, assert_raises # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] y2 = [[-1, 1], [-1, 1], [-1, 1], [1, 2], [1, 2], [1, 3]] w = [1, 1, 1, .5, .5, .5] y_degraded = [1, 1, 1, 1, 1, 1] def test_graphviz_toy(): # Check correctness of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2, criterion="gini", random_state=2) clf.fit(X, y) # Test export code contents1 = export_graphviz(clf, out_file=None) contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with feature_names contents1 = export_graphviz(clf, feature_names=["feature0", "feature1"], out_file=None) contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with class_names contents1 = export_graphviz(clf, class_names=["yes", "no"], out_file=None) contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = yes"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \ 'class = yes"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n' \ 'class = no"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test plot_options contents1 = export_graphviz(clf, filled=True, impurity=False, proportion=True, special_characters=True, rounded=True, out_file=None) contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'edge [fontname=helvetica] ;\n' \ '0 [label=<X<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>' \ 'value = [0.5, 0.5]>, fillcolor="#e5813900"] ;\n' \ '1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, ' \ 'fillcolor="#399de5ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth contents1 = export_graphviz(clf, max_depth=0, class_names=True, out_file=None) contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = y[0]"] ;\n' \ '1 [label="(...)"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth with plot_options contents1 = export_graphviz(clf, max_depth=0, filled=True, out_file=None, node_ids=True) contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \ 'samples = 6\\nvalue = [3, 3]", fillcolor="#e5813900"] ;\n' \ '1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test multi-output with weighted samples clf = DecisionTreeClassifier(max_depth=2, min_samples_split=2, criterion="gini", random_state=2) clf = clf.fit(X, y2, sample_weight=w) contents1 = export_graphviz(clf, filled=True, impurity=False, out_file=None) contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="X[0] <= 0.0\\nsamples = 6\\n' \ 'value = [[3.0, 1.5, 0.0]\\n' \ '[3.0, 1.0, 0.5]]", fillcolor="#e5813900"] ;\n' \ '1 [label="samples = 3\\nvalue = [[3, 0, 0]\\n' \ '[3, 0, 0]]", fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="X[0] <= 1.5\\nsamples = 3\\n' \ 'value = [[0.0, 1.5, 0.0]\\n' \ '[0.0, 1.0, 0.5]]", fillcolor="#e5813986"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '3 [label="samples = 2\\nvalue = [[0, 1, 0]\\n' \ '[0, 1, 0]]", fillcolor="#e58139ff"] ;\n' \ '2 -> 3 ;\n' \ '4 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n' \ '[0.0, 0.0, 0.5]]", fillcolor="#e58139ff"] ;\n' \ '2 -> 4 ;\n' \ '}' assert_equal(contents1, contents2) # Test regression output with plot_options clf = DecisionTreeRegressor(max_depth=3, min_samples_split=2, criterion="mse", random_state=2) clf.fit(X, y) contents1 = export_graphviz(clf, filled=True, leaves_parallel=True, out_file=None, rotate=True, rounded=True) contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'graph [ranksep=equally, splines=polyline] ;\n' \ 'edge [fontname=helvetica] ;\n' \ 'rankdir=LR ;\n' \ '0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \ 'value = 0.0", fillcolor="#e5813980"] ;\n' \ '1 [label="mse = 0.0\\nsamples = 3\\nvalue = -1.0", ' \ 'fillcolor="#e5813900"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="True"] ;\n' \ '2 [label="mse = 0.0\\nsamples = 3\\nvalue = 1.0", ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="False"] ;\n' \ '{rank=same ; 0} ;\n' \ '{rank=same ; 1; 2} ;\n' \ '}' assert_equal(contents1, contents2) # Test classifier with degraded learning set clf = DecisionTreeClassifier(max_depth=3) clf.fit(X, y_degraded) contents1 = export_graphviz(clf, filled=True, out_file=None) contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="gini = 0.0\\nsamples = 6\\nvalue = 6.0", ' \ 'fillcolor="#e5813900"] ;\n' \ '}' assert_equal(contents1, contents2) def test_graphviz_errors(): # Check for errors of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=2) clf.fit(X, y) # Check feature_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, feature_names=[]) # Check class_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, class_names=[]) def test_friedman_mse_in_graphviz(): clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0) clf.fit(X, y) dot_data = StringIO() export_graphviz(clf, out_file=dot_data) clf = GradientBoostingClassifier(n_estimators=2, random_state=0) clf.fit(X, y) for estimator in clf.estimators_: export_graphviz(estimator[0], out_file=dot_data) for finding in finditer("\[.*?samples.*?\]", dot_data.getvalue()): assert_in("friedman_mse", finding.group())
bsd-3-clause
srjit/fakenewschallange
code/python/classifier.py
1
3897
import os mingw_path = 'C:\\Program Files\\mingw-w64\\x86_64-6.3.0-posix-seh-rt_v5-rev2\\mingw64\\bin' os.environ['PATH'] = mingw_path + ';' + os.environ['PATH'] import xgboost as xgb import sklearn.svm from sklearn.ensemble import RandomForestClassifier import pandas as pd from sklearn import linear_model, datasets from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import GridSearchCV def train_XGB(data, test): """ Arguments: - `data`: """ predictors = ["overlapping","reoccur1", "reoccur2", "reoccur3","reoccur4", "reoccur5", "reoccur6","euclidean","refuting_feature_count","char_length_headline","char_length_body"]#,"cosine"]#,"wmdistance", "euclidean"] response = data.Stance # n_estimators = range(50,500, 50) # depth = range(1,10) # # param_grid = dict(n_estimators=n_estimators, max_depth = depth) # # kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=7) # # model = xgb.XGBClassifier() # # grid_search = GridSearchCV(model, param_grid, scoring="neg_log_loss", n_jobs=-1, cv=kfold) # grid_result = grid_search.fit(data[predictors], response) # # print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) gbm = xgb.XGBClassifier(max_depth=5, n_estimators=300, learning_rate=0.1,objective='multi:softmax').fit(data[predictors], response) _test = test[["overlapping", "reoccur1", "reoccur2", "reoccur3","reoccur4", "reoccur5", "reoccur6","euclidean","refuting_feature_count","char_length_headline","char_length_body"]]#,"cosine"#,"wmdistance", "euclidean"]] _predictions = gbm.predict(_test) predictions = pd.Series(_predictions.tolist()) test["predicted_XGB"] = predictions.values ## Accuracy calculation test["is_correct_prediction_XGB"] = test["Stance"] == test["predicted_XGB"] correctly_predicted_rows = test[test['is_correct_prediction_XGB'] == True] print("Accuracy : ", float(len(correctly_predicted_rows))/len(test)) def train_SVM(data): predictors = ["overlapping","reoccur1", "reoccur2", "reoccur3", "reoccur4", "reoccur5", "reoccur6","euclidean","refuting_feature_count","char_length_headline","char_length_body"] response = data.Stance clf = sklearn.svm.LinearSVC().fit(data[predictors],response) return clf def train_logistic(data): """ Arguments: - `data`: """ predictors = ["overlapping","reoccur1", "reoccur2", "reoccur3", "reoccur4", "reoccur5", "reoccur6","euclidean""refuting_feature_count","char_length_headline","char_length_body"] response = data.Stance logreg = linear_model.LogisticRegression(C=1e5) logistic_classifier = logreg.fit(data[predictors],response) def randomForest (train,test): """ Arguments: - `data`: """ predictors = ["overlapping","reoccur1", "reoccur2", "reoccur3","reoccur4", "reoccur5", "euclidean","refuting_feature_count","char_length_headline","char_length_body"]#,"cosine"]#,"wmdistance", "euclidean"] response = train.Stance _test = test[["overlapping", "reoccur1", "reoccur2", "reoccur3","reoccur4", "reoccur5","euclidean","refuting_feature_count","char_length_headline","char_length_body"]]#,"cosine"]] #,"wmdistance", "euclidean"]] clf = RandomForestClassifier(n_jobs=2) clf.fit(train[predictors],response) _predictions = clf.predict(_test) predictions = pd.Series(_predictions.tolist()) test["predicted_RF"] = predictions.values test["is_correct_prediction_RF"] = test["Stance"] == test["predicted_RF"] correctly_predicted_rows = test[test['is_correct_prediction_RF'] == True] print("Accuracy for Random Forest : ", float(len(correctly_predicted_rows))/len(test)) # print(" Cross Tab for Random Forest ") # print (pd.crosstab(test.Stance, test.predicted_RF))
gpl-3.0
nkoukou/University_Projects_Year_3
EDM_Assembly/edm.py
1
7390
''' Models the EDM experiment electric plate assembly. ''' import numpy as np import matplotlib.pylab as plt import base_class as bc reload(bc) class Edm(bc.PotentialGrid): ''' Represents the EDM experiment electric field plate setup. ''' def __init__(self, tube_dist, scale): ''' Input parameters: tube_dist - distance to the grounded border (dimensionless - integer) scale - number of grid points per unit length (1/[10mm] - integer) ''' self.dim = {'x': bc.edm_x, 'u': bc.edm_u} self.tube_dist = tube_dist self.scale = scale self.grid, self.fix = bc.gen_edm_grid(tube_dist, scale) def set_tube_dist(self, tube_dist, silent=False): self.tube_dist = int(tube_dist) self.gen_grid() if not silent: print self def set_scale(self, scale, silent=False): self.scale = int(scale) self.gen_grid() if not silent: print self def __repr__(self): return "Edm( tube_dist={0}, scale={1} )".format(self.tube_dist, self.scale) def gen_grid(self): ''' Generates 2D grid for EDM experiment. ''' self.grid, self.fix = bc.gen_edm_grid(self.tube_dist, self.scale) def calc_efield(self, plot=True): ''' Calculates and plots electric field along particle path. ''' h = self.dim['x'][0]/self.scale mid = self.grid.shape[0]/2 path = self.grid[mid-2:mid+3,:] efield = [] for i in range(1, path.shape[1]-1): efx = (+ path[2,i+1] - path[2,i-1])*self.dim['u'][0]/(2*h) efy = ((- path[0,i] + 8*path[1,i] - 8*path[3,i] + path[4,i] )*self.dim['u'][0])/(12*h) efield.append(np.sqrt(efx*efx + efy*efy)) path = path[:,1:-1] edge = len(path[2])*self.dim['x'][0]/self.scale/2. xaxis = np.linspace(-edge, edge, len(path[2])) if not plot: return xaxis, efield fig = plt.figure() ax = fig.add_subplot(111) #ax.set_title(r'Cross section of electric field along particle path', # fontsize=55) ax.set_xlabel(r'$system\ size\ (%s)$'% (self.dim['x'][1]), fontsize=37) ax.set_ylabel(r'$electric\ field\ E\ (MVm^{-1})$', fontsize=37) ax.tick_params(axis='both', labelsize=27) ax.plot(xaxis, efield) def analyse_homogeneity(self, tube_dist=1, plot=True): ''' Calculates homogeneity of electric field along particle path for given tube distance from the system. ''' self.set_tube_dist(tube_dist, silent=True) self.converge_grid(w=-1, accuracy=5e-11) xaxis, efield = self.calc_efield(plot=False) small_homogen, big_homogen, big_ind = [], [], (tube_dist+3)*self.scale small_plate = efield[tube_dist*self.scale+1:(tube_dist+2)*self.scale] big_plate = efield[big_ind+1:-big_ind] small_ref = small_plate[len(small_plate)/2] big_ref = big_plate[len(big_plate)/2] small_check = np.absolute(small_plate - small_ref)/small_ref big_check = np.absolute(big_plate - big_ref)/big_ref levels = np.logspace(0,-5,1000) for level in levels: small_pass = small_check[small_check<level] big_pass = big_check[big_check<level] small_homogen.append(len(small_pass)) big_homogen.append(len(big_pass)) small_homogen = np.array(small_homogen)*self.dim['x'][0]/self.scale big_homogen = np.array(big_homogen)*self.dim['x'][0]/self.scale if not plot: return levels, small_homogen, big_homogen fig = plt.figure() ax = fig.add_subplot(111) axb, axs = fig.add_subplot(211), fig.add_subplot(212) ax.spines['top'].set_color('none') ax.spines['bottom'].set_color('none') ax.spines['left'].set_color('none') ax.spines['right'].set_color('none') ax.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off') ax.set_title(r'Electric field homogeneity between plates', fontsize=55) ax.set_xlabel(r'$level\ of\ homogeneity$', fontsize=37, labelpad=5) ax.set_ylabel(r'$path\ length\ (%s)$'% (self.dim['x'][1]), fontsize=37, labelpad=20) axb.plot(levels, big_homogen, label=r'Big plates') axb.legend(loc='lower left', prop={'size':40}) axb.tick_params(axis='both', labelsize=27) axb.invert_xaxis() axs.plot(levels, small_homogen, color='g', label=r'Small plates') axs.legend(loc='lower left', prop={'size':40}) axs.tick_params(axis='both', labelsize=27) axs.invert_xaxis() def dustify(self, plate='central', pos='centre', behaviour='conductor'): ''' Adds a dust particle of size 100um at given plate, on side facing the particle path. Can be positioned (pos) at the middle or at the central edge of plate (left edge for central plate). It can either be an insulator or a conductor corresponding to a fixed potential of 0 or the value at given plate respectively. ''' row = 1+(self.tube_dist+1)*self.scale if plate=='left': if pos=='centre': col = (self.tube_dist+1)*self.scale else: col = (self.tube_dist+2)*self.scale elif plate=='central': if pos=='centre': col = (self.tube_dist+13)*self.scale else: col = 1+(self.tube_dist+3)*self.scale elif plate=='right': if pos=='centre': col = (self.tube_dist+25)*self.scale else: col = 1+(self.tube_dist+24)*self.scale if behaviour=='insulator': u = 0. elif behaviour=='conductor': u = self.grid[row-1, col] if self.scale==100: self.grid[row, col] = u self.fix[row, col] = 1. elif self.scale==200: self.grid[row:row+2, col:col+2] = u self.fix[row:row+2, col:col+2] = 1. else: raise ValueError('Method dustify requires scale = 100 or 200') def plot_middle_dust(self): ''' Plots electic field for the cases of a pure system and of an insulating and a conducting dust particle sitting at the middle of the central plate. ''' fig = plt.figure() ax = fig.add_subplot(111) ax.set_title(r'Cross section of electric field along particle path', fontsize=55) ax.set_xlabel(r'$system\ size\ (%s)$'% (self.dim['x'][1]), fontsize=37) ax.set_ylabel(r'$electric\ field\ E\ (MVm^{-1})$', fontsize=37) ax.tick_params(axis='both', labelsize=27) self.converge_grid(accuracy=1e-7) xaxis, efield = self.calc_efield(plot=False) ax.plot(xaxis, efield, label=r'No dust') self.dustify(behaviour='conductor') self.converge_grid(accuracy=1e-7) xaxis, efield = self.calc_efield(plot=False) ax.plot(xaxis, efield, label=r'Conducting dust') self.dustify(behaviour='insulator') self.converge_grid(accuracy=1e-7) xaxis, efield = self.calc_efield(plot=False) ax.plot(xaxis, efield, label=r'Insulating dust') leg = ax.legend(prop={'size':40}) leg.draggable()
mit
reuk/waveguide
demo/evaluation/room_sizes/rt60.py
2
1951
#!/usr/local/bin/python import numpy as np import matplotlib render = True if render: matplotlib.use('pgf') import matplotlib.pyplot as plt from string import split import scipy.signal as signal import wave import math import os import re import json import sys sys.path.append('python') def get_frequency_rt30_tuple(line): split = line.split() return (float(split[0]), float(split[6])) def read_rt30(fname): with open(fname) as f: lines = f.readlines() return [get_frequency_rt30_tuple(line) for line in lines[14:22]] def main(): files = [ ("small", "small.txt"), ("medium", "medium.txt"), ("large", "large.txt"), ] for label, fname in files: tuples = read_rt30(fname) x = [freq for freq, _ in tuples] y = [time for _, time in tuples] min_time = min(y) max_time = max(y) average = (max_time - min_time) * 100.0 / ((max_time + min_time) * 0.5) print('file: {}, min: {}, max: {}, average: {}'.format( fname, min_time, max_time, average)) plt.plot(x, y, label=label, marker='o', linestyle='--') plt.xscale('log') plt.axvline(x=500) plt.annotate(xy=(520, 1.4), s='waveguide cutoff') plt.legend(loc='lower center', ncol=3, bbox_to_anchor=(0, -0.05, 1, 1), bbox_transform=plt.gcf().transFigure) plt.title('Octave-band T30 Measurements for Different Room Sizes') plt.xlabel('frequency / Hz') plt.ylabel('time / s') plt.tight_layout() #plt.subplots_adjust(top=0.9) plt.show() if render: plt.savefig('room_size_rt30.svg', bbox_inches='tight', dpi=96, format='svg') if __name__ == '__main__': pgf_with_rc_fonts = { 'font.family': 'serif', 'font.serif': [], 'font.sans-serif': ['Helvetica Neue'], 'legend.fontsize': 12, } matplotlib.rcParams.update(pgf_with_rc_fonts) main()
gpl-2.0
MathYourLife/TSatPy-thesis
tex/sample_scripts/Controllers_02.py
1
5725
import time import numpy as np import matplotlib.pyplot as plt from TSatPy import Controller, State from TSatPy import StateOperator as SO from TSatPy.Clock import Metronome from GradientDescent import GradientDescent print("Test PID Controller - Rate Control") run_time = 60 speed = 20 c = Metronome() c.set_speed(speed) dt = 0.5 x_d = State.State( State.Identity(), State.BodyRate([0,0,0.314])) def run_test(Kpx, Kpy, Kpz, Kix, Kiy, Kiz, Kdx, Kdy, Kdz, plot=False): ts, Ms, Mps, Mis, Mds, ws = test(Kpx, Kpy, Kpz, Kix, Kiy, Kiz, Kdx, Kdy, Kdz) if plot: graph_it(ts, Ms, Mps, Mis, Mds, ws) def test(Kpx, Kpy, Kpz, Kix, Kiy, Kiz, Kdx, Kdy, Kdz): x_est = State.State( State.Quaternion(np.random.rand(3,1),radians=np.random.rand()), State.BodyRate(np.random.rand(3,1))) I = [[4, 0, 0], [0, 4, 0], [0, 0, 2]] plant_est = State.Plant(I, x_est, c) Kp = SO.StateToMoment( None, SO.BodyRateToMoment([[Kpx,0,0],[0,Kpy,0],[0,0,Kpz]])) Ki = SO.StateToMoment( None, SO.BodyRateToMoment([[Kix,0,0],[0,Kiy,0],[0,0,Kiz]])) Kd = SO.StateToMoment( None, SO.BodyRateToMoment([[Kdx,0,0],[0,Kdy,0],[0,0,Kdz]])) pid = Controller.PID(c) pid.set_Kp(Kp) pid.set_Ki(Ki) pid.set_Kd(Kd) pid.set_desired_state(x_d) M = State.Moment() ts = [] Ms = [] Mps = [] Mis = [] Mds = [] ws = [] start_time = c.tick() end_time = c.tick() + run_time while c.tick() < end_time: time.sleep(dt / float(speed)) plant_est.propagate(M) x_plant = plant_est.x M = pid.update(x_plant) ts.append(c.tick() - start_time) Ms.append((M[0],M[1],M[2])) Mps.append((pid.M_p[0],pid.M_p[1],pid.M_p[2])) Mis.append((pid.M_i[0],pid.M_i[1],pid.M_i[2])) Mds.append((pid.M_d[0],pid.M_d[1],pid.M_d[2])) ws.append((x_plant.w[0],x_plant.w[1],x_plant.w[2])) return ts, Ms, Mps, Mis, Mds, ws def grid_me(ax): ax.grid(color='0.75', linestyle='--', linewidth=1) def graph_it(ts, Ms, Mps, Mis, Mds, ws): fig = plt.figure(dpi=80, facecolor='w', edgecolor='k') ax = fig.add_subplot(2,1,1) ax.plot(ts, [M[0] for M in Ms], c='b', label=r'$M_x$', lw=2) ax.plot(ts, [M[1] for M in Ms], c='r', label=r'$M_y$', lw=2) ax.plot(ts, [M[2] for M in Ms], c='g', label=r'$M_z$', lw=2) ax.set_ylabel(r'Moment (Nm)') grid_me(ax) plt.legend(prop={'size':10}) ax = fig.add_subplot(2,1,2) ax.plot(ts, [w[0] for w in ws], c='b', label=r'$\omega_x$', lw=2) ax.plot(ts, [w[1] for w in ws], c='r', label=r'$\omega_y$', lw=2) ax.plot(ts, [w[2] for w in ws], c='g', label=r'$\omega_z$', lw=2) ax.set_ylabel(r'Body Rate (rad/sec)') grid_me(ax) plt.legend(prop={'size':10}) ax.set_xlabel('$t(k)$ seconds') plt.tight_layout() plt.draw() fig = plt.figure(dpi=80, facecolor='w', edgecolor='k') ax = fig.add_subplot(3,1,1) ax.plot(ts, [M[0] for M in Mps], c='b', label=r'$M_x$', lw=2) ax.plot(ts, [M[1] for M in Mps], c='r', label=r'$M_y$', lw=2) ax.plot(ts, [M[2] for M in Mps], c='g', label=r'$M_z$', lw=2) ax.set_ylabel(r'P-Moment (Nm)') grid_me(ax) plt.legend(prop={'size':10}) ax = fig.add_subplot(3,1,2) ax.plot(ts, [M[0] for M in Mis], c='b', label=r'$M_x$', lw=2) ax.plot(ts, [M[1] for M in Mis], c='r', label=r'$M_y$', lw=2) ax.plot(ts, [M[2] for M in Mis], c='g', label=r'$M_z$', lw=2) ax.set_ylabel(r'I-Moment (Nm)') grid_me(ax) plt.legend(prop={'size':10}) ax = fig.add_subplot(3,1,3) ax.plot(ts, [M[0] for M in Mds], c='b', label=r'$M_x$', lw=2) ax.plot(ts, [M[1] for M in Mds], c='r', label=r'$M_y$', lw=2) ax.plot(ts, [M[2] for M in Mds], c='g', label=r'$M_z$', lw=2) ax.set_ylabel(r'D-Moment (Nm)') grid_me(ax) plt.legend(prop={'size':10}) ax.set_xlabel('$t(k)$ seconds') plt.tight_layout() plt.show() def calc_err(ts, Ms, Mps, Mis, Mds, ws): M = np.array(Ms) cost = np.abs(M).mean(axis=0).sum() return cost def main(): domains = [ ['Kpx', 0.001, 0.9], ['Kpy', 0.001, 0.9], ['Kpz', 0.001, 0.9], ['Kix', 0, 0.01], ['Kiy', 0, 0.01], ['Kiz', 0, 0.01], ['Kdx', 0, 0.1], ['Kdy', 0, 0.1], ['Kdz', 0, 0.1], ] kwargs = { # Number of iterations to run 'N': 50, # Definition of parameter search domain 'domains': domains, # Function that will run a test 'run_test': test, # Function that will take the return of run_test and determine # how well the parameters worked. 'calc_cost': calc_err, } print(GradientDescent.descend(**kwargs)) return 0 if __name__ == '__main__': kwargs = None kwargs = { 'Kpx': 0.4239, 'Kpy': 0.4164, 'Kpz': 0.3460, 'Kix': 0.005723, 'Kiy': 0.003002, 'Kiz': 0.005465, 'Kdx': 0.04437, 'Kdy': 0.07173, 'Kdz': 0.04188 } if kwargs is not None: kwargs['plot'] = True run_test(**kwargs) else: exit(main()) # Best performance at # Kpx: # val: 0.423915 range: 0.001,0.9 std: 0.0528036 # Kpy: # val: 0.416379 range: 0.001,0.9 std: 0.0508544 # Kpz: # val: 0.346048 range: 0.001,0.9 std: 0.0263608 # Kix: # val: 0.00572302 range: 0,0.01 std: 0.000574547 # Kiy: # val: 0.00300189 range: 0,0.01 std: 0.00112776 # Kiz: # val: 0.00546487 range: 0,0.01 std: 0.000738131 # Kdx: # val: 0.0443719 range: 0,0.1 std: 0.00127098 # Kdy: # val: 0.0717262 range: 0,0.1 std: 0.0113157 # Kdz: # val: 0.0418845 range: 0,0.1 std: 0.00599079
mit
tentangdata/pinisi
scripts/lln.py
1
3796
import argparse import json import math import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy as scp import seaborn as sns import functions # Constants LEVEL_IDS = list(range(1, 7)) LINE_COL = 'saddlebrown' LW = 3 BG_COLOR = 'tan' XLABEL = 'Jumlah pemain' YLABEL = 'Rata-rata jarak' NUM_IQR = 2.0 sns.set_style('white') # Functions def plot_cum_dist(dist_points, level_id, line_col=None, lw=None, bg_color=None, show_mean=False, title=None, xlabel=None, ylabel=None, save_to=None): cum_dist = calc_cum_dist(dist_points) ax = cum_dist.plot.line(color=line_col or LINE_COL, lw=lw or LW) ax.set_axis_bgcolor(bg_color or BG_COLOR) if show_mean: plt.axhline(dist_points.mean(), 0, len(dist_points), linestyle='--', color=LINE_COL) plt.title(title or "Rata-rata jarak pemain terhadap jumlah pemain - Level {}".format(level_id)) plt.xlabel(xlabel or XLABEL) plt.ylabel(ylabel or YLABEL) if save_to: try: os.makedirs(save_to) except: pass plt.savefig(os.path.join(save_to, 'level{}.png'.format(level_id))) return ax def calc_cum_dist(dist_points): return dist_points.cumsum() / pd.Series(range(1, len(dist_points) + 1)) def parse_and_assert_args(): arg_parser = argparse.ArgumentParser(prog='pinisi', description="Law of large numbers simulation with Pinisi data", usage="") arg_parser.add_argument('-r', dest='filter_rect', action='store_true', help='Filter data points only inside rectangle. Takes precedence over num_iqr (default: False)') arg_parser.add_argument('-i', dest='num_iqr', help='Filter data points outside num_iqr * IQR. Set to 0 to prevent filtering (default: {})'.format(NUM_IQR)) arg_parser.add_argument('-m', dest='show_mean', action='store_true', help='Show mean line (default: False)') arg_parser.add_argument('-s', dest='save_to', help='Directory for saving plots (default: None)') args = arg_parser.parse_args() num_iqr = args.num_iqr if num_iqr is not None: num_iqr = float(num_iqr) assert num_iqr >= 0.0, "num_iqr must be >= 0" return args if __name__ == '__main__': args = parse_and_assert_args() filter_rect = args.filter_rect num_iqr = float(args.num_iqr) if args.num_iqr else NUM_IQR show_mean = args.show_mean save_to = args.save_to TRUTH_ID = int(open('../data/truth_ID').read()) EXPERT_ID = int(open('../data/expert_ID').read()) points = pd.read_csv('../data/clean/points.psv', sep='|', index_col='id') users = pd.read_csv('../data/clean/users.psv', sep='|', index_col='id') levels = json.load(open('../data/levels.json', 'r'))['maps'] rects = {level['level']: functions.get_rect(level['polygon']) for level in levels} areas = {level_id: functions.calc_rect_area(rect) for level_id, rect in rects.items()} points_truth = points[points.user_id == TRUTH_ID].reset_index(drop=True) points_expert = points[points.user_id == EXPERT_ID].reset_index(drop=True) points = points[~points.user_id.isin([TRUTH_ID, EXPERT_ID])].reset_index(drop=True) dists = {level_id: functions.get_dist_level(points_truth, points_expert, points, level_id) for level_id in LEVEL_IDS} dists_points = {level_id: d[0] for level_id, d in dists.items()} for level_id, dist_points in dists_points.items(): if filter_rect: points_idx = functions.get_points_level(points, rects, level_id).index dist_points = dist_points[points_idx] elif num_iqr: dist_points = functions.filter_iqr(dist_points, num_iqr) dist_points = dist_points.reset_index(drop=True) plot_cum_dist(dist_points, level_id, show_mean=show_mean, save_to=save_to) plt.clf()
gpl-2.0
musically-ut/statsmodels
statsmodels/iolib/tests/test_foreign.py
25
7274
""" Tests for iolib/foreign.py """ import os import warnings from datetime import datetime from numpy.testing import * import numpy as np from pandas import DataFrame, isnull import pandas.util.testing as ptesting from statsmodels.compat.python import BytesIO, asbytes import statsmodels.api as sm from statsmodels.iolib.foreign import (StataWriter, genfromdta, _datetime_to_stata_elapsed, _stata_elapsed_date_to_datetime) from statsmodels.datasets import macrodata import pandas pandas_old = int(pandas.__version__.split('.')[1]) < 9 # Test precisions DECIMAL_4 = 4 DECIMAL_3 = 3 curdir = os.path.dirname(os.path.abspath(__file__)) def test_genfromdta(): #Test genfromdta vs. results/macrodta.npy created with genfromtxt. #NOTE: Stata handles data very oddly. Round tripping from csv to dta # to ndarray 2710.349 (csv) -> 2510.2491 (stata) -> 2710.34912109375 # (dta/ndarray) from .results.macrodata import macrodata_result as res2 res1 = genfromdta(curdir+'/../../datasets/macrodata/macrodata.dta') assert_array_equal(res1 == res2, True) def test_genfromdta_pandas(): from pandas.util.testing import assert_frame_equal dta = macrodata.load_pandas().data curdir = os.path.dirname(os.path.abspath(__file__)) res1 = sm.iolib.genfromdta(curdir+'/../../datasets/macrodata/macrodata.dta', pandas=True) res1 = res1.astype(float) assert_frame_equal(res1, dta) def test_stata_writer_structured(): buf = BytesIO() dta = macrodata.load().data dtype = dta.dtype dta = dta.astype(np.dtype([('year', int), ('quarter', int)] + dtype.descr[2:])) writer = StataWriter(buf, dta) writer.write_file() buf.seek(0) dta2 = genfromdta(buf) assert_array_equal(dta, dta2) def test_stata_writer_array(): buf = BytesIO() dta = macrodata.load().data dta = DataFrame.from_records(dta) dta.columns = ["v%d" % i for i in range(1,15)] writer = StataWriter(buf, dta.values) writer.write_file() buf.seek(0) dta2 = genfromdta(buf) dta = dta.to_records(index=False) assert_array_equal(dta, dta2) def test_missing_roundtrip(): buf = BytesIO() dta = np.array([(np.nan, np.inf, "")], dtype=[("double_miss", float), ("float_miss", np.float32), ("string_miss", "a1")]) writer = StataWriter(buf, dta) writer.write_file() buf.seek(0) dta = genfromdta(buf, missing_flt=np.nan) assert_(isnull(dta[0][0])) assert_(isnull(dta[0][1])) assert_(dta[0][2] == asbytes("")) dta = genfromdta(os.path.join(curdir, "results/data_missing.dta"), missing_flt=-999) assert_(np.all([dta[0][i] == -999 for i in range(5)])) def test_stata_writer_pandas(): buf = BytesIO() dta = macrodata.load().data dtype = dta.dtype #as of 0.9.0 pandas only supports i8 and f8 dta = dta.astype(np.dtype([('year', 'i8'), ('quarter', 'i8')] + dtype.descr[2:])) dta4 = dta.astype(np.dtype([('year', 'i4'), ('quarter', 'i4')] + dtype.descr[2:])) dta = DataFrame.from_records(dta) dta4 = DataFrame.from_records(dta4) # dta is int64 'i8' given to Stata writer writer = StataWriter(buf, dta) writer.write_file() buf.seek(0) dta2 = genfromdta(buf) dta5 = DataFrame.from_records(dta2) # dta2 is int32 'i4' returned from Stata reader if dta5.dtypes[1] is np.dtype('int64'): ptesting.assert_frame_equal(dta.reset_index(), dta5) else: # don't check index because it has different size, int32 versus int64 ptesting.assert_frame_equal(dta4, dta5[dta5.columns[1:]]) def test_stata_writer_unicode(): # make sure to test with characters outside the latin-1 encoding pass @dec.skipif(pandas_old) def test_genfromdta_datetime(): results = [(datetime(2006, 11, 19, 23, 13, 20), 1479596223000, datetime(2010, 1, 20), datetime(2010, 1, 8), datetime(2010, 1, 1), datetime(1974, 7, 1), datetime(2010, 1, 1), datetime(2010, 1, 1)), (datetime(1959, 12, 31, 20, 3, 20), -1479590, datetime(1953, 10, 2), datetime(1948, 6, 10), datetime(1955, 1, 1), datetime(1955, 7, 1), datetime(1955, 1, 1), datetime(2, 1, 1))] with warnings.catch_warnings(record=True) as w: dta = genfromdta(os.path.join(curdir, "results/time_series_examples.dta")) assert_(len(w) == 1) # should get a warning for that format. assert_array_equal(dta[0].tolist(), results[0]) assert_array_equal(dta[1].tolist(), results[1]) with warnings.catch_warnings(record=True): dta = genfromdta(os.path.join(curdir, "results/time_series_examples.dta"), pandas=True) assert_array_equal(dta.irow(0).tolist(), results[0]) assert_array_equal(dta.irow(1).tolist(), results[1]) def test_date_converters(): ms = [-1479597200000, -1e6, -1e5, -100, 1e5, 1e6, 1479597200000] days = [-1e5, -1200, -800, -365, -50, 0, 50, 365, 800, 1200, 1e5] weeks = [-1e4, -1e2, -53, -52, -51, 0, 51, 52, 53, 1e2, 1e4] months = [-1e4, -1e3, -100, -13, -12, -11, 0, 11, 12, 13, 100, 1e3, 1e4] quarter = [-100, -50, -5, -4, -3, 0, 3, 4, 5, 50, 100] half = [-50, 40, 30, 10, 3, 2, 1, 0, 1, 2, 3, 10, 30, 40, 50] year = [1, 50, 500, 1000, 1500, 1975, 2075] for i in ms: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "tc"), "tc"), i) for i in days: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "td"), "td"), i) for i in weeks: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "tw"), "tw"), i) for i in months: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "tm"), "tm"), i) for i in quarter: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "tq"), "tq"), i) for i in half: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "th"), "th"), i) for i in year: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "ty"), "ty"), i) @dec.skipif(pandas_old) def test_datetime_roundtrip(): dta = np.array([(1, datetime(2010, 1, 1), 2), (2, datetime(2010, 2, 1), 3), (4, datetime(2010, 3, 1), 5)], dtype=[('var1', float), ('var2', object), ('var3', float)]) buf = BytesIO() writer = StataWriter(buf, dta, {"var2" : "tm"}) writer.write_file() buf.seek(0) dta2 = genfromdta(buf) assert_equal(dta, dta2) dta = DataFrame.from_records(dta) buf = BytesIO() writer = StataWriter(buf, dta, {"var2" : "tm"}) writer.write_file() buf.seek(0) dta2 = genfromdta(buf, pandas=True) ptesting.assert_frame_equal(dta, dta2.drop('index', axis=1)) if __name__ == "__main__": import nose nose.runmodule(argv=[__file__,'-vvs','-x','--pdb'], exit=False)
bsd-3-clause
pratapvardhan/scikit-learn
sklearn/neural_network/tests/test_rbm.py
225
6278
import sys import re import numpy as np from scipy.sparse import csc_matrix, csr_matrix, lil_matrix from sklearn.utils.testing import (assert_almost_equal, assert_array_equal, assert_true) from sklearn.datasets import load_digits from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.neural_network import BernoulliRBM from sklearn.utils.validation import assert_all_finite np.seterr(all='warn') Xdigits = load_digits().data Xdigits -= Xdigits.min() Xdigits /= Xdigits.max() def test_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, n_iter=7, random_state=9) rbm.fit(X) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) # in-place tricks shouldn't have modified X assert_array_equal(X, Xdigits) def test_partial_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=20, random_state=9) n_samples = X.shape[0] n_batches = int(np.ceil(float(n_samples) / rbm.batch_size)) batch_slices = np.array_split(X, n_batches) for i in range(7): for batch in batch_slices: rbm.partial_fit(batch) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) assert_array_equal(X, Xdigits) def test_transform(): X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=16, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) Xt1 = rbm1.transform(X) Xt2 = rbm1._mean_hiddens(X) assert_array_equal(Xt1, Xt2) def test_small_sparse(): # BernoulliRBM should work on small sparse matrices. X = csr_matrix(Xdigits[:4]) BernoulliRBM().fit(X) # no exception def test_small_sparse_partial_fit(): for sparse in [csc_matrix, csr_matrix]: X_sparse = sparse(Xdigits[:100]) X = Xdigits[:100].copy() rbm1 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm2 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm1.partial_fit(X_sparse) rbm2.partial_fit(X) assert_almost_equal(rbm1.score_samples(X).mean(), rbm2.score_samples(X).mean(), decimal=0) def test_sample_hiddens(): rng = np.random.RandomState(0) X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=2, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) h = rbm1._mean_hiddens(X[0]) hs = np.mean([rbm1._sample_hiddens(X[0], rng) for i in range(100)], 0) assert_almost_equal(h, hs, decimal=1) def test_fit_gibbs(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] # from the same input rng = np.random.RandomState(42) X = np.array([[0.], [1.]]) rbm1 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) # you need that much iters rbm1.fit(X) assert_almost_equal(rbm1.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm1.gibbs(X), X) return rbm1 def test_fit_gibbs_sparse(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] from # the same input even when the input is sparse, and test against non-sparse rbm1 = test_fit_gibbs() rng = np.random.RandomState(42) from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm2 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) rbm2.fit(X) assert_almost_equal(rbm2.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm2.gibbs(X), X.toarray()) assert_almost_equal(rbm1.components_, rbm2.components_) def test_gibbs_smoke(): # Check if we don't get NaNs sampling the full digits dataset. # Also check that sampling again will yield different results. X = Xdigits rbm1 = BernoulliRBM(n_components=42, batch_size=40, n_iter=20, random_state=42) rbm1.fit(X) X_sampled = rbm1.gibbs(X) assert_all_finite(X_sampled) X_sampled2 = rbm1.gibbs(X) assert_true(np.all((X_sampled != X_sampled2).max(axis=1))) def test_score_samples(): # Test score_samples (pseudo-likelihood) method. # Assert that pseudo-likelihood is computed without clipping. # See Fabian's blog, http://bit.ly/1iYefRk rng = np.random.RandomState(42) X = np.vstack([np.zeros(1000), np.ones(1000)]) rbm1 = BernoulliRBM(n_components=10, batch_size=2, n_iter=10, random_state=rng) rbm1.fit(X) assert_true((rbm1.score_samples(X) < -300).all()) # Sparse vs. dense should not affect the output. Also test sparse input # validation. rbm1.random_state = 42 d_score = rbm1.score_samples(X) rbm1.random_state = 42 s_score = rbm1.score_samples(lil_matrix(X)) assert_almost_equal(d_score, s_score) # Test numerical stability (#2785): would previously generate infinities # and crash with an exception. with np.errstate(under='ignore'): rbm1.score_samples([np.arange(1000) * 100]) def test_rbm_verbose(): rbm = BernoulliRBM(n_iter=2, verbose=10) old_stdout = sys.stdout sys.stdout = StringIO() try: rbm.fit(Xdigits) finally: sys.stdout = old_stdout def test_sparse_and_verbose(): # Make sure RBM works with sparse input when verbose=True old_stdout = sys.stdout sys.stdout = StringIO() from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm = BernoulliRBM(n_components=2, batch_size=2, n_iter=1, random_state=42, verbose=True) try: rbm.fit(X) s = sys.stdout.getvalue() # make sure output is sound assert_true(re.match(r"\[BernoulliRBM\] Iteration 1," r" pseudo-likelihood = -?(\d)+(\.\d+)?," r" time = (\d|\.)+s", s)) finally: sys.stdout = old_stdout
bsd-3-clause
bejar/kemlglearn
kemlglearn/cluster/GlobalKMeans.py
1
6445
""" .. module:: GlobalKMeans GlobalKMeans ************* :Description: GlobalKMeans :Authors: bejar :Version: :Created on: 20/01/2015 10:42 """ __author__ = 'bejar' import numpy as np from sklearn.base import BaseEstimator, ClusterMixin, TransformerMixin from sklearn.metrics.pairwise import euclidean_distances from sklearn.cluster import KMeans from sklearn.neighbors import NearestNeighbors class GlobalKMeans(BaseEstimator, ClusterMixin, TransformerMixin): """Global K-means Algorithm Paramereters: n_clusters: int maximum number of clusters to obtain algorithm string 'classical' the classical algorithm 'bagirov' the Bagirov 2006 variant """ def __init__(self, n_clusters, algorithm='classical'): self.n_clusters = n_clusters self.cluster_centers_ = None self.labels_ = None self.cluster_sizes_ = None self.inertia_ = None self.algorithm = algorithm def fit(self, X): """ Clusters the examples :param X: :return: """ if self.algorithm == 'classical': self.cluster_centers_, self.labels_, self.inertia_ = self._fit_process(X) elif self.algorithm == 'bagirov': self.cluster_centers_, self.labels_, self.inertia_ = self._fit_process_bagirov(X) return self def predict(self, X): """ Returns the nearest cluster for a data matrix @param X: @return: """ clasif = [] for i in range(X.shape[0]): ncl, mdist = self._find_nearest_cluster(X[i].reshape(1, -1), self.cluster_centers_) if mdist <= self.radius: clasif.append(ncl) else: clasif.append(-1) return clasif def _fit_process(self, X): """ Classical global k-means algorithm :param X: :return: """ # Compute the centroid of the dataset centroids = sum(X) / X.shape[0] centroids.shape = (1, X.shape[1]) for i in range(2, self.n_clusters + 1): mininertia = np.infty for j in range(X.shape[0]): newcentroids = np.vstack((centroids, X[j])) # print newcentroids.shape km = KMeans(n_clusters=i, init=newcentroids, n_init=1) km.fit(X) if mininertia > km.inertia_: mininertia = km.inertia_ bestkm = km centroids = bestkm.cluster_centers_ return bestkm.cluster_centers_, bestkm.labels_, bestkm.inertia_ def _fit_process_bagirov(self, X): """ Clusters using the global K-means algorithm Bagirov variation :param X: :return: """ # Create a KNN structure for fast search self._neighbors = NearestNeighbors() self._neighbors.fit(X) # Compute the centroid of the dataset centroids = sum(X) / X.shape[0] assignments = [0 for i in range(X.shape[0])] centroids.shape = (1, X.shape[1]) # compute the distance of the examples to the centroids mindist = np.zeros(X.shape[0]) for i in range(X.shape[0]): mindist[i] = \ euclidean_distances(X[i].reshape(1, -1), centroids[assignments[i]].reshape(1, -1), squared=True)[0] for k in range(2, self.n_clusters + 1): newCentroid = self._compute_next_centroid(X, centroids, assignments, mindist) centroids = np.vstack((centroids, newCentroid)) km = KMeans(n_clusters=k, init=centroids, n_init=1) km.fit(X) assignments = km.labels_ for i in range(X.shape[0]): mindist[i] = \ euclidean_distances(X[i].reshape(1, -1), centroids[assignments[i]].reshape(1, -1), squared=True)[0] return km.cluster_centers_, km.labels_, km.inertia_ def _compute_next_centroid(self, X, centroids, assignments, mindist): """ Computes the candidate for the next centroid :param X: :param centroids: :return: """ minsum = np.infty candCentroid = None # Compute the first candidate to new centroid for i in range(X.shape[0]): distance = euclidean_distances(X[i].reshape(1, -1), centroids[assignments[i]].reshape(1, -1))[0] S2 = self._neighbors.radius_neighbors(X[i].reshape(1, -1), radius=distance, return_distance=False)[0] S2centroid = np.sum(X[S2], axis=0) / len(S2) S2centroid.shape = (1, X.shape[1]) cost = self._compute_fk(X, mindist, S2centroid) if cost < minsum: minsum = cost candCentroid = S2centroid # Compute examples for the new centroid S2 = [] newDist = euclidean_distances(X, candCentroid.reshape(1, -1), squared=True) for i in range(X.shape[0]): if newDist[i] < mindist[i]: S2.append(i) newCentroid = sum(X[S2]) / len(S2) newCentroid.shape = (1, X.shape[1]) while not (candCentroid == newCentroid).all(): candCentroid = newCentroid S2 = [] newDist = euclidean_distances(X, candCentroid.reshape(1, -1), squared=True) for i in range(X.shape[0]): if newDist[i] < mindist[i]: S2.append(i) newCentroid = np.sum(X[S2], axis=0) / len(S2) newCentroid.shape = (1, X.shape[1]) return candCentroid def _compute_fk(self, X, mindist, ccentroid): """ Computes the cost function :param X: :param mindist: :param ccentroid: :return: """ # Distances among the examples and the candidate centroid centdist = euclidean_distances(X, ccentroid.reshape(1, -1), squared=True) fk = 0 for i in range(X.shape[0]): fk = fk + min(mindist[i], centdist[i][0]) return fk @staticmethod def _find_nearest_cluster(examp, centers): """ Finds the nearest cluster for an example :param examp: :param centers: :return: """ dist = euclidean_distances(centers, examp.reshape(1, -1)) pmin = np.argmin(dist) vmin = np.min(dist) return pmin, vmin
mit
etkirsch/scikit-learn
sklearn/datasets/tests/test_rcv1.py
322
2414
"""Test the rcv1 loader. Skipped if rcv1 is not already downloaded to data_home. """ import errno import scipy.sparse as sp import numpy as np from sklearn.datasets import fetch_rcv1 from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest def test_fetch_rcv1(): try: data1 = fetch_rcv1(shuffle=False, download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("Download RCV1 dataset to run this test.") X1, Y1 = data1.data, data1.target cat_list, s1 = data1.target_names.tolist(), data1.sample_id # test sparsity assert_true(sp.issparse(X1)) assert_true(sp.issparse(Y1)) assert_equal(60915113, X1.data.size) assert_equal(2606875, Y1.data.size) # test shapes assert_equal((804414, 47236), X1.shape) assert_equal((804414, 103), Y1.shape) assert_equal((804414,), s1.shape) assert_equal(103, len(cat_list)) # test ordering of categories first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151'] assert_array_equal(first_categories, cat_list[:6]) # test number of sample for some categories some_categories = ('GMIL', 'E143', 'CCAT') number_non_zero_in_cat = (5, 1206, 381327) for num, cat in zip(number_non_zero_in_cat, some_categories): j = cat_list.index(cat) assert_equal(num, Y1[:, j].data.size) # test shuffling and subset data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77, download_if_missing=False) X2, Y2 = data2.data, data2.target s2 = data2.sample_id # The first 23149 samples are the training samples assert_array_equal(np.sort(s1[:23149]), np.sort(s2)) # test some precise values some_sample_ids = (2286, 3274, 14042) for sample_id in some_sample_ids: idx1 = s1.tolist().index(sample_id) idx2 = s2.tolist().index(sample_id) feature_values_1 = X1[idx1, :].toarray() feature_values_2 = X2[idx2, :].toarray() assert_almost_equal(feature_values_1, feature_values_2) target_values_1 = Y1[idx1, :].toarray() target_values_2 = Y2[idx2, :].toarray() assert_almost_equal(target_values_1, target_values_2)
bsd-3-clause
albertfdp/dtu-data-mining
meneame/src/network/network.py
1
6349
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This module contains the functions for the network analysis and creation. """ import igraph as ig import collections import matplotlib.pyplot as plt def test_create_graph(): """Testing function for create_graph() """ vertices = {'user1': 12, 'user2': 8, 'user3': 7, 'user4': 4} vertices = collections.Counter(vertices) edges = {('user1', 'user2'): 23, ('user1', 'user3'): 12, ('user2', 'user4'): 11} edges = collections.Counter(edges) test_graph = create_graph(vertices, edges) for v in test_graph.vs: assert v['comments'] == vertices[v['name']] for e in test_graph.es: source = test_graph.vs[e.source]['name'] target = test_graph.vs[e.target]['name'] ed = tuple(sorted((source, target))) assert edges[ed] == e['weight'] def create_graph(vertices, edges): """Return the graph object, given the edges and vertices collections. :param vertices: collection of vertices, where each element is in the \format "username: number_of_comments" :param edges: collection of edges, where each element is in the format\ (username1, username2): weight, where the weight is the number\ of articles in which the two users have commented together\ :returns: the igraph object The creation of the graph is done only on the final step of the function, due to the way igraph deals with the edges. Infact, building first the graph and then the edges would result in a very inefficient code, as the edges are re-indexed every time a new edge is added. """ usernames = vertices.keys() comments = vertices.values() users_dic = {name: idx for (idx, name) in enumerate(usernames)} n_users = len(usernames) edges_list = [(users_dic[el1], users_dic[el2]) for (el1, el2) in edges.keys()] weights_list = edges.values() vertex_attrs = {'name': usernames, 'comments': comments} edge_attrs = {'weight': weights_list} return ig.Graph(n=n_users, edges=edges_list, vertex_attrs=vertex_attrs, edge_attrs=edge_attrs) def save_degree_distribution(graph, image_folder): """Save the degree distribution of the input graph to file. :param graph: the input igraph object :image_folder: the path to the folder where to save the images """ degree_dist = graph.degree_distribution() x = [el[0] for el in degree_dist.bins()] y = [el[2] for el in degree_dist.bins()] title = "Network Degree Distribution" xlabel = "Degree" ylabel = "Number of nodes" filename = graph['name'] + "_degree_distribution" save_log_histogram(x, y, title, xlabel, ylabel, filename, image_folder) def save_weights_distribution(graph, image_folder): """Saves the weigth distribution to file. :param graph: the input igraph object :image_folder: the path to the folder where to save the images """ weights = graph.es['weight'] co = collections.Counter(weights) x = [el for el in co] y = [co[el] for el in co] title = "Weights distribution" xlabel = "Weight" ylabel = "Number of edges" filename = graph['name'] + "_weights_distribution" save_log_histogram(x, y, title, xlabel, ylabel, filename, image_folder) def save_log_histogram(x, y, title, xlabel, ylabel, filename, image_folder): """Create a loglog histogram from the input x and y and saves it to\ file. Each bin has an unitary size. :param x: bin positions :param y: count values :param title: title of the histogram :param xlabel: label of the x axis :param ylabel: label of the y axis :param filename: name of the saved file """ fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, y) ax.set_xscale('log') ax.set_yscale('log') plt.ylabel(ylabel) plt.xlabel(xlabel) plt.title(title) plt.savefig(image_folder + filename + '.png') plt.savefig(image_folder + filename + '.pdf') def community_analysis(graph): """Analyze the communities of the input graph. :param graph: the input igraph object """ print "\nCOMMUNITY ANALYSIS\n" communities = graph.community_infomap(edge_weights='weight', vertex_weights='comments', trials=10) print "Infomap ", communities.summary() print "Sizes of communities: ", communities.sizes() single_community_analysis(communities) def single_community_analysis(communities): """Analyze the communities found. The analysis is done only if more\ than one community has been found. :param graph: the input VertexClustering object representing the\ communities """ n_comm = len(communities.sizes()) if n_comm > 1: for idx in range(n_comm): print "\n COMMUNITY NUMBER ", idx, "\n" general_analysis(communities.subgraph(idx)) def general_analysis(graph): """Print to screen some basic information regarding the input graph. :param graph: the input igraph object """ comments = graph.vs['comments'] weights = graph.es['weight'] print "GENERAL ANALYSIS\n" print "Number of users: ", graph.vcount() print "Number of links: ", graph.ecount() print "\nMax. number of comment per user: ", max(comments) print "Min. number of comment per user: ", min(comments) print "Average number of comments: ", print float(sum(comments)) / len(comments) print "\nMax. value of weight: ", max(weights) print "Min. value of weight: ", min(weights) print "Average weight: ", float(sum(weights)) / len(weights) print "\nClustering coefficient: ", graph.transitivity_undirected() components = graph.components() print "\nNumber of connected components: ", len(components.sizes()) hist = graph.path_length_hist() lengths, paths = [[el[i] for el in list(hist.bins())] for i in [0, 2]] print "\nPath length distibution: " for i in range(len(lengths)): print paths[i], " paths with length ", lengths[i] print "\nAverage path length: ", splengths = sum([lengths[i] * paths[i] for i in range(len(lengths))]) print splengths / sum(paths)
