repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
jkokorian/ODMAnalysis
odmanalysis/odmstudio/plugins/sourcereaders/csvreading.py
1
1250
from odmanalysis.odmstudio import odmstudio_lib as lib from odmanalysis.odmstudio import odmstudio_framework as framework import odmanalysis as odm import pandas as pd @framework.RegisterSourceReader("Comma separated", extensions=['csv'], maxNumberOfFiles=1) class CsvReader(lib.SourceReader): def __init__(self, dataSource): lib.SourceReader.__init__(self, dataSource) def read(self,path): super(CsvReader, self).read(path) self._setStatusMessage("reading...") reader = odm.getODMDataReader(path,chunksize=500) lineCount = float(sum(1 for line in open(path))) chunks = [] linesRead = 1 for chunk in reader: linesRead += 500 self.appendChunkToData(chunk) self._setStatusMessage("%i lines read" % linesRead) self._setProgress(linesRead/lineCount * 100) self._setStatusMessage("File loaded") self._setProgress(100) def appendChunkToData(self,chunk): if self.dataSource.sourceIsEmpty: self.dataSource.setSourceDataFrame(chunk) else: self.dataSource.setSourceDataFrame(pd.concat([self.dataSource.sourceDataFrame,chunk]))
gpl-3.0
fzalkow/scikit-learn
benchmarks/bench_glm.py
297
1493
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model from sklearn.utils.bench import total_seconds if __name__ == '__main__': import pylab as pl n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = total_seconds(datetime.now() - start) start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = total_seconds(datetime.now() - start) start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = total_seconds(datetime.now() - start) pl.figure('scikit-learn GLM benchmark results') pl.xlabel('Dimensions') pl.ylabel('Time (s)') pl.plot(dimensions, time_ridge, color='r') pl.plot(dimensions, time_ols, color='g') pl.plot(dimensions, time_lasso, color='b') pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') pl.axis('tight') pl.show()
bsd-3-clause
gticket/scikit-neuralnetwork
sknn/tests/test_deep.py
5
3813
import unittest from nose.tools import (assert_false, assert_raises, assert_true, assert_equal, assert_in) import io import pickle import numpy import logging from sklearn.base import clone import sknn from sknn.mlp import Regressor as MLPR from sknn.mlp import Layer as L from . import test_linear class TestDeepNetwork(test_linear.TestLinearNetwork): def setUp(self): self.nn = MLPR( layers=[ L("Rectifier", units=16), L("Sigmoid", units=12), L("Maxout", units=16, pieces=2), L("Tanh", units=4), L("Linear")], n_iter=1) def test_UnknownLayer(self): assert_raises(NotImplementedError, L, "Unknown") def test_UnknownActivation(self): assert_raises(NotImplementedError, L, "Wrong", units=16) # This class also runs all the tests from the linear network too. class TestDeepDeterminism(unittest.TestCase): def setUp(self): self.a_in = numpy.random.uniform(0.0, 1.0, (8,16)) self.a_out = numpy.zeros((8,1)) def run_EqualityTest(self, copier, asserter): # Only PyLearn2 supports Maxout. extra = ["Maxout"] if sknn.backend.name != 'pylearn2' else [] for activation in ["Rectifier", "Sigmoid", "Tanh"] + extra: nn1 = MLPR(layers=[L(activation, units=16, pieces=2), L("Linear", units=1)], random_state=1234) nn1._initialize(self.a_in, self.a_out) nn2 = copier(nn1, activation) print('activation', activation) a_out1 = nn1.predict(self.a_in) a_out2 = nn2.predict(self.a_in) print(a_out1, a_out2) asserter(numpy.all(nn1.predict(self.a_in) == nn2.predict(self.a_in))) def test_DifferentSeedPredictNotEquals(self): def ctor(_, activation): nn = MLPR(layers=[L(activation, units=16, pieces=2), L("Linear", units=1)], random_state=2345) nn._initialize(self.a_in, self.a_out) return nn self.run_EqualityTest(ctor, assert_false) def test_SameSeedPredictEquals(self): def ctor(_, activation): nn = MLPR(layers=[L(activation, units=16, pieces=2), L("Linear", units=1)], random_state=1234) nn._initialize(self.a_in, self.a_out) return nn self.run_EqualityTest(ctor, assert_true) def test_ClonePredictEquals(self): def cloner(nn, _): cc = clone(nn) cc._initialize(self.a_in, self.a_out) return cc self.run_EqualityTest(cloner, assert_true) def test_SerializedPredictEquals(self): def serialize(nn, _): buf = io.BytesIO() pickle.dump(nn, buf) buf.seek(0) return pickle.load(buf) self.run_EqualityTest(serialize, assert_true) class TestActivations(unittest.TestCase): def setUp(self): self.buf = io.StringIO() self.hnd = logging.StreamHandler(self.buf) logging.getLogger('sknn').addHandler(self.hnd) logging.getLogger().setLevel(logging.WARNING) def tearDown(self): assert_equal('', self.buf.getvalue()) sknn.mlp.log.removeHandler(self.hnd) @unittest.skipIf(sknn.backend.name != 'pylearn2', 'only pylearn2') def test_MissingParameterException(self): nn = MLPR(layers=[L("Maxout", units=32), L("Linear")]) a_in = numpy.zeros((8,16)) assert_raises(ValueError, nn._initialize, a_in, a_in) def test_UnusedParameterWarning(self): nn = MLPR(layers=[L("Linear", pieces=2)], n_iter=1) a_in = numpy.zeros((8,16)) nn._initialize(a_in, a_in) assert_in('Parameter `pieces` is unused', self.buf.getvalue()) self.buf = io.StringIO() # clear
bsd-3-clause
alorenzo175/pvlib-python
pvlib/test/conftest.py
1
11023
import inspect import os import platform import numpy as np import pandas as pd from pkg_resources import parse_version import pytest import pvlib pvlib_base_version = \ parse_version(parse_version(pvlib.__version__).base_version) # decorator takes one argument: the base version for which it should fail # for example @fail_on_pvlib_version('0.7') will cause a test to fail # on pvlib versions 0.7a, 0.7b, 0.7rc1, etc. # test function may not take args, kwargs, or fixtures. def fail_on_pvlib_version(version): # second level of decorator takes the function under consideration def wrapper(func): # third level defers computation until the test is called # this allows the specific test to fail at test runtime, # rather than at decoration time (when the module is imported) def inner(): # fail if the version is too high if pvlib_base_version >= parse_version(version): pytest.fail('the tested function is scheduled to be ' 'removed in %s' % version) # otherwise return the function to be executed else: return func() return inner return wrapper # commonly used directories in the tests test_dir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) data_dir = os.path.join(test_dir, os.pardir, 'data') platform_is_windows = platform.system() == 'Windows' skip_windows = pytest.mark.skipif(platform_is_windows, reason='does not run on windows') try: import scipy has_scipy = True except ImportError: has_scipy = False requires_scipy = pytest.mark.skipif(not has_scipy, reason='requires scipy') try: import tables has_tables = True except ImportError: has_tables = False requires_tables = pytest.mark.skipif(not has_tables, reason='requires tables') try: import ephem has_ephem = True except ImportError: has_ephem = False requires_ephem = pytest.mark.skipif(not has_ephem, reason='requires ephem') def pandas_0_17(): return parse_version(pd.__version__) >= parse_version('0.17.0') needs_pandas_0_17 = pytest.mark.skipif( not pandas_0_17(), reason='requires pandas 0.17 or greater') def numpy_1_10(): return parse_version(np.__version__) >= parse_version('1.10.0') needs_numpy_1_10 = pytest.mark.skipif( not numpy_1_10(), reason='requires numpy 1.10 or greater') def pandas_0_22(): return parse_version(pd.__version__) >= parse_version('0.22.0') needs_pandas_0_22 = pytest.mark.skipif( not pandas_0_22(), reason='requires pandas 0.22 or greater') def has_spa_c(): try: from pvlib.spa_c_files.spa_py import spa_calc except ImportError: return False else: return True requires_spa_c = pytest.mark.skipif(not has_spa_c(), reason="requires spa_c") def has_numba(): try: import numba except ImportError: return False else: vers = numba.__version__.split('.') if int(vers[0] + vers[1]) < 17: return False else: return True requires_numba = pytest.mark.skipif(not has_numba(), reason="requires numba") try: import siphon has_siphon = True except ImportError: has_siphon = False requires_siphon = pytest.mark.skipif(not has_siphon, reason='requires siphon') try: import netCDF4 # noqa: F401 has_netCDF4 = True except ImportError: has_netCDF4 = False requires_netCDF4 = pytest.mark.skipif(not has_netCDF4, reason='requires netCDF4') try: import pvfactors # noqa: F401 has_pvfactors = True except ImportError: has_pvfactors = False requires_pvfactors = pytest.mark.skipif(not has_pvfactors, reason='requires pvfactors') try: import PySAM # noqa: F401 has_pysam = True except ImportError: has_pysam = False requires_pysam = pytest.mark.skipif(not has_pysam, reason="requires PySAM") @pytest.fixture(scope="session") def sam_data(): data = {} data['sandiamod'] = pvlib.pvsystem.retrieve_sam('sandiamod') data['adrinverter'] = pvlib.pvsystem.retrieve_sam('adrinverter') return data @pytest.fixture(scope="function") def pvsyst_module_params(): """ Define some PVSyst module parameters for testing. The scope of the fixture is set to ``'function'`` to allow tests to modify parameters if required without affecting other tests. """ parameters = { 'gamma_ref': 1.05, 'mu_gamma': 0.001, 'I_L_ref': 6.0, 'I_o_ref': 5e-9, 'EgRef': 1.121, 'R_sh_ref': 300, 'R_sh_0': 1000, 'R_s': 0.5, 'R_sh_exp': 5.5, 'cells_in_series': 60, 'alpha_sc': 0.001, } return parameters @pytest.fixture(scope='function') def cec_inverter_parameters(): """ Define some CEC inverter parameters for testing. The scope of the fixture is set to ``'function'`` to allow tests to modify parameters if required without affecting other tests. """ parameters = { 'Name': 'ABB: MICRO-0.25-I-OUTD-US-208 208V [CEC 2014]', 'Vac': 208.0, 'Paco': 250.0, 'Pdco': 259.5220505, 'Vdco': 40.24260317, 'Pso': 1.771614224, 'C0': -2.48e-5, 'C1': -9.01e-5, 'C2': 6.69e-4, 'C3': -0.0189, 'Pnt': 0.02, 'Vdcmax': 65.0, 'Idcmax': 10.0, 'Mppt_low': 20.0, 'Mppt_high': 50.0, } return parameters @pytest.fixture(scope='function') def cec_module_params(): """ Define some CEC module parameters for testing. The scope of the fixture is set to ``'function'`` to allow tests to modify parameters if required without affecting other tests. """ parameters = { 'Name': 'Example Module', 'BIPV': 'Y', 'Date': '4/28/2008', 'T_NOCT': 65, 'A_c': 0.67, 'N_s': 18, 'I_sc_ref': 7.5, 'V_oc_ref': 10.4, 'I_mp_ref': 6.6, 'V_mp_ref': 8.4, 'alpha_sc': 0.003, 'beta_oc': -0.04, 'a_ref': 0.473, 'I_L_ref': 7.545, 'I_o_ref': 1.94e-09, 'R_s': 0.094, 'R_sh_ref': 15.72, 'Adjust': 10.6, 'gamma_r': -0.5, 'Version': 'MM105', 'PTC': 48.9, 'Technology': 'Multi-c-Si', } return parameters @pytest.fixture(scope='function') def cec_module_cs5p_220m(): """ Define Canadian Solar CS5P-220M module parameters for testing. The scope of the fixture is set to ``'function'`` to allow tests to modify parameters if required without affecting other tests. """ parameters = { 'Name': 'Canadian Solar CS5P-220M', 'BIPV': 'N', 'Date': '10/5/2009', 'T_NOCT': 42.4, 'A_c': 1.7, 'N_s': 96, 'I_sc_ref': 5.1, 'V_oc_ref': 59.4, 'I_mp_ref': 4.69, 'V_mp_ref': 46.9, 'alpha_sc': 0.004539, 'beta_oc': -0.22216, 'a_ref': 2.6373, 'I_L_ref': 5.114, 'I_o_ref': 8.196e-10, 'R_s': 1.065, 'R_sh_ref': 381.68, 'Adjust': 8.7, 'gamma_r': -0.476, 'Version': 'MM106', 'PTC': 200.1, 'Technology': 'Mono-c-Si', } return parameters @pytest.fixture(scope='function') def cec_module_spr_e20_327(): """ Define SunPower SPR-E20-327 module parameters for testing. The scope of the fixture is set to ``'function'`` to allow tests to modify parameters if required without affecting other tests. """ parameters = { 'Name': 'SunPower SPR-E20-327', 'BIPV': 'N', 'Date': '1/14/2013', 'T_NOCT': 46, 'A_c': 1.631, 'N_s': 96, 'I_sc_ref': 6.46, 'V_oc_ref': 65.1, 'I_mp_ref': 5.98, 'V_mp_ref': 54.7, 'alpha_sc': 0.004522, 'beta_oc': -0.23176, 'a_ref': 2.6868, 'I_L_ref': 6.468, 'I_o_ref': 1.88e-10, 'R_s': 0.37, 'R_sh_ref': 298.13, 'Adjust': -0.1862, 'gamma_r': -0.386, 'Version': 'NRELv1', 'PTC': 301.4, 'Technology': 'Mono-c-Si', } return parameters @pytest.fixture(scope='function') def cec_module_fs_495(): """ Define First Solar FS-495 module parameters for testing. The scope of the fixture is set to ``'function'`` to allow tests to modify parameters if required without affecting other tests. """ parameters = { 'Name': 'First Solar FS-495', 'BIPV': 'N', 'Date': '9/18/2014', 'T_NOCT': 44.6, 'A_c': 0.72, 'N_s': 216, 'I_sc_ref': 1.55, 'V_oc_ref': 86.5, 'I_mp_ref': 1.4, 'V_mp_ref': 67.9, 'alpha_sc': 0.000924, 'beta_oc': -0.22741, 'a_ref': 2.9482, 'I_L_ref': 1.563, 'I_o_ref': 2.64e-13, 'R_s': 6.804, 'R_sh_ref': 806.27, 'Adjust': -10.65, 'gamma_r': -0.264, 'Version': 'NRELv1', 'PTC': 89.7, 'Technology': 'CdTe', } return parameters @pytest.fixture(scope='function') def sapm_temperature_cs5p_220m(): # SAPM temperature model parameters for Canadian_Solar_CS5P_220M # (glass/polymer) in open rack return {'a': -3.40641, 'b': -0.0842075, 'deltaT': 3} @pytest.fixture(scope='function') def sapm_module_params(): """ Define SAPM model parameters for Canadian Solar CS5P 220M module. The scope of the fixture is set to ``'function'`` to allow tests to modify parameters if required without affecting other tests. """ parameters = {'Material': 'c-Si', 'Cells_in_Series': 96, 'Parallel_Strings': 1, 'A0': 0.928385, 'A1': 0.068093, 'A2': -0.0157738, 'A3': 0.0016606, 'A4': -6.93E-05, 'B0': 1, 'B1': -0.002438, 'B2': 0.0003103, 'B3': -0.00001246, 'B4': 2.11E-07, 'B5': -1.36E-09, 'C0': 1.01284, 'C1': -0.0128398, 'C2': 0.279317, 'C3': -7.24463, 'C4': 0.996446, 'C5': 0.003554, 'C6': 1.15535, 'C7': -0.155353, 'Isco': 5.09115, 'Impo': 4.54629, 'Voco': 59.2608, 'Vmpo': 48.3156, 'Aisc': 0.000397, 'Aimp': 0.000181, 'Bvoco': -0.21696, 'Mbvoc': 0.0, 'Bvmpo': -0.235488, 'Mbvmp': 0.0, 'N': 1.4032, 'IXO': 4.97599, 'IXXO': 3.18803, 'FD': 1} return parameters
bsd-3-clause
ctogle/dilapidator
test/topology/partitiongraph_tests.py
1
2592
from dilap.geometry.vec3 import vec3 import dilap.geometry.tools as gtl import dilap.geometry.polymath as pym import dilap.topology.partitiongraph as ptg import dilap.worldly.blockletters as dbl import dilap.core.plotting as dtl import matplotlib.pyplot as plt import unittest,random import pdb #python3 -m unittest discover -v ./ "*tests.py" class test_partitiongraph(unittest.TestCase): def test_av(self): fp = dbl.block('H',10,25,25) rg = ptg.partitiongraph() bs = pym.bsegsxy(fp[0],vec3(0,-100,0),vec3(0,100,0)) for b in bs: i = rg.av(b = [b,[]],p = vec3(0,0,0).com(b),l = 0) rg.plotxy() plt.show() pg = rg.bgraph() pgpy = pg.polygon(1,'ccw') ax = pg.plotxy() #ax = dtl.plot_axes_xy(20) #ax = dtl.plot_polygon_full_xy(pgpy,ax,lw = 2) ax = dtl.plot_polygon_xy(pgpy[0],ax,lw = 2) for pgp in pgpy[1]: ax = dtl.plot_polygon_xy(pgp,ax,lw = 2) plt.show() def atest_split(self): fp = dbl.block('H',10,25,25) rg = ptg.partitiongraph() bs = pym.bsegsxy(fp[0],vec3(0,-100,0),vec3(0,100,0)) b = fp[0] i1 = rg.av(b = [b,[]],p = vec3(0,0,0).com(b),l = 0) i2 = rg.sv(0,bs[0],bs[1]) rg.plotxy() plt.show() def atest_break(self): fp = dbl.block('H',10,25,25) v1 = {'b':fp,'p':vec3(0,0,0).com(fp[0]),'l':0} rg = ptg.partitiongraph() ip = vec3(0.5,0.5,0) i1 = rg.av(**v1) i2 = rg.bv(0,ip,vec3(1,0,0)) i3 = rg.bv(0,ip,vec3(0,1,0)) i4 = rg.bv(1,ip,vec3(0,1,0)) rg.vves() rg.plotxy() plt.show() def atest_bgraph(self): fp = dbl.block('H',10,25,25) v1 = {'b':fp,'p':vec3(0,0,0).com(fp[0]),'l':0} rg = ptg.partitiongraph() ip = vec3(0.5,0.5,0) i1 = rg.av(**v1) #i2 = rg.bv(0,ip,vec3(1,0,0)) i3 = rg.bv(0,ip,vec3(0,1,0)) #i4 = rg.bv(1,ip,vec3(0,1,0)) rg.vves() pg = rg.bgraph() #pdb.set_trace() pgpy = pg.polygon(1,'ccw') ax = pg.plotxy() #ax = dtl.plot_axes_xy(20) #ax = dtl.plot_polygon_full_xy(pgpy,ax,lw = 2) ax = dtl.plot_polygon_xy(pgpy[0],ax,lw = 2) for pgp in pgpy[1]: ax = dtl.plot_polygon_xy(pgp,ax,lw = 2) plt.show() ############################################################################### if __name__ == '__main__':unittest.main() ###############################################################################
mit
mathnathan/notebooks
model.py
1
5048
import cv2 from numpy import * import matplotlib.pyplot as plt from scipy.ndimage.filters import gaussian_filter as gauss set_printoptions(1) class Model: def __init__(self, dim=21, thickness=5, outside=1.0, inside=10.0, calAmp=50, fluctuations=0.2, noise=0.03, speed=1.0, breadth=3): self.params = {} self.params["dim"] = dim self.params["processThickness"] = thickness self.params["spikeBreadth"] = breadth self.params["outsideConcentration"] = outside self.params["insideConcentration"] = inside self.params["calciumAmplitude"] = calAmp self.params["concentrationVariance"] = fluctuations self.params["signalNoise"] = noise self.params["speed"] = speed self.__makeData() def __getitem__(self, key): try: return self.params[key] except: raise KeyError def __setitem__(self, key, value): try: self.params[key] = value except: raise KeyError self.__makeData() def __makeData(self): time = int(float(self["dim"] - self["spikeBreadth"])/self["speed"])+1 self.data = zeros((time, self["dim"], self["dim"])) self.fyTrue = zeros((time, self["dim"], self["dim"])) self.fxTrue = zeros((time-1, self["dim"], self["dim"])) wall1 = self["dim"]/2 - self["processThickness"]/2 wall2 = wall1 + self["processThickness"] self.data[:, :, :wall1] = self["outsideConcentration"] self.data[:, :, wall1:wall2] = self["insideConcentration"] self.data[:, :, wall2:] = self["outsideConcentration"] for i,frame in enumerate(self.data): d = int(i*self["speed"]) frame[d:d+self["spikeBreadth"], wall1:wall2] = self["calciumAmplitude"] self.fyTrue[i, d:d+self["spikeBreadth"], wall1:wall2] = self["speed"] self.fyTrue = self.fyTrue[:-1] self.data += (2*random.random((time, self["dim"], self["dim"]))-1)*self.data*self["concentrationVariance"] self.data += (2*random.random((time, self["dim"], self["dim"]))-1)*self["signalNoise"]*self["calciumAmplitude"] def run(self): self.calcFlow() self.show() self.error() def calcFlow(self, relative=True, blur=(0,0,0), parameters=None): flowParams = {'pyr_scale':0.5, 'levels':3, 'winsize':7, 'iterations':3, 'poly_n':5, 'poly_sigma':1.1, 'flags':cv2.OPTFLOW_FARNEBACK_GAUSSIAN} flowParams = parameters if parameters else flowParams frames, h, w = self.data.shape self.xflow = ndarray((frames-1,h,w)) self.yflow = ndarray((frames-1,h,w)) data = self.data if relative: f0 = percentile(self.data,10,0); plt.imshow(f0, cmap='gray', interpolation='nearest', vmin=f0.min(), vmax=f0.max()) plt.title("F0"); plt.colorbar() data = (self.data-f0)/f0 blurData = gauss(data, blur) prev = self.data[0] for i,curr in enumerate(blurData[1:]): flow = cv2.calcOpticalFlowFarneback(prev, curr, **flowParams) self.xflow[i] = flow[:,:,0] self.yflow[i] = flow[:,:,1] prev = curr def show(self, frames=[0,None], cols=3, parameters=None): vecParams = {'pivot':'tail', 'angles':'xy', 'scale_units':'xy', 'color':'yellow'} vecParams = parameters if parameters else vecParams if type(frames) == int: plt.figure(figsize=(12,12)) plt.imshow(self.data[frames], cmap='gray') plt.quiver(self.xflow[frames], self.yflow[frames], **vecParams) return else: vmin = self.data.min() vmax = self.data.max() begf, endf = frames endf = endf if endf else len(self.xflow) rows = int(ceil((endf-begf)/float(cols))) fw = 13; fh = float(rows*fw)/cols plt.figure(figsize=(fw, fh)) for i in range(begf, endf): plt.subplot(rows,cols,i-begf+1) plt.imshow(self.data[i], cmap='gray', interpolation='nearest', vmin=vmin, vmax=vmax); plt.colorbar() plt.title("Flow from frame %d to frame %d" % (i,i+1)) plt.quiver(self.xflow[i], self.yflow[i], **vecParams) plt.tight_layout() def error(self): trueNorms = sqrt(self.fxTrue**2 + self.fyTrue**2) approxNorms = sqrt(self.xflow**2 + self.yflow**2) maxErr = trueNorms + approxNorms maxErr[abs(maxErr) < 1e-12] = 1.0 err = sqrt((self.fxTrue-self.xflow)**2 + (self.fyTrue-self.yflow)**2)/maxErr print "Maximum Point-wise Error = ", err.max() print "Minimum Point-wise Error = ", err.min() frob = linalg.norm(err,'fro',(1,2)) print "Maximum Frobenius Norm = ", frob.max() print "Minimum Frobenius Norm = ", frob.min() totErr = average(frob) print "Total Error = ", totErr return totErr
mit
puolival/multipy
multipy/scripts/fig2.py
1
1095
# -*- coding: utf-8 -*- """Script for visualizing the significance decision line in the Benjamini-Hochberg procedure. Author: Tuomas Puoliväli Email: [email protected] Last modified 12th February 2018 Source: https://github.com/puolival/multipy """ # Allow importing modules from parent directory. import sys sys.path.append('..') from data import neuhaus import matplotlib.pyplot as plt import numpy as np import seaborn as sns alpha = 0.05 # The chosen critical level. pvals = neuhaus(permute=False) n_pvals = len(pvals) k = np.linspace(1, n_pvals, n_pvals) sel = np.arange(0, 8) """Plot the data.""" sns.set_style('darkgrid') fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111) ax.plot(k[sel], pvals[sel], 'o-') y = (alpha/n_pvals)*k + 0 # Line through the origin. ax.plot(k[sel], y[sel], '-') ax.legend(['P-value', 'Decision line'], loc='upper left') ax.set_xlabel('Hypothesis') ax.set_ylabel('P-value') ax.set_title('Benjamini-Hochberg procedure') ax.set_ylim([-0.01, np.max(pvals[sel])+0.01]) ax.set_xlim([0.5, np.max(sel)+1.5]) fig.tight_layout() plt.show()
bsd-3-clause
lancezlin/ml_template_py
lib/python2.7/site-packages/pandas/tseries/index.py
7
78738
# pylint: disable=E1101 from __future__ import division import operator import warnings from datetime import time, datetime from datetime import timedelta import numpy as np from pandas.core.base import _shared_docs from pandas.types.common import (_NS_DTYPE, _INT64_DTYPE, is_object_dtype, is_datetime64_dtype, is_datetimetz, is_dtype_equal, is_integer, is_float, is_integer_dtype, is_datetime64_ns_dtype, is_period_dtype, is_bool_dtype, is_string_dtype, is_list_like, is_scalar, pandas_dtype, _ensure_int64) from pandas.types.generic import ABCSeries from pandas.types.dtypes import DatetimeTZDtype from pandas.types.missing import isnull import pandas.types.concat as _concat from pandas.core.common import (_values_from_object, _maybe_box, PerformanceWarning) from pandas.core.index import Index, Int64Index, Float64Index from pandas.indexes.base import _index_shared_docs import pandas.compat as compat from pandas.tseries.frequencies import ( to_offset, get_period_alias, Resolution) from pandas.tseries.base import DatelikeOps, TimelikeOps, DatetimeIndexOpsMixin from pandas.tseries.offsets import DateOffset, generate_range, Tick, CDay from pandas.tseries.tools import parse_time_string, normalize_date, to_time from pandas.tseries.timedeltas import to_timedelta from pandas.util.decorators import (Appender, cache_readonly, deprecate_kwarg, Substitution) import pandas.core.common as com import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools from pandas.lib import Timestamp import pandas.lib as lib import pandas.tslib as tslib import pandas._period as period import pandas._join as _join import pandas.algos as _algos import pandas.index as _index def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _field_accessor(name, field, docstring=None): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = self._local_timestamps() if field in ['is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end']: month_kw = (self.freq.kwds.get('startingMonth', self.freq.kwds.get('month', 12)) if self.freq else 12) result = tslib.get_start_end_field(values, field, self.freqstr, month_kw) elif field in ['weekday_name']: result = tslib.get_date_name_field(values, field) return self._maybe_mask_results(result) elif field in ['is_leap_year']: # no need to mask NaT return tslib.get_date_field(values, field) else: result = tslib.get_date_field(values, field) return self._maybe_mask_results(result, convert='float64') f.__name__ = name f.__doc__ = docstring return property(f) def _dt_index_cmp(opname, nat_result=False): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): func = getattr(super(DatetimeIndex, self), opname) if (isinstance(other, datetime) or isinstance(other, compat.string_types)): other = _to_m8(other, tz=self.tz) result = func(other) if isnull(other): result.fill(nat_result) else: if isinstance(other, list): other = DatetimeIndex(other) elif not isinstance(other, (np.ndarray, Index, ABCSeries)): other = _ensure_datetime64(other) result = func(np.asarray(other)) result = _values_from_object(result) if isinstance(other, Index): o_mask = other.values.view('i8') == tslib.iNaT else: o_mask = other.view('i8') == tslib.iNaT if o_mask.any(): result[o_mask] = nat_result if self.hasnans: result[self._isnan] = nat_result # support of bool dtype indexers if is_bool_dtype(result): return result return Index(result) return wrapper def _ensure_datetime64(other): if isinstance(other, np.datetime64): return other raise TypeError('%s type object %s' % (type(other), str(other))) _midnight = time(0, 0) def _new_DatetimeIndex(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # data are already in UTC # so need to localize tz = d.pop('tz', None) result = cls.__new__(cls, verify_integrity=False, **d) if tz is not None: result = result.tz_localize('UTC').tz_convert(tz) return result class DatetimeIndex(DatelikeOps, TimelikeOps, DatetimeIndexOpsMixin, Int64Index): """ Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency information. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with copy : bool Make a copy of input ndarray freq : string or pandas offset object, optional One of pandas date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforming time on or just past end argument closed : string or None, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None) tz : pytz.timezone or dateutil.tz.tzfile ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order name : object Name to be stored in the index Notes ----- To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. """ _typ = 'datetimeindex' _join_precedence = 10 def _join_i8_wrapper(joinf, **kwargs): return DatetimeIndexOpsMixin._join_i8_wrapper(joinf, dtype='M8[ns]', **kwargs) _inner_indexer = _join_i8_wrapper(_join.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_join.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_join.left_join_indexer_int64) _left_indexer_unique = _join_i8_wrapper( _join.left_join_indexer_unique_int64, with_indexers=False) _arrmap = None __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__', nat_result=True) __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') _engine_type = _index.DatetimeEngine tz = None offset = None _comparables = ['name', 'freqstr', 'tz'] _attributes = ['name', 'freq', 'tz'] _datetimelike_ops = ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'weekday', 'dayofyear', 'quarter', 'days_in_month', 'daysinmonth', 'date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'tz', 'freq', 'weekday_name', 'is_leap_year'] _is_numeric_dtype = False _infer_as_myclass = True @deprecate_kwarg(old_arg_name='infer_dst', new_arg_name='ambiguous', mapping={True: 'infer', False: 'raise'}) def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, copy=False, name=None, tz=None, verify_integrity=True, normalize=False, closed=None, ambiguous='raise', dtype=None, **kwargs): # This allows to later ensure that the 'copy' parameter is honored: if isinstance(data, Index): ref_to_data = data._data else: ref_to_data = data if name is None and hasattr(data, 'name'): name = data.name dayfirst = kwargs.pop('dayfirst', None) yearfirst = kwargs.pop('yearfirst', None) freq_infer = False if not isinstance(freq, DateOffset): # if a passed freq is None, don't infer automatically if freq != 'infer': freq = to_offset(freq) else: freq_infer = True freq = None if periods is not None: if is_float(periods): periods = int(periods) elif not is_integer(periods): raise ValueError('Periods must be a number, got %s' % str(periods)) if data is None and freq is None: raise ValueError("Must provide freq argument if no data is " "supplied") # if dtype has an embeded tz, capture it if dtype is not None: try: dtype = DatetimeTZDtype.construct_from_string(dtype) dtz = getattr(dtype, 'tz', None) if dtz is not None: if tz is not None and str(tz) != str(dtz): raise ValueError("cannot supply both a tz and a dtype" " with a tz") tz = dtz except TypeError: pass if data is None: return cls._generate(start, end, periods, name, freq, tz=tz, normalize=normalize, closed=closed, ambiguous=ambiguous) if not isinstance(data, (np.ndarray, Index, ABCSeries)): if is_scalar(data): raise ValueError('DatetimeIndex() must be called with a ' 'collection of some kind, %s was passed' % repr(data)) # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') elif isinstance(data, ABCSeries): data = data._values # data must be Index or np.ndarray here if not (is_datetime64_dtype(data) or is_datetimetz(data) or is_integer_dtype(data)): data = tools.to_datetime(data, dayfirst=dayfirst, yearfirst=yearfirst) if issubclass(data.dtype.type, np.datetime64) or is_datetimetz(data): if isinstance(data, DatetimeIndex): if tz is None: tz = data.tz elif data.tz is None: data = data.tz_localize(tz, ambiguous=ambiguous) else: # the tz's must match if str(tz) != str(data.tz): msg = ('data is already tz-aware {0}, unable to ' 'set specified tz: {1}') raise TypeError(msg.format(data.tz, tz)) subarr = data.values if freq is None: freq = data.offset verify_integrity = False else: if data.dtype != _NS_DTYPE: subarr = tslib.cast_to_nanoseconds(data) else: subarr = data else: # must be integer dtype otherwise if isinstance(data, Int64Index): raise TypeError('cannot convert Int64Index->DatetimeIndex') if data.dtype != _INT64_DTYPE: data = data.astype(np.int64) subarr = data.view(_NS_DTYPE) if isinstance(subarr, DatetimeIndex): if tz is None: tz = subarr.tz else: if tz is not None: tz = tslib.maybe_get_tz(tz) if (not isinstance(data, DatetimeIndex) or getattr(data, 'tz', None) is None): # Convert tz-naive to UTC ints = subarr.view('i8') subarr = tslib.tz_localize_to_utc(ints, tz, ambiguous=ambiguous) subarr = subarr.view(_NS_DTYPE) subarr = cls._simple_new(subarr, name=name, freq=freq, tz=tz) if dtype is not None: if not is_dtype_equal(subarr.dtype, dtype): # dtype must be coerced to DatetimeTZDtype above if subarr.tz is not None: raise ValueError("cannot localize from non-UTC data") if verify_integrity and len(subarr) > 0: if freq is not None and not freq_infer: inferred = subarr.inferred_freq if inferred != freq.freqstr: on_freq = cls._generate(subarr[0], None, len(subarr), None, freq, tz=tz, ambiguous=ambiguous) if not np.array_equal(subarr.asi8, on_freq.asi8): raise ValueError('Inferred frequency {0} from passed ' 'dates does not conform to passed ' 'frequency {1}' .format(inferred, freq.freqstr)) if freq_infer: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr._deepcopy_if_needed(ref_to_data, copy) @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False, ambiguous='raise', closed=None): if com._count_not_none(start, end, periods) != 2: raise ValueError('Must specify two of start, end, or periods') _normalized = True if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) left_closed = False right_closed = False if start is None and end is None: if closed is not None: raise ValueError("Closed has to be None if not both of start" "and end are defined") if closed is None: left_closed = True right_closed = True elif closed == "left": left_closed = True elif closed == "right": right_closed = True else: raise ValueError("Closed has to be either 'left', 'right' or None") try: inferred_tz = tools._infer_tzinfo(start, end) except: raise TypeError('Start and end cannot both be tz-aware with ' 'different timezones') inferred_tz = tslib.maybe_get_tz(inferred_tz) # these may need to be localized tz = tslib.maybe_get_tz(tz) if tz is not None: date = start or end if date.tzinfo is not None and hasattr(tz, 'localize'): tz = tz.localize(date.replace(tzinfo=None)).tzinfo if tz is not None and inferred_tz is not None: if not tslib.get_timezone(inferred_tz) == tslib.get_timezone(tz): raise AssertionError("Inferred time zone not equal to passed " "time zone") elif inferred_tz is not None: tz = inferred_tz if start is not None: if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight if hasattr(offset, 'delta') and offset != offsets.Day(): if inferred_tz is None and tz is not None: # naive dates if start is not None and start.tz is None: start = start.tz_localize(tz, ambiguous=False) if end is not None and end.tz is None: end = end.tz_localize(tz, ambiguous=False) if start and end: if start.tz is None and end.tz is not None: start = start.tz_localize(end.tz, ambiguous=False) if end.tz is None and start.tz is not None: end = end.tz_localize(start.tz, ambiguous=False) if _use_cached_range(offset, _normalized, start, end): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) else: if tz is not None: # naive dates if start is not None and start.tz is not None: start = start.replace(tzinfo=None) if end is not None and end.tz is not None: end = end.replace(tzinfo=None) if start and end: if start.tz is None and end.tz is not None: end = end.replace(tzinfo=None) if end.tz is None and start.tz is not None: start = start.replace(tzinfo=None) if _use_cached_range(offset, _normalized, start, end): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) if tz is not None and getattr(index, 'tz', None) is None: index = tslib.tz_localize_to_utc(_ensure_int64(index), tz, ambiguous=ambiguous) index = index.view(_NS_DTYPE) # index is localized datetime64 array -> have to convert # start/end as well to compare if start is not None: start = start.tz_localize(tz).asm8 if end is not None: end = end.tz_localize(tz).asm8 if not left_closed and len(index) and index[0] == start: index = index[1:] if not right_closed and len(index) and index[-1] == end: index = index[:-1] index = cls._simple_new(index, name=name, freq=offset, tz=tz) return index @property def _box_func(self): return lambda x: Timestamp(x, freq=self.offset, tz=self.tz) def _convert_for_op(self, value): """ Convert value to be insertable to ndarray """ if self._has_same_tz(value): return _to_m8(value) raise ValueError('Passed item and index have different timezone') def _local_timestamps(self): utc = _utc() if self.is_monotonic: return tslib.tz_convert(self.asi8, utc, self.tz) else: values = self.asi8 indexer = values.argsort() result = tslib.tz_convert(values.take(indexer), utc, self.tz) n = len(indexer) reverse = np.empty(n, dtype=np.int_) reverse.put(indexer, np.arange(n)) return result.take(reverse) @classmethod def _simple_new(cls, values, name=None, freq=None, tz=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor """ if not getattr(values, 'dtype', None): # empty, but with dtype compat if values is None: values = np.empty(0, dtype=_NS_DTYPE) return cls(values, name=name, freq=freq, tz=tz, dtype=dtype, **kwargs) values = np.array(values, copy=False) if is_object_dtype(values): return cls(values, name=name, freq=freq, tz=tz, dtype=dtype, **kwargs).values elif not is_datetime64_dtype(values): values = _ensure_int64(values).view(_NS_DTYPE) result = object.__new__(cls) result._data = values result.name = name result.offset = freq result.tz = tslib.maybe_get_tz(tz) result._reset_identity() return result @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @cache_readonly def _timezone(self): """ Comparable timezone both for pytz / dateutil""" return tslib.get_timezone(self.tzinfo) def _has_same_tz(self, other): zzone = self._timezone # vzone sholdn't be None if value is non-datetime like if isinstance(other, np.datetime64): # convert to Timestamp as np.datetime64 doesn't have tz attr other = Timestamp(other) vzone = tslib.get_timezone(getattr(other, 'tzinfo', '__no_tz__')) return zzone == vzone @classmethod def _cached_range(cls, start=None, end=None, periods=None, offset=None, name=None): if start is None and end is None: # I somewhat believe this should never be raised externally and # therefore should be a `PandasError` but whatever... raise TypeError('Must specify either start or end.') if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if (start is None or end is None) and periods is None: raise TypeError( 'Must either specify period or provide both start and end.') if offset is None: # This can't happen with external-facing code, therefore # PandasError raise TypeError('Must provide offset.') drc = _daterange_cache if offset not in _daterange_cache: xdr = generate_range(offset=offset, start=_CACHE_START, end=_CACHE_END) arr = tools.to_datetime(list(xdr), box=False) cachedRange = DatetimeIndex._simple_new(arr) cachedRange.offset = offset cachedRange.tz = None cachedRange.name = None drc[offset] = cachedRange else: cachedRange = drc[offset] if start is None: if not isinstance(end, Timestamp): raise AssertionError('end must be an instance of Timestamp') end = offset.rollback(end) endLoc = cachedRange.get_loc(end) + 1 startLoc = endLoc - periods elif end is None: if not isinstance(start, Timestamp): raise AssertionError('start must be an instance of Timestamp') start = offset.rollforward(start) startLoc = cachedRange.get_loc(start) endLoc = startLoc + periods else: if not offset.onOffset(start): start = offset.rollforward(start) if not offset.onOffset(end): end = offset.rollback(end) startLoc = cachedRange.get_loc(start) endLoc = cachedRange.get_loc(end) + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice.name = name indexSlice.offset = offset return indexSlice def _mpl_repr(self): # how to represent ourselves to matplotlib return tslib.ints_to_pydatetime(self.asi8, self.tz) @cache_readonly def _is_dates_only(self): from pandas.formats.format import _is_dates_only return _is_dates_only(self.values) @property def _formatter_func(self): from pandas.formats.format import _get_format_datetime64 formatter = _get_format_datetime64(is_dates_only=self._is_dates_only) return lambda x: "'%s'" % formatter(x, tz=self.tz) def __reduce__(self): # we use a special reudce here because we need # to simply set the .tz (and not reinterpret it) d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_DatetimeIndex, (self.__class__, d), None def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): super(DatetimeIndex, self).__setstate__(state) elif isinstance(state, tuple): # < 0.15 compat if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) self.name = own_state[0] self.offset = own_state[1] self.tz = own_state[2] # provide numpy < 1.7 compat if nd_state[2] == 'M8[us]': new_state = np.ndarray.__reduce__(data.astype('M8[ns]')) np.ndarray.__setstate__(data, new_state[2]) else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(data, state) self._data = data self._reset_identity() else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def _add_datelike(self, other): # adding a timedeltaindex to a datetimelike if other is tslib.NaT: return self._nat_new(box=True) raise TypeError("cannot add a datelike to a DatetimeIndex") def _sub_datelike(self, other): # subtract a datetime from myself, yielding a TimedeltaIndex from pandas import TimedeltaIndex if isinstance(other, DatetimeIndex): # require tz compat if not self._has_same_tz(other): raise TypeError("DatetimeIndex subtraction must have the same " "timezones or no timezones") result = self._sub_datelike_dti(other) elif isinstance(other, (tslib.Timestamp, datetime)): other = Timestamp(other) if other is tslib.NaT: result = self._nat_new(box=False) # require tz compat elif not self._has_same_tz(other): raise TypeError("Timestamp subtraction must have the same " "timezones or no timezones") else: i8 = self.asi8 result = i8 - other.value result = self._maybe_mask_results(result, fill_value=tslib.iNaT) else: raise TypeError("cannot subtract DatetimeIndex and {typ}" .format(typ=type(other).__name__)) return TimedeltaIndex(result, name=self.name, copy=False) def _sub_datelike_dti(self, other): """subtraction of two DatetimeIndexes""" if not len(self) == len(other): raise ValueError("cannot add indices of unequal length") self_i8 = self.asi8 other_i8 = other.asi8 new_values = self_i8 - other_i8 if self.hasnans or other.hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = tslib.iNaT return new_values.view('i8') def _maybe_update_attributes(self, attrs): """ Update Index attributes (e.g. freq) depending on op """ freq = attrs.get('freq', None) if freq is not None: # no need to infer if freq is None attrs['freq'] = 'infer' return attrs def _add_delta(self, delta): from pandas import TimedeltaIndex name = self.name if isinstance(delta, (Tick, timedelta, np.timedelta64)): new_values = self._add_delta_td(delta) elif isinstance(delta, TimedeltaIndex): new_values = self._add_delta_tdi(delta) # update name when delta is Index name = com._maybe_match_name(self, delta) elif isinstance(delta, DateOffset): new_values = self._add_offset(delta).asi8 else: new_values = self.astype('O') + delta tz = 'UTC' if self.tz is not None else None result = DatetimeIndex(new_values, tz=tz, name=name, freq='infer') utc = _utc() if self.tz is not None and self.tz is not utc: result = result.tz_convert(self.tz) return result def _add_offset(self, offset): try: if self.tz is not None: values = self.tz_localize(None) else: values = self result = offset.apply_index(values) if self.tz is not None: result = result.tz_localize(self.tz) return result except NotImplementedError: warnings.warn("Non-vectorized DateOffset being applied to Series " "or DatetimeIndex", PerformanceWarning) return self.astype('O') + offset def _format_native_types(self, na_rep='NaT', date_format=None, **kwargs): from pandas.formats.format import _get_format_datetime64_from_values format = _get_format_datetime64_from_values(self, date_format) return tslib.format_array_from_datetime(self.asi8, tz=self.tz, format=format, na_rep=na_rep) def to_datetime(self, dayfirst=False): return self.copy() @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if is_object_dtype(dtype): return self.asobject elif is_integer_dtype(dtype): return Index(self.values.astype('i8', copy=copy), name=self.name, dtype='i8') elif is_datetime64_ns_dtype(dtype): if self.tz is not None: return self.tz_convert('UTC').tz_localize(None) elif copy is True: return self.copy() return self elif is_string_dtype(dtype): return Index(self.format(), name=self.name, dtype=object) elif is_period_dtype(dtype): return self.to_period(freq=dtype.freq) raise ValueError('Cannot cast DatetimeIndex to dtype %s' % dtype) def _get_time_micros(self): utc = _utc() values = self.asi8 if self.tz is not None and self.tz is not utc: values = self._local_timestamps() return tslib.get_time_micros(values) def to_series(self, keep_tz=False): """ Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Parameters ---------- keep_tz : optional, defaults False. return the data keeping the timezone. If keep_tz is True: If the timezone is not set, the resulting Series will have a datetime64[ns] dtype. Otherwise the Series will have an datetime64[ns, tz] dtype; the tz will be preserved. If keep_tz is False: Series will have a datetime64[ns] dtype. TZ aware objects will have the tz removed. Returns ------- Series """ from pandas import Series return Series(self._to_embed(keep_tz), index=self, name=self.name) def _to_embed(self, keep_tz=False): """ return an array repr of this object, potentially casting to object This is for internal compat """ if keep_tz and self.tz is not None: # preserve the tz & copy return self.copy(deep=True) return self.values.copy() def to_pydatetime(self): """ Return DatetimeIndex as object ndarray of datetime.datetime objects Returns ------- datetimes : ndarray """ return tslib.ints_to_pydatetime(self.asi8, tz=self.tz) def to_period(self, freq=None): """ Cast to PeriodIndex at a particular frequency """ from pandas.tseries.period import PeriodIndex if freq is None: freq = self.freqstr or self.inferred_freq if freq is None: msg = ("You must pass a freq argument as " "current index has none.") raise ValueError(msg) freq = get_period_alias(freq) return PeriodIndex(self.values, name=self.name, freq=freq, tz=self.tz) def snap(self, freq='S'): """ Snap time stamps to nearest occurring frequency """ # Superdumb, punting on any optimizing freq = to_offset(freq) snapped = np.empty(len(self), dtype=_NS_DTYPE) for i, v in enumerate(self): s = v if not freq.onOffset(s): t0 = freq.rollback(s) t1 = freq.rollforward(s) if abs(s - t0) < abs(t1 - s): s = t0 else: s = t1 snapped[i] = s # we know it conforms; skip check return DatetimeIndex(snapped, freq=freq, verify_integrity=False) def union(self, other): """ Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ self._assert_can_do_setop(other) if not isinstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass this, other = self._maybe_utc_convert(other) if this._can_fast_union(other): return this._fast_union(other) else: result = Index.union(this, other) if isinstance(result, DatetimeIndex): result.tz = this.tz if (result.freq is None and (this.freq is not None or other.freq is not None)): result.offset = to_offset(result.inferred_freq) return result def to_perioddelta(self, freq): """ Calcuates TimedeltaIndex of difference between index values and index converted to PeriodIndex at specified freq. Used for vectorized offsets .. versionadded:: 0.17.0 Parameters ---------- freq : Period frequency Returns ------- y : TimedeltaIndex """ return to_timedelta(self.asi8 - self.to_period(freq) .to_timestamp().asi8) def union_many(self, others): """ A bit of a hack to accelerate unioning a collection of indexes """ this = self for other in others: if not isinstance(this, DatetimeIndex): this = Index.union(this, other) continue if not isinstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass this, other = this._maybe_utc_convert(other) if this._can_fast_union(other): this = this._fast_union(other) else: tz = this.tz this = Index.union(this, other) if isinstance(this, DatetimeIndex): this.tz = tz if this.freq is None: this.offset = to_offset(this.inferred_freq) return this def join(self, other, how='left', level=None, return_indexers=False): """ See Index.join """ if (not isinstance(other, DatetimeIndex) and len(other) > 0 and other.inferred_type not in ('floating', 'mixed-integer', 'mixed-integer-float', 'mixed')): try: other = DatetimeIndex(other) except (TypeError, ValueError): pass this, other = self._maybe_utc_convert(other) return Index.join(this, other, how=how, level=level, return_indexers=return_indexers) def _maybe_utc_convert(self, other): this = self if isinstance(other, DatetimeIndex): if self.tz is not None: if other.tz is None: raise TypeError('Cannot join tz-naive with tz-aware ' 'DatetimeIndex') elif other.tz is not None: raise TypeError('Cannot join tz-naive with tz-aware ' 'DatetimeIndex') if self.tz != other.tz: this = self.tz_convert('UTC') other = other.tz_convert('UTC') return this, other def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None if (isinstance(other, DatetimeIndex) and self.offset == other.offset and self._can_fast_union(other)): joined = self._shallow_copy(joined) joined.name = name return joined else: tz = getattr(other, 'tz', None) return self._simple_new(joined, name, tz=tz) def _can_fast_union(self, other): if not isinstance(other, DatetimeIndex): return False offset = self.offset if offset is None or offset != other.offset: return False if not self.is_monotonic or not other.is_monotonic: return False if len(self) == 0 or len(other) == 0: return True # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self right_start = right[0] left_end = left[-1] # Only need to "adjoin", not overlap try: return (right_start == left_end + offset) or right_start in left except (ValueError): # if we are comparing an offset that does not propagate timezones # this will raise return False def _fast_union(self, other): if len(other) == 0: return self.view(type(self)) if len(self) == 0: return other.view(type(self)) # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_start, left_end = left[0], left[-1] right_end = right[-1] if not self.offset._should_cache(): # concatenate dates if left_end < right_end: loc = right.searchsorted(left_end, side='right') right_chunk = right.values[loc:] dates = _concat._concat_compat((left.values, right_chunk)) return self._shallow_copy(dates) else: return left else: return type(self)(start=left_start, end=max(left_end, right_end), freq=left.offset) def __iter__(self): """ Return an iterator over the boxed values Returns ------- Timestamps : ndarray """ # convert in chunks of 10k for efficiency data = self.asi8 l = len(self) chunksize = 10000 chunks = int(l / chunksize) + 1 for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, l) converted = tslib.ints_to_pydatetime(data[start_i:end_i], tz=self.tz, freq=self.freq, box=True) for v in converted: yield v def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None if self.tz != other.tz: raise ValueError('Passed item and index have different timezone') return self._simple_new(result, name=name, freq=None, tz=self.tz) def intersection(self, other): """ Specialized intersection for DatetimeIndex objects. May be much faster than Index.intersection Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ self._assert_can_do_setop(other) if not isinstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except (TypeError, ValueError): pass result = Index.intersection(self, other) if isinstance(result, DatetimeIndex): if result.freq is None: result.offset = to_offset(result.inferred_freq) return result elif (other.offset is None or self.offset is None or other.offset != self.offset or not other.offset.isAnchored() or (not self.is_monotonic or not other.is_monotonic)): result = Index.intersection(self, other) if isinstance(result, DatetimeIndex): if result.freq is None: result.offset = to_offset(result.inferred_freq) return result if len(self) == 0: return self if len(other) == 0: return other # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self end = min(left[-1], right[-1]) start = right[0] if end < start: return type(self)(data=[]) else: lslice = slice(*left.slice_locs(start, end)) left_chunk = left.values[lslice] return self._shallow_copy(left_chunk) def _parsed_string_to_bounds(self, reso, parsed): """ Calculate datetime bounds for parsed time string and its resolution. Parameters ---------- reso : Resolution Resolution provided by parsed string. parsed : datetime Datetime from parsed string. Returns ------- lower, upper: pd.Timestamp """ if reso == 'year': return (Timestamp(datetime(parsed.year, 1, 1), tz=self.tz), Timestamp(datetime(parsed.year, 12, 31, 23, 59, 59, 999999), tz=self.tz)) elif reso == 'month': d = tslib.monthrange(parsed.year, parsed.month)[1] return (Timestamp(datetime(parsed.year, parsed.month, 1), tz=self.tz), Timestamp(datetime(parsed.year, parsed.month, d, 23, 59, 59, 999999), tz=self.tz)) elif reso == 'quarter': qe = (((parsed.month - 1) + 2) % 12) + 1 # two months ahead d = tslib.monthrange(parsed.year, qe)[1] # at end of month return (Timestamp(datetime(parsed.year, parsed.month, 1), tz=self.tz), Timestamp(datetime(parsed.year, qe, d, 23, 59, 59, 999999), tz=self.tz)) elif reso == 'day': st = datetime(parsed.year, parsed.month, parsed.day) return (Timestamp(st, tz=self.tz), Timestamp(Timestamp(st + offsets.Day(), tz=self.tz).value - 1)) elif reso == 'hour': st = datetime(parsed.year, parsed.month, parsed.day, hour=parsed.hour) return (Timestamp(st, tz=self.tz), Timestamp(Timestamp(st + offsets.Hour(), tz=self.tz).value - 1)) elif reso == 'minute': st = datetime(parsed.year, parsed.month, parsed.day, hour=parsed.hour, minute=parsed.minute) return (Timestamp(st, tz=self.tz), Timestamp(Timestamp(st + offsets.Minute(), tz=self.tz).value - 1)) elif reso == 'second': st = datetime(parsed.year, parsed.month, parsed.day, hour=parsed.hour, minute=parsed.minute, second=parsed.second) return (Timestamp(st, tz=self.tz), Timestamp(Timestamp(st + offsets.Second(), tz=self.tz).value - 1)) elif reso == 'microsecond': st = datetime(parsed.year, parsed.month, parsed.day, parsed.hour, parsed.minute, parsed.second, parsed.microsecond) return (Timestamp(st, tz=self.tz), Timestamp(st, tz=self.tz)) else: raise KeyError def _partial_date_slice(self, reso, parsed, use_lhs=True, use_rhs=True): is_monotonic = self.is_monotonic if ((reso in ['day', 'hour', 'minute'] and not (self._resolution < Resolution.get_reso(reso) or not is_monotonic)) or (reso == 'second' and not (self._resolution <= Resolution.RESO_SEC or not is_monotonic))): # These resolution/monotonicity validations came from GH3931, # GH3452 and GH2369. raise KeyError if reso == 'microsecond': # _partial_date_slice doesn't allow microsecond resolution, but # _parsed_string_to_bounds allows it. raise KeyError t1, t2 = self._parsed_string_to_bounds(reso, parsed) stamps = self.asi8 if is_monotonic: # we are out of range if (len(stamps) and ((use_lhs and t1.value < stamps[0] and t2.value < stamps[0]) or ((use_rhs and t1.value > stamps[-1] and t2.value > stamps[-1])))): raise KeyError # a monotonic (sorted) series can be sliced left = stamps.searchsorted( t1.value, side='left') if use_lhs else None right = stamps.searchsorted( t2.value, side='right') if use_rhs else None return slice(left, right) lhs_mask = (stamps >= t1.value) if use_lhs else True rhs_mask = (stamps <= t2.value) if use_rhs else True # try to find a the dates return (lhs_mask & rhs_mask).nonzero()[0] def _possibly_promote(self, other): if other.inferred_type == 'date': other = DatetimeIndex(other) return self, other def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ if isinstance(key, datetime): # needed to localize naive datetimes if self.tz is not None: key = Timestamp(key, tz=self.tz) return self.get_value_maybe_box(series, key) if isinstance(key, time): locs = self.indexer_at_time(key) return series.take(locs) try: return _maybe_box(self, Index.get_value(self, series, key), series, key) except KeyError: try: loc = self._get_string_slice(key) return series[loc] except (TypeError, ValueError, KeyError): pass try: return self.get_value_maybe_box(series, key) except (TypeError, ValueError, KeyError): raise KeyError(key) def get_value_maybe_box(self, series, key): # needed to localize naive datetimes if self.tz is not None: key = Timestamp(key, tz=self.tz) elif not isinstance(key, Timestamp): key = Timestamp(key) values = self._engine.get_value(_values_from_object(series), key, tz=self.tz) return _maybe_box(self, values, series, key) def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label Returns ------- loc : int """ if tolerance is not None: # try converting tolerance now, so errors don't get swallowed by # the try/except clauses below tolerance = self._convert_tolerance(tolerance) if isinstance(key, datetime): # needed to localize naive datetimes key = Timestamp(key, tz=self.tz) return Index.get_loc(self, key, method, tolerance) if isinstance(key, time): if method is not None: raise NotImplementedError('cannot yet lookup inexact labels ' 'when key is a time object') return self.indexer_at_time(key) try: return Index.get_loc(self, key, method, tolerance) except (KeyError, ValueError, TypeError): try: return self._get_string_slice(key) except (TypeError, KeyError, ValueError): pass try: stamp = Timestamp(key, tz=self.tz) return Index.get_loc(self, stamp, method, tolerance) except (KeyError, ValueError): raise KeyError(key) def _maybe_cast_slice_bound(self, label, side, kind): """ If label is a string, cast it to datetime according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ assert kind in ['ix', 'loc', 'getitem', None] if is_float(label) or isinstance(label, time) or is_integer(label): self._invalid_indexer('slice', label) if isinstance(label, compat.string_types): freq = getattr(self, 'freqstr', getattr(self, 'inferred_freq', None)) _, parsed, reso = parse_time_string(label, freq) lower, upper = self._parsed_string_to_bounds(reso, parsed) # lower, upper form the half-open interval: # [parsed, parsed + 1 freq) # because label may be passed to searchsorted # the bounds need swapped if index is reverse sorted and has a # length (is_monotonic_decreasing gives True for empty index) if self.is_monotonic_decreasing and len(self): return upper if side == 'left' else lower return lower if side == 'left' else upper else: return label def _get_string_slice(self, key, use_lhs=True, use_rhs=True): freq = getattr(self, 'freqstr', getattr(self, 'inferred_freq', None)) _, parsed, reso = parse_time_string(key, freq) loc = self._partial_date_slice(reso, parsed, use_lhs=use_lhs, use_rhs=use_rhs) return loc def slice_indexer(self, start=None, end=None, step=None, kind=None): """ Return indexer for specified label slice. Index.slice_indexer, customized to handle time slicing. In addition to functionality provided by Index.slice_indexer, does the following: - if both `start` and `end` are instances of `datetime.time`, it invokes `indexer_between_time` - if `start` and `end` are both either string or None perform value-based selection in non-monotonic cases. """ # For historical reasons DatetimeIndex supports slices between two # instances of datetime.time as if it were applying a slice mask to # an array of (self.hour, self.minute, self.seconds, self.microsecond). if isinstance(start, time) and isinstance(end, time): if step is not None and step != 1: raise ValueError('Must have step size of 1 with time slices') return self.indexer_between_time(start, end) if isinstance(start, time) or isinstance(end, time): raise KeyError('Cannot mix time and non-time slice keys') try: return Index.slice_indexer(self, start, end, step, kind=kind) except KeyError: # For historical reasons DatetimeIndex by default supports # value-based partial (aka string) slices on non-monotonic arrays, # let's try that. if ((start is None or isinstance(start, compat.string_types)) and (end is None or isinstance(end, compat.string_types))): mask = True if start is not None: start_casted = self._maybe_cast_slice_bound( start, 'left', kind) mask = start_casted <= self if end is not None: end_casted = self._maybe_cast_slice_bound( end, 'right', kind) mask = (self <= end_casted) & mask indexer = mask.nonzero()[0][::step] if len(indexer) == len(self): return slice(None) else: return indexer else: raise # alias to offset def _get_freq(self): return self.offset def _set_freq(self, value): self.offset = value freq = property(fget=_get_freq, fset=_set_freq, doc="get/set the frequncy of the Index") year = _field_accessor('year', 'Y', "The year of the datetime") month = _field_accessor('month', 'M', "The month as January=1, December=12") day = _field_accessor('day', 'D', "The days of the datetime") hour = _field_accessor('hour', 'h', "The hours of the datetime") minute = _field_accessor('minute', 'm', "The minutes of the datetime") second = _field_accessor('second', 's', "The seconds of the datetime") microsecond = _field_accessor('microsecond', 'us', "The microseconds of the datetime") nanosecond = _field_accessor('nanosecond', 'ns', "The nanoseconds of the datetime") weekofyear = _field_accessor('weekofyear', 'woy', "The week ordinal of the year") week = weekofyear dayofweek = _field_accessor('dayofweek', 'dow', "The day of the week with Monday=0, Sunday=6") weekday = dayofweek weekday_name = _field_accessor( 'weekday_name', 'weekday_name', "The name of day in a week (ex: Friday)\n\n.. versionadded:: 0.18.1") dayofyear = _field_accessor('dayofyear', 'doy', "The ordinal day of the year") quarter = _field_accessor('quarter', 'q', "The quarter of the date") days_in_month = _field_accessor( 'days_in_month', 'dim', "The number of days in the month\n\n.. versionadded:: 0.16.0") daysinmonth = days_in_month is_month_start = _field_accessor( 'is_month_start', 'is_month_start', "Logical indicating if first day of month (defined by frequency)") is_month_end = _field_accessor( 'is_month_end', 'is_month_end', "Logical indicating if last day of month (defined by frequency)") is_quarter_start = _field_accessor( 'is_quarter_start', 'is_quarter_start', "Logical indicating if first day of quarter (defined by frequency)") is_quarter_end = _field_accessor( 'is_quarter_end', 'is_quarter_end', "Logical indicating if last day of quarter (defined by frequency)") is_year_start = _field_accessor( 'is_year_start', 'is_year_start', "Logical indicating if first day of year (defined by frequency)") is_year_end = _field_accessor( 'is_year_end', 'is_year_end', "Logical indicating if last day of year (defined by frequency)") is_leap_year = _field_accessor( 'is_leap_year', 'is_leap_year', "Logical indicating if the date belongs to a leap year") @property def time(self): """ Returns numpy array of datetime.time. The time part of the Timestamps. """ return self._maybe_mask_results(_algos.arrmap_object( self.asobject.values, lambda x: np.nan if x is tslib.NaT else x.time())) @property def date(self): """ Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information). """ return self._maybe_mask_results(_algos.arrmap_object( self.asobject.values, lambda x: x.date())) def normalize(self): """ Return DatetimeIndex with times to midnight. Length is unaltered Returns ------- normalized : DatetimeIndex """ new_values = tslib.date_normalize(self.asi8, self.tz) return DatetimeIndex(new_values, freq='infer', name=self.name, tz=self.tz) @Substitution(klass='DatetimeIndex', value='key') @Appender(_shared_docs['searchsorted']) def searchsorted(self, key, side='left', sorter=None): if isinstance(key, (np.ndarray, Index)): key = np.array(key, dtype=_NS_DTYPE, copy=False) else: key = _to_m8(key, tz=self.tz) return self.values.searchsorted(key, side=side) def is_type_compatible(self, typ): return typ == self.inferred_type or typ == 'datetime' @property def inferred_type(self): # b/c datetime is represented as microseconds since the epoch, make # sure we can't have ambiguous indexing return 'datetime64' @cache_readonly def dtype(self): if self.tz is None: return _NS_DTYPE return DatetimeTZDtype('ns', self.tz) @property def is_all_dates(self): return True @cache_readonly def is_normalized(self): """ Returns True if all of the dates are at midnight ("no time") """ return tslib.dates_normalized(self.asi8, self.tz) @cache_readonly def _resolution(self): return period.resolution(self.asi8, self.tz) def insert(self, loc, item): """ Make new Index inserting new item at location Parameters ---------- loc : int item : object if not either a Python datetime or a numpy integer-like, returned Index dtype will be object rather than datetime. Returns ------- new_index : Index """ freq = None if isinstance(item, (datetime, np.datetime64)): self._assert_can_do_op(item) if not self._has_same_tz(item): raise ValueError( 'Passed item and index have different timezone') # check freq can be preserved on edge cases if self.size and self.freq is not None: if ((loc == 0 or loc == -len(self)) and item + self.freq == self[0]): freq = self.freq elif (loc == len(self)) and item - self.freq == self[-1]: freq = self.freq item = _to_m8(item, tz=self.tz) try: new_dates = np.concatenate((self[:loc].asi8, [item.view(np.int64)], self[loc:].asi8)) if self.tz is not None: new_dates = tslib.tz_convert(new_dates, 'UTC', self.tz) return DatetimeIndex(new_dates, name=self.name, freq=freq, tz=self.tz) except (AttributeError, TypeError): # fall back to object index if isinstance(item, compat.string_types): return self.asobject.insert(loc, item) raise TypeError( "cannot insert DatetimeIndex with incompatible label") def delete(self, loc): """ Make a new DatetimeIndex with passed location(s) deleted. Parameters ---------- loc: int, slice or array of ints Indicate which sub-arrays to remove. Returns ------- new_index : DatetimeIndex """ new_dates = np.delete(self.asi8, loc) freq = None if is_integer(loc): if loc in (0, -len(self), -1, len(self) - 1): freq = self.freq else: if is_list_like(loc): loc = lib.maybe_indices_to_slice( _ensure_int64(np.array(loc)), len(self)) if isinstance(loc, slice) and loc.step in (1, None): if (loc.start in (0, None) or loc.stop in (len(self), None)): freq = self.freq if self.tz is not None: new_dates = tslib.tz_convert(new_dates, 'UTC', self.tz) return DatetimeIndex(new_dates, name=self.name, freq=freq, tz=self.tz) def tz_convert(self, tz): """ Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil) Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time. Returns ------- normalized : DatetimeIndex Raises ------ TypeError If DatetimeIndex is tz-naive. """ tz = tslib.maybe_get_tz(tz) if self.tz is None: # tz naive, use tz_localize raise TypeError('Cannot convert tz-naive timestamps, use ' 'tz_localize to localize') # No conversion since timestamps are all UTC to begin with return self._shallow_copy(tz=tz) @deprecate_kwarg(old_arg_name='infer_dst', new_arg_name='ambiguous', mapping={True: 'infer', False: 'raise'}) def tz_localize(self, tz, ambiguous='raise', errors='raise'): """ Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times errors : 'raise', 'coerce', default 'raise' - 'raise' will raise a NonExistentTimeError if a timestamp is not valid in the specified timezone (e.g. due to a transition from or to DST time) - 'coerce' will return NaT if the timestamp can not be converted into the specified timezone .. versionadded:: 0.19.0 infer_dst : boolean, default False (DEPRECATED) Attempt to infer fall dst-transition hours based on order Returns ------- localized : DatetimeIndex Raises ------ TypeError If the DatetimeIndex is tz-aware and tz is not None. """ if self.tz is not None: if tz is None: new_dates = tslib.tz_convert(self.asi8, 'UTC', self.tz) else: raise TypeError("Already tz-aware, use tz_convert to convert.") else: tz = tslib.maybe_get_tz(tz) # Convert to UTC new_dates = tslib.tz_localize_to_utc(self.asi8, tz, ambiguous=ambiguous, errors=errors) new_dates = new_dates.view(_NS_DTYPE) return self._shallow_copy(new_dates, tz=tz) def indexer_at_time(self, time, asof=False): """ Select values at particular time of day (e.g. 9:30AM) Parameters ---------- time : datetime.time or string Returns ------- values_at_time : TimeSeries """ from dateutil.parser import parse if asof: raise NotImplementedError("'asof' argument is not supported") if isinstance(time, compat.string_types): time = parse(time).time() if time.tzinfo: # TODO raise NotImplementedError("argument 'time' with timezone info is " "not supported") time_micros = self._get_time_micros() micros = _time_to_micros(time) return (micros == time_micros).nonzero()[0] def indexer_between_time(self, start_time, end_time, include_start=True, include_end=True): """ Select values between particular times of day (e.g., 9:00-9:30AM). Return values of the index between two times. If start_time or end_time are strings then tseres.tools.to_time is used to convert to a time object. Parameters ---------- start_time, end_time : datetime.time, str datetime.time or string in appropriate format ("%H:%M", "%H%M", "%I:%M%p", "%I%M%p", "%H:%M:%S", "%H%M%S", "%I:%M:%S%p", "%I%M%S%p") include_start : boolean, default True include_end : boolean, default True Returns ------- values_between_time : TimeSeries """ start_time = to_time(start_time) end_time = to_time(end_time) time_micros = self._get_time_micros() start_micros = _time_to_micros(start_time) end_micros = _time_to_micros(end_time) if include_start and include_end: lop = rop = operator.le elif include_start: lop = operator.le rop = operator.lt elif include_end: lop = operator.lt rop = operator.le else: lop = rop = operator.lt if start_time <= end_time: join_op = operator.and_ else: join_op = operator.or_ mask = join_op(lop(start_micros, time_micros), rop(time_micros, end_micros)) return mask.nonzero()[0] def to_julian_date(self): """ Convert DatetimeIndex to Float64Index of Julian Dates. 0 Julian date is noon January 1, 4713 BC. http://en.wikipedia.org/wiki/Julian_day """ # http://mysite.verizon.net/aesir_research/date/jdalg2.htm year = self.year month = self.month day = self.day testarr = month < 3 year[testarr] -= 1 month[testarr] += 12 return Float64Index(day + np.fix((153 * month - 457) / 5) + 365 * year + np.floor(year / 4) - np.floor(year / 100) + np.floor(year / 400) + 1721118.5 + (self.hour + self.minute / 60.0 + self.second / 3600.0 + self.microsecond / 3600.0 / 1e+6 + self.nanosecond / 3600.0 / 1e+9 ) / 24.0) DatetimeIndex._add_numeric_methods_disabled() DatetimeIndex._add_logical_methods_disabled() DatetimeIndex._add_datetimelike_methods() def _generate_regular_range(start, end, periods, offset): if isinstance(offset, Tick): stride = offset.nanos if periods is None: b = Timestamp(start).value # cannot just use e = Timestamp(end) + 1 because arange breaks when # stride is too large, see GH10887 e = (b + (Timestamp(end).value - b) // stride * stride + stride // 2 + 1) # end.tz == start.tz by this point due to _generate implementation tz = start.tz elif start is not None: b = Timestamp(start).value e = b + np.int64(periods) * stride tz = start.tz elif end is not None: e = Timestamp(end).value + stride b = e - np.int64(periods) * stride tz = end.tz else: raise ValueError("at least 'start' or 'end' should be specified " "if a 'period' is given.") data = np.arange(b, e, stride, dtype=np.int64) data = DatetimeIndex._simple_new(data, None, tz=tz) else: if isinstance(start, Timestamp): start = start.to_pydatetime() if isinstance(end, Timestamp): end = end.to_pydatetime() xdr = generate_range(start=start, end=end, periods=periods, offset=offset) dates = list(xdr) # utc = len(dates) > 0 and dates[0].tzinfo is not None data = tools.to_datetime(dates) return data def date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs): """ Return a fixed frequency datetime index, with day (calendar) as the default frequency Parameters ---------- start : string or datetime-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates periods : integer or None, default None If None, must specify start and end freq : string or DateOffset, default 'D' (calendar daily) Frequency strings can have multiples, e.g. '5H' tz : string or None Time zone name for returning localized DatetimeIndex, for example Asia/Hong_Kong normalize : bool, default False Normalize start/end dates to midnight before generating date range name : str, default None Name of the resulting index closed : string or None, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None) Notes ----- 2 of start, end, or periods must be specified To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Returns ------- rng : DatetimeIndex """ return DatetimeIndex(start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize, name=name, closed=closed, **kwargs) def bdate_range(start=None, end=None, periods=None, freq='B', tz=None, normalize=True, name=None, closed=None, **kwargs): """ Return a fixed frequency datetime index, with business day as the default frequency Parameters ---------- start : string or datetime-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates periods : integer or None, default None If None, must specify start and end freq : string or DateOffset, default 'B' (business daily) Frequency strings can have multiples, e.g. '5H' tz : string or None Time zone name for returning localized DatetimeIndex, for example Asia/Beijing normalize : bool, default False Normalize start/end dates to midnight before generating date range name : str, default None Name for the resulting index closed : string or None, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None) Notes ----- 2 of start, end, or periods must be specified To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Returns ------- rng : DatetimeIndex """ return DatetimeIndex(start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize, name=name, closed=closed, **kwargs) def cdate_range(start=None, end=None, periods=None, freq='C', tz=None, normalize=True, name=None, closed=None, **kwargs): """ **EXPERIMENTAL** Return a fixed frequency datetime index, with CustomBusinessDay as the default frequency .. warning:: EXPERIMENTAL The CustomBusinessDay class is not officially supported and the API is likely to change in future versions. Use this at your own risk. Parameters ---------- start : string or datetime-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates periods : integer or None, default None If None, must specify start and end freq : string or DateOffset, default 'C' (CustomBusinessDay) Frequency strings can have multiples, e.g. '5H' tz : string or None Time zone name for returning localized DatetimeIndex, for example Asia/Beijing normalize : bool, default False Normalize start/end dates to midnight before generating date range name : str, default None Name for the resulting index weekmask : str, Default 'Mon Tue Wed Thu Fri' weekmask of valid business days, passed to ``numpy.busdaycalendar`` holidays : list list/array of dates to exclude from the set of valid business days, passed to ``numpy.busdaycalendar`` closed : string or None, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None) Notes ----- 2 of start, end, or periods must be specified To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Returns ------- rng : DatetimeIndex """ if freq == 'C': holidays = kwargs.pop('holidays', []) weekmask = kwargs.pop('weekmask', 'Mon Tue Wed Thu Fri') freq = CDay(holidays=holidays, weekmask=weekmask) return DatetimeIndex(start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize, name=name, closed=closed, **kwargs) def _to_m8(key, tz=None): """ Timestamp-like => dt64 """ if not isinstance(key, Timestamp): # this also converts strings key = Timestamp(key, tz=tz) return np.int64(tslib.pydt_to_i8(key)).view(_NS_DTYPE) _CACHE_START = Timestamp(datetime(1950, 1, 1)) _CACHE_END = Timestamp(datetime(2030, 1, 1)) _daterange_cache = {} def _naive_in_cache_range(start, end): if start is None or end is None: return False else: if start.tzinfo is not None or end.tzinfo is not None: return False return _in_range(start, end, _CACHE_START, _CACHE_END) def _in_range(start, end, rng_start, rng_end): return start > rng_start and end < rng_end def _use_cached_range(offset, _normalized, start, end): return (offset._should_cache() and not (offset._normalize_cache and not _normalized) and _naive_in_cache_range(start, end)) def _time_to_micros(time): seconds = time.hour * 60 * 60 + 60 * time.minute + time.second return 1000000 * seconds + time.microsecond
mit
cristobaltapia/sajou
sajou/model.py
1
17578
#!/usr/bin/env python # encoding: utf-8 """ Defines the model classes for 2D and 3D models. """ __docformat__ = 'reStructuredText' import numpy as np import pandas as pd import scipy.sparse as sparse from sajou.materials import Material from sajou.nodes import Node2D from sajou.sections import BeamSection from sajou.elements import (Beam2D, Spring2D) class Model(object): """Defines a model object Parameters ---------- name: str name of the model dimensionality: str spacial dimensions used in the model ('2D' or '3D') Attributes ---------- nodes: dict dictionary with all the nodes of the system beams: dict dictionary with all the beams of the system beam_sections: dict dictionary with the beam sections defined in the model materials: dict dictionary with the materials defined in the model n_nodes: int number of nodes of the system n_elements: int number of beams in the system n_materials: int number of materials defined n_dimensions: int number of spacial dimensions of the model n_dof_per_node: int number of degrees of freedom per node _name: str name of the model _dimensionality: str spacial dimensions used in the model """ def __new__(cls, name, dimensionality): if cls is Model: if dimensionality == '2D': return super(Model, cls).__new__(Model2D) if dimensionality == '3D': return super(Model, cls).__new__(Model3D) else: return super(Model, cls).__new__(cls, name, dimensionality) def __init__(self, name, dimensionality): self._name = name self._dimensionality = dimensionality # Node Freedome Allocation Table: self.nfat = dict() # self.nodes = dict() self.elements = dict() self.beams = dict() self.beam_sections = dict() self.materials = dict() # self.n_nodes = 0 self.n_elements = 0 self.n_materials = 0 self._K = None # global stiffness matrix self._P = None # load matrix self._V = None # global displacement matrix # Number of dimensions of the model self.n_dimensions = None # Number of dof per node. Initialized in the respective models self.n_dof_per_node = None # Specify dofs that are not active due to border conditions self._dof_dirichlet = [] # Node Freedom Allocation Table self._nfat = dict() # Node Freedom Map Table: # Stores the index of the first used DOF of a node in the global # system. self._nfmt = dict() def material(self, name, data, type='isotropic'): """Function used to create a Material instance in the model Parameters ---------- name: str name of the material data: data for the material type: str type of the material Returns ------- sajou.Material a Material instance """ material = Material(name=name, data=data, type=type) # Add the material to the dictionary of materials in the current # model self.materials[name] = material self.n_materials += 1 return material def beam_section(self, name, material, data, type='rectangular'): """Function use to create a BeamSection instance in the model Parameters ---------- name: str name of the section material: sajou.Material material for the section data: data (see BeamSection class definition) type: type of the section (see BeamSection class definition) Returns ------- returns a beam section instance """ # The material can be passed both as a string, corresponding to # a key of the material dictionary of the model, or as a # material instance directly. if isinstance(material, str): material_section = self.materials[material] else: material_section = material section = BeamSection(name=name, material=material_section, data=data, type=type) # Add section to the list of beam sections self.beam_sections[name] = section return section def bc(self, node, type='displacement', coord_system='global', **kwargs): """Introduces a border condition to the node. Parameters ---------- node: sajou.Node Node to which the border condition will be applied type: str type of border condition - Options: ``'displacement'``, ``...`` coord_system: spcifies the coordinate system to be used when applying the BC **kwargs: keyword arguments. At least one of the following parameters must be supplied Keyword Arguments ----------------- v1: float displacement in the direction 1 v2: float displacement in the direction 2 v3: float displacement in the direction 3 r1: float rotation in the direction 1 r2: float rotation in the direction 2 r3: float rotation in the direction 3 Returns ------- bool True if successful """ # TODO: currently only in global coordintaes. Implement # transformation in other coordinate systems. # Get the BC applied v1 = kwargs.get('v1', None) v2 = kwargs.get('v2', None) v3 = kwargs.get('v3', None) r1 = kwargs.get('r1', None) r2 = kwargs.get('r2', None) r3 = kwargs.get('r3', None) # For the case of the 2D model if self.n_dof_per_node == 3: list_dof = [v1, v2, r3] for dof, curr_bc in enumerate(list_dof): if curr_bc is not None: node.set_BC(dof=dof, val=curr_bc) # For the case of the 3D model elif self.n_dof_per_node == 6: list_dof = [v1, v2, v3, r1, r2, r3] for dof, curr_bc in enumerate(list_dof): if curr_bc is not None: node.set_BC(dof=dof, val=curr_bc) return True # TODO: there has to give a 'Load' class to handle the different # type of loads. def load(self, node, coord_system='global', **kwargs): """Introduces a Load in the given direction according to the selected coordinate system at the specified node. Parameters ---------- node: sajou.Node a Node instance coordinate: coordinate system **kwargs: keyword arguments. The BC is defined for the different degree of freedom (*dof*) available to the node. At least one of the following parameters must be supplied: Keyword Arguments ----------------- f1: float force in direction 1 f2: float force in direction 2 f3: float force in direction 3 m1: float moment in direction 1 m2: float moment in direction 2 m3: float moment in direction 3 Returns ------- sajou.Load the instance of the Load object created """ # TODO: currently only in global coordintaes. Implement # transformation in other coordinate systems. # Get the BC applied f1 = kwargs.get('f1', None) f2 = kwargs.get('f2', None) f3 = kwargs.get('f3', None) m1 = kwargs.get('m1', None) m2 = kwargs.get('m2', None) m3 = kwargs.get('m3', None) # For the case of the 2D model if self.n_dof_per_node == 3: list_dof = [f1, f2, m3] for dof, curr_force in enumerate(list_dof): if curr_force is not None: node.set_Load(dof=dof, val=curr_force) # For the case of the 3D model elif self.n_dof_per_node == 6: list_dof = [f1, f2, f3, m1, m2, m3] for dof, curr_force in enumerate(list_dof): if curr_force is not None: node.set_Load(dof=dof, val=curr_force) return None def export_model_data(self): """Export all the data of the model. This means the nodes, elements, border conditions and forces are exported to a ModelData object. Returns ------- sajou.model.ModelData the data of the whole analyzed model """ model_data = ModelData(self) return model_data def add_hinge(self, node): """Add hinge to the specified node. Also supports list of nodes Parameters ---------- node: sajou.Node Node instance or list of node instances Returns ------- bool TODO Todo ---- This function still needs work """ #FIXME: not yet implemented! if isinstance(node, list): for node_i in node: node_i.add_hinge() else: node.add_hinge() return True def __str__(self): """ Printable string """ return str( 'Model: Name: {name}, Nodes: {n_nodes}, Elements: {n_elements}'.format( name=self._name, n_nodes=self.n_nodes, n_elements=self.n_elements)) def __repr__(self): """ Returns the printable string for this object """ return str( 'Model: Name: {name}, Nodes: {n_nodes}, Beams: {n_elements}'.format( name=self._name, n_nodes=self.n_nodes, n_elements=self.n_elements)) class Model2D(Model): """ Subclass of the 'Model' class. It is intended to be used for the 2-dimensional models of frame structures. Allocation of DOFs in each node: [1 2 3] = [ux, uy, rz] Parameters ---------- name: str name of the model Attributes ---------- n_dimensions: int number of spacial dimensions (2 for Model2D) n_dof_per_node: int number of degrees of freedom per node """ def __init__(self, name, dimensionality='2D'): dimensionality = '2D' Model.__init__(self, name, dimensionality) # Numer of dimensions self.n_dimensions = 2 # Number of degrees of freedom per node: self.n_dof_per_node = 3 def node(self, x, y): """2D implementation of the Node. Parameters ---------- x: float x position y: float y position Returns ------- sajou.Node the node created """ # A coordinate z=0 is passed to initiate the Node Instance node = Node2D(x=x, y=y, z=0.0, number=self.n_nodes) self.nodes[node.number] = node self.n_nodes += 1 return node def beam(self, node1, node2): """Define a beam element between two nodes. Parameters ---------- node1: sajou.Node first node node2: sajou.Node second node Returns ------- sajou.Beam the beam element created """ beam = Beam2D(node1=node1, node2=node2, number=self.n_elements) self.beams[beam.number] = beam # add to the element repository of the model self.elements[beam.number] = beam # add to the element counter self.n_elements += 1 return beam def spring(self, node1, node2, K): """Define a spring element between two nodes Parameters ---------- node1: Node instance first node node2: Node instance second node K: float elastic constant of the spring Returns ------- sajou.Spring2D: A Sprind 2D instance """ spring = Spring2D(node1=node1, node2=node2, number=self.n_elements) # assign the elastic constant spring.assign_elastic_constant(K) # add to the element repository of the model self.elements[spring.number] = spring # add to the element counter self.n_elements += 1 return spring def distributed_load(self, elements, **kwargs): """Add a distributed load to a list of beam elements. A list of elements has to be supplied for the first variable. The rest of the variables are exactly the same as in the 'distributed_load' function of the corresponding elements. Parameters ---------- elements: list list of beam elements p1: float value of the force at start node p2: float value of the force at end node direction: int direction of the applied load (default: *2*) coord_system: str coordinate system (default: global) Returns ------- bool TODO """ for curr_elem in elements: # Add distributed load curr_elem.distributed_load(**kwargs) return True class Model3D(Model): """ Subclass of the 'Model' class. It is intended to be used for the 3-dimensional models of frame structures. Allocation of DOFs in each node: [1 2 3 4 5 6] = [ux, uy, uz, rx, ry, rz] """ def __init__(self, name, dimensionality='3D'): dimensionality = '3D' Model.__init__(self, name, dimensionality) self.n_dof_per_node = 6 # dof per node def node(self, x, y, z): """ 3D implementation of the Node. Parameters ---------- x: float x-position of the node y: float y-position of the node z: float z-position of the node Returns ------- Node: instance of Node """ node = Node(x=x, y=y, z=z, number=self.n_nodes) self.nodes[node.number] = node self.n_nodes += 1 return node def beam(self, node1, node2): """Define a line between two nodes. :node1: first node :node2: second node """ line = Beam3D(node1=node1, node2=node2, number=self.n_elements) self.beams[line.number] = line self.n_elements += 1 return line class ModelData(object): """Object to store the data of a model object. It is used to pass it to the results object""" def __init__(self, model): """Initializes the ModelData instance :model: a Model instance """ from copy import copy self._name = model._name self._dimensionality = model._dimensionality self.nodes = copy(model.nodes) self.beams = copy(model.beams) self.elements = copy(model.elements) self.beam_sections = copy(model.beam_sections) self.materials = copy(model.materials) self.n_nodes = model.n_nodes self.n_elements = model.n_elements self.n_dimensions = model.n_dimensions self.n_materials = model.n_materials # Number of dof per node. Initialized in the respective models self.n_dof_per_node = model.n_dof_per_node # Specify dofs that are not active due to border conditions self._dof_dirichlet = copy(model._dof_dirichlet) def get_dataframe_of_node_coords(model, nodes='all'): """Return a pandas dataframe with coordinates of selected nodes of the model Parameters ---------- nodes: list, str list of nodes or 'all' Returns ------- DataFrame: DataFrame with the coordinates of the nodes """ dimensions = model.n_dimensions # if nodes == 'all': nodes = [i for i, n in model.nodes.items()] ar_coords = np.zeros((len(nodes), dimensions), dtype=np.float) index_nodes = np.zeros(len(nodes), dtype=np.int) for ix_node, curr_node in enumerate(nodes): node_i = model.nodes[curr_node] ar_coords[ix_node, :] = node_i.coords index_nodes[ix_node] = curr_node # Set coordinate labels according to the model if dimensions == 2: index_label = ['x', 'y'] else: index_label = ['x', 'y', 'z'] # Append to the Dta Frame df_coords = pd.DataFrame(data=ar_coords, index=index_nodes, dtype=np.float64, columns=index_label) return df_coords def get_node_coords(model, nodes='all'): """Return a dictionary with coordinates of selected nodes of the model Parameters ---------- nodes: list, str list of nodes or 'all' Returns ------- DataFrame: DataFrame with the coordinates of the nodes """ dimensions = model.n_dimensions # if nodes == 'all': nodes = [n for i, n in model.nodes.items()] # initialize empty dictionary to store the coordinates dict_coords = dict() # loop over every node for node_i in nodes: dict_coords[node_i.number] = node_i.coords return dict_coords
mit
rudhir-upretee/Sumo_With_Netsim
tools/visualization/mpl_dump_onNet.py
2
17968