apache-2.0
hunse/vrep-python
dvs-gabor-nef.py
1
4917
"""Try representing the spiking data with Gabor RFs. 1. Give an ensemble a bunch of Gabor encoders """ import numpy as np import matplotlib.pyplot as plt import nengo import vanhateren plt.ion() import dvs import gabor from hunse_tools.timing import tic, toc def show_image(ax, image): plt_img = ax.imshow(image, vmin=-1, vmax=1, cmap='gray', interpolation='none') ax.set_xticks([]) ax.set_yticks([]) return plt_img rng = np.random.RandomState(3) dt = 0.001 # --- load and filter DVS spikes filename = 'dvs.npz' # filename = 'dvs-ball-1ms.npz' events = dvs.load(filename, dt_round=False) t0 = 0.1 spikes = dvs.make_video(events, t0=t0, dt_frame=dt, tau=0) video = dvs.make_video(events, t0=t0, dt_frame=dt, tau=0.005) if 0: plt.ion() plt.figure(1) ax = plt.gca() img = show_image(ax, video[0]) ax.invert_yaxis() for frame in video: img.set_data(frame) plt.draw() raw_input("Pause...") if 0: plt.figure(1) ani = dvs.animate([video], [plt.gca()]) plt.show() # --- generate a filterbank n = 5000 # rf_shape = (9, 9) rf_shape = (15, 15) thetas = rng.uniform(0, np.pi, size=n) # phases = rng.uniform(-0.5, 0.5, size=n) freqs = rng.uniform(0.1, 2.0, size=n) # freqs = rng.uniform(0.2, 0.7, size=n) # data_set = gabors(thetas, phases=0, freqs=0.5, sigmas_y=10., shape=rf_shape) bank = gabor.bank(thetas, freqs=freqs, sigmas_y=10., shape=rf_shape) if 0: # test Gabors plt.figure(1) plt.clf() r, c = 5, 5 for i in range(min(len(bank), r * c)): plt.subplot(r, c, i+1) plt.imshow(bank[i].reshape(rf_shape), cmap='gray', interpolation='none') plt.xticks([]) # pair = filter_pair((15, 15), 1.0, 0.5, 1.0) # axs = [plt.subplot(1, 2, i+1) for i in range(2)] # axs[0].imshow(pair.real) # axs[1].imshow(pair.imag) plt.show() assert False # --- make encoders im_shape = (128, 128) inds = gabor.inds(len(bank), im_shape, rf_shape, rng=rng) encoders = gabor.matrix_from_inds(bank, inds, im_shape) # --- build network and solve for decoders im_dims = np.prod(im_shape) n_eval_points = 5000 if 0: # Van Hateren patches = vanhateren.VanHateren().patches(n_eval_points, im_shape) patches = vanhateren.preprocess.scale(patches) patches.shape = (-1, im_dims) eval_points = patches.reshape(-1, im_dims) elif 0: # More gabors rf_shape = (32, 32) thetas = rng.uniform(0, np.pi, size=n_eval_points) # phases = rng.uniform(-0.5, 0.5, size=n) freqs = rng.uniform(0.1, 2, size=n_eval_points) eval_bank = gabor.bank(thetas, freqs=freqs, sigmas_y=10., shape=rf_shape) inds = gabor.inds(len(eval_bank), im_shape, rf_shape, rng=rng) eval_points = gabor.matrix_from_inds(eval_bank, inds, im_shape) else: # Low freq images cutoff = 0.1 images = rng.normal(size=(n_eval_points,) + im_shape) X = np.fft.fft2(images) f0 = np.fft.fftfreq(X.shape[-2]) f1 = np.fft.fftfreq(X.shape[-1]) ff = np.sqrt(f0[:, None]**2 + f1[None, :]**2) X[..., ff > cutoff] = 0 Y = np.fft.ifft2(X) assert np.allclose(Y.imag, 0) eval_points = Y.real.clip(-1, 1).reshape(-1, im_dims) fig_uv = plt.figure(2) plt.clf() plt.subplot(211) u_plot = plt.imshow(video[0], vmin=-1, vmax=1, cmap='gray') plt.subplot(212) v_plot = plt.imshow(video[0], vmin=-1, vmax=1, cmap='gray') def video_input(t): i = int(np.round(t / dt)) return video[i % len(video)].ravel() def video_plot(t, y): x = video_input(t).reshape(im_shape) y = y.reshape(im_shape) u_plot.set_data(x) v_plot.set_data(y) fig_uv.canvas.draw() rmse_total = np.array(0.0) def rmse_recorder(t, y): x = video_input(t) if t > 0: rmse_total[...] += np.sqrt(((y - x)**2).mean()) net = nengo.Network(seed=9) with net: u = nengo.Node(video_input) # a = nengo.Ensemble(n, im_dims, encoders=encoders) a = nengo.Ensemble(n, im_dims, encoders=encoders, intercepts=nengo.dists.Choice([0])) nengo.Connection(u, a) # a = nengo.Ensemble(n, im_dims) v = nengo.Node(size_in=im_dims, size_out=im_dims) c = nengo.Connection(a, v, eval_points=eval_points, synapse=0.01) w1 = nengo.Node(video_plot, size_in=im_dims) w2 = nengo.Node(rmse_recorder, size_in=im_dims) nengo.Connection(v, w1, synapse=None) nengo.Connection(v, w2, synapse=None) sim = nengo.Simulator(net) # show reconstructed images if 1: from nengo.builder.connection import build_linear_system plt.figure(3) plt.clf() _, A, y = build_linear_system(sim.model, c, None) x = sim.data[c].decoders.T r, c = 2, 5 axes = [[plt.subplot2grid((2*r, c), (2*i+k, j)) for k in range(2)] for i in range(r) for j in range(c)] for i in range(r * c): show_image(axes[i][0], y[i].reshape(im_shape)) show_image(axes[i][1], np.dot(A[i], x).reshape(im_shape)) sim.run(1.) print(rmse_total)
gpl-2.0
madjelan/scikit-learn
sklearn/linear_model/tests/test_theil_sen.py
234
9928
""" Testing for Theil-Sen module (sklearn.linear_model.theil_sen) """ # Author: Florian Wilhelm <[email protected]> # License: BSD 3 clause from __future__ import division, print_function, absolute_import import os import sys from contextlib import contextmanager import numpy as np from numpy.testing import assert_array_equal, assert_array_less from numpy.testing import assert_array_almost_equal, assert_warns from scipy.linalg import norm from scipy.optimize import fmin_bfgs from nose.tools import raises, assert_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model.theil_sen import _spatial_median, _breakdown_point from sklearn.linear_model.theil_sen import _modified_weiszfeld_step from sklearn.utils.testing import assert_greater, assert_less @contextmanager def no_stdout_stderr(): old_stdout = sys.stdout old_stderr = sys.stderr sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') yield sys.stdout.flush() sys.stderr.flush() sys.stdout = old_stdout sys.stderr = old_stderr def gen_toy_problem_1d(intercept=True): random_state = np.random.RandomState(0) # Linear model y = 3*x + N(2, 0.1**2) w = 3. if intercept: c = 2. n_samples = 50 else: c = 0.1 n_samples = 100 x = random_state.normal(size=n_samples) noise = 0.1 * random_state.normal(size=n_samples) y = w * x + c + noise # Add some outliers if intercept: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[33], y[33] = (2.5, 1) x[49], y[49] = (2.1, 2) else: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[53], y[53] = (2.5, 1) x[60], y[60] = (2.1, 2) x[72], y[72] = (1.8, -7) return x[:, np.newaxis], y, w, c def gen_toy_problem_2d(): random_state = np.random.RandomState(0) n_samples = 100 # Linear model y = 5*x_1 + 10*x_2 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 2)) w = np.array([5., 10.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def gen_toy_problem_4d(): random_state = np.random.RandomState(0) n_samples = 10000 # Linear model y = 5*x_1 + 10*x_2 + 42*x_3 + 7*x_4 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 4)) w = np.array([5., 10., 42., 7.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def test_modweiszfeld_step_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) # Check startvalue is element of X and solution median = 2. new_y = _modified_weiszfeld_step(X, median) assert_array_almost_equal(new_y, median) # Check startvalue is not the solution y = 2.5 new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check startvalue is not the solution but element of X y = 3. new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check that a single vector is identity X = np.array([1., 2., 3.]).reshape(1, 3) y = X[0, ] new_y = _modified_weiszfeld_step(X, y) assert_array_equal(y, new_y) def test_modweiszfeld_step_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) y = np.array([0.5, 0.5]) # Check first two iterations new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, np.array([1 / 3, 2 / 3])) new_y = _modified_weiszfeld_step(X, new_y) assert_array_almost_equal(new_y, np.array([0.2792408, 0.7207592])) # Check fix point y = np.array([0.21132505, 0.78867497]) new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, y) def test_spatial_median_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) true_median = 2. _, median = _spatial_median(X) assert_array_almost_equal(median, true_median) # Test larger problem and for exact solution in 1d case random_state = np.random.RandomState(0) X = random_state.randint(100, size=(1000, 1)) true_median = np.median(X.ravel()) _, median = _spatial_median(X) assert_array_equal(median, true_median) def test_spatial_median_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) _, median = _spatial_median(X, max_iter=100, tol=1.e-6) def cost_func(y): dists = np.array([norm(x - y) for x in X]) return np.sum(dists) # Check if median is solution of the Fermat-Weber location problem fermat_weber = fmin_bfgs(cost_func, median, disp=False) assert_array_almost_equal(median, fermat_weber) # Check when maximum iteration is exceeded a warning is emitted assert_warns(ConvergenceWarning, _spatial_median, X, max_iter=30, tol=0.) def test_theil_sen_1d(): X, y, w, c = gen_toy_problem_1d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(np.abs(lstq.coef_ - w), 0.9) # Check that Theil-Sen works theil_sen = TheilSenRegressor(random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_theil_sen_1d_no_intercept(): X, y, w, c = gen_toy_problem_1d(intercept=False) # Check that Least Squares fails lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_greater(np.abs(lstq.coef_ - w - c), 0.5) # Check that Theil-Sen works theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w + c, 1) assert_almost_equal(theil_sen.intercept_, 0.) def test_theil_sen_2d(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(max_subpopulation=1e3, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_calc_breakdown_point(): bp = _breakdown_point(1e10, 2) assert_less(np.abs(bp - 1 + 1/(np.sqrt(2))), 1.e-6) @raises(ValueError) def test_checksubparams_negative_subpopulation(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(max_subpopulation=-1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_few_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_many_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=101, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_n_subsamples_if_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) TheilSenRegressor(n_subsamples=9, random_state=0).fit(X, y) def test_subpopulation(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(max_subpopulation=250, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_subsamples(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(n_subsamples=X.shape[0], random_state=0).fit(X, y) lstq = LinearRegression().fit(X, y) # Check for exact the same results as Least Squares assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 9) def test_verbosity(): X, y, w, c = gen_toy_problem_1d() # Check that Theil-Sen can be verbose with no_stdout_stderr(): TheilSenRegressor(verbose=True, random_state=0).fit(X, y) TheilSenRegressor(verbose=True, max_subpopulation=10, random_state=0).fit(X, y) def test_theil_sen_parallel(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(n_jobs=-1, random_state=0, max_subpopulation=2e3).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) # Check that Theil-Sen falls back to Least Squares if fit_intercept=False theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 12) # Check fit_intercept=True case. This will not be equal to the Least # Squares solution since the intercept is calculated differently. theil_sen = TheilSenRegressor(fit_intercept=True, random_state=0).fit(X, y) y_pred = theil_sen.predict(X) assert_array_almost_equal(y_pred, y, 12)
bsd-3-clause
etkirsch/scikit-learn
examples/ensemble/plot_forest_importances.py
241
1761
""" ========================================= Feature importances with forests of trees ========================================= This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(10): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(10), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(10), indices) plt.xlim([-1, 10]) plt.show()
bsd-3-clause
conversationai/wikidetox
experimental/conversation_go_awry/get_annotation_data/get_annotation_data.py
1
11082
""" Copyright 2017 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import pandas as pd import hashlib import itertools import csv import re import os def clean(s): ret = s.replace('\t', ' ') ret = ret.replace('\n', ' ') # while (len(ret) >= 2 and ret[0] == '=' and ret[-1] == '='): # ret = ret[1:-1] while (len(ret) >= 1 and (ret[0] == ':' or ret[0] == '*')): ret = ret[1:] sub_patterns = [('EXTERNAL_LINK: ', ''), \ ('\[REPLYTO: .*?\]', ''), \ ('\[MENTION: .*?\]', ''), \ ('\[OUTDENT: .*?\]', ''), \ ('WIKI_LINK: ', '')] for p, r in sub_patterns: ret = re.sub(p, r, ret) return ret def update(snapshot, action): Found = False if not('user_text' in action): action['user_text'] = 'Anonymous' if action['comment_type'] == 'COMMENT_REMOVAL': for ind, act in enumerate(snapshot): if 'parent_id' in action and action['parent_id'] in act['parent_ids']: act['status'] = 'removed' status = 'removed' snapshot[ind] = act Found = True if action['comment_type'] == 'COMMENT_RESTORATION': for ind, act in enumerate(snapshot): if 'parent_id' in action and action['parent_id'] in act['parent_ids']: act['status'] = 'restored' act['content'] = clean(action['content']) act['timestamp_in_sec'] = action['timestamp_in_sec'] status = 'restored' snapshot[ind] = act Found = True if action['comment_type'] == 'COMMENT_MODIFICATION': found = False for i, act in enumerate(snapshot): if 'parent_id' in action and action['parent_id'] in act['parent_ids']: found = True pids = act['parent_ids'] new_act = {} new_act['content'] = clean(action['content']) new_act['id'] = action['id'] new_act['indentation'] = action['indentation'] new_act['comment_type'] = action['comment_type'] new_act['toxicity_score'] = action['score'] if 'bot' in action['user_text'].lower(): new_act['user_text'] = act['user_text'] else: new_act['user_text'] = action['user_text'] new_act['timestamp'] = action['timestamp'] new_act['timestamp_in_sec'] = action['timestamp_in_sec'] new_act['page_title'] = action['page_title'] new_act['parent_ids'] = pids new_act['status'] = 'content changed' status = 'content changed' new_act['relative_replyTo'] = -1 new_act['absolute_replyTo'] = -1 new_act['parent_ids'][action['id']] = True for ind, a in enumerate(snapshot): if action['replyTo_id'] in a['parent_ids']: new_act['relative_replyTo'] = ind new_act['absolute_replyTo'] = a['id'] snapshot[i] = new_act Found = True if not(found): act = {} act['content'] = clean(action['content']) act['id'] = action['id'] act['indentation'] = action['indentation'] act['comment_type'] = 'COMMENT_ADDING' #action['comment_type'] act['toxicity_score'] = action['score'] act['user_text'] = action['user_text'] act['timestamp'] = action['timestamp'] act['timestamp_in_sec'] = action['timestamp_in_sec'] act['absolute_replyTo'] = -1 act['page_title'] = action['page_title'] act['status'] = 'just added' status = 'just added' act['relative_replyTo'] = -1 for ind, a in enumerate(snapshot): if 'replyTo_id' in action and a['id'] == action['replyTo_id']: act['relative_replyTo'] = ind act['absolute_replyTo'] = a['id'] act['parent_ids'] = {action['id'] : True} snapshot.append(act) Found = True if action['comment_type'] == 'COMMENT_ADDING' or action['comment_type'] == 'SECTION_CREATION': act = {} act['content'] = clean(action['content']) act['id'] = action['id'] act['indentation'] = action['indentation'] act['comment_type'] = action['comment_type'] act['toxicity_score'] = action['score'] act['user_text'] = action['user_text'] act['timestamp'] = action['timestamp'] act['timestamp_in_sec'] = action['timestamp_in_sec'] act['page_title'] = action['page_title'] act['absolute_replyTo'] = -1 act['status'] = 'just added' status = 'just added' act['relative_replyTo'] = -1 Found = True for ind, a in enumerate(snapshot): if 'replyTo_id' in action and a['id'] == action['replyTo_id']: act['relative_replyTo'] = ind act['absolute_replyTo'] = a['id'] act['parent_ids'] = {action['id'] : True} snapshot.append(act) if not(Found): print(action) return snapshot, status def generate_snapshots(conv): snapshot = [] # list of (text, user_text, user_id, timestamp, status, replyto, relative_reply_to) for action in conv: snapshot,status = update(snapshot, action) return snapshot def reformat(act): output_dict = {key: act[key] for key in ['id', 'comment_type', 'content', 'timestamp', 'status', 'page_title', 'user_text']} output_dict['parent_id'] = parse_absolute_replyTo(act['absolute_replyTo']) # output_dict['hashed_user_id'] = hashlib.sha1(act['user_text'].encode('utf-8')).hexdigest() return output_dict def parse_absolute_replyTo(value): if value == -1: return '' else: return value def main(constraint, job): maxl = None res = [] max_len = 0 path = '/scratch/wiki_dumps/expr_with_matching/' + constraint + '/data' # os.system('cat %s/develop.json %s/train.json %s/develop.json > %s/all.json'%(path, path, path, path)) cnt = 0 # with open('annotated.json') as w: # annotated = json.load(w) # with open('annotated_2.json') as w: # accepted = json.load(w) # if job == 2: # accepted = [] # if job == 1: # with open('%s_conversations_with_reasonable_length.json'%(constraint)) as w: # accepted = json.load(w) # if job == 3: # annotated = annotated + accepted with open('/scratch/wiki_dumps/expr_with_matching/%s/data/altered.json'%(constraint)) as f: for i, line in enumerate(f): conv_id, clss, conversation = json.loads(line) # if job < 3: # if conv_id in annotated: # continue # else: # if not(conv_id in annotated): # continue # if job == 1: # if not(conv_id in accepted): # continue actions = sorted(conversation['action_feature'], key=lambda k: (k['timestamp_in_sec'], k['id'].split('.')[1], k['id'].split('.')[2])) # not including the last action end_time = max([a['timestamp_in_sec'] for a in actions]) if job == 1: actions = [a for a in actions if a['timestamp_in_sec'] < end_time] snapshot = generate_snapshots(actions) last_comment = None for ind, act in enumerate(snapshot): if 'relative_replyTo' in act and not(act['relative_replyTo'] == -1)\ and not(act['relative_replyTo'] == ind): act['absolute_replyTo'] = snapshot[act['relative_replyTo']]['id'] if act['timestamp_in_sec'] == end_time: father = ind depth = -1 while father: depth += 1 if 'relative_replyTo' in snapshot[father] \ and not(snapshot[father]['relative_replyTo'] == -1)\ and not(snapshot[father]['relative_replyTo'] == father): father = snapshot[father]['relative_replyTo'] else: break if depth > 10: depth = -1 break if depth == -1: continue if last_comment == None or depth > last_comment['depth']: last_comment = act last_comment['depth'] = depth snapshot[ind] = act if job == 3: if not(last_comment == None): res.append({'id': conv_id, 'comment': last_comment}) continue ret = {act['id']:reformat(act) for act in snapshot if not(act['status'] == 'removed')} length = len(ret.keys()) # if job == 2: # if length > 10: # cnt += 1 # else: # accepted.append(conv_id) # res.append(json.dumps(ret)) # else: res.append(json.dumps(ret)) max_len = max(max_len, length) # if maxl and i > maxl: # break # if job == 2: # with open('%s_conversations_with_reasonable_length.json'%constraint, 'w') as w: # json.dump(accepted, w) df = pd.DataFrame(res) if job < 3: df.columns = ['conversations'] else: return df #conversations_as_json_job1.csv os.system('mkdir /scratch/wiki_dumps/expr_with_matching/%s/annotations'%(constraint)) df.to_csv('/scratch/wiki_dumps/expr_with_matching/%s/annotations/conversations_as_json_cleaned_job%d.csv'%(constraint, job), chunksize=5000, encoding = 'utf-8', index=False, quoting=csv.QUOTE_ALL) if __name__ == '__main__': constraints = ['delta2_no_users_attacker_in_conv'] # 'delta2_no_users', df = [] for c in constraints: main(c, 2) main(c, 1) # df.append(main(c, 3)) # Only the last comment print(c) # df = pd.concat(df) # df.to_csv('/scratch/wiki_dumps/expr_with_matching/toxicity_in_context.csv', chunksize=5000, encoding = 'utf-8', index=False, quoting=csv.QUOTE_ALL)
apache-2.0
fyffyt/scikit-learn
sklearn/datasets/tests/test_lfw.py
230
7880
"""This test for the LFW require medium-size data dowloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_people_deprecation(): msg = ("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_people, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False) @raises(IOError) def test_load_empty_lfw_pairs(): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_pairs_deprecation(): msg = ("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_pairs, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
jmuhlich/rasmodel
ras_gdp_binding.py
6
2813
from rasmodel.scenarios.default import model import numpy as np from matplotlib import pyplot as plt from pysb.integrate import Solver from pysb import * from tbidbaxlipo.util import fitting # Zero out all initial conditions for ic in model.initial_conditions: ic[1].value = 0 # In this first experiment, 0.5 uM (500 nM) of HRAS is used: model.parameters['HRAS_0'].value = 500. # We use this expression because we still get fluorescence even if GTP # is hydrolyzed to GDP: Expression('HRAS_mGXP_', model.observables['HRAS_mGTP_closed_'] + model.observables['HRAS_mGDP_closed_']) # We use the parameters calculated for experiments with mGTP at 5C model.parameters['bind_HRASopen_GTP_kf'].value = 1e-2 # nM^-1 s^-1 model.parameters['bind_HRASopen_GTP_kr'].value = 1e-2 / (6.1e4 * 1e-9) # s^-1 model.parameters['equilibrate_HRASopenGTP_to_HRASclosedGTP_kf'].value = 4.5 #s^-1 model.parameters['equilibrate_HRASopenGTP_to_HRASclosedGTP_kr'].value = 0 #s^-1 plt.ion() t = np.linspace(0, 10, 1000) sol = Solver(model, t) plt.figure() k_list = [] # Perform titration mgtp_concs = np.arange(1, 15) * 1000 # nM (1 - 15 uM) for mgtp_conc in mgtp_concs: # Titration of labeled GTP: model.parameters['mGTP_0'].value = mgtp_conc sol.run() # Fit to an exponential function to extract the pseudo-first-order rates k = fitting.Parameter(1.) def expfunc(t): return 500 * (1 - np.exp(-k()*t)) res = fitting.fit(expfunc, [k], sol.yexpr['HRAS_mGXP_'], t) # Plot data and fits plt.plot(t, sol.yexpr['HRAS_mGXP_'], color='b') plt.plot(t, expfunc(t), color='r') # Keep the fitted rate k_list.append(k()) # Plot the scaling of rates with mGTP concentration plt.figure() plt.plot(mgtp_concs, k_list, marker='o') plt.ylim(bottom=0) # Figure 3: # A constant amount of labeled GDP model.parameters['mGDP_0'].value = 2.5 * 1000 # nM model.parameters['mGTP_0'].value = 0 model.parameters['bind_HRASopen_GDP_kf'].value = 1e-2 # nM^-1 s^-1 model.parameters['bind_HRASopen_GDP_kr'].value = 1e-2 / (5.7e4 * 1e-9) # s^-1 model.parameters['equilibrate_HRASopenGDP_to_HRASclosedGDP_kf'].value = 3.2 #s^-1 model.parameters['equilibrate_HRASopenGDP_to_HRASclosedGDP_kr'].value = 5e-7 #s^-1 k_list = [] plt.figure() gdp_concs = np.arange(0, 22) * 1000 # nM for gdp_conc in gdp_concs: # Titration of unlabeled GDP model.parameters['GDP_0'].value = gdp_conc sol.run() k = fitting.Parameter(1.) A = fitting.Parameter(100.) def expfunc(t): return A() * (1 - np.exp(-k()*t)) res = fitting.fit(expfunc, [A, k], sol.yexpr['HRAS_mGXP_'], t) plt.plot(t, sol.yexpr['HRAS_mGXP_'], color='b') plt.plot(t, expfunc(t), color='r') k_list.append(k()) plt.figure() plt.plot(gdp_concs, k_list, marker='o') plt.ylim(bottom=0)
mit
rsignell-usgs/notebook
ROMS/ROMS Adriatic Velocity.py
2
3434
# coding: utf-8 # # ROMS layer velocity plot # In[1]: get_ipython().magic(u'matplotlib inline') import matplotlib.pyplot as plt import numpy as np import netCDF4 # In[2]: tidx = -1 # just get the final frame, for now. scale = 0.03 isub = 3 url = 'http://geoport.whoi.edu/thredds/dodsC/examples/bora_feb.nc' # In[3]: def shrink(a,b): """Return array shrunk to fit a specified shape by triming or averaging. a = shrink(array, shape) array is an numpy ndarray, and shape is a tuple (e.g., from array.shape). a is the input array shrunk such that its maximum dimensions are given by shape. If shape has more dimensions than array, the last dimensions of shape are fit. as, bs = shrink(a, b) If the second argument is also an array, both a and b are shrunk to the dimensions of each other. The input arrays must have the same number of dimensions, and the resulting arrays will have the same shape. Example ------- >>> shrink(rand(10, 10), (5, 9, 18)).shape (9, 10) >>> map(shape, shrink(rand(10, 10, 10), rand(5, 9, 18))) [(5, 9, 10), (5, 9, 10)] """ if isinstance(b, np.ndarray): if not len(a.shape) == len(b.shape): raise Exception, 'input arrays must have the same number of dimensions' a = shrink(a,b.shape) b = shrink(b,a.shape) return (a, b) if isinstance(b, int): b = (b,) if len(a.shape) == 1: # 1D array is a special case dim = b[-1] while a.shape[0] > dim: # only shrink a if (dim - a.shape[0]) >= 2: # trim off edges evenly a = a[1:-1] else: # or average adjacent cells a = 0.5*(a[1:] + a[:-1]) else: for dim_idx in range(-(len(a.shape)),0): dim = b[dim_idx] a = a.swapaxes(0,dim_idx) # put working dim first while a.shape[0] > dim: # only shrink a if (a.shape[0] - dim) >= 2: # trim off edges evenly a = a[1:-1,:] if (a.shape[0] - dim) == 1: # or average adjacent cells a = 0.5*(a[1:,:] + a[:-1,:]) a = a.swapaxes(0,dim_idx) # swap working dim back return a # In[4]: def rot2d(x, y, ang): '''rotate vectors by geometric angle''' xr = x*np.cos(ang) - y*np.sin(ang) yr = x*np.sin(ang) + y*np.cos(ang) return xr, yr # In[5]: nc = netCDF4.Dataset(url) mask = nc.variables['mask_rho'][:] lon_rho = nc.variables['lon_rho'][:] lat_rho = nc.variables['lat_rho'][:] anglev = nc.variables['angle'][:] u = nc.variables['u'][tidx, -1, :, :] v = nc.variables['v'][tidx, -1, :, :] u = shrink(u, mask[1:-1, 1:-1].shape) v = shrink(v, mask[1:-1, 1:-1].shape) u, v = rot2d(u, v, anglev[1:-1, 1:-1]) # In[6]: lon_c = lon_rho[1:-1, 1:-1] lat_c = lat_rho[1:-1, 1:-1] # In[7]: legend_vel=1.0 f = plt.figure(figsize=(12,12)) plt.subplot(111,aspect=(1.0/np.cos(np.mean(lat_c)*np.pi/180.0))) plt.pcolormesh(lon_c,lat_c,np.sqrt(u*u + v*v)) Q = plt.quiver( lon_c[::isub,::isub], lat_c[::isub,::isub], u[::isub,::isub], v[::isub,::isub], scale=1.0/scale, pivot='middle', zorder=1e35, width=0.003) legend_str='%3.1f m/s' % legend_vel qk = plt.quiverkey(Q,0.92,0.08,legend_vel,legend_str,labelpos='W') # In[ ]:
mit
CloverHealth/airflow
tests/hooks/test_hive_hook.py
2
16206
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import datetime import itertools import os import pandas as pd import random import mock import unittest from collections import OrderedDict from hmsclient import HMSClient from airflow.exceptions import AirflowException from airflow.hooks.hive_hooks import HiveCliHook, HiveMetastoreHook, HiveServer2Hook from airflow import DAG, configuration from airflow.operators.hive_operator import HiveOperator from airflow.utils import timezone from airflow.utils.tests import assertEqualIgnoreMultipleSpaces configuration.load_test_config() DEFAULT_DATE = timezone.datetime(2015, 1, 1) DEFAULT_DATE_ISO = DEFAULT_DATE.isoformat() DEFAULT_DATE_DS = DEFAULT_DATE_ISO[:10] class HiveEnvironmentTest(unittest.TestCase): def setUp(self): configuration.load_test_config() args = {'owner': 'airflow', 'start_date': DEFAULT_DATE} self.dag = DAG('test_dag_id', default_args=args) self.next_day = (DEFAULT_DATE + datetime.timedelta(days=1)).isoformat()[:10] self.database = 'airflow' self.partition_by = 'ds' self.table = 'static_babynames_partitioned' self.hql = """ CREATE DATABASE IF NOT EXISTS {{ params.database }}; USE {{ params.database }}; DROP TABLE IF EXISTS {{ params.table }}; CREATE TABLE IF NOT EXISTS {{ params.table }} ( state string, year string, name string, gender string, num int) PARTITIONED BY ({{ params.partition_by }} string); ALTER TABLE {{ params.table }} ADD PARTITION({{ params.partition_by }}='{{ ds }}'); """ self.hook = HiveMetastoreHook() t = HiveOperator( task_id='HiveHook_' + str(random.randint(1, 10000)), params={ 'database': self.database, 'table': self.table, 'partition_by': self.partition_by }, hive_cli_conn_id='beeline_default', hql=self.hql, dag=self.dag) t.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, ignore_ti_state=True) def tearDown(self): hook = HiveMetastoreHook() with hook.get_conn() as metastore: metastore.drop_table(self.database, self.table, deleteData=True) class TestHiveCliHook(unittest.TestCase): def test_run_cli(self): hook = HiveCliHook() hook.run_cli("SHOW DATABASES") @mock.patch('airflow.hooks.hive_hooks.HiveCliHook.run_cli') def test_load_file(self, mock_run_cli): filepath = "/path/to/input/file" table = "output_table" hook = HiveCliHook() hook.load_file(filepath=filepath, table=table, create=False) query = ( "LOAD DATA LOCAL INPATH '{filepath}' " "OVERWRITE INTO TABLE {table} \n" .format(filepath=filepath, table=table) ) mock_run_cli.assert_called_with(query) @mock.patch('airflow.hooks.hive_hooks.HiveCliHook.load_file') @mock.patch('pandas.DataFrame.to_csv') def test_load_df(self, mock_to_csv, mock_load_file): df = pd.DataFrame({"c": ["foo", "bar", "baz"]}) table = "t" delimiter = "," encoding = "utf-8" hook = HiveCliHook() hook.load_df(df=df, table=table, delimiter=delimiter, encoding=encoding) mock_to_csv.assert_called_once() kwargs = mock_to_csv.call_args[1] self.assertEqual(kwargs["header"], False) self.assertEqual(kwargs["index"], False) self.assertEqual(kwargs["sep"], delimiter) mock_load_file.assert_called_once() kwargs = mock_load_file.call_args[1] self.assertEqual(kwargs["delimiter"], delimiter) self.assertEqual(kwargs["field_dict"], {"c": u"STRING"}) self.assertTrue(isinstance(kwargs["field_dict"], OrderedDict)) self.assertEqual(kwargs["table"], table) @mock.patch('airflow.hooks.hive_hooks.HiveCliHook.load_file') @mock.patch('pandas.DataFrame.to_csv') def test_load_df_with_optional_parameters(self, mock_to_csv, mock_load_file): hook = HiveCliHook() b = (True, False) for create, recreate in itertools.product(b, b): mock_load_file.reset_mock() hook.load_df(df=pd.DataFrame({"c": range(0, 10)}), table="t", create=create, recreate=recreate) mock_load_file.assert_called_once() kwargs = mock_load_file.call_args[1] self.assertEqual(kwargs["create"], create) self.assertEqual(kwargs["recreate"], recreate) @mock.patch('airflow.hooks.hive_hooks.HiveCliHook.run_cli') def test_load_df_with_data_types(self, mock_run_cli): d = OrderedDict() d['b'] = [True] d['i'] = [-1] d['t'] = [1] d['f'] = [0.0] d['c'] = ['c'] d['M'] = [datetime.datetime(2018, 1, 1)] d['O'] = [object()] d['S'] = ['STRING'.encode('utf-8')] d['U'] = ['STRING'] d['V'] = [None] df = pd.DataFrame(d) hook = HiveCliHook() hook.load_df(df, 't') query = """ CREATE TABLE IF NOT EXISTS t ( b BOOLEAN, i BIGINT, t BIGINT, f DOUBLE, c STRING, M TIMESTAMP, O STRING, S STRING, U STRING, V STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS textfile ; """ assertEqualIgnoreMultipleSpaces(self, mock_run_cli.call_args_list[0][0][0], query) class TestHiveMetastoreHook(HiveEnvironmentTest): VALID_FILTER_MAP = {'key2': 'value2'} def test_get_max_partition_from_empty_part_specs(self): max_partition = \ HiveMetastoreHook._get_max_partition_from_part_specs([], 'key1', self.VALID_FILTER_MAP) self.assertIsNone(max_partition) def test_get_max_partition_from_valid_part_specs_and_invalid_filter_map(self): with self.assertRaises(AirflowException): HiveMetastoreHook._get_max_partition_from_part_specs( [{'key1': 'value1', 'key2': 'value2'}, {'key1': 'value3', 'key2': 'value4'}], 'key1', {'key3': 'value5'}) def test_get_max_partition_from_valid_part_specs_and_invalid_partition_key(self): with self.assertRaises(AirflowException): HiveMetastoreHook._get_max_partition_from_part_specs( [{'key1': 'value1', 'key2': 'value2'}, {'key1': 'value3', 'key2': 'value4'}], 'key3', self.VALID_FILTER_MAP) def test_get_max_partition_from_valid_part_specs_and_none_partition_key(self): with self.assertRaises(AirflowException): HiveMetastoreHook._get_max_partition_from_part_specs( [{'key1': 'value1', 'key2': 'value2'}, {'key1': 'value3', 'key2': 'value4'}], None, self.VALID_FILTER_MAP) def test_get_max_partition_from_valid_part_specs_and_none_filter_map(self): max_partition = \ HiveMetastoreHook._get_max_partition_from_part_specs( [{'key1': 'value1', 'key2': 'value2'}, {'key1': 'value3', 'key2': 'value4'}], 'key1', None) # No partition will be filtered out. self.assertEqual(max_partition, b'value3') def test_get_max_partition_from_valid_part_specs(self): max_partition = \ HiveMetastoreHook._get_max_partition_from_part_specs( [{'key1': 'value1', 'key2': 'value2'}, {'key1': 'value3', 'key2': 'value4'}], 'key1', self.VALID_FILTER_MAP) self.assertEqual(max_partition, b'value1') def test_get_metastore_client(self): self.assertIsInstance(self.hook.get_metastore_client(), HMSClient) def test_get_conn(self): self.assertIsInstance(self.hook.get_conn(), HMSClient) def test_check_for_partition(self): partition = "{p_by}='{date}'".format(date=DEFAULT_DATE_DS, p_by=self.partition_by) missing_partition = "{p_by}='{date}'".format(date=self.next_day, p_by=self.partition_by) self.assertTrue( self.hook.check_for_partition(self.database, self.table, partition) ) self.assertFalse( self.hook.check_for_partition(self.database, self.table, missing_partition) ) def test_check_for_named_partition(self): partition = "{p_by}={date}".format(date=DEFAULT_DATE_DS, p_by=self.partition_by) missing_partition = "{p_by}={date}".format(date=self.next_day, p_by=self.partition_by) self.assertTrue( self.hook.check_for_named_partition(self.database, self.table, partition) ) self.assertFalse( self.hook.check_for_named_partition(self.database, self.table, missing_partition) ) def test_get_table(self): table_info = self.hook.get_table(db=self.database, table_name=self.table) self.assertEqual(table_info.tableName, self.table) columns = ['state', 'year', 'name', 'gender', 'num'] self.assertEqual([col.name for col in table_info.sd.cols], columns) def test_get_tables(self): tables = self.hook.get_tables(db=self.database, pattern=self.table + "*") self.assertIn(self.table, {table.tableName for table in tables}) def test_get_databases(self): databases = self.hook.get_databases(pattern='*') self.assertIn(self.database, databases) def test_get_partitions(self): partitions = self.hook.get_partitions(schema=self.database, table_name=self.table) self.assertEqual(len(partitions), 1) self.assertEqual(partitions, [{self.partition_by: DEFAULT_DATE_DS}]) def test_max_partition(self): filter_map = {self.partition_by: DEFAULT_DATE_DS} partition = self.hook.max_partition(schema=self.database, table_name=self.table, field=self.partition_by, filter_map=filter_map) self.assertEqual(partition, DEFAULT_DATE_DS.encode('utf-8')) def test_table_exists(self): self.assertTrue(self.hook.table_exists(self.table, db=self.database)) self.assertFalse( self.hook.table_exists(str(random.randint(1, 10000))) ) class TestHiveServer2Hook(unittest.TestCase): def _upload_dataframe(self): df = pd.DataFrame({'a': [1, 2], 'b': [1, 2]}) self.local_path = '/tmp/TestHiveServer2Hook.csv' df.to_csv(self.local_path, header=False, index=False) def setUp(self): configuration.load_test_config() self._upload_dataframe() args = {'owner': 'airflow', 'start_date': DEFAULT_DATE} self.dag = DAG('test_dag_id', default_args=args) self.database = 'airflow' self.table = 'hive_server_hook' self.hql = """ CREATE DATABASE IF NOT EXISTS {{ params.database }}; USE {{ params.database }}; DROP TABLE IF EXISTS {{ params.table }}; CREATE TABLE IF NOT EXISTS {{ params.table }} ( a int, b int) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','; LOAD DATA LOCAL INPATH '{{ params.csv_path }}' OVERWRITE INTO TABLE {{ params.table }}; """ self.columns = ['{}.a'.format(self.table), '{}.b'.format(self.table)] self.hook = HiveMetastoreHook() t = HiveOperator( task_id='HiveHook_' + str(random.randint(1, 10000)), params={ 'database': self.database, 'table': self.table, 'csv_path': self.local_path }, hive_cli_conn_id='beeline_default', hql=self.hql, dag=self.dag) t.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, ignore_ti_state=True) def tearDown(self): hook = HiveMetastoreHook() with hook.get_conn() as metastore: metastore.drop_table(self.database, self.table, deleteData=True) os.remove(self.local_path) def test_get_conn(self): hook = HiveServer2Hook() hook.get_conn() def test_get_records(self): hook = HiveServer2Hook() query = "SELECT * FROM {}".format(self.table) results = hook.get_records(query, schema=self.database) self.assertListEqual(results, [(1, 1), (2, 2)]) def test_get_pandas_df(self): hook = HiveServer2Hook() query = "SELECT * FROM {}".format(self.table) df = hook.get_pandas_df(query, schema=self.database) self.assertEqual(len(df), 2) self.assertListEqual(df.columns.tolist(), self.columns) self.assertListEqual(df[self.columns[0]].values.tolist(), [1, 2]) def test_get_results_header(self): hook = HiveServer2Hook() query = "SELECT * FROM {}".format(self.table) results = hook.get_results(query, schema=self.database) self.assertListEqual([col[0] for col in results['header']], self.columns) def test_get_results_data(self): hook = HiveServer2Hook() query = "SELECT * FROM {}".format(self.table) results = hook.get_results(query, schema=self.database) self.assertListEqual(results['data'], [(1, 1), (2, 2)]) def test_to_csv(self): hook = HiveServer2Hook() query = "SELECT * FROM {}".format(self.table) csv_filepath = 'query_results.csv' hook.to_csv(query, csv_filepath, schema=self.database, delimiter=',', lineterminator='\n', output_header=True) df = pd.read_csv(csv_filepath, sep=',') self.assertListEqual(df.columns.tolist(), self.columns) self.assertListEqual(df[self.columns[0]].values.tolist(), [1, 2]) self.assertEqual(len(df), 2) def test_multi_statements(self): sqls = [ "CREATE TABLE IF NOT EXISTS test_multi_statements (i INT)", "SELECT * FROM {}".format(self.table), "DROP TABLE test_multi_statements", ] hook = HiveServer2Hook() results = hook.get_records(sqls, schema=self.database) self.assertListEqual(results, [(1, 1), (2, 2)])
apache-2.0
jswanljung/iris
docs/iris/src/userguide/regridding_plots/regridded_to_global_area_weighted.py
17
1646
from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa import iris import iris.analysis import iris.plot as iplt import matplotlib.pyplot as plt import matplotlib.colors import numpy as np global_air_temp = iris.load_cube(iris.sample_data_path('air_temp.pp')) regional_ash = iris.load_cube(iris.sample_data_path('NAME_output.txt')) regional_ash = regional_ash.collapsed('flight_level', iris.analysis.SUM) # Mask values so low that they are anomalous. regional_ash.data = np.ma.masked_less(regional_ash.data, 5e-6) norm = matplotlib.colors.LogNorm(5e-6, 0.0175) global_air_temp.coord('longitude').guess_bounds() global_air_temp.coord('latitude').guess_bounds() fig = plt.figure(figsize=(8, 4.5)) plt.subplot(2, 2, 1) iplt.pcolormesh(regional_ash, norm=norm) plt.title('Volcanic ash total\nconcentration not regridded', size='medium') for subplot_num, mdtol in zip([2, 3, 4], [0, 0.5, 1]): plt.subplot(2, 2, subplot_num) scheme = iris.analysis.AreaWeighted(mdtol=mdtol) global_ash = regional_ash.regrid(global_air_temp, scheme) iplt.pcolormesh(global_ash, norm=norm) plt.title('Volcanic ash total concentration\n' 'regridded with AreaWeighted(mdtol={})'.format(mdtol), size='medium') plt.subplots_adjust(hspace=0, wspace=0.05, left=0.001, right=0.999, bottom=0, top=0.955) # Iterate over each of the figure's axes, adding coastlines, gridlines # and setting the extent. for ax in fig.axes: ax.coastlines('50m') ax.gridlines() ax.set_extent([-80, 40, 31, 75]) plt.show()
lgpl-3.0
ghchinoy/tensorflow
tensorflow/examples/get_started/regression/imports85.py
41
6589
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A dataset loader for imports85.data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np import tensorflow as tf try: import pandas as pd # pylint: disable=g-import-not-at-top except ImportError: pass URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data" # Order is important for the csv-readers, so we use an OrderedDict here. defaults = collections.OrderedDict([ ("symboling", [0]), ("normalized-losses", [0.0]), ("make", [""]), ("fuel-type", [""]), ("aspiration", [""]), ("num-of-doors", [""]), ("body-style", [""]), ("drive-wheels", [""]), ("engine-location", [""]), ("wheel-base", [0.0]), ("length", [0.0]), ("width", [0.0]), ("height", [0.0]), ("curb-weight", [0.0]), ("engine-type", [""]), ("num-of-cylinders", [""]), ("engine-size", [0.0]), ("fuel-system", [""]), ("bore", [0.0]), ("stroke", [0.0]), ("compression-ratio", [0.0]), ("horsepower", [0.0]), ("peak-rpm", [0.0]), ("city-mpg", [0.0]), ("highway-mpg", [0.0]), ("price", [0.0]) ]) # pyformat: disable types = collections.OrderedDict((key, type(value[0])) for key, value in defaults.items()) def _get_imports85(): path = tf.contrib.keras.utils.get_file(URL.split("/")[-1], URL) return path def dataset(y_name="price", train_fraction=0.7): """Load the imports85 data as a (train,test) pair of `Dataset`. Each dataset generates (features_dict, label) pairs. Args: y_name: The name of the column to use as the label. train_fraction: A float, the fraction of data to use for training. The remainder will be used for evaluation. Returns: A (train,test) pair of `Datasets` """ # Download and cache the data path = _get_imports85() # Define how the lines of the file should be parsed def decode_line(line): """Convert a csv line into a (features_dict,label) pair.""" # Decode the line to a tuple of items based on the types of # csv_header.values(). items = tf.decode_csv(line, list(defaults.values())) # Convert the keys and items to a dict. pairs = zip(defaults.keys(), items) features_dict = dict(pairs) # Remove the label from the features_dict label = features_dict.pop(y_name) return features_dict, label def has_no_question_marks(line): """Returns True if the line of text has no question marks.""" # split the line into an array of characters chars = tf.string_split(line[tf.newaxis], "").values # for each character check if it is a question mark is_question = tf.equal(chars, "?") any_question = tf.reduce_any(is_question) no_question = ~any_question return no_question def in_training_set(line): """Returns a boolean tensor, true if the line is in the training set.""" # If you randomly split the dataset you won't get the same split in both # sessions if you stop and restart training later. Also a simple # random split won't work with a dataset that's too big to `.cache()` as # we are doing here. num_buckets = 1000000 bucket_id = tf.string_to_hash_bucket_fast(line, num_buckets) # Use the hash bucket id as a random number that's deterministic per example return bucket_id < int(train_fraction * num_buckets) def in_test_set(line): """Returns a boolean tensor, true if the line is in the training set.""" # Items not in the training set are in the test set. # This line must use `~` instead of `not` because `not` only works on python # booleans but we are dealing with symbolic tensors. return ~in_training_set(line) base_dataset = ( tf.data # Get the lines from the file. .TextLineDataset(path) # drop lines with question marks. .filter(has_no_question_marks)) train = (base_dataset # Take only the training-set lines. .filter(in_training_set) # Decode each line into a (features_dict, label) pair. .map(decode_line) # Cache data so you only decode the file once. .cache()) # Do the same for the test-set. test = (base_dataset.filter(in_test_set).cache().map(decode_line)) return train, test def raw_dataframe(): """Load the imports85 data as a pd.DataFrame.""" # Download and cache the data path = _get_imports85() # Load it into a pandas dataframe df = pd.read_csv(path, names=types.keys(), dtype=types, na_values="?") return df def load_data(y_name="price", train_fraction=0.7, seed=None): """Get the imports85 data set. A description of the data is available at: https://archive.ics.uci.edu/ml/datasets/automobile The data itself can be found at: https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data Args: y_name: the column to return as the label. train_fraction: the fraction of the dataset to use for training. seed: The random seed to use when shuffling the data. `None` generates a unique shuffle every run. Returns: a pair of pairs where the first pair is the training data, and the second is the test data: `(x_train, y_train), (x_test, y_test) = get_imports85_dataset(...)` `x` contains a pandas DataFrame of features, while `y` contains the label array. """ # Load the raw data columns. data = raw_dataframe() # Delete rows with unknowns data = data.dropna() # Shuffle the data np.random.seed(seed) # Split the data into train/test subsets. x_train = data.sample(frac=train_fraction, random_state=seed) x_test = data.drop(x_train.index) # Extract the label from the features dataframe. y_train = x_train.pop(y_name) y_test = x_test.pop(y_name) return (x_train, y_train), (x_test, y_test)
apache-2.0
kensugino/jGEM
jgem/merge3.py
1
61403
""" .. module:: merge3 :synopsis: merge assemblies from different cell types jGEM version 3 merger .. moduleauthor:: Ken Sugino <[email protected]> """ # system imports import subprocess import multiprocessing import gzip import os import time import shutil from functools import reduce from operator import iadd, iand from collections import Counter from itertools import repeat import logging logging.basicConfig(level=logging.DEBUG) LOG = logging.getLogger(__name__) # 3rd party imports import pandas as PD import numpy as N import matplotlib.pyplot as P # LocalAssembler imports from collections import Counter from matplotlib.collections import BrokenBarHCollection from functools import partial, reduce from operator import iadd import bisect from scipy.optimize import nnls # library imports from jgem import utils as UT from jgem import bigwig as BW from jgem import bedtools as BT from jgem import gtfgffbed as GGB from jgem import taskqueue as TQ from jgem import assembler3 as A3 import jgem.cy.bw as cybw ############# Merge Prep ###################################################### class PrepBWSJ(object): def __init__(self, j2pres, genome, dstpre, libsizes=None, np=10): self.j2pres = j2pres self.libsizes = libsizes # scale = 1e6/libsize self.genome = genome self.dstpre = dstpre self.np = np def __call__(self): # exdf => ex.p, ex.n, ex.u # sjdf => sj.p, sj.n, sj.u # paths => sjpath.bed # divide into tasks (exdf,sjdf,paths) x chroms self.server = server = TQ.Server(name='PrepBWSJ', np=self.np) self.chroms = chroms = UT.chroms(self.genome) csizes = UT.df2dict(UT.chromdf(self.genome), 'chr', 'size') self.exstatus = exstatus = {} self.sjstatus = sjstatus = {} self.pastatus = pastatus = {} self.sdstatus = sdstatus = {} exdone=False sjdone=False padone=False sddone=False with server: for chrom in chroms: # exdf tasks tname = 'prep_exwig_chr.{0}'.format(chrom) args = (self.j2pres, self.libsizes, self.dstpre, chrom, csizes[chrom]) task = TQ.Task(tname, prep_exwig_chr, args) server.add_task(task) # exdf tasks tname = 'prep_sjwig_chr.{0}'.format(chrom) args = (self.j2pres, self.libsizes, self.dstpre, chrom, csizes[chrom]) task = TQ.Task(tname, prep_sjwig_chr, args) server.add_task(task) # exdf tasks tname = 'prep_sjpath_chr.{0}'.format(chrom) args = (self.j2pres, self.libsizes, self.dstpre, chrom) task = TQ.Task(tname, prep_sjpath_chr, args) server.add_task(task) tname = 'prep_sjdf_chr.{0}'.format(chrom) args = (self.j2pres, self.libsizes, self.dstpre, chrom) task = TQ.Task(tname, prep_sjdf_chr, args) server.add_task(task) while server.check_error(): try: name, rslt = server.get_result(timeout=5) # block until result come in except TQ.Empty: name, rslt = None, None if name is not None: if name.startswith('prep_exwig_chr.'): chrom = name.split('.')[1] exstatus[chrom] = rslt if len(exstatus)==len(chroms): # all finished print('$$$$$$$$ putting in prep_exbw $$$$$$$$$$$') tname='prep_exbw' args = (self.dstpre, chroms, self.genome) task = TQ.Task(tname, prep_exbw, args) server.add_task(task) if name.startswith('prep_sjwig_chr.'): chrom = name.split('.')[1] sjstatus[chrom] = rslt if len(sjstatus)==len(chroms): # all finished print('$$$$$$$$ putting in prep_sjbw $$$$$$$$$$$') tname='prep_sjbw' args = (self.dstpre, chroms, self.genome) task = TQ.Task(tname, prep_sjbw, args) server.add_task(task) if name.startswith('prep_sjpath_chr.'): chrom = name.split('.')[1] pastatus[chrom] = rslt if len(pastatus)==len(chroms): # all finished print('$$$$$$$$ putting in prep_sjpath $$$$$$$$$$$') tname='prep_sjpath' args = (self.dstpre, chroms) task = TQ.Task(tname, prep_sjpath, args) server.add_task(task) if name.startswith('prep_sjdf_chr.'): chrom = name.split('.')[1] sdstatus[chrom] = rslt if len(sdstatus)==len(chroms): # all finished print('$$$$$$$$ putting in prep_sjdf $$$$$$$$$$$') tname='prep_sjdf' args = (self.dstpre, chroms) task = TQ.Task(tname, prep_sjdf, args) server.add_task(task) if name=='prep_exbw': print('$$$$$$$$ prep_exbw done $$$$$$$$$$$') exdone=True if name=='prep_sjbw': print('$$$$$$$$ prep_sjbw done $$$$$$$$$$$') sjdone=True if name=='prep_sjpath': print('$$$$$$$$ prep_sjpath done $$$$$$$$$$$') padone=True if name=='prep_sjdf': print('$$$$$$$$ prep_sjdf done $$$$$$$$$$$') sddone=True if exdone&sjdone&padone&sddone: break print('Exit Loop') print('Done') def prep_exwig_chr(j2pres, libsizes, dstpre, chrom, csize): ss = ['p','n','u'] s2s = {'p':['+'],'n':['-'],'u':['.+','.-','.']} a = {s:N.zeros(csize) for s in ss} wigpaths = {s:dstpre+'.ex.{0}.{1}.wig'.format(s,chrom) for s in ss} if all([os.path.exists(dstpre+'.ex.{0}.bw'.format(s)) for s in ss]): return wigpaths if all([os.path.exists(dstpre+'.ex.{0}.wig'.format(s)) for s in ss]): return wigpaths if all([os.path.exists(wigpaths[s]) for s in ss]): return wigpaths if libsizes is None: n = 1 scales = N.ones(len(j2pres)) else: n = len(j2pres) scales = [1e6/float(x) for x in libsizes] for pre,scale in zip(j2pres, scales): exdf = UT.read_pandas(pre+'.exdf.txt.gz',names=A3.EXDFCOLS) exdf = exdf[exdf['chr']==chrom] for s in ss: exsub = exdf[exdf['strand'].isin(s2s[s])] for st,ed,ecov in exsub[['st','ed','ecov']].values: a[s][st:ed] += ecov*scale sedf = UT.read_pandas(pre+'.sedf.txt.gz',names=A3.EXDFCOLS) sedf = sedf[sedf['chr']==chrom] for s in ss: sesub = sedf[sedf['strand'].isin(s2s[s])] for st,ed,ecov in sesub[['st','ed','ecov']].values: a[s][st:ed] += ecov*scale for s in ['p','n','u']: if libsizes is not None: a[s] /= float(n) # average cybw.array2wiggle_chr64(a[s], chrom, wigpaths[s], 'w') return wigpaths def prep_sjwig_chr(j2pres, libsizes, dstpre, chrom, csize): ss = ['p','n','u'] s2s = {'p':['+'],'n':['-'],'u':['.+','.-']} a = {s:N.zeros(csize) for s in ss} wigpaths = {s:dstpre+'.sj.{0}.{1}.wig'.format(s,chrom) for s in ss} if all([os.path.exists(dstpre+'.sj.{0}.bw'.format(s)) for s in ss]): return wigpaths if all([os.path.exists(dstpre+'.sj.{0}.wig'.format(s)) for s in ss]): return wigpaths if all([os.path.exists(wigpaths[s]) for s in ss]): return wigpaths if libsizes is None: n = 1 scales = N.ones(len(j2pres)) else: n = len(j2pres) scales = [1e6/float(x) for x in libsizes] for pre,scale in zip(j2pres, scales): sjdf = UT.read_pandas(pre+'.sjdf.txt.gz',names=A3.SJDFCOLS) sjdf = sjdf[sjdf['chr']==chrom] for s in ss: sjsub = sjdf[sjdf['strand'].isin(s2s[s])] for st,ed,tcnt in sjsub[['st','ed','tcnt']].values: a[s][st:ed] += tcnt*scale for s in ['p','n','u']: if libsizes is not None: a[s] /= float(n) # average cybw.array2wiggle_chr64(a[s], chrom, wigpaths[s], 'w') return wigpaths def prep_sjpath_chr(j2pres, libsizes, dstpre, chrom): pc2st = {} pc2ed = {} pc2tst = {} pc2ted = {} pc2strand = {} pc2tcov = {} # pc2tcov0 = {} # chr,st,ed,name,sc1(tcov),strand,tst,ted,sc2(),#exons,estarts,esizes # cols = ['st','ed','name','strand','tst','ted','tcov0','tcov'] path = dstpre+'.sjpath.{0}.bed.gz'.format(chrom) path0 = dstpre+'.sjpath.bed.gz' if os.path.exists(path0): return path if os.path.exists(path): return path cols = ['st','ed','name','strand','tst','ted','tcov'] if libsizes is None: n = 1 scales = N.ones(len(j2pres)) else: n = len(j2pres) scales = [1e6/float(x) for x in libsizes] for pre,scale in zip(j2pres, scales): paths = UT.read_pandas(pre+'.paths.txt.gz', names=A3.PATHCOLS) paths = paths[paths['chr']==chrom] for st,ed,name,s,tst,ted,tcov in paths[cols].values: pc = ','.join(name.split(',')[1:-1]) # trim 53exons => intron chain if pc=='': continue # ignore no junction path pc2st[pc] = min(st, pc2st.get(pc,st)) pc2ed[pc] = max(ed, pc2ed.get(pc,ed)) pc2tst[pc] = tst pc2ted[pc] = ted pc2strand[pc] = s pc2tcov[pc] = pc2tcov.get(pc,0)+scale*tcov #pc2tcov0[pc] = pc2tcov0.get(pc,0)+scale*tcov0 df = PD.DataFrame({'st':pc2st,'ed':pc2ed,'tst':pc2tst,'ted':pc2ted, 'strand':pc2strand,'tcov':pc2tcov}) df['chr'] = chrom df.index.name = 'name' df.reset_index(inplace=True) # create bed12: parse name => #exons, esizes, estarts df['pc'] = df['name'].copy() idxp = df['strand'].isin(['+','.+']) if libsizes is not None: df['tcov'] = df['tcov']/float(n) df.loc[idxp,'name'] = ['{0},{1},{2}'.format(s,p,e) for s,p,e in df[idxp][['st','pc','ed']].values] df.loc[~idxp,'name'] = ['{2},{1},{0}'.format(s,p,e) for s,p,e in df[~idxp][['st','pc','ed']].values] df = df.groupby('pc').first() # get rid of unstranded duplicates cmax = 9+N.log2(N.mean(scales)) bed = A3.path2bed12(df, cmax) # reset sc1 to tcov (from log2(tcov+2)*100) bed['sc1'] = bed['tcov'] GGB.write_bed(bed, path, ncols=12) return path def prep_sjdf_chr(j2pres, libsizes, dstpre, chrom): pc2st = {} pc2ed = {} pc2strand = {} pc2tcnt = {} pc2ucnt = {} # chr,st,ed,name,sc1(tcov),strand,tst,ted,sc2(),#exons,estarts,esizes # cols = ['st','ed','name','strand','tst','ted','tcov0','tcov'] path = dstpre+'.sjdf.{0}.txt.gz'.format(chrom) path0 = dstpre+'.sjdf.txt.gz' if os.path.exists(path0): return path if os.path.exists(path): return path cols = ['st','ed','name','strand','st','ed','tcnt','ucnt'] # cols = A3.SJDFCOLS if libsizes is None: n = 1 scales = N.ones(len(j2pres)) else: n = len(j2pres) scales = [1e6/float(x) for x in libsizes] for pre,scale in zip(j2pres, scales): paths = UT.read_pandas(pre+'.sjdf.txt.gz', names=A3.SJDFCOLS) paths = paths[paths['chr']==chrom] for st,ed,pc,s,st,ed,tcnt,ucnt in paths[cols].values: pc2st[pc] = st pc2ed[pc] = ed pc2strand[pc] = s pc2tcnt[pc] = pc2tcnt.get(pc,0)+scale*tcnt pc2ucnt[pc] = pc2ucnt.get(pc,0)+scale*ucnt df = PD.DataFrame({'st':pc2st,'ed':pc2ed,'st':pc2st,'ed':pc2ed, 'strand':pc2strand,'tcnt':pc2tcnt,'ucnt':pc2ucnt}) df['chr'] = chrom df['kind'] = 'j' if libsizes is not None: df['tcnt'] = df['tcnt']/float(n) df['ucnt'] = df['ucnt']/float(n) df.index.name = 'name' df.reset_index(inplace=True) UT.write_pandas(df[A3.SJDFCOLS], path, '') return path def prep_exbw(dstpre, chroms, genome): return _prep_bw(dstpre, chroms, genome, 'ex') def prep_sjbw(dstpre, chroms, genome): return _prep_bw(dstpre, chroms, genome, 'sj') def _prep_bw(dstpre, chroms, genome, w): # concatenate ss = ['p','n','u'] files = [] bwpaths = {s: dstpre+'.{1}.{0}.bw'.format(s,w) for s in ss} if all([os.path.exists(bwpaths[s]) for s in ss]): return bwpaths for s in ss: dstwig = dstpre+'.{1}.{0}.wig'.format(s,w) with open(dstwig, 'wb') as dst: for c in chroms: srcpath = dstpre+'.{2}.{0}.{1}.wig'.format(s,c,w) with open(srcpath,'rb') as src: shutil.copyfileobj(src,dst) files.append(srcpath) files.append(dstwig) print('converting wig to bigwig {0}'.format(dstwig)) BT.wig2bw(dstwig, UT.chromsizes(genome), bwpaths[s]) # clean up for f in files: os.unlink(f) return bwpaths def prep_sjpath(dstpre, chroms): dstpath = dstpre+'.sjpath.bed.gz' if os.path.exists(dstpath): return dstpath files = [] with open(dstpath, 'wb') as dst: for c in chroms: srcpath = dstpre+'.sjpath.{0}.bed.gz'.format(c) with open(srcpath,'rb') as src: shutil.copyfileobj(src,dst) files.append(srcpath) # for f in files: # keep separate chr files # os.unlink(f) return dstpath def prep_sjdf(dstpre, chroms): dstpath = dstpre+'.sjdf.txt.gz' if os.path.exists(dstpath): return dstpath files = [] with open(dstpath, 'wb') as dst: for c in chroms: srcpath = dstpre+'.sjdf.{0}.txt.gz'.format(c) with open(srcpath,'rb') as src: shutil.copyfileobj(src,dst) files.append(srcpath) # for f in files: # keep separate chr files # os.unlink(f) return dstpath ############# SJ Filter ####################################################### SJFILTERPARAMS = dict( th_detected=1, th_maxcnt=1, th_maxoverhang=15, th_minedgeexon=15, th_sjratio=1e-3, filter_unstranded=False,# there are substantial number of high cov unstranded ) class SJFilter(object): def __init__(self, bwsjpre, statspath, genome, np=10, **kw): self.bwsjpre = bwsjpre self.statspath = statspath self.genome = genome self.np = np self.params = SJFILTERPARAMS.copy() self.params.update(kw) def __call__(self): chroms = UT.chroms(self.genome) csizedic = UT.df2dict(UT.chromdf(self.genome), 'chr', 'size') args = [] for c in chroms: csize = csizedic[c] args.append((self.bwsjpre, self.statspath, c, csize, self.params)) rslts = UT.process_mp(filter_sjpath, args, np=self.np, doreduce=False) dstpath = self.bwsjpre+'.filtered.sjpath.bed.gz' with open(dstpath,'wb') as dst: for c in chroms: srcpath = self.bwsjpre+'.filtered.sjpath.{0}.bed.gz'.format(c) with open(srcpath, 'rb') as src: shutil.copyfileobj(src, dst) rslts = UT.process_mp(filter_sjdf, args, np=self.np, doreduce=False) dstpath = self.bwsjpre+'.filtered.sjdf.txt.gz' with open(dstpath,'wb') as dst: for c in chroms: srcpath = self.bwsjpre+'.filtered.sjdf.{0}.txt.gz'.format(c) with open(srcpath, 'rb') as src: shutil.copyfileobj(src, dst) # make sj.bw sjfiltered2bw(self.bwsjpre, self.genome, self.np) for s in ['p','n','u']: src = self.bwsjpre + '.ex.{0}.bw'.format(s) dst = self.bwsjpre + '.filtered.ex.{0}.bw'.format(s) cmd = ['ln','-s', src, dst] subprocess.call(cmd) def locus2pc(l): chrom,sted,strand = l.split(':') st,ed = sted.split('-') st = str(int(st)-1) if strand in ['+','.']: return '|'.join([st,ed]) return '|'.join([ed,st]) def filter_sjpath(bwsjpre, statspath, chrom, csize, params): # read in junction stats stats = UT.read_pandas(statspath) if 'chr' not in stats: stats['chr'] = [x.split(':')[0] for x in stats['locus']] if '#detected' in stats: stats.rename(columns={'#detected':'detected'}, inplace=True) stats = stats[stats['chr']==chrom].copy() if 'pc' not in stats: stats['pc'] = [locus2pc(x) for x in stats['locus']] flds = ['detected','maxcnt','maxoverhang'] dics = {f: UT.df2dict(stats, 'pc', f) for f in flds} # read sjpath fpath_chr = bwsjpre+'.sjpath.{0}.bed.gz'.format(chrom) dstpath = bwsjpre+'.filtered.sjpath.{0}.bed.gz'.format(chrom) if os.path.exists(fpath_chr): sj = GGB.read_bed(fpath_chr) else: fpath = bwsjpre+'.sjpath.bed.gz' sj = GGB.read_bed(fpath) sj = sj[sj['chr']==chrom].copy() name0 = sj.iloc[0]['name'] if len(name0.split('|'))<len(name0.split(',')): # exons attached? sj['name'] = [','.join(x.split(',')[1:-1]) for x in sj['name']] # filter unstranded if params['filter_unstranded']: sj = sj[sj['strand'].isin(['+','-'])].copy() # filter with stats for f in flds: sj[f] = [N.min([dics[f].get(x,0) for x in y.split(',')]) for y in sj['name']] sj = sj[sj[f]>params['th_'+f]].copy() # filter # edge exon size sj['eflen'] = [int(x.split(',')[0]) for x in sj['esizes']] sj['ellen'] = [int(x.split(',')[-2]) for x in sj['esizes']] eth = params['th_minedgeexon'] sj = sj[(sj['eflen']>eth)&(sj['ellen']>eth)].copy() # calculate sjratio, sjratio if params['filter_unstranded']: sjexbw = A3.SjExBigWigs(bwsjpre, mixunstranded=False) else: sjexbw = A3.SjExBigWigs(bwsjpre, mixunstranded=True) with sjexbw: sa = sjexbw.bws['sj']['a'].get(chrom,0,csize) ea = sjexbw.bws['ex']['a'].get(chrom,0,csize) a = sa+ea # sj['sjratio'] = [x/N.mean(a[int(s):int(e)]) for x,s,e in sj[['sc1','tst','ted']].values] sj['sjratio'] = [x/N.max(a[int(s):int(e)]) for x,s,e in sj[['sc1','tst','ted']].values] sj = sj[sj['sjratio']>params['th_sjratio']] GGB.write_bed(sj, dstpath, ncols=12) def filter_sjdf(bwsjpre, statspath, chrom, csize, params): # read in junction stats stats = UT.read_pandas(statspath) if 'chr' not in stats: stats['chr'] = [x.split(':')[0] for x in stats['locus']] if '#detected' in stats: stats.rename(columns={'#detected':'detected'}, inplace=True) stats = stats[stats['chr']==chrom].copy() if 'pc' not in stats: stats['pc'] = [locus2pc(x) for x in stats['locus']] flds = ['detected','maxcnt','maxoverhang'] dics = {f: UT.df2dict(stats, 'pc', f) for f in flds} # read sjdf fpath_chr = bwsjpre+'.sjdf.{0}.txt.gz'.format(chrom) dstpath = bwsjpre+'.filtered.sjdf.{0}.txt.gz'.format(chrom) if os.path.exists(fpath_chr): sj = UT.read_pandas(fpath_chr, names=A3.SJDFCOLS) else: fpath = bwsjpre+'.sjdf.txt.gz' sj = UT.read_pandas(fpath, names=A3.SJDFCOLS) sj = sj[sj['chr']==chrom].copy() # filter unstranded if params['filter_unstranded']: sj = sj[sj['strand'].isin(['+','-'])].copy() # filter with stats for f in flds: # sj[f] = [N.min([dics[f].get(x,0) for x in y.split(',')]) for y in sj['name']] sj[f] = [dics[f].get(y,0) for y in sj['name']] sj = sj[sj[f]>params['th_'+f]].copy() # filter # edge exon size # sj['eflen'] = [int(x.split(',')[0]) for x in sj['esizes']] # sj['ellen'] = [int(x.split(',')[-2]) for x in sj['esizes']] # eth = params['th_minedgeexon'] # sj = sj[(sj['eflen']>eth)&(sj['ellen']>eth)].copy() # calculate sjratio, sjratio if params['filter_unstranded']: sjexbw = A3.SjExBigWigs(bwsjpre, mixunstranded=False) else: sjexbw = A3.SjExBigWigs(bwsjpre, mixunstranded=True) with sjexbw: sa = sjexbw.bws['sj']['a'].get(chrom,0,csize) ea = sjexbw.bws['ex']['a'].get(chrom,0,csize) a = sa+ea # sj['sjratio'] = [x/N.mean(a[int(s):int(e)]) for x,s,e in sj[['tcnt','st','ed']].values] sj['sjratio'] = [x/N.max(a[int(s):int(e)]) for x,s,e in sj[['tcnt','st','ed']].values] sj = sj[sj['sjratio']>params['th_sjratio']] UT.write_pandas(sj[A3.SJDFCOLS], dstpath, '') def sjfiltered2wig(bwpre, chrom, chromsize): a = {'+':N.zeros(chromsize, dtype=N.float64), '-':N.zeros(chromsize, dtype=N.float64), '.':N.zeros(chromsize, dtype=N.float64)} path = bwpre+'.filtered.sjdf.{0}.txt.gz'.format(chrom) sjchr = UT.read_pandas(path, names=A3.SJDFCOLS) for st,ed,v,strand in sjchr[['st','ed','tcnt','strand']].values: a[strand[0]][st:ed] += v for strand in a: wig = bwpre+'.filtered.sjdf.{0}.{1}.wig'.format(chrom, strand) cybw.array2wiggle_chr64(a[strand], chrom, wig) return path def sjfiltered2bw(bwpre, genome, np=12): chroms = UT.chroms(genome) chromdf = UT.chromdf(genome).sort_values('size',ascending=False) chroms = [x for x in chromdf['chr'] if x in chroms] chromdic = UT.df2dict(chromdf, 'chr', 'size') args = [(bwpre, c, chromdic[c]) for c in chroms] rslts = UT.process_mp(sjfiltered2wig, args, np=np, doreduce=False) S2N = {'+':'p','-':'n','.':'u'} rmfiles = [] for strand in ['+','-','.']: s = S2N[strand] wigpath = bwpre+'.filtered.sj.{0}.wig'.format(s) with open(wigpath, 'w') as dst: for chrom in chroms: f = bwpre+'.filtered.sjdf.{0}.{1}.wig'.format(chrom, strand) with open(f,'r') as src: shutil.copyfileobj(src, dst) rmfiles.append(f) bwpath = bwpre+'.filtered.sj.{0}.bw'.format(s) BT.wig2bw(wigpath, UT.chromsizes(genome), bwpath) rmfiles.append(wigpath) for f in rmfiles: os.unlink(f) ############# Cov Estimator ###################################################### class LocalEstimator(A3.LocalAssembler): def __init__(self, modelpre, bwpre, chrom, st, ed, dstpre, tcovth, usegeom=False): self.modelpre = modelpre self.tcovth = tcovth self.usegeom = usegeom A3.LocalAssembler.__init__(self, bwpre, chrom, st, ed, dstpre) bed12 = GGB.read_bed(modelpre+'.paths.withse.bed.gz') assert(all(bed12['tst']<bed12['ted'])) idx = (bed12['chr']==chrom)&(bed12['tst']>=st)&(bed12['ted']<=ed) self.paths = bed12[idx].copy() eids = set() sids = set() for n in self.paths['name']: eids.update(n.split('|')) sids.update(n.split(',')[1:-1]) tgt1 = bwpre+'.filtered.{0}.bed.gz'.format(chrom) tgt2 = bwpre+'.{0}.bed.gz'.format(chrom) tgt3 = bwpre+'.sjpath.bed.gz' if os.path.exists(tgt1): sj = GGB.read_bed(tgt1) elif os.path.exists(tgt2): sj = GGB.read_bed(tgt2) else: sj = GGB.read_bed(tgt3) idx0 = (sj['chr']==chrom)&(sj['tst']>=st)&(sj['ted']<=ed) self.sjpaths0 = sj[idx0].copy() # load exdf, sjdf sjdf = UT.read_pandas(modelpre+'.sjdf.txt.gz', names=A3.SJDFCOLS) sjdf['tst'] = sjdf['st'] # for sjpath compatibility sjdf['ted'] = sjdf['ed'] sjdf['sc1'] = sjdf['ucnt'] sjdf['sc2'] = sjdf['tcnt'] sjdf = sjdf[(sjdf['chr']==chrom)&(sjdf['st']>=st)&(sjdf['ed']<=ed)] sjdf = sjdf[sjdf['name'].isin(sids)] self.sjdf = sjdf.groupby(['chr','st','ed','strand']).first().reset_index() exdf = UT.read_pandas(modelpre+'.exdf.txt.gz', names=A3.EXDFCOLS) exdf = exdf[(exdf['chr']==chrom)&(exdf['st']>=st)&(exdf['ed']<=ed)] exdf = exdf[exdf['name'].isin(eids)] if os.path.exists(modelpre+'.sedf.txt.gz'): sedf = UT.read_pandas(modelpre+'.sedf.txt.gz', names=A3.EXDFCOLS) sedf = sedf[(sedf['chr']==chrom)&(sedf['st']>=st)&(sedf['ed']<=ed)] sedf = sedf[sedf['name'].isin(eids)] exdf = PD.concat([exdf,sedf],ignore_index=True) self.exdf = exdf.groupby(['chr','st','ed','strand','kind']).first().reset_index() A3.set_ad_pos(self.sjdf, 'sj') A3.set_ad_pos(self.exdf, 'ex') # filled self.filled = {} sjs = self.sjdf exs = self.exdf[self.exdf['kind']=='i'].copy() exs['ost'] = exs['st']-self.st exs['oed'] = exs['ed']-self.st for s in ['+','-']: sja = self.arrs['sj'][s] sj = sjs[sjs['strand'].isin(A3.STRS[s])] ex = exs[exs['strand'].isin(A3.STRS[s])] self.filled[s] = A3.fill_gap(sja, sj, ex, s, self.st) # fix_i53completematch(self.exdf, self.paths) # extend 5'3' exons completely matched internal exons def process(self): self.calculate_ecovs() self.calculate_scovs() self.estimate_abundance() self.write() return def calculate_scovs(self): sj = self.sjdf sj0 = self.sjpaths0 sj0mat = sj0[['sc1','sc2','name']].values tmp = [[(sc1,sc2) for sc1,sc2,p in sj0mat if y in p] for y in sj['name']] sj['ucnt'] = [N.sum([x[0] for x in y]) for y in tmp] sj['tcnt'] = [N.sum([x[1] for x in y]) for y in tmp] self.sjdfi = sj.set_index('name') def calculate_branchp(self, jids, eids): sj0 = self.sjdfi sj = sj0.ix[jids].reset_index() ex0 = self.exdfi ex = ex0.ix[eids].reset_index() dsump = sj.groupby('dpos')['tcnt'].sum().astype(float) tmp = dsump.ix[sj['dpos'].values] jdp = sj['tcnt'].values/tmp.values idx = N.array(tmp==0, dtype=bool) jdp[idx] = 0. j2p = dict(zip(sj['name'].values, jdp)) # exon groupby acceptor asump = ex.groupby('apos')['ecov'].sum().astype(float) tmp = asump.ix[ex['apos'].values] eap = ex['ecov'].values/(tmp.values) idx = N.array(tmp==0, dtype=bool) eap[idx] = 0. e2ap = dict(zip(ex['name'].values, eap)) dsump = ex.groupby('dpos')['ecov'].sum().astype(float) tmp = dsump.ix[ex['dpos'].values] edp = ex['ecov'].values/(tmp.values) idx = N.array(tmp==0, dtype=bool) edp[idx] = 0. e2dp = dict(zip(ex['name'].values, edp)) return j2p, e2ap, e2dp def tcov_by_nnls(self, s, e, strand): o = int(self.st) p = self.paths idx = (p['tst']>=s)&(p['ted']<=e)&(p['strand'].isin(A3.STRS[strand])) ps = p[idx] if len(ps)==0: return None pg = ps.groupby(['tst','ted']).first().reset_index()[['chr','tst','ted','strand','name']].sort_values(['tst','ted']) pg['strand'] = strand ne = len(pg) exa = self.arrs['ex'][strand] # sja = self.arrs['sj'][strand] sja = self.filled[strand] def cov0(s,e): # return N.sum(sja[s-o:e-o]+exa[s-o:e-o])/(e-s) return N.mean(sja[s-o:e-o]) # def cov1s(s): # s0 = max(0, int(s)-o-10) # s1 = max(s0+1,int(s)-o) # return N.mean(exa[s0:s1]) # def cov1e(e): # return N.mean(exa[int(e)-o:int(e)-o+10]) e_ed2cov = self.eed2cov[strand] e_st2cov = self.est2cov[strand] def cov1s(s): return e_ed2cov.get(s,0) def cov1e(e): return e_st2cov.get(e,0) def cov2s(s): # donor # s0 = max(0, s-o-1) return max(0, sja[int(s)-o]-sja[int(s)-o-1]) def cov2e(e): # acceptor # e0 = max(0, e-o-1) return max(0, sja[int(e)-o-1]-sja[int(e)-o]) # cov0 if ne>1: pg.rename(columns={'tst':'st','ted':'ed'}, inplace=True) pg['eid'] = N.arange(len(pg)) ci = UT.chopintervals(pg, idcol='eid') ci['cov'] = [cov0(s,e) for s,e in ci[['st','ed']].values] ci['name1'] = ci['name'].astype(str).apply(lambda x: [int(y) for y in x.split(',')]) nc = len(ci) mat = N.zeros((nc,ne)) for i,n1 in enumerate(ci['name1'].values):# fill in rows N.put(mat[i], N.array(n1), 1) try: ecov,err = nnls(mat, ci['cov'].values) pg['tcov0a'] = ecov except e: # too much iteration? LOG.warning('!!!!!! Exception in NNLS (tcov_by_nnls) @{0}:{1}-{2}, setting to zero !!!!!!!!!'.format(self.chrom, s, e)) pg['tcov0a'] = 0 # raise e pg.rename(columns={'st':'tst','ed':'ted'}, inplace=True) else: # this includes single exons s,e = pg.iloc[0][['tst','ted']] pg['tcov0a'] = cov0(s,e) # cov1, cov2 if ne>1: sts = sorted(set(pg['tst'].values)) eds = sorted(set(pg['ted'].values)) nst,ned = len(sts),len(eds) mat = N.array([(pg['tst']==x).values for x in sts]+[(pg['ted']==x).values for x in eds], dtype=float) c = N.array([cov1s(x) for x in sts]+[cov1e(x) for x in eds]) # enforce flux conservation: scale up 5' stsum = N.sum(c[:nst]) edsum = N.sum(c[nst:]) if stsum<1e-9 or edsum<1e-9: pg['tcov0b'] = 0 else: c0 = c.copy() if strand in ['+','.+']: c[:nst] = (edsum/stsum)*c[:nst] else: c[nst:] = (stsum/edsum)*c[nst:] try: ecov,err = nnls(mat, c) except e: print('s:{0},e:{1},strand:{2}'.format(s,e,strand)) print('stsum:', stsum) print('edsum:', edsum) print('nnls error tcov0b', mat, c, c0) print('sts:',sts) print('eds:',eds) print('pg:',pg) pg['tcov0c'] = 0 raise e pg['tcov0b'] = ecov mat = N.array([(pg['tst']==x).values for x in sts]+[(pg['ted']==x).values for x in eds], dtype=float) c = N.array([cov2s(x) for x in sts]+[cov2e(x) for x in eds]) # enforce flux conservation: scale up 5' stsum = N.sum(c[:nst]) edsum = N.sum(c[nst:]) if stsum<1e-9 or edsum<1e-9: pg['tcov0c'] = 0 else: if strand in ['+','.+']: c[:nst] = (edsum/stsum)*c[:nst] else: c[nst:] = (stsum/edsum)*c[nst:] try: ecov,err = nnls(mat, c) except e: print('s:{0},e:{1},strand:{2}'.format(s,e,strand)) print('nnls error tcov0c', mat, c) pg['tcov0c'] = 0 raise e pg['tcov0c'] = ecov else: s,e = pg.iloc[0][['tst','ted']] pg['tcov0b'] = (cov1s(s)+cov1e(e))/2. pg['tcov0c'] = (cov2s(s)+cov2e(e))/2. if not self.usegeom: # pg['tcov0'] = pg[['tcov0a','tcov0b','tcov0c']].mean(axis=1) # pg['tcov0'] = (2*pg['tcov0a']+pg['tcov0b']+pg['tcov0c'])/4. # weighted pg['tcov0'] = pg[['tcov0a','tcov0b','tcov0c']].median(axis=1) else: pg['tcov0'] = N.power(pg['tcov0a']*pg['tcov0b']*pg['tcov0c'], 1/3.) # geometric mean pg.loc[pg['tcov0']<0,'tcov0'] = 0 # shouldn't really happen keys = [tuple(x) for x in p[idx][['tst','ted']].values] for f in ['tcov0','tcov0a','tcov0b','tcov0c']: p.loc[idx, f] = pg.set_index(['tst','ted']).ix[keys][f].values return pg[['chr','tst','ted','strand','tcov0']] def tcov_by_branchp(self, tst, ted, strand, tcov0): p = self.paths idx = (p['strand'].isin(A3.STRS[strand]))&(p['tst']==tst)&(p['ted']==ted) if N.sum(idx)==0: return # if N.sum(idx)>1: # calculate branchp within this group jids = set() eids = set() for n in p[idx]['name']: jids.update(n.split(',')[1:-1]) eids.update(n.split('|')) j2p, e2ap, e2dp = self.calculate_branchp(jids, eids) def _prob(y): epath0 = y.split('|') e5 = epath0[0] # use donor p epath = epath0[1:] # use acceptor p jpath = y.split(',')[1:-1] return e2dp[e5]*N.prod([e2ap[x] for x in epath])*N.prod([j2p[x] for x in jpath]) p.loc[idx,'tcov'] = [tcov0*_prob(y) for y in p[idx]['name']] # else: # p.loc[idx,'tcov'] = tcov0 def estimate_abundance(self): # 1) 5-3 group by NNLS # 2) within 5-3 group by tree branch prob paths = self.paths idxme = paths['name'].str.contains('\|') mepaths = paths[idxme].copy() sepaths = paths[~idxme].copy() self.paths = mepaths for s in ['+','-']: ps = mepaths[mepaths['strand'].isin(A3.STRS[s])] if len(ps)==0: continue # for chrom,st,ed in UT.union_contiguous(ps[['chr','st','ed']],returndf=False): poscols = ['chr','tst','ted'] for chrom,st,ed in UT.union_contiguous(ps[poscols],pos_cols=poscols,returndf=False): pg = self.tcov_by_nnls(st,ed,s) if pg is not None: for chrom,tst,ted,strand,tcov0 in pg.values: self.tcov_by_branchp(tst,ted,strand,tcov0) e2c = UT.df2dict(self.exdf, 'name', 'ecov') sepaths['tcov'] = [e2c[x] for x in sepaths['name']] for f in ['tcov0','tcov0b']: sepaths[f] = sepaths['tcov'] sepaths['tcov0a'] = 0. sepaths['tcov0c'] = 0. paths = PD.concat([mepaths, sepaths], ignore_index=True) paths.sort_values(['chr','st','ed'],inplace=True) self.paths = paths def write(self): pre = self.dstpre+'.{0}_{1}_{2}'.format(self.chrom,self.st,self.ed) # 1) exon, junctions, allpaths => csv (no header <= to concatenate bundles) ecols = A3.EXDFCOLS #['chr','st','ed','strand','name','kind','ecov'] UT.write_pandas(self.exdf[ecols], pre+'.covs.exdf.txt.gz', '') scols = A3.SJDFCOLS #['chr','st','ed','strand','name','kind','tcnt' ]#,'donor','acceptor','dp','ap'] UT.write_pandas(self.sjdf[scols], pre+'.covs.sjdf.txt.gz', '') pcols = A3.PATHCOLS #['chr','st','ed','name','strand','tst','ted','tcov0','tcov1','tcov'] UT.write_pandas(self.paths[pcols], pre+'.covs.paths.txt.gz', '') # write colored bed12 for tcov > th tgt = self.paths[self.paths['tcov']>=self.tcovth].copy() self.bed12 = A3.path2bed12(tgt, cmax=9, covfld='tcov') GGB.write_bed(self.bed12, pre+'.covs.paths.bed.gz',ncols=12) def bundle_estimator(modelpre, bwpre, chrom, st, ed, dstpre, tcovth, usegeom): bname = A3.bundle2bname((chrom,st,ed)) bsuf = '.{0}_{1}_{2}'.format(chrom,st,ed) csuf = '.{0}'.format(chrom) sufs = ['.covs.exdf.txt.gz', '.covs.sjdf.txt.gz', '.covs.paths.txt.gz', '.covs.paths.bed.gz', ] done = [] for x in sufs: done.append(os.path.exists(dstpre+bsuf+x) | \ os.path.exists(dstpre+csuf+x) | \ os.path.exists(dstpre+x) ) if all(done): LOG.info('bunle {0} already done, skipping'.format(bname)) return bname LOG.info('processing bunle {0}'.format(bname)) la = LocalEstimator(modelpre, bwpre, chrom, st, ed, dstpre, tcovth, usegeom) return la.process() def concatenate_bundles(bundles, dstpre): # concat results sufs = ['covs.exdf.txt.gz', 'covs.sjdf.txt.gz', 'covs.paths.txt.gz', 'covs.paths.bed.gz', ] files = [] for suf in sufs: dstpath = '{0}.{1}'.format(dstpre, suf) if not os.path.exists(dstpath): with open(dstpath, 'wb') as dst: for chrom, st, ed in bundles: bname = A3.bundle2bname((chrom,st,ed)) srcpath = '{0}.{1}_{2}_{3}.{4}'.format(dstpre, chrom, st, ed, suf) files.append(srcpath) with open(srcpath, 'rb') as src: shutil.copyfileobj(src, dst) else: files+=['{0}.{1}_{2}_{3}.{4}'.format(dstpre, chrom, st, ed, suf) for chrom,st,ed in bundles] # cleanup for f in files: if os.path.exists(f): os.unlink(f) def estimatecovs(modelpre, bwpre, dstpre, genome, tcovth=1, usegeom=True, np=6): bed = GGB.read_bed(modelpre+'.paths.withse.bed.gz') chroms = bed['chr'].unique() csizedic = UT.df2dict(UT.chromdf(genome), 'chr', 'size') bundles = [] args = [] for chrom in chroms: sub = bed[(bed['chr']==chrom)] uc = UT.union_contiguous(sub[['chr','st','ed']], returndf=True) # total about 30K=> make batch of ~1000 n = len(uc) nb = int(N.ceil(n/1000.)) for i in range(nb): sti = 1000*i edi = min(1000*(i+1), len(uc)-1) st = max(uc.iloc[sti]['st'] - 100, 0) ed = min(uc.iloc[edi]['ed'] + 100, csizedic[chrom]) args.append([modelpre, bwpre, chrom, st, ed, dstpre, tcovth, usegeom]) bundles.append((chrom,st,ed)) rslts = UT.process_mp(bundle_estimator, args, np=np, doreduce=False) concatenate_bundles(bundles, dstpre) class CovEstimator(object): def __init__(self, modelpre, bwpre, dstpre, genome, tcovth=1, usegeom=False, np=6): self.modelpre = modelpre self.bwpre = bwpre self.dstpre = dstpre self.genome = genome self.tcovth = tcovth self.usegeom = usegeom self.np = np def run(self): self.server = server = TQ.Server(np=self.np) print('reading paths.withse.bed.gz') bed = GGB.read_bed(self.modelpre+'.paths.withse.bed.gz') chroms = bed['chr'].unique() csizedic = UT.df2dict(UT.chromdf(self.genome), 'chr', 'size') self.bundlestatus = bundlestatus = {} self.bundles = bundles = [] with server: print('starting task server') subid = 0 for chrom in chroms: print('chrom {0}'.format(chrom)) sub = bed[(bed['chr']==chrom)] uc = UT.union_contiguous(sub[['chr','st','ed']], returndf=True) # total about 30K=> make batch of ~1000 n = len(uc) nb = int(N.ceil(n/1000.)) print(chrom,nb) for i in range(nb): print('putting in bundle_estimator {0}.{1}'.format(chrom,subid)) sti = 1000*i edi = min(1000*(i+1), len(uc)-1) st = max(uc.iloc[sti]['st'] - 100, 0) ed = min(uc.iloc[edi]['ed'] + 100, csizedic[chrom]) args = [self.modelpre, self.bwpre, chrom, st, ed, self.dstpre, self.tcovth, self.usegeom] tname = 'bundle_estimator.{0}'.format(subid) subid += 1 task = TQ.Task(tname, bundle_estimator, args) server.add_task(task) bundles.append((chrom,st,ed)) nb = len(bundles) while server.check_error(): try: name, rslt = server.get_result(timeout=5) except TQ.Empty: name, rslt = None, None if name is not None: if name.startswith('bundle_estimator.'): subid = name.split('.')[-1] bundlestatus[subid] = rslt if len(bundlestatus)==nb: print('$$$$$$$$ putting in concatenate_bundles $$$$$$$$$$$') tname='concatenate_bundles' args = (bundles, self.dstpre) task = TQ.Task(tname, concatenate_bundles, args) server.add_task(task) if name=='concatenate_bundles': print('$$$$$$$$ concatenate_bundles done $$$$$$$$$$$') break print('Exit Loop') print('Done') ############# Cov Collector ###################################################### class CovCollector(object): def __init__(self, covpres, dstpre, np=7): self.covpres = covpres self.modelpre = covpres[0] self.dstpre = dstpre self.np = np def run(self): self.server = server = TQ.Server(np=self.np) self.exdf = ex = UT.read_pandas(self.modelpre+'.covs.exdf.txt.gz', names=A3.EXDFCOLS) self.chroms = chroms = ex['chr'].unique() self.exstatus = exstatus = {} self.sjstatus = sjstatus = {} self.pastatus = pastatus = {} exdone=False sjdone=False padone=False n = len(self.covpres) nb = int(N.ceil(n/50.)) with server: for subid in range(nb): covpressub = self.covpres[50*subid:50*(subid+1)] # ex tname = 'collect_ecov_subset.{0}'.format(subid) args = (self.modelpre, covpressub, self.dstpre, subid) task = TQ.Task(tname, collect_ecov_subset, args) server.add_task(task) # sj tname = 'collect_tcnt_subset.{0}'.format(subid) args = (self.modelpre, covpressub, self.dstpre, subid) task = TQ.Task(tname, collect_tcnt_subset, args) server.add_task(task) # path tname = 'collect_tcovs_subset.{0}'.format(subid) args = (self.modelpre, covpressub, self.dstpre, subid) task = TQ.Task(tname, collect_tcovs_subset, args) server.add_task(task) while server.check_error(): try: name, rslt = server.get_result(timeout=5) except TQ.Empty: name, rslt = None, None if name is not None: if name.startswith('collect_ecov_subset.'): subid = name.split('.')[-1] exstatus[subid] = rslt if len(exstatus)==nb: print('$$$$$$$$ putting in concatenate_ecov_subsets $$$$$$$$$$$') for chrom in chroms: tname='concatenate_ecov_subsets' args = (self.modelpre, self.dstpre, range(nb), chrom) task = TQ.Task(tname, concatenate_ecov_subsets, args) server.add_task(task) if name.startswith('collect_tcnt_subset.'): subid = name.split('.')[-1] sjstatus[subid] = rslt if len(sjstatus)==nb: print('$$$$$$$$ putting in concatenate_tcnt_subsets $$$$$$$$$$$') for chrom in chroms: tname='concatenate_tcnt_subsets' args = (self.modelpre, self.dstpre, range(nb), chrom) task = TQ.Task(tname, concatenate_tcnt_subsets, args) server.add_task(task) if name.startswith('collect_tcovs_subset.'): subid = name.split('.')[-1] pastatus[subid] = rslt if len(pastatus)==nb: print('$$$$$$$$ putting in concatenate_tcovs_subsets $$$$$$$$$$$') for chrom in chroms: tname='concatenate_tcovs_subsets' args = (self.modelpre, self.dstpre, range(nb), chrom) task = TQ.Task(tname, concatenate_tcovs_subsets, args) server.add_task(task) if name=='concatenate_ecov_subsets': print('$$$$$$$$ concatenate_ecov_subsets done $$$$$$$$$$$') exdone=True if name=='concatenate_tcnt_subsets': print('$$$$$$$$ concatenate_tcnt_subsets done $$$$$$$$$$$') sjdone=True if name=='concatenate_tcovs_subsets': print('$$$$$$$$ concatenate_tcovs_subsets done $$$$$$$$$$$') padone=True if exdone&sjdone&padone: break print('Exit Loop') print('Done') def collect_ecov_subset(modelpre, covpressub, dstpre, subid): return _collect_subset(modelpre, covpressub, dstpre, subid, 'ex') def concatenate_ecov_subsets(modelpre, dstpre, subids, chrom): return _concatenate_subsets(modelpre, dstpre, subids, 'ex', chrom) def collect_tcnt_subset(modelpre, covpressub, dstpre, subid): return _collect_subset(modelpre, covpressub, dstpre, subid, 'sj') def concatenate_tcnt_subsets(modelpre, dstpre, subids, chrom): return _concatenate_subsets(modelpre, dstpre, subids, 'sj', chrom) def collect_tcovs_subset(modelpre, covpressub, dstpre, subid): return _collect_subset(modelpre, covpressub, dstpre, subid, 'pa') def concatenate_tcovs_subsets(modelpre, dstpre, subids, chrom): return _concatenate_subsets(modelpre, dstpre, subids, 'pa', chrom) def _collect_subset(modelpre, covpressub, dstpre, subid, which): if which == 'ex': suf = 'exdf' flds = ['ecov'] fsuf = 'ecovs' cols = A3.EXDFCOLS elif which == 'sj': suf = 'sjdf' flds = ['tcnt'] fsuf = 'tcnts' cols = A3.SJDFCOLS else: suf = 'paths' flds = ['tcov0','tcov'] fsuf = 'tcovs' cols = A3.PATHCOLS ex0 = UT.read_pandas(modelpre+'.covs.{0}.txt.gz'.format(suf), names=cols) chroms = ex0['chr'].unique() # read in exdf sort, transpose and write(append) to dst if all([os.path.exists(dstpre+'.{1}.{0}.txt.gz'.format(c,fsuf)) for c in chroms]): return [] if all([os.path.exists(dstpre+'.{2}.{0}.{1}.txt.gz'.format(c,subid,fsuf)) for c in chroms]): return [] ex0.sort_values(['chr','st','ed','strand'], inplace=True) names = [] for pre in covpressub: name = pre.split('/')[-1] ex1 = UT.read_pandas(pre+'.covs.{0}.txt.gz'.format(suf), names=cols) ex1.sort_values(['chr','st','ed','strand'], inplace=True) for f in flds: cname = '{0}.{1}'.format(name, f) ex0[cname] = ex1[f].values names.append(cname) ex0.reset_index(inplace=True) files = [] for chrom in ex0['chr'].unique(): ex0chr = ex0[ex0['chr']==chrom].sort_values(['st','ed','strand']) dst = dstpre+'.{2}.{0}.{1}.txt.gz'.format(chrom,subid,fsuf) UT.write_pandas(ex0chr[names].T, dst, 'i') files.append(dst) return files def _concatenate_subsets(modelpre, dstpre, subids, which, chrom): if which == 'ex': suf = 'exdf' fsuf = 'ecovs' cols = A3.EXDFCOLS elif which == 'sj': suf = 'sjdf' fsuf = 'tcnts' cols = A3.SJDFCOLS else: suf = 'paths' fsuf = 'tcovs' cols = A3.PATHCOLS ex0 = UT.read_pandas(modelpre+'.covs.{0}.txt.gz'.format(suf), names=cols) chroms = ex0['chr'].unique() files = [] dstpath0 = dstpre+'.{1}.{0}.tmp.txt.gz'.format(chrom,fsuf) dstpath1 = dstpre+'.{1}.{0}.txt.gz'.format(chrom,fsuf) if not os.path.exists(dstpath1): with open(dstpath0, 'wb') as dst: for subid in subids: srcpath = dstpre+'.{2}.{0}.{1}.txt.gz'.format(chrom,subid,fsuf) with open(srcpath, 'rb') as src: shutil.copyfileobj(src,dst) files.append(srcpath) ex0chr = ex0[ex0['chr']==chrom].sort_values(['st','ed','strand']) ex1chr = UT.read_pandas(dstpath0,names=ex0chr.index,index_col=[0]).T df = PD.concat([ex0chr, ex1chr],axis=1) UT.write_pandas(df, dstpath1, 'h') files.append(dstpath0) #os.unlink(dstpath0) for f in files: if os.path.exists(f): os.unlink(f) return dstpath1 ############# SJ count Collector #################################################### import os from jgem import gtfgffbed as GGB import os from jgem import gtfgffbed as GGB def collect_one(bwpre): # because of unstranded data name (jid) cannot be trusted # just use locus (chr:st-ed) (st<ed) sjpaths = GGB.read_bed(bwpre+'.sjpath.bed.gz') sjpaths['ucnt'] = sjpaths['sc1'] sjpaths['tcnt'] = sjpaths['sc2'] sjpaths['jids'] = sjpaths['name'].str.split(',') sj = UT.flattendf(sjpaths, 'jids') sj['sted'] = [[int(y) for y in x.split('|')] for x in sj['jids']] #idxp = sj['strand'].isin(['+','.']) sj['st'] = [min(x) for x in sj['sted']] sj['ed'] = [max(x) for x in sj['sted']] sj['locus'] = UT.calc_locus(sj) l2u = UT.df2dict(sj, 'locus', which) return l2u def collect_sjcnts_worker(idf, subsi, acode, which, dstpath): # which tcnt, ucnt # idf ['locus'] cols = [] for sname, bwpre in subsi[['name','bwpre']].values: l2u = collect_one(bwpre) idf[sname] = [l2u.get(x,0) for x in idf['locus']] cols.append(sname) UT.write_pandas(idf[cols], dstpath, 'ih') # don't want non-sample columns return dstpath def collect_sjcnts(dataset_code, si, assembly_code, modelpre, which, outdir, np=7): """ Args: dataset_code: identifier to indicate dataset si: dataset sampleinfo dataframe (required cololums: name, sjbed_path=path to (converted) raw juncton count file) assembly_code: identifier for assembly sjexpre: assembly sjex path prefix which: ucnt, mcnt, jcnt=ucnt or mcnt (when ucnt=0) outdir: output directory """ sj = UT.read_pandas(modelpre+'.sj.txt.gz') #sj['st'] = sj['st-1'] # old format sj['locus'] = UT.calc_locus(sj,'chr','st-1','ed') #sj['uid'] = sj['chr']+':'+sj['name'] idf = sj[['_id', 'locus']].set_index('_id') #idf = sj[['_id', 'uid']].copy() dstpre = os.path.join(outdir, '{0}.{1}'.format(dataset_code, assembly_code)) batchsize = int(N.ceil(len(si)/float(np))) args = [] files = [] si1 = si[['name','bwpre']] for i in range(np): subsi = si1.iloc[i*batchsize:(i+1)*batchsize].copy() dstpath = dstpre+'.{0}.part{1}.txt.gz'.format(which, i) files.append(dstpath) args.append((idf, subsi, assembly_code, which, dstpath)) rslts = UT.process_mp(collect_sjcnts_worker, args, np=np, doreduce=False) # concat part files dfs = [UT.read_pandas(fpath, index_col=[0]) for fpath in files] df = PD.concat(dfs, axis=1) dstpath = dstpre+'.{0}s.txt.gz'.format(which) UT.write_pandas(df, dstpath, 'ih') for fpath in files: os.unlink(fpath) return df ################### def fix_i53completematch(exdf, paths): # extend edge of 5'3' exons if they completely match to internal exons idxp = exdf['strand'].isin(A3.STRS['+']) idx5 = exdf['kind']=='5' idx3 = exdf['kind']=='3' idxi = exdf['kind']=='i' ileft = (idxp&idx5)|(~idxp&idx3) iright = (idxp&idx3)|(~idxp&idx5) steds = set([(c,x,y) for c,x,y in exdf[idxi][['chr','st','ed']].values]) idxm = N.array([(c,x,y) in steds for c,x,y in exdf[['chr','st','ed']].values], dtype=bool) imleft = ileft&idxm imright = iright&idxm while (N.sum(imleft)+N.sum(imright))>0: # fix exdf st,ed exdf.loc[imleft,'st'] = exdf[imleft]['st']-10 exdf.loc[imright, 'ed'] = exdf[imright]['ed']+10 # make old name => new name map im5 = (imleft|imright)&idx5 im3 = (imleft|imright)&idx3 LOG.info('{0} 5exon fixed, {1} 3exon fixed'.format(N.sum(im5),N.sum(im3))) tmp = exdf[im5][['chr','name','st','ed','strand']].values n2n5 = dict([('{0}:{1}'.format(c,n),A3._pc(s,e,strand,',')) for c,n,s,e,strand in tmp]) tmp = exdf[im3][['chr','name','st','ed','strand']].values n2n3 = dict([('{0}:{1}'.format(c,n),A3._pc(s,e,strand,',')) for c,n,s,e,strand in tmp]) # fix path name, st, ed p5ids = ['{0}:{1}'.format(c,n.split('|')[0]) for c,n in paths[['chr','name']].values] p3ids = ['{0}:{1}'.format(c,n.split('|')[-1]) for c,n in paths[['chr','name']].values] p5idx = N.array([x in n2n5 for x in p5ids], dtype=bool) p3idx = N.array([x in n2n3 for x in p3ids], dtype=bool) def _fix5(c,n,n2n5): tmp = n.split('|') n5 = n2n5['{0}:{1}'.format(c,tmp[0])] return '|'.join([n5]+tmp[1:]) def _fix3(c,n,n2n3): tmp = n.split('|') n3 = n2n3['{0}:{1}'.format(c,tmp[-1])] return '|'.join(tmp[:-1]+[n3]) paths.loc[p5idx,'name'] = [_fix5(c,n,n2n5) for c,n in paths[p5idx][['chr','name']].values] paths.loc[p3idx,'name'] = [_fix3(c,n,n2n3) for c,n in paths[p3idx][['chr','name']].values] pidx = p5idx|p3idx def _st(n): tmp = n.split(',') st0 = int(tmp[0]) ed0 = int(tmp[-1]) return min(st0,ed0) def _ed(n): tmp = n.split(',') st0 = int(tmp[0]) ed0 = int(tmp[-1]) return max(st0,ed0) paths.loc[pidx,'st'] = [_st(n) for n in paths[pidx]['name']] paths.loc[pidx,'ed'] = [_ed(n) for n in paths[pidx]['name']] # fix exdf name exdf.loc[im5, 'name'] = [_fix5(c,n,n2n5) for c,n in exdf[im5][['chr','name']].values] exdf.loc[im3, 'name'] = [_fix3(c,n,n2n3) for c,n in exdf[im3][['chr','name']].values] idxm = N.array([(c,x,y) in steds for c,x,y in exdf[['chr','st','ed']].values], dtype=bool) imleft = ileft&idxm imright = iright&idxm ################### 5gr,53gr cov def heads(paths, chrom, strand): #if 'id' not in paths: # paths['id']= paths['chr']+':'+paths['name'] #N.arange(len(paths)) p = paths[(paths['strand'].isin(A3.STRS[strand]))&(paths['chr']==chrom)] if 'pc' in paths: heads = [([int(y) for y in x.split('|')[0].split(',')], i) for i,x in p[['id','pc']].values] else: heads = [([int(y) for y in x.split('|')[0].split(',')], i) for i,x in p[['id','name']].values] if strand in ['-','.-']: heads = [(x[0][::-1],x[1]) for x in heads] return heads def headgroups(heads): heads = sorted(heads) def _gen(): cids = [heads[0][1]] cst,ced = heads[0][0] for (st,ed), nid in heads[1:]: if st<ced: # overlap # add to current group cids.append(nid) # expand ced = max(ced, ed) else: # yield current group and make new yield ([cst,ced], cids) cst,ced = st,ed cids = [nid] yield ([cst,ced],cids) return [x for x in _gen()] def find_all_5groups(paths): hgs = {} # head groups i2g = {} # id => group map if 'pc' in paths: idxme = paths['pc'].str.contains('\|') paths['id'] = paths['chr']+':'+paths['pc'] else: idxme = paths['name'].str.contains('\|') paths['id'] = paths['chr']+':'+paths['name'] mepaths = paths[idxme] sepaths = paths[~idxme] for chrom in paths['chr'].unique(): hgs[chrom] = {} for strand in ['+','-']: h = heads(mepaths, chrom, strand) hg = headgroups(h) print('{0}:{1}:#hg={2}'.format(chrom,strand,len(hg))) hgs[chrom][strand] = hg for (st,ed),ids in hg: g = '{0}:{1}-{2}:{3}'.format(chrom,st,ed,strand) # group id for i in ids: i2g[i] = g for chrom,st,ed,i in sepaths[['chr','st','ed','id']].values: i2g[i] = '{0}:{1}-{2}:s'.format(chrom,st,ed) return i2g, hgs # paths = GGB.read_bed(rdstpre+'.paths.withse.bed.gz') def make_idmap(mdstpre): ex = UT.read_pandas(mdstpre+'.ex.txt.gz') paths = GGB.read_bed(mdstpre+'.paths.withse.bed.gz') ex['id'] = ex['chr']+':'+ex['name'] i2gn = UT.df2dict(ex, 'id', 'gname') paths['id'] = paths['chr']+':'+paths['name'] paths['id0'] = paths['chr']+':'+paths['name'].str.split('|').str[0] #paths['gname'] = [i2gn[c+':'+x.split('|')[0]] for c,x in paths[['chr','name']].values] paths['gname'] = [i2gn[x] for x in paths['id0']] g2cnt = {} tnames = [] for x in paths['gname']: i = g2cnt.get(x,1) tnames.append('{0}.{1}'.format(x,i)) g2cnt[x] = i+1 paths['tname'] = tnames i2gn = UT.df2dict(paths, 'id', 'gname') i2tn = UT.df2dict(paths, 'id', 'tname') idf = PD.DataFrame({'gname':i2gn, 'tname':i2tn}) idf.index.name = 'id' UT.write_pandas(idf, mdstpre+'.idmap.txt.gz', 'ih') return idf def read_paths(mdstpre): jg = GGB.read_bed(mdstpre+'.paths.withse.bed.gz') if os.path.exists(mdstpre+'.idmap.txt.gz'): idf = UT.read_pandas(mdstpre+'.idmap.txt.gz') idf = idf.set_index('id') else: idf = make_idmap(mdstpre) jg['id'] = jg['chr']+':'+jg['name'] jg['pc'] = jg['name'] jg['ic'] = [','.join(x.split(',')[1:-1]) for x in jg['pc']] # intron chain jg['gname'] = idf.ix[jg['id'].values]['gname'].values jg['name'] = idf.ix[jg['id'].values]['tname'].values return jg # chromwise tcov => chromwise gcov5, gcov53 => concat def calc_gcovs_chrom(covpre,chrom,i2g,tcov0cols): tgt = covpre+'.tcovs.{0}.txt.gz'.format(chrom) df = UT.read_pandas(tgt) df['id'] = df['chr']+':'+df['name'] df1 = df.groupby('id').first() tcov0_g53 = df1.groupby(['chr','tst','ted','strand'])[tcov0cols].first() tcov0_g5 = df1.reset_index().groupby(['chr','tst','ted','strand']).first().\ set_index('id').groupby(i2g)[tcov0cols].sum() g53dst = covpre+'.tcov53.{0}.txt.gz'.format(chrom) g5dst = covpre+'.tcov5.{0}.txt.gz'.format(chrom) UT.write_pandas(tcov0_g53.reset_index(), g53dst, '') UT.write_pandas(tcov0_g5.reset_index(), g5dst,'') return (g5dst, g53dst) def calc_gcovs(covpre,modelpre,snames,acode,np=7,deletechromfiles=True): paths = read_paths(modelpre) #+'.paths.withse.bed.gz') i2g,hgs = find_all_5groups(paths) tcov0cols = ['{0}.{1}.tcov0'.format(x,acode) for x in snames] chroms = paths['chr'].unique() args = [(covpre,c,i2g,tcov0cols) for c in chroms] rslts = UT.process_mp2(calc_gcovs_chrom, args, np=np, doreduce=False) # concatenate chrom files g5dst0 = covpre+'.tcov5.txt.gz' g53dst0 = covpre+'.tcov53.txt.gz' files = [] with open(g5dst0,'wb') as dst: for c in chroms: g5dst = covpre+'.tcov5.{0}.txt.gz'.format(c) with open(g5dst,'rb') as src: shutil.copyfileobj(src,dst) files.append(g5dst) with open(g53dst0,'wb') as dst: for c in chroms: g53dst = covpre+'.tcov53.{0}.txt.gz'.format(c) with open(g53dst,'rb') as src: shutil.copyfileobj(src,dst) files.append(g53dst) # add header, tname columns g53names = paths.groupby(['chr','tst','ted','strand'])['name'].apply(lambda x:','.join(x)).to_frame() g5names = paths.set_index('id').groupby(i2g)['name'].apply(lambda x:','.join(x)).to_frame() df = UT.read_pandas(g5dst0, names=['g5id']+tcov0cols) df['tnames'] = g5names.ix[df['g5id'].values]['name'].values UT.write_pandas(df, g5dst0) df = UT.read_pandas(g53dst0, names=['chr','tst','ted','strand']+tcov0cols) ids = [tuple(x) for x in df[['chr','tst','ted','strand']].values] df['tnames'] = g53names.ix[ids]['name'].values UT.write_pandas(df, g53dst0) if deletechromfiles: for f in files: os.unlink(f)
mit
themurph/openshift-tools
openshift_tools/reporting/zabbixplot.py
13
13451