#!/usr/bin/env python """ @file mpl_dump_onNet.py @author Daniel Krajzewicz @author Michael Behrisch @date 2007-10-25 @version $Id: mpl_dump_onNet.py 12595 2012-08-24 14:07:33Z dkrajzew $ This script reads a network and a dump file and draws the network, coloring it by the values found within the dump-file. matplotlib has to be installed for this purpose SUMO, Simulation of Urban MObility; see http://sumo.sourceforge.net/ Copyright (C) 2008-2012 DLR (http://www.dlr.de/) and contributors All rights reserved """ from matplotlib import rcParams from pylab import * import os, string, sys, StringIO import math from optparse import OptionParser from xml.sax import saxutils, make_parser, handler def toHex(val): """Converts the given value (0-255) into its hexadecimal representation""" hex = "0123456789abcdef" return hex[int(val/16)] + hex[int(val - int(val/16)*16)] def toFloat(val): """Converts the given value (0-255) into its hexadecimal representation""" hex = "0123456789abcdef" return float(hex.find(val[0])*16 + hex.find(val[1])) def toColor(val, colormap): """Converts the given value (0-1) into a color definition parseable by matplotlib""" for i in range(0, len(colormap)-1): if colormap[i+1][0]>val: scale = (val - colormap[i][0]) / (colormap[i+1][0] - colormap[i][0]) r = colormap[i][1][0] + (colormap[i+1][1][0] - colormap[i][1][0]) * scale g = colormap[i][1][1] + (colormap[i+1][1][1] - colormap[i][1][1]) * scale b = colormap[i][1][2] + (colormap[i+1][1][2] - colormap[i][1][2]) * scale return "#" + toHex(r) + toHex(g) + toHex(b) return "#" + toHex(colormap[-1][1][0]) + toHex(colormap[-1][1][1]) + toHex(colormap[-1][1][2]) def parseColorMap(mapDef): ret = [] defs = mapDef.split(",") for d in defs: (value, color) = d.split(":") r = color[1:3] g = color[3:5] b = color[5:7] ret.append( (float(value), ( toFloat(r), toFloat(g), toFloat(b) ) ) ) return ret class NetReader(handler.ContentHandler): """Reads a network, storing the edge geometries, lane numbers and max. speeds""" def __init__(self): self._id = '' self._edge2lanes = {} self._edge2speed = {} self._edge2shape = {} self._edge2from = {} self._edge2to = {} self._node2x = {} self._node2y = {} self._currentShapes = [] self._parseLane = False def startElement(self, name, attrs): self._parseLane = False if name == 'edge': if not attrs.has_key('function') or attrs['function'] != 'internal': self._id = attrs['id'] self._edge2from[attrs['id']] = attrs['from'] self._edge2to[attrs['id']] = attrs['to'] self._edge2lanes[attrs['id']] = 0 self._currentShapes = [] else: self._id = "" if name == 'lane' and self._id!="": self._edge2speed[self._id] = float(attrs['speed']) self._edge2lanes[self._id] = self._edge2lanes[self._id] + 1 self._parseLane = True self._currentShapes.append(attrs["shape"]) if name == 'junction': self._id = attrs['id'] if self._id[0]!=':': self._node2x[attrs['id']] = attrs['x'] self._node2y[attrs['id']] = attrs['y'] else: self._id = "" def endElement(self, name): if self._parseLane: self._parseLane = False if name == 'edge' and self._id!="": noShapes = len(self._currentShapes) if noShapes%2 == 1 and noShapes>0: self._edge2shape[self._id] = self._currentShapes[int(noShapes/2)] elif noShapes%2 == 0 and len(self._currentShapes[0])!=2: cshapes = [] minLen = -1 for i in self._currentShapes: cshape = [] es = i.split(" ") for e in es: p = e.split(",") cshape.append((float(p[0]), float(p[1]))) cshapes.append(cshape) if minLen==-1 or minLen>len(cshape): minLen = len(cshape) self._edge2shape[self._id] = "" if minLen>2: for i in range(0, minLen): x = 0. y = 0. for j in range(0, noShapes): x = x + cshapes[j][i][0] y = y + cshapes[j][i][1] x = x / float(noShapes) y = y / float(noShapes) if self._edge2shape[self._id] != "": self._edge2shape[self._id] = self._edge2shape[self._id] + " " self._edge2shape[self._id] = self._edge2shape[self._id] + str(x) + "," + str(y) def plotData(self, weights, options, values1, values2, saveName, colorMap): edge2plotLines = {} edge2plotColors = {} edge2plotWidth = {} xmin = 10000000. xmax = -10000000. ymin = 10000000. ymax = -10000000. min_width = 0 if options.min_width: min_width = options.min_width for edge in self._edge2from: # compute shape xs = [] ys = [] if edge not in self._edge2shape or self._edge2shape[edge]=="": xs.append(float(self._node2x[self._edge2from[edge]])) xs.append(float(self._node2x[self._edge2to[edge]])) ys.append(float(self._node2y[self._edge2from[edge]])) ys.append(float(self._node2y[self._edge2to[edge]])) else: shape = self._edge2shape[edge].split(" ") l = [] for s in shape: p = s.split(",") xs.append(float(p[0])) ys.append(float(p[1])) for x in xs: if x<xmin: xmin = x if x>xmax: xmax = x for y in ys: if y<ymin: ymin = y if y>ymax: ymax = y # save shape edge2plotLines[edge] = (xs, ys) # compute color if edge in values2: c = values2[edge] else: c = 0 edge2plotColors[edge] = toColor(c, colorMap) # compute width if edge in values1: w = values1[edge] if w>0: w = 10. * math.log(1 + values1[edge]) + min_width else: w = min_width if options.max_width and w>options.max_width: w = options.max_width if w<min_width: w = min_width edge2plotWidth[edge] = w else: edge2plotWidth[edge] = min_width if options.verbose: print "x-limits: " + str(xmin) + " - " + str(xmax) print "y-limits: " + str(ymin) + " - " + str(ymax) if not options.show: rcParams['backend'] = 'Agg' # set figure size if options.size and not options.show: f = figure(figsize=(options.size.split(","))) else: f = figure() for edge in edge2plotLines: plot(edge2plotLines[edge][0], edge2plotLines[edge][1], color=edge2plotColors[edge], linewidth=edge2plotWidth[edge]) # set axes if options.xticks!="": (xb, xe, xd, xs) = options.xticks.split(",") xticks(arange(xb, xe, xd), size = xs) if options.yticks!="": (yb, ye, yd, ys) = options.yticks.split(",") yticks(arange(yb, ye, yd), size = ys) if options.xlim!="": (xb, xe) = options.xlim.split(",") xlim(int(xb), int(xe)) else: xlim(xmin, xmax) if options.ylim!="": (yb, ye) = options.ylim.split(",") ylim(int(yb), int(ye)) else: ylim(ymin, ymax) if saveName: savefig(saveName); if options.show: show() def plot(self, weights, options, colorMap): self._minValue1 = weights._minValue1 self._minValue2 = weights._minValue2 self._maxValue1 = weights._maxValue1 self._maxValue2 = weights._maxValue2 if options.join: self.plotData(weights, options, weights._edge2value1, weights._edge2value2, options.output, colorMap) else: for i in weights._intervalBegins: if options.verbose: print " Processing step %d..." % i output = options.output if output: output = output.replace("HERE", "%") output = output % i self.plotData(weights, options, weights._unaggEdge2value1[i], weights._unaggEdge2value2[i], output, colorMap ) def knowsEdge(self, id): return id in self._edge2from class WeightsReader(handler.ContentHandler): """Reads the dump file""" def __init__(self, net, value1, value2): self._id = '' self._edge2value2 = {} self._edge2value1 = {} self._edge2no1 = {} self._edge2no2 = {} self._net = net self._intervalBegins = [] self._unaggEdge2value2 = {} self._unaggEdge2value1 = {} self._beginTime = -1 self._value1 = value1 self._value2 = value2 def startElement(self, name, attrs): if name == 'interval': self._beginTime = int(attrs['begin']) self._intervalBegins.append(self._beginTime) self._unaggEdge2value2[self._beginTime] = {} self._unaggEdge2value1[self._beginTime] = {} if name == 'edge': if self._net.knowsEdge(attrs['id']): self._id = attrs['id'] if self._id not in self._edge2value2: self._edge2value2[self._id] = 0 self._edge2value1[self._id] = 0 self._edge2no1[self._id] = 0 self._edge2no2[self._id] = 0 value1 = self._value1 if attrs.has_key(value1): value1 = float(attrs[value1]) self._edge2no1[self._id] = self._edge2no1[self._id] + 1 else: value1 = float(value1) self._edge2value1[self._id] = self._edge2value1[self._id] + value1 self._unaggEdge2value1[self._beginTime][self._id] = value1 value2 = self._value2 if attrs.has_key(value2): value2 = float(attrs[value2]) self._edge2no2[self._id] = self._edge2no2[self._id] + 1 else: value2 = float(value2) self._edge2value2[self._id] = self._edge2value2[self._id] + value2 self._unaggEdge2value2[self._beginTime][self._id] = value2 def updateExtrema(self, values1ByEdge, values2ByEdge): for edge in values1ByEdge: if self._minValue1==-1 or self._minValue1>values1ByEdge[edge]: self._minValue1 = values1ByEdge[edge] if self._maxValue1==-1 or self._maxValue1<values1ByEdge[edge]: self._maxValue1 = values1ByEdge[edge] if self._minValue2==-1 or self._minValue2>values2ByEdge[edge]: self._minValue2 = values2ByEdge[edge] if self._maxValue2==-1 or self._maxValue2<values2ByEdge[edge]: self._maxValue2 = values2ByEdge[edge] def valueDependantNorm(self, values, minV, maxV, tendency, percSpeed): if tendency: for edge in self._edge2value2: if values[edge]<0: values[edge] = 0 else: values[edge] = 1 elif percSpeed: for edge in self._edge2value2: values[edge] = (values[edge] / self._net._edge2speed[edge]) elif minV!=maxV: for edge in self._edge2value2: values[edge] = (values[edge] - minV) / (maxV - minV) def norm(self, tendency, percSpeed): self._minValue1 = -1 self._maxValue1 = -1 self._minValue2 = -1 self._maxValue2 = -1 # compute mean value if join is set if options.join: for edge in self._edge2value2: if float(self._edge2no1[edge])!=0: self._edge2value1[edge] = float(self._edge2value1[edge]) / float(self._edge2no1[edge]) else: self._edge2value1[edge] = float(self._edge2value1[edge]) if float(self._edge2no2[edge])!=0: self._edge2value2[edge] = float(self._edge2value2[edge]) / float(self._edge2no2[edge]) else: self._edge2value2[edge] = float(self._edge2value2[edge]) # compute min/max if options.join: self.updateExtrema(self._edge2value1, self._edge2value2) else: for i in weights._intervalBegins: self.updateExtrema(self._unaggEdge2value1[i], self._unaggEdge2value2[i]) # norm if options.verbose: print "w range: " + str(self._minValue1) + " - " + str(self._maxValue1) print "c range: " + str(self._minValue2) + " - " + str(self._maxValue2) if options.join: self.valueDependantNorm(self._edge2value1, self._minValue1, self._maxValue1, False, percSpeed and self._value1=="speed") self.valueDependantNorm(self._edge2value2, self._minValue2, self._maxValue2, tendency, percSpeed and self._value2=="speed") else: for i in weights._intervalBegins: self.valueDependantNorm(self._unaggEdge2value1[i], self._minValue1, self._maxValue1, False, percSpeed and self._value1=="speed") self.valueDependantNorm(self._unaggEdge2value2[i], self._minValue2, self._maxValue2, tendency, percSpeed and self._value2=="speed") # initialise optParser = OptionParser() optParser.add_option("-v", "--verbose", action="store_true", dest="verbose", default=False, help="tell me what you are doing") # i/o optParser.add_option("-n", "--net-file", dest="net", help="SUMO network to use (mandatory)", metavar="FILE") optParser.add_option("-d", "--dump", dest="dump", help="dump file to use", metavar="FILE") optParser.add_option("-o", "--output", dest="output", help="(base) name for the output", metavar="FILE") # data handling optParser.add_option("-j", "--join", action="store_true", dest="join", default=False, help="sums up values from all read intervals") optParser.add_option("-w", "--min-width", dest="min_width", type="float", help="sets minimum line width") optParser.add_option("-W", "--max-width", dest="max_width", type="float", help="sets maximum line width") optParser.add_option("-c", "--min-color", dest="min_color", type="float", help="sets minimum color (between 0 and 1)") optParser.add_option("-C", "--max-color", dest="max_color", type="float", help="sets maximum color (between 0 and 1)") optParser.add_option("--tendency-coloring", action="store_true", dest="tendency_coloring", default=False, help="show only 0/1 color for egative/positive values") optParser.add_option("--percentage-speed", action="store_true", dest="percentage_speed", default=False, help="speed is normed to maximum allowed speed on an edge") optParser.add_option("--values", dest="values", type="string", default="entered,speed", help="which values shall be parsed") optParser.add_option("--color-map", dest="colormap", type="string", default="0:#ff0000,.5:#ffff00,1:#00ff00", help="Defines the color map") # axes/legend optParser.add_option("--xticks", dest="xticks",type="string", default="", help="defines ticks on x-axis") optParser.add_option("--yticks", dest="yticks",type="string", default="", help="defines ticks on y-axis") optParser.add_option("--xlim", dest="xlim",type="string", default="", help="defines x-axis range") optParser.add_option("--ylim", dest="ylim",type="string", default="", help="defines y-axis range") # output optParser.add_option("--size", dest="size",type="string", default="", help="defines the output size") # processing optParser.add_option("-s", "--show", action="store_true", dest="show", default=False, help="shows each plot after generating it") # parse options (options, args) = optParser.parse_args() # check set options if not options.show and not options.output: print "Neither show (--show) not write (--output <FILE>)? Exiting..." exit() # init color map colorMap = parseColorMap(options.colormap) # read network if options.verbose: print "Reading net..." parser = make_parser() net = NetReader() parser.setContentHandler(net) parser.parse(options.net) # read weights if options.verbose: print "Reading weights..." mValues = options.values.split(",") weights = WeightsReader(net, mValues[0], mValues[1]) parser.setContentHandler(weights) parser.parse(options.dump) # process if options.verbose: print "Norming weights..." weights.norm(options.tendency_coloring, options.percentage_speed) if options.verbose: print "Plotting..." net.plot(weights, options, colorMap)
gpl-3.0
Abstrakten/webIntCourse
social-networks/find-communities.py
1
2172
import networkx as nx from numpy.linalg import eig from sklearn.cluster import KMeans import matplotlib.pyplot as plt import happyfuntokenizer color_map = { 0:'y', 1:'r', 2:'b', 3:'k', 4:'m', 5:'c', 6:'g', 7:'yellow', 8:'brown', } # Laplacian method def find_communities(G): L = nx.laplacian_matrix(G).todense() eig_values, eig_matrix = eig(L) # find second minimum in eigen values second_min_idx, second_min = sorted(enumerate(eig_values), key=lambda x: x[1])[1] print(second_min) print(second_min_idx) # find the correct coloumn target_coloumn = eig_matrix.transpose()[second_min_idx].transpose() for x in target_coloumn: x = x.real print(target_coloumn.shape) # pair graph node with eigen vector value paired_target_coloumn = zip(G.nodes(), target_coloumn) # for x,y in (paired_target_coloumn): # print(x, y) k = 4 # cluster using knn km = KMeans(n_clusters=k, init='k-means++', max_iter=100, n_init=1) km.fit(target_coloumn) communities = {} for node, cluster in zip(G.nodes(), km.labels_): #print(color_map[cluster]) G.node[node]['cluster'] = cluster lst = communities.get(cluster, []) lst.append(node) communities[cluster] = lst #print(cluster) return communities def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] with open("friendships.txt") as inFile: lines = inFile.read().split("\n") data_rows = [x for x in chunks(lines, 5)] # populate graph G = nx.Graph() for row in data_rows: name = row[0].split()[1] friends = row[1].split("\t")[1:] # summary summary = row[2] # review review = row[3] sentences = review.split(".") for friend in friends: G.add_edge(name, friend) communities = find_communities(G) print(communities) nx.draw_spring(G, node_color=[color_map[G.node[node]['cluster']] for node in G]) plt.show()
gpl-3.0
mojoboss/scikit-learn
examples/plot_isotonic_regression.py
303
1767
""" =================== Isotonic Regression =================== An illustration of the isotonic regression on generated data. The isotonic regression finds a non-decreasing approximation of a function while minimizing the mean squared error on the training data. The benefit of such a model is that it does not assume any form for the target function such as linearity. For comparison a linear regression is also presented. """ print(__doc__) # Author: Nelle Varoquaux <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from sklearn.linear_model import LinearRegression from sklearn.isotonic import IsotonicRegression from sklearn.utils import check_random_state n = 100 x = np.arange(n) rs = check_random_state(0) y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) ############################################################################### # Fit IsotonicRegression and LinearRegression models ir = IsotonicRegression() y_ = ir.fit_transform(x, y) lr = LinearRegression() lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression ############################################################################### # plot result segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] lc = LineCollection(segments, zorder=0) lc.set_array(np.ones(len(y))) lc.set_linewidths(0.5 * np.ones(n)) fig = plt.figure() plt.plot(x, y, 'r.', markersize=12) plt.plot(x, y_, 'g.-', markersize=12) plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-') plt.gca().add_collection(lc) plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right') plt.title('Isotonic regression') plt.show()
bsd-3-clause
jhnnsnk/nest-simulator
pynest/examples/mc_neuron.py
12
7554
# -*- coding: utf-8 -*- # # mc_neuron.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Multi-compartment neuron example -------------------------------- Simple example of how to use the three-compartment ``iaf_cond_alpha_mc`` neuron model. Three stimulation paradigms are illustrated: - externally applied current, one compartment at a time - spikes impinging on each compartment, one at a time - rheobase current injected to soma causing output spikes Voltage and synaptic conductance traces are shown for all compartments. """ ############################################################################## # First, we import all necessary modules to simulate, analyze and plot this # example. import nest import matplotlib.pyplot as plt nest.ResetKernel() ############################################################################## # We then extract the receptor types and the list of recordable quantities # from the neuron model. Receptor types and recordable quantities uniquely # define the receptor type and the compartment while establishing synaptic # connections or assigning multimeters. syns = nest.GetDefaults('iaf_cond_alpha_mc')['receptor_types'] print("iaf_cond_alpha_mc receptor_types: {0}".format(syns)) rqs = nest.GetDefaults('iaf_cond_alpha_mc')['recordables'] print("iaf_cond_alpha_mc recordables : {0}".format(rqs)) ############################################################################### # The simulation parameters are assigned to variables. nest.SetDefaults('iaf_cond_alpha_mc', {'V_th': -60.0, # threshold potential 'V_reset': -65.0, # reset potential 't_ref': 10.0, # refractory period 'g_sp': 5.0, # somato-proximal coupling conductance 'soma': {'g_L': 12.0}, # somatic leak conductance # proximal excitatory and inhibitory synaptic time constants 'proximal': {'tau_syn_ex': 1.0, 'tau_syn_in': 5.0}, 'distal': {'C_m': 90.0} # distal capacitance }) ############################################################################### # The nodes are created using ``Create``. We store the returned handles # in variables for later reference. n = nest.Create('iaf_cond_alpha_mc') ############################################################################### # A ``multimeter`` is created and connected to the neurons. The parameters # specified for the multimeter include the list of quantities that should be # recorded and the time interval at which quantities are measured. mm = nest.Create('multimeter', params={'record_from': rqs, 'interval': 0.1}) nest.Connect(mm, n) ############################################################################### # We create one current generator per compartment and configure a stimulus # regime that drives distal, proximal and soma dendrites, in that order. # Configuration of the current generator includes the definition of the start # and stop times and the amplitude of the injected current. cgs = nest.Create('dc_generator', 3) cgs[0].set(start=250.0, stop=300.0, amplitude=50.0) # soma cgs[1].set(start=150.0, stop=200.0, amplitude=-50.0) # proxim. cgs[2].set(start=50.0, stop=100.0, amplitude=100.0) # distal ############################################################################### # Generators are then connected to the correct compartments. Specification of # the ``receptor_type`` uniquely defines the target compartment and receptor. nest.Connect(cgs[0], n, syn_spec={'receptor_type': syns['soma_curr']}) nest.Connect(cgs[1], n, syn_spec={'receptor_type': syns['proximal_curr']}) nest.Connect(cgs[2], n, syn_spec={'receptor_type': syns['distal_curr']}) ############################################################################### # We create one excitatory and one inhibitory spike generator per compartment # and configure a regime that drives distal, proximal and soma dendrites, in # that order, alternating the excitatory and inhibitory spike generators. sgs = nest.Create('spike_generator', 6) sgs[0].spike_times = [600.0, 620.0] # soma excitatory sgs[1].spike_times = [610.0, 630.0] # soma inhibitory sgs[2].spike_times = [500.0, 520.0] # proximal excitatory sgs[3].spike_times = [510.0, 530.0] # proximal inhibitory sgs[4].spike_times = [400.0, 420.0] # distal excitatory sgs[5].spike_times = [410.0, 430.0] # distal inhibitory ############################################################################### # Connect generators to correct compartments in the same way as in case of # current generator nest.Connect(sgs[0], n, syn_spec={'receptor_type': syns['soma_exc']}) nest.Connect(sgs[1], n, syn_spec={'receptor_type': syns['soma_inh']}) nest.Connect(sgs[2], n, syn_spec={'receptor_type': syns['proximal_exc']}) nest.Connect(sgs[3], n, syn_spec={'receptor_type': syns['proximal_inh']}) nest.Connect(sgs[4], n, syn_spec={'receptor_type': syns['distal_exc']}) nest.Connect(sgs[5], n, syn_spec={'receptor_type': syns['distal_inh']}) ############################################################################### # Run the simulation for 700 ms. nest.Simulate(700) ############################################################################### # Now we set the intrinsic current of soma to 150 pA to make the neuron spike. n.set({'soma': {'I_e': 150.}}) ############################################################################### # We simulate the network for another 300 ms and retrieve recorded data from # the multimeter nest.Simulate(300) rec = mm.events ############################################################################### # We create an array with the time points when the quantities were actually # recorded t = rec['times'] ############################################################################### # We plot the time traces of the membrane potential and the state of each # membrane potential for soma, proximal, and distal dendrites (`V_m.s`, `V_m.p` # and `V_m.d`). plt.figure() plt.subplot(211) plt.plot(t, rec['V_m.s'], t, rec['V_m.p'], t, rec['V_m.d']) plt.legend(('Soma', 'Proximal dendrite', 'Distal dendrite'), loc='lower right') plt.axis([0, 1000, -76, -59]) plt.ylabel('Membrane potential [mV]') plt.title('Responses of iaf_cond_alpha_mc neuron') ############################################################################### # Finally, we plot the time traces of the synaptic conductance measured in # each compartment. plt.subplot(212) plt.plot(t, rec['g_ex.s'], 'b-', t, rec['g_ex.p'], 'g-', t, rec['g_ex.d'], 'r-') plt.plot(t, rec['g_in.s'], 'b--', t, rec['g_in.p'], 'g--', t, rec['g_in.d'], 'r--') plt.legend(('g_ex.s', 'g_ex.p', 'g_in.d', 'g_in.s', 'g_in.p', 'g_in.d')) plt.axis([350, 700, 0, 1.15]) plt.xlabel('Time [ms]') plt.ylabel('Synaptic conductance [nS]') plt.show()
gpl-2.0
Mctigger/KagglePlanetPytorch
nn_finetune_resnet_50.py
1
4493
import os import sys from itertools import chain import numpy as np import torchvision.models import torch.nn.functional as F import torch.optim as optim from torch import nn import torch.nn.init from torch.utils.data import DataLoader from torchsample.modules import ModuleTrainer from torchsample.callbacks import CSVLogger, LearningRateScheduler import sklearn.model_selection import paths import labels import transforms import callbacks from datasets import KaggleAmazonJPGDataset name = os.path.basename(sys.argv[0])[:-3] def generate_model(): class MyModel(nn.Module): def __init__(self, pretrained_model): super(MyModel, self).__init__() self.pretrained_model = pretrained_model self.layer1 = pretrained_model.layer1 self.layer2 = pretrained_model.layer2 self.layer3 = pretrained_model.layer3 self.layer4 = pretrained_model.layer4 pretrained_model.avgpool = nn.AvgPool2d(8) classifier = [ nn.Linear(pretrained_model.fc.in_features, 17), ] self.classifier = nn.Sequential(*classifier) pretrained_model.fc = self.classifier def forward(self, x): return F.sigmoid(self.pretrained_model(x)) return MyModel(torchvision.models.resnet50(pretrained=True)) random_state = 1 labels_df = labels.get_labels_df() kf = sklearn.model_selection.KFold(n_splits=5, shuffle=True, random_state=random_state) split = kf.split(labels_df) def train_net(train, val, model, name): transformations_train = transforms.apply_chain([ transforms.random_fliplr(), transforms.random_flipud(), transforms.augment(), torchvision.transforms.ToTensor() ]) transformations_val = transforms.apply_chain([ torchvision.transforms.ToTensor(), ]) dset_train = KaggleAmazonJPGDataset(train, paths.train_jpg, transformations_train, divide=False) train_loader = DataLoader(dset_train, batch_size=64, shuffle=True, num_workers=10, pin_memory=True) dset_val = KaggleAmazonJPGDataset(val, paths.train_jpg, transformations_val, divide=False) val_loader = DataLoader(dset_val, batch_size=64, num_workers=10, pin_memory=True) ignored_params = list(map(id, chain( model.classifier.parameters(), model.layer1.parameters(), model.layer2.parameters(), model.layer3.parameters(), model.layer4.parameters() ))) base_params = filter(lambda p: id(p) not in ignored_params, model.parameters()) optimizer = optim.Adam([ {'params': base_params}, {'params': model.layer1.parameters()}, {'params': model.layer2.parameters()}, {'params': model.layer3.parameters()}, {'params': model.layer4.parameters()}, {'params': model.classifier.parameters()} ], lr=0, weight_decay=0.0005) trainer = ModuleTrainer(model) def schedule(current_epoch, current_lrs, **logs): lrs = [1e-3, 1e-4, 1e-5] epochs = [0, 2, 10] for lr, epoch in zip(lrs, epochs): if current_epoch >= epoch: current_lrs[5] = lr if current_epoch >= 1: current_lrs[4] = lr * 0.4 current_lrs[3] = lr * 0.2 current_lrs[2] = lr * 0.1 current_lrs[1] = lr * 0.05 current_lrs[0] = lr * 0.01 return current_lrs trainer.set_callbacks([ callbacks.ModelCheckpoint( paths.models, name, save_best_only=False, saving_strategy=lambda epoch: True ), CSVLogger('./logs/' + name), LearningRateScheduler(schedule) ]) trainer.compile(loss=nn.BCELoss(), optimizer=optimizer) trainer.fit_loader(train_loader, val_loader, nb_epoch=35, verbose=1, cuda_device=0) if __name__ == "__main__": for i, (train_idx, val_idx) in enumerate(split): name = os.path.basename(sys.argv[0])[:-3] + '-split_' + str(i) train_net(labels_df.ix[train_idx], labels_df.ix[val_idx], generate_model(), name)
mit
BrownDwarf/Starfish
attic/cheb.py
2
2152
import matplotlib.pyplot as plt from numpy.polynomial import Chebyshev as Ch import numpy as np import model as m def test_chebyshev(): '''Domain controls the x-range, while window controls the y-range.''' coef = np.array([0., 1.]) #coef2 = np.array([0.,0.,1,-1,0]) myCh = Ch(coef, window=[-10, 10]) #Domain c #myCh2 = Ch(coef2) #xs = np.linspace(0,3.) x0 = np.linspace(-1, 1) plt.plot(x0, myCh(x0)) #plt.plot(x0, myCh2(x0)) #plt.plot(xs, myCh2(xs)) plt.show() #test_chebyshev() xs = np.arange(2299) T0 = np.ones_like(xs) Ch1 = Ch([0,1], domain=[0,2298]) T1 = Ch1(xs) Ch2 = Ch([0,0,1],domain=[0,2298]) T2 = Ch2(xs) Ch3 = Ch([0,0,0,1],domain=[0,2298]) T3 = Ch3(xs) T = np.array([T0,T1,T2,T3]) #multiply this by the flux and sigma vector for each order TT = np.einsum("in,jn->ijn",T,T) c = np.array([1,0,0,0]) orders = [21,22] wls = m.wls fls = m.fls sigmas = m.sigmas #has shape (51, 2299), a sigma array for each order fmods = m.model(wls, 6001,3.5,0.0, 3, 0.0, 1e-10) #fls = m.model(wls,6020,3.6,40,2e-27) TT = np.einsum("in,jn->ijn",T,T) mu = np.array([1,0,0,0]) sigmac = 0.2 D = sigmac**(-2) * np.eye(4) Dmu = np.einsum("ij,j->j",D,mu) muDmu = np.einsum("j,j->",mu,Dmu) a= fmods**2/sigmas**2 A = np.einsum("in,jkn->ijk",a,TT) #add in prior A = A + D detA = np.array(list(map(np.linalg.det, A))) invA = np.array(list(map(np.linalg.inv, A))) b = fmods * fls / sigmas**2 B = np.einsum("in,jn->ij",b,T) B = B + Dmu g = -0.5 * fls**2/sigmas**2 G = np.einsum("ij->i",g) G = G - 0.5 * muDmu #A,B,G are correct invAB = np.einsum("ijk,ik->ij",invA,B) BAB = np.einsum("ij,ij->i",B,invAB) #these are now correct lnp = 0.5 * np.log((2. * np.pi)**len(orders)/detA) + 0.5 * BAB + G #print(lnp) print("Marginalized",np.sum(lnp)) #print(m.lnprob(np.array([6000, 3.5, 42, 0, 2.1e-27, 0.0, 0.0]))) Ac = np.einsum("ijk,k->ij",A,c) cAc = np.einsum("j,ij->i",c,Ac) Bc = np.einsum("ij,j->i",B,c) #to obtain the original, unnormalized, unmarginalized P given c print("Unmarginalized",np.sum(-0.5 * cAc + Bc + G)) #plt.plot(xs,T0) #plt.plot(xs,T1) #plt.plot(xs,T2) #plt.plot(xs,T3) #plt.show()
bsd-3-clause
gavinmh/keras
tests/manual/check_callbacks.py
82
7540
import numpy as np import random import theano from keras.models import Sequential from keras.callbacks import Callback from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.regularizers import l2 from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras.datasets import mnist import keras.callbacks as cbks from matplotlib import pyplot as plt from matplotlib import animation ############################## # model DrawActivations test # ############################## print('Running DrawActivations test') nb_classes = 10 batch_size = 128 nb_epoch = 10 max_train_samples = 512 max_test_samples = 1 np.random.seed(1337) # the data, shuffled and split between tran and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(-1,1,28,28)[:max_train_samples] X_train = X_train.astype("float32") X_train /= 255 X_test = X_test.reshape(-1,1,28,28)[:max_test_samples] X_test = X_test.astype("float32") X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes)[:max_train_samples] class Frames(object): def __init__(self, n_plots=16): self._n_frames = 0 self._framedata = [] self._titles = [] for i in range(n_plots): self._framedata.append([]) def add_frame(self, i, frame): self._framedata[i].append(frame) def set_title(self, title): self._titles.append(title) class SubplotTimedAnimation(animation.TimedAnimation): def __init__(self, fig, frames, grid=(4, 4), interval=10, blit=False, **kwargs): self.n_plots = grid[0] * grid[1] self.axes = [fig.add_subplot(grid[0], grid[1], i + 1) for i in range(self.n_plots)] for axis in self.axes: axis.get_xaxis().set_ticks([]) axis.get_yaxis().set_ticks([]) self.frames = frames self.imgs = [self.axes[i].imshow(frames._framedata[i][0], interpolation='nearest', cmap='bone') for i in range(self.n_plots)] self.title = fig.suptitle('') super(SubplotTimedAnimation, self).__init__(fig, interval=interval, blit=blit, **kwargs) def _draw_frame(self, j): for i in range(self.n_plots): self.imgs[i].set_data(self.frames._framedata[i][j]) if len(self.frames._titles) > j: self.title.set_text(self.frames._titles[j]) self._drawn_artists = self.imgs def new_frame_seq(self): return iter(range(len(self.frames._framedata[0]))) def _init_draw(self): for img in self.imgs: img.set_data([[]]) def combine_imgs(imgs, grid=(1,1)): n_imgs, img_h, img_w = imgs.shape if n_imgs != grid[0] * grid[1]: raise ValueError() combined = np.zeros((grid[0] * img_h, grid[1] * img_w)) for i in range(grid[0]): for j in range(grid[1]): combined[img_h*i:img_h*(i+1),img_w*j:img_w*(j+1)] = imgs[grid[0] * i + j] return combined class DrawActivations(Callback): def __init__(self, figsize): self.fig = plt.figure(figsize=figsize) def on_train_begin(self, logs={}): self.imgs = Frames(n_plots=5) layers_0_ids = np.random.choice(32, 16, replace=False) self.test_layer0 = theano.function([self.model.get_input()], self.model.layers[1].get_output(train=False)[0, layers_0_ids]) layers_1_ids = np.random.choice(64, 36, replace=False) self.test_layer1 = theano.function([self.model.get_input()], self.model.layers[5].get_output(train=False)[0, layers_1_ids]) self.test_layer2 = theano.function([self.model.get_input()], self.model.layers[10].get_output(train=False)[0]) def on_epoch_begin(self, epoch, logs={}): self.epoch = epoch def on_batch_end(self, batch, logs={}): if batch % 5 == 0: self.imgs.add_frame(0, X_test[0,0]) self.imgs.add_frame(1, combine_imgs(self.test_layer0(X_test), grid=(4, 4))) self.imgs.add_frame(2, combine_imgs(self.test_layer1(X_test), grid=(6, 6))) self.imgs.add_frame(3, self.test_layer2(X_test).reshape((16,16))) self.imgs.add_frame(4, self.model._predict(X_test)[0].reshape((1,10))) self.imgs.set_title('Epoch #%d - Batch #%d' % (self.epoch, batch)) def on_train_end(self, logs={}): anim = SubplotTimedAnimation(self.fig, self.imgs, grid=(1,5), interval=10, blit=False, repeat_delay=1000) # anim.save('test_gif.gif', fps=15, writer='imagemagick') plt.show() # model = Sequential() # model.add(Dense(784, 50)) # model.add(Activation('relu')) # model.add(Dense(50, 10)) # model.add(Activation('softmax')) model = Sequential() model.add(Convolution2D(32, 1, 3, 3, border_mode='full')) model.add(Activation('relu')) model.add(MaxPooling2D(poolsize=(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(64, 32, 3, 3, border_mode='full')) model.add(Activation('relu')) model.add(MaxPooling2D(poolsize=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(64*8*8, 256)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(256, 10, W_regularizer = l2(0.1))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # Fit the model draw_weights = DrawActivations(figsize=(5.4, 1.35)) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, callbacks=[draw_weights]) ########################## # model checkpoint tests # ########################## print('Running ModelCheckpoint test') nb_classes = 10 batch_size = 128 nb_epoch = 20 # small sample size to overfit on training data max_train_samples = 50 max_test_samples = 1000 np.random.seed(1337) # for reproducibility # the data, shuffled and split between tran and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(60000,784)[:max_train_samples] X_test = X_test.reshape(10000,784)[:max_test_samples] X_train = X_train.astype("float32") X_test = X_test.astype("float32") X_train /= 255 X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes)[:max_train_samples] Y_test = np_utils.to_categorical(y_test, nb_classes)[:max_test_samples] # Create a slightly larger network than required to test best validation save only model = Sequential() model.add(Dense(784, 500)) model.add(Activation('relu')) model.add(Dense(500, 10)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # test file location path = "/tmp" filename = "model_weights.hdf5" import os f = os.path.join(path, filename) print("Test model checkpointer") # only store best validation model in checkpointer checkpointer = cbks.ModelCheckpoint(filepath=f, verbose=1, save_best_only=True) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_data=(X_test, Y_test), callbacks =[checkpointer]) if not os.path.isfile(f): raise Exception("Model weights were not saved to %s" % (f)) print("Test model checkpointer without validation data") import warnings warnings.filterwarnings('error') try: # this should issue a warning model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, callbacks =[checkpointer]) except: print("Tests passed") import sys sys.exit(0) raise Exception("Modelcheckpoint tests did not pass")
mit
hsuantien/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
142
5990
# Author: Vlad Niculae # License: BSD 3 clause import sys import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import if_not_mac_os from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA from sklearn.utils import check_random_state def generate_toy_data(n_components, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_components) V = rng.randn(n_components, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_components): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) @if_not_mac_os() def test_fit_transform_parallel(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) def test_transform_nan(): # Test that SparsePCA won't return NaN when there is 0 feature in all # samples. rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array Y[:, 0] = 0 estimator = SparsePCA(n_components=8) assert_false(np.any(np.isnan(estimator.fit_transform(Y)))) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_array_equal(model.components_, V_init) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): raise SkipTest("skipping mini_batch_fit_transform.") alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
xyguo/scikit-learn
examples/ensemble/plot_gradient_boosting_oob.py
50
4764
""" ====================================== Gradient Boosting Out-of-Bag estimates ====================================== Out-of-bag (OOB) estimates can be a useful heuristic to estimate the "optimal" number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. ``subsample < 1.0``), the estimates are derived from the improvement in loss based on the examples not included in the bootstrap sample (the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but remains a fairly good approximation for a small number of trees. The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is computationally more demanding. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split # Generate data (adapted from G. Ridgeway's gbm example) n_samples = 1000 random_state = np.random.RandomState(13) x1 = random_state.uniform(size=n_samples) x2 = random_state.uniform(size=n_samples) x3 = random_state.randint(0, 4, size=n_samples) p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3))) y = random_state.binomial(1, p, size=n_samples) X = np.c_[x1, x2, x3] X = X.astype(np.float32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=9) # Fit classifier with out-of-bag estimates params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5, 'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3} clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) acc = clf.score(X_test, y_test) print("Accuracy: {:.4f}".format(acc)) n_estimators = params['n_estimators'] x = np.arange(n_estimators) + 1 def heldout_score(clf, X_test, y_test): """compute deviance scores on ``X_test`` and ``y_test``. """ score = np.zeros((n_estimators,), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): score[i] = clf.loss_(y_test, y_pred) return score def cv_estimate(n_folds=3): cv = KFold(n_folds=n_folds) cv_clf = ensemble.GradientBoostingClassifier(**params) val_scores = np.zeros((n_estimators,), dtype=np.float64) for train, test in cv.split(X_train, y_train): cv_clf.fit(X_train[train], y_train[train]) val_scores += heldout_score(cv_clf, X_train[test], y_train[test]) val_scores /= n_folds return val_scores # Estimate best n_estimator using cross-validation cv_score = cv_estimate(3) # Compute best n_estimator for test data test_score = heldout_score(clf, X_test, y_test) # negative cumulative sum of oob improvements cumsum = -np.cumsum(clf.oob_improvement_) # min loss according to OOB oob_best_iter = x[np.argmin(cumsum)] # min loss according to test (normalize such that first loss is 0) test_score -= test_score[0] test_best_iter = x[np.argmin(test_score)] # min loss according to cv (normalize such that first loss is 0) cv_score -= cv_score[0] cv_best_iter = x[np.argmin(cv_score)] # color brew for the three curves oob_color = list(map(lambda x: x / 256.0, (190, 174, 212))) test_color = list(map(lambda x: x / 256.0, (127, 201, 127))) cv_color = list(map(lambda x: x / 256.0, (253, 192, 134))) # plot curves and vertical lines for best iterations plt.plot(x, cumsum, label='OOB loss', color=oob_color) plt.plot(x, test_score, label='Test loss', color=test_color) plt.plot(x, cv_score, label='CV loss', color=cv_color) plt.axvline(x=oob_best_iter, color=oob_color) plt.axvline(x=test_best_iter, color=test_color) plt.axvline(x=cv_best_iter, color=cv_color) # add three vertical lines to xticks xticks = plt.xticks() xticks_pos = np.array(xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter]) xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ['OOB', 'CV', 'Test']) ind = np.argsort(xticks_pos) xticks_pos = xticks_pos[ind] xticks_label = xticks_label[ind] plt.xticks(xticks_pos, xticks_label) plt.legend(loc='upper right') plt.ylabel('normalized loss') plt.xlabel('number of iterations') plt.show()
bsd-3-clause
hsiaoyi0504/scikit-learn
sklearn/ensemble/voting_classifier.py
178
8006
""" Soft Voting/Majority Rule classifier. This module contains a Soft Voting/Majority Rule classifier for classification estimators. """ # Authors: Sebastian Raschka <[email protected]>, # Gilles Louppe <[email protected]> # # Licence: BSD 3 clause import numpy as np from ..base import BaseEstimator from ..base import ClassifierMixin from ..base import TransformerMixin from ..base import clone from ..preprocessing import LabelEncoder from ..externals import six class VotingClassifier(BaseEstimator, ClassifierMixin, TransformerMixin): """Soft Voting/Majority Rule classifier for unfitted estimators. Read more in the :ref:`User Guide <voting_classifier>`. Parameters ---------- estimators : list of (string, estimator) tuples Invoking the `fit` method on the `VotingClassifier` will fit clones of those original estimators that will be stored in the class attribute `self.estimators_`. voting : str, {'hard', 'soft'} (default='hard') If 'hard', uses predicted class labels for majority rule voting. Else if 'soft', predicts the class label based on the argmax of the sums of the predicted probalities, which is recommended for an ensemble of well-calibrated classifiers. weights : array-like, shape = [n_classifiers], optional (default=`None`) Sequence of weights (`float` or `int`) to weight the occurances of predicted class labels (`hard` voting) or class probabilities before averaging (`soft` voting). Uses uniform weights if `None`. Attributes ---------- classes_ : array-like, shape = [n_predictions] Examples -------- >>> import numpy as np >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.ensemble import RandomForestClassifier >>> clf1 = LogisticRegression(random_state=1) >>> clf2 = RandomForestClassifier(random_state=1) >>> clf3 = GaussianNB() >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> eclf1 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') >>> eclf1 = eclf1.fit(X, y) >>> print(eclf1.predict(X)) [1 1 1 2 2 2] >>> eclf2 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft') >>> eclf2 = eclf2.fit(X, y) >>> print(eclf2.predict(X)) [1 1 1 2 2 2] >>> eclf3 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft', weights=[2,1,1]) >>> eclf3 = eclf3.fit(X, y) >>> print(eclf3.predict(X)) [1 1 1 2 2 2] >>> """ def __init__(self, estimators, voting='hard', weights=None): self.estimators = estimators self.named_estimators = dict(estimators) self.voting = voting self.weights = weights def fit(self, X, y): """ Fit the estimators. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : object """ if isinstance(y, np.ndarray) and len(y.shape) > 1 and y.shape[1] > 1: raise NotImplementedError('Multilabel and multi-output' ' classification is not supported.') if self.voting not in ('soft', 'hard'): raise ValueError("Voting must be 'soft' or 'hard'; got (voting=%r)" % self.voting) if self.weights and len(self.weights) != len(self.estimators): raise ValueError('Number of classifiers and weights must be equal' '; got %d weights, %d estimators' % (len(self.weights), len(self.estimators))) self.le_ = LabelEncoder() self.le_.fit(y) self.classes_ = self.le_.classes_ self.estimators_ = [] for name, clf in self.estimators: fitted_clf = clone(clf).fit(X, self.le_.transform(y)) self.estimators_.append(fitted_clf) return self def predict(self, X): """ Predict class labels for X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- maj : array-like, shape = [n_samples] Predicted class labels. """ if self.voting == 'soft': maj = np.argmax(self.predict_proba(X), axis=1) else: # 'hard' voting predictions = self._predict(X) maj = np.apply_along_axis(lambda x: np.argmax(np.bincount(x, weights=self.weights)), axis=1, arr=predictions) maj = self.le_.inverse_transform(maj) return maj def _collect_probas(self, X): """Collect results from clf.predict calls. """ return np.asarray([clf.predict_proba(X) for clf in self.estimators_]) def _predict_proba(self, X): """Predict class probabilities for X in 'soft' voting """ avg = np.average(self._collect_probas(X), axis=0, weights=self.weights) return avg @property def predict_proba(self): """Compute probabilities of possible outcomes for samples in X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- avg : array-like, shape = [n_samples, n_classes] Weighted average probability for each class per sample. """ if self.voting == 'hard': raise AttributeError("predict_proba is not available when" " voting=%r" % self.voting) return self._predict_proba def transform(self, X): """Return class labels or probabilities for X for each estimator. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- If `voting='soft'`: array-like = [n_classifiers, n_samples, n_classes] Class probabilties calculated by each classifier. If `voting='hard'`: array-like = [n_classifiers, n_samples] Class labels predicted by each classifier. """ if self.voting == 'soft': return self._collect_probas(X) else: return self._predict(X) def get_params(self, deep=True): """Return estimator parameter names for GridSearch support""" if not deep: return super(VotingClassifier, self).get_params(deep=False) else: out = super(VotingClassifier, self).get_params(deep=False) out.update(self.named_estimators.copy()) for name, step in six.iteritems(self.named_estimators): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out def _predict(self, X): """Collect results from clf.predict calls. """ return np.asarray([clf.predict(X) for clf in self.estimators_]).T
bsd-3-clause
bzero/statsmodels
statsmodels/sandbox/regression/tests/test_gmm_poisson.py
31
13338
''' TestGMMMultTwostepDefault() has lower precision ''' from statsmodels.compat.python import lmap import numpy as np from numpy.testing.decorators import skipif import pandas import scipy from scipy import stats from statsmodels.regression.linear_model import OLS from statsmodels.sandbox.regression import gmm from numpy.testing import assert_allclose, assert_equal from statsmodels.compat.scipy import NumpyVersion def get_data(): import os curdir = os.path.split(__file__)[0] dt = pandas.read_csv(os.path.join(curdir, 'racd10data_with_transformed.csv')) # Transformations compared to original data ##dt3['income'] /= 10. ##dt3['aget'] = (dt3['age'] - dt3['age'].min()) / 5. ##dt3['aget2'] = dt3['aget']**2 # How do we do this with pandas mask = ~((np.asarray(dt['private']) == 1) & (dt['medicaid'] == 1)) mask = mask & (dt['docvis'] <= 70) dt3 = dt[mask] dt3['const'] = 1 # add constant return dt3 DATA = get_data() #------------- moment conditions for example def moment_exponential_add(params, exog, exp=True): if not np.isfinite(params).all(): print("invalid params", params) # moment condition without instrument if exp: predicted = np.exp(np.dot(exog, params)) #if not np.isfinite(predicted).all(): #print "invalid predicted", predicted #raise RuntimeError('invalid predicted') predicted = np.clip(predicted, 0, 1e100) # try to avoid inf else: predicted = np.dot(exog, params) return predicted def moment_exponential_mult(params, data, exp=True): # multiplicative error model endog = data[:,0] exog = data[:,1:] if not np.isfinite(params).all(): print("invalid params", params) # moment condition without instrument if exp: predicted = np.exp(np.dot(exog, params)) predicted = np.clip(predicted, 0, 1e100) # avoid inf resid = endog / predicted - 1 if not np.isfinite(resid).all(): print("invalid resid", resid) else: resid = endog - np.dot(exog, params) return resid #------------------- test classes # copied from test_gmm.py, with changes class CheckGMM(object): # default tolerance, overwritten by subclasses params_tol = [5e-6, 5e-6] bse_tol = [5e-7, 5e-7] q_tol = [5e-6, 1e-9] j_tol = [5e-5, 1e-9] def test_basic(self): res1, res2 = self.res1, self.res2 # test both absolute and relative difference rtol, atol = self.params_tol assert_allclose(res1.params, res2.params, rtol=rtol, atol=0) assert_allclose(res1.params, res2.params, rtol=0, atol=atol) rtol, atol = self.bse_tol assert_allclose(res1.bse, res2.bse, rtol=rtol, atol=0) assert_allclose(res1.bse, res2.bse, rtol=0, atol=atol) def test_other(self): res1, res2 = self.res1, self.res2 rtol, atol = self.q_tol assert_allclose(res1.q, res2.Q, rtol=atol, atol=rtol) rtol, atol = self.j_tol assert_allclose(res1.jval, res2.J, rtol=atol, atol=rtol) j, jpval, jdf = res1.jtest() # j and jval should be the same assert_allclose(res1.jval, res2.J, rtol=13, atol=13) #pvalue is not saved in Stata results pval = stats.chi2.sf(res2.J, res2.J_df) #assert_allclose(jpval, pval, rtol=1e-4, atol=1e-6) assert_allclose(jpval, pval, rtol=rtol, atol=atol) assert_equal(jdf, res2.J_df) def test_smoke(self): res1 = self.res1 res1.summary() class TestGMMAddOnestep(CheckGMM): @classmethod def setup_class(self): XLISTEXOG2 = 'aget aget2 educyr actlim totchr'.split() endog_name = 'docvis' exog_names = 'private medicaid'.split() + XLISTEXOG2 + ['const'] instrument_names = 'income ssiratio'.split() + XLISTEXOG2 + ['const'] endog = DATA[endog_name] exog = DATA[exog_names] instrument = DATA[instrument_names] asarray = lambda x: np.asarray(x, float) endog, exog, instrument = lmap(asarray, [endog, exog, instrument]) self.bse_tol = [5e-6, 5e-7] q_tol = [0.04, 0] # compare to Stata default options, iterative GMM # with const at end start = OLS(np.log(endog+1), exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs mod = gmm.NonlinearIVGMM(endog, exog, instrument, moment_exponential_add) res0 = mod.fit(start, maxiter=0, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-8, 'disp': 0}, wargs={'centered':False}) self.res1 = res0 from .results_gmm_poisson import results_addonestep as results self.res2 = results class TestGMMAddTwostep(CheckGMM): @classmethod def setup_class(self): XLISTEXOG2 = 'aget aget2 educyr actlim totchr'.split() endog_name = 'docvis' exog_names = 'private medicaid'.split() + XLISTEXOG2 + ['const'] instrument_names = 'income ssiratio'.split() + XLISTEXOG2 + ['const'] endog = DATA[endog_name] exog = DATA[exog_names] instrument = DATA[instrument_names] asarray = lambda x: np.asarray(x, float) endog, exog, instrument = lmap(asarray, [endog, exog, instrument]) self.bse_tol = [5e-6, 5e-7] # compare to Stata default options, iterative GMM # with const at end start = OLS(np.log(endog+1), exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs mod = gmm.NonlinearIVGMM(endog, exog, instrument, moment_exponential_add) res0 = mod.fit(start, maxiter=2, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-8, 'disp': 0}, wargs={'centered':False}, has_optimal_weights=False) self.res1 = res0 from .results_gmm_poisson import results_addtwostep as results self.res2 = results class TestGMMMultOnestep(CheckGMM): #compares has_optimal_weights=True with Stata's has_optimal_weights=False @classmethod def setup_class(self): # compare to Stata default options, twostep GMM XLISTEXOG2 = 'aget aget2 educyr actlim totchr'.split() endog_name = 'docvis' exog_names = 'private medicaid'.split() + XLISTEXOG2 + ['const'] instrument_names = 'income medicaid ssiratio'.split() + XLISTEXOG2 + ['const'] endog = DATA[endog_name] exog = DATA[exog_names] instrument = DATA[instrument_names] asarray = lambda x: np.asarray(x, float) endog, exog, instrument = lmap(asarray, [endog, exog, instrument]) # Need to add all data into exog endog_ = np.zeros(len(endog)) exog_ = np.column_stack((endog, exog)) self.bse_tol = [5e-6, 5e-7] self.q_tol = [0.04, 0] self.j_tol = [0.04, 0] # compare to Stata default options, iterative GMM # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs mod = gmm.NonlinearIVGMM(endog_, exog_, instrument, moment_exponential_mult) res0 = mod.fit(start, maxiter=0, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-8, 'disp': 0}, wargs={'centered':False}, has_optimal_weights=False) self.res1 = res0 from .results_gmm_poisson import results_multonestep as results self.res2 = results class TestGMMMultTwostep(CheckGMM): #compares has_optimal_weights=True with Stata's has_optimal_weights=False @classmethod def setup_class(self): # compare to Stata default options, twostep GMM XLISTEXOG2 = 'aget aget2 educyr actlim totchr'.split() endog_name = 'docvis' exog_names = 'private medicaid'.split() + XLISTEXOG2 + ['const'] instrument_names = 'income medicaid ssiratio'.split() + XLISTEXOG2 + ['const'] endog = DATA[endog_name] exog = DATA[exog_names] instrument = DATA[instrument_names] asarray = lambda x: np.asarray(x, float) endog, exog, instrument = lmap(asarray, [endog, exog, instrument]) # Need to add all data into exog endog_ = np.zeros(len(endog)) exog_ = np.column_stack((endog, exog)) self.bse_tol = [5e-6, 5e-7] # compare to Stata default options, iterative GMM # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs mod = gmm.NonlinearIVGMM(endog_, exog_, instrument, moment_exponential_mult) res0 = mod.fit(start, maxiter=2, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-8, 'disp': 0}, wargs={'centered':False}, has_optimal_weights=False) self.res1 = res0 from .results_gmm_poisson import results_multtwostep as results self.res2 = results class TestGMMMultTwostepDefault(CheckGMM): # compares my defaults with the same options in Stata # agreement is not very high, maybe vce(unadjusted) is different after all @classmethod def setup_class(self): # compare to Stata default options, twostep GMM XLISTEXOG2 = 'aget aget2 educyr actlim totchr'.split() endog_name = 'docvis' exog_names = 'private medicaid'.split() + XLISTEXOG2 + ['const'] instrument_names = 'income medicaid ssiratio'.split() + XLISTEXOG2 + ['const'] endog = DATA[endog_name] exog = DATA[exog_names] instrument = DATA[instrument_names] asarray = lambda x: np.asarray(x, float) endog, exog, instrument = lmap(asarray, [endog, exog, instrument]) # Need to add all data into exog endog_ = np.zeros(len(endog)) exog_ = np.column_stack((endog, exog)) self.bse_tol = [0.004, 5e-4] self.params_tol = [5e-5, 5e-5] # compare to Stata default options, iterative GMM # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs mod = gmm.NonlinearIVGMM(endog_, exog_, instrument, moment_exponential_mult) res0 = mod.fit(start, maxiter=2, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-8, 'disp': 0}, #wargs={'centered':True}, has_optimal_weights=True ) self.res1 = res0 from .results_gmm_poisson import results_multtwostepdefault as results self.res2 = results class TestGMMMultTwostepCenter(CheckGMM): #compares my defaults with the same options in Stata @classmethod def setup_class(self): # compare to Stata default options, twostep GMM XLISTEXOG2 = 'aget aget2 educyr actlim totchr'.split() endog_name = 'docvis' exog_names = 'private medicaid'.split() + XLISTEXOG2 + ['const'] instrument_names = 'income medicaid ssiratio'.split() + XLISTEXOG2 + ['const'] endog = DATA[endog_name] exog = DATA[exog_names] instrument = DATA[instrument_names] asarray = lambda x: np.asarray(x, float) endog, exog, instrument = lmap(asarray, [endog, exog, instrument]) # Need to add all data into exog endog_ = np.zeros(len(endog)) exog_ = np.column_stack((endog, exog)) self.bse_tol = [5e-4, 5e-5] self.params_tol = [5e-5, 5e-5] q_tol = [5e-5, 1e-8] # compare to Stata default options, iterative GMM # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs mod = gmm.NonlinearIVGMM(endog_, exog_, instrument, moment_exponential_mult) res0 = mod.fit(start, maxiter=2, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-8, 'disp': 0}, wargs={'centered':True}, has_optimal_weights=False ) self.res1 = res0 from .results_gmm_poisson import results_multtwostepcenter as results self.res2 = results def test_more(self): # from Stata `overid` J_df = 1 J_p = 0.332254330027383 J = 0.940091427212973 j, jpval, jdf = self.res1.jtest() assert_allclose(jpval, J_p, rtol=5e-5, atol=0) if __name__ == '__main__': tt = TestGMMAddOnestep() tt.setup_class() tt.test_basic() tt.test_other() tt = TestGMMAddTwostep() tt.setup_class() tt.test_basic() tt.test_other() tt = TestGMMMultOnestep() tt.setup_class() tt.test_basic() #tt.test_other() tt = TestGMMMultTwostep() tt.setup_class() tt.test_basic() tt.test_other() tt = TestGMMMultTwostepDefault() tt.setup_class() tt.test_basic() tt.test_other() tt = TestGMMMultTwostepCenter() tt.setup_class() tt.test_basic() tt.test_other()
bsd-3-clause
0todd0000/rft1d
rft1d/examples/paper/fig12_val_set.py
1
2159
import numpy as np from scipy import stats from matplotlib import pyplot,cm import rft1d import myplot,myh5 eps = np.finfo(float).eps #smallest float ### EPS production preliminaries: fig_width_mm = 100 fig_height_mm = 80 mm2in = 1/25.4 fig_width = fig_width_mm*mm2in # width in inches fig_height = fig_height_mm*mm2in # height in inches params = { 'backend':'ps', 'axes.labelsize':14, 'font.size':12, 'text.usetex': False, 'legend.fontsize':12, 'xtick.labelsize':8, 'ytick.labelsize':8, 'font.family':'Times New Roman', #Times 'lines.linewidth':0.5, 'patch.linewidth':0.25, 'figure.figsize': [fig_width,fig_height]} pyplot.rcParams.update(params) #(0) Set parameters: np.random.seed(0) nResponses = 500 #raise to 50000 to reproduce the results from the paper nNodes = 101 FWHM = 8.5 interp = True wrap = True heights = [2.0, 2.2, 2.4] c = 2 ### generate data: y = rft1d.randn1d(nResponses, nNodes, FWHM) calc = rft1d.geom.ClusterMetricCalculator() rftcalc = rft1d.prob.RFTCalculator(STAT='Z', nodes=nNodes, FWHM=FWHM) #(1) Maximum region size: K0 = np.linspace(eps, 8, 21) K = [[calc.cluster_extents(yy, h, interp, wrap) for yy in y] for h in heights] ### compute number of upcrossings above a threshold: C = np.array([[[ sum([kkk>=k0 for kkk in kk]) for kk in k] for k in K] for k0 in K0]) P = np.mean(C>=c, axis=2).T P0 = np.array([[rftcalc.p.set(c, k0, h) for h in heights] for k0 in K0/FWHM]).T #(2) Plot results: pyplot.close('all') colors = ['b', 'g', 'r'] ax = pyplot.axes([0.17,0.14,0.80,0.84]) for color,p,p0,u in zip(colors,P,P0,heights): ax.plot(K0, p, 'o', color=color, markersize=5) ax.plot(K0, p0, '-', color=color, label='$u$ = %.1f'%u) ### legend: ax.plot([0,1],[10,10], 'k-', label='Theoretical') ax.plot([0,1],[10,10], 'ko-', label='Simulated', markersize=5) ax.legend() ### axis labels: ax.set_xlabel('$k_\mathrm{min}$', size=16) ax.set_ylabel('$P(c | k_\mathrm{min}) >= 2$', size=16) ax.set_ylim(0, 0.08) pyplot.show() # pyplot.savefig('fig_valid_gauss1d_set.pdf')
gpl-3.0
sshh12/Students-Visualization
other_visuals/show_gpa_demo_plot_stats.py
1
1818
from cyranchdb import cyranch_db from collections import defaultdict import math user_map = {} # user id -> school, grade, gender gpas_map = {} # user id -> pos, gpa for index, row in cyranch_db.tables.demo.all().iterrows(): if row["gradelevel"] > 12: continue user_map[row.user_id] = { "gender": row["gender"], "language": row["language"] } for index, row in cyranch_db.tables.rank.all().iterrows(): gpas_map[row["user_id"]] = (row["pos"], row["gpa"]) def create_plot(): """Plots with matplot lib""" import matplotlib.pyplot as plt def create_scatter_plot(plot, feature, values, color_map): feature_sets = {val: [] for val in values} for user in user_map: if user in gpas_map and user_map[user][feature] in values: feature_sets[user_map[user][feature]].append(gpas_map[user]) for val in values: x, y = [], [] for pos, gpa in feature_sets[val]: x.append(int(pos)) y.append(float(gpa)) plot.scatter(x, y, c=color_map[val], marker='.') plot.legend(values) plot.set_ylabel("GPA") plot.set_xlabel("Rank") f, ((ax1, ax2)) = plt.subplots(2, 1, sharey=True) plt.style.use('ggplot') create_scatter_plot(ax1, "gender", ["male", "female"], {"male": "b", "female": "r"}) create_scatter_plot(ax2, "language", ["english", "spanish", "vietnamese", "arabic", "cantonese"], {"english": "r", "spanish": "g", "vietnamese": "b", "arabic": "y", "cantonese": "c"}) f.suptitle('GPA Gender/Language') plt.show() if __name__ == "__main__": create_plot()
mit
chrisb13/mkmov
commands/_twodbm.py
2
3231
## Author: Christopher Bull. ## Affiliation: Climate Change Research Centre and ARC Centre of Excellence for Climate System Science. ## Level 4, Mathews Building ## University of New South Wales ## Sydney, NSW, Australia, 2052 ## Contact: [email protected] ## www: christopherbull.com.au ## Date created: Thu Jun 5 10:11:55 EST 2014 ## Machine created on: squall.ccrc.unsw.edu.au ## ## The virtualenv packages available on creation date (includes systemwide): ## Cartopy==0.11.x ## Cython==0.19.1 ## Fiona==1.1.2 ## GDAL==1.10.1 ## Jinja==1.2 ## Jinja2==2.7.2 ## MDP==3.3 ## MarkupSafe==0.18 ## PyNGL==1.4.0 ## Pygments==1.6 ## ScientificPython==2.8 ## Shapely==1.3.0 ## Sphinx==1.2.1 ## backports.ssl-match-hostname==3.4.0.2 ## basemap==1.0.7 ## brewer2mpl==1.4 ## descartes==1.0.1 ## distribute==0.7.3 ## docutils==0.11 ## geopandas==0.1.0.dev-1edddad ## h5py==2.2.0 ## ipython==1.2.0 ## joblib==0.7.1 ## matplotlib==1.3.1 ## netCDF4==1.0.4 ## nose==1.3.3 ## numexpr==2.2.2 ## numpy==1.8.1 ## pandas==0.13.1 ## patsy==0.2.1 ## pexpect==2.4 ## prettyplotlib==0.1.7 ## progressbar==2.3 ## py==1.4.20 ## pycairo==1.8.6 ## pygrib==1.9.7 ## pyhdf==0.8.3 ## pyparsing==2.0.2 ## pyproj==1.9.3 ## pyshp==1.2.1 ## pytest==2.5.2 ## python-dateutil==2.2 ## pytz==2014.1 ## pyzmq==14.0.1 ## scikit-learn==0.13.1 ## scipy==0.12.0 ## seaborn==0.3.1 ## six==1.6.1 ## statsmodels==0.5.0 ## tables==3.0.0 ## tornado==3.2.1 ## virtualenv==1.10.1 ## wsgiref==0.1.2 ## xmltodict==0.8.6 ## ## The modules availabe on creation date: ## # Currently Loaded Modulefiles: # 1) hdf5/1.8.11-intel 5) matlab/2011b 9) perl/5.18.2 # 2) ncview/2.1.2 6) python/2.7.5 10) gdal/1.10.1 # 3) netcdf/3.6.3-intel 7) proj/4.8.0 # 4) intel/13.1.3.192 8) geos/3.3.3 ## # Currently Loaded Modulefiles: # 1) hdf5/1.8.11-intel 5) matlab/2011b 9) perl/5.18.2 # 2) ncview/2.1.2 6) python/2.7.5 10) gdal/1.10.1 # 3) netcdf/3.6.3-intel 7) proj/4.8.0 # 4) intel/13.1.3.192 8) geos/3.3.3 # #python logging import logging as _logging from functools import wraps as _wraps class _LogStart(object): "class that sets up a logger" def setup(self,fname=''): if fname=='': # _logging.basicConfig(format='%(name)s - %(levelname)s - %(message)s', # level=_logging.DEBUG,disable_existing_loggers=True) _logging.basicConfig(format='%(name)s - %(levelname)s - %(message)s', level=_logging.DEBUG) else: _logging.basicConfig(filename=fname,filemode='w',format='%(name)s - %(levelname)s - %(message)s', level=lg.DEBUG,disable_existing_loggers=False) #where filemode clobbers file lg = _logging.getLogger(__name__) return lg if __name__ == "__main__": #are we being run directly? lg=_LogStart().setup() #lg=meh.go() # print __name__ #LogStart(args.inputdir+'asciplot_lc_katana'+args.fno + '.log',fout=True) lg.info('moo') #PUT wothwhile code here!
gpl-3.0
ethz-nus/lis-2015
project3/train.py
1
2053
import h5py from methods import * import numpy as np import cudamat from scipy.stats.mstats import mode from sklearn.covariance import EllipticEnvelope doTest = True def pred_score(truth, pred): score = np.sum(map(lambda x: x[1] != pred[x[0]], enumerate(truth))) return 1.0/len(truth) * score def run_prediction(tfile, yclassifier): testX = np.array(tfile['data']) yRes = yclassifier.predict(testX) #yProbs = yclassifier.predict_proba(testX) #print yProbs return yRes def save_prediction(outname, pred, score): # out = h5py.File(outname + '-%f.h5' % score , 'w') shape = pred.shape pred = pred.reshape((shape[1], shape[0])) # out.flush() np.savetxt(outname + '-%f.txt' % score, pred, fmt="%d", delimiter=',') def run_and_save_prediction(tfile, outname, yclassifier, combinedScore): yRes = run_prediction(tfile, yclassifier) save_prediction(outname, yRes, combinedScore) def save_mode_predictions(yResults, score, filename): yCombined = mode(np.array(yResults))[0] save_prediction(filename, yCombined, combinedScore) train = h5py.File("project_data/train.h5", "r") validate = h5py.File("project_data/validate.h5", "r") test = h5py.File("project_data/test.h5", "r") X = np.array(train['data']) Y = np.array(train['label']) runs = 20 scores = [] yResults = [] incScores = 0 yTestResults = [] for i in range(runs): ytrainer = deep_belief_network print 'running ' + ytrainer.__name__ print 'training' Y = np.ravel(Y) yclassifier, ypred, ytruth = ytrainer(X, Y) score = pred_score(ytruth, ypred) scores.append(score) print score threshold = 0.28 if score < threshold: print 'predicting' yRes = run_prediction(validate, yclassifier) yResults.append(yRes) incScores += score if doTest: yTestRes = run_prediction(test, yclassifier) yTestResults.append(yTestRes) if yResults: combinedScore = incScores / len(yResults) save_mode_predictions(yResults, combinedScore, "validate") if doTest: save_mode_predictions(yTestResults, combinedScore, "test") print np.mean(scores) print np.std(scores)
mit
rajat1994/scikit-learn
sklearn/utils/graph.py
289
6239
""" Graph utilities and algorithms Graphs are represented with their adjacency matrices, preferably using sparse matrices. """ # Authors: Aric Hagberg <[email protected]> # Gael Varoquaux <[email protected]> # Jake Vanderplas <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from .validation import check_array from .graph_shortest_path import graph_shortest_path ############################################################################### # Path and connected component analysis. # Code adapted from networkx def single_source_shortest_path_length(graph, source, cutoff=None): """Return the shortest path length from source to all reachable nodes. Returns a dictionary of shortest path lengths keyed by target. Parameters ---------- graph: sparse matrix or 2D array (preferably LIL matrix) Adjacency matrix of the graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search - only paths of length <= cutoff are returned. Examples -------- >>> from sklearn.utils.graph import single_source_shortest_path_length >>> import numpy as np >>> graph = np.array([[ 0, 1, 0, 0], ... [ 1, 0, 1, 0], ... [ 0, 1, 0, 1], ... [ 0, 0, 1, 0]]) >>> single_source_shortest_path_length(graph, 0) {0: 0, 1: 1, 2: 2, 3: 3} >>> single_source_shortest_path_length(np.ones((6, 6)), 2) {0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1} """ if sparse.isspmatrix(graph): graph = graph.tolil() else: graph = sparse.lil_matrix(graph) seen = {} # level (number of hops) when seen in BFS level = 0 # the current level next_level = [source] # dict of nodes to check at next level while next_level: this_level = next_level # advance to next level next_level = set() # and start a new list (fringe) for v in this_level: if v not in seen: seen[v] = level # set the level of vertex v next_level.update(graph.rows[v]) if cutoff is not None and cutoff <= level: break level += 1 return seen # return all path lengths as dictionary if hasattr(sparse, 'connected_components'): connected_components = sparse.connected_components else: from .sparsetools import connected_components ############################################################################### # Graph laplacian def graph_laplacian(csgraph, normed=False, return_diag=False): """ Return the Laplacian matrix of a directed graph. For non-symmetric graphs the out-degree is used in the computation. Parameters ---------- csgraph : array_like or sparse matrix, 2 dimensions compressed-sparse graph, with shape (N, N). normed : bool, optional If True, then compute normalized Laplacian. return_diag : bool, optional If True, then return diagonal as well as laplacian. Returns ------- lap : ndarray The N x N laplacian matrix of graph. diag : ndarray The length-N diagonal of the laplacian matrix. diag is returned only if return_diag is True. Notes ----- The Laplacian matrix of a graph is sometimes referred to as the "Kirchoff matrix" or the "admittance matrix", and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph. For non-symmetric directed graphs, the laplacian is computed using the out-degree of each node. """ if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: raise ValueError('csgraph must be a square matrix or array') if normed and (np.issubdtype(csgraph.dtype, np.int) or np.issubdtype(csgraph.dtype, np.uint)): csgraph = check_array(csgraph, dtype=np.float64, accept_sparse=True) if sparse.isspmatrix(csgraph): return _laplacian_sparse(csgraph, normed=normed, return_diag=return_diag) else: return _laplacian_dense(csgraph, normed=normed, return_diag=return_diag) def _laplacian_sparse(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] if not graph.format == 'coo': lap = (-graph).tocoo() else: lap = -graph.copy() diag_mask = (lap.row == lap.col) if not diag_mask.sum() == n_nodes: # The sparsity pattern of the matrix has holes on the diagonal, # we need to fix that diag_idx = lap.row[diag_mask] diagonal_holes = list(set(range(n_nodes)).difference(diag_idx)) new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))]) new_row = np.concatenate([lap.row, diagonal_holes]) new_col = np.concatenate([lap.col, diagonal_holes]) lap = sparse.coo_matrix((new_data, (new_row, new_col)), shape=lap.shape) diag_mask = (lap.row == lap.col) lap.data[diag_mask] = 0 w = -np.asarray(lap.sum(axis=1)).squeeze() if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap.data /= w[lap.row] lap.data /= w[lap.col] lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype( lap.data.dtype) else: lap.data[diag_mask] = w[lap.row[diag_mask]] if return_diag: return lap, w return lap def _laplacian_dense(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] lap = -np.asarray(graph) # minus sign leads to a copy # set diagonal to zero lap.flat[::n_nodes + 1] = 0 w = -lap.sum(axis=0) if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap /= w lap /= w[:, np.newaxis] lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype) else: lap.flat[::n_nodes + 1] = w.astype(lap.dtype) if return_diag: return lap, w return lap
bsd-3-clause
sinhrks/scikit-learn
examples/manifold/plot_swissroll.py
330
1446
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 print(__doc__) import matplotlib.pyplot as plt # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D #---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) #---------------------------------------------------------------------- # Plot result fig = plt.figure() try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(211, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) except: ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral) plt.axis('tight') plt.xticks([]), plt.yticks([]) plt.title('Projected data') plt.show()
bsd-3-clause
appapantula/scikit-learn
sklearn/linear_model/tests/test_perceptron.py
378
1815
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) X_csr.sort_indices() class MyPerceptron(object): def __init__(self, n_iter=1): self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): if self.predict(X[i])[0] != y[i]: self.w += y[i] * X[i] self.b += y[i] def project(self, X): return np.dot(X, self.w) + self.b def predict(self, X): X = np.atleast_2d(X) return np.sign(self.project(X)) def test_perceptron_accuracy(): for data in (X, X_csr): clf = Perceptron(n_iter=30, shuffle=False) clf.fit(data, y) score = clf.score(data, y) assert_true(score >= 0.7) def test_perceptron_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 clf1 = MyPerceptron(n_iter=2) clf1.fit(X, y_bin) clf2 = Perceptron(n_iter=2, shuffle=False) clf2.fit(X, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel()) def test_undefined_methods(): clf = Perceptron() for meth in ("predict_proba", "predict_log_proba"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
bsd-3-clause
wzbozon/scikit-learn
examples/ensemble/plot_gradient_boosting_quantile.py
392
2114
""" ===================================================== Prediction Intervals for Gradient Boosting Regression ===================================================== This example shows how quantile regression can be used to create prediction intervals. """ import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingRegressor np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T X = X.astype(np.float32) # Observations y = f(X).ravel() dy = 1.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise y = y.astype(np.float32) # Mesh the input space for evaluations of the real function, the prediction and # its MSE xx = np.atleast_2d(np.linspace(0, 10, 1000)).T xx = xx.astype(np.float32) alpha = 0.95 clf = GradientBoostingRegressor(loss='quantile', alpha=alpha, n_estimators=250, max_depth=3, learning_rate=.1, min_samples_leaf=9, min_samples_split=9) clf.fit(X, y) # Make the prediction on the meshed x-axis y_upper = clf.predict(xx) clf.set_params(alpha=1.0 - alpha) clf.fit(X, y) # Make the prediction on the meshed x-axis y_lower = clf.predict(xx) clf.set_params(loss='ls') clf.fit(X, y) # Make the prediction on the meshed x-axis y_pred = clf.predict(xx) # Plot the function, the prediction and the 90% confidence interval based on # the MSE fig = plt.figure() plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'b.', markersize=10, label=u'Observations') plt.plot(xx, y_pred, 'r-', label=u'Prediction') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill(np.concatenate([xx, xx[::-1]]), np.concatenate([y_upper, y_lower[::-1]]), alpha=.5, fc='b', ec='None', label='90% prediction interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
dsm054/pandas
pandas/tests/reshape/merge/test_merge.py
1
79282
# pylint: disable=E1103 import random import re from collections import OrderedDict from datetime import date, datetime import numpy as np import pytest from numpy import nan from numpy.random import randn import pandas as pd import pandas.util.testing as tm from pandas import (Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Float64Index, Index, Int64Index, MultiIndex, RangeIndex, Series, UInt64Index) from pandas.api.types import CategoricalDtype as CDT from pandas.compat import lrange, lzip from pandas.core.dtypes.common import is_categorical_dtype, is_object_dtype from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.reshape.concat import concat from pandas.core.reshape.merge import MergeError, merge from pandas.util.testing import assert_frame_equal, assert_series_equal N = 50 NGROUPS = 8 def get_test_data(ngroups=NGROUPS, n=N): unique_groups = lrange(ngroups) arr = np.asarray(np.tile(unique_groups, n // ngroups)) if len(arr) < n: arr = np.asarray(list(arr) + unique_groups[:n - len(arr)]) random.shuffle(arr) return arr class TestMerge(object): def setup_method(self, method): # aggregate multiple columns self.df = DataFrame({'key1': get_test_data(), 'key2': get_test_data(), 'data1': np.random.randn(N), 'data2': np.random.randn(N)}) # exclude a couple keys for fun self.df = self.df[self.df['key2'] > 1] self.df2 = DataFrame({'key1': get_test_data(n=N // 5), 'key2': get_test_data(ngroups=NGROUPS // 2, n=N // 5), 'value': np.random.randn(N // 5)}) self.left = DataFrame({'key': ['a', 'b', 'c', 'd', 'e', 'e', 'a'], 'v1': np.random.randn(7)}) self.right = DataFrame({'v2': np.random.randn(4)}, index=['d', 'b', 'c', 'a']) def test_merge_inner_join_empty(self): # GH 15328 df_empty = pd.DataFrame() df_a = pd.DataFrame({'a': [1, 2]}, index=[0, 1], dtype='int64') result = pd.merge(df_empty, df_a, left_index=True, right_index=True) expected = pd.DataFrame({'a': []}, index=[], dtype='int64') assert_frame_equal(result, expected) def test_merge_common(self): joined = merge(self.df, self.df2) exp = merge(self.df, self.df2, on=['key1', 'key2']) tm.assert_frame_equal(joined, exp) def test_merge_index_as_on_arg(self): # GH14355 left = self.df.set_index('key1') right = self.df2.set_index('key1') result = merge(left, right, on='key1') expected = merge(self.df, self.df2, on='key1').set_index('key1') assert_frame_equal(result, expected) def test_merge_index_singlekey_right_vs_left(self): left = DataFrame({'key': ['a', 'b', 'c', 'd', 'e', 'e', 'a'], 'v1': np.random.randn(7)}) right = DataFrame({'v2': np.random.randn(4)}, index=['d', 'b', 'c', 'a']) merged1 = merge(left, right, left_on='key', right_index=True, how='left', sort=False) merged2 = merge(right, left, right_on='key', left_index=True, how='right', sort=False) assert_frame_equal(merged1, merged2.loc[:, merged1.columns]) merged1 = merge(left, right, left_on='key', right_index=True, how='left', sort=True) merged2 = merge(right, left, right_on='key', left_index=True, how='right', sort=True) assert_frame_equal(merged1, merged2.loc[:, merged1.columns]) def test_merge_index_singlekey_inner(self): left = DataFrame({'key': ['a', 'b', 'c', 'd', 'e', 'e', 'a'], 'v1': np.random.randn(7)}) right = DataFrame({'v2': np.random.randn(4)}, index=['d', 'b', 'c', 'a']) # inner join result = merge(left, right, left_on='key', right_index=True, how='inner') expected = left.join(right, on='key').loc[result.index] assert_frame_equal(result, expected) result = merge(right, left, right_on='key', left_index=True, how='inner') expected = left.join(right, on='key').loc[result.index] assert_frame_equal(result, expected.loc[:, result.columns]) def test_merge_misspecified(self): pytest.raises(ValueError, merge, self.left, self.right, left_index=True) pytest.raises(ValueError, merge, self.left, self.right, right_index=True) pytest.raises(ValueError, merge, self.left, self.left, left_on='key', on='key') pytest.raises(ValueError, merge, self.df, self.df2, left_on=['key1'], right_on=['key1', 'key2']) def test_index_and_on_parameters_confusion(self): pytest.raises(ValueError, merge, self.df, self.df2, how='left', left_index=False, right_index=['key1', 'key2']) pytest.raises(ValueError, merge, self.df, self.df2, how='left', left_index=['key1', 'key2'], right_index=False) pytest.raises(ValueError, merge, self.df, self.df2, how='left', left_index=['key1', 'key2'], right_index=['key1', 'key2']) def test_merge_overlap(self): merged = merge(self.left, self.left, on='key') exp_len = (self.left['key'].value_counts() ** 2).sum() assert len(merged) == exp_len assert 'v1_x' in merged assert 'v1_y' in merged def test_merge_different_column_key_names(self): left = DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], 'value': [1, 2, 3, 4]}) right = DataFrame({'rkey': ['foo', 'bar', 'qux', 'foo'], 'value': [5, 6, 7, 8]}) merged = left.merge(right, left_on='lkey', right_on='rkey', how='outer', sort=True) exp = pd.Series(['bar', 'baz', 'foo', 'foo', 'foo', 'foo', np.nan], name='lkey') tm.assert_series_equal(merged['lkey'], exp) exp = pd.Series(['bar', np.nan, 'foo', 'foo', 'foo', 'foo', 'qux'], name='rkey') tm.assert_series_equal(merged['rkey'], exp) exp = pd.Series([2, 3, 1, 1, 4, 4, np.nan], name='value_x') tm.assert_series_equal(merged['value_x'], exp) exp = pd.Series([6, np.nan, 5, 8, 5, 8, 7], name='value_y') tm.assert_series_equal(merged['value_y'], exp) def test_merge_copy(self): left = DataFrame({'a': 0, 'b': 1}, index=lrange(10)) right = DataFrame({'c': 'foo', 'd': 'bar'}, index=lrange(10)) merged = merge(left, right, left_index=True, right_index=True, copy=True) merged['a'] = 6 assert (left['a'] == 0).all() merged['d'] = 'peekaboo' assert (right['d'] == 'bar').all() def test_merge_nocopy(self): left = DataFrame({'a': 0, 'b': 1}, index=lrange(10)) right = DataFrame({'c': 'foo', 'd': 'bar'}, index=lrange(10)) merged = merge(left, right, left_index=True, right_index=True, copy=False) merged['a'] = 6 assert (left['a'] == 6).all() merged['d'] = 'peekaboo' assert (right['d'] == 'peekaboo').all() def test_intelligently_handle_join_key(self): # #733, be a bit more 1337 about not returning unconsolidated DataFrame left = DataFrame({'key': [1, 1, 2, 2, 3], 'value': lrange(5)}, columns=['value', 'key']) right = DataFrame({'key': [1, 1, 2, 3, 4, 5], 'rvalue': lrange(6)}) joined = merge(left, right, on='key', how='outer') expected = DataFrame({'key': [1, 1, 1, 1, 2, 2, 3, 4, 5], 'value': np.array([0, 0, 1, 1, 2, 3, 4, np.nan, np.nan]), 'rvalue': [0, 1, 0, 1, 2, 2, 3, 4, 5]}, columns=['value', 'key', 'rvalue']) assert_frame_equal(joined, expected) def test_merge_join_key_dtype_cast(self): # #8596 df1 = DataFrame({'key': [1], 'v1': [10]}) df2 = DataFrame({'key': [2], 'v1': [20]}) df = merge(df1, df2, how='outer') assert df['key'].dtype == 'int64' df1 = DataFrame({'key': [True], 'v1': [1]}) df2 = DataFrame({'key': [False], 'v1': [0]}) df = merge(df1, df2, how='outer') # GH13169 # this really should be bool assert df['key'].dtype == 'object' df1 = DataFrame({'val': [1]}) df2 = DataFrame({'val': [2]}) lkey = np.array([1]) rkey = np.array([2]) df = merge(df1, df2, left_on=lkey, right_on=rkey, how='outer') assert df['key_0'].dtype == 'int64' def test_handle_join_key_pass_array(self): left = DataFrame({'key': [1, 1, 2, 2, 3], 'value': lrange(5)}, columns=['value', 'key']) right = DataFrame({'rvalue': lrange(6)}) key = np.array([1, 1, 2, 3, 4, 5]) merged = merge(left, right, left_on='key', right_on=key, how='outer') merged2 = merge(right, left, left_on=key, right_on='key', how='outer') assert_series_equal(merged['key'], merged2['key']) assert merged['key'].notna().all() assert merged2['key'].notna().all() left = DataFrame({'value': lrange(5)}, columns=['value']) right = DataFrame({'rvalue': lrange(6)}) lkey = np.array([1, 1, 2, 2, 3]) rkey = np.array([1, 1, 2, 3, 4, 5]) merged = merge(left, right, left_on=lkey, right_on=rkey, how='outer') tm.assert_series_equal(merged['key_0'], Series([1, 1, 1, 1, 2, 2, 3, 4, 5], name='key_0')) left = DataFrame({'value': lrange(3)}) right = DataFrame({'rvalue': lrange(6)}) key = np.array([0, 1, 1, 2, 2, 3], dtype=np.int64) merged = merge(left, right, left_index=True, right_on=key, how='outer') tm.assert_series_equal(merged['key_0'], Series(key, name='key_0')) def test_no_overlap_more_informative_error(self): dt = datetime.now() df1 = DataFrame({'x': ['a']}, index=[dt]) df2 = DataFrame({'y': ['b', 'c']}, index=[dt, dt]) pytest.raises(MergeError, merge, df1, df2) msg = ('No common columns to perform merge on. ' 'Merge options: left_on={lon}, right_on={ron}, ' 'left_index={lidx}, right_index={ridx}' .format(lon=None, ron=None, lidx=False, ridx=False)) with pytest.raises(MergeError, match=msg): merge(df1, df2) def test_merge_non_unique_indexes(self): dt = datetime(2012, 5, 1) dt2 = datetime(2012, 5, 2) dt3 = datetime(2012, 5, 3) dt4 = datetime(2012, 5, 4) df1 = DataFrame({'x': ['a']}, index=[dt]) df2 = DataFrame({'y': ['b', 'c']}, index=[dt, dt]) _check_merge(df1, df2) # Not monotonic df1 = DataFrame({'x': ['a', 'b', 'q']}, index=[dt2, dt, dt4]) df2 = DataFrame({'y': ['c', 'd', 'e', 'f', 'g', 'h']}, index=[dt3, dt3, dt2, dt2, dt, dt]) _check_merge(df1, df2) df1 = DataFrame({'x': ['a', 'b']}, index=[dt, dt]) df2 = DataFrame({'y': ['c', 'd']}, index=[dt, dt]) _check_merge(df1, df2) def test_merge_non_unique_index_many_to_many(self): dt = datetime(2012, 5, 1) dt2 = datetime(2012, 5, 2) dt3 = datetime(2012, 5, 3) df1 = DataFrame({'x': ['a', 'b', 'c', 'd']}, index=[dt2, dt2, dt, dt]) df2 = DataFrame({'y': ['e', 'f', 'g', ' h', 'i']}, index=[dt2, dt2, dt3, dt, dt]) _check_merge(df1, df2) def test_left_merge_empty_dataframe(self): left = DataFrame({'key': [1], 'value': [2]}) right = DataFrame({'key': []}) result = merge(left, right, on='key', how='left') assert_frame_equal(result, left) result = merge(right, left, on='key', how='right') assert_frame_equal(result, left) @pytest.mark.parametrize('kwarg', [dict(left_index=True, right_index=True), dict(left_index=True, right_on='x'), dict(left_on='a', right_index=True), dict(left_on='a', right_on='x')]) def test_merge_left_empty_right_empty(self, join_type, kwarg): # GH 10824 left = pd.DataFrame([], columns=['a', 'b', 'c']) right = pd.DataFrame([], columns=['x', 'y', 'z']) exp_in = pd.DataFrame([], columns=['a', 'b', 'c', 'x', 'y', 'z'], index=pd.Index([], dtype=object), dtype=object) result = pd.merge(left, right, how=join_type, **kwarg) tm.assert_frame_equal(result, exp_in) def test_merge_left_empty_right_notempty(self): # GH 10824 left = pd.DataFrame([], columns=['a', 'b', 'c']) right = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=['x', 'y', 'z']) exp_out = pd.DataFrame({'a': np.array([np.nan] * 3, dtype=object), 'b': np.array([np.nan] * 3, dtype=object), 'c': np.array([np.nan] * 3, dtype=object), 'x': [1, 4, 7], 'y': [2, 5, 8], 'z': [3, 6, 9]}, columns=['a', 'b', 'c', 'x', 'y', 'z']) exp_in = exp_out[0:0] # make empty DataFrame keeping dtype # result will have object dtype exp_in.index = exp_in.index.astype(object) def check1(exp, kwarg): result = pd.merge(left, right, how='inner', **kwarg) tm.assert_frame_equal(result, exp) result = pd.merge(left, right, how='left', **kwarg) tm.assert_frame_equal(result, exp) def check2(exp, kwarg): result = pd.merge(left, right, how='right', **kwarg) tm.assert_frame_equal(result, exp) result = pd.merge(left, right, how='outer', **kwarg) tm.assert_frame_equal(result, exp) for kwarg in [dict(left_index=True, right_index=True), dict(left_index=True, right_on='x')]: check1(exp_in, kwarg) check2(exp_out, kwarg) kwarg = dict(left_on='a', right_index=True) check1(exp_in, kwarg) exp_out['a'] = [0, 1, 2] check2(exp_out, kwarg) kwarg = dict(left_on='a', right_on='x') check1(exp_in, kwarg) exp_out['a'] = np.array([np.nan] * 3, dtype=object) check2(exp_out, kwarg) def test_merge_left_notempty_right_empty(self): # GH 10824 left = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=['a', 'b', 'c']) right = pd.DataFrame([], columns=['x', 'y', 'z']) exp_out = pd.DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9], 'x': np.array([np.nan] * 3, dtype=object), 'y': np.array([np.nan] * 3, dtype=object), 'z': np.array([np.nan] * 3, dtype=object)}, columns=['a', 'b', 'c', 'x', 'y', 'z']) exp_in = exp_out[0:0] # make empty DataFrame keeping dtype # result will have object dtype exp_in.index = exp_in.index.astype(object) def check1(exp, kwarg): result = pd.merge(left, right, how='inner', **kwarg) tm.assert_frame_equal(result, exp) result = pd.merge(left, right, how='right', **kwarg) tm.assert_frame_equal(result, exp) def check2(exp, kwarg): result = pd.merge(left, right, how='left', **kwarg) tm.assert_frame_equal(result, exp) result = pd.merge(left, right, how='outer', **kwarg) tm.assert_frame_equal(result, exp) for kwarg in [dict(left_index=True, right_index=True), dict(left_index=True, right_on='x'), dict(left_on='a', right_index=True), dict(left_on='a', right_on='x')]: check1(exp_in, kwarg) check2(exp_out, kwarg) def test_merge_nosort(self): # #2098, anything to do? from datetime import datetime d = {"var1": np.random.randint(0, 10, size=10), "var2": np.random.randint(0, 10, size=10), "var3": [datetime(2012, 1, 12), datetime(2011, 2, 4), datetime(2010, 2, 3), datetime(2012, 1, 12), datetime(2011, 2, 4), datetime(2012, 4, 3), datetime(2012, 3, 4), datetime(2008, 5, 1), datetime(2010, 2, 3), datetime(2012, 2, 3)]} df = DataFrame.from_dict(d) var3 = df.var3.unique() var3.sort() new = DataFrame.from_dict({"var3": var3, "var8": np.random.random(7)}) result = df.merge(new, on="var3", sort=False) exp = merge(df, new, on='var3', sort=False) assert_frame_equal(result, exp) assert (df.var3.unique() == result.var3.unique()).all() def test_merge_nan_right(self): df1 = DataFrame({"i1": [0, 1], "i2": [0, 1]}) df2 = DataFrame({"i1": [0], "i3": [0]}) result = df1.join(df2, on="i1", rsuffix="_") expected = (DataFrame({'i1': {0: 0.0, 1: 1}, 'i2': {0: 0, 1: 1}, 'i1_': {0: 0, 1: np.nan}, 'i3': {0: 0.0, 1: np.nan}, None: {0: 0, 1: 0}}) .set_index(None) .reset_index()[['i1', 'i2', 'i1_', 'i3']]) assert_frame_equal(result, expected, check_dtype=False) df1 = DataFrame({"i1": [0, 1], "i2": [0.5, 1.5]}) df2 = DataFrame({"i1": [0], "i3": [0.7]}) result = df1.join(df2, rsuffix="_", on='i1') expected = (DataFrame({'i1': {0: 0, 1: 1}, 'i1_': {0: 0.0, 1: nan}, 'i2': {0: 0.5, 1: 1.5}, 'i3': {0: 0.69999999999999996, 1: nan}}) [['i1', 'i2', 'i1_', 'i3']]) assert_frame_equal(result, expected) def test_merge_type(self): class NotADataFrame(DataFrame): @property def _constructor(self): return NotADataFrame nad = NotADataFrame(self.df) result = nad.merge(self.df2, on='key1') assert isinstance(result, NotADataFrame) def test_join_append_timedeltas(self): import datetime as dt from pandas import NaT # timedelta64 issues with join/merge # GH 5695 d = {'d': dt.datetime(2013, 11, 5, 5, 56), 't': dt.timedelta(0, 22500)} df = DataFrame(columns=list('dt')) df = df.append(d, ignore_index=True) result = df.append(d, ignore_index=True) expected = DataFrame({'d': [dt.datetime(2013, 11, 5, 5, 56), dt.datetime(2013, 11, 5, 5, 56)], 't': [dt.timedelta(0, 22500), dt.timedelta(0, 22500)]}) assert_frame_equal(result, expected) td = np.timedelta64(300000000) lhs = DataFrame(Series([td, td], index=["A", "B"])) rhs = DataFrame(Series([td], index=["A"])) result = lhs.join(rhs, rsuffix='r', how="left") expected = DataFrame({'0': Series([td, td], index=list('AB')), '0r': Series([td, NaT], index=list('AB'))}) assert_frame_equal(result, expected) def test_other_datetime_unit(self): # GH 13389 df1 = pd.DataFrame({'entity_id': [101, 102]}) s = pd.Series([None, None], index=[101, 102], name='days') for dtype in ['datetime64[D]', 'datetime64[h]', 'datetime64[m]', 'datetime64[s]', 'datetime64[ms]', 'datetime64[us]', 'datetime64[ns]']: df2 = s.astype(dtype).to_frame('days') # coerces to datetime64[ns], thus sholuld not be affected assert df2['days'].dtype == 'datetime64[ns]' result = df1.merge(df2, left_on='entity_id', right_index=True) exp = pd.DataFrame({'entity_id': [101, 102], 'days': np.array(['nat', 'nat'], dtype='datetime64[ns]')}, columns=['entity_id', 'days']) tm.assert_frame_equal(result, exp) @pytest.mark.parametrize("unit", ['D', 'h', 'm', 's', 'ms', 'us', 'ns']) def test_other_timedelta_unit(self, unit): # GH 13389 df1 = pd.DataFrame({'entity_id': [101, 102]}) s = pd.Series([None, None], index=[101, 102], name='days') dtype = "m8[{}]".format(unit) df2 = s.astype(dtype).to_frame('days') assert df2['days'].dtype == 'm8[ns]' result = df1.merge(df2, left_on='entity_id', right_index=True) exp = pd.DataFrame({'entity_id': [101, 102], 'days': np.array(['nat', 'nat'], dtype=dtype)}, columns=['entity_id', 'days']) tm.assert_frame_equal(result, exp) def test_overlapping_columns_error_message(self): df = DataFrame({'key': [1, 2, 3], 'v1': [4, 5, 6], 'v2': [7, 8, 9]}) df2 = DataFrame({'key': [1, 2, 3], 'v1': [4, 5, 6], 'v2': [7, 8, 9]}) df.columns = ['key', 'foo', 'foo'] df2.columns = ['key', 'bar', 'bar'] expected = DataFrame({'key': [1, 2, 3], 'v1': [4, 5, 6], 'v2': [7, 8, 9], 'v3': [4, 5, 6], 'v4': [7, 8, 9]}) expected.columns = ['key', 'foo', 'foo', 'bar', 'bar'] assert_frame_equal(merge(df, df2), expected) # #2649, #10639 df2.columns = ['key1', 'foo', 'foo'] pytest.raises(ValueError, merge, df, df2) def test_merge_on_datetime64tz(self): # GH11405 left = pd.DataFrame({'key': pd.date_range('20151010', periods=2, tz='US/Eastern'), 'value': [1, 2]}) right = pd.DataFrame({'key': pd.date_range('20151011', periods=3, tz='US/Eastern'), 'value': [1, 2, 3]}) expected = DataFrame({'key': pd.date_range('20151010', periods=4, tz='US/Eastern'), 'value_x': [1, 2, np.nan, np.nan], 'value_y': [np.nan, 1, 2, 3]}) result = pd.merge(left, right, on='key', how='outer') assert_frame_equal(result, expected) left = pd.DataFrame({'key': [1, 2], 'value': pd.date_range('20151010', periods=2, tz='US/Eastern')}) right = pd.DataFrame({'key': [2, 3], 'value': pd.date_range('20151011', periods=2, tz='US/Eastern')}) expected = DataFrame({ 'key': [1, 2, 3], 'value_x': list(pd.date_range('20151010', periods=2, tz='US/Eastern')) + [pd.NaT], 'value_y': [pd.NaT] + list(pd.date_range('20151011', periods=2, tz='US/Eastern'))}) result = pd.merge(left, right, on='key', how='outer') assert_frame_equal(result, expected) assert result['value_x'].dtype == 'datetime64[ns, US/Eastern]' assert result['value_y'].dtype == 'datetime64[ns, US/Eastern]' def test_merge_datetime64tz_with_dst_transition(self): # GH 18885 df1 = pd.DataFrame(pd.date_range( '2017-10-29 01:00', periods=4, freq='H', tz='Europe/Madrid'), columns=['date']) df1['value'] = 1 df2 = pd.DataFrame({ 'date': pd.to_datetime([ '2017-10-29 03:00:00', '2017-10-29 04:00:00', '2017-10-29 05:00:00' ]), 'value': 2 }) df2['date'] = df2['date'].dt.tz_localize('UTC').dt.tz_convert( 'Europe/Madrid') result = pd.merge(df1, df2, how='outer', on='date') expected = pd.DataFrame({ 'date': pd.date_range( '2017-10-29 01:00', periods=7, freq='H', tz='Europe/Madrid'), 'value_x': [1] * 4 + [np.nan] * 3, 'value_y': [np.nan] * 4 + [2] * 3 }) assert_frame_equal(result, expected) def test_merge_non_unique_period_index(self): # GH #16871 index = pd.period_range('2016-01-01', periods=16, freq='M') df = DataFrame([i for i in range(len(index))], index=index, columns=['pnum']) df2 = concat([df, df]) result = df.merge(df2, left_index=True, right_index=True, how='inner') expected = DataFrame( np.tile(np.arange(16, dtype=np.int64).repeat(2).reshape(-1, 1), 2), columns=['pnum_x', 'pnum_y'], index=df2.sort_index().index) tm.assert_frame_equal(result, expected) def test_merge_on_periods(self): left = pd.DataFrame({'key': pd.period_range('20151010', periods=2, freq='D'), 'value': [1, 2]}) right = pd.DataFrame({'key': pd.period_range('20151011', periods=3, freq='D'), 'value': [1, 2, 3]}) expected = DataFrame({'key': pd.period_range('20151010', periods=4, freq='D'), 'value_x': [1, 2, np.nan, np.nan], 'value_y': [np.nan, 1, 2, 3]}) result = pd.merge(left, right, on='key', how='outer') assert_frame_equal(result, expected) left = pd.DataFrame({'key': [1, 2], 'value': pd.period_range('20151010', periods=2, freq='D')}) right = pd.DataFrame({'key': [2, 3], 'value': pd.period_range('20151011', periods=2, freq='D')}) exp_x = pd.period_range('20151010', periods=2, freq='D') exp_y = pd.period_range('20151011', periods=2, freq='D') expected = DataFrame({'key': [1, 2, 3], 'value_x': list(exp_x) + [pd.NaT], 'value_y': [pd.NaT] + list(exp_y)}) result = pd.merge(left, right, on='key', how='outer') assert_frame_equal(result, expected) assert result['value_x'].dtype == 'Period[D]' assert result['value_y'].dtype == 'Period[D]' def test_indicator(self): # PR #10054. xref #7412 and closes #8790. df1 = DataFrame({'col1': [0, 1], 'col_conflict': [1, 2], 'col_left': ['a', 'b']}) df1_copy = df1.copy() df2 = DataFrame({'col1': [1, 2, 3, 4, 5], 'col_conflict': [1, 2, 3, 4, 5], 'col_right': [2, 2, 2, 2, 2]}) df2_copy = df2.copy() df_result = DataFrame({ 'col1': [0, 1, 2, 3, 4, 5], 'col_conflict_x': [1, 2, np.nan, np.nan, np.nan, np.nan], 'col_left': ['a', 'b', np.nan, np.nan, np.nan, np.nan], 'col_conflict_y': [np.nan, 1, 2, 3, 4, 5], 'col_right': [np.nan, 2, 2, 2, 2, 2]}) df_result['_merge'] = Categorical( ['left_only', 'both', 'right_only', 'right_only', 'right_only', 'right_only'], categories=['left_only', 'right_only', 'both']) df_result = df_result[['col1', 'col_conflict_x', 'col_left', 'col_conflict_y', 'col_right', '_merge']] test = merge(df1, df2, on='col1', how='outer', indicator=True) assert_frame_equal(test, df_result) test = df1.merge(df2, on='col1', how='outer', indicator=True) assert_frame_equal(test, df_result) # No side effects assert_frame_equal(df1, df1_copy) assert_frame_equal(df2, df2_copy) # Check with custom name df_result_custom_name = df_result df_result_custom_name = df_result_custom_name.rename( columns={'_merge': 'custom_name'}) test_custom_name = merge( df1, df2, on='col1', how='outer', indicator='custom_name') assert_frame_equal(test_custom_name, df_result_custom_name) test_custom_name = df1.merge( df2, on='col1', how='outer', indicator='custom_name') assert_frame_equal(test_custom_name, df_result_custom_name) # Check only accepts strings and booleans with pytest.raises(ValueError): merge(df1, df2, on='col1', how='outer', indicator=5) with pytest.raises(ValueError): df1.merge(df2, on='col1', how='outer', indicator=5) # Check result integrity test2 = merge(df1, df2, on='col1', how='left', indicator=True) assert (test2._merge != 'right_only').all() test2 = df1.merge(df2, on='col1', how='left', indicator=True) assert (test2._merge != 'right_only').all() test3 = merge(df1, df2, on='col1', how='right', indicator=True) assert (test3._merge != 'left_only').all() test3 = df1.merge(df2, on='col1', how='right', indicator=True) assert (test3._merge != 'left_only').all() test4 = merge(df1, df2, on='col1', how='inner', indicator=True) assert (test4._merge == 'both').all() test4 = df1.merge(df2, on='col1', how='inner', indicator=True) assert (test4._merge == 'both').all() # Check if working name in df for i in ['_right_indicator', '_left_indicator', '_merge']: df_badcolumn = DataFrame({'col1': [1, 2], i: [2, 2]}) with pytest.raises(ValueError): merge(df1, df_badcolumn, on='col1', how='outer', indicator=True) with pytest.raises(ValueError): df1.merge(df_badcolumn, on='col1', how='outer', indicator=True) # Check for name conflict with custom name df_badcolumn = DataFrame( {'col1': [1, 2], 'custom_column_name': [2, 2]}) with pytest.raises(ValueError): merge(df1, df_badcolumn, on='col1', how='outer', indicator='custom_column_name') with pytest.raises(ValueError): df1.merge(df_badcolumn, on='col1', how='outer', indicator='custom_column_name') # Merge on multiple columns df3 = DataFrame({'col1': [0, 1], 'col2': ['a', 'b']}) df4 = DataFrame({'col1': [1, 1, 3], 'col2': ['b', 'x', 'y']}) hand_coded_result = DataFrame({'col1': [0, 1, 1, 3], 'col2': ['a', 'b', 'x', 'y']}) hand_coded_result['_merge'] = Categorical( ['left_only', 'both', 'right_only', 'right_only'], categories=['left_only', 'right_only', 'both']) test5 = merge(df3, df4, on=['col1', 'col2'], how='outer', indicator=True) assert_frame_equal(test5, hand_coded_result) test5 = df3.merge(df4, on=['col1', 'col2'], how='outer', indicator=True) assert_frame_equal(test5, hand_coded_result) def test_validation(self): left = DataFrame({'a': ['a', 'b', 'c', 'd'], 'b': ['cat', 'dog', 'weasel', 'horse']}, index=range(4)) right = DataFrame({'a': ['a', 'b', 'c', 'd', 'e'], 'c': ['meow', 'bark', 'um... weasel noise?', 'nay', 'chirp']}, index=range(5)) # Make sure no side effects. left_copy = left.copy() right_copy = right.copy() result = merge(left, right, left_index=True, right_index=True, validate='1:1') assert_frame_equal(left, left_copy) assert_frame_equal(right, right_copy) # make sure merge still correct expected = DataFrame({'a_x': ['a', 'b', 'c', 'd'], 'b': ['cat', 'dog', 'weasel', 'horse'], 'a_y': ['a', 'b', 'c', 'd'], 'c': ['meow', 'bark', 'um... weasel noise?', 'nay']}, index=range(4), columns=['a_x', 'b', 'a_y', 'c']) result = merge(left, right, left_index=True, right_index=True, validate='one_to_one') assert_frame_equal(result, expected) expected_2 = DataFrame({'a': ['a', 'b', 'c', 'd'], 'b': ['cat', 'dog', 'weasel', 'horse'], 'c': ['meow', 'bark', 'um... weasel noise?', 'nay']}, index=range(4)) result = merge(left, right, on='a', validate='1:1') assert_frame_equal(left, left_copy) assert_frame_equal(right, right_copy) assert_frame_equal(result, expected_2) result = merge(left, right, on='a', validate='one_to_one') assert_frame_equal(result, expected_2) # One index, one column expected_3 = DataFrame({'b': ['cat', 'dog', 'weasel', 'horse'], 'a': ['a', 'b', 'c', 'd'], 'c': ['meow', 'bark', 'um... weasel noise?', 'nay']}, columns=['b', 'a', 'c'], index=range(4)) left_index_reset = left.set_index('a') result = merge(left_index_reset, right, left_index=True, right_on='a', validate='one_to_one') assert_frame_equal(result, expected_3) # Dups on right right_w_dups = right.append(pd.DataFrame({'a': ['e'], 'c': ['moo']}, index=[4])) merge(left, right_w_dups, left_index=True, right_index=True, validate='one_to_many') with pytest.raises(MergeError): merge(left, right_w_dups, left_index=True, right_index=True, validate='one_to_one') with pytest.raises(MergeError): merge(left, right_w_dups, on='a', validate='one_to_one') # Dups on left left_w_dups = left.append(pd.DataFrame({'a': ['a'], 'c': ['cow']}, index=[3]), sort=True) merge(left_w_dups, right, left_index=True, right_index=True, validate='many_to_one') with pytest.raises(MergeError): merge(left_w_dups, right, left_index=True, right_index=True, validate='one_to_one') with pytest.raises(MergeError): merge(left_w_dups, right, on='a', validate='one_to_one') # Dups on both merge(left_w_dups, right_w_dups, on='a', validate='many_to_many') with pytest.raises(MergeError): merge(left_w_dups, right_w_dups, left_index=True, right_index=True, validate='many_to_one') with pytest.raises(MergeError): merge(left_w_dups, right_w_dups, on='a', validate='one_to_many') # Check invalid arguments with pytest.raises(ValueError): merge(left, right, on='a', validate='jibberish') # Two column merge, dups in both, but jointly no dups. left = DataFrame({'a': ['a', 'a', 'b', 'b'], 'b': [0, 1, 0, 1], 'c': ['cat', 'dog', 'weasel', 'horse']}, index=range(4)) right = DataFrame({'a': ['a', 'a', 'b'], 'b': [0, 1, 0], 'd': ['meow', 'bark', 'um... weasel noise?']