#!/bin/env python # Copyright 2015 Red Hat Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Jesse Kennedy <[email protected]> """Contains utilities for plotting data from Zabbix API""" # Wishlist: plot multiple triggers # Reason: Disable import checking for third party libraries # Status: permanently disabled # pylint: disable=import-error from __future__ import print_function, division import sys import datetime import re from collections import defaultdict from operator import itemgetter from itertools import groupby from matplotlib import pyplot as plt, dates as mdates, ticker import numpy as np # Reason: DTO # Status: permanently disabled # pylint: disable=too-few-public-methods class ZabbixTimespan(object): """Data class for holding timespan-related objects""" def __init__(self, days): # TODO: Allow arbitrary end time self.time_start = datetime.datetime.now() - datetime.timedelta(days=days) self.time_end = datetime.datetime.now() self.timestamp_start = int(self.time_start.strftime("%s")) self.timestamp_end = int(self.time_end.strftime("%s")) self.mtime_start = mdates.date2num(self.time_start) self.mtime_end = mdates.date2num(self.time_end) class ZabbixPlot(object): """Contains utilities for plotting data from Zabbix API""" # Reason: All of these parameters are needed # Status: permanently disabled # pylint: disable=too-many-arguments, too-many-instance-attributes def __init__(self, zapi, group, trigger, timespan, limit, periods): self.zapi = zapi self.group = group self.trigger = trigger self.timespan = timespan self.limit = limit self.periods = periods + 1 # One more for the ending pseudo-period self.events = None self.num_hosts = None def plot(self): """Create both plots and show the user""" _, axes = plt.subplots(2, sharex=True, figsize=(16, 10)) self.plot_timeline(axes[0]) self.plot_aggregate(axes[1]) axes[0].set_title("Time in \"" + self.trigger + "\" problem state over " + str(self.num_hosts) + " hosts from " + self.timespan.time_start.strftime("%a, %b %d %H:%M") + " to " + self.timespan.time_end.strftime("%a, %b %d %H:%M"), size=16) plt.tight_layout() plt.show() def get_event_data(self): """Retrieve event data from Zabbix API""" # Warning: If there are variables in the description, they won't be filled in triggers = self.zapi.trigger.get(group=self.group, search={"description": self.trigger}, limit=1) if len(triggers) == 0: raise Exception("No triggers found") # Replace trigger search term with full description and {variables} replaced with * self.trigger = re.sub(r"\{.*?\}", "*", triggers[0]["description"]) print(self.trigger) # Find the rest of the triggers, searching by the first trigger found in order to prevent multiple triggers from # being mixed together triggers = self.zapi.trigger.get(group=self.group, search={"description": self.trigger}, searchWildcardsEnabled=True) triggerids = [t["triggerid"] for t in triggers] self.events = self.zapi.event.get(time_from=self.timespan.timestamp_start, time_till=self.timespan.timestamp_end, objectids=triggerids, limit=self.limit, selectHosts="extend", sortfield="clock", sortorder="DESC") if len(self.events) >= self.limit: print("Warning! Data has been truncated by the result limit. The graph will be inaccurate.", file=sys.stderr) def get_num_hosts_in_group(self, group_name): """Retrieve the number of hosts in a hostgroup from Zabbix API""" self.num_hosts = int(self.zapi.hostgroup.get(filter={"name": group_name}, selectHosts="count")[0]["hosts"]) @staticmethod def get_period(timestamp, periods): """Gets the period a timestamp is in (the one to the left)""" for period in reversed(periods): if timestamp >= period: return period raise Exception("Timestamp not found in periods array") @staticmethod def get_next_period(timestamp, periods): """Gets the period after a timestamp (the one to the right)""" for period in periods: if timestamp < period: return period raise Exception("Next timestamp not found in periods array") @staticmethod def _calculate_anomaly_downtime(event_clock, periods, downtime): # UNUSED: Innaccurate """Assume we missed the beginning downtime event and retroactively apply downtime to periods""" current_period = periods[0] downtime[current_period] = 0 while event_clock > current_period: next_period = ZabbixPlot.get_next_period(current_period, periods) if event_clock <= next_period: # Downtime ends in this period downtime[current_period] += event_clock - current_period else: # Downtime ends in another period downtime[current_period] += next_period - current_period current_period = next_period return @staticmethod def _calculate_event_downtime(event_value, event_clock, host_id, down_since): """Calculate the amount of downtime or uptime caused by an event""" if event_value != "0": # Going down if host_id not in down_since: # Host was up down_since[host_id] = event_clock return 0 else: # Host was already down return 0 else: # event_value == "0": # Coming up if host_id in down_since: # Host was down # print("host", host_id, "was down since", down_since[host_id]) return event_clock - down_since.pop(host_id) else: # Host was already up (did we miss the beginning downtime event?) return 0 def _calculate_total_downtime(self, periods): """Calculates the total amount of downtime divided into periods (and number of nodes it found)""" period_func = lambda event: ZabbixPlot.get_period(int(event["clock"]), periods) host_func = lambda event: event["hosts"][0]["name"] combo_func = lambda event: (event["clock"], event["hosts"][0]["name"]) sorted_events = sorted(self.events, key=combo_func, reverse=False) # Pre-fill time periods for graphing no downtime during a period downtime = {} for period in periods: downtime[period] = 0 # Yay down_since = {} for period_id, period_events in groupby(sorted_events, period_func): # Loop through periods current_period_end = ZabbixPlot.get_next_period(period_id, periods) for host_id, host_events in groupby(period_events, host_func): # Loop through hosts in period for event in host_events: # Loop through events from this host deltatime = self._calculate_event_downtime(event["value"], int(event["clock"]), host_id, down_since) if deltatime is None: self._calculate_anomaly_downtime(int(event["clock"]), periods, downtime) else: # print("adding", deltatime, "to", datetime.datetime.fromtimestamp(period_id)) downtime[period_id] += deltatime for host in down_since: # Go through unclosed downtime, add rest of period to downtime, set since to end of this period downtime[period_id] += current_period_end - down_since[host] down_since[host] = current_period_end return downtime def plot_aggregate(self, axis): """Plots a bar chart from aggregated event occurences""" if self.events is None: self.get_event_data() if self.num_hosts is None: self.get_num_hosts_in_group(self.group) # Set up periods periods = np.linspace(self.timespan.timestamp_start, self.timespan.timestamp_end, num=self.periods, endpoint=True) period_seconds = (self.timespan.timestamp_end - self.timespan.timestamp_start) / (self.periods - 1) downtime = self._calculate_total_downtime(periods) # Make downtime relative and a percentage downtime_list = sorted(downtime.items(), key=itemgetter(0)) rel_downtime = np.array([i[1] / self.num_hosts / period_seconds * 100 for i in downtime_list]) period2mdate = lambda p: mdates.date2num(datetime.datetime.fromtimestamp(p)) times = np.array([period2mdate(i[0]) for i in downtime_list]) # Create the plot plt.sca(axis) width = period_seconds / 60.0 / 60.0 / 24.0 # 1 unit = 1 day plt.bar(times[:-1], rel_downtime[:-1], color="r", alpha=0.75, width=width) axis.set_xticks(times) axis.set_xlim(times[0], times[-1]) axis.xaxis.set_major_formatter(mdates.DateFormatter('%a, %b %d %H:%M')) axis.xaxis.set_major_locator(ticker.FixedLocator(times)) plt.setp(axis.get_xticklabels(), rotation=15, ha="right") axis.set_xlabel("Interval: " + str(datetime.timedelta(seconds=period_seconds))) axis.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: str(x) + "%")) axis.set_ylabel("Site-wide unavailability") # plt.show() def plot_timeline(self, axis): """Plots a timeline of events for hosts in a group""" if self.events is None: self.get_event_data() host_func = lambda event: event["hosts"][0]["name"] combo_func = lambda event: (event["hosts"][0]["name"], event["clock"]) sorted_events = sorted(self.events, key=combo_func, reverse=False) plt.sca(axis) height = 0.8 # Bar width host_bars = defaultdict(list) host_downtime = defaultdict(float) hosts_seen = set() for host_id, host_events in groupby(sorted_events, host_func): # Loop through hosts for event in host_events: timestamp = mdates.date2num(datetime.datetime.fromtimestamp(int(event["clock"]))) if event["value"] != "0": # Event is in error state; plot event hosts_seen.add(host_id) host_downtime[host_id] += self.timespan.mtime_end - timestamp host_bars[host_id].append((self.timespan.mtime_end - timestamp, timestamp, "r", 1)) elif host_id in hosts_seen: host_downtime[host_id] -= self.timespan.mtime_end - timestamp host_bars[host_id].append((self.timespan.mtime_end - timestamp, timestamp, "0.95", 1)) i = 0 ordered_hosts = sorted(host_downtime.items(), key=lambda (k, v): v) for host_tuple in ordered_hosts: if host_tuple[1] > 0: axis.barh(i, self.timespan.mtime_end - self.timespan.mtime_start, left=self.timespan.mtime_start, height=height, color="0.95", linewidth=0, zorder=0) for point in host_bars[host_tuple[0]]: axis.barh(i, point[0], left=point[1], height=height, color=point[2], zorder=point[3], linewidth=0) i += 1 # # Set x axis bounds # axis.set_xlim(self.timespan.mtime_start, self.timespan.mtime_end) # # Rotate x axis labels # plt.setp(axis.get_xticklabels(), rotation=15, ha="right") # # Turn top horizontal tick marks off # #plt.tick_params(axis='x', which="both", top="off") # # Turn vertical gridlines on # #axis.xaxis.grid(color="0", linestyle="--", linewidth=1) # # Format x axis tick marks # axis.xaxis.set_major_locator(mdates.AutoDateLocator()) # axis.xaxis.set_major_formatter(mdates.DateFormatter('%x %X')) # axis.xaxis.set_minor_locator(mdates.HourLocator(byhour=[0, 6, 12, 18])) # Create a list of hostnames from list of tuples keys = [host[0] for host in ordered_hosts if host[1] > 0] # Set y axis tick labels (height/2 for centering) axis.set_yticks(np.arange(len(keys)) + height/2) axis.set_yticklabels(keys) # Set y axis label font size and turn off right vertical tick marks plt.tick_params(axis='y', labelsize=9, right="off") # Set y axis label axis.set_ylabel("Node") # Set y axis bounds axis.set_ylim(0, len(keys)) # plt.show()
apache-2.0
tchakravarty/pmtk3
python/demos/linregDemo1.py
26
1104
#!/usr/bin/python2.4 import numpy import scipy.stats import matplotlib.pyplot as plt def main(): # true parameters w = 2 w0 = 3 sigma = 2 # make data numpy.random.seed(1) Ntrain = 20 xtrain = numpy.linspace(0,10,Ntrain) ytrain = w*xtrain + w0 + numpy.random.random(Ntrain)*sigma Ntest = 100 xtest = numpy.linspace(0,10,Ntest) ytest = w*xtest + w0 + numpy.random.random(Ntest)*sigma # from http://www2.warwick.ac.uk/fac/sci/moac/students/peter_cock/python/lin_reg/ # fit west, w0est, r_value, p_value, std_err = scipy.stats.linregress(xtrain, ytrain) # display print "Param \t True \t Est" print "w0 \t %5.3f \t %5.3f" % (w0, w0est) print "w \t %5.3f \t %5.3f" % (w, west) # plot plt.close() plt.plot(xtrain, ytrain, 'ro') plt.hold(True) #plt.plot(xtest, ytest, 'ka-') ytestPred = west*xtest + w0est #ndx = range(0, Ntest, 10) #h = plt.plot(xtest[ndx], ytestPred[ndx], 'b*') h = plt.plot(xtest, ytestPred, 'b-') plt.setp(h, 'markersize', 12) if __name__ == '__main__': main()
mit
raghavrv/scikit-learn
sklearn/metrics/tests/test_ranking.py
11
43605
from __future__ import division, print_function import numpy as np from itertools import product import warnings from scipy.sparse import csr_matrix from sklearn import datasets from sklearn import svm from sklearn.datasets import make_multilabel_classification from sklearn.random_projection import sparse_random_matrix from sklearn.utils.validation import check_array, check_consistent_length from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.metrics import auc from sklearn.metrics import average_precision_score from sklearn.metrics import coverage_error from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import label_ranking_loss from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.metrics import ndcg_score from sklearn.exceptions import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def _auc(y_true, y_score): """Alternative implementation to check for correctness of `roc_auc_score`.""" pos_label = np.unique(y_true)[1] # Count the number of times positive samples are correctly ranked above # negative samples. pos = y_score[y_true == pos_label] neg = y_score[y_true != pos_label] diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1) n_correct = np.sum(diff_matrix > 0) return n_correct / float(len(pos) * len(neg)) def _average_precision(y_true, y_score): """Alternative implementation to check for correctness of `average_precision_score`. Note that this implementation fails on some edge cases. For example, for constant predictions e.g. [0.5, 0.5, 0.5], y_true = [1, 0, 0] returns an average precision of 0.33... but y_true = [0, 0, 1] returns 1.0. """ pos_label = np.unique(y_true)[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_score = y_score[order] y_true = y_true[order] score = 0 for i in range(len(y_score)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= (i + 1.0) score += prec return score / n_pos def _average_precision_slow(y_true, y_score): """A second alternative implementation of average precision that closely follows the Wikipedia article's definition (see References). This should give identical results as `average_precision_score` for all inputs. References ---------- .. [1] `Wikipedia entry for the Average precision <http://en.wikipedia.org/wiki/Average_precision>`_ """ precision, recall, threshold = precision_recall_curve(y_true, y_score) precision = list(reversed(precision)) recall = list(reversed(recall)) average_precision = 0 for i in range(1, len(precision)): average_precision += precision[i] * (recall[i] - recall[i - 1]) return average_precision def test_roc_curve(): # Test Area under Receiver Operating Characteristic (ROC) curve y_true, _, probas_pred = make_prediction(binary=True) expected_auc = _auc(y_true, probas_pred) for drop in [True, False]: fpr, tpr, thresholds = roc_curve(y_true, probas_pred, drop_intermediate=drop) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, expected_auc, decimal=2) assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred)) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_end_points(): # Make sure that roc_curve returns a curve start at 0 and ending and # 1 even in corner cases rng = np.random.RandomState(0) y_true = np.array([0] * 50 + [1] * 50) y_pred = rng.randint(3, size=100) fpr, tpr, thr = roc_curve(y_true, y_pred, drop_intermediate=True) assert_equal(fpr[0], 0) assert_equal(fpr[-1], 1) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thr.shape) def test_roc_returns_consistency(): # Test whether the returned threshold matches up with tpr # make small toy dataset y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) # use the given thresholds to determine the tpr tpr_correct = [] for t in thresholds: tp = np.sum((probas_pred >= t) & y_true) p = np.sum(y_true) tpr_correct.append(1.0 * tp / p) # compare tpr and tpr_correct to see if the thresholds' order was correct assert_array_almost_equal(tpr, tpr_correct, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_multi(): # roc_curve not applicable for multi-class problems y_true, _, probas_pred = make_prediction(binary=False) assert_raises(ValueError, roc_curve, y_true, probas_pred) def test_roc_curve_confidence(): # roc_curve for confidence scores y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred - 0.5) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.90, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_hard(): # roc_curve for hard decisions y_true, pred, probas_pred = make_prediction(binary=True) # always predict one trivial_pred = np.ones(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # always predict zero trivial_pred = np.zeros(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # hard decisions fpr, tpr, thresholds = roc_curve(y_true, pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.78, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_one_label(): y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # assert there are warnings w = UndefinedMetricWarning fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred) # all true labels, all fpr should be nan assert_array_equal(fpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # assert there are warnings fpr, tpr, thresholds = assert_warns(w, roc_curve, [1 - x for x in y_true], y_pred) # all negative labels, all tpr should be nan assert_array_equal(tpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_toydata(): # Binary classification y_true = [0, 1] y_score = [0, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [0, 1] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1, 1]) assert_array_almost_equal(fpr, [0, 0, 1]) assert_almost_equal(roc_auc, 0.) y_true = [1, 0] y_score = [1, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, 0.5) y_true = [1, 0] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, .5) y_true = [0, 0] y_score = [0.25, 0.75] # assert UndefinedMetricWarning because of no positive sample in y_true tpr, fpr, _ = assert_warns(UndefinedMetricWarning, roc_curve, y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [0., 0.5, 1.]) assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan]) y_true = [1, 1] y_score = [0.25, 0.75] # assert UndefinedMetricWarning because of no negative sample in y_true tpr, fpr, _ = assert_warns(UndefinedMetricWarning, roc_curve, y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [np.nan, np.nan]) assert_array_almost_equal(fpr, [0.5, 1.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), .5) def test_roc_curve_drop_intermediate(): # Test that drop_intermediate drops the correct thresholds y_true = [0, 0, 0, 0, 1, 1] y_score = [0., 0.2, 0.5, 0.6, 0.7, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [1., 0.7, 0.]) # Test dropping thresholds with repeating scores y_true = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] y_score = [0., 0.1, 0.6, 0.6, 0.7, 0.8, 0.9, 0.6, 0.7, 0.8, 0.9, 0.9, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [1.0, 0.9, 0.7, 0.6, 0.]) def test_auc(): # Test Area Under Curve (AUC) computation x = [0, 1] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0, 0] y = [0, 1, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [0, 1] y = [1, 1] assert_array_almost_equal(auc(x, y), 1) x = [0, 0.5, 1] y = [0, 0.5, 1] assert_array_almost_equal(auc(x, y), 0.5) def test_auc_duplicate_values(): # Test Area Under Curve (AUC) computation with duplicate values # auc() was previously sorting the x and y arrays according to the indices # from numpy.argsort(x), which was reordering the tied 0's in this example # and resulting in an incorrect area computation. This test detects the # error. x = [-2.0, 0.0, 0.0, 0.0, 1.0] y1 = [2.0, 0.0, 0.5, 1.0, 1.0] y2 = [2.0, 1.0, 0.0, 0.5, 1.0] y3 = [2.0, 1.0, 0.5, 0.0, 1.0] for y in (y1, y2, y3): assert_array_almost_equal(auc(x, y, reorder=True), 3.0) def test_auc_errors(): # Incompatible shapes assert_raises(ValueError, auc, [0.0, 0.5, 1.0], [0.1, 0.2]) # Too few x values assert_raises(ValueError, auc, [0.0], [0.1]) # x is not in order assert_raises(ValueError, auc, [1.0, 0.0, 0.5], [0.0, 0.0, 0.0]) def test_auc_score_non_binary_class(): # Test that roc_auc_score function returns an error when trying # to compute AUC for non-binary class values. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) clean_warning_registry() with warnings.catch_warnings(record=True): rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) def test_precision_recall_curve(): y_true, _, probas_pred = make_prediction(binary=True) _test_precision_recall_curve(y_true, probas_pred) # Use {-1, 1} for labels; make sure original labels aren't modified y_true[np.where(y_true == 0)] = -1 y_true_copy = y_true.copy() _test_precision_recall_curve(y_true, probas_pred) assert_array_equal(y_true_copy, y_true) labels = [1, 0, 0, 1] predict_probas = [1, 2, 3, 4] p, r, t = precision_recall_curve(labels, predict_probas) assert_array_almost_equal(p, np.array([0.5, 0.33333333, 0.5, 1., 1.])) assert_array_almost_equal(r, np.array([1., 0.5, 0.5, 0.5, 0.])) assert_array_almost_equal(t, np.array([1, 2, 3, 4])) assert_equal(p.size, r.size) assert_equal(p.size, t.size + 1) def test_precision_recall_curve_pos_label(): y_true, _, probas_pred = make_prediction(binary=False) pos_label = 2 p, r, thresholds = precision_recall_curve(y_true, probas_pred[:, pos_label], pos_label=pos_label) p2, r2, thresholds2 = precision_recall_curve(y_true == pos_label, probas_pred[:, pos_label]) assert_array_almost_equal(p, p2) assert_array_almost_equal(r, r2) assert_array_almost_equal(thresholds, thresholds2) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def _test_precision_recall_curve(y_true, probas_pred): # Test Precision-Recall and aread under PR curve p, r, thresholds = precision_recall_curve(y_true, probas_pred) precision_recall_auc = _average_precision_slow(y_true, probas_pred) assert_array_almost_equal(precision_recall_auc, 0.859, 3) assert_array_almost_equal(precision_recall_auc, average_precision_score(y_true, probas_pred)) assert_almost_equal(_average_precision(y_true, probas_pred), precision_recall_auc, decimal=3) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) # Smoke test in the case of proba having only one value p, r, thresholds = precision_recall_curve(y_true, np.zeros_like(probas_pred)) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def test_precision_recall_curve_errors(): # Contains non-binary labels assert_raises(ValueError, precision_recall_curve, [0, 1, 2], [[0.0], [1.0], [1.0]]) def test_precision_recall_curve_toydata(): with np.errstate(all="raise"): # Binary classification y_true = [0, 1] y_score = [0, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [0, 1] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 0., 1.]) assert_array_almost_equal(r, [1., 0., 0.]) # Here we are doing a terrible prediction: we are always getting # it wrong, hence the average_precision_score is the accuracy at # chance: 50% assert_almost_equal(auc_prc, 0.5) y_true = [1, 0] y_score = [1, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1., 0]) assert_almost_equal(auc_prc, .5) y_true = [1, 0] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1, 0.]) assert_almost_equal(auc_prc, .5) y_true = [0, 0] y_score = [0.25, 0.75] assert_raises(Exception, precision_recall_curve, y_true, y_score) assert_raises(Exception, average_precision_score, y_true, y_score) y_true = [1, 1] y_score = [0.25, 0.75] p, r, _ = precision_recall_curve(y_true, y_score) assert_almost_equal(average_precision_score(y_true, y_score), 1.) assert_array_almost_equal(p, [1., 1., 1.]) assert_array_almost_equal(r, [1, 0.5, 0.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.5) def test_average_precision_constant_values(): # Check the average_precision_score of a constant predictor is # the TPR # Generate a dataset with 25% of positives y_true = np.zeros(100, dtype=int) y_true[::4] = 1 # And a constant score y_score = np.ones(100) # The precision is then the fraction of positive whatever the recall # is, as there is only one threshold: assert_equal(average_precision_score(y_true, y_score), .25) def test_score_scale_invariance(): # Test that average_precision_score and roc_auc_score are invariant by # the scaling or shifting of probabilities # This test was expanded (added scaled_down) in response to github # issue #3864 (and others), where overly aggressive rounding was causing # problems for users with very small y_score values y_true, _, probas_pred = make_prediction(binary=True) roc_auc = roc_auc_score(y_true, probas_pred) roc_auc_scaled_up = roc_auc_score(y_true, 100 * probas_pred) roc_auc_scaled_down = roc_auc_score(y_true, 1e-6 * probas_pred) roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10) assert_equal(roc_auc, roc_auc_scaled_up) assert_equal(roc_auc, roc_auc_scaled_down) assert_equal(roc_auc, roc_auc_shifted) pr_auc = average_precision_score(y_true, probas_pred) pr_auc_scaled_up = average_precision_score(y_true, 100 * probas_pred) pr_auc_scaled_down = average_precision_score(y_true, 1e-6 * probas_pred) pr_auc_shifted = average_precision_score(y_true, probas_pred - 10) assert_equal(pr_auc, pr_auc_scaled_up) assert_equal(pr_auc, pr_auc_scaled_down) assert_equal(pr_auc, pr_auc_shifted) def check_lrap_toy(lrap_score): # Check on several small example that it works assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 1) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1) # Tie handling assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3) assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]), 3 / 4) def check_zero_or_all_relevant_labels(lrap_score): random_state = check_random_state(0) for n_labels in range(2, 5): y_score = random_state.uniform(size=(1, n_labels)) y_score_ties = np.zeros_like(y_score) # No relevant labels y_true = np.zeros((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Only relevant labels y_true = np.ones((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Degenerate case: only one label assert_almost_equal(lrap_score([[1], [0], [1], [0]], [[0.5], [0.5], [0.5], [0.5]]), 1.) def test_ndcg_score(): # Check perfect ranking y_true = [1, 0, 2] y_score = [ [0.15, 0.55, 0.2], [0.7, 0.2, 0.1], [0.06, 0.04, 0.9] ] perfect = ndcg_score(y_true, y_score) assert_equal(perfect, 1.0) # Check bad ranking with a small K y_true = [0, 2, 1] y_score = [ [0.15, 0.55, 0.2], [0.7, 0.2, 0.1], [0.06, 0.04, 0.9] ] short_k = ndcg_score(y_true, y_score, k=1) assert_equal(short_k, 0.0) # Check a random scoring y_true = [2, 1, 0] y_score = [ [0.15, 0.55, 0.2], [0.7, 0.2, 0.1], [0.06, 0.04, 0.9] ] average_ranking = ndcg_score(y_true, y_score, k=2) assert_almost_equal(average_ranking, 0.63092975) def check_lrap_error_raised(lrap_score): # Raise value error if not appropriate format assert_raises(ValueError, lrap_score, [0, 1, 0], [0.25, 0.3, 0.2]) assert_raises(ValueError, lrap_score, [0, 1, 2], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) assert_raises(ValueError, lrap_score, [(0), (1), (2)], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) # Check that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, lrap_score, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) def check_lrap_only_ties(lrap_score): # Check tie handling in score # Basic check with only ties and increasing label space for n_labels in range(2, 10): y_score = np.ones((1, n_labels)) # Check for growing number of consecutive relevant for n_relevant in range(1, n_labels): # Check for a bunch of positions for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), n_relevant / n_labels) def check_lrap_without_tie_and_increasing_score(lrap_score): # Check that Label ranking average precision works for various # Basic check with increasing label space size and decreasing score for n_labels in range(2, 10): y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels)) + 1) # First and last y_true = np.zeros((1, n_labels)) y_true[0, 0] = 1 y_true[0, -1] = 1 assert_almost_equal(lrap_score(y_true, y_score), (2 / n_labels + 1) / 2) # Check for growing number of consecutive relevant label for n_relevant in range(1, n_labels): # Check for a bunch of position for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), sum((r + 1) / ((pos + r + 1) * n_relevant) for r in range(n_relevant))) def _my_lrap(y_true, y_score): """Simple implementation of label ranking average precision""" check_consistent_length(y_true, y_score) y_true = check_array(y_true) y_score = check_array(y_score) n_samples, n_labels = y_true.shape score = np.empty((n_samples, )) for i in range(n_samples): # The best rank correspond to 1. Rank higher than 1 are worse. # The best inverse ranking correspond to n_labels. unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True) n_ranks = unique_rank.size rank = n_ranks - inv_rank # Rank need to be corrected to take into account ties # ex: rank 1 ex aequo means that both label are rank 2. corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum() rank = corr_rank[rank] relevant = y_true[i].nonzero()[0] if relevant.size == 0 or relevant.size == n_labels: score[i] = 1 continue score[i] = 0. for label in relevant: # Let's count the number of relevant label with better rank # (smaller rank). n_ranked_above = sum(rank[r] <= rank[label] for r in relevant) # Weight by the rank of the actual label score[i] += n_ranked_above / rank[label] score[i] /= relevant.size return score.mean() def check_alternative_lrap_implementation(lrap_score, n_classes=5, n_samples=20, random_state=0): _, y_true = make_multilabel_classification(n_features=1, allow_unlabeled=False, random_state=random_state, n_classes=n_classes, n_samples=n_samples) # Score with ties y_score = sparse_random_matrix(n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) def test_label_ranking_avp(): for fn in [label_ranking_average_precision_score, _my_lrap]: yield check_lrap_toy, fn yield check_lrap_without_tie_and_increasing_score, fn yield check_lrap_only_ties, fn yield check_zero_or_all_relevant_labels, fn yield check_lrap_error_raised, label_ranking_average_precision_score for n_samples, n_classes, random_state in product((1, 2, 8, 20), (2, 5, 10), range(1)): yield (check_alternative_lrap_implementation, label_ranking_average_precision_score, n_classes, n_samples, random_state) def test_coverage_error(): # Toy case assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3) # Non trival case assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (1 + 3) / 2.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) def test_coverage_tie_handling(): assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3) def test_label_ranking_loss(): assert_almost_equal(label_ranking_loss([[0, 1]], [[0.25, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) # Undefined metrics - the ranking doesn't matter assert_almost_equal(label_ranking_loss([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 0) # Non trival case assert_almost_equal(label_ranking_loss([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (0 + 2 / 2) / 2.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) # Sparse csr matrices assert_almost_equal(label_ranking_loss( csr_matrix(np.array([[0, 1, 0], [1, 1, 0]])), [[0.1, 10, -3], [3, 1, 3]]), (0 + 2 / 2) / 2.) def test_ranking_appropriate_input_shape(): # Check that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) def test_ranking_loss_ties_handling(): # Tie handling assert_almost_equal(label_ranking_loss([[1, 0]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 1)
bsd-3-clause
IDEALLab/design_embeddings_jmd_2016
util.py
1
17261
########################################## # File: util.py # # Copyright Richard Stebbing 2014. # # Distributed under the MIT License. # # (See accompany file LICENSE or copy at # # http://opensource.org/licenses/MIT) # ########################################## # Imports import re # raise_if_not_shape def raise_if_not_shape(name, A, shape): """Raise a `ValueError` if the np.ndarray `A` does not have dimensions `shape`.""" if A.shape != shape: raise ValueError('{}.shape != {}'.format(name, shape)) # previous_float PARSE_FLOAT_RE = re.compile(r'([+-]*)0x1\.([\da-f]{13})p(.*)') def previous_float(x): """Return the next closest float (towards zero).""" s, f, e = PARSE_FLOAT_RE.match(float(x).hex().lower()).groups() f, e = int(f, 16), int(e) if f > 0: f -= 1 else: f = int('f' * 13, 16) e -= 1 return float.fromhex('{}0x1.{:013x}p{:d}'.format(s, f, e)) ############################################################################## """ Author(s): Wei Chen ([email protected]) """ import os import sys import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import PCA from sklearn.utils.graph import graph_shortest_path from sklearn.neighbors import kneighbors_graph from scipy.sparse.csgraph import connected_components from sklearn.manifold import Isomap from sklearn.preprocessing import scale from sklearn.metrics import pairwise_distances from sklearn.neighbors import NearestNeighbors from scipy.stats import pearsonr from sklearn.externals import joblib import ConfigParser def create_dir(path): if os.path.isdir(path): pass else: os.mkdir(path) def reduce_dim(data_h, plot=False, save=False, c=None): if plot: # Scree plot plt.rc("font", size=12) pca = PCA() pca.fit(data_h) plt.plot(range(1,data_h.shape[1]+1), pca.explained_variance_ratio_) plt.xlabel('Dimensionality') plt.ylabel('Explained variance ratio') plt.title('Scree Plot') plt.show() plt.close() # Dimensionality reduction pca = PCA(n_components=.995) # 99.5% variance attained data_l = pca.fit_transform(data_h) print 'Reduced dimensionality: %d' % data_l.shape[1] if save: save_model(pca, 'xpca', c) return data_l, pca.inverse_transform def sort_eigen(M): ''' Sort the eigenvalues and eigenvectors in DESCENT order ''' w, v = np.linalg.eigh(M) idx = w.argsort()[::-1] w = w[idx] v = v[:,idx] return w, v def find_gap(metrics, threshold=.99, method='difference', multiple=False, verbose=0): ''' Find the largest gap of any NONNEGATIVE metrics (which is in DESCENT order) The returned index is before the gap threshold: needs to be specified only if method is 'percentage' multiple: whether to find multiple gaps ''' if method == 'percentage': s = np.sum(metrics) for i in range(len(metrics)): if np.sum(metrics[:i+1])/s > threshold: break if verbose == 2: plt.figure() plt.plot(metrics, 'o-') plt.title('metrics') plt.show() return i else: if method == 'difference': m0 = np.array(metrics[:-1]) m1 = np.array(metrics[1:]) d = m0-m1 elif method == 'divide': metrics = np.clip(metrics, np.finfo(float).eps, np.inf) m0 = np.array(metrics[:-1]) m1 = np.array(metrics[1:]) d = m0/m1 else: print 'No method called %s!' % method sys.exit(0) if multiple: # dmin = np.min(d) # dmax = np.max(d) # t = dmin + (dmax-dmin)/10 # set a threshold # n_gap = sum(d > t) # idx = d.argsort()[::-1][:n_gap] # arggap = idx tol = 1e-4 arggap = [] if d[0] > tol: arggap.append(0) for i in range(len(d)-1): if d[i+1] > d[i]: arggap.append(i+1) arggap = np.array(arggap) else: arggap = np.argmax(d) if verbose == 2: plt.figure() plt.subplot(211) plt.plot(metrics, 'o') plt.title('metrics') plt.subplot(212) plt.plot(d, 'o') # plt.plot([0, len(d)], [t, t], 'g--') plt.title('gaps') plt.show() gap = d[arggap] return arggap, gap def create_graph(X, n_neighbors, include_self=False, verbose=0): kng = kneighbors_graph(X, n_neighbors, mode='distance', include_self=include_self) nb_graph = graph_shortest_path(kng, directed=False) if verbose: # Visualize nearest neighbor graph neigh = NearestNeighbors().fit(X) nbrs = neigh.kneighbors(n_neighbors=n_neighbors, return_distance=False) visualize_graph(X, nbrs) return nb_graph def get_geo_dist(X, K='auto', verbose=0): m = X.shape[0] if K == 'auto': # Choose the smallest k that gives a fully connected graph for k in range(2, m): G = create_graph(X, k, verbose=verbose) if connected_components(G, directed=False, return_labels=False) == 1: break; return G, k else: return create_graph(X, K, verbose=verbose) def get_k_range(X, verbose=0): N = X.shape[0] # Select k_min for k in range(1, N): G = create_graph(X, k, include_self=False, verbose=verbose) if connected_components(G,directed=False,return_labels=False) == 1: break; k_min = k # Select k_max for k in range(k_min, N): kng = kneighbors_graph(X, k, include_self=False).toarray() A = np.logical_or(kng, kng.T) # convert to undirrected graph P = np.sum(A)/2 if 2*P/float(N) > k+2: break; k_max = k-1#min(k_min+10, N) if verbose == 2: print 'k_range: [%d, %d]' % (k_min, k_max) if k_max < k_min: print 'No suitable neighborhood size!' return k_min, k_max def get_candidate(X, dim, k_min, k_max, verbose=0): errs = [] k_candidates = [] for k in range(k_min, k_max+1): isomap = Isomap(n_neighbors=k, n_components=dim).fit(X) rec_err = isomap.reconstruction_error() errs.append(rec_err) i = k - k_min if i > 1 and errs[i-1] < errs[i-2] and errs[i-1] < errs[i]: k_candidates.append(k-1) if len(k_candidates) == 0: k_candidates.append(k) if verbose == 2: print 'k_candidates: ', k_candidates plt.figure() plt.rc("font", size=12) plt.plot(range(k_min, k_max+1), errs, '-o') plt.xlabel('Neighborhood size') plt.ylabel('Reconstruction error') plt.title('Select candidates of neighborhood size') plt.show() return k_candidates def pick_k(X, dim, k_min=None, k_max=None, verbose=0): ''' Pick optimal neighborhood size for isomap algothm Reference: Samko, O., Marshall, A. D., & Rosin, P. L. (2006). Selection of the optimal parameter value for the Isomap algorithm. Pattern Recognition Letters, 27(9), 968-979. ''' if k_min is None or k_max is None: k_min, k_max = get_k_range(X, verbose=verbose) ccs = [] k_candidates = range(k_min, k_max+1)#get_candidate(X, dim, k_min, k_max, verbose=verbose) for k in k_candidates: isomap = Isomap(n_neighbors=k, n_components=dim).fit(X) F = isomap.fit_transform(X) distF = pairwise_distances(F) distX = create_graph(X, k, verbose=verbose) cc = 1-pearsonr(distX.flatten(), distF.flatten())[0]**2 ccs.append(cc) k_opt = k_candidates[np.argmin(ccs)] if verbose == 2: print 'k_opt: ', k_opt plt.figure() plt.rc("font", size=12) plt.plot(k_candidates, ccs, '-o') plt.xlabel('Neighborhood size') plt.ylabel('Residual variance') plt.title('Select optimal neighborhood size') plt.show() return k_opt def estimate_dim(data, verbose=0): ''' Estimate intrinsic dimensionality of data data: input data Reference: "Samko, O., Marshall, A. D., & Rosin, P. L. (2006). Selection of the optimal parameter value for the Isomap algorithm. Pattern Recognition Letters, 27(9), 968-979." ''' # Standardize by center to the mean and component wise scale to unit variance data = scale(data) # The reconstruction error will decrease as n_components is increased until n_components == intr_dim errs = [] found = False k_min, k_max = get_k_range(data, verbose=verbose) for dim in range(1, data.shape[1]+1): k_opt = pick_k(data, dim, k_min, k_max, verbose=verbose) isomap = Isomap(n_neighbors=k_opt, n_components=dim).fit(data) err = isomap.reconstruction_error() #print(err) errs.append(err) if dim > 2 and errs[dim-2]-errs[dim-1] < .5 * (errs[dim-3]-errs[dim-2]): intr_dim = dim-1 found = True break if not found: intr_dim = 1 # intr_dim = find_gap(errs, method='difference', verbose=verbose)[0] + 1 # intr_dim = find_gap(errs, method='percentage', threshold=.9, verbose=verbose) + 1 if verbose == 2: plt.figure() plt.rc("font", size=12) plt.plot(range(1,dim+1), errs, '-o') plt.xlabel('Dimensionality') plt.ylabel('Reconstruction error') plt.title('Select intrinsic dimension') plt.show() return intr_dim def get_singular_ratio(X_nbr, d): x_mean = np.mean(X_nbr, axis=1).reshape(-1,1) s = np.linalg.svd(X_nbr-x_mean, compute_uv=0) r = (np.sum(s[d:]**2.)/np.sum(s[:d]**2.))**.5 return r def select_neighborhood(X, dims, k_range=None, get_full_ind=False, verbose=0): ''' Inspired by the Neighborhood Contraction and Neighborhood Expansion algorithms The selected neighbors for each sample point should reflect the local geometric structure of the manifold Reference: "Zhang, Z., Wang, J., & Zha, H. (2012). Adaptive manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(2), 253-265." ''' print 'Selecting neighborhood ... ' m = X.shape[0] if type(dims) == int: dims = [dims] * m if k_range is None: k_min, k_max = get_k_range(X) else: k_min, k_max = k_range # G = get_geo_dist(X, verbose=verbose)[0] # geodesic distances # ind = np.argsort(G)[:,:k_max+1] neigh = NearestNeighbors().fit(X) ind = neigh.kneighbors(n_neighbors=k_max, return_distance=False) ind = np.concatenate((np.arange(m).reshape(-1,1), ind), axis=1) nbrs = [] # Choose eta k0 = k_max r0s =[] for j in range(m): X_nbr0 = X[ind[j,:k0]].T r0 = get_singular_ratio(X_nbr0, dims[j]) r0s.append(r0) r0s.sort(reverse=True) j0 = find_gap(r0s, method='divide')[0] eta = (r0s[j0]+r0s[j0+1])/2 # eta = 0.02 if verbose: print 'eta = %f' % eta for i in range(m): ''' Neighborhood Contraction ''' rs = [] for k in range(k_max, k_min-1, -1): X_nbr = X[ind[i,:k]].T r = get_singular_ratio(X_nbr, dims[i]) rs.append(r) if r < eta: ki = k break if k == k_min: ki = k_max-np.argmin(rs) nbrs.append(ind[i,:ki]) ''' Neighborhood Expansion ''' pca = PCA(n_components=dims[i]).fit(X[nbrs[i]]) nbr_out = ind[i, ki:] # neighbors of x_i outside the neighborhood set by Neighborhood Contraction for j in nbr_out: theta = pca.transform(X[j].reshape(1,-1)) err = np.linalg.norm(pca.inverse_transform(theta) - X[j]) # reconstruction error if err < eta * np.linalg.norm(theta): nbrs[i] = np.append(nbrs[i], [j]) # print ki, len(nbrs[i]) # print max([len(nbrs[i]) for i in range(m)]) if verbose: # Visualize nearest neighbor graph visualize_graph(X, nbrs) # Visualize neighborhood selection if X.shape[1] > 3: pca = PCA(n_components=3) F = pca.fit_transform(X) else: F = np.zeros((X.shape[0], 3)) F[:,:X.shape[1]] = X fig3d = plt.figure() ax3d = fig3d.add_subplot(111, projection = '3d') # Create cubic bounding box to simulate equal aspect ratio max_range = np.array([F[:,0].max()-F[:,0].min(), F[:,1].max()-F[:,1].min(), F[:,2].max()-F[:,2].min()]).max() Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(F[:,0].max()+F[:,0].min()) Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() + 0.5*(F[:,1].max()+F[:,1].min()) Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() + 0.5*(F[:,2].max()+F[:,2].min()) ax3d.scatter(Xb, Yb, Zb, c='white', alpha=0) # Plot point sets in 3D plot_samples = [0, 1] nbr_indices = [] for i in plot_samples: nbr_indices = list(set(nbr_indices) | set(nbrs[i])) F_ = np.delete(F, nbr_indices, axis=0) ax3d.scatter(F_[:,0], F_[:,1], F_[:,2], c='white') colors = ['b', 'g', 'y', 'r', 'c', 'm', 'y', 'k'] from itertools import cycle colorcycler = cycle(colors) for i in plot_samples: color = next(colorcycler) ax3d.scatter(F[nbrs[i][1:],0], F[nbrs[i][1:],1], F[nbrs[i][1:],2], marker='*', c=color, s=100) ax3d.scatter(F[i,0], F[i,1], F[i,2], marker='x', c=color, s=100) plt.show() if get_full_ind: return nbrs, ind else: return nbrs def visualize_graph(X, nbrs): # Reduce dimensionality if X.shape[1] > 3: pca = PCA(n_components=3) F = pca.fit_transform(X) else: F = np.zeros((X.shape[0], 3)) F[:,:X.shape[1]] = X m = F.shape[0] fig3d = plt.figure() ax3d = fig3d.add_subplot(111, projection = '3d') # Create cubic bounding box to simulate equal aspect ratio max_range = np.array([F[:,0].max()-F[:,0].min(), F[:,1].max()-F[:,1].min(), F[:,2].max()-F[:,2].min()]).max() Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(F[:,0].max()+F[:,0].min()) Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() + 0.5*(F[:,1].max()+F[:,1].min()) Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() + 0.5*(F[:,2].max()+F[:,2].min()) ax3d.scatter(Xb, Yb, Zb, c='white', alpha=0) # Plot point sets in 3D ax3d.scatter(F[:,0], F[:,1], F[:,2], c='blue') # Plot edges # for i in range(m-1): # for j in range(i+1, m): # if j in nbrs[i]: # line = np.vstack((F[i], F[j])) # ax3d.plot(line[:,0], line[:,1], line[:,2], c='green') for i in [3]: for j in range(i+1, m): if j in nbrs[i]: line = np.vstack((F[i], F[j])) ax3d.plot(line[:,0], line[:,1], line[:,2], c='green') plt.show() def get_fname(mname, c, directory='./trained_models/', extension='pkl'): config = ConfigParser.ConfigParser() config.read('config.ini') source = config.get('Global', 'source') noise_scale = config.getfloat('Global', 'noise_scale') if source == 'sf': alpha = config.getfloat('Superformula', 'nonlinearity') beta = config.getint('Superformula', 'n_clusters') sname = source + '-' + str(beta) + '-' + str(alpha) elif source == 'glass' or source[:3] == 'sf-': sname = source if c is None: fname = '%s/%s_%.4f_%s.%s' % (directory, sname, noise_scale, mname, extension) else: fname = '%s/%s_%.4f_%s_%d.%s' % (directory, sname, noise_scale, mname, c, extension) return fname def save_model(model, mname, c=None): # Get the file name fname = get_fname(mname, c) # Save the model joblib.dump(model, fname, compress=9) print 'Model ' + mname + ' saved!' def load_model(mname, c=None): # Get the file name fname = get_fname(mname, c) # Load the model model = joblib.load(fname) return model def save_array(array, dname, c=None): # Get the file name fname = get_fname(dname, c, extension='npy') # Save the model np.save(fname, array) print 'Model ' + dname + ' saved!' def load_array(dname, c=None): # Get the file name fname = get_fname(dname, c, extension='npy') # Load the model array = np.load(fname) return array
mit
juanka1331/VAN-applied-to-Nifti-images
lib/data_loader/MRI_stack_NORAD.py
1
2116
import scipy.io as sio import settings import numpy as np import nibabel as nib from matplotlib import pyplot as plt # Script con la materia gris def get_parameters(): """ function creates to avoid loading in memory the full stack :return: Dict['imgsize|total_size|voxel_index] """ f = sio.loadmat(settings.MRI_stack_path_GM) imgsize = f['imgsize'].astype('uint32').tolist()[0] total_voxels = np.array(imgsize).prod() return {'voxel_index': f['nobck_idx'], 'imgsize':imgsize, 'total_size': total_voxels} def get_gm_stack(): """ This function returns a dictionary with these three values: 1) :return: """ f = sio.loadmat(settings.MRI_stack_path_GM) imgsize = f['imgsize'].astype('uint32').tolist()[0] total_voxels = np.array(imgsize).prod() return {'labels': f['labels'], 'voxel_index': f['nobck_idx'], 'stack': f['stack_NORAD_GM'], 'imgsize':imgsize, 'n_patients': len(f['labels']), 'total_size': total_voxels} def get_wm_stack(): """ This function returns a dictionary with these three values: 1) :return: """ f = sio.loadmat(settings.MRI_stack_path_WM) imgsize = f['imgsize'].astype('uint32').tolist()[0] total_voxels = np.array(imgsize).prod() return {'labels': f['labels'], 'voxel_index': f['nobck_idx'], 'stack': f['stack_NORAD_WM'], 'imgsize':imgsize, 'n_patients': len(f['labels']), 'total_size': total_voxels} def load_patients_labels(): dict_norad = get_gm_stack() # 'stack' 'voxel_index' 'labels' return dict_norad['labels'] def test(): data = get_gm_stack() sample = data['stack'][0,:] template = np.zeros(data['imgsize'], dtype=float) template = template.flatten() template[data['voxel_index']] = sample out = np.reshape(template, data['imgsize']) plt.imshow(out[:, 77, :], cmap='gray') plt.show(block=True) img = nib.Nifti1Image(out, np.eye(4)) img.to_filename('test4d.nii.gz') #test()
gpl-2.0
david-hoffman/dphutils
lpsvd.py
1
20843
""" LPSVD was developed by Tufts and Kumaresan (Tufts, D.; Kumaresan, R. IEEE Transactions on Acoustics, Speech and signal Processing 1982, 30, 671 – 675.) as a method of harmonic inversion, i.e. decomposing a time signal into a linear combination of (decaying) sinusoids. A great reference that is easy to read for the non-EECS user is: Barkhuijsen, H.; De Beer, R.; Bovée, W. M. M. .; Van Ormondt, D. J. Magn. Reson. (1969) 1985, 61, 465–481. This particular implementation was adapted, in part, from matNMR by Jacco van Beek http://matnmr.sourceforge.net/ and Complex Exponential Analysis by Greg Reynolds http://www.mathworks.com/matlabcentral/fileexchange/12439-complex-exponential-analysis/ Author: David Hoffman ([email protected]) Date: Aug, 2015 """ import numpy as np import pandas as pd from scipy.linalg import hankel, svd, pinv, inv # K_SPEED_OF_LIGHT = 2.99792458e-5 #(cm/fs) def LPSVD(signal, M=None, lfactor=1 / 2, removebias=True): """ A function that performs the linear prediction-singular value decomposition of a signal that is assumed to be a linear combination of damped sinusoids Parameters ---------- signal : ndarray The signal to be analyzed M : int Model order, if None, it will be estimated lfactor : float How to size the Hankel matrix, Tufts and Kumaresan suggest 1/3-1/2 Default number of prediction coefficients is half the number of points in the input wave removebias : bool If true bias will be removed from the singular values of A """ if lfactor > 3 / 4: print("You attempted to use an lfactor greater than 3/4, it has been set to 3/4") lfactor = 3 / 4 # length of signal N = len(signal) # Sizing of the Hankel matrix, i.e. the backward prediction matrix L = int(np.floor(N * lfactor)) # Shift the signal forward by 1 rollsig = np.roll(signal, -1) # Generate the Hankel matrix A = hankel(rollsig[: N - L], signal[L:]) # Take the conjugate of the Hankel Matrix to form the prediction matrix A = np.conj(A) # Set up the data vector, the vector to be "predicted" h = signal[: N - L] h = np.conj(h) # Take the conjugate U, S, VT = svd(A) # Perform an SVD on the Hankel Matrix # We can estimate the model order if the user hasn't selected one if M is None: M = estimate_model_order(S, N, L) + 8 print("Estimated model order: {}".format(M)) if M > len(S): M = len(S) print("M too large, set to max = ".format(M)) # remove bias if needed if removebias: # Here we subtract the arithmatic mean of the singular values determined to be # noise from the rest of the singular values as described in Barkhuijsen S -= S[M:].mean() S = 1 / S[:M] # invert S and truncate # Redimension the matrices to speed up the matrix multiplication step VT = VT[:M, :] # Make VT the "right" size U = U[:, :M] # Make U the "right" size # Now we can generate the LP coefficients lp_coefs = -1 * np.conj(VT.T).dot(np.diag(S)).dot(np.conj(U.T)).dot(h) # Error check: are there any NaNs or INFs in lp_coefs? if not np.isfinite(lp_coefs).all(): raise ValueError( "There has been an error generating the prediction-error filter polynomial" ) # Need to add 1 to the beginning of lp_coefs before taking roots lp_coefs = np.insert(lp_coefs, 0, 1) # I can now find the roots of B (assuming B represents the coefficients of a polynomial) # Note that NumPy defines polynomial coefficients with the larges power first # so we have to reverse the coefficients before finding the roots. myroots = np.roots(lp_coefs[::-1]) # Remove the poles that lie within the unit circle on the complex plane as directed by Kurmaresan # Actually it seems the correct thing to do is to remove roots with positive damping constants usedroots = np.array([np.conj(np.log(root)) for root in myroots if np.abs(root) <= 1]) # Error checking: see if we removed all roots! if len(usedroots) == 0: raise ValueError("There has been an error finding the real poles") # sort by freqs usedroots = usedroots[np.imag(usedroots).argsort()] # Lets make a DataFrame with dimension labels to store all our parameters LPSVD_coefs = pd.DataFrame(columns=["amps", "freqs", "damps", "phase"]) # We can directly convert our poles into estimated damping factors and frequencies LPSVD_coefs.damps = np.real(usedroots) LPSVD_coefs.freqs = np.imag(usedroots) / (2 * np.pi) # But we need to do a little more work to get the predicted amplitudes and phases # Here we generate our basis matrix basis = np.array([np.exp(np.arange(len(signal)) * root) for root in usedroots]) # Take the inverse pinvBasis = pinv(basis) # And apply it to our signal to recover our predicted amplitudes # Amps here are complex meaning it has amplitude and phase information cAmps = pinvBasis.T.dot(signal) LPSVD_coefs.amps = np.abs(cAmps) LPSVD_coefs.phase = np.angle(cAmps) # Calculate the errors calc_LPSVD_error(LPSVD_coefs, signal) return LPSVD_coefs # , Errors def estimate_model_order(s, N, L): """ Adapted from from Complex Exponential Analysis by Greg Reynolds http://www.mathworks.com/matlabcentral/fileexchange/12439-complex-exponential-analysis/ Use the MDL method as in Lin (1997) to compute the model order for the signal. You must pass the vector of singular values, i.e. the result of svd(T) and N and L. This method is best explained by Scharf (1992). Parameters ---------- s : ndarray singular values from SVD decomposition N : int L : int Returns ------- M : float Estimated model order """ MDL = np.zeros(L) for i in range(L): MDL[i] = -N * np.log(s[i:L]).sum() MDL[i] += N * (L - i) * np.log(s[i:L].sum() / (L - i)) MDL[i] += i * (2 * L - i) * np.log(N) / 2 return MDL.argmin() def calc_LPSVD_error(LPSVD_coefs, data): """ A function that estimates the errors on the LPSVD parameters using the Cramer-Rao lower bound (http://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound). This implementation is based on the work of Barkhuijsen et al (http://dx.doi.org/10.1016/0022-2364(86)90446-4) Parameters ---------- LPSVD_coefs : DataFrame Coefficients calculated from the LPSVD algorithm, we will add errors to this DataFrame data : ndarray The data from which the LPSVD coefficients were calculated """ # ***The first thing to do is to calculated the RMS of the residuals*** # We reconstruct the model from the parameters recon = reconstruct_signal(LPSVD_coefs, data) p = np.arange(len(data)) res = data - recon # Calculate the RMS RMS = np.sqrt((res ** 2).mean()) # Next we need to generate the Fisher matrix size = len(LPSVD_coefs) * 4 FisherMat = np.zeros((size, size)) # We'll reuse res for the intermediate calculations # This implementation is based on the work of Barkhuijsen et al (http://dx.doi.org/10.1016/0022-2364(86)90446-4) for i, rowi in LPSVD_coefs.iterrows(): ampi = rowi.amps freqi = rowi.freqs dampi = rowi.damps phasei = rowi.phase for j, rowj in LPSVD_coefs.iterrows(): ampj = rowj.amps freqj = rowj.freqs dampj = rowj.damps phasej = rowj.phase res = np.exp( p * complex(dampi + dampj, 2 * np.pi * (freqi - freqj)) + complex(0, 1) * (phasei - phasej) ) chi0 = np.real(res).sum() zeta0 = np.imag(res).sum() res = p * np.exp( p * complex(dampi + dampj, 2 * np.pi * (freqi - freqj)) + complex(0, 1) * (phasei - phasej) ) chi1 = np.real(res).sum() zeta1 = np.imag(res).sum() res = p ** 2 * np.exp( p * complex(dampi + dampj, 2 * np.pi * (freqi - freqj)) + complex(0, 1) * (phasei - phasej) ) chi2 = np.real(res).sum() zeta2 = np.imag(res).sum() # First Row FisherMat[4 * i + 0][4 * j + 0] = ampi * ampj * chi2 FisherMat[4 * i + 0][4 * j + 1] = -ampi * zeta1 FisherMat[4 * i + 0][4 * j + 2] = ampi * ampj * zeta2 FisherMat[4 * i + 0][4 * j + 3] = ampi * ampj * chi1 # Second Row FisherMat[4 * i + 1][4 * j + 0] = ampj * zeta1 FisherMat[4 * i + 1][4 * j + 1] = chi0 FisherMat[4 * i + 1][4 * j + 2] = -ampj * chi1 FisherMat[4 * i + 1][4 * j + 3] = ampj * zeta0 # Third Row FisherMat[4 * i + 2][4 * j + 0] = -ampi * ampj * zeta2 FisherMat[4 * i + 2][4 * j + 1] = -ampi * chi1 FisherMat[4 * i + 2][4 * j + 2] = ampi * ampj * chi2 FisherMat[4 * i + 2][4 * j + 3] = -ampi * ampj * zeta1 # Fourth Row FisherMat[4 * i + 3][4 * j + 0] = ampi * ampj * chi1 FisherMat[4 * i + 3][4 * j + 1] = -ampi * zeta0 FisherMat[4 * i + 3][4 * j + 2] = ampi * ampj * zeta1 FisherMat[4 * i + 3][4 * j + 3] = ampi * ampj * chi0 FisherMat = inv(FisherMat) # Replace the Fisher matrix with its inverse FisherMat *= 2 * RMS ** 2 LPSVD_coefs.insert(4, "amps_error", np.nan) LPSVD_coefs.insert(5, "freqs_error", np.nan) LPSVD_coefs.insert(6, "damps_error", np.nan) LPSVD_coefs.insert(7, "phase_error", np.nan) # Fill up the Error wave with the errors. for i in range(len(LPSVD_coefs)): LPSVD_coefs.amps_error.loc[i] = np.sqrt((FisherMat[1 + i * 4][1 + i * 4])) LPSVD_coefs.freqs_error.loc[i] = np.sqrt((FisherMat[0 + i * 4][0 + i * 4])) LPSVD_coefs.damps_error.loc[i] = np.sqrt((FisherMat[2 + i * 4][2 + i * 4])) LPSVD_coefs.phase_error.loc[i] = np.sqrt((FisherMat[3 + i * 4][3 + i * 4])) return LPSVD_coefs def reconstruct_signal(LPSVD_coefs, signal, ampcutoff=0, freqcutoff=0, dampcutoff=0): """ #A function that reconstructs the original signal in the time domain and frequency domain #from the LPSVD algorithms coefficients, which are passed as LPSVD_coefs #http://mathworld.wolfram.com/FourierTransformLorentzianFunction.html WAVE LPSVD_coefs #coefficients from the LPSVD algorithm String name #Name of the generated waves Variable length #Length of the time domain signal Variable timeStep #Sampling frequency with which the signal was recorded, in fs Variable dataReal #Should the output time domain data be real? Variable ampcutoff #Cutoff for the amplitudes of the components Variable freqcutoff #Cutoff for the frequency of the components Variable dampcutoff #Cutoff for the damping of the components """ # Initialize time domain signal time_domain = np.zeros_like(signal, dtype=complex) p = np.arange(len(signal)) for i, row in LPSVD_coefs.iterrows(): damp = -row.damps / np.pi if row.amps ** 2 > ampcutoff and damp >= dampcutoff: # Keep in mind that LPSVD_coefs were constructed agnostic to the actual sampling # frequency so we will reconstruct it in the same way amp = row.amps damp = row.damps phase = row.phase freq = row.freqs time_domain += amp * np.exp( p * complex(damp, 2 * np.pi * freq) + complex(0, 1) * phase ) if signal.dtype != complex: time_domain = np.real(time_domain) return time_domain # Function/S Cadzow(signal, M, iters,[lfactor,q]) # #Remove noise using the Cadzow composite property mapping method. # #See Cadzow, J. A. IEEE Transactions on Acoustics, Speech and signal Processing 1988, 36, 49 –62. # #Adapted from from Complex Exponential Analysis by Greg Reynolds # #http://www.mathworks.com/matlabcentral/fileexchange/12439-complex-exponential-analysis/ # # Wave signal #The signal to be filtered # Variable M #The expected number of signals (2 times the number of damped sinusoids # Variable iters #Number of iterations to be performed # # Variable lfactor #User selectable factorization of the Hankel Matrix # Variable q #Verbose or not # # if(ParamIsDefault(lfactor)) # lfactor = 1/2 # # # if(ParamIsDefault(q)) # q=0 # Else # q=1 # # # #We want this function to be data folder aware # #We'll do all our calculations in a specific data folder and then kill that folder at the end # String savDF= GetDataFolder(1) # Save current DF for restore. # if( DataFolderExists("root:Cadzow_Data") ) # SetDataFolder root:Cadzow_Data # else # NewDataFolder/O/S root:Cadzow_Data # Our stuff goes in here. # # # #Timing # Variable timerRef=startMSTimer # # Variable N = len(signal); # Variable L = floor(N*lfactor); # # # T is the prediction matrix before filtering. # Wave/C T = $Hankel(signal, N-L, L+1) # T = conj(T) # # if(M>(N-L)) # M = N-L # print "M too large M set to: " + num2str(M) # # # Variable i = 0 # Variable tol = 0 # Variable r = 0 # # print "Beginning Cadzow filtration, press ESC to abort, press CMD to check status." # # for(i=0;i<iters;i+=1) # # # decompose T # #MatrixSVD Matrix # MatrixSVD T # # WAVE/C S = W_W # WAVE/C U = M_U # WAVE/C VT = M_VT # # # check current rank # tol = L*5e-16 # Duplicate/O S, S2 # S2 = (s>tol) # r = sum(S2) # # if(q || (GetKeyState(0) & 1)) # printf "Cadzow iteration %d (rank is %d, target is %d).\r", i, r,M # # # if(r <= M) # Printf "Successful completion: " # break # elif( r > M ) # #Filter the hankel matrix # S = S*(p < M) # Redimension/N=(-1,M) U # Redimension/N=(M,-1) VT # MatrixOp/C/O T = U x DiagRC(S,M,M) x VT # # average to restore Hankel structure # Wave recon_signal = $unHankelAvg(T) # WAVE/C T = $Hankel(recon_signal,N-L,L+1) # # if (GetKeyState(0) & 32) # Is Escape key pressed now? # Printf "User abort: " # Break # # EndFor # # # need to extract data from matrix Tr # T = conj(T) # # #Move the results to the original data folder # Duplicate/O $unHankelAvg(T), $(savDF+nameOfWave(signal)+"_cad") # WAVE nSignal = $(savDF+nameOfWave(signal)+"_cad") # SetDataFolder savDF # Restore current DF. # # #Clean up # KillDataFolder root:Cadzow_Data # # #Scale the new signal appropriately # CopyScales/P signal, nSignal # # #if the original signal was real, make the new signal real as well # if((WaveType(signal) & 2^0) == 0) # Redimension/R nSignal # # # #Finish up the timing # Variable microseconds = stopMSTimer(timerRef) # Variable minutes = floor(microseconds/(60e6)) # Variable seconds = microseconds/(1e6)-minutes*60 # # if(!q) # printf "Final rank is %d, target is %d, ", r,M # # # Printf "%d iterations took ", i # if(minutes > 1) # Printf "%g minutes and ",minutes # elif(minutes > 0) # Printf "1 minute and " # # Printf "%g seconds, for %g sec/iter.\r",seconds,microseconds/(1e6)/i # # return GetWavesDataFolder($(nameOfWave(signal)+"_cad"),2) # End # # STATIC Function/S unHankelAvg(Hankel) # #A function that takes a Hankel matrix and returns the original signal # #that it was formed from by averaging along the anti-diagonals # Wave/C Hankel #The matrix to be inverted # # Variable numRows = DimSize(Hankel,0) # Variable numCols = DimSize(Hankel,1) # # #Make the signal to be returned, make sure to set to zero! # Make/C/D/O/N=(numRows+numCols-1) mySignal=0 # # variable i=0,j=0 # Duplicate/C/O mySignal myNorm #Make the normalizing wave # for(i=0;i<numRows;i+=1) # for(j=0;j<numCols;j+=1) # #Build up the signal and the norm # mySignal[i+j]+=Hankel[i][j] # myNorm[i+j] += complex(1,0) # EndFor # EndFor # mySignal=mySignal/myNorm # return GetWavesDataFolder(mySignal,2) # End # # # Function OptimizeLPSVDCoefs(data,LPSVD_coefs,[ampcutoff,freqcutoff,dampcutoff,holdfreqphase]) # Wave data #The original data # Wave LPSVD_coefs #Parameters to optimize # Variable ampcutoff, freqcutoff,dampcutoff #Cutoff parameters to remove spurious values # Variable holdfreqphase #hold the phases and frequencies constant during the fit # # if(ParamIsDefault(ampcutoff)) # ampcutoff=0 # # # if(ParamIsDefault(freqcutoff)) # freqcutoff=0 # # # if(ParamIsDefault(dampcutoff)) # dampcutoff=0 # # # if(ParamIsDefault(holdfreqphase)) # holdfreqphase=0 # # # #Make a copy of the LPSVD_coefs, we'll use this wave later # #to repack to optimized variables # Duplicate/O LPSVD_coefs $("opt"+NameOfWave(LPSVD_coefs)) # WAVE newLPSVD_coefs = $("opt"+NameOfWave(LPSVD_coefs)) # # #Make a copy of data and remove the scaling from the copy. # Duplicate/O data $("fit_"+nameofwave(data)) # WAVE newData = $("fit_"+nameofwave(data)) # SetScale/P x,0,1,"", newData # # Variable numComponents = DimSize(LPSVD_coefs,0) # variable i = 0 # String removedComponents = "" # for(i=numComponents;i>0;i-=1) # if((newLPSVD_coefs[i-1][%amps])^2<ampcutoff || (-LPSVD_coefs[i-1][%damps]/K_SPEED_OF_LIGHT/dimdelta(data,0)/np.pi) < dampcutoff || abs(newLPSVD_coefs[i-1][%freqs])<freqcutoff) # removedComponents += num2istr(abs(newLPSVD_coefs[i-1][%freqs])/K_SPEED_OF_LIGHT/DimDelta(data,0)) +", " # DeletePoints (i-1),1, newLPSVD_coefs # numComponents-=1 # # EndFor # # if(strlen(removedComponents)) # print "The following frequency components were removed: " + removedComponents # # # #unpack LPSVD_coefs into a regular coefficient wave # #Make use of the fact that only half of the coefficients are necessary # #Also, set any frequency below some tolerance to zero and hold it there # Variable numCoefs = ceil(numComponents/2) # Make/D/O/N=(numCoefs*4) myCoefs # String HoldStr = "" # for(i=0;i<numCoefs;i+=1) # myCoefs[4*i] = 2*LPSVD_coefs[i][%amps] # myCoefs[4*i+1] = LPSVD_coefs[i][%damps] # if(abs(LPSVD_coefs[i][%freqs])<1e-14) # myCoefs[4*i+2] = 0 # myCoefs[4*i+3] = 0 # Else # myCoefs[4*i+2] = LPSVD_coefs[i][%freqs] # myCoefs[4*i+3] = LPSVD_coefs[i][%phase] # # if(holdfreqphase) # HoldStr+="0011" # Else # HoldStr+="0000" # # EndFor # # #if there are an odd number of components the middle one is zero frequency # if(numCoefs-floor(DimSize(LPSVD_coefs,0)/2)) # myCoefs[4*(numCoefs-1)] /= 2 # # Variable V_FitNumIters # Variable V_FitMaxIters=200 # #do the optimization (we're using funcfit, so we're minimizing the chi^2) # FuncFit/H=holdstr/ODR=2/N/W=2/Q decayingSinusoids, myCoefs, newData # # print "Number of interations: "+num2str(V_FitNumIters) # #Well use the newData wave to hold the fit, why not? # newData = decayingSinusoids(myCoefs,p) # # #return the scaling # CopyScales/P data newData # # #Repack # for(i=0;i<numCoefs;i+=1) # newLPSVD_coefs[i][%amps] = myCoefs[4*i]/2 # newLPSVD_coefs[i][%damps] = myCoefs[4*i+1] # newLPSVD_coefs[i][%freqs] = myCoefs[4*i+2] # newLPSVD_coefs[i][%phase] = myCoefs[4*i+3] # # newLPSVD_coefs[2*numCoefs-i-1][%amps] = myCoefs[4*i]/2 # newLPSVD_coefs[2*numCoefs-i-1][%damps] = myCoefs[4*i+1] # newLPSVD_coefs[2*numCoefs-i-1][%freqs] = -myCoefs[4*i+2] # newLPSVD_coefs[2*numCoefs-i-1][%phase] = -myCoefs[4*i+3] # EndFor # End # # Function decayingSinusoids(w,t) # #w[i] = amp # #w[i+1] = damp # #w[i+2] = freq # #w[i+3] = phase # Wave w # Variable t # # Variable val=0 # Variable i=0 # Variable npts = len(w) # for(i=0;i<npts;i+=4) # val += w[i]*exp(t*w[i+1])*Cos(2*np.pi*w[i+2]*t+w[i+3]) # EndFor # # return val # End
apache-2.0
ahwillia/tensortools
examples/shift_cpd.py
1
4661
""" This script generates Fig. 4 in Williams (2020). bioRxiv. 2020.03.02.974014 """ from tensortools.cpwarp import ShiftedCP, fit_shifted_cp from scipy.ndimage import gaussian_filter1d import matplotlib.pyplot as plt import numpy as np np.random.seed(1234) # Parameters defining synthetic dataset. MAX_SHIFT = 0.15 N_TIMEBINS = 120 N_NEURONS = 60 N_TRIALS = 200 BACKGROUND_RATE = .02 # Create three low-dimensional factor matrices; rank-2 data tensor. # # - neural_factors : neurons x 2 # - trial_factors : trials x 2 # - temporal_factors : timebins x 2 # # See Williams et al. (2018) for the motivating application. neural_factors = np.row_stack([ np.repeat([0, 1], N_NEURONS // 2), np.repeat([1, 0], N_NEURONS // 2) ]) trial_factors = np.row_stack([ np.linspace(0, 1, N_TRIALS), np.linspace(0, 1, N_TRIALS)[::-1], ]) temporal_factors = np.zeros((2, N_TIMEBINS)) temporal_factors[0][[40, 80]] = 1 temporal_factors[1][[40, 80]] = 1 temporal_factors = gaussian_filter1d(temporal_factors, 1.5, axis=1) # Sample random shifts on each trial for each component. rand_shifts = np.random.uniform( low=N_TIMEBINS * -MAX_SHIFT, high=N_TIMEBINS * MAX_SHIFT, size=(2, trial_factors.shape[1]) ) # Create `ShiftedCP` model representing ground truth. _m = ShiftedCP( trial_factors, neural_factors, temporal_factors, u_s=rand_shifts # shifts for axis=0 ) # Create (trials x neurons x timebins) tensor of firing rates. spike_prob = _m.predict() + BACKGROUND_RATE # Sample spikes from a Poisson distribution data = np.random.poisson(spike_prob).astype(float) # Shuffle the neuron indices. shuff = np.random.permutation(data.shape[1]) data_shuff = data[:, shuff, :] # === PLOT SPIKES === # fig1, axes = plt.subplots( 2, 5, sharey=True, sharex=True, figsize=(6, 3.5) ) for k, axc in zip([0, 49, 99, 149, 199], axes.T): y, x = np.where(data_shuff[k]) axc[0].set_title("trial\n{}/{}".format(k + 1, data.shape[0])) axc[0].scatter(x, y, s=5, lw=0, color="k") y, x = np.where(data[k]) axc[1].scatter(x, y, s=5, lw=0, c=["b" if yi > 30 else "r" for yi in y]) axes[-1, -1].set_xlim([0, temporal_factors.shape[1]]) axes[-1, -1].set_ylim([-2, neural_factors.shape[1] + 2]) axes[0, 0].set_ylabel("unsorted\nneurons") axes[1, 0].set_ylabel("sorted\nby model") for ax in axes.ravel(): ax.set_xticks([]) ax.set_yticks([]) fig1.tight_layout() fig1.subplots_adjust(wspace=.1, hspace=.1) # === FIT TENSOR DECOMPOSITIONS === # from tensortools.cpwarp import fit_shifted_cp # Rank-2 classic tensor decomposition. model1 = fit_shifted_cp( data, 2, boundary="wrap", n_restarts=5, max_shift_axis0=None, max_shift_axis1=1e-10, # essentially zero shift max_iter=100, u_nonneg=True, v_nonneg=True, ) # Rank-2 decomposition with per-trial shifts. model2 = fit_shifted_cp( data, 2, boundary="wrap", n_restarts=5, max_shift_axis0=MAX_SHIFT, max_shift_axis1=None, max_iter=100, u_nonneg=True, v_nonneg=True, ) # Re-order the model factors to align with the ground truth. if model2.factors[0][:,-1][0] < model2.factors[0][:,-1][1]: model2.permute([1, 0]) # === PLOT RESULTS === # def plot_result(m, colors=("b", "r")): fig, axes = plt.subplots(2, 3, figsize=(6, 4)) def normalize(f): return f / np.linalg.norm(f) axes[0, 0].plot(normalize(m.factors[0][0]), color=colors[0]) axes[1, 0].plot(normalize(m.factors[0][1]), color=colors[1]) axes[0, 1].plot(normalize(m.factors[1][0]), color=colors[0]) axes[1, 1].plot(normalize(m.factors[1][1]), color=colors[1]) axes[0, 2].plot(normalize(m.factors[2][0]), color=colors[0]) axes[1, 2].plot(normalize(m.factors[2][1]), color=colors[1]) for ax in axes[0]: ax.set_xticklabels([]) for ax in axes.ravel(): ax.set_yticklabels([]) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) axes[0, 0].set_ylabel("#1", labelpad=-1) axes[1, 0].set_ylabel("#2", labelpad=-1) # axes[0, 0].set_title("trial\nfactors") # axes[0, 1].set_title("neuron\nfactors") # axes[0, 2].set_title("temporal\nfactors") axes[1, 0].set_xlabel("trials", labelpad=0) axes[1, 1].set_xlabel("neurons", labelpad=0) axes[1, 2].set_xlabel("time (a.u.)", labelpad=0) return fig fig2 = plot_result(_m) fig2.suptitle("ground truth") fig3 = plot_result(model1, colors=("k", "k")) fig3.suptitle("vanilla tensor decomp.") fig4 = plot_result(model2) fig4.suptitle("shifted tensor decomp.") for fig in fig2, fig3, fig4: fig.tight_layout() fig.subplots_adjust(top=.9) plt.show()
mit
DougBurke/astropy
astropy/conftest.py
1
1127
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This file contains pytest configuration settings that are astropy-specific (i.e. those that would not necessarily be shared by affiliated packages making use of astropy's test runner). """ from importlib.util import find_spec from astropy.tests.plugins.display import PYTEST_HEADER_MODULES from astropy.tests.helper import enable_deprecations_as_exceptions if find_spec('asdf') is not None: from asdf import __version__ as asdf_version if asdf_version >= '2.0.0': pytest_plugins = ['asdf.tests.schema_tester'] PYTEST_HEADER_MODULES['Asdf'] = 'asdf' enable_deprecations_as_exceptions( include_astropy_deprecations=False, # This is a workaround for the OpenSSL deprecation warning that comes from # the `requests` module. It only appears when both asdf and sphinx are # installed. This can be removed once pyopenssl 1.7.20+ is released. modules_to_ignore_on_import=['requests']) try: import matplotlib except ImportError: pass else: matplotlib.use('Agg') PYTEST_HEADER_MODULES['Cython'] = 'cython'
bsd-3-clause
nmartensen/pandas
pandas/tests/io/test_clipboard.py
13
4988
# -*- coding: utf-8 -*- import numpy as np from numpy.random import randint from textwrap import dedent import pytest import pandas as pd from pandas import DataFrame from pandas import read_clipboard from pandas import get_option from pandas.util import testing as tm from pandas.util.testing import makeCustomDataframe as mkdf from pandas.io.clipboard.exceptions import PyperclipException from pandas.io.clipboard import clipboard_set try: DataFrame({'A': [1, 2]}).to_clipboard() _DEPS_INSTALLED = 1 except PyperclipException: _DEPS_INSTALLED = 0 @pytest.mark.single @pytest.mark.skipif(not _DEPS_INSTALLED, reason="clipboard primitives not installed") class TestClipboard(object): @classmethod def setup_class(cls): cls.data = {} cls.data['string'] = mkdf(5, 3, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) cls.data['int'] = mkdf(5, 3, data_gen_f=lambda *args: randint(2), c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) cls.data['float'] = mkdf(5, 3, data_gen_f=lambda r, c: float(r) + 0.01, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) cls.data['mixed'] = DataFrame({'a': np.arange(1.0, 6.0) + 0.01, 'b': np.arange(1, 6), 'c': list('abcde')}) # Test columns exceeding "max_colwidth" (GH8305) _cw = get_option('display.max_colwidth') + 1 cls.data['colwidth'] = mkdf(5, 3, data_gen_f=lambda *args: 'x' * _cw, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) # Test GH-5346 max_rows = get_option('display.max_rows') cls.data['longdf'] = mkdf(max_rows + 1, 3, data_gen_f=lambda *args: randint(2), c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) # Test for non-ascii text: GH9263 cls.data['nonascii'] = pd.DataFrame({'en': 'in English'.split(), 'es': 'en español'.split()}) # unicode round trip test for GH 13747, GH 12529 cls.data['utf8'] = pd.DataFrame({'a': ['µasd', 'Ωœ∑´'], 'b': ['øπ∆˚¬', 'œ∑´®']}) cls.data_types = list(cls.data.keys()) @classmethod def teardown_class(cls): del cls.data_types, cls.data def check_round_trip_frame(self, data_type, excel=None, sep=None, encoding=None): data = self.data[data_type] data.to_clipboard(excel=excel, sep=sep, encoding=encoding) if sep is not None: result = read_clipboard(sep=sep, index_col=0, encoding=encoding) else: result = read_clipboard(encoding=encoding) tm.assert_frame_equal(data, result, check_dtype=False) def test_round_trip_frame_sep(self): for dt in self.data_types: self.check_round_trip_frame(dt, sep=',') self.check_round_trip_frame(dt, sep=r'\s+') self.check_round_trip_frame(dt, sep='|') def test_round_trip_frame_string(self): for dt in self.data_types: self.check_round_trip_frame(dt, excel=False) def test_round_trip_frame(self): for dt in self.data_types: self.check_round_trip_frame(dt) def test_read_clipboard_infer_excel(self): text = dedent(""" John James Charlie Mingus 1 2 4 Harry Carney """.strip()) clipboard_set(text) df = pd.read_clipboard() # excel data is parsed correctly assert df.iloc[1][1] == 'Harry Carney' # having diff tab counts doesn't trigger it text = dedent(""" a\t b 1 2 3 4 """.strip()) clipboard_set(text) res = pd.read_clipboard() text = dedent(""" a b 1 2 3 4 """.strip()) clipboard_set(text) exp = pd.read_clipboard() tm.assert_frame_equal(res, exp) def test_invalid_encoding(self): # test case for testing invalid encoding data = self.data['string'] with pytest.raises(ValueError): data.to_clipboard(encoding='ascii') with pytest.raises(NotImplementedError): pd.read_clipboard(encoding='ascii') def test_round_trip_valid_encodings(self): for enc in ['UTF-8', 'utf-8', 'utf8']: for dt in self.data_types: self.check_round_trip_frame(dt, encoding=enc)
bsd-3-clause
joshloyal/scikit-learn
examples/model_selection/plot_roc_crossval.py
28
3697
""" ============================================================= Receiver Operating Characteristic (ROC) with cross validation ============================================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality using cross-validation. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these curves, it is possible to calculate the mean area under curve, and see the variance of the curve when the training set is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data, and how different the splits generated by K-fold cross-validation are from one another. .. note:: See also :func:`sklearn.metrics.auc_score`, :func:`sklearn.model_selection.cross_val_score`, :ref:`sphx_glr_auto_examples_model_selection_plot_roc.py`, """ print(__doc__) import numpy as np from scipy import interp import matplotlib.pyplot as plt from itertools import cycle from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.model_selection import StratifiedKFold ############################################################################### # Data IO and generation # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target X, y = X[y != 2], y[y != 2] n_samples, n_features = X.shape # Add noisy features random_state = np.random.RandomState(0) X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] ############################################################################### # Classification and ROC analysis # Run classifier with cross-validation and plot ROC curves cv = StratifiedKFold(n_splits=6) classifier = svm.SVC(kernel='linear', probability=True, random_state=random_state) tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) i = 0 for train, test in cv.split(X, y): probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) tprs.append(interp(mean_fpr, fpr, tpr)) tprs[-1][0] = 0.0 roc_auc = auc(fpr, tpr) aucs.append(roc_auc) plt.plot(fpr, tpr, lw=1, alpha=0.3, label='ROC fold %d (AUC = %0.2f)' % (i, roc_auc)) i += 1 plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Luck', alpha=.8) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) plt.plot(mean_fpr, mean_tpr, color='b', label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc), lw=2, alpha=.8) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev.') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show()
bsd-3-clause
RPGOne/Skynet
scikit-learn-c604ac39ad0e5b066d964df3e8f31ba7ebda1e0e/sklearn/decomposition/tests/test_nmf.py
33
6189
import numpy as np from scipy import linalg from sklearn.decomposition import nmf from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import raises from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less random_state = np.random.mtrand.RandomState(0) @raises(ValueError) def test_initialize_nn_input(): """Test NNDSVD behaviour on negative input""" nmf._initialize_nmf(-np.ones((2, 2)), 2) def test_initialize_nn_output(): """Test that NNDSVD does not return negative values""" data = np.abs(random_state.randn(10, 10)) for var in (None, 'a', 'ar'): W, H = nmf._initialize_nmf(data, 10, random_state=0) assert_false((W < 0).any() or (H < 0).any()) def test_initialize_close(): """Test NNDSVD error Test that _initialize_nmf error is less than the standard deviation of the entries in the matrix. """ A = np.abs(random_state.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10) error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert_true(error <= sdev) def test_initialize_variants(): """Test NNDSVD variants correctness Test that the variants 'a' and 'ar' differ from basic NNDSVD only where the basic version has zeros. """ data = np.abs(random_state.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, variant=None) Wa, Ha = nmf._initialize_nmf(data, 10, variant='a') War, Har = nmf._initialize_nmf(data, 10, variant='ar', random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_true(np.allclose(evl[ref != 0], ref[ref != 0])) @raises(ValueError) def test_projgrad_nmf_fit_nn_input(): """Test model fit behaviour on negative input""" A = -np.ones((2, 2)) m = nmf.ProjectedGradientNMF(n_components=2, init=None, random_state=0) m.fit(A) def test_projgrad_nmf_fit_nn_output(): """Test that the decomposition does not contain negative values""" A = np.c_[5 * np.ones(5) - np.arange(1, 6), 5 * np.ones(5) + np.arange(1, 6)] for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar'): model = nmf.ProjectedGradientNMF(n_components=2, init=init, random_state=0) transf = model.fit_transform(A) assert_false((model.components_ < 0).any() or (transf < 0).any()) def test_projgrad_nmf_fit_close(): """Test that the fit is not too far away""" pnmf = nmf.ProjectedGradientNMF(5, init='nndsvda', random_state=0) X = np.abs(random_state.randn(6, 5)) assert_less(pnmf.fit(X).reconstruction_err_, 0.05) def test_nls_nn_output(): """Test that NLS solver doesn't return negative values""" A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, -A), A.T, A, 0.001, 100) assert_false((Ap < 0).any()) def test_nls_close(): """Test that the NLS results should be close""" A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, A), A.T, np.zeros_like(A), 0.001, 100) assert_true((np.abs(Ap - A) < 0.01).all()) def test_projgrad_nmf_transform(): """Test that NMF.transform returns close values (transform uses scipy.optimize.nnls for now) """ A = np.abs(random_state.randn(6, 5)) m = nmf.ProjectedGradientNMF(n_components=5, init='nndsvd', random_state=0) transf = m.fit_transform(A) assert_true(np.allclose(transf, m.transform(A), atol=1e-2, rtol=0)) def test_n_components_greater_n_features(): """Smoke test for the case of more components than features.""" A = np.abs(random_state.randn(30, 10)) nmf.ProjectedGradientNMF(n_components=15, sparseness='data', random_state=0).fit(A) def test_projgrad_nmf_sparseness(): """Test sparseness Test that sparsity constraints actually increase sparseness in the part where they are applied. """ A = np.abs(random_state.randn(10, 10)) m = nmf.ProjectedGradientNMF(n_components=5, random_state=0).fit(A) data_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='data', random_state=0).fit(A).data_sparseness_ comp_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='components', random_state=0).fit(A).comp_sparseness_ assert_greater(data_sp, m.data_sparseness_) assert_greater(comp_sp, m.comp_sparseness_) def test_sparse_input(): """Test that sparse matrices are accepted as input""" from scipy.sparse import csc_matrix A = np.abs(random_state.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 T1 = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999).fit_transform(A) A_sparse = csc_matrix(A) pg_nmf = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999) T2 = pg_nmf.fit_transform(A_sparse) assert_array_almost_equal(pg_nmf.reconstruction_err_, linalg.norm(A - np.dot(T2, pg_nmf.components_), 'fro')) assert_array_almost_equal(T1, T2) # same with sparseness T2 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A_sparse) T1 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A) def test_sparse_transform(): """Test that transform works on sparse data. Issue #2124""" from scipy.sparse import csc_matrix A = np.abs(random_state.randn(5, 4)) A[A > 1.0] = 0 A = csc_matrix(A) model = nmf.NMF() A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) # This solver seems pretty inconsistent assert_array_almost_equal(A_fit_tr, A_tr, decimal=2) if __name__ == '__main__': import nose nose.run(argv=['', __file__])
bsd-3-clause
sergpolly/GlycoMadness
stage4_eval_bad_combine_out.py
1
16402
import os import sys from Bio import Seq from Bio import SeqIO from Bio import SeqRecord import pandas as pd import numpy as np import ms_module as ms import re ############################ from StringIO import StringIO # import argparse # # # HOW TO LAUNCH THIS THING ... # %run stage3_gsites_catalog.py --prefix ../raw_data/New_files_to_analyze/011216\ glycocapture\ 90-90 -m pept_prot_map.csv -g pulled_proteins.gb -s specs.xls # # do some arguments parsing to make the script looks civilized ... parser = argparse.ArgumentParser() parser.add_argument("-e","--exp_num", help="specify number of an experiment",required=True) parser.add_argument("-b","--bad_map", help="specify file name of bad peptide protein map file (with/without path)",required=True) parser.add_argument("-o","--good_final_out", help="specify file name of the FINAL output with GOOD data (with/without path)",required=True) # parser.add_argument("-m","--pept_prot_map", # help="specify file name of peptide summary with unique of fetchids of matching proteins (with/without path)",required=True) parser.add_argument("-g","--genbank", help="specify file name of genbank records with pulled proteins (with/without path)",required=True) parser.add_argument("-s","--spec_summary", help="speicfy spectrum file name (with/without path)",required=True) parser.add_argument("--prefix", help="specify common part of the path for peptide and spectrum files") parser.add_argument("--separator", help="speicfy separator type in the input data",default='tab') args = parser.parse_args() # ############################################### if args.prefix is not None: bad_map_fname = os.path.join( args.prefix, args.bad_map ) good_fname = os.path.join( args.prefix, args.good_final_out ) # pep_map_fname = os.path.join( args.prefix, args.pept_prot_map ) spec_fname = os.path.join( args.prefix, args.spec_summary ) gb_fname = os.path.join( args.prefix, args.genbank ) else: bad_map_fname = args.bad_map good_fname = args.good_final_out # pep_map_fname = args.pept_prot_map spec_fname = args.spec_summary gb_fname = args.genbank # get the common path for later use ... common_path = os.path.commonprefix([bad_map_fname, good_fname, # pep_map_fname, spec_fname, gb_fname]) common_path = os.path.dirname(common_path) # # Reading genbank mindfully next ... gbrecs = ms.genebank_fix_n_read(gb_fname,key_func_type='id') ###################################### # assign some module internal stuff ... ms.gbrecs = gbrecs # # separator type choice is needed only for the ORIGINAL input files ... if args.separator == "tab": separator = '\t' elif args.separator == "comma": separator = ',' else: separator = '\t' ################# bad_info = pd.read_csv(bad_map_fname) good_info = pd.read_csv(good_fname) # pep_info = pd.read_csv(pep_map_fname) spec_info = pd.read_csv(spec_fname,sep=separator) # fix their peptide sequence thing right away ... spec_info['pept'] = spec_info['Peptide sequence'].str.upper() # pep_info['fetchid'] = pep_info['fetchid'].apply(int) # bad_info['fetchid'] = bad_info['fetchid']#.apply(int) # WHY????? if args.exp_num=='1': bad_info['enzyme'] = 'T' # # # bad_info.fetchid.apply(lambda x: str(int(x)) if pd.notnull(x) else None) # # # fasta = SeqIO.to_dict(SeqIO.parse(fasta_fname,"fasta"),key_function=lambda _: _.id.split('|')[1]) # 1-BASED NOTATION FOR PROTEINS INDEXING ENFORCED ... # pep_df = pd.read_csv(uniq_pept_fname) ############################################### # connection between peptide info and spectrum info to be established ... ########################################################################## # unroll that spec table to have 1 deamid per row ... spec_info_unrolled = ms.unroll_by_mfunc(spec_info,'Variable modifications identified by spectrum',ms.extract_deamids,'deamid_info') if spec_info_unrolled['Protein identification probability'].dtype != 'float': spec_info_unrolled['prot_ident_probab'] = spec_info_unrolled['Protein identification probability'].str.strip('%').apply(float) else: spec_info_unrolled['prot_ident_probab'] = spec_info_unrolled['Protein identification probability'] #################################################################################################################### if spec_info_unrolled['Peptide identification probability'].dtype != 'float': spec_info_unrolled['pept_ident_probab'] = spec_info_unrolled['Peptide identification probability'].str.strip('%').apply(float) else: spec_info_unrolled['pept_ident_probab'] = spec_info_unrolled['Peptide identification probability'] ########################################################## # so far the following merge seems to be 100% sufficient for the desired final output ... # we could add on extra features if needed ... spec_n_pep = spec_info_unrolled[['pept', 'deamid_info', 'prot_ident_probab', 'pept_ident_probab']].merge(bad_info,how='right',on='pept',suffixes=('','_x')) # Now, extract those gsites ... # dg_func = lambda x: pd.Series( ms.deamid_to_gsite(x['deamid_info'], x['start_fetched'], str(gbrecs[str(int(x['fetchid']))].seq)) ) def dg_func(row): deamid_info = row['deamid_info'] start_fetched = row['start_fetched'] fetchacc = row['fetchacc'] if pd.notnull(start_fetched) and pd.notnull(fetchacc): seq = gbrecs[fetchacc].seq return pd.Series( ms.deamid_to_gsite(deamid_info, start_fetched, str(seq)) ) else: return pd.Series({ 'gsite':"", 'gsite_seq':"", 'gstart':"" }) # and add them back to the main table ... gs_res = spec_n_pep[['deamid_info','start_fetched','fetchacc']].apply( dg_func, axis=1 ) spec_n_pep = spec_n_pep.merge(gs_res,left_index=True,right_index=True) print print "Now we'd need to add theoretical glycosilation sites as a separate column ..." print "full protein sequence and its length is added as well ..." # this analysis must be done, once for each 'fetchid', and then merged back to the main table ... get_theor_sites_fid = lambda facc: ms.get_theor_sites(str(gbrecs[facc].seq)) if pd.notnull(facc) else None get_theor_sites_number_fid = lambda facc: ms.get_theor_sites_number(str(gbrecs[facc].seq)) if pd.notnull(facc) else None theor_sites_info = lambda facc: pd.Series( {'fetchacc':facc, 'gsites_predicted':get_theor_sites_fid(facc), 'gsites_predicted_number':get_theor_sites_number_fid(facc), 'prot_seq':str(gbrecs[facc].seq), 'prot_len':len(str(gbrecs[facc].seq))} ) if pd.notnull(facc) else None ################################################### predicted_gsite_info = spec_n_pep['fetchacc'].dropna().drop_duplicates().apply(theor_sites_info) # add back to the main table ... spec_n_pep = spec_n_pep.merge(predicted_gsite_info,on='fetchacc',how='right') print "done ..." print "numbering appears to be 1-based and overall correct!" print # print " 'gsites_predicted' column uses 1-based numbering. Enforced and checked." # SOME FINAL PREPARATIONS TO COMPLY WITH THE REQUESTED FORMAT ... # extract gsite AAs as separate columns ... spec_n_pep['gsite_AA1'] = spec_n_pep['gsite_seq'].str.get(0) spec_n_pep['gsite_AA2'] = spec_n_pep['gsite_seq'].str.get(1) spec_n_pep['gsite_AA3'] = spec_n_pep['gsite_seq'].str.get(2) # locus protein_name uid Protein_ID_PERCENT peptides best_peptide Peptide_probability protease Expt_NUMBER prev_aa next_aa pept_start pept_stop Location match g_site gsite_start gsites_AA1_N gsites_AA2_XbutP gsites_AA3_TS Best Mascot Ion score Best Mascot Identity score Best Mascot Delta Ion score Prot_seq signal signal_loc tm_span protein length requested_cols = ['gsite', 'pept', 'enzyme', 'start_fetched', 'prot_name', 'fetchid', 'fetchacc', 'uid_fetched', 'GN_fetched', 'pept_ident_probab', 'gsites_predicted', 'gsites_predicted_number', 'gsite_seq', 'gstart', 'gsite_AA1', 'gsite_AA2', 'gsite_AA3', 'signal', 'signal_loc', 'tm_span'] requested_cols = ['locus', 'prot_name', 'uid_fetched', 'prot_ident_probab', # 'peptides', # THIS IS NEW STUFF ... 'pept', 'fetchid', 'fetchacc', # 'best_pept', # THIS IS NEW STUFF ... 'pept_ident_probab', # BEWARE, pept ID % of the BEST PEPTIDE ... 'enzyme', # 'experiment_num', # THIS IS NEW STUFF ... ########################### 'prev_aa', 'next_aa', 'prev_aa_fetched', 'next_aa_fetched', 'pept_start', 'pept_stop', 'start_fetched', 'stop_fetched', ########################### 'gsite_seq', 'gstart', 'gsite_AA1', 'gsite_AA2', 'gsite_AA3', 'Best Mascot Ion Score', 'Best Mascot Identity Score', 'Best Mascot Delta Ion Score', 'prot_seq', # PROTEIN SEQUENCE TO BE ADDED ... 'signal', 'signal_loc', 'tm_span', 'prot_len', # PROTEIN LENGTH TO BE ADDED ... 'SCORE', 'crit_pept_in'] # ################################################### # # TO BE CONTINUED ... THE_MOST_FINAL_DF = spec_n_pep[requested_cols].drop_duplicates().reset_index(drop=True) # choose peptide with highest Pept_ident_probab # Let's collpase (gsite,pept,fetchid) using the highest pept_ident_probab ... THE_MOST_FINAL_DF_max_prob = THE_MOST_FINAL_DF.loc[THE_MOST_FINAL_DF.groupby(['gsite_seq','gstart','pept','fetchid','fetchacc','enzyme'],sort=False)['pept_ident_probab'].idxmax() ].reset_index(drop=True) ################################################## # TO BE CONTINUED .... ################################################# # BEST PEPTIDE CHOSING IS WORKING, FINISH ALL PEPTIDES AND OTHER STUFF ... def choose_best_pept(df,dp_margin=1.0): # pandas 0.18.1 broke something here: "TypeError: Series.name must be a hashable type" ... # we're fixing it, introducing one more layer of control here ... assert 'pept' in df.columns assert 'pept_ident_probab' in df.columns # this should work on any df with the 2 specified columns ... if df.shape[0]>1: shortes_idx = df['pept'].str.len().idxmin() max_prob_idx = df['pept_ident_probab'].idxmax() if df['pept_ident_probab'][shortes_idx] < (df['pept_ident_probab'][max_prob_idx]-dp_margin): # return df['pept'][max_prob_idx] # print "returning max_prob_idx",max_prob_idx return max_prob_idx else: # return df['pept'][shortes_idx] # print "returning shortes_idx",shortes_idx return shortes_idx else: # print "returning one thing", df['pept_ident_probab'].idxmax() return df['pept_ident_probab'].idxmax() def unstack_pept(series): return ','.join(series) # fff=THE_MOST_FINAL_DF_max_prob.groupby(['gsite_seq','gstart','locus','enzyme'],sort=False).size() # fff[fff>1] # choosing BEST PEPTIDE containing given gsite # according to the Reid's rule of best peptide ... THE_MOST_FINAL_DF_uniq_pept = \ THE_MOST_FINAL_DF_max_prob.loc[ THE_MOST_FINAL_DF_max_prob.groupby(['gsite_seq', 'gstart', 'locus', 'enzyme'],sort=False).apply(choose_best_pept) ].reset_index(drop=True) # given the best peptides are choosen, unstacking multiple peptides corresponding to the same gsite # and forming a column 'peptides' ... THE_MOST_FINAL_DF_uniq_pept['peptides'] = \ THE_MOST_FINAL_DF_max_prob.groupby(['gsite_seq', 'gstart', 'locus', 'enzyme'],sort=False)['pept'].apply(unstack_pept).reset_index(drop=True) ############################### # RIGHT BEFORE FINAL REANMINGS, ASSIGNMENTS AND OTHER STUFF, ADD MISSING DATA ENTRIES HERE ... ############################### # THE_MOST_FINAL_DF_uniq_pept = THE_MOST_FINAL_DF_uniq_pept.append(THE_MOST_FINAL_DF[THE_MOST_FINAL_DF['SCORE']<100]) THE_MOST_FINAL_DF_uniq_pept = THE_MOST_FINAL_DF_uniq_pept.append(bad_info[bad_info['fetchid'].isnull()]) ############################### ############################### # rename pept to best_pept AND enzyme to protease ... THE_MOST_FINAL_DF_uniq_pept = THE_MOST_FINAL_DF_uniq_pept.rename(columns={'pept':'best_pept','enzyme':'protease',}) # add experiment number, something new ... THE_MOST_FINAL_DF_uniq_pept['exp_num'] = int(args.exp_num) # location match instead of fetched/Scaffold-based resutls ... THE_MOST_FINAL_DF_uniq_pept['loc_match'] = THE_MOST_FINAL_DF_uniq_pept['pept_start'] == THE_MOST_FINAL_DF_uniq_pept['start_fetched'] THE_MOST_FINAL_DF_uniq_pept['loc_match'] = THE_MOST_FINAL_DF_uniq_pept['loc_match'].map({True:'Y',False:'N'}) requested_cols = ['locus', 'prot_name', 'uid_fetched', 'prot_ident_probab', 'peptides', # THIS IS NEW STUFF ... # 'pept', # 'fetchid', 'fetchacc', 'best_pept', # THIS IS NEW STUFF ... 'pept_ident_probab', # BEWARE, pept ID % of the BEST PEPTIDE ... 'protease', 'exp_num', # THIS IS NEW STUFF ... ########################### 'prev_aa', 'next_aa', # 'prev_aa_fetched', # 'next_aa_fetched', 'pept_start', 'pept_stop', 'loc_match', # 'start_fetched', # 'stop_fetched', ########################### 'gsite_seq', 'gstart', 'gsite_AA1', 'gsite_AA2', 'gsite_AA3', 'Best Mascot Ion Score', 'Best Mascot Identity Score', 'Best Mascot Delta Ion Score', 'prot_seq', # PROTEIN SEQUENCE TO BE ADDED ... 'signal', 'signal_loc', 'tm_span', 'prot_len', # PROTEIN LENGTH TO BE ADDED ... 'SCORE', 'crit_pept_in'] with open(os.path.join(common_path,'FINAL_combined_output.csv'),'w') as fp: # output formatted BAD stuff first ... THE_MOST_FINAL_DF_uniq_pept[requested_cols].to_csv(fp,index=False) # fp.write("\n\nBAD and ambigous entries are over. Entries that worked out to follow:\n\n") # good_info.to_csv(fp,index=False) # THE_MOST_FINAL_DF_uniq.to_csv(os.path.join(common_path,'FINAL_gsite_anthology.csv'),index=False) # # DESIREd COLUMNS ... # # ############################################ # # # columns that needs to be delivered ... # # # ############################################ # # # A gsites, 1 per line # # # B pept, 1 per line # # # B1 enzyme, G or T, derive from 'Biological sample category', like this: {'TrypsinSample1':'T','GluC_Sample2':'G'} # # # C peptide_start, 1 per line accordingly # # # D all_uids, REPLACE WITH col:H # # # E prot_seq, try to get those from NCBI, not from UniProt ... # # # F protein, ??? sequence, name or what??? # # # G uid_max, UID for major form instead or something like that ... # # # H prot_name, parsed out human-readable name from 'Protein name' # # # H1 gene_name, parsed out GN=xxx from 'Protein name' # # # I uniq_peptide_count, discrad that column ... # # # J pept_probability, output number not the string - this would be the criteria # # # K gsites_predicted, OK # # # L gsites_predicted_number, OK # # # M gsite_start, beware of 0 or 1 type of indexing ... # # # N,O,P - gsites AAs in separate columns # # # M1, NOP combined, gsite sequence basically! # # # Q signal, from GeneBank record on the protein, simply Y,N on whether there is a 'Signal' in gb. # # # R signal_location, location of the signal from Q # # # S tm_span, Y,N just for the fact of having TM span as a protein feature. # # THINGS TO BE DONE: # # 1) MERGE PEP_INFO WITH SPEC_INFO, SO THAT PEPT-PROT RELATIONSHIP WOULD BE SET UP ... # # probably getting read of many-many columns in the spec_info along the way ... # # 2) MODIFY AND TEST THE 'deamid_to_gsite' FUNCTION (PAY ATTENTION TO 1-BASED AND 0-BASED NUMBERING OF AAs) # # 3) USE 'deamid_to_gsite' TO FINALLY EXTRACT GSITES ... # # 4) ANALYSE(?) GSITES: GROUPBY UNIQUE GSITES (GSITE[seq],GSITE_START,PROT_IDENTIFICATOR) TO SEE HOW MANY PEPTS YIELD THE SAME GSITES ... # # 5) SELECT A SINGLE PEPT PER GSITE??????? USING REAID'S CRITERIA, OR LEAVE ALL GSITE-PEPTS PAIRS ??????????? # ####################################### # # 6) COMPLY WITH THE #columns that needs to be delivered...# FOR THE VERY VERY FINAL OUTPUT ... # #######################################