}, index=range(3)) expected_multi = DataFrame({'a': ['a', 'a', 'b'], 'b': [0, 1, 0], 'c': ['cat', 'dog', 'weasel'], 'd': ['meow', 'bark', 'um... weasel noise?']}, index=range(3)) with pytest.raises(MergeError): merge(left, right, on='a', validate='1:1') result = merge(left, right, on=['a', 'b'], validate='1:1') assert_frame_equal(result, expected_multi) def test_merge_two_empty_df_no_division_error(self): # GH17776, PR #17846 a = pd.DataFrame({'a': [], 'b': [], 'c': []}) with np.errstate(divide='raise'): merge(a, a, on=('a', 'b')) def _check_merge(x, y): for how in ['inner', 'left', 'outer']: result = x.join(y, how=how) expected = merge(x.reset_index(), y.reset_index(), how=how, sort=True) expected = expected.set_index('index') # TODO check_names on merge? assert_frame_equal(result, expected, check_names=False) class TestMergeMulti(object): def setup_method(self, method): self.index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.to_join = DataFrame(np.random.randn(10, 3), index=self.index, columns=['j_one', 'j_two', 'j_three']) # a little relevant example with NAs key1 = ['bar', 'bar', 'bar', 'foo', 'foo', 'baz', 'baz', 'qux', 'qux', 'snap'] key2 = ['two', 'one', 'three', 'one', 'two', 'one', 'two', 'two', 'three', 'one'] data = np.random.randn(len(key1)) self.data = DataFrame({'key1': key1, 'key2': key2, 'data': data}) def test_merge_on_multikey(self): joined = self.data.join(self.to_join, on=['key1', 'key2']) join_key = Index(lzip(self.data['key1'], self.data['key2'])) indexer = self.to_join.index.get_indexer(join_key) ex_values = self.to_join.values.take(indexer, axis=0) ex_values[indexer == -1] = np.nan expected = self.data.join(DataFrame(ex_values, columns=self.to_join.columns)) # TODO: columns aren't in the same order yet assert_frame_equal(joined, expected.loc[:, joined.columns]) left = self.data.join(self.to_join, on=['key1', 'key2'], sort=True) right = expected.loc[:, joined.columns].sort_values(['key1', 'key2'], kind='mergesort') assert_frame_equal(left, right) def test_left_join_multi_index(self): icols = ['1st', '2nd', '3rd'] def bind_cols(df): iord = lambda a: 0 if a != a else ord(a) f = lambda ts: ts.map(iord) - ord('a') return (f(df['1st']) + f(df['3rd']) * 1e2 + df['2nd'].fillna(0) * 1e4) def run_asserts(left, right): for sort in [False, True]: res = left.join(right, on=icols, how='left', sort=sort) assert len(left) < len(res) + 1 assert not res['4th'].isna().any() assert not res['5th'].isna().any() tm.assert_series_equal( res['4th'], - res['5th'], check_names=False) result = bind_cols(res.iloc[:, :-2]) tm.assert_series_equal(res['4th'], result, check_names=False) assert result.name is None if sort: tm.assert_frame_equal( res, res.sort_values(icols, kind='mergesort')) out = merge(left, right.reset_index(), on=icols, sort=sort, how='left') res.index = np.arange(len(res)) tm.assert_frame_equal(out, res) lc = list(map(chr, np.arange(ord('a'), ord('z') + 1))) left = DataFrame(np.random.choice(lc, (5000, 2)), columns=['1st', '3rd']) left.insert(1, '2nd', np.random.randint(0, 1000, len(left))) i = np.random.permutation(len(left)) right = left.iloc[i].copy() left['4th'] = bind_cols(left) right['5th'] = - bind_cols(right) right.set_index(icols, inplace=True) run_asserts(left, right) # inject some nulls left.loc[1::23, '1st'] = np.nan left.loc[2::37, '2nd'] = np.nan left.loc[3::43, '3rd'] = np.nan left['4th'] = bind_cols(left) i = np.random.permutation(len(left)) right = left.iloc[i, :-1] right['5th'] = - bind_cols(right) right.set_index(icols, inplace=True) run_asserts(left, right) def test_merge_right_vs_left(self): # compare left vs right merge with multikey for sort in [False, True]: merged1 = self.data.merge(self.to_join, left_on=['key1', 'key2'], right_index=True, how='left', sort=sort) merged2 = self.to_join.merge(self.data, right_on=['key1', 'key2'], left_index=True, how='right', sort=sort) merged2 = merged2.loc[:, merged1.columns] assert_frame_equal(merged1, merged2) def test_compress_group_combinations(self): # ~ 40000000 possible unique groups key1 = tm.rands_array(10, 10000) key1 = np.tile(key1, 2) key2 = key1[::-1] df = DataFrame({'key1': key1, 'key2': key2, 'value1': np.random.randn(20000)}) df2 = DataFrame({'key1': key1[::2], 'key2': key2[::2], 'value2': np.random.randn(10000)}) # just to hit the label compression code path merge(df, df2, how='outer') def test_left_join_index_preserve_order(self): left = DataFrame({'k1': [0, 1, 2] * 8, 'k2': ['foo', 'bar'] * 12, 'v': np.array(np.arange(24), dtype=np.int64)}) index = MultiIndex.from_tuples([(2, 'bar'), (1, 'foo')]) right = DataFrame({'v2': [5, 7]}, index=index) result = left.join(right, on=['k1', 'k2']) expected = left.copy() expected['v2'] = np.nan expected.loc[(expected.k1 == 2) & (expected.k2 == 'bar'), 'v2'] = 5 expected.loc[(expected.k1 == 1) & (expected.k2 == 'foo'), 'v2'] = 7 tm.assert_frame_equal(result, expected) tm.assert_frame_equal( result.sort_values(['k1', 'k2'], kind='mergesort'), left.join(right, on=['k1', 'k2'], sort=True)) # test join with multi dtypes blocks left = DataFrame({'k1': [0, 1, 2] * 8, 'k2': ['foo', 'bar'] * 12, 'k3': np.array([0, 1, 2] * 8, dtype=np.float32), 'v': np.array(np.arange(24), dtype=np.int32)}) index = MultiIndex.from_tuples([(2, 'bar'), (1, 'foo')]) right = DataFrame({'v2': [5, 7]}, index=index) result = left.join(right, on=['k1', 'k2']) expected = left.copy() expected['v2'] = np.nan expected.loc[(expected.k1 == 2) & (expected.k2 == 'bar'), 'v2'] = 5 expected.loc[(expected.k1 == 1) & (expected.k2 == 'foo'), 'v2'] = 7 tm.assert_frame_equal(result, expected) tm.assert_frame_equal( result.sort_values(['k1', 'k2'], kind='mergesort'), left.join(right, on=['k1', 'k2'], sort=True)) # do a right join for an extra test joined = merge(right, left, left_index=True, right_on=['k1', 'k2'], how='right') tm.assert_frame_equal(joined.loc[:, expected.columns], expected) def test_left_join_index_multi_match_multiindex(self): left = DataFrame([ ['X', 'Y', 'C', 'a'], ['W', 'Y', 'C', 'e'], ['V', 'Q', 'A', 'h'], ['V', 'R', 'D', 'i'], ['X', 'Y', 'D', 'b'], ['X', 'Y', 'A', 'c'], ['W', 'Q', 'B', 'f'], ['W', 'R', 'C', 'g'], ['V', 'Y', 'C', 'j'], ['X', 'Y', 'B', 'd']], columns=['cola', 'colb', 'colc', 'tag'], index=[3, 2, 0, 1, 7, 6, 4, 5, 9, 8]) right = DataFrame([ ['W', 'R', 'C', 0], ['W', 'Q', 'B', 3], ['W', 'Q', 'B', 8], ['X', 'Y', 'A', 1], ['X', 'Y', 'A', 4], ['X', 'Y', 'B', 5], ['X', 'Y', 'C', 6], ['X', 'Y', 'C', 9], ['X', 'Q', 'C', -6], ['X', 'R', 'C', -9], ['V', 'Y', 'C', 7], ['V', 'R', 'D', 2], ['V', 'R', 'D', -1], ['V', 'Q', 'A', -3]], columns=['col1', 'col2', 'col3', 'val']) right.set_index(['col1', 'col2', 'col3'], inplace=True) result = left.join(right, on=['cola', 'colb', 'colc'], how='left') expected = DataFrame([ ['X', 'Y', 'C', 'a', 6], ['X', 'Y', 'C', 'a', 9], ['W', 'Y', 'C', 'e', nan], ['V', 'Q', 'A', 'h', -3], ['V', 'R', 'D', 'i', 2], ['V', 'R', 'D', 'i', -1], ['X', 'Y', 'D', 'b', nan], ['X', 'Y', 'A', 'c', 1], ['X', 'Y', 'A', 'c', 4], ['W', 'Q', 'B', 'f', 3], ['W', 'Q', 'B', 'f', 8], ['W', 'R', 'C', 'g', 0], ['V', 'Y', 'C', 'j', 7], ['X', 'Y', 'B', 'd', 5]], columns=['cola', 'colb', 'colc', 'tag', 'val'], index=[3, 3, 2, 0, 1, 1, 7, 6, 6, 4, 4, 5, 9, 8]) tm.assert_frame_equal(result, expected) result = left.join(right, on=['cola', 'colb', 'colc'], how='left', sort=True) tm.assert_frame_equal( result, expected.sort_values(['cola', 'colb', 'colc'], kind='mergesort')) # GH7331 - maintain left frame order in left merge right.reset_index(inplace=True) right.columns = left.columns[:3].tolist() + right.columns[-1:].tolist() result = merge(left, right, how='left', on=left.columns[:-1].tolist()) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) def test_left_join_index_multi_match(self): left = DataFrame([ ['c', 0], ['b', 1], ['a', 2], ['b', 3]], columns=['tag', 'val'], index=[2, 0, 1, 3]) right = DataFrame([ ['a', 'v'], ['c', 'w'], ['c', 'x'], ['d', 'y'], ['a', 'z'], ['c', 'r'], ['e', 'q'], ['c', 's']], columns=['tag', 'char']) right.set_index('tag', inplace=True) result = left.join(right, on='tag', how='left') expected = DataFrame([ ['c', 0, 'w'], ['c', 0, 'x'], ['c', 0, 'r'], ['c', 0, 's'], ['b', 1, nan], ['a', 2, 'v'], ['a', 2, 'z'], ['b', 3, nan]], columns=['tag', 'val', 'char'], index=[2, 2, 2, 2, 0, 1, 1, 3]) tm.assert_frame_equal(result, expected) result = left.join(right, on='tag', how='left', sort=True) tm.assert_frame_equal( result, expected.sort_values('tag', kind='mergesort')) # GH7331 - maintain left frame order in left merge result = merge(left, right.reset_index(), how='left', on='tag') expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) def test_left_merge_na_buglet(self): left = DataFrame({'id': list('abcde'), 'v1': randn(5), 'v2': randn(5), 'dummy': list('abcde'), 'v3': randn(5)}, columns=['id', 'v1', 'v2', 'dummy', 'v3']) right = DataFrame({'id': ['a', 'b', np.nan, np.nan, np.nan], 'sv3': [1.234, 5.678, np.nan, np.nan, np.nan]}) merged = merge(left, right, on='id', how='left') rdf = right.drop(['id'], axis=1) expected = left.join(rdf) tm.assert_frame_equal(merged, expected) def test_merge_na_keys(self): data = [[1950, "A", 1.5], [1950, "B", 1.5], [1955, "B", 1.5], [1960, "B", np.nan], [1970, "B", 4.], [1950, "C", 4.], [1960, "C", np.nan], [1965, "C", 3.], [1970, "C", 4.]] frame = DataFrame(data, columns=["year", "panel", "data"]) other_data = [[1960, 'A', np.nan], [1970, 'A', np.nan], [1955, 'A', np.nan], [1965, 'A', np.nan], [1965, 'B', np.nan], [1955, 'C', np.nan]] other = DataFrame(other_data, columns=['year', 'panel', 'data']) result = frame.merge(other, how='outer') expected = frame.fillna(-999).merge(other.fillna(-999), how='outer') expected = expected.replace(-999, np.nan) tm.assert_frame_equal(result, expected) def test_join_multi_levels(self): # GH 3662 # merge multi-levels household = ( DataFrame( dict(household_id=[1, 2, 3], male=[0, 1, 0], wealth=[196087.3, 316478.7, 294750]), columns=['household_id', 'male', 'wealth']) .set_index('household_id')) portfolio = ( DataFrame( dict(household_id=[1, 2, 2, 3, 3, 3, 4], asset_id=["nl0000301109", "nl0000289783", "gb00b03mlx29", "gb00b03mlx29", "lu0197800237", "nl0000289965", np.nan], name=["ABN Amro", "Robeco", "Royal Dutch Shell", "Royal Dutch Shell", "AAB Eastern Europe Equity Fund", "Postbank BioTech Fonds", np.nan], share=[1.0, 0.4, 0.6, 0.15, 0.6, 0.25, 1.0]), columns=['household_id', 'asset_id', 'name', 'share']) .set_index(['household_id', 'asset_id'])) result = household.join(portfolio, how='inner') expected = ( DataFrame( dict(male=[0, 1, 1, 0, 0, 0], wealth=[196087.3, 316478.7, 316478.7, 294750.0, 294750.0, 294750.0], name=['ABN Amro', 'Robeco', 'Royal Dutch Shell', 'Royal Dutch Shell', 'AAB Eastern Europe Equity Fund', 'Postbank BioTech Fonds'], share=[1.00, 0.40, 0.60, 0.15, 0.60, 0.25], household_id=[1, 2, 2, 3, 3, 3], asset_id=['nl0000301109', 'nl0000289783', 'gb00b03mlx29', 'gb00b03mlx29', 'lu0197800237', 'nl0000289965'])) .set_index(['household_id', 'asset_id']) .reindex(columns=['male', 'wealth', 'name', 'share'])) assert_frame_equal(result, expected) assert_frame_equal(result, expected) # equivalency result2 = (merge(household.reset_index(), portfolio.reset_index(), on=['household_id'], how='inner') .set_index(['household_id', 'asset_id'])) assert_frame_equal(result2, expected) result = household.join(portfolio, how='outer') expected = (concat([ expected, (DataFrame( dict(share=[1.00]), index=MultiIndex.from_tuples( [(4, np.nan)], names=['household_id', 'asset_id']))) ], axis=0, sort=True).reindex(columns=expected.columns)) assert_frame_equal(result, expected) # invalid cases household.index.name = 'foo' def f(): household.join(portfolio, how='inner') pytest.raises(ValueError, f) portfolio2 = portfolio.copy() portfolio2.index.set_names(['household_id', 'foo']) def f(): portfolio2.join(portfolio, how='inner') pytest.raises(ValueError, f) def test_join_multi_levels2(self): # some more advanced merges # GH6360 household = ( DataFrame( dict(household_id=[1, 2, 2, 3, 3, 3, 4], asset_id=["nl0000301109", "nl0000301109", "gb00b03mlx29", "gb00b03mlx29", "lu0197800237", "nl0000289965", np.nan], share=[1.0, 0.4, 0.6, 0.15, 0.6, 0.25, 1.0]), columns=['household_id', 'asset_id', 'share']) .set_index(['household_id', 'asset_id'])) log_return = DataFrame(dict( asset_id=["gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29", "lu0197800237", "lu0197800237"], t=[233, 234, 235, 180, 181], log_return=[.09604978, -.06524096, .03532373, .03025441, .036997] )).set_index(["asset_id", "t"]) expected = ( DataFrame(dict( household_id=[2, 2, 2, 3, 3, 3, 3, 3], asset_id=["gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29", "lu0197800237", "lu0197800237"], t=[233, 234, 235, 233, 234, 235, 180, 181], share=[0.6, 0.6, 0.6, 0.15, 0.15, 0.15, 0.6, 0.6], log_return=[.09604978, -.06524096, .03532373, .09604978, -.06524096, .03532373, .03025441, .036997] )) .set_index(["household_id", "asset_id", "t"]) .reindex(columns=['share', 'log_return'])) def f(): household.join(log_return, how='inner') pytest.raises(NotImplementedError, f) # this is the equivalency result = (merge(household.reset_index(), log_return.reset_index(), on=['asset_id'], how='inner') .set_index(['household_id', 'asset_id', 't'])) assert_frame_equal(result, expected) expected = ( DataFrame(dict( household_id=[1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4], asset_id=["nl0000301109", "nl0000289783", "gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29", "lu0197800237", "lu0197800237", "nl0000289965", None], t=[None, None, 233, 234, 235, 233, 234, 235, 180, 181, None, None], share=[1.0, 0.4, 0.6, 0.6, 0.6, 0.15, 0.15, 0.15, 0.6, 0.6, 0.25, 1.0], log_return=[None, None, .09604978, -.06524096, .03532373, .09604978, -.06524096, .03532373, .03025441, .036997, None, None] )) .set_index(["household_id", "asset_id", "t"])) def f(): household.join(log_return, how='outer') pytest.raises(NotImplementedError, f) @pytest.mark.parametrize("klass", [None, np.asarray, Series, Index]) def test_merge_datetime_index(self, klass): # see gh-19038 df = DataFrame([1, 2, 3], ["2016-01-01", "2017-01-01", "2018-01-01"], columns=["a"]) df.index = pd.to_datetime(df.index) on_vector = df.index.year if klass is not None: on_vector = klass(on_vector) expected = DataFrame( OrderedDict([ ("a", [1, 2, 3]), ("key_1", [2016, 2017, 2018]), ]) ) result = df.merge(df, on=["a", on_vector], how="inner") tm.assert_frame_equal(result, expected) expected = DataFrame( OrderedDict([ ("key_0", [2016, 2017, 2018]), ("a_x", [1, 2, 3]), ("a_y", [1, 2, 3]), ]) ) result = df.merge(df, on=[df.index.year], how="inner") tm.assert_frame_equal(result, expected) class TestMergeDtypes(object): @pytest.mark.parametrize('right_vals', [ ['foo', 'bar'], Series(['foo', 'bar']).astype('category'), [1, 2], [1.0, 2.0], Series([1, 2], dtype='uint64'), Series([1, 2], dtype='int32') ]) def test_different(self, right_vals): left = DataFrame({'A': ['foo', 'bar'], 'B': Series(['foo', 'bar']).astype('category'), 'C': [1, 2], 'D': [1.0, 2.0], 'E': Series([1, 2], dtype='uint64'), 'F': Series([1, 2], dtype='int32')}) right = DataFrame({'A': right_vals}) # GH 9780 # We allow merging on object and categorical cols and cast # categorical cols to object if (is_categorical_dtype(right['A'].dtype) or is_object_dtype(right['A'].dtype)): result = pd.merge(left, right, on='A') assert is_object_dtype(result.A.dtype) # GH 9780 # We raise for merging on object col and int/float col and # merging on categorical col and int/float col else: msg = ("You are trying to merge on " "{lk_dtype} and {rk_dtype} columns. " "If you wish to proceed you should use " "pd.concat".format(lk_dtype=left['A'].dtype, rk_dtype=right['A'].dtype)) with pytest.raises(ValueError, match=msg): pd.merge(left, right, on='A') @pytest.mark.parametrize('d1', [np.int64, np.int32, np.int16, np.int8, np.uint8]) @pytest.mark.parametrize('d2', [np.int64, np.float64, np.float32, np.float16]) def test_join_multi_dtypes(self, d1, d2): dtype1 = np.dtype(d1) dtype2 = np.dtype(d2) left = DataFrame({'k1': np.array([0, 1, 2] * 8, dtype=dtype1), 'k2': ['foo', 'bar'] * 12, 'v': np.array(np.arange(24), dtype=np.int64)}) index = MultiIndex.from_tuples([(2, 'bar'), (1, 'foo')]) right = DataFrame({'v2': np.array([5, 7], dtype=dtype2)}, index=index) result = left.join(right, on=['k1', 'k2']) expected = left.copy() if dtype2.kind == 'i': dtype2 = np.dtype('float64') expected['v2'] = np.array(np.nan, dtype=dtype2) expected.loc[(expected.k1 == 2) & (expected.k2 == 'bar'), 'v2'] = 5 expected.loc[(expected.k1 == 1) & (expected.k2 == 'foo'), 'v2'] = 7 tm.assert_frame_equal(result, expected) result = left.join(right, on=['k1', 'k2'], sort=True) expected.sort_values(['k1', 'k2'], kind='mergesort', inplace=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('int_vals, float_vals, exp_vals', [ ([1, 2, 3], [1.0, 2.0, 3.0], {'X': [1, 2, 3], 'Y': [1.0, 2.0, 3.0]}), ([1, 2, 3], [1.0, 3.0], {'X': [1, 3], 'Y': [1.0, 3.0]}), ([1, 2], [1.0, 2.0, 3.0], {'X': [1, 2], 'Y': [1.0, 2.0]}), ]) def test_merge_on_ints_floats(self, int_vals, float_vals, exp_vals): # GH 16572 # Check that float column is not cast to object if # merging on float and int columns A = DataFrame({'X': int_vals}) B = DataFrame({'Y': float_vals}) expected = DataFrame(exp_vals) result = A.merge(B, left_on='X', right_on='Y') assert_frame_equal(result, expected) result = B.merge(A, left_on='Y', right_on='X') assert_frame_equal(result, expected[['Y', 'X']]) def test_merge_on_ints_floats_warning(self): # GH 16572 # merge will produce a warning when merging on int and # float columns where the float values are not exactly # equal to their int representation A = DataFrame({'X': [1, 2, 3]}) B = DataFrame({'Y': [1.1, 2.5, 3.0]}) expected = DataFrame({'X': [3], 'Y': [3.0]}) with tm.assert_produces_warning(UserWarning): result = A.merge(B, left_on='X', right_on='Y') assert_frame_equal(result, expected) with tm.assert_produces_warning(UserWarning): result = B.merge(A, left_on='Y', right_on='X') assert_frame_equal(result, expected[['Y', 'X']]) # test no warning if float has NaNs B = DataFrame({'Y': [np.nan, np.nan, 3.0]}) with tm.assert_produces_warning(None): result = B.merge(A, left_on='Y', right_on='X') assert_frame_equal(result, expected[['Y', 'X']]) def test_merge_incompat_infer_boolean_object(self): # GH21119: bool + object bool merge OK df1 = DataFrame({'key': Series([True, False], dtype=object)}) df2 = DataFrame({'key': [True, False]}) expected = DataFrame({'key': [True, False]}, dtype=object) result = pd.merge(df1, df2, on='key') assert_frame_equal(result, expected) result = pd.merge(df2, df1, on='key') assert_frame_equal(result, expected) # with missing value df1 = DataFrame({'key': Series([True, False, np.nan], dtype=object)}) df2 = DataFrame({'key': [True, False]}) expected = DataFrame({'key': [True, False]}, dtype=object) result = pd.merge(df1, df2, on='key') assert_frame_equal(result, expected) result = pd.merge(df2, df1, on='key') assert_frame_equal(result, expected) @pytest.mark.parametrize('df1_vals, df2_vals', [ ([0, 1, 2], ["0", "1", "2"]), ([0.0, 1.0, 2.0], ["0", "1", "2"]), ([0, 1, 2], [u"0", u"1", u"2"]), (pd.date_range('1/1/2011', periods=2, freq='D'), ['2011-01-01', '2011-01-02']), (pd.date_range('1/1/2011', periods=2, freq='D'), [0, 1]), (pd.date_range('1/1/2011', periods=2, freq='D'), [0.0, 1.0]), (pd.date_range('20130101', periods=3), pd.date_range('20130101', periods=3, tz='US/Eastern')), ([0, 1, 2], Series(['a', 'b', 'a']).astype('category')), ([0.0, 1.0, 2.0], Series(['a', 'b', 'a']).astype('category')), # TODO ([0, 1], pd.Series([False, True], dtype=bool)), ([0, 1], pd.Series([False, True], dtype=object)) ]) def test_merge_incompat_dtypes(self, df1_vals, df2_vals): # GH 9780, GH 15800 # Raise a ValueError when a user tries to merge on # dtypes that are incompatible (e.g., obj and int/float) df1 = DataFrame({'A': df1_vals}) df2 = DataFrame({'A': df2_vals}) msg = ("You are trying to merge on {lk_dtype} and " "{rk_dtype} columns. If you wish to proceed " "you should use pd.concat".format(lk_dtype=df1['A'].dtype, rk_dtype=df2['A'].dtype)) msg = re.escape(msg) with pytest.raises(ValueError, match=msg): pd.merge(df1, df2, on=['A']) # Check that error still raised when swapping order of dataframes msg = ("You are trying to merge on {lk_dtype} and " "{rk_dtype} columns. If you wish to proceed " "you should use pd.concat".format(lk_dtype=df2['A'].dtype, rk_dtype=df1['A'].dtype)) msg = re.escape(msg) with pytest.raises(ValueError, match=msg): pd.merge(df2, df1, on=['A']) @pytest.fixture def left(): np.random.seed(1234) return DataFrame( {'X': Series(np.random.choice( ['foo', 'bar'], size=(10,))).astype(CDT(['foo', 'bar'])), 'Y': np.random.choice(['one', 'two', 'three'], size=(10,))}) @pytest.fixture def right(): np.random.seed(1234) return DataFrame( {'X': Series(['foo', 'bar']).astype(CDT(['foo', 'bar'])), 'Z': [1, 2]}) class TestMergeCategorical(object): def test_identical(self, left): # merging on the same, should preserve dtypes merged = pd.merge(left, left, on='X') result = merged.dtypes.sort_index() expected = Series([CategoricalDtype(), np.dtype('O'), np.dtype('O')], index=['X', 'Y_x', 'Y_y']) assert_series_equal(result, expected) def test_basic(self, left, right): # we have matching Categorical dtypes in X # so should preserve the merged column merged = pd.merge(left, right, on='X') result = merged.dtypes.sort_index() expected = Series([CategoricalDtype(), np.dtype('O'), np.dtype('int64')], index=['X', 'Y', 'Z']) assert_series_equal(result, expected) def test_merge_categorical(self): # GH 9426 right = DataFrame({'c': {0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e'}, 'd': {0: 'null', 1: 'null', 2: 'null', 3: 'null', 4: 'null'}}) left = DataFrame({'a': {0: 'f', 1: 'f', 2: 'f', 3: 'f', 4: 'f'}, 'b': {0: 'g', 1: 'g', 2: 'g', 3: 'g', 4: 'g'}}) df = pd.merge(left, right, how='left', left_on='b', right_on='c') # object-object expected = df.copy() # object-cat # note that we propagate the category # because we don't have any matching rows cright = right.copy() cright['d'] = cright['d'].astype('category') result = pd.merge(left, cright, how='left', left_on='b', right_on='c') expected['d'] = expected['d'].astype(CategoricalDtype(['null'])) tm.assert_frame_equal(result, expected) # cat-object cleft = left.copy() cleft['b'] = cleft['b'].astype('category') result = pd.merge(cleft, cright, how='left', left_on='b', right_on='c') tm.assert_frame_equal(result, expected) # cat-cat cright = right.copy() cright['d'] = cright['d'].astype('category') cleft = left.copy() cleft['b'] = cleft['b'].astype('category') result = pd.merge(cleft, cright, how='left', left_on='b', right_on='c') tm.assert_frame_equal(result, expected) def tests_merge_categorical_unordered_equal(self): # GH-19551 df1 = DataFrame({ 'Foo': Categorical(['A', 'B', 'C'], categories=['A', 'B', 'C']), 'Left': ['A0', 'B0', 'C0'], }) df2 = DataFrame({ 'Foo': Categorical(['C', 'B', 'A'], categories=['C', 'B', 'A']), 'Right': ['C1', 'B1', 'A1'], }) result = pd.merge(df1, df2, on=['Foo']) expected = DataFrame({ 'Foo': pd.Categorical(['A', 'B', 'C']), 'Left': ['A0', 'B0', 'C0'], 'Right': ['A1', 'B1', 'C1'], }) assert_frame_equal(result, expected) def test_other_columns(self, left, right): # non-merge columns should preserve if possible right = right.assign(Z=right.Z.astype('category')) merged = pd.merge(left, right, on='X') result = merged.dtypes.sort_index() expected = Series([CategoricalDtype(), np.dtype('O'), CategoricalDtype()], index=['X', 'Y', 'Z']) assert_series_equal(result, expected) # categories are preserved assert left.X.values.is_dtype_equal(merged.X.values) assert right.Z.values.is_dtype_equal(merged.Z.values) @pytest.mark.parametrize( 'change', [lambda x: x, lambda x: x.astype(CDT(['foo', 'bar', 'bah'])), lambda x: x.astype(CDT(ordered=True))]) def test_dtype_on_merged_different(self, change, join_type, left, right): # our merging columns, X now has 2 different dtypes # so we must be object as a result X = change(right.X.astype('object')) right = right.assign(X=X) assert is_categorical_dtype(left.X.values) # assert not left.X.values.is_dtype_equal(right.X.values) merged = pd.merge(left, right, on='X', how=join_type) result = merged.dtypes.sort_index() expected = Series([np.dtype('O'), np.dtype('O'), np.dtype('int64')], index=['X', 'Y', 'Z']) assert_series_equal(result, expected) def test_self_join_multiple_categories(self): # GH 16767 # non-duplicates should work with multiple categories m = 5 df = pd.DataFrame({ 'a': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] * m, 'b': ['t', 'w', 'x', 'y', 'z'] * 2 * m, 'c': [letter for each in ['m', 'n', 'u', 'p', 'o'] for letter in [each] * 2 * m], 'd': [letter for each in ['aa', 'bb', 'cc', 'dd', 'ee', 'ff', 'gg', 'hh', 'ii', 'jj'] for letter in [each] * m]}) # change them all to categorical variables df = df.apply(lambda x: x.astype('category')) # self-join should equal ourselves result = pd.merge(df, df, on=list(df.columns)) assert_frame_equal(result, df) def test_dtype_on_categorical_dates(self): # GH 16900 # dates should not be coerced to ints df = pd.DataFrame( [[date(2001, 1, 1), 1.1], [date(2001, 1, 2), 1.3]], columns=['date', 'num2'] ) df['date'] = df['date'].astype('category') df2 = pd.DataFrame( [[date(2001, 1, 1), 1.3], [date(2001, 1, 3), 1.4]], columns=['date', 'num4'] ) df2['date'] = df2['date'].astype('category') expected_outer = pd.DataFrame([ [pd.Timestamp('2001-01-01'), 1.1, 1.3], [pd.Timestamp('2001-01-02'), 1.3, np.nan], [pd.Timestamp('2001-01-03'), np.nan, 1.4]], columns=['date', 'num2', 'num4'] ) result_outer = pd.merge(df, df2, how='outer', on=['date']) assert_frame_equal(result_outer, expected_outer) expected_inner = pd.DataFrame( [[pd.Timestamp('2001-01-01'), 1.1, 1.3]], columns=['date', 'num2', 'num4'] ) result_inner = pd.merge(df, df2, how='inner', on=['date']) assert_frame_equal(result_inner, expected_inner) @pytest.mark.parametrize('ordered', [True, False]) @pytest.mark.parametrize('category_column,categories,expected_categories', [([False, True, True, False], [True, False], [True, False]), ([2, 1, 1, 2], [1, 2], [1, 2]), (['False', 'True', 'True', 'False'], ['True', 'False'], ['True', 'False'])]) def test_merging_with_bool_or_int_cateorical_column(self, category_column, categories, expected_categories, ordered): # GH 17187 # merging with a boolean/int categorical column df1 = pd.DataFrame({'id': [1, 2, 3, 4], 'cat': category_column}) df1['cat'] = df1['cat'].astype(CDT(categories, ordered=ordered)) df2 = pd.DataFrame({'id': [2, 4], 'num': [1, 9]}) result = df1.merge(df2) expected = pd.DataFrame({'id': [2, 4], 'cat': expected_categories, 'num': [1, 9]}) expected['cat'] = expected['cat'].astype( CDT(categories, ordered=ordered)) assert_frame_equal(expected, result) @pytest.fixture def left_df(): return DataFrame({'a': [20, 10, 0]}, index=[2, 1, 0]) @pytest.fixture def right_df(): return DataFrame({'b': [300, 100, 200]}, index=[3, 1, 2]) class TestMergeOnIndexes(object): @pytest.mark.parametrize( "how, sort, expected", [('inner', False, DataFrame({'a': [20, 10], 'b': [200, 100]}, index=[2, 1])), ('inner', True, DataFrame({'a': [10, 20], 'b': [100, 200]}, index=[1, 2])), ('left', False, DataFrame({'a': [20, 10, 0], 'b': [200, 100, np.nan]}, index=[2, 1, 0])), ('left', True, DataFrame({'a': [0, 10, 20], 'b': [np.nan, 100, 200]}, index=[0, 1, 2])), ('right', False, DataFrame({'a': [np.nan, 10, 20], 'b': [300, 100, 200]}, index=[3, 1, 2])), ('right', True, DataFrame({'a': [10, 20, np.nan], 'b': [100, 200, 300]}, index=[1, 2, 3])), ('outer', False, DataFrame({'a': [0, 10, 20, np.nan], 'b': [np.nan, 100, 200, 300]}, index=[0, 1, 2, 3])), ('outer', True, DataFrame({'a': [0, 10, 20, np.nan], 'b': [np.nan, 100, 200, 300]}, index=[0, 1, 2, 3]))]) def test_merge_on_indexes(self, left_df, right_df, how, sort, expected): result = pd.merge(left_df, right_df, left_index=True, right_index=True, how=how, sort=sort) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( 'index', [ CategoricalIndex(['A', 'B'], categories=['A', 'B'], name='index_col'), Float64Index([1.0, 2.0], name='index_col'), Int64Index([1, 2], name='index_col'), UInt64Index([1, 2], name='index_col'), RangeIndex(start=0, stop=2, name='index_col'), DatetimeIndex(["2018-01-01", "2018-01-02"], name='index_col'), ], ids=lambda x: type(x).__name__) def test_merge_index_types(index): # gh-20777 # assert key access is consistent across index types left = DataFrame({"left_data": [1, 2]}, index=index) right = DataFrame({"right_data": [1.0, 2.0]}, index=index) result = left.merge(right, on=['index_col']) expected = DataFrame( OrderedDict([('left_data', [1, 2]), ('right_data', [1.0, 2.0])]), index=index) assert_frame_equal(result, expected) @pytest.mark.parametrize("on,left_on,right_on,left_index,right_index,nms,nm", [ (['outer', 'inner'], None, None, False, False, ['outer', 'inner'], 'B'), (None, None, None, True, True, ['outer', 'inner'], 'B'), (None, ['outer', 'inner'], None, False, True, None, 'B'), (None, None, ['outer', 'inner'], True, False, None, 'B'), (['outer', 'inner'], None, None, False, False, ['outer', 'inner'], None), (None, None, None, True, True, ['outer', 'inner'], None), (None, ['outer', 'inner'], None, False, True, None, None), (None, None, ['outer', 'inner'], True, False, None, None)]) def test_merge_series(on, left_on, right_on, left_index, right_index, nms, nm): # GH 21220 a = pd.DataFrame({"A": [1, 2, 3, 4]}, index=pd.MultiIndex.from_product([['a', 'b'], [0, 1]], names=['outer', 'inner'])) b = pd.Series([1, 2, 3, 4], index=pd.MultiIndex.from_product([['a', 'b'], [1, 2]], names=['outer', 'inner']), name=nm) expected = pd.DataFrame({"A": [2, 4], "B": [1, 3]}, index=pd.MultiIndex.from_product([['a', 'b'], [1]], names=nms)) if nm is not None: result = pd.merge(a, b, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index) tm.assert_frame_equal(result, expected) else: with pytest.raises(ValueError, match='a Series without a name'): result = pd.merge(a, b, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index)
bsd-3-clause
sebhtml/assembly
lib/assembly/job.py
2
7536
import os import re import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy.numarray as na import asmtypes import shock class ArastJob(dict): """ """ def __init__(self, *args): dict.__init__(self, *args) self['pipelines'] = [] # List of ArastPipeline self['out_contigs'] = [] self['out_scaffolds'] = [] self['logfiles'] = [] self['out_reports'] = [] self['out_results'] = [] def make_plots(self): pass def plot_ale(self): a_scores = [] names = [] for pl in self['pipelines']: try: a_scores.append(pl['stats']['ale_score']) names.append(pl['name']) except: pass if len(a_scores) < 2: print ('Not enough ALE scores') return ## normalize scores old_min = min(a_scores) old_max = max(a_scores) new_min = 5 new_max = 100 old_range = old_max - old_min new_range = new_max - new_min n_scores = [] for a in a_scores: n = (((a - old_min) * new_range) / old_range) + new_min n_scores.append(n) xlocations = na.array(range(len(n_scores))) + 0.5 width = 0.5 fig = plt.figure() plt.bar(xlocations, n_scores, width=width, linewidth=0, color='#CC99FF') plt.xticks(xlocations + width/2, names) plt.xlim(0, xlocations[-1]+width*2) plt.title("Relative ALE Scores") plt.yticks(range(0, new_max + 10, 10)) ale_fig = os.path.join(self['datapath'], str(self['job_id']), 'ale.png') plt.savefig(ale_fig) return ale_fig def export(self): pass def import_quast(self, qreport): if self['reference']: n50_line = 14 else: n50_line = 12 f = open(qreport) for i in range(n50_line): line = f.readline() n50_scores = [int(x) for x in re.split('\s*', line)[1:-1]] if len(n50_scores) == len(self['pipelines']): for i,pipe in enumerate(self['pipelines']): pipe['stats']['N50'] = n50_scores[i] def add_pipeline(self, num, modules): """ MODULES is a list or dict """ pipeline = ArastPipeline({'number': num}) if type(modules) is list: for i, module in enumerate(modules): new_module = ArastModule({'number': i+1, 'module': module}) pipeline['modules'].append(new_module) self['pipelines'].append(pipeline) return pipeline def get_pipeline(self, number): for pipeline in self['pipelines']: if pipeline['number'] == number: return pipeline def add_results(self, filesets): if filesets: if not type(filesets) is list: filesets = [filesets] for f in filesets: self['out_results'].append(f) @property def results(self): """Return all output FileSets""" return self['out_results'] def get_all_ftypes(self): ft = [] for fileset in self.get_all_filesets(): for fileinfo in fileset['file_infos']: ft.append((fileinfo['local_file'], fileset['type'])) return ft def upload_results(self, url, token): """ Renames and uploads all filesets and updates shock info """ new_sets = [] rank = 1 for i,fset in enumerate(self.results): if fset.type == 'contigs' or fset.type == 'scaffolds': fset.add_tag('rank-' + str(rank)) rank += 1 new_files = [] for j, f in enumerate(fset['file_infos']): if len(fset['file_infos']) > 1: file_suffix = '_{}'.format(j+1) else: file_suffix = '' ext = f['local_file'].split('.')[-1] if not f['keep_name']: new_file = '{}/{}.{}{}.{}'.format(os.path.dirname(f['local_file']), i+1, fset.name, file_suffix, ext) os.symlink(f['local_file'], new_file) else: new_file = f['local_file'] res = self.upload_file(url, self['user'], token, new_file, filetype=fset.type) f.update({'shock_url': url, 'shock_id': res['data']['id'], 'filename': os.path.basename(new_file)}) new_files.append(f) fset.update_fileinfo(new_files) new_sets.append(fset) self['result_data'] = new_sets return new_sets def upload_file(self, url, user, token, file, filetype='default'): files = {} files["file"] = (os.path.basename(file), open(file, 'rb')) sclient = shock.Shock(url, user, token) res = sclient.upload_file(file, filetype, curl=True) return res def wasp_data(self): """ Compatibility layer for wasp data types. Scans self for certain data types and populates a FileSetContainer """ all_sets = [] #### Convert Old Reads Format to ReadSets for set_type in ['reads', 'reference']: if set_type in self: for fs in self[set_type]: ### Get supported set attributes (ins, std, etc) kwargs = {} for key in ['insert', 'stdev']: if key in fs: kwargs[key] = fs[key] all_sets.append(asmtypes.set_factory(fs['type'], [asmtypes.FileInfo(f) for f in fs['files']], **kwargs)) #### Convert final_contigs from pipeline mode if 'final_contigs' in self: if self['final_contigs']: ## Not empty ## Remove left over contigs del(self['contigs']) for contig_data in self['final_contigs']: all_sets.append(asmtypes.set_factory('contigs', [asmtypes.FileInfo(fs,) for fs in contig_data['files']], #{'name':contig_data['name']})) name=contig_data['name'])) #### Convert Contig/Ref format # for set_type in ['contigs', 'reference']: # if set_type in self: # all_sets.append(asmtypes.set_factory(set_type, [asmtypes.FileInfo(fs) for fs in self[set_type]])) return asmtypes.FileSetContainer(all_sets) class ArastPipeline(dict): """ Pipeline object """ def __init__(self, *args): dict.__init__(self, *args) self['modules'] = [] self['stats'] = {} def get_module(self, number): for module in self['modules']: if module['number'] == number: return module def import_reapr(self): pass def import_ale(self, ale_report): f = open(ale_report) line = f.readline() self['stats']['ale_score'] = float(line.split(' ')[2]) f.close() class ArastModule(dict): def __init__(self, *args): dict.__init__(self, *args)
mit
arokem/scipy
scipy/interpolate/ndgriddata.py
2
7566
""" Convenience interface to N-D interpolation .. versionadded:: 0.9 """ from __future__ import division, print_function, absolute_import import numpy as np from .interpnd import LinearNDInterpolator, NDInterpolatorBase, \ CloughTocher2DInterpolator, _ndim_coords_from_arrays from scipy.spatial import cKDTree __all__ = ['griddata', 'NearestNDInterpolator', 'LinearNDInterpolator', 'CloughTocher2DInterpolator'] #------------------------------------------------------------------------------ # Nearest-neighbor interpolation #------------------------------------------------------------------------------ class NearestNDInterpolator(NDInterpolatorBase): """ NearestNDInterpolator(x, y) Nearest-neighbor interpolation in N dimensions. .. versionadded:: 0.9 Methods ------- __call__ Parameters ---------- x : (Npoints, Ndims) ndarray of floats Data point coordinates. y : (Npoints,) ndarray of float or complex Data values. rescale : boolean, optional Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude. .. versionadded:: 0.14.0 tree_options : dict, optional Options passed to the underlying ``cKDTree``. .. versionadded:: 0.17.0 Notes ----- Uses ``scipy.spatial.cKDTree`` """ def __init__(self, x, y, rescale=False, tree_options=None): NDInterpolatorBase.__init__(self, x, y, rescale=rescale, need_contiguous=False, need_values=False) if tree_options is None: tree_options = dict() self.tree = cKDTree(self.points, **tree_options) self.values = np.asarray(y) def __call__(self, *args): """ Evaluate interpolator at given points. Parameters ---------- xi : ndarray of float, shape (..., ndim) Points where to interpolate data at. """ xi = _ndim_coords_from_arrays(args, ndim=self.points.shape[1]) xi = self._check_call_shape(xi) xi = self._scale_x(xi) dist, i = self.tree.query(xi) return self.values[i] #------------------------------------------------------------------------------ # Convenience interface function #------------------------------------------------------------------------------ def griddata(points, values, xi, method='linear', fill_value=np.nan, rescale=False): """ Interpolate unstructured D-D data. Parameters ---------- points : 2-D ndarray of floats with shape (n, D), or length D tuple of 1-D ndarrays with shape (n,). Data point coordinates. values : ndarray of float or complex, shape (n,) Data values. xi : 2-D ndarray of floats with shape (m, D), or length D tuple of ndarrays broadcastable to the same shape. Points at which to interpolate data. method : {'linear', 'nearest', 'cubic'}, optional Method of interpolation. One of ``nearest`` return the value at the data point closest to the point of interpolation. See `NearestNDInterpolator` for more details. ``linear`` tessellate the input point set to N-D simplices, and interpolate linearly on each simplex. See `LinearNDInterpolator` for more details. ``cubic`` (1-D) return the value determined from a cubic spline. ``cubic`` (2-D) return the value determined from a piecewise cubic, continuously differentiable (C1), and approximately curvature-minimizing polynomial surface. See `CloughTocher2DInterpolator` for more details. fill_value : float, optional Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is ``nan``. This option has no effect for the 'nearest' method. rescale : bool, optional Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude. .. versionadded:: 0.14.0 Returns ------- ndarray Array of interpolated values. Notes ----- .. versionadded:: 0.9 Examples -------- Suppose we want to interpolate the 2-D function >>> def func(x, y): ... return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2 on a grid in [0, 1]x[0, 1] >>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j] but we only know its values at 1000 data points: >>> points = np.random.rand(1000, 2) >>> values = func(points[:,0], points[:,1]) This can be done with `griddata` -- below we try out all of the interpolation methods: >>> from scipy.interpolate import griddata >>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest') >>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear') >>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic') One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the piecewise cubic interpolant gives the best results: >>> import matplotlib.pyplot as plt >>> plt.subplot(221) >>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower') >>> plt.plot(points[:,0], points[:,1], 'k.', ms=1) >>> plt.title('Original') >>> plt.subplot(222) >>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower') >>> plt.title('Nearest') >>> plt.subplot(223) >>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower') >>> plt.title('Linear') >>> plt.subplot(224) >>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower') >>> plt.title('Cubic') >>> plt.gcf().set_size_inches(6, 6) >>> plt.show() """ points = _ndim_coords_from_arrays(points) if points.ndim < 2: ndim = points.ndim else: ndim = points.shape[-1] if ndim == 1 and method in ('nearest', 'linear', 'cubic'): from .interpolate import interp1d points = points.ravel() if isinstance(xi, tuple): if len(xi) != 1: raise ValueError("invalid number of dimensions in xi") xi, = xi # Sort points/values together, necessary as input for interp1d idx = np.argsort(points) points = points[idx] values = values[idx] if method == 'nearest': fill_value = 'extrapolate' ip = interp1d(points, values, kind=method, axis=0, bounds_error=False, fill_value=fill_value) return ip(xi) elif method == 'nearest': ip = NearestNDInterpolator(points, values, rescale=rescale) return ip(xi) elif method == 'linear': ip = LinearNDInterpolator(points, values, fill_value=fill_value, rescale=rescale) return ip(xi) elif method == 'cubic' and ndim == 2: ip = CloughTocher2DInterpolator(points, values, fill_value=fill_value, rescale=rescale) return ip(xi) else: raise ValueError("Unknown interpolation method %r for " "%d dimensional data" % (method, ndim))
bsd-3-clause
mmmatthew/raycast
code/s08__cast_rays_3d.py
1
5904
""" Reads: - 2D prediction clusters from previous step - location: see output from previous step - format: see output from previous step - 3D mesh - location: defined in settings file - format: ply or STL - library: VTK - Camera calibration parameters Tasks: - For each prediction cluster in each image - Compute ray in 3D - Intersect with mesh - Extract first intersection point (or maybe all intersection points?) Writes: - 3D predictions - Coordinates - Standard deviation of cluster (assuming 2D normal distribution) - Reference to image - Number of hits ---------------- - location: [project home directory]/6_cast_rays_3d/ - format: TO BE DEFINED Tools: - [Pycaster for casting rays onto mesh] - OR use the VTK library directly """ import os from glob import glob import vtk import numpy as np import pandas as pd import helpers import csv def cast_rays_3d(config, debug, settings): # Where to find the 2D clusters cluster_folder = os.path.join(config['iteration_directory'], settings['general']['iterations_structure']['detect']) # Get camera calibration information camera_params = helpers.read_camera_params( settings['inputs']['camera_xyz_offset'], settings['inputs']['camera_params']) # Load 3D mesh print 'Loading 3D mesh...' mesh = loadSTL(settings['inputs']['3dmesh']) # Load mesh offset with open(settings['inputs']['3dmesh_offset'], 'r') as offsetfile: mesh_offset = np.array(map(float, offsetfile.readlines()[0].split())) # build OBB tree for fast intersection search print 'Building OBB tree...' obbTree = vtk.vtkOBBTree() obbTree.SetDataSet(mesh) obbTree.BuildLocator() for fold_i in range(settings['general']['do_folds']): print('-- FOLD {} --'.format(fold_i)) # initialize result lists r = { 'x': [], 'y': [], 'z': [], 'score': [], 'id': [], 'image': [], 'img_x': [], 'img_y': [] } # compute 3d points for cluster_list_file in glob(cluster_folder + '/fold_{}/*.csv'.format(fold_i)): # read clusters cluster_list = np.loadtxt(cluster_list_file, skiprows=1, delimiter=';', ndmin=2) # fetch parameters for image this_cam_params = filter(lambda c: c['camera_name'].split('.')[0] == os.path.basename(cluster_list_file).split('.')[0], camera_params)[0] # compute camera transforms KRt = np.dot(np.dot(this_cam_params['K'], this_cam_params['R']), this_cam_params['t']) KRinv = np.linalg.inv(np.dot(this_cam_params['K'], this_cam_params['R'])) # the zval is like an estimated elevation difference between camera and point zval = 200 # intersection source (camera) intersection_source = np.transpose(this_cam_params['t'])[0] - mesh_offset # for each cluster for cluster in cluster_list: # Step 1: project to 3D space X2d = np.array([ [cluster[0] * zval / float(settings['inputs']['image_pixel_x'])], [cluster[1] * zval / float(settings['inputs']['image_pixel_y'])], [zval]]) X3d = np.dot(KRinv, (X2d + KRt)) # target (3D point) and intersections intersection_target = np.transpose(X3d)[0] - mesh_offset pointsVTKintersection = vtk.vtkPoints() # Step 2: intersect line with surface and retain first code = obbTree.IntersectWithLine(intersection_source, intersection_target, pointsVTKintersection, None) # code is non-zero if there was an intersection if code != 0: pointsVTKIntersectionData = pointsVTKintersection.GetData() noPointsVTKIntersection = pointsVTKIntersectionData.GetNumberOfTuples() # retain the first intersect (x, y, z) = pointsVTKIntersectionData.GetTuple3(0) # append results to list r['x'].append(x + mesh_offset[0]) r['y'].append(y + mesh_offset[1]) r['z'].append(z + mesh_offset[2]) r['score'].append(cluster[2]) # the score of the cluster r['id'].append(int(cluster[3])) # the id of the cluster r['image'].append(os.path.basename(cluster_list_file).split('.')[0]) # the image in which the cluster was detected r['img_x'].append(int(X2d[0][0] / zval)) # image coordinates r['img_y'].append(int(X2d[1][0] / zval)) # write results to dataframe # Where to save 3D points output_file = os.path.join(config['iteration_directory'], settings['general']['iterations_structure']['cast'], '3dpoints_{}.csv'.format(fold_i)) pd.DataFrame({ 'x': r['x'], 'y': r['y'], 'z': r['z'], 'score': r['score'], 'id': r['id'], 'image': r['image'], 'img_x': r['img_x'], 'img_y': r['img_y'] }).to_csv(output_file) return 0 def loadSTL(filenameSTL): readerSTL = vtk.vtkSTLReader() readerSTL.SetFileName(filenameSTL) # 'update' the reader i.e. read the .stl file readerSTL.Update() polydata = readerSTL.GetOutput() # If there are no points in 'vtkPolyData' something went wrong if polydata.GetNumberOfPoints() == 0: raise ValueError( "No point data could be loaded from '" + filenameSTL) return polydata
apache-2.0
juhuntenburg/pipelines
src/clustering/clustering/secondlevelcluster.py
2
3009
import matplotlib matplotlib.use('Agg') import os import nipype.pipeline.engine as pe import nipype.interfaces.utility as util import nipype.interfaces.io as nio from consensus import Consensus from cluster import Cluster from variables import analysis_subjects, analysis_sessions, workingdir, resultsdir, freesurferdir, hemispheres, similarity_types, cluster_types, n_clusters def get_wf(): wf = pe.Workflow(name="main_workflow") wf.base_dir = os.path.join(workingdir,"intercluster_analysis") wf.config['execution']['crashdump_dir'] = wf.base_dir + "/crash_files" ##Infosource## subject_id_infosource = pe.Node(util.IdentityInterface(fields=['subject_id']), name="subject_id_infosource") subject_id_infosource.iterables = ('subject_id', analysis_subjects) session_infosource = pe.Node(util.IdentityInterface(fields=['session']), name="session_infosource") session_infosource.iterables = ('session', analysis_sessions) hemi_infosource = pe.Node(util.IdentityInterface(fields=['hemi']), name="hemi_infosource") hemi_infosource.iterables = ('hemi', hemispheres) sim_infosource = pe.Node(util.IdentityInterface(fields=['sim']), name="sim_infosource") sim_infosource.iterables = ('sim', similarity_types) cluster_infosource = pe.Node(util.IdentityInterface(fields=['cluster']), name="cluster_infosource") cluster_infosource.iterables = ('cluster', cluster_types) n_clusters_infosource = pe.Node(util.IdentityInterface(fields=['n_clusters']), name="n_clusters_infosource") n_clusters_infosource.iterables = ('n_clusters', n_clusters) ##Datagrabber for cluster_type## dg_clusters = pe.Node(nio.DataGrabber(infields=['subject_id','session','hemi'], outfields=['all_cluster_types']), name="dg_clusters") dg_clusters.inputs.base_directory = resultsdir+'clustered/' dg_clusters.inputs.template = '*%s*/*%s*/*%s*/*%s*/*%s*/*%s*/*' dg_clusters.inputs.template_args['all_cluster_types'] = [['hemi', 'session','subject_id','*','*','n_clusters']] dg_clusters.inputs.sort_filelist = True wf.connect(subject_id_infosource, 'subject_id', dg_clusters, 'subject_id') wf.connect(session_infosource, 'session', dg_clusters, 'session') wf.connect(hemi_infosource, 'hemi', dg_clusters, 'hemi') wf.connect(n_clusters_infosource, 'n_clusters', dg_clusters, 'n_clusters') ##Cluster the Consensus Matrix## consensus_cluster = pe.Node(Cluster(), name = 'consensus') wf.connect(intercluster, 'consensus_mat', consensus_cluster, 'in_File') ##Datasink ds = pe.Node(nio.DataSink(), name="datasink") ds.inputs.base_directory = resultsdir wf.connect(consensus_cluster, 'out_File', ds, 'consensus_clustered') wf.write_graph() return wf if __name__ == '__main__': wf = get_wf() #wf.run(plugin="CondorDAGMan", plugin_args={"template":"universe = vanilla\nnotification = Error\ngetenv = true\nrequest_memory=4000"}) wf.run(plugin="MultiProc", plugin_args={"n_procs":8})
mit
abidrahmank/MyRoughWork
blog_works/hist_backprojection_implementation.py
1
1091
import cv2 import numpy as np from matplotlib import pyplot as plt #roi is the object or region of object we need to find roi = cv2.imread('rose_red.png') hsv = cv2.cvtColor(roi,cv2.COLOR_BGR2HSV) #target is the image we search in target = cv2.imread('rose.png') hsvt = cv2.cvtColor(target,cv2.COLOR_BGR2HSV) M = cv2.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] ) I = cv2.calcHist([hsvt],[0, 1], None, [180, 256], [0, 180, 0, 256] ) R = M/(I+1) print R.max() #cv2.normalize(prob,prob,0,255,cv2.NORM_MINMAX,0) h,s,v = cv2.split(hsvt) B = R[h.ravel(),s.ravel()] B = np.minimum(B,1) B = B.reshape(hsvt.shape[:2]) disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)) cv2.filter2D(B,-1,disc,B) B = np.uint8(B) cv2.normalize(B,B,0,255,cv2.NORM_MINMAX) ret,thresh = cv2.threshold(B,50,255,0) res = cv2.bitwise_and(target,target,mask = thresh) cv2.imshow('nice',res) cv2.imshow('img',target) res = np.vstack((target,cv2.merge((B,B,B)),res)) #cv2.imwrite('thresh.png',thresh) cv2.imwrite('output.png',res) cv2.waitKey(0) cv2.destroyAllWindows() ##plt.imshow(B) ##plt.show()
mit
phobson/statsmodels
statsmodels/graphics/tests/test_correlation.py
31
1112
import numpy as np from numpy.testing import dec from statsmodels.graphics.correlation import plot_corr, plot_corr_grid from statsmodels.datasets import randhie try: import matplotlib.pyplot as plt have_matplotlib = True except: have_matplotlib = False @dec.skipif(not have_matplotlib) def test_plot_corr(): hie_data = randhie.load_pandas() corr_matrix = np.corrcoef(hie_data.data.values.T) fig = plot_corr(corr_matrix, xnames=hie_data.names) plt.close(fig) fig = plot_corr(corr_matrix, xnames=[], ynames=hie_data.names) plt.close(fig) fig = plot_corr(corr_matrix, normcolor=True, title='', cmap='jet') plt.close(fig) @dec.skipif(not have_matplotlib) def test_plot_corr_grid(): hie_data = randhie.load_pandas() corr_matrix = np.corrcoef(hie_data.data.values.T) fig = plot_corr_grid([corr_matrix] * 2, xnames=hie_data.names) plt.close(fig) fig = plot_corr_grid([corr_matrix] * 5, xnames=[], ynames=hie_data.names) plt.close(fig) fig = plot_corr_grid([corr_matrix] * 3, normcolor=True, titles='', cmap='jet') plt.close(fig)
bsd-3-clause
cherusk/lindwurm
illustrator/cohesion_construer.py
1
7062
# lindwurm #Copyright (C) 2016 Matthias Tafelmeier #lindwurm is free software: you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. #lindwurm is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. #You should have received a copy of the GNU General Public License #along with this program. If not, see <http://www.gnu.org/licenses/>. #from illustrator.illustrator_core import Construer import json from colorama import Fore, Back, Style import networkx as nx import matplotlib.pyplot as plt from collections import Callable from sets import Set from asciitree import LeftAligned from collections import OrderedDict as OD from asciitree.drawing import BoxStyle, BOX_HEAVY class Construer: """ Core Construer Iface """ def __init__(self, aggreg_run_data, args): pass def do_graphical(self): raise NotImplementedError def do_term(self, args): raise NotImplementedError @staticmethod def traverse(obj, callback=None, **ctx): cb_res = callback(obj, **ctx) if cb_res == "recurse": pass else: return obj if isinstance(obj, dict): {k: Construer.traverse(v, callback, **ctx) for k, v in obj.items()} elif isinstance(obj, list): [Construer.traverse(elem, callback, **ctx) for elem in obj] else: return obj class TermTreeConvCb(Callable): def __init__(self): pass def __call__(self, obj): progress = self.predicate(obj) if 'convers' == progress: new_form = { 'connected' : [], 'disjoined' : [] } for conn, disj in map(None, obj['connected'], obj['disjoined']): if conn: new_form['connected'].append( tuple( [ conn, {} ] ) ) if disj: new_form['disjoined'].append( tuple( [ disj, {} ] ) ) obj['connected'] = OD( new_form['connected'] ) obj['disjoined'] = OD( new_form['disjoined'] ) del obj['srv'] progress = 'return' return progress def predicate(self, obj): if isinstance(obj, dict) and 'srv' in obj.keys(): return 'convers' else: return 'recurse' class CohesionTermCb(Callable): def __init__(self): self.data_refining = { 'scaffolding' : { } } self.service_fmt = "* srv: %s (%s)" self.curr_host = None self.curr_conn = Set([]) self.curr_disj = Set([]) def __call__(self, obj, **ctx): progress = self.predicate(obj) if progress == "service": scaff_node = ctx['scaff_node'] self.ensure_def_scaff_n(scaff_node) if obj["@portid"] not in self.data_refining['scaffolding'][scaff_node]: srv = obj["service"] self.form_refined_entry(srv, obj["@portid"], scaff_node) if obj["state"]["@state"] == "open": self.curr_conn.add(obj["@portid"]) else: self.curr_disj.add(obj["@portid"]) # ugily depending on order #in next host: so replenish cached conn/host data self.replenish(scaff_node) elif progress == "host": hostname = obj["hostname"] if isinstance(hostname, list): for variant in hostname: if variant["@type"] == "user": self.curr_host = variant["@name"] elif isinstance(hostname, dict): self.curr_host = hostname["@name"] return progress # TODO consider Lists @staticmethod def append_str(str1, str2): fmt = "%s %s" str1 = fmt % (str1, str2) return str1 def ensure_def_scaff_n(self, scaff_node): if scaff_node not in self.data_refining['scaffolding'].keys(): self.data_refining['scaffolding'][scaff_node] = { } def replenish(self, scaff_node): # map since no zip_longest curr_scaff_n = self.data_refining['scaffolding'][scaff_node] for port_disj, port_con in map(None, self.curr_disj, self.curr_conn): if port_con: curr_scaff_n[str(port_con)]["connected"].append(self.curr_host) if port_disj: curr_scaff_n[str(port_disj)]["disjoined"].append(self.curr_host) self.curr_conn = Set([]) self.curr_disj = Set([]) def predicate(self, obj): if isinstance(obj, dict) and "@portid" in obj.keys(): return "service" elif isinstance(obj, dict) and "hostname" in obj.keys(): return "host" else: return "recurse" def form_refined_entry(self, srv, p_id, scaff_node): new_entry = { "srv" : srv, "connected" : [], "disjoined" : [] } self.data_refining['scaffolding'][scaff_node][p_id] = new_entry def show(self, what): print self.data_refining if len(what) == 0 or 'Plain' in what: scaffold_nodes = self.data_refining['scaffolding'] for scaffold_node, ports in scaffold_nodes.items(): print ( Fore.BLUE + "--- scaffold_node: %s" % (scaffold_node)) print(Style.RESET_ALL) for p_id, ctx in ports.items(): print self.service_fmt % ( ctx["srv"]['@name'], p_id) for key in [ 'connected', 'disjoined' ]: print CohesionTermCb.append_str(key, " ".join(ctx[key])) print "\n" # JSON if 'Json' in what: print 'JSON \n' print json.dumps(self.data_refining) # maybe deep copy if data reused if 'Tree' in what: # TREE Construer.traverse(self.data_refining, TermTreeConvCb()) tr = LeftAligned(draw=BoxStyle(gfx=BOX_HEAVY)) print(tr(self.data_refining)) class Cohesion(Construer): """ Depicting insights regarding distributed nodes cohesion on several net stack layers """ def __init__(self, aggreg_run_data): self.run_data = aggreg_run_data print aggreg_run_data def do_graphical(self): #G=nx.Graph([(0,1),(1,2),(2,3)]) #nx.draw(G) #plt.savefig(".png") raise NotImplementedError def do_term(self, args): inter_data = json.loads(self.run_data) run = inter_data["run"] print (">>objective: [%s]" % (args.curr_subcmd)) cb = CohesionTermCb() for scaffold_node in run["nmap"]: Construer.traverse(run['nmap'][scaffold_node], cb, scaff_node=scaffold_node) cb.show(args.format)
gpl-3.0
ARM-software/trappy
trappy/stats/Indexer.py
1
3165
# Copyright 2015-2017 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Indexers are responsible for providing indexes for aggregations and provide specific functions like unification and resampling. """ from __future__ import unicode_literals from __future__ import division from __future__ import print_function from builtins import object import pandas as pd import numpy as np from trappy.utils import listify from trappy.stats import StatConf class Indexer(object): """Indexer base class is an encapsulation around the pandas Index object with some special functionality :param index: Pandas index object. This can be non-unoform and non-unique :type index: :mod:`pandas.Index` :param traces: trappy FTrace list/singular object :type traces: :mod:`trappy.trace.FTrace` """ def __init__(self, index): self.index = index def series(self): """Returns an empty series with the initialized index """ return pd.Series(np.zeros(len(self.index)), index=self.index) def get_uniform(self, delta=StatConf.DELTA_DEFAULT): """ :param delta: Difference between two indices. This has a default value specified in StatConf.DELTA_DEFAULT :type delta: float :return: A uniformly spaced index. """ uniform_start = self.index.values[0] uniform_end = self.index.values[-1] new_index = np.arange(uniform_start, uniform_end, delta) return new_index def get_unified_indexer(indexers): """Unify the List of Indexers :param indexers: A list of indexers :type indexers: :mod:`trappy.stats.Indexer.Indexer` :return: A :mod:`pandas.Indexer.Indexer` with a unfied index """ new_index = indexers[0].index for idx in indexers[1:]: new_index = new_index.union(idx.index) return Indexer(new_index) class MultiTriggerIndexer(Indexer): """"The index unifies the indices of all trigger events. :param triggers: A (list or single) trigger :type triggers: :mod:`trappy.stats.Trigger.Trigger` """ def __init__(self, triggers): self._triggers = listify(triggers) super(MultiTriggerIndexer, self).__init__(self._unify()) def _unify(self): """Function to unify all the indices of each trigger """ idx = pd.Index([]) for trigger in self._triggers: trace = trigger.trace trappy_event = getattr(trace, trigger.template.name) idx = idx.union(trappy_event.data_frame.index) return pd.Index(np.unique(idx.values))
apache-2.0
ContextLab/quail
tests/test_basic.py
1
2765
# -*- coding: utf-8 -*- from quail.analysis.analysis import analyze from quail.load import load_example_data from quail.egg import Egg import numpy as np import pytest import pandas as pd presented=[[['cat', 'bat', 'hat', 'goat'],['zoo', 'animal', 'zebra', 'horse']]] recalled=[[['bat', 'cat', 'goat', 'hat'],['animal', 'horse', 'zoo']]] egg = Egg(pres=presented,rec=recalled) def test_analysis_acc(): print(analyze(egg, analysis='accuracy')) print([np.array([1.]),np.array([.75])]) assert np.array_equal(analyze(egg, analysis='accuracy').data.values,[np.array([1.]),np.array([.75])]) def test_analysis_spc(): assert np.array_equal(analyze(egg, analysis='spc').data.values,[np.array([ 1., 1., 1., 1.]),np.array([ 1., 1., 0., 1.])]) def test_analysis_spc_listgroup(): assert np.array_equal(analyze(egg, listgroup=[1,1], listname='Frank', analysis='spc').data.values,np.array([[ 1. , 1. , 0.5, 1. ]])) def test_analysis_pfr(): assert np.array_equal(analyze(egg, analysis='pfr').data.values,[np.array([ 0., 1., 0., 0.]), np.array([ 0., 1., 0., 0.])]) def test_analysis_pfr_listgroup(): assert np.array_equal(analyze(egg, listgroup=['one','one'], analysis='pfr').data.values,np.array([[ 0., 1., 0., 0.]])) def test_analysis_lag_crp(): # example from kahana lab lag-crp tutorial presented=[[['1', '2', '3', '4', '5', '6', '7', '8']]] recalled=[[['8', '7', '1', '2', '3', '5', '6', '4']]] egg = Egg(pres=presented,rec=recalled) assert np.allclose(analyze(egg, analysis='lagcrp').data.values,np.array([[0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.333333, 0.333333, np.nan, 0.75, 0.333333, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]), equal_nan=True) # MULTI SUBJECT presented=[[['cat', 'bat', 'hat', 'goat'],['zoo', 'animal', 'zebra', 'horse']],[['cat', 'bat', 'hat', 'goat'],['zoo', 'animal', 'zebra', 'horse']]] recalled=[[['bat', 'cat', 'goat', 'hat'],['animal', 'horse', 'zoo']],[['bat', 'cat', 'goat', 'hat'],['animal', 'horse', 'zoo']]] multisubj_egg = Egg(pres=presented,rec=recalled) def test_analysis_acc_multisubj(): assert np.array_equal(analyze(multisubj_egg, analysis='accuracy').data.values,np.array([[ 1.],[ .75],[ 1.],[ .75]])) def test_analysis_spc_multisubj(): assert np.array_equal(analyze(multisubj_egg, analysis='spc').data.values,np.array([[ 1., 1., 1., 1.],[ 1., 1., 0., 1.],[ 1., 1., 1., 1.],[ 1., 1., 0., 1.]])) def test_egg(): list1 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] list2 = [[[10, 20], [30, 40]], [[50, 60], [70, 80]]] egg = Egg(pres = list1, rec = list2) assert type(egg.pres) == pd.core.frame.DataFrame assert type(egg.rec) == pd.core.frame.DataFrame def test_load_example_data(): egg = load_example_data() assert isinstance(egg, Egg)
mit
surmeierlab/neurphys
neurphys/read_abf.py
1
4466
""" Functions to import and manipulate Axon Binary Files. """ from collections import OrderedDict from neo import io import pandas as pd import numpy as np def _all_ints(ii): """ Determines if list or tuples contains only integers """ return all(isinstance(i, int) for i in ii) def _all_strs(ii): """ Determines if list or tuples contains only strings """ return all(isinstance(i, str) for i in ii) def read_abf(filepath): """ Imports ABF file using neo io AxonIO, breaks it down by blocks which are then processed into a multidimensional pandas dataframe where each block corresponds to a sweep and columns represent time and each recorded channel. Parameters ---------- filename: str Full filepath WITH '.abf' extension. Return ------ df: DataFrame Pandas DataFrame broken down by sweep. References ---------- [1] https://neo.readthedocs.org/en/latest/index.html """ r = io.AxonIO(filename=filepath) bl = r.read_block(lazy=False, cascade=True) num_channels = len(bl.segments[0].analogsignals) df_list = [] sweep_list = [] units = ['s'] for seg_num, seg in enumerate(bl.segments): channels = ['primary']+['channel_{0}'.format(str(i+1)) for i in range(num_channels-1)] signals = [] for i in range(num_channels): data = np.array(bl.segments[seg_num].analogsignals[i].data) signals.append(data.T[0]) unit = bl.segments[seg_num].analogsignals[i].units units.append(str(unit).split()[-1]) data_dict = OrderedDict(zip(channels, signals)) time = seg.analogsignals[0].times - seg.analogsignals[0].times[0] data_dict.update({'time': time}) data_dict.move_to_end('time', last=False) df = pd.DataFrame(data_dict) df_list.append(df) sweep_list.append('sweep' + str(seg_num + 1).zfill(3)) df = pd.concat(df_list, keys=sweep_list, names=['sweep', 'index']) df.channel_units = units return df def keep_sweeps(df, sweep_list): """ Keeps specified sweeps from your DataFrame. Parameters ---------- df: Pandas DataFrame Dataframe created using one of the functions from Neurphys. sweep_list: 1D array_like of ints or properly formatted strings List containing numbers of the sweeps you'd like dropped from the DataFrame. Example: [1,4,6] or ['sweep001', 'sweep004', 'sweep006'] Return ------ keep_df: Pandas Dataframe Dataframe containing only the sweeps you want to keep. Notes ----- Some type checks are made, but not enough to cover the plethora of potential inputs, so read the docs if you're having trouble. """ if _all_ints(sweep_list): keep_sweeps = [('sweep'+str(i).zfill(3)) for i in sweep_list] elif _all_strs(sweep_list): keep_sweeps = sweep_list else: raise TypeError( 'List should either be appropriate sweep names or integers') keep_df = df.loc[keep_sweeps] return keep_df def drop_sweeps(df, sweep_list): """ Removes specified sweeps from your DataFrame. Parameters ---------- df: Pandas DataFrame Dataframe created using one of the functions from Neurphys. It must be multiindexed for the function to work properly. sweep_list: 1D array_like of ints or properly formatted strings List containing numbers of the sweeps you'd like dropped from the DataFrame. Example: [1,4,6] or ['sweep001', 'sweep004', 'sweep006'] Return ------ drop_df: Pandas Dataframe Dataframe containing only the sweeps you want to keep. Notes ----- Making the grand assumption that the df.index.level[0]=='sweeps' """ if _all_ints(sweep_list): drop_sweeps = [('sweep'+str(i).zfill(3)) for i in sweep_list] elif _all_strs(sweep_list): drop_sweeps = sweep_list else: raise TypeError( 'List should either be appropriate sweep names or integers') all_sweeps = df.index.levels[0].values if drop_sweeps[0] in all_sweeps: pass else: raise KeyError('Cannot index a multi-index axis with these keys') # keep_sweeps = list(set(all_sweeps).difference(drop_sweeps)) keep_sweeps = list(set(all_sweeps) ^ set(drop_sweeps)) drop_df = df.loc[keep_sweeps] return drop_df
gpl-3.0
nmartensen/pandas
asv_bench/benchmarks/reshape.py
7
4225
from .pandas_vb_common import * from pandas import melt, wide_to_long class melt_dataframe(object): goal_time = 0.2 def setup(self): self.index = MultiIndex.from_arrays([np.arange(100).repeat(100), np.roll(np.tile(np.arange(100), 100), 25)]) self.df = DataFrame(np.random.randn(10000, 4), index=self.index) self.df = DataFrame(np.random.randn(10000, 3), columns=['A', 'B', 'C']) self.df['id1'] = np.random.randint(0, 10, 10000) self.df['id2'] = np.random.randint(100, 1000, 10000) def time_melt_dataframe(self): melt(self.df, id_vars=['id1', 'id2']) class reshape_pivot_time_series(object): goal_time = 0.2 def setup(self): self.index = MultiIndex.from_arrays([np.arange(100).repeat(100), np.roll(np.tile(np.arange(100), 100), 25)]) self.df = DataFrame(np.random.randn(10000, 4), index=self.index) self.index = date_range('1/1/2000', periods=10000, freq='h') self.df = DataFrame(randn(10000, 50), index=self.index, columns=range(50)) self.pdf = self.unpivot(self.df) self.f = (lambda : self.pdf.pivot('date', 'variable', 'value')) def time_reshape_pivot_time_series(self): self.f() def unpivot(self, frame): (N, K) = frame.shape self.data = {'value': frame.values.ravel('F'), 'variable': np.asarray(frame.columns).repeat(N), 'date': np.tile(np.asarray(frame.index), K), } return DataFrame(self.data, columns=['date', 'variable', 'value']) class reshape_stack_simple(object): goal_time = 0.2 def setup(self): self.index = MultiIndex.from_arrays([np.arange(100).repeat(100), np.roll(np.tile(np.arange(100), 100), 25)]) self.df = DataFrame(np.random.randn(10000, 4), index=self.index) self.udf = self.df.unstack(1) def time_reshape_stack_simple(self): self.udf.stack() class reshape_unstack_simple(object): goal_time = 0.2 def setup(self): self.index = MultiIndex.from_arrays([np.arange(100).repeat(100), np.roll(np.tile(np.arange(100), 100), 25)]) self.df = DataFrame(np.random.randn(10000, 4), index=self.index) def time_reshape_unstack_simple(self): self.df.unstack(1) class reshape_unstack_large_single_dtype(object): goal_time = 0.2 def setup(self): m = 100 n = 1000 levels = np.arange(m) index = pd.MultiIndex.from_product([levels]*2) columns = np.arange(n) values = np.arange(m*m*n).reshape(m*m, n) self.df = pd.DataFrame(values, index, columns) self.df2 = self.df.iloc[:-1] def time_unstack_full_product(self): self.df.unstack() def time_unstack_with_mask(self): self.df2.unstack() class unstack_sparse_keyspace(object): goal_time = 0.2 def setup(self): self.index = MultiIndex.from_arrays([np.arange(100).repeat(100), np.roll(np.tile(np.arange(100), 100), 25)]) self.df = DataFrame(np.random.randn(10000, 4), index=self.index) self.NUM_ROWS = 1000 for iter in range(10): self.df = DataFrame({'A': np.random.randint(50, size=self.NUM_ROWS), 'B': np.random.randint(50, size=self.NUM_ROWS), 'C': np.random.randint((-10), 10, size=self.NUM_ROWS), 'D': np.random.randint((-10), 10, size=self.NUM_ROWS), 'E': np.random.randint(10, size=self.NUM_ROWS), 'F': np.random.randn(self.NUM_ROWS), }) self.idf = self.df.set_index(['A', 'B', 'C', 'D', 'E']) if (len(self.idf.index.unique()) == self.NUM_ROWS): break def time_unstack_sparse_keyspace(self): self.idf.unstack() class wide_to_long_big(object): goal_time = 0.2 def setup(self): vars = 'ABCD' nyrs = 20 nidvars = 20 N = 5000 yrvars = [] for var in vars: for yr in range(1, nyrs + 1): yrvars.append(var + str(yr)) self.df = pd.DataFrame(np.random.randn(N, nidvars + len(yrvars)), columns=list(range(nidvars)) + yrvars) self.vars = vars def time_wide_to_long_big(self): self.df['id'] = self.df.index wide_to_long(self.df, list(self.vars), i='id', j='year')
bsd-3-clause
ajijohn/brainprinter
server/server_df.py
1
3323
import requests import pandas as pd ################################# # Table format: # |customerName | customerEmail | inputfile | # ################################# def read_table(table_filename): try: df = pd.read_csv(table_filename) except FileNotFoundError: print("Could not find table.") def process_request(request): """ This requests a row from the table. Usage: process_request(df[row_number]) """ print("Processing request for "+request['customerName']+'.') return(True) def send_message(customer_name,customer_email): return requests.post( "https://api.mailgun.net/v3/sandbox8a8eabd810b540f5a7eca93aecbec851.mailgun.org/messages", auth=("api","key-22e20caa980e3fd1835b1105d6ea5e29"), # files=[("attachment", open("rh.stl","rb")),("inline",open("rh.gif","rb"))], files=[("attachment", open("rh_decim.stl.stl","rb")),("inline",open("rh.gif","rb"))], data={"from": "Brain Printing Service <[email protected]>", "to": [customer_email], "subject": "Your Brain Is On Its Way", "text": "Congratulations!!! You are one step way from your printed brain. Just bring the attached .stl file to the printer."} #headers={'Content-type': 'multipart/form-data'} ) if __name__ == "__main__": # from crontab import CronTab # cron = CronTab(tabfile='/etc/crontab') # job = cron.new(command='/usr/bin/echo') # job.minute.during(5,50).every(5) import threading import time #TODO use requests table table_name = "database.csv" def ping_table(): #TODO avoid reading whole table df = pd.read_csv(table_name) # apply approach # new_requests = df.loc[df["status"] == 'upload_finished'] # if len(new_requests)>0: # new_requests.apply(process_request, axis=1) # loop approach recordsToProcess = df.index[df["status"] == 'upload_finished'] for id in recordsToProcess: df.loc[id]['status'] = 'process_started' df.to_csv(table_name,index=False) # Note:overwriting!!! res = process_request(df.loc[id]) time.sleep(1) if res: df.loc[id]['status'] = 'process_ended' df.to_csv(table_name,index=False) # Note: overwriting!!! #TODO: modify csv in place!!!!! recordsToSendEmail = df.index[df["status"] == 'process_ended'] for id in recordsToSendEmail: df.loc[id]['status'] = 'email_started' df.to_csv(table_name,index=False) r = send_message(df.loc[id]['customerName'],df.loc[id]['customerEmail']) print(r.status_code) if r.status_code == 200: df.loc[id]['status'] = 'email_sent' df.to_csv(table_name,index=False) # numline = len(file.readlines()) # file.close() # rint(numline) ## assuming only one new record!!! # if numline == old_numline: # row = pd.read_csv(table_name,index_col=numline) # process_request(row) # old_numline = numline while True: ping_table() time.sleep(5) #threading.Timer(5, ping_table).start()
mit
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/matplotlib/backends/backend_gtk3agg.py
8
3841
from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import numpy as np import sys import warnings from . import backend_agg from . import backend_gtk3 from .backend_cairo import cairo, HAS_CAIRO_CFFI from matplotlib.figure import Figure from matplotlib import transforms if six.PY3 and not HAS_CAIRO_CFFI: warnings.warn( "The Gtk3Agg backend is known to not work on Python 3.x with pycairo. " "Try installing cairocffi.") class FigureCanvasGTK3Agg(backend_gtk3.FigureCanvasGTK3, backend_agg.FigureCanvasAgg): def __init__(self, figure): backend_gtk3.FigureCanvasGTK3.__init__(self, figure) self._bbox_queue = [] def _renderer_init(self): pass def _render_figure(self, width, height): backend_agg.FigureCanvasAgg.draw(self) def on_draw_event(self, widget, ctx): """ GtkDrawable draw event, like expose_event in GTK 2.X """ allocation = self.get_allocation() w, h = allocation.width, allocation.height if not len(self._bbox_queue): if self._need_redraw: self._render_figure(w, h) bbox_queue = [transforms.Bbox([[0, 0], [w, h]])] else: return else: bbox_queue = self._bbox_queue if HAS_CAIRO_CFFI: ctx = cairo.Context._from_pointer( cairo.ffi.cast('cairo_t **', id(ctx) + object.__basicsize__)[0], incref=True) for bbox in bbox_queue: area = self.copy_from_bbox(bbox) buf = np.fromstring(area.to_string_argb(), dtype='uint8') x = int(bbox.x0) y = h - int(bbox.y1) width = int(bbox.x1) - int(bbox.x0) height = int(bbox.y1) - int(bbox.y0) if HAS_CAIRO_CFFI: image = cairo.ImageSurface.create_for_data( buf.data, cairo.FORMAT_ARGB32, width, height) else: image = cairo.ImageSurface.create_for_data( buf, cairo.FORMAT_ARGB32, width, height) ctx.set_source_surface(image, x, y) ctx.paint() if len(self._bbox_queue): self._bbox_queue = [] return False def blit(self, bbox=None): # If bbox is None, blit the entire canvas to gtk. Otherwise # blit only the area defined by the bbox. if bbox is None: bbox = self.figure.bbox allocation = self.get_allocation() w, h = allocation.width, allocation.height x = int(bbox.x0) y = h - int(bbox.y1) width = int(bbox.x1) - int(bbox.x0) height = int(bbox.y1) - int(bbox.y0) self._bbox_queue.append(bbox) self.queue_draw_area(x, y, width, height) def print_png(self, filename, *args, **kwargs): # Do this so we can save the resolution of figure in the PNG file agg = self.switch_backends(backend_agg.FigureCanvasAgg) return agg.print_png(filename, *args, **kwargs) class FigureManagerGTK3Agg(backend_gtk3.FigureManagerGTK3): pass def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasGTK3Agg(figure) manager = FigureManagerGTK3Agg(canvas, num) return manager FigureCanvas = FigureCanvasGTK3Agg FigureManager = FigureManagerGTK3Agg show = backend_gtk3.show
mit
larsmans/scikit-learn
sklearn/externals/joblib/__init__.py
10
4382
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://packages.python.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> import numpy as np >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make is easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ __version__ = '0.8.3' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count
bsd-3-clause
grimy55/rsr
run.py
1
8795