mit
dr-nate/msmbuilder
msmbuilder/cluster/agglomerative.py
3
11303
# Author: Robert McGibbon <[email protected]> # Contributors: Brooke Husic <[email protected]> # Copyright (c) 2016, Stanford University # All rights reserved. #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import, print_function, division import numpy as np import six import scipy.spatial.distance import warnings from msmbuilder import libdistance from scipy.cluster.hierarchy import fcluster from sklearn.utils import check_random_state from sklearn.base import ClusterMixin, TransformerMixin from . import MultiSequenceClusterMixin from ..base import BaseEstimator from fastcluster import linkage #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- __all__ = ['_LandmarkAgglomerative'] def ward_pooling_function(x, cluster_cardinality, intra_cluster_sum): normalization_factor = cluster_cardinality*(cluster_cardinality+1)/2 squared_sums = (x**2).sum(axis=1) result_vector = ((cluster_cardinality * squared_sums - intra_cluster_sum) / normalization_factor) return result_vector POOLING_FUNCTIONS = { 'average': lambda x, ignore1, ignore2: np.mean(x, axis=1), 'complete': lambda x, ignore1, ignore2: np.max(x, axis=1), 'single': lambda x, ignore1, ignore2: np.min(x, axis=1), 'ward': ward_pooling_function, } #----------------------------------------------------------------------------- # Utilities #----------------------------------------------------------------------------- def pdist(X, metric='euclidean'): if isinstance(metric, six.string_types): return libdistance.pdist(X, metric) n = len(X) d = np.empty((n, n)) for i in range(n): d[i, :] = metric(X, X, i) return scipy.spatial.distance.squareform(d, checks=False) def cdist(XA, XB, metric='euclidean'): if isinstance(metric, six.string_types): return libdistance.cdist(XA, XB, metric) nA, nB = len(XA), len(XB) d = np.empty((nA, nB)) for i in range(nA): d[i, :] = metric(XB, XA, i) return d #----------------------------------------------------------------------------- # Main Code #----------------------------------------------------------------------------- class _LandmarkAgglomerative(ClusterMixin, TransformerMixin): """Landmark-based agglomerative hierarchical clustering Landmark-based agglomerative clustering is a simple scalable version of "standard" hierarchical clustering which doesn't require computing the full matrix of pairwise distances between all data points. The idea is basically to subsample only ``n_landmarks`` "landmark" data points, cluster them, and then assign labels to the remaining data points based on their distances to (and the labels of) the landmarks. Parameters ---------- n_clusters : int The number of clusters to find. n_landmarks : int, optional Memory-saving approximation. Instead of actually clustering every point, we instead select n_landmark points either randomly or by striding the data matrix (see ``landmark_strategy``). Then we cluster the only the landmarks, and then assign the remaining dataset based on distances to the landmarks. Note that n_landmarks=None is equivalent to using every point in the dataset as a landmark. linkage : {'single', 'complete', 'average', 'ward'}, default='average' Which linkage criterion to use. The linkage criterion determines which distance to use between sets of observation. The algorithm will merge the pairs of cluster that minimize this criterion. - average uses the average of the distances of each observation of the two sets. - complete or maximum linkage uses the maximum distances between all observations of the two sets. - single uses the minimum distance between all observations of the two sets. - ward linkage minimizes the within-cluster variance The linkage also effects the predict() method and the use of landmarks. After computing the distance from each new data point to the landmarks, the new data point will be assigned to the cluster that minimizes the linkage function between the new data point and each of the landmarks. (i.e with ``single``, new data points will be assigned the label of the closest landmark, with ``average``, it will be assigned the label of the landmark s.t. the mean distance from the test point to all the landmarks with that label is minimized, etc.) metric : string or callable, default= "euclidean" Metric used to compute the distance between samples. landmark_strategy : {'stride', 'random'}, default='stride' Method for determining landmark points. Only matters when n_landmarks is not None. "stride" takes landmarks every n-th data point in X, and random selects them uniformly at random. random_state : integer or numpy.RandomState, optional The generator used to select random landmarks. Only used if landmark_strategy=='random'. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. max_landmarks : int, optional, default=None Useful for hyperparameter searching. If n_clusters exceeds n_landmarks, max_landmarks will be used. Otherwise, n_landmarks will be used. If None, no cutoff is enforced on n_landmarks, which may result in memory issues. ward_predictor : {'single', 'complete', 'average', 'ward'}, default='ward' Which criterion to use when predicting cluster assignments after fitting with ward linkage. References ---------- .. [1] Mullner, D. "Modern hierarchical, agglomerative clustering algorithms." arXiv:1109.2378 (2011). Attributes ---------- landmark_labels_ landmarks_ """ def __init__(self, n_clusters, n_landmarks=None, linkage='average', metric='euclidean', landmark_strategy='stride', random_state=None, max_landmarks=None, ward_predictor='ward'): self.n_clusters = n_clusters self.n_landmarks = n_landmarks self.metric = metric self.landmark_strategy = landmark_strategy self.random_state = random_state self.linkage = linkage self.max_landmarks = max_landmarks self.ward_predictor = ward_predictor self.landmark_labels_ = None self.landmarks_ = None def fit(self, X, y=None): """ Compute agglomerative clustering. Parameters ---------- X : array-like, shape=(n_samples, n_features) Returns ------- self """ if self.max_landmarks is not None: if self.n_clusters > self.n_landmarks: self.n_landmarks = self.max_landmarks if self.n_landmarks is None: distances = pdist(X, self.metric) tree = linkage(distances, method=self.linkage) self.landmark_labels_ = fcluster(tree, criterion='maxclust', t=self.n_clusters) - 1 self.cardinality_ = np.bincount(self.landmark_labels_) self.squared_distances_within_cluster_ = np.zeros(self.n_clusters) n = len(X) for k in range(len(distances)): i = int(n - 2 - np.floor(np.sqrt(-8*k + 4*n*(n-1)-7)/2.0 - 0.5)) j = int(k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2) if self.landmark_labels_[i] == self.landmark_labels_[j]: self.squared_distances_within_cluster_[ self.landmark_labels_[i]] += distances[k] ** 2 self.landmarks_ = X else: if self.landmark_strategy == 'random': land_indices = check_random_state(self.random_state).randint( len(X), size=self.n_landmarks) else: land_indices = np.arange(len(X))[::(len(X) // self.n_landmarks)][:self.n_landmarks] distances = pdist(X[land_indices], self.metric) tree = linkage(distances, method=self.linkage) self.landmark_labels_ = fcluster(tree, criterion='maxclust', t=self.n_clusters) - 1 self.cardinality_ = np.bincount(self.landmark_labels_) self.squared_distances_within_cluster_ = np.zeros(self.n_clusters) n = len(X[land_indices]) for k in range(len(distances)): i = int(n - 2 - np.floor(np.sqrt(-8*k + 4*n*(n-1)-7)/2.0 - 0.5)) j = int(k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2) if self.landmark_labels_[i] == self.landmark_labels_[j]: self.squared_distances_within_cluster_[ self.landmark_labels_[i]] += distances[k] ** 2 self.landmarks_ = X[land_indices] return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ dists = cdist(X, self.landmarks_, self.metric) pfunc_name = self.ward_predictor if self.linkage == 'ward' else self.linkage try: pooling_func = POOLING_FUNCTIONS[pfunc_name] except KeyError: raise ValueError("linkage {} is not supported".format(pfunc_name)) pooled_distances = np.empty(len(X)) pooled_distances.fill(np.infty) labels = np.zeros(len(X), dtype=int) for i in range(self.n_clusters): if np.any(self.landmark_labels_ == i): d = pooling_func(dists[:, self.landmark_labels_ == i], self.cardinality_[i], self.squared_distances_within_cluster_[i]) if np.any(d < 0): warnings.warn("Distance shouldn't be negative.") mask = (d < pooled_distances) pooled_distances[mask] = d[mask] labels[mask] = i else: print("No data points were assigned to cluster {}".format(i)) return labels def fit_predict(self, X): """Compute cluster centers and predict cluster index for each sample. Convenience method; equivalent to calling fit(X) followed by predict(X). """ self.fit(X) return self.predict(X) class LandmarkAgglomerative(MultiSequenceClusterMixin, _LandmarkAgglomerative, BaseEstimator): __doc__ = _LandmarkAgglomerative.__doc__ _allow_trajectory = True
lgpl-2.1
welch/seasonal
examples/hw.py
1
7312
# # holt-winters forecasting # # H-W is a structural timeseries model with level, trend, and seasonal # components that are estimated by exponential smoothing as data # arrives (https://en.wikipedia.org/wiki/Exponential_smoothing). # Only the additive seasonality model is implemented. # from sys import stderr from copy import deepcopy from collections import namedtuple import numpy as np from scipy.optimize import fmin_l_bfgs_b import seasonal HWState = namedtuple('HWState', 't level trend seasons') HWParams = namedtuple('HWParams', 'alpha beta gamma') def estimate_state(data): """estimate initial state for Holt Winters HWState estimates are for t=-1, the step before y[0]. Parameters ---------- data : ndarray observations """ seasons, trended = seasonal.fit_seasons(data) if seasons is None: seasons = np.zeros(1) trend = trended[1] - trended[0] level = trended[0] - trend return HWState(-1, level, trend, seasons) def forecast(state, steps=1): """return a single or multi-step forecast from the current state Parameters ---------- state : HWState current model state steps : int number of steps out to forecast """ season = state.seasons[(state.t + steps) % len(state.seasons)] return state.level + state.trend * steps + season def advance(y, params, state): """incorporate the next observation into the state estimate. This returns updated state, using Hyndman's error correction form of H-W [1] It mutates state's seasonal array. Parameters ---------- y : float observed value at time state.t + 1 params : HWParams alpha, beta, gamma params for HW state : HWState current HW state Returns ------- state, err : HWState, float state: updated state one-step forecast error for y References ---------- .. [1] https://www.otexts.org/fpp/7/5, Holt-Winters additive method """ seasons = state.seasons e = y - forecast(state) level = state.level + state.trend + params.alpha * e trend = state.trend + params.alpha * params.beta * e seasons[(state.t + 1) % len(state.seasons)] += params.gamma * e # in a proper implementation, we would enforce seasons being 0-mean. return HWState(state.t+1, level, trend, seasons), e def estimate_params(data, state, alpha0=0.3, beta0=0.1, gamma0=0.1): """Estimate Holt Winters parameters from data Parameters ---------- data : ndarray observations state : HWState initial state for HW (one step prior to first data value) alpha0, beta0, gamma0 : float, float, float initial guess for HW parameters Returns ------- params : HWParams Notes ----- This is a not a demo about estimating Holt Winters parameters, and this is not a great way to go about it, because it does not produce good out-of-sample error. In this demo, we unrealistically train the HW parameters over all the data, not just the training prefix used for the initial seasonal state estimate. """ def _forecast_error(x0, state, data): """bfgs HW parameter error callback.""" E = 0 state = deepcopy(state) params = HWParams(*x0) for y in data: state, e = advance(y, params, state) E += e * e return E / len(data) alpha, beta, gamma = fmin_l_bfgs_b( _forecast_error, x0=[alpha0, beta0, gamma0], bounds=[[0, 1]] * 3, args=(state, data), approx_grad=True)[0] return HWParams(alpha, beta, gamma) def hw(data, split=None, params=None): """fit a HW model and return the 1-step forecast and smoothed series. Parameters ---------- data : array of float observations split : number initialize using the leading split*100% of the data (if split <=1.0) or N=split points (if split > 1) Returns ------- forecast, smoothed : ndarray, ndarray """ if split is None: splitidx = len(data) elif split > 1.0: splitidx = int(split) else: splitidx = int(split * len(data)) state = estimate_state(data[:splitidx]) print "||seasons|| = {:.3f}".format(np.sqrt(np.sum(state.seasons ** 2))) if params is None: params = estimate_params(data, state) print "estimated alpha={:.3f}, beta={:.3f}, gamma={:.3f}".format(*params) level = np.empty(len(data)) fcast = np.empty(len(data)) for y in data: yhat = forecast(state) state, _ = advance(y, params, state) level[state.t], fcast[state.t] = state.level, yhat print "RMSE = ", np.sqrt(np.sum((fcast - data) ** 2) / len(data)) print "final ||seasons|| = {:.3f}".format(np.sqrt(np.sum(state.seasons ** 2))) return fcast, level def main(): import os.path from optparse import OptionParser from textwrap import dedent import matplotlib import matplotlib.pyplot as plt matplotlib.style.use('ggplot') from seasonal.application import read_csv parser = OptionParser( usage="usage: %prog [options] csv-files...", description="Holt-Winters demo using the seasonal package" ) parser.add_option("--column", default=-1, help="csv column to use (name or 0-based index, default rightmost)") parser.add_option("--split", type="float", default=None, help=("split data at the split*100% or int(split) " + "point for initialization")) parser.add_option("--params", help=("comma-separated list of alpha, beta, gamma. " + "default is to estimate these from ALL the data")) parser.add_option("--demo", action="store_true", help="demonstrate with some air passenger data") (options, args) = parser.parse_args() if options.demo: args = [os.path.join(os.path.dirname(seasonal.__file__), "data/airPassengers.csv")] if options.split is None: options.split = 0.20 if not args: parser.print_help() exit(-1) if not plt: stderr.write( "Error: matplotlib must be installed\n") exit(-1) if options.params is not None: try: params = [float(p) for p in options.params.split(',')] options.params = HWParams(*params) except Exception: stderr.write("\nError: --params wants alpha,beta,gamma\n") parser.print_help() exit(-1) for csvpath in args: index, data, column = read_csv(csvpath, column=options.column) fcast, smoothed = hw(data, options.split, params=options.params) plt.figure(1) plt.subplot(211) plt.title("Holt Winters for "+os.path.basename(csvpath)) plt.plot(index, data, label=column) plt.plot(index, fcast, label="forecast") plt.plot(index, smoothed, label="smoothed") leg = plt.legend(loc='upper left') leg.get_frame().set_alpha(0.5) plt.subplot(212) plt.title("Forecast Error") plt.plot(index, fcast - data) plt.show() if __name__ == "__main__": main()
mit
meduz/scikit-learn
examples/model_selection/plot_roc.py
102
5056
""" ======================================= Receiver Operating Characteristic (ROC) ======================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. Multiclass settings ------------------- ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC curve and ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC curve can be drawn per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). Another evaluation measure for multi-class classification is macro-averaging, which gives equal weight to the classification of each label. .. note:: See also :func:`sklearn.metrics.roc_auc_score`, :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from itertools import cycle from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from scipy import interp # Import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features to make the problem harder random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) # Learn to predict each class against the other classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) ############################################################################## # Plot of a ROC curve for a specific class plt.figure() lw = 2 plt.plot(fpr[2], tpr[2], color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2]) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ############################################################################## # Plot ROC curves for the multiclass problem # Compute macro-average ROC curve and ROC area # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(n_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show()
bsd-3-clause
hrjn/scikit-learn
benchmarks/bench_lof.py
49
3548
""" ============================ LocalOutlierFactor benchmark ============================ A test of LocalOutlierFactor on classical anomaly detection datasets. """ from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import LocalOutlierFactor from sklearn.metrics import roc_curve, auc from sklearn.datasets import fetch_kddcup99, fetch_covtype, fetch_mldata from sklearn.preprocessing import LabelBinarizer from sklearn.utils import shuffle as sh print(__doc__) np.random.seed(2) # datasets available: ['http', 'smtp', 'SA', 'SF', 'shuttle', 'forestcover'] datasets = ['shuttle'] novelty_detection = True # if False, training set polluted by outliers for dataset_name in datasets: # loading and vectorization print('loading data') if dataset_name in ['http', 'smtp', 'SA', 'SF']: dataset = fetch_kddcup99(subset=dataset_name, shuffle=True, percent10=False) X = dataset.data y = dataset.target if dataset_name == 'shuttle': dataset = fetch_mldata('shuttle') X = dataset.data y = dataset.target X, y = sh(X, y) # we remove data with label 4 # normal data are then those of class 1 s = (y != 4) X = X[s, :] y = y[s] y = (y != 1).astype(int) if dataset_name == 'forestcover': dataset = fetch_covtype(shuffle=True) X = dataset.data y = dataset.target # normal data are those with attribute 2 # abnormal those with attribute 4 s = (y == 2) + (y == 4) X = X[s, :] y = y[s] y = (y != 2).astype(int) print('vectorizing data') if dataset_name == 'SF': lb = LabelBinarizer() lb.fit(X[:, 1]) x1 = lb.transform(X[:, 1]) X = np.c_[X[:, :1], x1, X[:, 2:]] y = (y != 'normal.').astype(int) if dataset_name == 'SA': lb = LabelBinarizer() lb.fit(X[:, 1]) x1 = lb.transform(X[:, 1]) lb.fit(X[:, 2]) x2 = lb.transform(X[:, 2]) lb.fit(X[:, 3]) x3 = lb.transform(X[:, 3]) X = np.c_[X[:, :1], x1, x2, x3, X[:, 4:]] y = (y != 'normal.').astype(int) if dataset_name == 'http' or dataset_name == 'smtp': y = (y != 'normal.').astype(int) n_samples, n_features = np.shape(X) n_samples_train = n_samples // 2 n_samples_test = n_samples - n_samples_train X = X.astype(float) X_train = X[:n_samples_train, :] X_test = X[n_samples_train:, :] y_train = y[:n_samples_train] y_test = y[n_samples_train:] if novelty_detection: X_train = X_train[y_train == 0] y_train = y_train[y_train == 0] print('LocalOutlierFactor processing...') model = LocalOutlierFactor(n_neighbors=20) tstart = time() model.fit(X_train) fit_time = time() - tstart tstart = time() scoring = -model.decision_function(X_test) # the lower, the more normal predict_time = time() - tstart fpr, tpr, thresholds = roc_curve(y_test, scoring) AUC = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label=('ROC for %s (area = %0.3f, train-time: %0.2fs,' 'test-time: %0.2fs)' % (dataset_name, AUC, fit_time, predict_time))) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show()
bsd-3-clause
loli/sklearn-ensembletrees
benchmarks/bench_plot_neighbors.py
10
6499
""" Plot the scaling of the nearest neighbors algorithms with k, D, and N """ from time import time import numpy as np import pylab as pl from matplotlib import ticker from sklearn import neighbors, datasets def get_data(N, D, dataset='dense'): if dataset == 'dense': np.random.seed(0) return np.random.random((N, D)) elif dataset == 'digits': X = datasets.load_digits().data i = np.argsort(X[0])[::-1] X = X[:, i] return X[:N, :D] else: raise ValueError("invalid dataset: %s" % dataset) def barplot_neighbors(Nrange=2 ** np.arange(1, 11), Drange=2 ** np.arange(7), krange=2 ** np.arange(10), N=1000, D=64, k=5, leaf_size=30, dataset='digits'): algorithms = ('kd_tree', 'brute', 'ball_tree') fiducial_values = {'N': N, 'D': D, 'k': k} #------------------------------------------------------------ # varying N N_results_build = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) N_results_query = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) for i, NN in enumerate(Nrange): print("N = %i (%i out of %i)" % (NN, i + 1, len(Nrange))) X = get_data(NN, D, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=min(NN, k), algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() N_results_build[algorithm][i] = (t1 - t0) N_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying D D_results_build = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) D_results_query = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) for i, DD in enumerate(Drange): print("D = %i (%i out of %i)" % (DD, i + 1, len(Drange))) X = get_data(N, DD, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=k, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() D_results_build[algorithm][i] = (t1 - t0) D_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying k k_results_build = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) k_results_query = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) X = get_data(N, DD, dataset) for i, kk in enumerate(krange): print("k = %i (%i out of %i)" % (kk, i + 1, len(krange))) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=kk, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() k_results_build[algorithm][i] = (t1 - t0) k_results_query[algorithm][i] = (t2 - t1) pl.figure('scikit-learn nearest neighbors benchmark results', figsize=(8, 11)) for (sbplt, vals, quantity, build_time, query_time) in [(311, Nrange, 'N', N_results_build, N_results_query), (312, Drange, 'D', D_results_build, D_results_query), (313, krange, 'k', k_results_build, k_results_query)]: ax = pl.subplot(sbplt, yscale='log') pl.grid(True) tick_vals = [] tick_labels = [] bottom = 10 ** np.min([min(np.floor(np.log10(build_time[alg]))) for alg in algorithms]) for i, alg in enumerate(algorithms): xvals = 0.1 + i * (1 + len(vals)) + np.arange(len(vals)) width = 0.8 c_bar = pl.bar(xvals, build_time[alg] - bottom, width, bottom, color='r') q_bar = pl.bar(xvals, query_time[alg], width, build_time[alg], color='b') tick_vals += list(xvals + 0.5 * width) tick_labels += ['%i' % val for val in vals] pl.text((i + 0.02) / len(algorithms), 0.98, alg, transform=ax.transAxes, ha='left', va='top', bbox=dict(facecolor='w', edgecolor='w', alpha=0.5)) pl.ylabel('Time (s)') ax.xaxis.set_major_locator(ticker.FixedLocator(tick_vals)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(tick_labels)) for label in ax.get_xticklabels(): label.set_rotation(-90) label.set_fontsize(10) title_string = 'Varying %s' % quantity descr_string = '' for s in 'NDk': if s == quantity: pass else: descr_string += '%s = %i, ' % (s, fiducial_values[s]) descr_string = descr_string[:-2] pl.text(1.01, 0.5, title_string, transform=ax.transAxes, rotation=-90, ha='left', va='center', fontsize=20) pl.text(0.99, 0.5, descr_string, transform=ax.transAxes, rotation=-90, ha='right', va='center') pl.gcf().suptitle("%s data set" % dataset.capitalize(), fontsize=16) pl.figlegend((c_bar, q_bar), ('construction', 'N-point query'), 'upper right') if __name__ == '__main__': barplot_neighbors(dataset='digits') barplot_neighbors(dataset='dense') pl.show()
bsd-3-clause
bobquest33/peach
tutorial/optimization/quasi-newton-optimization.py
6
3006
################################################################################ # Peach - Computational Intelligence for Python # Jose Alexandre Nalon # # This file: quasi-newton-optimization.py # Optimization of two-variable functions by quasi-newton methods ################################################################################ # We import numpy for arrays and peach for the library. Actually, peach also # imports the numpy module, but we want numpy in a separate namespace: from numpy import * import peach as p # This is a simplified version of the Rosenbrock function, to demonstrante # how the optimizers work. def f(xy): x, y = xy return (1.-x)**2. + (y-x*x)**2. # Gradient of Rosenbrock function def df(xy): x, y = xy return array( [ -2.*(1.-x) - 4.*x*(y - x*x), 2.*(y - x*x) ]) # We will allow no more than 200 iterations. For the simplified Rosenbrock # function, no more than that will be needed. iMax = 200 # The first estimate of the minimum is given by the DFP method. Notice that the # creation of the optimizer is virtually the same as every other. We could, in # this and in the other optimizers, omit the derivative function and let Peach # estimate it for us. dfp = p.DFP(f, (0.1, 0.2), df=df) xd = [ 0.1 ] yd = [ 0.2 ] i = 0 while i < iMax: x, e = dfp.step() xd.append(x[0]) yd.append(x[1]) i = i + 1 xd = array(xd) yd = array(yd) # We now try the BFGS optimizer. bfgs = p.BFGS(f, (0.1, 0.2), df=df) xb = [ 0.1 ] yb = [ 0.2 ] i = 0 while i < iMax: x, e = bfgs.step() xb.append(x[0]) yb.append(x[1]) i = i + 1 xb = array(xb) yb = array(yb) # Last but not least, the SR1 optimizer sr1 = p.SR1(f, (0.1, 0.2), df=df) xs = [ 0.1 ] ys = [ 0.2 ] i = 0 while i < iMax: x, e = sr1.step() xs.append(x[0]) ys.append(x[1]) i = i + 1 xs = array(xs) ys = array(ys) # If the system has the plot package matplotlib, this tutorial tries to plot # and save the convergence of synaptic weights and error. The plot is saved in # the file ``quasi-newton-optimization.png``. # These commands are used to create the functions that will plot the contour # lines of the Rosenbrock function. x = linspace(0., 2., 250) y = linspace(0., 2., 250) x, y = meshgrid(x, y) z = (1-x)**2 + (y-x*x)**2 levels = exp(linspace(0., 2., 10)) - 0.9 try: from matplotlib import * from matplotlib.pylab import * figure(1).set_size_inches(6, 6) a1 = axes([ 0.125, 0.10, 0.775, 0.8 ]) a1.hold(True) a1.grid(True) a1.plot(xd, yd) a1.plot(xb, yb) a1.plot(xs, ys) a1.contour(x, y, z, levels, colors='k', linewidths=0.75) a1.legend([ 'DFP', 'BFGS', 'SR1' ]) a1.set_xlim([ 0., 2. ]) a1.set_xticks([ 0., 0.5, 1., 1.5, 2. ]) a1.set_ylim([ 0., 2. ]) a1.set_yticks([ 0.5, 1., 1.5, 2. ]) savefig("quasi-newton-optimization.png") except ImportError: print "DFP Optimizer: ", (xd[-1], yd[-1]) print "BFGS Optimizer: ", (xb[-1], yb[-1]) print "SR1 Optimizer: ", (xs[-1], ys[-1])
lgpl-2.1
ishank08/scikit-learn
sklearn/datasets/__init__.py
61
3734
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_breast_cancer from .base import load_boston from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_sample_images from .base import load_sample_image from .base import load_wine from .base import get_data_home from .base import clear_data_home from .covtype import fetch_covtype from .kddcup99 import fetch_kddcup99 from .mlcomp import load_mlcomp from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'fetch_kddcup99', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_breast_cancer', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'load_wine', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
phdowling/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
218
3893
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.externals.joblib import Memory from sklearn.cross_validation import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(len(y), 2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
radiasoft/radtrack
tests/ProcessSRWOutput_test.py
1
3153
# -*- coding: utf-8 -*- #C:\d from old\RadiaBeam\RadSoft\radtrack\tests>py.test ProcessSRWOutput_test.py u"""PyTest for :mod:`radiasoft.AnalyticCalc` """ from __future__ import absolute_import, division, print_function, unicode_literals from io import open import os import numpy as np from matplotlib.pylab import figure, plot, grid,plt import pytest from pykern.pkdebug import pkdc, pkdp from pykern import pkunit from pykern import pkyaml from radtrack.srw import AnalyticCalc def str2num(s): return float(s) if "." in s else int(s) def maxelements(seq): ''' Return list of position(s) of largest element ''' max_indices = [] if seq: max_val = seq[0] for i,val in ((i,val) for i,val in enumerate(seq) if val >= max_val): if val == max_val: max_indices.append(i) else: max_val = val max_indices = [i] return max_indices def FindingArrayMaxima(seq, deltI): pkdc('size:',np.shape(seq)[0]) if seq: j=0 maxV=[] maxI=[] maxIj=0 for i in xrange(0, np.shape(seq)[0]-deltI-1): pkdc(i, seq[i]) if seq[i+1]>seq[i]: maxVj=seq[i+1] maxIj=i+1 pkdc(maxIj) if (maxIj>0) & (i>maxIj+deltI): j=j+1 maxV.append(maxVj) maxI.append(maxIj) maxIj=1000000 else: print('Input array is empty') pkdc('Maximum # and Intensity of UR harmoncis: ',maxI,maxV) return (maxV, maxI) def Path_Length(x,y): Path_Len=0 for i in xrange(0, np.shape(x)[0]-1): Path_Len=Path_Len+ np.sqrt((y[i+1]-y[i])**2*1E-6 + (x[i+1]-x[i])**2) return (Path_Len) def test_1(): d = pkunit.data_dir() ## Testing actual SRW calculations ##Reading SRW data SPECTRUM IFileName="Spectrum.txt" f=open(str(d.join(IFileName)),"r")#,1000) e_p=[] I_rad=[] for line in f.readlines(): words = line.split() e_p.append(words[0]) I_rad.append(words[1]) I_radf=map(float,I_rad) maxI=max(I_radf) pkdc(I_radf) print('Spectral Amplitude, ph/s/mrad2',maxI) pkdc(I_radf.index(max(I_radf))) maxIn=maxelements(I_radf) (maxV, maxI)=FindingArrayMaxima(I_radf,5) print(maxI, maxV) f.close() ##Reading SRW data TRAJECTORY IFileName="Trajectory.txt" f=open(str(d.join(IFileName)),"r")#,10000) z_dist=[] x_traj=[] for line in f.readlines(): words = line.split() z_dist.append(words[0]) x_traj.append(words[1]) x_trajectory=map(float, x_traj) z_distance=map(float, z_dist) minX=min(x_trajectory) maxX=max(x_trajectory) minZ=min(z_distance) maxZ=max(z_distance) print ('Length of ID, m', maxZ-minZ) print('Oscillation Amplitude, mm',(maxX-minX)/2) L_trajectory=Path_Length(z_distance, x_trajectory) print('Length of Trajectory, m', L_trajectory) f.close() ##Plotting plot(e_p,I_rad) j=0 for i in maxI: plt.scatter(e_p[i], maxV[j], color='red') j=j+1 # title(TitleP) # xlabel(Xlab) # ylabel(Ylab) grid() plt.show(block=False) plot(z_dist,x_trajectory,'.b',linestyle="-") (maxVt, maxIt)=FindingArrayMaxima(map(float,x_trajectory),20) pkdc(maxIt, maxVt) j=0 for i in maxIt: plt.scatter(z_dist[i], maxVt[j], color='red') j=j+1 grid() plt.show(block=False)
apache-2.0
fredhusser/scikit-learn
sklearn/setup.py
225
2856
import os from os.path import join import warnings def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration from numpy.distutils.system_info import get_info, BlasNotFoundError import numpy libraries = [] if os.name == 'posix': libraries.append('m') config = Configuration('sklearn', parent_package, top_path) config.add_subpackage('__check_build') config.add_subpackage('svm') config.add_subpackage('datasets') config.add_subpackage('datasets/tests') config.add_subpackage('feature_extraction') config.add_subpackage('feature_extraction/tests') config.add_subpackage('cluster') config.add_subpackage('cluster/tests') config.add_subpackage('covariance') config.add_subpackage('covariance/tests') config.add_subpackage('cross_decomposition') config.add_subpackage('decomposition') config.add_subpackage('decomposition/tests') config.add_subpackage("ensemble") config.add_subpackage("ensemble/tests") config.add_subpackage('feature_selection') config.add_subpackage('feature_selection/tests') config.add_subpackage('utils') config.add_subpackage('utils/tests') config.add_subpackage('externals') config.add_subpackage('mixture') config.add_subpackage('mixture/tests') config.add_subpackage('gaussian_process') config.add_subpackage('gaussian_process/tests') config.add_subpackage('neighbors') config.add_subpackage('neural_network') config.add_subpackage('preprocessing') config.add_subpackage('manifold') config.add_subpackage('metrics') config.add_subpackage('semi_supervised') config.add_subpackage("tree") config.add_subpackage("tree/tests") config.add_subpackage('metrics/tests') config.add_subpackage('metrics/cluster') config.add_subpackage('metrics/cluster/tests') # add cython extension module for isotonic regression config.add_extension( '_isotonic', sources=['_isotonic.c'], include_dirs=[numpy.get_include()], libraries=libraries, ) # some libs needs cblas, fortran-compiled BLAS will not be sufficient blas_info = get_info('blas_opt', 0) if (not blas_info) or ( ('NO_ATLAS_INFO', 1) in blas_info.get('define_macros', [])): config.add_library('cblas', sources=[join('src', 'cblas', '*.c')]) warnings.warn(BlasNotFoundError.__doc__) # the following packages depend on cblas, so they have to be build # after the above. config.add_subpackage('linear_model') config.add_subpackage('utils') # add the test directory config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
tmhm/scikit-learn
examples/svm/plot_svm_scale_c.py
223
5375
""" ============================================== Scaling the regularization parameter for SVCs ============================================== The following example illustrates the effect of scaling the regularization parameter when using :ref:`svm` for :ref:`classification <svm_classification>`. For SVC classification, we are interested in a risk minimization for the equation: .. math:: C \sum_{i=1, n} \mathcal{L} (f(x_i), y_i) + \Omega (w) where - :math:`C` is used to set the amount of regularization - :math:`\mathcal{L}` is a `loss` function of our samples and our model parameters. - :math:`\Omega` is a `penalty` function of our model parameters If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for each sample, will increase as we add more samples. The penalization term, however, will not increase. When using, for example, :ref:`cross validation <cross_validation>`, to set the amount of regularization with `C`, there will be a different amount of samples between the main problem and the smaller problems within the folds of the cross validation. Since our loss function is dependent on the amount of samples, the latter will influence the selected value of `C`. The question that arises is `How do we optimally adjust C to account for the different amount of training samples?` The figures below are used to illustrate the effect of scaling our `C` to compensate for the change in the number of samples, in the case of using an `l1` penalty, as well as the `l2` penalty. l1-penalty case ----------------- In the `l1` case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts as well as a model knowing the true distribution) is not possible because of the bias of the `l1`. It does say, however, that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved by scaling `C1`. l2-penalty case ----------------- The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the number of samples grow. Simulations ------------ The two figures below plot the values of `C` on the `x-axis` and the corresponding cross-validation scores on the `y-axis`, for several different fractions of a generated data-set. In the `l1` penalty case, the cross-validation-error correlates best with the test-error, when scaling our `C` with the number of samples, `n`, which can be seen in the first figure. For the `l2` penalty case, the best result comes from the case where `C` is not scaled. .. topic:: Note: Two separate datasets are used for the two different plots. The reason behind this is the `l1` case works better on sparse data, while `l2` is better suited to the non-sparse case. """ print(__doc__) # Author: Andreas Mueller <[email protected]> # Jaques Grobler <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.cross_validation import ShuffleSplit from sklearn.grid_search import GridSearchCV from sklearn.utils import check_random_state from sklearn import datasets rnd = check_random_state(1) # set up dataset n_samples = 100 n_features = 300 # l1 data (only 5 informative features) X_1, y_1 = datasets.make_classification(n_samples=n_samples, n_features=n_features, n_informative=5, random_state=1) # l2 data: non sparse, but less features y_2 = np.sign(.5 - rnd.rand(n_samples)) X_2 = rnd.randn(n_samples, n_features / 5) + y_2[:, np.newaxis] X_2 += 5 * rnd.randn(n_samples, n_features / 5) clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False, tol=1e-3), np.logspace(-2.3, -1.3, 10), X_1, y_1), (LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=1e-4), np.logspace(-4.5, -2, 10), X_2, y_2)] colors = ['b', 'g', 'r', 'c'] for fignum, (clf, cs, X, y) in enumerate(clf_sets): # set up the plot for each regressor plt.figure(fignum, figsize=(9, 10)) for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]): param_grid = dict(C=cs) # To get nice curve, we need a large number of iterations to # reduce the variance grid = GridSearchCV(clf, refit=False, param_grid=param_grid, cv=ShuffleSplit(n=n_samples, train_size=train_size, n_iter=250, random_state=1)) grid.fit(X, y) scores = [x[1] for x in grid.grid_scores_] scales = [(1, 'No scaling'), ((n_samples * train_size), '1/n_samples'), ] for subplotnum, (scaler, name) in enumerate(scales): plt.subplot(2, 1, subplotnum + 1) plt.xlabel('C') plt.ylabel('CV Score') grid_cs = cs * float(scaler) # scale the C's plt.semilogx(grid_cs, scores, label="fraction %.2f" % train_size) plt.title('scaling=%s, penalty=%s, loss=%s' % (name, clf.penalty, clf.loss)) plt.legend(loc="best") plt.show()
bsd-3-clause
thunderhoser/GewitterGefahr
gewittergefahr/plotting/radar_plotting.py
1
35709
"""Plotting methods for radar data.""" import copy import numpy from matplotlib import pyplot import matplotlib.colors from gewittergefahr.gg_utils import grids from gewittergefahr.gg_utils import radar_utils from gewittergefahr.gg_utils import error_checking from gewittergefahr.deep_learning import input_examples from gewittergefahr.plotting import plotting_utils SHEAR_VORT_DIV_NAMES = [ radar_utils.VORTICITY_NAME, radar_utils.DIVERGENCE_NAME, radar_utils.LOW_LEVEL_SHEAR_NAME, radar_utils.MID_LEVEL_SHEAR_NAME ] METRES_TO_KM = 0.001 KM_TO_KILOFEET = 3.2808 PER_SECOND_TO_PER_KILOSECOND = 1e3 DEFAULT_FONT_SIZE = 20 DEFAULT_OPACITY = 1. DEFAULT_COLOUR_BAR_LENGTH = 0.8 TEXT_BOUNDING_BOX_DICT = { 'facecolor': 'white', 'alpha': 0.7, 'edgecolor': 'black', 'linewidth': 2, 'boxstyle': 'round' } def _get_friendly_colours(): """Returns colours in colourblind-friendly scheme used by GridRad viewer. :return: colour_list: 1-D list, where each element is a numpy array with the [R, G, B] values in that order. """ colour_list = [ [242, 247, 233], [220, 240, 212], [193, 233, 196], [174, 225, 196], [156, 218, 205], [138, 200, 211], [122, 163, 204], [106, 119, 196], [112, 92, 189], [137, 78, 182], [167, 64, 174], [167, 52, 134], [160, 41, 83], [153, 30, 30] ] for i in range(len(colour_list)): colour_list[i] = numpy.array(colour_list[i], dtype=float) / 255 return colour_list def _get_modern_colours(): """Returns colours in "modern" scheme used by GridRad viewer. :return: colour_list: See doc for `_get_friendly_colours`. """ colour_list = [ [0, 0, 0], [64, 64, 64], [131, 131, 131], [0, 24, 255], [0, 132, 255], [0, 255, 255], [5, 192, 127], [5, 125, 0], [105, 192, 0], [255, 255, 0], [255, 147, 8], [255, 36, 15], [255, 0, 255], [255, 171, 255] ] for i in range(len(colour_list)): colour_list[i] = numpy.array(colour_list[i], dtype=float) / 255 return colour_list def _get_reflectivity_colour_scheme(): """Returns colour scheme for reflectivity. :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ colour_list = [ [4, 233, 231], [1, 159, 244], [3, 0, 244], [2, 253, 2], [1, 197, 1], [0, 142, 0], [253, 248, 2], [229, 188, 0], [253, 149, 0], [253, 0, 0], [212, 0, 0], [188, 0, 0], [248, 0, 253], [152, 84, 198] ] for i in range(len(colour_list)): colour_list[i] = numpy.array(colour_list[i], dtype=float) / 255 colour_map_object = matplotlib.colors.ListedColormap(colour_list) colour_map_object.set_under(numpy.full(3, 1)) colour_bounds_dbz = numpy.array([ 0.1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 ]) colour_norm_object = matplotlib.colors.BoundaryNorm( colour_bounds_dbz, colour_map_object.N) return colour_map_object, colour_norm_object def _get_zdr_colour_scheme(): """Returns colour scheme for Z_DR (differential reflectivity). :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ colour_list = _get_modern_colours() colour_map_object = matplotlib.colors.ListedColormap(colour_list) colour_bounds_db = numpy.array([ -1, -0.5, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4 ]) colour_norm_object = matplotlib.colors.BoundaryNorm( colour_bounds_db, colour_map_object.N) return colour_map_object, colour_norm_object def _get_kdp_colour_scheme(): """Returns colour scheme for K_DP (specific differential phase). :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ colour_list = _get_modern_colours() colour_map_object = matplotlib.colors.ListedColormap(colour_list) colour_bounds_deg_km01 = numpy.array([ -1, -0.5, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4 ]) colour_norm_object = matplotlib.colors.BoundaryNorm( colour_bounds_deg_km01, colour_map_object.N) return colour_map_object, colour_norm_object def _get_rho_hv_colour_scheme(): """Returns colour scheme for rho_hv (cross-polar correlation coefficient). :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ colour_list = _get_modern_colours() colour_map_object = matplotlib.colors.ListedColormap(colour_list) colour_map_object.set_under(numpy.full(3, 1)) colour_bounds_unitless = numpy.array([ 0.7, 0.75, 0.8, 0.85, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1 ]) colour_norm_object = matplotlib.colors.BoundaryNorm( colour_bounds_unitless, colour_map_object.N) return colour_map_object, colour_norm_object def _get_spectrum_width_colour_scheme(): """Returns colour scheme for velocity-spectrum width. :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ colour_list = _get_friendly_colours() colour_map_object = matplotlib.colors.ListedColormap(colour_list) colour_map_object.set_under(numpy.full(3, 1)) colour_bounds_m_s01 = numpy.array([ 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10 ]) colour_norm_object = matplotlib.colors.BoundaryNorm( colour_bounds_m_s01, colour_map_object.N) return colour_map_object, colour_norm_object def _get_vorticity_colour_scheme(): """Returns colour scheme for vorticity. :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ colour_list = [ [0, 0, 76.5], [0, 0, 118.5], [0, 0, 163.3], [0, 0, 208.1], [0, 0, 252.9], [61, 61, 255], [125, 125, 255], [189, 189, 255], [253, 253, 255], [255, 193, 193], [255, 129, 129], [255, 65, 65], [255, 1, 1], [223.5, 0, 0], [191.5, 0, 0], [159.5, 0, 0], [127.5, 0, 0], [95.5, 0, 0] ] for i in range(len(colour_list)): colour_list[i] = numpy.array(colour_list[i], dtype=float) / 255 colour_map_object = matplotlib.colors.ListedColormap(colour_list) colour_bounds_ks01 = numpy.array([ -7, -6, -5, -4, -3, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7 ]) colour_norm_object = matplotlib.colors.BoundaryNorm( colour_bounds_ks01, colour_map_object.N) return colour_map_object, colour_norm_object def _get_az_shear_colour_scheme(): """Returns colour scheme for azimuthal shear. :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ colour_list = [ [0, 0, 76.5], [0, 0, 118.5], [0, 0, 163.3], [0, 0, 208.1], [0, 0, 252.9], [61, 61, 255], [125, 125, 255], [189, 189, 255], [253, 253, 255], [255, 193, 193], [255, 129, 129], [255, 65, 65], [255, 1, 1], [223.5, 0, 0], [191.5, 0, 0], [159.5, 0, 0], [127.5, 0, 0], [95.5, 0, 0] ] for i in range(len(colour_list)): colour_list[i] = numpy.array(colour_list[i], dtype=float) / 255 colour_map_object = matplotlib.colors.ListedColormap(colour_list) colour_bounds_ks01 = 2 * numpy.array([ -7, -6, -5, -4, -3, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7 ]) colour_norm_object = matplotlib.colors.BoundaryNorm( colour_bounds_ks01, colour_map_object.N) return colour_map_object, colour_norm_object def _get_divergence_colour_scheme(): """Returns colour scheme for divergence. :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ return _get_vorticity_colour_scheme() def _get_echo_top_colour_scheme(): """Returns colour scheme for echo top. :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ colour_list = [ [120, 120, 120], [16, 220, 244], [11, 171, 247], [9, 144, 202], [48, 6, 134], [4, 248, 137], [10, 185, 6], [1, 241, 8], [255, 186, 1], [255, 251, 0], [132, 17, 22], [233, 16, 1] ] for i in range(len(colour_list)): colour_list[i] = numpy.array(colour_list[i], dtype=float) / 255 colour_map_object = matplotlib.colors.ListedColormap(colour_list) colour_map_object.set_under(numpy.full(3, 1)) colour_bounds_kft = numpy.array([ 0.1, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 ]) colour_norm_object = matplotlib.colors.BoundaryNorm( colour_bounds_kft, colour_map_object.N) return colour_map_object, colour_norm_object def _get_mesh_colour_scheme(): """Returns colour scheme for MESH (maximum estimated size of hail). :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ colour_list = [ [152, 152, 152], [152, 203, 254], [0, 152, 254], [0, 45, 254], [0, 101, 0], [0, 152, 0], [0, 203, 0], [254, 254, 50], [254, 203, 0], [254, 152, 0], [254, 0, 0], [254, 0, 152], [152, 50, 203] ] for i in range(len(colour_list)): colour_list[i] = numpy.array(colour_list[i], dtype=float) / 255 colour_map_object = matplotlib.colors.ListedColormap(colour_list) colour_map_object.set_under(numpy.full(3, 1)) colour_bounds_mm = numpy.array([ 0.1, 15.9, 22.2, 28.6, 34.9, 41.3, 47.6, 54, 60.3, 65, 70, 75, 80, 85 ]) colour_norm_object = matplotlib.colors.BoundaryNorm( colour_bounds_mm, colour_map_object.N) return colour_map_object, colour_norm_object def _get_shi_colour_scheme(): """Returns colour scheme for SHI (severe-hail index). :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ colour_list = [ [152, 152, 152], [152, 203, 254], [0, 152, 254], [0, 45, 254], [0, 101, 0], [0, 152, 0], [0, 203, 0], [254, 254, 50], [254, 203, 0], [254, 152, 0], [254, 0, 0], [254, 0, 152], [152, 50, 203], [101, 0, 152] ] for i in range(len(colour_list)): colour_list[i] = numpy.array(colour_list[i], dtype=float) / 255 colour_map_object = matplotlib.colors.ListedColormap(colour_list) colour_map_object.set_under(numpy.full(3, 1)) colour_bounds_unitless = numpy.array([ 1, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420 ]) colour_norm_object = matplotlib.colors.BoundaryNorm( colour_bounds_unitless, colour_map_object.N) return colour_map_object, colour_norm_object def _get_vil_colour_scheme(): """Returns colour scheme for VIL (vertically integrated liquid). :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ colour_list = [ [16, 71, 101], [0, 99, 132], [46, 132, 181], [74, 166, 218], [122, 207, 255], [179, 0, 179], [222, 83, 222], [255, 136, 255], [253, 191, 253], [255, 96, 0], [255, 128, 32], [255, 208, 0], [180, 0, 0], [224, 0, 0] ] for i in range(len(colour_list)): colour_list[i] = numpy.array(colour_list[i], dtype=float) / 255 colour_map_object = matplotlib.colors.ListedColormap(colour_list) colour_map_object.set_under(numpy.full(3, 1)) colour_bounds_mm = numpy.array([ 0.1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 ]) colour_norm_object = matplotlib.colors.BoundaryNorm( colour_bounds_mm, colour_map_object.N) return colour_map_object, colour_norm_object def _field_to_plotting_units(field_matrix, field_name): """Converts radar field from default units to plotting units. :param field_matrix: numpy array in default units. :param field_name: Name of radar field (must be accepted by `radar_utils.check_field_name`). :return: new_field_matrix: Same as input, except in plotting units. """ radar_utils.check_field_name(field_name) if field_name in radar_utils.ECHO_TOP_NAMES: return field_matrix * KM_TO_KILOFEET if field_name in SHEAR_VORT_DIV_NAMES: return field_matrix * PER_SECOND_TO_PER_KILOSECOND return field_matrix def _field_name_to_plotting_units(field_name): """Converts field *name* from default units to plotting units. :param field_name: Name of radar field (must be accepted by `radar_utils.check_field_name`). :return: new_field_name: Same as input, except in plotting units. """ radar_utils.check_field_name(field_name) if field_name in radar_utils.ECHO_TOP_NAMES: return field_name.replace('_km', '_kft') if field_name in SHEAR_VORT_DIV_NAMES: return field_name.replace('_s01', '_ks01') return field_name def field_name_to_verbose(field_name, include_units=True): """Converts field name from default format to verbose. :param field_name: See doc for `radar_utils.field_name_to_verbose`. :param include_units: Same. :return: field_name_verbose: Same. """ field_name_verbose = radar_utils.field_name_to_verbose( field_name=field_name, include_units=include_units) return field_name_verbose.replace('(m ASL)', '(kft ASL)').replace( '(s', '(ks') def layer_operations_to_names( list_of_layer_operation_dicts, include_units=True): """Converts list of layer operations to list of field and panel names. P = number of layer operations = number of panels :param list_of_layer_operation_dicts: See doc for `input_examples.reduce_examples_3d_to_2d`. :param include_units: Boolean flag. If True, panel names will include units. :return: field_name_by_panel: length-P list with names of radar fields. :return: panel_names: length-P list of panel names (to be printed at bottoms of panels). """ error_checking.assert_is_boolean(include_units) num_panels = len(list_of_layer_operation_dicts) field_name_by_panel = [''] * num_panels panel_names = [''] * num_panels for i in range(num_panels): this_operation_dict = list_of_layer_operation_dicts[i] field_name_by_panel[i] = this_operation_dict[ input_examples.RADAR_FIELD_KEY] this_field_name_verbose = field_name_to_verbose( field_name=field_name_by_panel[i], include_units=include_units) this_min_height_km_agl = int(numpy.round( this_operation_dict[input_examples.MIN_HEIGHT_KEY] * METRES_TO_KM )) this_max_height_km_agl = int(numpy.round( this_operation_dict[input_examples.MAX_HEIGHT_KEY] * METRES_TO_KM )) panel_names[i] = '{0:s}\n{1:s} from {2:d}-{3:d} km AGL'.format( this_field_name_verbose, this_operation_dict[input_examples.OPERATION_NAME_KEY].upper(), this_min_height_km_agl, this_max_height_km_agl ) return field_name_by_panel, panel_names def fields_and_heights_to_names( field_names, heights_m_agl, include_units=True): """Converts list of radar field/height pairs to panel names. P = number of panels :param field_names: length-P list with names of radar fields. Each must be accepted by `radar_utils.check_field_name`. :param heights_m_agl: length-P numpy array of heights (metres above ground level). :param include_units: Boolean flag. If True, panel names will include units. :return: panel_names: length-P list of panel names (to be printed at bottoms of panels). """ error_checking.assert_is_boolean(include_units) error_checking.assert_is_string_list(field_names) error_checking.assert_is_numpy_array( numpy.array(field_names), num_dimensions=1) num_panels = len(field_names) error_checking.assert_is_numpy_array( heights_m_agl, exact_dimensions=numpy.array([num_panels]) ) error_checking.assert_is_geq_numpy_array(heights_m_agl, 0.) heights_m_agl = numpy.round(heights_m_agl).astype(int) panel_names = [''] * num_panels for i in range(num_panels): this_field_name_verbose = field_name_to_verbose( field_name=field_names[i], include_units=include_units) panel_names[i] = '{0:s}\nat {1:d} km AGL'.format( this_field_name_verbose, int(numpy.round(heights_m_agl[i] * METRES_TO_KM)) ) return panel_names def get_default_colour_scheme(field_name, opacity=DEFAULT_OPACITY): """Returns default colour scheme for radar field. :param field_name: Field name (must be accepted by `radar_utils.check_field_name`). :param opacity: Opacity (in range 0...1). :return: colour_map_object: Instance of `matplotlib.colors.ListedColormap`. :return: colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. """ radar_utils.check_field_name(field_name) error_checking.assert_is_greater(opacity, 0.) error_checking.assert_is_leq(opacity, 1.) colour_map_object = None colour_norm_object = None if field_name in radar_utils.REFLECTIVITY_NAMES: colour_map_object, colour_norm_object = ( _get_reflectivity_colour_scheme() ) elif field_name in radar_utils.SHEAR_NAMES: colour_map_object, colour_norm_object = _get_az_shear_colour_scheme() elif field_name in radar_utils.ECHO_TOP_NAMES: colour_map_object, colour_norm_object = _get_echo_top_colour_scheme() elif field_name == radar_utils.MESH_NAME: colour_map_object, colour_norm_object = _get_mesh_colour_scheme() elif field_name == radar_utils.SHI_NAME: colour_map_object, colour_norm_object = _get_shi_colour_scheme() elif field_name == radar_utils.VIL_NAME: colour_map_object, colour_norm_object = _get_vil_colour_scheme() elif field_name == radar_utils.DIFFERENTIAL_REFL_NAME: colour_map_object, colour_norm_object = _get_zdr_colour_scheme() elif field_name == radar_utils.SPEC_DIFF_PHASE_NAME: colour_map_object, colour_norm_object = _get_kdp_colour_scheme() elif field_name == radar_utils.CORRELATION_COEFF_NAME: colour_map_object, colour_norm_object = _get_rho_hv_colour_scheme() elif field_name == radar_utils.SPECTRUM_WIDTH_NAME: colour_map_object, colour_norm_object = ( _get_spectrum_width_colour_scheme() ) elif field_name == radar_utils.VORTICITY_NAME: colour_map_object, colour_norm_object = _get_vorticity_colour_scheme() elif field_name == radar_utils.DIVERGENCE_NAME: colour_map_object, colour_norm_object = _get_divergence_colour_scheme() num_colours = len(colour_map_object.colors) for i in range(num_colours): colour_map_object.colors[i] = matplotlib.colors.to_rgba( colour_map_object.colors[i], opacity ) return colour_map_object, colour_norm_object def plot_latlng_grid( field_matrix, field_name, axes_object, min_grid_point_latitude_deg, min_grid_point_longitude_deg, latitude_spacing_deg, longitude_spacing_deg, colour_map_object=None, colour_norm_object=None, refl_opacity=DEFAULT_OPACITY): """Plots lat-long grid as colour map. M = number of rows (unique grid-point latitudes) N = number of columns (unique grid-point longitudes) Because this method plots a lat-long grid (rather than an x-y grid), if you have used Basemap to plot borders or anything else, the only acceptable projection is cylindrical equidistant (in which x = longitude and y = latitude, so no coordinate conversion is necessary). To use the default colour scheme for the given radar field, leave `colour_map_object` and `colour_norm_object` empty. :param field_matrix: M-by-N numpy array with values of radar field. :param field_name: Name of radar field (must be accepted by `radar_utils.check_field_name`). :param axes_object: Instance of `matplotlib.axes._subplots.AxesSubplot`. :param min_grid_point_latitude_deg: Minimum latitude (deg N) over all grid points. This should be the latitude in the first row of `field_matrix` -- i.e., at `field_matrix[0, :]`. :param min_grid_point_longitude_deg: Minimum longitude (deg E) over all grid points. This should be the longitude in the first column of `field_matrix` -- i.e., at `field_matrix[:, 0]`. :param latitude_spacing_deg: Spacing (deg N) between grid points in adjacent rows. :param longitude_spacing_deg: Spacing (deg E) between grid points in adjacent columns. :param colour_map_object: Instance of `matplotlib.pyplot.cm`. If this is None, the default colour scheme for `field_name` will be used. :param colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`. If this is None, the default colour scheme for `field_name` will be used. :param refl_opacity: Opacity for reflectivity colour scheme. Used only if `colour_map_object is None and colour_norm_object is None`. """ field_matrix = _field_to_plotting_units( field_matrix=field_matrix, field_name=field_name) (field_matrix_at_edges, grid_cell_edge_latitudes_deg, grid_cell_edge_longitudes_deg ) = grids.latlng_field_grid_points_to_edges( field_matrix=field_matrix, min_latitude_deg=min_grid_point_latitude_deg, min_longitude_deg=min_grid_point_longitude_deg, lat_spacing_deg=latitude_spacing_deg, lng_spacing_deg=longitude_spacing_deg) field_matrix_at_edges = numpy.ma.masked_where( numpy.isnan(field_matrix_at_edges), field_matrix_at_edges) use_default_colour_scheme = ( colour_map_object is None or colour_norm_object is None ) if use_default_colour_scheme: opacity = ( refl_opacity if field_name in radar_utils.REFLECTIVITY_NAMES else DEFAULT_OPACITY ) colour_map_object, colour_norm_object = get_default_colour_scheme( field_name=field_name, opacity=opacity) else: if hasattr(colour_norm_object, 'boundaries'): colour_norm_object.boundaries = _field_to_plotting_units( field_matrix=colour_norm_object.boundaries, field_name=field_name) else: colour_norm_object.vmin = _field_to_plotting_units( field_matrix=colour_norm_object.vmin, field_name=field_name) colour_norm_object.vmax = _field_to_plotting_units( field_matrix=colour_norm_object.vmax, field_name=field_name) if hasattr(colour_norm_object, 'boundaries'): min_colour_value = colour_norm_object.boundaries[0] max_colour_value = colour_norm_object.boundaries[-1] else: min_colour_value = colour_norm_object.vmin max_colour_value = colour_norm_object.vmax pyplot.pcolormesh( grid_cell_edge_longitudes_deg, grid_cell_edge_latitudes_deg, field_matrix_at_edges, cmap=colour_map_object, norm=colour_norm_object, vmin=min_colour_value, vmax=max_colour_value, shading='flat', edgecolors='None', axes=axes_object, zorder=-1e11) def plot_2d_grid_without_coords( field_matrix, field_name, axes_object, plot_grid_lines=True, font_size=DEFAULT_FONT_SIZE, annotation_string=None, colour_map_object=None, colour_norm_object=None, refl_opacity=DEFAULT_OPACITY): """Plots 2-D grid as colour map. In this case the grid is not georeferenced (convenient for storm-centered radar images). To use the default colour scheme for the given radar field, leave `colour_map_object` and `colour_norm_object` empty. :param field_matrix: See doc for `plot_latlng_grid`. :param field_name: Same. :param axes_object: Same. :param plot_grid_lines: Boolean flag. If True, will plot grid lines on radar image. :param font_size: Font size for annotation. :param annotation_string: Annotation (will be printed in the bottom-center). If you want no annotation, leave this alone. :param colour_map_object: See doc for `plot_latlng_grid`. :param colour_norm_object: Same. :param refl_opacity: Same. :return: colour_map_object: Same as input, except default might have been set. :return: colour_norm_object: Same as input, except default might have been set. """ error_checking.assert_is_numpy_array_without_nan(field_matrix) error_checking.assert_is_numpy_array(field_matrix, num_dimensions=2) error_checking.assert_is_boolean(plot_grid_lines) field_matrix = _field_to_plotting_units( field_matrix=field_matrix, field_name=field_name) field_matrix = numpy.ma.masked_where( numpy.isnan(field_matrix), field_matrix ) use_default_colour_scheme = ( colour_map_object is None or colour_norm_object is None ) if use_default_colour_scheme: opacity = ( refl_opacity if field_name in radar_utils.REFLECTIVITY_NAMES else DEFAULT_OPACITY ) colour_map_object, colour_norm_object = get_default_colour_scheme( field_name=field_name, opacity=opacity) else: if hasattr(colour_norm_object, 'boundaries'): colour_norm_object.boundaries = _field_to_plotting_units( field_matrix=colour_norm_object.boundaries, field_name=field_name) else: colour_norm_object.vmin = _field_to_plotting_units( field_matrix=colour_norm_object.vmin, field_name=field_name) colour_norm_object.vmax = _field_to_plotting_units( field_matrix=colour_norm_object.vmax, field_name=field_name) if hasattr(colour_norm_object, 'boundaries'): min_colour_value = colour_norm_object.boundaries[0] max_colour_value = colour_norm_object.boundaries[-1] else: min_colour_value = colour_norm_object.vmin max_colour_value = colour_norm_object.vmax axes_object.pcolormesh( field_matrix, cmap=colour_map_object, norm=colour_norm_object, vmin=min_colour_value, vmax=max_colour_value, shading='flat', edgecolors='None', zorder=-1e11) if plot_grid_lines: x_coord_limits = axes_object.get_xlim() x_grid_coords = numpy.linspace( x_coord_limits[0], x_coord_limits[1], num=5, dtype=float )[1:-1] y_coord_limits = axes_object.get_ylim() y_grid_coords = numpy.linspace( y_coord_limits[0], y_coord_limits[1], num=5, dtype=float )[1:-1] axes_object.set_xticks(x_grid_coords) axes_object.set_yticks(y_grid_coords) axes_object.grid( b=True, which='major', axis='both', linestyle='--', linewidth=2) axes_object.xaxis.set_ticklabels([]) axes_object.yaxis.set_ticklabels([]) axes_object.xaxis.set_ticks_position('none') axes_object.yaxis.set_ticks_position('none') if annotation_string is not None: error_checking.assert_is_string(annotation_string) axes_object.text( 0.5, 0.01, annotation_string, fontsize=font_size, color='k', bbox=TEXT_BOUNDING_BOX_DICT, horizontalalignment='center', verticalalignment='bottom', transform=axes_object.transAxes, zorder=1e10) return colour_map_object, colour_norm_object def plot_many_2d_grids( data_matrix, field_names, axes_objects, panel_names=None, plot_grid_lines=True, colour_map_objects=None, colour_norm_objects=None, refl_opacity=DEFAULT_OPACITY, plot_colour_bar_flags=None, panel_name_font_size=DEFAULT_FONT_SIZE, colour_bar_font_size=DEFAULT_FONT_SIZE, colour_bar_length=DEFAULT_COLOUR_BAR_LENGTH): """Plots many 2-D grids in paneled figure. M = number of rows in grid N = number of columns in grid C = number of fields :param data_matrix: M-by-N-by-C numpy array of radar values. :param field_names: length-C list of field names. :param axes_objects: length-C list of axes handles (instances of `matplotlib.axes._subplots.AxesSubplot`). :param panel_names: length-C list of panel names (to be printed at bottom of each panel). If None, panel names will not be printed. :param plot_grid_lines: Boolean flag. If True, will plot grid lines over radar images. :param colour_map_objects: length-C list of colour schemes (instances of `matplotlib.pyplot.cm` or similar). If None, will use default colour scheme for each field. :param colour_norm_objects: length-C list of colour-normalizers (instances of `matplotlib.colors.BoundaryNorm` or similar). If None, will use default normalizer for each field. :param refl_opacity: Opacity for reflectivity colour scheme. Used only if `colour_map_objects is None and colour_norm_objects is None`. :param plot_colour_bar_flags: length-C numpy array of Boolean flags. If `plot_colour_bar_flags[k] == True`, will plot colour bar for [k]th panel. If None, will plot no colour bars. :param panel_name_font_size: Font size for panel names. :param colour_bar_font_size: Font size for colour-bar tick marks. :param colour_bar_length: Length of colour bars (as fraction of axis length). :return: colour_bar_objects: length-C list of colour bars. If `plot_colour_bar_flags[k] == False`, colour_bar_objects[k] will be None. """ error_checking.assert_is_numpy_array(data_matrix, num_dimensions=3) num_fields = data_matrix.shape[-1] these_expected_dim = numpy.array([num_fields], dtype=int) error_checking.assert_is_string_list(field_names) error_checking.assert_is_numpy_array( numpy.array(field_names), exact_dimensions=these_expected_dim ) error_checking.assert_is_numpy_array( numpy.array(axes_objects), exact_dimensions=these_expected_dim ) if panel_names is None: panel_names = [None] * num_fields else: error_checking.assert_is_string_list(panel_names) error_checking.assert_is_numpy_array( numpy.array(panel_names), exact_dimensions=these_expected_dim ) if colour_map_objects is None or colour_norm_objects is None: colour_map_objects = [None] * num_fields colour_norm_objects = [None] * num_fields else: error_checking.assert_is_numpy_array( numpy.array(colour_map_objects), exact_dimensions=these_expected_dim ) error_checking.assert_is_numpy_array( numpy.array(colour_norm_objects), exact_dimensions=these_expected_dim ) if plot_colour_bar_flags is None: plot_colour_bar_flags = numpy.full(num_fields, 0, dtype=bool) error_checking.assert_is_boolean_numpy_array(plot_colour_bar_flags) error_checking.assert_is_numpy_array( plot_colour_bar_flags, exact_dimensions=these_expected_dim) colour_bar_objects = [None] * num_fields for k in range(num_fields): this_colour_map_object, this_colour_norm_object = ( plot_2d_grid_without_coords( field_matrix=data_matrix[..., k], field_name=field_names[k], axes_object=axes_objects[k], annotation_string=panel_names[k], font_size=panel_name_font_size, plot_grid_lines=plot_grid_lines, colour_map_object=copy.deepcopy(colour_map_objects[k]), colour_norm_object=copy.deepcopy(colour_norm_objects[k]), refl_opacity=refl_opacity ) ) if not plot_colour_bar_flags[k]: continue colour_bar_objects[k] = plotting_utils.plot_colour_bar( axes_object_or_matrix=axes_objects[k], data_matrix=data_matrix[..., k], colour_map_object=this_colour_map_object, colour_norm_object=this_colour_norm_object, orientation_string='horizontal', font_size=colour_bar_font_size, fraction_of_axis_length=colour_bar_length, extend_min=field_names[k] in SHEAR_VORT_DIV_NAMES, extend_max=True ) return colour_bar_objects def plot_3d_grid( data_matrix, axes_objects, field_name, heights_metres, ground_relative, plot_panel_names=True, plot_grid_lines=True, colour_map_object=None, colour_norm_object=None, refl_opacity=DEFAULT_OPACITY, panel_name_font_size=DEFAULT_FONT_SIZE): """Plots 3-D grid in paneled figure (one height per panel). M = number of rows in grid N = number of columns in grid H = number of heights in grid :param data_matrix: M-by-N-by-H numpy array of radar values. :param axes_objects: length-H list of axes handles (instances of `matplotlib.axes._subplots.AxesSubplot`). :param field_name: Name of radar field. :param heights_metres: length-H numpy array of heights. :param ground_relative: Boolean flag. If True, heights are ground-relative. If False, heights are sea-level-relative. :param plot_panel_names: Boolean flag. If True, will plot height (example: "3 km AGL") at bottom of each panel. :param plot_grid_lines: See doc for `plot_2d_grid_without_coords`. :param colour_map_object: Same. :param colour_norm_object: Same. :param refl_opacity: Same. :param panel_name_font_size: Font size for panel names. """ error_checking.assert_is_numpy_array(data_matrix, num_dimensions=3) num_heights = data_matrix.shape[-1] these_expected_dim = numpy.array([num_heights], dtype=int) error_checking.assert_is_numpy_array( numpy.array(axes_objects), exact_dimensions=these_expected_dim ) error_checking.assert_is_geq_numpy_array(heights_metres, 0.) error_checking.assert_is_numpy_array( numpy.array(heights_metres), exact_dimensions=these_expected_dim ) error_checking.assert_is_boolean(ground_relative) error_checking.assert_is_boolean(plot_panel_names) for k in range(num_heights): if plot_panel_names: this_panel_name = '{0:d} km {1:s}'.format( int(numpy.round(heights_metres[k] * METRES_TO_KM)), 'AGL' if ground_relative else 'ASL' ) else: this_panel_name = None this_colour_norm_object = ( colour_norm_object if k == num_heights - 1 else copy.deepcopy(colour_norm_object) ) plot_2d_grid_without_coords( field_matrix=data_matrix[..., k], field_name=field_name, axes_object=axes_objects[k], annotation_string=this_panel_name, plot_grid_lines=plot_grid_lines, colour_map_object=colour_map_object, colour_norm_object=this_colour_norm_object, refl_opacity=refl_opacity, font_size=panel_name_font_size)
mit
anand-c-goog/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_test.py
5
39527
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np import tensorflow as tf from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.python.ops import math_ops def _prepare_iris_data_for_logistic_regression(): # Converts iris data to a logistic regression problem. iris = tf.contrib.learn.datasets.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) iris = tf.contrib.learn.datasets.base.Dataset(data=iris.data[ids], target=iris.target[ids]) return iris def _iris_input_logistic_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[100, 1], dtype=tf.int32) def _iris_input_multiclass_fn(): iris = tf.contrib.learn.datasets.load_iris() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[150, 1], dtype=tf.int32) class DNNClassifierTest(tf.test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, tf.contrib.learn.DNNClassifier) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] classifier = tf.contrib.learn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_iris_input_logistic_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_logistic_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) self.assertLess(scores['loss'], 0.3) def testLogisticRegression_MatrixData_Target1D(self): """Same as the last test, but target shape is [100] instead of [100, 1].""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[100], dtype=tf.int32) cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] classifier = tf.contrib.learn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = _prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [tf.contrib.layers.real_valued_column('', dimension=4)] classifier = tf.contrib.learn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.8) def testLogisticRegression_TensorData(self): """Tests binary classification using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([[1], [0], [0]], dtype=tf.int32) language_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ tf.contrib.layers.embedding_column(language_column, dimension=1), tf.contrib.layers.real_valued_column('age') ] classifier = tf.contrib.learn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) self.assertLess(scores['loss'], 0.3) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertListEqual(predictions, [1, 0, 0]) def testLogisticRegression_FloatLabel(self): """Tests binary classification with float labels.""" def _input_fn_float_label(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[50], [20], [10]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } target = tf.constant([[0.8], [0.], [0.2]], dtype=tf.float32) return features, target language_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ tf.contrib.layers.embedding_column(language_column, dimension=1), tf.contrib.layers.real_valued_column('age') ] classifier = tf.contrib.learn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_float_label, steps=1000) predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn, as_iterable=True)) # Prediction probabilities mirror the target column, which proves that the # classifier learns from float input. self.assertAllClose( predictions_proba, [[0.2, 0.8], [1., 0.], [0.8, 0.2]], atol=0.05) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertListEqual(predictions, [1, 0, 0]) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] classifier = tf.contrib.learn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_iris_input_multiclass_fn, steps=200) self.assertTrue('centered_bias_weight' in classifier.get_variable_names()) scores = classifier.evaluate(input_fn=_iris_input_multiclass_fn, steps=1) self.assertGreater(scores['accuracy'], 0.8) self.assertLess(scores['loss'], 0.3) def testMultiClass_MatrixData_Target1D(self): """Same as the last test, but target shape is [150] instead of [150, 1].""" def _input_fn(): iris = tf.contrib.learn.datasets.load_iris() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[150], dtype=tf.int32) cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] classifier = tf.contrib.learn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.8) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = tf.contrib.learn.datasets.load_iris() train_x = iris.data train_y = iris.target feature_columns = [tf.contrib.layers.real_valued_column('', dimension=4)] classifier = tf.contrib.learn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) classifier.fit(x=train_x, y=train_y, steps=200) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.8) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). target = tf.constant([[1], [0], [0], [0]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), } return features, target classifier = tf.contrib.learn.DNNClassifier( n_classes=2, feature_columns=[tf.contrib.layers.real_valued_column('x')], hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Cross entropy = -0.25*log(0.25)-0.75*log(0.75) = 0.562 self.assertAlmostEqual(scores['loss'], 0.562, delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, target def _input_fn_eval(): # 4 rows, with different weights. target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[7.], [1.], [1.], [1.]]) } return features, target classifier = tf.contrib.learn.DNNClassifier( weight_column_name='w', n_classes=2, feature_columns=[tf.contrib.layers.real_valued_column('x')], hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted cross entropy = (-7*log(0.25)-3*log(0.75))/10 = 1.06 self.assertAlmostEqual(scores['loss'], 1.06, delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. target = tf.constant([[1], [0], [0], [0]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[100.], [3.], [2.], [2.]]) } return features, target def _input_fn_eval(): # Create 4 rows (y = x) target = tf.constant([[1], [1], [1], [1]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, target classifier = tf.contrib.learn.DNNClassifier( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the accuracy # should be close to 1. self.assertGreater(scores['accuracy'], 0.9) def testPredict_AsIterableFalse(self): """Tests predict and predict_prob methods with as_iterable=False.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([[1], [0], [0]], dtype=tf.int32) sparse_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ tf.contrib.layers.embedding_column(sparse_column, dimension=1) ] classifier = tf.contrib.learn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) self.assertLess(scores['loss'], 0.3) predictions = classifier.predict(input_fn=_input_fn, as_iterable=False) self.assertListEqual(list(predictions), [1, 0, 0]) predictions = classifier.predict_proba(input_fn=_input_fn, as_iterable=False) self.assertAllClose( predictions, [[0., 1., 0.], [1., 0., 0.], [1., 0., 0.]], atol=0.1) def testPredict_AsIterable(self): """Tests predict and predict_prob methods with as_iterable=True.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([[1], [0], [0]], dtype=tf.int32) language_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ tf.contrib.layers.embedding_column(language_column, dimension=1), tf.contrib.layers.real_valued_column('age') ] classifier = tf.contrib.learn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) self.assertLess(scores['loss'], 0.3) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertListEqual(predictions, [1, 0, 0]) predictions = list( classifier.predict_proba(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose( predictions, [[0., 1., 0.], [1., 0., 0.], [1., 0., 0.]], atol=0.3) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) target = tf.constant([[1], [0], [0], [0]]) features = { 'x': tf.train.limit_epochs( tf.ones(shape=[4, 1], dtype=tf.float32), num_epochs=num_epochs), } return features, target def _my_metric_op(predictions, targets): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. targets = tf.to_float(targets) predictions = tf.slice(predictions, [0, 1], [-1, 1]) targets = math_ops.cast(targets, predictions.dtype) return tf.reduce_sum(tf.mul(predictions, targets)) classifier = tf.contrib.learn.DNNClassifier( feature_columns=[tf.contrib.layers.real_valued_column('x')], hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=tf.contrib.metrics.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=tf.contrib.metrics.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric' ]).issubset(set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict(input_fn=predict_input_fn))) self.assertEqual(_sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=tf.contrib.metrics.streaming_auc, prediction_key='bad_type')}) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([[1], [0], [0]], dtype=tf.int32) sparse_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ tf.contrib.layers.embedding_column(sparse_column, dimension=1) ] model_dir = tempfile.mkdtemp() classifier = tf.contrib.learn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=100) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions1 = classifier.predict(input_fn=predict_input_fn) del classifier classifier2 = tf.contrib.learn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) predictions2 = classifier2.predict(input_fn=predict_input_fn) self.assertEqual(list(predictions1), list(predictions2)) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([[1], [0], [0]], dtype=tf.int32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ tf.contrib.layers.embedding_column(sparse_column, dimension=1) ] classifier = tf.contrib.learn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config=tf.contrib.learn.RunConfig( num_ps_replicas=2, cluster_spec=tf.train.ClusterSpec({}), tf_random_seed=5)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) self.assertLess(scores['loss'], 0.3) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) feature_columns = [ tf.contrib.layers.real_valued_column('age'), tf.contrib.layers.embedding_column(language, dimension=1) ] classifier = tf.contrib.learn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] classifier = tf.contrib.learn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=False, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_iris_input_multiclass_fn, steps=200) self.assertFalse('centered_bias_weight' in classifier.get_variable_names()) scores = classifier.evaluate(input_fn=_iris_input_multiclass_fn, steps=1) self.assertGreater(scores['accuracy'], 0.8) self.assertLess(scores['loss'], 0.3) class DNNRegressorTest(tf.test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, tf.contrib.learn.DNNRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] regressor = tf.contrib.learn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_iris_input_logistic_fn, steps=200) scores = regressor.evaluate(input_fn=_iris_input_logistic_fn, steps=1) self.assertLess(scores['loss'], 0.3) def testRegression_MatrixData_Target1D(self): """Same as the last test, but target shape is [100] instead of [100, 1].""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[100], dtype=tf.int32) cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] regressor = tf.contrib.learn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.3) def testRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = _prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [tf.contrib.layers.real_valued_column('', dimension=4)] regressor = tf.contrib.learn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(x=train_x, y=train_y, steps=200) scores = regressor.evaluate(x=train_x, y=train_y, steps=1) self.assertLess(scores['loss'], 0.3) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[.8], [.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1., 0., 0.2], dtype=tf.float32) language_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ tf.contrib.layers.embedding_column(language_column, dimension=1), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.3) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), } return features, target regressor = tf.contrib.learn.DNNRegressor( feature_columns=[tf.contrib.layers.real_valued_column('x')], hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(scores['loss'], 0.1875, delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, target def _input_fn_eval(): # 4 rows, with different weights. target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[7.], [1.], [1.], [1.]]) } return features, target regressor = tf.contrib.learn.DNNRegressor( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(scores['loss'], 0.4125, delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[100.], [3.], [2.], [2.]]) } return features, target def _input_fn_eval(): # Create 4 rows (y = x) target = tf.constant([[1.], [1.], [1.], [1.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, target regressor = tf.contrib.learn.DNNRegressor( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.2) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" target = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant(target, dtype=tf.float32) sparse_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ tf.contrib.layers.embedding_column(sparse_column, dimension=1), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predictions, target, atol=0.2) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" target = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant(target, dtype=tf.float32) sparse_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ tf.contrib.layers.embedding_column(sparse_column, dimension=1), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predictions, target, atol=0.2) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.train.limit_epochs( tf.ones(shape=[4, 1], dtype=tf.float32), num_epochs=num_epochs), } return features, target def _my_metric_op(predictions, targets): return tf.reduce_sum(tf.mul(predictions, targets)) regressor = tf.contrib.learn.DNNRegressor( feature_columns=[tf.contrib.layers.real_valued_column('x')], hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': tf.contrib.metrics.streaming_mean_squared_error, 'my_metric': _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests that when the key is a tuple, an error is raised. with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={('my_error', 'predictions'): tf.contrib.metrics.streaming_mean_squared_error}) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1., 0., 0.2], dtype=tf.float32) sparse_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ tf.contrib.layers.embedding_column(sparse_column, dimension=1), tf.contrib.layers.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = tf.contrib.learn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) regressor.fit(input_fn=_input_fn, steps=100) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict(input_fn=predict_input_fn)) del regressor regressor2 = tf.contrib.learn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) predictions2 = list(regressor2.predict(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1., 0., 0.2], dtype=tf.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ tf.contrib.layers.embedding_column(sparse_column, dimension=1), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config=tf.contrib.learn.RunConfig( num_ps_replicas=2, cluster_spec=tf.train.ClusterSpec({}), tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.3) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs( tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=tf.train.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1., 0., 0.2], dtype=tf.float32) sparse_column = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ tf.contrib.layers.embedding_column(sparse_column, dimension=1), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=False, config=tf.contrib.learn.RunConfig(tf_random_seed=3)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.3) def boston_input_fn(): boston = tf.contrib.learn.datasets.load_boston() features = tf.cast(tf.reshape(tf.constant(boston.data), [-1, 13]), tf.float32) target = tf.cast(tf.reshape(tf.constant(boston.target), [-1, 1]), tf.float32) return features, target class FeatureColumnTest(tf.test.TestCase): def testTrain(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input_fn( boston_input_fn) est = tf.contrib.learn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3]) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': tf.test.main()
apache-2.0
valexandersaulys/prudential_insurance_kaggle
venv/lib/python2.7/site-packages/pandas/msgpack/__init__.py
9
1180
# coding: utf-8 from pandas.msgpack._version import version from pandas.msgpack.exceptions import * from collections import namedtuple class ExtType(namedtuple('ExtType', 'code data')): """ExtType represents ext type in msgpack.""" def __new__(cls, code, data): if not isinstance(code, int): raise TypeError("code must be int") if not isinstance(data, bytes): raise TypeError("data must be bytes") if not 0 <= code <= 127: raise ValueError("code must be 0~127") return super(ExtType, cls).__new__(cls, code, data) import os from pandas.msgpack._packer import Packer from pandas.msgpack._unpacker import unpack, unpackb, Unpacker def pack(o, stream, **kwargs): """ Pack object `o` and write it to `stream` See :class:`Packer` for options. """ packer = Packer(**kwargs) stream.write(packer.pack(o)) def packb(o, **kwargs): """ Pack object `o` and return packed bytes See :class:`Packer` for options. """ return Packer(**kwargs).pack(o) # alias for compatibility to simplejson/marshal/pickle. load = unpack loads = unpackb dump = pack dumps = packb
gpl-2.0
gfyoung/pandas
pandas/tests/extension/arrow/test_bool.py
1
2932
import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.api.types import is_bool_dtype from pandas.tests.extension import base pytest.importorskip("pyarrow", minversion="0.13.0") from .arrays import ArrowBoolArray, ArrowBoolDtype # isort:skip @pytest.fixture def dtype(): return ArrowBoolDtype() @pytest.fixture def data(): values = np.random.randint(0, 2, size=100, dtype=bool) values[1] = ~values[0] return ArrowBoolArray.from_scalars(values) @pytest.fixture def data_missing(): return ArrowBoolArray.from_scalars([None, True]) def test_basic_equals(data): # https://github.com/pandas-dev/pandas/issues/34660 assert pd.Series(data).equals(pd.Series(data)) class BaseArrowTests: pass class TestDtype(BaseArrowTests, base.BaseDtypeTests): def test_array_type_with_arg(self, data, dtype): pytest.skip("GH-22666") class TestInterface(BaseArrowTests, base.BaseInterfaceTests): def test_copy(self, data): # __setitem__ does not work, so we only have a smoke-test data.copy() def test_view(self, data): # __setitem__ does not work, so we only have a smoke-test data.view() @pytest.mark.xfail(raises=AssertionError, reason="Not implemented yet") def test_contains(self, data, data_missing): super().test_contains(data, data_missing) class TestConstructors(BaseArrowTests, base.BaseConstructorsTests): def test_from_dtype(self, data): pytest.skip("GH-22666") # seems like some bug in isna on empty BoolArray returning floats. @pytest.mark.xfail(reason="bad is-na for empty data") def test_from_sequence_from_cls(self, data): super().test_from_sequence_from_cls(data) @pytest.mark.xfail(reason="pa.NULL is not recognised as scalar, GH-33899") def test_series_constructor_no_data_with_index(self, dtype, na_value): # pyarrow.lib.ArrowInvalid: only handle 1-dimensional arrays super().test_series_constructor_no_data_with_index(dtype, na_value) @pytest.mark.xfail(reason="pa.NULL is not recognised as scalar, GH-33899") def test_series_constructor_scalar_na_with_index(self, dtype, na_value): # pyarrow.lib.ArrowInvalid: only handle 1-dimensional arrays super().test_series_constructor_scalar_na_with_index(dtype, na_value) @pytest.mark.xfail(reason="raises AssertionError") def test_construct_empty_dataframe(self, dtype): super().test_construct_empty_dataframe(dtype) class TestReduce(base.BaseNoReduceTests): def test_reduce_series_boolean(self): pass class TestReduceBoolean(base.BaseBooleanReduceTests): pass def test_is_bool_dtype(data): assert is_bool_dtype(data) assert pd.core.common.is_bool_indexer(data) s = pd.Series(range(len(data))) result = s[data] expected = s[np.asarray(data)] tm.assert_series_equal(result, expected)
bsd-3-clause
schets/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
7
4553
import unittest import sys import nose import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less, assert_equal from sklearn.mixture.tests.test_gmm import GMMTester from sklearn.externals.six.moves import cStringIO as StringIO np.seterr(all='warn') def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) def test_verbose_boolean(): # checks that the output for the verbose output is the same # for the flag values '1' and 'True' # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm_bool = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=True) dpgmm_int = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: # generate output with the boolean flag dpgmm_bool.fit(X) verbose_output = sys.stdout verbose_output.seek(0) bool_output = verbose_output.readline() # generate output with the int flag dpgmm_int.fit(X) verbose_output = sys.stdout verbose_output.seek(0) int_output = verbose_output.readline() assert_equal(bool_output, int_output) finally: sys.stdout = old_stdout def test_verbose_first_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) assert np.allclose(v, log_normalize(a), rtol=0.01) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp if __name__ == '__main__': nose.runmodule()
bsd-3-clause
wschenck/nest-simulator
pynest/nest/lib/hl_api_types.py
13
38621