""" Wrappers for running RSR processing """ from . import fit from .Classdef import Async import numpy as np import pandas as pd import time from sklearn.neighbors import KDTree def timing(func): """Outputs the time a function takes to execute. """ def func_wrapper(*args, **kwargs): t1 = time.time() func(*args, **kwargs) t2 = time.time() print("- Processed in %.1f s.\n" % (t2-t1)) return func_wrapper def scale(amp): """Provide a factor to scale a set of amplitudes between 0 and 1 for correct rsr processing through fit.lmfit """ y, x = np.histogram(np.abs(amp), bins='fd') pik = x[y.argmax()] out = 1/(pik*10) return out def processor(amp, gain=0., bins='stone', fit_model='hk', scaling=True, **kwargs): """Apply RSR over a sample of amplitudes Arguments --------- amp: float array Linear amplitudes Keywords -------- gain: float Gain (in dB power) to add to the amplitudes bins: string Method to compute the bin width (inherited from numpy.histogram) fit_model: string Name of the function (in pdf module) to use for the fit scaling: boolean Whether to scale the amplitudes before processing. That ensures a correct fit in case the amplitudes are << 1 output: string Format of the output Return ------ A Statfit class """ # Remove zero values amp = amp[amp > 0] # Gain and Scaling amp = amp * 10**(gain/20.) scale_amp = scale(amp) if scaling is True else 1 amp = amp*scale_amp # Fit a = fit.lmfit( np.abs(amp), bins=bins, fit_model=fit_model) # Remove Scaling pc = 10*np.log10( a.values['a']**2 ) - 20*np.log10(scale_amp) pn = 10*np.log10( 2*a.values['s']**2 ) - 20*np.log10(scale_amp) a.sample = amp/scale_amp a.values['a'] = np.sqrt( 10**(pc/10.) ) a.values['s'] = np.sqrt( 10**(pn/10.)/2. ) # Output if 'ID' in kwargs: a.values['ID'] = kwargs['ID'] else: a.values['ID'] = -1 return a def cb_processor(a): """ Callback function for processor Argument: --------- a: class Results from "processor" (Statfit class) """ p = a.power() #print(p) print("#%d\tCorrelation: %.3f\tPt: %.1f dB Pc: %.1f dB Pn: %.1f dB" % (a.values['ID'], a.crl(), p['pt'], p['pc'], p['pn'] ) ) return a def frames(x ,winsize=1000., sampling=250, **kwargs): """ Defines along-track frames coordinates for rsr application Arguments --------- x: float array vector index Keywords -------- winsize: int Number of elements in a window sampling: int Sampling step """ # Window first and last id xa = x[:np.int(x.size-winsize):np.int(sampling)] xb = xa + winsize-1 # Cut last window in limb if xb[-1] > x[-1]: xb[-1] = x[-1] xo = [val+(xb[i]-val)/2. for i, val in enumerate(xa)] # Output out = [ np.array([xa[i], xb[i]]).astype('int64') for i in np.arange(xa.size) ] out = {'xa':np.array(xa, dtype=np.int64), 'xb':np.array(xb, dtype=np.int64), 'xo':np.array(xo, dtype=np.float64), } return out #@timing def along(amp, nbcores=1, verbose=True, **kwargs): """ RSR applied on windows sliding along a vector of amplitudes Arguments --------- amp: Float array A vector of amplitudes Keywords -------- nbcores: int number of cores verbose: boolean print results Any keywords accepted by 'processor' and 'frames' Return ------ """ t1 = time.time() #----------- # Parameters #----------- # Windows along-track x = np.arange( len(amp) ) #vector index w = frames(x, **kwargs) ID = np.arange(w['xa'].size) # Jobs Definition args, kwgs = [], [] for i in ID: args.append( amp[w['xa'][i]: w['xb'][i]] ) #kwgs.append( dict(**kwargs, i=w['xo'][i]) ) #----------- # Processing #----------- # Do NOT use the multiprocessing package if nbcores== -1: results = pd.DataFrame() for i in ID: a = processor(args[i], **kwargs, ID=w['xo'][i]) cb_processor(a) b = {**a.values, **a.power(), 'crl':a.crl(), 'chisqr':a.chisqr,} results = results.append(b, ignore_index=True) out = results # Do use the multiprocessing package if nbcores > 0: results = [] if verbose is True: async_inline = Async(processor, cb_processor, nbcores=nbcores) elif verbose is False: async_inline = Async(processor, None, nbcores=nbcores) for i in ID: results.append( async_inline.call(args[i], **kwargs, ID=w['xo'][i]) ) async_inline.wait() # Sorting Results out = pd.DataFrame() for i in results: a = i.get() b = {**a.values, **a.power(), 'crl':a.crl(), 'chisqr':a.chisqr,} out = out.append(b, ignore_index=True) out = out.sort_values('ID') out['xa'] = w['xa'] out['xb'] = w['xb'] out['xo'] = w['xo'] out = out.drop('ID', 1) t2 = time.time() if verbose is True: print("- Processed in %.1f s.\n" % (t2-t1)) return out #@timing def incircles(amp, amp_x, amp_y, circle_x, circle_y, circle_r, leaf_size=None, nbcores=1, verbose=True, **kwargs): """ RSR applied over data within circles Arguments --------- amp: Float array A vector of amplitudes amp_x: Float array X coordinates for amp amp_y: Float array Y coordinates for amp circle_x: Float array X coordinates for circles circle_y: Float array Y_coordinates for circles circle_r: Float Radius of the circles leaf_size: Integer (Default: None) Set the leaf size for the KD-Tree. Inherits from sklearn. If None, use a brute force technique Keywords -------- leaf_size: Integer (Default: None) Set the leaf size for the KD-Tree. Inherits from sklearn. If None, use a brute force technique nbcores: int number of cores verbose: boolean print results Any keywords accepted by 'processor' and 'frames' Return ------ """ t1 = time.time() #----------- # Parameters #----------- # Coordinates units #if deg is True: # metrics = 'haversine' # amp_x = np.deg2rad(amp_x) # amp_y = np.deg2rad(amp_y) # circle_x = np.deg2rad(circle_x) # circle_y = np.deg2rad(circle_y) # circle_r = np.deg2rad(circle_r) #else: # metrics = 'euclidian' # KD-Tree if leaf_size is None: leaf_size = len(amp) amp_xy = np.array(list(zip(amp_x, amp_y))) tree = KDTree(amp_xy, leaf_size=leaf_size) # Radius Query circle_xy = np.array(list(zip(circle_x, circle_y))) ind = tree.query_radius(circle_xy, r=circle_r) # Jobs Definition ID, args, kwgs = [], [], [] for i, data_index in enumerate(ind): if data_index.size != 0: data = np.take(amp, data_index) args.append(data) ID.append(i) #kwgs.append( dict(**kwargs, i=w['xo'][i]) ) #----------- # Processing #----------- # Do NOT use the multiprocessing package if nbcores == -1: results = pd.DataFrame() for i, orig_i in enumerate(ID): a = processor(args[i], **kwargs, ID=orig_i) cb_processor(a) b = {**a.values, **a.power(), 'crl':a.crl(), 'chisqr':a.chisqr,} results = results.append(b, ignore_index=True) out = results # Do use the multiprocessing package if nbcores > 0: results = [] if verbose is True: async_inline = Async(processor, cb_processor, nbcores=nbcores) elif verbose is False: async_inline = Async(processor, None, nbcores=nbcores) for i, orig_i in enumerate(ID): results.append( async_inline.call(args[i], **kwargs, ID=orig_i) ) async_inline.wait() # Sorting Results out = pd.DataFrame() for i in results: a = i.get() b = {**a.values, **a.power(), 'crl':a.crl(), 'chisqr':a.chisqr,} out = out.append(b, ignore_index=True) out = out.sort_values('ID') #out['xa'] = w['xa'] #out['xb'] = w['xb'] #out['xo'] = w['xo'] #out = out.drop('ID', 1) t2 = time.time() if verbose is True: print("- Processed in %.1f s.\n" % (t2-t1)) return out
mit
michaelStettler/HISI
HISI/run_mnist_HISI.py
1
5512
import sys import numpy as np import matplotlib.pylab as plt import scipy.misc from HISI import * import datetime from multiprocessing import Process # mnist # data = np.load("Stimuli/mnist_test.npy") data = np.load("Stimuli/mnist_test_4bar.npy") # data = np.load("Stimuli/mnist_train_3bar.npy") # data = np.load("Stimuli/mnist_test_0bar_baseline.npy") # data = np.load("Stimuli/mnist_train_0bar_baseline.npy") show = True obstructed = True test = True save = True single_thread = False if len(sys.argv) > 1: data = np.load("Stimuli/"+str(sys.argv[1])+".npy") #argument order: show, obstructed, test, save, single_thread # show if sys.argv[2] == 'True': show = True else: show = False # obstructed if sys.argv[3] == 'True': obstructed = True else: obstructed = False # test if sys.argv[4] == 'True': test = True else: test = False # save if sys.argv[5] == 'True': save = True else: save = False # single_thread if sys.argv[6] == 'True': single_thread = True else: single_thread = False # input = np.reshape(data[0], (28, 28)) # test: 7 train: 7 # input = np.reshape(data[1], (28, 28)) # test: 2 train: 3 # input = np.reshape(data[2], (28, 28)) # test: 1 train: 4 # input = np.reshape(data[3], (28, 28)) # test: 0 train: 6 # input = np.reshape(data[4], (28, 28)) # test: 4 -> two parts train: 1 # input = np.reshape(data[5], (28, 28)) # test: 1 train: 8 # input = np.reshape(data[6], (28, 28)) # test: 4 train: 1 # input = np.reshape(data[7], (28, 28)) # test: 9 train: 0 # input = np.reshape(data[8], (28, 28)) # test: 6 train: 9 # input = np.reshape(data[9], (28, 28)) # test: 9 -> two parts train: 8 # input = np.reshape(data[403], (28, 28)) # test: 8 # input[(input > 0) & (input < 0.5)] = 0.4 # input[input > 0] = 0.4 # input = mnist_test() # input = mnist_test2() # input = mnist_test3() # input = mnist_test4() # input = mnist_test5() # input = mnist_test6() # input = mnist_test7() # input = mnist_test8() # input = mnist_test9() # input = mnist_test10() num_bars = 0 if obstructed: #train num_bars = 3 if test: #test num_bars = 4 print("num bars", num_bars) def run_mnist_hisi(start, stop): print("From:", start, " to ", stop) stimuli = [] stimuli2 = [] for m, mnist in enumerate(data[start:stop]): print() print("################################") print("########## "+str(m + start)+" #########") print("################################") input = np.reshape(mnist, (28, 28)) input[(input > 0) & (input < 0.5)] = 0.4 images, boundaries = hisi(input, use_quadratic=False) all_img = [] for i, img in enumerate(images): if show: plt.figure() plt.imshow(show_matrix(img, boundaries[i])) all_img.append(img) # scipy.misc.toimage(img, cmin=0.0, cmax=1.0).save('img' + str(i) + '.jpg') # np.save('img'+str(num_obj), input) # # to save all the founded objects # output = np.zeros((28,28)) # nb_tot_img = np.shape(all_img)[0] # nb_img = nb_tot_img - num_bars - 2 # if nb_img > 0: # for i in range(nb_img): # output += all_img[2+i] # else: # output = all_img[1] # # output[output < 0] = 0 # stimuli.append(output) # to save the input stimuli plus the first found object # output = [all_img[0], all_img[-(num_bars + 1)]] # output = np.reshape(output2, (np.shape(output2)[0] * np.shape(output2)[1], np.shape(output2)[2])) # stimuli.append(output) # to save the last object output2 = all_img[-(num_bars + 1)] # scipy.misc.toimage(output, cmin=0.0, cmax=1.0` ).save('results/img'+str(m)+'.jpg') output2[output2 < 0] = 0 stimuli2.append(output2) if show: plt.show() # # if m > 0 and m % 1000 == 0: # np.save("results/mnist_fast_lami_train_" + str(m + start), stimuli) if save: # np.save("temp/mnist_HISI_"+str(start), stimuli) np.save("temp/mnist_HISI_"+str(start), stimuli2) if __name__ == '__main__': startSimulationTime = datetime.datetime.now() if single_thread: # one thread run_mnist_hisi(0, 10) else: # multi processor # train: 55000 -> 11 cores / 5000 images # test: 10000 -> 16 cores / 625 images if test: npt = 625 # Number of images Per Thread num_cores = 16 else: npt = 5000 # Number of images Per Thread num_cores = 11 thread_list = [] run_size = npt * num_cores for i in range(num_cores): batch_size = i * npt start = batch_size stop = start + npt p = Process(target=run_mnist_hisi, args=(start,stop)) thread_list.append(p) for p in thread_list: p.start() for p in thread_list: p.join() endSimulationTime = datetime.datetime.now() print("Simulation time: " + str(endSimulationTime - startSimulationTime))
mit
wangyarui/deep-learning
AutoEncoder/convDAE.py
1
3032
# -*- coding: utf-8 -*- import numpy as np import tensorflow as tf print("TensorFlow Version: %s" % tf.__version__) import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', validation_size=0, one_hot=False) img = mnist.train.images[20] plt.imshow(img.reshape((28, 28))) inputs_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='inputs_') targets_ = tf.placeholder(tf.float32, (None, 28, 28, 1), name='targets_') conv1 = tf.layers.conv2d(inputs_, 64, (3,3), padding='same', activation=tf.nn.relu) conv1 = tf.layers.max_pooling2d(conv1, (2,2), (2,2), padding='same') conv2 = tf.layers.conv2d(conv1, 64, (3,3), padding='same', activation=tf.nn.relu) conv2 = tf.layers.max_pooling2d(conv2, (2,2), (2,2), padding='same') conv3 = tf.layers.conv2d(conv2, 32, (3,3), padding='same', activation=tf.nn.relu) conv3 = tf.layers.max_pooling2d(conv3, (2,2), (2,2), padding='same') conv4 = tf.image.resize_nearest_neighbor(conv3, (7,7)) conv4 = tf.layers.conv2d(conv4, 32, (3,3), padding='same', activation=tf.nn.relu) conv5 = tf.image.resize_nearest_neighbor(conv4, (14,14)) conv5 = tf.layers.conv2d(conv5, 64, (3,3), padding='same', activation=tf.nn.relu) conv6 = tf.image.resize_nearest_neighbor(conv5, (28,28)) conv6 = tf.layers.conv2d(conv6, 64, (3,3), padding='same', activation=tf.nn.relu) logits_ = tf.layers.conv2d(conv6, 1, (3,3), padding='same', activation=None) outputs_ = tf.nn.sigmoid(logits_, name='outputs_') loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=targets_, logits=logits_) cost = tf.reduce_mean(loss) optimizer = tf.train.AdamOptimizer(0.001).minimize(cost) sess = tf.Session() noise_factor = 0.5 epochs = 10 batch_size = 128 sess.run(tf.global_variables_initializer()) for e in range(epochs): for idx in range(mnist.train.num_examples//batch_size): batch = mnist.train.next_batch(batch_size) imgs = batch[0].reshape((-1, 28, 28, 1)) # 加入噪声 noisy_imgs = imgs + noise_factor * np.random.randn(*imgs.shape) noisy_imgs = np.clip(noisy_imgs, 0., 1.) batch_cost, _ = sess.run([cost, optimizer], feed_dict={inputs_: noisy_imgs, targets_: imgs}) print("Epoch: {}/{} ".format(e+1, epochs), "Training loss: {:.4f}".format(batch_cost)) fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4)) in_imgs = mnist.test.images[10:20] noisy_imgs = in_imgs + noise_factor * np.random.randn(*in_imgs.shape) noisy_imgs = np.clip(noisy_imgs, 0., 1.) reconstructed = sess.run(outputs_, feed_dict={inputs_: noisy_imgs.reshape((10, 28, 28, 1))}) for images, row in zip([noisy_imgs, reconstructed], axes): for img, ax in zip(images, row): ax.imshow(img.reshape((28, 28))) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() fig.tight_layout(pad=0.1)
unlicense
agsax2002/DataSciencePresentations
fig_code/figures.py
34
8633
import numpy as np import matplotlib.pyplot as plt import warnings def plot_venn_diagram(): fig, ax = plt.subplots(subplot_kw=dict(frameon=False, xticks=[], yticks=[])) ax.add_patch(plt.Circle((0.3, 0.3), 0.3, fc='red', alpha=0.5)) ax.add_patch(plt.Circle((0.6, 0.3), 0.3, fc='blue', alpha=0.5)) ax.add_patch(plt.Rectangle((-0.1, -0.1), 1.1, 0.8, fc='none', ec='black')) ax.text(0.2, 0.3, '$x$', size=30, ha='center', va='center') ax.text(0.7, 0.3, '$y$', size=30, ha='center', va='center') ax.text(0.0, 0.6, '$I$', size=30) ax.axis('equal') def plot_example_decision_tree(): fig = plt.figure(figsize=(10, 4)) ax = fig.add_axes([0, 0, 0.8, 1], frameon=False, xticks=[], yticks=[]) ax.set_title('Example Decision Tree: Animal Classification', size=24) def text(ax, x, y, t, size=20, **kwargs): ax.text(x, y, t, ha='center', va='center', size=size, bbox=dict(boxstyle='round', ec='k', fc='w'), **kwargs) text(ax, 0.5, 0.9, "How big is\nthe animal?", 20) text(ax, 0.3, 0.6, "Does the animal\nhave horns?", 18) text(ax, 0.7, 0.6, "Does the animal\nhave two legs?", 18) text(ax, 0.12, 0.3, "Are the horns\nlonger than 10cm?", 14) text(ax, 0.38, 0.3, "Is the animal\nwearing a collar?", 14) text(ax, 0.62, 0.3, "Does the animal\nhave wings?", 14) text(ax, 0.88, 0.3, "Does the animal\nhave a tail?", 14) text(ax, 0.4, 0.75, "> 1m", 12, alpha=0.4) text(ax, 0.6, 0.75, "< 1m", 12, alpha=0.4) text(ax, 0.21, 0.45, "yes", 12, alpha=0.4) text(ax, 0.34, 0.45, "no", 12, alpha=0.4) text(ax, 0.66, 0.45, "yes", 12, alpha=0.4) text(ax, 0.79, 0.45, "no", 12, alpha=0.4) ax.plot([0.3, 0.5, 0.7], [0.6, 0.9, 0.6], '-k') ax.plot([0.12, 0.3, 0.38], [0.3, 0.6, 0.3], '-k') ax.plot([0.62, 0.7, 0.88], [0.3, 0.6, 0.3], '-k') ax.plot([0.0, 0.12, 0.20], [0.0, 0.3, 0.0], '--k') ax.plot([0.28, 0.38, 0.48], [0.0, 0.3, 0.0], '--k') ax.plot([0.52, 0.62, 0.72], [0.0, 0.3, 0.0], '--k') ax.plot([0.8, 0.88, 1.0], [0.0, 0.3, 0.0], '--k') ax.axis([0, 1, 0, 1]) def visualize_tree(estimator, X, y, boundaries=True, xlim=None, ylim=None): estimator.fit(X, y) if xlim is None: xlim = (X[:, 0].min() - 0.1, X[:, 0].max() + 0.1) if ylim is None: ylim = (X[:, 1].min() - 0.1, X[:, 1].max() + 0.1) x_min, x_max = xlim y_min, y_max = ylim xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100)) Z = estimator.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, alpha=0.2, cmap='rainbow') plt.clim(y.min(), y.max()) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow') plt.axis('off') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.clim(y.min(), y.max()) # Plot the decision boundaries def plot_boundaries(i, xlim, ylim): if i < 0: return tree = estimator.tree_ if tree.feature[i] == 0: plt.plot([tree.threshold[i], tree.threshold[i]], ylim, '-k') plot_boundaries(tree.children_left[i], [xlim[0], tree.threshold[i]], ylim) plot_boundaries(tree.children_right[i], [tree.threshold[i], xlim[1]], ylim) elif tree.feature[i] == 1: plt.plot(xlim, [tree.threshold[i], tree.threshold[i]], '-k') plot_boundaries(tree.children_left[i], xlim, [ylim[0], tree.threshold[i]]) plot_boundaries(tree.children_right[i], xlim, [tree.threshold[i], ylim[1]]) if boundaries: plot_boundaries(0, plt.xlim(), plt.ylim()) def plot_tree_interactive(X, y): from sklearn.tree import DecisionTreeClassifier def interactive_tree(depth=1): clf = DecisionTreeClassifier(max_depth=depth, random_state=0) visualize_tree(clf, X, y) from IPython.html.widgets import interact return interact(interactive_tree, depth=[1, 5]) def plot_kmeans_interactive(min_clusters=1, max_clusters=6): from IPython.html.widgets import interact from sklearn.metrics.pairwise import euclidean_distances from sklearn.datasets.samples_generator import make_blobs with warnings.catch_warnings(): warnings.filterwarnings('ignore') X, y = make_blobs(n_samples=300, centers=4, random_state=0, cluster_std=0.60) def _kmeans_step(frame=0, n_clusters=4): rng = np.random.RandomState(2) labels = np.zeros(X.shape[0]) centers = rng.randn(n_clusters, 2) nsteps = frame // 3 for i in range(nsteps + 1): old_centers = centers if i < nsteps or frame % 3 > 0: dist = euclidean_distances(X, centers) labels = dist.argmin(1) if i < nsteps or frame % 3 > 1: centers = np.array([X[labels == j].mean(0) for j in range(n_clusters)]) nans = np.isnan(centers) centers[nans] = old_centers[nans] # plot the data and cluster centers plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='rainbow', vmin=0, vmax=n_clusters - 1); plt.scatter(old_centers[:, 0], old_centers[:, 1], marker='o', c=np.arange(n_clusters), s=200, cmap='rainbow') plt.scatter(old_centers[:, 0], old_centers[:, 1], marker='o', c='black', s=50) # plot new centers if third frame if frame % 3 == 2: for i in range(n_clusters): plt.annotate('', centers[i], old_centers[i], arrowprops=dict(arrowstyle='->', linewidth=1)) plt.scatter(centers[:, 0], centers[:, 1], marker='o', c=np.arange(n_clusters), s=200, cmap='rainbow') plt.scatter(centers[:, 0], centers[:, 1], marker='o', c='black', s=50) plt.xlim(-4, 4) plt.ylim(-2, 10) if frame % 3 == 1: plt.text(3.8, 9.5, "1. Reassign points to nearest centroid", ha='right', va='top', size=14) elif frame % 3 == 2: plt.text(3.8, 9.5, "2. Update centroids to cluster means", ha='right', va='top', size=14) return interact(_kmeans_step, frame=[0, 50], n_clusters=[min_clusters, max_clusters]) def plot_image_components(x, coefficients=None, mean=0, components=None, imshape=(8, 8), n_components=6, fontsize=12): if coefficients is None: coefficients = x if components is None: components = np.eye(len(coefficients), len(x)) mean = np.zeros_like(x) + mean fig = plt.figure(figsize=(1.2 * (5 + n_components), 1.2 * 2)) g = plt.GridSpec(2, 5 + n_components, hspace=0.3) def show(i, j, x, title=None): ax = fig.add_subplot(g[i, j], xticks=[], yticks=[]) ax.imshow(x.reshape(imshape), interpolation='nearest') if title: ax.set_title(title, fontsize=fontsize) show(slice(2), slice(2), x, "True") approx = mean.copy() show(0, 2, np.zeros_like(x) + mean, r'$\mu$') show(1, 2, approx, r'$1 \cdot \mu$') for i in range(0, n_components): approx = approx + coefficients[i] * components[i] show(0, i + 3, components[i], r'$c_{0}$'.format(i + 1)) show(1, i + 3, approx, r"${0:.2f} \cdot c_{1}$".format(coefficients[i], i + 1)) plt.gca().text(0, 1.05, '$+$', ha='right', va='bottom', transform=plt.gca().transAxes, fontsize=fontsize) show(slice(2), slice(-2, None), approx, "Approx") def plot_pca_interactive(data, n_components=6): from sklearn.decomposition import PCA from IPython.html.widgets import interact pca = PCA(n_components=n_components) Xproj = pca.fit_transform(data) def show_decomp(i=0): plot_image_components(data[i], Xproj[i], pca.mean_, pca.components_) interact(show_decomp, i=(0, data.shape[0] - 1));
mit
miltonsarria/dsp-python
arduino/ejemplo2.py
1
6249
#Milton Orlando Sarria #USC - Cali #visualizar datos provenientes de arduino de forma grafica import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import numpy as np import serial import threading import time ####################################################################### ####################################################################### portname = '/dev/ttyACM0' #verficar el nombre de su puerto portrate = 9600 #velocidad baudrate ####################################################################### ####################################################################### ####################################################################### ####################################################################### ####################################################################### ####################################################################### class comObj(threading.Thread): def __init__(self,portName,portRate): threading.Thread.__init__(self) self.raw_data = '0\r\n' #initial value self.dataCount = 0 #no data self.read = False #flag to read from serial port self.stop = False #flag to stop the whole process self.portName = portName self.portRate = portRate self.num_data = np.array([]) self.tRead = 10/1e3 def run(self): #create the port instance self.serPort = serial.Serial(self.portName, self.portRate) while not(self.stop): while self.read: self.raw_data =self.serPort.readline() #if it only reads '\r\n' or less, there is no data if len(self.raw_data)>2: try: self.num_data=np.append(self.num_data,float(self.raw_data[:-2])) self.dataCount+=1 except: print('Error: no data') #if stop the process, close the port before leaving self.serPort.close() return def kill(self): self.read=False self.stop=True return def save(self,name_file): x_data=np.arange(self.num_data.size) X=np.vstack((x_data,self.num_data)) X=X.transpose() np.savetxt(name_file, X, fmt='%5.5f', delimiter='\t', newline='\n', header='', footer='', comments='# ') return ####################################################################### ####################################################################### ####################################################################### def update(i): buffersize = 256 y_b = np.array([]) x_b = np.array([]) if readObj.dataCount>0: y_data=readObj.num_data x_data=np.linspace(0,readObj.dataCount*readObj.tRead,y_data.size) if y_data.size<buffersize: y_b=y_data x_b=x_data else: y_b=y_data[y_data.size-buffersize:] x_b=x_data[x_data.size-buffersize:] ax.clear() ax.plot(x_b,y_b) #definir el objeto que permite comunicacipn y tratamiento de datos provenientes de arduino readObj = comObj(portname,portrate) readObj.read=True #iniciar la lectura #inicializar la grafica fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.set_autoscaley_on(True) ax.set_ylim(-1, 1) readObj.start() #iniciar hilo para lectura de datos ani = FuncAnimation(fig, update, interval=500) #actualizar la grafica cada 500 ms plt.show() readObj.kill() ####################################################################### ####################################################################### ####################################################################### #arduino code ''' //sumar tres sinusoidales float t = 0; //valor de la variable independiente double value = 0; //resultado que se va a transmitir al pc int t_sample = 10; //tiempo de muestreo, en ms. Separacion entre muestras, cada cuanto tiempo //se transmite una nueva muestra al pc const float pi=3.141592; void setup() { Serial.begin(9600); } void loop() { //sumar tres componentes frecuenciales value=sin(2*pi*1*t)+0.7*sin(2*pi*2*t)+0.3*sin(2*pi*4*t); Serial.println(value,4); t=t+float(t_sample)/1000; delay(t_sample); } ''' ####################################################################### ''' //generar una onda cuadrada sumando diferentes armonicos usando las series de Fourier float t = 0; //valor de la variable independiente double value = 0; //resultado que se va a transmitir al pc int t_sample = 10; //tiempo de muestreo, en ms. Separacion entre muestras, cada cuanto tiempo //se transmite una nueva muestra al pc const float pi=3.141592; const float f = 2; void setup() { Serial.begin(9600); } void loop() { //sumar tres componentes frecuenciales float w; int MAX=4; if(t>5) MAX=10; if(t>10) MAX=20; if(t>15) MAX=40; value=0; for(int i=1;i<MAX;i+=2) { w=2*pi*f*i; value=value+2/(i*pi)*sin(w*t); } Serial.println(value,4); t=t+float(t_sample)/1000; delay(t_sample); } ''' ####################################################################### ''' //generar una onda triangular sumando diferentes armonicos usando las series de Fourier float t = 0; //valor de la variable independiente double value = 0; //resultado que se va a transmitir al pc int t_sample = 10; //tiempo de muestreo, en ms. Separacion entre muestras, cada cuanto tiempo //se transmite una nueva muestra al pc const float pi=3.141592; const float f = 2; void setup() { Serial.begin(9600); } void loop() { //sumar tres componentes frecuenciales float w; int MAX=3; if(t>5) MAX=5; if(t>10) MAX=8; if(t>15) MAX=10; if(t>20) MAX=50; value=0; for(int i=1;i<MAX;i++) { w=2*pi*f*i; value=value+2/(pow(i,2)*pow(pi,2))*(cos(i*pi)-1)*cos(w*t); } value=2*value; Serial.println(value,4); t=t+float(t_sample)/1000; delay(t_sample); } '''
mit
jgliss/pyplis
scripts/ex03_plume_background.py
1
11609
# -*- coding: utf-8 -*- # # Pyplis is a Python library for the analysis of UV SO2 camera data # Copyright (C) 2017 Jonas Gliß ([email protected]) # # This program is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License a # published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """Pyplis example script no. 3 - Plume background analysis. This example script introduces features related to plume background modelling and tau image calculations. """ from __future__ import (absolute_import, division) from SETTINGS import check_version import numpy as np from os.path import join import pyplis from matplotlib.pyplot import show, subplots, close # IMPORT GLOBAL SETTINGS from SETTINGS import SAVEFIGS, SAVE_DIR, FORMAT, DPI, IMG_DIR, OPTPARSE # Check script version check_version() # SCRIPT OPTIONS # If this is True, then sky reference areas are set in auto mode (note that # in this case, the tests at the end of the script will fail!) USE_AUTO_SETTINGS = False # intensity threshold to init mask for bg surface fit POLYFIT_2D_MASK_THRESH = 2600 # Choose the background correction modes you want to use BG_CORR_MODES = [0, # 2D poly surface fit (without sky radiance image) 1, # Scaling of sky radiance image 4, # Scaling + linear gradient correction in x & y direction 6] # Scaling + quadr. gradient correction in x & y direction # Image file paths relevant for this script PLUME_FILE = join(IMG_DIR, 'EC2_1106307_1R02_2015091607065477_F01_Etna.fts') BG_FILE = join(IMG_DIR, 'EC2_1106307_1R02_2015091607022602_F01_Etna.fts') OFFSET_FILE = join(IMG_DIR, 'EC2_1106307_1R02_2015091607064723_D0L_Etna.fts') DARK_FILE = join(IMG_DIR, 'EC2_1106307_1R02_2015091607064865_D1L_Etna.fts') # SCRIPT FUNCTION DEFINITIONS def init_background_model(): """Create background model and define relevant sky reference areas.""" # Create background modelling object m = pyplis.plumebackground.PlumeBackgroundModel() # Define default gas free areas in plume image w, h = 40, 40 # width/height of rectangles m.scale_rect = [1280, 20, 1280 + w, 20 + h] m.xgrad_rect = [20, 20, 20 + w, 20 + h] m.ygrad_rect = [1280, 660, 1280 + w, 660 + h] # Define coordinates of horizontal and vertical profile lines # row number of profile line for horizontal corretions in the sky # gradient... m.xgrad_line_rownum = 40 # ... and start / stop columns for the corrections m.xgrad_line_startcol = 20 m.xgrad_line_stopcol = 1323 # col number of profile line for vertical corretions in the sky gradient... m.ygrad_line_colnum = 1300 # ... and start / stop rows for the corrections m.ygrad_line_startrow = 10 m.ygrad_line_stoprow = 700 # Order of polyonmial fit applied for the gradient correction m.ygrad_line_polyorder = 2 return m def load_and_prepare_images(): """Load images defined above and prepare them for the background analysis. Returns ------- - Img, plume image - Img, plume image vignetting corrected - Img, sky radiance image """ # get custom load method for ECII fun = pyplis.custom_image_import.load_ecII_fits # Load the image objects and peform dark correction plume, bg = pyplis.Img(PLUME_FILE, fun), pyplis.Img(BG_FILE, fun) dark, offset = pyplis.Img(DARK_FILE, fun), pyplis.Img(OFFSET_FILE, fun) # Model dark image for tExp of plume image dark_plume = pyplis.image.model_dark_image(plume.meta["texp"], dark, offset) # Model dark image for tExp of background image dark_bg = pyplis.image.model_dark_image(bg.meta["texp"], dark, offset) plume.subtract_dark_image(dark_plume) bg.subtract_dark_image(dark_bg) # Blur the images (sigma = 1) plume.add_gaussian_blurring(1) bg.add_gaussian_blurring(1) # Create vignetting correction mask from background image vign = bg.img / bg.img.max() # NOTE: potentially includes y & x gradients plume_vigncorr = pyplis.Img(plume.img / vign) return plume, plume_vigncorr, bg def autosettings_vs_manual_settings(bg_model): """Perform automatic retrieval of sky reference areas. If you are lazy... (i.e. you dont want to define all these reference areas) then you could also use the auto search function, a comparison is plotted here. """ auto_params = pyplis.plumebackground.find_sky_reference_areas(plume) current_params = bg_model.settings_dict() fig, axes = subplots(1, 2, figsize=(16, 6)) axes[0].set_title("Manually set parameters") pyplis.plumebackground.plot_sky_reference_areas(plume, current_params, ax=axes[0]) pyplis.plumebackground.plot_sky_reference_areas(plume, auto_params, ax=axes[1]) axes[1].set_title("Automatically set parameters") return auto_params, fig def plot_pcs_profiles_4_tau_images(tau0, tau1, tau2, tau3, pcs_line): """Plot PCS profiles for all 4 methods.""" fig, ax = subplots(1, 1) tau_imgs = [tau0, tau1, tau2, tau3] for k in range(4): img = tau_imgs[k] profile = pcs_line.get_line_profile(img) ax.plot(profile, "-", label=r"Mode %d: $\phi=%.3f$" % (BG_CORR_MODES[k], np.mean(profile))) ax.grid() ax.set_ylabel(r"$\tau_{on}$", fontsize=20) ax.set_xlim([0, pcs_line.length()]) ax.set_xticklabels([]) ax.set_xlabel("PCS", fontsize=16) ax.legend(loc="best", fancybox=True, framealpha=0.5, fontsize=12) return fig # SCRIPT MAIN FUNCTION if __name__ == "__main__": close("all") # Create a background model with relevant sky reference areas bg_model = init_background_model() # Define exemplary plume cross section line pcs_line = pyplis.LineOnImage(x0=530, y0=730, x1=890, y1=300, line_id="example PCS", color="lime") plume, plume_vigncorr, bg = load_and_prepare_images() auto_params, fig0 = autosettings_vs_manual_settings(bg_model) # Script option if USE_AUTO_SETTINGS: bg_model.update(**auto_params) # Model 4 exemplary tau images # list to store figures of tau plotted tau images _tau_figs = [] # mask for corr mode 0 (i.e. 2D polyfit) mask = np.ones(plume_vigncorr.img.shape, dtype=np.float32) mask[plume_vigncorr.img < POLYFIT_2D_MASK_THRESH] = 0 # First method: retrieve tau image using poly surface fit tau0 = bg_model.get_tau_image(plume_vigncorr, mode=BG_CORR_MODES[0], surface_fit_mask=mask, surface_fit_polyorder=1) # Plot the result and append the figure to _tau_figs _tau_figs.append(bg_model.plot_tau_result(tau0, PCS=pcs_line)) # Second method: scale background image to plume image in "scale" rect tau1 = bg_model.get_tau_image(plume, bg, mode=BG_CORR_MODES[1]) _tau_figs.append(bg_model.plot_tau_result(tau1, PCS=pcs_line)) # Third method: Linear correction for radiance differences based on two # rectangles (scale, ygrad) tau2 = bg_model.get_tau_image(plume, bg, mode=BG_CORR_MODES[2]) _tau_figs.append(bg_model.plot_tau_result(tau2, PCS=pcs_line)) # 4th method: 2nd order polynomial fit along vertical profile line # For this method, determine tau on tau off and AA image tau3 = bg_model.get_tau_image(plume, bg, mode=BG_CORR_MODES[3]) _tau_figs.append(bg_model.plot_tau_result(tau3, PCS=pcs_line)) fig6 = plot_pcs_profiles_4_tau_images(tau0, tau1, tau2, tau3, pcs_line) if SAVEFIGS: fig0.savefig(join(SAVE_DIR, "ex03_out_1.%s" % FORMAT), format=FORMAT, dpi=DPI, transparent=True) for k in range(len(_tau_figs)): # _tau_figs[k].suptitle("") _tau_figs[k].savefig(join(SAVE_DIR, "ex03_out_%d.%s" % ((k + 2), FORMAT)), format=FORMAT, dpi=DPI) fig6.savefig(join(SAVE_DIR, "ex03_out_6.%s" % FORMAT), format=FORMAT, dpi=DPI) # IMPORTANT STUFF FINISHED (Below follow tests and display options) # Import script options (options, args) = OPTPARSE.parse_args() # If applicable, do some tests. This is done only if TESTMODE is active: # testmode can be activated globally (see SETTINGS.py) or can also be # activated from the command line when executing the script using the # option --test 1 if int(options.test): import numpy.testing as npt from os.path import basename m = bg_model # test settings for clear sky reference areas npt.assert_array_equal([2680, 3960, 160, 6, 1300, 10, 700, 40, 20, 1323, 567584], [sum(m.scale_rect), sum(m.ygrad_rect), sum(m.xgrad_rect), m.mode, m.ygrad_line_colnum, m.ygrad_line_startrow, m.ygrad_line_stoprow, m.xgrad_line_rownum, m.xgrad_line_startcol, m.xgrad_line_stopcol, int(m.surface_fit_mask.sum())]) m.update(**auto_params) # test settings for clear sky reference areas npt.assert_array_equal([2682, 4142, 1380, 6, 1337, 1, 790, 6, 672, 1343, 567584], [sum(m.scale_rect), sum(m.ygrad_rect), sum(m.xgrad_rect), m.mode, m.ygrad_line_colnum, m.ygrad_line_startrow, m.ygrad_line_stoprow, m.xgrad_line_rownum, m.xgrad_line_startcol, m.xgrad_line_stopcol, int(m.surface_fit_mask.sum())]) # test all tau-modelling results actual = [tau0.mean(), tau1.mean(), tau2.mean(), tau3.mean()] npt.assert_allclose(actual=actual, desired=[0.11395558008662043, 0.25279653, 0.13842879832119934, 0.13943940574220634], rtol=1e-7) print("All tests passed in script: %s" % basename(__file__)) try: if int(options.show) == 1: show() except BaseException: print("Use option --show 1 if you want the plots to be displayed")
gpl-3.0
jlec/numdifftools
numdifftools/run_benchmark.py
1
6544
import numpy as np import timeit import numdifftools as nd import numdifftools.nd_algopy as nda from algopy import dot # from numpy import dot from collections import OrderedDict from numdifftools.core import MinStepGenerator, MaxStepGenerator import matplotlib.pyplot as pyplot class BenchmarkFunction(object): def __init__(self, N): A = np.arange(N * N, dtype=float).reshape((N, N)) self.A = np.dot(A.T, A) def __call__(self, xi): x = np.array(xi) tmp = dot(self.A, x) return 0.5 * dot(x * x, tmp) def plot_errors(error_objects, problem_sizes, symbols): ploterror = pyplot.semilogy for title, funcs, results in error_objects: pyplot.figure() pyplot.title(title) # ref_sol = results[0] for i, method in enumerate(funcs): ploterror(problem_sizes, results[i], symbols[i], markerfacecolor='None', label=method) pyplot.ylabel(r'Absolute error $\|g_{ref} - g\|$') pyplot.xlabel('problem size $N$') pyplot.ylim(loglimits(results)) pyplot.grid() leg = pyplot.legend(loc=7) frame = leg.get_frame() frame.set_alpha(0.4) pyplot.savefig(title.lower().replace(' ', '_') + '.png', format='png') def plot_runtimes(run_time_objects, problem_sizes, symbols): plottime = pyplot.loglog for title, funcs, results in run_time_objects: pyplot.figure() pyplot.title(title) for i, method in enumerate(funcs): plottime(problem_sizes, results[i], symbols[i], markerfacecolor='None', label=method) pyplot.ylabel('time $t$') pyplot.xlabel('problem size $N$') pyplot.xlim(loglimits(problem_sizes)) pyplot.ylim(loglimits(results)) pyplot.grid() leg = pyplot.legend(loc=2) frame = leg.get_frame() frame.set_alpha(0.4) pyplot.savefig(title.lower().replace(' ', '_') + '.png', format='png') def loglimits(data, border=0.05): low, high = np.min(data), np.max(data) scale = (high/low)**border return low/scale, high*scale fixed_step = MinStepGenerator(num_steps=1, use_exact_steps=True, offset=0) epsilon = MaxStepGenerator(num_steps=14, use_exact_steps=True, step_ratio=1.6, offset=0) adaptiv_txt = '_adaptive_%d_%s_%d' % (epsilon.num_steps, str(epsilon.step_ratio), epsilon.offset) gradient_funs = OrderedDict() nda_method = 'forward' nda_txt = 'algopy_' + nda_method gradient_funs[nda_txt] = nda.Jacobian(1, method=nda_method) # gradient_funs['numdifftools'] = nd.Jacobian(1, **options) for method in ['forward', 'central', 'complex']: method2 = method + adaptiv_txt gradient_funs[method] = nd.Jacobian(1, method=method, step=fixed_step) gradient_funs[method2] = nd.Jacobian(1, method=method, step=epsilon) HessianFun = 'Hessdiag' ndcHessian = getattr(nd, HessianFun) # ndc.Hessian # hessian_funs = OrderedDict() hessian_funs[nda_txt] = getattr(nda, HessianFun)(1, method=nda_method) for method in ['forward', 'central', 'complex']: method2 = method + adaptiv_txt hessian_funs[method] = ndcHessian(1, method=method, step=fixed_step) hessian_funs[method2] = ndcHessian(1, method=method, step=epsilon) def compute_gradients(gradient_funs, problem_sizes): results_gradient_list = [] for N in problem_sizes: print 'N=', N num_methods = len(gradient_funs) results_gradient = np.zeros((num_methods, 3)) ref_g = None f = BenchmarkFunction(N) for i, (_key, gradient_f) in enumerate(gradient_funs.items()): t = timeit.default_timer() gradient_f.f = f preproc_time = timeit.default_timer() - t t = timeit.default_timer() x = 3 * np.ones(N) val = gradient_f(x) run_time = timeit.default_timer() - t if ref_g is None: ref_g = val err = 0 norm_ref_g = np.linalg.norm(ref_g) else: err = np.linalg.norm(val - ref_g) / norm_ref_g results_gradient[i] = run_time, err, preproc_time results_gradient_list.append(results_gradient) results_gradients = np.array(results_gradient_list) + 1e-16 print 'results_gradients=\n', results_gradients return results_gradients def compute_hessians(hessian_funs, problem_sizes): print 'starting hessian computation ' results_hessian_list = [] hessian_N_list = problem_sizes for N in hessian_N_list: print 'N=', N num_methods = len(hessian_funs) results_hessian = np.zeros((num_methods, 3)) ref_h = None f = BenchmarkFunction(N) for i, (_key, hessian_f) in enumerate(hessian_funs.items()): t = timeit.default_timer() hessian_f.f = f preproc_time = timeit.default_timer() - t t = timeit.default_timer() x = 3 * np.ones(N) val = hessian_f(x) run_time = timeit.default_timer() - t if ref_h is None: ref_h = val err = 0.0 norm_ref_h = np.linalg.norm(ref_h.ravel()) else: err = np.linalg.norm((val - ref_h).ravel()) / norm_ref_h results_hessian[i] = run_time, err, preproc_time results_hessian_list.append(results_hessian) results_hessians = np.array(results_hessian_list) + 1e-16 print hessian_N_list print 'results_hessians=\n', results_hessians return results_hessians if __name__ == '__main__': problem_sizes = (4, 8, 16, 32, 64, 96) symbols = ('-kx', ':k>', ':k<', '--k^', '--kv', '-kp', '-ks', 'b', '--b', '-k+') results_gradients = compute_gradients(gradient_funs, problem_sizes) results_hessians = compute_hessians(hessian_funs, problem_sizes) print(results_gradients.shape) run_time_objects = [('Jacobian run times', gradient_funs, results_gradients[..., 0].T), ('Hessian run times', hessian_funs, results_hessians[..., 0].T)] error_objects = [('Jacobian errors', gradient_funs, results_gradients[..., 1].T), ('Hessian errors', hessian_funs, results_hessians[..., 1].T)] plot_runtimes(run_time_objects, problem_sizes, symbols) plot_errors(error_objects, problem_sizes, symbols)
bsd-3-clause
RuthAngus/kalesalad
code/rotation.py
1
7463
""" A system for measuring rotation periods. This contains functions for measuring rotation. """ import os import numpy as np import matplotlib.pyplot as pl import pandas as pd import filtering as flt import kplr client = kplr.API() import kepler_data as kd from astropy.stats import LombScargle class prot(object): """ Given a star object with a kepid or x, y and yerr values, measure the rotation period. __init__ downloads the light curve if it doesn't already exist. pgram_ps measures a periodogram rotation period. """ def __init__(self, kepid=None, x=None, y=None, yerr=None, LC_DIR="/Users/ruthangus/.kplr/data/lightcurves"): """ params: ------ kepid: (int) The KIC id. x: (array) The time array. y: (array) The flux array. yerr: (array) The flux uncertainty array. """ self.kepid = kepid # If x, y and yerr are not provided, load them. if not np.array([x, y, yerr]).any(): lc_path = os.path.join(LC_DIR, str(kepid).zfill(9)) # If you don't have the light curves, download them. if not os.path.exists(lc_path): print("Downloading light curve...") star = client.star(kepid) star.get_light_curves(fetch=True, short_cadence=False) print("Loading light curve...") self.x, self.y, self.yerr = kd.load_kepler_data(lc_path) else: self.x, self.y, self.yerr = x, y, yerr def pgram_ps(self, filter_period=35., cutoff=100, plot=False, clobber=False): """ Measure a periodogram rotation period parameters: ---------- filter_period: (float or None) if None, the lc is not filtered. if float, the lc is high-pass filtered with a cutoff of filter_period. cutoff: (int) The maximum period in the grid. Recommend 30 days for K2 data. plot: (bool) If true the periodogram is plotted and saved. clobber: (bool) If true any existing periodogram file is overwritten. returns: ------- pgram_period: (float) The rotation period pgram_period_err: (float) The formal uncertainty on the period. Adds self.pgram_period, self.pgram_period.err, self.pgram and self.ps. """ pgram_fname = "pgrams/{}_pgram".format(self.kepid) if not os.path.exists("pgrams"): os.mkdir("pgrams") # Fit and remove a straight line sx = self.x - self.x[0] AT = np.vstack((sx, np.ones_like(sx))) ATA = np.dot(AT, AT.T) m, c = np.linalg.solve(ATA, np.dot(AT, self.y)) self.y -= m*sx + c # Renormalise med = np.median(self.y) self.y = self.y/med - 1 self.yerr = self.yerr/med if clobber: freq = np.linspace(1./cutoff, 1./.1, 100000) ps = 1./freq # Filter data if filter_period: filter_period = filter_period # days fs = 1./(self.x[1] - self.x[0]) lowcut = 1./filter_period yfilt = flt.butter_bandpass_filter(self.y, lowcut, fs, order=3, plot=False) else: yfilt = self.y*1 print("Calculating periodogram") pgram = LombScargle(self.x, yfilt, self.yerr).power(freq) peaks = np.array([i for i in range(1, len(ps)-1) if pgram[i-1] < pgram[i] and pgram[i+1] < pgram[i]]) presults = pd.DataFrame({"periods": ps, "power": pgram}) presults.to_csv("{}.csv".format(pgram_fname)) print("saving pgram to {}.csv".format(pgram_fname)) else: # If not clobber, look for old result. print("looking for {}.csv".format(pgram_fname)) # If pgram already exists if os.path.exists("{}.csv".format(pgram_fname)) and not clobber: print("{}.csv found, loading pre-exisiting periodogram" .format(pgram_fname)) pr = pd.read_csv("{}.csv".format(pgram_fname)) ps, pgram = pr.periods.values, pr.power.values else: # If pgram does not exist. freq = np.linspace(1./100, 1./.1, 100000) ps = 1./freq filter_period = 35. # days fs = 1./(self.x[1] - self.x[0]) lowcut = 1./filter_period yfilt = flt.butter_bandpass_filter(self.y, lowcut, fs, order=3, plot=False) print("Calculating periodogram") pgram = LombScargle(self.x, yfilt, self.yerr).power(freq) presults = pd.DataFrame({"periods": ps, "power": pgram}) presults.to_csv("{}.csv".format(pgram_fname)) print("saving pgram to {}.csv".format(pgram_fname)) peaks = np.array([i for i in range(1, len(ps)-1) if pgram[i-1] < pgram[i] and pgram[i+1] < pgram[i]]) pgram_period = ps[pgram == max(pgram[peaks])][0] if plot: pl.clf() pl.subplot(2, 1, 1) pl.plot(self.x-self.x[0], self.y, "k.", ms=3) # pl.plot(self.x - self.x[0], m*(self.x - self.x[0]) + c) # pl.plot(self.x - self.x[0], self.y - m*(self.x - self.x[0]) + c) pl.xlim(0, 50) pl.title("Period = {0:.2f} days".format(pgram_period)) pl.subplot(2, 1, 2) pl.plot(ps, pgram) pl.axvline(pgram_period, color="orange", ls="--") pl.xlabel("Period (days)") pl.savefig(pgram_fname) print("saving plot as {}.png".format(pgram_fname)) # Calculate the uncertainty. _freq = 1./pgram_period pgram_freq_err = self.calc_pgram_uncertainty(_freq) frac_err = pgram_freq_err/_freq pgram_period_err = pgram_period * frac_err self.pgram_period = pgram_period self.pgram_period_err = pgram_period_err self.pgram = pgram self.ps = ps return pgram_period, pgram_period_err def calc_pgram_uncertainty(self, freq): """ Calculate the formal uncertainty on the periodogram period (1/freq). """ phase, A = self.calc_phase_and_amp(freq) y_noise = self.y - A**2*np.sin(2*np.pi*freq*self.x + phase) sigma_n = np.var(y_noise) N, T = len(self.x), self.x[-1] - self.x[0] return 3 * np.pi * sigma_n / (2 * N**.5 * T * A) def calc_phase_and_amp(self, f): """ Phase and amplitude calculation for the calc_pgram_uncertainty function. """ AT = np.vstack((self.x, np.ones((3, len(self.y))))) ATA = np.dot(AT, AT.T) arg = 2*np.pi*f*self.x AT[-2, :] = np.sin(arg) AT[-1, :] = np.cos(arg) v = np.dot(AT[:-2, :], AT[-2:, :].T) ATA[:-2, -2:] = v ATA[-2:, :-2] = v.T ATA[-2:, -2:] = np.dot(AT[-2:, :], AT[-2:, :].T) w = np.linalg.solve(ATA, np.dot(AT, self.y)) A, B = w[-1], w[-2] phase = np.arctan(A/B) Amp = (np.abs(A) + np.abs(B))**.5 return phase, Amp
mit
giorgiop/scikit-learn
sklearn/cluster/tests/test_dbscan.py
176
12155
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from scipy.spatial import distance from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.neighbors import NearestNeighbors from sklearn.cluster.dbscan_ import DBSCAN from sklearn.cluster.dbscan_ import dbscan from sklearn.cluster.tests.common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): # Tests the DBSCAN algorithm with a similarity array. # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): # Tests the DBSCAN algorithm with a feature vector array. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_sparse(): core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8, min_samples=10) core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10) assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_sparse_precomputed(): D = pairwise_distances(X) nn = NearestNeighbors(radius=.9).fit(X) D_sparse = nn.radius_neighbors_graph(mode='distance') # Ensure it is sparse not merely on diagonals: assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1) core_sparse, labels_sparse = dbscan(D_sparse, eps=.8, min_samples=10, metric='precomputed') core_dense, labels_dense = dbscan(D, eps=.8, min_samples=10, metric='precomputed') assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_no_core_samples(): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 for X_ in [X, sparse.csr_matrix(X)]: db = DBSCAN(min_samples=6).fit(X_) assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) assert_array_equal(db.labels_, -1) assert_equal(db.core_sample_indices_.shape, (0,)) def test_dbscan_callable(): # Tests the DBSCAN algorithm with a callable metric. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_balltree(): # Tests the DBSCAN algorithm with balltree for neighbor calculation. eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_3, n_clusters) db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_4, n_clusters) db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_5, n_clusters) def test_input_validation(): # DBSCAN.fit should accept a list of lists. X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception def test_dbscan_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, dbscan, X, eps=-1.0) assert_raises(ValueError, dbscan, X, algorithm='blah') assert_raises(ValueError, dbscan, X, metric='blah') assert_raises(ValueError, dbscan, X, leaf_size=-1) assert_raises(ValueError, dbscan, X, p=-1) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__) def test_boundaries(): # ensure min_samples is inclusive of core point core, _ = dbscan([[0], [1]], eps=2, min_samples=2) assert_in(0, core) # ensure eps is inclusive of circumference core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) assert_in(0, core) core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2) assert_not_in(0, core) def test_weighted_dbscan(): # ensure sample_weight is validated assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2]) assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4]) # ensure sample_weight has an effect assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]) # points within eps of each other: assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]) # and effect of non-positive and non-integer sample_weight: assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]) # for non-negative sample_weight, cores should be identical to repetition rng = np.random.RandomState(42) sample_weight = rng.randint(0, 5, X.shape[0]) core1, label1 = dbscan(X, sample_weight=sample_weight) assert_equal(len(label1), len(X)) X_repeated = np.repeat(X, sample_weight, axis=0) core_repeated, label_repeated = dbscan(X_repeated) core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) core_repeated_mask[core_repeated] = True core_mask = np.zeros(X.shape[0], dtype=bool) core_mask[core1] = True assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) # sample_weight should work with precomputed distance matrix D = pairwise_distances(X) core3, label3 = dbscan(D, sample_weight=sample_weight, metric='precomputed') assert_array_equal(core1, core3) assert_array_equal(label1, label3) # sample_weight should work with estimator est = DBSCAN().fit(X, sample_weight=sample_weight) core4 = est.core_sample_indices_ label4 = est.labels_ assert_array_equal(core1, core4) assert_array_equal(label1, label4) est = DBSCAN() label5 = est.fit_predict(X, sample_weight=sample_weight) core5 = est.core_sample_indices_ assert_array_equal(core1, core5) assert_array_equal(label1, label5) assert_array_equal(label1, est.labels_) def test_dbscan_core_samples_toy(): X = [[0], [2], [3], [4], [6], [8], [10]] n_samples = len(X) for algorithm in ['brute', 'kd_tree', 'ball_tree']: # Degenerate case: every sample is a core sample, either with its own # cluster or including other close core samples. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) assert_array_equal(core_samples, np.arange(n_samples)) assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) # With eps=1 and min_samples=2 only the 3 samples from the denser area # are core samples. All other points are isolated and considered noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) assert_array_equal(core_samples, [1, 2, 3]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # Only the sample in the middle of the dense area is core. Its two # neighbors are edge samples. Remaining samples are noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) assert_array_equal(core_samples, [2]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # It's no longer possible to extract core samples with eps=1: # everything is noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) assert_array_equal(core_samples, []) assert_array_equal(labels, -np.ones(n_samples)) def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): # see https://github.com/scikit-learn/scikit-learn/issues/4641 for # more details X = np.eye(10) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1) X = np.zeros((10, 10)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1)
bsd-3-clause
zooniverse/aggregation
experimental/penguins/clusterAnalysis/blankPhotos.py
2
2205
#!/usr/bin/env python __author__ = 'greghines' import numpy as np from sklearn.cluster import DBSCAN import matplotlib.pyplot as plt import csv import sys import os import pymongo import urllib import matplotlib.cbook as cbook client = pymongo.MongoClient() db = client['penguin_2014-09-24'] collection = db["penguin_classifications"] collection2 = db["penguin_subjects"] errorCount = 0 initial_consecutive_blanks = 5 blank_classifications = {} urls = {} i = 0 for r in collection.find():#{"classification_count": {"$gt": 0}}): assert r["annotations"][0]["key"] == "animalsPresent" if not(r["annotations"][0]["value"] in ["yes","no","cant_tell"]): #print r["annotations"] errorCount += 1 continue i += 1 if (i%25000) == 0: print i zooniverse_id = r["subjects"][0]["zooniverse_id"] blank_image = (r["annotations"][0]["value"] != "yes") if not(zooniverse_id in blank_classifications): blank_classifications[zooniverse_id] = [] r2 = collection2.find_one({"zooniverse_id":zooniverse_id}) urls[zooniverse_id] = r2["metadata"]["path"]#r["subjects"][0]["location"]["standard"] if blank_image: blank_classifications[zooniverse_id].append(0) else: blank_classifications[zooniverse_id].append(1) #print errorCount false_blank_counter = 0 true_blank_counter = 0 total_counter = 0 nowRetire = 0 actuallyBlank = 0 notBlank =0 for zooniverse_id in blank_classifications: #were the first initial X classifications all blank? #based on the threshold variable initial_consecutive_blanks #read this in as the gold standard b = blank_classifications[zooniverse_id] if len(b) < 10: continue total_counter += 1 #could we do better with a different threshold? if (len(b) >= initial_consecutive_blanks) and (not(1 in b[:initial_consecutive_blanks])): #we now think this is a blank image if not(1 in b[:10]): #and we would still think this image is blank at the end of 10 classifications actuallyBlank += 1 else: notBlank += 1 print urls[zooniverse_id] #print actuallyBlank #print notBlank
apache-2.0
hetaodie/hetaodie.github.io
assets/media/uda-ml/fjd/ica/创建客户细分/visuals.py
3
6061
########################################### # Suppress matplotlib user warnings # Necessary for newer version of matplotlib import warnings warnings.filterwarnings("ignore", category = UserWarning, module = "matplotlib") # # Display inline matplotlib plots with IPython from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'inline') ########################################### import matplotlib.pyplot as plt import matplotlib.cm as cm import pandas as pd import numpy as np def pca_results(good_data, pca): ''' Create a DataFrame of the PCA results Includes dimension feature weights and explained variance Visualizes the PCA results ''' # Dimension indexing dimensions = dimensions = ['Dimension {}'.format(i) for i in range(1,len(pca.components_)+1)] # PCA components components = pd.DataFrame(np.round(pca.components_, 4), columns = list(good_data.keys())) components.index = dimensions # PCA explained variance ratios = pca.explained_variance_ratio_.reshape(len(pca.components_), 1) variance_ratios = pd.DataFrame(np.round(ratios, 4), columns = ['Explained Variance']) variance_ratios.index = dimensions # Create a bar plot visualization fig, ax = plt.subplots(figsize = (14,8)) # Plot the feature weights as a function of the components components.plot(ax = ax, kind = 'bar'); ax.set_ylabel("Feature Weights") ax.set_xticklabels(dimensions, rotation=0) # Display the explained variance ratios for i, ev in enumerate(pca.explained_variance_ratio_): ax.text(i-0.40, ax.get_ylim()[1] + 0.05, "Explained Variance\n %.4f"%(ev)) # Return a concatenated DataFrame return pd.concat([variance_ratios, components], axis = 1) def cluster_results(reduced_data, preds, centers, pca_samples): ''' Visualizes the PCA-reduced cluster data in two dimensions Adds cues for cluster centers and student-selected sample data ''' predictions = pd.DataFrame(preds, columns = ['Cluster']) plot_data = pd.concat([predictions, reduced_data], axis = 1) # Generate the cluster plot fig, ax = plt.subplots(figsize = (14,8)) # Color map cmap = cm.get_cmap('gist_rainbow') # Color the points based on assigned cluster for i, cluster in plot_data.groupby('Cluster'): cluster.plot(ax = ax, kind = 'scatter', x = 'Dimension 1', y = 'Dimension 2', \ color = cmap((i)*1.0/(len(centers)-1)), label = 'Cluster %i'%(i), s=30); # Plot centers with indicators for i, c in enumerate(centers): ax.scatter(x = c[0], y = c[1], color = 'white', edgecolors = 'black', \ alpha = 1, linewidth = 2, marker = 'o', s=200); ax.scatter(x = c[0], y = c[1], marker='$%d$'%(i), alpha = 1, s=100); # Plot transformed sample points ax.scatter(x = pca_samples[:,0], y = pca_samples[:,1], \ s = 150, linewidth = 4, color = 'black', marker = 'x'); # Set plot title ax.set_title("Cluster Learning on PCA-Reduced Data - Centroids Marked by Number\nTransformed Sample Data Marked by Black Cross"); def biplot(good_data, reduced_data, pca): ''' Produce a biplot that shows a scatterplot of the reduced data and the projections of the original features. good_data: original data, before transformation. Needs to be a pandas dataframe with valid column names reduced_data: the reduced data (the first two dimensions are plotted) pca: pca object that contains the components_ attribute return: a matplotlib AxesSubplot object (for any additional customization) This procedure is inspired by the script: https://github.com/teddyroland/python-biplot ''' fig, ax = plt.subplots(figsize = (14,8)) # scatterplot of the reduced data ax.scatter(x=reduced_data.loc[:, 'Dimension 1'], y=reduced_data.loc[:, 'Dimension 2'], facecolors='b', edgecolors='b', s=70, alpha=0.5) feature_vectors = pca.components_.T # we use scaling factors to make the arrows easier to see arrow_size, text_pos = 7.0, 8.0, # projections of the original features for i, v in enumerate(feature_vectors): ax.arrow(0, 0, arrow_size*v[0], arrow_size*v[1], head_width=0.2, head_length=0.2, linewidth=2, color='red') ax.text(v[0]*text_pos, v[1]*text_pos, good_data.columns[i], color='black', ha='center', va='center', fontsize=18) ax.set_xlabel("Dimension 1", fontsize=14) ax.set_ylabel("Dimension 2", fontsize=14) ax.set_title("PC plane with original feature projections.", fontsize=16); return ax def channel_results(reduced_data, outliers, pca_samples): ''' Visualizes the PCA-reduced cluster data in two dimensions using the full dataset Data is labeled by "Channel" and cues added for student-selected sample data ''' # Check that the dataset is loadable try: full_data = pd.read_csv("customers.csv") except: print("Dataset could not be loaded. Is the file missing?") return False # Create the Channel DataFrame channel = pd.DataFrame(full_data['Channel'], columns = ['Channel']) channel = channel.drop(channel.index[outliers]).reset_index(drop = True) labeled = pd.concat([reduced_data, channel], axis = 1) # Generate the cluster plot fig, ax = plt.subplots(figsize = (14,8)) # Color map cmap = cm.get_cmap('gist_rainbow') # Color the points based on assigned Channel labels = ['Hotel/Restaurant/Cafe', 'Retailer'] grouped = labeled.groupby('Channel') for i, channel in grouped: channel.plot(ax = ax, kind = 'scatter', x = 'Dimension 1', y = 'Dimension 2', \ color = cmap((i-1)*1.0/2), label = labels[i-1], s=30); # Plot transformed sample points for i, sample in enumerate(pca_samples): ax.scatter(x = sample[0], y = sample[1], \ s = 200, linewidth = 3, color = 'black', marker = 'o', facecolors = 'none'); ax.scatter(x = sample[0]+0.25, y = sample[1]+0.3, marker='$%d$'%(i), alpha = 1, s=125); # Set plot title ax.set_title("PCA-Reduced Data Labeled by 'Channel'\nTransformed Sample Data Circled");
mit
rrohan/scikit-learn
sklearn/covariance/__init__.py
389
1157
""" The :mod:`sklearn.covariance` module includes methods and algorithms to robustly estimate the covariance of features given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance estimation is closely related to the theory of Gaussian Graphical Models. """ from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance, \ log_likelihood from .shrunk_covariance_ import shrunk_covariance, ShrunkCovariance, \ ledoit_wolf, ledoit_wolf_shrinkage, \ LedoitWolf, oas, OAS from .robust_covariance import fast_mcd, MinCovDet from .graph_lasso_ import graph_lasso, GraphLasso, GraphLassoCV from .outlier_detection import EllipticEnvelope __all__ = ['EllipticEnvelope', 'EmpiricalCovariance', 'GraphLasso', 'GraphLassoCV', 'LedoitWolf', 'MinCovDet', 'OAS', 'ShrunkCovariance', 'empirical_covariance', 'fast_mcd', 'graph_lasso', 'ledoit_wolf', 'ledoit_wolf_shrinkage', 'log_likelihood', 'oas', 'shrunk_covariance']
bsd-3-clause
alexholcombe/spatiotopic-motion
analyzeDataTestingVersion.py
1
6964
from psychopy.tools import filetools import inspect import numpy as np import psychopy_ext.stats import psychopy_ext.plot import pandas from calcUnderOvercorrect import calcOverCorrected from plotHelpers import agrestiCoull95CI #grab some data outputted from my program, so I can test some analysis code ##The psydat file format is literally just a pickled copy of the TrialHandler object that saved it. You can open it with: ##dat = tools.filetools.fromFile(dataFileName) #dataFileName = "data/Hubert_spatiotopicMotion_03Dec2014_15-49.psydat" #dataFileName="data/Hubert_spatiotopicMotion_11Dec2014_13-00_DataFrame.pickle" #dataFileName ="data/Hubert_spatiotopicMotion_15Dec2014_15-18_PSYCHOPY.txt" dataFileName="data/Alex_spatiotopicMotion_15Dec2014_16-25_DataFrame.pickle" if dataFileName.endswith('.pickle'): df = filetools.fromFile(dataFileName) elif dataFileName.endswith('.txt'): df = pandas.read_csv(dataFileName, delimiter='\t') print "type(df)=", type(df) # <class 'pandas.core.frame.DataFrame'> print "df.dtypes=",df.dtypes #all "objects" for some reason #strings in pandas pretty much objects. Dont know why can't force it to be a string, this is supposed to work http://stackoverflow.com/questions/22005911/convert-columns-to-string-in-pandas #Now I can test aggregate #dat.data seems to contain the columns I added print "df.head=\n", df.head() #add overcorrect to cases where tilt==0 tilt = df.loc[:,'tilt'] neutralStimIdxs = (tilt==0) #print('neutralStimIdxs=\n',neutralStimIdxs) if len(neutralStimIdxs)>1: if neutralStimIdxs.any(): #Calculate over/under-correction, which is only interpretable when tilt=0 forCalculatn = df.loc[neutralStimIdxs, ['tilt','startLeft','upDown','respLeftRight']] overCorrected = calcOverCorrected( forCalculatn ) print 'overCorrected=\n', overCorrected df['overCorrected']= np.nan df.loc[neutralStimIdxs, 'overCorrected'] = overCorrected #test plotting of data #dataframe aggregate grouped = df.groupby('tilt') tiltMeans = grouped.mean() print "mean at each tilt =\n", tiltMeans print "tiltMeans.index = ", tiltMeans.index #there is no column called 'tilt', instead it's the actual index, kinda like row names grouped = df.groupby(['startLeft','tilt']) for name in grouped: #this works print name grouped.get_group((True, 0.4)) #combo of startLeft and tilt print 'groups=', grouped.groups #works dirTilt = grouped.mean() #this is a dataframe, not a DataFrameGroupBy print "mean at each dir, tilt =\n", dirTilt print "dirTilt.index = ", dirTilt.index #there is no column called 'tilt', instead it's the actual index, kinda like row names # MultiIndex [(False, -0.4), (False, 0.0), (False, 0.4), (True, -0.4), (True, 0.0), (True, 0.4)] #dirTilt.groups no groups, maybe because dataframe? #dirTilt = dirTilt.reset_index() #thanks Chris Said, except it *reduces* the number of cases that work below by one try: print "dirTilt.loc[True]=\n", dirTilt.loc[True] #works!!!! except: pass try: print "dirTilt.loc[0.4]=\n", dirTilt.loc[0.4] #doesnt work I presume because second dimension except: pass try: print "dirTilt.loc[True, 0.4]=\n", dirTilt.loc[True, 0.4] #works!!! except: pass try: print "dirTilt.loc['True']=\n", dirTilt.loc['True'] #doesnt work except: pass try: print "dirTilt.loc['True','0.4']=\n", dirTilt.loc['True','0.4'] #doesnt work except: pass #dirTilt.select() usePsychopy_ext = False if usePsychopy_ext: #have to use psychopy_ext to aggregate ag = psychopy_ext.stats.aggregate(df, values="respLeftRight", cols="tilt") #, values=None, subplots=None, yerr=None, aggfunc='mean', order='natural') print "ag = \n", ag plt = psychopy_ext.plot.Plot() plt.plot(ag, kind='line') print "Showing plot with psychopy_ext.stats.aggregate" plt.show() dirTilt = dirTilt.reset_index() #back into columns leftwardM = dirTilt[ dirTilt['startLeft']==False ] rightwardM = dirTilt[ dirTilt['startLeft']==True ] print 'dirTilt=\n', dirTilt import pylab ax1 = pylab.subplot(121) pylab.scatter(leftwardM['tilt'], leftwardM['respLeftRight'], edgecolors=(1,0,0), facecolor=(1,0,0), label='leftward saccade') pylab.scatter(rightwardM['tilt'], rightwardM['respLeftRight'], edgecolors=(0,1,0), facecolor=(0,1,0), label='rightward saccade') pylab.legend() print str( round( 100*df['overCorrected'].mean(), 2) ) msg = 'proportn overCorrected at 0 tilt = ' + str( round( 100*df['overCorrected'].mean(), 2) ) + \ '% of ' + str( df['overCorrected'].count() ) + ' trials' msg2= ' 95% Agresti-Coull CI = ' + \ str( np.round( agrestiCoull95CI(df['overCorrected'].sum(), df['overCorrected'].count()), 2) ) pylab.text(0.5, 0.55, msg, horizontalalignment='left', fontsize=12) pylab.text(0.5,0.45, msg2, horizontalalignment='left', fontsize=12) #pylab.ylim([-0.01,1.01]) #pylab.xlim([-2,102]) pylab.xlabel("tilt") pylab.ylabel("proportion respond 'right'") #psychometric curve basics tiltMin = min( df['tilt'] ) tiltMax = max( df['tilt'] ) x = np.linspace(tiltMin, tiltMax, 50) #test function fitting #fit curve import scipy, sys def logistic(x, x0, k): y = 1 / (1 + np.exp(-k*(x-x0))) return y def inverseLogistic(y, x0, k): linear = np.log ( y / (1-y) ) #linear = -k*(x-x0) #x-x0 = linear/-k #x= linear/-k + x0 x = linear/-k + x0 return x #scipy.stats.logistic.fit paramsLeft = None; paramsRight = None try: paramsLeft, pcov = scipy.optimize.curve_fit(logistic, leftwardM['tilt'], leftwardM['respLeftRight'], p0 = [0, 6]) except Exception as e: print 'leftward fit failed ', e #sys.exc_info()[0] try: paramsRight, pcov = scipy.optimize.curve_fit(logistic, rightwardM['tilt'], rightwardM['respLeftRight'], p0 = [0, 6]) except Exception as e: print 'rightward fit failed ', e #sys.exc_info()[0] threshVal = 0.5 pylab.plot([tiltMin, tiltMax],[threshVal,threshVal],'k--') #horizontal dashed line overCorrectAmts = list() if paramsLeft is not None: pylab.plot(x, logistic(x, *paramsLeft) , 'r-') print paramsLeft threshL = inverseLogistic(threshVal, paramsLeft[0], paramsLeft[1]) print 'threshL = ', threshL overCorrectAmts.append(threshL) pylab.plot([threshL, threshL],[0,threshVal],'g--') #vertical dashed line pylab.title('PSE (%.2f) = %0.3f & %0.3f' %(threshVal, threshL, threshR)) if paramsRight is not None: pylab.plot(x, logistic(x, *paramsRight) , 'g-') threshR = inverseLogistic(threshVal, paramsRight[0], paramsRight[1]) print 'threshR = ', threshR overCorrectAmts.append(-1*threshR) pylab.plot([threshR, threshR],[0,threshVal],'g--') #vertical dashed line pylab.title('threshold (%.2f) = %0.3f' %(threshVal, threshR)) pylab.show() if len(overCorrectAmts)==0: print 'Failed both fits so cant tell you average over/under correction amount' else: print 'Average overcorrection (negative means undercorrection) = ', np.mean(overCorrectAmts)
mit
mlyundin/scikit-learn
sklearn/utils/tests/test_multiclass.py
128
12853
from __future__ import division import numpy as np import scipy.sparse as sp from itertools import product from sklearn.externals.six.moves import xrange from sklearn.externals.six import iteritems from scipy.sparse import issparse from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.multiclass import unique_labels from sklearn.utils.multiclass import is_multilabel from sklearn.utils.multiclass import type_of_target from sklearn.utils.multiclass import class_distribution class NotAnArray(object): """An object that is convertable to an array. This is useful to simulate a Pandas timeseries.""" def __init__(self, data): self.data = data def __array__(self): return self.data EXAMPLES = { 'multilabel-indicator': [ # valid when the data is formated as sparse or dense, identified # by CSR format when the testing takes place csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))), csr_matrix(np.array([[0, 1], [1, 0]])), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.bool)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.int8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.uint8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float32)), csr_matrix(np.array([[0, 0], [0, 0]])), csr_matrix(np.array([[0, 1]])), # Only valid when data is dense np.array([[-1, 1], [1, -1]]), np.array([[-3, 3], [3, -3]]), NotAnArray(np.array([[-3, 3], [3, -3]])), ], 'multiclass': [ [1, 0, 2, 2, 1, 4, 2, 4, 4, 4], np.array([1, 0, 2]), np.array([1, 0, 2], dtype=np.int8), np.array([1, 0, 2], dtype=np.uint8), np.array([1, 0, 2], dtype=np.float), np.array([1, 0, 2], dtype=np.float32), np.array([[1], [0], [2]]), NotAnArray(np.array([1, 0, 2])), [0, 1, 2], ['a', 'b', 'c'], np.array([u'a', u'b', u'c']), np.array([u'a', u'b', u'c'], dtype=object), np.array(['a', 'b', 'c'], dtype=object), ], 'multiclass-multioutput': [ np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), np.array([['a', 'b'], ['c', 'd']]), np.array([[u'a', u'b'], [u'c', u'd']]), np.array([[u'a', u'b'], [u'c', u'd']], dtype=object), np.array([[1, 0, 2]]), NotAnArray(np.array([[1, 0, 2]])), ], 'binary': [ [0, 1], [1, 1], [], [0], np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.bool), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), np.array([[0], [1]]), NotAnArray(np.array([[0], [1]])), [1, -1], [3, 5], ['a'], ['a', 'b'], ['abc', 'def'], np.array(['abc', 'def']), [u'a', u'b'], np.array(['abc', 'def'], dtype=object), ], 'continuous': [ [1e-5], [0, .5], np.array([[0], [.5]]), np.array([[0], [.5]], dtype=np.float32), ], 'continuous-multioutput': [ np.array([[0, .5], [.5, 0]]), np.array([[0, .5], [.5, 0]], dtype=np.float32), np.array([[0, .5]]), ], 'unknown': [ [[]], [()], # sequence of sequences that were'nt supported even before deprecation np.array([np.array([]), np.array([1, 2, 3])], dtype=object), [np.array([]), np.array([1, 2, 3])], [set([1, 2, 3]), set([1, 2])], [frozenset([1, 2, 3]), frozenset([1, 2])], # and also confusable as sequences of sequences [{0: 'a', 1: 'b'}, {0: 'a'}], # empty second dimension np.array([[], []]), # 3d np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ] } NON_ARRAY_LIKE_EXAMPLES = [ set([1, 2, 3]), {0: 'a', 1: 'b'}, {0: [5], 1: [5]}, 'abc', frozenset([1, 2, 3]), None, ] MULTILABEL_SEQUENCES = [ [[1], [2], [0, 1]], [(), (2), (0, 1)], np.array([[], [1, 2]], dtype='object'), NotAnArray(np.array([[], [1, 2]], dtype='object')) ] def test_unique_labels(): # Empty iterable assert_raises(ValueError, unique_labels) # Multiclass problem assert_array_equal(unique_labels(xrange(10)), np.arange(10)) assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) # Multilabel indicator assert_array_equal(unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)) assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) # Several arrays passed assert_array_equal(unique_labels([4, 0, 2], xrange(5)), np.arange(5)) assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) # Border line case with binary indicator matrix assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5))) assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5))) assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) def test_unique_labels_non_specific(): # Test unique_labels with a variety of collected examples # Smoke test for all supported format for format in ["binary", "multiclass", "multilabel-indicator"]: for y in EXAMPLES[format]: unique_labels(y) # We don't support those format at the moment for example in NON_ARRAY_LIKE_EXAMPLES: assert_raises(ValueError, unique_labels, example) for y_type in ["unknown", "continuous", 'continuous-multioutput', 'multiclass-multioutput']: for example in EXAMPLES[y_type]: assert_raises(ValueError, unique_labels, example) def test_unique_labels_mixed_types(): # Mix with binary or multiclass and multilabel mix_clf_format = product(EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"]) for y_multilabel, y_multiclass in mix_clf_format: assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel) assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass) assert_raises(ValueError, unique_labels, [[1, 2]], [["a", "d"]]) assert_raises(ValueError, unique_labels, ["1", 2]) assert_raises(ValueError, unique_labels, [["1", 2], [1, 3]]) assert_raises(ValueError, unique_labels, [["1", "2"], [2, 3]]) def test_is_multilabel(): for group, group_examples in iteritems(EXAMPLES): if group in ['multilabel-indicator']: dense_assert_, dense_exp = assert_true, 'True' else: dense_assert_, dense_exp = assert_false, 'False' for example in group_examples: # Only mark explicitly defined sparse examples as valid sparse # multilabel-indicators if group == 'multilabel-indicator' and issparse(example): sparse_assert_, sparse_exp = assert_true, 'True' else: sparse_assert_, sparse_exp = assert_false, 'False' if (issparse(example) or (hasattr(example, '__array__') and np.asarray(example).ndim == 2 and np.asarray(example).dtype.kind in 'biuf' and np.asarray(example).shape[1] > 0)): examples_sparse = [sparse_matrix(example) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for exmpl_sparse in examples_sparse: sparse_assert_(is_multilabel(exmpl_sparse), msg=('is_multilabel(%r)' ' should be %s') % (exmpl_sparse, sparse_exp)) # Densify sparse examples before testing if issparse(example): example = example.toarray() dense_assert_(is_multilabel(example), msg='is_multilabel(%r) should be %s' % (example, dense_exp)) def test_type_of_target(): for group, group_examples in iteritems(EXAMPLES): for example in group_examples: assert_equal(type_of_target(example), group, msg=('type_of_target(%r) should be %r, got %r' % (example, group, type_of_target(example)))) for example in NON_ARRAY_LIKE_EXAMPLES: msg_regex = 'Expected array-like \(array or non-string sequence\).*' assert_raises_regex(ValueError, msg_regex, type_of_target, example) for example in MULTILABEL_SEQUENCES: msg = ('You appear to be using a legacy multi-label data ' 'representation. Sequence of sequences are no longer supported;' ' use a binary array or sparse matrix instead.') assert_raises_regex(ValueError, msg, type_of_target, example) def test_class_distribution(): y = np.array([[1, 0, 0, 1], [2, 2, 0, 1], [1, 3, 0, 1], [4, 2, 0, 1], [2, 0, 0, 1], [1, 3, 0, 1]]) # Define the sparse matrix with a mix of implicit and explicit zeros data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) indptr = np.array([0, 6, 11, 11, 17]) y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4)) classes, n_classes, class_prior = class_distribution(y) classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] n_classes_expected = [3, 3, 1, 1] class_prior_expected = [[3/6, 2/6, 1/6], [1/3, 1/3, 1/3], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) # Test again with explicit sample weights (classes, n_classes, class_prior) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) (classes_sp, n_classes_sp, class_prior_sp) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) class_prior_expected = [[4/9, 3/9, 2/9], [2/9, 4/9, 3/9], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])
bsd-3-clause
terrytangyuan/metric-learn
metric_learn/itml.py
1
7057
""" Information Theoretic Metric Learning, Kulis et al., ICML 2007 ITML minimizes the differential relative entropy between two multivariate Gaussians under constraints on the distance function, which can be formulated into a Bregman optimization problem by minimizing the LogDet divergence subject to linear constraints. This algorithm can handle a wide variety of constraints and can optionally incorporate a prior on the distance function. Unlike some other methods, ITML does not rely on an eigenvalue computation or semi-definite programming. Adapted from Matlab code at http://www.cs.utexas.edu/users/pjain/itml/ """ from __future__ import print_function, absolute_import import numpy as np from six.moves import xrange from sklearn.metrics import pairwise_distances from sklearn.utils.validation import check_array, check_X_y from .base_metric import BaseMetricLearner from .constraints import Constraints from ._util import vector_norm class ITML(BaseMetricLearner): """Information Theoretic Metric Learning (ITML)""" def __init__(self, gamma=1., max_iter=1000, convergence_threshold=1e-3, A0=None, verbose=False): """Initialize ITML. Parameters ---------- gamma : float, optional value for slack variables max_iter : int, optional convergence_threshold : float, optional A0 : (d x d) matrix, optional initial regularization matrix, defaults to identity verbose : bool, optional if True, prints information while learning """ self.gamma = gamma self.max_iter = max_iter self.convergence_threshold = convergence_threshold self.A0 = A0 self.verbose = verbose def _process_inputs(self, X, constraints, bounds): self.X_ = X = check_array(X) # check to make sure that no two constrained vectors are identical a,b,c,d = constraints no_ident = vector_norm(X[a] - X[b]) > 1e-9 a, b = a[no_ident], b[no_ident] no_ident = vector_norm(X[c] - X[d]) > 1e-9 c, d = c[no_ident], d[no_ident] # init bounds if bounds is None: self.bounds_ = np.percentile(pairwise_distances(X), (5, 95)) else: assert len(bounds) == 2 self.bounds_ = bounds self.bounds_[self.bounds_==0] = 1e-9 # init metric if self.A0 is None: self.A_ = np.identity(X.shape[1]) else: self.A_ = check_array(self.A0) return a,b,c,d def fit(self, X, constraints, bounds=None): """Learn the ITML model. Parameters ---------- X : (n x d) data matrix each row corresponds to a single instance constraints : 4-tuple of arrays (a,b,c,d) indices into X, with (a,b) specifying positive and (c,d) negative pairs bounds : list (pos,neg) pairs, optional bounds on similarity, s.t. d(X[a],X[b]) < pos and d(X[c],X[d]) > neg """ a,b,c,d = self._process_inputs(X, constraints, bounds) gamma = self.gamma num_pos = len(a) num_neg = len(c) _lambda = np.zeros(num_pos + num_neg) lambdaold = np.zeros_like(_lambda) gamma_proj = 1. if gamma is np.inf else gamma/(gamma+1.) pos_bhat = np.zeros(num_pos) + self.bounds_[0] neg_bhat = np.zeros(num_neg) + self.bounds_[1] pos_vv = self.X_[a] - self.X_[b] neg_vv = self.X_[c] - self.X_[d] A = self.A_ for it in xrange(self.max_iter): # update positives for i,v in enumerate(pos_vv): wtw = v.dot(A).dot(v) # scalar alpha = min(_lambda[i], gamma_proj*(1./wtw - 1./pos_bhat[i])) _lambda[i] -= alpha beta = alpha/(1 - alpha*wtw) pos_bhat[i] = 1./((1 / pos_bhat[i]) + (alpha / gamma)) Av = A.dot(v) A += np.outer(Av, Av * beta) # update negatives for i,v in enumerate(neg_vv): wtw = v.dot(A).dot(v) # scalar alpha = min(_lambda[i+num_pos], gamma_proj*(1./neg_bhat[i] - 1./wtw)) _lambda[i+num_pos] -= alpha beta = -alpha/(1 + alpha*wtw) neg_bhat[i] = 1./((1 / neg_bhat[i]) - (alpha / gamma)) Av = A.dot(v) A += np.outer(Av, Av * beta) normsum = np.linalg.norm(_lambda) + np.linalg.norm(lambdaold) if normsum == 0: conv = np.inf break conv = np.abs(lambdaold - _lambda).sum() / normsum if conv < self.convergence_threshold: break lambdaold = _lambda.copy() if self.verbose: print('itml iter: %d, conv = %f' % (it, conv)) if self.verbose: print('itml converged at iter: %d, conv = %f' % (it, conv)) self.n_iter_ = it return self def metric(self): return self.A_ class ITML_Supervised(ITML): """Information Theoretic Metric Learning (ITML)""" def __init__(self, gamma=1., max_iter=1000, convergence_threshold=1e-3, num_labeled=np.inf, num_constraints=None, bounds=None, A0=None, verbose=False): """Initialize the supervised version of `ITML`. `ITML_Supervised` creates pairs of similar sample by taking same class samples, and pairs of dissimilar samples by taking different class samples. It then passes these pairs to `ITML` for training. Parameters ---------- gamma : float, optional value for slack variables max_iter : int, optional convergence_threshold : float, optional num_labeled : int, optional (default=np.inf) number of labeled points to keep for building pairs. Extra labeled points will be considered unlabeled, and ignored as such. Use np.inf (default) to use all labeled points. num_constraints: int, optional number of constraints to generate bounds : list (pos,neg) pairs, optional bounds on similarity, s.t. d(X[a],X[b]) < pos and d(X[c],X[d]) > neg A0 : (d x d) matrix, optional initial regularization matrix, defaults to identity verbose : bool, optional if True, prints information while learning """ ITML.__init__(self, gamma=gamma, max_iter=max_iter, convergence_threshold=convergence_threshold, A0=A0, verbose=verbose) self.num_labeled = num_labeled self.num_constraints = num_constraints self.bounds = bounds def fit(self, X, y, random_state=np.random): """Create constraints from labels and learn the ITML model. Parameters ---------- X : (n x d) matrix Input data, where each row corresponds to a single instance. y : (n) array-like Data labels. random_state : numpy.random.RandomState, optional If provided, controls random number generation. """ X, y = check_X_y(X, y) num_constraints = self.num_constraints if num_constraints is None: num_classes = len(np.unique(y)) num_constraints = 20 * num_classes**2 c = Constraints.random_subset(y, self.num_labeled, random_state=random_state) pos_neg = c.positive_negative_pairs(num_constraints, random_state=random_state) return ITML.fit(self, X, pos_neg, bounds=self.bounds)
mit
janscience/thunderfish
thunderfish/pulsetracker.py
3
41161
""" by Dexter Frueh """ import sys import numpy as np import copy from scipy import stats from scipy import signal from scipy import optimize import matplotlib #from fish import ProgressFish import matplotlib.pyplot as plt from thunderfish.dataloader import open_data from thunderfish.eventdetection import detect_peaks from scipy.interpolate import interp1d from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.cluster import DBSCAN from sklearn.cluster import AgglomerativeClustering from collections import deque import ntpath import time import os from shutil import copy2 from collections import OrderedDict def makeeventlist(main_event_positions,side_event_positions,data,event_width=20): """ Generate array of events that might be EODs of a pulse-type fish, using the location of peaks and troughs, the data and an optional width of an supposed EOD-event. The generated event-array contains location and height of such events. The height of the events is calculated by its height-difference to nearby troughs and main events that have no side events in a range closer than event_width are discarded and not considered as EOD event. Parameters ---------- main_event_positions: array of int or float Positions of the detected main events in the data time series. Either peaks or troughs. side_event_positions: array of int or float Positions of the detected side events in the data time series. The complimentary event to the main events. data: array of float The given data. event_width: int or float, optional Returns ------- EOD_events: ndarray 2D array containing data with 'np.float' type, size (number_of_properties = 3, number_of_events). Generated and combined data of the detected events in an array with arrays of x, y and height along the first axis. """ mainfirst = int((min(main_event_positions[0],side_event_positions[0])<side_event_positions[0])) # determines if there is a peak or through first. Evaluates to 1 if there is a peak first. main_x = main_event_positions main_y = data[main_event_positions] # empty placeholders, filled in the next step while iterating over the properties of single main main_h = np.zeros(len(main_event_positions)) main_real = np.ones(len(main_event_positions)) # iteration over the properties of the single main for ind,(x, y, h, r) in enumerate(np.nditer([main_x, main_y, main_h, main_real], op_flags=[["readonly"],['readonly'],['readwrite'],['readwrite']])): l_side_ind = ind - mainfirst r_side_ind = l_side_ind + 1 try: r_side_x = side_event_positions[r_side_ind] r_distance = r_side_x - x r_side_y = data[r_side_x] except: pass try: l_side_x = side_event_positions[l_side_ind] l_distance = x - l_side_x l_side_y = data[l_side_x] except: pass # ignore left or rightmost events which throw IndexError # calculate distances to the two side events next to the main event and mark all events where the next side events are not closer than maximum event_width as unreal. If an event might be an EOD, then calculate its height. if l_side_ind >= 0 and r_side_ind < len(side_event_positions): if min((l_distance),(r_distance)) > event_width: r[...] = False elif max((l_distance),(r_distance)) <= event_width: h[...] = max(abs(y-l_side_y),abs(y-r_side_y)) #calculated using absolutes in case of for example troughs instead of peaks as main events else: if (l_distance)<(r_distance): # evaluated only when exactly one side event is out of reach of the event width. Then the closer event will be the correct event h[...] = abs(y-l_side_y) else: h[...] = abs(y-r_side_y) # check corner cases elif l_side_ind == -1: if r_distance > event_width: r[...] = False else: h[...] = y-r_side_y elif r_side_ind == len(side_event_positions): if l_distance> event_width: r[...] = False else: h[...] = y-l_side_y # generate return array and discard all events that are not marked as real EOD_events = np.array([main_x, main_y, main_h], dtype = np.float)[:,main_real==1] return EOD_events def discardnearbyevents(event_locations, event_heights, min_distance): """ Given a number of events with given location and heights, returns a selection of these events where no event is closer than eventwidth to the next event. Among neighboring events closer than eventwidth the event with smaller height is discarded. Used to discard sidepeaks in detected multiple peaks of single EOD-pulses and only keep the largest event_height and the corresponding location as representative of the whole EOD pulse. Parameters ---------- event_locations: array of int or float Positions of the given events in the data time series. event_heights: array of int or float Heights of the given events, indices refer to the same events as in event_locations. min_distance: int or float minimal distance between events before one of the events gets discarded. Returns ------- event_locations: array of int or float Positions of the returned events in the data time series. event_heights: array of int or float Heights of the returned events, indices refer to the same events as in event_locations. """ unchanged = False counter = 0 event_indices = np.arange(0,len(event_locations)+1,1) while unchanged == False:# and counter<=200: x_diffs = np.diff(event_locations) events_delete = np.zeros(len(event_locations)) for i, diff in enumerate(x_diffs): if diff < min_distance: if event_heights[i+1] > event_heights[i] : events_delete[i] = 1 else: events_delete[i+1] = 1 event_heights = event_heights[events_delete!=1] event_locations = event_locations[events_delete!=1] event_indices = event_indices[np.where(events_delete!=1)[0]] if np.count_nonzero(events_delete)==0: unchanged = True counter += 1 if counter > 2000: print('Warning: unusual many discarding steps needed, unusually dense events') pass return event_indices, event_locations, event_heights def crosscorrelation(sig, data): 'returns crosscorrelation of two arrays, the first array should have a length equal to or smaller than the second array.' return signal.fftconvolve(data, sig[::-1], mode='valid') def interpol(data, kind): """ interpolates the given data using scipy interpolation python package Parameters ---------- data: array kind: string or int (‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’), or integer of order of spline interpolation to be used Returns ------- interpolation: function """ width = len(data) x = np.linspace(0, width-1, num = width, endpoint = True) #return interp1d(x, data[0:width], kind, assume_sorted=True) return interp1d(x, data[0:width], kind) def interpolated_array(data, kind, int_fact): """ returns an interpolated array of the given dataarray. Parameters ---------- data: array kind: string or int (‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’), or integer of order of spline interpolation to be used int_fact: int factor by which the interpolated array is larger than the original array Returns ------- interpolated array: array """ return interpol(data,kind)(np.arange(0, len(data)-1, 1/int_fact)) def cut_snippets(data,event_locations,cut_width,int_met="linear",int_fact=10,max_offset = 1000000): """ cuts intervals from a data array, interpolates and aligns them and returns them in a list TODO: ALIGN THEM TO CAUSE LEAST SQUARE ERROR Parameters ---------- data: array event_locations: array cut_width: [int, int] lower and upper limit of the intervals relative to the event locations. f.e. [-15,15] indicates an interval of 30 datapoints around each event location int_met: string or int method of interpolation. (‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’), or integer of order of spline interpolation to be used int_fact: int factor by which the interpolated array is larger than the original max_offset: float maximal offset by which the interpolated intervals can be moved to be aligned with each other. offset relative to the datapoints of the original data. Returns ------- aligned_snips: twodimensional nparray the processed intervals (interval#,intervallen) """ snippets = [] heights = np.zeros(len(event_locations)) cut_width = [-cut_width, cut_width] #alignwidth = int(np.ceil((max_offset) * int_fact)) alignwidth = 50 for pos in event_locations.astype('int'): snippets.append(data[pos+cut_width[0]:pos+cut_width[1]]) ipoled_snips = np.empty((len(snippets), (cut_width[1]-cut_width[0])*int_fact-int_fact)) for i, snip in enumerate(snippets): if len(snip) < ((cut_width[1]-cut_width[0])): if i == 0: snip = np.concatenate([np.zeros([((cut_width[1]-cut_width[0]) - len(snip))]),np.array(snip)]) if i == len(snippets): snip = np.concatenate([snip, np.zeros([((cut_width[1]-cut_width[0])-len(snip))])]) else: snip = np.zeros([(cut_width[1]-cut_width[0])]) #f_interpoled = interpol(snip, int_met) #if len(snip) > 0 else np.zeros([(cut_width[1]-cut_width[0]-1)*int_fact ]) interpoled_snip = interpolated_array(snip, int_met, 10)#f_interpoled(np.arange(0, len(snip)-1, 1/int_fact)) intsnipheight = np.max(interpoled_snip) - np.min(interpoled_snip) if intsnipheight == 0: intsnipheight = 1 interpoled_snip = (interpoled_snip - max(interpoled_snip))* 1/intsnipheight ipoled_snips[i] = interpoled_snip mean = np.mean(ipoled_snips, axis = 0) aligned_snips = np.empty((len(snippets), (cut_width[1]-cut_width[0])* int_fact-(2*alignwidth)-int_fact)) for i, interpoled_snip in enumerate(ipoled_snips): cc = crosscorrelation(interpoled_snip[alignwidth:-alignwidth], mean) #cc = crosscorrelation(interpoled_snip[15 + 10*-cut_width[0]-10*7:-15+ -10*cut_width[1]+ 31], mean[10*-cut_width[0]-10*7:-10*cut_width[1]+31]) offset = -alignwidth + np.argmax(cc) aligned_snip = interpoled_snip[alignwidth-offset:-alignwidth-offset] if offset != -alignwidth else interpoled_snip[2*alignwidth:] if len(aligned_snip[~np.isnan(aligned_snip)])>0: aligned_snips[i] = aligned_snip try: heights[i] = np.max(interpoled_snip[alignwidth-offset:-alignwidth-offset]) - np.min(interpoled_snip[alignwidth-offset:-alignwidth-offset]) except: heights[i] = np.max(interpoled_snip[2*alignwidth:]) - np.min(interpoled_snip[2*alignwidth:]) return aligned_snips, heights def pc(dataset): """ Calculates the principal components of a dataset using the python module scikit-learn's principal component analysis Parameters ---------- dataset: ndarray dataset of which the principal components are to be calculated. twodimensional array of shape (observations, features) Returns ------- pc_comp: ndarray principal components of the dataset """ pca = PCA(n_components=10) pc_comp = pca.fit_transform(dataset) return pc_comp #, pca def chebyshev(dataset): x = range(len(dataset[0])) npol=5 p = np.zeros((len(dataset),npol+1)) for i,s in enumerate(dataset): cheb = np.polynomial.chebyshev.Chebyshev.fit(x,s,npol) p[i] = cheb.coef return p #, pca def dbscan(pcs, events, eps, min_samples, takekm): """ improve description, add parameter and returns calculates clusters of high spatial density of the given observations in their feature space. #For example, the first few principal components of the data could be used as features for the classification. Parameters ---------- pcs: ndarray %TODO shape(samples, features) ... Returns ------- labels: ndarray labels of the clusters of each observation """ # pcs (samples, features) # X (samples, features) #try: # X = pcs[:,:order] #except: # X = pcs[:,order] X = pcs # ############################################################################# # Compute DBSCAN clusters = DBSCAN(eps, min_samples).fit(X) labels = clusters.labels_ comp = clusters.components_ comp_means = np.zeros((len(np.unique(labels)) - 1,comp.shape[1])) for i in range(len(np.unique(labels)) - 1): comp_means[i] = np.mean(pcs[labels==i],axis=0) return labels, comp_means def cluster_events(features, events, eps, min_samples, takekm, method='DBSCAN'): """F clusters the given events using the given feature space and the clustering algorithm of choice and appends the assigned cluster number to the event's properties. Parameters ---------- Returns ------- """ ######################## function maybe could be even more generic, ? (dependant on datatype of "events" ) if method == 'DBSCAN': labels, clusters = dbscan(features,events, eps, min_samples, takekm) elif method == 'kMean': pass # To be implemented #labels = kmeans([]) return labels, clusters class Peaklist(object): def __init__(self, peaklist): self.list = peaklist self.lastofclass = {} self.lastofclassx = {} self.classesnearby = [] self.classesnearbyx = [] self.classesnearbypccl = [] self.classlist = [] self.classamount = 0 self.shapes = {} def connect_blocks(oldblock): """ used to connect blocks. transfers data from the previous analysis block to the current block """ newblock = Peaklist([]) newblock.lastofclass = oldblock.lastofclass newblock.lastofclassx = oldblock.lastofclassx newblock.classesnearby = oldblock.classesnearby newblock.classesnearbypccl = oldblock.classesnearbypccl newblock.classesnearbyx = [clnearbyx - oldblock.len for clnearbyx in oldblock.classesnearbyx] newblock.classamount = oldblock.classamount newblock.len = oldblock.len return newblock def alignclusterlabels(labels, peaklist, peaks, data='test'): """ used to connect blocks. changes the labels of clusters in the current block to fit with the labels of the previous block """ # take first second of new peak data overlapamount = len(peaks[0,peaks[0]<30000]) if overlapamount == 0: return None old_peaklist = copy.deepcopy(peaklist) #redundant overlappeaks = copy.deepcopy(peaks[:,:overlapamount]) overlap_peaklist = copy.deepcopy(old_peaklist) # delete cluster classifications of the overlap class overlappeaks[3]=[-1]*len(overlappeaks[0]) # set nearby pc classes to -1 overlap_peaklist.classesnearbypccl = [-1]*len(overlap_peaklist.classesnearbypccl) # create peak labels using ampwalk classifier classified_overlap = ampwalkclassify3_refactor(overlappeaks,overlap_peaklist,glue=True)[0] # for each class for cl in np.unique(classified_overlap[4]): # indexes of the peaks with current class by ampwalk classification labelindex = np.where(classified_overlap[4] == cl)[0] # pc clustering labels that were originally given to those peaks label = labels[labelindex] # index of a peak with the most common translation from ampwalk class to pc clustering class labelindex = labelindex[np.where(label == stats.mode(label)[0])[0][0]] # pc clustering label belonging to the class cl in the new block newlabel = labels[labelindex] try: peaklist.classesnearbypccl[old_peaklist.classesnearby.index(cl)] = newlabel except: pass def ampwalkclassify3_refactor(peaks,peaklist,glue=False): """ classifies peaks/EOD_events into different classes by their amplitude. Takes list of peaks and list of properties of the list of the last analysis block Classifies the single peaks in the direction of their occurence in time, based on their amplitude and their previously assigned class based on their waveform (... using the method cluster_events on the principal components of the snippets around the single peaks) Method: calculates differences in amplitude between the current peak and different amplitudeclasses that are nearby. creates new amplitudeclass if no class is close enough. creates no new class if the peaks's waveformclass is a noiseclass of the DBSCAN algorithm. Does not compare peaks of different Waveformclasses. --can be used without prior waveformclasses, resulting in classification solely on the amplitude development pcclclasses need to be set to the same class herefore, .... . not practical, but should be possible to split up into more general functions """ classamount = peaklist.classamount lastofclass = peaklist.lastofclass lastofclassx = peaklist.lastofclassx a=0 elem = 0 thresholder = [] comperr = 1 classesnearby = peaklist.classesnearby classesnearbyx = peaklist.classesnearbyx classesnearbypccl = peaklist.classesnearbypccl classes = np.zeros((len(peaks[0]))) pcclasses = peaks[3] positions = peaks[0] heights = peaks[2] cl = 0 maxdistance = 30000 # Max distance to possibly belong to the same class factor = 1.6 # factor by which a peak fits into a class, f.E: classheight = 1 , factor = 2 => peaks accepted in range (0.5,2) c=0 # loop through all the new peaks for peaknum, p in enumerate(peaks.T): if len(lastofclass) == 0: lastofclass[1] = deque() lastofclassx[1] = deque() lastofclass[1].append(heights[peaknum]) lastofclassx[1].append(positions[peaknum]) classesnearby.append(1) classesnearbyx.append(-1) classesnearbypccl.append(pcclasses[peaknum]) classes[peaknum] = 1 classamount += 1 continue time1 = time.time() # classes nearby only count if they are within maxdistance for i, cl in enumerate(classesnearby): if (positions[peaknum] - classesnearbyx[i]) > maxdistance: classesnearby.pop(i) classesnearbyx.pop(i) classesnearbypccl.pop(i) # compute mean isi of a class by taking the last 3 pulses in that class lastofclassisis = [] for i in classesnearby: lastofclassisis.append(np.median(np.diff(lastofclassx[i]))) meanisi = np.mean(lastofclassisis) # stop adding to a class if 40 isis have passed if 32000 > 40*meanisi> 6000: maxdistance = 20*meanisi cl = 0 # 'No class' comperr = 100 clnrby = np.unique(classesnearby) last_err = 1000 # TODO this assigns peaks with no class to the last clase if there are multiple candidates. # can I fix this? for i in clnrby: # if the class of the current peak is equal to the current evaluated class or current peak has no class if classesnearbypccl[classesnearby.index(i)] == pcclasses[peaknum]: #or glue==True: #pcclasses[peaknum] == -1: or classmean = np.mean(lastofclass[i]) #mean hight of class # difference between current peak hight and average class hight logerror = np.abs(np.log2(heights[peaknum])-np.log2(classmean)) logthresh = np.log2(factor) relerror = logerror # if the peak hights are similar if logerror < logthresh: ## SameClass-Condition # if the peaks are close together in distance (20*isi) if relerror < comperr and (positions[peaknum]-classesnearbyx[classesnearby.index(i)])<maxdistance: # keep the same class (or in case of no class assign that class) cl = i comperr = relerror time2 = time.time() time1 = time.time() # if a pc class is assigned to the peak if pcclasses[peaknum] != -1: # if the class is kept if cl != 0 : # append this peak to the peaklist for the right class (only keep last 3 peaks) if len(lastofclass[cl]) >= 3: lastofclass[cl].popleft() if len(lastofclassx[cl]) >= 3: lastofclassx[cl].popleft() lastofclass[cl].append(heights[peaknum]) lastofclassx[cl].append(positions[peaknum]) classes[peaknum] = cl else: # if the class if not the same as any of the existing classes, create new class cl = classamount+1 classamount = cl lastofclass[cl] = deque() lastofclassx[cl] = deque() lastofclass[cl].append(heights[peaknum]) lastofclassx[cl].append(positions[peaknum]) classes[peaknum] = cl classesnearby.append(cl) classesnearbyx.append(positions[peaknum]) classesnearbypccl.append(pcclasses[peaknum]) # if there are more than 12 classes, delete the class that is furthest away in proximity if len(classesnearby) >= 12: #kacke implementiert? minind = classesnearbyx.index(min(classesnearbyx)) del lastofclass[classesnearby[minind]] del lastofclassx[classesnearby[minind]] classesnearby.pop(minind) classesnearbyx.pop(minind) classesnearbypccl.pop(minind) # add position and class to peaklist try: ind=classesnearby.index(cl) classesnearbyx[ind] = positions[peaknum] except ValueError: classesnearby.append(cl) classesnearbyx.append(positions[peaknum]) classesnearbypccl.append(pcclasses[peaknum]) # if no pc class is assigned to the peak elif glue == True: # if a class is assigned through the peak amp method if cl != 0: # add this class to the peak classes[peaknum] = cl else: # create new class cl = classamount+1 classamount = cl lastofclass[cl] = deque() lastofclassx[cl] = deque() lastofclass[cl].append(heights[peaknum]) lastofclassx[cl].append(positions[peaknum]) classes[peaknum] = cl classesnearby.append(cl) classesnearbyx.append(positions[peaknum]) classesnearbypccl.append(pcclasses[peaknum]) if len(classesnearby) >= 12: #kacke implementiert? minind = classesnearbyx.index(min(classesnearbyx)) del lastofclass[classesnearby[minind]] del lastofclassx[classesnearby[minind]] classesnearby.pop(minind) classesnearbyx.pop(minind) classesnearbypccl.pop(minind) try: ind=classesnearby.index(cl) classesnearbyx[ind] = positions[peaknum] except ValueError: classesnearby.append(cl) classesnearbyx.append(positions[peaknum]) classesnearbypccl.append(pcclasses[peaknum]) peaklist.lastofclass = lastofclass peaklist.lastofclassx = lastofclassx peaklist.classesnearby = classesnearby peaklist.classesnearbyx = classesnearbyx peaklist.classesnearbypccl = classesnearbypccl peaklist.classlist = classes # np.vectorize(lambda peak: peak.cl, otypes=[object])(peaklist.list) peaklist.classamount = classamount peaks = np.append(peaks,classes[None,:], axis = 0) return peaks, peaklist def discard_wave_pulses(peaks, data): """ discards events from a pulse_event list which are unusally wide (wider than a tenth of the inter pulse interval), which indicates a wave-type EOD instead of a pulse type """ deleteclasses = [] for cl in np.unique(peaks[3]): peaksofclass = peaks[:,peaks[3] == cl] isi = np.diff(peaksofclass[0]) isi_mean = np.mean(isi) widepeaks = 0 isi_tenth_area = lambda x, isi : np.arange(np.floor(x-0.1*isi),np.ceil(x+0.1*isi),1, dtype = np.int) for p in peaksofclass.T: data = np.array(data) try: for dp_around in data[isi_tenth_area(p[0],isi_mean)]: if dp_around <= p[1]-p[2]: break except (IndexError,ValueError) as e: pass else: widepeaks+=1 if widepeaks > len(peaksofclass)*0.5: deleteclasses.append(cl) for cl in deleteclasses: peaks = peaks[:,peaks[3]!=cl] return peaks def plot_events_on_data(peaks, data, colors): """ plots the detected events onto the data timeseries. If the events are classified, the classes are plotted in different colors and the class -1 (not belonging to a cluster) is plotted in black """ plt.plot(range(len(data)),data, color = 'black') if len(peaks)>3: classlist = np.array(peaks[3],dtype=np.int) if len(peaks) > 4: classlist = np.array(peaks[4],dtype=np.int) #classlist=labels cmap = plt.get_cmap('jet') for cl in np.unique(classlist): if cl == -1: color = 'black' else: color = colors[cl] peaksofclass = peaks[:,classlist == cl] plt.plot(peaksofclass[0],peaksofclass[1], '.', color = color, ms =20, label=cl) plt.legend() else: plt.scatter(peaks[0],peaks[1], color = 'red') plt.show() plt.close() def discard_short_classes(events, minlen): """ returns all events despite events which are in classes with less than minlen members """ u, c = np.unique(events[-1],return_counts=True) smallclasses = u[c<minlen] classlist = events[-1] delete = np.zeros(len(classlist)) for cl in smallclasses: delete[classlist == cl] = 1 events = events[:,delete != 1] return events def path_leaf(path): ntpath.basename("a/b/c") head, tail = ntpath.split(path) return tail or ntpath.basename(head) def save_EOD_events_to_npmmp(EOD_Events,eods_len,startblock,datasavepath,mmpname='eods.npmmp'): n_EOD_Events = len(EOD_Events[0]) savepath = datasavepath+"/"+mmpname if startblock: eods = np.memmap(savepath, dtype='float64', mode='w+', shape=(4,n_EOD_Events), order = 'F') else: dtypesize = 8#4 #float32 is 32bit = >4< bytes long ---changed to float64 -> 8bit eods = np.memmap(savepath, dtype= 'float64', mode='r+', offset = dtypesize*eods_len*4, shape=(4,n_EOD_Events), order = 'F') eods[:] = EOD_Events def create_threshold_array(data,window,threshold): thr_array = np.zeros(data.shape) for i in range(int(len(data)/window)): thr_array[i*window:(i+1)*window] = np.std(data[i*window:(i+1)*window])*4 thr_array[thr_array<threshold] = threshold return thr_array def alignlabels(labels,clusters,old_labels,old_clusters,maxlabel): old_labels = old_labels[old_labels!=-1] labels_new = -1*np.ones(labels.shape) newclass = maxlabel for curlabel, cluster in enumerate(clusters): n = np.linalg.norm(old_clusters-cluster,axis=1) if np.min(n) < 0.1: labels_new[labels==curlabel] = old_labels[np.argmin(n)] else: labels_new[labels==curlabel] = newclass newclass = newclass + 1 return labels_new def analyze_pulse_data(filepath, deltat=10, thresh=0.04, starttime = 0, endtime = 0, cluster_thresh = 0.1, savepath = False,save=False, npmmp = False, plot_eods=False,plot_features=False,plot_steps=False, plot_result=False): """ analyzes timeseries of a pulse fish EOD recording Parameters ---------- filepath: WAV-file with the recorded timeseries deltat: int, optional time for a single analysisblock (recommended less than a minute, due to principal component clustering on the EOD-waveforms) thresh: float, optional minimum threshold for the peakdetection (if computing frequencies recommended a tiny bit lower than the wished threshold, and instead discard the EOD below the wished threshold after computing the frequencies for each EOD.) starttime: int or, str of int, optional time into the data from where to start the analysis, seconds. endtime: int or str of int, optional time into the data where to end the analysis, seconds, larger than starttime. cluster_thresh: float, optional threshold that decides the cluster density of the EOD waveform features. savepath = Boolean or str, optional path to where to save results and intermediate result, only needed if save or npmmp is True. string to specify a relative path to the directory where results and intermediate results will bed or False to use preset savepath, which is ~/filepath/ or True to specify savepath as input when the script is running save: Boolean, optional True to save the results into a npy file at the savepath npmmp: Boolean, optional True to save intermediate results into a npmmp at the savepath, only recommended in case of memory overflow plot_steps: Boolean, optional True to plot the results of each analysis block plot_results: Boolean, optional True to plot the results of the final analysis. Not recommended for long recordings due to %TODO plot_eods: Boolean, optional True to plot the EOD waveforms for each analysis block plot_features: Boolean, optional True to plot the EOD waveform features for each analysis block Returns ------- eods: numpy array 2D numpy array. first axis: attributes of an EOD (x (datapoints), y (recorded voltage), height (difference from maximum to minimum), class), second axis: EODs in chronological order. """ # parameters for the analysis thresh = 0.04 # minimal threshold for peakdetection peakwidth = 20 # width of a peak and minimal distance between two EODs # basic parameters for thunderfish.dataloader.open_data verbose = 0 channel = 0 ultimate_threshold = thresh+0.01 startblock = 0 starttime = int(starttime) endtime = int(endtime) timegiven = False if endtime > starttime>=0: timegiven = True peaks = np.array([]) troughs = np.array([]) filename = path_leaf(filepath) eods_len = 0 if savepath==False: datasavepath = filename[:-4] elif savepath==True: datasavepath = input('With the option npmmp enabled, a numpy memmap will be saved to: ').lower() else: datasavepath=savepath if save and (os.path.exists(datasavepath+"/eods8_"+filename[:-3]+"npy") or os.path.exists(datasavepath+"/eods5_"+filename[:-3]+"npy")): print('there already exists an analyzed file, aborting. Change the code if you don\'t want to abort') quit() if npmmp: #proceed = input('With the option npmmp enabled, a numpy memmap will be saved to ' + datasavepath + '. continue? [y/n] ').lower() proceed = 'y' if proceed != 'y': quit() # starting analysis with open_data(filepath, channel, deltat, 0.0, verbose) as data: samplerate = data.samplerate # selected time interval if timegiven == True: parttime1 = starttime*samplerate parttime2 = endtime*samplerate data = data[parttime1:parttime2] #split data into blocks nblock = int(deltat*samplerate) if len(data)%nblock != 0: blockamount = len(data)//nblock + 1 else: blockamount = len(data)//nblock #fish = ProgressFish(total = blockamount) pca_cur = 0 progress = 0 for idx in range(0, blockamount): print('BLOCK %i/%i'%(idx+1,blockamount)) blockdata = data[idx*nblock:(idx+1)*nblock] if progress < (idx*100 //blockamount): progress = (idx*100)//blockamount progressstr = ' Filestatus: ' # fish.animate(amount = idx, dexextra = progressstr) # delete peaks under absolute threshold #thresh_array = create_threshold_array(blockdata,30000,thresh) pk, tr = detect_peaks(blockdata, thresh) troughs = tr if len(pk) > 3: peaks = makeeventlist(pk,tr,blockdata,peakwidth) peakindices, peakx, peakh = discardnearbyevents(peaks[0],peaks[1],peakwidth) peaks = peaks[:,peakindices] if len(peaks) > 0: #if idx > startblock: # # adding a new block as copy of old list, only difference is peak indexing as it refers to last block # peaklist = connect_blocks(peaklist) #else: # peaklist = Peaklist([]) aligned_snips, snip_heights = cut_snippets(blockdata,peaks[0], 30, int_met = "cubic", int_fact = 10,max_offset = 20) pols = chebyshev(aligned_snips) feats = np.zeros((pols.shape[0],pols.shape[1]+1)) feats[:,:6] = pols feats[:,-1] = snip_heights*0.1 #pcs, pca_cur = pc(aligned_snips) #pc_refactor(aligned_snips) minpeaks = 3 if deltat < 2 else 10 labels, clusters = cluster_events(feats, peaks, cluster_thresh, minpeaks, False, method = 'DBSCAN') peaks = np.append(peaks,[labels], axis = 0) if idx > startblock: # instead of the peaklist I would have to add the previous cluster means # alignclusterlabels(labels, peaklist, peaks,data=blockdata) peaks[-1] = alignlabels(labels,clusters,old_labels,old_clusters,maxlabel) old_labels = np.unique(peaks[-1]) old_clusters = clusters #I would want peaks updated here to have the right pc classes as well.. #peaks, peaklist = ampwalkclassify3_refactor(peaks, peaklist) # classification by amplitude minlen = 5 peaks = discard_short_classes(peaks, minlen) if len(peaks[0]) > 0: peaks = discard_wave_pulses(peaks, blockdata) # delete peaks under absolute threshold #thresh_array = create_threshold_array(blockdata,30000) #peaks = peaks[:,peaks[1]>thresh_array[list(map(int,peaks[0]))]] cmap = plt.get_cmap('jet') colors = cmap(np.linspace(0, 1.0, 10)) if plot_steps == True: plot_events_on_data(peaks, blockdata, colors) pass for lab in np.unique(labels): if lab == -1: c = 'k' z=-1 else: c=colors[lab] z=1 if plot_eods==True: plt.plot(range(aligned_snips.shape[1]),np.transpose(aligned_snips[labels == lab]),color=c,zorder=z,label=lab) if plot_eods==True: plt.title('Detected and classified EODs') plt.xlabel('time [ms]') plt.ylabel('signal (normalized)') phandles, plabels = plt.gca().get_legend_handles_labels() by_label = OrderedDict(zip(plabels, phandles)) plt.legend(by_label.values(), by_label.keys()) plt.show() for lab in np.unique(labels): if lab == -1: c = 'k' z = -1 else: c = colors[lab] z=1 if plot_features==True: plt.plot(np.squeeze(np.transpose(feats[labels == lab])),color=c,zorder=z,label=lab) if plot_features==True: plt.title('EOD Features') plt.xlabel('feature [#]') plt.ylabel('value [a.u.]') phandles, plabels = plt.gca().get_legend_handles_labels() by_label = OrderedDict(zip(plabels, phandles)) plt.legend(by_label.values(), by_label.keys()) plt.show() #peaklist.len = nblock worldpeaks = np.copy(peaks) worldpeaks[0] = worldpeaks[0] + (idx*nblock) # delete the classification that only considers wave shape. #thisblock_eods = np.delete(worldpeaks,3,0) thisblock_eods = worldpeaks if idx == startblock: maxlabel = np.max(peaks[-1]) + 1 else: maxlabel = np.max([maxlabel, (np.max(peaks[-1]) + 1)]) if npmmp: if idx == startblock: if not os.path.exists(datasavepath): os.makedirs(datasavepath) mmpname = "eods_"+filename[:-3]+"npmmp" # save the peaks of the current buffered part to a numpy-memmap on the disk save_EOD_events_to_npmmp(thisblock_eods,eods_len,idx==startblock,datasavepath,mmpname) eods_len += len(thisblock_eods[0]) else: if idx > 0: all_eods = np.concatenate((all_eods,thisblock_eods),axis = 1) else: all_eods = thisblock_eods if plot_steps == True: print('FINAL RESULTS') plot_events_on_data(all_eods, data, colors) #plot_events_on_data(all_eods,data) print('returnes analyzed EODS. Calculate frequencies using all of these but discard the data from the EODS within the lowest few percent of amplitude') if npmmp: all_eods = np.memmap(datasavepath+'/'+mmpname, dtype='float64', mode='r+', shape=(4,eods_len), order = 'F') if save == 1: path = filename[:-4]+"/" if not os.path.exists(path): os.makedirs(path) if eods_len > 0: np.save(datasavepath+"/eods8_"+filename[:-3]+"npy", all_eods) print('Saved!') else: print('not saved') return all_eods def main(): eods = analyze_pulse_data(sys.argv[1], save=True, npmmp=True) print(eods) if __name__ == '__main__': main()
gpl-3.0
hunse/deepnet
examples/vh_deepautoencoder.py
1
6961
""" Learn a single-layer sparse autoencoder on Van Hateren data (as in CogSci 2013 paper) """ import sys, os, time, datetime os.environ['THEANO_FLAGS'] = 'device=gpu, floatX=float32' import theano import numpy as np import numpy.random as npr import matplotlib.pyplot as plt plt.ion() import deepnet import deepnet.autoencoder as auto import deepnet.functions as func import deepnet.image_tools as imtools import skdata.vanhateren.dataset data = skdata.vanhateren.dataset.Calibrated(50) data.meta # accessing this forces data arrays to be built N = 60000 S = 32 patches = data.raw_patches((N, S, S), items=data.meta[:data.n_item_limit]) patches = patches.astype('float32') patch_shape = patches.shape[1:] ### intensities are essentially log-normally distributed. So take the log patches = np.log1p(patches) def normalize(p): std0 = patches.std() mean, std = p.mean(axis=(1,2)), p.std(axis=(1,2)) return ((p - mean[:,None,None]) / np.maximum(std, 0.01*std0)[:,None,None]) patches = normalize(patches) patches = patches.clip(-3, 3) # patches = (2*(patches > 0) - 1).astype('float32') ################################################################################ # loadfile = 'results/vh_tied.npz' # loadfile = 'results/vh_binary.npz' loadfile = 'results/vh_flatlif.npz' if not os.path.exists(loadfile): linear = func.Linear(slope=1.0) # noisylif = func.NoisyLIFApprox( # tRef=0.02, tauRC=0.06, alpha=10.0, xint=-0.5, amp=1./41, sigma=0.05) noisylif = func.NoisyLIFApprox( tRef=0.002, tauRC=0.05, alpha=0.7, xint=-0.5, amp=1./50, sigma=0.001) # params = [(auto.SparseAutoencoder, (50, 50), {'rfshape': (9,9), 'f': noisylif, 'g': linear}), # (auto.Autoencoder, (40, 40), {'f': noisylif, 'g': noisylif}), # (auto.Autoencoder, (30, 30), {'f': noisylif, 'g': noisylif}), # (auto.Autoencoder, (20, 20), {'f': linear, 'g': noisylif})] params = [ #(auto.SparseAutoencoder, (50, 50), {'rfshape': (9,9), 'f': noisylif, 'g': linear}), "results/vh_flatlif.npz.layer_0_2013-10-07_12:00:39.npz", # (auto.Autoencoder, (40, 40), {'f': noisylif, 'g': noisylif}), "results/vh_flatlif.npz.layer_1_2013-10-07_12:20:10.npz", # (auto.Autoencoder, (30, 30), {'f': noisylif, 'g': noisylif}), "results/vh_flatlif.npz.layer_2_2013-10-07_12:25:06.npz", (auto.Autoencoder, (20, 20), {'f': linear, 'g': noisylif})] # params = ['results/vh_flatlif.npz.layer_0_2013-10-04_16:07:47.npz', # # (auto.Autoencoder, (40, 40), {'f': noisylif, 'g': noisylif}), # # (auto.SparseAutoencoder, (40, 40), {'rfshape': (13, 13), 'f': noisylif, 'g': noisylif}), # (auto.Autoencoder, (30, 30), {'f': noisylif, 'g': noisylif}), # (auto.Autoencoder, (20, 20), {'f': linear, 'g': noisylif})] # params = ['results/vh_layer.npz', # # (auto.SparseAutoencoder, (40, 40), {'rfshape': (13, 13), 'f': noisylif, 'g': noisylif}), # 'results/vh_tied.npz.layer_1.npz', # # (auto.Autoencoder, (30, 30), {'f': noisylif, 'g': noisylif}), # # 'results/vh_tied.npz.layer_2.npz', # 'results/vh_tied.npz.layer_2_2013-10-02_13:33:09.npz', # # (auto.Autoencoder, (20, 20), {'f': linear, 'g': noisylif}) # 'results/vh_tied.npz.layer_3_2013-10-02_13:36:00.npz' # ] layers = [] for param in params: if isinstance(param, str): # load from file enc = deepnet.base.CacheObject.from_file(param) else: # make a new layer visshape = patch_shape if len(layers) == 0 else layers[-1].hidshape EncoderClass, hidshape, p = param enc = EncoderClass(visshape=visshape, hidshape=hidshape, **p) layers.append(enc) net = auto.DeepAutoencoder(layers) else: net = auto.DeepAutoencoder.from_file(loadfile) # assert 0 # sgd_epochs = [layer for layer in net.layers if layer.train_stats def algo_epochs(layer, algo): return sum([s['n_epochs'] for s in layer.train_stats if s['algorithm'] == algo]) # sgd_params = [dict(n_epochs=30, rate=0.05, clip=(-1,1)) for i in net.layers] sgd_params = [dict(n_epochs=30, rate=0.05, clip=(-1,1)), dict(n_epochs=30, rate=0.05, clip=(-1,1)), dict(n_epochs=30, rate=0.01, clip=(-1,1)), dict(n_epochs=50, rate=0.005, clip=(-1,1))] if any(algo_epochs(layer, 'sgd') < sgd_params[i]['n_epochs'] for i, layer in enumerate(net.layers)): if imtools.display_available(): ### set figure size and position fig = plt.figure(101, figsize=(11.925, 12.425)) # figman = plt.get_current_fig_manager() # figman.window.wm_geometry('954x1028+2880+0') # fig.set_size_inches([11.925, 12.425]) images = patches[:] timages = patches[:500] # train_params = [{'rho': 0.01, 'lamb': 5, 'noise_std': 0.2}, # {'rho': 0.05, 'lamb': 0.1, 'noise_std': 0.2}, # {'rho': 0.05, 'lamb': 0, 'noise_std': 0.2}, # {'rho': 0.05, 'lamb': 0, 'noise_std': 0.2}] # train_params = [{'rho': 0.05, 'lamb': 5, 'noise_std': 0.2}, # {'rho': 0.05, 'lamb': 1, 'noise_std': 0.2}, # {'rho': 0.05, 'lamb': 0, 'noise_std': 0.2}, # {'rho': 0.05, 'lamb': 0, 'noise_std': 0.2}] train_params = [{'rho': 0.01, 'lamb': 5, 'noise_std': 0.1}, {'rho': 0.05, 'lamb': 0, 'noise_std': 0.1}, {'rho': 0.05, 'lamb': 0, 'noise_std': 0.1}, {'rho': 0.05, 'lamb': 0, 'noise_std': 0.0}] for i, layer in enumerate(net.layers): sgd_param = sgd_params[i] train_param = train_params[i] # subtract completed epochs sgd_param['n_epochs'] -= algo_epochs(layer, 'sgd') if sgd_param['n_epochs'] > 0: trainer = auto.SparseTrainer(layer, **train_param) test_fn = net.propVHV_fn(maxlayer=i) # save_fn = lambda: net.to_file(loadfile) save_fn = None auto.sgd(trainer, images, timages, test_fn=test_fn, vlims=(-2,2), save_fn=save_fn, **sgd_param) if save_fn is None: # net.to_file(loadfile) layer_file = "%s.layer_%d_%s.npz" % ( loadfile, i, datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")) layer.to_file(layer_file) images = layer.compup(images) net.to_file(loadfile) if 1: results = net.compVHV(patches) rmses = imtools.rmse(patches, results) print "rmse", rmses.mean(), rmses.std() if imtools.display_available(): plt.figure(figsize=(11.925, 12.425)) imtools.compare([patches, results], rows=8, cols=12, vlims=(-2,2))
mit
saiwing-yeung/scikit-learn
sklearn/linear_model/tests/test_huber.py
25
6981
# Authors: Manoj Kumar [email protected] # License: BSD 3 clause import numpy as np from scipy import optimize, sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.datasets import make_regression from sklearn.linear_model import ( HuberRegressor, LinearRegression, SGDRegressor, Ridge) from sklearn.linear_model.huber import _huber_loss_and_gradient def make_regression_with_outliers(n_samples=50, n_features=20): rng = np.random.RandomState(0) # Generate data with outliers by replacing 10% of the samples with noise. X, y = make_regression( n_samples=n_samples, n_features=n_features, random_state=0, noise=0.05) # Replace 10% of the sample with noise. num_noise = int(0.1 * n_samples) random_samples = rng.randint(0, n_samples, num_noise) X[random_samples, :] = 2.0 * rng.normal(0, 1, (num_noise, X.shape[1])) return X, y def test_huber_equals_lr_for_high_epsilon(): # Test that Ridge matches LinearRegression for large epsilon X, y = make_regression_with_outliers() lr = LinearRegression(fit_intercept=True) lr.fit(X, y) huber = HuberRegressor(fit_intercept=True, epsilon=1e3, alpha=0.0) huber.fit(X, y) assert_almost_equal(huber.coef_, lr.coef_, 3) assert_almost_equal(huber.intercept_, lr.intercept_, 2) def test_huber_gradient(): # Test that the gradient calculated by _huber_loss_and_gradient is correct rng = np.random.RandomState(1) X, y = make_regression_with_outliers() sample_weight = rng.randint(1, 3, (y.shape[0])) loss_func = lambda x, *args: _huber_loss_and_gradient(x, *args)[0] grad_func = lambda x, *args: _huber_loss_and_gradient(x, *args)[1] # Check using optimize.check_grad that the gradients are equal. for _ in range(5): # Check for both fit_intercept and otherwise. for n_features in [X.shape[1] + 1, X.shape[1] + 2]: w = rng.randn(n_features) w[-1] = np.abs(w[-1]) grad_same = optimize.check_grad( loss_func, grad_func, w, X, y, 0.01, 0.1, sample_weight) assert_almost_equal(grad_same, 1e-6, 4) def test_huber_sample_weights(): # Test sample_weights implementation in HuberRegressor""" X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True, alpha=0.1) huber.fit(X, y) huber_coef = huber.coef_ huber_intercept = huber.intercept_ huber.fit(X, y, sample_weight=np.ones(y.shape[0])) assert_array_almost_equal(huber.coef_, huber_coef) assert_array_almost_equal(huber.intercept_, huber_intercept) X, y = make_regression_with_outliers(n_samples=5, n_features=20) X_new = np.vstack((X, np.vstack((X[1], X[1], X[3])))) y_new = np.concatenate((y, [y[1]], [y[1]], [y[3]])) huber.fit(X_new, y_new) huber_coef = huber.coef_ huber_intercept = huber.intercept_ huber.fit(X, y, sample_weight=[1, 3, 1, 2, 1]) assert_array_almost_equal(huber.coef_, huber_coef, 3) assert_array_almost_equal(huber.intercept_, huber_intercept, 3) # Test sparse implementation with sample weights. X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor(fit_intercept=True, alpha=0.1) huber_sparse.fit(X_csr, y, sample_weight=[1, 3, 1, 2, 1]) assert_array_almost_equal(huber_sparse.coef_, huber_coef, 3) def test_huber_sparse(): X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True, alpha=0.1) huber.fit(X, y) X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor(fit_intercept=True, alpha=0.1) huber_sparse.fit(X_csr, y) assert_array_almost_equal(huber_sparse.coef_, huber.coef_) def test_huber_scaling_invariant(): """Test that outliers filtering is scaling independent.""" rng = np.random.RandomState(0) X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100, epsilon=1.35) huber.fit(X, y) n_outliers_mask_1 = huber.outliers_ huber.fit(X, 2. * y) n_outliers_mask_2 = huber.outliers_ huber.fit(2. * X, 2. * y) n_outliers_mask_3 = huber.outliers_ assert_array_equal(n_outliers_mask_2, n_outliers_mask_1) assert_array_equal(n_outliers_mask_3, n_outliers_mask_1) def test_huber_and_sgd_same_results(): """Test they should converge to same coefficients for same parameters""" X, y = make_regression_with_outliers(n_samples=5, n_features=2) # Fit once to find out the scale parameter. Scale down X and y by scale # so that the scale parameter is optimized to 1.0 huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100, epsilon=1.35) huber.fit(X, y) X_scale = X / huber.scale_ y_scale = y / huber.scale_ huber.fit(X_scale, y_scale) assert_almost_equal(huber.scale_, 1.0, 3) sgdreg = SGDRegressor( alpha=0.0, loss="huber", shuffle=True, random_state=0, n_iter=1000000, fit_intercept=False, epsilon=1.35) sgdreg.fit(X_scale, y_scale) assert_array_almost_equal(huber.coef_, sgdreg.coef_, 1) def test_huber_warm_start(): X, y = make_regression_with_outliers() huber_warm = HuberRegressor( fit_intercept=True, alpha=1.0, max_iter=10000, warm_start=True, tol=1e-1) huber_warm.fit(X, y) huber_warm_coef = huber_warm.coef_.copy() huber_warm.fit(X, y) # SciPy performs the tol check after doing the coef updates, so # these would be almost same but not equal. assert_array_almost_equal(huber_warm.coef_, huber_warm_coef, 1) # No n_iter_ in old SciPy (<=0.9) # And as said above, the first iteration seems to be run anyway. if huber_warm.n_iter_ is not None: assert_equal(1, huber_warm.n_iter_) def test_huber_better_r2_score(): # Test that huber returns a better r2 score than non-outliers""" X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True, alpha=0.01, max_iter=100) huber.fit(X, y) linear_loss = np.dot(X, huber.coef_) + huber.intercept_ - y mask = np.abs(linear_loss) < huber.epsilon * huber.scale_ huber_score = huber.score(X[mask], y[mask]) huber_outlier_score = huber.score(X[~mask], y[~mask]) # The Ridge regressor should be influenced by the outliers and hence # give a worse score on the non-outliers as compared to the huber regressor. ridge = Ridge(fit_intercept=True, alpha=0.01) ridge.fit(X, y) ridge_score = ridge.score(X[mask], y[mask]) ridge_outlier_score = ridge.score(X[~mask], y[~mask]) assert_greater(huber_score, ridge_score) # The huber model should also fit poorly on the outliers. assert_greater(ridge_outlier_score, huber_outlier_score)
bsd-3-clause
skavulya/spark-tk
regression-tests/sparktkregtests/testcases/graph/graph_connected_test.py
11
2429
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Test connected_components graphx, Valuesare checked against networkx""" import unittest from sparktkregtests.lib import sparktk_test class ConnectedComponents(sparktk_test.SparkTKTestCase): def test_connected_component(self): """ Tests the graphx connected components in ATK""" super(ConnectedComponents, self).setUp() graph_data = self.get_file("clique_10.csv") schema = [('src', str), ('dst', str)] # set up the vertex frame, which is the union of the src and # the dst columns of the edges self.frame = self.context.frame.import_csv(graph_data, schema=schema) self.vertices = self.frame.copy() self.vertices2 = self.frame.copy() self.vertices.rename_columns({"src": "id"}) self.vertices.drop_columns(["dst"]) self.vertices2.rename_columns({"dst": "id"}) self.vertices2.drop_columns(["src"]) self.vertices.append(self.vertices2) self.vertices.drop_duplicates() self.vertices.sort("id") self.frame.add_columns(lambda x: 2, ("value", int)) self.graph = self.context.graph.create(self.vertices, self.frame) components = self.graph.connected_components() components.sort('id') components.add_columns( lambda x: x['id'].split('_')[1], ("element", str)) frame = components.to_pandas(components.count()) group = frame.groupby('component').agg(lambda x: x.nunique()) # Each component should only have 1 element value, the name of the # component for _, row in group.iterrows(): self.assertEqual(row['element'], 1) if __name__ == '__main__': unittest.main()
apache-2.0
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/core/tools/timedeltas.py
2
6506
""" timedelta support tools """ import warnings import numpy as np from pandas._libs.tslibs import NaT from pandas._libs.tslibs.timedeltas import Timedelta, parse_timedelta_unit from pandas.util._decorators import deprecate_kwarg from pandas.core.dtypes.common import is_list_like from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.arrays.timedeltas import sequence_to_td64ns @deprecate_kwarg(old_arg_name="box", new_arg_name=None) def to_timedelta(arg, unit="ns", box=True, errors="raise"): """ Convert argument to timedelta. Timedeltas are absolute differences in times, expressed in difference units (e.g. days, hours, minutes, seconds). This method converts an argument from a recognized timedelta format / value into a Timedelta type. Parameters ---------- arg : str, timedelta, list-like or Series The data to be converted to timedelta. unit : str, default 'ns' Denotes the unit of the arg. Possible values: ('Y', 'M', 'W', 'D', 'days', 'day', 'hours', hour', 'hr', 'h', 'm', 'minute', 'min', 'minutes', 'T', 'S', 'seconds', 'sec', 'second', 'ms', 'milliseconds', 'millisecond', 'milli', 'millis', 'L', 'us', 'microseconds', 'microsecond', 'micro', 'micros', 'U', 'ns', 'nanoseconds', 'nano', 'nanos', 'nanosecond', 'N'). box : bool, default True - If True returns a Timedelta/TimedeltaIndex of the results. - If False returns a numpy.timedelta64 or numpy.darray of values of dtype timedelta64[ns]. .. deprecated:: 0.25.0 Use :meth:`Series.to_numpy` or :meth:`Timedelta.to_timedelta64` instead to get an ndarray of values or numpy.timedelta64, respectively. errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception. - If 'coerce', then invalid parsing will be set as NaT. - If 'ignore', then invalid parsing will return the input. Returns ------- timedelta64 or numpy.array of timedelta64 Output type returned if parsing succeeded. See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_datetime : Convert argument to datetime. Examples -------- Parsing a single string to a Timedelta: >>> pd.to_timedelta('1 days 06:05:01.00003') Timedelta('1 days 06:05:01.000030') >>> pd.to_timedelta('15.5us') Timedelta('0 days 00:00:00.000015') Parsing a list or array of strings: >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']) TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT], dtype='timedelta64[ns]', freq=None) Converting numbers by specifying the `unit` keyword argument: >>> pd.to_timedelta(np.arange(5), unit='s') TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'], dtype='timedelta64[ns]', freq=None) >>> pd.to_timedelta(np.arange(5), unit='d') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None) Returning an ndarray by using the 'box' keyword argument: >>> pd.to_timedelta(np.arange(5), box=False) array([0, 1, 2, 3, 4], dtype='timedelta64[ns]') """ unit = parse_timedelta_unit(unit) if errors not in ("ignore", "raise", "coerce"): raise ValueError("errors must be one of 'ignore', " "'raise', or 'coerce'}") if unit in {"Y", "y", "M"}: warnings.warn( "M and Y units are deprecated and " "will be removed in a future version.", FutureWarning, stacklevel=2, ) if arg is None: return arg elif isinstance(arg, ABCSeries): values = _convert_listlike(arg._values, unit=unit, box=False, errors=errors) return arg._constructor(values, index=arg.index, name=arg.name) elif isinstance(arg, ABCIndexClass): return _convert_listlike(arg, unit=unit, box=box, errors=errors, name=arg.name) elif isinstance(arg, np.ndarray) and arg.ndim == 0: # extract array scalar and process below arg = arg.item() elif is_list_like(arg) and getattr(arg, "ndim", 1) == 1: return _convert_listlike(arg, unit=unit, box=box, errors=errors) elif getattr(arg, "ndim", 1) > 1: raise TypeError( "arg must be a string, timedelta, list, tuple, " "1-d array, or Series" ) # ...so it must be a scalar value. Return scalar. return _coerce_scalar_to_timedelta_type(arg, unit=unit, box=box, errors=errors) def _coerce_scalar_to_timedelta_type(r, unit="ns", box=True, errors="raise"): """Convert string 'r' to a timedelta object.""" try: result = Timedelta(r, unit) if not box: # explicitly view as timedelta64 for case when result is pd.NaT result = result.asm8.view("timedelta64[ns]") except ValueError: if errors == "raise": raise elif errors == "ignore": return r # coerce result = NaT return result def _convert_listlike(arg, unit="ns", box=True, errors="raise", name=None): """Convert a list of objects to a timedelta index object.""" if isinstance(arg, (list, tuple)) or not hasattr(arg, "dtype"): # This is needed only to ensure that in the case where we end up # returning arg (errors == "ignore"), and where the input is a # generator, we return a useful list-like instead of a # used-up generator arg = np.array(list(arg), dtype=object) try: value = sequence_to_td64ns(arg, unit=unit, errors=errors, copy=False)[0] except ValueError: if errors == "ignore": return arg else: # This else-block accounts for the cases when errors='raise' # and errors='coerce'. If errors == 'raise', these errors # should be raised. If errors == 'coerce', we shouldn't # expect any errors to be raised, since all parsing errors # cause coercion to pd.NaT. However, if an error / bug is # introduced that causes an Exception to be raised, we would # like to surface it. raise if box: from pandas import TimedeltaIndex value = TimedeltaIndex(value, unit="ns", name=name) return value
apache-2.0
NLeSC/embodied-emotions-scripts
embem/machinelearning/rakel_save_clf.py
1
1561
"""Script to train rakel classifier (based on all data) and save classifier object The classifier object is saved to <output_dir>/classifier.pkl Usage: python rakel_save_clf.py <train file> <output_dir> """ from __future__ import print_function import argparse from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC from sklearn.externals import joblib from rakel import RandomKLabelsets from mlutils import get_data, split from nltk.corpus import stopwords as sw import string import os parser = argparse.ArgumentParser() parser.add_argument('train_file', help='file containing the train data') parser.add_argument('output_dir', help='directory to save the classifier to') args = parser.parse_args() stopwords = sw.words('dutch') + [p for p in string.punctuation] if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) classifier_file = '{}/classifier.pkl'.format(args.output_dir) X_train, X_test, Y_train, Y_test, classes_ = get_data(args.train_file, args.train_file) clf = make_pipeline(TfidfVectorizer(analyzer=split, stop_words=stopwords), RandomKLabelsets(LinearSVC(class_weight='auto'), n_estimators=Y_train.shape[1]*2, labels_per_estimator=3)) clf.fit(X_train, Y_train) # save classifier joblib.dump(clf, classifier_file) print('saved', classifier_file)
apache-2.0
LohithBlaze/scikit-learn
sklearn/ensemble/voting_classifier.py
178
8006
""" Soft Voting/Majority Rule classifier. This module contains a Soft Voting/Majority Rule classifier for classification estimators. """ # Authors: Sebastian Raschka <[email protected]>, # Gilles Louppe <[email protected]> # # Licence: BSD 3 clause import numpy as np from ..base import BaseEstimator from ..base import ClassifierMixin from ..base import TransformerMixin from ..base import clone from ..preprocessing import LabelEncoder from ..externals import six class VotingClassifier(BaseEstimator, ClassifierMixin, TransformerMixin): """Soft Voting/Majority Rule classifier for unfitted estimators. Read more in the :ref:`User Guide <voting_classifier>`. Parameters ---------- estimators : list of (string, estimator) tuples Invoking the `fit` method on the `VotingClassifier` will fit clones of those original estimators that will be stored in the class attribute `self.estimators_`. voting : str, {'hard', 'soft'} (default='hard') If 'hard', uses predicted class labels for majority rule voting. Else if 'soft', predicts the class label based on the argmax of the sums of the predicted probalities, which is recommended for an ensemble of well-calibrated classifiers. weights : array-like, shape = [n_classifiers], optional (default=`None`) Sequence of weights (`float` or `int`) to weight the occurances of predicted class labels (`hard` voting) or class probabilities before averaging (`soft` voting). Uses uniform weights if `None`. Attributes ---------- classes_ : array-like, shape = [n_predictions] Examples -------- >>> import numpy as np >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.ensemble import RandomForestClassifier >>> clf1 = LogisticRegression(random_state=1) >>> clf2 = RandomForestClassifier(random_state=1) >>> clf3 = GaussianNB() >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> eclf1 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') >>> eclf1 = eclf1.fit(X, y) >>> print(eclf1.predict(X)) [1 1 1 2 2 2] >>> eclf2 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft') >>> eclf2 = eclf2.fit(X, y) >>> print(eclf2.predict(X)) [1 1 1 2 2 2] >>> eclf3 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft', weights=[2,1,1]) >>> eclf3 = eclf3.fit(X, y) >>> print(eclf3.predict(X)) [1 1 1 2 2 2] >>> """ def __init__(self, estimators, voting='hard', weights=None): self.estimators = estimators self.named_estimators = dict(estimators) self.voting = voting self.weights = weights def fit(self, X, y): """ Fit the estimators. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : object """ if isinstance(y, np.ndarray) and len(y.shape) > 1 and y.shape[1] > 1: raise NotImplementedError('Multilabel and multi-output' ' classification is not supported.') if self.voting not in ('soft', 'hard'): raise ValueError("Voting must be 'soft' or 'hard'; got (voting=%r)" % self.voting) if self.weights and len(self.weights) != len(self.estimators): raise ValueError('Number of classifiers and weights must be equal' '; got %d weights, %d estimators' % (len(self.weights), len(self.estimators))) self.le_ = LabelEncoder() self.le_.fit(y) self.classes_ = self.le_.classes_ self.estimators_ = [] for name, clf in self.estimators: fitted_clf = clone(clf).fit(X, self.le_.transform(y)) self.estimators_.append(fitted_clf) return self def predict(self, X): """ Predict class labels for X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- maj : array-like, shape = [n_samples] Predicted class labels. """ if self.voting == 'soft': maj = np.argmax(self.predict_proba(X), axis=1) else: # 'hard' voting predictions = self._predict(X) maj = np.apply_along_axis(lambda x: np.argmax(np.bincount(x, weights=self.weights)), axis=1, arr=predictions) maj = self.le_.inverse_transform(maj) return maj def _collect_probas(self, X): """Collect results from clf.predict calls. """ return np.asarray([clf.predict_proba(X) for clf in self.estimators_]) def _predict_proba(self, X): """Predict class probabilities for X in 'soft' voting """ avg = np.average(self._collect_probas(X), axis=0, weights=self.weights) return avg @property def predict_proba(self): """Compute probabilities of possible outcomes for samples in X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- avg : array-like, shape = [n_samples, n_classes] Weighted average probability for each class per sample. """ if self.voting == 'hard': raise AttributeError("predict_proba is not available when" " voting=%r" % self.voting) return self._predict_proba def transform(self, X): """Return class labels or probabilities for X for each estimator. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- If `voting='soft'`: array-like = [n_classifiers, n_samples, n_classes] Class probabilties calculated by each classifier. If `voting='hard'`: array-like = [n_classifiers, n_samples] Class labels predicted by each classifier. """ if self.voting == 'soft': return self._collect_probas(X) else: return self._predict(X) def get_params(self, deep=True): """Return estimator parameter names for GridSearch support""" if not deep: return super(VotingClassifier, self).get_params(deep=False) else: out = super(VotingClassifier, self).get_params(deep=False) out.update(self.named_estimators.copy()) for name, step in six.iteritems(self.named_estimators): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out def _predict(self, X): """Collect results from clf.predict calls. """ return np.asarray([clf.predict(X) for clf in self.estimators_]).T
bsd-3-clause
broadinstitute/ebola-predictor
lreg/train.py
1
6789
""" Trains a Logistic Regression Classifier with binary output. @copyright: The Broad Institute of MIT and Harvard 2015 """ import argparse import sys import pandas as pd import numpy as np from scipy.optimize import fmin_l_bfgs_b import matplotlib.pyplot as plt def prefix(): return "lreg" def title(): return "Logistic Regression" def sigmoid(v): return 1 / (1 + np.exp(-v)) def cost(theta, X, y, gamma): M = X.shape[0] h = sigmoid(np.dot(X, theta)) terms = -y * np.log(h) - (1-y) * np.log(1-h) prod = theta * theta prod[0] = 0 penalty = (gamma / (2 * M)) * np.sum(prod) return terms.mean() + penalty def gradient(theta, X, y, gamma): M = X.shape[0] N = X.shape[1] # Note the vectorized operations using numpy: # X is a MxN array, and theta a Nx1 array, # so np.dot(X, theta) gives a Mx1 array, which # in turn is used by the sigmoid function to # perform the calculation component-wise and # return another Mx1 array h = sigmoid(np.dot(X, theta)) err = h - y # err is a Mx1 array, so that its dot product # with the MxN array X gives a Nx1 array, which # in this case it is exactly the gradient! costGrad = np.dot(err, X) / M regCost = (gamma / M) * np.copy(theta) regCost[0] = 0 grad = costGrad + regCost global gcheck if gcheck: ok = True epsilon = 1E-5 maxerr = 0.01 grad1 = np.zeros(N); for i in range(0, N): theta0 = np.copy(theta) theta1 = np.copy(theta) theta0[i] = theta0[i] - epsilon theta1[i] = theta1[i] + epsilon c0 = cost(theta0, X, y, gamma) c1 = cost(theta1, X, y, gamma) grad1[i] = (c1 - c0) / (2 * epsilon) diff = abs(grad1[i] - grad[i]) if maxerr < diff: print "Numerical and analytical gradients differ by",diff,"at argument",i,"/",N ok = False if ok: print "Numerical and analytical gradients coincide within the given precision of",maxerr return grad def add_value(theta): global params global gamma global values (X, y, gamma) = params value = cost(theta, X, y, gamma); values = np.append(values, [value]) def optim(params, threshold): global values (X, y, gamma) = params M = X.shape[0] N = X.shape[1] print "" print "Running BFGS minimization..." theta0 = 1 - 2 * np.random.rand(N) thetaOpt = fmin_l_bfgs_b(cost, theta0, fprime=gradient, args=(X, y, gamma), pgtol=threshold, callback=add_value)[0] return [True, thetaOpt] def print_theta(theta, N, names): print "{:10s} {:3.5f}".format("Intercept", theta[0]) for i in range(1, N): print "{:10s} {:3.5f}".format(names[i-1], theta[i]) def save_theta(filename, theta, N, names): with open(filename, "wb") as pfile: pfile.write("Intercept " + str(theta[0]) + "\n") for i in range(1, N): pfile.write(names[i-1] + " " + str(theta[i]) + "\n") """ Trains the logistic regression classifier given the specified parameters : param train_filename: name of file containing training set : param param_filename: name of file to store resulting logistic regression parameters : param kwparams: custom arguments for logistic regression: nv_reg (inverse of regularization coefficient), threshold (default convergence threshold), show (show minimization plot), debug (gradient check) """ def train(train_filename, param_filename, **kwparams): if "inv_reg" in kwparams: gamma = 1.0 / float(kwparams["inv_reg"]) else: gamma = 0.08 if "threshold" in kwparams: threshold = float(kwparams["threshold"]) else: threshold = 1E-5 if "show" in kwparams: show = True if kwparams["show"].lower() == "true" else False else: show = False if "debug" in kwparams: debug = True if kwparams["debug"].lower() == "true" else False else: debug = False global gcheck global params global values gcheck = debug print "***************************************" # Loading data frame and initalizing dimensions df = pd.read_csv(train_filename, delimiter=',', na_values="?") M = df.shape[0] N = df.shape[1] vars = df.columns.values[1: N] print "Number of independent variables:", N-1 print "Number of data samples :", M y = df.values[:,0] # Building the (normalized) design matrix X = np.ones((M, N)) for j in range(1, N): # Computing i-th column. The pandas dataframe # contains all the values as numpy arrays that # can be handled individually: values = df.values[:, j] minv = values.min() maxv = values.max() if maxv > minv: X[:, j] = np.clip((values - minv) / (maxv - minv), 0, 1) else: X[:, j] = 1.0 / M values = np.array([]) params = (X, y, gamma) [conv, theta] = optim(params, threshold) if conv: print "Convergence!" else: print "Error: cost function increased..." print "Try adjusting the learning or the regularization coefficients" if show: plt.plot(np.arange(values.shape[0]), values) plt.xlabel("Step number") plt.ylabel("Cost function") plt.show() print "" print "Logistic Regresion parameters:" print_theta(theta, N, vars) save_theta(param_filename, theta, N, vars) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-t", "--train", nargs=1, default=["./models/test/training-data-completed.csv"], help="File containing training set") parser.add_argument("-p", "--param", nargs=1, default=["./models/test/lreg-params"], help="Output file to save the parameters of the neural net") parser.add_argument("-r", "--inv_reg", nargs=1, type=float, default=[12.5], help="Inverse of regularization coefficient, larger values represent lower penalty") parser.add_argument("-c", "--convergence", nargs=1, type=float, default=[1E-5], help="Convergence threshold for the BFGS minimizer") parser.add_argument("-s", "--show", action="store_true", help="Shows minimization plot") parser.add_argument("-d", "--debug", action="store_true", help="Debugs gradient calculation") args = parser.parse_args() train(args.train[0], args.param[0], inv_reg=str(args.inv_reg[0]), threshold=str(args.convergence[0]), show=str(args.show), debug=str(args.debug))
bsd-2-clause
yunfeilu/scikit-learn
examples/exercises/plot_iris_exercise.py
323
1602
""" ================================ SVM Exercise ================================ A tutorial exercise for using different SVM kernels. This exercise is used in the :ref:`using_kernels_tut` part of the :ref:`supervised_learning_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 0, :2] y = y[y != 0] n_sample = len(X) np.random.seed(0) order = np.random.permutation(n_sample) X = X[order] y = y[order].astype(np.float) X_train = X[:.9 * n_sample] y_train = y[:.9 * n_sample] X_test = X[.9 * n_sample:] y_test = y[.9 * n_sample:] # fit the model for fig_num, kernel in enumerate(('linear', 'rbf', 'poly')): clf = svm.SVC(kernel=kernel, gamma=10) clf.fit(X_train, y_train) plt.figure(fig_num) plt.clf() plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired) # Circle out the test data plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none', zorder=10) plt.axis('tight') x_min = X[:, 0].min() x_max = X[:, 0].max() y_min = X[:, 1].min() y_max = X[:, 1].max() XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.title(kernel) plt.show()
bsd-3-clause
shoyer/xarray
xarray/core/combine.py
1
38182
import itertools import warnings from collections import Counter from textwrap import dedent import pandas as pd from . import dtypes from .concat import concat from .dataarray import DataArray from .dataset import Dataset from .merge import merge def _infer_concat_order_from_positions(datasets): combined_ids = dict(_infer_tile_ids_from_nested_list(datasets, ())) return combined_ids def _infer_tile_ids_from_nested_list(entry, current_pos): """ Given a list of lists (of lists...) of objects, returns a iterator which returns a tuple containing the index of each object in the nested list structure as the key, and the object. This can then be called by the dict constructor to create a dictionary of the objects organised by their position in the original nested list. Recursively traverses the given structure, while keeping track of the current position. Should work for any type of object which isn't a list. Parameters ---------- entry : list[list[obj, obj, ...], ...] List of lists of arbitrary depth, containing objects in the order they are to be concatenated. Returns ------- combined_tile_ids : dict[tuple(int, ...), obj] """ if isinstance(entry, list): for i, item in enumerate(entry): yield from _infer_tile_ids_from_nested_list(item, current_pos + (i,)) else: yield current_pos, entry def _infer_concat_order_from_coords(datasets): concat_dims = [] tile_ids = [() for ds in datasets] # All datasets have same variables because they've been grouped as such ds0 = datasets[0] for dim in ds0.dims: # Check if dim is a coordinate dimension if dim in ds0: # Need to read coordinate values to do ordering indexes = [ds.indexes.get(dim) for ds in datasets] if any(index is None for index in indexes): raise ValueError( "Every dimension needs a coordinate for " "inferring concatenation order" ) # If dimension coordinate values are same on every dataset then # should be leaving this dimension alone (it's just a "bystander") if not all(index.equals(indexes[0]) for index in indexes[1:]): # Infer order datasets should be arranged in along this dim concat_dims.append(dim) if all(index.is_monotonic_increasing for index in indexes): ascending = True elif all(index.is_monotonic_decreasing for index in indexes): ascending = False else: raise ValueError( "Coordinate variable {} is neither " "monotonically increasing nor " "monotonically decreasing on all datasets".format(dim) ) # Assume that any two datasets whose coord along dim starts # with the same value have the same coord values throughout. if any(index.size == 0 for index in indexes): raise ValueError("Cannot handle size zero dimensions") first_items = pd.Index([index[0] for index in indexes]) # Sort datasets along dim # We want rank but with identical elements given identical # position indices - they should be concatenated along another # dimension, not along this one series = first_items.to_series() rank = series.rank(method="dense", ascending=ascending) order = rank.astype(int).values - 1 # Append positions along extra dimension to structure which # encodes the multi-dimensional concatentation order tile_ids = [ tile_id + (position,) for tile_id, position in zip(tile_ids, order) ] if len(datasets) > 1 and not concat_dims: raise ValueError( "Could not find any dimension coordinates to use to " "order the datasets for concatenation" ) combined_ids = dict(zip(tile_ids, datasets)) return combined_ids, concat_dims def _check_dimension_depth_tile_ids(combined_tile_ids): """ Check all tuples are the same length, i.e. check that all lists are nested to the same depth. """ tile_ids = combined_tile_ids.keys() nesting_depths = [len(tile_id) for tile_id in tile_ids] if not nesting_depths: nesting_depths = [0] if not set(nesting_depths) == {nesting_depths[0]}: raise ValueError( "The supplied objects do not form a hypercube because" " sub-lists do not have consistent depths" ) # return these just to be reused in _check_shape_tile_ids return tile_ids, nesting_depths def _check_shape_tile_ids(combined_tile_ids): """Check all lists along one dimension are same length.""" tile_ids, nesting_depths = _check_dimension_depth_tile_ids(combined_tile_ids) for dim in range(nesting_depths[0]): indices_along_dim = [tile_id[dim] for tile_id in tile_ids] occurrences = Counter(indices_along_dim) if len(set(occurrences.values())) != 1: raise ValueError( "The supplied objects do not form a hypercube " "because sub-lists do not have consistent " "lengths along dimension" + str(dim) ) def _combine_nd( combined_ids, concat_dims, data_vars="all", coords="different", compat="no_conflicts", fill_value=dtypes.NA, join="outer", combine_attrs="drop", ): """ Combines an N-dimensional structure of datasets into one by applying a series of either concat and merge operations along each dimension. No checks are performed on the consistency of the datasets, concat_dims or tile_IDs, because it is assumed that this has already been done. Parameters ---------- combined_ids : Dict[Tuple[int, ...]], xarray.Dataset] Structure containing all datasets to be concatenated with "tile_IDs" as keys, which specify position within the desired final combined result. concat_dims : sequence of str The dimensions along which the datasets should be concatenated. Must be in order, and the length must match the length of the tuples used as keys in combined_ids. If the string is a dimension name then concat along that dimension, if it is None then merge. Returns ------- combined_ds : xarray.Dataset """ example_tile_id = next(iter(combined_ids.keys())) n_dims = len(example_tile_id) if len(concat_dims) != n_dims: raise ValueError( "concat_dims has length {} but the datasets " "passed are nested in a {}-dimensional structure".format( len(concat_dims), n_dims ) ) # Each iteration of this loop reduces the length of the tile_ids tuples # by one. It always combines along the first dimension, removing the first # element of the tuple for concat_dim in concat_dims: combined_ids = _combine_all_along_first_dim( combined_ids, dim=concat_dim, data_vars=data_vars, coords=coords, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) (combined_ds,) = combined_ids.values() return combined_ds def _combine_all_along_first_dim( combined_ids, dim, data_vars, coords, compat, fill_value=dtypes.NA, join="outer", combine_attrs="drop", ): # Group into lines of datasets which must be combined along dim # need to sort by _new_tile_id first for groupby to work # TODO: is the sorted need? combined_ids = dict(sorted(combined_ids.items(), key=_new_tile_id)) grouped = itertools.groupby(combined_ids.items(), key=_new_tile_id) # Combine all of these datasets along dim new_combined_ids = {} for new_id, group in grouped: combined_ids = dict(sorted(group)) datasets = combined_ids.values() new_combined_ids[new_id] = _combine_1d( datasets, dim, compat, data_vars, coords, fill_value, join, combine_attrs ) return new_combined_ids def _combine_1d( datasets, concat_dim, compat="no_conflicts", data_vars="all", coords="different", fill_value=dtypes.NA, join="outer", combine_attrs="drop", ): """ Applies either concat or merge to 1D list of datasets depending on value of concat_dim """ if concat_dim is not None: try: combined = concat( datasets, dim=concat_dim, data_vars=data_vars, coords=coords, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) except ValueError as err: if "encountered unexpected variable" in str(err): raise ValueError( "These objects cannot be combined using only " "xarray.combine_nested, instead either use " "xarray.combine_by_coords, or do it manually " "with xarray.concat, xarray.merge and " "xarray.align" ) else: raise else: combined = merge( datasets, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) return combined def _new_tile_id(single_id_ds_pair): tile_id, ds = single_id_ds_pair return tile_id[1:] def _nested_combine( datasets, concat_dims, compat, data_vars, coords, ids, fill_value=dtypes.NA, join="outer", combine_attrs="drop", ): if len(datasets) == 0: return Dataset() # Arrange datasets for concatenation # Use information from the shape of the user input if not ids: # Determine tile_IDs by structure of input in N-D # (i.e. ordering in list-of-lists) combined_ids = _infer_concat_order_from_positions(datasets) else: # Already sorted so just use the ids already passed combined_ids = dict(zip(ids, datasets)) # Check that the inferred shape is combinable _check_shape_tile_ids(combined_ids) # Apply series of concatenate or merge operations along each dimension combined = _combine_nd( combined_ids, concat_dims, compat=compat, data_vars=data_vars, coords=coords, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) return combined def combine_nested( datasets, concat_dim, compat="no_conflicts", data_vars="all", coords="different", fill_value=dtypes.NA, join="outer", combine_attrs="drop", ): """ Explicitly combine an N-dimensional grid of datasets into one by using a succession of concat and merge operations along each dimension of the grid. Does not sort the supplied datasets under any circumstances, so the datasets must be passed in the order you wish them to be concatenated. It does align coordinates, but different variables on datasets can cause it to fail under some scenarios. In complex cases, you may need to clean up your data and use concat/merge explicitly. To concatenate along multiple dimensions the datasets must be passed as a nested list-of-lists, with a depth equal to the length of ``concat_dims``. ``manual_combine`` will concatenate along the top-level list first. Useful for combining datasets from a set of nested directories, or for collecting the output of a simulation parallelized along multiple dimensions. Parameters ---------- datasets : list or nested list of xarray.Dataset objects. Dataset objects to combine. If concatenation or merging along more than one dimension is desired, then datasets must be supplied in a nested list-of-lists. concat_dim : str, or list of str, DataArray, Index or None Dimensions along which to concatenate variables, as used by :py:func:`xarray.concat`. Set ``concat_dim=[..., None, ...]`` explicitly to disable concatenation and merge instead along a particular dimension. The position of ``None`` in the list specifies the dimension of the nested-list input along which to merge. Must be the same length as the depth of the list passed to ``datasets``. compat : {'identical', 'equals', 'broadcast_equals', 'no_conflicts', 'override'}, optional String indicating how to compare variables of the same name for potential merge conflicts: - 'broadcast_equals': all values must be equal when variables are broadcast against each other to ensure common dimensions. - 'equals': all values and dimensions must be the same. - 'identical': all values, dimensions and attributes must be the same. - 'no_conflicts': only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. - 'override': skip comparing and pick variable from first dataset data_vars : {'minimal', 'different', 'all' or list of str}, optional Details are in the documentation of concat coords : {'minimal', 'different', 'all' or list of str}, optional Details are in the documentation of concat fill_value : scalar, optional Value to use for newly missing values join : {'outer', 'inner', 'left', 'right', 'exact'}, optional String indicating how to combine differing indexes (excluding concat_dim) in objects - 'outer': use the union of object indexes - 'inner': use the intersection of object indexes - 'left': use indexes from the first object with each dimension - 'right': use indexes from the last object with each dimension - 'exact': instead of aligning, raise `ValueError` when indexes to be aligned are not equal - 'override': if indexes are of same size, rewrite indexes to be those of the first object with that dimension. Indexes for the same dimension must have the same size in all objects. combine_attrs : {'drop', 'identical', 'no_conflicts', 'override'}, default 'drop' String indicating how to combine attrs of the objects being merged: - 'drop': empty attrs on returned Dataset. - 'identical': all attrs must be the same on every object. - 'no_conflicts': attrs from all objects are combined, any that have the same name must also have the same value. - 'override': skip comparing and copy attrs from the first dataset to the result. Returns ------- combined : xarray.Dataset Examples -------- A common task is collecting data from a parallelized simulation in which each process wrote out to a separate file. A domain which was decomposed into 4 parts, 2 each along both the x and y axes, requires organising the datasets into a doubly-nested list, e.g: >>> x1y1 <xarray.Dataset> Dimensions: (x: 2, y: 2) Dimensions without coordinates: x, y Data variables: temperature (x, y) float64 11.04 23.57 20.77 ... precipitation (x, y) float64 5.904 2.453 3.404 ... >>> ds_grid = [[x1y1, x1y2], [x2y1, x2y2]] >>> combined = xr.combine_nested(ds_grid, concat_dim=["x", "y"]) <xarray.Dataset> Dimensions: (x: 4, y: 4) Dimensions without coordinates: x, y Data variables: temperature (x, y) float64 11.04 23.57 20.77 ... precipitation (x, y) float64 5.904 2.453 3.404 ... ``manual_combine`` can also be used to explicitly merge datasets with different variables. For example if we have 4 datasets, which are divided along two times, and contain two different variables, we can pass ``None`` to ``concat_dim`` to specify the dimension of the nested list over which we wish to use ``merge`` instead of ``concat``: >>> t1temp <xarray.Dataset> Dimensions: (t: 5) Dimensions without coordinates: t Data variables: temperature (t) float64 11.04 23.57 20.77 ... >>> t1precip <xarray.Dataset> Dimensions: (t: 5) Dimensions without coordinates: t Data variables: precipitation (t) float64 5.904 2.453 3.404 ... >>> ds_grid = [[t1temp, t1precip], [t2temp, t2precip]] >>> combined = xr.combine_nested(ds_grid, concat_dim=["t", None]) <xarray.Dataset> Dimensions: (t: 10) Dimensions without coordinates: t Data variables: temperature (t) float64 11.04 23.57 20.77 ... precipitation (t) float64 5.904 2.453 3.404 ... See also -------- concat merge auto_combine """ if isinstance(concat_dim, (str, DataArray)) or concat_dim is None: concat_dim = [concat_dim] # The IDs argument tells _manual_combine that datasets aren't yet sorted return _nested_combine( datasets, concat_dims=concat_dim, compat=compat, data_vars=data_vars, coords=coords, ids=False, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) def vars_as_keys(ds): return tuple(sorted(ds)) def combine_by_coords( datasets, compat="no_conflicts", data_vars="all", coords="different", fill_value=dtypes.NA, join="outer", combine_attrs="no_conflicts", ): """ Attempt to auto-magically combine the given datasets into one by using dimension coordinates. This method attempts to combine a group of datasets along any number of dimensions into a single entity by inspecting coords and metadata and using a combination of concat and merge. Will attempt to order the datasets such that the values in their dimension coordinates are monotonic along all dimensions. If it cannot determine the order in which to concatenate the datasets, it will raise a ValueError. Non-coordinate dimensions will be ignored, as will any coordinate dimensions which do not vary between each dataset. Aligns coordinates, but different variables on datasets can cause it to fail under some scenarios. In complex cases, you may need to clean up your data and use concat/merge explicitly (also see `manual_combine`). Works well if, for example, you have N years of data and M data variables, and each combination of a distinct time period and set of data variables is saved as its own dataset. Also useful for if you have a simulation which is parallelized in multiple dimensions, but has global coordinates saved in each file specifying the positions of points within the global domain. Parameters ---------- datasets : sequence of xarray.Dataset Dataset objects to combine. compat : {'identical', 'equals', 'broadcast_equals', 'no_conflicts', 'override'}, optional String indicating how to compare variables of the same name for potential conflicts: - 'broadcast_equals': all values must be equal when variables are broadcast against each other to ensure common dimensions. - 'equals': all values and dimensions must be the same. - 'identical': all values, dimensions and attributes must be the same. - 'no_conflicts': only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. - 'override': skip comparing and pick variable from first dataset data_vars : {'minimal', 'different', 'all' or list of str}, optional These data variables will be concatenated together: * 'minimal': Only data variables in which the dimension already appears are included. * 'different': Data variables which are not equal (ignoring attributes) across all datasets are also concatenated (as well as all for which dimension already appears). Beware: this option may load the data payload of data variables into memory if they are not already loaded. * 'all': All data variables will be concatenated. * list of str: The listed data variables will be concatenated, in addition to the 'minimal' data variables. If objects are DataArrays, `data_vars` must be 'all'. coords : {'minimal', 'different', 'all' or list of str}, optional As per the 'data_vars' kwarg, but for coordinate variables. fill_value : scalar, optional Value to use for newly missing values. If None, raises a ValueError if the passed Datasets do not create a complete hypercube. join : {'outer', 'inner', 'left', 'right', 'exact'}, optional String indicating how to combine differing indexes (excluding concat_dim) in objects - 'outer': use the union of object indexes - 'inner': use the intersection of object indexes - 'left': use indexes from the first object with each dimension - 'right': use indexes from the last object with each dimension - 'exact': instead of aligning, raise `ValueError` when indexes to be aligned are not equal - 'override': if indexes are of same size, rewrite indexes to be those of the first object with that dimension. Indexes for the same dimension must have the same size in all objects. combine_attrs : {'drop', 'identical', 'no_conflicts', 'override'}, default 'drop' String indicating how to combine attrs of the objects being merged: - 'drop': empty attrs on returned Dataset. - 'identical': all attrs must be the same on every object. - 'no_conflicts': attrs from all objects are combined, any that have the same name must also have the same value. - 'override': skip comparing and copy attrs from the first dataset to the result. Returns ------- combined : xarray.Dataset See also -------- concat merge combine_nested Examples -------- Combining two datasets using their common dimension coordinates. Notice they are concatenated based on the values in their dimension coordinates, not on their position in the list passed to `combine_by_coords`. >>> import numpy as np >>> import xarray as xr >>> x1 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [0, 1], "x": [10, 20, 30]}, ... ) >>> x2 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [2, 3], "x": [10, 20, 30]}, ... ) >>> x3 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [2, 3], "x": [40, 50, 60]}, ... ) >>> x1 <xarray.Dataset> Dimensions: (x: 3, y: 2) Coordinates: * y (y) int64 0 1 * x (x) int64 10 20 30 Data variables: temperature (y, x) float64 1.654 10.63 7.015 2.543 13.93 9.436 precipitation (y, x) float64 0.2136 0.9974 0.7603 0.4679 0.3115 0.945 >>> x2 <xarray.Dataset> Dimensions: (x: 3, y: 2) Coordinates: * y (y) int64 2 3 * x (x) int64 10 20 30 Data variables: temperature (y, x) float64 9.341 0.1251 6.269 7.709 8.82 2.316 precipitation (y, x) float64 0.1728 0.1178 0.03018 0.6509 0.06938 0.3792 >>> x3 <xarray.Dataset> Dimensions: (x: 3, y: 2) Coordinates: * y (y) int64 2 3 * x (x) int64 40 50 60 Data variables: temperature (y, x) float64 2.789 2.446 6.551 12.46 2.22 15.96 precipitation (y, x) float64 0.4804 0.1902 0.2457 0.6125 0.4654 0.5953 >>> xr.combine_by_coords([x2, x1]) <xarray.Dataset> Dimensions: (x: 3, y: 4) Coordinates: * x (x) int64 10 20 30 * y (y) int64 0 1 2 3 Data variables: temperature (y, x) float64 1.654 10.63 7.015 2.543 ... 7.709 8.82 2.316 precipitation (y, x) float64 0.2136 0.9974 0.7603 ... 0.6509 0.06938 0.3792 >>> xr.combine_by_coords([x3, x1]) <xarray.Dataset> Dimensions: (x: 6, y: 4) Coordinates: * x (x) int64 10 20 30 40 50 60 * y (y) int64 0 1 2 3 Data variables: temperature (y, x) float64 1.654 10.63 7.015 nan ... nan 12.46 2.22 15.96 precipitation (y, x) float64 0.2136 0.9974 0.7603 ... 0.6125 0.4654 0.5953 >>> xr.combine_by_coords([x3, x1], join="override") <xarray.Dataset> Dimensions: (x: 3, y: 4) Coordinates: * x (x) int64 10 20 30 * y (y) int64 0 1 2 3 Data variables: temperature (y, x) float64 1.654 10.63 7.015 2.543 ... 12.46 2.22 15.96 precipitation (y, x) float64 0.2136 0.9974 0.7603 ... 0.6125 0.4654 0.5953 >>> xr.combine_by_coords([x1, x2, x3]) <xarray.Dataset> Dimensions: (x: 6, y: 4) Coordinates: * x (x) int64 10 20 30 40 50 60 * y (y) int64 0 1 2 3 Data variables: temperature (y, x) float64 1.654 10.63 7.015 nan ... 12.46 2.22 15.96 precipitation (y, x) float64 0.2136 0.9974 0.7603 ... 0.6125 0.4654 0.5953 """ # Group by data vars sorted_datasets = sorted(datasets, key=vars_as_keys) grouped_by_vars = itertools.groupby(sorted_datasets, key=vars_as_keys) # Perform the multidimensional combine on each group of data variables # before merging back together concatenated_grouped_by_data_vars = [] for vars, datasets_with_same_vars in grouped_by_vars: combined_ids, concat_dims = _infer_concat_order_from_coords( list(datasets_with_same_vars) ) if fill_value is None: # check that datasets form complete hypercube _check_shape_tile_ids(combined_ids) else: # check only that all datasets have same dimension depth for these # vars _check_dimension_depth_tile_ids(combined_ids) # Concatenate along all of concat_dims one by one to create single ds concatenated = _combine_nd( combined_ids, concat_dims=concat_dims, data_vars=data_vars, coords=coords, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) # Check the overall coordinates are monotonically increasing for dim in concat_dims: indexes = concatenated.indexes.get(dim) if not (indexes.is_monotonic_increasing or indexes.is_monotonic_decreasing): raise ValueError( "Resulting object does not have monotonic" " global indexes along dimension {}".format(dim) ) concatenated_grouped_by_data_vars.append(concatenated) return merge( concatenated_grouped_by_data_vars, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) # Everything beyond here is only needed until the deprecation cycle in #2616 # is completed _CONCAT_DIM_DEFAULT = "__infer_concat_dim__" def auto_combine( datasets, concat_dim="_not_supplied", compat="no_conflicts", data_vars="all", coords="different", fill_value=dtypes.NA, join="outer", from_openmfds=False, ): """ Attempt to auto-magically combine the given datasets into one. This entire function is deprecated in favour of ``combine_nested`` and ``combine_by_coords``. This method attempts to combine a list of datasets into a single entity by inspecting metadata and using a combination of concat and merge. It does not concatenate along more than one dimension or sort data under any circumstances. It does align coordinates, but different variables on datasets can cause it to fail under some scenarios. In complex cases, you may need to clean up your data and use ``concat``/``merge`` explicitly. ``auto_combine`` works well if you have N years of data and M data variables, and each combination of a distinct time period and set of data variables is saved its own dataset. Parameters ---------- datasets : sequence of xarray.Dataset Dataset objects to merge. concat_dim : str or DataArray or Index, optional Dimension along which to concatenate variables, as used by :py:func:`xarray.concat`. You only need to provide this argument if the dimension along which you want to concatenate is not a dimension in the original datasets, e.g., if you want to stack a collection of 2D arrays along a third dimension. By default, xarray attempts to infer this argument by examining component files. Set ``concat_dim=None`` explicitly to disable concatenation. compat : {'identical', 'equals', 'broadcast_equals', 'no_conflicts', 'override'}, optional String indicating how to compare variables of the same name for potential conflicts: - 'broadcast_equals': all values must be equal when variables are broadcast against each other to ensure common dimensions. - 'equals': all values and dimensions must be the same. - 'identical': all values, dimensions and attributes must be the same. - 'no_conflicts': only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. - 'override': skip comparing and pick variable from first dataset data_vars : {'minimal', 'different', 'all' or list of str}, optional Details are in the documentation of concat coords : {'minimal', 'different', 'all' o list of str}, optional Details are in the documentation of concat fill_value : scalar, optional Value to use for newly missing values join : {'outer', 'inner', 'left', 'right', 'exact'}, optional String indicating how to combine differing indexes (excluding concat_dim) in objects - 'outer': use the union of object indexes - 'inner': use the intersection of object indexes - 'left': use indexes from the first object with each dimension - 'right': use indexes from the last object with each dimension - 'exact': instead of aligning, raise `ValueError` when indexes to be aligned are not equal - 'override': if indexes are of same size, rewrite indexes to be those of the first object with that dimension. Indexes for the same dimension must have the same size in all objects. Returns ------- combined : xarray.Dataset See also -------- concat Dataset.merge """ if not from_openmfds: basic_msg = dedent( """\ In xarray version 0.15 `auto_combine` will be deprecated. See http://xarray.pydata.org/en/stable/combining.html#combining-multi""" ) warnings.warn(basic_msg, FutureWarning, stacklevel=2) if concat_dim == "_not_supplied": concat_dim = _CONCAT_DIM_DEFAULT message = "" else: message = dedent( """\ Also `open_mfdataset` will no longer accept a `concat_dim` argument. To get equivalent behaviour from now on please use the new `combine_nested` function instead (or the `combine='nested'` option to `open_mfdataset`).""" ) if _dimension_coords_exist(datasets): message += dedent( """\ The datasets supplied have global dimension coordinates. You may want to use the new `combine_by_coords` function (or the `combine='by_coords'` option to `open_mfdataset`) to order the datasets before concatenation. Alternatively, to continue concatenating based on the order the datasets are supplied in future, please use the new `combine_nested` function (or the `combine='nested'` option to open_mfdataset).""" ) else: message += dedent( """\ The datasets supplied do not have global dimension coordinates. In future, to continue concatenating without supplying dimension coordinates, please use the new `combine_nested` function (or the `combine='nested'` option to open_mfdataset.""" ) if _requires_concat_and_merge(datasets): manual_dims = [concat_dim].append(None) message += dedent( """\ The datasets supplied require both concatenation and merging. From xarray version 0.15 this will operation will require either using the new `combine_nested` function (or the `combine='nested'` option to open_mfdataset), with a nested list structure such that you can combine along the dimensions {}. Alternatively if your datasets have global dimension coordinates then you can use the new `combine_by_coords` function.""".format( manual_dims ) ) warnings.warn(message, FutureWarning, stacklevel=2) return _old_auto_combine( datasets, concat_dim=concat_dim, compat=compat, data_vars=data_vars, coords=coords, fill_value=fill_value, join=join, ) def _dimension_coords_exist(datasets): """ Check if the datasets have consistent global dimension coordinates which would in future be used by `auto_combine` for concatenation ordering. """ # Group by data vars sorted_datasets = sorted(datasets, key=vars_as_keys) grouped_by_vars = itertools.groupby(sorted_datasets, key=vars_as_keys) # Simulates performing the multidimensional combine on each group of data # variables before merging back together try: for vars, datasets_with_same_vars in grouped_by_vars: _infer_concat_order_from_coords(list(datasets_with_same_vars)) return True except ValueError: # ValueError means datasets don't have global dimension coordinates # Or something else went wrong in trying to determine them return False def _requires_concat_and_merge(datasets): """ Check if the datasets require the use of both xarray.concat and xarray.merge, which in future might require the user to use `manual_combine` instead. """ # Group by data vars sorted_datasets = sorted(datasets, key=vars_as_keys) grouped_by_vars = itertools.groupby(sorted_datasets, key=vars_as_keys) return len(list(grouped_by_vars)) > 1 def _old_auto_combine( datasets, concat_dim=_CONCAT_DIM_DEFAULT, compat="no_conflicts", data_vars="all", coords="different", fill_value=dtypes.NA, join="outer", ): if concat_dim is not None: dim = None if concat_dim is _CONCAT_DIM_DEFAULT else concat_dim sorted_datasets = sorted(datasets, key=vars_as_keys) grouped = itertools.groupby(sorted_datasets, key=vars_as_keys) concatenated = [ _auto_concat( list(datasets), dim=dim, data_vars=data_vars, coords=coords, compat=compat, fill_value=fill_value, join=join, ) for vars, datasets in grouped ] else: concatenated = datasets merged = merge(concatenated, compat=compat, fill_value=fill_value, join=join) return merged def _auto_concat( datasets, dim=None, data_vars="all", coords="different", fill_value=dtypes.NA, join="outer", compat="no_conflicts", ): if len(datasets) == 1 and dim is None: # There is nothing more to combine, so kick out early. return datasets[0] else: if dim is None: ds0 = datasets[0] ds1 = datasets[1] concat_dims = set(ds0.dims) if ds0.dims != ds1.dims: dim_tuples = set(ds0.dims.items()) - set(ds1.dims.items()) concat_dims = {i for i, _ in dim_tuples} if len(concat_dims) > 1: concat_dims = {d for d in concat_dims if not ds0[d].equals(ds1[d])} if len(concat_dims) > 1: raise ValueError( "too many different dimensions to " "concatenate: %s" % concat_dims ) elif len(concat_dims) == 0: raise ValueError( "cannot infer dimension to concatenate: " "supply the ``concat_dim`` argument " "explicitly" ) (dim,) = concat_dims return concat( datasets, dim=dim, data_vars=data_vars, coords=coords, fill_value=fill_value, compat=compat, )
apache-2.0
isb-cgc/ISB-CGC-data-proc
gdc/etl/isoform_expression_quantification.py
1
2220
''' Created on Oct 13, 2016 Copyright 2016, Institute for Systems Biology. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. @author: michael ''' import pandas as pd from gdc.etl import etl class Isoform_expression_quantification(etl.Etl): def __init__(self, config): ''' Constructor columns in the GDC file: miRNA_ID isoform_coords read_count reads_per_million_miRNA_mapped cross-mapped miRNA_region columns for the BQ table: sample_barcode miRNA_ID read_count reads_per_million_miRNA_mapped genomic_build (from isoform_coords) chromosome (from isoform_coords) start (from isoform_coords) end (from isoform_coords) strand (from isoform_coords) cross_mapped mirna_accession (from miRNA_region) mirna_transcript (from miRNA_region) project_short_name program_name sample_type_code file_name file_gdc_id aliquot_barcode case_barcode case_gdc_id sample_gdc_id aliquot_gdc_id ''' pass def data_type_specific(self, config, file_df): # combine the two versions of the transcript fields (one with an accession, the other without) file_df['mirna_transcript'] = file_df[['mirna_transcript', 'mirna_trans']].apply(lambda x: x[0] if pd.isnull(x[1]) else x[1], axis=1) def skip_file(self, config, data_type, path, program_name, file2info, info, log): if 'miRNA isoform quantification' == info['data_type'] and -1 == info['file_name'].find('hg19.mirbase20'): return True return False
apache-2.0
wronk/mne-python
mne/cov.py
1
75382
# Authors: Alexandre Gramfort <[email protected]> # Matti Hamalainen <[email protected]> # Denis A. Engemann <[email protected]> # # License: BSD (3-clause) import copy as cp from distutils.version import LooseVersion import itertools as itt from math import log import os import numpy as np from scipy import linalg from .io.write import start_file, end_file from .io.proj import (make_projector, _proj_equal, activate_proj, _needs_eeg_average_ref_proj) from .io import fiff_open from .io.pick import (pick_types, pick_channels_cov, pick_channels, pick_info, _picks_by_type, _pick_data_channels) from .io.constants import FIFF from .io.meas_info import read_bad_channels from .io.proj import _read_proj, _write_proj from .io.tag import find_tag from .io.tree import dir_tree_find from .io.write import (start_block, end_block, write_int, write_name_list, write_double, write_float_matrix, write_string) from .defaults import _handle_default from .epochs import Epochs from .event import make_fixed_length_events from .utils import (check_fname, logger, verbose, estimate_rank, _compute_row_norms, check_version, _time_mask, warn, _check_copy_dep) from .fixes import in1d from .externals.six.moves import zip from .externals.six import string_types def _check_covs_algebra(cov1, cov2): if cov1.ch_names != cov2.ch_names: raise ValueError('Both Covariance do not have the same list of ' 'channels.') projs1 = [str(c) for c in cov1['projs']] projs2 = [str(c) for c in cov1['projs']] if projs1 != projs2: raise ValueError('Both Covariance do not have the same list of ' 'SSP projections.') def _get_tslice(epochs, tmin, tmax): """get the slice.""" mask = _time_mask(epochs.times, tmin, tmax, sfreq=epochs.info['sfreq']) tstart = np.where(mask)[0][0] if tmin is not None else None tend = np.where(mask)[0][-1] + 1 if tmax is not None else None tslice = slice(tstart, tend, None) return tslice class Covariance(dict): """Noise covariance matrix. .. warning:: This class should not be instantiated directly, but instead should be created using a covariance reading or computation function. Parameters ---------- data : array-like The data. names : list of str Channel names. bads : list of str Bad channels. projs : list Projection vectors. nfree : int Degrees of freedom. eig : array-like | None Eigenvalues. eigvec : array-like | None Eigenvectors. method : str | None The method used to compute the covariance. loglik : float The log likelihood. Attributes ---------- data : array of shape (n_channels, n_channels) The covariance. ch_names : list of string List of channels' names. nfree : int Number of degrees of freedom i.e. number of time points used. See Also -------- compute_covariance compute_raw_covariance make_ad_hoc_cov read_cov """ def __init__(self, data, names, bads, projs, nfree, eig=None, eigvec=None, method=None, loglik=None): """Init of covariance.""" diag = True if data.ndim == 1 else False self.update(data=data, dim=len(data), names=names, bads=bads, nfree=nfree, eig=eig, eigvec=eigvec, diag=diag, projs=projs, kind=FIFF.FIFFV_MNE_NOISE_COV) if method is not None: self['method'] = method if loglik is not None: self['loglik'] = loglik @property def data(self): """Numpy array of Noise covariance matrix.""" return self['data'] @property def ch_names(self): """Channel names.""" return self['names'] @property def nfree(self): """Number of degrees of freedom.""" return self['nfree'] def save(self, fname): """Save covariance matrix in a FIF file. Parameters ---------- fname : str Output filename. """ check_fname(fname, 'covariance', ('-cov.fif', '-cov.fif.gz')) fid = start_file(fname) try: _write_cov(fid, self) except Exception as inst: fid.close() os.remove(fname) raise inst end_file(fid) def copy(self): """Copy the Covariance object Returns ------- cov : instance of Covariance The copied object. """ return cp.deepcopy(self) def as_diag(self, copy=None): """Set covariance to be processed as being diagonal. Parameters ---------- copy : bool This parameter has been deprecated and will be removed in 0.13. Use inst.copy() instead. Whether to return a new instance or modify in place. Returns ------- cov : dict The covariance. Notes ----- This function allows creation of inverse operators equivalent to using the old "--diagnoise" mne option. """ cov = _check_copy_dep(self, copy, default=True) if cov['diag']: return cov cov['diag'] = True cov['data'] = np.diag(cov['data']) cov['eig'] = None cov['eigvec'] = None return cov def __repr__(self): if self.data.ndim == 2: s = 'size : %s x %s' % self.data.shape else: # ndim == 1 s = 'diagonal : %s' % self.data.size s += ", n_samples : %s" % self.nfree s += ", data : %s" % self.data return "<Covariance | %s>" % s def __add__(self, cov): """Add Covariance taking into account number of degrees of freedom.""" _check_covs_algebra(self, cov) this_cov = cp.deepcopy(cov) this_cov['data'] = (((this_cov['data'] * this_cov['nfree']) + (self['data'] * self['nfree'])) / (self['nfree'] + this_cov['nfree'])) this_cov['nfree'] += self['nfree'] this_cov['bads'] = list(set(this_cov['bads']).union(self['bads'])) return this_cov def __iadd__(self, cov): """Add Covariance taking into account number of degrees of freedom.""" _check_covs_algebra(self, cov) self['data'][:] = (((self['data'] * self['nfree']) + (cov['data'] * cov['nfree'])) / (self['nfree'] + cov['nfree'])) self['nfree'] += cov['nfree'] self['bads'] = list(set(self['bads']).union(cov['bads'])) return self @verbose def plot(self, info, exclude=[], colorbar=True, proj=False, show_svd=True, show=True, verbose=None): """Plot Covariance data. Parameters ---------- info: dict Measurement info. exclude : list of string | str List of channels to exclude. If empty do not exclude any channel. If 'bads', exclude info['bads']. colorbar : bool Show colorbar or not. proj : bool Apply projections or not. show_svd : bool Plot also singular values of the noise covariance for each sensor type. We show square roots ie. standard deviations. show : bool Call pyplot.show() as the end or not. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- fig_cov : instance of matplotlib.pyplot.Figure The covariance plot. fig_svd : instance of matplotlib.pyplot.Figure | None The SVD spectra plot of the covariance. """ from .viz.misc import plot_cov return plot_cov(self, info, exclude, colorbar, proj, show_svd, show) ############################################################################### # IO @verbose def read_cov(fname, verbose=None): """Read a noise covariance from a FIF file. Parameters ---------- fname : string The name of file containing the covariance matrix. It should end with -cov.fif or -cov.fif.gz. verbose : bool, str, int, or None (default None) If not None, override default verbose level (see mne.verbose). Returns ------- cov : Covariance The noise covariance matrix. See Also -------- write_cov, compute_covariance, compute_raw_covariance """ check_fname(fname, 'covariance', ('-cov.fif', '-cov.fif.gz')) f, tree = fiff_open(fname)[:2] with f as fid: return Covariance(**_read_cov(fid, tree, FIFF.FIFFV_MNE_NOISE_COV, limited=True)) ############################################################################### # Estimate from data @verbose def make_ad_hoc_cov(info, verbose=None): """Create an ad hoc noise covariance. Parameters ---------- info : instance of Info Measurement info. verbose : bool, str, int, or None (default None) If not None, override default verbose level (see mne.verbose). Returns ------- cov : instance of Covariance The ad hoc diagonal noise covariance for the M/EEG data channels. Notes ----- .. versionadded:: 0.9.0 """ info = pick_info(info, pick_types(info, meg=True, eeg=True, exclude=[])) info._check_consistency() # Standard deviations to be used grad_std = 5e-13 mag_std = 20e-15 eeg_std = 0.2e-6 logger.info('Using standard noise values ' '(MEG grad : %6.1f fT/cm MEG mag : %6.1f fT EEG : %6.1f uV)' % (1e13 * grad_std, 1e15 * mag_std, 1e6 * eeg_std)) data = np.zeros(len(info['ch_names'])) for meg, eeg, val in zip(('grad', 'mag', False), (False, False, True), (grad_std, mag_std, eeg_std)): data[pick_types(info, meg=meg, eeg=eeg)] = val * val return Covariance(data, info['ch_names'], info['bads'], info['projs'], nfree=0) def _check_n_samples(n_samples, n_chan): """Check to see if there are enough samples for reliable cov calc.""" n_samples_min = 10 * (n_chan + 1) // 2 if n_samples <= 0: raise ValueError('No samples found to compute the covariance matrix') if n_samples < n_samples_min: warn('Too few samples (required : %d got : %d), covariance ' 'estimate may be unreliable' % (n_samples_min, n_samples)) @verbose def compute_raw_covariance(raw, tmin=0, tmax=None, tstep=0.2, reject=None, flat=None, picks=None, method='empirical', method_params=None, cv=3, scalings=None, n_jobs=1, return_estimators=False, verbose=None): """Estimate noise covariance matrix from a continuous segment of raw data. It is typically useful to estimate a noise covariance from empty room data or time intervals before starting the stimulation. .. note:: This function will: 1. Partition the data into evenly spaced, equal-length epochs. 2. Load them into memory. 3. Subtract the mean across all time points and epochs for each channel. 4. Process the :class:`Epochs` by :func:`compute_covariance`. This will produce a slightly different result compared to using :func:`make_fixed_length_events`, :class:`Epochs`, and :func:`compute_covariance` directly, since that would (with the recommended baseline correction) subtract the mean across time *for each epoch* (instead of across epochs) for each channel. Parameters ---------- raw : instance of Raw Raw data tmin : float Beginning of time interval in seconds. Defaults to 0. tmax : float | None (default None) End of time interval in seconds. If None (default), use the end of the recording. tstep : float (default 0.2) Length of data chunks for artefact rejection in seconds. Can also be None to use a single epoch of (tmax - tmin) duration. This can use a lot of memory for large ``Raw`` instances. reject : dict | None (default None) Rejection parameters based on peak-to-peak amplitude. Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'. If reject is None then no rejection is done. Example:: reject = dict(grad=4000e-13, # T / m (gradiometers) mag=4e-12, # T (magnetometers) eeg=40e-6, # V (EEG channels) eog=250e-6 # V (EOG channels) ) flat : dict | None (default None) Rejection parameters based on flatness of signal. Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg', and values are floats that set the minimum acceptable peak-to-peak amplitude. If flat is None then no rejection is done. picks : array-like of int | None (default None) Indices of channels to include (if None, data channels are used). method : str | list | None (default 'empirical') The method used for covariance estimation. See :func:`mne.compute_covariance`. .. versionadded:: 0.12 method_params : dict | None (default None) Additional parameters to the estimation procedure. See :func:`mne.compute_covariance`. .. versionadded:: 0.12 cv : int | sklearn cross_validation object (default 3) The cross validation method. Defaults to 3, which will internally trigger a default 3-fold shuffle split. .. versionadded:: 0.12 scalings : dict | None (default None) Defaults to ``dict(mag=1e15, grad=1e13, eeg=1e6)``. These defaults will scale magnetometers and gradiometers at the same unit. .. versionadded:: 0.12 n_jobs : int (default 1) Number of jobs to run in parallel. .. versionadded:: 0.12 return_estimators : bool (default False) Whether to return all estimators or the best. Only considered if method equals 'auto' or is a list of str. Defaults to False .. versionadded:: 0.12 verbose : bool | str | int | None (default None) If not None, override default verbose level (see mne.verbose). Returns ------- cov : instance of Covariance | list The computed covariance. If method equals 'auto' or is a list of str and return_estimators equals True, a list of covariance estimators is returned (sorted by log-likelihood, from high to low, i.e. from best to worst). See Also -------- compute_covariance : Estimate noise covariance matrix from epochs """ tmin = 0. if tmin is None else float(tmin) tmax = raw.times[-1] if tmax is None else float(tmax) tstep = tmax - tmin if tstep is None else float(tstep) tstep_m1 = tstep - 1. / raw.info['sfreq'] # inclusive! events = make_fixed_length_events(raw, 1, tmin, tmax, tstep) pl = 's' if len(events) != 1 else '' logger.info('Using up to %s segment%s' % (len(events), pl)) # don't exclude any bad channels, inverses expect all channels present if picks is None: # Need to include all channels e.g. if eog rejection is to be used picks = np.arange(raw.info['nchan']) pick_mask = in1d( picks, _pick_data_channels(raw.info, with_ref_meg=False)) else: pick_mask = slice(None) epochs = Epochs(raw, events, 1, 0, tstep_m1, baseline=None, picks=picks, reject=reject, flat=flat, verbose=False, preload=False, proj=False) if isinstance(method, string_types) and method == 'empirical': # potentially *much* more memory efficient to do it the iterative way picks = picks[pick_mask] data = 0 n_samples = 0 mu = 0 # Read data in chunks for raw_segment in epochs: raw_segment = raw_segment[pick_mask] mu += raw_segment.sum(axis=1) data += np.dot(raw_segment, raw_segment.T) n_samples += raw_segment.shape[1] _check_n_samples(n_samples, len(picks)) mu /= n_samples data -= n_samples * mu[:, None] * mu[None, :] data /= (n_samples - 1.0) logger.info("Number of samples used : %d" % n_samples) logger.info('[done]') ch_names = [raw.info['ch_names'][k] for k in picks] bads = [b for b in raw.info['bads'] if b in ch_names] projs = cp.deepcopy(raw.info['projs']) return Covariance(data, ch_names, bads, projs, nfree=n_samples) del picks, pick_mask # This makes it equivalent to what we used to do (and do above for # empirical mode), treating all epochs as if they were a single long one epochs.load_data() ch_means = epochs._data.mean(axis=0).mean(axis=1) epochs._data -= ch_means[np.newaxis, :, np.newaxis] # fake this value so there are no complaints from compute_covariance epochs.baseline = (None, None) return compute_covariance(epochs, keep_sample_mean=True, method=method, method_params=method_params, cv=cv, scalings=scalings, n_jobs=n_jobs, return_estimators=return_estimators) @verbose def compute_covariance(epochs, keep_sample_mean=True, tmin=None, tmax=None, projs=None, method='empirical', method_params=None, cv=3, scalings=None, n_jobs=1, return_estimators=False, verbose=None): """Estimate noise covariance matrix from epochs. The noise covariance is typically estimated on pre-stim periods when the stim onset is defined from events. If the covariance is computed for multiple event types (events with different IDs), the following two options can be used and combined: 1. either an Epochs object for each event type is created and a list of Epochs is passed to this function. 2. an Epochs object is created for multiple events and passed to this function. .. note:: Baseline correction should be used when creating the Epochs. Otherwise the computed covariance matrix will be inaccurate. .. note:: For multiple event types, it is also possible to create a single Epochs object with events obtained using merge_events(). However, the resulting covariance matrix will only be correct if keep_sample_mean is True. .. note:: The covariance can be unstable if the number of samples is not sufficient. In that case it is common to regularize a covariance estimate. The ``method`` parameter of this function allows to regularize the covariance in an automated way. It also allows to select between different alternative estimation algorithms which themselves achieve regularization. Details are described in [1]_. Parameters ---------- epochs : instance of Epochs, or a list of Epochs objects The epochs. keep_sample_mean : bool (default True) If False, the average response over epochs is computed for each event type and subtracted during the covariance computation. This is useful if the evoked response from a previous stimulus extends into the baseline period of the next. Note. This option is only implemented for method='empirical'. tmin : float | None (default None) Start time for baseline. If None start at first sample. tmax : float | None (default None) End time for baseline. If None end at last sample. projs : list of Projection | None (default None) List of projectors to use in covariance calculation, or None to indicate that the projectors from the epochs should be inherited. If None, then projectors from all epochs must match. method : str | list | None (default 'empirical') The method used for covariance estimation. If 'empirical' (default), the sample covariance will be computed. A list can be passed to run a set of the different methods. If 'auto' or a list of methods, the best estimator will be determined based on log-likelihood and cross-validation on unseen data as described in [1]_. Valid methods are: * ``'empirical'``: the empirical or sample covariance * ``'diagonal_fixed'``: a diagonal regularization as in mne.cov.regularize (see MNE manual) * ``'ledoit_wolf'``: the Ledoit-Wolf estimator [2]_ * ``'shrunk'``: like 'ledoit_wolf' with cross-validation for optimal alpha (see scikit-learn documentation on covariance estimation) * ``'pca'``: probabilistic PCA with low rank [3]_ * ``'factor_analysis'``: Factor Analysis with low rank [4]_ If ``'auto'``, this expands to:: ['shrunk', 'diagonal_fixed', 'empirical', 'factor_analysis'] .. note:: ``'ledoit_wolf'`` and ``'pca'`` are similar to ``'shrunk'`` and ``'factor_analysis'``, respectively. They are not included to avoid redundancy. In most cases ``'shrunk'`` and ``'factor_analysis'`` represent more appropriate default choices. The ``'auto'`` mode is not recommended if there are many segments of data, since computation can take a long time. .. versionadded:: 0.9.0 method_params : dict | None (default None) Additional parameters to the estimation procedure. Only considered if method is not None. Keys must correspond to the value(s) of `method`. If None (default), expands to:: 'empirical': {'store_precision': False, 'assume_centered': True}, 'diagonal_fixed': {'grad': 0.01, 'mag': 0.01, 'eeg': 0.0, 'store_precision': False, 'assume_centered': True}, 'ledoit_wolf': {'store_precision': False, 'assume_centered': True}, 'shrunk': {'shrinkage': np.logspace(-4, 0, 30), 'store_precision': False, 'assume_centered': True}, 'pca': {'iter_n_components': None}, 'factor_analysis': {'iter_n_components': None} cv : int | sklearn cross_validation object (default 3) The cross validation method. Defaults to 3, which will internally trigger a default 3-fold shuffle split. scalings : dict | None (default None) Defaults to ``dict(mag=1e15, grad=1e13, eeg=1e6)``. These defaults will scale magnetometers and gradiometers at the same unit. n_jobs : int (default 1) Number of jobs to run in parallel. return_estimators : bool (default False) Whether to return all estimators or the best. Only considered if method equals 'auto' or is a list of str. Defaults to False verbose : bool | str | int | or None (default None) If not None, override default verbose level (see mne.verbose). Returns ------- cov : instance of Covariance | list The computed covariance. If method equals 'auto' or is a list of str and return_estimators equals True, a list of covariance estimators is returned (sorted by log-likelihood, from high to low, i.e. from best to worst). See Also -------- compute_raw_covariance : Estimate noise covariance from raw data References ---------- .. [1] Engemann D. and Gramfort A. (2015) Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals, vol. 108, 328-342, NeuroImage. .. [2] Ledoit, O., Wolf, M., (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis 88 (2), 365 - 411. .. [3] Tipping, M. E., Bishop, C. M., (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61 (3), 611 - 622. .. [4] Barber, D., (2012). Bayesian reasoning and machine learning. Cambridge University Press., Algorithm 21.1 """ accepted_methods = ('auto', 'empirical', 'diagonal_fixed', 'ledoit_wolf', 'shrunk', 'pca', 'factor_analysis',) msg = ('Invalid method ({method}). Accepted values (individually or ' 'in a list) are "%s"' % '" or "'.join(accepted_methods + ('None',))) # scale to natural unit for best stability with MEG/EEG if isinstance(scalings, dict): for k, v in scalings.items(): if k not in ('mag', 'grad', 'eeg'): raise ValueError('The keys in `scalings` must be "mag" or' '"grad" or "eeg". You gave me: %s' % k) scalings = _handle_default('scalings', scalings) _method_params = { 'empirical': {'store_precision': False, 'assume_centered': True}, 'diagonal_fixed': {'grad': 0.01, 'mag': 0.01, 'eeg': 0.0, 'store_precision': False, 'assume_centered': True}, 'ledoit_wolf': {'store_precision': False, 'assume_centered': True}, 'shrunk': {'shrinkage': np.logspace(-4, 0, 30), 'store_precision': False, 'assume_centered': True}, 'pca': {'iter_n_components': None}, 'factor_analysis': {'iter_n_components': None} } if isinstance(method_params, dict): for key, values in method_params.items(): if key not in _method_params: raise ValueError('key (%s) must be "%s"' % (key, '" or "'.join(_method_params))) _method_params[key].update(method_params[key]) # for multi condition support epochs is required to refer to a list of # epochs objects def _unpack_epochs(epochs): if len(epochs.event_id) > 1: epochs = [epochs[k] for k in epochs.event_id] else: epochs = [epochs] return epochs if not isinstance(epochs, list): epochs = _unpack_epochs(epochs) else: epochs = sum([_unpack_epochs(epoch) for epoch in epochs], []) # check for baseline correction for epochs_t in epochs: if epochs_t.baseline is None and epochs_t.info['highpass'] < 0.5 and \ keep_sample_mean: warn('Epochs are not baseline corrected, covariance ' 'matrix may be inaccurate') for epoch in epochs: epoch.info._check_consistency() bads = epochs[0].info['bads'] if projs is None: projs = cp.deepcopy(epochs[0].info['projs']) # make sure Epochs are compatible for epochs_t in epochs[1:]: if epochs_t.proj != epochs[0].proj: raise ValueError('Epochs must agree on the use of projections') for proj_a, proj_b in zip(epochs_t.info['projs'], projs): if not _proj_equal(proj_a, proj_b): raise ValueError('Epochs must have same projectors') else: projs = cp.deepcopy(projs) ch_names = epochs[0].ch_names # make sure Epochs are compatible for epochs_t in epochs[1:]: if epochs_t.info['bads'] != bads: raise ValueError('Epochs must have same bad channels') if epochs_t.ch_names != ch_names: raise ValueError('Epochs must have same channel names') picks_list = _picks_by_type(epochs[0].info) picks_meeg = np.concatenate([b for _, b in picks_list]) picks_meeg = np.sort(picks_meeg) ch_names = [epochs[0].ch_names[k] for k in picks_meeg] info = epochs[0].info # we will overwrite 'epochs' if method == 'auto': method = ['shrunk', 'diagonal_fixed', 'empirical', 'factor_analysis'] if not isinstance(method, (list, tuple)): method = [method] ok_sklearn = check_version('sklearn', '0.15') is True if not ok_sklearn and (len(method) != 1 or method[0] != 'empirical'): raise ValueError('scikit-learn is not installed, `method` must be ' '`empirical`') if keep_sample_mean is False: if len(method) != 1 or 'empirical' not in method: raise ValueError('`keep_sample_mean=False` is only supported' 'with `method="empirical"`') for p, v in _method_params.items(): if v.get('assume_centered', None) is False: raise ValueError('`assume_centered` must be True' ' if `keep_sample_mean` is False') # prepare mean covs n_epoch_types = len(epochs) data_mean = [0] * n_epoch_types n_samples = np.zeros(n_epoch_types, dtype=np.int) n_epochs = np.zeros(n_epoch_types, dtype=np.int) for ii, epochs_t in enumerate(epochs): tslice = _get_tslice(epochs_t, tmin, tmax) for e in epochs_t: e = e[picks_meeg, tslice] if not keep_sample_mean: data_mean[ii] += e n_samples[ii] += e.shape[1] n_epochs[ii] += 1 n_samples_epoch = n_samples // n_epochs norm_const = np.sum(n_samples_epoch * (n_epochs - 1)) data_mean = [1.0 / n_epoch * np.dot(mean, mean.T) for n_epoch, mean in zip(n_epochs, data_mean)] if not all(k in accepted_methods for k in method): raise ValueError(msg.format(method=method)) info = pick_info(info, picks_meeg) tslice = _get_tslice(epochs[0], tmin, tmax) epochs = [ee.get_data()[:, picks_meeg, tslice] for ee in epochs] picks_meeg = np.arange(len(picks_meeg)) picks_list = _picks_by_type(info) if len(epochs) > 1: epochs = np.concatenate(epochs, 0) else: epochs = epochs[0] epochs = np.hstack(epochs) n_samples_tot = epochs.shape[-1] _check_n_samples(n_samples_tot, len(picks_meeg)) epochs = epochs.T # sklearn | C-order if ok_sklearn: cov_data = _compute_covariance_auto(epochs, method=method, method_params=_method_params, info=info, verbose=verbose, cv=cv, n_jobs=n_jobs, # XXX expose later stop_early=True, # if needed. picks_list=picks_list, scalings=scalings) else: if _method_params['empirical']['assume_centered'] is True: cov = epochs.T.dot(epochs) / n_samples_tot else: cov = np.cov(epochs.T, bias=1) cov_data = {'empirical': {'data': cov}} if keep_sample_mean is False: cov = cov_data['empirical']['data'] # undo scaling cov *= n_samples_tot # ... apply pre-computed class-wise normalization for mean_cov in data_mean: cov -= mean_cov cov /= norm_const covs = list() for this_method, data in cov_data.items(): cov = Covariance(data.pop('data'), ch_names, info['bads'], projs, nfree=n_samples_tot) logger.info('Number of samples used : %d' % n_samples_tot) logger.info('[done]') # add extra info cov.update(method=this_method, **data) covs.append(cov) if ok_sklearn: msg = ['log-likelihood on unseen data (descending order):'] logliks = [(c['method'], c['loglik']) for c in covs] logliks.sort(reverse=True, key=lambda c: c[1]) for k, v in logliks: msg.append('%s: %0.3f' % (k, v)) logger.info('\n '.join(msg)) if ok_sklearn and not return_estimators: keys, scores = zip(*[(c['method'], c['loglik']) for c in covs]) out = covs[np.argmax(scores)] logger.info('selecting best estimator: {0}'.format(out['method'])) elif ok_sklearn: out = covs out.sort(key=lambda c: c['loglik'], reverse=True) else: out = covs[0] return out def _compute_covariance_auto(data, method, info, method_params, cv, scalings, n_jobs, stop_early, picks_list, verbose): """docstring for _compute_covariance_auto.""" try: from sklearn.model_selection import GridSearchCV except Exception: # XXX support sklearn < 0.18 from sklearn.grid_search import GridSearchCV from sklearn.covariance import (LedoitWolf, ShrunkCovariance, EmpiricalCovariance) # rescale to improve numerical stability _apply_scaling_array(data.T, picks_list=picks_list, scalings=scalings) estimator_cov_info = list() msg = 'Estimating covariance using %s' _RegCovariance, _ShrunkCovariance = _get_covariance_classes() for this_method in method: data_ = data.copy() name = this_method.__name__ if callable(this_method) else this_method logger.info(msg % name.upper()) if this_method == 'empirical': est = EmpiricalCovariance(**method_params[this_method]) est.fit(data_) _info = None estimator_cov_info.append((est, est.covariance_, _info)) elif this_method == 'diagonal_fixed': est = _RegCovariance(info=info, **method_params[this_method]) est.fit(data_) _info = None estimator_cov_info.append((est, est.covariance_, _info)) elif this_method == 'ledoit_wolf': shrinkages = [] lw = LedoitWolf(**method_params[this_method]) for ch_type, picks in picks_list: lw.fit(data_[:, picks]) shrinkages.append(( ch_type, lw.shrinkage_, picks )) sc = _ShrunkCovariance(shrinkage=shrinkages, **method_params[this_method]) sc.fit(data_) _info = None estimator_cov_info.append((sc, sc.covariance_, _info)) elif this_method == 'shrunk': shrinkage = method_params[this_method].pop('shrinkage') tuned_parameters = [{'shrinkage': shrinkage}] shrinkages = [] gs = GridSearchCV(ShrunkCovariance(**method_params[this_method]), tuned_parameters, cv=cv) for ch_type, picks in picks_list: gs.fit(data_[:, picks]) shrinkages.append(( ch_type, gs.best_estimator_.shrinkage, picks )) shrinkages = [c[0] for c in zip(shrinkages)] sc = _ShrunkCovariance(shrinkage=shrinkages, **method_params[this_method]) sc.fit(data_) _info = None estimator_cov_info.append((sc, sc.covariance_, _info)) elif this_method == 'pca': mp = method_params[this_method] pca, _info = _auto_low_rank_model(data_, this_method, n_jobs=n_jobs, method_params=mp, cv=cv, stop_early=stop_early) pca.fit(data_) estimator_cov_info.append((pca, pca.get_covariance(), _info)) elif this_method == 'factor_analysis': mp = method_params[this_method] fa, _info = _auto_low_rank_model(data_, this_method, n_jobs=n_jobs, method_params=mp, cv=cv, stop_early=stop_early) fa.fit(data_) estimator_cov_info.append((fa, fa.get_covariance(), _info)) else: raise ValueError('Oh no! Your estimator does not have' ' a .fit method') logger.info('Done.') logger.info('Using cross-validation to select the best estimator.') estimators, _, _ = zip(*estimator_cov_info) logliks = np.array([_cross_val(data, e, cv, n_jobs) for e in estimators]) # undo scaling for c in estimator_cov_info: _undo_scaling_cov(c[1], picks_list, scalings) out = dict() estimators, covs, runtime_infos = zip(*estimator_cov_info) cov_methods = [c.__name__ if callable(c) else c for c in method] runtime_infos, covs = list(runtime_infos), list(covs) my_zip = zip(cov_methods, runtime_infos, logliks, covs, estimators) for this_method, runtime_info, loglik, data, est in my_zip: out[this_method] = {'loglik': loglik, 'data': data, 'estimator': est} if runtime_info is not None: out[this_method].update(runtime_info) return out def _logdet(A): """Compute the log det of a symmetric matrix.""" vals = linalg.eigh(A)[0] # avoid negative (numerical errors) or zero (semi-definite matrix) values tol = vals.max() * vals.size * np.finfo(np.float64).eps vals = np.where(vals > tol, vals, tol) return np.sum(np.log(vals)) def _gaussian_loglik_scorer(est, X, y=None): """Compute the Gaussian log likelihood of X under the model in est.""" # compute empirical covariance of the test set precision = est.get_precision() n_samples, n_features = X.shape log_like = np.zeros(n_samples) log_like = -.5 * (X * (np.dot(X, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - _logdet(precision)) out = np.mean(log_like) return out def _cross_val(data, est, cv, n_jobs): """Helper to compute cross validation.""" try: from sklearn.model_selection import cross_val_score except ImportError: # XXX support sklearn < 0.18 from sklearn.cross_validation import cross_val_score return np.mean(cross_val_score(est, data, cv=cv, n_jobs=n_jobs, scoring=_gaussian_loglik_scorer)) def _auto_low_rank_model(data, mode, n_jobs, method_params, cv, stop_early=True, verbose=None): """compute latent variable models.""" method_params = cp.deepcopy(method_params) iter_n_components = method_params.pop('iter_n_components') if iter_n_components is None: iter_n_components = np.arange(5, data.shape[1], 5) from sklearn.decomposition import PCA, FactorAnalysis if mode == 'factor_analysis': est = FactorAnalysis elif mode == 'pca': est = PCA else: raise ValueError('Come on, this is not a low rank estimator: %s' % mode) est = est(**method_params) est.n_components = 1 scores = np.empty_like(iter_n_components, dtype=np.float64) scores.fill(np.nan) # make sure we don't empty the thing if it's a generator max_n = max(list(cp.deepcopy(iter_n_components))) if max_n > data.shape[1]: warn('You are trying to estimate %i components on matrix ' 'with %i features.' % (max_n, data.shape[1])) for ii, n in enumerate(iter_n_components): est.n_components = n try: # this may fail depending on rank and split score = _cross_val(data=data, est=est, cv=cv, n_jobs=n_jobs) except ValueError: score = np.inf if np.isinf(score) or score > 0: logger.info('... infinite values encountered. stopping estimation') break logger.info('... rank: %i - loglik: %0.3f' % (n, score)) if score != -np.inf: scores[ii] = score if (ii >= 3 and np.all(np.diff(scores[ii - 3:ii]) < 0.) and stop_early is True): # early stop search when loglik has been going down 3 times logger.info('early stopping parameter search.') break # happens if rank is too low right form the beginning if np.isnan(scores).all(): raise RuntimeError('Oh no! Could not estimate covariance because all ' 'scores were NaN. Please contact the MNE-Python ' 'developers.') i_score = np.nanargmax(scores) best = est.n_components = iter_n_components[i_score] logger.info('... best model at rank = %i' % best) runtime_info = {'ranks': np.array(iter_n_components), 'scores': scores, 'best': best, 'cv': cv} return est, runtime_info def _get_covariance_classes(): """Prepare special cov estimators.""" from sklearn.covariance import (EmpiricalCovariance, shrunk_covariance, ShrunkCovariance) class _RegCovariance(EmpiricalCovariance): """Aux class.""" def __init__(self, info, grad=0.01, mag=0.01, eeg=0.0, store_precision=False, assume_centered=False): self.info = info self.grad = grad self.mag = mag self.eeg = eeg self.store_precision = store_precision self.assume_centered = assume_centered def fit(self, X): EmpiricalCovariance.fit(self, X) self.covariance_ = 0.5 * (self.covariance_ + self.covariance_.T) cov_ = Covariance( data=self.covariance_, names=self.info['ch_names'], bads=self.info['bads'], projs=self.info['projs'], nfree=len(self.covariance_)) cov_ = regularize(cov_, self.info, grad=self.grad, mag=self.mag, eeg=self.eeg, proj=False, exclude='bads') # ~proj == important!! self.covariance_ = cov_.data return self class _ShrunkCovariance(ShrunkCovariance): """Aux class.""" def __init__(self, store_precision, assume_centered, shrinkage=0.1): self.store_precision = store_precision self.assume_centered = assume_centered self.shrinkage = shrinkage def fit(self, X): EmpiricalCovariance.fit(self, X) cov = self.covariance_ if not isinstance(self.shrinkage, (list, tuple)): shrinkage = [('all', self.shrinkage, np.arange(len(cov)))] else: shrinkage = self.shrinkage zero_cross_cov = np.zeros_like(cov, dtype=bool) for a, b in itt.combinations(shrinkage, 2): picks_i, picks_j = a[2], b[2] ch_ = a[0], b[0] if 'eeg' in ch_: zero_cross_cov[np.ix_(picks_i, picks_j)] = True zero_cross_cov[np.ix_(picks_j, picks_i)] = True self.zero_cross_cov_ = zero_cross_cov # Apply shrinkage to blocks for ch_type, c, picks in shrinkage: sub_cov = cov[np.ix_(picks, picks)] cov[np.ix_(picks, picks)] = shrunk_covariance(sub_cov, shrinkage=c) # Apply shrinkage to cross-cov for a, b in itt.combinations(shrinkage, 2): shrinkage_i, shrinkage_j = a[1], b[1] picks_i, picks_j = a[2], b[2] c_ij = np.sqrt((1. - shrinkage_i) * (1. - shrinkage_j)) cov[np.ix_(picks_i, picks_j)] *= c_ij cov[np.ix_(picks_j, picks_i)] *= c_ij # Set to zero the necessary cross-cov if np.any(zero_cross_cov): cov[zero_cross_cov] = 0.0 self.covariance_ = cov return self def score(self, X_test, y=None): """Compute the log-likelihood of a Gaussian data set with `self.covariance_` as an estimator of its covariance matrix. Parameters ---------- X_test : array-like, shape = [n_samples, n_features] Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution as the data used in fit (including centering). y : not used, present for API consistence purpose. Returns ------- res : float The likelihood of the data set with `self.covariance_` as an estimator of its covariance matrix. """ from sklearn.covariance import empirical_covariance, log_likelihood # compute empirical covariance of the test set test_cov = empirical_covariance(X_test - self.location_, assume_centered=True) if np.any(self.zero_cross_cov_): test_cov[self.zero_cross_cov_] = 0. res = log_likelihood(test_cov, self.get_precision()) return res return _RegCovariance, _ShrunkCovariance ############################################################################### # Writing def write_cov(fname, cov): """Write a noise covariance matrix. Parameters ---------- fname : string The name of the file. It should end with -cov.fif or -cov.fif.gz. cov : Covariance The noise covariance matrix See Also -------- read_cov """ cov.save(fname) ############################################################################### # Prepare for inverse modeling def _unpack_epochs(epochs): """Aux Function.""" if len(epochs.event_id) > 1: epochs = [epochs[k] for k in epochs.event_id] else: epochs = [epochs] return epochs def _get_ch_whitener(A, pca, ch_type, rank): """"Get whitener params for a set of channels.""" # whitening operator eig, eigvec = linalg.eigh(A, overwrite_a=True) eigvec = eigvec.T eig[:-rank] = 0.0 logger.info('Setting small %s eigenvalues to zero.' % ch_type) if not pca: # No PCA case. logger.info('Not doing PCA for %s.' % ch_type) else: logger.info('Doing PCA for %s.' % ch_type) # This line will reduce the actual number of variables in data # and leadfield to the true rank. eigvec = eigvec[:-rank].copy() return eig, eigvec @verbose def prepare_noise_cov(noise_cov, info, ch_names, rank=None, scalings=None, verbose=None): """Prepare noise covariance matrix. Parameters ---------- noise_cov : Covariance The noise covariance to process. info : dict The measurement info (used to get channel types and bad channels). ch_names : list The channel names to be considered. rank : None | int | dict Specified rank of the noise covariance matrix. If None, the rank is detected automatically. If int, the rank is specified for the MEG channels. A dictionary with entries 'eeg' and/or 'meg' can be used to specify the rank for each modality. scalings : dict | None Data will be rescaled before rank estimation to improve accuracy. If dict, it will override the following dict (default if None): dict(mag=1e12, grad=1e11, eeg=1e5) verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). """ C_ch_idx = [noise_cov.ch_names.index(c) for c in ch_names] if noise_cov['diag'] is False: C = noise_cov.data[np.ix_(C_ch_idx, C_ch_idx)] else: C = np.diag(noise_cov.data[C_ch_idx]) scalings = _handle_default('scalings_cov_rank', scalings) # Create the projection operator proj, ncomp, _ = make_projector(info['projs'], ch_names) if ncomp > 0: logger.info(' Created an SSP operator (subspace dimension = %d)' % ncomp) C = np.dot(proj, np.dot(C, proj.T)) pick_meg = pick_types(info, meg=True, eeg=False, ref_meg=False, exclude='bads') pick_eeg = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude='bads') meg_names = [info['chs'][k]['ch_name'] for k in pick_meg] C_meg_idx = [k for k in range(len(C)) if ch_names[k] in meg_names] eeg_names = [info['chs'][k]['ch_name'] for k in pick_eeg] C_eeg_idx = [k for k in range(len(C)) if ch_names[k] in eeg_names] has_meg = len(C_meg_idx) > 0 has_eeg = len(C_eeg_idx) > 0 # Get the specified noise covariance rank if rank is not None: if isinstance(rank, dict): rank_meg = rank.get('meg', None) rank_eeg = rank.get('eeg', None) else: rank_meg = int(rank) rank_eeg = None else: rank_meg, rank_eeg = None, None if has_meg: C_meg = C[np.ix_(C_meg_idx, C_meg_idx)] this_info = pick_info(info, pick_meg) if rank_meg is None: if len(C_meg_idx) < len(pick_meg): this_info = pick_info(info, C_meg_idx) rank_meg = _estimate_rank_meeg_cov(C_meg, this_info, scalings) C_meg_eig, C_meg_eigvec = _get_ch_whitener(C_meg, False, 'MEG', rank_meg) if has_eeg: C_eeg = C[np.ix_(C_eeg_idx, C_eeg_idx)] this_info = pick_info(info, pick_eeg) if rank_eeg is None: if len(C_meg_idx) < len(pick_meg): this_info = pick_info(info, C_eeg_idx) rank_eeg = _estimate_rank_meeg_cov(C_eeg, this_info, scalings) C_eeg_eig, C_eeg_eigvec = _get_ch_whitener(C_eeg, False, 'EEG', rank_eeg) if _needs_eeg_average_ref_proj(info): warn('No average EEG reference present in info["projs"], covariance ' 'may be adversely affected. Consider recomputing covariance using' ' a raw file with an average eeg reference projector added.') n_chan = len(ch_names) eigvec = np.zeros((n_chan, n_chan), dtype=np.float) eig = np.zeros(n_chan, dtype=np.float) if has_meg: eigvec[np.ix_(C_meg_idx, C_meg_idx)] = C_meg_eigvec eig[C_meg_idx] = C_meg_eig if has_eeg: eigvec[np.ix_(C_eeg_idx, C_eeg_idx)] = C_eeg_eigvec eig[C_eeg_idx] = C_eeg_eig assert(len(C_meg_idx) + len(C_eeg_idx) == n_chan) noise_cov = cp.deepcopy(noise_cov) noise_cov.update(data=C, eig=eig, eigvec=eigvec, dim=len(ch_names), diag=False, names=ch_names) return noise_cov def regularize(cov, info, mag=0.1, grad=0.1, eeg=0.1, exclude='bads', proj=True, verbose=None): """Regularize noise covariance matrix. This method works by adding a constant to the diagonal for each channel type separately. Special care is taken to keep the rank of the data constant. **Note:** This function is kept for reasons of backward-compatibility. Please consider explicitly using the ``method`` parameter in `compute_covariance` to directly combine estimation with regularization in a data-driven fashion see the `faq <http://martinos.org/mne/dev/faq.html#how-should-i-regularize-the-covariance-matrix>`_ for more information. Parameters ---------- cov : Covariance The noise covariance matrix. info : dict The measurement info (used to get channel types and bad channels). mag : float (default 0.1) Regularization factor for MEG magnetometers. grad : float (default 0.1) Regularization factor for MEG gradiometers. eeg : float (default 0.1) Regularization factor for EEG. exclude : list | 'bads' (default 'bads') List of channels to mark as bad. If 'bads', bads channels are extracted from both info['bads'] and cov['bads']. proj : bool (default true) Apply or not projections to keep rank of data. verbose : bool | str | int | None (default None) If not None, override default verbose level (see mne.verbose). Returns ------- reg_cov : Covariance The regularized covariance matrix. See Also -------- compute_covariance """ # noqa cov = cp.deepcopy(cov) info._check_consistency() if exclude is None: raise ValueError('exclude must be a list of strings or "bads"') if exclude == 'bads': exclude = info['bads'] + cov['bads'] sel_eeg = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude=exclude) sel_mag = pick_types(info, meg='mag', eeg=False, ref_meg=False, exclude=exclude) sel_grad = pick_types(info, meg='grad', eeg=False, ref_meg=False, exclude=exclude) info_ch_names = info['ch_names'] ch_names_eeg = [info_ch_names[i] for i in sel_eeg] ch_names_mag = [info_ch_names[i] for i in sel_mag] ch_names_grad = [info_ch_names[i] for i in sel_grad] # This actually removes bad channels from the cov, which is not backward # compatible, so let's leave all channels in cov_good = pick_channels_cov(cov, include=info_ch_names, exclude=exclude) ch_names = cov_good.ch_names idx_eeg, idx_mag, idx_grad = [], [], [] for i, ch in enumerate(ch_names): if ch in ch_names_eeg: idx_eeg.append(i) elif ch in ch_names_mag: idx_mag.append(i) elif ch in ch_names_grad: idx_grad.append(i) else: raise Exception('channel is unknown type') C = cov_good['data'] assert len(C) == (len(idx_eeg) + len(idx_mag) + len(idx_grad)) if proj: projs = info['projs'] + cov_good['projs'] projs = activate_proj(projs) for desc, idx, reg in [('EEG', idx_eeg, eeg), ('MAG', idx_mag, mag), ('GRAD', idx_grad, grad)]: if len(idx) == 0 or reg == 0.0: logger.info(" %s regularization : None" % desc) continue logger.info(" %s regularization : %s" % (desc, reg)) this_C = C[np.ix_(idx, idx)] if proj: this_ch_names = [ch_names[k] for k in idx] P, ncomp, _ = make_projector(projs, this_ch_names) U = linalg.svd(P)[0][:, :-ncomp] if ncomp > 0: logger.info(' Created an SSP operator for %s ' '(dimension = %d)' % (desc, ncomp)) this_C = np.dot(U.T, np.dot(this_C, U)) sigma = np.mean(np.diag(this_C)) this_C.flat[::len(this_C) + 1] += reg * sigma # modify diag inplace if proj and ncomp > 0: this_C = np.dot(U, np.dot(this_C, U.T)) C[np.ix_(idx, idx)] = this_C # Put data back in correct locations idx = pick_channels(cov.ch_names, info_ch_names, exclude=exclude) cov['data'][np.ix_(idx, idx)] = C return cov def _regularized_covariance(data, reg=None): """Compute a regularized covariance from data using sklearn. Parameters ---------- data : ndarray, shape (n_channels, n_times) Data for covariance estimation. reg : float | str | None (default None) If not None, allow regularization for covariance estimation if float, shrinkage covariance is used (0 <= shrinkage <= 1). if str, optimal shrinkage using Ledoit-Wolf Shrinkage ('ledoit_wolf') or Oracle Approximating Shrinkage ('oas'). Returns ------- cov : ndarray, shape (n_channels, n_channels) The covariance matrix. """ if reg is None: # compute empirical covariance cov = np.cov(data) else: no_sklearn_err = ('the scikit-learn package is missing and ' 'required for covariance regularization.') # use sklearn covariance estimators if isinstance(reg, float): if (reg < 0) or (reg > 1): raise ValueError('0 <= shrinkage <= 1 for ' 'covariance regularization.') try: import sklearn sklearn_version = LooseVersion(sklearn.__version__) from sklearn.covariance import ShrunkCovariance except ImportError: raise Exception(no_sklearn_err) if sklearn_version < '0.12': skl_cov = ShrunkCovariance(shrinkage=reg, store_precision=False) else: # init sklearn.covariance.ShrunkCovariance estimator skl_cov = ShrunkCovariance(shrinkage=reg, store_precision=False, assume_centered=True) elif isinstance(reg, string_types): if reg == 'ledoit_wolf': try: from sklearn.covariance import LedoitWolf except ImportError: raise Exception(no_sklearn_err) # init sklearn.covariance.LedoitWolf estimator skl_cov = LedoitWolf(store_precision=False, assume_centered=True) elif reg == 'oas': try: from sklearn.covariance import OAS except ImportError: raise Exception(no_sklearn_err) # init sklearn.covariance.OAS estimator skl_cov = OAS(store_precision=False, assume_centered=True) else: raise ValueError("regularization parameter should be " "'ledoit_wolf' or 'oas'") else: raise ValueError("regularization parameter should be " "of type str or int (got %s)." % type(reg)) # compute regularized covariance using sklearn cov = skl_cov.fit(data.T).covariance_ return cov @verbose def compute_whitener(noise_cov, info, picks=None, rank=None, scalings=None, verbose=None): """Compute whitening matrix. Parameters ---------- noise_cov : Covariance The noise covariance. info : dict The measurement info. picks : array-like of int | None The channels indices to include. If None the data channels in info, except bad channels, are used. rank : None | int | dict Specified rank of the noise covariance matrix. If None, the rank is detected automatically. If int, the rank is specified for the MEG channels. A dictionary with entries 'eeg' and/or 'meg' can be used to specify the rank for each modality. scalings : dict | None The rescaling method to be applied. See documentation of ``prepare_noise_cov`` for details. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- W : 2d array The whitening matrix. ch_names : list The channel names. """ if picks is None: picks = pick_types(info, meg=True, eeg=True, ref_meg=False, exclude='bads') ch_names = [info['chs'][k]['ch_name'] for k in picks] noise_cov = cp.deepcopy(noise_cov) noise_cov = prepare_noise_cov(noise_cov, info, ch_names, rank=rank, scalings=scalings) n_chan = len(ch_names) W = np.zeros((n_chan, n_chan), dtype=np.float) # # Omit the zeroes due to projection # eig = noise_cov['eig'] nzero = (eig > 0) W[nzero, nzero] = 1.0 / np.sqrt(eig[nzero]) # # Rows of eigvec are the eigenvectors # W = np.dot(W, noise_cov['eigvec']) W = np.dot(noise_cov['eigvec'].T, W) return W, ch_names @verbose def whiten_evoked(evoked, noise_cov, picks=None, diag=False, rank=None, scalings=None, verbose=None): """Whiten evoked data using given noise covariance. Parameters ---------- evoked : instance of Evoked The evoked data noise_cov : instance of Covariance The noise covariance picks : array-like of int | None The channel indices to whiten. Can be None to whiten MEG and EEG data. diag : bool (default False) If True, whiten using only the diagonal of the covariance. rank : None | int | dict (default None) Specified rank of the noise covariance matrix. If None, the rank is detected automatically. If int, the rank is specified for the MEG channels. A dictionary with entries 'eeg' and/or 'meg' can be used to specify the rank for each modality. scalings : dict | None (default None) To achieve reliable rank estimation on multiple sensors, sensors have to be rescaled. This parameter controls the rescaling. If dict, it will override the following default dict (default if None): dict(mag=1e12, grad=1e11, eeg=1e5) verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- evoked_white : instance of Evoked The whitened evoked data. """ evoked = cp.deepcopy(evoked) if picks is None: picks = pick_types(evoked.info, meg=True, eeg=True) W = _get_whitener_data(evoked.info, noise_cov, picks, diag=diag, rank=rank, scalings=scalings) evoked.data[picks] = np.sqrt(evoked.nave) * np.dot(W, evoked.data[picks]) return evoked @verbose def _get_whitener_data(info, noise_cov, picks, diag=False, rank=None, scalings=None, verbose=None): """Get whitening matrix for a set of data.""" ch_names = [info['ch_names'][k] for k in picks] noise_cov = pick_channels_cov(noise_cov, include=ch_names, exclude=[]) info = pick_info(info, picks) if diag: noise_cov = cp.deepcopy(noise_cov) noise_cov['data'] = np.diag(np.diag(noise_cov['data'])) scalings = _handle_default('scalings_cov_rank', scalings) W = compute_whitener(noise_cov, info, rank=rank, scalings=scalings)[0] return W @verbose def _read_cov(fid, node, cov_kind, limited=False, verbose=None): """Read a noise covariance matrix.""" # Find all covariance matrices covs = dir_tree_find(node, FIFF.FIFFB_MNE_COV) if len(covs) == 0: raise ValueError('No covariance matrices found') # Is any of the covariance matrices a noise covariance for p in range(len(covs)): tag = find_tag(fid, covs[p], FIFF.FIFF_MNE_COV_KIND) if tag is not None and int(tag.data) == cov_kind: this = covs[p] # Find all the necessary data tag = find_tag(fid, this, FIFF.FIFF_MNE_COV_DIM) if tag is None: raise ValueError('Covariance matrix dimension not found') dim = int(tag.data) tag = find_tag(fid, this, FIFF.FIFF_MNE_COV_NFREE) if tag is None: nfree = -1 else: nfree = int(tag.data) tag = find_tag(fid, this, FIFF.FIFF_MNE_COV_METHOD) if tag is None: method = None else: method = tag.data tag = find_tag(fid, this, FIFF.FIFF_MNE_COV_SCORE) if tag is None: score = None else: score = tag.data[0] tag = find_tag(fid, this, FIFF.FIFF_MNE_ROW_NAMES) if tag is None: names = [] else: names = tag.data.split(':') if len(names) != dim: raise ValueError('Number of names does not match ' 'covariance matrix dimension') tag = find_tag(fid, this, FIFF.FIFF_MNE_COV) if tag is None: tag = find_tag(fid, this, FIFF.FIFF_MNE_COV_DIAG) if tag is None: raise ValueError('No covariance matrix data found') else: # Diagonal is stored data = tag.data diag = True logger.info(' %d x %d diagonal covariance (kind = ' '%d) found.' % (dim, dim, cov_kind)) else: from scipy import sparse if not sparse.issparse(tag.data): # Lower diagonal is stored vals = tag.data data = np.zeros((dim, dim)) data[np.tril(np.ones((dim, dim))) > 0] = vals data = data + data.T data.flat[::dim + 1] /= 2.0 diag = False logger.info(' %d x %d full covariance (kind = %d) ' 'found.' % (dim, dim, cov_kind)) else: diag = False data = tag.data logger.info(' %d x %d sparse covariance (kind = %d)' ' found.' % (dim, dim, cov_kind)) # Read the possibly precomputed decomposition tag1 = find_tag(fid, this, FIFF.FIFF_MNE_COV_EIGENVALUES) tag2 = find_tag(fid, this, FIFF.FIFF_MNE_COV_EIGENVECTORS) if tag1 is not None and tag2 is not None: eig = tag1.data eigvec = tag2.data else: eig = None eigvec = None # Read the projection operator projs = _read_proj(fid, this) # Read the bad channel list bads = read_bad_channels(fid, this) # Put it together assert dim == len(data) assert data.ndim == (1 if diag else 2) cov = dict(kind=cov_kind, diag=diag, dim=dim, names=names, data=data, projs=projs, bads=bads, nfree=nfree, eig=eig, eigvec=eigvec) if score is not None: cov['loglik'] = score if method is not None: cov['method'] = method if limited: del cov['kind'], cov['dim'], cov['diag'] return cov logger.info(' Did not find the desired covariance matrix (kind = %d)' % cov_kind) return None def _write_cov(fid, cov): """Write a noise covariance matrix.""" start_block(fid, FIFF.FIFFB_MNE_COV) # Dimensions etc. write_int(fid, FIFF.FIFF_MNE_COV_KIND, cov['kind']) write_int(fid, FIFF.FIFF_MNE_COV_DIM, cov['dim']) if cov['nfree'] > 0: write_int(fid, FIFF.FIFF_MNE_COV_NFREE, cov['nfree']) # Channel names if cov['names'] is not None and len(cov['names']) > 0: write_name_list(fid, FIFF.FIFF_MNE_ROW_NAMES, cov['names']) # Data if cov['diag']: write_double(fid, FIFF.FIFF_MNE_COV_DIAG, cov['data']) else: # Store only lower part of covariance matrix dim = cov['dim'] mask = np.tril(np.ones((dim, dim), dtype=np.bool)) > 0 vals = cov['data'][mask].ravel() write_double(fid, FIFF.FIFF_MNE_COV, vals) # Eigenvalues and vectors if present if cov['eig'] is not None and cov['eigvec'] is not None: write_float_matrix(fid, FIFF.FIFF_MNE_COV_EIGENVECTORS, cov['eigvec']) write_double(fid, FIFF.FIFF_MNE_COV_EIGENVALUES, cov['eig']) # Projection operator if cov['projs'] is not None and len(cov['projs']) > 0: _write_proj(fid, cov['projs']) # Bad channels if cov['bads'] is not None and len(cov['bads']) > 0: start_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS) write_name_list(fid, FIFF.FIFF_MNE_CH_NAME_LIST, cov['bads']) end_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS) # estimator method if 'method' in cov: write_string(fid, FIFF.FIFF_MNE_COV_METHOD, cov['method']) # negative log-likelihood score if 'loglik' in cov: write_double( fid, FIFF.FIFF_MNE_COV_SCORE, np.array(cov['loglik'])) # Done! end_block(fid, FIFF.FIFFB_MNE_COV) def _apply_scaling_array(data, picks_list, scalings): """Scale data type-dependently for estimation.""" scalings = _check_scaling_inputs(data, picks_list, scalings) if isinstance(scalings, dict): picks_dict = dict(picks_list) scalings = [(picks_dict[k], v) for k, v in scalings.items() if k in picks_dict] for idx, scaling in scalings: data[idx, :] *= scaling # F - order else: data *= scalings[:, np.newaxis] # F - order def _undo_scaling_array(data, picks_list, scalings): scalings = _check_scaling_inputs(data, picks_list, scalings) if isinstance(scalings, dict): scalings = dict((k, 1. / v) for k, v in scalings.items()) elif isinstance(scalings, np.ndarray): scalings = 1. / scalings return _apply_scaling_array(data, picks_list, scalings) def _apply_scaling_cov(data, picks_list, scalings): """Scale resulting data after estimation.""" scalings = _check_scaling_inputs(data, picks_list, scalings) scales = None if isinstance(scalings, dict): n_channels = len(data) covinds = list(zip(*picks_list))[1] assert len(data) == sum(len(k) for k in covinds) assert list(sorted(np.concatenate(covinds))) == list(range(len(data))) scales = np.zeros(n_channels) for ch_t, idx in picks_list: scales[idx] = scalings[ch_t] elif isinstance(scalings, np.ndarray): if len(scalings) != len(data): raise ValueError('Scaling factors and data are of incompatible ' 'shape') scales = scalings elif scalings is None: pass else: raise RuntimeError('Arff...') if scales is not None: assert np.sum(scales == 0.) == 0 data *= (scales[None, :] * scales[:, None]) def _undo_scaling_cov(data, picks_list, scalings): scalings = _check_scaling_inputs(data, picks_list, scalings) if isinstance(scalings, dict): scalings = dict((k, 1. / v) for k, v in scalings.items()) elif isinstance(scalings, np.ndarray): scalings = 1. / scalings return _apply_scaling_cov(data, picks_list, scalings) def _check_scaling_inputs(data, picks_list, scalings): """Aux function.""" rescale_dict_ = dict(mag=1e15, grad=1e13, eeg=1e6) scalings_ = None if isinstance(scalings, string_types) and scalings == 'norm': scalings_ = 1. / _compute_row_norms(data) elif isinstance(scalings, dict): rescale_dict_.update(scalings) scalings_ = rescale_dict_ elif isinstance(scalings, np.ndarray): scalings_ = scalings elif scalings is None: pass else: raise NotImplementedError("No way! That's not a rescaling " 'option: %s' % scalings) return scalings_ def _estimate_rank_meeg_signals(data, info, scalings, tol='auto', return_singular=False): """Estimate rank for M/EEG data. Parameters ---------- data : np.ndarray of float, shape(n_channels, n_samples) The M/EEG signals. info : Info The measurment info. scalings : dict | 'norm' | np.ndarray | None The rescaling method to be applied. If dict, it will override the following default dict: dict(mag=1e15, grad=1e13, eeg=1e6) If 'norm' data will be scaled by channel-wise norms. If array, pre-specified norms will be used. If None, no scaling will be applied. tol : float | str Tolerance. See ``estimate_rank``. return_singular : bool If True, also return the singular values that were used to determine the rank. copy : bool If False, values in data will be modified in-place during rank estimation (saves memory). Returns ------- rank : int Estimated rank of the data. s : array If return_singular is True, the singular values that were thresholded to determine the rank are also returned. """ picks_list = _picks_by_type(info) _apply_scaling_array(data, picks_list, scalings) if data.shape[1] < data.shape[0]: ValueError("You've got fewer samples than channels, your " "rank estimate might be inaccurate.") out = estimate_rank(data, tol=tol, norm=False, return_singular=return_singular) rank = out[0] if isinstance(out, tuple) else out ch_type = ' + '.join(list(zip(*picks_list))[0]) logger.info('estimated rank (%s): %d' % (ch_type, rank)) _undo_scaling_array(data, picks_list, scalings) return out def _estimate_rank_meeg_cov(data, info, scalings, tol='auto', return_singular=False): """Estimate rank for M/EEG data. Parameters ---------- data : np.ndarray of float, shape (n_channels, n_channels) The M/EEG covariance. info : Info The measurment info. scalings : dict | 'norm' | np.ndarray | None The rescaling method to be applied. If dict, it will override the following default dict: dict(mag=1e12, grad=1e11, eeg=1e5) If 'norm' data will be scaled by channel-wise norms. If array, pre-specified norms will be used. If None, no scaling will be applied. tol : float | str Tolerance. See ``estimate_rank``. return_singular : bool If True, also return the singular values that were used to determine the rank. Returns ------- rank : int Estimated rank of the data. s : array If return_singular is True, the singular values that were thresholded to determine the rank are also returned. """ picks_list = _picks_by_type(info) scalings = _handle_default('scalings_cov_rank', scalings) _apply_scaling_cov(data, picks_list, scalings) if data.shape[1] < data.shape[0]: ValueError("You've got fewer samples than channels, your " "rank estimate might be inaccurate.") out = estimate_rank(data, tol=tol, norm=False, return_singular=return_singular) rank = out[0] if isinstance(out, tuple) else out ch_type = ' + '.join(list(zip(*picks_list))[0]) logger.info('estimated rank (%s): %d' % (ch_type, rank)) _undo_scaling_cov(data, picks_list, scalings) return out
bsd-3-clause
BhallaLab/moose-full
moose-examples/paper-2015/Fig2_elecModels/Fig2C.py
2
13821
######################################################################## # This program is copyright (c) Upinder S. Bhalla, NCBS, 2015. # It is licenced under the GPL 2.1 or higher. # There is no warranty of any kind. You are welcome to make copies under # the provisions of the GPL. # This programme illustrates building a panel of multiscale models to # test neuronal plasticity in different contexts. ######################################################################## import numpy import time import pylab import moose from moose import neuroml from PyQt4 import Qt, QtCore, QtGui import matplotlib.pyplot as plt import sys import os from moose.neuroml.ChannelML import ChannelML sys.path.append('../../../Demos/util') import rdesigneur as rd import moogli PI = 3.14159265359 useGssa = True combineSegments = True # Pick your favourite cell here. #elecFileName = "ca1_minimal.p" ## Cell morphology from Bannister and Larkman J Neurophys 2015/NeuroMorpho elecFileName = "h10.CNG.swc" #elecFileName = "CA1.morph.xml" #elecFileName = "VHC-neuron.CNG.swc" synSpineList = [] synDendList = [] probeInterval = 0.1 probeAmplitude = 1.0 tetanusFrequency = 100.0 tetanusAmplitude = 1000 tetanusAmplitudeForSpines = 1000 frameRunTime = 1e-3 # 1 ms baselineTime = 0.05 tetTime = 0.01 postTetTime = 0.01 runtime = baselineTime + tetTime + postTetTime def buildRdesigneur(): ''' ################################################################## # Here we define which prototypes are to be loaded in to the system. # Each specification has the format # source [localName] # source can be any of # filename.extension, # Identify type of file by extension, load it. # function(), # func( name ) builds object of specified name # file.py:function() , # load Python file, run function(name) in it. # moose.Classname # Make obj moose.Classname, assign to name. # path # Already loaded into library or on path. # After loading the prototypes, there should be an object called 'name' # in the library. ################################################################## ''' cellProto = [ [ "./cells/" + elecFileName, "elec" ] ] chanProto = [ ['./chans/hd.xml'], \ ['./chans/kap.xml'], \ ['./chans/kad.xml'], \ ['./chans/kdr.xml'], \ ['./chans/na3.xml'], \ ['./chans/nax.xml'], \ ['./chans/CaConc.xml'], \ ['./chans/Ca.xml'], \ ['./chans/NMDA.xml'], \ ['./chans/Glu.xml'] \ ] spineProto = [ \ ['makeSpineProto()', 'spine' ] ] chemProto = [] ################################################################## # Here we define what goes where, and any parameters. Each distribution # has the format # protoName, path, field, expr, [field, expr]... # where # protoName identifies the prototype to be placed on the cell # path is a MOOSE wildcard path specifying where to put things # field is the field to assign. # expr is a math expression to define field value. This uses the # muParser. Built-in variables are: # p, g, L, len, dia, maxP, maxG, maxL. # where # p = path distance from soma, threaded along dendrite # g = geometrical distance from soma (shortest distance) # L = electrotonic distance from soma: number of length constants # len = length of dendritic compartment # dia = diameter of dendritic compartment # maxP = maximal value of 'p' for the cell # maxG = maximal value of 'g' for the cell # maxL = maximal value of 'L' for the cell # # The muParser provides most math functions, and the Heaviside # function H(x) = 1 for x > 0 is also provided. ################################################################## passiveDistrib = [ [ ".", "#", "RM", "2.8", "CM", "0.01", "RA", "1.5", \ "Em", "-58e-3", "initVm", "-65e-3" ], \ [ ".", "#axon#", "RA", "0.5" ] \ ] chanDistrib = [ \ ["hd", "#dend#,#apical#", "Gbar", "5e-2*(1+(p*3e4))" ], \ ["kdr", "#", "Gbar", "p < 50e-6 ? 500 : 100" ], \ ["na3", "#soma#,#dend#,#apical#", "Gbar", "250" ], \ ["nax", "#soma#,#axon#", "Gbar", "1250" ], \ ["kap", "#axon#,#soma#", "Gbar", "300" ], \ ["kap", "#dend#,#apical#", "Gbar", \ "300*(H(100-p*1e6)) * (1+(p*1e4))" ], \ ["Ca_conc", "#soma#,#dend#,#apical#", "tau", "0.0133" ], \ ["kad", "#soma#,#dend#,#apical#", "Gbar", \ "300*H(p - 100e-6)*(1+p*1e4)" ], \ ["Ca", "#dend#,#apical#", "Gbar", "p<160e-6? 10+ p*0.25e-6 : 50" ], \ ["Ca", "#soma#", "Gbar", "10" ], \ ["glu", "#dend#,#apical#", "Gbar", "200*H(p-200e-6)" ], \ ["NMDA", "#dend#,#apical#", "Gbar", "2*H(p-200e-6)" ] \ ] spineDistrib = [ \ ["spine", '#apical#', "spineSpacing", "20e-6", \ "spineSpacingDistrib", "2e-6", \ "angle", "0", \ "angleDistrib", str( 2*PI ), \ "size", "1", \ "sizeDistrib", "0.5" ] \ ] chemDistrib = [] ###################################################################### # Here we define the mappings across scales. Format: # sourceObj sourceField destObj destField offset scale # where the coupling expression is anything a muParser can evaluate, # using the input variable x. For example: 8e-5 + 300*x # For now, let's use existing adaptors which take an offset and scale. ###################################################################### adaptorList = [] ###################################################################### # Having defined everything, now to create the rdesigneur and proceed # with creating the model. ###################################################################### rd.addSpineProto() # This adds a version with an LCa channel by default. rdes = rd.rdesigneur( useGssa = useGssa, \ combineSegments = combineSegments, \ stealCellFromLibrary = True, \ passiveDistrib = passiveDistrib, \ spineDistrib = spineDistrib, \ chanDistrib = chanDistrib, \ chemDistrib = chemDistrib, \ cellProto = cellProto, \ chanProto = chanProto, \ chemProto = chemProto, \ adaptorList = adaptorList ) #spineProto = spineProto, \ return rdes def buildPlots( rdes ): graphs = moose.Neutral( '/graphs' ) vtab = moose.Table( '/graphs/VmTab' ) moose.connect( vtab, 'requestOut', rdes.soma, 'getVm' ) def displayPlots(): pylab.figure(1, figsize = (8,10 ) ) pylab.subplot( 1,1,1) for i in moose.wildcardFind( "/graphs/#VmTab" ): t = numpy.arange( 0, i.vector.size, 1 ) * i.dt pylab.plot( t, i.vector, label = i.name ) pylab.xlabel( "Time (s)" ) pylab.legend() pylab.title( 'Vm' ) pylab.figure(2, figsize= (8,10)) ax = pylab.subplot( 1,1,1 ) neuron = moose.element( '/model/elec' ) comptDistance = dict( zip( neuron.compartments, neuron.pathDistanceFromSoma ) ) for i in moose.wildcardFind( '/library/#[ISA=ChanBase]' ): chans = moose.wildcardFind( '/model/elec/#/' + i.name ) print i.name, len( chans ) p = [ 1e6*comptDistance.get( j.parent, 0) for j in chans ] Gbar = [ j.Gbar/(j.parent.length * j.parent.diameter * PI) for j in chans ] if len( p ) > 2: pylab.plot( p, Gbar, linestyle = 'None', marker = ".", label = i.name ) sortedGbar = sorted(zip(p, Gbar), key=lambda x: x[0]) ax.set_yscale( 'log' ) pylab.xlabel( "Distance from soma (microns)" ) pylab.ylabel( "Channel density (Seimens/sq mtr)" ) pylab.legend() pylab.title( 'Channel distribution' ) pylab.show() def create_vm_viewer(rdes): network = moogli.extensions.moose.read(rdes.elecid.path) normalizer = moogli.utilities.normalizer(-0.08, 0.02, clipleft=True, clipright=True) colormap = moogli.colors.UniformColorMap([moogli.colors.Color(0.0, 0.0, 1.0, 1.0), moogli.colors.Color(1.0, 1.0, 0.0, 0.1)]) mapper = moogli.utilities.mapper(colormap, normalizer) vms = [moose.element(x).Vm for x in network.shapes.keys()] network.set("color", vms, mapper) def prelude(view): view.pitch(PI/2) view.zoom(0.4) def interlude(view): moose.start(frameRunTime) vms = [moose.element(x).Vm for x in network.shapes.keys()] network.set("color", vms, mapper) view.yaw(0.01) currTime = moose.element('/clock').currentTime if currTime < runtime: deliverStim(currTime) else: view.stop() def postlude(view): displayPlots() viewer = moogli.Viewer("vm-viewer") viewer.attach_shapes(network.shapes.values()) view = moogli.View("vm-view", prelude=prelude, interlude=interlude, postlude=postlude) viewer.attach_view(view) return viewer def create_ca_viewer(rdes): network = moogli.extensions.moose.read(rdes.elecid.path) ca_elements = [] for compartment_path in network.shapes.keys(): if moose.exists(compartment_path + '/Ca_conc'): ca_elements.append(moose.element(compartment_path + '/Ca_conc')) else: ca_elements.append(moose.element('/library/Ca_conc')) normalizer = moogli.utilities.normalizer(0.0, 0.002, clipleft=True, clipright=True) colormap = moogli.colors.UniformColorMap([moogli.colors.Color(1.0, 0.0, 0.0, 1.0), moogli.colors.Color(0.0, 1.0, 1.0, 0.1)]) mapper = moogli.utilities.mapper(colormap, normalizer) cas = [element.Ca for element in ca_elements] network.set("color", cas, mapper) def prelude(view): view.pitch(PI/2) view.zoom(0.4) def interlude(view): moose.start(frameRunTime) cas = [element.Ca for element in ca_elements] network.set("color", cas, mapper) view.yaw(0.01) currTime = moose.element('/clock').currentTime if currTime < runtime: deliverStim(currTime) else: view.stop() viewer = moogli.Viewer("ca-viewer") viewer.attach_shapes(network.shapes.values()) view = moogli.View("ca-view", prelude=prelude, interlude=interlude) viewer.attach_view(view) return viewer def build3dDisplay(rdes): print "building 3d Display" app = QtGui.QApplication(sys.argv) vm_viewer = create_vm_viewer(rdes) vm_viewer.resize(700, 900) vm_viewer.show() vm_viewer.start() ca_viewer = create_ca_viewer(rdes) ca_viewer.resize(700, 900) ca_viewer.show() ca_viewer.start() return app.exec_() def deliverStim( currTime ): if currTime > baselineTime and currTime < baselineTime + tetTime: # deliver tet stim step = int ( (currTime - baselineTime) / frameRunTime ) tetStep = int( 1.0 / (tetanusFrequency * frameRunTime ) ) if step % tetStep == 0: for i in synDendList: i.activation( tetanusAmplitude ) for i in synSpineList: i.activation( tetanusAmplitudeForSpines ) else: # deliver probe stim step = int (currTime / frameRunTime ) probeStep = int( probeInterval / frameRunTime ) if step % probeStep == 0: print "Doing probe Stim at ", currTime for i in synSpineList: i.activation( probeAmplitude ) def main(): global synSpineList global synDendList numpy.random.seed( 1234 ) rdes = buildRdesigneur() rdes.buildModel( '/model' ) assert( moose.exists( '/model' ) ) synSpineList = moose.wildcardFind( "/model/elec/#head#/glu,/model/elec/#head#/NMDA" ) temp = set( moose.wildcardFind( "/model/elec/#/glu,/model/elec/#/NMDA" ) ) synDendList = list( temp - set( synSpineList ) ) print "num spine, dend syns = ", len( synSpineList ), len( synDendList ) moose.reinit() #for i in moose.wildcardFind( '/model/elec/#apical#/#[ISA=CaConcBase]' ): #print i.path, i.length, i.diameter, i.parent.length, i.parent.diameter buildPlots(rdes) # Run for baseline, tetanus, and post-tetanic settling time t1 = time.time() build3dDisplay(rdes) print 'real time = ', time.time() - t1 if __name__ == '__main__': main()
gpl-2.0
pandas-ml/pandas-ml
pandas_ml/skaccessors/test/test_cross_decomposition.py
2
5244
#!/usr/bin/env python import pytest import numpy as np import pandas as pd import sklearn.cross_decomposition as cd import pandas_ml as pdml import pandas_ml.util.testing as tm class TestCrossDecomposition(tm.TestCase): def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.cross_decomposition.PLSRegression, cd.PLSRegression) self.assertIs(df.cross_decomposition.PLSCanonical, cd.PLSCanonical) self.assertIs(df.cross_decomposition.CCA, cd.CCA) self.assertIs(df.cross_decomposition.PLSSVD, cd.PLSSVD) def test_CCA(self): X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [3., 5., 4.]] Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] df = pdml.ModelFrame(X, target=Y) mod1 = df.cross_decomposition.CCA(n_components=1) mod2 = cd.CCA(n_components=1) df.fit(mod1) mod2.fit(X, Y) # 2nd cols are different on travis-CI self.assert_numpy_array_almost_equal(mod1.x_weights_[:, 0], mod2.x_weights_[:, 0]) self.assert_numpy_array_almost_equal(mod1.y_weights_[:, 0], mod2.y_weights_[:, 0]) result = df.transform(mod1) expected = mod2.transform(X, Y) self.assertIsInstance(result, pdml.ModelFrame) self.assert_numpy_array_almost_equal(result.data.values.reshape(4), expected[0].reshape(4)) self.assert_numpy_array_almost_equal(result.target.values.reshape(4), expected[1].reshape(4)) @pytest.mark.parametrize("algo", ['CCA', 'PLSCanonical']) def test_CCA_PLSCannonical(self, algo): n = 500 with tm.RNGContext(1): # 2 latents vars: l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X_train = X[:n // 2] Y_train = Y[:n // 2] X_test = X[n // 2:] Y_test = Y[n // 2:] train = pdml.ModelFrame(X_train, target=Y_train) test = pdml.ModelFrame(X_test, target=Y_test) # check multi target columns self.assertTrue(train.has_target()) tm.assert_numpy_array_equal(train.data.values, X_train) tm.assert_numpy_array_equal(train.target.values, Y_train) tm.assert_numpy_array_equal(test.data.values, X_test) tm.assert_numpy_array_equal(test.target.values, Y_test) expected = pd.MultiIndex.from_tuples([('.target', 0), ('.target', 1), ('.target', 2), ('.target', 3)]) tm.assert_index_equal(train.target_name, expected) self.assertEqual(train.data.shape, X_train.shape) self.assertEqual(train.target.shape, Y_train.shape) mod1 = getattr(train.cross_decomposition, algo)(n_components=2) mod2 = getattr(cd, algo)(n_components=2) train.fit(mod1) mod2.fit(X_train, Y_train) # 2nd cols are different on travis-CI self.assert_numpy_array_almost_equal(mod1.x_weights_[:, 0], mod2.x_weights_[:, 0]) self.assert_numpy_array_almost_equal(mod1.y_weights_[:, 0], mod2.y_weights_[:, 0]) result_tr = train.transform(mod1) result_test = test.transform(mod1) expected_tr = mod2.transform(X_train, Y_train) expected_test = mod2.transform(X_test, Y_test) self.assertIsInstance(result_tr, pdml.ModelFrame) self.assertIsInstance(result_test, pdml.ModelFrame) self.assert_numpy_array_almost_equal(result_tr.data.values[:, 0], expected_tr[0][:, 0]) self.assert_numpy_array_almost_equal(result_tr.target.values[:, 0], expected_tr[1][:, 0]) self.assert_numpy_array_almost_equal(result_test.data.values[:, 0], expected_test[0][:, 0]) self.assert_numpy_array_almost_equal(result_test.target.values[:, 0], expected_test[1][:, 0]) def test_PLSRegression(self): n = 1000 q = 3 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) B = np.array([[1, 2] + [0] * (p - 2)] * q).T # each Yj = 1*X1 + 2*X2 + noize Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5 df = pdml.ModelFrame(X, target=Y) pls1 = df.cross_decomposition.PLSRegression(n_components=3) df.fit(pls1) result = df.predict(pls1) pls2 = cd.PLSRegression(n_components=3) pls2.fit(X, Y) expected = pls2.predict(X) self.assertIsInstance(result, pdml.ModelFrame) self.assert_numpy_array_almost_equal(result.values, expected)
bsd-3-clause
cybernet14/scikit-learn
examples/linear_model/plot_ols.py
220
1940
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean square error print("Residual sum of squares: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
astroML/astroML
astroML/density_estimation/density_estimation.py
2
3150
""" Tools for density estimation See also: - sklearn.mixture.gmm : gaussian mixture models - sklearn.neighbors.KernelDensity : Kernel Density Estimation (version 0.14+) - astroML.density_estimation.XDGMM : extreme deconvolution - scipy.spatial.gaussian_kde : a gaussian KDE implementation """ import numpy as np from scipy import special from sklearn.base import BaseEstimator from sklearn.neighbors import BallTree def n_volume(r, n): """compute the n-volume of a sphere of radius r in n dimensions""" return np.pi ** (0.5 * n) / special.gamma(0.5 * n + 1) * (r ** n) class KNeighborsDensity(BaseEstimator): """K-neighbors density estimation Parameters ---------- method : string method to use. Must be one of ['simple'|'bayesian'] (see below) n_neighbors : int number of neighbors to use Notes ----- The two methods are as follows: - simple: The density at a point x is estimated by n(x) ~ k / r_k^n - bayesian: The density at a point x is estimated by n(x) ~ sum_{i=1}^k[1 / r_i^n]. See Also -------- KDE : kernel density estimation """ def __init__(self, method='bayesian', n_neighbors=10): if method not in ['simple', 'bayesian']: raise ValueError("method = %s not recognized" % method) self.n_neighbors = n_neighbors self.method = method def fit(self, X): """Train the K-neighbors density estimator Parameters ---------- X : array_like array of points to use to train the KDE. Shape is (n_points, n_dim) """ self.X_ = np.atleast_2d(X) if self.X_.ndim != 2: raise ValueError('X must be two-dimensional') self.bt_ = BallTree(self.X_) return self def eval(self, X): """Evaluate the kernel density estimation Parameters ---------- X : array_like array of points at which to evaluate the KDE. Shape is (n_points, n_dim), where n_dim matches the dimension of the training points. Returns ------- dens : ndarray array of shape (n_points,) giving the density at each point. The density will be normalized for metric='gaussian' or metric='tophat', and will be unnormalized otherwise. """ X = np.atleast_2d(X) if X.ndim != 2: raise ValueError('X must be two-dimensional') if X.shape[1] != self.X_.shape[1]: raise ValueError('dimensions of X do not match training dimension') dist, ind = self.bt_.query(X, self.n_neighbors, return_distance=True) k = float(self.n_neighbors) ndim = X.shape[1] if self.method == 'simple': return k / n_volume(dist[:, -1], ndim) elif self.method == 'bayesian': # XXX this may be wrong in more than 1 dimension! return (k * (k + 1) * 0.5 / n_volume(1, ndim) / (dist ** ndim).sum(1)) else: raise ValueError("Unrecognized method '%s'" % self.method)
bsd-2-clause
uahic/nest-simulator
doc/nest_by_example/scripts/one_neuron_with_sine_wave.py
13
1515
# -*- coding: utf-8 -*- # # one_neuron_with_sine_wave.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. import nest import nest.voltage_trace nest.ResetKernel() neuron = nest.Create('iaf_neuron') sine = nest.Create('ac_generator', 1, {'amplitude': 100.0, 'frequency': 2.0}) noise = nest.Create('poisson_generator', 2, [{'rate': 70000.0}, {'rate': 20000.0}]) voltmeter = nest.Create('voltmeter',1, {'withgid': True}) nest.Connect(sine, neuron) nest.Connect(voltmeter, neuron) nest.Connect(noise[:1], neuron, syn_spec={'weight': 1.0, 'delay': 1.0}) nest.Connect(noise[1:], neuron, syn_spec={'weight': -1.0, 'delay': 1.0}) nest.Simulate(1000.0) nest.voltage_trace.from_device(voltmeter) import matplotlib.pyplot as plt plt.savefig('../figures/voltage_trace.eps')
gpl-2.0
ZYYSzj/Selective-Joint-Fine-tuning
caffe_zyyszj/examples/finetune_flickr_style/assemble_data.py
38
3636
#!/usr/bin/env python """ Form a subset of the Flickr Style data, download images to dirname, and write Caffe ImagesDataLayer training file. """ import os import urllib import hashlib import argparse import numpy as np import pandas as pd from skimage import io import multiprocessing # Flickr returns a special image if the request is unavailable. MISSING_IMAGE_SHA1 = '6a92790b1c2a301c6e7ddef645dca1f53ea97ac2' example_dirname = os.path.abspath(os.path.dirname(__file__)) caffe_dirname = os.path.abspath(os.path.join(example_dirname, '../..')) training_dirname = os.path.join(caffe_dirname, 'data/flickr_style') def download_image(args_tuple): "For use with multiprocessing map. Returns filename on fail." try: url, filename = args_tuple if not os.path.exists(filename): urllib.urlretrieve(url, filename) with open(filename) as f: assert hashlib.sha1(f.read()).hexdigest() != MISSING_IMAGE_SHA1 test_read_image = io.imread(filename) return True except KeyboardInterrupt: raise Exception() # multiprocessing doesn't catch keyboard exceptions except: return False if __name__ == '__main__': parser = argparse.ArgumentParser( description='Download a subset of Flickr Style to a directory') parser.add_argument( '-s', '--seed', type=int, default=0, help="random seed") parser.add_argument( '-i', '--images', type=int, default=-1, help="number of images to use (-1 for all [default])", ) parser.add_argument( '-w', '--workers', type=int, default=-1, help="num workers used to download images. -x uses (all - x) cores [-1 default]." ) parser.add_argument( '-l', '--labels', type=int, default=0, help="if set to a positive value, only sample images from the first number of labels." ) args = parser.parse_args() np.random.seed(args.seed) # Read data, shuffle order, and subsample. csv_filename = os.path.join(example_dirname, 'flickr_style.csv.gz') df = pd.read_csv(csv_filename, index_col=0, compression='gzip') df = df.iloc[np.random.permutation(df.shape[0])] if args.labels > 0: df = df.loc[df['label'] < args.labels] if args.images > 0 and args.images < df.shape[0]: df = df.iloc[:args.images] # Make directory for images and get local filenames. if training_dirname is None: training_dirname = os.path.join(caffe_dirname, 'data/flickr_style') images_dirname = os.path.join(training_dirname, 'images') if not os.path.exists(images_dirname): os.makedirs(images_dirname) df['image_filename'] = [ os.path.join(images_dirname, _.split('/')[-1]) for _ in df['image_url'] ] # Download images. num_workers = args.workers if num_workers <= 0: num_workers = multiprocessing.cpu_count() + num_workers print('Downloading {} images with {} workers...'.format( df.shape[0], num_workers)) pool = multiprocessing.Pool(processes=num_workers) map_args = zip(df['image_url'], df['image_filename']) results = pool.map(download_image, map_args) # Only keep rows with valid images, and write out training file lists. df = df[results] for split in ['train', 'test']: split_df = df[df['_split'] == split] filename = os.path.join(training_dirname, '{}.txt'.format(split)) split_df[['image_filename', 'label']].to_csv( filename, sep=' ', header=None, index=None) print('Writing train/val for {} successfully downloaded images.'.format( df.shape[0]))
bsd-2-clause
charlietsai/catmap
catmap/analyze/analysis_base.py
1
34541
import catmap from catmap import ReactionModelWrapper from catmap.model import ReactionModel as RM from catmap import griddata from copy import copy try: from scipy.stats import norm except: norm = None from matplotlib.ticker import MaxNLocator import os import math plt = catmap.plt pickle = catmap.pickle np = catmap.np spline = catmap.spline mtransforms = catmap.mtransforms basic_colors = [[0, 0, 0], [0, 0, 1], [0.1, 1, 0.1], [1, 0, 0], [0, 1, 1], [1, 0.5, 0], [1, 0.9, 0], [1, 0, 1], [0, 0.5, 0.5], [0.5, 0.25, 0.15], [0.5, 0.5, 0.5]] # black,blue,green,red,cyan,orange,yellow,magenta,turquoise,brown,gray def get_colors(n_colors): """ Get n colors from basic_colors. :param n_colors: Number of colors :type n_colors: int """ if n_colors < len(basic_colors): return basic_colors[0:n_colors] else: longlist = basic_colors * n_colors return longlist[0:n_colors] def boltzmann_vector(energy_list, vector_list, temperature): """ Create a vector which is a Boltzmann average of the vector_list weighted with energies in the energy_list. :param energy_list: List of energies :type energy_list: list :param vector_list: List of vectors :type energy_list: list :param temperature: Temperature :type energy_list: float """ def boltzmann_avg(es, ns, T): """ Calculate the Boltzmann average :param es: energies :type es: iterable :param ns: :type ns: iterable :param T: temperature :type T: float ..todo: description for ns """ kB = 8.613e-5 # assuming energies are in eV and T is in K es = [e - min(es) for e in es] # normalize to minimum energy exp_sum = sum([np.exp(-e / (kB * T)) for e in es]) exp_weighted = [n * np.exp(-e / (kB * T)) / exp_sum for n, e in zip(ns, es)] Z = sum(exp_weighted) return Z vars = zip(*vector_list) boltz_vec = [boltzmann_avg(energy_list, v, temperature) for v in vars] return boltz_vec class MapPlot: """ Class for generating plots using a dictionary of default plotting attributes. The following attributes can be modified: :param resolution_enhancement: Resolution enhancement for interpolated maps :type resolution_enhancement: int :param min: Minimum :type min: :param max: Maximum :type max: :param n_ticks: Number of ticks :type n_ticks: int :param descriptor_labels: Label of descriptors :type descriptor_labels: list :param default_descriptor_pt_args: Dictionary of descriptor point arguments :type default_descriptor_pt_args: dict :param default_descriptor_label_args: Dictionary of descriptor labels :type default_descriptor_label_args: dict :param descriptor_pt_args: :type descriptor_pt_args: dict :param include_descriptors: Include the descriptors :type include_descriptors: bool :param plot_size: Size of the plot :type plot_size: int :param aspect: :type aspect: :param subplots_adjust_kwargs: Dictionary of keyword arguments for adjusting matplotlib subplots :type subplots_adjust_kwargs: dict .. todo:: Some missing descriptions """ def __init__(self): defaults = dict( resolution_enhancement=1, min=None, max=None, n_ticks=8, plot_function=None, colorbar=True, colormap=plt.cm.jet, axis_label_decimals=2, log_scale=False, descriptor_labels=['X_descriptor', 'Y_descriptor'], default_descriptor_pt_args={'marker': 'o'}, default_descriptor_label_args={}, descriptor_pt_args={}, descriptor_label_args={}, include_descriptors=False, plot_size=4, aspect=None, subplots_adjust_kwargs={'hspace': 0.35, 'wspace': 0.35, 'bottom': 0.15} ) for key in defaults: val = defaults[key] if not hasattr(self, key): setattr(self, key, val) elif getattr(self, key) is None: setattr(self, key, val) def update_descriptor_args(self): """ Update descriptor arguments .. todo:: __doc__ """ if getattr(self, 'descriptor_dict', None): if self.descriptor_pt_args == {}: for pt in self.descriptor_dict: self.descriptor_pt_args[pt] = copy( self.default_descriptor_pt_args) if self.descriptor_label_args == {}: for pt in self.descriptor_dict: self.descriptor_label_args[pt] = copy( self.default_descriptor_label_args) def plot_descriptor_pts(self, mapp, idx, ax, plot_in=None): """ Plot descriptor points :param mapp: :type mapp: :param idx: :type idx: :param ax: axes object :param plot_in: :type plot_in: .. todo:: __doc__ """ if getattr(self, 'descriptor_dict', None): self.update_descriptor_args() xy, rates = zip(*mapp) dim = len(xy[0]) for key in self.descriptor_dict: pt_kwargs = self.descriptor_pt_args.get(key, self.default_descriptor_pt_args) lab_kwargs = self.descriptor_label_args.get(key, self.default_descriptor_label_args) if dim == 1: # x will be descriptor values. y will be rate/coverage/etc. x, y = self.descriptor_dict[key] y_sp = catmap.spline(plot_in[0], plot_in[1], k=1) y = y_sp(x) elif dim == 2: x, y = self.descriptor_dict[key] if None not in [x, y]: if pt_kwargs is not None: ax.errorbar(x, y, **pt_kwargs) if lab_kwargs is not None: ax.annotate(key, [x, y], **lab_kwargs) if dim == 1: ax.set_xlim(self.descriptor_ranges[0]) elif dim == 2: ax.set_xlim(self.descriptor_ranges[0]) ax.set_ylim(self.descriptor_ranges[1]) def plot_single(self, mapp, rxn_index, ax=None, overlay_map=None, alpha_range=None, **plot_args): """ :param mapp: :param rxn_index: Index for the reaction :type rxn_index: int :param ax: axes object :param overlay_map: :type overlay_map: :type alpha_range: :type alpha_range: .. todo:: __doc__ """ if not ax: fig = plt.figure() ax = fig.add_subplot(111) xy, rates = zip(*mapp) dim = len(xy[0]) if dim == 1: x = zip(*xy)[0] descriptor_ranges = [[min(x), max(x)]] if not self.plot_function: if self.log_scale == True: self.plot_function = 'semilogy' else: self.plot_function = 'plot' elif dim == 2: x, y = zip(*xy) descriptor_ranges = [[min(x), max(x)], [min(y), max(y)]] if not self.plot_function: self.plot_function = 'contourf' if 'cmap' not in plot_args: plot_args['cmap'] = self.colormap eff_res = self.resolution * self.resolution_enhancement if self.min: minval = self.min else: minval = None maparray = RM.map_to_array(mapp, descriptor_ranges, eff_res, log_interpolate=self.log_scale, minval=minval) if self.max is None: self.max = maparray.T[rxn_index].max() if self.min is None: self.min = maparray.T[rxn_index].min() if dim == 2: if maparray.min() <= self.min: plot_args['extend'] = 'min' if maparray.max() >= self.max: plot_args['extend'] = 'max' if maparray.max() >= self.max and maparray.min() <= self.min: plot_args['extend'] = 'both' if 'extend' not in plot_args: plot_args['extend'] = 'neither' if self.log_scale and dim == 2: maparray = np.log10(maparray) min_val = np.log10(float(self.min)) max_val = np.log10(float(self.max)) if min_val < -200: min_val = max(maparray.min(), -200) elif max_val == np.inf: max_val = min(maparray.max(), 200) else: min_val = self.min max_val = self.max maparray = np.clip(maparray, min_val, max_val) log_scale = self.log_scale if overlay_map: overlay_array = RM.map_to_array(overlay_map, descriptor_ranges, eff_res) if alpha_range: alpha_min, alpha_max = alpha_range else: alpha_min = overlay_array.min() alpha_max = overlay_array.max() overlay_array = (overlay_array - overlay_array.min()) overlay_array = overlay_array / (alpha_max - alpha_min) overlay_array = np.clip(overlay_array, 0, 1) maparray = np.clip(maparray, min_val, max_val) norm_array = (maparray - maparray.min()) norm_array = norm_array / (maparray.max() - maparray.min()) maparray = norm_array * overlay_array maparray = (maparray - maparray.min()) maparray = maparray / (maparray.max() - maparray.min()) maparray = maparray * (max_val - min_val) + min_val maparray = norm_array * overlay_array norm_array = (maparray - maparray.min()) norm_array = norm_array / (maparray.max() - maparray.min()) maparray = norm_array * (max_val - min_val) + min_val if dim == 1: x_range = descriptor_ranges[0] plot_in = [np.linspace(*x_range + eff_res), maparray[:, rxn_index]] plot = getattr(ax, self.plot_function)(*plot_in) elif dim == 2: x_range, y_range = descriptor_ranges z = maparray[:, :, rxn_index] if self.log_scale: levels = range(int(min_val), int(max_val) + 1) if len(levels) < 3 * self.n_ticks: levels = np.linspace( int(min_val), int(max_val), 3 * self.n_ticks) else: levels = np.linspace(min_val, max_val, min(eff_res, 25)) plot_in = [np.linspace(*x_range + [eff_res[0]]), np.linspace(*y_range + [eff_res[1]]), z, levels] plot = getattr(ax, self.plot_function)(*plot_in, **plot_args) pos = ax.get_position() if self.aspect: ax.set_aspect(self.aspect) ax.apply_aspect() if dim == 1: ax.set_xlim(descriptor_ranges[0]) ax.set_xlabel(self.descriptor_labels[0]) ax.set_ylim([float(self.min), float(self.max)]) elif dim == 2: if self.colorbar: if log_scale: # take only integer tick labels cbar_nums = range(int(min_val), int(max_val) + 1) mod = max(int(len(cbar_nums) / self.n_ticks), 1) cbar_nums = [n for i, n in enumerate(cbar_nums) if not i % mod] cbar_nums = np.array(cbar_nums) else: cbar_nums = np.linspace(min_val, max_val, self.n_ticks) formatstring = '%.' + str(self.axis_label_decimals) + 'g' cbar_labels = [formatstring % (s,) for s in cbar_nums] cbar_labels = [lab.replace('e-0', 'e-').replace('e+0', 'e') for lab in cbar_labels] plot.set_clim(min_val, max_val) fig = ax.get_figure() axpos = list(ax.get_position().bounds) xsize = axpos[2] * 0.04 ysize = axpos[3] xp = axpos[0] + axpos[2] + 0.04 * axpos[2] yp = axpos[1] cbar_box = [xp, yp, xsize, ysize] cbar_ax = fig.add_axes(cbar_box) cbar = fig.colorbar(mappable=plot, ticks=cbar_nums, cax=cbar_ax, extend=plot_args['extend']) cbar.ax.set_yticklabels(cbar_labels) if getattr(self, 'colorbar_label', None): cbar_kwargs = getattr(self, 'colorbar_label_kwargs', {'rotation': -90}) cbar_ax.set_ylabel(self.colorbar_label, **cbar_kwargs) if self.descriptor_labels: ax.set_xlabel(self.descriptor_labels[0]) ax.set_ylabel(self.descriptor_labels[1]) ax.set_xlim(descriptor_ranges[0]) ax.set_ylim(descriptor_ranges[1]) if 'title' in plot_args and plot_args['title']: if 'title_size' not in plot_args: n_pts = self.plot_size * 72 font_size = min([n_pts / len(plot_args['title']), 14]) else: font_size = plot_args['title_size'] ax.set_title(plot_args['title'], size=font_size) if getattr(self, 'n_xticks', None): ax.xaxis.set_major_locator(MaxNLocator(self.n_xticks)) if getattr(self, 'n_yticks', None): ax.yaxis.set_major_locator(MaxNLocator(self.n_yticks)) self.plot_descriptor_pts(mapp, rxn_index, ax=ax, plot_in=plot_in) return ax def plot_separate(self, mapp, ax_list=None, indices=None, overlay_map=None, **plot_single_kwargs): """ Generate separate plots .. todo:: __doc__ """ pts, rates = zip(*mapp) if indices is None: indices = range(0, len(rates[0])) n_plots = len(indices) if not ax_list: x = int(np.sqrt(n_plots)) if x * x < n_plots: y = x + 1 else: y = x if x * y < n_plots: x = x + 1 if self.colorbar: fig = plt.figure( figsize=(y * self.plot_size * 1.25, x * self.plot_size)) else: fig = plt.figure(figsize=(y * self.plot_size, x * self.plot_size)) ax_list = [] for i in range(0, n_plots): ax_list.append(fig.add_subplot(x, y, i + 1)) else: fig = ax_list[0].get_figure() if fig: fig.subplots_adjust(**self.subplots_adjust_kwargs) else: fig = plt.gcf() fig.subplots_adjust(**self.subplots_adjust_kwargs) plotnum = 0 old_dict = copy(self.__dict__) if not self.min or not self.max: for id, i in enumerate(indices): pts, datas = zip(*mapp) dat_min = 1e99 dat_max = -1e99 for col in zip(*datas): if min(col) < dat_min: dat_min = min(col) if max(col) > dat_max: dat_max = max(col) if self.min is None: self.min = dat_min if self.max is None: self.max = dat_max for id, i in enumerate(indices): kwargs = plot_single_kwargs if self.map_plot_labels: try: kwargs['title'] = self.map_plot_labels[i] except IndexError: kwargs['title'] = '' kwargs['overlay_map'] = overlay_map self.__dict__.update(old_dict) self.plot_single(mapp, i, ax=ax_list[plotnum], **kwargs) plotnum += 1 return fig def plot_weighted(self, mapp, ax=None, weighting='linear', second_map=None, indices=None, **plot_args): """ Generate weighted plot :param mapp: :type mapp: :param ax: axes object :param weighting: weighting function, 'linear' or 'dual'. :type weighting: str :param second_map: :param indices: .. todo:: __doc__ """ if ax is None: fig = plt.figure() ax = fig.add_subplot(111) else: fig = ax.get_figure() if self.color_list is None: color_list = get_colors(len(mapp[0][-1]) + 1) color_list.pop(0) # remove black else: color_list = self.color_list pts, datas = zip(*mapp) if indices is None: indices = range(0, len(datas[0])) rgbs = [] datas = zip(*datas) datas = [d for id, d in enumerate(datas) if id in indices] datas = zip(*datas) if second_map: pts2, datas2 = zip(*second_map) datas2 = zip(*datas2) datas2 = [d for id, d in enumerate(datas2) if id in indices] datas2 = zip(*datas2) else: datas2 = datas for data, data2 in zip(datas, datas2): if weighting == 'linear': rs, gs, bs = zip(*color_list) r = 1 - sum(float((1 - ri) * di) for ri, di in zip(rs, data)) g = 1 - sum(float((1 - gi) * di) for gi, di in zip(gs, data)) b = 1 - sum(float((1 - bi) * di) for bi, di in zip(bs, data)) eff_res = self.resolution * self.resolution_enhancement rgbs.append([r, g, b]) elif weighting == 'dual': rs, gs, bs = zip(*color_list) r = 1 - sum(float((1 - ri) * di * d2i) for ri, di, d2i in zip(rs, data, data2)) g = 1 - sum(float((1 - gi) * di * d2i) for gi, di, d2i in zip(gs, data, data2)) b = 1 - sum(float((1 - bi) * di * d2i) for bi, di, d2i in zip(bs, data, data2)) eff_res = 300 rgbs.append([r, g, b]) r, g, b = zip(*rgbs) x, y = zip(*pts) xi = np.linspace(min(x), max(x), eff_res) yi = np.linspace(min(y), max(y), eff_res) ri = griddata(x, y, r, xi, yi) gi = griddata(x, y, g, xi, yi) bi = griddata(x, y, b, xi, yi) rgb_array = np.zeros((eff_res, eff_res, 3)) for i in range(0, eff_res): for j in range(0, eff_res): rgb_array[i, j, 0] = ri[i, j] rgb_array[i, j, 1] = gi[i, j] rgb_array[i, j, 2] = bi[i, j] xminmax, yminmax = self.descriptor_ranges xmin, xmax = xminmax ymin, ymax = yminmax ax.imshow(rgb_array, extent=[xmin, xmax, ymin, ymax], origin='lower') self.plot_descriptor_pts(mapp, i, ax) if getattr(self, 'n_xticks', None): ax.xaxis.set_major_locator(MaxNLocator(self.n_xticks)) if getattr(self, 'n_yticks', None): ax.yaxis.set_major_locator(MaxNLocator(self.n_yticks)) ax.set_xlabel(self.descriptor_labels[0]) ax.set_ylabel(self.descriptor_labels[1]) if self.aspect: ax.set_aspect(self.aspect) ax.apply_aspect() return fig def save(self, fig, save=True, default_name='map_plot.pdf'): """ :param fig: figure object :param save: save the figure :type save: bool :param default_name: default name for the saved figure. :type default: str """ if save == True: if not hasattr(self, 'output_file'): save = default_name else: save = self.output_file if save: fig.savefig(save) class MechanismPlot: """ Class for generating potential energy diagrams :param energies: list of energies :type energies: list :param barriers: list of barriers :type barriers: list :param labels: list of labels :type labels: list """ def __init__(self, energies, barriers=[], labels=[]): self.energies = energies self.barriers = barriers self.labels = labels self.energy_line_args = {'color': 'k', 'lw': 2} self.barrier_line_args = {'color': 'k', 'lw': 2} self.label_args = {'color': 'k', 'size': 16, 'rotation': 45} self.label_positions = None self.initial_energy = 0 self.initial_stepnumber = 0 self.energy_mode = 'relative' # absolute self.energy_line_widths = 0.5 def draw(self, ax=None): """ Draw the potential energy diagram .. todo:: __doc__ """ def attr_to_list(attrname, required_length=len(self.energies)): """ Return list of attributes :param attrname: Name of attributes :type attrname: list :param required_length: Required length for the list of attributes :type required_length: int .. todo:: __doc__ """ try: getattr(self, attrname)[0] # Ensure that it is a list iter(getattr(self, attrname)) # Ensure that it is a list... if len(getattr(self, attrname)) == required_length: pass else: raise ValueError(attrname + ' list is of length ' + str(len(getattr(self, attrname))) + ', but needs to be of length ' + str(required_length)) return getattr(self, attrname) except: return [getattr(self, attrname)] * required_length barrier_line_args = attr_to_list('barrier_line_args', len(self.energies) - 1) energy_line_widths = attr_to_list('energy_line_widths') energy_line_args = attr_to_list('energy_line_args') label_args = attr_to_list('label_args') label_positions = attr_to_list('label_positions') # plot energy lines energy_list = np.array(self.energies) energy_list = (energy_list - energy_list[0]) energy_list = list(energy_list) if self.energy_mode == 'relative': cum_energy = [energy_list[0]] for i, e in enumerate(energy_list[1:]): last = cum_energy[i] + e cum_energy.append(last) energy_list = cum_energy energy_list = np.array(energy_list) + self.initial_energy energy_list = list(energy_list) energy_lines = [ [[i + self.initial_stepnumber, i + width + self.initial_stepnumber], [energy_list[i]] * 2] for i, width in enumerate(energy_line_widths)] self.energy_lines = energy_lines for i, line in enumerate(energy_lines): ax.plot(*line, **energy_line_args[i]) # create barrier lines barrier_lines = [] if not self.barriers: self.barriers = [0] * (len(self.energies) - 1) for i, barrier in enumerate(self.barriers): xi = energy_lines[i][0][1] xf = energy_lines[i + 1][0][0] yi = energy_lines[i][1][0] yf = energy_lines[i + 1][1][0] if self.energy_mode == 'relative' and (barrier == 0 or barrier <= yf - yi): line = [[xi, xf], [yi, yf]] xts = (xi + xf) / 2. yts = max([yi, yf]) elif self.energy_mode == 'absolute' and (barrier <= yf or barrier <= yi): line = [[xi, xf], [yi, yf]] xts = (xi + xf) / 2. yts = max([yi, yf]) else: if self.energy_mode == 'relative': yts = yi + barrier elif self.energy_mode == 'absolute': yts = barrier barrier = yts - yi barrier_rev = barrier + (yi - yf) if barrier > 0 and barrier_rev > 0: ratio = np.sqrt(barrier) / (np.sqrt(barrier) + np.sqrt(barrier_rev)) else: print 'Warning: Encountered barrier less than 0' ratio = 0.0001 yts = max(yi, yf) xts = xi + ratio * (xf - xi) xs = [xi, xts, xf] ys = [yi, yts, yf] f = spline(xs, ys, k=2) newxs = np.linspace(xi, xf, 20) newys = f(newxs) line = [newxs, newys] barrier_lines.append(line) self.barrier_lines = barrier_lines # plot barrier lines for i, line in enumerate(barrier_lines): ax.plot(*line, **barrier_line_args[i]) # add labels trans = ax.get_xaxis_transform() for i, label in enumerate(self.labels): xpos = sum(energy_lines[i][0]) / len(energy_lines[i][0]) label_position = label_positions[i] args = label_args[i] if label_position in ['top', 'ymax']: if 'ha' not in args: args['ha'] = 'left' if 'va' not in args: args['va'] = 'bottom' ypos = 1 args['transform'] = trans ax.text(xpos, ypos, label, **args) elif label_position in ['bot', 'bottom', 'ymin']: ypos = -0.1 ax.xaxis.set_ticks([float(sum(line[0]) / len(line[0])) for line in energy_lines]) ax.set_xticklabels(self.labels) for attr in args.keys(): try: [getattr(t, 'set_' + attr)(args[attr]) for t in ax.xaxis.get_ticklabels()] except: pass elif label_position in ['omit']: pass else: ypos = energy_lines[i][1][0] if 'ha' not in args: # and 'textcoords' not in args: args['ha'] = 'left' if 'va' not in args: # and 'textcoords' not in args: args['va'] = 'bottom' ax.annotate(label, [xpos, ypos], **args) class ScalingPlot: """ :param descriptor_names: list of descriptor names :type descriptor_names: list :param descriptor_dict: dictionary of descriptors :type descriptor_dict: dict :param surface_names: list of the surface names :type surface_names: list :param parameter_dict: dictionary of parameters :type parameter_dict: dict :param scaling_function: function to project descriptors into energies. Should take descriptors as an argument and return a dictionary of {adsorbate:energy} pairs. :type scaling_function: function :param x_axis_function: function to project descriptors onto the x-axis. Should take descriptors as an argument and return a dictionary of {adsorbate:x_value} pairs. :type x_axis_function: function :param scaling_function_kwargs: keyword arguments for scaling_function. :type scaling_function_kwargs: dict :param x_axis_function_kwargs: keyword arguments for x_axis_function. :type x_axis_function_kwargs: dict """ def __init__(self, descriptor_names, descriptor_dict, surface_names, parameter_dict, scaling_function, x_axis_function, scaling_function_kwargs={}, x_axis_function_kwargs={}, ): self.descriptor_names = descriptor_names self.surface_names = surface_names self.descriptor_dict = descriptor_dict self.parameter_dict = parameter_dict self.scaling_function = scaling_function self.scaling_function_kwargs = scaling_function_kwargs self.x_axis_function = x_axis_function self.x_axis_function_kwargs = x_axis_function_kwargs self.axis_label_size = 16 self.surface_label_size = 16 self.title_size = 18 self.same_scale = True self.show_titles = True self.show_surface_labels = True self.subplots_adjust_kwargs = {'wspace': 0.4, 'hspace': 0.4} self.x_label_dict = {} self.y_label_dict = {} self.surface_colors = [] self.scaling_line_args = {} self.label_args = {} self.line_args = {} self.include_empty = True self.include_error_histogram = True def plot(self, ax_list=None, plot_size=4.0, save=None): """ :param ax_list: list of axes objects :type ax_list: [ax] :param plot_size: size of the plot :type plot_size: float :param save: whether or not to save the plot :type save: bool .. todo:: __doc__ """ all_ads = self.adsorbate_names + self.transition_state_names all_ads = [a for a in all_ads if a in self.parameter_dict.keys() and a not in self.echem_transition_state_names] if self.include_empty: ads_names = all_ads else: ads_names = [n for n in all_ads if (None in self.parameter_dict[n] or sum(self.parameter_dict[n]) > 0.0)] if not self.surface_colors: self.surface_colors = get_colors(len(self.surface_names)) if not self.scaling_line_args: self.scaling_line_args = [{'color': 'k'}] * len(ads_names) elif hasattr(self.scaling_line_args, 'update'): # its a dictionary if so. self.scaling_line_args = [self.scaling_line_args] * len( self.adsorbate_names) for d in self.descriptor_names: if not self.include_descriptors: if d in ads_names: ads_names.remove(d) if self.include_error_histogram: extra = 1 else: extra = 0 if not ax_list: spx = round(np.sqrt(len(ads_names) + extra)) spy = round(np.sqrt(len(ads_names) + extra)) if spy * spx < len(ads_names) + extra: spy += 1 fig = plt.figure(figsize=(spy * plot_size, spx * plot_size)) ax_list = [fig.add_subplot(spx, spy, i + 1) for i in range(len(ads_names))] else: fig = None all_xs, all_ys = zip(*[self.descriptor_dict[s] for s in self.surface_names]) fig.subplots_adjust(**self.subplots_adjust_kwargs) all_ys = [] maxyrange = 0 ymins = [] all_err = [] for i, ads in enumerate(ads_names): actual_y_vals = self.parameter_dict[ads] desc_vals = [self.descriptor_dict[s] for s in self.surface_names] scaled_x_vals = [self.x_axis_function( d, **self.x_axis_function_kwargs)[0][ads] for d in desc_vals] label = self.x_axis_function( desc_vals[0], **self.x_axis_function_kwargs)[-1][ads] scaled_y_vals = [self.scaling_function( d, **self.scaling_function_kwargs)[ads] for d in desc_vals] diffs = [scaled - actual for scaled, actual in zip(scaled_y_vals, actual_y_vals) if actual != None] ax = ax_list[i] m, b = plt.polyfit(scaled_x_vals, scaled_y_vals, 1) x_vals = np.array([round(min(scaled_x_vals), 1) - 0.1, round(max(scaled_x_vals), 1) + 0.1]) ax.plot(x_vals, m * x_vals + b, **self.scaling_line_args[i]) err = [yi - (m * xi + b) for xi, yi in zip(scaled_x_vals, actual_y_vals) if yi != None] all_err += err ax.set_xlabel(label) ax.set_ylabel('$E_{' + ads + '}$ [eV]') num_y_vals = [] # for s,c in zip(self.surface_names,self.surface_colors): # print s, c for sf, col, x, y in zip(self.surface_names, self.surface_colors, scaled_x_vals, actual_y_vals): if y and y != None: ax.plot(x, y, 'o', color=col, markersize=10, mec=None) if self.show_surface_labels: ax.annotate(sf, [x, y], color=col, **self.label_args) num_y_vals.append(y) if self.show_titles: ax.set_title('$' + ads + '$', size=self.title_size) all_ys += num_y_vals if not num_y_vals: num_y_vals = scaled_y_vals dy = max(num_y_vals) - min(num_y_vals) ymins.append([min(num_y_vals), max(num_y_vals)]) if dy > maxyrange: maxyrange = dy ax.set_xlim(x_vals) y_range = [round(min(num_y_vals), 1) - 0.1, round(max(num_y_vals), 1) + 0.1] self.scaling_error = all_err if self.same_scale == True: for i, ax in enumerate(ax_list): pad = maxyrange - (ymins[i][1] - ymins[i][0]) y_range = [round(ymins[i][0] - pad, 1) - 0.1, round(ymins[i][1] + pad, 1) + 0.1] ax.set_ylim(y_range) if self.include_error_histogram: err_ax = fig.add_subplot(spx, spy, len(ads_names) + 1) err_ax.hist(all_err, bins=15) err_ax.set_xlabel('$E_{actual} - E_{scaled}$ [eV]') err_ax.set_ylabel('Counts') ax_list.append(err_ax) for ax in ax_list: if getattr(self, 'n_xticks', None): ax.xaxis.set_major_locator(MaxNLocator(self.n_xticks)) if getattr(self, 'n_yticks', None): ax.yaxis.set_major_locator(MaxNLocator(self.n_yticks)) if save is None: save = self.model_name + '_scaling.pdf' if save: fig.savefig(save) return fig
gpl-3.0
cpaulik/scipy
scipy/signal/spectral.py
14
34751
"""Tools for spectral analysis. """ from __future__ import division, print_function, absolute_import import numpy as np from scipy import fftpack from . import signaltools from .windows import get_window from ._spectral import lombscargle import warnings from scipy._lib.six import string_types __all__ = ['periodogram', 'welch', 'lombscargle', 'csd', 'coherence', 'spectrogram'] def periodogram(x, fs=1.0, window=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate power spectral density using a periodogram. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is an array it will be used directly as the window. Defaults to None; equivalent to 'boxcar'. nfft : int, optional Length of the FFT used. If None the length of `x` will be used. detrend : str or function or False, optional Specifies how to detrend `x` prior to computing the spectrum. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it should return a detrended array. If `detrend` is False, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Pxx` has units of V**2, if `x` is measured in V and fs is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of `x`. Notes ----- .. versionadded:: 0.12.0 See Also -------- welch: Estimate power spectral density using Welch's method lombscargle: Lomb-Scargle periodogram for unevenly sampled data Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.periodogram(x, fs) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([1e-7, 1e2]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0009924865443739191 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.ylim([1e-4, 1e1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ x = np.asarray(x) if x.size == 0: return np.empty(x.shape), np.empty(x.shape) if window is None: window = 'boxcar' if nfft is None: nperseg = x.shape[axis] elif nfft == x.shape[axis]: nperseg = nfft elif nfft > x.shape[axis]: nperseg = x.shape[axis] elif nfft < x.shape[axis]: s = [np.s_[:]]*len(x.shape) s[axis] = np.s_[:nfft] x = x[s] nperseg = nfft nfft = None return welch(x, fs, window, nperseg, 0, nfft, detrend, return_onesided, scaling, axis) def welch(x, fs=1.0, window='hanning', nperseg=256, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate power spectral density using Welch's method. Welch's method [1]_ computes an estimate of the power spectral density by dividing the data into overlapping segments, computing a modified periodogram for each segment and averaging the periodograms. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length will be used for nperseg. Defaults to 'hanning'. nperseg : int, optional Length of each segment. Defaults to 256. noverlap : int, optional Number of points to overlap between segments. If None, ``noverlap = nperseg // 2``. Defaults to None. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is `nperseg`. Defaults to None. detrend : str or function or False, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is False, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Pxx` has units of V**2, if `x` is measured in V and fs is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of x. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data Notes ----- An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default 'hanning' window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. If `noverlap` is 0, this method is equivalent to Bartlett's method [2]_. .. versionadded:: 0.12.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika, vol. 37, pp. 1-16, 1950. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([0.5e-3, 1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0009924865443739191 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ freqs, Pxx = csd(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis) return freqs, Pxx.real def csd(x, y, fs=1.0, window='hanning', nperseg=256, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate the cross power spectral density, Pxy, using Welch's method. Parameters ---------- x : array_like Time series of measurement values y : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` and `y` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length will be used for nperseg. Defaults to 'hanning'. nperseg : int, optional Length of each segment. Defaults to 256. noverlap: int, optional Number of points to overlap between segments. If None, ``noverlap = nperseg // 2``. Defaults to None. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is `nperseg`. Defaults to None. detrend : str or function or False, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is False, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the cross spectral density ('density') where `Pxy` has units of V**2/Hz and computing the cross spectrum ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are measured in V and fs is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the CSD is computed for both inputs; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxy : ndarray Cross spectral density or cross power spectrum of x,y. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. [Equivalent to csd(x,x)] coherence: Magnitude squared coherence by Welch's method. Notes -------- By convention, Pxy is computed with the conjugate FFT of X multiplied by the FFT of Y. If the input series differ in length, the shorter series will be zero-padded to match. An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default 'hanning' window an overlap of 50\% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. .. versionadded:: 0.16.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] Rabiner, Lawrence R., and B. Gold. "Theory and Application of Digital Signal Processing" Prentice-Hall, pp. 414-419, 1975 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate two test signals with some common features. >>> fs = 10e3 >>> N = 1e5 >>> amp = 20 >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> b, a = signal.butter(2, 0.25, 'low') >>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) >>> y = signal.lfilter(b, a, x) >>> x += amp*np.sin(2*np.pi*freq*time) >>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape) Compute and plot the magnitude of the cross spectral density. >>> f, Pxy = signal.csd(x, y, fs, nperseg=1024) >>> plt.semilogy(f, np.abs(Pxy)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('CSD [V**2/Hz]') >>> plt.show() """ freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis, mode='psd') # Average over windows. if len(Pxy.shape) >= 2 and Pxy.size > 0: if Pxy.shape[-1] > 1: Pxy = Pxy.mean(axis=-1) else: Pxy = np.reshape(Pxy, Pxy.shape[:-1]) return freqs, Pxy def spectrogram(x, fs=1.0, window=('tukey',.25), nperseg=256, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Compute a spectrogram with consecutive Fourier transforms. Spectrograms can be used as a way of visualizing the change of a nonstationary signal's frequency content over time. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length will be used for nperseg. Defaults to a Tukey window with shape parameter of 0.25. nperseg : int, optional Length of each segment. Defaults to 256. noverlap : int, optional Number of points to overlap between segments. If None, ``noverlap = nperseg // 8``. Defaults to None. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is `nperseg`. Defaults to None. detrend : str or function or False, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is False, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Pxx` has units of V**2, if `x` is measured in V and fs is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the spectrogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. t : ndarray Array of segment times. Sxx : ndarray Spectrogram of x. By default, the last axis of Sxx corresponds to the segment times. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. csd: Cross spectral density by Welch's method. Notes ----- An appropriate amount of overlap will depend on the choice of window and on your requirements. In contrast to welch's method, where the entire data stream is averaged over, one may wish to use a smaller overlap (or perhaps none at all) when computing a spectrogram, to maintain some statistical independence between individual segments. .. versionadded:: 0.16.0 References ---------- ...[1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time Signal Processing", Prentice Hall, 1999. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave whose frequency linearly changes with time from 1kHz to 2kHz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2 * np.sqrt(2) >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> freq = np.linspace(1e3, 2e3, N) >>> x = amp * np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the spectrogram. >>> f, t, Sxx = signal.spectrogram(x, fs) >>> plt.pcolormesh(t, f, Sxx) >>> plt.ylabel('Frequency [Hz]') >>> plt.xlabel('Time [sec]') >>> plt.show() """ # Less overlap than welch, so samples are more statisically independent if noverlap is None: noverlap = nperseg // 8 freqs, time, Pxy = _spectral_helper(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis, mode='psd') return freqs, time, Pxy def coherence(x, y, fs=1.0, window='hanning', nperseg=256, noverlap=None, nfft=None, detrend='constant', axis=-1): """ Estimate the magnitude squared coherence estimate, Cxy, of discrete-time signals X and Y using Welch's method. Cxy = abs(Pxy)**2/(Pxx*Pyy), where Pxx and Pyy are power spectral density estimates of X and Y, and Pxy is the cross spectral density estimate of X and Y. Parameters ---------- x : array_like Time series of measurement values y : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` and `y` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length will be used for nperseg. Defaults to 'hanning'. nperseg : int, optional Length of each segment. Defaults to 256. noverlap: int, optional Number of points to overlap between segments. If None, ``noverlap = nperseg // 2``. Defaults to None. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is `nperseg`. Defaults to None. detrend : str or function or False, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is False, no detrending is done. Defaults to 'constant'. axis : int, optional Axis along which the coherence is computed for both inputs; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Cxy : ndarray Magnitude squared coherence of x and y. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. csd: Cross spectral density by Welch's method. Notes -------- An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default 'hanning' window an overlap of 50\% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. .. versionadded:: 0.16.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] Stoica, Petre, and Randolph Moses, "Spectral Analysis of Signals" Prentice Hall, 2005 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate two test signals with some common features. >>> fs = 10e3 >>> N = 1e5 >>> amp = 20 >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> b, a = signal.butter(2, 0.25, 'low') >>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) >>> y = signal.lfilter(b, a, x) >>> x += amp*np.sin(2*np.pi*freq*time) >>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape) Compute and plot the coherence. >>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024) >>> plt.semilogy(f, Cxy) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Coherence') >>> plt.show() """ freqs, Pxx = welch(x, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) _, Pyy = welch(y, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) _, Pxy = csd(x, y, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) Cxy = np.abs(Pxy)**2 / Pxx / Pyy return freqs, Cxy def _spectral_helper(x, y, fs=1.0, window='hanning', nperseg=256, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='spectrum', axis=-1, mode='psd'): ''' Calculate various forms of windowed FFTs for PSD, CSD, etc. This is a helper function that implements the commonality between the psd, csd, and spectrogram functions. It is not designed to be called externally. The windows are not averaged over; the result from each window is returned. Parameters --------- x : array_like Array or sequence containing the data to be analyzed. y : array_like Array or sequence containing the data to be analyzed. If this is the same object in memoery as x (i.e. _spectral_helper(x, x, ...)), the extra computations are spared. fs : float, optional Sampling frequency of the time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length will be used for nperseg. Defaults to 'hanning'. nperseg : int, optional Length of each segment. Defaults to 256. noverlap : int, optional Number of points to overlap between segments. If None, ``noverlap = nperseg // 2``. Defaults to None. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is `nperseg`. Defaults to None. detrend : str or function or False, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the ``type`` argument to `detrend`. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is False, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the cross spectral density ('density') where `Pxy` has units of V**2/Hz and computing the cross spectrum ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are measured in V and fs is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). mode : str, optional Defines what kind of return values are expected. Options are ['psd', 'complex', 'magnitude', 'angle', 'phase']. Returns ------- freqs : ndarray Array of sample frequencies. result : ndarray Array of output data, contents dependant on *mode* kwarg. t : ndarray Array of times corresponding to each data segment References ---------- stackoverflow: Rolling window for 1D arrays in Numpy? <http://stackoverflow.com/a/6811241> stackoverflow: Using strides for an efficient moving average filter <http://stackoverflow.com/a/4947453> Notes ----- Adapted from matplotlib.mlab .. versionadded:: 0.16.0 ''' if mode not in ['psd', 'complex', 'magnitude', 'angle', 'phase']: raise ValueError("Unknown value for mode %s, must be one of: " "'default', 'psd', 'complex', " "'magnitude', 'angle', 'phase'" % mode) # If x and y are the same object we can save ourselves some computation. same_data = y is x if not same_data and mode != 'psd': raise ValueError("x and y must be equal if mode is not 'psd'") axis = int(axis) # Ensure we have np.arrays, get outdtype x = np.asarray(x) if not same_data: y = np.asarray(y) outdtype = np.result_type(x,y,np.complex64) else: outdtype = np.result_type(x,np.complex64) if not same_data: # Check if we can broadcast the outer axes together xouter = list(x.shape) youter = list(y.shape) xouter.pop(axis) youter.pop(axis) try: outershape = np.broadcast(np.empty(xouter), np.empty(youter)).shape except ValueError: raise ValueError('x and y cannot be broadcast together.') if same_data: if x.size == 0: return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape) else: if x.size == 0 or y.size == 0: outshape = outershape + (min([x.shape[axis], y.shape[axis]]),) emptyout = np.rollaxis(np.empty(outshape), -1, axis) return emptyout, emptyout, emptyout if x.ndim > 1: if axis != -1: x = np.rollaxis(x, axis, len(x.shape)) if not same_data and y.ndim > 1: y = np.rollaxis(y, axis, len(y.shape)) # Check if x and y are the same length, zero-pad if neccesary if not same_data: if x.shape[-1] != y.shape[-1]: if x.shape[-1] < y.shape[-1]: pad_shape = list(x.shape) pad_shape[-1] = y.shape[-1] - x.shape[-1] x = np.concatenate((x, np.zeros(pad_shape)), -1) else: pad_shape = list(y.shape) pad_shape[-1] = x.shape[-1] - y.shape[-1] y = np.concatenate((y, np.zeros(pad_shape)), -1) # X and Y are same length now, can test nperseg with either if x.shape[-1] < nperseg: warnings.warn('nperseg = {0:d}, is greater than input length = {1:d}, ' 'using nperseg = {1:d}'.format(nperseg, x.shape[-1])) nperseg = x.shape[-1] nperseg = int(nperseg) if nperseg < 1: raise ValueError('nperseg must be a positive integer') if nfft is None: nfft = nperseg elif nfft < nperseg: raise ValueError('nfft must be greater than or equal to nperseg.') else: nfft = int(nfft) if noverlap is None: noverlap = nperseg//2 elif noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') else: noverlap = int(noverlap) # Handle detrending and window functions if not detrend: def detrend_func(d): return d elif not hasattr(detrend, '__call__'): def detrend_func(d): return signaltools.detrend(d, type=detrend, axis=-1) elif axis != -1: # Wrap this function so that it receives a shape that it could # reasonably expect to receive. def detrend_func(d): d = np.rollaxis(d, -1, axis) d = detrend(d) return np.rollaxis(d, axis, len(d.shape)) else: detrend_func = detrend if isinstance(window, string_types) or type(window) is tuple: win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if win.shape[0] != nperseg: raise ValueError('window must have length of nperseg') if np.result_type(win,np.complex64) != outdtype: win = win.astype(outdtype) if mode == 'psd': if scaling == 'density': scale = 1.0 / (fs * (win*win).sum()) elif scaling == 'spectrum': scale = 1.0 / win.sum()**2 else: raise ValueError('Unknown scaling: %r' % scaling) else: scale = 1 if return_onesided is True: if np.iscomplexobj(x): sides = 'twosided' else: sides = 'onesided' if not same_data: if np.iscomplexobj(y): sides = 'twosided' else: sides = 'twosided' if sides == 'twosided': num_freqs = nfft elif sides == 'onesided': if nfft % 2: num_freqs = (nfft + 1)//2 else: num_freqs = nfft//2 + 1 # Perform the windowed FFTs result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft) result = result[..., :num_freqs] freqs = fftpack.fftfreq(nfft, 1/fs)[:num_freqs] if not same_data: # All the same operations on the y data result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft) result_y = result_y[..., :num_freqs] result = np.conjugate(result) * result_y elif mode == 'psd': result = np.conjugate(result) * result elif mode == 'magnitude': result = np.absolute(result) elif mode == 'angle' or mode == 'phase': result = np.angle(result) elif mode == 'complex': pass result *= scale if sides == 'onesided': if nfft % 2: result[...,1:] *= 2 else: # Last point is unpaired Nyquist freq point, don't double result[...,1:-1] *= 2 t = np.arange(nperseg/2, x.shape[-1] - nperseg/2 + 1, nperseg - noverlap)/float(fs) if sides != 'twosided' and not nfft % 2: # get the last value correctly, it is negative otherwise freqs[-1] *= -1 # we unwrap the phase here to handle the onesided vs. twosided case if mode == 'phase': result = np.unwrap(result, axis=-1) result = result.astype(outdtype) # All imaginary parts are zero anyways if same_data and mode != 'complex': result = result.real # Output is going to have new last axis for window index if axis != -1: # Specify as positive axis index if axis < 0: axis = len(result.shape)-1-axis # Roll frequency axis back to axis where the data came from result = np.rollaxis(result, -1, axis) else: # Make sure window/time index is last axis result = np.rollaxis(result, -1, -2) return freqs, t, result def _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft): ''' Calculate windowed FFT, for internal use by scipy.signal._spectral_helper This is a helper function that does the main FFT calculation for _spectral helper. All input valdiation is performed there, and the data axis is assumed to be the last axis of x. It is not designed to be called externally. The windows are not averaged over; the result from each window is returned. Returns ------- result : ndarray Array of FFT data References ---------- stackoverflow: Repeat NumPy array without replicating data? <http://stackoverflow.com/a/5568169> Notes ----- Adapted from matplotlib.mlab .. versionadded:: 0.16.0 ''' # Created strided array of data segments if nperseg == 1 and noverlap == 0: result = x[..., np.newaxis] else: step = nperseg - noverlap shape = x.shape[:-1]+((x.shape[-1]-noverlap)//step, nperseg) strides = x.strides[:-1]+(step*x.strides[-1], x.strides[-1]) result = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) # Detrend each data segment individually result = detrend_func(result) # Apply window by multiplication result = win * result # Perform the fft. Acts on last axis by default. Zero-pads automatically result = fftpack.fft(result, n=nfft) return result
bsd-3-clause
pianomania/scikit-learn
sklearn/utils/random.py
46
10523
# Author: Hamzeh Alsalhi <[email protected]> # # License: BSD 3 clause from __future__ import division import numpy as np import scipy.sparse as sp import operator import array from sklearn.utils import check_random_state from sklearn.utils.fixes import astype from ._random import sample_without_replacement __all__ = ['sample_without_replacement', 'choice'] # This is a backport of np.random.choice from numpy 1.7 # The function can be removed when we bump the requirements to >=1.7 def choice(a, size=None, replace=True, p=None, random_state=None): """ choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ----------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a was np.arange(n) size : int or tuple of ints, optional Output shape. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement. p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns -------- samples : 1-D ndarray, shape (size,) The generated random samples Raises ------- ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also --------- randint, shuffle, permutation Examples --------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) # doctest: +SKIP array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) # doctest: +SKIP array([3, 3, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) # doctest: +SKIP array([3,1,0]) >>> #This is equivalent to np.random.shuffle(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) ... # doctest: +SKIP array([2, 3, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) ... # doctest: +SKIP array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11') """ random_state = check_random_state(random_state) # Format and Verify input a = np.array(a, copy=False) if a.ndim == 0: try: # __index__ must return an integer by python rules. pop_size = operator.index(a.item()) except TypeError: raise ValueError("a must be 1-dimensional or an integer") if pop_size <= 0: raise ValueError("a must be greater than 0") elif a.ndim != 1: raise ValueError("a must be 1-dimensional") else: pop_size = a.shape[0] if pop_size is 0: raise ValueError("a must be non-empty") if p is not None: p = np.array(p, dtype=np.double, ndmin=1, copy=False) if p.ndim != 1: raise ValueError("p must be 1-dimensional") if p.size != pop_size: raise ValueError("a and p must have same size") if np.any(p < 0): raise ValueError("probabilities are not non-negative") if not np.allclose(p.sum(), 1): raise ValueError("probabilities do not sum to 1") shape = size if shape is not None: size = np.prod(shape, dtype=np.intp) else: size = 1 # Actual sampling if replace: if p is not None: cdf = p.cumsum() cdf /= cdf[-1] uniform_samples = random_state.random_sample(shape) idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar idx = np.array(idx, copy=False) else: idx = random_state.randint(0, pop_size, size=shape) else: if size > pop_size: raise ValueError("Cannot take a larger sample than " "population when 'replace=False'") if p is not None: if np.sum(p > 0) < size: raise ValueError("Fewer non-zero entries in p than size") n_uniq = 0 p = p.copy() found = np.zeros(shape, dtype=np.int) flat_found = found.ravel() while n_uniq < size: x = random_state.rand(size - n_uniq) if n_uniq > 0: p[flat_found[0:n_uniq]] = 0 cdf = np.cumsum(p) cdf /= cdf[-1] new = cdf.searchsorted(x, side='right') _, unique_indices = np.unique(new, return_index=True) unique_indices.sort() new = new.take(unique_indices) flat_found[n_uniq:n_uniq + new.size] = new n_uniq += new.size idx = found else: idx = random_state.permutation(pop_size)[:size] if shape is not None: idx.shape = shape if shape is None and isinstance(idx, np.ndarray): # In most cases a scalar will have been made an array idx = idx.item(0) # Use samples as indices for a if a is array-like if a.ndim == 0: return idx if shape is not None and idx.ndim == 0: # If size == () then the user requested a 0-d array as opposed to # a scalar object when size is None. However a[idx] is always a # scalar and not an array. So this makes sure the result is an # array, taking into account that np.array(item) may not work # for object arrays. res = np.empty((), dtype=a.dtype) res[()] = a[idx] return res return a[idx] def random_choice_csc(n_samples, classes, class_probability=None, random_state=None): """Generate a sparse random matrix given column class distributions Parameters ---------- n_samples : int, Number of samples to draw in each column. classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. class_probability : list of size n_outputs of arrays of size (n_classes,) Optional (default=None). Class distribution of each column. If None the uniform distribution is assumed. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- random_matrix : sparse csc matrix of size (n_samples, n_outputs) """ data = array.array('i') indices = array.array('i') indptr = array.array('i', [0]) for j in range(len(classes)): classes[j] = np.asarray(classes[j]) if classes[j].dtype.kind != 'i': raise ValueError("class dtype %s is not supported" % classes[j].dtype) classes[j] = astype(classes[j], np.int64, copy=False) # use uniform distribution if no class_probability is given if class_probability is None: class_prob_j = np.empty(shape=classes[j].shape[0]) class_prob_j.fill(1 / classes[j].shape[0]) else: class_prob_j = np.asarray(class_probability[j]) if np.sum(class_prob_j) != 1.0: raise ValueError("Probability array at index {0} does not sum to " "one".format(j)) if class_prob_j.shape[0] != classes[j].shape[0]: raise ValueError("classes[{0}] (length {1}) and " "class_probability[{0}] (length {2}) have " "different length.".format(j, classes[j].shape[0], class_prob_j.shape[0])) # If 0 is not present in the classes insert it with a probability 0.0 if 0 not in classes[j]: classes[j] = np.insert(classes[j], 0, 0) class_prob_j = np.insert(class_prob_j, 0, 0.0) # If there are nonzero classes choose randomly using class_probability rng = check_random_state(random_state) if classes[j].shape[0] > 1: p_nonzero = 1 - class_prob_j[classes[j] == 0] nnz = int(n_samples * p_nonzero) ind_sample = sample_without_replacement(n_population=n_samples, n_samples=nnz, random_state=random_state) indices.extend(ind_sample) # Normalize probabilites for the nonzero elements classes_j_nonzero = classes[j] != 0 class_probability_nz = class_prob_j[classes_j_nonzero] class_probability_nz_norm = (class_probability_nz / np.sum(class_probability_nz)) classes_ind = np.searchsorted(class_probability_nz_norm.cumsum(), rng.rand(nnz)) data.extend(classes[j][classes_j_nonzero][classes_ind]) indptr.append(len(indices)) return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int)
bsd-3-clause
tcrossland/time_series_prediction
ann/scenario.py
1
2422
import time import matplotlib.pyplot as plt import numpy as np class Config: def __init__(self, time_series, look_back=6, batch_size=1, topology=None, validation_split=0.3, include_index=False, activation='tanh', optimizer='adam'): self.time_series = time_series self.look_back = look_back self.batch_size = batch_size if topology is None: topology = [5] self.topology = topology self.validation_split = validation_split self.activation = activation self.include_index = include_index self.optimizer = optimizer def __str__(self): return "w{}-b{}".format(self.look_back, self.batch_size) class Scenario: def __init__(self, model, config): self.model = model self.time_series = config.time_series self.dataset = config.time_series.dataset self.epochs = 0 self.config = config def execute(self, epochs): print() print() self.epochs = self.epochs + epochs print(">>>> {} + {} (epochs={}, topology={})".format(self.model, self.time_series, self.epochs, self.config.topology)) self.model.summary() start = time.clock() self.model.train(epochs=epochs, batch_size=self.config.batch_size) self.training_time = time.clock() - start print("Training time: %.3f" % self.training_time) prediction = self.model.evaluate() # self.plot(predictions) return prediction def create_empty_plot(self): plot = np.empty_like(self.dataset) plot[:, :] = np.nan return plot def create_left_plot(self, data): offset = self.config.look_back plot = self.create_empty_plot() plot[offset:len(data) + offset, :] = data return plot def create_right_plot(self, data): plot = self.create_empty_plot() plot[-len(data):, :] = data return plot def plot(self, predictions): plt.figure(figsize=(16, 12)) plt.xlim(self.dataset.size * 0.6, self.dataset.size * 0.8) plt.plot(self.dataset) for pred in predictions: plt.plot(self.create_right_plot(pred)) filename = "out/{}/{}-{}.png".format(self.time_series, self.model, self.config) plt.savefig(filename) plt.close()
mit
fbagirov/scikit-learn
examples/svm/plot_separating_hyperplane_unbalanced.py
329
1850
""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. .. currentmodule:: sklearn.linear_model .. note:: This example will also work by replacing ``SVC(kernel="linear")`` with ``SGDClassifier(loss="hinge")``. Setting the ``loss`` parameter of the :class:`SGDClassifier` equal to ``hinge`` will yield behaviour such as that of a SVC with a linear kernel. For example try instead of the ``SVC``:: clf = SGDClassifier(n_iter=100, alpha=0.01) """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm #from sklearn.linear_model import SGDClassifier # we create 40 separable points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - clf.intercept_[0] / w[1] # get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) ww = wclf.coef_[0] wa = -ww[0] / ww[1] wyy = wa * xx - wclf.intercept_[0] / ww[1] # plot separating hyperplanes and samples h0 = plt.plot(xx, yy, 'k-', label='no weights') h1 = plt.plot(xx, wyy, 'k--', label='with weights') plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.legend() plt.axis('tight') plt.show()
bsd-3-clause
huzq/scikit-learn
sklearn/feature_selection/tests/test_from_model.py
11
14652
import pytest import numpy as np from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_allclose from sklearn.utils._testing import skip_if_32bit from sklearn import datasets from sklearn.linear_model import LogisticRegression, SGDClassifier, Lasso from sklearn.svm import LinearSVC from sklearn.feature_selection import SelectFromModel from sklearn.experimental import enable_hist_gradient_boosting # noqa from sklearn.ensemble import (RandomForestClassifier, HistGradientBoostingClassifier) from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.base import BaseEstimator from sklearn.pipeline import make_pipeline from sklearn.decomposition import PCA class NaNTag(BaseEstimator): def _more_tags(self): return {'allow_nan': True} class NoNaNTag(BaseEstimator): def _more_tags(self): return {'allow_nan': False} class NaNTagRandomForest(RandomForestClassifier): def _more_tags(self): return {'allow_nan': True} iris = datasets.load_iris() data, y = iris.data, iris.target rng = np.random.RandomState(0) def test_invalid_input(): clf = SGDClassifier(alpha=0.1, max_iter=10, shuffle=True, random_state=None, tol=None) for threshold in ["gobbledigook", ".5 * gobbledigook"]: model = SelectFromModel(clf, threshold=threshold) model.fit(data, y) with pytest.raises(ValueError): model.transform(data) def test_input_estimator_unchanged(): # Test that SelectFromModel fits on a clone of the estimator. est = RandomForestClassifier() transformer = SelectFromModel(estimator=est) transformer.fit(data, y) assert transformer.estimator is est @pytest.mark.parametrize( "max_features, err_type, err_msg", [(-1, ValueError, "'max_features' should be 0 and"), (data.shape[1] + 1, ValueError, "'max_features' should be 0 and"), ('gobbledigook', TypeError, "should be an integer"), ('all', TypeError, "should be an integer")] ) def test_max_features_error(max_features, err_type, err_msg): clf = RandomForestClassifier(n_estimators=50, random_state=0) transformer = SelectFromModel(estimator=clf, max_features=max_features, threshold=-np.inf) with pytest.raises(err_type, match=err_msg): transformer.fit(data, y) @pytest.mark.parametrize("max_features", [0, 2, data.shape[1]]) def test_max_features_dim(max_features): clf = RandomForestClassifier(n_estimators=50, random_state=0) transformer = SelectFromModel(estimator=clf, max_features=max_features, threshold=-np.inf) X_trans = transformer.fit_transform(data, y) assert X_trans.shape[1] == max_features class FixedImportanceEstimator(BaseEstimator): def __init__(self, importances): self.importances = importances def fit(self, X, y=None): self.feature_importances_ = np.array(self.importances) def test_max_features(): # Test max_features parameter using various values X, y = datasets.make_classification( n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) max_features = X.shape[1] est = RandomForestClassifier(n_estimators=50, random_state=0) transformer1 = SelectFromModel(estimator=est, threshold=-np.inf) transformer2 = SelectFromModel(estimator=est, max_features=max_features, threshold=-np.inf) X_new1 = transformer1.fit_transform(X, y) X_new2 = transformer2.fit_transform(X, y) assert_allclose(X_new1, X_new2) # Test max_features against actual model. transformer1 = SelectFromModel(estimator=Lasso(alpha=0.025, random_state=42)) X_new1 = transformer1.fit_transform(X, y) scores1 = np.abs(transformer1.estimator_.coef_) candidate_indices1 = np.argsort(-scores1, kind='mergesort') for n_features in range(1, X_new1.shape[1] + 1): transformer2 = SelectFromModel(estimator=Lasso(alpha=0.025, random_state=42), max_features=n_features, threshold=-np.inf) X_new2 = transformer2.fit_transform(X, y) scores2 = np.abs(transformer2.estimator_.coef_) candidate_indices2 = np.argsort(-scores2, kind='mergesort') assert_allclose(X[:, candidate_indices1[:n_features]], X[:, candidate_indices2[:n_features]]) assert_allclose(transformer1.estimator_.coef_, transformer2.estimator_.coef_) def test_max_features_tiebreak(): # Test if max_features can break tie among feature importance X, y = datasets.make_classification( n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) max_features = X.shape[1] feature_importances = np.array([4, 4, 4, 4, 3, 3, 3, 2, 2, 1]) for n_features in range(1, max_features + 1): transformer = SelectFromModel( FixedImportanceEstimator(feature_importances), max_features=n_features, threshold=-np.inf) X_new = transformer.fit_transform(X, y) selected_feature_indices = np.where(transformer._get_support_mask())[0] assert_array_equal(selected_feature_indices, np.arange(n_features)) assert X_new.shape[1] == n_features def test_threshold_and_max_features(): X, y = datasets.make_classification( n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) est = RandomForestClassifier(n_estimators=50, random_state=0) transformer1 = SelectFromModel(estimator=est, max_features=3, threshold=-np.inf) X_new1 = transformer1.fit_transform(X, y) transformer2 = SelectFromModel(estimator=est, threshold=0.04) X_new2 = transformer2.fit_transform(X, y) transformer3 = SelectFromModel(estimator=est, max_features=3, threshold=0.04) X_new3 = transformer3.fit_transform(X, y) assert X_new3.shape[1] == min(X_new1.shape[1], X_new2.shape[1]) selected_indices = transformer3.transform( np.arange(X.shape[1])[np.newaxis, :]) assert_allclose(X_new3, X[:, selected_indices[0]]) @skip_if_32bit def test_feature_importances(): X, y = datasets.make_classification( n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) est = RandomForestClassifier(n_estimators=50, random_state=0) for threshold, func in zip(["mean", "median"], [np.mean, np.median]): transformer = SelectFromModel(estimator=est, threshold=threshold) transformer.fit(X, y) assert hasattr(transformer.estimator_, 'feature_importances_') X_new = transformer.transform(X) assert X_new.shape[1] < X.shape[1] importances = transformer.estimator_.feature_importances_ feature_mask = np.abs(importances) > func(importances) assert_array_almost_equal(X_new, X[:, feature_mask]) def test_sample_weight(): # Ensure sample weights are passed to underlying estimator X, y = datasets.make_classification( n_samples=100, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) # Check with sample weights sample_weight = np.ones(y.shape) sample_weight[y == 1] *= 100 est = LogisticRegression(random_state=0, fit_intercept=False) transformer = SelectFromModel(estimator=est) transformer.fit(X, y, sample_weight=None) mask = transformer._get_support_mask() transformer.fit(X, y, sample_weight=sample_weight) weighted_mask = transformer._get_support_mask() assert not np.all(weighted_mask == mask) transformer.fit(X, y, sample_weight=3 * sample_weight) reweighted_mask = transformer._get_support_mask() assert np.all(weighted_mask == reweighted_mask) def test_coef_default_threshold(): X, y = datasets.make_classification( n_samples=100, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) # For the Lasso and related models, the threshold defaults to 1e-5 transformer = SelectFromModel(estimator=Lasso(alpha=0.1, random_state=42)) transformer.fit(X, y) X_new = transformer.transform(X) mask = np.abs(transformer.estimator_.coef_) > 1e-5 assert_array_almost_equal(X_new, X[:, mask]) @skip_if_32bit def test_2d_coef(): X, y = datasets.make_classification( n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0, n_classes=4) est = LogisticRegression() for threshold, func in zip(["mean", "median"], [np.mean, np.median]): for order in [1, 2, np.inf]: # Fit SelectFromModel a multi-class problem transformer = SelectFromModel(estimator=LogisticRegression(), threshold=threshold, norm_order=order) transformer.fit(X, y) assert hasattr(transformer.estimator_, 'coef_') X_new = transformer.transform(X) assert X_new.shape[1] < X.shape[1] # Manually check that the norm is correctly performed est.fit(X, y) importances = np.linalg.norm(est.coef_, axis=0, ord=order) feature_mask = importances > func(importances) assert_array_almost_equal(X_new, X[:, feature_mask]) def test_partial_fit(): est = PassiveAggressiveClassifier(random_state=0, shuffle=False, max_iter=5, tol=None) transformer = SelectFromModel(estimator=est) transformer.partial_fit(data, y, classes=np.unique(y)) old_model = transformer.estimator_ transformer.partial_fit(data, y, classes=np.unique(y)) new_model = transformer.estimator_ assert old_model is new_model X_transform = transformer.transform(data) transformer.fit(np.vstack((data, data)), np.concatenate((y, y))) assert_array_almost_equal(X_transform, transformer.transform(data)) # check that if est doesn't have partial_fit, neither does SelectFromModel transformer = SelectFromModel(estimator=RandomForestClassifier()) assert not hasattr(transformer, "partial_fit") def test_calling_fit_reinitializes(): est = LinearSVC(random_state=0) transformer = SelectFromModel(estimator=est) transformer.fit(data, y) transformer.set_params(estimator__C=100) transformer.fit(data, y) assert transformer.estimator_.C == 100 def test_prefit(): # Test all possible combinations of the prefit parameter. # Passing a prefit parameter with the selected model # and fitting a unfit model with prefit=False should give same results. clf = SGDClassifier(alpha=0.1, max_iter=10, shuffle=True, random_state=0, tol=None) model = SelectFromModel(clf) model.fit(data, y) X_transform = model.transform(data) clf.fit(data, y) model = SelectFromModel(clf, prefit=True) assert_array_almost_equal(model.transform(data), X_transform) # Check that the model is rewritten if prefit=False and a fitted model is # passed model = SelectFromModel(clf, prefit=False) model.fit(data, y) assert_array_almost_equal(model.transform(data), X_transform) # Check that prefit=True and calling fit raises a ValueError model = SelectFromModel(clf, prefit=True) with pytest.raises(ValueError): model.fit(data, y) def test_threshold_string(): est = RandomForestClassifier(n_estimators=50, random_state=0) model = SelectFromModel(est, threshold="0.5*mean") model.fit(data, y) X_transform = model.transform(data) # Calculate the threshold from the estimator directly. est.fit(data, y) threshold = 0.5 * np.mean(est.feature_importances_) mask = est.feature_importances_ > threshold assert_array_almost_equal(X_transform, data[:, mask]) def test_threshold_without_refitting(): # Test that the threshold can be set without refitting the model. clf = SGDClassifier(alpha=0.1, max_iter=10, shuffle=True, random_state=0, tol=None) model = SelectFromModel(clf, threshold="0.1 * mean") model.fit(data, y) X_transform = model.transform(data) # Set a higher threshold to filter out more features. model.threshold = "1.0 * mean" assert X_transform.shape[1] > model.transform(data).shape[1] def test_fit_accepts_nan_inf(): # Test that fit doesn't check for np.inf and np.nan values. clf = HistGradientBoostingClassifier(random_state=0) model = SelectFromModel(estimator=clf) nan_data = data.copy() nan_data[0] = np.NaN nan_data[1] = np.Inf model.fit(data, y) def test_transform_accepts_nan_inf(): # Test that transform doesn't check for np.inf and np.nan values. clf = NaNTagRandomForest(n_estimators=100, random_state=0) nan_data = data.copy() model = SelectFromModel(estimator=clf) model.fit(nan_data, y) nan_data[0] = np.NaN nan_data[1] = np.Inf model.transform(nan_data) def test_allow_nan_tag_comes_from_estimator(): allow_nan_est = NaNTag() model = SelectFromModel(estimator=allow_nan_est) assert model._get_tags()['allow_nan'] is True no_nan_est = NoNaNTag() model = SelectFromModel(estimator=no_nan_est) assert model._get_tags()['allow_nan'] is False def _pca_importances(pca_estimator): return np.abs(pca_estimator.explained_variance_) @pytest.mark.parametrize( "estimator, importance_getter", [(make_pipeline(PCA(random_state=0), LogisticRegression()), 'named_steps.logisticregression.coef_'), (PCA(random_state=0), _pca_importances)] ) def test_importance_getter(estimator, importance_getter): selector = SelectFromModel( estimator, threshold="mean", importance_getter=importance_getter ) selector.fit(data, y) assert selector.transform(data).shape[1] == 1
bsd-3-clause
bsipocz/seaborn
seaborn/algorithms.py
35
6889
"""Algorithms to support fitting routines in seaborn plotting functions.""" from __future__ import division import numpy as np from scipy import stats from .external.six.moves import range def bootstrap(*args, **kwargs): """Resample one or more arrays with replacement and store aggregate values. Positional arguments are a sequence of arrays to bootstrap along the first axis and pass to a summary function. Keyword arguments: n_boot : int, default 10000 Number of iterations axis : int, default None Will pass axis to ``func`` as a keyword argument. units : array, default None Array of sampling unit IDs. When used the bootstrap resamples units and then observations within units instead of individual datapoints. smooth : bool, default False If True, performs a smoothed bootstrap (draws samples from a kernel destiny estimate); only works for one-dimensional inputs and cannot be used `units` is present. func : callable, default np.mean Function to call on the args that are passed in. random_seed : int | None, default None Seed for the random number generator; useful if you want reproducible resamples. Returns ------- boot_dist: array array of bootstrapped statistic values """ # Ensure list of arrays are same length if len(np.unique(list(map(len, args)))) > 1: raise ValueError("All input arrays must have the same length") n = len(args[0]) # Default keyword arguments n_boot = kwargs.get("n_boot", 10000) func = kwargs.get("func", np.mean) axis = kwargs.get("axis", None) units = kwargs.get("units", None) smooth = kwargs.get("smooth", False) random_seed = kwargs.get("random_seed", None) if axis is None: func_kwargs = dict() else: func_kwargs = dict(axis=axis) # Initialize the resampler rs = np.random.RandomState(random_seed) # Coerce to arrays args = list(map(np.asarray, args)) if units is not None: units = np.asarray(units) # Do the bootstrap if smooth: return _smooth_bootstrap(args, n_boot, func, func_kwargs) if units is not None: return _structured_bootstrap(args, n_boot, units, func, func_kwargs, rs) boot_dist = [] for i in range(int(n_boot)): resampler = rs.randint(0, n, n) sample = [a.take(resampler, axis=0) for a in args] boot_dist.append(func(*sample, **func_kwargs)) return np.array(boot_dist) def _structured_bootstrap(args, n_boot, units, func, func_kwargs, rs): """Resample units instead of datapoints.""" unique_units = np.unique(units) n_units = len(unique_units) args = [[a[units == unit] for unit in unique_units] for a in args] boot_dist = [] for i in range(int(n_boot)): resampler = rs.randint(0, n_units, n_units) sample = [np.take(a, resampler, axis=0) for a in args] lengths = map(len, sample[0]) resampler = [rs.randint(0, n, n) for n in lengths] sample = [[c.take(r, axis=0) for c, r in zip(a, resampler)] for a in sample] sample = list(map(np.concatenate, sample)) boot_dist.append(func(*sample, **func_kwargs)) return np.array(boot_dist) def _smooth_bootstrap(args, n_boot, func, func_kwargs): """Bootstrap by resampling from a kernel density estimate.""" n = len(args[0]) boot_dist = [] kde = [stats.gaussian_kde(np.transpose(a)) for a in args] for i in range(int(n_boot)): sample = [a.resample(n).T for a in kde] boot_dist.append(func(*sample, **func_kwargs)) return np.array(boot_dist) def randomize_corrmat(a, tail="both", corrected=True, n_iter=1000, random_seed=None, return_dist=False): """Test the significance of set of correlations with permutations. By default this corrects for multiple comparisons across one side of the matrix. Parameters ---------- a : n_vars x n_obs array array with variables as rows tail : both | upper | lower whether test should be two-tailed, or which tail to integrate over corrected : boolean if True reports p values with respect to the max stat distribution n_iter : int number of permutation iterations random_seed : int or None seed for RNG return_dist : bool if True, return n_vars x n_vars x n_iter Returns ------- p_mat : float array of probabilites for actual correlation from null CDF """ if tail not in ["upper", "lower", "both"]: raise ValueError("'tail' must be 'upper', 'lower', or 'both'") rs = np.random.RandomState(random_seed) a = np.asarray(a, np.float) flat_a = a.ravel() n_vars, n_obs = a.shape # Do the permutations to establish a null distribution null_dist = np.empty((n_vars, n_vars, n_iter)) for i_i in range(n_iter): perm_i = np.concatenate([rs.permutation(n_obs) + (v * n_obs) for v in range(n_vars)]) a_i = flat_a[perm_i].reshape(n_vars, n_obs) null_dist[..., i_i] = np.corrcoef(a_i) # Get the observed correlation values real_corr = np.corrcoef(a) # Figure out p values based on the permutation distribution p_mat = np.zeros((n_vars, n_vars)) upper_tri = np.triu_indices(n_vars, 1) if corrected: if tail == "both": max_dist = np.abs(null_dist[upper_tri]).max(axis=0) elif tail == "lower": max_dist = null_dist[upper_tri].min(axis=0) elif tail == "upper": max_dist = null_dist[upper_tri].max(axis=0) cdf = lambda x: stats.percentileofscore(max_dist, x) / 100. for i, j in zip(*upper_tri): observed = real_corr[i, j] if tail == "both": p_ij = 1 - cdf(abs(observed)) elif tail == "lower": p_ij = cdf(observed) elif tail == "upper": p_ij = 1 - cdf(observed) p_mat[i, j] = p_ij else: for i, j in zip(*upper_tri): null_corrs = null_dist[i, j] cdf = lambda x: stats.percentileofscore(null_corrs, x) / 100. observed = real_corr[i, j] if tail == "both": p_ij = 2 * (1 - cdf(abs(observed))) elif tail == "lower": p_ij = cdf(observed) elif tail == "upper": p_ij = 1 - cdf(observed) p_mat[i, j] = p_ij # Make p matrix symettrical with nans on the diagonal p_mat += p_mat.T p_mat[np.diag_indices(n_vars)] = np.nan if return_dist: return p_mat, null_dist return p_mat
bsd-3-clause
barbot/Cosmos
src/syn/syn_tavi.py
1
15978
#!env python import monsoon import sys import threading import time import socket import sys import tty, termios import struct import binascii import random import ctypes import numpy as np import os import GPy import math from scipy.special import erf import matplotlib from IPython.display import display from matplotlib import pyplot as plt from fparams_tavi import isParamValuationFeasible exitFlag = 1 stDataColl = 0 collectedSamples = [] useVM = 0 logTime = 10 # in Seconds constfile = "const.m" kernel = GPy.kern.RBF(input_dim=1, variance=1., lengthscale=1.) N_INITIAL_SAMPLES = 2 N_OPT_STEPS = 1000 resultfile = "result.m" tmpconstfile = "tmpconst.m" XMAX = 400.0 YMAX = 20000.0 def get_my_string(fp): f = open(fp, 'r') string = str(f.read()) f.close() return string def GetReward(): cmd="Cosmos" cmd += " HeartModelAll.slx" cmd += " prop.lha" #cmd += format(" --const \"SA_d=%f\""%x) cmd += " --max-run 10 --batch 0 -v 0 --njob 2" print(cmd+"\n") os.system(cmd) os.system("grep -A 1 \"Total:\" Result.res | grep \"Estimated value\" | sed \"s/Estimated value:\t//g\" > tmpResult") v = eval(get_my_string("tmpResult")) return v if len(sys.argv) > 1: useVM = 1 def SetArduinoParameter(handle, parID, parValue): headerID = 0xF5 print "Sending Arduino parameter ID: "+str(parID)+" value: "+str(parValue) if SetParameter(handle, headerID, parID, parValue)!=1: return 0 return 1 def SetClientParameter(handle, parID, parValue): headerID = 0xF4 print "Sending Client parameter ID: "+str(parID)+" value: "+str(parValue) if SetParameter(handle, headerID, parID, parValue)!=1: return 0 return 1 def SetParameter(handle, headerID, parID, parValue): parStr = struct.pack('BBI',headerID, parID, parValue) # Send parameter handle.sendall(parStr) buftmp = bytearray(1) buflen = handle.recv_into(buftmp,1) if buftmp[0]!=0xF6: print "Wrong return value" return 0 return 1 def Save2DArray(handle, arr): for idx in range(len(arr)): handle.write(str(arr[idx][0])+" "+str(arr[idx][1])+"\n") def SaveMarkersToFile(handle, dta): if dta==0: handle.write(str(0)+" "+str(0)) elif dta==1: handle.write(str(1)+" "+str(0)) elif dta==2: handle.write(str(0)+" "+str(1)) elif dta==3: handle.write(str(1)+" "+str(1)) def SaveToFile(handle, dta): SaveMarkersToFile(handle, dta) handle.write("\n") def SaveToFileAll(handle, dta, current): SaveMarkersToFile(handle, dta) handle.write(" "+str(current)) handle.write("\n") def GetMinCurrent(pmData): currList = [it[0] for it in pmData] return min(currList) def GetSumCurrent(pmData, monitorSamplingFreq): sumCurrent = 0 prev = pmData[0][1] it_beg = 0 for it in range(1,len(pmData)): if pmData[it][1]!=2 and prev==2: it_beg = it break cnt = 0 for it in range(it_beg,len(pmData)): if pmData[it][1]==2 and cnt>=20: break elif pmData[it][1]==2 and cnt<20: cnt = cnt + 1 elif prev==2 and pmData[it][1]!=2: cnt = 0 sumCurrent = sumCurrent + pmData[it][0] prev = pmData[it][1] return sumCurrent def GetEnergyReadings(pmData, monitorSamplingFreq, tranListTimes, minCurrent): cummCurrentList = [] sumCurrent = 0 sampleCnt = 1 prev = pmData[0][1] timeList = [item[1] for item in tranListTimes] cummCurrentList = [[item[0],item[1],0] for item in tranListTimes] it_beg = 0 for it in range(1,len(pmData)): if pmData[it][1]!=2 and prev==2: it_beg = it break tmpSampleCnt = 0 timeListIdx = 0 for it in range(it_beg,len(pmData)): stime = sampleCnt/monitorSamplingFreq sumCurrent = sumCurrent + pmData[it][0] tmpSampleCnt = tmpSampleCnt + 1 if timeListIdx>=len(timeList): break if stime>=timeList[timeListIdx]: cummCurrentList[timeListIdx][2] = sumCurrent - tmpSampleCnt * minCurrent timeListIdx = timeListIdx + 1 sumCurrent = 0 tmpSampleCnt = 0 sampleCnt = sampleCnt + 1 filedta = open('markers.txt', 'w+') for it in range(it_beg,len(pmData)): SaveToFileAll(filedta, pmData[it][1], pmData[it][0]) filedta.close() return cummCurrentList def GetTotalCurrents(handle, esamples, monitorSamplingFreq): cummCurrentList = [] # Send get list of IDs handle.sendall('\xF3') bufSize = bytearray(4) buflen = handle.recv_into(bufSize, 4) if buflen!=4: print "Wrong packet length" return cummCurrentList bufSize = struct.unpack("I",bufSize) print "Packet size: "+str(bufSize[0]) bufIDs = bytearray() buftmp = bytearray(2048) bytes_recd = 0 while bytes_recd < bufSize[0]: chunkLen = handle.recv_into(buftmp,2048) bufIDs[bytes_recd:] = buftmp[:chunkLen] bytes_recd = bytes_recd + chunkLen if bytes_recd != bufSize[0]: print "Wrong data" return cummCurrentList nTranCnt = bufSize[0]/8 print "Number of transitions received: "+str(nTranCnt) tTimeList = [] for idx in range(0,nTranCnt): tID = bufIDs[idx*8] tTime = struct.unpack("I",bufIDs[idx*8+1:idx*8+1+4]) tTimeList.append([tID, tTime[0]]) #print str(tTime[0])+" "+str(bufIDs[idx*8]) toRemove = [] for idx in range(len(tTimeList)-1): if tTimeList[idx][1]==tTimeList[idx+1][1]: toRemove.append(tTimeList[idx]) for rem in toRemove: tTimeList.remove(rem) minCurrent = GetMinCurrent(esamples) cummCurrentList = GetEnergyReadings(esamples, monitorSamplingFreq, tTimeList, minCurrent) return cummCurrentList def SaveDistribution(handle, dData): dIdCurr = {} for key, val in dData: dIdCurr.setdefault(key, []).append(val) keyRange = range(53, 59) for key in keyRange: if key not in dIdCurr: handle.write("T"+str(key)+"_min"+" = "+str(0)+"\n") handle.write("T"+str(key)+"_max"+" = "+str(0)+"\n") handle.write("T"+str(key)+"_mean"+" = "+str(0)+"\n") handle.write("T"+str(key)+"_var"+" = "+str(0)+"\n") handle.write("T"+str(key)+"_list"+" = "+str([0])+"\n") else: handle.write("T"+str(key)+"_min"+" = "+str(min(dIdCurr[key]))+"\n") handle.write("T"+str(key)+"_max"+" = "+str(max(dIdCurr[key]))+"\n") handle.write("T"+str(key)+"_mean"+" = "+str(np.mean(dIdCurr[key]))+"\n") handle.write("T"+str(key)+"_var"+" = "+str(np.var(dIdCurr[key]))+"\n") handle.write("T"+str(key)+"_list"+" = "+str(dIdCurr[key])+"\n") def normpdf(x): return np.exp(-x*x/2)/np.sqrt(2*math.pi) def normcdf(x): return (1+ erf(x/np.sqrt(2)))/2 def findMax(m, X2, minv, maxv, fmin): mu,s2 = m.predict(X2) t = np.argmax((fmin-mu) * normcdf( (fmin-mu)/np.sqrt(s2) ) + np.sqrt(s2)*normpdf( (fmin-mu)/np.sqrt(s2) )) #t2 = minv + (maxv - minv)*t/len(X2) return X2[t] class PowerMonitorThread (threading.Thread): def __init__(self, monitor): threading.Thread.__init__(self) self.monitor = monitor def run(self): print "Starting PowerMonitor Thread\n" self.monitor.StartDataCollection() while exitFlag: samples = self.monitor.CollectData() if stDataColl: collectedSamples.extend(samples) #print "\n".join(map(str, samples)) self.monitor.StopDataCollection() print "Ending PowerMonitor Thread\n" if useVM==0: mon = monsoon.Monsoon("/dev/tty.usbmodemfa131") mon.SetVoltage(4.55) mon.SetUsbPassthrough(0) monItems = mon.GetStatus() items = sorted(monItems.items()) print "\n".join(["%s: %s" % item for item in items]) mon.StopDataCollection() # Create new threads threadMonitor = PowerMonitorThread(mon) # Start new Threads threadMonitor.start() ############################ #X = np.random.uniform(-3000.,3000.,(20,1)) #Y = np.sin(X/1000) + np.random.randn(20,1)*0.05 #kernel = GPy.kern.RBF(input_dim=1, variance=1., lengthscale=1.) #m = GPy.models.GPRegression(X,Y,kernel) #m.optimize_restarts(num_restarts = 10) #m.plot() #display(m) #plt.savefig(format('gaussfig0')) ############################ HOST = 'localhost' # The remote host PORT = 27778 # The same port as used by the server time.sleep(4); if len(sys.argv) > 1: PORT = int(sys.argv[1]) s = None for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM): af, socktype, proto, canonname, sa = res try: s = socket.socket(af, socktype, proto) except socket.error as msg: s = None continue try: s.connect(sa) except socket.error as msg: s.close() s = None continue break if s is None: print 'could not open socket' sys.exit(1) #s.setblocking(0) idCurr = [] # 0 = ID, 1 = min, 2 = max, 3 = set value parVals = [[0, 1000, 2000, 1000], [1, 20000, 10400], [2, 100, 30000, 3000], [0, 0, 2000, 500], [1, 10, 500, 131], [2, 200, 1200, 1000]] parDict = {'SA_d':0, 'SA_ectopD':1, 'VRG_d':2, 'TURI':3, 'TAVI':4, 'TLRI':5} XPace = np.array([0]) YPace = np.array([0]) XYPace = np.array([0]) #parNameC = "SA_d" #parNameA = "TURI" #parNameF = ["TLRI", "TAVI"] parNameC = "SA_d" parNameA = "TAVI" parNameF = ["TLRI", "TAVI", "TURI"] if useVM==0: print "Preparing the PowerMonitor device..." time.sleep(4); print "Get initial values" logTime = 60 for iters in range(0, N_INITIAL_SAMPLES): # Generate random parameter for pacemaker parValueArduino = random.randint(parVals[parDict[parNameA]][1], parVals[parDict[parNameA]][2]) # For testing #parValueArduino = 150 tmpParArduino = parVals[parDict[parNameA]][3] parVals[parDict[parNameA]][3] = parValueArduino parll = [parVals[parDict[parNameF[0]]][3]-parVals[parDict[parNameF[1]]][3], parVals[parDict[parNameF[2]]][3]] if isParamValuationFeasible(parll)!=1: print "Pacemaker parameter not feasible: "+str(parll) parVals[parDict[parNameA]][3] = tmpParArduino continue if SetArduinoParameter(s, parVals[parDict[parNameA]][0], parVals[parDict[parNameA]][3])!=1: break # Generate random parameter for Client parVals[parDict[parNameC]][3] = random.randint(parVals[parDict[parNameC]][1], parVals[parDict[parNameC]][2]) # For testing purposes #parValueClient = 2000 if SetClientParameter(s, parVals[parDict[parNameC]][0], parVals[parDict[parNameC]][3])!=1: break; # Save energy readings fileconst = open(constfile, 'w+') fileconst.write(parNameA+" = "+str(parVals[parDict[parNameA]][3])+"\n") fileconst.write(parNameC+" = "+str(parVals[parDict[parNameC]][3])+"\n") #isParamValuationFeasible(param) print "Start iteration: "+str(iters) # Start iteration s.sendall('\xF0') stDataColl = 1 time.sleep(logTime); # Stop iteration s.sendall('\xF1') time.sleep(1); stDataColl = 0 print "Stopped collecting data" cummCurrentList = GetTotalCurrents(s, collectedSamples, monItems['sampleRate']) if len(cummCurrentList)==0: break # Save energy readings to list for item in cummCurrentList: idCurr.append([item[0],item[2]]) SaveDistribution(fileconst, idCurr) fileconst.close() #energyValue = GetReward() energyValue = GetSumCurrent(collectedSamples, monItems['sampleRate']) XPace = np.vstack((XPace,parVals[parDict[parNameA]][3])) XYPace = np.vstack((XYPace,parVals[parDict[parNameC]][3])) YPace = np.vstack((YPace,energyValue)) print XPace print YPace os.system("rm "+constfile) collectedSamples = [] print "Initial sample:" XPace = XPace[1:len(XPace)] YPace = YPace[1:len(YPace)] XYPace = XYPace[1:len(XYPace)] XYPace = np.hstack((XYPace,YPace)) # For testing purposes tmpfileconst = open(tmpconstfile, 'w+') Save2DArray(tmpfileconst, XYPace) tmpfileconst.close() print "Optimize parameters" logTime = 60 # Store the initial values of parameters rfhandle = open(resultfile, 'w+') rfhandle.close() rfhandle = open(resultfile, 'a') rfhandle.write("paramp = ["+"\n") for idx in range(len(XPace)): rfhandle.write(str(XPace[idx])+" "+str(YPace[idx])+";\n") rfhandle.close() for iters in range(0, N_OPT_STEPS): m = GPy.models.GPRegression(XPace/float(XMAX),YPace/float(YMAX),kernel) m.optimize_restarts(num_restarts = 20) Xin = np.linspace(parVals[parDict[parNameA]][1], parVals[parDict[parNameA]][2],num=1000).reshape((1000,1)) Xf = np.array([0]) for idx in range(len(Xin)): #parll = [parVals[parDict[parNameF[0]]][3]-parVals[parDict[parNameF[1]]][3], Xin[idx]] parll = [parVals[parDict[parNameF[0]]][3]-Xin[idx], parVals[parDict[parNameF[2]]][3]] if isParamValuationFeasible(parll)==1: Xf = np.vstack((Xf,Xin[idx])) Xf = Xf[1:len(Xf)] parValueArduino = findMax(m, Xf/XMAX, parVals[parDict[parNameA]][1]/XMAX, parVals[parDict[parNameA]][2]/XMAX, min(YPace/YMAX)) tmpParArduino = parVals[parDict[parNameA]][3] parVals[parDict[parNameA]][3] = int(parValueArduino*XMAX) parll = [parVals[parDict[parNameF[0]]][3]-parVals[parDict[parNameF[1]]][3], parVals[parDict[parNameF[2]]][3]] if isParamValuationFeasible(parll)!=1: print "Pacemaker parameter not feasible: "+str(parll) parVals[parDict[parNameA]][3] = tmpParArduino continue if SetArduinoParameter(s, parVals[parDict[parNameA]][0], parVals[parDict[parNameA]][3])!=1: break # Generate random parameter for Client parVals[parDict[parNameC]][3] = random.randint(parVals[parDict[parNameC]][1], parVals[parDict[parNameC]][2]) # For testing purposes #parValueClient = 2000 if SetClientParameter(s, parVals[parDict[parNameC]][0], parVals[parDict[parNameC]][3])!=1: break; # Save energy readings fileconst = open(constfile, 'w+') fileconst.write(parNameA+" = "+str(parVals[parDict[parNameA]][3])+"\n") fileconst.write(parNameC+" = "+str(parVals[parDict[parNameC]][3])+"\n") #isParamValuationFeasible(param) print "Start iteration: "+str(iters) # Start iteration s.sendall('\xF0') stDataColl = 1 time.sleep(logTime); # Stop iteration s.sendall('\xF1') time.sleep(1); stDataColl = 0 print "Stopped collecting data" cummCurrentList = GetTotalCurrents(s, collectedSamples, monItems['sampleRate']) if len(cummCurrentList)==0: break # Save energy readings to list for item in cummCurrentList: idCurr.append([item[0],item[2]]) SaveDistribution(fileconst, idCurr) fileconst.close() #energyValue = GetReward() energyValue = GetSumCurrent(collectedSamples, monItems['sampleRate']) XPace = np.vstack((XPace,parVals[parDict[parNameA]][3])) YPace = np.vstack((YPace,energyValue)) os.system("rm "+constfile) collectedSamples = [] m.plot() plt.plot(XPace,YPace,'bo') plt.xlabel('$\mathrm{TAVI}$') plt.ylabel('$\mathrm{Energy}$') display(m) display(plt) plt.savefig(format('gaussfig%i'%iters)) # Save to file rfhandle = open(resultfile, 'a') rfhandle.write(str(parValueArduino)+" "+str(energyValue)+";\n") rfhandle.close() s.sendall('\xF2') exitFlag = 0 # Save to file rfhandle = open(resultfile, 'a') rfhandle.write("];"+"\n") rfhandle.close() else: key = '' # Generate random parameter headerID = 0xF4 parID = 1 #parValue = random.randint(1, 2000) parValue = 2000 print "Sending parameter ID: "+str(parID)+" value: "+str(parValue) parStr = struct.pack('BBI',headerID, parID, parValue) # Send parameter to Client s.sendall(parStr) buftmp = bytearray(1) buflen = s.recv_into(buftmp,1) if buftmp[0]!=0xF6: print "Wrong return value" s.close() exit() while key!='a': print "Press a key: " key = sys.stdin.read(1) if key=='w': s.sendall('\xF0') stDataColl = 1 elif key=='s': s.sendall('\xF1') time.sleep(1); stDataColl = 0 print "Stopped collecting data" # Send get list of IDs s.sendall('\xF3') bufSize = bytearray(4) buflen = s.recv_into(bufSize, 4) if buflen!=4: print "Wrong packet length" break bufSize = struct.unpack("I",bufSize) print "Packet size: "+str(bufSize[0]) bufIDs = bytearray() buftmp = bytearray(2048) bytes_recd = 0 while bytes_recd < bufSize[0]: chunkLen = s.recv_into(buftmp,2048) bufIDs[bytes_recd:] = buftmp[:chunkLen] bytes_recd = bytes_recd + chunkLen if bytes_recd != bufSize[0]: print "Wrong data" break print binascii.hexlify(bufIDs) collectedSamples = [] elif key=='a': s.sendall('\xF2') s.close()
gpl-2.0
datachand/h2o-3
h2o-py/tests/testdir_algos/glm/pyunit_link_functions_gammaGLM.py
5
2024
import sys sys.path.insert(1, "../../../") import h2o, tests import pandas as pd import zipfile import statsmodels.api as sm def link_functions_gamma(): print("Read in prostate data.") h2o_data = h2o.import_file(path=h2o.locate("smalldata/prostate/prostate_complete.csv.zip")) h2o_data.head() sm_data = pd.read_csv(zipfile.ZipFile(h2o.locate("smalldata/prostate/prostate_complete.csv.zip")). open("prostate_complete.csv")).as_matrix() sm_data_response = sm_data[:,5] sm_data_features = sm_data[:,[1,2,3,4,6,7,8,9]] print("Testing for family: GAMMA") print("Set variables for h2o.") myY = "DPROS" myX = ["ID","AGE","RACE","GLEASON","DCAPS","PSA","VOL","CAPSULE"] print("Create models with canonical link: INVERSE") h2o_model_in = h2o.glm(x=h2o_data[myX], y=h2o_data[myY], family="gamma", link="inverse",alpha=[0.5], Lambda=[0]) sm_model_in = sm.GLM(endog=sm_data_response, exog=sm_data_features, family=sm.families.Gamma(sm.families.links.inverse_power)).fit() print("Compare model deviances for link function inverse") h2o_deviance_in = h2o_model_in.residual_deviance() / h2o_model_in.null_deviance() sm_deviance_in = sm_model_in.deviance / sm_model_in.null_deviance assert h2o_deviance_in - sm_deviance_in < 0.01, "expected h2o to have an equivalent or better deviance measures" print("Create models with canonical link: LOG") h2o_model_log = h2o.glm(x=h2o_data[myX], y=h2o_data[myY], family="gamma", link="log",alpha=[0.5], Lambda=[0]) sm_model_log = sm.GLM(endog=sm_data_response, exog=sm_data_features, family=sm.families.Gamma(sm.families.links.log)).fit() print("Compare model deviances for link function log") h2o_deviance_log = h2o_model_log.residual_deviance() / h2o_model_log.null_deviance() sm_deviance_log = sm_model_log.deviance / sm_model_log.null_deviance assert h2o_deviance_log - sm_deviance_log < 0.01, "expected h2o to have an equivalent or better deviance measures" if __name__ == "__main__": tests.run_test(sys.argv, link_functions_gamma)
apache-2.0
apache/incubator-asterixdb
asterixdb/asterix-app/src/test/resources/TweetSent/sentiment.py
1
1161
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import math,sys import pickle; import sklearn; import os; class TweetSent(object): def __init__(self): pickle_path = os.path.join(os.path.dirname(__file__), 'sentiment_pipeline3') f = open(pickle_path,'rb') self.pipeline = pickle.load(f) f.close() def sentiment(self, *args): return self.pipeline.predict(args[0])[0].item()
apache-2.0
DonghoChoi/ISB_Project
local/CIS_application.py
2
4126
#!/usr/bin/python # Author: Dongho Choi ''' This script (1) read multiple tables from data base (2) join the tables into one for analysis ''' import os.path import datetime import math import time import itertools import pandas as pd from sshtunnel import SSHTunnelForwarder # for SSH connection import pymysql.cursors # MySQL handling API import sys import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model import statsmodels.api as sm import csv #sys.path.append("./configs/") sys.path.append("/Users/donghochoi/Documents/Work/Exploration_Study/Dissertation/Code/local/configs/") import server_config # (1) info2_server (2) exploration_db if __name__ == "__main__": # Server connection server = SSHTunnelForwarder( (server_config.info2_server['host'], 22), ssh_username=server_config.info2_server['user'], ssh_password=server_config.info2_server['password'], remote_bind_address=('127.0.0.1', 3306)) server.start() connection = pymysql.connect(host='127.0.0.1', port=server.local_bind_port, user=server_config.exploration_db['user'], password=server_config.exploration_db['password'], db=server_config.exploration_db['database']) connection.autocommit(True) cursor = connection.cursor() print("MySQL connection established") # Average Coverage and UsefulCoverage when Coverage is greater than zero coding data df_coverage_with_zero_field = pd.read_sql('SELECT userID,count(Coverage) as count_session_with_zero, avg(Coverage) as avg_cov_with_zero,avg(UsefulCoverage) as avg_usecov_with_zero FROM user_field_session_coverage WHERE Coverage >= 0 group by userID', con=connection) print("Coverage_with_zero data imported.") # Average Coverage and UsefulCoverage when Coverage is greater than zero coding data df_coverage_gt_zero_field = pd.read_sql('SELECT userID,count(Coverage) as count_session_gt_zero, avg(Coverage) as avg_cov_gt_zero,avg(UsefulCoverage) as avg_usecov_gt_zero FROM user_field_session_coverage WHERE Coverage > 0 group by userID', con=connection) print("Coverage_gt_zero data imported.") # Average Use_ratio when Coverage being greater than zero df_useratio_field = pd.read_sql('SELECT userID,avg(Use_ratio) as avg_useratio FROM user_field_session_coverage WHERE Coverage > 0 group by userID', con=connection) print("Useratio data imported.") # Online diversity in field session df_online_diversity_field = pd.read_sql('SELECT userID, online_diversity as online_diversity_field, online_loyalty as online_loyalty_field FROM user_online_diversity', con=connection) print("Online diversity data imported.") # Online performance in lab task 2 df_lab_performance = pd.read_sql('SELECT userID,Coverage as Cov_task2,UniqueCoverage as UniCov_task2,UsefulCoverage as UseCov_task2, UniqueUsefulCoverage as UniUseCov_task2 FROM individual_data', con=connection) print("Individual data imported.") # Geo-exploration: S_k measure df_geo_s_k = pd.read_sql('SELECT userID,gyration_all,gyration_k,s_k FROM mobility_data', con=connection) print("s_k measure imported") # Geo-exploration diversity in field session df_location_diversity = pd.read_sql('SELECT userID,location_diversity,location_loyalty FROM user_location_diversity', con=connection) print("Location diversity imported") #server.stop() # Joining multiple dataframes df_join = pd.merge(df_coverage_with_zero_field, df_coverage_gt_zero_field, on='userID', how='inner') df_join = pd.merge(df_join, df_useratio_field, on='userID', how='inner') df_join = pd.merge(df_join, df_online_diversity_field, on='userID', how='inner') df_join = pd.merge(df_join, df_lab_performance, on='userID', how='inner') df_join = pd.merge(df_join, df_geo_s_k, on='userID', how='inner') df_join = pd.merge(df_join, df_location_diversity, on='userID', how='inner') print(df_join) print(df_join.corr(method='pearson'))
gpl-3.0
gpospelov/BornAgain
Examples/fit51_Basic/basic_fitting_tutorial.py
1
4069
""" Fitting example: 4 parameters fit for mixture of cylinders and prisms on top of substrate. """ import bornagain as ba from bornagain import deg, angstrom, nm import numpy as np from matplotlib import pyplot as plt def get_sample(params): """ Returns a sample with uncorrelated cylinders and prisms on a substrate. """ cylinder_height = params["cylinder_height"] cylinder_radius = params["cylinder_radius"] prism_height = params["prism_height"] prism_base_edge = params["prism_base_edge"] # defining materials m_vacuum = ba.HomogeneousMaterial("Vacuum", 0.0, 0.0) m_substrate = ba.HomogeneousMaterial("Substrate", 6e-6, 2e-8) m_particle = ba.HomogeneousMaterial("Particle", 6e-4, 2e-8) # collection of particles cylinder_ff = ba.FormFactorCylinder(cylinder_radius, cylinder_height) cylinder = ba.Particle(m_particle, cylinder_ff) prism_ff = ba.FormFactorPrism3(prism_base_edge, prism_height) prism = ba.Particle(m_particle, prism_ff) layout = ba.ParticleLayout() layout.addParticle(cylinder, 0.5) layout.addParticle(prism, 0.5) # vacuum layer with particles and substrate form multi layer vacuum_layer = ba.Layer(m_vacuum) vacuum_layer.addLayout(layout) substrate_layer = ba.Layer(m_substrate, 0) multi_layer = ba.MultiLayer() multi_layer.addLayer(vacuum_layer) multi_layer.addLayer(substrate_layer) return multi_layer def get_simulation(params): """ Returns a GISAXS simulation with beam and detector defined """ simulation = ba.GISASSimulation() simulation.setDetectorParameters(100, -1.0*deg, 1.0*deg, 100, 0.0*deg, 2.0*deg) simulation.setBeamParameters(1.0*angstrom, 0.2*deg, 0.0*deg) simulation.beam().setIntensity(1e+08) simulation.setSample(get_sample(params)) return simulation def create_real_data(): """ Generating "experimental" data by running simulation with certain parameters. The data is saved on disk in the form of numpy array. """ # default sample parameters params = { 'cylinder_height': 5.0*nm, 'cylinder_radius': 5.0*nm, 'prism_height': 5.0*nm, 'prism_base_edge': 5.0*nm } # retrieving simulated data in the form of numpy array simulation = get_simulation(params) simulation.runSimulation() real_data = simulation.result().array() # spoiling simulated data with noise to produce "real" data np.random.seed(0) noise_factor = 0.1 noisy = np.random.normal(real_data, noise_factor*np.sqrt(real_data)) noisy[noisy < 0.1] = 0.1 np.savetxt("basic_fitting_tutorial_data.txt.gz", real_data) def load_real_data(): """ Loads experimental data from file """ return np.loadtxt("basic_fitting_tutorial_data.txt.gz", dtype=float) def run_fitting(): """ Setup simulation and fit """ real_data = load_real_data() fit_objective = ba.FitObjective() fit_objective.addSimulationAndData(get_simulation, real_data) # Print fit progress on every n-th iteration. fit_objective.initPrint(10) # Plot fit progress on every n-th iteration. Will slow down fit. fit_objective.initPlot(10) params = ba.Parameters() params.add("cylinder_height", 4.*nm, min=0.01) params.add("cylinder_radius", 6.*nm, min=0.01) params.add("prism_height", 4.*nm, min=0.01) params.add("prism_base_edge", 6.*nm, min=0.01) minimizer = ba.Minimizer() result = minimizer.minimize(fit_objective.evaluate, params) fit_objective.finalize(result) print("Fitting completed.") print("chi2:", result.minValue()) for fitPar in result.parameters(): print(fitPar.name(), fitPar.value, fitPar.error) # saving simulation image corresponding to the best fit parameters # np.savetxt("data.txt", fit_objective.simulationResult().array()) if __name__ == '__main__': # uncomment line below to regenerate "experimental" data file # create_real_data() run_fitting() plt.show()
gpl-3.0
sourcepole/kadas-albireo
python/plugins/processing/algs/qgis/RasterLayerHistogram.py
5
3235
# -*- coding: utf-8 -*- """ *************************************************************************** RasterLayerHistogram.py --------------------- Date : January 2013 Copyright : (C) 2013 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'January 2013' __copyright__ = '(C) 2013, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import matplotlib.pyplot as plt import matplotlib.pylab as lab from PyQt4.QtCore import QVariant from qgis.core import QgsField from processing.core.GeoAlgorithm import GeoAlgorithm from processing.core.parameters import ParameterNumber from processing.core.parameters import ParameterRaster from processing.core.outputs import OutputTable from processing.core.outputs import OutputHTML from processing.tools import dataobjects from processing.tools import raster class RasterLayerHistogram(GeoAlgorithm): INPUT = 'INPUT' PLOT = 'PLOT' TABLE = 'TABLE' BINS = 'BINS' def defineCharacteristics(self): self.name = 'Raster layer histogram' self.group = 'Graphics' self.addParameter(ParameterRaster(self.INPUT, self.tr('Input layer'))) self.addParameter(ParameterNumber(self.BINS, self.tr('Number of bins'), 2, None, 10)) self.addOutput(OutputHTML(self.PLOT, self.tr('Output plot'))) self.addOutput(OutputTable(self.TABLE, self.tr('Output table'))) def processAlgorithm(self, progress): layer = dataobjects.getObjectFromUri( self.getParameterValue(self.INPUT)) nbins = self.getParameterValue(self.BINS) outputplot = self.getOutputValue(self.PLOT) outputtable = self.getOutputFromName(self.TABLE) values = raster.scanraster(layer, progress) # ALERT: this is potentially blocking if the layer is too big plt.close() valueslist = [] for v in values: if v is not None: valueslist.append(v) (n, bins, values) = plt.hist(valueslist, nbins) fields = [QgsField('CENTER_VALUE', QVariant.Double), QgsField('NUM_ELEM', QVariant.Double)] writer = outputtable.getTableWriter(fields) for i in xrange(len(values)): writer.addRecord([str(bins[i]) + '-' + str(bins[i + 1]), n[i]]) plotFilename = outputplot + '.png' lab.savefig(plotFilename) f = open(outputplot, 'w') f.write('<img src="' + plotFilename + '"/>') f.close()
gpl-2.0
hoenirvili/distributions
distributions/bernoulli.py
1
2492
#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt from scipy.stats import bernoulli from .distribution import Distribution __all__ = ['Bernoulli'] class Bernoulli(Distribution): """ A random variable X that has a bernoulli distribution represents the success in one independent yes/no trial, of which yields success with probability of p. Parameters ---------- p : int or float Probability of a trial to be successful """ def __init__(self, p): if (type(p) != int and type(p) != float or p > 1 or p < 0 or p is None): raise ValueError("Invalid probability number") self.__p = p self.__r = 1 self.__all_r = np.arange(0, self.__r+1) def mean(self): """ Compute the mean of the distribution Returns: -------- mean : float """ return bernoulli.mean(self.__p) def variance(self): """ Compute the variance of the distribution Returns: -------- variance : float """ return bernoulli.var(self.__p) def std(self): """ Compute the standard deviation of the distribution. Returns: -------- std : float """ return bernoulli.std(self.__p) def pmf(self): """ Compute the probability mass function of the distribution Returns: -------- pmf : float """ return bernoulli.pmf(self.__r, self.__p) def cdf(self): """ Compute the cumulative distribution function. Returns: -------- cdf : float """ return bernoulli.cdf(self.__r, self.__p) def pmfs(self): """ Compute the probability mass function of the distribution the success and failure in one trial p, 1-p Returns: -------- pmf : numpy.narray """ return bernoulli.pmf(self.__all_r, self.__p) def plot(self): """Plot values pmfs values of the distribution in one trial""" pmfs = self.pmfs() fix, ax = plt.subplots() x = np.arange(0, 2) plt.bar(x, pmfs, color="blue") ax.set_xticks(x) ax.set_xticklabels(['Failure', 'Success']) ax.set_title('Bernoulli distribution') ax.set_ylabel('Probability of success') ax.set_ylim([0, 1]) plt.show()
mit
thomasaarholt/hyperspy
hyperspy/misc/math_tools.py
3
5483
# -*- coding: utf-8 -*- # Copyright 2007-2020 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import math import numbers import numpy as np import dask.array as da from functools import reduce def symmetrize(a): return a + a.swapaxes(0, 1) - np.diag(a.diagonal()) def antisymmetrize(a): return a - a.swapaxes(0, 1) + np.diag(a.diagonal()) def closest_nice_number(number): oom = 10 ** math.floor(math.log10(number)) return oom * (number // oom) def get_linear_interpolation(p1, p2, x): """Given two points in 2D returns y for a given x for y = ax + b Parameters ---------- p1,p2 : (x, y) x : float Returns ------- y : float """ x1, y1 = p1 x2, y2 = p2 a = (y2 - y1) / (x2 - x1) b = (x2 * y1 - x1 * y2) / (x2 - x1) y = a * x + b return y def order_of_magnitude(number): """Order of magnitude of the given number Parameters ---------- number : float Returns ------- Float """ return math.floor(math.log10(number)) def isfloat(number): """Check if a number or array is of float type. This is necessary because e.g. isinstance(np.float32(2), float) is False. """ if hasattr(number, "dtype"): return np.issubdtype(number, np.floating) else: return isinstance(number, float) def anyfloatin(things): """Check if iterable contains any non integer.""" for n in things: if isfloat(n) and not n.is_integer(): return True return False def outer_nd(*vec): """ Calculates outer product of n vectors Parameters ---------- vec : vector Return ------ out : ndarray """ return reduce(np.multiply.outer, vec) def hann_window_nth_order(m, order): """ Calculates 1D Hann window of nth order Parameters ---------- m : int number of points in window (typically the length of a signal) order : int Filter order Return ------ window : array window """ if not isinstance(m, int) or m <= 0: raise ValueError('Parameter m has to be positive integer greater than 0.') if not isinstance(order, int) or order <= 0: raise ValueError('Filter order has to be positive integer greater than 0.') sin_arg = np.pi * (m - 1.) / m cos_arg = 2. * np.pi / (m - 1.) * (np.arange(m)) return m / (order * 2 * np.pi) * sum([(-1) ** i / i * np.sin(i * sin_arg) * (np.cos(i * cos_arg) - 1) for i in range(1, order + 1)]) def optimal_fft_size(target, real=False): """Wrapper around scipy function next_fast_len() for calculating optimal FFT padding. scipy.fft was only added in 1.4.0, so we fall back to scipy.fftpack if it is not available. The main difference is that next_fast_len() does not take a second argument in the older implementation. Parameters ---------- target : int Length to start searching from. Must be a positive integer. real : bool, optional True if the FFT involves real input or output, only available for scipy > 1.4.0 Returns ------- int Optimal FFT size. """ try: from scipy.fft import next_fast_len support_real = True except ImportError: # pragma: no cover from scipy.fftpack import next_fast_len support_real = False if support_real: return next_fast_len(target, real) else: # pragma: no cover return next_fast_len(target) def check_random_state(seed, lazy=False): """Turn a random seed into a np.random.RandomState instance. Parameters ---------- seed : None or int or np.random.RandomState or dask.array.random.RandomState If None: Return the RandomState singleton used by np.random or dask.array.random If int: Return a new RandomState instance seeded with ``seed``. If np.random.RandomState: Return it. If dask.array.random.RandomState: Return it. lazy : bool, default False If True, and seed is ``None`` or ``int``, return a dask.array.random.RandomState instance instead. """ # Derived from `sklearn.utils.check_random_state`. # Copyright (c) 2007-2020 The scikit-learn developers. # All rights reserved. if seed is None or seed is np.random: return da.random._state if lazy else np.random.mtrand._rand if isinstance(seed, numbers.Integral): return da.random.RandomState(seed) if lazy else np.random.RandomState(seed) if isinstance(seed, (da.random.RandomState, np.random.RandomState)): return seed raise ValueError(f"{seed} cannot be used to seed a RandomState instance")
gpl-3.0
vibhutiM/Production-Failures
scripts/train.py
2
4101
# coding: utf-8 # ### Open using Jupyter Notebook. It holds the code and visualizations for developing the different classification algorithms (LibSVM, RBF SVM, Naive Bayes, Random Forest, Gradient Boosting) on the chosen subset of important features. # In[27]: import pandas as pd import numpy as np from numpy import sort from sklearn.metrics import matthews_corrcoef, accuracy_score,confusion_matrix from sklearn.feature_selection import SelectFromModel from matplotlib import pyplot import pylab as pl from sklearn import svm get_ipython().magic(u'matplotlib inline') # In[4]: SEED = 1234 ## Selected set of most important features featureSet=['L3_S31_F3846','L1_S24_F1578','L3_S33_F3857','L1_S24_F1406','L3_S29_F3348','L3_S33_F3863', 'L3_S29_F3427','L3_S37_F3950','L0_S9_F170', 'L3_S29_F3321','L1_S24_F1346','L3_S32_F3850', 'L3_S30_F3514','L1_S24_F1366','L2_S26_F3036'] train_x = pd.read_csv("../data/train_numeric.csv", usecols=featureSet) train_y = pd.read_csv("../data/train_numeric.csv", usecols=['Response']) # In[5]: test_x = pd.read_csv("../data/test_numeric.csv", usecols=featureSet) # In[6]: train_x = train_x.fillna(9999999) msk = np.random.rand(len(train_x)) < 0.7 # creating Training and validation set X_train = train_x[msk] Y_train = train_y.Response.ravel()[msk] X_valid = train_x[~msk] Y_valid = train_y.Response.ravel()[~msk] # In[7]: def showconfusionmatrix(cm, typeModel): pl.matshow(cm) pl.title('Confusion matrix for '+typeModel) pl.colorbar() pl.show() # In[24]: from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier C=4 lin_svc = svm.LinearSVC(C=C).fit(X_train, Y_train) print "LibSVM fitted" title = 'LinearSVC (linear kernel)' predicted = lin_svc.predict(X_valid) mcc= matthews_corrcoef(Y_valid, predicted) print "MCC Score \t +"+title+str(mcc) cm = confusion_matrix(predicted, Y_valid) showconfusionmatrix(cm, title) print "Confusion Matrix" print (cm) # In[22]: from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier C=4 rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X_train, Y_train) print "RBF fitted" title = 'SVC with RBF kernel' predicted = rbf_svc.predict(X_valid) mcc= matthews_corrcoef(Y_valid, predicted) print "MCC Score \t +"+title+str(mcc) cm = confusion_matrix(predicted, Y_valid) showconfusionmatrix(cm, title) print "Confusion Matrix" print (cm) # In[10]: from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() clf = gnb.fit(X_train,Y_train) print "Naive Bayes Fitted" title = 'Naive Bayes' predicted = clf.predict(X_valid) mcc= matthews_corrcoef(Y_valid, predicted) print "MCC Score \t +"+title+str(mcc) cm = confusion_matrix(predicted, Y_valid) showconfusionmatrix(cm, title) print "Confusion Matrix" print (cm) # In[21]: from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.cross_validation import cross_val_score from sklearn.model_selection import GridSearchCV # In[23]: rf = RandomForestClassifier(n_estimators=20, n_jobs=2) param_grid = { 'n_estimators': [5, 10, 15, 20], 'max_depth': [2, 5, 7, 9] } # In[24]: grid_rf = GridSearchCV(rf, param_grid, cv=10) rf_model=grid_rf.fit(X_train, Y_train) # In[30]: print "RF fitted" titles = 'Random Forest' predicted = rf_model.predict(X_valid) mcc= matthews_corrcoef(Y_valid, predicted) print "MCC Score \t +"+titles[0]+str(mcc) cm = confusion_matrix(predicted, Y_valid) showconfusionmatrix(cm, titles[0]) # In[31]: gb = GradientBoostingClassifier(learning_rate=0.5) param_grid = { 'n_estimators': [5, 10, 15, 20], 'max_depth': [2, 5, 7, 9] } # In[32]: grid_gb = GridSearchCV(gb, param_grid, cv=10) gb_model=grid_gb.fit(X_train, Y_train) # In[36]: print "GB fitted" title = 'Gradient Boosting' predicted = gb_model.predict(X_valid) mcc= matthews_corrcoef(Y_valid, predicted) print "MCC Score \t +"+title+str(mcc) cm = confusion_matrix(predicted, Y_valid) showconfusionmatrix(cm, title)
apache-2.0
nicain/dipde_dev
dipde/examples/excitatory_inhibitory.py
2
2373
# Copyright 2013 Allen Institute # This file is part of dipde # dipde is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # dipde is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with dipde. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt from dipde.internals.internalpopulation import InternalPopulation from dipde.internals.externalpopulation import ExternalPopulation from dipde.internals.network import Network from dipde.internals.connection import Connection as Connection import scipy.stats as sps def get_network(dv=.001, verbose=False, update_method='approx', approx_order=1, tol=1e-14): # Create network: b1 = ExternalPopulation('100') i1 = InternalPopulation(v_min=-.02, v_max=.02, dv=dv, update_method=update_method, approx_order=approx_order, tol=tol) b1_i1 = Connection(b1, i1, 1, weights=.005, delays=([.005, .01],[.5,.5])) b1_i1_2 = Connection(b1, i1, 1, weights=-.005, delays=sps.uniform(0,.01)) network = Network([b1, i1], [b1_i1, b1_i1_2]) return network def example(show=True, save=False): # Settings: t0 = 0. dt = .0001 dv = .0001 tf = .1 verbose = True update_method = 'approx' approx_order = 1 tol = 1e-14 # Run simulation: network = get_network(dv=dv, verbose=verbose, update_method=update_method, approx_order=approx_order, tol=tol) network.run(dt=dt, tf=tf, t0=t0) i1 = network.population_list[1] if show == True: # Visualize: plt.figure(figsize=(3,3)) plt.plot(i1.t_record, i1.firing_rate_record) plt.xlim([0,tf]) plt.ylim(ymin=0) plt.xlabel('Time (s)') plt.ylabel('Firing Rate (Hz)') plt.tight_layout() if save == True: plt.savefig('./excitatory_inhibitory.png') plt.show() return i1.t_record, i1.firing_rate_record if __name__ == "__main__": example() # pragma: no cover
gpl-3.0
eg-zhang/scikit-learn
sklearn/datasets/tests/test_20news.py
280
3045
"""Test the 20news downloader, if the data is available.""" import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn import datasets def test_20news(): try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract a reduced dataset data2cats = datasets.fetch_20newsgroups( subset='all', categories=data.target_names[-1:-3:-1], shuffle=False) # Check that the ordering of the target_names is the same # as the ordering in the full dataset assert_equal(data2cats.target_names, data.target_names[-2:]) # Assert that we have only 0 and 1 as labels assert_equal(np.unique(data2cats.target).tolist(), [0, 1]) # Check that the number of filenames is consistent with data/target assert_equal(len(data2cats.filenames), len(data2cats.target)) assert_equal(len(data2cats.filenames), len(data2cats.data)) # Check that the first entry of the reduced dataset corresponds to # the first entry of the corresponding category in the full dataset entry1 = data2cats.data[0] category = data2cats.target_names[data2cats.target[0]] label = data.target_names.index(category) entry2 = data.data[np.where(data.target == label)[0][0]] assert_equal(entry1, entry2) def test_20news_length_consistency(): """Checks the length consistencies within the bunch This is a non-regression test for a bug present in 0.16.1. """ try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract the full dataset data = datasets.fetch_20newsgroups(subset='all') assert_equal(len(data['data']), len(data.data)) assert_equal(len(data['target']), len(data.target)) assert_equal(len(data['filenames']), len(data.filenames)) def test_20news_vectorized(): # This test is slow. raise SkipTest("Test too slow.") bunch = datasets.fetch_20newsgroups_vectorized(subset="train") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314, 107428)) assert_equal(bunch.target.shape[0], 11314) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="test") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (7532, 107428)) assert_equal(bunch.target.shape[0], 7532) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="all") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314 + 7532, 107428)) assert_equal(bunch.target.shape[0], 11314 + 7532) assert_equal(bunch.data.dtype, np.float64)
bsd-3-clause
jnez71/demos
signals/fourier_transform.py
1
1952
#!/usr/bin/env python3 """ Using a typical FFT routine and showing the principle behind the DTFT computation. """ import numpy as np from matplotlib import pyplot ################################################## # Efficient practical usage def fft(values, dt): freqs = np.fft.rfftfreq(len(values), dt) coeffs = np.sqrt(2.0/len(values)) * np.fft.rfft(values) # scaled for unitarity coeffs[0] /= np.sqrt(2.0) # don't "double count" the DC alias return (freqs, coeffs) # Working principle def dtft(values, dt): times = dt * np.arange(len(values)) nyquist = 1.0/(2.0*dt) df = nyquist / (len(values)/2.0) freqs = np.arange(0.0, nyquist+df, df) # (rad/s)/Hz all f*t products dtft_matrix = np.exp(-1j * (2.0*np.pi) * np.outer(freqs, times)) coeffs = np.sqrt(2.0/len(values)) * dtft_matrix.dot(values) # scaled for unitarity coeffs[0] /= np.sqrt(2.0) # don't "double count" the DC alias return (freqs, coeffs) ################################################## def function(time): w = 20*np.pi value = 0.0 for k in range(5): value += (k+1)*np.cos((k*w)*time) return value dt = 0.001 times = np.arange(0.0, 0.2, dt) values = function(times) ################################################## fft_freqs, fft_coeffs = fft(values, dt) dtft_freqs, dtft_coeffs = dtft(values, dt) assert np.allclose(fft_freqs, dtft_freqs) assert np.allclose(fft_coeffs, dtft_coeffs) ################################################## # Demonstrate Parseval's theorem print(np.linalg.norm(values)) print(np.linalg.norm(dtft_coeffs)) ################################################## fig = pyplot.figure() ax = fig.add_subplot(2, 1, 1) ax.plot(times, values) ax.set_xlabel("Time (s)", fontsize=16) ax.grid(True) ax = fig.add_subplot(2, 1, 2) ax.scatter(dtft_freqs, np.abs(dtft_coeffs)) ax.set_xlabel("Freq (Hz)", fontsize=16) ax.grid(True) pyplot.show()
mit
shahankhatch/scikit-learn
sklearn/tests/test_isotonic.py
230
11087
import numpy as np import pickle from sklearn.isotonic import (check_increasing, isotonic_regression, IsotonicRegression) from sklearn.utils.testing import (assert_raises, assert_array_equal, assert_true, assert_false, assert_equal, assert_array_almost_equal, assert_warns_message, assert_no_warnings) from sklearn.utils import shuffle def test_permutation_invariance(): # check that fit is permuation invariant. # regression test of missing sorting of sample-weights ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0) y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight) y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x) assert_array_equal(y_transformed, y_transformed_s) def test_check_increasing_up(): x = [0, 1, 2, 3, 4, 5] y = [0, 1.5, 2.77, 8.99, 8.99, 50] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_up_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_down(): x = [0, 1, 2, 3, 4, 5] y = [0, -1.5, -2.77, -8.99, -8.99, -50] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_increasing_down_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, -2, -3, -4, -5] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_ci_warn(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, 2, -3, 4, -5] # Check that we got increasing=False and CI interval warning is_increasing = assert_warns_message(UserWarning, "interval", check_increasing, x, y) assert_false(is_increasing) def test_isotonic_regression(): y = np.array([3, 7, 5, 9, 8, 7, 10]) y_ = np.array([3, 6, 6, 8, 8, 8, 10]) assert_array_equal(y_, isotonic_regression(y)) x = np.arange(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(ir.transform(x), ir.predict(x)) # check that it is immune to permutation perm = np.random.permutation(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) # check we don't crash when all x are equal: ir = IsotonicRegression() assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y)) def test_isotonic_regression_ties_min(): # Setup examples with ties on minimum x = [0, 1, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5, 6] y_true = [0, 1.5, 1.5, 3, 4, 5, 6] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_max(): # Setup examples with ties on maximum x = [1, 2, 3, 4, 5, 5] y = [1, 2, 3, 4, 5, 6] y_true = [1, 2, 3, 4, 5.5, 5.5] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_secondary_(): """ Test isotonic regression fit, transform and fit_transform against the "secondary" ties method and "pituitary" data from R "isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Set values based on pituitary example and the following R command detailed in the paper above: > library("isotone") > data("pituitary") > res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") > res1$x `isotone` version: 1.0-2, 2014-09-07 R version: R version 3.1.1 (2014-07-10) """ x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] y_true = [22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 24.25, 24.25] # Check fit, transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true, 4) assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4) def test_isotonic_regression_reversed(): y = np.array([10, 9, 10, 7, 6, 6.1, 5]) y_ = IsotonicRegression(increasing=False).fit_transform( np.arange(len(y)), y) assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) def test_isotonic_regression_auto_decreasing(): # Set y and x for decreasing y = np.array([10, 9, 10, 7, 6, 6.1, 5]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship decreases is_increasing = y_[0] < y_[-1] assert_false(is_increasing) def test_isotonic_regression_auto_increasing(): # Set y and x for decreasing y = np.array([5, 6.1, 6, 7, 10, 9, 10]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship increases is_increasing = y_[0] < y_[-1] assert_true(is_increasing) def test_assert_raises_exceptions(): ir = IsotonicRegression() rng = np.random.RandomState(42) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7, 3], [0.1, 0.6]) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7]) assert_raises(ValueError, ir.fit, rng.randn(3, 10), [0, 1, 2]) assert_raises(ValueError, ir.transform, rng.randn(3, 10)) def test_isotonic_sample_weight_parameter_default_value(): # check if default value of sample_weight parameter is one ir = IsotonicRegression() # random test data rng = np.random.RandomState(42) n = 100 x = np.arange(n) y = rng.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) # check if value is correctly used weights = np.ones(n) y_set_value = ir.fit_transform(x, y, sample_weight=weights) y_default_value = ir.fit_transform(x, y) assert_array_equal(y_set_value, y_default_value) def test_isotonic_min_max_boundaries(): # check if min value is used correctly ir = IsotonicRegression(y_min=2, y_max=4) n = 6 x = np.arange(n) y = np.arange(n) y_test = [2, 2, 2, 3, 4, 4] y_result = np.round(ir.fit_transform(x, y)) assert_array_equal(y_result, y_test) def test_isotonic_sample_weight(): ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24] received_y = ir.fit_transform(x, y, sample_weight=sample_weight) assert_array_equal(expected_y, received_y) def test_isotonic_regression_oob_raise(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") ir.fit(x, y) # Check that an exception is thrown assert_raises(ValueError, ir.predict, [min(x) - 10, max(x) + 10]) def test_isotonic_regression_oob_clip(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) # Predict from training and test x and check that min/max match. y1 = ir.predict([min(x) - 10, max(x) + 10]) y2 = ir.predict(x) assert_equal(max(y1), max(y2)) assert_equal(min(y1), min(y2)) def test_isotonic_regression_oob_nan(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="nan") ir.fit(x, y) # Predict from training and test x and check that we have two NaNs. y1 = ir.predict([min(x) - 10, max(x) + 10]) assert_equal(sum(np.isnan(y1)), 2) def test_isotonic_regression_oob_bad(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="xyz") # Make sure that we throw an error for bad out_of_bounds value assert_raises(ValueError, ir.fit, x, y) def test_isotonic_regression_oob_bad_after(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") # Make sure that we throw an error for bad out_of_bounds value in transform ir.fit(x, y) ir.out_of_bounds = "xyz" assert_raises(ValueError, ir.transform, x) def test_isotonic_regression_pickle(): y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL) ir2 = pickle.loads(ir_ser) np.testing.assert_array_equal(ir.predict(x), ir2.predict(x)) def test_isotonic_duplicate_min_entry(): x = [0, 0, 1] y = [0, 0, 1] ir = IsotonicRegression(increasing=True, out_of_bounds="clip") ir.fit(x, y) all_predictions_finite = np.all(np.isfinite(ir.predict(x))) assert_true(all_predictions_finite) def test_isotonic_zero_weight_loop(): # Test from @ogrisel's issue: # https://github.com/scikit-learn/scikit-learn/issues/4297 # Get deterministic RNG with seed rng = np.random.RandomState(42) # Create regression and samples regression = IsotonicRegression() n_samples = 50 x = np.linspace(-3, 3, n_samples) y = x + rng.uniform(size=n_samples) # Get some random weights and zero out w = rng.uniform(size=n_samples) w[5:8] = 0 regression.fit(x, y, sample_weight=w) # This will hang in failure case. regression.fit(x, y, sample_weight=w)
bsd-3-clause
NunoEdgarGub1/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/text.py
69
55366
""" Classes for including text in a figure. """ from __future__ import division import math import numpy as np from matplotlib import cbook from matplotlib import rcParams import artist from artist import Artist from cbook import is_string_like, maxdict from font_manager import FontProperties from patches import bbox_artist, YAArrow, FancyBboxPatch, \ FancyArrowPatch, Rectangle import transforms as mtransforms from transforms import Affine2D, Bbox from lines import Line2D import matplotlib.nxutils as nxutils def _process_text_args(override, fontdict=None, **kwargs): "Return an override dict. See :func:`~pyplot.text' docstring for info" if fontdict is not None: override.update(fontdict) override.update(kwargs) return override # Extracted from Text's method to serve as a function def get_rotation(rotation): """ Return the text angle as float. *rotation* may be 'horizontal', 'vertical', or a numeric value in degrees. """ if rotation in ('horizontal', None): angle = 0. elif rotation == 'vertical': angle = 90. else: angle = float(rotation) return angle%360 # these are not available for the object inspector until after the # class is build so we define an initial set here for the init # function and they will be overridden after object defn artist.kwdocd['Text'] = """ ========================== ========================================================================= Property Value ========================== ========================================================================= alpha float animated [True | False] backgroundcolor any matplotlib color bbox rectangle prop dict plus key 'pad' which is a pad in points clip_box a matplotlib.transform.Bbox instance clip_on [True | False] color any matplotlib color family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ] figure a matplotlib.figure.Figure instance fontproperties a matplotlib.font_manager.FontProperties instance horizontalalignment or ha [ 'center' | 'right' | 'left' ] label any string linespacing float lod [True | False] multialignment ['left' | 'right' | 'center' ] name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...] position (x,y) rotation [ angle in degrees 'vertical' | 'horizontal' size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ] style or fontstyle [ 'normal' | 'italic' | 'oblique'] text string transform a matplotlib.transform transformation instance variant [ 'normal' | 'small-caps' ] verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ] visible [True | False] weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight'] x float y float zorder any number ========================== ========================================================================= """ # TODO : This function may move into the Text class as a method. As a # matter of fact, The information from the _get_textbox function # should be available during the Text._get_layout() call, which is # called within the _get_textbox. So, it would better to move this # function as a method with some refactoring of _get_layout method. def _get_textbox(text, renderer): """ Calculate the bounding box of the text. Unlike :meth:`matplotlib.text.Text.get_extents` method, The bbox size of the text before the rotation is calculated. """ projected_xs = [] projected_ys = [] theta = text.get_rotation()/180.*math.pi tr = mtransforms.Affine2D().rotate(-theta) for t, wh, x, y in text._get_layout(renderer)[1]: w, h = wh xt1, yt1 = tr.transform_point((x, y)) xt2, yt2 = xt1+w, yt1+h projected_xs.extend([xt1, xt2]) projected_ys.extend([yt1, yt2]) xt_box, yt_box = min(projected_xs), min(projected_ys) w_box, h_box = max(projected_xs) - xt_box, max(projected_ys) - yt_box tr = mtransforms.Affine2D().rotate(theta) x_box, y_box = tr.transform_point((xt_box, yt_box)) return x_box, y_box, w_box, h_box class Text(Artist): """ Handle storing and drawing of text in window or data coordinates. """ zorder = 3 def __str__(self): return "Text(%g,%g,%s)"%(self._y,self._y,repr(self._text)) def __init__(self, x=0, y=0, text='', color=None, # defaults to rc params verticalalignment='bottom', horizontalalignment='left', multialignment=None, fontproperties=None, # defaults to FontProperties() rotation=None, linespacing=None, **kwargs ): """ Create a :class:`~matplotlib.text.Text` instance at *x*, *y* with string *text*. Valid kwargs are %(Text)s """ Artist.__init__(self) self.cached = maxdict(5) self._x, self._y = x, y if color is None: color = rcParams['text.color'] if fontproperties is None: fontproperties=FontProperties() elif is_string_like(fontproperties): fontproperties=FontProperties(fontproperties) self.set_text(text) self.set_color(color) self._verticalalignment = verticalalignment self._horizontalalignment = horizontalalignment self._multialignment = multialignment self._rotation = rotation self._fontproperties = fontproperties self._bbox = None self._bbox_patch = None # a FancyBboxPatch instance self._renderer = None if linespacing is None: linespacing = 1.2 # Maybe use rcParam later. self._linespacing = linespacing self.update(kwargs) #self.set_bbox(dict(pad=0)) def contains(self,mouseevent): """Test whether the mouse event occurred in the patch. In the case of text, a hit is true anywhere in the axis-aligned bounding-box containing the text. Returns True or False. """ if callable(self._contains): return self._contains(self,mouseevent) if not self.get_visible() or self._renderer is None: return False,{} l,b,w,h = self.get_window_extent().bounds r = l+w t = b+h xyverts = (l,b), (l, t), (r, t), (r, b) x, y = mouseevent.x, mouseevent.y inside = nxutils.pnpoly(x, y, xyverts) return inside,{} def _get_xy_display(self): 'get the (possibly unit converted) transformed x, y in display coords' x, y = self.get_position() return self.get_transform().transform_point((x,y)) def _get_multialignment(self): if self._multialignment is not None: return self._multialignment else: return self._horizontalalignment def get_rotation(self): 'return the text angle as float in degrees' return get_rotation(self._rotation) # string_or_number -> number def update_from(self, other): 'Copy properties from other to self' Artist.update_from(self, other) self._color = other._color self._multialignment = other._multialignment self._verticalalignment = other._verticalalignment self._horizontalalignment = other._horizontalalignment self._fontproperties = other._fontproperties.copy() self._rotation = other._rotation self._picker = other._picker self._linespacing = other._linespacing def _get_layout(self, renderer): key = self.get_prop_tup() if key in self.cached: return self.cached[key] horizLayout = [] thisx, thisy = 0.0, 0.0 xmin, ymin = 0.0, 0.0 width, height = 0.0, 0.0 lines = self._text.split('\n') whs = np.zeros((len(lines), 2)) horizLayout = np.zeros((len(lines), 4)) # Find full vertical extent of font, # including ascenders and descenders: tmp, heightt, bl = renderer.get_text_width_height_descent( 'lp', self._fontproperties, ismath=False) offsety = heightt * self._linespacing baseline = None for i, line in enumerate(lines): clean_line, ismath = self.is_math_text(line) w, h, d = renderer.get_text_width_height_descent( clean_line, self._fontproperties, ismath=ismath) if baseline is None: baseline = h - d whs[i] = w, h horizLayout[i] = thisx, thisy, w, h thisy -= offsety width = max(width, w) ymin = horizLayout[-1][1] ymax = horizLayout[0][1] + horizLayout[0][3] height = ymax-ymin xmax = xmin + width # get the rotation matrix M = Affine2D().rotate_deg(self.get_rotation()) offsetLayout = np.zeros((len(lines), 2)) offsetLayout[:] = horizLayout[:, 0:2] # now offset the individual text lines within the box if len(lines)>1: # do the multiline aligment malign = self._get_multialignment() if malign == 'center': offsetLayout[:, 0] += width/2.0 - horizLayout[:, 2] / 2.0 elif malign == 'right': offsetLayout[:, 0] += width - horizLayout[:, 2] # the corners of the unrotated bounding box cornersHoriz = np.array( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)], np.float_) # now rotate the bbox cornersRotated = M.transform(cornersHoriz) txs = cornersRotated[:, 0] tys = cornersRotated[:, 1] # compute the bounds of the rotated box xmin, xmax = txs.min(), txs.max() ymin, ymax = tys.min(), tys.max() width = xmax - xmin height = ymax - ymin # Now move the box to the targe position offset the display bbox by alignment halign = self._horizontalalignment valign = self._verticalalignment # compute the text location in display coords and the offsets # necessary to align the bbox with that location if halign=='center': offsetx = (xmin + width/2.0) elif halign=='right': offsetx = (xmin + width) else: offsetx = xmin if valign=='center': offsety = (ymin + height/2.0) elif valign=='top': offsety = (ymin + height) elif valign=='baseline': offsety = (ymin + height) - baseline else: offsety = ymin xmin -= offsetx ymin -= offsety bbox = Bbox.from_bounds(xmin, ymin, width, height) # now rotate the positions around the first x,y position xys = M.transform(offsetLayout) xys -= (offsetx, offsety) xs, ys = xys[:, 0], xys[:, 1] ret = bbox, zip(lines, whs, xs, ys) self.cached[key] = ret return ret def set_bbox(self, rectprops): """ Draw a bounding box around self. rectprops are any settable properties for a rectangle, eg facecolor='red', alpha=0.5. t.set_bbox(dict(facecolor='red', alpha=0.5)) If rectprops has "boxstyle" key. A FancyBboxPatch is initialized with rectprops and will be drawn. The mutation scale of the FancyBboxPath is set to the fontsize. ACCEPTS: rectangle prop dict """ # The self._bbox_patch object is created only if rectprops has # boxstyle key. Otherwise, self._bbox will be set to the # rectprops and the bbox will be drawn using bbox_artist # function. This is to keep the backward compatibility. if rectprops is not None and "boxstyle" in rectprops: props = rectprops.copy() boxstyle = props.pop("boxstyle") bbox_transmuter = props.pop("bbox_transmuter", None) self._bbox_patch = FancyBboxPatch((0., 0.), 1., 1., boxstyle=boxstyle, bbox_transmuter=bbox_transmuter, transform=mtransforms.IdentityTransform(), **props) self._bbox = None else: self._bbox_patch = None self._bbox = rectprops def get_bbox_patch(self): """ Return the bbox Patch object. Returns None if the the FancyBboxPatch is not made. """ return self._bbox_patch def update_bbox_position_size(self, renderer): """ Update the location and the size of the bbox. This method should be used when the position and size of the bbox needs to be updated before actually drawing the bbox. """ # For arrow_patch, use textbox as patchA by default. if not isinstance(self.arrow_patch, FancyArrowPatch): return if self._bbox_patch: trans = self.get_transform() # don't use self.get_position here, which refers to text position # in Text, and dash position in TextWithDash: posx = float(self.convert_xunits(self._x)) posy = float(self.convert_yunits(self._y)) posx, posy = trans.transform_point((posx, posy)) x_box, y_box, w_box, h_box = _get_textbox(self, renderer) self._bbox_patch.set_bounds(0., 0., w_box, h_box) theta = self.get_rotation()/180.*math.pi tr = mtransforms.Affine2D().rotate(theta) tr = tr.translate(posx+x_box, posy+y_box) self._bbox_patch.set_transform(tr) fontsize_in_pixel = renderer.points_to_pixels(self.get_size()) self._bbox_patch.set_mutation_scale(fontsize_in_pixel) #self._bbox_patch.draw(renderer) else: props = self._bbox if props is None: props = {} props = props.copy() # don't want to alter the pad externally pad = props.pop('pad', 4) pad = renderer.points_to_pixels(pad) bbox = self.get_window_extent(renderer) l,b,w,h = bbox.bounds l-=pad/2. b-=pad/2. w+=pad h+=pad r = Rectangle(xy=(l,b), width=w, height=h, ) r.set_transform(mtransforms.IdentityTransform()) r.set_clip_on( False ) r.update(props) self.arrow_patch.set_patchA(r) def _draw_bbox(self, renderer, posx, posy): """ Update the location and the size of the bbox (FancyBoxPatch), and draw """ x_box, y_box, w_box, h_box = _get_textbox(self, renderer) self._bbox_patch.set_bounds(0., 0., w_box, h_box) theta = self.get_rotation()/180.*math.pi tr = mtransforms.Affine2D().rotate(theta) tr = tr.translate(posx+x_box, posy+y_box) self._bbox_patch.set_transform(tr) fontsize_in_pixel = renderer.points_to_pixels(self.get_size()) self._bbox_patch.set_mutation_scale(fontsize_in_pixel) self._bbox_patch.draw(renderer) def draw(self, renderer): """ Draws the :class:`Text` object to the given *renderer*. """ if renderer is not None: self._renderer = renderer if not self.get_visible(): return if self._text=='': return bbox, info = self._get_layout(renderer) trans = self.get_transform() # don't use self.get_position here, which refers to text position # in Text, and dash position in TextWithDash: posx = float(self.convert_xunits(self._x)) posy = float(self.convert_yunits(self._y)) posx, posy = trans.transform_point((posx, posy)) canvasw, canvash = renderer.get_canvas_width_height() # draw the FancyBboxPatch if self._bbox_patch: self._draw_bbox(renderer, posx, posy) gc = renderer.new_gc() gc.set_foreground(self._color) gc.set_alpha(self._alpha) gc.set_url(self._url) if self.get_clip_on(): gc.set_clip_rectangle(self.clipbox) if self._bbox: bbox_artist(self, renderer, self._bbox) angle = self.get_rotation() if rcParams['text.usetex']: for line, wh, x, y in info: x = x + posx y = y + posy if renderer.flipy(): y = canvash-y clean_line, ismath = self.is_math_text(line) renderer.draw_tex(gc, x, y, clean_line, self._fontproperties, angle) return for line, wh, x, y in info: x = x + posx y = y + posy if renderer.flipy(): y = canvash-y clean_line, ismath = self.is_math_text(line) renderer.draw_text(gc, x, y, clean_line, self._fontproperties, angle, ismath=ismath) def get_color(self): "Return the color of the text" return self._color def get_fontproperties(self): "Return the :class:`~font_manager.FontProperties` object" return self._fontproperties def get_font_properties(self): 'alias for get_fontproperties' return self.get_fontproperties def get_family(self): "Return the list of font families used for font lookup" return self._fontproperties.get_family() def get_fontfamily(self): 'alias for get_family' return self.get_family() def get_name(self): "Return the font name as string" return self._fontproperties.get_name() def get_style(self): "Return the font style as string" return self._fontproperties.get_style() def get_size(self): "Return the font size as integer" return self._fontproperties.get_size_in_points() def get_variant(self): "Return the font variant as a string" return self._fontproperties.get_variant() def get_fontvariant(self): 'alias for get_variant' return self.get_variant() def get_weight(self): "Get the font weight as string or number" return self._fontproperties.get_weight() def get_fontname(self): 'alias for get_name' return self.get_name() def get_fontstyle(self): 'alias for get_style' return self.get_style() def get_fontsize(self): 'alias for get_size' return self.get_size() def get_fontweight(self): 'alias for get_weight' return self.get_weight() def get_stretch(self): 'Get the font stretch as a string or number' return self._fontproperties.get_stretch() def get_fontstretch(self): 'alias for get_stretch' return self.get_stretch() def get_ha(self): 'alias for get_horizontalalignment' return self.get_horizontalalignment() def get_horizontalalignment(self): """ Return the horizontal alignment as string. Will be one of 'left', 'center' or 'right'. """ return self._horizontalalignment def get_position(self): "Return the position of the text as a tuple (*x*, *y*)" x = float(self.convert_xunits(self._x)) y = float(self.convert_yunits(self._y)) return x, y def get_prop_tup(self): """ Return a hashable tuple of properties. Not intended to be human readable, but useful for backends who want to cache derived information about text (eg layouts) and need to know if the text has changed. """ x, y = self.get_position() return (x, y, self._text, self._color, self._verticalalignment, self._horizontalalignment, hash(self._fontproperties), self._rotation, self.figure.dpi, id(self._renderer), ) def get_text(self): "Get the text as string" return self._text def get_va(self): 'alias for :meth:`getverticalalignment`' return self.get_verticalalignment() def get_verticalalignment(self): """ Return the vertical alignment as string. Will be one of 'top', 'center', 'bottom' or 'baseline'. """ return self._verticalalignment def get_window_extent(self, renderer=None, dpi=None): ''' Return a :class:`~matplotlib.transforms.Bbox` object bounding the text, in display units. In addition to being used internally, this is useful for specifying clickable regions in a png file on a web page. *renderer* defaults to the _renderer attribute of the text object. This is not assigned until the first execution of :meth:`draw`, so you must use this kwarg if you want to call :meth:`get_window_extent` prior to the first :meth:`draw`. For getting web page regions, it is simpler to call the method after saving the figure. *dpi* defaults to self.figure.dpi; the renderer dpi is irrelevant. For the web application, if figure.dpi is not the value used when saving the figure, then the value that was used must be specified as the *dpi* argument. ''' #return _unit_box if not self.get_visible(): return Bbox.unit() if dpi is not None: dpi_orig = self.figure.dpi self.figure.dpi = dpi if self._text == '': tx, ty = self._get_xy_display() return Bbox.from_bounds(tx,ty,0,0) if renderer is not None: self._renderer = renderer if self._renderer is None: raise RuntimeError('Cannot get window extent w/o renderer') bbox, info = self._get_layout(self._renderer) x, y = self.get_position() x, y = self.get_transform().transform_point((x, y)) bbox = bbox.translated(x, y) if dpi is not None: self.figure.dpi = dpi_orig return bbox def set_backgroundcolor(self, color): """ Set the background color of the text by updating the bbox. .. seealso:: :meth:`set_bbox` ACCEPTS: any matplotlib color """ if self._bbox is None: self._bbox = dict(facecolor=color, edgecolor=color) else: self._bbox.update(dict(facecolor=color)) def set_color(self, color): """ Set the foreground color of the text ACCEPTS: any matplotlib color """ # Make sure it is hashable, or get_prop_tup will fail. try: hash(color) except TypeError: color = tuple(color) self._color = color def set_ha(self, align): 'alias for set_horizontalalignment' self.set_horizontalalignment(align) def set_horizontalalignment(self, align): """ Set the horizontal alignment to one of ACCEPTS: [ 'center' | 'right' | 'left' ] """ legal = ('center', 'right', 'left') if align not in legal: raise ValueError('Horizontal alignment must be one of %s' % str(legal)) self._horizontalalignment = align def set_ma(self, align): 'alias for set_verticalalignment' self.set_multialignment(align) def set_multialignment(self, align): """ Set the alignment for multiple lines layout. The layout of the bounding box of all the lines is determined bu the horizontalalignment and verticalalignment properties, but the multiline text within that box can be ACCEPTS: ['left' | 'right' | 'center' ] """ legal = ('center', 'right', 'left') if align not in legal: raise ValueError('Horizontal alignment must be one of %s' % str(legal)) self._multialignment = align def set_linespacing(self, spacing): """ Set the line spacing as a multiple of the font size. Default is 1.2. ACCEPTS: float (multiple of font size) """ self._linespacing = spacing def set_family(self, fontname): """ Set the font family. May be either a single string, or a list of strings in decreasing priority. Each string may be either a real font name or a generic font class name. If the latter, the specific font names will be looked up in the :file:`matplotlibrc` file. ACCEPTS: [ FONTNAME | 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ] """ self._fontproperties.set_family(fontname) def set_variant(self, variant): """ Set the font variant, either 'normal' or 'small-caps'. ACCEPTS: [ 'normal' | 'small-caps' ] """ self._fontproperties.set_variant(variant) def set_fontvariant(self, variant): 'alias for set_variant' return self.set_variant(variant) def set_name(self, fontname): """alias for set_family""" return self.set_family(fontname) def set_fontname(self, fontname): """alias for set_family""" self.set_family(fontname) def set_style(self, fontstyle): """ Set the font style. ACCEPTS: [ 'normal' | 'italic' | 'oblique'] """ self._fontproperties.set_style(fontstyle) def set_fontstyle(self, fontstyle): 'alias for set_style' return self.set_style(fontstyle) def set_size(self, fontsize): """ Set the font size. May be either a size string, relative to the default font size, or an absolute font size in points. ACCEPTS: [ size in points | 'xx-small' | 'x-small' | 'small' | 'medium' | 'large' | 'x-large' | 'xx-large' ] """ self._fontproperties.set_size(fontsize) def set_fontsize(self, fontsize): 'alias for set_size' return self.set_size(fontsize) def set_weight(self, weight): """ Set the font weight. ACCEPTS: [ a numeric value in range 0-1000 | 'ultralight' | 'light' | 'normal' | 'regular' | 'book' | 'medium' | 'roman' | 'semibold' | 'demibold' | 'demi' | 'bold' | 'heavy' | 'extra bold' | 'black' ] """ self._fontproperties.set_weight(weight) def set_fontweight(self, weight): 'alias for set_weight' return self.set_weight(weight) def set_stretch(self, stretch): """ Set the font stretch (horizontal condensation or expansion). ACCEPTS: [ a numeric value in range 0-1000 | 'ultra-condensed' | 'extra-condensed' | 'condensed' | 'semi-condensed' | 'normal' | 'semi-expanded' | 'expanded' | 'extra-expanded' | 'ultra-expanded' ] """ self._fontproperties.set_stretch(stretch) def set_fontstretch(self, stretch): 'alias for set_stretch' return self.set_stretch(stretch) def set_position(self, xy): """ Set the (*x*, *y*) position of the text ACCEPTS: (x,y) """ self.set_x(xy[0]) self.set_y(xy[1]) def set_x(self, x): """ Set the *x* position of the text ACCEPTS: float """ self._x = x def set_y(self, y): """ Set the *y* position of the text ACCEPTS: float """ self._y = y def set_rotation(self, s): """ Set the rotation of the text ACCEPTS: [ angle in degrees | 'vertical' | 'horizontal' ] """ self._rotation = s def set_va(self, align): 'alias for set_verticalalignment' self.set_verticalalignment(align) def set_verticalalignment(self, align): """ Set the vertical alignment ACCEPTS: [ 'center' | 'top' | 'bottom' | 'baseline' ] """ legal = ('top', 'bottom', 'center', 'baseline') if align not in legal: raise ValueError('Vertical alignment must be one of %s' % str(legal)) self._verticalalignment = align def set_text(self, s): """ Set the text string *s* It may contain newlines (``\\n``) or math in LaTeX syntax. ACCEPTS: string or anything printable with '%s' conversion. """ self._text = '%s' % (s,) def is_math_text(self, s): """ Returns True if the given string *s* contains any mathtext. """ # Did we find an even number of non-escaped dollar signs? # If so, treat is as math text. dollar_count = s.count(r'$') - s.count(r'\$') even_dollars = (dollar_count > 0 and dollar_count % 2 == 0) if rcParams['text.usetex']: return s, 'TeX' if even_dollars: return s, True else: return s.replace(r'\$', '$'), False def set_fontproperties(self, fp): """ Set the font properties that control the text. *fp* must be a :class:`matplotlib.font_manager.FontProperties` object. ACCEPTS: a :class:`matplotlib.font_manager.FontProperties` instance """ if is_string_like(fp): fp = FontProperties(fp) self._fontproperties = fp.copy() def set_font_properties(self, fp): 'alias for set_fontproperties' self.set_fontproperties(fp) artist.kwdocd['Text'] = artist.kwdoc(Text) Text.__init__.im_func.__doc__ = cbook.dedent(Text.__init__.__doc__) % artist.kwdocd class TextWithDash(Text): """ This is basically a :class:`~matplotlib.text.Text` with a dash (drawn with a :class:`~matplotlib.lines.Line2D`) before/after it. It is intended to be a drop-in replacement for :class:`~matplotlib.text.Text`, and should behave identically to it when *dashlength* = 0.0. The dash always comes between the point specified by :meth:`~matplotlib.text.Text.set_position` and the text. When a dash exists, the text alignment arguments (*horizontalalignment*, *verticalalignment*) are ignored. *dashlength* is the length of the dash in canvas units. (default = 0.0). *dashdirection* is one of 0 or 1, where 0 draws the dash after the text and 1 before. (default = 0). *dashrotation* specifies the rotation of the dash, and should generally stay *None*. In this case :meth:`~matplotlib.text.TextWithDash.get_dashrotation` returns :meth:`~matplotlib.text.Text.get_rotation`. (I.e., the dash takes its rotation from the text's rotation). Because the text center is projected onto the dash, major deviations in the rotation cause what may be considered visually unappealing results. (default = *None*) *dashpad* is a padding length to add (or subtract) space between the text and the dash, in canvas units. (default = 3) *dashpush* "pushes" the dash and text away from the point specified by :meth:`~matplotlib.text.Text.set_position` by the amount in canvas units. (default = 0) .. note:: The alignment of the two objects is based on the bounding box of the :class:`~matplotlib.text.Text`, as obtained by :meth:`~matplotlib.artist.Artist.get_window_extent`. This, in turn, appears to depend on the font metrics as given by the rendering backend. Hence the quality of the "centering" of the label text with respect to the dash varies depending on the backend used. .. note:: I'm not sure that I got the :meth:`~matplotlib.text.TextWithDash.get_window_extent` right, or whether that's sufficient for providing the object bounding box. """ __name__ = 'textwithdash' def __str__(self): return "TextWithDash(%g,%g,%s)"%(self._x,self._y,repr(self._text)) def __init__(self, x=0, y=0, text='', color=None, # defaults to rc params verticalalignment='center', horizontalalignment='center', multialignment=None, fontproperties=None, # defaults to FontProperties() rotation=None, linespacing=None, dashlength=0.0, dashdirection=0, dashrotation=None, dashpad=3, dashpush=0, ): Text.__init__(self, x=x, y=y, text=text, color=color, verticalalignment=verticalalignment, horizontalalignment=horizontalalignment, multialignment=multialignment, fontproperties=fontproperties, rotation=rotation, linespacing=linespacing) # The position (x,y) values for text and dashline # are bogus as given in the instantiation; they will # be set correctly by update_coords() in draw() self.dashline = Line2D(xdata=(x, x), ydata=(y, y), color='k', linestyle='-') self._dashx = float(x) self._dashy = float(y) self._dashlength = dashlength self._dashdirection = dashdirection self._dashrotation = dashrotation self._dashpad = dashpad self._dashpush = dashpush #self.set_bbox(dict(pad=0)) def get_position(self): "Return the position of the text as a tuple (*x*, *y*)" x = float(self.convert_xunits(self._dashx)) y = float(self.convert_yunits(self._dashy)) return x, y def get_prop_tup(self): """ Return a hashable tuple of properties. Not intended to be human readable, but useful for backends who want to cache derived information about text (eg layouts) and need to know if the text has changed. """ props = [p for p in Text.get_prop_tup(self)] props.extend([self._x, self._y, self._dashlength, self._dashdirection, self._dashrotation, self._dashpad, self._dashpush]) return tuple(props) def draw(self, renderer): """ Draw the :class:`TextWithDash` object to the given *renderer*. """ self.update_coords(renderer) Text.draw(self, renderer) if self.get_dashlength() > 0.0: self.dashline.draw(renderer) def update_coords(self, renderer): """ Computes the actual *x*, *y* coordinates for text based on the input *x*, *y* and the *dashlength*. Since the rotation is with respect to the actual canvas's coordinates we need to map back and forth. """ dashx, dashy = self.get_position() dashlength = self.get_dashlength() # Shortcircuit this process if we don't have a dash if dashlength == 0.0: self._x, self._y = dashx, dashy return dashrotation = self.get_dashrotation() dashdirection = self.get_dashdirection() dashpad = self.get_dashpad() dashpush = self.get_dashpush() angle = get_rotation(dashrotation) theta = np.pi*(angle/180.0+dashdirection-1) cos_theta, sin_theta = np.cos(theta), np.sin(theta) transform = self.get_transform() # Compute the dash end points # The 'c' prefix is for canvas coordinates cxy = transform.transform_point((dashx, dashy)) cd = np.array([cos_theta, sin_theta]) c1 = cxy+dashpush*cd c2 = cxy+(dashpush+dashlength)*cd inverse = transform.inverted() (x1, y1) = inverse.transform_point(tuple(c1)) (x2, y2) = inverse.transform_point(tuple(c2)) self.dashline.set_data((x1, x2), (y1, y2)) # We now need to extend this vector out to # the center of the text area. # The basic problem here is that we're "rotating" # two separate objects but want it to appear as # if they're rotated together. # This is made non-trivial because of the # interaction between text rotation and alignment - # text alignment is based on the bbox after rotation. # We reset/force both alignments to 'center' # so we can do something relatively reasonable. # There's probably a better way to do this by # embedding all this in the object's transformations, # but I don't grok the transformation stuff # well enough yet. we = Text.get_window_extent(self, renderer=renderer) w, h = we.width, we.height # Watch for zeros if sin_theta == 0.0: dx = w dy = 0.0 elif cos_theta == 0.0: dx = 0.0 dy = h else: tan_theta = sin_theta/cos_theta dx = w dy = w*tan_theta if dy > h or dy < -h: dy = h dx = h/tan_theta cwd = np.array([dx, dy])/2 cwd *= 1+dashpad/np.sqrt(np.dot(cwd,cwd)) cw = c2+(dashdirection*2-1)*cwd newx, newy = inverse.transform_point(tuple(cw)) self._x, self._y = newx, newy # Now set the window extent # I'm not at all sure this is the right way to do this. we = Text.get_window_extent(self, renderer=renderer) self._twd_window_extent = we.frozen() self._twd_window_extent.update_from_data_xy(np.array([c1]), False) # Finally, make text align center Text.set_horizontalalignment(self, 'center') Text.set_verticalalignment(self, 'center') def get_window_extent(self, renderer=None): ''' Return a :class:`~matplotlib.transforms.Bbox` object bounding the text, in display units. In addition to being used internally, this is useful for specifying clickable regions in a png file on a web page. *renderer* defaults to the _renderer attribute of the text object. This is not assigned until the first execution of :meth:`draw`, so you must use this kwarg if you want to call :meth:`get_window_extent` prior to the first :meth:`draw`. For getting web page regions, it is simpler to call the method after saving the figure. ''' self.update_coords(renderer) if self.get_dashlength() == 0.0: return Text.get_window_extent(self, renderer=renderer) else: return self._twd_window_extent def get_dashlength(self): """ Get the length of the dash. """ return self._dashlength def set_dashlength(self, dl): """ Set the length of the dash. ACCEPTS: float (canvas units) """ self._dashlength = dl def get_dashdirection(self): """ Get the direction dash. 1 is before the text and 0 is after. """ return self._dashdirection def set_dashdirection(self, dd): """ Set the direction of the dash following the text. 1 is before the text and 0 is after. The default is 0, which is what you'd want for the typical case of ticks below and on the left of the figure. ACCEPTS: int (1 is before, 0 is after) """ self._dashdirection = dd def get_dashrotation(self): """ Get the rotation of the dash in degrees. """ if self._dashrotation == None: return self.get_rotation() else: return self._dashrotation def set_dashrotation(self, dr): """ Set the rotation of the dash, in degrees ACCEPTS: float (degrees) """ self._dashrotation = dr def get_dashpad(self): """ Get the extra spacing between the dash and the text, in canvas units. """ return self._dashpad def set_dashpad(self, dp): """ Set the "pad" of the TextWithDash, which is the extra spacing between the dash and the text, in canvas units. ACCEPTS: float (canvas units) """ self._dashpad = dp def get_dashpush(self): """ Get the extra spacing between the dash and the specified text position, in canvas units. """ return self._dashpush def set_dashpush(self, dp): """ Set the "push" of the TextWithDash, which is the extra spacing between the beginning of the dash and the specified position. ACCEPTS: float (canvas units) """ self._dashpush = dp def set_position(self, xy): """ Set the (*x*, *y*) position of the :class:`TextWithDash`. ACCEPTS: (x, y) """ self.set_x(xy[0]) self.set_y(xy[1]) def set_x(self, x): """ Set the *x* position of the :class:`TextWithDash`. ACCEPTS: float """ self._dashx = float(x) def set_y(self, y): """ Set the *y* position of the :class:`TextWithDash`. ACCEPTS: float """ self._dashy = float(y) def set_transform(self, t): """ Set the :class:`matplotlib.transforms.Transform` instance used by this artist. ACCEPTS: a :class:`matplotlib.transforms.Transform` instance """ Text.set_transform(self, t) self.dashline.set_transform(t) def get_figure(self): 'return the figure instance the artist belongs to' return self.figure def set_figure(self, fig): """ Set the figure instance the artist belong to. ACCEPTS: a :class:`matplotlib.figure.Figure` instance """ Text.set_figure(self, fig) self.dashline.set_figure(fig) artist.kwdocd['TextWithDash'] = artist.kwdoc(TextWithDash) class Annotation(Text): """ A :class:`~matplotlib.text.Text` class to make annotating things in the figure, such as :class:`~matplotlib.figure.Figure`, :class:`~matplotlib.axes.Axes`, :class:`~matplotlib.patches.Rectangle`, etc., easier. """ def __str__(self): return "Annotation(%g,%g,%s)"%(self.xy[0],self.xy[1],repr(self._text)) def __init__(self, s, xy, xytext=None, xycoords='data', textcoords=None, arrowprops=None, **kwargs): """ Annotate the *x*, *y* point *xy* with text *s* at *x*, *y* location *xytext*. (If *xytext* = *None*, defaults to *xy*, and if *textcoords* = *None*, defaults to *xycoords*). *arrowprops*, if not *None*, is a dictionary of line properties (see :class:`matplotlib.lines.Line2D`) for the arrow that connects annotation to the point. If the dictionary has a key *arrowstyle*, a FancyArrowPatch instance is created with the given dictionary and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys for YAArow are ========= ============================================================= Key Description ========= ============================================================= width the width of the arrow in points frac the fraction of the arrow length occupied by the head headwidth the width of the base of the arrow head in points shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and point being annotated. If *d* is the distance between the text and annotated point, shrink will shorten the arrow so the tip and base are shink percent of the distance *d* away from the endpoints. ie, ``shrink=0.05 is 5%%`` ? any key for :class:`matplotlib.patches.polygon` ========= ============================================================= Valid keys for FancyArrowPatch are =============== ====================================================== Key Description =============== ====================================================== arrowstyle the arrow style connectionstyle the connection style relpos default is (0.5, 0.5) patchA default is bounding box of the text patchB default is None shrinkA default is 2 points shrinkB default is 2 points mutation_scale default is text size (in points) mutation_aspect default is 1. ? any key for :class:`matplotlib.patches.PathPatch` =============== ====================================================== *xycoords* and *textcoords* are strings that indicate the coordinates of *xy* and *xytext*. ================= =================================================== Property Description ================= =================================================== 'figure points' points from the lower left corner of the figure 'figure pixels' pixels from the lower left corner of the figure 'figure fraction' 0,0 is lower left of figure and 1,1 is upper, right 'axes points' points from lower left corner of axes 'axes pixels' pixels from lower left corner of axes 'axes fraction' 0,1 is lower left of axes and 1,1 is upper right 'data' use the coordinate system of the object being annotated (default) 'offset points' Specify an offset (in points) from the *xy* value 'polar' you can specify *theta*, *r* for the annotation, even in cartesian plots. Note that if you are using a polar axes, you do not need to specify polar for the coordinate system since that is the native "data" coordinate system. ================= =================================================== If a 'points' or 'pixels' option is specified, values will be added to the bottom-left and if negative, values will be subtracted from the top-right. Eg:: # 10 points to the right of the left border of the axes and # 5 points below the top border xy=(10,-5), xycoords='axes points' Additional kwargs are Text properties: %(Text)s """ if xytext is None: xytext = xy if textcoords is None: textcoords = xycoords # we'll draw ourself after the artist we annotate by default x,y = self.xytext = xytext Text.__init__(self, x, y, s, **kwargs) self.xy = xy self.xycoords = xycoords self.textcoords = textcoords self.arrowprops = arrowprops self.arrow = None if arrowprops and arrowprops.has_key("arrowstyle"): self._arrow_relpos = arrowprops.pop("relpos", (0.5, 0.5)) self.arrow_patch = FancyArrowPatch((0, 0), (1,1), **arrowprops) else: self.arrow_patch = None __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def contains(self,event): t,tinfo = Text.contains(self,event) if self.arrow is not None: a,ainfo=self.arrow.contains(event) t = t or a # self.arrow_patch is currently not checked as this can be a line - JJ return t,tinfo def set_figure(self, fig): if self.arrow is not None: self.arrow.set_figure(fig) if self.arrow_patch is not None: self.arrow_patch.set_figure(fig) Artist.set_figure(self, fig) def _get_xy(self, x, y, s): if s=='data': trans = self.axes.transData x = float(self.convert_xunits(x)) y = float(self.convert_yunits(y)) return trans.transform_point((x, y)) elif s=='offset points': # convert the data point dx, dy = self.xy # prevent recursion if self.xycoords == 'offset points': return self._get_xy(dx, dy, 'data') dx, dy = self._get_xy(dx, dy, self.xycoords) # convert the offset dpi = self.figure.get_dpi() x *= dpi/72. y *= dpi/72. # add the offset to the data point x += dx y += dy return x, y elif s=='polar': theta, r = x, y x = r*np.cos(theta) y = r*np.sin(theta) trans = self.axes.transData return trans.transform_point((x,y)) elif s=='figure points': #points from the lower left corner of the figure dpi = self.figure.dpi l,b,w,h = self.figure.bbox.bounds r = l+w t = b+h x *= dpi/72. y *= dpi/72. if x<0: x = r + x if y<0: y = t + y return x,y elif s=='figure pixels': #pixels from the lower left corner of the figure l,b,w,h = self.figure.bbox.bounds r = l+w t = b+h if x<0: x = r + x if y<0: y = t + y return x, y elif s=='figure fraction': #(0,0) is lower left, (1,1) is upper right of figure trans = self.figure.transFigure return trans.transform_point((x,y)) elif s=='axes points': #points from the lower left corner of the axes dpi = self.figure.dpi l,b,w,h = self.axes.bbox.bounds r = l+w t = b+h if x<0: x = r + x*dpi/72. else: x = l + x*dpi/72. if y<0: y = t + y*dpi/72. else: y = b + y*dpi/72. return x, y elif s=='axes pixels': #pixels from the lower left corner of the axes l,b,w,h = self.axes.bbox.bounds r = l+w t = b+h if x<0: x = r + x else: x = l + x if y<0: y = t + y else: y = b + y return x, y elif s=='axes fraction': #(0,0) is lower left, (1,1) is upper right of axes trans = self.axes.transAxes return trans.transform_point((x, y)) def update_positions(self, renderer): x, y = self.xytext self._x, self._y = self._get_xy(x, y, self.textcoords) x, y = self.xy x, y = self._get_xy(x, y, self.xycoords) ox0, oy0 = self._x, self._y ox1, oy1 = x, y if self.arrowprops: x0, y0 = x, y l,b,w,h = self.get_window_extent(renderer).bounds r = l+w t = b+h xc = 0.5*(l+r) yc = 0.5*(b+t) d = self.arrowprops.copy() # Use FancyArrowPatch if self.arrowprops has "arrowstyle" key. # Otherwise, fallback to YAArrow. #if d.has_key("arrowstyle"): if self.arrow_patch: # adjust the starting point of the arrow relative to # the textbox. # TODO : Rotation needs to be accounted. relpos = self._arrow_relpos bbox = self.get_window_extent(renderer) ox0 = bbox.x0 + bbox.width * relpos[0] oy0 = bbox.y0 + bbox.height * relpos[1] # The arrow will be drawn from (ox0, oy0) to (ox1, # oy1). It will be first clipped by patchA and patchB. # Then it will be shrinked by shirnkA and shrinkB # (in points). If patch A is not set, self.bbox_patch # is used. self.arrow_patch.set_positions((ox0, oy0), (ox1,oy1)) mutation_scale = d.pop("mutation_scale", self.get_size()) mutation_scale = renderer.points_to_pixels(mutation_scale) self.arrow_patch.set_mutation_scale(mutation_scale) if self._bbox_patch: patchA = d.pop("patchA", self._bbox_patch) self.arrow_patch.set_patchA(patchA) else: patchA = d.pop("patchA", self._bbox) self.arrow_patch.set_patchA(patchA) else: # pick the x,y corner of the text bbox closest to point # annotated dsu = [(abs(val-x0), val) for val in l, r, xc] dsu.sort() _, x = dsu[0] dsu = [(abs(val-y0), val) for val in b, t, yc] dsu.sort() _, y = dsu[0] shrink = d.pop('shrink', 0.0) theta = math.atan2(y-y0, x-x0) r = math.sqrt((y-y0)**2. + (x-x0)**2.) dx = shrink*r*math.cos(theta) dy = shrink*r*math.sin(theta) width = d.pop('width', 4) headwidth = d.pop('headwidth', 12) frac = d.pop('frac', 0.1) self.arrow = YAArrow(self.figure, (x0+dx,y0+dy), (x-dx, y-dy), width=width, headwidth=headwidth, frac=frac, **d) self.arrow.set_clip_box(self.get_clip_box()) def draw(self, renderer): """ Draw the :class:`Annotation` object to the given *renderer*. """ self.update_positions(renderer) self.update_bbox_position_size(renderer) if self.arrow is not None: if self.arrow.figure is None and self.figure is not None: self.arrow.figure = self.figure self.arrow.draw(renderer) if self.arrow_patch is not None: if self.arrow_patch.figure is None and self.figure is not None: self.arrow_patch.figure = self.figure self.arrow_patch.draw(renderer) Text.draw(self, renderer) artist.kwdocd['Annotation'] = Annotation.__init__.__doc__
gpl-3.0
rianrajagede/iris-python
Tensorflow/iris_tf_v1.py
2
3582
from __future__ import print_function from builtins import range """ SECTION 1 : Load and setup data for training the datasets separated in two files from originai datasets: iris_train.csv = datasets for training purpose, 80% from the original data iris_test.csv = datasets for testing purpose, 20% from the original data """ import pandas as pd #load datatrain = pd.read_csv('../Datasets/iris/iris_train.csv') #change string value to numeric datatrain.loc[datatrain['species']=='Iris-setosa', 'species']=0 datatrain.loc[datatrain['species']=='Iris-versicolor', 'species']=1 datatrain.loc[datatrain['species']=='Iris-virginica', 'species']=2 datatrain = datatrain.apply(pd.to_numeric) #change dataframe to array datatrain_array = datatrain.values #split x and y (feature and target) xtrain = datatrain_array[:,:4] ytrain = datatrain_array[:,4] """ SECTION 2 : Build and Train Model Multilayer perceptron model, with one hidden layer. input layer : 4 neuron, represents the feature of Iris hidden layer : 10 neuron, activation using ReLU output layer : 3 neuron, represents the class of Iris, Softmax Layer optimizer = stochastic gradient descent with no batch-size loss function = categorical cross entropy learning rate = 0.0001 epoch = 1000 """ import os import tensorflow as tf # tensorflow configuration os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # minimzing logging cwd = os.path.abspath(os.path.dirname(__file__)) # path for saving model saver_path = os.path.abspath(os.path.join(cwd, 'models/model_sess.ckpt')) tf.set_random_seed(1103) # avoiding different result of random # tensorflow model input = tf.placeholder(tf.float32, [None, 4]) label = tf.placeholder(tf.float32, [None]) onehot_label = tf.one_hot(tf.cast(label, tf.int32), 3) hidden = tf.layers.dense(input, 10, tf.nn.relu, name="hidden") # kernel_initializer=tf.initializers.random_uniform(minval=-1, maxval=1, seed=123)) output = tf.layers.dense(hidden, 3, tf.nn.relu, name="output") # kernel_initializer=tf.initializers.random_uniform(minval=-1, maxval=1, seed=123)) soft_output = tf.nn.softmax(output) init = tf.global_variables_initializer() saver = tf.train.Saver() # optimization loss = -tf.reduce_sum(onehot_label * tf.log(soft_output)) optimizer = tf.train.GradientDescentOptimizer(0.0001) is_correct = tf.equal(tf.argmax(soft_output,1), tf.argmax(onehot_label,1)) accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32)) train_step = optimizer.minimize(loss) with tf.Session() as sess: sess.run(init) # start training for e in range(1000): if(e%100==0): print(e,"/ 1000 - Loss:", sess.run(loss, feed_dict={input:xtrain, label:ytrain})) sess.run(train_step, feed_dict={input:xtrain, label:ytrain}) # save model saver.save(sess, saver_path) print("Train accuracy",sess.run(accuracy, feed_dict={input:xtrain, label:ytrain})) """ SECTION 3 : Testing model """ #load datatest = pd.read_csv('../Datasets/iris/iris_test.csv') #change string value to numeric datatest.loc[datatest['species']=='Iris-setosa', 'species']=0 datatest.loc[datatest['species']=='Iris-versicolor', 'species']=1 datatest.loc[datatest['species']=='Iris-virginica', 'species']=2 datatest = datatest.apply(pd.to_numeric) #change dataframe to array datatest_array = datatest.values #split x and y (feature and target) xtest = datatest_array[:,:4] ytest = datatest_array[:,4] # get the model then test with tf.Session() as sess: saver.restore(sess, saver_path) print("Test accuracy",sess.run(accuracy, feed_dict={input:xtest, label:ytest}))
mit
sserrot/champion_relationships
venv/Lib/site-packages/ipykernel/eventloops.py
1
13124
# encoding: utf-8 """Event loop integration for the ZeroMQ-based kernels.""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. from functools import partial import os import sys import platform import zmq from distutils.version import LooseVersion as V from traitlets.config.application import Application def _use_appnope(): """Should we use appnope for dealing with OS X app nap? Checks if we are on OS X 10.9 or greater. """ return sys.platform == 'darwin' and V(platform.mac_ver()[0]) >= V('10.9') def _notify_stream_qt(kernel, stream): from IPython.external.qt_for_kernel import QtCore def process_stream_events(): """fall back to main loop when there's a socket event""" # call flush to ensure that the stream doesn't lose events # due to our consuming of the edge-triggered FD # flush returns the number of events consumed. # if there were any, wake it up if stream.flush(limit=1): notifier.setEnabled(False) kernel.app.quit() fd = stream.getsockopt(zmq.FD) notifier = QtCore.QSocketNotifier(fd, QtCore.QSocketNotifier.Read, kernel.app) notifier.activated.connect(process_stream_events) # there may already be unprocessed events waiting. # these events will not wake zmq's edge-triggered FD # since edge-triggered notification only occurs on new i/o activity. # process all the waiting events immediately # so we start in a clean state ensuring that any new i/o events will notify. # schedule first call on the eventloop as soon as it's running, # so we don't block here processing events timer = QtCore.QTimer(kernel.app) timer.setSingleShot(True) timer.timeout.connect(process_stream_events) timer.start(0) # mapping of keys to loop functions loop_map = { 'inline': None, 'nbagg': None, 'notebook': None, 'ipympl': None, 'widget': None, None: None, } def register_integration(*toolkitnames): """Decorator to register an event loop to integrate with the IPython kernel The decorator takes names to register the event loop as for the %gui magic. You can provide alternative names for the same toolkit. The decorated function should take a single argument, the IPython kernel instance, arrange for the event loop to call ``kernel.do_one_iteration()`` at least every ``kernel._poll_interval`` seconds, and start the event loop. :mod:`ipykernel.eventloops` provides and registers such functions for a few common event loops. """ def decorator(func): for name in toolkitnames: loop_map[name] = func func.exit_hook = lambda kernel: None def exit_decorator(exit_func): """@func.exit is now a decorator to register a function to be called on exit """ func.exit_hook = exit_func return exit_func func.exit = exit_decorator return func return decorator def _loop_qt(app): """Inner-loop for running the Qt eventloop Pulled from guisupport.start_event_loop in IPython < 5.2, since IPython 5.2 only checks `get_ipython().active_eventloop` is defined, rather than if the eventloop is actually running. """ app._in_event_loop = True app.exec_() app._in_event_loop = False @register_integration('qt4') def loop_qt4(kernel): """Start a kernel with PyQt4 event loop integration.""" from IPython.lib.guisupport import get_app_qt4 kernel.app = get_app_qt4([" "]) kernel.app.setQuitOnLastWindowClosed(False) # Only register the eventloop for the shell stream because doing # it for the control stream is generating a bunch of unnecessary # warnings on Windows. _notify_stream_qt(kernel, kernel.shell_streams[0]) _loop_qt(kernel.app) @register_integration('qt', 'qt5') def loop_qt5(kernel): """Start a kernel with PyQt5 event loop integration.""" os.environ['QT_API'] = 'pyqt5' return loop_qt4(kernel) # exit and watch are the same for qt 4 and 5 @loop_qt4.exit @loop_qt5.exit def loop_qt_exit(kernel): kernel.app.exit() def _loop_wx(app): """Inner-loop for running the Wx eventloop Pulled from guisupport.start_event_loop in IPython < 5.2, since IPython 5.2 only checks `get_ipython().active_eventloop` is defined, rather than if the eventloop is actually running. """ app._in_event_loop = True app.MainLoop() app._in_event_loop = False @register_integration('wx') def loop_wx(kernel): """Start a kernel with wx event loop support.""" import wx # Wx uses milliseconds poll_interval = int(1000 * kernel._poll_interval) def wake(): """wake from wx""" for stream in kernel.shell_streams: if stream.flush(limit=1): kernel.app.ExitMainLoop() return # We have to put the wx.Timer in a wx.Frame for it to fire properly. # We make the Frame hidden when we create it in the main app below. class TimerFrame(wx.Frame): def __init__(self, func): wx.Frame.__init__(self, None, -1) self.timer = wx.Timer(self) # Units for the timer are in milliseconds self.timer.Start(poll_interval) self.Bind(wx.EVT_TIMER, self.on_timer) self.func = func def on_timer(self, event): self.func() # We need a custom wx.App to create our Frame subclass that has the # wx.Timer to defer back to the tornado event loop. class IPWxApp(wx.App): def OnInit(self): self.frame = TimerFrame(wake) self.frame.Show(False) return True # The redirect=False here makes sure that wx doesn't replace # sys.stdout/stderr with its own classes. if not ( getattr(kernel, 'app', None) and isinstance(kernel.app, wx.App) ): kernel.app = IPWxApp(redirect=False) # The import of wx on Linux sets the handler for signal.SIGINT # to 0. This is a bug in wx or gtk. We fix by just setting it # back to the Python default. import signal if not callable(signal.getsignal(signal.SIGINT)): signal.signal(signal.SIGINT, signal.default_int_handler) _loop_wx(kernel.app) @loop_wx.exit def loop_wx_exit(kernel): import wx wx.Exit() @register_integration('tk') def loop_tk(kernel): """Start a kernel with the Tk event loop.""" from tkinter import Tk, READABLE app = Tk() # Capability detection: # per https://docs.python.org/3/library/tkinter.html#file-handlers # file handlers are not available on Windows if hasattr(app, 'createfilehandler'): # A basic wrapper for structural similarity with the Windows version class BasicAppWrapper(object): def __init__(self, app): self.app = app self.app.withdraw() def process_stream_events(stream, *a, **kw): """fall back to main loop when there's a socket event""" if stream.flush(limit=1): app.tk.deletefilehandler(stream.getsockopt(zmq.FD)) app.quit() # For Tkinter, we create a Tk object and call its withdraw method. kernel.app_wrapper = BasicAppWrapper(app) for stream in kernel.shell_streams: notifier = partial(process_stream_events, stream) # seems to be needed for tk notifier.__name__ = "notifier" app.tk.createfilehandler(stream.getsockopt(zmq.FD), READABLE, notifier) # schedule initial call after start app.after(0, notifier) app.mainloop() else: doi = kernel.do_one_iteration # Tk uses milliseconds poll_interval = int(1000 * kernel._poll_interval) class TimedAppWrapper(object): def __init__(self, app, func): self.app = app self.app.withdraw() self.func = func def on_timer(self): self.func() self.app.after(poll_interval, self.on_timer) def start(self): self.on_timer() # Call it once to get things going. self.app.mainloop() kernel.app_wrapper = TimedAppWrapper(app, doi) kernel.app_wrapper.start() @loop_tk.exit def loop_tk_exit(kernel): kernel.app_wrapper.app.destroy() @register_integration('gtk') def loop_gtk(kernel): """Start the kernel, coordinating with the GTK event loop""" from .gui.gtkembed import GTKEmbed gtk_kernel = GTKEmbed(kernel) gtk_kernel.start() kernel._gtk = gtk_kernel @loop_gtk.exit def loop_gtk_exit(kernel): kernel._gtk.stop() @register_integration('gtk3') def loop_gtk3(kernel): """Start the kernel, coordinating with the GTK event loop""" from .gui.gtk3embed import GTKEmbed gtk_kernel = GTKEmbed(kernel) gtk_kernel.start() kernel._gtk = gtk_kernel @loop_gtk3.exit def loop_gtk3_exit(kernel): kernel._gtk.stop() @register_integration('osx') def loop_cocoa(kernel): """Start the kernel, coordinating with the Cocoa CFRunLoop event loop via the matplotlib MacOSX backend. """ from ._eventloop_macos import mainloop, stop real_excepthook = sys.excepthook def handle_int(etype, value, tb): """don't let KeyboardInterrupts look like crashes""" # wake the eventloop when we get a signal stop() if etype is KeyboardInterrupt: print("KeyboardInterrupt caught in CFRunLoop", file=sys.__stdout__) else: real_excepthook(etype, value, tb) while not kernel.shell.exit_now: try: # double nested try/except, to properly catch KeyboardInterrupt # due to pyzmq Issue #130 try: # don't let interrupts during mainloop invoke crash_handler: sys.excepthook = handle_int mainloop(kernel._poll_interval) for stream in kernel.shell_streams: if stream.flush(limit=1): # events to process, return control to kernel return except: raise except KeyboardInterrupt: # Ctrl-C shouldn't crash the kernel print("KeyboardInterrupt caught in kernel", file=sys.__stdout__) finally: # ensure excepthook is restored sys.excepthook = real_excepthook @loop_cocoa.exit def loop_cocoa_exit(kernel): from ._eventloop_macos import stop stop() @register_integration('asyncio') def loop_asyncio(kernel): '''Start a kernel with asyncio event loop support.''' import asyncio loop = asyncio.get_event_loop() # loop is already running (e.g. tornado 5), nothing left to do if loop.is_running(): return if loop.is_closed(): # main loop is closed, create a new one loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop._should_close = False # pause eventloop when there's an event on a zmq socket def process_stream_events(stream): """fall back to main loop when there's a socket event""" if stream.flush(limit=1): loop.stop() for stream in kernel.shell_streams: fd = stream.getsockopt(zmq.FD) notifier = partial(process_stream_events, stream) loop.add_reader(fd, notifier) loop.call_soon(notifier) while True: error = None try: loop.run_forever() except KeyboardInterrupt: continue except Exception as e: error = e if loop._should_close: loop.close() if error is not None: raise error break @loop_asyncio.exit def loop_asyncio_exit(kernel): """Exit hook for asyncio""" import asyncio loop = asyncio.get_event_loop() @asyncio.coroutine def close_loop(): if hasattr(loop, 'shutdown_asyncgens'): yield from loop.shutdown_asyncgens() loop._should_close = True loop.stop() if loop.is_running(): close_loop() elif not loop.is_closed(): loop.run_until_complete(close_loop) loop.close() def enable_gui(gui, kernel=None): """Enable integration with a given GUI""" if gui not in loop_map: e = "Invalid GUI request %r, valid ones are:%s" % (gui, loop_map.keys()) raise ValueError(e) if kernel is None: if Application.initialized(): kernel = getattr(Application.instance(), 'kernel', None) if kernel is None: raise RuntimeError("You didn't specify a kernel," " and no IPython Application with a kernel appears to be running." ) loop = loop_map[gui] if loop and kernel.eventloop is not None and kernel.eventloop is not loop: raise RuntimeError("Cannot activate multiple GUI eventloops") kernel.eventloop = loop
mit
icdishb/scikit-learn
sklearn/covariance/tests/test_covariance.py
142
11068
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn import datasets from sklearn.covariance import empirical_covariance, EmpiricalCovariance, \ ShrunkCovariance, shrunk_covariance, \ LedoitWolf, ledoit_wolf, ledoit_wolf_shrinkage, OAS, oas X = datasets.load_diabetes().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_covariance(): # Tests Covariance module on a simple dataset. # test covariance fit from data cov = EmpiricalCovariance() cov.fit(X) emp_cov = empirical_covariance(X) assert_array_almost_equal(emp_cov, cov.covariance_, 4) assert_almost_equal(cov.error_norm(emp_cov), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='spectral'), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='frobenius'), 0) assert_almost_equal( cov.error_norm(emp_cov, scaling=False), 0) assert_almost_equal( cov.error_norm(emp_cov, squared=False), 0) assert_raises(NotImplementedError, cov.error_norm, emp_cov, norm='foo') # Mahalanobis distances computation test mahal_dist = cov.mahalanobis(X) print(np.amin(mahal_dist), np.amax(mahal_dist)) assert(np.amin(mahal_dist) > 0) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = EmpiricalCovariance() cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) assert_almost_equal(cov.error_norm(empirical_covariance(X_1d)), 0) assert_almost_equal( cov.error_norm(empirical_covariance(X_1d), norm='spectral'), 0) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) cov = EmpiricalCovariance() assert_warns(UserWarning, cov.fit, X_1sample) assert_array_almost_equal(cov.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test integer type X_integer = np.asarray([[0, 1], [1, 0]]) result = np.asarray([[0.25, -0.25], [-0.25, 0.25]]) assert_array_almost_equal(empirical_covariance(X_integer), result) # test centered case cov = EmpiricalCovariance(assume_centered=True) cov.fit(X) assert_array_equal(cov.location_, np.zeros(X.shape[1])) def test_shrunk_covariance(): # Tests ShrunkCovariance module on a simple dataset. # compare shrunk covariance obtained from data and from MLE estimate cov = ShrunkCovariance(shrinkage=0.5) cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X), shrinkage=0.5), cov.covariance_, 4) # same test with shrinkage not provided cov = ShrunkCovariance() cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X)), cov.covariance_, 4) # same test with shrinkage = 0 (<==> empirical_covariance) cov = ShrunkCovariance(shrinkage=0.) cov.fit(X) assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = ShrunkCovariance(shrinkage=0.3) cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) cov = ShrunkCovariance(shrinkage=0.5, store_precision=False) cov.fit(X) assert(cov.precision_ is None) def test_ledoit_wolf(): # Tests LedoitWolf module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) lw = LedoitWolf(assume_centered=True) lw.fit(X_centered) shrinkage_ = lw.shrinkage_ score_ = lw.score(X_centered) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True), shrinkage_) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True, block_size=6), shrinkage_) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_centered, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf(assume_centered=True) lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X_centered) assert_almost_equal(lw.score(X_centered), score_, 4) assert(lw.precision_ is None) # Same tests without assuming centered data # test shrinkage coeff on a simple data set lw = LedoitWolf() lw.fit(X) assert_almost_equal(lw.shrinkage_, shrinkage_, 4) assert_almost_equal(lw.shrinkage_, ledoit_wolf_shrinkage(X)) assert_almost_equal(lw.shrinkage_, ledoit_wolf(X)[1]) assert_almost_equal(lw.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf() lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) lw = LedoitWolf() assert_warns(UserWarning, lw.fit, X_1sample) assert_array_almost_equal(lw.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False) lw.fit(X) assert_almost_equal(lw.score(X), score_, 4) assert(lw.precision_ is None) def test_ledoit_wolf_large(): # test that ledoit_wolf doesn't error on data that is wider than block_size rng = np.random.RandomState(0) # use a number of features that is larger than the block-size X = rng.normal(size=(10, 20)) lw = LedoitWolf(block_size=10).fit(X) # check that covariance is about diagonal (random normal noise) assert_almost_equal(lw.covariance_, np.eye(20), 0) cov = lw.covariance_ # check that the result is consistent with not splitting data into blocks. lw = LedoitWolf(block_size=25).fit(X) assert_almost_equal(lw.covariance_, cov) def test_oas(): # Tests OAS module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) oa = OAS(assume_centered=True) oa.fit(X_centered) shrinkage_ = oa.shrinkage_ score_ = oa.score(X_centered) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_centered, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS(assume_centered=True) oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False, assume_centered=True) oa.fit(X_centered) assert_almost_equal(oa.score(X_centered), score_, 4) assert(oa.precision_ is None) # Same tests without assuming centered data-------------------------------- # test shrinkage coeff on a simple data set oa = OAS() oa.fit(X) assert_almost_equal(oa.shrinkage_, shrinkage_, 4) assert_almost_equal(oa.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS() oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) oa = OAS() assert_warns(UserWarning, oa.fit, X_1sample) assert_array_almost_equal(oa.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False) oa.fit(X) assert_almost_equal(oa.score(X), score_, 4) assert(oa.precision_ is None)
bsd-3-clause