# -*- coding: utf-8 -*- # # hl_api_types.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Classes defining the different PyNEST types """ from ..ll_api import * from .. import pynestkernel as kernel from .hl_api_helper import * from .hl_api_simulation import GetKernelStatus import numpy import json from math import floor, log try: import pandas HAVE_PANDAS = True except ImportError: HAVE_PANDAS = False __all__ = [ 'CollocatedSynapses', 'CreateParameter', 'Mask', 'NodeCollection', 'Parameter', 'serializable', 'SynapseCollection', 'to_json', ] def CreateParameter(parametertype, specs): """ Create a parameter. Parameters ---------- parametertype : string Parameter type with or without distance dependency. Can be one of the following: 'constant', 'linear', 'exponential', 'gaussian', 'gaussian2D', 'uniform', 'normal', 'lognormal', 'distance', 'position' specs : dict Dictionary specifying the parameters of the provided `parametertype`, see **Parameter types**. Returns ------- ``Parameter``: Object representing the parameter Notes ----- - Instead of using `CreateParameter` you can also use the various parametrizations embedded in NEST. See for instance :py:func:`.uniform`. **Parameter types** Some available parameter types (`parametertype` parameter), their function and acceptable keys for their corresponding specification dictionaries * Constant :: 'constant' : {'value' : float} # constant value * Randomization :: # random parameter with uniform distribution in [min,max) 'uniform' : {'min' : float, # minimum value, default: 0.0 'max' : float} # maximum value, default: 1.0 # random parameter with normal distribution, optionally truncated # to [min,max) 'normal': {'mean' : float, # mean value, default: 0.0 'sigma': float, # standard deviation, default: 1.0 'min' : float, # minimum value, default: -inf 'max' : float} # maximum value, default: +inf # random parameter with lognormal distribution, # optionally truncated to [min,max) 'lognormal' : {'mu' : float, # mean value of logarithm, default: 0.0 'sigma': float, # standard deviation of log, default: 1.0 'min' : float, # minimum value, default: -inf 'max' : float} # maximum value, default: +inf """ return sli_func('CreateParameter', {parametertype: specs}) class NodeCollectionIterator(object): """ Iterator class for `NodeCollection`. Returns ------- `NodeCollection`: Single node ID `NodeCollection` of respective iteration. """ def __init__(self, nc): self._nc = nc self._increment = 0 def __iter__(self): return self def __next__(self): if self._increment > len(self._nc) - 1: raise StopIteration val = sli_func('Take', self._nc._datum, [self._increment + (self._increment >= 0)]) self._increment += 1 return val class NodeCollection(object): """ Class for `NodeCollection`. `NodeCollection` represents the nodes of a network. The class supports iteration, concatenation, indexing, slicing, membership, length, conversion to and from lists, test for membership, and test for equality. By using the membership functions :py:func:`get()` and :py:func:`set()`, you can get and set desired parameters. A `NodeCollection` is created by the :py:func:`.Create` function, or by converting a list of nodes to a `NodeCollection` with ``nest.NodeCollection(list)``. If your nodes have spatial extent, use the member parameter ``spatial`` to get the spatial information. Example ------- :: import nest nest.ResetKernel() # Create NodeCollection representing nodes nc = nest.Create('iaf_psc_alpha', 10) # Convert from list node_ids_in = [2, 4, 6, 8] new_nc = nest.NodeCollection(node_ids_in) # Convert to list nc_list = nc.tolist() # Concatenation Enrns = nest.Create('aeif_cond_alpha', 600) Inrns = nest.Create('iaf_psc_alpha', 400) nrns = Enrns + Inrns # Slicing and membership print(new_nc[2]) print(new_nc[1:2]) 6 in new_nc """ _datum = None def __init__(self, data=None): if data is None: data = [] if isinstance(data, kernel.SLIDatum): if data.dtype != "nodecollectiontype": raise TypeError("Need NodeCollection Datum.") self._datum = data else: # Data from user, must be converted to datum # Data can be anything that can be converted to a NodeCollection, # such as list, tuple, etc. nc = sli_func('cvnodecollection', data) self._datum = nc._datum def __iter__(self): return NodeCollectionIterator(self) def __add__(self, other): if not isinstance(other, NodeCollection): raise NotImplementedError() return sli_func('join', self._datum, other._datum) def __getitem__(self, key): if isinstance(key, slice): if key.start is None: start = 1 else: start = key.start + 1 if key.start >= 0 else max(key.start, -1 * self.__len__()) if start > self.__len__(): raise IndexError('slice start value outside of the NodeCollection') if key.stop is None: stop = self.__len__() else: stop = min(key.stop, self.__len__()) if key.stop >= 0 else key.stop - 1 if abs(stop) > self.__len__(): raise IndexError('slice stop value outside of the NodeCollection') step = 1 if key.step is None else key.step if step < 1: raise IndexError('slicing step for NodeCollection must be strictly positive') return sli_func('Take', self._datum, [start, stop, step]) elif isinstance(key, (int, numpy.integer)): if abs(key + (key >= 0)) > self.__len__(): raise IndexError('index value outside of the NodeCollection') return sli_func('Take', self._datum, [key + (key >= 0)]) elif isinstance(key, (list, tuple)): if len(key) == 0: return NodeCollection([]) # Must check if elements are bool first, because bool inherits from int if all(isinstance(x, bool) for x in key): if len(key) != len(self): raise IndexError('Bool index array must be the same length as NodeCollection') np_key = numpy.array(key, dtype=numpy.bool) # Checking that elements are not instances of bool too, because bool inherits from int elif all(isinstance(x, int) and not isinstance(x, bool) for x in key): np_key = numpy.array(key, dtype=numpy.uint64) if len(numpy.unique(np_key)) != len(np_key): raise ValueError('All node IDs in a NodeCollection have to be unique') else: raise TypeError('Indices must be integers or bools') return take_array_index(self._datum, np_key) elif isinstance(key, numpy.ndarray): if len(key) == 0: return NodeCollection([]) if len(key.shape) != 1: raise TypeError('NumPy indices must one-dimensional') is_booltype = numpy.issubdtype(key.dtype, numpy.dtype(bool).type) if not (is_booltype or numpy.issubdtype(key.dtype, numpy.integer)): raise TypeError('NumPy indices must be an array of integers or bools') if is_booltype and len(key) != len(self): raise IndexError('Bool index array must be the same length as NodeCollection') if not is_booltype and len(numpy.unique(key)) != len(key): raise ValueError('All node IDs in a NodeCollection have to be unique') return take_array_index(self._datum, key) else: raise IndexError('only integers, slices, lists, tuples, and numpy arrays are valid indices') def __contains__(self, node_id): return sli_func('MemberQ', self._datum, node_id) def __eq__(self, other): if not isinstance(other, NodeCollection): raise NotImplementedError('Cannot compare NodeCollection to {}'.format(type(other).__name__)) if self.__len__() != other.__len__(): return False return sli_func('eq', self, other) def __neq__(self, other): if not isinstance(other, NodeCollection): raise NotImplementedError() return not self == other def __len__(self): return sli_func('size', self._datum) def __str__(self): return sli_func('pcvs', self._datum) def __repr__(self): return sli_func('pcvs', self._datum) def get(self, *params, **kwargs): """ Get parameters from nodes. Parameters ---------- params : str or list, optional Parameters to get from the nodes. It must be one of the following: - A single string. - A list of strings. - One or more strings, followed by a string or list of strings. This is for hierarchical addressing. output : str, ['pandas','json'], optional If the returned data should be in a Pandas DataFrame or in a JSON serializable format. Returns ------- int or float: If there is a single node in the `NodeCollection`, and a single parameter in params. array_like: If there are multiple nodes in the `NodeCollection`, and a single parameter in params. dict: If there are multiple parameters in params. Or, if no parameters are specified, a dictionary containing aggregated parameter-values for all nodes is returned. DataFrame: Pandas Data frame if output should be in pandas format. Raises ------ TypeError If the input params are of the wrong form. KeyError If the specified parameter does not exist for the nodes. See Also -------- :py:func:`set`, :py:func:`GetStatus()<nest.lib.hl_api_info.GetStatus>`, :py:func:`SetStatus()<nest.lib.hl_api_info.SetStatus>` Examples -------- >>> nodes.get() {'archiver_length': (0, 0, 0), 'beta_Ca': (0.001, 0.001, 0.001), 'C_m': (250.0, 250.0, 250.0), ... 'V_th': (-55.0, -55.0, -55.0), 'vp': (0, 0, 0)} >>> nodes.get('V_m') (-70.0, -70.0, -70.0) >>> nodes[0].get('V_m') -70.0 >>> nodes.get('V_m', 'C_m') {'V_m': (-70.0, -70.0, -70.0), 'C_m': (250.0, 250.0, 250.0)} >>> voltmeter.get('events', 'senders') array([...], dtype=int64) """ if not self: raise ValueError('Cannot get parameter of empty NodeCollection') # ------------------------- # # Checks of input # # ------------------------- # if not kwargs: output = '' elif 'output' in kwargs: output = kwargs['output'] if output == 'pandas' and not HAVE_PANDAS: raise ImportError('Pandas could not be imported') else: raise TypeError('Got unexpected keyword argument') pandas_output = output == 'pandas' if len(params) == 0: # get() is called without arguments result = sli_func('get', self._datum) elif len(params) == 1: # params is a tuple with a string or list of strings result = get_parameters(self, params[0]) else: # Hierarchical addressing result = get_parameters_hierarchical_addressing(self, params) if pandas_output: index = self.get('global_id') if len(params) == 1 and is_literal(params[0]): # params is a string result = {params[0]: result} elif len(params) > 1 and is_literal(params[1]): # hierarchical, single string result = {params[1]: result} if len(self) == 1: index = [index] result = {key: [val] for key, val in result.items()} result = pandas.DataFrame(result, index=index) elif output == 'json': result = to_json(result) return result def set(self, params=None, **kwargs): """ Set the parameters of nodes to params. NB! This is almost the same implementation as `SetStatus`. If `kwargs` is given, it has to be names and values of an attribute as keyword argument pairs. The values can be single values or list of the same size as the `NodeCollection`. Parameters ---------- params : str or dict or list Dictionary of parameters (either lists or single values) or list of dictionaries of parameters of same length as the `NodeCollection`. kwargs : keyword argument pairs Named arguments of parameters of the elements in the `NodeCollection`. Raises ------ TypeError If the input params are of the wrong form. KeyError If the specified parameter does not exist for the nodes. See Also -------- :py:func:`get`, :py:func:`SetStatus()<nest.lib.hl_api_info.SetStatus>`, :py:func:`GetStatus()<nest.lib.hl_api_info.GetStatus>` """ if not self: return if kwargs and params is None: params = kwargs elif kwargs and params: raise TypeError("must either provide params or kwargs, but not both.") local_nodes = [self.local] if len(self) == 1 else self.local if isinstance(params, dict) and all(local_nodes): node_params = self[0].get() contains_list = [is_iterable(vals) and key in node_params and not is_iterable(node_params[key]) for key, vals in params.items()] if any(contains_list): temp_param = [{} for _ in range(self.__len__())] for key, vals in params.items(): if not is_iterable(vals): for temp_dict in temp_param: temp_dict[key] = vals else: for i, temp_dict in enumerate(temp_param): temp_dict[key] = vals[i] params = temp_param if (isinstance(params, (list, tuple)) and self.__len__() != len(params)): raise TypeError("status dict must be a dict, or a list of dicts of length {} ".format(self.__len__())) sli_func('SetStatus', self._datum, params) def tolist(self): """ Convert `NodeCollection` to list. """ if self.__len__() == 0: return [] return (list(self.get('global_id')) if len(self) > 1 else [self.get('global_id')]) def index(self, node_id): """ Find the index of a node ID in the `NodeCollection`. Parameters ---------- node_id : int Global ID to be found. Raises ------ ValueError If the node ID is not in the `NodeCollection`. """ index = sli_func('Find', self._datum, node_id) if index == -1: raise ValueError('{} is not in NodeCollection'.format(node_id)) return index def __bool__(self): """Converts the NodeCollection to a bool. False if it is empty, True otherwise.""" return len(self) > 0 def __array__(self, dtype=None): """Convert the NodeCollection to a NumPy array.""" return numpy.array(self.tolist(), dtype=dtype) def __getattr__(self, attr): if not self: raise AttributeError('Cannot get attribute of empty NodeCollection') if attr == 'spatial': metadata = sli_func('GetMetadata', self._datum) val = metadata if metadata else None super().__setattr__(attr, val) return self.spatial # NumPy compatibility check: # raises AttributeError to tell NumPy that interfaces other than # __array__ are not available (otherwise get_parameters would be # queried, KeyError would be raised, and all would crash) if attr.startswith('__array_'): raise AttributeError return self.get(attr) def __setattr__(self, attr, value): # `_datum` is the only property of NodeCollection that should not be # interpreted as a property of the model if attr == '_datum': super().__setattr__(attr, value) else: self.set({attr: value}) class SynapseCollectionIterator(object): """ Iterator class for SynapseCollection. """ def __init__(self, synapse_collection): self._iter = iter(synapse_collection._datum) def __iter__(self): return self def __next__(self): return SynapseCollection(next(self._iter)) class SynapseCollection(object): """ Class for Connections. `SynapseCollection` represents the connections of a network. The class supports indexing, iteration, length and equality. You can get and set connection parameters by using the membership functions :py:func:`get()` and :py:func:`set()`. By using the membership function :py:func:`sources()` you get an iterator over source nodes, while :py:func:`targets()` returns an interator over the target nodes of the connections. A SynapseCollection is created by the :py:func:`.GetConnections` function. """ _datum = None def __init__(self, data): if isinstance(data, list): for datum in data: if (not isinstance(datum, kernel.SLIDatum) or datum.dtype != "connectiontype"): raise TypeError("Expected Connection Datum.") self._datum = data elif data is None: # We can have an empty SynapseCollection if there are no connections. self._datum = data else: if (not isinstance(data, kernel.SLIDatum) or data.dtype != "connectiontype"): raise TypeError("Expected Connection Datum.") # self._datum needs to be a list of Connection datums. self._datum = [data] self.print_full = False def __iter__(self): return SynapseCollectionIterator(self) def __len__(self): if self._datum is None: return 0 return len(self._datum) def __eq__(self, other): if not isinstance(other, SynapseCollection): raise NotImplementedError() if self.__len__() != other.__len__(): return False self_get = self.get(['source', 'target', 'target_thread', 'synapse_id', 'port']) other_get = other.get(['source', 'target', 'target_thread', 'synapse_id', 'port']) if self_get != other_get: return False return True def __neq__(self, other): if not isinstance(other, SynapseCollection): raise NotImplementedError() return not self == other def __getitem__(self, key): if isinstance(key, slice): return SynapseCollection(self._datum[key]) else: return SynapseCollection([self._datum[key]]) def __str__(self): """ Printing a `SynapseCollection` returns something of the form: source target synapse model weight delay -------- -------- --------------- -------- ------- 1 4 static_synapse 1.000 1.000 2 4 static_synapse 2.000 1.000 1 3 stdp_synapse 4.000 1.000 1 4 stdp_synapse 3.000 1.000 2 3 stdp_synapse 3.000 1.000 2 4 stdp_synapse 2.000 1.000 If your SynapseCollection has more than 36 elements, only the first and last 15 connections are printed. To display all, first set `print_full = True`. :: conns = nest.GetConnections() conns.print_full = True print(conns) """ def format_row_(s, t, sm, w, dly): try: return f'{s:>{src_len-1}d} {t:>{trg_len}d} {sm:>{sm_len}s} {w:>#{w_len}.{4}g} {dly:>#{d_len}.{4}g}' except ValueError: # Used when we have many connections and print_full=False return f'{s:>{src_len-1}} {t:>{trg_len}} {sm:>{sm_len}} {w:>{w_len}} {dly:>{d_len}}' MAX_SIZE_FULL_PRINT = 35 # 35 is arbitrarily chosen. params = self.get() if len(params) == 0: return 'The synapse collection does not contain any connections.' srcs = params['source'] trgt = params['target'] wght = params['weight'] dlay = params['delay'] s_model = params['synapse_model'] if isinstance(srcs, int): srcs = [srcs] trgt = [trgt] wght = [wght] dlay = [dlay] s_model = [s_model] src_h = 'source' trg_h = 'target' sm_h = 'synapse model' w_h = 'weight' d_h = 'delay' # Find maximum number of characters for each column, used to determine width of column src_len = max(len(src_h) + 2, floor(log(max(srcs), 10))) trg_len = max(len(trg_h) + 2, floor(log(max(trgt), 10))) sm_len = max(len(sm_h) + 2, len(max(s_model, key=len))) w_len = len(w_h) + 2 d_len = len(d_h) + 2 # 35 is arbitrarily chosen. if len(srcs) >= MAX_SIZE_FULL_PRINT and not self.print_full: # u'\u22EE ' is the unicode for vertical ellipsis, used when we have many connections srcs = srcs[:15] + [u'\u22EE '] + srcs[-15:] trgt = trgt[:15] + [u'\u22EE '] + trgt[-15:] wght = wght[:15] + [u'\u22EE '] + wght[-15:] dlay = dlay[:15] + [u'\u22EE '] + dlay[-15:] s_model = s_model[:15] + [u'\u22EE '] + s_model[-15:] headers = f'{src_h:^{src_len}} {trg_h:^{trg_len}} {sm_h:^{sm_len}} {w_h:^{w_len}} {d_h:^{d_len}}' + '\n' borders = '-'*src_len + ' ' + '-'*trg_len + ' ' + '-'*sm_len + ' ' + '-'*w_len + ' ' + '-'*d_len + '\n' output = '\n'.join(format_row_(s, t, sm, w, d) for s, t, sm, w, d in zip(srcs, trgt, s_model, wght, dlay)) result = headers + borders + output return result def __getattr__(self, attr): if attr == 'distance': dist = sli_func('Distance', self._datum) super().__setattr__(attr, dist) return self.distance return self.get(attr) def __setattr__(self, attr, value): # `_datum` is the only property of SynapseCollection that should not be # interpreted as a property of the model if attr == '_datum' or 'print_full': super().__setattr__(attr, value) else: self.set({attr: value}) def sources(self): """Returns iterator containing the source node IDs of the `SynapseCollection`.""" sources = self.get('source') if not isinstance(sources, (list, tuple)): sources = (sources,) return iter(sources) def targets(self): """Returns iterator containing the target node IDs of the `SynapseCollection`.""" targets = self.get('target') if not isinstance(targets, (list, tuple)): targets = (targets,) return iter(targets) def get(self, keys=None, output=''): """ Return a parameter dictionary of the connections. If `keys` is a string, a list of values is returned, unless we have a single connection, in which case the single value is returned. `keys` may also be a list, in which case a dictionary with a list of values is returned. Parameters ---------- keys : str or list, optional String or a list of strings naming model properties. get then returns a single value or a dictionary with lists of values belonging to the given `keys`. output : str, ['pandas','json'], optional If the returned data should be in a Pandas DataFrame or in a JSON serializable format. Returns ------- dict: All parameters, or, if keys is a list of strings, a dictionary with lists of corresponding parameters type: If keys is a string, the corresponding parameter(s) is returned Raises ------ TypeError If input params are of the wrong form. KeyError If the specified parameter does not exist for the connections. See Also -------- set Examples -------- >>> conns.get() {'delay': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ... 'weight': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]} >>> conns.get('weight') [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] >>> conns[0].get('weight') 1.0 >>> nodes.get(['source', 'weight']) {'source': [1, 1, 1, 2, 2, 2, 3, 3, 3], 'weight': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]} """ pandas_output = output == 'pandas' if pandas_output and not HAVE_PANDAS: raise ImportError('Pandas could not be imported') # Return empty tuple if we have no connections or if we have done a nest.ResetKernel() num_conn = GetKernelStatus('num_connections') if self.__len__() == 0 or num_conn == 0: return () if keys is None: cmd = 'GetStatus' elif is_literal(keys): # Extracting the correct values will be done in restructure_data below cmd = 'GetStatus' elif is_iterable(keys): keys_str = " ".join("/{0}".format(x) for x in keys) cmd = 'GetStatus {{ [ [ {0} ] ] get }} Map'.format(keys_str) else: raise TypeError("keys should be either a string or an iterable") sps(self._datum) sr(cmd) result = spp() # Need to restructure the data. final_result = restructure_data(result, keys) if pandas_output: index = (self.get('source') if self.__len__() > 1 else (self.get('source'),)) if is_literal(keys): final_result = {keys: final_result} final_result = pandas.DataFrame(final_result, index=index) elif output == 'json': final_result = to_json(final_result) return final_result def set(self, params=None, **kwargs): """ Set the parameters of the connections to `params`. NB! This is almost the same implementation as SetStatus If `kwargs` is given, it has to be names and values of an attribute as keyword argument pairs. The values can be single values or list of the same size as the `SynapseCollection`. Parameters ---------- params : str or dict or list Dictionary of parameters (either lists or single values) or list of dictionaries of parameters of same length as `SynapseCollection`. kwargs : keyword argument pairs Named arguments of parameters of the elements in the `SynapseCollection`. Raises ------ TypeError If input params are of the wrong form. KeyError If the specified parameter does not exist for the connections. See Also -------- get """ # This was added to ensure that the function is a nop (instead of, # for instance, raising an exception) when applied to an empty # SynapseCollection, or after having done a nest.ResetKernel(). if self.__len__() == 0 or GetKernelStatus()['network_size'] == 0: return if (isinstance(params, (list, tuple)) and self.__len__() != len(params)): raise TypeError("status dict must be a dict, or a list of dicts of length {}".format(self.__len__())) if kwargs and params is None: params = kwargs elif kwargs and params: raise TypeError("must either provide params or kwargs, but not both.") if isinstance(params, dict): node_params = self[0].get() contains_list = [is_iterable(vals) and key in node_params and not is_iterable(node_params[key]) for key, vals in params.items()] if any(contains_list): temp_param = [{} for _ in range(self.__len__())] for key, vals in params.items(): if not is_iterable(vals): for temp_dict in temp_param: temp_dict[key] = vals else: for i, temp_dict in enumerate(temp_param): temp_dict[key] = vals[i] params = temp_param params = broadcast(params, self.__len__(), (dict,), "params") sps(self._datum) sps(params) sr('2 arraystore') sr('Transpose { arrayload pop SetStatus } forall') class CollocatedSynapses(object): """ Class for collocated synapse specifications. Wrapper around a list of specifications, used when calling :py:func:`.Connect`. Example ------- :: nodes = nest.Create('iaf_psc_alpha', 3) syn_spec = nest.CollocatedSynapses({'weight': 4., 'delay': 1.5}, {'synapse_model': 'stdp_synapse'}, {'synapse_model': 'stdp_synapse', 'alpha': 3.}) nest.Connect(nodes, nodes, conn_spec='one_to_one', syn_spec=syn_spec) conns = nest.GetConnections() print(conns.alpha) print(len(syn_spec)) """ def __init__(self, *args): self.syn_specs = args def __len__(self): return len(self.syn_specs) class Mask(object): """ Class for spatial masks. Masks are used when creating connections when nodes have spatial extent. A mask describes the area of the pool population that shall be searched to find nodes to connect to for any given node in the driver population. Masks are created using the :py:func:`.CreateMask` command. """ _datum = None # The constructor should not be called by the user def __init__(self, datum): """Masks must be created using the CreateMask command.""" if not isinstance(datum, kernel.SLIDatum) or datum.dtype != "masktype": raise TypeError("expected mask Datum") self._datum = datum # Generic binary operation def _binop(self, op, other): if not isinstance(other, Mask): raise NotImplementedError() return sli_func(op, self._datum, other._datum) def __or__(self, other): return self._binop("or", other) def __and__(self, other): return self._binop("and", other) def __sub__(self, other): return self._binop("sub", other) def Inside(self, point): """ Test if a point is inside a mask. Parameters ---------- point : tuple/list of float values Coordinate of point Returns ------- out : bool True if the point is inside the mask, False otherwise """ return sli_func("Inside", point, self._datum) class Parameter(object): """ Class for parameters A parameter may be used as a probability kernel when creating connections and nodes or as synaptic parameters (such as weight and delay). Parameters are created using the :py:func:`.CreateParameter` command. """ _datum = None # The constructor should not be called by the user def __init__(self, datum): """Parameters must be created using the CreateParameter command.""" if not isinstance(datum, kernel.SLIDatum) or datum.dtype != "parametertype": raise TypeError("expected parameter datum") self._datum = datum # Generic binary operation def _binop(self, op, other, params=None): if isinstance(other, (int, float)): other = CreateParameter('constant', {'value': float(other)}) if not isinstance(other, Parameter): raise NotImplementedError() if params is None: return sli_func(op, self._datum, other._datum) else: return sli_func(op, self._datum, other._datum, params) def __add__(self, other): return self._binop("add", other) def __radd__(self, other): return self + other def __sub__(self, other): return self._binop("sub", other) def __rsub__(self, other): return self * (-1) + other def __neg__(self): return self * (-1) def __mul__(self, other): return self._binop("mul", other) def __rmul__(self, other): return self * other def __div__(self, other): return self._binop("div", other) def __truediv__(self, other): return self._binop("div", other) def __pow__(self, exponent): return sli_func("pow", self._datum, float(exponent)) def __lt__(self, other): return self._binop("compare", other, {'comparator': 0}) def __le__(self, other): return self._binop("compare", other, {'comparator': 1}) def __eq__(self, other): return self._binop("compare", other, {'comparator': 2}) def __ne__(self, other): return self._binop("compare", other, {'comparator': 3}) def __ge__(self, other): return self._binop("compare", other, {'comparator': 4}) def __gt__(self, other): return self._binop("compare", other, {'comparator': 5}) def GetValue(self): """ Compute value of parameter. Returns ------- out : value The value of the parameter See also -------- CreateParameter Example ------- :: import nest # normal distribution parameter P = nest.CreateParameter('normal', {'mean': 0.0, 'sigma': 1.0}) # get out value P.GetValue() """ return sli_func("GetValue", self._datum) def is_spatial(self): return sli_func('ParameterIsSpatial', self._datum) def apply(self, spatial_nc, positions=None): if positions is None: return sli_func('Apply', self._datum, spatial_nc) else: if len(spatial_nc) != 1: raise ValueError('The NodeCollection must contain a single node ID only') if not isinstance(positions, (list, tuple)): raise TypeError('Positions must be a list or tuple of positions') for pos in positions: if not isinstance(pos, (list, tuple, numpy.ndarray)): raise TypeError('Each position must be a list or tuple') if len(pos) != len(positions[0]): raise ValueError('All positions must have the same number of dimensions') return sli_func('Apply', self._datum, {'source': spatial_nc, 'targets': positions}) def serializable(data): """Make data serializable for JSON. Parameters ---------- data : any Returns ------- data_serialized : str, int, float, list, dict Data can be encoded to JSON """ if isinstance(data, (numpy.ndarray, NodeCollection)): return data.tolist() if isinstance(data, SynapseCollection): # Get full information from SynapseCollection return serializable(data.get()) if isinstance(data, kernel.SLILiteral): # Get name of SLILiteral. return data.name if isinstance(data, (list, tuple)): return [serializable(d) for d in data] if isinstance(data, dict): return dict([(key, serializable(value)) for key, value in data.items()]) return data def to_json(data, **kwargs): """Serialize data to JSON. Parameters ---------- data : any kwargs : keyword argument pairs Named arguments of parameters for `json.dumps` function. Returns ------- data_json : str JSON format of the data """ data_serialized = serializable(data) data_json = json.dumps(data_serialized, **kwargs) return data_json
gpl-2.0
danstowell/gmphd
syntheticroc.py
1
4434
#!/usr/bin/env python # script to generate ROC plot from multiple GM-PHD runs with different bias levels # (c) 2012 Dan Stowell and Queen Mary University of London. """ This file is part of gmphd, GM-PHD filter in python by Dan Stowell. gmphd is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. gmphd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with gmphd. If not, see <http://www.gnu.org/licenses/>. """ from gmphd import * import matplotlib.pyplot as plt import matplotlib.cm as cm from syntheticexamplestuff import * ############################################################### # user config options: niters = 100 nruns = 20 birthprob = 0.1 # 0.05 # 0 # 0.2 survivalprob = 0.975 # 0.95 # 1 detectprob = 0.95# 0.999 clutterintensitytot = 5 #2 #4 # typical num clutter items per frame biases = [1, 2, 4, 8, 16] # tendency to prefer false-positives over false-negatives in the filtered output obsntypenames = ['chirp', 'spect'] transntype = 'vibrato' # 'fixedvel' or 'vibrato' ############################################################### # setting up variables transnmatrix = transntypes[transntype] birthintensity1 = birthprob / len(birthgmm) print "birthgmm: each component has weight %g" % birthintensity1 for comp in birthgmm: comp.weight = birthintensity1 rocpoints = {} for obsntype in obsntypenames: obsnmatrix = obsntypes[obsntype]['obsnmatrix'] directlystatetospec = dot(obsntypes[obsntype]['obstospec'], obsnmatrix) clutterintensity = clutterintensityfromtot(clutterintensitytot, obsntype) print "clutterintensity: %g" % clutterintensity rocpoints[obsntype] = [(0,0)] # NOTE: all the runs are appended into one long "results" array! Can calc the roc point in one fell swoop, no need to hold separate. # So, we concatenate one separate resultlist for each bias type. # Then when we come to the end we calculate a rocpoint from each resultlist. results = { bias: [] for bias in biases } for whichrun in range(nruns): print "===============================obsntype %s, run %i==============================" % (obsntype, whichrun) ### Initialise the true state and the model: trueitems = [] g = Gmphd(birthgmm, survivalprob, 0.7, transnmatrix, 1e-9 * array([[1,0,0], [0,1,0], [0,0,1]]), obsnmatrix, obsntypes[obsntype]['noisecov'], clutterintensity) for whichiter in range(niters): print "--%i----------------------------------------------------------------------" % whichiter # the "real" state evolves trueitems = updatetrueitems(trueitems, survivalprob, birthprob, obsnmatrix, transnmatrix) # we make our observations of it (obsset, groundtruth) = getobservations(trueitems, clutterintensitytot, obsntype, directlystatetospec, detectprob) print "OBSSET sent to g.update():" print obsset # we run our inference using the observations updateandprune(g, obsset) for bias in biases: resultdict = collateresults(g, obsset, bias, obsntype, directlystatetospec, trueitems, groundtruth) results[bias].append(resultdict) for bias in biases: gt = [moment['groundtruth'] for moment in results[bias]] ob = [moment['estspec'] for moment in results[bias]] rocpoints[obsntype].append(calcroc(gt, ob)) print "rocpoints" print rocpoints rocpoints[obsntype].append((1,1)) ############################################################### # plot the results fig = plt.figure() plt.hold(True) plt.plot([p[0] for p in rocpoints['spect']], [p[1] for p in rocpoints['spect']], 'r+--', label='spect') plt.plot([p[0] for p in rocpoints['chirp']], [p[1] for p in rocpoints['chirp']], 'b*-', label='chirp') plt.legend(loc=4) plt.title('GMPHD, synthetic data (%s, %i runs per point, avg clutter %g)' % (transntype, nruns, clutterintensitytot)) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.xlim(xmin=0, xmax=0.4) plt.ylim(ymin=0, ymax=1) plt.savefig("plot_synthroc.pdf", papertype='A4', format='pdf') fig.show() raw_input("Press Enter to continue...")
gpl-3.0
cygnushan/measurement
SC_spectrum/Rt_mplCanvas.py
1
3063
# -*- coding: utf-8 -*- from PyQt4 import QtGui from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from pylab import * mpl.rcParams['font.sans-serif'] = ['SimHei'] #指定默认字体 mpl.rcParams['axes.unicode_minus'] = False #解决保存图像是负号'-'显示为方块的问题 import qmdz_const class Rt_Canvas(FigureCanvas): def __init__(self): self.fig = Figure(figsize=(6,4), dpi=80,facecolor="white") self.ax = self.fig.add_subplot(111) FigureCanvas.__init__(self, self.fig) FigureCanvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) self.ax.set_title(u"R-t谱") self.ax.set_xlabel(u"时间(S)",labelpad=0) self.ax.set_ylabel(u"电阻(Ω)",labelpad=0) self.curveObj = None def setxy(self,xmin,xmax,ymin,ymax): self.ax.set_xlim(xmin,xmax) self.ax.set_ylim(ymin,ymax) self.draw() def set_ylog(self, islog, ytype): if islog: self.ax.set_ylabel(u"电阻(logR)",labelpad=0) self.draw() def plot(self, datax, datay, style, label, type): if type == 1: self.curveObj,= self.ax.plot(datax,datay,style,label=label) self.ax.legend(loc=1,fontsize='x-small') else: self.curveObj.set_data(datax,datay) self.ax.relim() self.ax.autoscale_view(True,True,True) self.draw() def save_pic(self, path): self.fig.savefig(path) def clear_lines(self): from weakref import ref # wr = ref(ax.lines[0]) # ax.lines.remove(wr()) axline = [] if self.ax.legend_: self.ax.legend_.remove() for i, line in enumerate(self.ax.lines): print i,line # self.ax.lines.pop(i) # del line axline.append(ref(self.ax.lines[i])) for line in axline: self.ax.lines.remove(line()) self.draw() class Rt_CanvasWidget(QtGui.QWidget): def __init__(self , parent =None): QtGui.QWidget.__init__(self, parent) self.canvas = Rt_Canvas() self.vbl = QtGui.QVBoxLayout() self.vbl.addWidget(self.canvas) self.setLayout(self.vbl) self.dataX= [] self.dataY= [] def generateData(self,x,y, style='b', label='RT', type=0): self.canvas.plot(x,y,style,label,type) def change_xy(self, xmin, xmax, ymin, ymax): self.canvas.setxy(xmin, xmax, ymin, ymax) def set_log(self, islog, ylabe): self.canvas.set_ylog(islog, ylabe) def save_curve(self, path): self.canvas.save_pic(path) def clear_curve(self): self.canvas.clear_lines() # ax.semilogx(x,y) #x轴为对数坐标轴 # # ax.semilogy(x,y) #y轴为对数坐标轴 # # ax.loglog(x,y) #双对数坐标轴
mit
tectronics/pmtk3
python/demos/mkWebGraphDemo.py
26
2970
#!/usr/bin/python2.6 import os, sys import networkx # http://networkx.lanl.gov/ import cPickle '''Parse some html pages and build an adjacency matrix. Written by Eric Brochu and Nando de Freitas. Modified by Kevin Murphy, 20 Feb 2011. ''' def parseFiles(folder): '''Make a dictionary, keys are filenames, value is list of files that are pointed to''' fnames = os.listdir(folder) links = {} for file in fnames: links[file] = [] filename = os.path.join(folder, file) print 'processing ', filename f = open(filename, 'r') for line in f.readlines(): while True: p = line.partition('<a href="http://')[2] if p=='': break (url, _, line) = p.partition('\">') links[file].append(url) print "file %s links to %s" % (file, url) f.close() return links def mkGraph(mydict): '''Convert dictionary into weighted digraph''' DG = networkx.DiGraph() DG.add_nodes_from(mydict.keys()) edges = [] for key, values in mydict.iteritems(): eweight = {} # for each node on our list of values, increment a counter for v in values: if v in eweight: eweight[v] += 1 else: eweight[v] = 1 # for each unique target we connect to, create a weighted edge for succ, weight in eweight.iteritems(): edges.append([key, succ, {'weight':weight}]) DG.add_edges_from(edges) return DG def plotGraph(DG): '''Visualize network''' pmtkFigureFolder = os.environ['PMTKFIGUREFOLDER'] import matplotlib.pyplot as plt plt.figure(figsize=(9,9)) pos=networkx.spring_layout(DG,iterations=10) #networkx.draw(DG,pos,node_size=0,alpha=0.4,edge_color='r', font_size=16) networkx.draw_circular(DG) plt.savefig(os.path.join(pmktFigureFolder, "link_graph.pdf")) plt.show() #def pmtkInit(): # pmtkFolder = os.environ['PMTKPYTHONHOME'] # execfile(os.path.join(pmtkFolder, 'pmtk3PythonInit.py')) def DGtoAdjMat(DG) NX = DG.nnodes() fnames = DG.nodes() T = matrix(numpy.zeros((NX, NX))) # Map from names to numbers f2i = dict((fn, i) for i, fn in enumerate(fnames)) for predecessor, successors in DG.adj.iteritems(): for s, edata in successors.iteritems(): T[f2i[predecessor], f2i[s]] = edata['weight'] return T def main(): #pmtkInit() pmtkDataFolder = os.environ['PMTKDATAFOLDER'] mydict = parseFiles(os.path.join(pmtkDataFolder, 'smallWeb')) fnames = mydict.keys() DG = mkGraph(mydict) plotGraph(DG) #pmtkTmpFolder = os.environ['PMTKTMPFOLDER'] # Save file tmpName = os.path.join(pmtkDataFolder, 'smallWeb', 'DG.pkl') cPickle.dump(DG, open(tmpName, 'w')) # DG = cPickle.load(fname) DGtoAdjMat(DG) if __name__ == '__main__': main()
mit
square/pysurvival
pysurvival/models/simulations.py
1
16325
from __future__ import absolute_import import numpy as np import pandas as pd import random import scipy import copy from pysurvival import utils from pysurvival.models import BaseModel # %matplotlib inline # List of Survival Distributions DISTRIBUTIONS = ['Exponential', 'Weibull', 'Gompertz', 'Log-Logistic', 'Log-Normal',] # List of risk types RISK_TYPES = ['Linear', 'Square', 'Gaussian'] class SimulationModel(BaseModel): """ A general framework for simulating right-censored survival data for proportional hazards models by incorporating * a baseline hazard function from a known survival distribution, * a set of covariates. The framework is based on "Generating Survival Times to Simulate Cox Proportional Hazards Models" https://www.ncbi.nlm.nih.gov/pubmed/22763916 The formula for the different survival times and functions, and hazard functions can be found at : http://data.princeton.edu/pop509/ParametricSurvival.pdf Parameters: ----------- * survival_distribution: string (default = 'exponential') Defines a known survival distribution. The available options are: - Exponential - Weibull - Gompertz - Log-Logistic - Log-Normal * risk_type: string (default='linear') Defines the type of risk function. The available options are: - Linear - Square - Gaussian * alpha: double (default = 1.) the scale parameter * beta: double (default = 1.) the shape parameter * bins: int (default=100) the number of bins of the time axis * censored_parameter: double (default = 1.) coefficient used to calculate the censored distribution. This distribution is a normal such that N(loc=censored_parameter, scale=5) * risk_parameter: double (default = 1.) Scaling coefficient of the risk score such that: - linear: r(x) = exp(<x, W>) - square: r(x) = exp(risk_parameter*(<x, W>)^2) - gaussian: r(x) = exp( exp(-(<x, W>)^2/risk_parameter) ) <.,.> is the dot product """ def __init__(self, survival_distribution = 'exponential', risk_type = 'linear', censored_parameter = 1., alpha = 1, beta = 1., bins = 100, risk_parameter = 1.): # Saving the attributes self.censored_parameter = censored_parameter self.alpha = alpha self.beta = beta self.risk_parameter = risk_parameter self.bins = bins self.features = [] # Checking risk_type if any([risk_type.lower() == r.lower() for r in RISK_TYPES ]): self.risk_type = risk_type else: error = "{} isn't a valid risk type. " error += "Only {} are currently available." error = error.format(risk_type, ", ".join(RISK_TYPES)) raise NotImplementedError(error) # Checking distribution if any([survival_distribution.lower() == d.lower() \ for d in DISTRIBUTIONS ]): self.survival_distribution = survival_distribution else: error = "{} isn't a valid survival distribution. " error += "Only {} are currently available." error = error.format(survival_distribution,", ".join(DISTRIBUTIONS)) raise NotImplementedError(error) # Initializing the elements from BaseModel super(SimulationModel, self).__init__(auto_scaler = True) @staticmethod def random_data(N): """ Generating a array of size N from a random distribution -- the available distributions are: * binomial, * chisquare, * exponential, * gamma, * normal, * uniform * laplace """ index = np.random.binomial(n = 4, p = 0.5) distributions = { 'binomial_a': np.random.binomial(n = 20, p = 0.6, size = N ), 'binomial_b': np.random.binomial(n = 200, p = 0.6, size = N ), 'chisquare': np.random.chisquare(df = 10, size = N ), 'exponential_a': np.random.exponential(scale=0.1, size = N ), 'exponential_b': np.random.exponential(scale=0.01, size = N ), 'gamma': np.random.gamma(shape=2., scale=2., size = N ), 'normal_a': np.random.normal(loc=-1.0, scale=5.0, size=N ), 'normal_b': np.random.normal(loc=10.0, scale=10.0, size=N ), 'uniform_a': np.random.uniform(low=-2.0, high=10.0, size=N ), 'uniform_b': np.random.uniform(low=-20.0, high=100.0, size=N ), 'laplace': np.random.laplace(loc=0.0, scale=1.0, size=N ) } list_distributions = copy.deepcopy(list(distributions.keys())) random.shuffle(list_distributions) key = list_distributions[ index ] return key, distributions[key] def time_function(self, BX): """ Calculating the survival times based on the given distribution T = H^(-1)( -log(U)/risk_score ), where: * H is the cumulative baseline hazard function (H^(-1) is the inverse function) * U is a random variable uniform - Uni[0,1]. The method is inspired by https://gist.github.com/jcrudy/10481743 """ # Calculating scale coefficient using the features num_samples = BX.shape[0] lambda_exp_BX = np.exp(BX)*self.alpha lambda_exp_BX = lambda_exp_BX.flatten() # Generating random uniform variables U = np.random.uniform(0, 1, num_samples) # Exponential if self.survival_distribution.lower().startswith('exp') : self.survival_distribution = 'Exponential' return - np.log( U )/( lambda_exp_BX ) # Weibull elif self.survival_distribution.lower().startswith('wei') : self.survival_distribution = 'Weibull' return np.power( - np.log( U )/( lambda_exp_BX ), 1./self.beta ) # Gompertz elif self.survival_distribution.lower().startswith('gom') : self.survival_distribution = 'Gompertz' return ( 1./self.beta)*\ np.log( 1 - self.beta*np.log( U )/(lambda_exp_BX) ) # Log-Logistic elif 'logistic' in self.survival_distribution.lower() : self.survival_distribution = 'Log-Logistic' return np.power( U/(1.-U), 1./self.beta )/(lambda_exp_BX ) # Log-Normal elif 'normal' in self.survival_distribution.lower() : self.survival_distribution = 'Log-Normal' W = np.random.normal(0, 1, num_samples) return lambda_exp_BX*np.exp(self.beta*W) def hazard_function(self, t, BX): """ Calculating the hazard function based on the given distribution """ # Calculating scale coefficient using the features _lambda = self.alpha*np.exp( BX ) # Exponential if self.survival_distribution.lower().startswith( 'exp' ) : return np.repeat(_lambda, len(t)) # Weibull elif self.survival_distribution.lower().startswith('wei'): return _lambda*self.beta*np.power( t, self.beta-1 ) # Gompertz elif self.survival_distribution.lower().startswith('gom'): return _lambda*np.exp(self.beta*t ) # Log-Logistic elif self.survival_distribution.lower().endswith('logistic'): numerator = _lambda*self.beta*np.power((_lambda*t), self.beta-1 ) denominator = (1 + np.power( (_lambda*t), self.beta) ) return numerator/denominator # Log-Normal elif self.survival_distribution.lower().endswith('normal'): arg_normal = (np.log(t) - np.log(_lambda))/self.beta numerator = (1./(t*self.beta))*scipy.stats.norm.pdf( arg_normal ) denominator = 1. - scipy.stats.norm.cdf(arg_normal) return numerator/denominator def survival_function(self, t, BX): """ Calculating the survival function based on the given distribution """ # Calculating scale coefficient using the features _lambda = self.alpha*np.exp( BX ) # Exponential if self.survival_distribution.lower().startswith( 'exp' ) : return np.exp( -t*_lambda ) # Weibull elif self.survival_distribution.lower().startswith('wei'): return np.exp( -np.power(t, self.beta)*_lambda ) # Gompertz elif self.survival_distribution.lower().startswith('gom'): return np.exp( -_lambda/self.beta*( np.exp(self.beta*t) - 1) ) # Log-Logistic elif self.survival_distribution.lower().endswith('logistic'): return 1./(1.+ np.power(_lambda*t, self.beta) ) # Log-Normal elif self.survival_distribution.lower().endswith('normal'): arg_cdf = (np.log(t) - np.log(_lambda))/self.beta return 1. - scipy.stats.norm.cdf(arg_cdf) def risk_function(self, x_std): """ Calculating the risk function based on the given risk type """ # Dot product risk = np.dot( x_std, self.feature_weights ) # Choosing the type of risk if self.risk_type.lower() == 'linear' : return risk.reshape(-1, 1) elif self.risk_type.lower() == 'square' : risk = np.square(risk*self.risk_parameter) elif self.risk_type.lower() == 'gaussian' : risk = np.square(risk) risk = np.exp( - risk*self.risk_parameter) return risk.reshape(-1, 1) def generate_data(self, num_samples = 100, num_features = 3, feature_weights = None): """ Generating a dataset of simulated survival times from a given distribution through the hazard function using the Cox model Parameters: ----------- * `num_samples`: **int** *(default=100)* -- Number of samples to generate * `num_features`: **int** *(default=3)* -- Number of features to generate * `feature_weights`: **array-like** *(default=None)* -- list of the coefficients of the underlying Cox-Model. The features linked to each coefficient are generated from random distribution from the following list: * binomial * chisquare * exponential * gamma * normal * uniform * laplace If None then feature_weights = [1.]*num_features Returns: -------- * dataset: pandas.DataFrame dataset of simulated survival times, event status and features Example: -------- from pysurvival.models.simulations import SimulationModel # Initializing the simulation model sim = SimulationModel( survival_distribution = 'gompertz', risk_type = 'linear', censored_parameter = 5.0, alpha = 0.01, beta = 5., ) # Generating N Random samples N = 1000 dataset = sim.generate_data(num_samples = N, num_features=5) # Showing a few data-points dataset.head() """ # Data parameters self.num_variables = num_features if feature_weights is None : self.feature_weights = [1.]*self.num_variables feature_weights = self.feature_weights else: feature_weights = utils.check_data(feature_weights) if num_features != len(feature_weights): error = "The length of feature_weights ({}) " error += "and num_features ({}) are not the same." error = error.format(len(feature_weights), num_features) raise ValueError(error) self.feature_weights = feature_weights # Generating random features # Creating the features X = np.zeros((num_samples, self.num_variables)) columns = [] for i in range( self.num_variables ) : key, X[:, i] = self.random_data(num_samples) columns.append( 'x_' + str(i+1) ) X_std = self.scaler.fit_transform( X ) BX = self.risk_function( X_std ) # Building the survival times T = self.time_function(BX) C = np.random.normal( loc = self.censored_parameter, scale = 5, size = num_samples ) C = np.maximum(C, 0.) time = np.minimum( T, C ) E = 1.*(T == time) # Building dataset self.features = columns self.dataset = pd.DataFrame( data = np.c_[X, time, E], columns = columns + ['time', 'event'] ) # Building the time axis and time buckets self.times = np.linspace(0., max(self.dataset['time']), self.bins) self.get_time_buckets() # Building baseline functions self.baseline_hazard = self.hazard_function(self.times, 0) self.baseline_survival = self.survival_function(self.times, 0) # Printing summary message message_to_print = "Number of data-points: {} - Number of events: {}" print( message_to_print.format(num_samples, sum(E)) ) return self.dataset def predict(self, x, t = None): """ Predicting the hazard, density and survival functions Parameters: ----------- * x: pd.Dataframe or np.ndarray or list x is the testing dataset containing the features x should not be standardized before, the model will take care of it * t: float (default=None) Time at which hazard, density and survival functions should be calculated. If None, the method returns the functions for all times t. """ # Convert x into the right format x = utils.check_data(x) # Scaling the dataset if x.ndim == 1: x = self.scaler.transform( x.reshape(1, -1) ) elif x.ndim == 2: x = self.scaler.transform( x ) else: # Ensuring x has 2 dimensions if x.ndim == 1: x = np.reshape(x, (1, -1)) # Calculating risk_score, hazard, density and survival BX = self.risk_function(x) hazard = self.hazard_function(self.times, BX.reshape(-1, 1)) survival = self.survival_function(self.times, BX.reshape(-1, 1)) density = (hazard*survival) if t is None: return hazard, density, survival else: min_abs_value = [abs(a_j_1-t) for (a_j_1, a_j) in self.time_buckets] index = np.argmin(min_abs_value) return hazard[:, index], density[:, index], survival[:, index] def predict_risk(self, x): """ Predicting the risk score function Parameters: ----------- * x: pd.Dataframe or np.ndarray or list x is the testing dataset containing the features x should not be standardized before, the model will take care of it """ # Convert x into the right format x = utils.check_data(x) # Scaling the dataset if x.ndim == 1: x = self.scaler.transform( x.reshape(1, -1) ) elif x.ndim == 2: x = self.scaler.transform( x ) else: # Ensuring x has 2 dimensions if x.ndim == 1: x = np.reshape(x, (1, -1)) # Calculating risk_score risk_score = self.risk_function(x) return risk_score
apache-2.0
vineet-rh/incubator-airflow
docs/conf.py
33
8957
# -*- coding: utf-8 -*- # # Airflow documentation build configuration file, created by # sphinx-quickstart on Thu Oct 9 20:50:01 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys import mock MOCK_MODULES = [ 'apiclient', 'apiclient.discovery', 'apiclient.http', 'mesos', 'mesos.interface', 'mesos.native', 'oauth2client.service_account', 'pandas.io.gbq', ] for mod_name in MOCK_MODULES: sys.modules[mod_name] = mock.Mock() # Hack to allow changing for piece of the code to behave differently while # the docs are being built. The main objective was to alter the # behavior of the utils.apply_default that was hiding function headers os.environ['BUILDING_AIRFLOW_DOCS'] = 'TRUE' from airflow import settings # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinxarg.ext', ] viewcode_import = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Airflow' #copyright = u'' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. #version = '1.0.0' # The full version, including alpha/beta/rc tags. #release = '1.0.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] import sphinx_rtd_theme html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = "Airflow Documentation" # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = "" # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = False # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Airflowdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'Airflow.tex', u'Airflow Documentation', u'Maxime Beauchemin', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'airflow', u'Airflow Documentation', [u'Maxime Beauchemin'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [( 'index', 'Airflow', u'Airflow Documentation', u'Maxime Beauchemin', 'Airflow', 'Airflow is a system to programmaticaly author, schedule and monitor data pipelines.', 'Miscellaneous' ),] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
apache-2.0
mjgrav2001/scikit-learn
examples/plot_multilabel.py
236
4157
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause